Science.gov

Sample records for oligodendrocyte ablation affects

  1. Oligodendrocyte ablation affects the coordinated interaction between granule and Purkinje neurons during cerebellum development

    SciTech Connect

    Collin, Ludovic; Doretto, Sandrine; Malerba, Monica; Ruat, Martial; Borrelli, Emiliana . E-mail: borrelli@uci.edu

    2007-08-01

    Oligodendrocytes (OLs) are the glial cells of the central nervous system (CNS) classically known to be devoted to the formation of myelin sheaths around most axons of the vertebrate brain. We have addressed the role of these cells during cerebellar development, by ablating OLs in vivo. Previous analyses had indicated that OL ablation during the first six postnatal days results into a striking cerebellar phenotype, whose major features are a strong reduction of granule neurons and aberrant Purkinje cells development. These two cell types are highly interconnected during cerebellar development through the production of molecules that help their proliferation, differentiation and maintenance. In this article, we present data showing that OL ablation has major effects on the physiology of Purkinje (PC) and granule cells (GC). In particular, OL ablation results into a reduction of sonic hedgehog (Shh), Brain Derived Neurotrophic Factor (BDNF), and Reelin (Rln) expression. These results indicate that absence of OLs profoundly alters the normal cerebellar developmental program.

  2. Oligodendrocyte ablation as a tool to study demyelinating diseases.

    PubMed

    Pajoohesh-Ganji, Ahdeah; Miller, Robert H

    2016-06-01

    Multiple sclerosis (MS) is an autoimmune mediated neurodegenerative disease characterized by demyelination and oligodendrocyte (OL) loss in the central nervous system and accompanied by local inflammation and infiltration of peripheral immune cells. Although many risk factors and symptoms have been identified in MS, the pathology is complicated and the cause remains unknown. It is also unclear whether OL apoptosis precedes the inflammation or whether the local inflammation is the cause of OL death and demyelination. This review briefly discusses several models that have been developed to specifically ablate oligodendrocytes in an effort to separate the effects of demyelination from inflammation. PMID:27482202

  3. Motor training compensates for cerebellar dysfunctions caused by oligodendrocyte ablation.

    PubMed

    Collin, Ludovic; Usiello, Alessandro; Erbs, Eric; Mathis, Carole; Borrelli, Emiliana

    2004-01-01

    The role played by oligodendrocytes (OLs), the myelinating cells of the CNS, during brain development has not been fully explored. We have addressed this question by inducing a temporal and reversible ablation of OLs on postnatal CNS development. OL ablation in newborn mice leads to a profound alteration in the structure of the cerebellar cortex, which can be progressively rescued by newly generated cells, leading to a delayed myelination. Nevertheless, the temporal shift of the OL proliferation and myelinating program cannot completely compensate for developmental defects, resulting in impaired motor functions in the adult. Strikingly, we show that, despite these abnormalities, epigenetic factors, such as motor training, are able to fully rescue cerebellar-directed motor skills. PMID:14694200

  4. Motor training compensates for cerebellar dysfunctions caused by oligodendrocyte ablation

    PubMed Central

    Collin, Ludovic; Usiello, Alessandro; Erbs, Eric; Mathis, Carole; Borrelli, Emiliana

    2004-01-01

    The role played by oligodendrocytes (OLs), the myelinating cells of the CNS, during brain development has not been fully explored. We have addressed this question by inducing a temporal and reversible ablation of OLs on postnatal CNS development. OL ablation in newborn mice leads to a profound alteration in the structure of the cerebellar cortex, which can be progressively rescued by newly generated cells, leading to a delayed myelination. Nevertheless, the temporal shift of the OL proliferation and myelinating program cannot completely compensate for developmental defects, resulting in impaired motor functions in the adult. Strikingly, we show that, despite these abnormalities, epigenetic factors, such as motor training, are able to fully rescue cerebellar-directed motor skills. PMID:14694200

  5. Spatiotemporal ablation of CXCR2 on oligodendrocyte lineage cells

    PubMed Central

    Spangler, Lisa C.; Prager, Briana; Benson, Bryan; Hu, BingQing; Shi, Samuel; Love, Anna; Zhang, CunJin; Yu, Meigen; Cotleur, Anne C.

    2015-01-01

    Background: Residual CXCR2 expression on CNS cells in Cxcr2+/−→Cxcr2−/− chimeric animals slowed remyelination after both experimental autoimmune encephalomyelitis and cuprizone-induced demyelination. Methods: We generated Cxcr2fl/−:PLPCre-ER(T) mice enabling an inducible, conditional deletion of Cxcr2 on oligodendrocyte lineage cells of the CNS. Cxcr2fl/−:PLPCre-ER(T) mice were evaluated in 2 demyelination/remyelination models: cuprizone-feeding and in vitro lysophosphatidylcholine (LPC) treatment of cerebellar slice cultures. Results: Cxcr2fl/−:PLPCre-ER(T)+ (termed Cxcr2-cKO) mice showed better myelin repair 4 days after LPC-induced demyelination of cerebellar slice cultures. Cxcr2-cKOs also displayed enhanced hippocampal remyelination after a 2-week recovery from 6-week cuprizone feeding. Conclusion: Using 2 independent demyelination/remyelination models, our data document enhanced myelin repair in Cxcr2-cKO mice, consistent with the data obtained from radiation chimerism studies of germline CXCR2. Further experiments are appropriate to explore how CXCR2 function in the oligodendrocyte lineage accelerates myelin repair. PMID:26668819

  6. Ncx3 gene ablation impairs oligodendrocyte precursor response and increases susceptibility to experimental autoimmune encephalomyelitis.

    PubMed

    Casamassa, Antonella; La Rocca, Claudia; Sokolow, Sophie; Herchuelz, Andre; Matarese, Giuseppe; Annunziato, Lucio; Boscia, Francesca

    2016-07-01

    The Na(+) /Ca(2+) exchanger NCX3, recently identified as a myelin membrane component, is involved in the regulation of [Ca(2+) ]i during oligodendrocyte maturation. Here NCX3 involvement was studied in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Western blotting and quantitative colocalization studies performed in wild-type ncx3(+/+) mice at different stages of EAE disease showed that NCX3 protein was intensely upregulated during the chronic stage, where it was intensely coexpressed with the oligodendrocyte precursor cells (OPC) marker NG2 and the premyelinating marker CNPase. Moreover, MOG35-55 -immunized mice lacking the ncx3 gene displayed not only a reduced diameter of axons and an intact myelin ring number but also a dramatic decrease in OPC and pre-myelinating cells in the white matter of the spinal cord when compared with ncx3(+/+) . Accordingly, ncx3(-/-) and ncx3(+/-) mutants developed early onset of EAE and more severe clinical symptoms. Interestingly, cytofluorimetric analysis revealed that during the peak stage of the disease, the number of immune T-cell subsets in ncx3(-/-) mice, was not statistically different from that measured in ncx3(+/+) . Our findings demonstrate that knocking-out NCX3 impairs oligodendrocyte response and worsens clinical symptoms in EAE without altering the immune T-cell population. GLIA 2016;64:1124-1137. PMID:27120265

  7. Exposure to serotonin adversely affects oligodendrocyte development and myelination in vitro.

    PubMed

    Fan, Lir-Wan; Bhatt, Abhay; Tien, Lu-Tai; Zheng, Baoying; Simpson, Kimberly L; Lin, Rick C S; Cai, Zhengwei; Kumar, Praveen; Pang, Yi

    2015-05-01

    patterns of contactin-associated protein (Caspr) clustering were observed at the sites of Node of Ranvier, suggesting that 5-HT exposure may affect other axon-derived factors for myelination. In summary, this is the first study to demonstrate that manipulation of serotonin levels affects OL development and myelination, which may contribute to altered neural connectivity noted in SSRIs-treated animals. The current in vitro study demonstrated that exposure to high level of serotonin (5-HT) led to aberrant oligodendrocyte (OL) development, cell injury, and myelination deficit. We propose that elevated extracellular serotonin levels in the fetal brain, such as upon the use of selective serotonin reuptake inhibitors (SSRIs) during pregnancy, may adversely affect OL development and/or myelination, thus contributing to altered neural connectivity seen in Autism Spectrum Disorders. OPC = oligodendrocyte progenitor cell.

  8. Staufen Recruitment into Stress Granules Does Not Affect Early mRNA Transport in Oligodendrocytes

    PubMed Central

    Thomas, María G.; Tosar, Leandro J. Martinez; Loschi, Mariela; Pasquini, Juana M.; Correale, Jorge; Kindler, Stefan; Boccaccio, Graciela L.

    2005-01-01

    Staufen is a conserved double-stranded RNA-binding protein required for mRNA localization in Drosophila oocytes and embryos. The mammalian homologues Staufen 1 and Staufen 2 have been implicated in dendritic RNA targeting in neurons. Here we show that in rodent oligodendrocytes, these two proteins are present in two independent sets of RNA granules located at the distal myelinating processes. A third kind of RNA granules lacks Staufen and contains major myelin mRNAs. Myelin Staufen granules associate with microfilaments and microtubules, and their subcellular distribution is affected by polysome-disrupting drugs. Under oxidative stress, both Staufen 1 and Staufen 2 are recruited into stress granules (SGs), which are stress-induced organelles containing transiently silenced messengers. Staufen SGs contain the poly(A)-binding protein (PABP), the RNA-binding proteins HuR and TIAR, and small but not large ribosomal subunits. Staufen recruitment into perinuclear SGs is paralleled by a similar change in the overall localization of polyadenylated RNA. Under the same conditions, the distribution of recently transcribed and exported mRNAs is not affected. Our results indicate that Staufen 1 and Staufen 2 are novel and ubiquitous SG components and suggest that Staufen RNPs are involved in repositioning of most polysomal mRNAs, but not of recently synthesized transcripts, during the stress response. PMID:15525674

  9. Ablation of Cx47 in transgenic mice leads to the loss of MUPP1, ZONAB and multiple connexins at oligodendrocyte-astrocyte gap junctions.

    PubMed

    Li, Xinbo; Penes, M; Odermatt, B; Willecke, K; Nagy, J I

    2008-10-01

    Oligodendrocytes in CNS are linked to astrocytes by heterotypic gap junctions composed of Cx32 and Cx47 in oligodendrocytes and Cx30 and Cx43 in astrocytes. These gap junctions also harbour regulatory proteins, including ZO-1 and ZONAB. Here, we investigated the localization of multi-PDZ domain protein 1 (MUPP1) at these gap junctions and examined accessory proteins and connexins associated with oligodendrocytes in Cx47-knockout mice. In every CNS region tested, punctate immunolabelling for MUPP1 was found on all oligodendrocyte somata in wild-type mice. These MUPP1-positive puncta were colocalized with punctate labelling for oligodendrocytic Cx32 or Cx47, and with astrocytic Cx30 or Cx43 at oligodendrocyte-astrocyte (O/A) gap junctions, but were not found at astrocyte-astrocyte gap junctions. In Cx47-knockout mice, immunolabelling of MUPP1 and ZONAB was absent on oligodendrocytes, whereas some ZO-1-positive puncta remained. In Cx32-knockout mice, MUPP1 and ZONAB persisted at O/A gap junctions. The absence of Cx47 in Cx47-knockout mice was accompanied by a total loss of punctate labelling for Cx30, Cx32 and Cx43 on oligodendrocyte somata, and by a dramatic increase in immunolabelling for Cx32 along myelinated fibers. These results demonstrate MUPP1 at O/A gap junctions and Cx47-dependent targeting of connexins to the plasma membranes of oligodendrocyte somata. Further, it appears that deficits in myelination reported in Cx47-knockout mice may arise not only from a loss of Cx47 but also from the accompanied loss of gap junctions and their regulatory proteins at oligodendrocyte somata, and that loss of Cx47 may be partly compensated for by elevated levels of Cx32 along myelinated fibers. PMID:18973575

  10. Ablation of Cx47 in transgenic mice leads to the loss of MUPP1, ZONAB and multiple connexins at oligodendrocyte-astrocyte gap junctions

    PubMed Central

    Li, Xinbo; Penes, M.; Odermatt, B.; Willecke, K.; Nagy, J.I.

    2009-01-01

    Oligodendrocytes in CNS are linked to astrocytes by heterotypic gap junctions composed of Cx32 and Cx47 in oligodendrocytes and Cx30 and Cx43 in astrocytes. These gap junctions also harbour regulatory proteins, including ZO-1 and ZONAB. Here, we investigated the localization of multi-PDZ domain protein 1 (MUPP1) at these gap junctions and examined accessory proteins and connexins associated with oligodendrocytes in Cx47 knockout mice. In every CNS region tested, punctate immunolabelling for MUPP1 was found on all oligodendrocyte somata in wild-type mice. These MUPP1-positive puncta were co-localized with punctate labelling for oligodendrocytic Cx32 or Cx47, and with astrocytic Cx30 or Cx43 at oligodendrocyte-astrocyte (O/A) gap junctions, but were not found at astrocyte-astrocyte gap junctions. In Cx47 knockout mice, immunolabelling of MUPP1 and ZONAB was absent on oligodendrocytes, whereas some ZO-1-positive puncta remained. In Cx32 knockout mice, MUPP1 and ZONAB persisted at O/A gap junctions. The absence of Cx47 in Cx47 knockout mice was accompanied by a total loss of punctate labelling for Cx30, Cx32 and Cx43 on oligodendrocyte somata, and by a dramatic increase of immunolabelling for Cx32 along myelinated fibers. These results demonstrate MUPP1 at O/A gap junctions and Cx47-dependent targeting of connexins to the plasma membranes of oligodendrocyte somata. Further, it appears that deficits in myelination reported in Cx47 knockout mice may arise not only from a loss of Cx47, but also from the accompanied loss of gap junctions and their regulatory proteins at oligodendrocyte somata, and that loss of Cx47 may be partly compensated by elevated levels of Cx32 along myelinated fibers. PMID:18973575

  11. Mechanisms affecting kinetic energies of laser-ablated materials

    SciTech Connect

    Chen, K.R. |; Leboeuf, J.N.; Wood, R.F.; Geohegan, D.B.; Donato, J.M.; Liu, C.L.; Puretzky, A.A.

    1995-12-31

    Laser materials processing techniques are expected to have a dramatic impact on materials science and engineering in the near future and beyond. One of the main laser materials processing techniques is Pulsed Laser Deposition (PLD) for thin film growth. While experimentalists search for optimal approaches for thin film growth with pulsed laser deposition (PLD), a systematic effort in theory and modeling of various processes during PLD is needed. The quality of film deposited depends critically on the range and profile of the kinetic energy and density of the ablated plume. While it is to the advantage of pulsed laser deposition to have high kinetic energy, plumes that are too energetic causes film damage. A dynamic source effect was found to accelerate the plume expansion velocity much higher than that from a conventional free expansion model. A self-similar theory and a hydrodynamic model are developed to study this effect, which may help to explain experimentally observed high front expansion velocity. Background gas can also affect the kinetic energies. High background gas may cause the ablated materials to go backward. Experimentally observed plume splitting is also discussed.

  12. CUL2-mediated clearance of misfolded TDP-43 is paradoxically affected by VHL in oligodendrocytes in ALS

    PubMed Central

    Uchida, Tsukasa; Tamaki, Yoshitaka; Ayaki, Takashi; Shodai, Akemi; Kaji, Seiji; Morimura, Toshifumi; Banno, Yoshinori; Nishitsuji, Kazuchika; Sakashita, Naomi; Maki, Takakuni; Yamashita, Hirofumi; Ito, Hidefumi; Takahashi, Ryosuke; Urushitani, Makoto

    2016-01-01

    The molecular machinery responsible for cytosolic accumulation of misfolded TDP-43 in amyotrophic lateral sclerosis (ALS) remains elusive. Here we identified a cullin-2 (CUL2) RING complex as a novel ubiquitin ligase for fragmented forms of TDP-43. The von Hippel Lindau protein (VHL), a substrate binding component of the complex, preferentially recognized misfolded TDP-43 at Glu246 in RNA-recognition motif 2. Recombinant full-length TDP-43 was structurally fragile and readily cleaved, suggesting that misfolded TDP-43 is cleared by VHL/CUL2 in a step-wise manner via fragmentation. Surprisingly, excess VHL stabilized and led to inclusion formation of TDP-43, as well as mutant SOD1, at the juxtanuclear protein quality control center. Moreover, TDP-43 knockdown elevated VHL expression in cultured cells, implying an aberrant interaction between VHL and mislocalized TDP-43 in ALS. Finally, cytoplasmic inclusions especially in oligodendrocytes in ALS spinal cords were immunoreactive to both phosphorylated TDP-43 and VHL. Thus, our results suggest that an imbalance in VHL and CUL2 may underlie oligodendrocyte dysfunction in ALS, and highlight CUL2 E3 ligase emerges as a novel therapeutic potential for ALS. PMID:26751167

  13. Differential Meteoric Ablation and its affects in the atmosphere (Invited)

    NASA Astrophysics Data System (ADS)

    Plane, J. M.; Broadley, S. L.; Whalley, C. L.; Saunders, R. W.; Gomez Martin, J.; Janches, D.; Dyrud, L.

    2009-12-01

    Differential ablation occurs when the constituents of a molten meteoroid evaporate at different rates during the passage of the meteoroid through the upper atmosphere. This can result in relatively volatile elements (e.g., Na and K) evaporating more than 20 km higher than a refractory element such as Ca. This paper will describe a new chemical ablation model (CABMOD) which predicts the ablation rates of individual elements from a meteoroid under specified entry conditions. The model also treats ionization of the individual elements by hyperthermal collisions with air molecules. This data has been used to compute the fine structure in the altitude profile of the "head echo" which would be observed by a large aperture radar. Good agreement was found with observations from the Arecibo radar in Puerto Rico. CABMOD has also been used to explain the curious results of multiple common-volume lidar observations of meteor trails, and to predict the most likely composition of meteoric smoke particles which result from the recondensation of vaporized meteoroids.

  14. Nicotinic acetylcholine receptors mediate donepezil-induced oligodendrocyte differentiation.

    PubMed

    Imamura, Osamu; Arai, Masaaki; Dateki, Minori; Ogata, Toru; Uchida, Ryuji; Tomoda, Hiroshi; Takishima, Kunio

    2015-12-01

    Oligodendrocytes are the myelin-forming cells of the central nervous system (CNS). Failure of myelin development and oligodendrocyte loss results in serious human disorders, including multiple sclerosis. Here, we show that donepezil, an acetlycholinesterase inhibitor developed for the treatment of Alzheimer's disease, can stimulate oligodendrocyte differentiation and maturation of neural stem cell-derived oligodendrocyte progenitor cells without affecting proliferation or cell viability. Transcripts for essential myelin-associated genes, such as PLP, MAG, MBP, CNPase, and MOG, in addition to transcription factors that regulate oligodendrocyte differentiation and myelination, were rapidly increased after treatment with donepezil. Furthermore, luciferase assays confirmed that both MAG and MBP promoters display increased activity upon donepezil-induced oligodendrocytes differentiation, suggesting that donepezil increases myelin gene expression mainly through enhanced transcription. We also found that the increase in the number of oligodendrocytes observed following donepezil treatment was significantly inhibited by the nicotinic acetylcholine receptor (nAChR) antagonist mecamylamine, but not by the muscarinic acetylcholine receptor antagonist scopolamine. Moreover, donepezil-induced myelin-related gene expression was suppressed by mecamylamine at both the mRNA and protein level. These results suggest that donepezil stimulates oligodendrocyte differentiation and myelin-related gene expression via nAChRs in neural stem cell-derived oligodendrocyte progenitor cells. We show that donepezil, a drug for the treatment of Alzheimer disease, can stimulate oligodendrocyte differentiation and maturation of oligodendrocyte progenitor cells. Transcripts for essential myelin-associated genes, such as PLP, MAG, MBP, CNPase and MOG in addition to transcripton factors that regulate oligodendrocyte differentiation and myelination were rapidly increased after treatment with donepezil

  15. Synaptic vesicle release regulates myelin sheath number of individual oligodendrocytes in vivo.

    PubMed

    Mensch, Sigrid; Baraban, Marion; Almeida, Rafael; Czopka, Tim; Ausborn, Jessica; El Manira, Abdeljabbar; Lyons, David A

    2015-05-01

    The myelination of axons by oligodendrocytes markedly affects CNS function, but how this is regulated by neuronal activity in vivo is not known. We found that blocking synaptic vesicle release impaired CNS myelination by reducing the number of myelin sheaths made by individual oligodendrocytes during their short period of formation. We also found that stimulating neuronal activity increased myelin sheath formation by individual oligodendrocytes. These data indicate that neuronal activity regulates the myelinating capacity of single oligodendrocytes.

  16. G protein-coupled receptor 37 is a negative regulator of oligodendrocyte differentiation and myelination

    PubMed Central

    Yang, Hyun-Jeong; Vainshtein, Anna; Maik-Rachline, Galia; Peles, Elior

    2016-01-01

    While the formation of myelin by oligodendrocytes is critical for the function of the central nervous system, the molecular mechanism controlling oligodendrocyte differentiation remains largely unknown. Here we identify G protein-coupled receptor 37 (GPR37) as an inhibitor of late-stage oligodendrocyte differentiation and myelination. GPR37 is enriched in oligodendrocytes and its expression increases during their differentiation into myelin forming cells. Genetic deletion of Gpr37 does not affect the number of oligodendrocyte precursor cells, but results in precocious oligodendrocyte differentiation and hypermyelination. The inhibition of oligodendrocyte differentiation by GPR37 is mediated by suppression of an exchange protein activated by cAMP (EPAC)-dependent activation of Raf-MAPK-ERK1/2 module and nuclear translocation of ERK1/2. Our data suggest that GPR37 regulates central nervous system myelination by controlling the transition from early-differentiated to mature oligodendrocytes. PMID:26961174

  17. G protein-coupled receptor 37 is a negative regulator of oligodendrocyte differentiation and myelination.

    PubMed

    Yang, Hyun-Jeong; Vainshtein, Anna; Maik-Rachline, Galia; Peles, Elior

    2016-01-01

    While the formation of myelin by oligodendrocytes is critical for the function of the central nervous system, the molecular mechanism controlling oligodendrocyte differentiation remains largely unknown. Here we identify G protein-coupled receptor 37 (GPR37) as an inhibitor of late-stage oligodendrocyte differentiation and myelination. GPR37 is enriched in oligodendrocytes and its expression increases during their differentiation into myelin forming cells. Genetic deletion of Gpr37 does not affect the number of oligodendrocyte precursor cells, but results in precocious oligodendrocyte differentiation and hypermyelination. The inhibition of oligodendrocyte differentiation by GPR37 is mediated by suppression of an exchange protein activated by cAMP (EPAC)-dependent activation of Raf-MAPK-ERK1/2 module and nuclear translocation of ERK1/2. Our data suggest that GPR37 regulates central nervous system myelination by controlling the transition from early-differentiated to mature oligodendrocytes.

  18. Endometrial ablation

    MedlinePlus

    Hysteroscopy-endometrial ablation; Laser thermal ablation; Endometrial ablation-radiofrequency; Endometrial ablation-thermal balloon ablation; Rollerball ablation; Hydrothermal ablation; Novasure ablation

  19. CNS Myelin Sheath Lengths Are an Intrinsic Property of Oligodendrocytes.

    PubMed

    Bechler, Marie E; Byrne, Lauren; Ffrench-Constant, Charles

    2015-09-21

    Since Río-Hortega's description of oligodendrocyte morphologies nearly a century ago, many studies have observed myelin sheath-length diversity between CNS regions. Myelin sheath length directly impacts axonal conduction velocity by influencing the spacing between nodes of Ranvier. Such differences likely affect neural signal coordination and synchronization. What accounts for regional differences in myelin sheath lengths is unknown; are myelin sheath lengths determined solely by axons or do intrinsic properties of different oligodendrocyte precursor cell populations affect length? The prevailing view is that axons provide molecular cues necessary for oligodendrocyte myelination and appropriate sheath lengths. This view is based upon the observation that axon diameters correlate with myelin sheath length, as well as reports that PNS axonal neuregulin-1 type III regulates the initiation and properties of Schwann cell myelin sheaths. However, in the CNS, no such instructive molecules have been shown to be required, and increasing in vitro evidence supports an oligodendrocyte-driven, neuron-independent ability to differentiate and form initial sheaths. We test this alternative signal-independent hypothesis--that variation in internode lengths reflects regional oligodendrocyte-intrinsic properties. Using microfibers, we find that oligodendrocytes have a remarkable ability to self-regulate the formation of compact, multilamellar myelin and generate sheaths of physiological length. Our results show that oligodendrocytes respond to fiber diameters and that spinal cord oligodendrocytes generate longer sheaths than cortical oligodendrocytes on fibers, co-cultures, and explants, revealing that oligodendrocytes have regional identity and generate different sheath lengths that mirror internodes in vivo.

  20. How to make an oligodendrocyte.

    PubMed

    Goldman, Steven A; Kuypers, Nicholas J

    2015-12-01

    Oligodendrocytes produce myelin, an insulating sheath required for the saltatory conduction of electrical impulses along axons. Oligodendrocyte loss results in demyelination, which leads to impaired neurological function in a broad array of diseases ranging from pediatric leukodystrophies and cerebral palsy, to multiple sclerosis and white matter stroke. Accordingly, replacing lost oligodendrocytes, whether by transplanting oligodendrocyte progenitor cells (OPCs) or by mobilizing endogenous progenitors, holds great promise as a therapeutic strategy for the diseases of central white matter. In this Primer, we describe the molecular events regulating oligodendrocyte development and how our understanding of this process has led to the establishment of methods for producing OPCs and oligodendrocytes from embryonic stem cells and induced pluripotent stem cells, as well as directly from somatic cells. In addition, we will discuss the safety of engrafted stem cell-derived OPCs, as well as approaches by which to modulate their differentiation and myelinogenesis in vivo following transplantation.

  1. Oligodendrocyte death results in immune-mediated CNS demyelination

    PubMed Central

    Traka, Maria; Podojil, Joseph R; McCarthy, Derrick P; Miller, Stephen D; Popko, Brian

    2016-01-01

    Although multiple sclerosis is a common neurological disorder, the origin of the autoimmune response against myelin, which is the characteristic feature of the disease, remains unclear. To investigate whether oligodendrocyte death could cause this autoimmune response, we examined the oligodendrocyte ablation Plp1-CreERT;ROSA26-eGFP-DTA (DTA) mouse model. Approximately 30 weeks after recovering from oligodendrocyte loss and demyelination, DTA mice develop a fatal secondary disease characterized by extensive myelin and axonal loss. Strikingly, late-onset disease was associated with increased numbers of T lymphocytes in the CNS and myelin oligodendrocyte glycoprotein (MOG)-specific T cells in lymphoid organs. Transfer of T cells derived from DTA mice to naive recipients resulted in neurological defects that correlated with CNS white matter inflammation. Furthermore, immune tolerization against MOG ameliorated symptoms. Overall, these data indicate that oligodendrocyte death is sufficient to trigger an adaptive autoimmune response against myelin, suggesting that a similar process can occur in the pathogenesis of multiple sclerosis. PMID:26656646

  2. Oligodendrocyte death results in immune-mediated CNS demyelination.

    PubMed

    Traka, Maria; Podojil, Joseph R; McCarthy, Derrick P; Miller, Stephen D; Popko, Brian

    2016-01-01

    Although multiple sclerosis is a common neurological disorder, the origin of the autoimmune response against myelin, which is the characteristic feature of the disease, remains unclear. To investigate whether oligodendrocyte death could cause this autoimmune response, we examined the oligodendrocyte ablation Plp1-CreER(T);ROSA26-eGFP-DTA (DTA) mouse model. Approximately 30 weeks after recovering from oligodendrocyte loss and demyelination, DTA mice develop a fatal secondary disease characterized by extensive myelin and axonal loss. Strikingly, late-onset disease was associated with increased numbers of T lymphocytes in the CNS and myelin oligodendrocyte glycoprotein (MOG)-specific T cells in lymphoid organs. Transfer of T cells derived from DTA mice to naive recipients resulted in neurological defects that correlated with CNS white matter inflammation. Furthermore, immune tolerization against MOG ameliorated symptoms. Overall, these data indicate that oligodendrocyte death is sufficient to trigger an adaptive autoimmune response against myelin, suggesting that a similar process can occur in the pathogenesis of multiple sclerosis.

  3. Dimethyl fumarate modulates antioxidant and lipid metabolism in oligodendrocytes.

    PubMed

    Huang, He; Taraboletti, Alexandra; Shriver, Leah P

    2015-08-01

    Oxidative stress contributes to pathology associated with inflammatory brain disorders and therapies that upregulate antioxidant pathways may be neuroprotective in diseases such as multiple sclerosis. Dimethyl fumarate, a small molecule therapeutic for multiple sclerosis, activates cellular antioxidant signaling pathways and may promote myelin preservation. However, it is still unclear what mechanisms may underlie this neuroprotection and whether dimethyl fumarate affects oligodendrocyte responses to oxidative stress. Here, we examine metabolic alterations in oligodendrocytes treated with dimethyl fumarate by using a global metabolomic platform that employs both hydrophilic interaction liquid chromatography-mass spectrometry and shotgun lipidomics. Prolonged treatment of oligodendrocytes with dimethyl fumarate induces changes in citric acid cycle intermediates, glutathione, and lipids, indicating that this compound can directly impact oligodendrocyte metabolism. These metabolic alterations are also associated with protection from oxidant challenge. This study provides insight into the mechanisms by which dimethyl fumarate could preserve myelin integrity in patients with multiple sclerosis. PMID:25967672

  4. Oligodendrocyte Development in the Absence of Their Target Axons In Vivo

    PubMed Central

    Lyons, David

    2016-01-01

    Oligodendrocytes form myelin around axons of the central nervous system, enabling saltatory conduction. Recent work has established that axons can regulate certain aspects of oligodendrocyte development and myelination, yet remarkably oligodendrocytes in culture retain the ability to differentiate in the absence of axons and elaborate myelin sheaths around synthetic axon-like substrates. It remains unclear the extent to which the life-course of oligodendrocytes requires the presence of, or signals derived from axons in vivo. In particular, it is unclear whether the specific axons fated for myelination regulate the oligodendrocyte population in a living organism, and if so, which precise steps of oligodendrocyte-cell lineage progression are regulated by target axons. Here, we use live-imaging of zebrafish larvae carrying transgenic reporters that label oligodendrocyte-lineage cells to investigate which aspects of oligodendrocyte development, from specification to differentiation, are affected when we manipulate the target axonal environment. To drastically reduce the number of axons targeted for myelination, we use a previously identified kinesin-binding protein (kbp) mutant, in which the first myelinated axons in the spinal cord, reticulospinal axons, do not fully grow in length, creating a region in the posterior spinal cord where most initial targets for myelination are absent. We find that a 73% reduction of reticulospinal axon surface in the posterior spinal cord of kbp mutants results in a 27% reduction in the number of oligodendrocytes. By time-lapse analysis of transgenic OPC reporters, we find that the reduction in oligodendrocyte number is explained by a reduction in OPC proliferation and survival. Interestingly, OPC specification and migration are unaltered in the near absence of normal axonal targets. Finally, we find that timely differentiation of OPCs into oligodendrocytes does not depend at all on the presence of target axons. Together, our data

  5. Characterization of oligodendrocyte lineage precursor cells in the mouse cerebral cortex: a confocal microscopy approach to demyelinating diseases.

    PubMed

    Girolamo, Francesco; Strippoli, Maurizio; Errede, Mariella; Benagiano, Vincenzo; Roncali, Luisa; Ambrosi, Glauco; Virgintino, Daniela

    2010-01-01

    The identification of stem cells resident in the adult central nervous system has redirected the focus of research into demyelinating diseases, such as multiple sclerosis, mainly affecting the brain white matter. This immunocytochemical and morphometrical study was carried out by confocal microscopy in the adult mouse cerebral cortex, with the aim of analysing, in the brain grey matter, the characteristics of the oligodendrocyte lineage cells, whose capability to remyelinate is still controversial. The observations demonstrated the presence in all the cortex layers of glial restricted progenitors, reactive to A2B5 marker, oligodendrocyte precursor cells, expressing the NG2 proteoglycan, and pre-oligodendrocytes and pre-myelinating oligodendrocytes, reactive to the specific marker O4. NG2 expressing cells constitute the major immature population of the cortex, since not only oligodendrocyte precursor cells and pre-oligodendrocytes but also a part of the glial restrict progenitors express the NG2 proteoglycan. Together with the population of these immature cells, a larger population of mature oligodendrocytes was revealed by the classical oligodendrocyte and myelin markers, 2',3'-cyclic nucleotide 3'-phosphodiesterase, myelin basic protein and myelin oligodendrocyte glycoprotein. The results indicate that oligodendrocyte precursors committed to differentiate into myelin forming oligodendrocytes are present through all layers of the adult cortex and that their phenotypic features exactly recall those of the oligodendroglial lineage cells during development.

  6. Microglial ablation and lipopolysaccharide preconditioning affects pilocarpine-induced seizures in mice

    SciTech Connect

    Mirrione, M.M.; Mirrione, M.M.; Konomosa, D.K.; Ioradanis, G.; Dewey, S.L.; Agzzid, A.; Heppnerd, F.L.; Tsirka, St.E.

    2010-04-01

    Activated microglia have been associated with neurodegeneration in patients and in animal models of Temporal Lobe Epilepsy (TLE), however their precise functions as neurotoxic or neuroprotective is a topic of significant investigation. To explore this, we examined the effects of pilocarpine-induced seizures in transgenic mice where microglia/macrophages were conditionally ablated. We found that unilateral ablation of microglia from the dorsal hippocampus did not alter acute seizure sensitivity. However, when this procedure was coupled with lipopolysaccharide (LPS) preconditioning (1 mg/kg given 24 h prior to acute seizure), we observed a significant pro-convulsant phenomenon. This effect was associated with lower metabolic activation in the ipsilateral hippocampus during acute seizures, and could be attributed to activity in the mossy fiber pathway. These findings reveal that preconditioning with LPS 24 h prior to seizure induction may have a protective effect which is abolished by unilateral hippocampal microglia/macrophage ablation.

  7. Microglial ablation and lipopolysaccharide preconditioning affects pilocarpine-induced seizures in mice

    PubMed Central

    Mirrione, Martine M.; Konomos, Dorothy K.; Gravanis, Iordanis; Dewey, Stephen L.; Aguzzi, Adriano; Heppner, Frank L.; Tsirka, Stella E.

    2010-01-01

    Activated microglia have been associated with neurodegeneration in patients and in animal models of Temporal Lobe Epilepsy (TLE), however their precise functions as neurotoxic or neuroprotective is a topic of significant investigation. To explore this, we examined the effects of pilocarpine induced seizures in transgenic mice where microglia/macrophages were conditionally ablated. We found that unilateral ablation of microglia from the dorsal hippocampus did not alter acute seizure sensitivity. However, when this procedure was coupled with lipopolysaccharide (LPS) preconditioning (1 mg/kg given 24 hours prior to acute seizure), we observed a significant pro-convulsant phenomenon. This effect was associated with lower metabolic activation in the ipsilateral hippocampus during acute seizures, and could be attributed to activity in the mossy fiber pathway. These findings reveal that preconditioning with LPS 24 hours prior to seizure induction may have a protective effect which is abolished by unilateral hippocampal microglia/macrophage ablation. PMID:20382223

  8. Ablation of swallowing-induced atrial tachycardia affects heart rate variability: a case report.

    PubMed

    Hojo, Rintaro; Fukamizu, Seiji; Ishikawa, Tae; Hayashi, Takekuni; Komiyama, Kota; Tanabe, Yasuhiro; Tejima, Tamotsu; Kobayashi, Yoichi; Sakurada, Harumizu

    2014-05-01

    A 47-year-old man underwent slow pathway ablation for slow-fast atrioventricular nodal reentrant tachycardia. Following the procedure, he felt palpitations while swallowing, and swallowing-induced atrial tachycardia was diagnosed. Swallowing-induced atrial tachycardia arose from the right atrium-superior vena cava junction and was cured by catheter ablation. After the procedure, the patient's heart rate variability changed significantly, indicating suppression of parasympathetic nerve activity. In this case, swallowing-induced atrial tachycardia was related to the vagal nerve reflex. Analysis of heart rate variability may be helpful in elucidating the mechanism of swallowing-induced atrial tachycardia.

  9. Hdac3 Interaction with p300 Histone Acetyltransferase Regulates the Oligodendrocyte and Astrocyte Lineage Fate Switch.

    PubMed

    Zhang, Liguo; He, Xuelian; Liu, Lei; Jiang, Minqing; Zhao, Chuntao; Wang, Haibo; He, Danyang; Zheng, Tao; Zhou, Xianyao; Hassan, Aishlin; Ma, Zhixing; Xin, Mei; Sun, Zheng; Lazar, Mitchell A; Goldman, Steven A; Olson, Eric N; Lu, Q Richard

    2016-02-01

    Establishment and maintenance of CNS glial cell identity ensures proper brain development and function, yet the epigenetic mechanisms underlying glial fate control remain poorly understood. Here, we show that the histone deacetylase Hdac3 controls oligodendrocyte-specification gene Olig2 expression and functions as a molecular switch for oligodendrocyte and astrocyte lineage determination. Hdac3 ablation leads to a significant increase of astrocytes with a concomitant loss of oligodendrocytes. Lineage tracing indicates that the ectopic astrocytes originate from oligodendrocyte progenitors. Genome-wide occupancy analysis reveals that Hdac3 interacts with p300 to activate oligodendroglial lineage-specific genes, while suppressing astroglial differentiation genes including NFIA. Furthermore, we find that Hdac3 modulates the acetylation state of Stat3 and competes with Stat3 for p300 binding to antagonize astrogliogenesis. Thus, our data suggest that Hdac3 cooperates with p300 to prime and maintain oligodendrocyte identity while inhibiting NFIA and Stat3-mediated astrogliogenesis, and thereby regulates phenotypic commitment at the point of oligodendrocyte-astrocytic fate decision.

  10. Hdac3 Interaction with p300 Histone Acetyltransferase Regulates the Oligodendrocyte and Astrocyte Lineage Fate Switch.

    PubMed

    Zhang, Liguo; He, Xuelian; Liu, Lei; Jiang, Minqing; Zhao, Chuntao; Wang, Haibo; He, Danyang; Zheng, Tao; Zhou, Xianyao; Hassan, Aishlin; Ma, Zhixing; Xin, Mei; Sun, Zheng; Lazar, Mitchell A; Goldman, Steven A; Olson, Eric N; Lu, Q Richard

    2016-02-01

    Establishment and maintenance of CNS glial cell identity ensures proper brain development and function, yet the epigenetic mechanisms underlying glial fate control remain poorly understood. Here, we show that the histone deacetylase Hdac3 controls oligodendrocyte-specification gene Olig2 expression and functions as a molecular switch for oligodendrocyte and astrocyte lineage determination. Hdac3 ablation leads to a significant increase of astrocytes with a concomitant loss of oligodendrocytes. Lineage tracing indicates that the ectopic astrocytes originate from oligodendrocyte progenitors. Genome-wide occupancy analysis reveals that Hdac3 interacts with p300 to activate oligodendroglial lineage-specific genes, while suppressing astroglial differentiation genes including NFIA. Furthermore, we find that Hdac3 modulates the acetylation state of Stat3 and competes with Stat3 for p300 binding to antagonize astrogliogenesis. Thus, our data suggest that Hdac3 cooperates with p300 to prime and maintain oligodendrocyte identity while inhibiting NFIA and Stat3-mediated astrogliogenesis, and thereby regulates phenotypic commitment at the point of oligodendrocyte-astrocytic fate decision. PMID:26859354

  11. Contact Geometry Affects Lesion Formation in Radio-Frequency Cardiac Catheter Ablation

    PubMed Central

    Gallagher, Neal; Fear, Elise C.; Byrd, Israel A.; Vigmond, Edward J.

    2013-01-01

    One factor which may be important for determining proper lesion creation during atrial ablation is catheter-endocardial contact. Little information is available that relates geometric contact, depth and angle, to ablation lesion formation. We present an electrothermal computer model of ablation that calculated lesion volume and temperature development over time. The Pennes bioheat equation was coupled to a quasistatic electrical problem to investigate the effect of catheter penetration depth, as well as incident catheter angle as may occur in practice. Biological experiments were performed to verify the modelling of electrical phenomena. Results show that for deeply penetrating tips, acute catheter angles reduced the rate of temperature buildup, allowing larger lesions to form before temperatures elevated excessively. It was also found that greater penetration did not lead to greater transmurality of lesions. We conclude that catheter contact angle plays a significant role in lesion formation, and the time course must be considered. This is clinically relevant because proper identification and prediction of geometric contact variables could improve ablation efficacy. PMID:24086275

  12. Anti-reovirus receptor antibody accelerates expression of the optic nerve oligodendrocyte developmental program.

    PubMed Central

    Cohen, J A; Williams, W V; Geller, H M; Greene, M I

    1991-01-01

    Previous studies showed that the cell-surface receptor for reovirus serotype 3 (Reo3R) appears at an early stage of oligodendrocyte differentiation and that anti-Reo3R antibodies and Reo3R-binding peptides induce galactocerebroside expression by developing oligodendrocytes. In the present studies, anti-Reo3R antibodies are shown to stimulate additional features of the program of oligodendrocyte development, including the loss of the A2B5 marker and expression of myelin basic protein. In anti-Reo3R antibody-treated cultures, galactocerebroside was expressed by cells having the morphology of immature oligodendrocyte precursors. Reo3R binding did not appear directly to inhibit or stimulate proliferation of glial progenitor cells or to affect their lineage commitment. Cell-surface structures utilized as a receptor by reovirus type 3 appear to play a role in the regulation of the initiation or rate of execution of the oligodendrocyte developmental program. Images PMID:1705032

  13. Adjuvant liposomal doxorubicin markedly affects radiofrequency (RF) ablation-induced effects on periablational microvasculature

    PubMed Central

    Moussa, Marwan; Goldberg, S. Nahum; Tasawwar, Beenish; Sawant, Rupa R.; Levchenko, Tatyana; Kumar, Gaurav; Torchilin, Vladimir P.; Ahmed, Muneeb

    2013-01-01

    Purpose To evaluate the effects of radiofrequency (RF) ablation without and with adjuvant IV liposomal doxorubicin (Doxil®) on microvessel morphology and patency and intratumoral drug delivery and retention. Materials and Methods A total of 133 tumors/animals were used. First, single subcutaneous tumors (R3230 in Fischer rats, and 786-0 in nude mice) were randomized to receive RF alone or no treatment, and sacrificed 0-72hr post-treatment. Next, combined RF/liposomal doxorubicin (1mg given 15min post-RF) was studied in R3230 tumors at 0-72hr post-treatment. Histopathologic assessment including immunohistochemical staining for ced caspase-3), heat shock protein 70 and CD34 were performed to assess morphologic vessel appearance, vessel diameter, and microvascular density. Subsequently, animals were randomized to receive RF alone, RF/liposomal doxorubicin, or control tumors, followed by intravenous fluorescent-labeled liposomes (a surrogate marker) given 0-24hr post-RF to permit qualitative assessment. Results RF ablation alone results in enlarged and dysmorphic vessels from 0-4hr, peaking at 12-24hr post-RF, occurring preferentially closer to the electrode. The addition of doxorubicin resulted in earlier vessel contraction (mean vessel area 47539±9544μm² vs. 1854±458μm² for RF alone at 15min, p<0.05). Combined RF/liposomal doxorubicin produced similar fluorescence 1hr post-treatment (40.88±33.53 AU/μm² vs. 22.1±13.19 AU/μm², p=0.14), but significantly less fluorescence at 4hr (24.3±3.65 AU/μm² vs. 2.8 ±3.14 AU/μm², p<0.002) compared to RF alone denoting earlier reduction in microvascular patency. Conclusion RF ablation induces morphologic changes to vessels within the ablation zone lasting up to 12-24hr post-treatment. The addition liposomal doxorubicin causes early vessel contraction and a reduction in periablational microvascular patency. Such changes will likely need to be considered when determining optimal drug administration and imaging

  14. Oligodendrocytes: Myelination and Axonal Support.

    PubMed

    Simons, Mikael; Nave, Klaus-Armin

    2015-06-22

    Myelinated nerve fibers have evolved to enable fast and efficient transduction of electrical signals in the nervous system. To act as an electric insulator, the myelin sheath is formed as a multilamellar membrane structure by the spiral wrapping and subsequent compaction of the oligodendroglial plasma membrane around central nervous system (CNS) axons. Current evidence indicates that the myelin sheath is more than an inert insulating membrane structure. Oligodendrocytes are metabolically active and functionally connected to the subjacent axon via cytoplasmic-rich myelinic channels for movement of macromolecules to and from the internodal periaxonal space under the myelin sheath. This review summarizes our current understanding of how myelin is generated and also the role of oligodendrocytes in supporting the long-term integrity of myelinated axons.

  15. Protandim Protects Oligodendrocytes against an Oxidative Insult

    PubMed Central

    Lim, Jamie L.; van der Pol, Susanne M. A.; Baron, Wia; McCord, Joe M.; de Vries, Helga E.; van Horssen, Jack

    2016-01-01

    Oligodendrocyte damage and loss are key features of multiple sclerosis (MS) pathology. Oligodendrocytes appear to be particularly vulnerable to reactive oxygen species (ROS) and cytokines, such as tumor necrosis factor-α (TNF), which induce cell death and prevent the differentiation of oligodendrocyte progenitor cells (OPCs). Here, we investigated the efficacy of sulforaphane (SFN), monomethyl fumarate (MMF) and Protandim to induce Nrf2-regulated antioxidant enzyme expression, and protect oligodendrocytes against ROS-induced cell death and ROS-and TNF-mediated inhibition of OPC differentiation. OLN-93 cells and primary rat oligodendrocytes were treated with SFN, MMF or Protandim resulting in significant induction of Nrf2-driven (antioxidant) proteins heme oygenase-1, nicotinamide adenine dinucleotide phosphate (NADPH): quinone oxidoreductase-1 and p62/SQSTM1, as analysed by Western blotting. After incubation with the compounds, oligodendrocytes were exposed to hydrogen peroxide. Protandim most potently promoted oligodendrocyte cell survival as measured by live/death viability assay. Moreover, OPCs were treated with Protandim or vehicle control prior to exposing them to TNF or hydrogen peroxide for five days, which inhibited OPC differentiation. Protandim significantly promoted OPC differentiation under influence of ROS, but not TNF. Protandim, a combination of five herbal ingredients, potently induces antioxidants in oligodendrocytes and is able to protect oligodendrocytes against oxidative stress by preventing ROS-induced cell death and promoting OPC differentiation. PMID:27618111

  16. Protandim Protects Oligodendrocytes against an Oxidative Insult.

    PubMed

    Lim, Jamie L; van der Pol, Susanne M A; Baron, Wia; McCord, Joe M; de Vries, Helga E; van Horssen, Jack

    2016-01-01

    Oligodendrocyte damage and loss are key features of multiple sclerosis (MS) pathology. Oligodendrocytes appear to be particularly vulnerable to reactive oxygen species (ROS) and cytokines, such as tumor necrosis factor-α (TNF), which induce cell death and prevent the differentiation of oligodendrocyte progenitor cells (OPCs). Here, we investigated the efficacy of sulforaphane (SFN), monomethyl fumarate (MMF) and Protandim to induce Nrf2-regulated antioxidant enzyme expression, and protect oligodendrocytes against ROS-induced cell death and ROS-and TNF-mediated inhibition of OPC differentiation. OLN-93 cells and primary rat oligodendrocytes were treated with SFN, MMF or Protandim resulting in significant induction of Nrf2-driven (antioxidant) proteins heme oygenase-1, nicotinamide adenine dinucleotide phosphate (NADPH): quinone oxidoreductase-1 and p62/SQSTM1, as analysed by Western blotting. After incubation with the compounds, oligodendrocytes were exposed to hydrogen peroxide. Protandim most potently promoted oligodendrocyte cell survival as measured by live/death viability assay. Moreover, OPCs were treated with Protandim or vehicle control prior to exposing them to TNF or hydrogen peroxide for five days, which inhibited OPC differentiation. Protandim significantly promoted OPC differentiation under influence of ROS, but not TNF. Protandim, a combination of five herbal ingredients, potently induces antioxidants in oligodendrocytes and is able to protect oligodendrocytes against oxidative stress by preventing ROS-induced cell death and promoting OPC differentiation. PMID:27618111

  17. Impaired oligodendrocyte maturation in preterm infants: Potential therapeutic targets.

    PubMed

    van Tilborg, Erik; Heijnen, Cobi J; Benders, Manon J; van Bel, Frank; Fleiss, Bobbi; Gressens, Pierre; Nijboer, Cora H

    2016-01-01

    Preterm birth is an evolving challenge in neonatal health care. Despite declining mortality rates among extremely premature neonates, morbidity rates remain very high. Currently, perinatal diffuse white matter injury (WMI) is the most commonly observed type of brain injury in preterm infants and has become an important research area. Diffuse WMI is associated with impaired cognitive, sensory and psychological functioning and is increasingly being recognized as a risk factor for autism-spectrum disorders, ADHD, and other psychological disturbances. No treatment options are currently available for diffuse WMI and the underlying pathophysiological mechanisms are far from being completely understood. Preterm birth is associated with maternal inflammation, perinatal infections and disrupted oxygen supply which can affect the cerebral microenvironment by causing activation of microglia, astrogliosis, excitotoxicity, and oxidative stress. This intricate interplay of events negatively influences oligodendrocyte development, causing arrested oligodendrocyte maturation or oligodendrocyte cell death, which ultimately results in myelination failure in the developing white matter. This review discusses the current state in perinatal WMI research, ranging from a clinical perspective to basic molecular pathophysiology. The complex regulation of oligodendrocyte development in healthy and pathological conditions is described, with a specific focus on signaling cascades that may play a role in WMI. Furthermore, emerging concepts in the field of WMI and issues regarding currently available animal models are put forward. Novel insights into the molecular mechanisms underlying impeded oligodendrocyte maturation in diffuse WMI may aid the development of novel treatment options which are desperately needed to improve the quality-of-life of preterm neonates. PMID:26655283

  18. Astrocytes Promote TNF-Mediated Toxicity to Oligodendrocyte Precursors

    PubMed Central

    Kim, SunJa; Steelman, Andrew J.; Koito, Hisami; Li, Jianrong

    2010-01-01

    Neuroinflammation and increased production of tumor necrosis factor (TNF) in the central nervous system have been implicated in many neurological diseases including white matter disorders periventricular leukomalacia and multiple sclerosis. However, the exact role of TNF in these diseases and how it mediates oligodendrocyte injury remain unclear. Previously we demonstrated that lipopolysaccharide (LPS) selectively kills oligodendrocyte precursors (preOLs) in a non-cell autonomous fashion through the induction of TNF in mixed glial cultures. Here we report that activation of oligodendroglial, but not astroglial and microglial, TNFR1 is required for LPS toxicity, and that astrocytes promote TNF-mediated preOL death through a cell contact-dependent mechanism. Microglia were the sole source for TNF production in LPS-treated mixed glial cultures. Ablation of TNFR1 in mixed glia completely prevented LPS-induced death of preOLs. TNFR1-expressing preOLs were similarly susceptible to LPS treatment when seeded into wildtype and TNFR1−/− mixed glial cultures, demonstrating a requirement for oligodendroglial TNFR1 in the cell death. Although exogenous TNF failed to cause significant cell death in enriched preOL cultures, it became cytotoxic when preOLs were in contact with astrocytes. Collectively, our results demonstrate oligodendroglial TNFR1 in mediating inflammatory destruction of preOLs and suggest a previously unrecognized role for astrocytes in promoting TNF toxicity to preOLs. PMID:21044081

  19. The Activators of Cyclin-Dependent Kinase 5 p35 and p39 Are Essential for Oligodendrocyte Maturation, Process Formation, and Myelination.

    PubMed

    Luo, Fucheng; Zhang, Jessie; Burke, Kathryn; Miller, Robert H; Yang, Yan

    2016-03-01

    The regulation of oligodendrocyte development and myelin formation in the CNS is poorly defined. Multiple signals influence the rate and extent of CNS myelination, including the noncanonical cyclin-dependent kinase 5 (Cdk5) whose functions are regulated by its activators p35 and p39. Here we show that selective loss of either p35 or p39 perturbed specific aspects of oligodendrocyte development, whereas loss of both p35 and p39 completely inhibited the development of mature oligodendrocytes and myelination. In the absence of p35, oligodendrocyte differentiation was delayed, process outgrowth was truncated in vitro, and the patterning and extent of myelination were perturbed in the CNS of p35(-/-) mice. In the absence of p39, oligodendrocyte maturation was transiently affected both in vitro and in vivo. However, loss of both p35 and p39 in oligodendrocyte lineage cells completely inhibited oligodendrocyte progenitor cell differentiation and myelination both in vitro and after transplantation into shiverer slice cultures. Loss of p35 and p39 had a more profound effect on oligodendrocyte development than simply the loss of Cdk5 and could not be rescued by Cdk5 overexpression. These data suggest p35 and p39 have specific and overlapping roles in oligodendrocyte development, some of which may be independent of Cdk5 activation.

  20. The Activators of Cyclin-Dependent Kinase 5 p35 and p39 Are Essential for Oligodendrocyte Maturation, Process Formation, and Myelination

    PubMed Central

    Luo, Fucheng; Zhang, Jessie; Burke, Kathryn

    2016-01-01

    The regulation of oligodendrocyte development and myelin formation in the CNS is poorly defined. Multiple signals influence the rate and extent of CNS myelination, including the noncanonical cyclin-dependent kinase 5 (Cdk5) whose functions are regulated by its activators p35 and p39. Here we show that selective loss of either p35 or p39 perturbed specific aspects of oligodendrocyte development, whereas loss of both p35 and p39 completely inhibited the development of mature oligodendrocytes and myelination. In the absence of p35, oligodendrocyte differentiation was delayed, process outgrowth was truncated in vitro, and the patterning and extent of myelination were perturbed in the CNS of p35−/− mice. In the absence of p39, oligodendrocyte maturation was transiently affected both in vitro and in vivo. However, loss of both p35 and p39 in oligodendrocyte lineage cells completely inhibited oligodendrocyte progenitor cell differentiation and myelination both in vitro and after transplantation into shiverer slice cultures. Loss of p35 and p39 had a more profound effect on oligodendrocyte development than simply the loss of Cdk5 and could not be rescued by Cdk5 overexpression. These data suggest p35 and p39 have specific and overlapping roles in oligodendrocyte development, some of which may be independent of Cdk5 activation. SIGNIFICANCE STATEMENT The development of oligodendrocytes and myelination is essential for normal CNS function and cyclin-dependent kinase 5 (Cdk5) activity is critical for oligodendrocyte maturation, but how Cdk5 activity is controlled is unclear. Here we show that the coactivators of Cdk5, p35 and p39, regulate distinct stages of oligodendrocyte development and myelination. Loss of p35 perturbs oligodendrocyte progenitor cell differentiation, whereas loss of p39 delays oligodendrocyte maturation. Loss of both completely inhibits oligodendrogenesis and myelination. Disruption of oligodendrocyte development was more pronounced in p35−/−;p39

  1. SNX27, a protein involved in down syndrome, regulates GPR17 trafficking and oligodendrocyte differentiation.

    PubMed

    Meraviglia, Veronica; Ulivi, Alessandro Francesco; Boccazzi, Marta; Valenza, Fabiola; Fratangeli, Alessandra; Passafaro, Maria; Lecca, Davide; Stagni, Fiorenza; Giacomini, Andrea; Bartesaghi, Renata; Abbracchio, Maria P; Ceruti, Stefania; Rosa, Patrizia

    2016-08-01

    The G protein-coupled receptor 17 (GPR17) plays crucial roles in myelination. It is highly expressed during transition of oligodendrocyte progenitor cells to immature oligodendrocytes, but, after this stage, it must be down-regulated to allow generation of mature myelinating cells. After endocytosis, GPR17 is sorted into lysosomes for degradation or recycled to the plasma membrane. Balance between degradation and recycling is important for modulation of receptor levels at the cell surface and thus for the silencing/activation of GPR17-signaling pathways that, in turn, affect oligodendrocyte differentiation. The molecular mechanisms at the basis of these processes are still partially unknown and their characterization will allow a better understanding of myelination and provide cues to interpret the consequences of GPR17 dysfunction in diseases. Here, we demonstrate that the endocytic trafficking of GPR17 is mediated by the interaction of a type I PDZ-binding motif located at the C-terminus of the receptor and SNX27, a recently identified protein of the endosome-associated retromer complex and whose functions in oligodendrocytes have never been studied. SNX27 knock-down significantly reduces GPR17 plasma membrane recycling in differentiating oligodendrocytes while accelerating cells' terminal maturation. Interestingly, trisomy-linked down-regulation of SNX27 expression in the brain of Ts65Dn mice, a model of Down syndrome, correlates with a decrease in GPR17(+) cells and an increase in mature oligodendrocytes, which, however, fail in reaching full maturation, eventually leading to hypomyelination. Our data demonstrate that SNX27 modulates GPR17 plasma membrane recycling and stability, and that disruption of the SNX27/GPR17 interaction might contribute to pathological oligodendrocyte differentiation defects. GLIA 2016. GLIA 2016;64:1437-1460.

  2. SNX27, a protein involved in down syndrome, regulates GPR17 trafficking and oligodendrocyte differentiation.

    PubMed

    Meraviglia, Veronica; Ulivi, Alessandro Francesco; Boccazzi, Marta; Valenza, Fabiola; Fratangeli, Alessandra; Passafaro, Maria; Lecca, Davide; Stagni, Fiorenza; Giacomini, Andrea; Bartesaghi, Renata; Abbracchio, Maria P; Ceruti, Stefania; Rosa, Patrizia

    2016-08-01

    The G protein-coupled receptor 17 (GPR17) plays crucial roles in myelination. It is highly expressed during transition of oligodendrocyte progenitor cells to immature oligodendrocytes, but, after this stage, it must be down-regulated to allow generation of mature myelinating cells. After endocytosis, GPR17 is sorted into lysosomes for degradation or recycled to the plasma membrane. Balance between degradation and recycling is important for modulation of receptor levels at the cell surface and thus for the silencing/activation of GPR17-signaling pathways that, in turn, affect oligodendrocyte differentiation. The molecular mechanisms at the basis of these processes are still partially unknown and their characterization will allow a better understanding of myelination and provide cues to interpret the consequences of GPR17 dysfunction in diseases. Here, we demonstrate that the endocytic trafficking of GPR17 is mediated by the interaction of a type I PDZ-binding motif located at the C-terminus of the receptor and SNX27, a recently identified protein of the endosome-associated retromer complex and whose functions in oligodendrocytes have never been studied. SNX27 knock-down significantly reduces GPR17 plasma membrane recycling in differentiating oligodendrocytes while accelerating cells' terminal maturation. Interestingly, trisomy-linked down-regulation of SNX27 expression in the brain of Ts65Dn mice, a model of Down syndrome, correlates with a decrease in GPR17(+) cells and an increase in mature oligodendrocytes, which, however, fail in reaching full maturation, eventually leading to hypomyelination. Our data demonstrate that SNX27 modulates GPR17 plasma membrane recycling and stability, and that disruption of the SNX27/GPR17 interaction might contribute to pathological oligodendrocyte differentiation defects. GLIA 2016. GLIA 2016;64:1437-1460. PMID:27270750

  3. Investigation of factors affecting the synthesis of nano-cadmium sulfide by pulsed laser ablation in liquid environment

    NASA Astrophysics Data System (ADS)

    Darwish, Ayman M.; Eisa, Wael H.; Shabaka, Ali A.; Talaat, Mohamed H.

    2016-01-01

    Pulsed laser ablation in a liquid medium is a promising technique as compared to the other synthetic methods to synthesize different materials in nanoscale form. The laser parameters (e.g., wavelength, pulse width, fluence, and repetition frequency) and liquid medium (e.g., aqueous/nonaqueous liquid or solution with surfactant) were tightly controlled during and after the ablation process. By optimizing these parameters, the particle size and distribution of materials can be adjusted. The UV-vis absorption spectra and weight changes of targets were used for the characterization and comparison of products.

  4. Oligodendrocyte Regeneration after Neonatal Hypoxia Requires FoxO1-Mediated p27Kip1 Expression

    PubMed Central

    Jablonska, Beata; Scafidi, Joseph; Aguirre, Adan; Vaccarino, Flora; Nguyen, Vien; Borok, Erzsebet; Horvath, Tamas L.; Rowitch, David H.; Gallo, Vittorio

    2012-01-01

    Diffuse white matter injury (DWMI) caused by hypoxia is associated with permanent neurodevelopmental disabilities in preterm infants. The cellular and molecular mechanisms producing DWMI are poorly defined. Using a mouse model of neonatal hypoxia, we demonstrate a biphasic effect on oligodendrocyte development, resulting in hypomyelination. Oligodendrocyte death and oligodendrocyte progenitor cell (OPC) proliferation during the week after hypoxia were followed by delayed oligodendrocyte differentiation and abnormal myelination, as demonstrated by electron microscopy. Cdk2 activation was essential for the regenerative OPC response after hypoxia and was accompanied by reduced FoxO1-dependent p27 Kip1 expression. p27 Kip1 was also reduced in OPCs in human infant white matter lesions after hypoxia. The negative effects of hypoxia on oligodendrogenesis and myelination were more pronounced in p27 Kip1-null mice; conversely, overexpression of FoxO1 or p27 Kip1 in OPCs after hypoxia promoted oligodendrogenesis. Our studies demonstrate for the first time that neonatal hypoxia affects the Foxo1/p27 Kip1 pathway during white matter development. We also show that molecular manipulation of this pathway enhances oligodendrocyte regeneration during a critical developmental time window after DWMI. Thus, FoxO1 and p27 Kip1 may serve as promising target molecules for promoting timely oligodendrogenesis in neonatal DWMI. PMID:23077062

  5. Modulation of oligodendrocyte differentiation and maturation by combined biochemical and mechanical cues

    PubMed Central

    Lourenço, Tânia; Paes de Faria, Joana; Bippes, Christian A.; Maia, João; Lopes-da-Silva, José A.; Relvas, João B.; Grãos, Mário

    2016-01-01

    Extracellular matrix (ECM) proteins play a key role during oligodendrogenesis. While fibronectin (FN) is involved in the maintenance and proliferation of oligodendrocyte progenitor cells (OPCs), merosin (MN) promotes differentiation into oligodendrocytes (OLs). Mechanical properties of the ECM also seem to affect OL differentiation, hence this study aimed to clarify the impact of combined biophysical and biochemical elements during oligodendrocyte differentiation and maturation using synthetic elastic polymeric ECM-like substrates. CG-4 cells presented OPC- or OL-like morphology in response to brain-compliant substrates functionalised with FN or MN, respectively. The expression of the differentiation and maturation markers myelin basic protein — MBP — and proteolipid protein — PLP — (respectively) by primary rat oligodendrocytes was enhanced in presence of MN, but only on brain-compliant conditions, considering the distribution (MBP) or amount (PLP) of the protein. It was also observed that maturation of OLs was attained earlier (by assessing PLP expression) by cells differentiated on MN-functionalised brain-compliant substrates than on standard culture conditions. Moreover, the combination of MN and substrate compliance enhanced the maturation and morphological complexity of OLs. Considering the distinct degrees of stiffness tested ranging within those of the central nervous system, our results indicate that 6.5 kPa is the most suitable rigidity for oligodendrocyte differentiation. PMID:26879561

  6. Regulation of PERK–eIF2α signalling by tuberous sclerosis complex-1 controls homoeostasis and survival of myelinating oligodendrocytes

    PubMed Central

    Jiang, Minqing; Liu, Lei; He, Xuelian; Wang, Haibo; Lin, Wensheng; Wang, Huimin; Yoon, Sung O.; Wood, Teresa L.; Lu, Q. Richard

    2016-01-01

    Tuberous sclerosis complex-1 or 2 (TSC1/2) mutations cause white matter abnormalities, including myelin deficits in the CNS; however, underlying mechanisms are not fully understood. TSC1/2 negatively regulate the function of mTOR, which is required for oligodendrocyte differentiation. Here we report that, unexpectedly, constitutive activation of mTOR signalling by Tsc1 deletion in the oligodendrocyte lineage results in severe myelination defects and oligodendrocyte cell death in mice, despite an initial increase of oligodendrocyte precursors during early development. Expression profiling analysis reveals that Tsc1 ablation induces prominent endoplasmic reticulum (ER) stress responses by activating a PERK–eIF2α signalling axis and Fas–JNK apoptotic pathways. Enhancement of the phospho-eIF2α adaptation pathway by inhibition of Gadd34-PP1 phosphatase with guanabenz protects oligodendrocytes and partially rescues myelination defects in Tsc1 mutants. Thus, TSC1-mTOR signalling acts as an important checkpoint for maintaining oligodendrocyte homoeostasis, pointing to a previously uncharacterized ER stress mechanism that contributes to hypomyelination in tuberous sclerosis. PMID:27416896

  7. Regulation of PERK-eIF2α signalling by tuberous sclerosis complex-1 controls homoeostasis and survival of myelinating oligodendrocytes.

    PubMed

    Jiang, Minqing; Liu, Lei; He, Xuelian; Wang, Haibo; Lin, Wensheng; Wang, Huimin; Yoon, Sung O; Wood, Teresa L; Lu, Q Richard

    2016-07-15

    Tuberous sclerosis complex-1 or 2 (TSC1/2) mutations cause white matter abnormalities, including myelin deficits in the CNS; however, underlying mechanisms are not fully understood. TSC1/2 negatively regulate the function of mTOR, which is required for oligodendrocyte differentiation. Here we report that, unexpectedly, constitutive activation of mTOR signalling by Tsc1 deletion in the oligodendrocyte lineage results in severe myelination defects and oligodendrocyte cell death in mice, despite an initial increase of oligodendrocyte precursors during early development. Expression profiling analysis reveals that Tsc1 ablation induces prominent endoplasmic reticulum (ER) stress responses by activating a PERK-eIF2α signalling axis and Fas-JNK apoptotic pathways. Enhancement of the phospho-eIF2α adaptation pathway by inhibition of Gadd34-PP1 phosphatase with guanabenz protects oligodendrocytes and partially rescues myelination defects in Tsc1 mutants. Thus, TSC1-mTOR signalling acts as an important checkpoint for maintaining oligodendrocyte homoeostasis, pointing to a previously uncharacterized ER stress mechanism that contributes to hypomyelination in tuberous sclerosis.

  8. Regulation of PERK-eIF2α signalling by tuberous sclerosis complex-1 controls homoeostasis and survival of myelinating oligodendrocytes.

    PubMed

    Jiang, Minqing; Liu, Lei; He, Xuelian; Wang, Haibo; Lin, Wensheng; Wang, Huimin; Yoon, Sung O; Wood, Teresa L; Lu, Q Richard

    2016-01-01

    Tuberous sclerosis complex-1 or 2 (TSC1/2) mutations cause white matter abnormalities, including myelin deficits in the CNS; however, underlying mechanisms are not fully understood. TSC1/2 negatively regulate the function of mTOR, which is required for oligodendrocyte differentiation. Here we report that, unexpectedly, constitutive activation of mTOR signalling by Tsc1 deletion in the oligodendrocyte lineage results in severe myelination defects and oligodendrocyte cell death in mice, despite an initial increase of oligodendrocyte precursors during early development. Expression profiling analysis reveals that Tsc1 ablation induces prominent endoplasmic reticulum (ER) stress responses by activating a PERK-eIF2α signalling axis and Fas-JNK apoptotic pathways. Enhancement of the phospho-eIF2α adaptation pathway by inhibition of Gadd34-PP1 phosphatase with guanabenz protects oligodendrocytes and partially rescues myelination defects in Tsc1 mutants. Thus, TSC1-mTOR signalling acts as an important checkpoint for maintaining oligodendrocyte homoeostasis, pointing to a previously uncharacterized ER stress mechanism that contributes to hypomyelination in tuberous sclerosis. PMID:27416896

  9. Oligodendrocytes in HIV-associated pain pathogenesis

    PubMed Central

    Shi, Yuqiang; Shu, Jianhong; Liang, Zongsuo; Yuan, Subo

    2016-01-01

    Background Although the contributions of microglia and astrocytes to chronic pain pathogenesis have been a focal point of investigation in recent years, the potential role of oligodendrocytes, another major type of glial cells in the CNS that generates myelin, remains largely unknown. Results We report here that cell markers of the oligodendrocyte lineage, including NG2, PDGFRα, and Olig2, are significantly increased in the spinal dorsal horn of HIV patients who developed chronic pain. The levels of myelin proteins myelin basic protein and proteolipid protein are also aberrant in the spinal dorsal horn of “pain-positive” HIV patients. Similarly, the oligodendrocyte and myelin markers are up-regulated in the spinal dorsal horn of a mouse model of HIV-1 gp120-induced pain. Surprisingly, the expression of gp120-induced mechanical allodynia appears intact up to 4 h after myelin basic protein is knocked down or knocked out. Conclusion These findings suggest that oligodendrocytes are reactive during the pathogenesis of HIV-associated pain. However, interfering with myelination does not alter the induction of gp120-induced pain. PMID:27306410

  10. Oxidative Stress Kills Human Primary Oligodendrocytes Via Neutral Sphingomyelinase: Implications for Multiple Sclerosis

    PubMed Central

    Jana, Arundhati

    2007-01-01

    Multiple sclerosis (MS) is the most common human demyelinating disease of the central nervous system where oxidative stress has been proposed to play an important role in oligodendroglial death. However, molecular mechanisms that couple oxidative stress to the loss of oligodendrocytes are poorly understood. This study underlines the importance of neutral sphingomyelinase–ceramide pathway in mediating oxidative stress-induced apoptosis and cell death of human primary oligodendrocytes. Various oxidative stress-inducing agents, such as, superoxide radical produced by hypoxanthine and xanthine oxidase, hydrogen peroxide, aminotriazole capable of inhibiting catalase and increasing intracellular level of H2O2, or reduced glutathione-depleting diamide induced the activation of neutral sphingomyelinase and the production of ceramide. It is interesting to note that antisense knockdown of neutral but not acidic sphingomyelinase ablated oxidative stress-induced apoptosis and cell death in human primary oligodendrocytes. This study identifies neutral but not acidic sphingomyelinase as a target for possible therapeutic intervention in MS. PMID:18040843

  11. Golli myelin basic proteins stimulate oligodendrocyte progenitor cell proliferation and differentiation in remyelinating adult mouse brain.

    PubMed

    Paez, Pablo M; Cheli, Veronica T; Ghiani, Cristina A; Spreuer, Vilma; Handley, Vance W; Campagnoni, Anthony T

    2012-07-01

    Golli myelin basic proteins are necessary for normal myelination, acting via voltage and store-dependent Ca(2+) entry at multiple steps during oligodendrocyte progenitor cell (OPC) development. To date nothing is known regarding the role of golli proteins in demyelination or remyelination events. Here the effects of golli ablation and overexpression in myelin loss and recovery were examined using the cuprizone (CPZ) model of demyelination/remyelination. We found severe demyelination in the corpus callosum (CC) of golli-overexpressing mice (JOE) during the CPZ treatment, which was accompanied by an increased number of reactive astrocytes and activation of microglia/macrophages. During demyelination of JOE brains, a significant increase in the number of proliferating OPCs was found in the CC as well as in the subventricular zone, and our data indicate that these progenitors matured and fully remyelinated the CC of JOE animals after CPZ withdrawal. In contrast, in the absence of golli (golli-KO mice) delayed myelin loss associated with a smaller immune response, and a lower number of OPCs was found in these mice during the CPZ treatment. Furthermore, incomplete remyelination was observed after CPZ removal in large areas of the CC of golli-KO mice, reflecting irregular recovery of the oligodendrocyte population and subsequent myelin sheath formation. Our findings demonstrate that golli proteins sensitize mature oligodendrocytes to CPZ-induced demyelination, while at the same time stimulate the proliferation/recruitment of OPCs during demyelination, resulting in accelerated remyelination.

  12. Astrocytes and oligodendrocytes can be generated from NG2+ progenitors after acute brain injury: intracellular localization of oligodendrocyte transcription factor 2 is associated with their fate choice.

    PubMed

    Zhao, Jing-Wei; Raha-Chowdhury, Ruma; Fawcett, James W; Watts, Colin

    2009-05-01

    Brain injury induces gliosis and scar formation; its principal cell types are mainly astrocytes and some oligodendrocytes. The origin of the astrocytes and oligodendrocytes in the scar remains unclear together with the underlying mechanism of their fate choice. We examined the response of oligodendrocyte transcription factor (Olig)2(+) glial progenitors to acute brain injury. Both focal cortical (mechanical or excitotoxic) and systemic (kainic acid-induced seizure or lipopolysaccharide-induced inflammation) injury caused cytoplasmic translocation of Olig2 (Olig2(TL)) exclusively in affected brain regions as early as 2 h after injury in two-thirds of Olig2(+) cells. Many of the proliferating Olig2(+) cells reacting to injury co-expressed chondroitin sulphate proteoglycan neuron/glia antigen 2 (NG2). Using 5-bromodeoxyuridine (BrdU) tracing protocols, proliferating Olig2(TL)GFAP(+)BrdU(+) cells were observed from 2 days post-lesion (dpl). Immature oligodendrocytes were also seen from 2 dpl and all of them retained Olig2 in the nucleus (Olig2(Nuc)). From 5 dpl Olig2(TL)NG2(+)GFAP(+) cells were observed in the wound and some of them were proliferative. From 5 dpl NG2(+)RIP(+) cells were also seen, all of which were Olig2(Nuc) and some of which were also BrdU(+). Our results suggest that, in response to brain injury, NG2(+) progenitors may generate a subpopulation of astrocytes in addition to oligodendrocytes and their fate choice was associated with Olig2(TL) or Olig2(Nuc). However, the NG2(+)GFAP(+) phenotype was only seen within a limited time window (5-8 dpl) when up to 20% of glial fibrillary acidic protein (GFAP) cells co-expressed NG2. We also observed Olig2(TL)GFAP(+) cells that appeared after injury and before the NG2(+)GFAP(+) phenotype. This suggests that not all astrocytes are derived from an NG2(+) population. PMID:19473238

  13. Recombinant Human Myelin-Associated Glycoprotein Promoter Drives Selective AAV-Mediated Transgene Expression in Oligodendrocytes

    PubMed Central

    von Jonquieres, Georg; Fröhlich, Dominik; Klugmann, Claudia B.; Wen, Xin; Harasta, Anne E.; Ramkumar, Roshini; Spencer, Ziggy H. T.; Housley, Gary D.; Klugmann, Matthias

    2016-01-01

    Leukodystrophies are hereditary central white matter disorders caused by oligodendrocyte dysfunction. Recent clinical trials for some of these devastating neurological conditions have employed an ex vivo gene therapy approach that showed improved endpoints because cross-correction of affected myelin-forming cells occurred following secretion of therapeutic proteins by transduced autologous grafts. However, direct gene transfer to oligodendrocytes is required for the majority of leukodystrophies with underlying mutations in genes encoding non-secreted oligodendroglial proteins. Recombinant adeno-associated viral (AAV) vectors are versatile tools for gene transfer to the central nervous system (CNS) and proof-of-concept studies in rodents have shown that the use of cellular promoters is sufficient to target AAV-mediated transgene expression to glia. The potential of this strategy has not been exploited. The major caveat of the AAV system is its limited packaging capacity of ~5 kb, providing the rationale for identifying small yet selective recombinant promoters. Here, we characterize the human myelin associated glycoprotein (MAG) promoter for reliable targeting of AAV-mediated transgene expression to oligodendrocytes in vivo. A homology screen revealed highly conserved genomic regions among mammalian species upstream of the transcription start site. Recombinant AAV expression cassettes carrying the cDNA encoding enhanced green fluorescent protein (GFP) driven by truncated versions of the recombinant MAG promoter (2.2, 1.5 and 0.3 kb in size) were packaged as cy5 vectors and delivered into the dorsal striatum of mice. At 3 weeks post-injection, oligodendrocytes, neurons and astrocytes expressing the reporter were quantified by immunohistochemical staining. Our results revealed that both 2.2 and 1.5 kb MAG promoters targeted more than 95% of transgene expression to oligodendrocytes. Even the short 0.3 kb fragment conveyed high oligodendroglial specific transgene

  14. Neurons and Oligodendrocytes Recycle Sphingosine 1-Phosphate to Ceramide

    PubMed Central

    Qin, Jingdong; Berdyshev, Evgeny; Goya, Jonathan; Natarajan, Viswanathan; Dawson, Glyn

    2010-01-01

    Both cultured neonatal rat hippocampal neurons and differentiated oligodendrocytes rapidly metabolized exogenous C2- and C6-ceramides to sphingosine (Sph) and sphingosine 1-phosphate (S1P) but only minimally to C16–24-ceramides. Dihydrosphinolipids were unaffected but were increased by exogenous C6-dihydroceramide. Conversely, quantitative liquid chromatography-tandem mass spectrometry technology showed that exogenous S1P (0.25–10 μm) was rapidly metabolized to both Sph (a >200-fold increase) and predominantly C18-ceramide (a >2-fold increase). Longer treatments with either C2-ceramide (>2.5 μm) or S1P (10 μm) led to apoptotic cell death. Thus, there is an active sphingolipid salvage pathway in both neurons and oligodendrocytes. Staurosporine-induced cell death was shown to be associated with decreased S1P and increased Sph and C16/18-ceramide levels. The physiological significance of this observation was confirmed by the analysis of affected white matter and plaques from brains of multiple sclerosis patients in which reduced S1P and increased Sph and C16/18-ceramides were observed. PMID:20215115

  15. Synergistic ablation does not affect atrophy or altered myosin heavy chain expression in the non-weight bearing soleus muscle

    NASA Technical Reports Server (NTRS)

    Linderman, J. K.; Talmadge, R. J.; Gosselink, K. L.; Tri, P. N.; Roy, R. R.; Grindeland, R. E.

    1996-01-01

    The purpose of this study was to investigate whether the soleus muscle undergoes atrophy and alterations in myosin heavy chain (MHC) composition during non-weight bearing in the absence of synergists. Thirty-two female rats were randomly assigned to four groups: control (C), synergistic ablation (ABL) of the gastrocnemius and plantaris muscles to overload the soleus muscle, hindlimb suspension (HLS), or a combination of synergistic ablation and hindlimb suspension (HLS-ABL). After 28 days of hindlimb suspension, soleus atrophy was more pronounced in HLS (58%) than in HLS-ABL (43%) rats. Compared to C rats, non-weight bearing decreased mixed and myofibrillar protein contents and Type I MHC 49%, 45%, and 7%, respectively, in HLS animals. In addition, de novo expression of fast Type IIx and Type IIb MHC (5% and 2%, respectively) was observed in HLS animals. Similarly, when compared to C rats, mixed and myofibrillar protein contents and Type I MHC decreased 43%, 46%, and 4%, respectively, in HLS-ABL animals. Also, de novo expression of Type IIx (4%) and IIb (1%) MHC was observed. Collectively, these data indicate that the loss of muscle protein and Type I MHC, and the de novo expression of Type IIx and Type IIb MHC in the rat soleus occur independently of the presence of synergists during non-weight bearing. Furthermore, these results confirm the contention that soleus mass and MHC expression are highly sensitive to alterations in mechanical load.

  16. Mechanostimulation Promotes Nuclear and Epigenetic Changes in Oligodendrocytes

    PubMed Central

    Hernandez, Marylens; Patzig, Julia; Mayoral, Sonia R.; Costa, Kevin D.; Chan, Jonah R.

    2016-01-01

    Oligodendrocyte progenitors respond to biophysical or mechanical signals, and it has been reported that mechanostimulation modulates cell proliferation, migration, and differentiation. Here we report the effect of three mechanical stimuli on mouse oligodendrocyte progenitor differentiation and identify the molecular components of the linker of nucleoskeleton and cytoskeleton (LINC) complex (i.e., SYNE1) as transducers of mechanical signals to the nucleus, where they modulate the deposition of repressive histone marks and heterochromatin formation. The expression levels of LINC components increased during progenitor differentiation and silencing the Syne1 gene resulted in aberrant histone marks deposition, chromatin reorganization and impaired myelination. We conclude that spatial constraints, via the actin cytoskeleton and LINC complex, mediate nuclear changes in oligodendrocyte progenitors that favor a default pathway of differentiation. SIGNIFICANCE STATEMENT It is recognized that oligodendrocyte progenitors are mechanosensitive cells. However, the molecular mechanisms translating mechanical stimuli into oligodendrocyte differentiation remain elusive. This study identifies components of the mechanotransduction pathway in the oligodendrocyte lineage. PMID:26791211

  17. Oligodendrocyte pathophysiology: a new view of schizophrenia.

    PubMed

    Segal, Devorah; Koschnick, Jessica R; Slegers, Linda H A; Hof, Patrick R

    2007-08-01

    A recent focus of schizophrenia research is disruption of white-matter integrity as a key facet of this complex disorder. This was spurred, partly, by new imaging modalities, magnetic transfer imaging and diffusion tensor imaging, which showed differences in white-matter integrity and tract coherence in persons with schizophrenia compared to controls. Oligodendrocytes, in particular, have been the subject of increased study after gene microarray analyses revealed that six myelin-related genes specific to oligodendrocytes have decreased expression levels in schizophrenia. Oligodendrocytes have also been shown to be decreased in number in the superior frontal gyrus of subjects with schizophrenia. The MAG knockout mouse, missing a myelin-related gene linked to schizophrenia, may prove to be a useful animal model for the dysmyelination observed in the human disease. Studies currently ongoing on this model have found changes in dendritic branching patterns of pyramidal cells in layer III of the prefrontal cortex. Further characterization of the pathology in these mice is underway.

  18. Oxidized phosphatidylcholine formation and action in oligodendrocytes

    PubMed Central

    Qin, Jingdong; Testai, Fernando D; Dawson, Sylvia; Kilkus, John; Dawson, Glyn

    2010-01-01

    Reactive oxygen species play a major role in neurodegeneration. Increasing concentrations of peroxide induce neural cell death through activation of pro-apoptotic pathways. We now report that hydrogen peroxide generated sn-2 oxidized phosphatidylcholine (OxPC) in neonatal rat oligodendrocytes and that synthetic oxidized phosphatidylcholine (1-palmitoyl-2-(5′-oxo)valeryl-sn-glycero-3 phosphorylcholine, POVPC) also induced apoptosis in neonatal rat oligodendrocytes. POVPC activated caspases 3 and 8, and neutral sphingomyelinase (NSMase), but not acid sphingomyelinase. Downstream pro-apoptotic pathways activated by POVPC treatment included the Jun N-terminal kinase (JNK) proapoptotic cascade and the degradation of phospho-Akt. Activation of NSMase occurred within 1h, was blocked by inhibitors of caspase 8, increased mainly C18 and C24:1-ceramides, and appeared to be concentrated in detergent-resistant microdomains (Rafts). We conclude that OxPC initially activates NSMase and converts sphingomyelin into ceramide, to mediate a series of downstream pro-apoptotic events in oligodendrocytes. PMID:19545281

  19. Oligodendrocyte Lineage Cells in Chronic Demyelination of Multiple Sclerosis Optic Nerve.

    PubMed

    Jennings, Alison Ruth; Carroll, William M

    2015-09-01

    Reports that chronically demyelinated multiple sclerosis brain and spinal cord lesions contained immature oligodendrocyte lineage cells have generated major interest aimed at the potential for promotion of endogenous repair. Despite the prominence of the optic nerve as a lesion site and its importance in clinical disease assessment, no detailed studies of multiple sclerosis-affected optic nerve exist. This study aims to provide insight into the cellular pathology of chronic demyelination in multiple sclerosis through direct morphological and immunohistochemical analysis of optic nerve in conjunction with observations from an experimental cat optic nerve model of successful remyelination. Myelin staining was followed by immunohistochemistry to differentially label neuroglia. Digitally immortalized sections were then analyzed to generate quantification data and antigenic phenotypes including maturational stages within the oligodendrocyte lineage. It was found that some chronically demyelinated multiple sclerosis optic nerve lesions contained oligodendroglial cells and that heterogeneity existed in the presence of myelin sheaths, oligodendrocyte maturational stages and extent of axonal investment. The findings advance our understanding of oligodendrocyte activity in chronically demyelinated human optic nerve and may have implications for studies aimed at enhancement of endogenous repair in multiple sclerosis.

  20. The Wnt effector transcription factor 7-like 2 positively regulates oligodendrocyte differentiation in a manner independent of Wnt/β-catenin signaling.

    PubMed

    Hammond, Elizabeth; Lang, Jordan; Maeda, Yoshiko; Pleasure, David; Angus-Hill, Melinda; Xu, Jie; Horiuchi, Makoto; Deng, Wenbin; Guo, Fuzheng

    2015-03-25

    Genetic or pharmacological activation of canonical Wnt/β-catenin signaling inhibits oligodendrocyte differentiation. Transcription factor 7-like 2 (TCF7l2), also known as TCF4, is a Wnt effector induced transiently in the oligodendroglial lineage. A well accepted dogma is that TCF7l2 inhibits oligodendrocyte differentiation through activation of Wnt/β-catenin signaling. We report that TCF7l2 is upregulated transiently in postmitotic, newly differentiated oligodendrocytes. Using in vivo gene conditional ablation, we found surprisingly that TCF7l2 positively regulates neonatal and postnatal mouse oligodendrocyte differentiation during developmental myelination and remyelination in a manner independent of the Wnt/β-catenin signaling pathway. We also reveal a novel role of TCF7l2 in repressing a bone morphogenetic protein signaling pathway that is known to inhibit oligodendrocyte differentiation. Thus, our study provides novel data justifying therapeutic attempts to enhance, rather than inhibit, TCF7l2 signaling to overcome arrested oligodendroglial differentiation in multiple sclerosis and other demyelinating diseases.

  1. Oligodendrocyte morphometry and expression of myelin - Related mRNA in ventral prefrontal white matter in major depressive disorder.

    PubMed

    Rajkowska, Grazyna; Mahajan, Gouri; Maciag, Dorota; Sathyanesan, Monica; Iyo, Abiye H; Moulana, Mohadetheh; Kyle, Patrick B; Woolverton, William L; Miguel-Hidalgo, Jose Javier; Stockmeier, Craig A; Newton, Samuel S

    2015-06-01

    White matter disturbance in the ventral prefrontal cortex (vPFC) in major depressive disorder (MDD) has been noted with diffusion tensor imaging (DTI). However, the cellular and molecular pathology of prefrontal white matter in MDD and potential influence of antidepressant medications is not fully understood. Oligodendrocyte morphometry and myelin-related mRNA and protein expression was examined in the white matter of the vPFC in MDD. Sections of deep and gyral white matter from the vPFC were collected from 20 subjects with MDD and 16 control subjects. Density and size of CNPase-immunoreactive (-IR) oligodendrocytes were estimated using 3-dimensional cell counting. While neither density nor soma size of oligodendrocytes was significantly affected in deep white matter, soma size was significantly decreased in the gyral white matter in MDD. In rhesus monkeys treated chronically with fluoxetine there was no significant effect on oligodendrocyte morphometry. Using quantitative RT-PCR to measure oligodendrocyte-related mRNA for CNPase, PLP1, MBP, MOG, MOBP, Olig1 and Olig2, in MDD there was a significantly reduced expression of PLP1 mRNA (which positively correlated with smaller sizes) and increased expression of mRNA for CNPase, OLIG1 and MOG. The expression of CNPase protein was significantly decreased in MDD. Altered expression of four myelin genes and CNPase protein suggests a mechanism for the degeneration of cortical axons and dysfunctional maturation of oligodendrocytes in MDD. The change in oligodendrocyte morphology in gyral white matter may parallel altered axonal integrity as revealed by DTI.

  2. Oligodendrocyte Morphometry and Expression of Myelin – Related mRNA in Ventral Prefrontal White Matter in Major Depressive Disorder

    PubMed Central

    Rajkowska, Grazyna; Mahajan, Gouri; Maciag, Dorota; Sathyanesan, Monica; Iyo, Abiye H.; Moulana, Mohadetheh; Kyle, Patrick B.; Woolverton, William L.; Miguel-Hidalgo, Jose Javier; Stockmeier, Craig A.; Newton, Samuel S.

    2015-01-01

    White matter disturbance in the ventral prefrontal cortex (vPFC) in major depressive disorder (MDD) has been noted with diffusion tensor imaging (DTI). However, the cellular and molecular pathology of prefrontal white matter in MDD and potential influence of antidepressant medications is not fully understood. Oligodendrocyte morphometry and myelin-related mRNA and protein expression was examined in the white matter of the vPFC in MDD. Sections of deep and gyral white matter from the vPFC were collected from 20 subjects with MDD and 16 control subjects. Density and size of CNPase-immunoreactive (−IR) oligodendrocytes were estimated using 3-dimensional cell counting. While neither density nor soma size of oligodendrocytes was significantly affected in deep white matter, soma size was significantly decreased in the gyral white matter in MDD. In rhesus monkeys treated chronically with fluoxetine there was no significant effect on oligodendrocyte morphometry. Using quantitative RTPCR to measure oligodendrocyte-related mRNA for CNPase, PLP1, MBP, MOG, MOBP, Olig1 and Olig2, in MDD there was a significantly reduced expression of PLP1 mRNA (which positively correlated with smaller sizes) and increased expression of mRNA for CNPase, OLIG1 and MOG. The expression of CNPase protein was significantly decreased in MDD. Altered expression of four myelin genes and CNPase protein suggests a mechanism for the degeneration of cortical axons and dysfunctional maturation of oligodendrocytes in MDD. The change in oligodendrocyte morphology in gyral white matter may parallel altered axonal integrity as revealed by DTI. PMID:25930075

  3. Selective ploidy ablation, a high-throughput plasmid transfer protocol, identifies new genes affecting topoisomerase I–induced DNA damage

    PubMed Central

    Reid, Robert J.D.; González-Barrera, Sergio; Sunjevaric, Ivana; Alvaro, David; Ciccone, Samantha; Wagner, Marisa; Rothstein, Rodney

    2011-01-01

    We have streamlined the process of transferring plasmids into any yeast strain library by developing a novel mating-based, high-throughput method called selective ploidy ablation (SPA). SPA uses a universal plasmid donor strain that contains conditional centromeres on every chromosome. The plasmid-bearing donor is mated to a recipient, followed by removal of all donor-strain chromosomes, producing a haploid strain containing the transferred plasmid. As proof of principle, we used SPA to transfer plasmids containing wild-type and mutant alleles of DNA topoisomerase I (TOP1) into the haploid yeast gene-disruption library. Overexpression of Top1 identified only one sensitive mutation, rpa34, while overexpression of top1-T722A allele, a camptothecin mimetic, identified 190 sensitive gene-disruption strains along with rpa34. In addition to known camptothecin-sensitive strains, this set contained mutations in genes involved in the Rpd3 histone deacetylase complex, the kinetochore, and vesicle trafficking. We further show that mutations in several ESCRT vesicle trafficking components increase Top1 levels, which is dependent on SUMO modification. These findings demonstrate the utility of the SPA technique to introduce plasmids into the haploid gene-disruption library to discover new interacting pathways. PMID:21173034

  4. Laminin alters Fyn regulatory mechanisms and promotes oligodendrocyte development

    PubMed Central

    Relucio, Jenne; Tzvetanova, Iva D.; Ao, Wei; Lindquist, Sabine; Colognato, Holly

    2009-01-01

    Mutations in LAMA2, the gene for the extracellular matrix protein laminin-α2, cause a severe muscular dystrophy termed MDC1A. MDC1A patients have accompanying CNS neural dysplasias and white matter abnormalities for which the underlying mechanisms remain unknown. Here we report that in laminin-deficient mice oligodendrocyte development was delayed such that oligodendrocyte progenitors accumulated inappropriately in adult brains. Conversely, laminin substrates were found to promote the transition of oligodendrocyte progenitors to newly-formed oligodendrocytes. Laminin-enhanced differentiation was Src Family Kinase –dependent and resulted in the activation of the Src Family Kinase Fyn. In laminin-deficient brains, however, increased Fyn repression was accompanied by elevated levels of the Src Family Kinase negative regulatory proteins, C-terminal Src kinase (Csk) and its transmembrane adaptor, Csk-binding protein (Cbp). These findings indicate that laminin deficiencies delay oligodendrocyte maturation by causing dysregulation of signaling pathways critical for oligodendrocyte development, and suggest that a normal role for CNS laminin is to promote the development of oligodendrocyte progenitors into myelin-forming oligodendrocytes via modulation of Fyn regulatory molecules. PMID:19776266

  5. A Missense Mutation in Myelin Oligodendrocyte Glycoprotein as a Cause of Familial Narcolepsy with Cataplexy

    PubMed Central

    Hor, Hyun; Bartesaghi, Luca; Kutalik, Zoltán; Vicário, José L.; de Andrés, Clara; Pfister, Corinne; Lammers, Gert J.; Guex, Nicolas; Chrast, Roman; Tafti, Mehdi; Peraita-Adrados, Rosa

    2011-01-01

    Narcolepsy is a rare sleep disorder characterized by excessive daytime sleepiness and cataplexy. Familial narcolepsy accounts for less than 10% of all narcolepsy cases. However, documented multiplex families are very rare and causative mutations have not been identified to date. To identify a causative mutation in familial narcolepsy, we performed linkage analysis in the largest ever reported family, which has 12 affected members, and sequenced coding regions of the genome (exome sequencing) of three affected members with narcolepsy and cataplexy. We successfully mapped a candidate locus on chromosomal region 6p22.1 (LOD score = 3.85) by linkage analysis. Exome sequencing identified a missense mutation in the second exon of MOG within the linkage region. A c.398C>G mutation was present in all affected family members but absent in unaffected members and 775 unrelated control subjects. Transient expression of mutant myelin oligodendrocyte glycoprotein (MOG) in mouse oligodendrocytes showed abnormal subcellular localization, suggesting an altered function of the mutant MOG. MOG has recently been linked to various neuropsychiatric disorders and is considered as a key autoantigen in multiple sclerosis and in its animal model, experimental autoimmune encephalitis. Our finding of a pathogenic MOG mutation highlights a major role for myelin and oligodendrocytes in narcolepsy and further emphasizes glial involvement in neurodegeneration and neurobehavioral disorders. PMID:21907016

  6. Neurosteroids: oligodendrocyte mitochondria convert cholesterol to pregnenolone

    SciTech Connect

    Hu, Z.Y.; Bourreau, E.; Jung-Testas, I.; Robel, P.; Baulieu, E.E.

    1987-12-01

    Oligodendrocyte mitochondria from 21-day-old Sprague-Dawley male rats were incubated with 100 nM (/sup 3/H)cholesterol. It yielded (/sup 3/H)pregnenolone at a rate of 2.5 +/- 0.7 and 5-(/sup 3/H)pregnene-3..beta..,20..cap alpha..-diol at a rate of 2.5 +/- 1.1 pmol per mg of protein per hr. Cultures of glial cells from 19- to 21-day-old fetuses (a mixed population of astrocytes and oligodendrocytes) were incubated for 24 hr with (/sup 3/H)mevalonolactone. (/sup 3/H)Cholesterol, (/sup 3/H)pregnenolone, and 5-(/sup 3/H)pregnene-3..beta..,20..cap alpha..-diol were characterized in cellular extracts. The formation of the /sup 3/H-labeled steroids was increased by dibutyryl cAMP (0.2 mM) added to the culture medium. The active cholesterol side-chain cleavage mechanism, recently suggested immunohistochemically and already observed in cultures of C6 glioma cells, reinforces the concept of neurosteroids applied to ..delta../sup 5/-3..beta..-hydroxysteroids previously isolated from brain.

  7. Kappa opioid receptor activation alleviates experimental autoimmune encephalomyelitis and promotes oligodendrocyte-mediated remyelination.

    PubMed

    Du, Changsheng; Duan, Yanhui; Wei, Wei; Cai, Yingying; Chai, Hui; Lv, Jie; Du, Xiling; Zhu, Jian; Xie, Xin

    2016-01-01

    Multiple sclerosis (MS) is characterized by autoimmune damage to the central nervous system. All the current drugs for MS target the immune system. Although effective in reducing new lesions, they have limited effects in preventing the progression of disability. Promoting oligodendrocyte-mediated remyelination and recovery of neurons are the new directions of MS therapy. The endogenous opioid system, consisting of MOR, DOR, KOR and their ligands, has been suggested to participate in the pathogenesis of MS. However, the exact receptor and mechanism remain elusive. Here we show that genetic deletion of KOR exacerbates experimental autoimmune encephalomyelitis, whereas activating KOR with agonists alleviates the symptoms. KOR does not affect immune cell differentiation and function. Instead, it promotes oligodendrocyte differentiation and myelination both in vitro and in vivo. Our study suggests that targeting KOR might be an intriguing way to develop new MS therapies that may complement the existing immunosuppressive approaches.

  8. Developmental expression and function analysis of protein tyrosine phosphatase receptor type D in oligodendrocyte myelination.

    PubMed

    Zhu, Q; Tan, Z; Zhao, S; Huang, H; Zhao, X; Hu, X; Zhang, Y; Shields, C B; Uetani, N; Qiu, M

    2015-11-12

    Receptor protein tyrosine phosphatases (RPTPs) are extensively expressed in the central nervous system (CNS), and have distinct spatial and temporal patterns in different cell types during development. Previous studies have demonstrated possible roles for RPTPs in axon outgrowth, guidance, and synaptogenesis. In the present study, our results revealed that protein tyrosine phosphatase, receptor type D (PTPRD) was initially expressed in mature neurons in embryonic CNS, and later in oligodendroglial cells at postnatal stages when oligodendrocytes undergo active axonal myelination process. In PTPRD mutants, oligodendrocyte differentiation was normal and a transient myelination delay occurred at early postnatal stages, indicating the contribution of PTPRD to the initiation of axonal myelination. Our results also showed that the remyelination process was not affected in the absence of PTPRD function after a cuprizone-induced demyelination in adult animals.

  9. Kappa opioid receptor activation alleviates experimental autoimmune encephalomyelitis and promotes oligodendrocyte-mediated remyelination

    PubMed Central

    Du, Changsheng; Duan, Yanhui; Wei, Wei; Cai, Yingying; Chai, Hui; Lv, Jie; Du, Xiling; Zhu, Jian; Xie, Xin

    2016-01-01

    Multiple sclerosis (MS) is characterized by autoimmune damage to the central nervous system. All the current drugs for MS target the immune system. Although effective in reducing new lesions, they have limited effects in preventing the progression of disability. Promoting oligodendrocyte-mediated remyelination and recovery of neurons are the new directions of MS therapy. The endogenous opioid system, consisting of MOR, DOR, KOR and their ligands, has been suggested to participate in the pathogenesis of MS. However, the exact receptor and mechanism remain elusive. Here we show that genetic deletion of KOR exacerbates experimental autoimmune encephalomyelitis, whereas activating KOR with agonists alleviates the symptoms. KOR does not affect immune cell differentiation and function. Instead, it promotes oligodendrocyte differentiation and myelination both in vitro and in vivo. Our study suggests that targeting KOR might be an intriguing way to develop new MS therapies that may complement the existing immunosuppressive approaches. PMID:27040771

  10. Kappa opioid receptor activation alleviates experimental autoimmune encephalomyelitis and promotes oligodendrocyte-mediated remyelination.

    PubMed

    Du, Changsheng; Duan, Yanhui; Wei, Wei; Cai, Yingying; Chai, Hui; Lv, Jie; Du, Xiling; Zhu, Jian; Xie, Xin

    2016-01-01

    Multiple sclerosis (MS) is characterized by autoimmune damage to the central nervous system. All the current drugs for MS target the immune system. Although effective in reducing new lesions, they have limited effects in preventing the progression of disability. Promoting oligodendrocyte-mediated remyelination and recovery of neurons are the new directions of MS therapy. The endogenous opioid system, consisting of MOR, DOR, KOR and their ligands, has been suggested to participate in the pathogenesis of MS. However, the exact receptor and mechanism remain elusive. Here we show that genetic deletion of KOR exacerbates experimental autoimmune encephalomyelitis, whereas activating KOR with agonists alleviates the symptoms. KOR does not affect immune cell differentiation and function. Instead, it promotes oligodendrocyte differentiation and myelination both in vitro and in vivo. Our study suggests that targeting KOR might be an intriguing way to develop new MS therapies that may complement the existing immunosuppressive approaches. PMID:27040771

  11. Alterations in hippocampal myelin and oligodendrocyte precursor cells during epileptogenesis.

    PubMed

    Luo, Yuanyuan; Hu, Qiao; Zhang, Qian; Hong, Siqi; Tang, Xiaoju; Cheng, Li; Jiang, Li

    2015-11-19

    Recent reports have described damage to myelinated fibers in the central nervous system (CNS) in patients with temporal lobe epilepsy (TLE) and animal models. However, only limited data are available on the dynamic changes that occur in myelinated fibers, oligodendrocytes (which are myelin-forming cells), and oligodendrocyte precursor cells (OPCs), which are a reservoir of new oligodendrocytes, in the hippocampus throughout epileptogenesis. The current study was designed to examine this issue using a rat model of lithium-pilocarpine-induced epilepsy. Electroencephalography (EEG), immunofluorescence, and Western blot analysis showed that the loss of myelin and oligodendrocytes in the rat hippocampus began during the acute stage of epileptogenesis, and the severity of this loss increased throughout epileptogenesis. Accompanying this loss of myelin and oligodendrocytes, OPCs in the rat hippocampus became activated and their populations increased during several phases of epileptogenesis (the acute, latent and chronic phases). The transcription factors olig1 and olig2, which play crucial roles in regulating OPC proliferation, differentiation and remyelination, were up-regulated during the early phases (the acute and latent phases) followed by a sharp decline in their expression during the chronic and late chronic phases. This study is the first to confirm the loss of myelin and oligodendrocytes during lithium-pilocarpine-induced epileptogenesis accompanied by a transient increase in the number of OPCs. Prevention of the loss of myelin and oligodendrocytes may provide a novel treatment strategy for epilepsy.

  12. Activated immune response in an inherited leukodystrophy disease caused by the loss of oligodendrocyte gap junctions.

    PubMed

    Wasseff, Sameh K; Scherer, Steven S

    2015-10-01

    Oligodendrocyte:oligodendrocyte (O:O) gap junction (GJ) coupling is a widespread and essential feature of the CNS, and is mediated by connexin47 (Cx47) and Cx32. Loss of function mutations affecting Cx47 results in a severe leukodystrophy, Pelizeus-Merzbacher-like disease (also known as Hypomyelinating Leukodystrophy 2), which can be reproduced in mice lacking both Cx47 and Cx32. Here we report the gene expression profile of the cerebellum--an affected brain region--in mice lacking both Cx47 and Cx32. Of the 43,174 mRNA probes examined, we find decreased expression of 23 probes (corresponding to 23 genes) and increased expression of 545 probes (corresponding to 348 genes). Many of the genes with reduced expression map to oligodendrocytes, and two of them (Fa2h and Ugt8a) are involved in the synthesis of myelin lipids. Many of the genes with increased expression map to lymphocytes and microglia, and involved in leukotrienes/prostaglandins synthesis and chemokines/cytokines interactions and signaling pathways. In accord, immunostaining showed T- and B-cells in the cerebella of mutant mice as well as activated microglia and astrocytes. Thus, in addition to the loss of GJ coupling, there is a prominent immune response in mice lacking both Cx47 and Cx32.

  13. Activated Immune Response in an Inherited Leukodystrophy Disease Caused by the Loss of Oligodendrocyte Gap Junctions

    PubMed Central

    Wasseff, Sameh K.; Scherer, Steven S.

    2015-01-01

    Oligodendrocyte:oligodendrocyte (O:O) gap junction (GJ) coupling is a widespread and essential feature of the CNS, and is mediated by connexin47 (Cx47) and Cx32. Loss of function mutations affecting Cx47 results in a severe leukodystrophy, Pelizeus-Merzbacher-like disease (also known as Hypomyelinating Leukodystrophy 2), which can be reproduced in mice lacking both Cx47 and Cx32. Here we report the gene expression profile of the cerebellum – an affected brain region – in mice lacking both Cx47 and Cx32. Of the 43,174 mRNA probes examined, we find decreased expression of 23 probes (corresponding to 23 genes) and increased expression of 545 probes (corresponding to 348 genes). Many of the genes with reduced expression map to oligodendrocytes, and two of them (Fa2h and Ugt8a) are involved in the synthesis of myelin lipids. Many of the genes with increased expression map to microglia and lymphocytes, and to leukotriene/prostaglandin synthesis and chemokine/cytokine pathways. In accord, immunostaining showed activated microglia and astrocytes, as well as T- and B-cells in the cerebella of mutant mice. Thus, in addition to the loss of GJ coupling, there is a prominent immune response in mice lacking both Cx47 and Cx32. PMID:26051537

  14. Gain of Olig2 function in oligodendrocyte progenitors promotes remyelination.

    PubMed

    Wegener, Amélie; Deboux, Cyrille; Bachelin, Corinne; Frah, Magali; Kerninon, Christophe; Seilhean, Danielle; Weider, Matthias; Wegner, Michael; Nait-Oumesmar, Brahim

    2015-01-01

    The basic helix-loop-helix transcription factor Olig2 is a key determinant for the specification of neural precursor cells into oligodendrocyte progenitor cells. However, the functional role of Olig2 in oligodendrocyte migration and differentiation remains elusive both during developmental myelination and under demyelinating conditions of the adult central nervous system. To decipher Olig2 functions, we generated transgenic mice (TetOlig2:Sox10(rtTA/+)) overexpressing Olig2 in Sox10(+) oligodendroglial cells in a doxycycline inducible manner. We show that Olig2 overexpression increases the generation of differentiated oligodendrocytes, leading to precocious myelination of the central nervous system. Unexpectedly, we found that gain of Olig2 function in oligodendrocyte progenitor cells enhances their migration rate. To determine whether Olig2 overexpression in adult oligodendrocyte progenitor cells promotes oligodendrocyte regeneration for myelin repair, we induced lysophosphatidylcholine demyelination in the corpus callosum of TetOlig2:Sox10(rtTA/+) and control mice. We found that Olig2 overexpression enhanced oligodendrocyte progenitor cell differentiation and remyelination. To assess the relevance of these findings in demyelinating diseases, we also examined OLIG2 expression in multiple sclerosis lesions. We demonstrate that OLIG2 displays a differential expression pattern in multiple sclerosis lesions that correlates with lesion activity. Strikingly, OLIG2 was predominantly detected in NOGO-A(+) (now known as RTN4-A) maturing oligodendrocytes, which prevailed in active lesion borders, rather than chronic silent and shadow plaques. Taken together, our data provide proof of principle indicating that OLIG2 overexpression in oligodendrocyte progenitor cells might be a possible therapeutic mechanism for enhancing myelin repair.

  15. Gain of Olig2 function in oligodendrocyte progenitors promotes remyelination

    PubMed Central

    Wegener, Amélie; Deboux, Cyrille; Bachelin, Corinne; Frah, Magali; Kerninon, Christophe; Seilhean, Danielle; Weider, Matthias; Wegner, Michael

    2015-01-01

    The basic helix-loop-helix transcription factor Olig2 is a key determinant for the specification of neural precursor cells into oligodendrocyte progenitor cells. However, the functional role of Olig2 in oligodendrocyte migration and differentiation remains elusive both during developmental myelination and under demyelinating conditions of the adult central nervous system. To decipher Olig2 functions, we generated transgenic mice (TetOlig2:Sox10rtTA/+) overexpressing Olig2 in Sox10+ oligodendroglial cells in a doxycycline inducible manner. We show that Olig2 overexpression increases the generation of differentiated oligodendrocytes, leading to precocious myelination of the central nervous system. Unexpectedly, we found that gain of Olig2 function in oligodendrocyte progenitor cells enhances their migration rate. To determine whether Olig2 overexpression in adult oligodendrocyte progenitor cells promotes oligodendrocyte regeneration for myelin repair, we induced lysophosphatidylcholine demyelination in the corpus callosum of TetOlig2:Sox10rtTA/+ and control mice. We found that Olig2 overexpression enhanced oligodendrocyte progenitor cell differentiation and remyelination. To assess the relevance of these findings in demyelinating diseases, we also examined OLIG2 expression in multiple sclerosis lesions. We demonstrate that OLIG2 displays a differential expression pattern in multiple sclerosis lesions that correlates with lesion activity. Strikingly, OLIG2 was predominantly detected in NOGO-A+ (now known as RTN4-A) maturing oligodendrocytes, which prevailed in active lesion borders, rather than chronic silent and shadow plaques. Taken together, our data provide proof of principle indicating that OLIG2 overexpression in oligodendrocyte progenitor cells might be a possible therapeutic mechanism for enhancing myelin repair. PMID:25564492

  16. Thermal ablation in cancer

    PubMed Central

    Liu, Yong; Cao, Cheng-Song; Yu, Yang; Si, Ya-Meng

    2016-01-01

    Radiofrequency ablation (RFA) and cryoablation are alternative forms of therapy used widely in various pathological states, including treatment of carcinogenesis. The reason is that ablation techniques have ability of modulating the immune system. Furthermore, recent studies have applied this form of therapy on tumor microenvironment and in the systematic circulation. Moreover, RFA and cryoablation result in an inflammatory immune response along with tissue disruption. Evidence has demonstrated that these procedures affect carcinogenesis by causing a significant local inflammatory response leading to an immunogenic gene signature. The present review enlightens the current view of these techniques in cancer. PMID:27703520

  17. Oligodendrocyte precursor cell-intrinsic effect of Rheb1 controls differentiation and mediates mTORC1-dependent myelination in brain.

    PubMed

    Zou, Yi; Jiang, Wanxiang; Wang, Jianqing; Li, Zhongping; Zhang, Junyan; Bu, Jicheng; Zou, Jia; Zhou, Liang; Yu, Shouyang; Cui, Yiyuan; Yang, Weiwei; Luo, Liping; Lu, Qing R; Liu, Yanhui; Chen, Mina; Worley, Paul F; Xiao, Bo

    2014-11-19

    Rheb1 is an immediate early gene that functions to activate mammalian target of rapamycin (mTor) selectively in complex 1 (mTORC1). We have demonstrated previously that Rheb1 is essential for myelination in the CNS using a Nestin-Cre driver line that deletes Rheb1 in all neural cell lineages, and recent studies using oligodendrocyte-specific CNP-Cre have suggested a preferential role for mTORC1 is myelination in the spinal cord. Here, we examine the role of Rheb1/mTORC1 in mouse oligodendrocyte lineage using separate Cre drivers for oligodendrocyte progenitor cells (OPCs) including Olig1-Cre and Olig2-Cre as well as differentiated and mature oligodendrocytes including CNP-Cre and Tmem10-Cre. Deletion of Rheb1 in OPCs impairs their differentiation to mature oligodendrocytes. This is accompanied by reduced OPC cell-cycle exit suggesting a requirement for Rheb1 in OPC differentiation. The effect of Rheb1 on OPC differentiation is mediated by mTor since Olig1-Cre deletion of mTor phenocopies Olig1-Cre Rheb1 deletion. Deletion of Rheb1 in mature oligodendrocytes, in contrast, does not disrupt developmental myelination or myelin maintenance. Loss of Rheb1 in OPCs or neural progenitors does not affect astrocyte formation in gray and white matter, as indicated by the pan-astrocyte marker Aldh1L1. We conclude that OPC-intrinsic mTORC1 activity mediated by Rheb1 is critical for differentiation of OPCs to mature oligodendrocytes, but that mature oligodendrocytes do not require Rheb1 to make myelin or maintain it in the adult brain. These studies reveal mechanisms that may be relevant for both developmental myelination and impaired remyelination in myelin disease.

  18. Adrenomedullin promotes differentiation of oligodendrocyte precursor cells into myelin-basic-protein expressing oligodendrocytes under pathological conditions in vitro.

    PubMed

    Maki, Takakuni; Takahashi, Yoko; Miyamoto, Nobukazu; Liang, Anna C; Ihara, Masafumi; Lo, Eng H; Arai, Ken

    2015-07-01

    Oligodendrocytes, which are the main cell type in cerebral white matter, are generated from their precursor cells (oligodendrocyte precursor cells: OPCs). However, the differentiation from OPCs to oligodendrocytes is disturbed under stressed conditions. Therefore, drugs that can improve oligodendrocyte regeneration may be effective for white matter-related diseases. Here we show that a vasoactive peptide adrenomedullin (AM) promotes the in vitro differentiation of OPCs under pathological conditions. Primary OPCs were prepared from neonatal rat brains, and differentiated into myelin-basic-protein expressing oligodendrocytes over time. This in vitro OPC differentiation was inhibited by prolonged chemical hypoxic stress induced by non-lethal CoCl(2) treatment. However, AM promoted the OPC differentiation under the hypoxic stress conditions, and the AM receptor antagonist AM(22-52) canceled the AM-induced OPC differentiation. In addition, AM treatment increased the phosphorylation level of Akt in OPC cultures, and correspondingly, the PI3K/Akt inhibitor LY294002 blocked the AM-induced OPC differentiation. Taken together, AM treatment rescued OPC maturation under pathological conditions via an AM-receptor-PI3K/Akt pathway. Oligodendrocytes play critical roles in white matter by forming myelin sheath. Therefore, AM signaling may be a promising therapeutic target to boost oligodendrocyte regeneration in CNS disorders.

  19. Ablation of the mTORC2 component rictor in brain or Purkinje cells affects size and neuron morphology.

    PubMed

    Thomanetz, Venus; Angliker, Nico; Cloëtta, Dimitri; Lustenberger, Regula M; Schweighauser, Manuel; Oliveri, Filippo; Suzuki, Noboru; Rüegg, Markus A

    2013-04-15

    The mammalian target of rapamycin (mTOR) assembles into two distinct multi-protein complexes called mTORC1 and mTORC2. Whereas mTORC1 is known to regulate cell and organismal growth, the role of mTORC2 is less understood. We describe two mouse lines that are devoid of the mTORC2 component rictor in the entire central nervous system or in Purkinje cells. In both lines neurons were smaller and their morphology and function were strongly affected. The phenotypes were accompanied by loss of activation of Akt, PKC, and SGK1 without effects on mTORC1 activity. The striking decrease in the activation and expression of several PKC isoforms, the subsequent loss of activation of GAP-43 and MARCKS, and the established role of PKCs in spinocerebellar ataxia and in shaping the actin cytoskeleton strongly suggest that the morphological deficits observed in rictor-deficient neurons are mediated by PKCs. Together our experiments show that mTORC2 has a particularly important role in the brain and that it affects size, morphology, and function of neurons.

  20. Oligodendrocyte Lineage and Subventricular Zone Response to Traumatic Axonal Injury in the Corpus Callosum

    PubMed Central

    Sullivan, Genevieve M.; Mierzwa, Amanda J.; Kijpaisalratana, Naruchorn; Tang, *Haiying; Wang, Yong; Song, Sheng-Kwei; Selwyn, Reed

    2013-01-01

    Abstract Traumatic brain injury frequently causes traumatic axonal injury (TAI) in white matter tracts. Experimental TAI in the corpus callosum of adult mice was used to examine the effects on oligodendrocyte lineage cells and myelin in conjunction with neuroimaging. The injury targeted the corpus callosum over the subventricular zone, a source of neural stem/progenitor cells. Traumatic axonal injury was produced in the rostral body of the corpus callosum by impact onto the skull at the bregma. During the first week after injury, magnetic resonance diffusion tensor imaging showed that axial diffusivity decreased in the corpus callosum and that corresponding regions exhibited significant axon damage accompanied by hypertrophic microglia and reactive astrocytes. Oligodendrocyte progenitor proliferation increased in the subventricular zone and corpus callosum. Oligodendrocytes in the corpus callosum shifted toward upregulation of myelin gene transcription. Plp/CreERT:R26IAP reporter mice showed normal reporter labeling of myelin sheaths 0 to 2 days after injury but labeling was increased between 2 and 7 days after injury. Electron microscopy revealed axon degeneration, demyelination, and redundant myelin figures. These findings expand the cell types and responses to white matter injuries that inform diffusion tensor imaging evaluation and identify pivotal white matter changes after TAI that may affect axon vulnerability vs. recovery after brain injury. PMID:24226267

  1. Co-ultramicronized Palmitoylethanolamide/Luteolin Promotes the Maturation of Oligodendrocyte Precursor Cells

    PubMed Central

    Barbierato, Massimo; Facci, Laura; Marinelli, Carla; Zusso, Morena; Argentini, Carla; Skaper, Stephen D.; Giusti, Pietro

    2015-01-01

    Oligodendrocytes have limited ability to repair the damage to themselves or to other nerve cells, as seen in demyelinating diseases like multiple sclerosis. An important strategy may be to replace the lost oligodendrocytes and/or promote the maturation of undifferentiated oligodendrocyte precursor cells (OPCs). Recent studies show that a composite of co-ultramicronized N-palmitoylethanolamine (PEA) and luteolin (co-ultramicronized PEA/luteolin, 10:1 by mass) is efficacious in improving outcome in experimental models of spinal cord and traumatic brain injuries. Here, we examined the ability of co-ultramicronized PEA/luteolin to promote progression of OPCs into a more differentiated phenotype. OPCs derived from newborn rat cortex were placed in culture and treated the following day with 10 μM co-ultramicronized PEA/luteolin. Cells were collected 1, 4 and 8 days later and analyzed for expression of myelin basic protein (MBP). qPCR and Western blot analyses revealed a time-dependent increase in expression of both mRNA for MBP and MBP content, along with an increased expression of genes involved in lipid biogenesis. Ultramicronized PEA or luteolin, either singly or in simple combination, were ineffective. Further, co-ultramicronized PEA/luteolin promoted morphological development of OPCs and total protein content without affecting proliferation. Co-ultramicronized PEA/luteolin may represent a novel pharmacological strategy to promote OPC maturation. PMID:26578323

  2. Glutamate receptor-mediated oligodendrocyte toxicity in periventricular leukomalacia: a protective role for topiramate.

    PubMed

    Follett, Pamela L; Deng, Wenbin; Dai, Weimin; Talos, Delia M; Massillon, Leon J; Rosenberg, Paul A; Volpe, Joseph J; Jensen, Frances E

    2004-05-01

    Periventricular leukomalacia is a form of hypoxic-ischemic cerebral white matter injury seen most commonly in premature infants and is the major antecedent of cerebral palsy. Glutamate receptor-mediated excitotoxicity is a predominant mechanism of hypoxic-ischemic injury to developing cerebral white matter. We have demonstrated previously the protective effect of AMPA-kainate-type glutamate receptor blockade in a rodent model of periventricular leukomalacia. The present study explores the therapeutic potential of glutamate receptor blockade for hypoxic-ischemic white matter injury. We demonstrate that AMPA receptors are expressed on developing human oligodendrocytes that populate fetal white matter at 23-32 weeks gestation, the period of highest risk for periventricular leukomalacia. We show that the clinically available anticonvulsant topiramate, when administered post-insult in vivo, is protective against selective hypoxic-ischemic white matter injury and decreases the subsequent neuromotor deficits. We further demonstrate that topiramate attenuates AMPA-kainate receptor-mediated cell death and calcium influx, as well as kainate-evoked currents in developing oligodendrocytes, similar to the AMPA-kainate receptor antagonist 6-nitro-7-sulfamoylbenzo-(f)quinoxaline-2,3-dione (NBQX). Notably, protective doses of NBQX and topiramate do not affect normal maturation and proliferation of oligodendrocytes either in vivo or in vitro. Taken together, these results suggest that AMPA-kainate receptor blockade may have potential for translation as a therapeutic strategy for periventricular leukomalacia and that the mechanism of protective efficacy of topiramate is caused at least in part by attenuation of excitotoxic injury to premyelinating oligodendrocytes in developing white matter.

  3. Anti-muscarinic adjunct therapy accelerates functional human oligodendrocyte repair.

    PubMed

    Abiraman, Kavitha; Pol, Suyog U; O'Bara, Melanie A; Chen, Guang-Di; Khaku, Zainab M; Wang, Jing; Thorn, David; Vedia, Bansi H; Ekwegbalu, Ezinne C; Li, Jun-Xu; Salvi, Richard J; Sim, Fraser J

    2015-02-25

    Therapeutic repair of myelin disorders may be limited by the relatively slow rate of human oligodendrocyte differentiation. To identify appropriate pharmacological targets with which to accelerate differentiation of human oligodendrocyte progenitors (hOPCs) directly, we used CD140a/O4-based FACS of human forebrain and microarray to hOPC-specific receptors. Among these, we identified CHRM3, a M3R muscarinic acetylcholine receptor, as being restricted to oligodendrocyte-biased CD140a(+)O4(+) cells. Muscarinic agonist treatment of hOPCs resulted in a specific and dose-dependent blockade of oligodendrocyte commitment. Conversely, when hOPCs were cocultured with human neurons, M3R antagonist treatment stimulated oligodendrocytic differentiation. Systemic treatment with solifenacin, an FDA-approved muscarinic receptor antagonist, increased oligodendrocyte differentiation of transplanted hOPCs in hypomyelinated shiverer/rag2 brain. Importantly, solifenacin treatment of engrafted animals reduced auditory brainstem response interpeak latency, indicative of increased conduction velocity and thereby enhanced functional repair. Therefore, solifenacin and other selective muscarinic antagonists represent new adjunct approaches to accelerate repair by engrafted human progenitors.

  4. Subtype-specific oligodendrocyte dynamics in organotypic culture.

    PubMed

    Haber, Michael; Vautrin, Sandrine; Fry, Elizabeth J; Murai, Keith K

    2009-07-01

    The morphogenesis of oligodendrocytes is essential for central nervous system myelin formation and the rapid propagation of axon potentials through saltatory conduction. However, the discrete cellular events involved in the three-dimensional maturation of oligodendrocytes remain to be fully described. To address this, we followed the developmental stages of oligodendrocytes in mouse organotypic hippocampal slice cultures for 7-60 days using viral-mediated gene delivery of membrane-targeted fluorescent proteins. Using static and time-lapse confocal imaging, we find that postmigratory NG2-expressing cells exhibit slow anatomical reorganization over the course of hours. This is in direct contrast to oligodendrocytes that take on a promyelinating and transitional phenotype, which display a more complex morphology and undergo dramatic actin-dependent structural remodeling over just minutes. More mature myelinating oligodendrocytes, which have pruned most of their processes, still retain some local remodeling behavior at developing internodes, but in general, revert to a relatively stable state. Our findings provide a detailed characterization of cellular events that help shape oligodendrocyte morphology and likely participate in neuron-glial cell interactions and the process of myelination.

  5. Clozapine promotes glycolysis and myelin lipid synthesis in cultured oligodendrocytes

    PubMed Central

    Steiner, Johann; Martins-de-Souza, Daniel; Schiltz, Kolja; Sarnyai, Zoltan; Westphal, Sabine; Isermann, Berend; Dobrowolny, Henrik; Turck, Christoph W.; Bogerts, Bernhard; Bernstein, Hans-Gert; Horvath, Tamas L.; Schild, Lorenz; Keilhoff, Gerburg

    2014-01-01

    Clozapine displays stronger systemic metabolic side effects than haloperidol and it has been hypothesized that therapeutic antipsychotic and adverse metabolic effects of these drugs are related. Considering that cerebral disconnectivity through oligodendrocyte dysfunction has been implicated in schizophrenia, it is important to determine the effect of these drugs on oligodendrocyte energy metabolism and myelin lipid production. Effects of clozapine and haloperidol on glucose and myelin lipid metabolism were evaluated and compared in cultured OLN-93 oligodendrocytes. First, glycolytic activity was assessed by measurement of extra- and intracellular glucose and lactate levels. Next, the expression of glucose (GLUT) and monocarboxylate (MCT) transporters was determined after 6 and 24 h. And finally mitochondrial respiration, acetyl-CoA carboxylase, free fatty acids, and expression of the myelin lipid galactocerebroside were analyzed. Both drugs altered oligodendrocyte glucose metabolism, but in opposite directions. Clozapine improved the glucose uptake, production and release of lactate, without altering GLUT and MCT. In contrast, haloperidol led to higher extracellular levels of glucose and lower levels of lactate, suggesting reduced glycolysis. Antipsychotics did not alter significantly the number of functionally intact mitochondria, but clozapine enhanced the efficacy of oxidative phosphorylation and expression of galactocerebroside. Our findings support the superior impact of clozapine on white matter integrity in schizophrenia as previously observed, suggesting that this drug improves the energy supply and myelin lipid synthesis in oligodendrocytes. Characterizing the underlying signal transduction pathways may pave the way for novel oligodendrocyte-directed schizophrenia therapies. PMID:25477781

  6. Anti-Muscarinic Adjunct Therapy Accelerates Functional Human Oligodendrocyte Repair

    PubMed Central

    Abiraman, Kavitha; Pol, Suyog U.; O'Bara, Melanie A.; Chen, Guang-Di; Khaku, Zainab M.; Wang, Jing; Thorn, David; Vedia, Bansi H.; Ekwegbalu, Ezinne C.; Li, Jun-Xu; Salvi, Richard J.

    2015-01-01

    Therapeutic repair of myelin disorders may be limited by the relatively slow rate of human oligodendrocyte differentiation. To identify appropriate pharmacological targets with which to accelerate differentiation of human oligodendrocyte progenitors (hOPCs) directly, we used CD140a/O4-based FACS of human forebrain and microarray to hOPC-specific receptors. Among these, we identified CHRM3, a M3R muscarinic acetylcholine receptor, as being restricted to oligodendrocyte-biased CD140a+O4+ cells. Muscarinic agonist treatment of hOPCs resulted in a specific and dose-dependent blockade of oligodendrocyte commitment. Conversely, when hOPCs were cocultured with human neurons, M3R antagonist treatment stimulated oligodendrocytic differentiation. Systemic treatment with solifenacin, an FDA-approved muscarinic receptor antagonist, increased oligodendrocyte differentiation of transplanted hOPCs in hypomyelinated shiverer/rag2 brain. Importantly, solifenacin treatment of engrafted animals reduced auditory brainstem response interpeak latency, indicative of increased conduction velocity and thereby enhanced functional repair. Therefore, solifenacin and other selective muscarinic antagonists represent new adjunct approaches to accelerate repair by engrafted human progenitors. PMID:25716865

  7. Microwave Ablation Compared with Radiofrequency Ablation for Breast Tissue in an Ex Vivo Bovine Udder Model

    SciTech Connect

    Tanaka, Toshihiro; Westphal, Saskia; Isfort, Peter; Braunschweig, Till; Penzkofer, Tobias Bruners, Philipp; Kichikawa, Kimihiko; Schmitz-Rode, Thomas Mahnken, Andreas H.

    2012-08-15

    Purpose: To compare the effectiveness of microwave (MW) ablation with radiofrequency (RF) ablation for treating breast tissue in a nonperfused ex vivo model of healthy bovine udder tissue. Materials and Methods: MW ablations were performed at power outputs of 25W, 35W, and 45W using a 915-MHz frequency generator and a 2-cm active tip antenna. RF ablations were performed with a bipolar RF system with 2- and 3-cm active tip electrodes. Tissue temperatures were continuously monitored during ablation. Results: The mean short-axis diameters of the coagulation zones were 1.34 {+-} 0.14, 1.45 {+-} 0.13, and 1.74 {+-} 0.11 cm for MW ablation at outputs of 25W, 35W, and 45W. For RF ablation, the corresponding values were 1.16 {+-} 0.09 and 1.26 {+-} 0.14 cm with electrodes having 2- and 3-cm active tips, respectively. The mean coagulation volumes were 2.27 {+-} 0.65, 2.85 {+-} 0.72, and 4.45 {+-} 0.47 cm{sup 3} for MW ablation at outputs of 25W, 35W, and 45W and 1.18 {+-} 0.30 and 2.29 {+-} 0.55 cm{sup 3} got RF ablation with 2- and 3-cm electrodes, respectively. MW ablations at 35W and 45W achieved significantly longer short-axis diameters than RF ablations (P < 0.05). The highest tissue temperature was achieved with MW ablation at 45W (P < 0.05). On histological examination, the extent of the ablation zone in MW ablations was less affected by tissue heterogeneity than that in RF ablations. Conclusion: MW ablation appears to be advantageous with respect to the volume of ablation and the shape of the margin of necrosis compared with RF ablation in an ex vivo bovine udder.

  8. Raptor ablation in skeletal muscle decreases Cav1.1 expression and affects the function of the excitation-contraction coupling supramolecular complex.

    PubMed

    Lopez, Rubén J; Mosca, Barbara; Treves, Susan; Maj, Marcin; Bergamelli, Leda; Calderon, Juan C; Bentzinger, C Florian; Romanino, Klaas; Hall, Michael N; Rüegg, Markus A; Delbono, Osvaldo; Caputo, Carlo; Zorzato, Francesco

    2015-02-15

    The protein mammalian target of rapamycin (mTOR) is a serine/threonine kinase regulating a number of biochemical pathways controlling cell growth. mTOR exists in two complexes termed mTORC1 and mTORC2. Regulatory associated protein of mTOR (raptor) is associated with mTORC1 and is essential for its function. Ablation of raptor in skeletal muscle results in several phenotypic changes including decreased life expectancy, increased glycogen deposits and alterations of the twitch kinetics of slow fibres. In the present paper, we show that in muscle-specific raptor knockout (RamKO), the bulk of glycogen phosphorylase (GP) is mainly associated in its cAMP-non-stimulated form with sarcoplasmic reticulum (SR) membranes. In addition, 3[H]-ryanodine and 3[H]-PN200-110 equilibrium binding show a ryanodine to dihydropyridine receptors (DHPRs) ratio of 0.79 and 1.35 for wild-type (WT) and raptor KO skeletal muscle membranes respectively. Peak amplitude and time to peak of the global calcium transients evoked by supramaximal field stimulation were not different between WT and raptor KO. However, the increase in the voltage sensor-uncoupled RyRs leads to an increase of both frequency and mass of elementary calcium release events (ECRE) induced by hyper-osmotic shock in flexor digitorum brevis (FDB) fibres from raptor KO. The present study shows that the protein composition and function of the molecular machinery involved in skeletal muscle excitation-contraction (E-C) coupling is affected by mTORC1 signalling.

  9. Raptor ablation in skeletal muscle decreases Cav1.1 expression and affects the function of the excitation–contraction coupling supramolecular complex

    PubMed Central

    Lopez, Rubén J.; Mosca, Barbara; Treves, Susan; Maj, Marcin; Bergamelli, Leda; Calderon, Juan C.; Bentzinger, C. Florian; Romanino, Klaas; Hall, Michael N.; Rüegg, Markus A.; Delbono, Osvaldo; Caputo, Carlo; Zorzato, Francesco

    2016-01-01

    The protein mammalian target of rapamycin (mTOR) is a serine/threonine kinase regulating a number of biochemical pathways controlling cell growth. mTOR exists in two complexes termed mTORC1 and mTORC2. Regulatory associated protein of mTOR (raptor) is associated with mTORC1 and is essential for its function. Ablation of raptor in skeletal muscle results in several phenotypic changes including decreased life expectancy, increased glycogen deposits and alterations of the twitch kinetics of slow fibres. In the present paper, we show that in muscle-specific raptor knockout (RamKO), the bulk of glycogen phosphorylase (GP) is mainly associated in its cAMP-non-stimulated form with sarcoplasmic reticulum (SR) membranes. In addition, 3[H]–ryanodine and 3[H]–PN200-110 equilibrium binding show a ryanodine to dihydropyridine receptors (DHPRs) ratio of 0.79 and 1.35 for wild-type (WT) and raptor KO skeletal muscle membranes respectively. Peak amplitude and time to peak of the global calcium transients evoked by supramaximal field stimulation were not different between WT and raptor KO. However, the increase in the voltage sensor-uncoupled RyRs leads to an increase of both frequency and mass of elementary calcium release events (ECRE) induced by hyper-osmotic shock in flexor digitorum brevis (FDB) fibres from raptor KO. The present study shows that the protein composition and function of the molecular machinery involved in skeletal muscle excitation–contraction (E–C) coupling is affected by mTORC1 signalling. PMID:25431931

  10. cFLIP is critical for oligodendrocyte protection from inflammation.

    PubMed

    Tanner, D C; Campbell, A; O'Banion, K M; Noble, M; Mayer-Pröschel, M

    2015-09-01

    Neuroinflammation associated with degenerative central nervous system disease and injury frequently results in oligodendrocyte death. While promoting oligodendrocyte viability is a major therapeutic goal, little is known about protective signaling strategies. We report that in highly purified rat oligodendrocytes, interferon gamma (IFNγ) activates a signaling pathway that protects these cells from tumor necrosis factor alpha (TNFα)-induced cytotoxicity. IFNγ protection requires Jak (Janus kinase) activation, components of the integrated stress response and NF-κB activation. Although NF-κB activation also occurred transiently in the absence of IFNγ and presence of TNFα, this activation was not sufficient to prevent induction of the TNFα-responsive cell death pathway. Genetic inhibition of NF-κB translocation to the nucleus abrogated IFNγ-mediated protection and did not change the cell death induced by TNFα, suggesting that NF-κB activation via IFNγ induces a different set of responses than activation of NF-κB via TNFα. A promising candidate is the NF-κB target cFLIP (cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein), which is protease-deficient caspase homolog that inhibits caspase-3 activation. We show that IFNγ-mediated protection led to upregulation of cFLIP. Overexpression of cFLIP was sufficient for oligodendrocyte protection from TNFα and short hairpin RNA knockdown of cFLIP-abrogated IFNγ -mediated protection. To determine the relevance of our in vitro finding to the more complex in vivo situation, we determined the impact on oligodendrocyte death of regional cFLIP loss of function in a murine model of neuroinflammation. Our data show that downregulation of cFLIP during inflammation leads to death of oligodendrocytes and decrease of myelin in vivo. Taken together, we show that IFNγ-mediated induction of cFLIP expression provides a new mechanism by which this cytokine can protect oligodendrocytes from TNF

  11. Astrocytic TIMP-1 Promotes Oligodendrocyte Differentiation and Enhances CNS Myelination

    PubMed Central

    Moore, Craig S.; Milner, Richard; Nishiyama, Akiko; Frausto, Ricardo F.; Serwanski, David R.; Pagarigan, Roberto R.; Whitton, J. Lindsay; Miller, Robert H.; Crocker, Stephen J.

    2011-01-01

    Tissue inhibitor of metalloproteinase-1 (TIMP-1) is an extracellular protein and endogenous regulator of matrix metalloproteinases (MMPs) secreted by astrocytes in response to CNS myelin injury. We have previously reported that adult TIMP-1KO mice exhibit poor myelin repair following demyelinating injury. This observation led us to hypothesize a role for TIMP-1 in oligodendrogenesis and CNS myelination. Herein, we demonstrate that compact myelin formation is significantly delayed in TIMP-1KO mice which coincided with dramatically reduced numbers of white matter astrocytes in the developing CNS. Analysis of differentiation in CNS progenitor cells (neurosphere) cultures from TIMP-1KO mice revealed a specific deficit of NG2+ oligodendrocyte progenitor cells. Application of rmTIMP-1 to TIMP-1KO neurosphere cultures evoked a dose-dependent increase in NG2+ cell numbers, while treatment with GM6001, a potent broad spectrum MMP inhibitor did not. Similarly, administration of recombinant murine TIMP-1 (rmTIMP-1) to A2B5+ immunopanned oligodendrocyte progenitors significantly increased the number of differentiated O1+ oligodendrocytes, while antisera to TIMP-1 reduced oligodendrocyte numbers. We also determined that A2B5+ oligodendrocyte progenitors grown in conditioned media derived from TIMP-1KO primary glial cultures resulted in reduced differentiation of mature O1+ oligodendrocytes. Finally, we report that addition of rmTIMP-1 to primary glial cultures resulted in a dose-dependent proliferative response of astrocytes. Together, these findings describe a previously uncharacterized role for TIMP-1 in the regulation of oligodendrocytes and astrocytes during development and provide a novel function for TIMP-1 on myelination in the developing CNS. PMID:21508247

  12. Ghrelin Inhibits Oligodendrocyte Cell Death by Attenuating Microglial Activation

    PubMed Central

    Lee, Jee Youn

    2014-01-01

    Background Recently, we reported the antiapoptotic effect of ghrelin in spinal cord injury-induced apoptotic cell death of oligodendrocytes. However, how ghrelin inhibits oligodendrocytes apoptosis, is still unknown. Therefore, in the present study, we examined whether ghrelin inhibits microglia activation and thereby inhibits oligodendrocyte apoptosis. Methods Using total cell extracts prepared from BV-2 cells activated by lipopolysaccharide (LPS) with or without ghrelin, the levels of p-p38 phosphor-p38 mitogen-activated protein kinase (p-p38MAPK), phospho-c-Jun N-terminal kinase (pJNK), p-c-Jun, and pro-nerve growth factor (proNGF) were examined by Western blot analysis. Reactive oxygen species (ROS) production was investigated by using dichlorodihydrofluorescein diacetate. To examine the effect of ghrelin on oligodendrocyte cell death, oligodendrocytes were cocultured in transwell chambers of 24-well plates with LPS-stimulated BV-2 cells. After 48 hours incubation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and terminal deoxynucleotidyl transferase 2'-deoxyuridine, 5'-triphosphate nick end labeling staining were assessed. Results Ghrelin treatment significantly decreased levels of p-p38MAPK, p-JNK, p-c-Jun, and proNGF in LPS-stimulated BV-2 cells. ROS production increased in LPS-stimulated BV-2 cells was also significantly inhibited by ghrelin treatment. In addition, ghrelin significantly inhibited oligodendrocyte cell death when cocultured with LPS-stimulated BV-2 cells. Conclusion Ghrelin inhibits oligodendrocyte cell death by decreasing proNGF and ROS production as well as p38MAPK and JNK activation in activated microglia as an anti-inflammatory hormone. PMID:25309797

  13. The MEK/ERK Pathway is the Primary Conduit for Borrelia burgdorferi-Induced Inflammation and P53-Mediated Apoptosis in Oligodendrocytes

    PubMed Central

    Parthasarathy, Geetha; Philipp, Mario T.

    2013-01-01

    Lyme neuroborreliosis (LNB) affects both the central and peripheral nervous systems. In a rhesus macaque model of LNB we had previously shown that brains of rhesus macaques inoculated with Borrelia burgdorferi release inflammatory mediators, and undergo oligodendrocyte and neuronal cell death. In vitro analysis of this phenomenon indicated that while B. burgdorferi can induce inflammation and apoptosis of oligodendrocytes per se, microglia are required for neuronal apoptosis. We hypothesized that the inflammatory milieu elicited by the bacterium in microglia or oligodendrocytes contributes to the apoptosis of neurons and glial cells, respectively, and that downstream signaling events in NFkB and/or MAPK pathways play a role in these phenotypes. To test these hypotheses in oligodendrocytes, several pathway inhibitors were used to determine their effect on inflammation and apoptosis, as induced by B. burgdorferi. In a human oligodendrocyte cell line (MO3.13), inhibition of the ERK pathway in the presence of B. burgdorferi markedly reduced inflammation, followed by the JNK, p38 and NFkB pathway inhibition. In addition to eliciting inflammation, B. burgdorferi also increased total p53 protein levels, and suppression of the ERK pathway mitigated this effect. While inhibition of p53 had a minimal effect in reducing inflammation, suppression of the ERK pathway or p53 reduced apoptosis as measured by active caspase-3 activity and the TUNEL assay. A similar result was seen in primary human oligodendrocytes wherein suppression of ERK or p53 reduced apoptosis. It is possible that inflammation and apoptosis in oligodendrocytes are divergent arms of MAPK pathways, particularly the MEK/ERK pathway. PMID:24114360

  14. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system.

    PubMed

    Marques, Sueli; Zeisel, Amit; Codeluppi, Simone; van Bruggen, David; Mendanha Falcão, Ana; Xiao, Lin; Li, Huiliang; Häring, Martin; Hochgerner, Hannah; Romanov, Roman A; Gyllborg, Daniel; Muñoz-Manchado, Ana B; La Manno, Gioele; Lönnerberg, Peter; Floriddia, Elisa M; Rezayee, Fatemah; Ernfors, Patrik; Arenas, Ernest; Hjerling-Leffler, Jens; Harkany, Tibor; Richardson, William D; Linnarsson, Sten; Castelo-Branco, Gonçalo

    2016-06-10

    Oligodendrocytes have been considered as a functionally homogeneous population in the central nervous system (CNS). We performed single-cell RNA sequencing on 5072 cells of the oligodendrocyte lineage from 10 regions of the mouse juvenile and adult CNS. Thirteen distinct populations were identified, 12 of which represent a continuum from Pdgfra(+) oligodendrocyte precursor cells (OPCs) to distinct mature oligodendrocytes. Initial stages of differentiation were similar across the juvenile CNS, whereas subsets of mature oligodendrocytes were enriched in specific regions in the adult brain. Newly formed oligodendrocytes were detected in the adult CNS and were responsive to complex motor learning. A second Pdgfra(+) population, distinct from OPCs, was found along vessels. Our study reveals the dynamics of oligodendrocyte differentiation and maturation, uncoupling them at a transcriptional level and highlighting oligodendrocyte heterogeneity in the CNS. PMID:27284195

  15. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system.

    PubMed

    Marques, Sueli; Zeisel, Amit; Codeluppi, Simone; van Bruggen, David; Mendanha Falcão, Ana; Xiao, Lin; Li, Huiliang; Häring, Martin; Hochgerner, Hannah; Romanov, Roman A; Gyllborg, Daniel; Muñoz-Manchado, Ana B; La Manno, Gioele; Lönnerberg, Peter; Floriddia, Elisa M; Rezayee, Fatemah; Ernfors, Patrik; Arenas, Ernest; Hjerling-Leffler, Jens; Harkany, Tibor; Richardson, William D; Linnarsson, Sten; Castelo-Branco, Gonçalo

    2016-06-10

    Oligodendrocytes have been considered as a functionally homogeneous population in the central nervous system (CNS). We performed single-cell RNA sequencing on 5072 cells of the oligodendrocyte lineage from 10 regions of the mouse juvenile and adult CNS. Thirteen distinct populations were identified, 12 of which represent a continuum from Pdgfra(+) oligodendrocyte precursor cells (OPCs) to distinct mature oligodendrocytes. Initial stages of differentiation were similar across the juvenile CNS, whereas subsets of mature oligodendrocytes were enriched in specific regions in the adult brain. Newly formed oligodendrocytes were detected in the adult CNS and were responsive to complex motor learning. A second Pdgfra(+) population, distinct from OPCs, was found along vessels. Our study reveals the dynamics of oligodendrocyte differentiation and maturation, uncoupling them at a transcriptional level and highlighting oligodendrocyte heterogeneity in the CNS.

  16. The mitotic history and radiosensitivity of developing oligodendrocytes in vitro

    SciTech Connect

    Hirayama, M.; Eccleston, P.A.; Silberberg, D.H.

    1984-08-01

    By use of pulse-chase exposure of dissociated cells of rat fetal spinal cord or brain to (3H)thymidine (TdR) and unlabeled TdR it has been shown that oligodendroglial precursors which do not express galactocerebroside (GalC) divide first and later differentiate to express GalC. The rate of proliferation of more mature GalC+ oligodendrocytes is considerably lower than that of their GalC- precursors. It has been found that oligodendrocyte precursor cells are extremely sensitive to (3H)TdR irradiation. Exposure to as little as 0.03 microCi/ml for 24 hr proved to be harmful, particularly during a critical period before birth. This critical period corresponded to the peak of division of oligodendrocyte precursor cells.

  17. Chemical inducers and transcriptional markers of oligodendrocyte differentiation.

    PubMed

    Joubert, Lara; Foucault, Isabelle; Sagot, Yves; Bernasconi, Lilia; Duval, François; Alliod, Chantal; Frossard, Marie-José; Pescini Gobert, Rosanna; Curchod, Marie-Laure; Salvat, Catherine; Nichols, Anthony; Pouly, Sandrine; Rommel, Christian; Roach, Arthur; Hooft van Huijsduijnen, Rob

    2010-09-01

    Oligodendrocytes generate and maintain myelin, which is essential for axonal function and protection of the mammalian central nervous system. To advance our molecular understanding of differentiation by these cells, we screened libraries of pharmacologically active compounds and identified inducers of differentiation of Oli-neu, a stable cell line of mouse oligodendrocyte precursors (OPCs). We identified four broad classes of inducers, namely, forskolin/cAMP (protein kinase A activators), steroids (glucocorticoids and retinoic acid), ErbB2 inhibitors, and nucleoside analogs, and confirmed the activity of these compounds on rat primary oligodendrocyte precursors and mixed cortical cultures. We also analyzed transcriptional responses in the chemically induced mouse and rat OPC differentiation processes and compared these with earlier studies. We confirm the view that ErbB2 is a natural signaling component that is required for OPC proliferation, whereas ErbB2 inhibition or genetic knockdown results in OPC differentiation.

  18. Somatodendritic Expression of JAM2 Inhibits Oligodendrocyte Myelination.

    PubMed

    Redmond, Stephanie A; Mei, Feng; Eshed-Eisenbach, Yael; Osso, Lindsay A; Leshkowitz, Dena; Shen, Yun-An A; Kay, Jeremy N; Aurrand-Lions, Michel; Lyons, David A; Peles, Elior; Chan, Jonah R

    2016-08-17

    Myelination occurs selectively around neuronal axons to increase the efficiency and velocity of action potentials. While oligodendrocytes are capable of myelinating permissive structures in the absence of molecular cues, structurally permissive neuronal somata and dendrites remain unmyelinated. Utilizing a purified spinal cord neuron-oligodendrocyte myelinating co-culture system, we demonstrate that disruption of dynamic neuron-oligodendrocyte signaling by chemical cross-linking results in aberrant myelination of the somatodendritic compartment of neurons. We hypothesize that an inhibitory somatodendritic cue is necessary to prevent non-axonal myelination. Using next-generation sequencing and candidate profiling, we identify neuronal junction adhesion molecule 2 (JAM2) as an inhibitory myelin-guidance molecule. Taken together, our results demonstrate that the somatodendritic compartment directly inhibits myelination and suggest a model in which broadly indiscriminate myelination is tailored by inhibitory signaling to meet local myelination requirements.

  19. Human Traumatic Brain Injury Results in Oligodendrocyte Death and Increases the Number of Oligodendrocyte Progenitor Cells.

    PubMed

    Flygt, Johanna; Gumucio, Astrid; Ingelsson, Martin; Skoglund, Karin; Holm, Jonatan; Alafuzoff, Irina; Marklund, Niklas

    2016-06-01

    Oligodendrocyte (OL) death may contribute to white matter pathology, a common cause of network dysfunction and persistent cognitive problems in patients with traumatic brain injury (TBI). Oligodendrocyte progenitor cells (OPCs) persist throughout the adult CNS and may replace dead OLs. OL death and OPCs were analyzed by immunohistochemistry of human brain tissue samples, surgically removed due to life-threatening contusions and/or focal brain swelling at 60.6 ± 75 hours (range 4-192 hours) postinjury in 10 severe TBI patients (age 51.7 ± 18.5 years). Control brain tissue was obtained postmortem from 5 age-matched patients without CNS disorders. TUNEL and CC1 co-labeling was used to analyze apoptotic OLs, which were increased in injured brain tissue (p < 0.05), without correlation with time from injury until surgery. The OPC markers Olig2, A2B5, NG2, and PDGFR-α were used. In contrast to the number of single-labeled Olig2, A2B5, NG2, and PDGFR-α-positive cells, numbers of Olig2 and A2B5 co-labeled cells were increased in TBI samples (p < 0.05); this was inversely correlated with time from injury to surgery (r = -0.8, p < 0.05). These results indicate that severe focal human TBI results in OL death and increases in OPCs postinjury, which may influence white matter function following TBI.

  20. Ablative Thermal Protection: An Overview

    NASA Technical Reports Server (NTRS)

    Laub, Bernie

    2003-01-01

    Contents include the following: Why ablative thermal protections - TPS. Ablative TPS chronology: strategic reentry systems, solid rocket motor nozzles, space (manned missions and planetary entry probes). Ablation mechanisms. Ablation material testing. Ablative material testing.

  1. Contact-mediated inhibition between oligodendrocyte progenitor cells and motor exit point glia establishes the spinal cord transition zone.

    PubMed

    Smith, Cody J; Morris, Angela D; Welsh, Taylor G; Kucenas, Sarah

    2014-09-01

    Rapid conduction of action potentials along motor axons requires that oligodendrocytes and Schwann cells myelinate distinct central and peripheral nervous system (CNS and PNS) domains along the same axon. Despite the importance of this arrangement for nervous system function, the mechanisms that establish and maintain this precise glial segregation at the motor exit point (MEP) transition zone are unknown. Using in vivo time-lapse imaging in zebrafish, we observed that prior to myelination, oligodendrocyte progenitor cells (OPCs) extend processes into the periphery via the MEP and immediately upon contact with spinal motor root glia retract back into the spinal cord. Characterization of the peripheral cell responsible for repelling OPC processes revealed that it was a novel, CNS-derived population of glia we propose calling MEP glia. Ablation of MEP glia resulted in the absence of myelinating glia along spinal motor root axons and an immediate breach of the MEP by OPCs. Taken together, our results identify a novel population of CNS-derived peripheral glia located at the MEP that selectively restrict the migration of OPCs into the periphery via contact-mediated inhibition.

  2. Systematic Review of Pharmacological Properties of the Oligodendrocyte Lineage

    PubMed Central

    Marinelli, Carla; Bertalot, Thomas; Zusso, Morena; Skaper, Stephen D.; Giusti, Pietro

    2016-01-01

    Oligodendrogenesis and oligodendrocyte precursor maturation are essential processes during the course of central nervous system development, and lead to the myelination of axons. Cells of the oligodendrocyte lineage are generated in the germinal zone from migratory bipolar oligodendrocyte precursor cells (OPCs), and acquire cell surface markers as they mature and respond specifically to factors which regulate proliferation, migration, differentiation, and survival. Loss of myelin underlies a wide range of neurological disorders, some of an autoimmune nature—multiple sclerosis probably being the most prominent. Current therapies are based on the use of immunomodulatory agents which are likely to promote myelin repair (remyelination) indirectly by subverting the inflammatory response, aspects of which impair the differentiation of OPCs. Cells of the oligodendrocyte lineage express and are capable of responding to a diverse array of ligand-receptor pairs, including neurotransmitters and nuclear receptors such as γ-aminobutyric acid, glutamate, adenosine triphosphate, serotonin, acetylcholine, nitric oxide, opioids, prostaglandins, prolactin, and cannabinoids. The intent of this review is to provide the reader with a synopsis of our present state of knowledge concerning the pharmacological properties of the oligodendrocyte lineage, with particular attention to these receptor-ligand (i.e., neurotransmitters and nuclear receptor) interactions that can influence oligodendrocyte migration, proliferation, differentiation, and myelination, and an appraisal of their therapeutic potential. For example, many promising mediators work through Ca2+ signaling, and the balance between Ca2+ influx and efflux can determine the temporal and spatial properties of oligodendrocytes (OLs). Moreover, Ca2+ signaling in OPCs can influence not only differentiation and myelination, but also process extension and migration, as well as cell death in mature mouse OLs. There is also evidence

  3. Oligodendrocyte Regeneration and CNS Remyelination Require TACE/ADAM17

    PubMed Central

    Klingener, Michael; Raines, Elaine W.; Crawford, Howard C.

    2015-01-01

    The identification of the molecular network that supports oligodendrocyte (OL) regeneration under demyelinating conditions has been a primary goal for regenerative medicine in demyelinating disorders. We recently described an essential function for TACE/ADAM17 in regulating oligodendrogenesis during postnatal myelination, but it is unknown whether this protein also plays a role in OL regeneration and remyelination under demyelinating conditions. By using genetic mouse models to achieve selective gain- or loss-of-function of TACE or EGFR in OL lineage cells in vivo, we found that TACE is critical for EGFR activation in OLs following demyelination, and therefore, for sustaining OL regeneration and CNS remyelination. TACE deficiency in oligodendrocyte progenitor cells following demyelination disturbs OL lineage cell expansion and survival, leading to a delay in the remyelination process. EGFR overexpression in TACE deficient OLs in vivo restores OL development and postnatal CNS myelination, but also OL regeneration and CNS remyelination following demyelination. Our study reveals an essential function of TACE in supporting OL regeneration and CNS remyelination that may contribute to the design of new strategies for therapeutic intervention in demyelinating disorders by promoting oligodendrocyte regeneration and myelin repair. SIGNIFICANCE STATEMENT Oligodendrocyte (OL) regeneration has emerged as a promising new approach for the treatment of demyelinating disorders. By using genetic mouse models to selectively delete TACE expression in oligodendrocyte progenitors cells (OPs), we found that TACE/ADAM17 is required for supporting OL regeneration following demyelination. TACE genetic depletion in OPs abrogates EGFR activation in OL lineage cells, and perturbs cell expansion and survival, blunting the process of CNS remyelination. Moreover, EGFR overexpression in TACE-deficient OPs in vivo overcomes the defects in OL development during postnatal development but also OL

  4. Diosgenin promotes oligodendrocyte progenitor cell differentiation through estrogen receptor-mediated ERK1/2 activation to accelerate remyelination.

    PubMed

    Xiao, Lin; Guo, Dazhi; Hu, Chun; Shen, Weiran; Shan, Lei; Li, Cui; Liu, Xiuyun; Yang, Wenjing; Zhang, Weidong; He, Cheng

    2012-07-01

    Differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes is a prerequisite for remyelination after demyelination, and impairment of this process is suggested to be a major reason for remyelination failure. Diosgenin, a plant-derived steroid, has been implicated for therapeutic use in many diseases, but little is known about its effect on the central nervous system. In this study, using a purified rat OPC culture model, we show that diosgenin significantly and specifically promotes OPC differentiation without affecting the viability, proliferation, or migration of OPC. Interestingly, the effect of diosgenin can be blocked by estrogen receptor (ER) antagonist ICI 182780 but not by glucocorticoid and progesterone receptor antagonist RU38486, nor by mineralocorticoid receptor antagonist spirolactone. Moreover, it is revealed that both ER-alpha and ER-beta are expressed in OPC, and diosgenin can activate the extracellular signal-regulated kinase 1/2 (ERK1/2) in OPC via ER. The pro-differentiation effect of diosgenin can also be obstructed by the ERK inhibitor PD98059. Furthermore, in the cuprizone-induced demyelination model, it is demonstrated that diosgenin administration significantly accelerates/enhances remyelination as detected by Luxol fast blue stain, MBP immunohistochemistry and real time RT-PCR. Diosgenin also increases the number of mature oligodendrocytes in the corpus callosum while it does not affect the number of OPCs. Taking together, our results suggest that diosgenin promotes the differentiation of OPC into mature oligodendrocyte through an ER-mediated ERK1/2 activation pathway to accelerate remyelination, which implicates a novel therapeutic usage of this steroidal natural product in demyelinating diseases such as multiple sclerosis (MS).

  5. Oligodendrocyte and Interneuron Density in Hippocampal Subfields in Schizophrenia and Association of Oligodendrocyte Number with Cognitive Deficits

    PubMed Central

    Falkai, Peter; Steiner, Johann; Malchow, Berend; Shariati, Jawid; Knaus, Andreas; Bernstein, Hans-Gert; Schneider-Axmann, Thomas; Kraus, Theo; Hasan, Alkomiet; Bogerts, Bernhard; Schmitt, Andrea

    2016-01-01

    In schizophrenia, previous stereological post-mortem investigations of anterior, posterior, and total hippocampal subfields showed no alterations in total neuron number but did show decreased oligodendrocyte numbers in CA4, an area that corresponds to the polymorph layer of the dentate gyrus (DG). However, these investigations identified oligodendrocytes only on the basis of morphological criteria in Nissl staining and did not assess alterations of interneurons with immunohistochemical markers. Moreover, the association of findings in the posterior hippocampus with cognitive deficits remains unknown. On the basis of the available clinical records, we compared patients with definite and possible cognitive dysfunction; nine patients had evidence in their records of either definite (n = 4) or possible (n = 5) cognitive dysfunction. Additionally, we assessed the density of two oligodendrocyte subpopulations immunostained by the oligodendrocyte transcription factors Olig1 and Olig2 and of interneurons immunolabeled by parvalbumin. We investigated posterior hippocampal subregions in the post-mortem brains of the same schizophrenia patients (SZ; n = 10) and healthy controls (n = 10) we examined in our previously published stereological studies. Our stereological studies found that patients with definite cognitive deficits had decreased total/Nissl-stained oligodendrocyte numbers in the left (p = 0.014) and right (p = 0.050) CA4, left CA2/3 (p = 0.050), left CA1 (p = 0.027), and left (p = 0.050) and right (p = 0.014) subiculum of the anterior part of the hippocampus compared to patients with possible cognitive deficits. In the present study, we found no significant influence of definite cognitive deficits in the posterior part of the hippocampus, whereas in the entire hippocampus SZ with definite cognitive deficits showed decreased oligodendrocyte numbers in the left (p = 0.050) and right (p = 0.050) DG and left CA2/3 (p = 0.050). We did not find significant differences in

  6. Directional migration and transcriptional analysis of oligodendrocyte precursors subjected to stimulation of electrical signal.

    PubMed

    Li, Yongchao; Wang, Xinkun; Yao, Li

    2015-10-15

    Loss of oligodendrocytes as the result of central nervous system disease causes demyelination that impairs axon function. Effective directional migration of endogenous or grafted oligodendrocyte precursor cells (OPCs) to a lesion is crucial in the neural remyelination process. In this study, the migration of OPCs in electric fields (EFs) was investigated. We found that OPCs migrated anodally in applied EFs, and the directedness and displacement of anodal migration increased significantly when the EF strength increased from 50 to 200 mV/mm. However, EFs did not significantly affect the cell migration speed. The transcriptome of OPCs subjected to EF stimulation (100 and 200 mV/mm) was analyzed using RNA sequencing (RNA-Seq), and results were verified by the reverse transcription quantitative polymerase chain reaction. A Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the mitogen-activated protein kinase pathway that signals cell migration was significantly upregulated in cells treated with an EF of 200 mV/mm compared with control cells. Gene ontology enrichment analysis showed the downregulation of differentially expressed genes in chemotaxis. This study suggests that an applied EF is an effective cue to guiding OPC migration in neural regeneration and that transcriptional analysis contributes to the understanding of the mechanism of EF-guided cell migration.

  7. Injury and differentiation following inhibition of mitochondrial respiratory chain complex IV in rat oligodendrocytes

    PubMed Central

    Ziabreva, Iryna; Campbell, Graham; Rist, Julia; Zambonin, Jessica; Rorbach, Joanna; Wydro, Mateusz M; Lassmann, Hans; Franklin, Robin J M; Mahad, Don

    2010-01-01

    Oligodendrocyte lineage cells are susceptible to a variety of insults including hypoxia, excitotoxicity, and reactive oxygen species. Demyelination is a well-recognized feature of several CNS disorders including multiple sclerosis, white matter strokes, progressive multifocal leukoencephalopathy, and disorders due to mitochondrial DNA mutations. Although mitochondria have been implicated in the demise of oligodendrocyte lineage cells, the consequences of mitochondrial respiratory chain defects have not been examined. We determine the in vitro impact of established inhibitors of mitochondrial respiratory chain complex IV or cytochrome c oxidase on oligodendrocyte progenitor cells (OPCs) and mature oligodendrocytes as well as on differentiation capacity of OPCs from P0 rat. Injury to mature oligodendrocytes following complex IV inhibition was significantly greater than to OPCs, judged by cell detachment and mitochondrial membrane potential (MMP) changes, although viability of cells that remained attached was not compromised. Active mitochondria were abundant in processes of differentiated oligodendrocytes and MMP was significantly greater in differentiated oligodendrocytes than OPCs. MMP dissipated following complex IV inhibition in oligodendrocytes. Furthermore, complex IV inhibition impaired process formation within oligodendrocyte lineage cells. Injury to and impaired process formation of oligodendrocytes following complex IV inhibition has potentially important implications for the pathogenesis and repair of CNS myelin disorders. © 2010 Wiley-Liss, Inc. PMID:20665559

  8. Cytoskeletal Linker Protein Dystonin Is Not Critical to Terminal Oligodendrocyte Differentiation or CNS Myelination.

    PubMed

    Kornfeld, Samantha F; Lynch-Godrei, Anisha; Bonin, Sawyer R; Gibeault, Sabrina; De Repentigny, Yves; Kothary, Rashmi

    2016-01-01

    Oligodendrocyte differentiation and central nervous system myelination require massive reorganization of the oligodendrocyte cytoskeleton. Loss of specific actin- and tubulin-organizing factors can lead to impaired morphological and/or molecular differentiation of oligodendrocytes, resulting in a subsequent loss of myelination. Dystonin is a cytoskeletal linker protein with both actin- and tubulin-binding domains. Loss of function of this protein results in a sensory neuropathy called Hereditary Sensory Autonomic Neuropathy VI in humans and dystonia musculorum in mice. This disease presents with severe ataxia, dystonic muscle and is ultimately fatal early in life. While loss of the neuronal isoforms of dystonin primarily leads to sensory neuron degeneration, it has also been shown that peripheral myelination is compromised due to intrinsic Schwann cell differentiation abnormalities. The role of this cytoskeletal linker in oligodendrocytes, however, remains unclear. We sought to determine the effects of the loss of neuronal dystonin on oligodendrocyte differentiation and central myelination. To address this, primary oligodendrocytes were isolated from a severe model of dystonia musculorum, Dstdt-27J, and assessed for morphological and molecular differentiation capacity. No defects could be discerned in the differentiation of Dstdt-27J oligodendrocytes relative to oligodendrocytes from wild-type littermates. Survival was also compared between Dstdt-27J and wild-type oligodendrocytes, revealing no significant difference. Using a recently developed migration assay, we further analysed the ability of primary oligodendrocyte progenitor cell motility, and found that Dstdt-27J oligodendrocyte progenitor cells were able to migrate normally. Finally, in vivo analysis of oligodendrocyte myelination was done in phenotype-stage optic nerve, cerebral cortex and spinal cord. The density of myelinated axons and g-ratios of Dstdt-27J optic nerves was normal, as was myelin basic

  9. Remyelination by oligodendrocytes stimulated by antiserum to spinal cord.

    PubMed

    Rodriguez, M; Lennon, V A; Benveniste, E N; Merrill, J E

    1987-01-01

    The new synthesis of myelin and the proliferation of oligodendrocytes was stimulated by serum from syngeneic mice immunized with homogenized spinal cord (SCH). Treatment with this antiserum produced a 10-fold increase in the area of remyelination in spinal cords that had become demyelinated previously as a result of infection by Theiler's murine encephalomyelitis virus. Inflammation was decreased in regions of white matter that showed remyelination. Oligodendrocytes exposed to anti-SCH in vitro incorporated three to five times more [3H]thymidine than resting cells did and expressed more myelin basic protein in their cytoplasm, suggesting stimulation of myelinogenesis. Thus, there is a factor present in anti-SCH antiserum that stimulates central nervous system-type remyelination. This finding may provide clues for the therapy of patients with demyelinating disorders such as multiple sclerosis.

  10. Oligodendrocyte precursors migrate along vasculature in the developing nervous system.

    PubMed

    Tsai, Hui-Hsin; Niu, Jianqin; Munji, Roeben; Davalos, Dimitrios; Chang, Junlei; Zhang, Haijing; Tien, An-Chi; Kuo, Calvin J; Chan, Jonah R; Daneman, Richard; Fancy, Stephen P J

    2016-01-22

    Oligodendrocytes myelinate axons in the central nervous system and develop from oligodendrocyte precursor cells (OPCs) that must first migrate extensively during brain and spinal cord development. We show that OPCs require the vasculature as a physical substrate for migration. We observed that OPCs of the embryonic mouse brain and spinal cord, as well as the human cortex, emerge from progenitor domains and associate with the abluminal endothelial surface of nearby blood vessels. Migrating OPCs crawl along and jump between vessels. OPC migration in vivo was disrupted in mice with defective vascular architecture but was normal in mice lacking pericytes. Thus, physical interactions with the vascular endothelium are required for OPC migration. We identify Wnt-Cxcr4 (chemokine receptor 4) signaling in regulation of OPC-endothelial interactions and propose that this signaling coordinates OPC migration with differentiation. PMID:26798014

  11. Oligodendrocyte precursors migrate along vasculature in the developing nervous system.

    PubMed

    Tsai, Hui-Hsin; Niu, Jianqin; Munji, Roeben; Davalos, Dimitrios; Chang, Junlei; Zhang, Haijing; Tien, An-Chi; Kuo, Calvin J; Chan, Jonah R; Daneman, Richard; Fancy, Stephen P J

    2016-01-22

    Oligodendrocytes myelinate axons in the central nervous system and develop from oligodendrocyte precursor cells (OPCs) that must first migrate extensively during brain and spinal cord development. We show that OPCs require the vasculature as a physical substrate for migration. We observed that OPCs of the embryonic mouse brain and spinal cord, as well as the human cortex, emerge from progenitor domains and associate with the abluminal endothelial surface of nearby blood vessels. Migrating OPCs crawl along and jump between vessels. OPC migration in vivo was disrupted in mice with defective vascular architecture but was normal in mice lacking pericytes. Thus, physical interactions with the vascular endothelium are required for OPC migration. We identify Wnt-Cxcr4 (chemokine receptor 4) signaling in regulation of OPC-endothelial interactions and propose that this signaling coordinates OPC migration with differentiation.

  12. The potential for oligodendrocyte proliferation during demyelinating disease.

    PubMed

    Prayoonwiwat, N; Rodriguez, M

    1993-01-01

    The potential for oligodendrocytes to proliferate in response to central nervous system injury was examined. We used intracerebral infection of Theiler's murine encephalomyelitis virus, a model for multiple sclerosis, which results in chronic demyelinating disease of SJL/J mice. Proliferating cells in spinal cord sections of adult mice were identified using simultaneous immunohistochemistry and in situ autoradiography ([3H]-thymidine incorporation). Seven different cell-specific markers were used to characterize proliferating cells as oligodendrocytes (myelin basic protein, proteolipid protein, galactocerebroside, CNPase), astrocytes (glial fibrillary acidic protein), microglia/macrophages (Griffonia simplicifolia isolectin B4) or T-lymphocytes (CD3). The average number of proliferating cells per area of spinal cord white matter was 11/mm2 in normal young adult mice compared to 61/mm2 in chronically infected mice. Most proliferating cells in normal spinal cord were not identified with these markers and were presumed to be progenitor glial cells. However, in spinal cord white matter of mice infected with Theiler's virus for approximately 4 months, 88% of proliferating cells were identified. Approximately one-third of all proliferating cells were in the oligodendrocyte lineage and expressed markers observed late in myelin differentiation. In demyelinated areas as compared to normal white matter, there was an 80- to 211-fold increase in the number of proliferating oligodendrocytes expressing myelin basic protein or proteolipid protein, respectively. The remainder of the proliferating cells in areas of demyelination were astrocytes, microglial cells and T-cells. These experiments support the hypothesis that factors within a demyelinating lesion promote the proliferation and differentiation of cells within the oligodendroglial lineage.

  13. Cannabidiol induces intracellular calcium elevation and cytotoxicity in oligodendrocytes.

    PubMed

    Mato, Susana; Victoria Sánchez-Gómez, María; Matute, Carlos

    2010-11-01

    Heavy marijuana use has been linked to white matter histological alterations. However, the impact of cannabis constituents on oligodendroglial pathophysiology remains poorly understood. Here, we investigated the in vitro effects of cannabidiol, the main nonpsychoactive marijuana component, on oligodendrocytes. Exposure to cannabidiol induced an intracellular Ca(2+) rise in optic nerve oligodendrocytes that was not primarily mediated by entry from the extracellular space, nor by interactions with ryanodine or IP(3) receptors. Application of the mitochondrial protonophore carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP; 1 μM) completely prevented subsequent cannabidiol-induced Ca(2+) responses. Conversely, the increase in cytosolic Ca(2+) levels elicited by FCCP was reduced after previous exposure to cannabidiol, further suggesting that the mitochondria acts as the source of cannabidiol-evoked Ca(2+) rise in oligodendrocytes. n addition, brief exposure to cannabidiol (100 nM-10 μM) led to a concentration-dependent decrease of oligodendroglial viability that was not prevented by antagonists of CB(1), CB(2), vanilloid, A(2A) or PPARγ receptors, but was instead reduced in the absence of extracellular Ca(2+). The oligodendrotoxic effect of cannabidiol was partially blocked by inhibitors of caspase-3, -8 and -9, PARP-1 and calpains, suggesting the activation of caspase-dependent and -independent death pathways. Cannabidiol also elicited a concentration-dependent alteration of mitochondrial membrane potential, and an increase in reactive oxygen species (ROS) that was reduced in the absence of extracellular Ca(2+). Finally, cannabidiol-induced cytotoxicity was partially prevented by the ROS scavenger trolox. Together, these results suggest that cannabidiol causes intracellular Ca(2+) dysregulation which can lead to oligodendrocytes demise.

  14. Histone Deacetylase Expression in White Matter Oligodendrocytes after Stroke

    PubMed Central

    Kassis, Haifa; Chopp, Michael; Liu, Xian Shuang; Shehadah, Amjad; Roberts, Cynthia; Zhang, Zheng Gang

    2015-01-01

    Histone deacetylases (HDACs) constitute a super-family of enzymes grouped into four major classes (Class I–IV) that deacetylate histone tails leading to chromatin condensation and gene repression. Whether stroke-induced oligodendrogenesis is related to the expression of individual HDACs in the oligodendrocyte lineage has not been investigated. We found that 2 days after stroke, oligodendrocyte progenitor cells (OPCs) and mature oligodendrocytes (OLGs) were substantially reduced in the peri-infarct corpus callosum, whereas at 7 days after stroke, a robust increase in OPCs and OLGs was observed. Ischemic brains isolated from rats sacrificed 7 days after stroke were used to test levels of individual members of Class I (1 and 2) and Class II (4 and 5) HDACs in white matter oligodendrocytes during stroke-induced oligodendrogenesis. Double immunohistochemistry analysis revealed that stroke substantially increased the number of NG2+ OPCs with nuclear HDAC1 and HDAC2 immunoreactivity and cytoplasmic HDAC4 which were associated with augmentation of proliferating OPCs, as determined by BrdU and Ki67 double reactive cells after stroke. A decrease in HDAC1 and an increase in HDAC2 immunoreactivity were detected in mature adenomatous polyposis coli (APC) positive OLGs, which paralleled an increase in newly generated BrdU positive OLGs in the peri-infarct corpus callosum. Concurrently, stroke substantially decreased the acetylation levels of histones H3 and H4 in both OPCs and OLGs. Taken together, these findings demonstrate that stroke induces distinct profiles of Class I and Class II HDACs in white matter OPCs and OLGs, suggesting that the individual members of Class I and II HDACs play divergent roles in the regulation of OPC proliferation and differentiation during brain repair after stroke. PMID:24657831

  15. Autophagy promotes oligodendrocyte survival and function following dysmyelination in a long-lived myelin mutant.

    PubMed

    Smith, Chelsey M; Mayer, Joshua A; Duncan, Ian D

    2013-05-01

    The Long-Evans shaker (les) rat has a mutation in myelin basic protein that results in severe CNS dysmyelination and subsequent demyelination during development. During this time, les oligodendrocytes accumulate cytoplasmic vesicles, including lysosomes and membrane-bound organelles. However, the mechanism and functional relevance behind these oligodendrocyte abnormalities in les have not been investigated. Using high-magnification electron microscopy, we identified the accumulations in les oligodendrocytes as early and late autophagosomes. Additionally, immunohistochemistry and Western blots showed an increase in autophagy markers in les. However, autophagy did not precede the death of les oligodendrocytes. Instead, upregulating autophagy promoted membrane extensions in les oligodendrocytes in vitro. Furthermore, upregulating autophagy in les rats via intermittent fasting increased the proportion of myelinated axons as well as myelin sheath thickness in les and control rats. Overall, this study provides insight into the abnormalities described in les as well as identifying a novel mechanism that promotes the survival and function of oligodendrocytes.

  16. Oligodendrocyte Injury and Pathogenesis of HIV-1-Associated Neurocognitive Disorders.

    PubMed

    Liu, Han; Xu, Enquan; Liu, Jianuo; Xiong, Huangui

    2016-01-01

    Oligodendrocytes wrap neuronal axons to form myelin, an insulating sheath which is essential for nervous impulse conduction along axons. Axonal myelination is highly regulated by neuronal and astrocytic signals and the maintenance of myelin sheaths is a very complex process. Oligodendrocyte damage can cause axonal demyelination and neuronal injury, leading to neurological disorders. Demyelination in the cerebrum may produce cognitive impairment in a variety of neurological disorders, including human immunodeficiency virus type one (HIV-1)-associated neurocognitive disorders (HAND). Although the combined antiretroviral therapy has markedly reduced the incidence of HIV-1-associated dementia, a severe form of HAND, milder forms of HAND remain prevalent even when the peripheral viral load is well controlled. HAND manifests as a subcortical dementia with damage in the brain white matter (e.g., corpus callosum), which consists of myelinated axonal fibers. How HIV-1 brain infection causes myelin injury and resultant white matter damage is an interesting area of current HIV research. In this review, we tentatively address recent progress on oligodendrocyte dysregulation and HAND pathogenesis. PMID:27455335

  17. Tamoxifen promotes differentiation of oligodendrocyte progenitors in vitro.

    PubMed

    Barratt, H E; Budnick, H C; Parra, R; Lolley, R J; Perry, C N; Nesic, O

    2016-04-01

    The most promising therapeutic approach to finding the cure for devastating demyelinating conditions is the identification of clinically safe pharmacological agents that can promote differentiation of endogenous oligodendrocyte precursor cells (OPCs). Here we show that the breast cancer medication tamoxifen (TMX), with well-documented clinical safety and confirmed beneficial effects in various models of demyelinating conditions, stimulates differentiation of rat glial progenitors to mature oligodendrocytes in vitro. Clinically applicable doses of TMX significantly increased both the number of CNPase-positive oligodendrocytes and protein levels of myelin basic protein, measured with Western blots. Furthermore, we also found that OPC differentiation was stimulated, not only by the pro-drug TMX-citrate (TMXC), but also by two main TMX metabolites, 4-hydroxy-TMX and endoxifen. Differentiating effects of TMXC and its metabolites were completely abolished in the presence of estrogen receptor (ER) antagonist, ICI182780. In contrast to TMXC and 4-hydroxy-TMX, endoxifen also induced astrogliogenesis, but independent of the ER activation. In sum, we showed that the TMX prodrug and its two main metabolites (4-hydroxy-TMX and endoxifen) promote ER-dependent oligodendrogenesis in vitro, not reported before. Given that differentiating effects of TMX were achieved with clinically safe doses, TMX is likely one of the most promising FDA-approved drugs for the possible treatment of demyelinating diseases. PMID:26820594

  18. Neuronal activity regulates remyelination via glutamate signalling to oligodendrocyte progenitors

    PubMed Central

    Gautier, Hélène O. B.; Evans, Kimberley A.; Volbracht, Katrin; James, Rachel; Sitnikov, Sergey; Lundgaard, Iben; James, Fiona; Lao-Peregrin, Cristina; Reynolds, Richard; Franklin, Robin J. M.; Káradóttir, Ragnhildur T

    2015-01-01

    Myelin regeneration can occur spontaneously in demyelinating diseases such as multiple sclerosis (MS). However, the underlying mechanisms and causes of its frequent failure remain incompletely understood. Here we show, using an in-vivo remyelination model, that demyelinated axons are electrically active and generate de novo synapses with recruited oligodendrocyte progenitor cells (OPCs), which, early after lesion induction, sense neuronal activity by expressing AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)/kainate receptors. Blocking neuronal activity, axonal vesicular release or AMPA receptors in demyelinated lesions results in reduced remyelination. In the absence of neuronal activity there is a ∼6-fold increase in OPC number within the lesions and a reduced proportion of differentiated oligodendrocytes. These findings reveal that neuronal activity and release of glutamate instruct OPCs to differentiate into new myelinating oligodendrocytes that recover lost function. Co-localization of OPCs with the presynaptic protein VGluT2 in MS lesions implies that this mechanism may provide novel targets to therapeutically enhance remyelination. PMID:26439639

  19. Differential clustering of Caspr by oligodendrocytes and Schwann cells.

    PubMed

    Eisenbach, Menahem; Kartvelishvily, Elena; Eshed-Eisenbach, Yael; Watkins, Trent; Sorensen, Annette; Thomson, Christine; Ranscht, Barbara; Barnett, Susan C; Brophy, Peter; Peles, Elior

    2009-11-15

    Formation of the paranodal axoglial junction (PNJ) requires the presence of three cell adhesion molecules: the 155-kDa isoform of neurofascin (NF155) on the glial membrane and a complex of Caspr and contactin found on the axolemma. Here we report that the clustering of Caspr along myelinated axons during development differs fundamentally between the central (CNS) and peripheral (PNS) nervous systems. In cultures of Schwann cells (SC) and dorsal root ganglion (DRG) neurons, membrane accumulation of Caspr was detected only after myelination. In contrast, in oligodendrocytes (OL)/DRG neurons cocultures, Caspr was clustered upon initial glial cell contact already before myelination had begun. Premyelination clustering of Caspr was detected in cultures of oligodendrocytes and retinal ganglion cells, motor neurons, and DRG neurons as well as in mixed cell cultures of rat forebrain and spinal cords. Cocultures of oligodendrocyte precursor cells isolated from contactin- or neurofascin-deficient mice with wild-type DRG neurons showed that clustering of Caspr at initial contact sites between OL processes and the axon requires glial expression of NF155 but not of contactin. These results demonstrate that the expression of membrane proteins along the axolemma is determined by the type of the contacting glial cells and is not an intrinsic characteristic of the axon. PMID:19565653

  20. Localisation of N-acetylaspartate in oligodendrocytes/myelin.

    PubMed

    Nordengen, Kaja; Heuser, Christoph; Rinholm, Johanne Egge; Matalon, Reuben; Gundersen, Vidar

    2015-03-01

    The role of N-acetylaspartate in the brain is unclear. Here we used specific antibodies against N-acetylaspartate and immunocytochemistry of carbodiimide-fixed adult rodent brain to show that, besides staining of neuronal cell bodies in the grey matter, N-acetylaspartate labelling was present in oligodendrocytes/myelin in white matter tracts. Immunoelectron microscopy of the rat hippocampus showed that N-acetylaspartate was concentrated in the myelin. Also neuronal cell bodies and axons contained significant amounts of N-acetylaspartate, while synaptic elements and astrocytes were low in N-acetylaspartate. Mitochondria in axons and neuronal cell bodies contained higher levels of N-acetylaspartate compared to the cytosol, compatible with synthesis of N-acetylaspartate in mitochondria. In aspartoacylase knockout mice, in which catabolism of N-acetylaspartate is blocked, the levels of N-acetylaspartate were largely increased in oligodendrocytes/myelin. In these mice, the highest myelin concentration of N-acetylaspartate was found in the cerebellum, a region showing overt dysmyelination. In organotypic cortical slice cultures there was no evidence for N-acetylaspartate-induced myelin toxicity, supporting the notion that myelin damage is induced by the lack of N-acetylaspartate for lipid production. Our findings also implicate that N-acetylaspartate signals on magnetic resonance spectroscopy reflect not only vital neurons but also vital oligodendrocytes/myelin.

  1. Myelin inhibits oligodendroglial maturation and regulates oligodendrocytic transcription factor expression.

    PubMed

    Plemel, Jason R; Manesh, Sohrab B; Sparling, Joseph S; Tetzlaff, Wolfram

    2013-09-01

    Myelin loss is a hallmark of multiple sclerosis (MS) and promoting central nervous system myelin repair has become a major therapeutic target. Despite the presence of oligodendrocytes precursors cells (OPCs) in chronic lesions of MS, remyelination often fails. The mechanism underlying this failure of remyelination remains unknown, but it is hypothesized that environmental cues act to inhibit the maturation/differentiation of oligodendroglia, preventing remyelination. The rate of CNS remyelination is correlated to the speed of phagocytosis of myelin debris, which is present following demyelination and trauma. Thus, myelin debris could inhibit CNS remyelination. Here, we demonstrate that OPCs cultured on myelin were robustly inhibited in their maturation, as characterized by the decreased expression of immature and mature oligodendrocytes markers, the impaired production of myelin gene products, as well as their stalled morphological complexity relative to OPCs cultured on a control substrate. OPCs in contact with myelin stopped proliferating and decreased the expression of OPC markers to a comparable degree as cells grown on a control substrate. The expression of two transcription factors known to prevent OPC differentiation and maturation were increased in cells that were in contact with myelin: inhibitor of differentiation family (ID) members 2 and 4. Overexpression of ID2 and ID4 in OPCs was previously reported to decrease the percentage of cells expressing mature oligodendrocyte markers. However, knockdown of ID2 and/or ID4 in OPCs did not increase oligodendroglial maturation on or off of myelin, suggesting that contact with myelin regulates additional regulatory elements.

  2. Oligodendrocyte Injury and Pathogenesis of HIV-1-Associated Neurocognitive Disorders

    PubMed Central

    Liu, Han; Xu, Enquan; Liu, Jianuo; Xiong, Huangui

    2016-01-01

    Oligodendrocytes wrap neuronal axons to form myelin, an insulating sheath which is essential for nervous impulse conduction along axons. Axonal myelination is highly regulated by neuronal and astrocytic signals and the maintenance of myelin sheaths is a very complex process. Oligodendrocyte damage can cause axonal demyelination and neuronal injury, leading to neurological disorders. Demyelination in the cerebrum may produce cognitive impairment in a variety of neurological disorders, including human immunodeficiency virus type one (HIV-1)-associated neurocognitive disorders (HAND). Although the combined antiretroviral therapy has markedly reduced the incidence of HIV-1-associated dementia, a severe form of HAND, milder forms of HAND remain prevalent even when the peripheral viral load is well controlled. HAND manifests as a subcortical dementia with damage in the brain white matter (e.g., corpus callosum), which consists of myelinated axonal fibers. How HIV-1 brain infection causes myelin injury and resultant white matter damage is an interesting area of current HIV research. In this review, we tentatively address recent progress on oligodendrocyte dysregulation and HAND pathogenesis. PMID:27455335

  3. Ecotropic Murine Leukemia Virus Infection of Glial Progenitors Interferes with Oligodendrocyte Differentiation: Implications for Neurovirulence

    PubMed Central

    Li, Ying; Dunphy, Jaclyn M.; Pedraza, Carlos E.; Lynch, Connor R.; Cardona, Sandra M.; Macklin, Wendy B.

    2016-01-01

    ABSTRACT Certain murine leukemia viruses (MLVs) are capable of inducing fatal progressive spongiform motor neuron disease in mice that is largely mediated by viral Env glycoprotein expression within central nervous system (CNS) glia. While the etiologic mechanisms and the glial subtypes involved remain unresolved, infection of NG2 glia was recently observed to correlate spatially and temporally with altered neuronal physiology and spongiogenesis. Since one role of NG2 cells is to serve as oligodendrocyte (OL) progenitor cells (OPCs), we examined here whether their infection by neurovirulent (FrCasE) or nonneurovirulent (Fr57E) ecotropic MLVs influenced their viability and/or differentiation. Here, we demonstrate that OPCs, but not OLs, are major CNS targets of both FrCasE and Fr57E. We also show that MLV infection of neural progenitor cells (NPCs) in culture did not affect survival, proliferation, or OPC progenitor marker expression but suppressed certain glial differentiation markers. Assessment of glial differentiation in vivo using transplanted transgenic NPCs showed that, while MLVs did not affect cellular engraftment or survival, they did inhibit OL differentiation, irrespective of MLV neurovirulence. In addition, in chimeric brains, where FrCasE-infected NPC transplants caused neurodegeneration, the transplanted NPCs proliferated. These results suggest that MLV infection is not directly cytotoxic to OPCs but rather acts to interfere with OL differentiation. Since both FrCasE and Fr57E viruses restrict OL differentiation but only FrCasE induces overt neurodegeneration, restriction of OL maturation alone cannot account for neuropathogenesis. Instead neurodegeneration may involve a two-hit scenario where interference with OPC differentiation combined with glial Env-induced neuronal hyperexcitability precipitates disease. IMPORTANCE A variety of human and animal retroviruses are capable of causing central nervous system (CNS) neurodegeneration manifested as motor

  4. Laminin promotes metalloproteinase-mediated dystroglycan processing to regulate oligodendrocyte progenitor cell proliferation.

    PubMed

    Leiton, Cindy V; Aranmolate, Azeez; Eyermann, Christopher; Menezes, Michael J; Escobar-Hoyos, Luisa F; Husain, Solomon; Winder, Steve J; Colognato, Holly

    2015-11-01

    The cell surface receptor dystroglycan mediates interactions between oligodendroglia and laminin-211, an extracellular matrix protein that regulates timely oligodendroglial development. However, dystroglycan's precise role in oligodendroglial development and the potential mechanisms to regulate laminin-dystroglycan interactions remain unknown. Here we report that oligodendroglial dystroglycan is cleaved by metalloproteinases, thereby uncoupling oligodendroglia from laminin binding. Dystroglycan cleavage is selectively stimulated by oligodendrocyte progenitor cell attachment to laminin-211, but not laminin-111 or poly-D-lysine. In addition, dystroglycan cleavage occurs most prominently in oligodendrocyte progenitor cells, with limited dystroglycan cleavage observed in differentiating oligodendrocytes. When dystroglycan cleavage is blocked by metalloproteinase inhibitors, oligodendrocyte progenitor cell proliferation is substantially decreased. Conversely, expression of the intracellular portion of cleaved dystroglycan results in increased oligodendrocyte progenitor cell proliferation, suggesting that endogenous dystroglycan cleavage may promote oligodendrocyte progenitor cell cycle progression. Intriguingly, while matrix metalloproteinase-2 and/or -9 have been reported to be responsible for dystroglycan cleavage, we find that these two metalloproteinases are neither necessary nor sufficient for cleavage of oligodendroglial dystroglycan. In summary, laminin-211 stimulates metalloproteinase-mediated dystroglycan cleavage in oligodendrocyte progenitor cells (but not in differentiated oligodendrocytes), which in turn promotes oligodendrocyte progenitor cell proliferation. This novel regulation of oligodendroglial laminin-dystroglycan interactions may have important consequences for oligodendroglial differentiation, both during development and during disease when metalloproteinase levels become elevated.

  5. IL-17A activates ERK1/2 and enhances differentiation of oligodendrocyte progenitor cells.

    PubMed

    Rodgers, Jane M; Robinson, Andrew P; Rosler, Elen S; Lariosa-Willingham, Karen; Persons, Rachael E; Dugas, Jason C; Miller, Stephen D

    2015-05-01

    Inflammatory signals present in demyelinated multiple sclerosis lesions affect the reparative remyelination process conducted by oligodendrocyte progenitor cells (OPCs). Interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and interleukin (IL)-6 have differing effects on the viability and growth of OPCs, however the effects of IL-17A are largely unknown. Primary murine OPCs were stimulated with IL-17A and their viability, proliferation, and maturation were assessed in culture. IL-17A-stimulated OPCs exited the cell cycle and differentiated with no loss in viability. Expression of the myelin-specific protein, proteolipid protein, increased in a cerebellar slice culture assay in the presence of IL-17A. Downstream, IL-17A activated ERK1/2 within 15 min and induced chemokine expression in 2 days. These results demonstrate that IL-17A exposure stimulates OPCs to mature and participate in the inflammatory response.

  6. Enhanced coupling of optical energy during liquid-confined metal ablation

    SciTech Connect

    Kang, Hyun Wook; Welch, Ashley J.

    2015-10-21

    Liquid-confined laser ablation was investigated with various metals of indium, aluminum, and nickel. Ablation threshold and rate were characterized in terms of surface deformation, transient acoustic responses, and plasma emissions. The surface condition affected the degree of ablation dynamics due to variations in reflectance. The liquid confinement yielded up to an order of larger ablation crater along with stronger acoustic transients than dry ablation. Enhanced ablation performance resulted possibly from effective coupling of optical energy at the interface during explosive vaporization, plasma confinement, and cavitation. The deposition of a liquid layer can induce more efficient ablation for laser metal processing.

  7. Ablation response testing of aerospace power supplies

    NASA Astrophysics Data System (ADS)

    Lutz, S. A.; Chan, C. C.

    1993-01-01

    An experimental program was performed to assess the aerothermal ablation response of aerospace power supplies. Full-scale General Purpose Heat Source (GPHS) test articles, Graphite Impact Shell (GIS) test articles, and Lightweight Radioisotope Heater Unit (LWRHU) test articles were all tested without nuclear fuel in simulated reentry environments at the NASA Ames Research Center. Stagnation heating, stagnation pressure, stagnation surface temperature, stagnation surface recession profile, and weight loss measurements were obtained for diffusion-limited and sublimation ablation conditions. The recession profile and weight loss measurements showed an effect of surface features on the stagnation face. The surface features altered the local heating which in turn affected the local ablation.

  8. Laser ablation of blepharopigmentation

    SciTech Connect

    Tanenbaum, M.; Karas, S.; McCord, C.D. Jr. )

    1988-01-01

    This article discusses laser ablation of blepharopigmentation in four stages: first, experimentally, where pigment vaporization is readily achieved with the argon blue-green laser; second, in the rabbit animal model, where eyelid blepharopigmentation markings are ablated with the laser; third, in human subjects, where the argon blue-green laser is effective in the ablation of implanted eyelid pigment; and fourth, in a case report, where, in a patient with improper pigment placement in the eyelid, the laser is used to safely and effectively ablate the undesired pigment markings. This article describes in detail the new technique of laser ablation of blepharopigmentation. Potential complications associated with the technique are discussed.

  9. Survival of Patients with Hepatocellular Carcinoma (HCC) Treated by Percutaneous Radio-Frequency Ablation (RFA) Is Affected by Complete Radiological Response

    PubMed Central

    Cabibbo, Giuseppe; Maida, Marcello; Genco, Chiara; Alessi, Nicola; Peralta, Marco; Butera, Giuseppe; Galia, Massimo; Brancatelli, Giuseppe; Genova, Claudio; Raineri, Maurizio; Orlando, Emanuele; Attardo, Simona; Giarratano, Antonino; Midiri, Massimo; Di Marco, Vito; Craxì, Antonio; Cammà, Calogero

    2013-01-01

    Background Radio-frequency ablation (RFA) has been employed in the treatment of Barcelona Clinic Liver Cancer (BCLC) early stage hepatocellular carcinoma (HCC) as curative treatments. Aim To assess the effectiveness and the safety of RFA in patients with early HCC and compensated cirrhosis. Methods A cohort of 151 consecutive patients with early stage HCC (122 Child-Pugh class A and 29 class B patients) treated with RFA were enrolled. Clinical, laboratory and radiological follow-up data were collected from the time of first RFA. A single lesion was observed in 113/151 (74.8%), two lesions in 32/151 (21.2%), and three lesions in 6/151 (4%) of patients. Results The overall survival rates were 94%, 80%, 64%, 49%, and 41% at 12, 24, 36, 48 and 60 months, respectively. Complete response (CR) at 1 month (p<0.0001) and serum albumin levels (p = 0.0004) were the only variables indipendently linked to survival by multivariate Cox model. By multivariate analysis, tumor size (p = 0.01) is the only variable associated with an increased likehood of CR. The proportion of major complications after treatment was 4%. Conclusions RFA is safe and effective for managing HCC with cirrhosis, especially for patients with HCC ≤3 cm and higher baseline albumin levels. Complete response after RFA significantly increases survival. PMID:23922893

  10. In vivo and in vitro models of demyelinating disease: activation of the adenylate cyclase system influences JHM virus expression in explanted rat oligodendrocytes.

    PubMed Central

    Beushausen, S; Narindrasorasak, S; Sanwal, B D; Dales, S

    1987-01-01

    The specificity of JHM virus (JHMV) tropism for rat oligodendrocytes, as one of the primary host cells in the central nervous system, is maintained after explanation (S. Beushausen and S. Dales, Virology 141:89-101, 1985). The temporal correlation between onset of resistance to JHMV infection in vivo, completion of myelination, and maturation of the central nervous system can be simulated in vitro by inducers of oligodendrocyte differentiation (Beushausen and Dales, Virology, 1985). Stimulation of differentiation through the elevation of intracellular cyclic AMP (cAMP) levels suggests a possible connection between activation of the adenylate cyclase system and coronavirus expression. Chromatographic analysis of cAMP-dependent protein kinase activity in cytosol extracts prepared from astrocytes or oligodendrocytes revealed that both glial cell types were deficient in protein kinase I, indicating that expression of coronavirus in differentiated cells was not contingent upon the presence of protein kinase I. However, treatment with N6,2'-O-dibutyryladenosine-3',5'-cyclic monophosphate (dbcAMP) resulted in a severalfold enhancement of the free regulatory subunit (RI) in oligodendrocytes but not in astrocytes. The RII subunit in both neural cell types was relatively unaffected. Rapid increase in RI due to dbcAMP treatment was correlated with inhibition of JHMV expression. Other differentiation inducers, including 8-Br cAMP and forskolin which, by contrast, caused a decrease in detectable RI, also blocked JHMV expression. This apparent anomaly can be attributed to an increased turnover of RI due to destabilization of the molecule which occurs upon site-specific binding of the cyclic nucleotides. On the basis of these observations, we conclude that the state of oligodendrocyte differentiation manifested with the modulation of RI regulates JHMV expression. The differentiation process did not affect either virus adsorption or sequestration but appeared to inhibit the

  11. Astrocytes in Oligodendrocyte Lineage Development and White Matter Pathology

    PubMed Central

    Li, Jiasi; Zhang, Lei; Chu, Yongxin; Namaka, Michael; Deng, Benqiang; Kong, Jiming; Bi, Xiaoying

    2016-01-01

    White matter is primarily composed of myelin and myelinated axons. Structural and functional completeness of myelin is critical for the reliable and efficient transmission of information. White matter injury has been associated with the development of many demyelinating diseases. Despite a variety of scientific advances aimed at promoting re-myelination, their benefit has proven at best to be marginal. Research suggests that the failure of the re-myelination process may be the result of an unfavorable microenvironment. Astrocytes, are the most ample and diverse type of glial cells in central nervous system (CNS) which display multiple functions for the cells of the oligodendrocytes lineage. As such, much attention has recently been drawn to astrocyte function in terms of white matter myelin repair. They are different in white matter from those in gray matter in specific regards to development, morphology, location, protein expression and other supportive functions. During the process of demyelination and re-myelination, the functions of astrocytes are dynamic in that they are able to change functions in accordance to different time points, triggers or reactive pathways resulting in vastly different biologic effects. They have pivotal effects on oligodendrocytes and other cell types in the oligodendrocyte lineage by serving as an energy supplier, a participant of immunological and inflammatory functions, a source of trophic factors and iron and a sustainer of homeostasis. Astrocytic impairment has been shown to be directly linked to the development of neuromyelities optica (NMO). In addition, astroctyes have also been implicated in other white matter conditions such as psychiatric disorders and neurodegenerative diseases such as Alzheimer’s disease (AD), multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Inhibiting specifically detrimental signaling pathways in astrocytes while preserving their beneficial functions may be a promising approach for

  12. Astrocytes in Oligodendrocyte Lineage Development and White Matter Pathology.

    PubMed

    Li, Jiasi; Zhang, Lei; Chu, Yongxin; Namaka, Michael; Deng, Benqiang; Kong, Jiming; Bi, Xiaoying

    2016-01-01

    White matter is primarily composed of myelin and myelinated axons. Structural and functional completeness of myelin is critical for the reliable and efficient transmission of information. White matter injury has been associated with the development of many demyelinating diseases. Despite a variety of scientific advances aimed at promoting re-myelination, their benefit has proven at best to be marginal. Research suggests that the failure of the re-myelination process may be the result of an unfavorable microenvironment. Astrocytes, are the most ample and diverse type of glial cells in central nervous system (CNS) which display multiple functions for the cells of the oligodendrocytes lineage. As such, much attention has recently been drawn to astrocyte function in terms of white matter myelin repair. They are different in white matter from those in gray matter in specific regards to development, morphology, location, protein expression and other supportive functions. During the process of demyelination and re-myelination, the functions of astrocytes are dynamic in that they are able to change functions in accordance to different time points, triggers or reactive pathways resulting in vastly different biologic effects. They have pivotal effects on oligodendrocytes and other cell types in the oligodendrocyte lineage by serving as an energy supplier, a participant of immunological and inflammatory functions, a source of trophic factors and iron and a sustainer of homeostasis. Astrocytic impairment has been shown to be directly linked to the development of neuromyelities optica (NMO). In addition, astroctyes have also been implicated in other white matter conditions such as psychiatric disorders and neurodegenerative diseases such as Alzheimer's disease (AD), multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Inhibiting specifically detrimental signaling pathways in astrocytes while preserving their beneficial functions may be a promising approach for

  13. Astrocytes in Oligodendrocyte Lineage Development and White Matter Pathology.

    PubMed

    Li, Jiasi; Zhang, Lei; Chu, Yongxin; Namaka, Michael; Deng, Benqiang; Kong, Jiming; Bi, Xiaoying

    2016-01-01

    White matter is primarily composed of myelin and myelinated axons. Structural and functional completeness of myelin is critical for the reliable and efficient transmission of information. White matter injury has been associated with the development of many demyelinating diseases. Despite a variety of scientific advances aimed at promoting re-myelination, their benefit has proven at best to be marginal. Research suggests that the failure of the re-myelination process may be the result of an unfavorable microenvironment. Astrocytes, are the most ample and diverse type of glial cells in central nervous system (CNS) which display multiple functions for the cells of the oligodendrocytes lineage. As such, much attention has recently been drawn to astrocyte function in terms of white matter myelin repair. They are different in white matter from those in gray matter in specific regards to development, morphology, location, protein expression and other supportive functions. During the process of demyelination and re-myelination, the functions of astrocytes are dynamic in that they are able to change functions in accordance to different time points, triggers or reactive pathways resulting in vastly different biologic effects. They have pivotal effects on oligodendrocytes and other cell types in the oligodendrocyte lineage by serving as an energy supplier, a participant of immunological and inflammatory functions, a source of trophic factors and iron and a sustainer of homeostasis. Astrocytic impairment has been shown to be directly linked to the development of neuromyelities optica (NMO). In addition, astroctyes have also been implicated in other white matter conditions such as psychiatric disorders and neurodegenerative diseases such as Alzheimer's disease (AD), multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Inhibiting specifically detrimental signaling pathways in astrocytes while preserving their beneficial functions may be a promising approach for

  14. Tim-2 is the receptor for H-ferritin on oligodendrocytes.

    PubMed

    Todorich, Bozho; Zhang, Xuesheng; Slagle-Webb, Becky; Seaman, William E; Connor, James R

    2008-12-01

    Oligodendrocytes stain more strongly for iron than any other cell in the CNS, and they require iron for the production of myelin. For most cell types transferrin is the major iron delivery protein, yet neither transferrin receptor protein nor mRNA are detectable in mature oligodendrocytes. Thus an alternative iron delivery mechanism must exist. Given the significant long term consequences of developmental iron deficiency and the iron requirements for normal myelination, identification of the iron delivery mechanism for oligodendrocytes is important. Previously we have reported that oligodendrocytes bind H-ferritin and that H-ferritin binds to white matter tracts in vivo. Recently, T cell immunoglobulin and mucin domain-containing protein-2 (Tim-2) was shown to bind and internalize H-ferritin. In the present study we show that Tim-2 is expressed on oligodendrocytes both in vivo and in vitro. Further, the onset of saturable H-ferritin binding in CG4 oligodendrocyte cell line is accompanied by Tim-2 expression. Application of a blocking antibody to the extracellular domain of Tim-2 significantly reduces H-ferritin binding to the differentiated CG4 cells and primary oligodendrocytes. Tim-2 expression on CG4 cells is responsive to iron; decreasing with iron loading and increasing with iron chelation. Taken together, these data provide compelling evidence that Tim-2 is the H-ferritin receptor on oligodendrocytes suggesting it is the primary mechanism for iron acquisition by these cells.

  15. Axon-to-Glia Interaction Regulates GABAA Receptor Expression in Oligodendrocytes.

    PubMed

    Arellano, Rogelio O; Sánchez-Gómez, María Victoria; Alberdi, Elena; Canedo-Antelo, Manuel; Chara, Juan Carlos; Palomino, Aitor; Pérez-Samartín, Alberto; Matute, Carlos

    2016-01-01

    Myelination requires oligodendrocyte-neuron communication, and both neurotransmitters and contact interactions are essential for this process. Oligodendrocytes are endowed with neurotransmitter receptors whose expression levels and properties may change during myelination. However, only scant information is available about the extent and timing of these changes or how they are regulated by oligodendrocyte-neuron interactions. Here, we used electrophysiology to study the expression of ionotropic GABA, glutamate, and ATP receptors in oligodendrocytes derived from the optic nerve and forebrain cultured either alone or in the presence of dorsal root ganglion neurons. We observed that oligodendrocytes from both regions responded to these transmitters at 1 day in culture. After the first day in culture, however, GABA sensitivity diminished drastically to less than 10%, while that of glutamate and ATP remained constant. In contrast, the GABA response amplitude was sustained and remained stable in oligodendrocytes cocultured with dorsal root ganglion neurons. Immunochemistry and pharmacological properties of the responses indicated that they were mediated by distinctive GABAA receptors and that in coculture with neurons, the oligodendrocytes bearing the receptors were those in direct contact with axons. These results reveal that GABAA receptor regulation in oligodendrocytes is driven by axonal cues and that GABA signaling may play a role in myelination and/or during axon-glia recognition.

  16. Insulin-like growth factor I/somatomedin C: a potent inducer of oligodendrocyte development

    SciTech Connect

    McMorris, F.A.; Smith, T.M.; DeSalvo, S.; Furlanetto, R.W.

    1986-02-01

    Cell cultures established from cerebrum of 1-day-old rats were used to investigate hormonal regulation of the development of oligodendrocytes, which synthesize myelin in the central nervous system. The number of oligodendrocytes that developed was preferentially increased by insulin, or by insulin-like growth factor I (IGF-I), also known as somatomedin C. High concentrations of insulin were required for substantial induction of oligodendrocyte development, whereas only 3.3 ng of IGF-I per ml was needed for a 2-fold increase in oligodendrocyte numbers. At an IGF-I concentration of 100 ng/ml, oligodendrocyte numbers were increased 6-fold in cultures grown in the presence of 10% fetal bovine serum, or up to 60-fold in cultures maintained in serum-free medium. IGF-I produced less than a 2-fold increase in the number of nonoligodendroglial cells in the same cultures. Type I IGF receptors were identified on oligodendrocytes and on a putative oligodendrocyte precursor cell population identified by using mouse monoclonal antibody A2B5. Radioligand binding assays were done. These results indicate that IGF-I is a potent inducer of oligodendrocyte development and suggest a possible mechanism based on IGF deficiency for the hypomyelination that results from early postnatal malnutrition.

  17. Multiple sclerosis. Oligodendrocyte survival and proliferation in an active established lesion.

    PubMed

    Raine, C S; Scheinberg, L; Waltz, J M

    1981-12-01

    Oligodendrocytes have been studied ultrastructurally in relationship to areas of active demyelination in multiple sclerosis. The tissue came from a central nervous system plaque sampled at biopsy during a neurosurgical procedure to correct severe intention tremor in a case of chronic progressive multiple sclerosis. Cells interpreted as oligodendrocytes were abundant within the demyelinated zone, were easily identifiable, and sometimes occurred as nests of cells suggestive of proliferation. Oligodendrocytes were also common within areas of active demyelination where numerous macrophages displayed active phagocytosis of myelin. These oligodendrocytes were paler and perhaps represented residual, surviving cells. In the relatively normal white matter adjacent to the plaque, increased numbers of oligodendrocytes occurred in association with remyelination. In the demyelinated zone, the astrocyte:macrophage:oligodendrocyte ratio was 1:2.25:4.5; within the region of ongoing demyelination, 1:4:4; and in the adjacent white matter, 1:0.1:2.1. On the basis of an apparent proliferation and survival of oligodendrocytes, the findings support the notions that there is no selective depletion of oligodendrocytes either during or shortly following central nervous system demyelination in multiple sclerosis, and that the myelin sheath is the primary target. PMID:7321526

  18. Nonequilibrium Ablation of Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Yih K.; Gokcen, Tahir

    2012-01-01

    In previous work, an equilibrium ablation and thermal response model for Phenolic Impregnated Carbon Ablator was developed. In general, over a wide range of test conditions, model predictions compared well with arcjet data for surface recession, surface temperature, in-depth temperature at multiple thermocouples, and char depth. In this work, additional arcjet tests were conducted at stagnation conditions down to 40 W/sq cm and 1.6 kPa. The new data suggest that nonequilibrium effects become important for ablation predictions at heat flux or pressure below about 80 W/sq cm or 10 kPa, respectively. Modifications to the ablation model to account for nonequilibrium effects are investigated. Predictions of the equilibrium and nonequilibrium models are compared with the arcjet data.

  19. Gray matter oligodendrocyte progenitors and neurons die caspase-3 mediated deaths subsequent to mild perinatal hypoxic/ischemic insults.

    PubMed

    Rothstein, Raymond P; Levison, Steven W

    2005-01-01

    With significant improvements in neonatal care, fewer infants sustain severe injury as a consequence of hypoxia/ischemia (H/I). However, the majority of experimental studies have inflicted moderate to severe injuries, or they have assessed damage to the caudal forebrain; therefore, to better understand how a mild H/I episode affects the structures and cells of the rostral forebrain, we assessed the relative vulnerabilities of cells in the neocortex, striatum, corpus callosum, choroid plexus and subventricular zone (SVZ). To inflict mild H/I injury, the right common carotid artery was ligated followed by 1 h of hypoxia (8% O(2)) at 37 degrees C. Regional vulnerabilities were assessed using TUNEL, active caspase-3 and hematoxylin and eosin staining at 24 and 48 h of recovery. Scattered columns of cell death were observed in the neocortex with deep-layer neurons more vulnerable than more superficial neurons. The majority of these dying neurons appeared to be dying apoptotic rather than necrotic deaths. In addition, approximately 1/3 of the apoptotic cells in the neocortex were O4+ oligodendrocyte progenitors. We also observed a decrease in NG2 staining within the affected regions of the forebrain. By contrast, active caspase-3+/S-100beta+ astrocytes were not observed. Neurons and O4+ oligodendrocyte progenitors also died apoptotic deaths within the striatum. The lining cells of the choroid plexus also sustained damage. Elevated numbers of apoptotic cells were observed in the most lateral region of the SVZ and some of these dying cells were O4+. The most novel finding of this study, that oligodendrocyte progenitors in the gray matter are damaged and eliminated as a consequence of perinatal H/I, provides new insights into the histopathology and neurological deficits observed in infants who sustain mild H/I brain injuries.

  20. Antigens of monoclonal antibody NB3C4 are novel markers for oligodendrocytes.

    PubMed

    Yoshimura, K; Kametani, F; Shimoda, Y; Fujimaki, K; Sakurai, Y; Kitamura, K; Asou, H; Nomura, M

    2001-02-12

    We produced NB3C4, a novel monoclonal antibody specific for oligodendrocytes, using human neuroblastoma IMR-32 cells. NB3C4 specifically recognized oligodendrocytes in the CNS, although it bound to neuroblastoma IMR-32 cells and oligodendrocytes in vitro. Double immunofluorescence staining of rat brain using NB3C4 and anti-GST-pi, anti-glial fibrillary acidic protein (GFAP), or anti-neurofilament 200 (NF) antibody revealed that anti-GST-pi antibody identified an oligodendrocyte marker recognizing NB3C4-positive cells, while both anti-GFAP and anti-NF antibody did not. Western blotting of rat brain homogenates showed that NB3C4 bound three proteins of 22-28 kDa, while the anti-GST-pi recognized a 27 kDa protein. Therefore, antigens recognized by NB3C4 could be novel markers for oligodendrocytes.

  1. Hypoxia-Induced Iron Accumulation in Oligodendrocytes Mediates Apoptosis by Eliciting Endoplasmic Reticulum Stress.

    PubMed

    Rathnasamy, Gurugirijha; Murugan, Madhuvika; Ling, Eng-Ang; Kaur, Charanjit

    2016-09-01

    This study was aimed at evaluating the role of increased iron accumulation in oligodendrocytes and its role in their apoptosis in the periventricular white matter damage (PWMD) following a hypoxic injury to the neonatal brain. In response to hypoxia, in the PWM, there was increased expression of proteins involved in iron acquisition, such as iron regulatory proteins (IRP1, IRP2) and transferrin receptor in oligodendrocytes. Consistent with this, following a hypoxic exposure, there was increased accumulation of iron in primary cultured oligodendrocytes. The increased concentration of iron within hypoxic oligodendrocytes was found to elicit ryanodine receptor (RyR) expression, and the expression of endoplasmic reticulum (ER) stress markers such as binding-immunoglobulin protein (BiP) and inositol-requiring enzyme (IRE)-1α. Associated with ER stress, there was reduced adenosine triphosphate (ATP) levels within hypoxic oligodendrocytes. However, treatment with deferoxamine reduced the increased expression of RyR, BiP, and IRE-1α and increased ATP levels in hypoxic oligodendrocytes. Parallel to ER stress there was enhanced reactive oxygen species production within mitochondria of hypoxic oligodendrocytes, which was attenuated when these cells were treated with deferoxamine. At the ultrastructural level, hypoxic oligodendrocytes frequently showed dilated ER and disrupted mitochondria, which became less evident in those treated with deferoxamine. Associated with these subcellular changes, the apoptosis of hypoxic oligodendrocytes was evident with an increase in p53 and caspase-3 expression, which was attenuated when these cells were treated with deferoxamine. Thus, the present study emphasizes that the excess iron accumulated within oligodendrocytes in hypoxic PWM could result in their death by eliciting ER stress and mitochondrial disruption.

  2. Renal Ablation Update

    PubMed Central

    Khiatani, Vishal; Dixon, Robert G.

    2014-01-01

    Thermal ablative technologies have evolved considerably in the recent past and are now an important component of current clinical guidelines for the treatment of small renal masses. Both radiofrequency ablation and cryoablation have intermediate-term oncologic control that rivals surgical options, with favorable complication profiles. Studies comparing cryoablation and radiofrequency ablation show no significant difference in oncologic control or complication profile between the two modalities. Early data from small series with microwave ablation have shown similar promising results. Newer technologies including irreversible electroporation and high-intensity–focused ultrasound have theoretical advantages, but will require further research before becoming a routine part of the ablation armamentarium. The purpose of this review article is to discuss the current ablative technologies available, briefly review their mechanisms of action, discuss technical aspects of each, and provide current data supporting their use. PMID:25049445

  3. Protein translation components are colocalized in granules in oligodendrocytes.

    PubMed

    Barbarese, E; Koppel, D E; Deutscher, M P; Smith, C L; Ainger, K; Morgan, F; Carson, J H

    1995-08-01

    The intracellular distribution of various components of the protein translational machinery was visualized in mouse oligodendrocytes in culture using high resolution fluorescence in situ hybridization and immunofluorescence in conjunction with dual channel confocal laser scanning microscopy. Arginyl-tRNA synthetase, elongation factor 1a, ribosomal RNA, and myelin basic protein mRNA were all co-localized in granules in the processes, veins and membrane sheets of the cell. Colocalization was evaluated by dual channel cross correlation analysis to determine the correlation index (% colocalization) and correlation distance (granule radius), and by single granule ratiometric analysis to determine the distribution of the different components in individual granules. Most granules contained synthetase, elongation factor, ribosomal RNA and myelin basic protein mRNA. These results indicate that several different components of the protein synthetic machinery, including aminoacyl-tRNA synthetases, elongation factors, ribosomes and mRNAs, are colocalized in granules in oligodendrocytes. We propose that these granules are supramolecular complexes containing all of the necessary macromolecular components for protein translation and that they represent a heretofore undescribed subcellular organization of the protein synthetic machinery. This spatial organization may increase the efficiency of protein synthesis and may also provide a vehicle for transport and localization of specific mRNAs within the cell.

  4. Cdon, a cell surface protein, mediates oligodendrocyte differentiation and myelination.

    PubMed

    Wang, Li-Chun; Almazan, Guillermina

    2016-06-01

    During central nervous system development, oligodendrocyte progenitors (OLPs) establish multiple branched processes and axonal contacts to initiate myelination. A complete understanding of the molecular signals implicated in cell surface interaction to initiate myelination/remyelination is currently lacking. The objective of our study was to assess whether Cdon, a cell surface protein that was shown to participate in muscle and neuron cell development, is involved in oligodendrocyte (OLG) differentiation and myelination. Here, we demonstrate that endogenous Cdon protein is expressed in OLPs, increasing in the early differentiation stages and decreasing in mature OLGs. Immunocytochemistry of endogenous Cdon showed localization on both OLG cell membranes and cellular processes exhibiting puncta- or varicosity-like structures. Cdon knockdown with siRNA decreased protein levels by 62% as well as two myelin-specific proteins, MBP and MAG. Conversely, overexpression of full-length rat Cdon increased myelin proteins in OLGs. The complexity of OLGs branching and contact point numbers with axons were also increased in Cdon overexpressing cells growing alone or in coculture with dorsal root ganglion neurons (DRGNs). Furthermore, myelination of DRGNs was decreased when OLPs were transfected with Cdon siRNA. Altogether, our results suggest that Cdon participates in OLG differentiation and myelination, most likely in the initial stages of development.

  5. Apcdd1 stimulates oligodendrocyte differentiation after white matter injury.

    PubMed

    Lee, Hyun Kyoung; Laug, Dylan; Zhu, Wenyi; Patel, Jay M; Ung, Kevin; Arenkiel, Benjamin R; Fancy, Stephen P J; Mohila, Carrie; Deneen, Benjamin

    2015-10-01

    Wnt signaling plays an essential role in developmental and regenerative myelination of the CNS, therefore it is critical to understand how the factors associated with the various regulatory layers of this complex pathway contribute to these processes. Recently, Apcdd1 was identified as a negative regulator of proximal Wnt signaling, however its role in oligodendrocyte (OL) differentiation and reymelination in the CNS remain undefined. Analysis of Apcdd1 expression revealed dynamic expression during OL development, where its expression is upregulated during differentiation. Functional studies using ex vivo and in vitro OL systems revealed that Apcdd1 promotes OL differentiation, suppresses Wnt signaling, and associates with β-catenin. Application of these findings to white matter injury (WMI) models revealed that Apcdd1 similarly promotes OL differentiation after gliotoxic injury in vivo and acute hypoxia ex vivo. Examination of Apcdd1 expression in white matter lesions from neonatal WMI and adult multiple sclerosis revealed its expression in subsets of oligodendrocyte (OL) precursors. These studies describe, for the first time, the role of Apcdd1 in OLs after WMI and reveal that negative regulators of the proximal Wnt pathway can influence regenerative myelination, suggesting a new therapeutic strategy for modulating Wnt signaling and stimulating repair after WMI.

  6. Radiofrequency Ablation of Cancer

    SciTech Connect

    Friedman, Marc; Mikityansky, Igor; Kam, Anthony; Libutti, Steven K.; Walther, McClellan M.; Neeman, Ziv; Locklin, Julia K.; Wood, Bradford J.

    2004-09-15

    Radiofrequency ablation (RFA) has been used for over 18 years for treatment of nerve-related chronic pain and cardiac arrhythmias. In the last 10 years, technical developments have increased ablation volumes in a controllable, versatile, and relatively inexpensive manner. The host of clinical applications for RFA have similarly expanded. Current RFA equipment, techniques, applications, results, complications, and research avenues for local tumor ablation are summarized.

  7. IκB kinase 2 determines oligodendrocyte loss by non-cell-autonomous activation of NF-κB in the central nervous system

    PubMed Central

    Raasch, Jenni; Zeller, Nicolas; van Loo, Geert; Merkler, Doron; Mildner, Alexander; Erny, Daniel; Knobeloch, Klaus-Peter; Bethea, John R.; Waisman, Ari; Knust, Markus; Del Turco, Domenico; Deller, Thomas; Blank, Thomas; Priller, Josef; Brück, Wolfgang

    2011-01-01

    The IκB kinase complex induces nuclear factor kappa B activation and has recently been recognized as a key player of autoimmunity in the central nervous system. Notably, IκB kinase/nuclear factor kappa B signalling regulates peripheral myelin formation by Schwann cells, however, its role in myelin formation in the central nervous system during health and disease is largely unknown. Surprisingly, we found that brain-specific IκB kinase 2 expression is dispensable for proper myelin assembly and repair in the central nervous system, but instead plays a fundamental role for the loss of myelin in the cuprizone model. During toxic demyelination, inhibition of nuclear factor kappa B activation by conditional ablation of IκB kinase 2 resulted in strong preservation of central nervous system myelin, reduced expression of proinflammatory mediators and a significantly attenuated glial response. Importantly, IκB kinase 2 depletion in astrocytes, but not in oligodendrocytes, was sufficient to protect mice from myelin loss. Our results reveal a crucial role of glial cell-specific IκB kinase 2/nuclear factor kappa B signalling for oligodendrocyte damage during toxic demyelination. Thus, therapies targeting IκB kinase 2 function in non-neuronal cells may represent a promising strategy for the treatment of distinct demyelinating central nervous system diseases. PMID:21310728

  8. Microenvironmental regulation of oligodendrocyte replacement and remyelination in spinal cord injury.

    PubMed

    Alizadeh, Arsalan; Karimi-Abdolrezaee, Soheila

    2016-07-01

    Myelin is a proteolipid sheath enwrapping axons in the nervous system that facilitates signal transduction along the axons. In the central nervous system (CNS), oligodendrocytes are specialized glial cells responsible for myelin formation and maintenance. Following spinal cord injury (SCI), oligodendroglia cell death and myelin damage (demyelination) cause chronic axonal damage and irreparable loss of sensory and motor functions. Accumulating evidence shows that replacement of damaged oligodendrocytes and renewal of myelin (remyelination) are promising approaches to prevent axonal degeneration and restore function following SCI. Neural precursor cells (NPCs) and oligodendrocyte progenitor cells (OPCs) are two main resident cell populations in the spinal cord with innate capacities to foster endogenous oligodendrocyte replacement and remyelination. However, due to the hostile microenvironment of SCI, the regenerative capacity of these endogenous precursor cells is conspicuously restricted. Activated resident glia, along with infiltrating immune cells, are among the key modulators of secondary injury mechanisms that create a milieu impermissible to oligodendrocyte differentiation and remyelination. Recent studies have uncovered inhibitory roles for astrocyte-associated molecules such as matrix chondroitin sulfate proteoglycans (CSPGs), and a plethora of pro-inflammatory cytokines and neurotoxic factors produced by activated microglia/macrophages. The quality of axonal remyelination is additionally challenged by dysregulation of the supportive growth factors required for maturation of new oligodendrocytes and axo-oligodendrocyte signalling. Careful understanding of factors that modulate the activity of endogenous precursor cells in the injury microenvironment is a key step in developing efficient repair strategies for remyelination and functional recovery following SCI. PMID:26857216

  9. Differentiation of oligodendrocyte precursors is impaired in the prefrontal cortex in schizophrenia.

    PubMed

    Mauney, Sarah A; Pietersen, Charmaine Y; Sonntag, Kai-C; Woo, Tsung-Ung W

    2015-12-01

    The pathophysiology of schizophrenia involves disturbances of information processing across brain regions, possibly reflecting, at least in part, a disruption in the underlying axonal connectivity. This disruption is thought to be a consequence of the pathology of myelin ensheathment, the integrity of which is tightly regulated by oligodendrocytes. In order to gain insight into the possible neurobiological mechanisms of myelin deficit, we determined the messenger RNA (mRNA) expression profile of laser captured cells that were immunoreactive for 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), a marker for oligodendrocyte progenitor cells (OPCs) in addition to differentiating and myelinating oligodendrocytes, in the white matter of the prefrontal cortex in schizophrenia subjects. Our findings pointed to the hypothesis that OPC differentiation might be impaired in schizophrenia. To address this hypothesis, we quantified cells that were immunoreactive for neural/glial antigen 2 (NG2), a selective marker for OPCs, and those that were immunoreactive for oligodendrocyte transcription factor 2 (OLIG2), an oligodendrocyte lineage marker that is expressed by OPCs and maturing oligodendrocytes. We found that the density of NG2-immunoreactive cells was unaltered, but the density of OLIG2-immunoreactive cells was significantly decreased in subjects with schizophrenia, consistent with the notion that OPC differentiation impairment may contribute to oligodendrocyte disturbances and thereby myelin deficits in schizophrenia.

  10. Characterization of glucose-related metabolic pathways in differentiated rat oligodendrocyte lineage cells.

    PubMed

    Amaral, Ana I; Hadera, Mussie G; Tavares, Joana M; Kotter, Mark R N; Sonnewald, Ursula

    2016-01-01

    Although oligodendrocytes constitute a significant proportion of cells in the central nervous system (CNS), little is known about their intermediary metabolism. We have, therefore, characterized metabolic functions of primary oligodendrocyte precursor cell cultures at late stages of differentiation using isotope-labelled metabolites. We report that differentiated oligodendrocyte lineage cells avidly metabolize glucose in the cytosol and pyruvate derived from glucose in the mitochondria. The labelling patterns of metabolites obtained after incubation with [1,2-(13)C]glucose demonstrated that the pentose phosphate pathway (PPP) is highly active in oligodendrocytes (approximately 10% of glucose is metabolized via the PPP as indicated by labelling patterns in phosphoenolpyruvate). Mass spectrometry and magnetic resonance spectroscopy analyses of metabolites after incubation of cells with [1-(13)C]lactate or [1,2-(13)C]glucose, respectively, demonstrated that anaplerotic pyruvate carboxylation, which was thought to be exclusive to astrocytes, is also active in oligodendrocytes. Using [1,2-(13)C]acetate, we show that oligodendrocytes convert acetate into acetyl CoA which is metabolized in the tricarboxylic acid cycle. Analysis of labelling patterns of alanine after incubation of cells with [1,2-(13)C]acetate and [1,2-(13)C]glucose showed catabolic oxidation of malate or oxaloacetate. In conclusion, we report that oligodendrocyte lineage cells at late differentiation stages are metabolically highly active cells that are likely to contribute considerably to the metabolic activity of the CNS.

  11. The adhesion GPCR Gpr56 regulates oligodendrocyte development via interactions with Gα12/13 and RhoA

    PubMed Central

    Ackerman, Sarah D.; Garcia, Cynthia; Piao, Xianhua; Gutmann, David H.; Monk, Kelly R.

    2014-01-01

    In the vertebrate central nervous system, myelinating oligodendrocytes are postmitotic and derive from proliferative oligodendrocyte precursor cells (OPCs). The molecular mechanisms that govern oligodendrocyte development are incompletely understood, but recent studies implicate the adhesion class of G protein-coupled receptors (aGPCRs) as important regulators of myelination. Here, we use zebrafish and mouse models to dissect the function of the aGPCR Gpr56 in oligodendrocyte development. We show that gpr56 is expressed during early stages of oligodendrocyte development. Additionally, we observe a significant reduction of mature oligodendrocyte number and of myelinated axons in gpr56 zebrafish mutants. This reduction results from decreased OPC proliferation, rather than increased cell death or altered neural precursor differentiation potential. Finally, we show that these functions are mediated by Gα12/13 proteins and Rho activation. Together, our data establish Gpr56 as a regulator of oligodendrocyte development. PMID:25607772

  12. Alpha-Synuclein Expression in the Oligodendrocyte Lineage: an In Vitro and In Vivo Study Using Rodent and Human Models.

    PubMed

    Djelloul, Mehdi; Holmqvist, Staffan; Boza-Serrano, Antonio; Azevedo, Carla; Yeung, Maggie S; Goldwurm, Stefano; Frisén, Jonas; Deierborg, Tomas; Roybon, Laurent

    2015-08-11

    In this study, we sought evidence for alpha-synuclein (ASYN) expression in oligodendrocytes, as a possible endogenous source of ASYN to explain its presence in glial inclusions found in multiple system atrophy (MSA) and Parkinson's disease (PD). We identified ASYN in oligodendrocyte lineage progenitors isolated from the rodent brain, in oligodendrocytes generated from embryonic stem cells, and in induced pluripotent stem cells produced from fibroblasts of a healthy individual and patients diagnosed with MSA or PD, in cultures in vitro. Notably, we observed a significant decrease in ΑSYN during oligodendrocyte maturation. Additionally, we show the presence of transcripts in PDGFRΑ/CD140a(+) cells and SOX10(+) oligodendrocyte lineage nuclei isolated by FACS from rodent and human healthy and diseased brains, respectively. Our work identifies ASYN in oligodendrocyte lineage cells, and it offers additional in vitro cellular models that should provide significant insights of the functional implication of ASYN during oligodendrocyte development and disease.

  13. CNS myelin sheath is stochastically built by homotypic fusion of myelin membranes within the bounds of an oligodendrocyte process.

    PubMed

    Szuchet, Sara; Nielsen, Lauren L; Domowicz, Miriam S; Austin, Jotham R; Arvanitis, Dimitrios L

    2015-04-01

    Myelin - the multilayer membrane that envelops axons - is a facilitator of rapid nerve conduction. Oligodendrocytes form CNS myelin; the prevailing hypothesis being that they do it by extending a process that circumnavigates the axon. It is pertinent to ask how myelin is built because oligodendrocyte plasma membrane and myelin are compositionally different. To this end, we examined oligodendrocyte cultures and embryonic avian optic nerves by electron microscopy, immuno-electron microscopy and three-dimensional electron tomography. The results support three novel concepts. Myelin membranes are synthesized as tubules and packaged into "myelinophore organelles" in the oligodendrocyte perikaryon. Myelin membranes are matured in and transported by myelinophore organelles within an oligodendrocyte process. The myelin sheath is generated by myelin membrane fusion inside an oligodendrocyte process. These findings abrogate the dogma of myelin resulting from a wrapping motion of an oligodendrocyte process and open up new avenues in the quest for understanding myelination in health and disease.

  14. Apoptosis of Oligodendrocytes during Early Development Delays Myelination and Impairs Subsequent Responses to Demyelination

    PubMed Central

    Caprariello, Andrew V.; Batt, Courtney E.; Zippe, Ingrid; Romito-DiGiacomo, Rita R.; Karl, Molly

    2015-01-01

    During mammalian development, myelin-forming oligodendrocytes are generated and axons ensheathed according to a tightly regulated sequence of events. Excess premyelinating oligodendrocytes are eliminated by apoptosis and the timing of the onset of myelination in any specific CNS region is highly reproducible. Although the developing CNS recovers more effectively than the adult CNS from similar insults, it is unknown whether early loss of oligodendrocyte lineage cells leads to long-term functional deficits. To directly assess whether the loss of oligodendrocytes during early postnatal spinal cord development impacted oligodendrogenesis, myelination, and remyelination, transgenic mouse lines were generated in which a modified caspase-9 molecule allowed spatial and temporal control of the apoptotic pathway specifically in mature, myelin basic protein expressing oligodendrocytes (MBP-iCP9). Activating apoptosis in MBP+ cells of the developing spinal cord during the first postnatal week inhibited myelination. This inhibition was transient, and the levels of myelination largely returned to normal after 2 weeks. Despite robust developmental plasticity, MBP-iCP9-induced oligodendrocyte apoptosis compromised the rate and extent of adult remyelination. Remyelination failure correlated with a truncated proliferative response of oligodendrocyte progenitor cells, suggesting that depleting the oligodendrocyte pool during critical developmental periods compromises the regenerative response to subsequent demyelinating lesions. SIGNIFICANCE STATEMENT This manuscript demonstrates that early insults leading to oligodendrocyte apoptosis result in the impairment of recovery from demyelinating diseases in the adult. These studies begin to provide an initial understanding of the potential failure of recovery in insults, such as periventricular leukomalacia and multiple sclerosis. PMID:26468203

  15. Transcriptional regulation of MHC class I gene expression in rat oligodendrocytes.

    PubMed Central

    Mavria, G; Hall, K T; Jones, R A; Blair, G E

    1998-01-01

    MHC class I molecules are normally expressed at very low levels in the brain and their up-regulation in response to cytokines and viral infections has been associated with a number of neurological disorders. Here we demonstrate that the down-regulation of surface class I molecules in differentiated primary rat oligodendrocytes was accompanied by reduced steady-state levels of class I heavy-chain mRNA. Transient expression assays were performed in oligodendrocytes and fibroblasts, using a mouse H-2Kb class I promoter chloramphenicol acetyltransferase plasmid termed pH2KCAT (which contained 5'-flanking sequences from -2033 to +5 bp of the H-2Kb gene relative to the transcriptional start site at +1 bp). These assays showed that H-2Kb promoter activity was reduced in oligodendrocytes but not in class I-expressing fibroblasts. H-2Kb promoter activity was up-regulated in oligodendrocytes co-transfected with a plasmid expression vector encoding the transcriptional activator tax of human T-cell leukaemia virus type I, showing that down-regulation of promoter activity was reversible. Deletion mutant analysis of the H-2Kb promoter revealed the presence of negative regulatory elements that were functional in oligodendrocytes at -1.61 to -1.07 kb and -242 to -190 bp. Deletion of sequences in pH2KCAT encompassing the downstream element totally abolished promoter activity in both oligodendrocytes and fibroblasts, whereas a deletion within the upstream negative regulatory element increased promoter activity specifically in oligodendrocytes. The upstream negative regulatory element also down-regulated a linked heterologous herpes simplex virus thymidine kinase promoter in oligodendrocytes, but not in fibroblasts. Gel retardation assays using overlapping DNA probes that spanned the entire -1.61 to -1.07 kb region revealed the presence of a number of DNA-binding activities that were present in oligodendrocyte, but not in fibroblast nuclear extracts. PMID:9461504

  16. Cyclin dependent kinase 5 is required for the normal development of oligodendrocytes and myelin formation.

    PubMed

    Yang, Yan; Wang, Haibo; Zhang, Jie; Luo, Fucheng; Herrup, Karl; Bibb, James A; Lu, Richard; Miller, Robert H

    2013-06-15

    The development of oligodendrocytes, the myelinating cells of the vertebrate CNS, is regulated by a cohort of growth factors and transcription factors. Less is known about the signaling pathways that integrate extracellular signals with intracellular transcriptional regulators to control oligodendrocyte development. Cyclin dependent kinase 5 (Cdk5) and its co-activators play critical roles in the regulation of neuronal differentiation, cortical lamination, neuronal cell migration and axon outgrowth. Here we demonstrate a previously unrecognized function of Cdk5 in regulating oligodendrocyte maturation and myelination. During late embryonic development Cdk5 null animals displayed a reduction in the number of MBP+ cells in the spinal cord, but no difference in the number of OPCs. To determine whether the reduction of oligodendrocytes reflected a cell-intrinsic loss of Cdk5, it was selectively deleted from Olig1+ oligodendrocyte lineage cells. In Olig1(Cre/+); Cdk5(fl/fl) conditional mutants, reduced levels of expression of MBP and PLP mRNA were observed throughout the CNS and ultrastructural analyses demonstrated a significant reduction in the proportion of myelinated axons in the optic nerve and spinal cord. Pharmacological inhibition or RNAi knockdown of Cdk5 in vitro resulted in the reduction in oligodendrocyte maturation, but had no effect on OPC cell proliferation. Conversely, over-expression of Cdk5 promoted oligodendrocyte maturation and enhanced process outgrowth. Consistent with this data, Cdk5(-/-) oligodendrocytes developed significantly fewer primary processes and branches than control cells. Together, these findings suggest that Cdk5 function as a signaling integrator to regulate oligodendrocyte maturation and myelination.

  17. Sprayable lightweight ablative coating

    NASA Technical Reports Server (NTRS)

    Simpson, William G. (Inventor); Sharpe, Max H. (Inventor); Hill, William E. (Inventor)

    1991-01-01

    An improved lightweight, ablative coating is disclosed that may be spray applied and cured without the development of appreciable shrinkage cracks. The ablative mixture consists essentially of phenolic microballoons, hollow glass spheres, glass fibers, ground cork, a flexibilized resin binder, and an activated colloidal clay.

  18. MicroRNA: Key regulators of oligodendrocyte development and pathobiology.

    PubMed

    Fitzpatrick, John-Mark K; Anderson, Rebecca C; McDermott, Kieran W

    2015-08-01

    MicroRNAs (miRNAs or miRs) are a group of small non-coding RNAs that function through binding to messenger RNA (mRNA) targets and downregulating gene expression. miRNAs have been shown to regulate many cellular functions including proliferation, differentiation, development and apoptosis. Recently, evidence has grown which shows the involvement of miRs in oligodendrocyte (OL) specification and development. In particular, miRs-138, -219, -338, and -9 have been classified as key regulators of OL development, acting at various points in the OL lineage and influencing precursor cell transit into mature myelinating OLs. Many studies have emerged which link miRNAs with OL and myelin pathology in various central nervous system (CNS) diseases including multiple sclerosis (MS), ischemic stroke, spinal cord injury, and adult-onset autosomal dominant leukodystrophy (ADLD).

  19. Migrating Oligodendrocyte Progenitor Cells Swell Prior to Soma Dislocation

    PubMed Central

    Happel, Patrick; Möller, Kerstin; Schwering, Nina K.; Dietzel, Irmgard D.

    2013-01-01

    The migration of oligodendrocyte progenitor cells (OPCs) to the white matter is an indispensable requirement for an intact brain function. The mechanism of cell migration in general is not yet completely understood. Nevertheless, evidence is accumulating that besides the coordinated rearrangement of the cytoskeleton, a finetuned interplay of ion and water fluxes across the cell membrane is essential for cell migration. One part of a general hypothesis is that a local volume increase towards the direction of movement triggers a mechano-activated calcium influx that regulates various procedures at the rear end of a migrating cell. Here, we investigated cell volume changes of migrating OPCs using scanning ion conductance microscopy. We found that during accelerated migration OPCs undergo an increase in the frontal cell body volume. These findings are supplemented with time lapse calcium imaging data that hint an increase in calcium content the frontal part of the cell soma. PMID:23657670

  20. Unconventional myosin ID is expressed in myelinating oligodendrocytes.

    PubMed

    Yamazaki, Reiji; Ishibashi, Tomoko; Baba, Hiroko; Yamaguchi, Yoshihide

    2014-10-01

    Myelin is a dynamic multilamellar structure that ensheathes axons and is crucial for normal neuronal function. In the central nervous system (CNS), myelin is produced by oligodendrocytes that wrap many layers of plasma membrane around axons. The dynamic membrane trafficking system, which relies on motor proteins, is required for myelin formation and maintenance. Previously, we found that myosin ID (Myo1d), a class I myosin, is enriched in the rat CNS myelin fraction. Myo1d is an unconventional myosin and has been shown to be involved in membrane trafficking in the recycling pathway in an epithelial cell line. Western blotting revealed that Myo1d expression begins early in myelinogenesis and continues to increase into adulthood. The localization of Myo1d in CNS myelin has not been reported, and the function of Myo1d in vivo remains unknown. To demonstrate the expression of Myo1d in CNS myelin and to begin to explore the function of Myo1d in myelination, we produced a new antibody against Myo1d that has a high titer and specificity for rat Myo1d. By using this antibody, we demonstrated that Myo1d is expressed in rat CNS myelin and is especially abundant in abaxonal and adaxonal regions (the outer and inner cytoplasm-containing loops, respectively), but that expression is low in peripheral nervous system myelin. In culture, Myo1d was expressed in mature rat oligodendrocytes. Furthermore, an increase in expression of Myo1d during maturation of CNS white matter (cerebellum and corpus callosum) was demonstrated by histological analysis. These results suggest that Myo1d may be involved in the formation and/or maintenance of CNS myelin.

  1. Protective Effect of Electroacupuncture on Neural Myelin Sheaths is Mediated via Promotion of Oligodendrocyte Proliferation and Inhibition of Oligodendrocyte Death After Compressed Spinal Cord Injury.

    PubMed

    Huang, Siqin; Tang, Chenglin; Sun, Shanquan; Cao, Wenfu; Qi, Wei; Xu, Jin; Huang, Juan; Lu, Weitian; Liu, Qian; Gong, Biao; Zhang, Yi; Jiang, Jin

    2015-12-01

    Electroacupuncture (EA) has been used worldwide to treat demyelinating diseases, but its therapeutic mechanism is poorly understood. In this study, a custom-designed model of compressed spinal cord injury (CSCI) was used to induce demyelination. Zusanli (ST36) and Taixi (KI3) acupoints of adult rats were stimulated by EA to demonstrate its protective effect. At 14 days after EA, both locomotor skills and ultrastructural features of myelin sheath were significantly improved. Phenotypes of proliferating cells were identified by double immunolabeling of 5-ethynyl-2'-deoxyuridine with antibodies to cell markers: NG2 [oligodendrocyte precursor cell (OPC) marker], 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase) (oligodendrocyte marker), and glial fibrillary acidic protein (GFAP) (astrocyte marker). EA enhanced the proliferation of OPCs and CNPase, as well as the differentiation of OPCs by promoting Olig2 (the basic helix-loop-helix protein) and attenuating Id2 (the inhibitor of DNA binding 2). EA could also improve myelin basic protein (MBP) and protect existing oligodendrocytes from apoptosis by inhibiting caspase-12 (a representative of endoplasmic reticulum stress) and cytochrome c (an apoptotic factor and hallmark of mitochondria). Therefore, our results indicate that the protective effect of EA on neural myelin sheaths is mediated via promotion of oligodendrocyte proliferation and inhibition of oligodendrocyte death after CSCI.

  2. Laser ablation of dyes

    NASA Astrophysics Data System (ADS)

    Späth, M.; Stuke, M.

    1992-01-01

    High density 50 μs pulses of the UV dyes PPF, POPOP and BBO and of two dyes in the visible region, Xanthen N92 and Fluorol 7GA were generated by laser ablation. Dye powders were pressed with 7800 kp/cm 2 in round pellets which were ablated by exposure to KrF excimer laser radiation (248 nm) at a fluence of 100 mJ/cm 2. The ablation cloud was optically activated with a XeCl excimer laser. Its fluorescence spectrum was measured and was identified as a dye vapour fluorescence spectrum by comparison to conventional dye solution and dye vapour spectra. The dye cloud is not deflected in an electric field (10 6 V/m). By changing the delay time between the ablation laser and the focused activation laser, the velocity distribution of the ablated dye was measured. Its maximum is at 600 m/s for PPF. Knowing the thickness of the ablated dye layer per shot (300 Å) and the size of the ablation cloud (pictures of a video camera), one can estimate the maximum density of the dye in the gas pulse to be 10 -5 mol/ l in the range of concentration of lasing dyes. However, no lasing was observed up to now.

  3. Tumor Ablation and Nanotechnology

    PubMed Central

    Manthe, Rachel L.; Foy, Susan P.; Krishnamurthy, Nishanth; Sharma, Blanka; Labhasetwar, Vinod

    2010-01-01

    Next to surgical resection, tumor ablation is a commonly used intervention in the treatment of solid tumors. Tumor ablation methods include thermal therapies, photodynamic therapy, and reactive oxygen species (ROS) producing agents. Thermal therapies induce tumor cell death via thermal energy and include radiofrequency, microwave, high intensity focused ultrasound, and cryoablation. Photodynamic therapy and ROS producing agents cause increased oxidative stress in tumor cells leading to apoptosis. While these therapies are safe and viable alternatives when resection of malignancies is not feasible, they do have associated limitations that prevent their widespread use in clinical applications. To improve the efficacy of these treatments, nanoparticles are being studied in combination with nonsurgical ablation regimens. In addition to better thermal effect on tumor ablation, nanoparticles can deliver anticancer therapeutics that show synergistic anti-tumor effect in the presence of heat and can also be imaged to achieve precision in therapy. Understanding the molecular mechanism of nanoparticle-mediated tumor ablation could further help engineer nanoparticles of appropriate composition and properties to synergize the ablation effect. This review aims to explore the various types of nonsurgical tumor ablation methods currently used in cancer treatment and potential improvements by nanotechnology applications. PMID:20866097

  4. A zinc finger protein that regulates oligodendrocyte specification, migration and myelination in zebrafish.

    PubMed

    Sidik, Harwin; Talbot, William S

    2015-12-01

    Precise control of oligodendrocyte migration and development is crucial for myelination of axons in the central nervous system (CNS), but important questions remain unanswered about the mechanisms controlling these processes. In a zebrafish screen for myelination mutants, we identified a mutation in zinc finger protein 16-like (znf16l). znf16l mutant larvae have reduced myelin basic protein (mbp) expression and reduced CNS myelin. Marker, time-lapse and ultrastructural studies indicated that oligodendrocyte specification, migration and myelination are disrupted in znf16l mutants. Transgenic studies indicated that znf16l acts autonomously in oligodendrocytes. Expression of Zfp488 from mouse rescued mbp expression in znf16l mutants, indicating that these homologs have overlapping functions. Our results defined the function of a new zinc finger protein with specific function in oligodendrocyte specification, migration and myelination in the developing CNS.

  5. Progressive disorganization of paranodal junctions and compact myelin due to loss of DCC expression by oligodendrocytes.

    PubMed

    Bull, Sarah-Jane; Bin, Jenea M; Beaumont, Eric; Boutet, Alexandre; Krimpenfort, Paul; Sadikot, Abbas F; Kennedy, Timothy E

    2014-07-16

    Paranodal axoglial junctions are critical for maintaining the segregation of axonal domains along myelinated axons; however, the proteins required to organize and maintain this structure are not fully understood. Netrin-1 and its receptor Deleted in Colorectal Cancer (DCC) are proteins enriched at paranodes that are expressed by neurons and oligodendrocytes. To identify the specific function of DCC expressed by oligodendrocytes in vivo, we selectively eliminated DCC from mature myelinating oligodendrocytes using an inducible cre regulated by the proteolipid protein promoter. We demonstrate that DCC deletion results in progressive disruption of the organization of axonal domains, myelin ultrastructure, and myelin protein composition. Conditional DCC knock-out mice develop balance and coordination deficits and exhibit decreased conduction velocity. We conclude that DCC expression by oligodendrocytes is required for the maintenance and stability of myelin in vivo, which is essential for proper signal conduction in the CNS.

  6. IKAP/hELP1 deficiency in the cerebrum of familial dysautonomia patients results in down regulation of genes involved in oligodendrocyte differentiation and in myelination.

    PubMed

    Cheishvili, David; Maayan, Channa; Smith, Yoav; Ast, Gil; Razin, Aharon

    2007-09-01

    The gene affected in the congenital neuropathy familial dysautonomia (FD) is IKBKAP that codes for the IKAP/hELP1 protein. Several different functions have been suggested for this protein, but none of them have been verified in vivo or shown to have some link with the FD phenotype. In an attempt to elucidate the involvement of IKAP/hELP1 in brain function, we searched for IKAP/hELP1 target genes associated with neuronal function. In a microarray expression analysis using RNA extracted from the cerebrum of two FD patients as well as sex and age matched controls, no genes were found to be upregulated in the FD cerebrum. However, 25 genes were downregulated more than 2-fold in the cerebrum of both the male FD child and female FD mature woman. Thirteen of them are known to be involved in oligodendrocyte development and myelin formation. The down regulation of all these genes was verified by real-time PCR. Four of these genes were also confirmed to be downregulated at the protein level. These results are statistically significant and have high biological relevance, since seven of the downregulated genes in the cerebrum of the FD patients were shown by others to be upregulated during oligodendrocyte differentiation in vitro. Our results therefore suggest that IKAP/hELP1 may play a role in oligodendrocyte differentiation and/or myelin formation.

  7. EphB3 receptors function as dependence receptors to mediate oligodendrocyte cell death following contusive spinal cord injury

    PubMed Central

    Tsenkina, Y; Ricard, J; Runko, E; Quiala- Acosta, M M; Mier, J; Liebl, D J

    2015-01-01

    We demonstrate that EphB3 receptors mediate oligodendrocyte (OL) cell death in the injured spinal cord through dependence receptor mechanism. OLs in the adult spinal cord express EphB3 as well as other members of the Eph receptor family. Spinal cord injury (SCI) is associated with tissue damage, cellular loss and disturbances in EphB3-ephrinB3 protein balance acutely (days) after the initial impact creating an environment for a dependence receptor-mediated cell death to occur. Genetic ablation of EphB3 promotes OL survival associated with increased expression of myelin basic protein and improved locomotor function in mice after SCI. Moreover, administration of its ephrinB3 ligand to the spinal cord after injury also promotes OL survival. Our in vivo findings are supported by in vitro studies showing that ephrinB3 administration promotes the survival of both oligodendroglial progenitor cells and mature OLs cultured under pro-apoptotic conditions. In conclusion, the present study demonstrates a novel dependence receptor role of EphB3 in OL cell death after SCI, and supports further development of ephrinB3-based therapies to promote recovery. PMID:26469970

  8. Developmental cuprizone exposure impairs oligodendrocyte lineages differentially in cortical and white matter tissues and suppresses glutamatergic neurogenesis signals and synaptic plasticity in the hippocampal dentate gyrus of rats.

    PubMed

    Abe, Hajime; Saito, Fumiyo; Tanaka, Takeshi; Mizukami, Sayaka; Hasegawa-Baba, Yasuko; Imatanaka, Nobuya; Akahori, Yumi; Yoshida, Toshinori; Shibutani, Makoto

    2016-01-01

    Developmental cuprizone (CPZ) exposure impairs rat hippocampal neurogenesis. Here, we captured the developmental neurotoxicity profile of CPZ using a region-specific expression microarray analysis in the hippocampal dentate gyrus, corpus callosum, cerebral cortex and cerebellar vermis of rat offspring exposed to 0, 0.1, or 0.4% CPZ in the maternal diet from gestation day 6 to postnatal day (PND) 21. Transcripts of those genes identified as altered were subjected to immunohistochemical analysis on PNDs 21 and 77. Our results showed that transcripts for myelinogenesis-related genes, including Cnp, were selectively downregulated in the cerebral cortex by CPZ at ≥0.1% or 0.4% on PND 21. CPZ at 0.4% decreased immunostaining intensity for 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase) and CNPase(+) and OLIG2(+) oligodendrocyte densities in the cerebral cortex, whereas CNPase immunostaining intensity alone was decreased in the corpus callosum. By contrast, a striking transcript upregulation for Klotho gene and an increased density of Klotho(+) oligodendrocytes were detected in the corpus callosum at ≥0.1%. In the dentate gyrus, CPZ at ≥0.1% or 0.4% decreased the transcript levels for Gria1, Grin2a and Ptgs2, genes related to the synapse and synaptic transmission, and the number of GRIA1(+) and GRIN2A(+) hilar γ-aminobutyric acid (GABA)-ergic interneurons and cyclooxygenase-2(+) granule cells. All changes were reversed at PND 77. Thus, developmental CPZ exposure reversibly decreased mature oligodendrocytes in both cortical and white matter tissues, and Klotho protected white matter oligodendrocyte growth. CPZ also reversibly targeted glutamatergic signals of GABAergic interneuron to affect dentate gyrus neurogenesis and synaptic plasticity in granule cells. PMID:26577399

  9. Navigation Systems for Ablation

    PubMed Central

    Wood, B. J.; Kruecker, J.; Abi-Jaoudeh, N; Locklin, J.; Levy, E.; Xu, S.; Solbiati, L.; Kapoor, A.; Amalou, H.; Venkatesan, A.

    2010-01-01

    Navigation systems, devices and intra-procedural software are changing the way we practice interventional oncology. Prior to the development of precision navigation tools integrated with imaging systems, thermal ablation of hard-to-image lesions was highly dependent upon operator experience, spatial skills, and estimation of positron emission tomography-avid or arterial-phase targets. Numerous navigation systems for ablation bring the opportunity for standardization and accuracy that extends our ability to use imaging feedback during procedures. Existing systems and techniques are reviewed, and specific clinical applications for ablation are discussed to better define how these novel technologies address specific clinical needs, and fit into clinical practice. PMID:20656236

  10. mRNA expression profile of mouse oligodendrocytes in inflammatory conditions.

    PubMed

    Kudriaeva, A A; Khaustova, N A; Maltseva, D V; Kuzina, E S; Glagoleva, I S; Surina, E A; Knorre, V D; Belogurov, A A; Tonevitsky, A G; Gabibov, A G

    2016-07-01

    In this study, we performed transcriptome profiling of oligodendrocyte culture of mice treated with the remyelinating therapeutic agent benztropine in the presence and absence of interferon gamma (IFNγ). The results of this work are important for understanding the expression profile of oligodendrocytes under conditions of systemic inflammation in the central nervous system in multiple sclerosis as well as the mechanisms of cellular response to benztropine in light of its possible use for the treatment of multiple sclerosis. PMID:27599508

  11. Involvement of nitric oxide on kainate-induced toxicity in oligodendrocyte precursors.

    PubMed

    Martinez-Palma, Laura; Pehar, Mariana; Cassina, Patricia; Peluffo, Hugo; Castellanos, Raquel; Anesetti, Gabriel; Beckman, Joseph S; Barbeito, Luis

    2003-01-01

    The vulnerability of oligodendrocytes to excitatory amino acids may account for the pathology of white matter occurring following hypoxia/ischemia or autoimmune attack. Here, we examined the vulnerability of immature oligodendrocytes (positively labeled by galactocerobroside-C and not expressing myelin basic protein) from neonatal rat spinal cord to kainate, an agonist of excitatory amino acid receptors that induces long-lasting inward currents in immature oligodendrocytes. In particular, we studied whether kainate toxicity was linked to the endogenous production of nitric oxide. We found cultured oligodendrocytes to be highly sensitive to 24-48 h exposure to 0.5-1 mM kainate. The toxin induced striking morphological changes in oligodendrocytes, characterized by the disruption of the process network around the cell body and the growth of one or two long, thick and non-branched processes. A longer exposure to kainate resulted in massive death of oligodendrocytes, which was prevented by 6,7, dinitroquinoxaline-2,3-dione (DNQX) (30 micro M), the antagonist of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic/kainate receptors. Remarkably, we found that those oligodendrocytes displaying bipolar morphology following kainate exposure, also expressed the inducible form of nitric oxide synthase (iNOS) and nitrotyrosine immunoreactivity, suggesting that peroxynitrite could be formed by the reaction of nitric oxide with superoxide. Moreover, kainate toxicity was significantly prevented by addition of the NOS inhibitor nitro-L-arginine methyl ester (L-NAME), further suggesting that nitric oxide-derived oxidants contribute to excitotoxic mechanisms in immature oligodendrocytes.

  12. Epigenetic Modulation of Human Induced Pluripotent Stem Cell Differentiation to Oligodendrocytes

    PubMed Central

    Douvaras, Panagiotis; Rusielewicz, Tomasz; Kim, Kwi Hye; Haines, Jeffery D.; Casaccia, Patrizia; Fossati, Valentina

    2016-01-01

    Pluripotent stem cells provide an invaluable tool for generating human, disease-relevant cells. Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system, characterized by myelin damage. Oligodendrocytes are the myelinating cells of the central nervous system (CNS); they differentiate from progenitor cells, and their membranes ensheath axons, providing trophic support and allowing fast conduction velocity. The current understanding of oligodendrocyte biology was founded by rodent studies, where the establishment of repressive epigenetic marks on histone proteins, followed by activation of myelin genes, leads to lineage progression. To assess whether this epigenetic regulation is conserved across species, we differentiated human embryonic and induced pluripotent stem cells to oligodendrocytes and asked whether similar histone marks and relative enzymatic activities could be detected. The transcriptional levels of enzymes responsible for methylation and acetylation of histone marks were analyzed during oligodendrocyte differentiation, and the post-translational modifications on histones were detected using immunofluorescence. These studies showed that also in human cells, differentiation along the oligodendrocyte lineage is characterized by the acquisition of multiple repressive histone marks, including deacetylation of lysine residues on histone H3 and trimethylation of residues K9 and K27. These data suggest that the epigenetic modulation of oligodendrocyte identity is highly conserved across species. PMID:27110779

  13. Olig2 targets chromatin remodelers to enhancers to initiate oligodendrocyte differentiation.

    PubMed

    Yu, Yang; Chen, Ying; Kim, Bongwoo; Wang, Haibo; Zhao, Chuntao; He, Xuelian; Liu, Lei; Liu, Wei; Wu, Lai Man N; Mao, Meng; Chan, Jonah R; Wu, Jiang; Lu, Q Richard

    2013-01-17

    Establishment of oligodendrocyte identity is crucial for subsequent events of myelination in the CNS. Here, we demonstrate that activation of ATP-dependent SWI/SNF chromatin-remodeling enzyme Smarca4/Brg1 at the differentiation onset is necessary and sufficient to initiate and promote oligodendrocyte lineage progression and maturation. Genome-wide multistage studies by ChIP-seq reveal that oligodendrocyte-lineage determination factor Olig2 functions as a prepatterning factor to direct Smarca4/Brg1 to oligodendrocyte-specific enhancers. Recruitment of Smarca4/Brg1 to distinct subsets of myelination regulatory genes is developmentally regulated. Functional analyses of Smarca4/Brg1 and Olig2 co-occupancy relative to chromatin epigenetic marking uncover stage-specific cis-regulatory elements that predict sets of transcriptional regulators controlling oligodendrocyte differentiation. Together, our results demonstrate that regulation of the functional specificity and activity of a Smarca4/Brg1-dependent chromatin-remodeling complex by Olig2, coupled with transcriptionally linked chromatin modifications, is critical to precisely initiate and establish the transcriptional program that promotes oligodendrocyte differentiation and subsequent myelination of the CNS.

  14. Oligodendrocyte differentiation from adult multipotent stem cells is modulated by glutamate.

    PubMed

    Cavaliere, F; Urra, O; Alberdi, E; Matute, C

    2012-02-02

    We used multipotent stem cells (MSCs) derived from the young rat subventricular zone (SVZ) to study the effects of glutamate in oligodendrocyte maturation. Glutamate stimulated oligodendrocyte differentiation from SVZ-derived MSCs through the activation of specific N-methyl-D-aspartate (NMDA) receptor subunits. The effect of glutamate and NMDA on oligodendrocyte differentiation was evident in both the number of newly generated oligodendrocytes and their morphology. In addition, the levels of NMDAR1 and NMDAR2A protein increased during differentiation, whereas NMDAR2B and NMDAR3 protein levels decreased, suggesting differential expression of NMDA receptor subunits during maturation. Microfluorimetry showed that the activation of NMDA receptors during oligodendrocyte differentiation elevated cytosolic calcium levels and promoted myelination in cocultures with neurons. Moreover, we observed that stimulation of MSCs by NMDA receptors induced the generation of reactive oxygen species (ROS), which were negatively modulated by the NADPH inhibitor apocynin, and that the levels of ROS correlated with the degree of differentiation. Taken together, these findings suggest that ROS generated by NADPH oxidase by the activation of NMDA receptors promotes the maturation of oligodendrocytes and favors myelination.

  15. Oligodendrocyte differentiation from adult multipotent stem cells is modulated by glutamate

    PubMed Central

    Cavaliere, F; Urra, O; Alberdi, E; Matute, C

    2012-01-01

    We used multipotent stem cells (MSCs) derived from the young rat subventricular zone (SVZ) to study the effects of glutamate in oligodendrocyte maturation. Glutamate stimulated oligodendrocyte differentiation from SVZ-derived MSCs through the activation of specific N-methyl--aspartate (NMDA) receptor subunits. The effect of glutamate and NMDA on oligodendrocyte differentiation was evident in both the number of newly generated oligodendrocytes and their morphology. In addition, the levels of NMDAR1 and NMDAR2A protein increased during differentiation, whereas NMDAR2B and NMDAR3 protein levels decreased, suggesting differential expression of NMDA receptor subunits during maturation. Microfluorimetry showed that the activation of NMDA receptors during oligodendrocyte differentiation elevated cytosolic calcium levels and promoted myelination in cocultures with neurons. Moreover, we observed that stimulation of MSCs by NMDA receptors induced the generation of reactive oxygen species (ROS), which were negatively modulated by the NADPH inhibitor apocynin, and that the levels of ROS correlated with the degree of differentiation. Taken together, these findings suggest that ROS generated by NADPH oxidase by the activation of NMDA receptors promotes the maturation of oligodendrocytes and favors myelination. PMID:22297298

  16. Olig1 function is required for oligodendrocyte differentiation in the mouse brain.

    PubMed

    Dai, Jinxiang; Bercury, Kathryn K; Ahrendsen, Jared T; Macklin, Wendy B

    2015-03-11

    Oligodendrocyte differentiation and myelination are tightly regulated processes orchestrated by a complex transcriptional network. Two bHLH transcription factors in this network, Olig1 and Olig2, are expressed exclusively by oligodendrocytes after late embryonic development. Although the role of Olig2 in the lineage is well established, the role of Olig1 is still unclear. The current studies analyzed the function of Olig1 in oligodendrocyte differentiation and developmental myelination in brain. Both oligodendrocyte progenitor cell commitment and oligodendrocyte differentiation were impaired in the corpus callosum of Olig1-null mice, resulting in hypomyelination throughout adulthood in the brain. As seen in previous studies with this mouse line, although there was an early myelination deficit in the spinal cord, essentially full recovery with normal spinal cord myelination was seen. Intriguingly, this regional difference may be partially attributed to compensatory upregulation of Olig2 protein expression in the spinal cord after Olig1 deletion, which is not seen in brain. The current study demonstrates a unique role for Olig1 in promoting oligodendrocyte progenitor cell commitment, differentiation, and subsequent myelination primarily in brain, but not spinal cord.

  17. CD200 restrains macrophage attack on oligodendrocyte precursors via toll-like receptor 4 downregulation.

    PubMed

    Hayakawa, Kazuhide; Pham, Loc-Duyen D; Seo, Ji Hae; Miyamoto, Nobukazu; Maki, Takakuni; Terasaki, Yasukazu; Sakadžić, Sava; Boas, David; van Leyen, Klaus; Waeber, Christian; Kim, Kyu-Won; Arai, Ken; Lo, Eng H

    2016-04-01

    There are numerous barriers to white matter repair after central nervous system injury and the underlying mechanisms remain to be fully understood. In this study, we propose the hypothesis that inflammatory macrophages in damaged white matter attack oligodendrocyte precursor cells via toll-like receptor 4 signaling thus interfering with this endogenous progenitor recovery mechanism. Primary cell culture experiments demonstrate that peritoneal macrophages can attack and digest oligodendrocyte precursor cells via toll-like receptor 4 signaling, and this phagocytosis of oligodendrocyte precursor cells can be inhibited by using CD200-Fc to downregulate toll-like receptor 4. In an in vivo model of white matter ischemia induced by endothelin-1, treatment with CD200-Fc suppressed toll-like receptor 4 expression in peripherally circulating macrophages, thus restraining macrophage phagocytosis of oligodendrocyte precursor cells and leading to improved myelination. Taken together, these findings suggest that deleterious macrophage effects may occur after white matter ischemia, whereby macrophages attack oligodendrocyte precursor cells and interfere with endogenous recovery responses. Targeting this pathway with CD200 may offer a novel therapeutic approach to amplify endogenous oligodendrocyte precursor cell-mediated repair of white matter damage in mammalian brain.

  18. Oligodendrocyte Development and Myelination in Neurodevelopment: Molecular Mechanisms in Health and Disease.

    PubMed

    Barateiro, Andreia; Brites, Dora; Fernandes, Adelaide

    2016-01-01

    Oligodendrocytes are the myelinating cells of the central nervous system that constitute about 5 to 10% of the total glial population. These cells are responsible for myelin sheath production, which is essential not only for the rapid and efficient conduction of the electrical impulses along the axons, but also for preserving axonal integrity. Oligodendrocytes arise from oligodendrocyte progenitor cells that proliferate and differentiate just before and after birth, under a highly-regulated program. Both oligodendrocytes and their precursors are very susceptible to injury by several mechanisms, including excitotoxic damage, oxidative stress and inflammatory events. In this review, we will cover not only several important aspects of oligodendrocyte development and regulatory mechanisms involved in this process, but also some of the most important pathways of injury associated to oligodendrogenesis. Moreover, we will also address some neurological disorders along life journey that present impairment in oligodendrocyte function and in myelination during neurodevelopment, such as periventricular leukomalacia, hypoxia/ischemia and hyperbilirubinemia that in turn can potentiate the emergence of neurological and neurodegenerative diseases like schizophrenia, multiple sclerosis and Alzheimer's disease. PMID:26635271

  19. Neurobehavioral and cytotoxic effects of vanadium during oligodendrocyte maturation: a protective role for erythropoietin.

    PubMed

    Mustapha, Oluwaseun; Oke, Bankole; Offen, Nils; Sirén, Anna-Leena; Olopade, James

    2014-07-01

    Vanadium exposure has been known to lead to lipid peroxidation, demyelination and oligodendrocytes depletion. We investigated behaviour and glial reactions in juvenile mice after early neonatal exposure to vanadium, and examined the direct effects of vanadium in oligodendrocyte progenitor cultures from embryonic mice. Neonatal pups exposed to vanadium via lactation for 15 and 22 days all had lower body weights. Behavioural tests showed in most instances a reduction in locomotor activity and negative geotaxis. Brain analyses revealed astrocytic activation and demyelination in the vanadium exposed groups compared to the controls. In cell culture, exposure of oligodendrocytes to 300 μM sodium metavanadate significantly increased cell death. Expression of the oligodendrocyte specific proteins, 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) and oligodendrocyte specific protein (OSP/Claudin) were reduced upon vanadium treatment while simultaneous administration of erythropoietin (EPO; 4-12 U/ml) counteracted vanadium-toxicity. The data suggest that oligodendrocyte damage may explain the increased vulnerability of the juvenile brain to vanadium and support a potential for erythropoietin as a protective agent against vanadium-toxicity during perinatal brain development and maturation. PMID:24927405

  20. Convergent functional genomics of oligodendrocyte differentiation identifies multiple autoinhibitory signaling circuits.

    PubMed

    Gobert, Rosanna Pescini; Joubert, Lara; Curchod, Marie-Laure; Salvat, Catherine; Foucault, Isabelle; Jorand-Lebrun, Catherine; Lamarine, Marc; Peixoto, Hélène; Vignaud, Chloé; Frémaux, Christèle; Jomotte, Thérèse; Françon, Bernard; Alliod, Chantal; Bernasconi, Lilia; Abderrahim, Hadi; Perrin, Dominique; Bombrun, Agnes; Zanoguera, Francisca; Rommel, Christian; Hooft van Huijsduijnen, Rob

    2009-03-01

    Inadequate remyelination of brain white matter lesions has been associated with a failure of oligodendrocyte precursors to differentiate into mature, myelin-producing cells. In order to better understand which genes play a critical role in oligodendrocyte differentiation, we performed time-dependent, genome-wide gene expression studies of mouse Oli-neu cells as they differentiate into process-forming and myelin basic protein-producing cells, following treatment with three different agents. Our data indicate that different inducers activate distinct pathways that ultimately converge into the completely differentiated state, where regulated gene sets overlap maximally. In order to also gain insight into the functional role of genes that are regulated in this process, we silenced 88 of these genes using small interfering RNA and identified multiple repressors of spontaneous differentiation of Oli-neu, most of which were confirmed in rat primary oligodendrocyte precursors cells. Among these repressors were CNP, a well-known myelin constituent, and three phosphatases, each known to negatively control mitogen-activated protein kinase cascades. We show that a novel inhibitor for one of the identified genes, dual-specificity phosphatase DUSP10/MKP5, was also capable of inducing oligodendrocyte differentiation in primary oligodendrocyte precursors. Oligodendrocytic differentiation feedback loops may therefore yield pharmacological targets to treat disease related to dysfunctional myelin deposition.

  1. Convergent Functional Genomics of Oligodendrocyte Differentiation Identifies Multiple Autoinhibitory Signaling Circuits▿ †

    PubMed Central

    Pescini Gobert, Rosanna; Joubert, Lara; Curchod, Marie-Laure; Salvat, Catherine; Foucault, Isabelle; Jorand-Lebrun, Catherine; Lamarine, Marc; Peixoto, Hélène; Vignaud, Chloé; Frémaux, Christèle; Jomotte, Thérèse; Françon, Bernard; Alliod, Chantal; Bernasconi, Lilia; Abderrahim, Hadi; Perrin, Dominique; Bombrun, Agnes; Zanoguera, Francisca; Rommel, Christian; van Huijsduijnen, Rob Hooft

    2009-01-01

    Inadequate remyelination of brain white matter lesions has been associated with a failure of oligodendrocyte precursors to differentiate into mature, myelin-producing cells. In order to better understand which genes play a critical role in oligodendrocyte differentiation, we performed time-dependent, genome-wide gene expression studies of mouse Oli-neu cells as they differentiate into process-forming and myelin basic protein-producing cells, following treatment with three different agents. Our data indicate that different inducers activate distinct pathways that ultimately converge into the completely differentiated state, where regulated gene sets overlap maximally. In order to also gain insight into the functional role of genes that are regulated in this process, we silenced 88 of these genes using small interfering RNA and identified multiple repressors of spontaneous differentiation of Oli-neu, most of which were confirmed in rat primary oligodendrocyte precursors cells. Among these repressors were CNP, a well-known myelin constituent, and three phosphatases, each known to negatively control mitogen-activated protein kinase cascades. We show that a novel inhibitor for one of the identified genes, dual-specificity phosphatase DUSP10/MKP5, was also capable of inducing oligodendrocyte differentiation in primary oligodendrocyte precursors. Oligodendrocytic differentiation feedback loops may therefore yield pharmacological targets to treat disease related to dysfunctional myelin deposition. PMID:19139271

  2. Neurobehavioral and cytotoxic effects of vanadium during oligodendrocyte maturation: a protective role for erythropoietin.

    PubMed

    Mustapha, Oluwaseun; Oke, Bankole; Offen, Nils; Sirén, Anna-Leena; Olopade, James

    2014-07-01

    Vanadium exposure has been known to lead to lipid peroxidation, demyelination and oligodendrocytes depletion. We investigated behaviour and glial reactions in juvenile mice after early neonatal exposure to vanadium, and examined the direct effects of vanadium in oligodendrocyte progenitor cultures from embryonic mice. Neonatal pups exposed to vanadium via lactation for 15 and 22 days all had lower body weights. Behavioural tests showed in most instances a reduction in locomotor activity and negative geotaxis. Brain analyses revealed astrocytic activation and demyelination in the vanadium exposed groups compared to the controls. In cell culture, exposure of oligodendrocytes to 300 μM sodium metavanadate significantly increased cell death. Expression of the oligodendrocyte specific proteins, 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) and oligodendrocyte specific protein (OSP/Claudin) were reduced upon vanadium treatment while simultaneous administration of erythropoietin (EPO; 4-12 U/ml) counteracted vanadium-toxicity. The data suggest that oligodendrocyte damage may explain the increased vulnerability of the juvenile brain to vanadium and support a potential for erythropoietin as a protective agent against vanadium-toxicity during perinatal brain development and maturation.

  3. Oligodendrocyte-microglia cross-talk in the central nervous system.

    PubMed

    Peferoen, Laura; Kipp, Markus; van der Valk, Paul; van Noort, Johannes M; Amor, Sandra

    2014-03-01

    Communication between the immune system and the central nervous system (CNS) is exemplified by cross-talk between glia and neurons shown to be essential for maintaining homeostasis. While microglia are actively modulated by neurons in the healthy brain, little is known about the cross-talk between oligodendrocytes and microglia. Oligodendrocytes, the myelin-forming cells in the CNS, are essential for the propagation of action potentials along axons, and additionally serve to support neurons by producing neurotrophic factors. In demyelinating diseases such as multiple sclerosis, oligodendrocytes are thought to be the victims. Here, we review evidence that oligodendrocytes also have strong immune functions, express a wide variety of innate immune receptors, and produce and respond to chemokines and cytokines that modulate immune responses in the CNS. We also review evidence that during stress events in the brain, oligodendrocytes can trigger a cascade of protective and regenerative responses, in addition to responses that elicit progressive neurodegeneration. Knowledge of the cross-talk between microglia and oligodendrocytes may continue to uncover novel pathways of immune regulation in the brain that could be further exploited to control neuroinflammation and degeneration.

  4. Oligodendrocytes contribute to motor neuron death in ALS via SOD1-dependent mechanism

    PubMed Central

    Ferraiuolo, Laura; Meyer, Kathrin; Sherwood, Thomas W.; Vick, Jonathan; Likhite, Shibi; Frakes, Ashley; Miranda, Carlos J.; Braun, Lyndsey; Heath, Paul R.; Pineda, Ricardo; Beattie, Christine E.; Shaw, Pamela J.; Askwith, Candice C.; McTigue, Dana; Kaspar, Brian K.

    2016-01-01

    Oligodendrocytes have recently been implicated in the pathophysiology of amyotrophic lateral sclerosis (ALS). Here we show that, in vitro, mutant superoxide dismutase 1 (SOD1) mouse oligodendrocytes induce WT motor neuron (MN) hyperexcitability and death. Moreover, we efficiently derived human oligodendrocytes from a large number of controls and patients with sporadic and familial ALS, using two different reprogramming methods. All ALS oligodendrocyte lines induced MN death through conditioned medium (CM) and in coculture. CM-mediated MN death was associated with decreased lactate production and release, whereas toxicity in coculture was lactate-independent, demonstrating that MN survival is mediated not only by soluble factors. Remarkably, human SOD1 shRNA treatment resulted in MN rescue in both mouse and human cultures when knockdown was achieved in progenitor cells, whereas it was ineffective in differentiated oligodendrocytes. In fact, early SOD1 knockdown rescued lactate impairment and cell toxicity in all lines tested, with the exclusion of samples carrying chromosome 9 ORF 72 (C9orf72) repeat expansions. These did not respond to SOD1 knockdown nor did they show lactate release impairment. Our data indicate that SOD1 is directly or indirectly involved in ALS oligodendrocyte pathology and suggest that in this cell type, some damage might be irreversible. In addition, we demonstrate that patients with C9ORF72 represent an independent patient group that might not respond to the same treatment. PMID:27688759

  5. Moldable cork ablation material

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A successful thermal ablative material was manufactured. Moldable cork sheets were tested for density, tensile strength, tensile elongation, thermal conductivity, compression set, and specific heat. A moldable cork sheet, therefore, was established as a realistic product.

  6. Laser ablation of concrete.

    SciTech Connect

    Savina, M.

    1998-10-05

    Laser ablation is effective both as an analytical tool and as a means of removing surface coatings. The elemental composition of surfaces can be determined by either mass spectrometry or atomic emission spectroscopy of the atomized effluent. Paint can be removed from aircraft without damage to the underlying aluminum substrate, and environmentally damaged buildings and sculptures can be restored by ablating away deposited grime. A recent application of laser ablation is the removal of radioactive contaminants from the surface and near-surface regions of concrete. We present the results of ablation tests on concrete samples using a high power pulsed Nd:YAG laser with fiber optic beam delivery. The laser-surface interaction was studied on various model systems consisting of Type I Portland cement with varying amounts of either fine silica or sand in an effort to understand the effect of substrate composition on ablation rates and mechanisms. A sample of non-contaminated concrete from a nuclear power plant was also studied. In addition, cement and concrete samples were doped with non-radioactive isotopes of elements representative of cooling waterspills, such as cesium and strontium, and analyzed by laser-resorption mass spectrometry to determine the contamination pathways. These samples were also ablated at high power to determine the efficiency with which surface contaminants are removed and captured. The results show that the neat cement matrix melts and vaporizes when little or no sand or aggregate is present. Surface flows of liquid material are readily apparent on the ablated surface and the captured aerosol takes the form of glassy beads up to a few tens of microns in diameter. The presence of sand and aggregate particles causes the material to disaggregate on ablation, with intact particles on the millimeter size scale leaving the surface. Laser resorption mass spectrometric analysis showed that cesium and potassium have similar chemical environments in the

  7. FGF-2 signal promotes proliferation of cerebellar progenitor cells and their oligodendrocytic differentiation at early postnatal stage

    SciTech Connect

    Naruse, Masae; Shibasaki, Koji; Ishizaki, Yasuki

    2015-08-07

    The origins and developmental regulation of cerebellar oligodendrocytes are largely unknown, although some hypotheses of embryonic origins have been suggested. Neural stem cells exist in the white matter of postnatal cerebellum, but it is unclear whether these neural stem cells generate oligodendrocytes at postnatal stages. We previously showed that cerebellar progenitor cells, including neural stem cells, widely express CD44 at around postnatal day 3. In the present study, we showed that CD44-positive cells prepared from the postnatal day 3 cerebellum gave rise to neurospheres, while CD44-negative cells prepared from the same cerebellum did not. These neurospheres differentiated mainly into oligodendrocytes and astrocytes, suggesting that CD44-positive neural stem/progenitor cells might generate oligodendrocytes in postnatal cerebellum. We cultured CD44-positive cells from the postnatal day 3 cerebellum in the presence of signaling molecules known as mitogens or inductive differentiation factors for oligodendrocyte progenitor cells. Of these, only FGF-2 promoted survival and proliferation of CD44-positive cells, and these cells differentiated into O4+ oligodendrocytes. Furthermore, we examined the effect of FGF-2 on cerebellar oligodendrocyte development ex vivo. FGF-2 enhanced proliferation of oligodendrocyte progenitor cells and increased the number of O4+ and CC1+ oligodendrocytes in slice cultures. These results suggest that CD44-positive cells might be a source of cerebellar oligodendrocytes and that FGF-2 plays important roles in their development at an early postnatal stage. - Highlights: • CD44 is expressed in cerebellar neural stem/progenitor cells at postnatal day 3 (P3). • FGF-2 promoted proliferation of CD44-positive progenitor cells from P3 cerebellum. • FGF-2 promoted oligodendrocytic differentiation of CD44-positive progenitor cells. • FGF-2 increased the number of oligodendrocytes in P3 cerebellar slice culture.

  8. Direct and indirect effects of immune and central nervous system-resident cells on human oligodendrocyte progenitor cell differentiation.

    PubMed

    Moore, Craig S; Cui, Qiao-Ling; Warsi, Nebras M; Durafourt, Bryce A; Zorko, Nika; Owen, David R; Antel, Jack P; Bar-Or, Amit

    2015-01-15

    In multiple sclerosis, successful remyelination within the injured CNS is largely dependent on the survival and differentiation of oligodendrocyte progenitor cells. During inflammatory injury, oligodendrocytes and oligodendrocyte progenitor cells within lesion sites are exposed to secreted products derived from both infiltrating immune cell subsets and CNS-resident cells. Such products may be considered either proinflammatory or anti-inflammatory and have the potential to contribute to both injury and repair processes. Within the CNS, astrocytes also contribute significantly to oligodendrocyte biology during development and following inflammatory injury. The overall objective of the current study was to determine how functionally distinct proinflammatory and anti-inflammatory human immune cell subsets, implicated in multiple sclerosis, can directly and/or indirectly (via astrocytes) impact human oligodendrocyte progenitor cell survival and differentiation. Proinflammatory T cell (Th1/Th17) and M1-polarized myeloid cell supernatants had a direct cytotoxic effect on human A2B5(+) neural progenitors, resulting in decreased O4(+) and GalC(+) oligodendrocyte lineage cells. Astrocyte-conditioned media collected from astrocytes pre-exposed to the same proinflammatory supernatants also resulted in decreased oligodendrocyte progenitor cell differentiation without an apparent increase in cell death and was mediated through astrocyte-derived CXCL10, yet this decrease in differentiation was not observed in the more differentiated oligodendrocytes. Th2 and M2 macrophage or microglia supernatants had neither a direct nor an indirect impact on oligodendrocyte progenitor cell differentiation. We conclude that proinflammatory immune cell responses can directly and indirectly (through astrocytes) impact the fate of immature oligodendrocyte-lineage cells, with oligodendrocyte progenitor cells more vulnerable to injury compared with mature oligodendrocytes.

  9. HIV-1 Tat Inhibits Autotaxin Lysophospholipase D Activity and Modulates Oligodendrocyte Differentiation

    PubMed Central

    Wheeler, Natalie A.; Fuss, Babette; Knapp, Pamela E.

    2016-01-01

    White matter injury has been frequently reported in HIV+ patients. Previous studies showed that HIV-1 Tat (transactivator of transcription), a viral protein that is produced and secreted by HIV-infected cells, is toxic to young, immature oligodendrocytes (OLGs). Adding Tat to the culture medium reduced the viability of immature OLGs, and the surviving OLGs exhibited reduced process networks. OLGs produce and secrete autotaxin (ATX), an ecto-enzyme containing a lysophospholipase D (lysoPLD) activity that converts lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), a lipid signaling molecule that stimulates OLG differentiation. We hypothesized that Tat affects OLG development by interfering with the ATX-LPA signaling pathway. Our data show that Tat treatment leads to changes in the expression of OLG differentiation genes and the area of OLG process networks, both of which can be rescued by LPA. Tat-treated OLGs showed no change in LPA receptor expression but significantly decreased extracellular ATX levels and lysoPLD activity. In Tat transgenic mice, expression of Tat in vivo leads to decreased OLG ATX secretion. Furthermore, co-immunoprecipitation experiments revealed a potential physical interaction between Tat and ATX. Together, these data strongly suggest two functional implications of Tat blocking ATX’s lysoPLD activity. On one hand, it attenuates OLG differentiation, and on the other hand it interferes with the protective effects of LPA on OLG process morphology. PMID:27659560

  10. Lead Poisoning Disturbs Oligodendrocytes Differentiation Involved in Decreased Expression of NCX3 Inducing Intracellular Calcium Overload.

    PubMed

    Ma, Teng; Wu, Xiyan; Cai, Qiyan; Wang, Yun; Xiao, Lan; Tian, Yanping; Li, Hongli

    2015-08-13

    Lead (Pb) poisoning has always been a serious health concern, as it permanently damages the central nervous system. Chronic Pb accumulation in the human body disturbs oligodendrocytes (OLs) differentiation, resulting in dysmyelination, but the molecular mechanism remains unknown. In this study, Pb at 1 μM inhibits OLs precursor cells (OPCs) differentiation via decreasing the expression of Olig 2, CNPase proteins in vitro. Moreover, Pb treatment inhibits the sodium/calcium exchanger 3 (NCX3) mRNA expression, one of the major means of calcium (Ca(2+)) extrusion at the plasma membrane during OPCs differentiation. Also addition of KB-R7943, NCX3 inhibitor, to simulate Pb toxicity, resulted in decreased myelin basic protein (MBP) expression and cell branching. Ca(2+) response trace with Pb and KB-R7943 treatment did not drop down in the same recovery time as the control, which elevated intracellular Ca(2+) concentration reducing MBP expression. In contrast, over-expression of NCX3 in Pb exposed OPCs displayed significant increase MBP fluorescence signal in positive regions and CNPase expression, which recovered OPCs differentiation to counterbalance Pb toxicity. In conclusion, Pb exposure disturbs OLs differentiation via affecting the function of NCX3 by inducing intracellular calcium overload.

  11. Ceramide and neurodegeneration: Susceptibility of neurons and oligodendrocytes to cell damage and death

    PubMed Central

    Jana, Arundhati; Hogan, Edward L.; Pahan, Kalipada

    2009-01-01

    Neurodegenerative disorders are marked by extensive neuronal apoptosis and gliosis. Although several apoptosis-inducing agents have been described, understanding of the regulatory mechanisms underlying modes of cell death is incomplete. A major breakthrough in delineation of the mechanism of cell death came from elucidation of the sphingomyelin (SM)-ceramide pathway that has received worldwide attention in recent years. The SM pathway induces apoptosis, differentiation, proliferation, and growth arrest depending upon cell and receptor types, and on downstream targets. Sphingomyelin, a plasma membrane constituent, is abundant in mammalian nervous system, and ceramide, its primary catabolic product released by activation of either neutral or acidic sphingomyelinase, serves as a potential lipid second messenger or mediator molecule modulating diverse cellular signaling pathways. Neutral sphingomyelinase (NSMase) is a key enzyme in the regulated activation of the SM cycle and is particularly sensitive to oxidative stress. In a context of increasing clarification of the mechanisms of neurodegeneration, we thought that it would be useful to review details of recent findings that we and others have made concerning different pro-apoptotic neurotoxins including proinflammatory cytokines, hypoxia-induced SM hydrolysis and ceramide production that induce cell death in human primary neurons and primary oligodendrocytes: redox sensitive events. What has and is emerging is a vista of therapeutically important ceramide regulation affecting a variety of different neurodegenerative and neuroinflammatory disorders. PMID:19147160

  12. The developing oligodendrocyte: key cellular target in brain injury in the premature infant.

    PubMed

    Volpe, Joseph J; Kinney, Hannah C; Jensen, Frances E; Rosenberg, Paul A

    2011-06-01

    Brain injury in the premature infant, a problem of enormous importance, is associated with a high risk of neurodevelopmental disability. The major type of injury involves cerebral white matter and the principal cellular target is the developing oligodendrocyte. The specific phase of the oligodendroglial lineage affected has been defined from study of both human brain and experimental models. This premyelinating cell (pre-OL) is vulnerable because of a series of maturation-dependent events. The pathogenesis of pre-OL injury relates to operation of two upstream mechanisms, hypoxia-ischemia and systemic infection/inflammation, both of which are common occurrences in premature infants. The focus of this review and of our research over the past 15-20 years has been the cellular and molecular bases for the maturation-dependent vulnerability of the pre-OL to the action of the two upstream mechanisms. Three downstream mechanisms have been identified, i.e., microglial activation, excitotoxicity and free radical attack. The work in both experimental models and human brain has identified a remarkable confluence of maturation-dependent factors that render the pre-OL so exquisitely vulnerable to these downstream mechanisms. Most importantly, elucidation of these factors has led to delineation of a series of potential therapeutic interventions, which in experimental models show marked protective properties. The critical next step, i.e., clinical trials in the living infant, is now on the horizon.

  13. Laser ablated hard coating for microtools

    DOEpatents

    McLean, W. II; Balooch, M.; Siekhaus, W.J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10--20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode. 12 figs.

  14. Laser ablated hard coating for microtools

    DOEpatents

    McLean, II, William; Balooch, Mehdi; Siekhaus, Wigbert J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10-20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode.

  15. Oligodendrocyte progenitor programming and reprogramming: Toward myelin regeneration.

    PubMed

    Lopez Juarez, Alejandro; He, Danyang; Richard Lu, Q

    2016-05-01

    Demyelinating diseases such as multiple sclerosis (MS) are among the most disabling and cost-intensive neurological disorders. The loss of myelin in the central nervous system, produced by oligodendrocytes (OLs), impairs saltatory nerve conduction, leading to motor and cognitive deficits. Immunosuppression therapy has a limited efficacy in MS patients, arguing for a paradigm shift to strategies that target OL lineage cells to achieve myelin repair. The inhibitory microenvironment in MS lesions abrogates the expansion and differentiation of resident OL precursor cells (OPCs) into mature myelin-forming OLs. Recent studies indicate that OPCs display a highly plastic ability to differentiate into alternative cell lineages under certain circumstances. Thus, understanding the mechanisms that maintain and control OPC fate and differentiation into mature OLs in a hostile, non-permissive lesion environment may open new opportunities for regenerative therapies. In this review, we will focus on 1) the plasticity of OPCs in terms of their developmental origins, distribution, and differentiation potentials in the normal and injured brain; 2) recent discoveries of extrinsic and intrinsic factors and small molecule compounds that control OPC specification and differentiation; and 3) therapeutic potential for motivation of neural progenitor cells and reprogramming of differentiated cells into OPCs and their likely impacts on remyelination. OL-based therapies through activating regenerative potentials of OPCs or cell replacement offer exciting opportunities for innovative strategies to promote remyelination and neuroprotection in devastating demyelinating diseases like MS. This article is part of a Special Issue entitled SI:NG2-glia(Invited only). PMID:26546966

  16. Oligodendrocyte progenitor programming and reprogramming: Toward myelin regeneration.

    PubMed

    Lopez Juarez, Alejandro; He, Danyang; Richard Lu, Q

    2016-05-01

    Demyelinating diseases such as multiple sclerosis (MS) are among the most disabling and cost-intensive neurological disorders. The loss of myelin in the central nervous system, produced by oligodendrocytes (OLs), impairs saltatory nerve conduction, leading to motor and cognitive deficits. Immunosuppression therapy has a limited efficacy in MS patients, arguing for a paradigm shift to strategies that target OL lineage cells to achieve myelin repair. The inhibitory microenvironment in MS lesions abrogates the expansion and differentiation of resident OL precursor cells (OPCs) into mature myelin-forming OLs. Recent studies indicate that OPCs display a highly plastic ability to differentiate into alternative cell lineages under certain circumstances. Thus, understanding the mechanisms that maintain and control OPC fate and differentiation into mature OLs in a hostile, non-permissive lesion environment may open new opportunities for regenerative therapies. In this review, we will focus on 1) the plasticity of OPCs in terms of their developmental origins, distribution, and differentiation potentials in the normal and injured brain; 2) recent discoveries of extrinsic and intrinsic factors and small molecule compounds that control OPC specification and differentiation; and 3) therapeutic potential for motivation of neural progenitor cells and reprogramming of differentiated cells into OPCs and their likely impacts on remyelination. OL-based therapies through activating regenerative potentials of OPCs or cell replacement offer exciting opportunities for innovative strategies to promote remyelination and neuroprotection in devastating demyelinating diseases like MS. This article is part of a Special Issue entitled SI:NG2-glia(Invited only).

  17. Extracellular cues influencing oligodendrocyte differentiation and (re)myelination.

    PubMed

    Wheeler, Natalie A; Fuss, Babette

    2016-09-01

    There is an increasing number of neurologic disorders found to be associated with loss and/or dysfunction of the CNS myelin sheath, ranging from the classic demyelinating disease, multiple sclerosis, through CNS injury, to neuropsychiatric diseases. The disabling burden of these diseases has sparked a growing interest in gaining a better understanding of the molecular mechanisms regulating the differentiation of the myelinating cells of the CNS, oligodendrocytes (OLGs), and the process of (re)myelination. In this context, the importance of the extracellular milieu is becoming increasingly recognized. Under pathological conditions, changes in inhibitory as well as permissive/promotional cues are thought to lead to an overall extracellular environment that is obstructive for the regeneration of the myelin sheath. Given the general view that remyelination is, even though limited in human, a natural response to demyelination, targeting pathologically 'dysregulated' extracellular cues and their downstream pathways is regarded as a promising approach toward the enhancement of remyelination by endogenous (or if necessary transplanted) OLG progenitor cells. In this review, we will introduce the extracellular cues that have been implicated in the modulation of (re)myelination. These cues can be soluble, part of the extracellular matrix (ECM) or mediators of cell-cell interactions. Their inhibitory and permissive/promotional roles with regard to remyelination as well as their potential for therapeutic intervention will be discussed.

  18. Maturation and electrophysiological properties of human pluripotent stem cell-derived oligodendrocytes.

    PubMed

    Livesey, Matthew R; Magnani, Dario; Cleary, Elaine M; Vasistha, Navneet A; James, Owain T; Selvaraj, Bhuvaneish T; Burr, Karen; Story, David; Shaw, Christopher E; Kind, Peter C; Hardingham, Giles E; Wyllie, David J A; Chandran, Siddharthan

    2016-04-01

    Rodent-based studies have shown that the membrane properties of oligodendrocytes play prominent roles in their physiology and shift markedly during their maturation from the oligodendrocyte precursor cell (OPC) stage. However, the conservation of these properties and maturation processes in human oligodendrocytes remains unknown, despite their dysfunction being implicated in human neurodegenerative diseases such as multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Here, we have defined the membrane properties of human oligodendrocytes derived from pluripotent stem cells as they mature from the OPC stage, and have identified strong conservation of maturation-specific physiological characteristics reported in rodent systems. We find that as human oligodendrocytes develop and express maturation markers, they exhibit a progressive decrease in voltage-gated sodium and potassium channels and a loss of tetrodotoxin-sensitive spiking activity. Concomitant with this is an increase in inwardly rectifying potassium channel activity, as well as a characteristic switch in AMPA receptor composition. All these steps mirror the developmental trajectory observed in rodent systems. Oligodendrocytes derived from mutant C9ORF72-carryng ALS patient induced pluripotent stem cells did not exhibit impairment to maturation and maintain viability with respect to control lines despite the presence of RNA foci, suggesting that maturation defects may not be a primary feature of this mutation. Thus, we have established that the development of human oligodendroglia membrane properties closely resemble those found in rodent cells and have generated a platform to enable the impact of human neurodegenerative disease-causing mutations on oligodendrocyte maturation to be studied. PMID:26763608

  19. Dual-specific Phosphatase-6 (Dusp6) and ERK Mediate AMPA Receptor-induced Oligodendrocyte Death*

    PubMed Central

    Domercq, Maria; Alberdi, Elena; Sánchez-Gómez, Maria Victoria; Ariz, Usue; Pérez-Samartín, Alberto; Matute, Carlos

    2011-01-01

    Oligodendrocytes, the myelinating cells of the CNS, are highly vulnerable to glutamate excitotoxicity, a mechanism involved in tissue damage in multiple sclerosis. Thus, understanding oligodendrocyte death at the molecular level is important to develop new therapeutic approaches to treat the disease. Here, using microarray analysis and quantitative PCR, we observed that dual-specific phosphatase-6 (Dusp6), an extracellular regulated kinase-specific phosphatase, is up-regulated in oligodendrocyte cultures as well as in optic nerves after AMPA receptor activation. In turn, Dusp6 is overexpressed in optic nerves from multiple sclerosis patients before the appearance of evident damage in this structure. We further analyzed the role of Dusp6 and ERK signaling in excitotoxic oligodendrocyte death and observed that AMPA receptor activation induces a rapid increase in ERK1/2 phosphorylation. Blocking Dusp6 expression, which enhances ERK1/2 phosphorylation, significantly diminished AMPA receptor-induced oligodendrocyte death. In contrast, MAPK/ERK pathway inhibition with UO126 significantly potentiates excitotoxic oligodendrocyte death and increases cytochrome c release, mitochondrial depolarization, and mitochondrial calcium overload produced by AMPA receptor stimulation. Upstream analysis demonstrated that MAPK/ERK signaling alters AMPA receptor properties. Indeed, Dusp6 overexpression as well as incubation with UO126 produced an increase in AMPA receptor-induced inward currents and cytosolic calcium overload. Together, these data suggest that levels of phosphorylated ERK, controlled by Dusp6 phosphatase, regulate glutamate receptor permeability and oligodendroglial excitotoxicity. Therefore, targeting Dusp6 may be a useful strategy to prevent oligodendrocyte death in multiple sclerosis and other diseases involving CNS white matter. PMID:21300799

  20. Characterization of glucose‐related metabolic pathways in differentiated rat oligodendrocyte lineage cells

    PubMed Central

    Amaral, Ana I.; Hadera, Mussie G.; Tavares, Joana M.

    2015-01-01

    Although oligodendrocytes constitute a significant proportion of cells in the central nervous system (CNS), little is known about their intermediary metabolism. We have, therefore, characterized metabolic functions of primary oligodendrocyte precursor cell cultures at late stages of differentiation using isotope‐labelled metabolites. We report that differentiated oligodendrocyte lineage cells avidly metabolize glucose in the cytosol and pyruvate derived from glucose in the mitochondria. The labelling patterns of metabolites obtained after incubation with [1,2‐13C]glucose demonstrated that the pentose phosphate pathway (PPP) is highly active in oligodendrocytes (approximately 10% of glucose is metabolized via the PPP as indicated by labelling patterns in phosphoenolpyruvate). Mass spectrometry and magnetic resonance spectroscopy analyses of metabolites after incubation of cells with [1‐13C]lactate or [1,2‐13C]glucose, respectively, demonstrated that anaplerotic pyruvate carboxylation, which was thought to be exclusive to astrocytes, is also active in oligodendrocytes. Using [1,2‐13C]acetate, we show that oligodendrocytes convert acetate into acetyl CoA which is metabolized in the tricarboxylic acid cycle. Analysis of labelling patterns of alanine after incubation of cells with [1,2‐13C]acetate and [1,2‐13C]glucose showed catabolic oxidation of malate or oxaloacetate. In conclusion, we report that oligodendrocyte lineage cells at late differentiation stages are metabolically highly active cells that are likely to contribute considerably to the metabolic activity of the CNS. GLIA 2016;64:21–34 PMID:26352325

  1. [Steam ablation of varicose veins].

    PubMed

    van den Bos, Renate R; Malskat, Wendy S J; Neumann, H A M Martino

    2013-01-01

    In many western countries endovenous thermal ablation techniques have largely replaced classical surgery for the treatment of saphenous varicose veins as they are more effective and patient friendly. Because these treatments can be performed under local tumescent anaesthesia, patients can mobilize immediately after the procedure. A new method of thermal ablation is endovenous steam ablation, which is a fast and easy procedure. Steam ablation may cause less pain than laser ablation and it is also cheaper and more flexible than segmental radiofrequency ablation. PMID:23484513

  2. Ablative therapies for renal tumors

    PubMed Central

    Ramanathan, Rajan; Leveillee, Raymond J.

    2010-01-01

    Owing to an increased use of diagnostic imaging for evaluating patients with other abdominal conditions, incidentally discovered kidney masses now account for a majority of renal tumors. Renal ablative therapy is assuming a more important role in patients with borderline renal impairment. Renal ablation uses heat or cold to bring about cell death. Radiofrequency ablation and cryoablation are two such procedures, and 5-year results are now emerging from both modalities. Renal biopsy at the time of ablation is extremely important in order to establish tissue diagnosis. Real-time temperature monitoring at the time of radiofrequency ablation is very useful to ensure adequacy of ablation. PMID:21789083

  3. Oligodendrocytes Are Targets of HIV-1 Tat: NMDA and AMPA Receptor-Mediated Effects on Survival and Development

    PubMed Central

    Zou, Shiping; Fuss, Babette; Fitting, Sylvia; Hahn, Yun Kyung; Hauser, Kurt F.

    2015-01-01

    Myelin pallor in HIV+ individuals can occur very early during the disease process. While myelin damage might partly originate from HIV-induced vascular changes, the timing suggests that myelin and/or oligodendrocytes (OLs) may be directly affected. Histological (Golgi–Kopsch, electron microscopy) and biochemical studies have revealed an increased occurrence of abnormal OL/myelin morphology and dysregulated myelin protein expression in transgenic mice expressing the HIV-1 transactivator of transcription (Tat) protein. This suggests that viral proteins by themselves might cause OL injury. Since Tat interacts with NMDARs, we hypothesized that activation of NMDARs and subsequent disruption of cytoplasmic Ca2+ ([Ca2+]i) homeostasis might be one cause of white matter injury after HIV infection. In culture, HIV-1 Tat caused concentration-dependent death of immature OLs, while more mature OLs remained alive but had reduced myelin-like membranes. Tat also induced [Ca2+]i increases and Thr-287 autophosphorylation of Ca2+/calmodulin-dependent protein kinase II β (CaMKIIβ) in OLs. Tat-induced [Ca2+]i was attenuated by the NMDAR antagonist MK801, and also by the AMPA/kainate receptor antagonist CNQX. Importantly, both MK801 and CNQX blocked Tat-induced death of immature OLs, but only MK801 reversed Tat effects on myelin-like membranes. These results suggest that OLs can be direct targets of HIV proteins released from infected cells. Although viability and membrane production are both affected by glutamatergic receptor-mediated Ca2+ influx, and possibly the ensuing CaMKIIβ activation, the roles of AMPARs and NMDARs appear to be different and dependent on the stage of OL differentiation. SIGNIFICANCE STATEMENT Over 33 million individuals are currently infected by HIV. Among these individuals, ∼60% develop HIV-associated neurocognitive disorders. Myelin damage and white matter injury have been frequently reported in HIV patients but not extensively studied. Clinical studies

  4. Corticosteroids reverse cytokine-induced block of survival and differentiation of oligodendrocyte progenitor cells from rats

    PubMed Central

    Mann, Stefan A; Versmold, Beatrix; Marx, Romy; Stahlhofen, Sabine; Dietzel, Irmgard D; Heumann, Rolf; Berger, Richard

    2008-01-01

    Background Periventricular leukomalacia (PVL) is a frequent complication of preterm delivery. Proinflammatory cytokines, such as interferon-γ (IFN-γ) and tumor necrosis factor α (TNF-α) released from astrocytes and microglia activated by infection or ischemia have previously been shown to impair survival and maturation of oligodendrocyte progenitors and could thus be considered as potential factors contributing to the generation of this disease. The first goal of the present study was to investigate whether exposure of oligodendrocyte precursors to these cytokines arrests the maturation of ion currents in parallel to its effects on myelin proteins and morphological maturation. Secondly, in the search for agents, that can protect differentiating oligodendrocyte precursor cells from cytokine-induced damage we investigated effects of coapplications of corticosteroids with proinflammatory cytokines on the subsequent survival and differentiation of oligodendrocyte progenitor cells. Methods To exclude influences from factors released from other cell types purified cultures of oligodendrocyte precursors were exposed to cytokines and/or steroids and allowed to differentiate for further 6 days in culture. Changes in membrane surface were investigated with capacitance recordings and Scanning Ion Conductance Microscopy. Na+- and K+- currents were investigated using whole cell patch clamp recordings. The expression of myelin specific proteins was investigated using western blots and the precursor cells were identified using immunostaining with A2B5 antibodies. Results Surviving IFN-γ and TNF-α treated cells continued to maintain voltage-activated Na+- and K+ currents characteristic for the immature cells after 6 days in differentiation medium. Corticosterone, dihydrocorticosterone and, most prominently dexamethasone, counteracted the deleterious effects of IFN-γ and TNF-α on cell survival, A2B5-immunostaining and expression of myelin basic protein. The most potent

  5. Role of CNPase in the oligodendrocytic extracellular 2',3'-cAMP-adenosine pathway.

    PubMed

    Verrier, Jonathan D; Jackson, Travis C; Gillespie, Delbert G; Janesko-Feldman, Keri; Bansal, Rashmi; Goebbels, Sandra; Nave, Klaus-Armin; Kochanek, Patrick M; Jackson, Edwin K

    2013-10-01

    Extracellular adenosine 3',5'-cyclic monophosphate (3',5'-cAMP) is an endogenous source of localized adenosine production in many organs. Recent studies suggest that extracellular 2',3'-cAMP (positional isomer of 3',5'-cAMP) is also a source of adenosine, particularly in the brain in vivo post-injury. Moreover, in vitro studies show that both microglia and astrocytes can convert extracellular 2',3'-cAMP to adenosine. Here, we examined the ability of primary mouse oligodendrocytes and neurons to metabolize extracellular 2',3'-cAMP and their respective adenosine monophosphates (2'-AMP and 3'-AMP). Cells were also isolated from mice deficient in 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNPase). Oligodendrocytes metabolized 2',3'-cAMP to 2'-AMP with 10-fold greater efficiency than did neurons (and also more than previously examined microglia and astrocytes); whereas, the production of 3'-AMP was minimal in both oligodendrocytes and neurons. The production of 2'-AMP from 2',3'-cAMP was reduced by 65% in CNPase -/- versus CNPase +/+ oligodendrocytes. Oligodendrocytes also converted 2'-AMP to adenosine, and this was also attenuated in CNPase -/- oligodendrocytes. Inhibition of classic 3',5'-cAMP-3'-phosphodiesterases with 3-isobutyl-1-methylxanthine did not block metabolism of 2',3'-cAMP to 2'-AMP and inhibition of classic ecto-5'-nucleotidase (CD73) with α,β-methylene-adenosine-5'-diphosphate did not attenuate the conversion of 2'-AMP to adenosine. These studies demonstrate that oligodendrocytes express the extracellular 2',3'-cAMP-adenosine pathway (2',3'-cAMP → 2'-AMP → adenosine). This pathway is more robustly expressed in oligodendrocytes than in all other CNS cell types because CNPase is the predominant enzyme that metabolizes 2',3'-cAMP to 2-AMP in CNS cells. By reducing levels of 2',3'-cAMP (a mitochondrial toxin) and increasing levels of adenosine (a neuroprotectant), oligodendrocytes may protect axons from injury. PMID:23922219

  6. Motor neurons and oligodendrocytes arise from distinct cell lineages by progenitor recruitment

    PubMed Central

    Ravanelli, Andrew M.; Appel, Bruce

    2015-01-01

    During spinal cord development, ventral neural progenitor cells that express the transcription factors Olig1 and Olig2, called pMN progenitors, produce motor neurons and then oligodendrocytes. Whether motor neurons and oligodendrocytes arise from common or distinct progenitors in vivo is not known. Using zebrafish, we found that motor neurons and oligodendrocytes are produced sequentially by distinct progenitors that have distinct origins. When olig2+ cells were tracked during the peak period of motor neuron formation, most differentiated as motor neurons without further cell division. Using time-lapse imaging, we found that, as motor neurons differentiated, more dorsally positioned neuroepithelial progenitors descended to the pMN domain and initiated olig2 expression. Inhibition of Hedgehog signaling during motor neuron differentiation blocked the ventral movement of progenitors, the progressive initiation of olig2 expression, and oligodendrocyte formation. We therefore propose that the motor neuron-to-oligodendrocyte switch results from Hedgehog-mediated recruitment of glial-fated progenitors to the pMN domain subsequent to neurogenesis. PMID:26584621

  7. miRNAs As Emerging Regulators of Oligodendrocyte Development and Differentiation

    PubMed Central

    Galloway, Dylan A.; Moore, Craig S.

    2016-01-01

    Chronic demyelination is a hallmark of neurological disorders such as multiple sclerosis (MS) and several leukodystrophies. In the central nervous system (CNS), remyelination is a regenerative process that is often inadequate during these pathological states. In the MS context, in situ evidence suggests that remyelination is mediated by populations of oligodendrocyte progenitor cells (OPCs) that proliferate, migrate, and differentiate into mature, myelin-producing oligodendrocytes at sites of demyelinated lesions. The molecular programming of OPCs into mature oligodendrocytes is governed by a myriad of complex intracellular signaling pathways that modulate this process. Recent research has demonstrated the importance of specific and short non-coding RNAs, known as microRNAs (miRNAs), in regulating OPC differentiation and remyelination. Fortunately, it may be possible to take advantage of numerous developmental studies (both human and rodent) that have previously characterized miRNA expression profiles from the early neural progenitor cell to the late myelin-producing oligodendrocyte. Here we review much of the work to date and discuss the impact of miRNAs on OPC and oligodendrocyte biology. Additionally, we consider the potential for miRNA-mediated therapy in the context of remyelination and brain repair. PMID:27379236

  8. In vitro transdifferentiation of human cultured CD34+ stem cells into oligodendrocyte precursors using thyroid hormones.

    PubMed

    Venkatesh, Katari; Srikanth, Lokanathan; Vengamma, Bhuma; Chandrasekhar, Chodimella; Prasad, Bodapati Chandra Mouleshwara; Sarma, Potukuchi Venkata Gurunadha Krishna

    2015-02-19

    The extent of myelination on the axon promotes transmission of impulses in the neural network, any disturbances in this process results in the neurodegenerative condition. Transplantation of oligodendrocyte precursors that supports in the regeneration of axons through myelination is an important step in the restoration of damaged neurons. Therefore, in the present study, the differentiation of human CD34+ stem cells into oligodendrocytes was carried out. The pure human CD34+ culture developed from the stem cells obtained from a peripheral blood of a donor were subjected to oligodendrocyte differentiation medium (ODM). The ODM at a concentration of 40ng/ml thyroxine, 40ng/ml 3,3',5-tri-iodo-thyronine showed distinct morphological changes from day 6 to 9 with cells exhibiting conspicuous stellate morphology and extensive foot processes. The real-time PCR analysis showed prominent expression of Olig2, CNPase, PDGFRα and PLP1/DM20 in the differentiated cells confirming the formed cells are oligodendrocyte precursors. The expression of these genes increased from days 6 to 9 corresponding to the morphological changes observed with almost no expression of GFAP+ cells. The distinct CNPase activity was observed in these differentiated cells compared to normal CD34+ stem cells correlating with results of real-time PCR conclusively explains the development of oligodendrocytes from human CD34+ stem cells.

  9. Shortened telomere length in white matter oligodendrocytes in major depression: potential role of oxidative stress.

    PubMed

    Szebeni, Attila; Szebeni, Katalin; DiPeri, Timothy; Chandley, Michelle J; Crawford, Jessica D; Stockmeier, Craig A; Ordway, Gregory A

    2014-10-01

    Telomere shortening is observed in peripheral mononuclear cells from patients with major depressive disorder (MDD). Whether this finding and its biological causes impact the health of the brain in MDD is unknown. Brain cells have differing vulnerabilities to biological mechanisms known to play a role in accelerating telomere shortening. Here, two glia cell populations (oligodendrocytes and astrocytes) known to have different vulnerabilities to a key mediator of telomere shortening, oxidative stress, were studied. The two cell populations were separately collected by laser capture micro-dissection of two white matter regions shown previously to demonstrate pathology in MDD patients. Cells were collected from brain donors with MDD at the time of death and age-matched psychiatrically normal control donors (N = 12 donor pairs). Relative telomere lengths in white matter oligodendrocytes, but not astrocytes, from both brain regions were significantly shorter for MDD donors as compared to matched control donors. Gene expression levels of telomerase reverse transcriptase were significantly lower in white matter oligodendrocytes from MDD as compared to control donors. Likewise, the gene expression of oxidative defence enzymes superoxide dismutases (SOD1 and SOD2), catalase (CAT) and glutathione peroxidase (GPX1) were significantly lower in oligodendrocytes from MDD as compared to control donors. No such gene expression changes were observed in astrocytes from MDD donors. These findings suggest that attenuated oxidative stress defence and deficient telomerase contribute to telomere shortening in oligodendrocytes in MDD, and suggest an aetiological link between telomere shortening and white matter abnormalities previously described in MDD.

  10. Iron efflux from oligodendrocytes is differentially regulated in gray and white matter.

    PubMed

    Schulz, Katrin; Vulpe, Chris D; Harris, Leah Z; David, Samuel

    2011-09-14

    Accumulation of iron occurs in the CNS in several neurodegenerative diseases. Iron is essential for life but also has the ability to generate toxic free radicals if not properly handled. Iron homeostasis at the cellular level is therefore important to maintain proper cellular function, and its dysregulation can contribute to neurodegenerative diseases. Iron export, a key mechanism to maintain proper levels in cells, occurs via ferroportin, a ubiquitously expressed transmembrane protein that partners with a ferroxidase. A membrane-bound form of the ferroxidase ceruloplasmin is expressed by astrocytes in the CNS and regulates iron efflux. We now show that oligodendrocytes use another ferroxidase, called hephaestin, which was first identified in enterocytes in the gut. Mice with mutations in the hephaestin gene (sex-linked anemia mice) show iron accumulation in oligodendrocytes in the gray matter, but not in the white matter, and exhibit motor deficits. This was accompanied by a marked reduction in the levels of the paranodal proteins contactin-associated protein 1 (Caspr) and reticulon-4 (Nogo A). We show that the sparing of iron accumulation in white matter oligodendrocytes in sex-linked anemia mice is due to compensatory upregulation of ceruloplasmin in these cells. This was further confirmed in ceruloplasmin/hephaestin double-mutant mice, which show iron accumulation in both gray and white matter oligodendrocytes. These data indicate that gray and white matter oligodendrocytes can use different iron efflux mechanisms to maintain iron homeostasis. Dysregulation of such efflux mechanisms leads to iron accumulation in the CNS. PMID:21917813

  11. Fibroblast growth factor receptor signaling in oligodendrocytes regulates myelin sheath thickness.

    PubMed

    Furusho, Miki; Dupree, Jeffrey L; Nave, Klaus-Armin; Bansal, Rashmi

    2012-05-01

    Formation of the CNS white matter is developmentally tightly regulated, but the molecules and mechanisms of myelination control in the postnatal CNS are poorly understood. Here, we show that myelin growth is controlled by fibroblast growth factor (FGF) signaling, originally identified as a proliferative signal for oligodendrocyte precursor cells (OPCs) in vitro. We created two lines of mice lacking both FGF receptor 1 (Fgfr1) and Fgfr2 in oligodendrocyte-lineage cells but found that in these mice OPC proliferation and differentiation were unaffected. In addition, axonal ensheathment and the initiation of myelination were on time. However, the rapid growth of CNS myelin, normally occurring in the second postnatal week, was strongly inhibited. Throughout adulthood, the myelin sheath remained disproportionately thin relative to the axon caliber. In adult mice, mutant oligodendrocytes were normal in number, whereas the transcription of major myelin genes was reduced. This FGF receptor-mediated stimulation of mature oligodendrocytes could also be modeled in vitro, demonstrating that enhanced expansion of oligodendroglial processes requires signaling by extracellular signal regulated kinase-1 and -2 (Erk1/2), downstream mediators of mitogen-activated protein kinase (MAPK). In vivo, Erk1/2-MAPK activity was reduced in the hypomyelinated CNS of Fgfr1/Fgfr2 mutant mice. These studies reveal a previously unrecognized function of FGF receptor signaling in oligodendrocytes that contributes to the regulation of myelin sheath thickness and that uncouples the initiation of ensheathment from the later phase of continued myelin growth.

  12. Movement and structure of mitochondria in oligodendrocytes and their myelin sheaths.

    PubMed

    Rinholm, Johanne E; Vervaeke, Koen; Tadross, Michael R; Tkachuk, Ariana N; Kopek, Benjamin G; Brown, Timothy A; Bergersen, Linda H; Clayton, David A

    2016-05-01

    Mitochondria play several crucial roles in the life of oligodendrocytes. During development of the myelin sheath they are essential providers of carbon skeletons and energy for lipid synthesis. During normal brain function their consumption of pyruvate will be a key determinant of how much lactate is available for oligodendrocytes to export to power axonal function. Finally, during calcium-overload induced pathology, as occurs in ischemia, mitochondria may buffer calcium or induce apoptosis. Despite their important functions, very little is known of the properties of oligodendrocyte mitochondria, and mitochondria have never been observed in the myelin sheaths. We have now used targeted expression of fluorescent mitochondrial markers to characterize the location and movement of mitochondria within oligodendrocytes. We show for the first time that mitochondria are able to enter and move within the myelin sheath. Within the myelin sheath the highest number of mitochondria was in the cytoplasmic ridges along the sheath. Mitochondria moved more slowly than in neurons and, in contrast to their behavior in neurons and astrocytes, their movement was increased rather than inhibited by glutamate activating NMDA receptors. By electron microscopy we show that myelin sheath mitochondria have a low surface area of cristae, which suggests a low ATP production. These data specify fundamental properties of the oxidative phosphorylation system in oligodendrocytes, the glial cells that enhance cognition by speeding action potential propagation and provide metabolic support to axons.

  13. Linking White and Grey Matter in Schizophrenia: Oligodendrocyte and Neuron Pathology in the Prefrontal Cortex

    PubMed Central

    Höistad, Malin; Segal, Devorah; Takahashi, Nagahide; Sakurai, Takeshi; Buxbaum, Joseph D.; Hof, Patrick R.

    2009-01-01

    Neuronal circuitry relies to a large extent on the presence of functional myelin produced in the brain by oligodendrocytes. Schizophrenia has been proposed to arise partly from altered brain connectivity. Brain imaging and neuropathologic studies have revealed changes in white matter and reduction in myelin content in patients with schizophrenia. In particular, alterations in the directionality and alignment of axons have been documented in schizophrenia. Moreover, the expression levels of several myelin-related genes are decreased in postmortem brains obtained from patients with schizophrenia. These findings have led to the formulation of the oligodendrocyte/myelin dysfunction hypothesis of schizophrenia. In this review, we present a brief overview of the neuropathologic findings obtained on white matter and oligodendrocyte status observed in schizophrenia patients, and relate these changes to the processes of brain maturation and myelination. We also review recent data on oligodendrocyte/myelin genes, and present some recent mouse models of myelin deficiencies. The use of transgenic and mutant animal models offers a unique opportunity to analyze oligodendrocyte and neuronal changes that may have a clinical impact. Lastly, we present some recent morphological findings supporting possible causal involvement of white and grey matter abnormalities, in the aim of determining the morphologic characteristics of the circuits whose alteration leads to the cortical dysfunction that possibly underlies the pathogenesis of schizophrenia. PMID:19636386

  14. Transient Ablation of Teflon Hemispheres

    NASA Technical Reports Server (NTRS)

    Arai, Norio; Karashima, Kei-ichi; Sato, Kiyoshi

    1997-01-01

    For high-speed entry of space vehicles into atmospheric environments, ablation is a practical method for alleviating severe aerodynamic heating. Several studies have been undertaken on steady or quasi-steady ablation. However, ablation is a very complicated phenomenon in which a nonequilibrium chemical process is associated with an aerodynamic process that involves changes in body shape with time. Therefore, it seems realistic to consider that ablation is an unsteady phenomenon. In the design of an ablative heat-shield system, since the ultimate purpose of the heat shield is to keep the internal temperature of the space vehicle at a safe level during entry, the transient heat conduction characteristics of the ablator may be critical in the selection of the material and its thickness. This note presents an experimental study of transient ablation of Teflon, with particular emphasis on the change in body shape, the instantaneous internal temperature distribution, and the effect of thermal expansion on ablation rate.

  15. Advanced Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew J.

    2011-01-01

    Early NASA missions (Gemini, Apollo, Mars Viking) employed new ablative TPS that were tailored for the entry environment. After 40 years, heritage ablative TPS materials using Viking or Pathfinder era materials are at or near their performance limits and will be inadequate for future exploration missions. Significant advances in TPS materials technology are needed in order to enable any subsequent human exploration missions beyond Low Earth Orbit. This poster summarizes some recent progress at NASA in developing families of advanced rigid/conformable and flexible ablators that could potentially be used for thermal protection in planetary entry missions. In particular the effort focuses technologies required to land heavy (approx.40 metric ton) masses on Mars to facilitate future exploration plans.

  16. Shuttle subscale ablative nozzle tests

    NASA Technical Reports Server (NTRS)

    Powers, L. B.; Bailey, R. L.

    1980-01-01

    Recent subscale nozzle tests have identified new and promising carbon phenolic nozzle ablatives which utilize staple rayon, PAN, and pitch based carbon cloth. A 4-inch throat diameter submerged test nozzle designed for the 48-inch Jet Propulsion Laboratory char motor was used to evaluate five different designs incorporating 20 candidate ablatives. Test results indicate that several pitch and PAN-based carbon phenolic ablatives can provide erosion and char performance equivalent or superior to the present continuous rayon-based SRM ablative.

  17. Neuronal expression of pathological tau accelerates oligodendrocyte progenitor cell differentiation.

    PubMed

    Ossola, Bernardino; Zhao, Chao; Compston, Alastair; Pluchino, Stefano; Franklin, Robin J M; Spillantini, Maria Grazia

    2016-03-01

    Oligodendrocyte progenitor cell (OPC) differentiation is an important therapeutic target to promote remyelination in multiple sclerosis (MS). We previously reported hyperphosphorylated and aggregated microtubule-associated protein tau in MS lesions, suggesting its involvement in axonal degeneration. However, the influence of pathological tau-induced axonal damage on the potential for remyelination is unknown. Therefore, we investigated OPC differentiation in human P301S tau (P301S-htau) transgenic mice, both in vitro and in vivo following focal demyelination. In 2-month-old P301S-htau mice, which show hyperphosphorylated tau in neurons, we found atrophic axons in the spinal cord in the absence of prominent axonal degeneration. These signs of early axonal damage were associated with microgliosis and an upregulation of IL-1β and TNFα. Following in vivo focal white matter demyelination we found that OPCs differentiated more efficiently in P301S-htau mice than wild type (Wt) mice. We also found an increased level of myelin basic protein within the lesions, which however did not translate into increased remyelination due to higher susceptibility of P301S-htau axons to demyelination-induced degeneration compared to Wt axons. In vitro experiments confirmed higher differentiation capacity of OPCs from P301S-htau mice compared with Wt mice-derived OPCs. Because the OPCs from P301S-htau mice do not ectopically express the transgene, and when isolated from newborn mice behave like Wt mice-derived OPCs, we infer that their enhanced differentiation capacity must have been acquired through microenvironmental priming. Our data suggest the intriguing concept that damaged axons may signal to OPCs and promote their differentiation in the attempt at rescue by remyelination.

  18. Neuronal expression of pathological tau accelerates oligodendrocyte progenitor cell differentiation.

    PubMed

    Ossola, Bernardino; Zhao, Chao; Compston, Alastair; Pluchino, Stefano; Franklin, Robin J M; Spillantini, Maria Grazia

    2016-03-01

    Oligodendrocyte progenitor cell (OPC) differentiation is an important therapeutic target to promote remyelination in multiple sclerosis (MS). We previously reported hyperphosphorylated and aggregated microtubule-associated protein tau in MS lesions, suggesting its involvement in axonal degeneration. However, the influence of pathological tau-induced axonal damage on the potential for remyelination is unknown. Therefore, we investigated OPC differentiation in human P301S tau (P301S-htau) transgenic mice, both in vitro and in vivo following focal demyelination. In 2-month-old P301S-htau mice, which show hyperphosphorylated tau in neurons, we found atrophic axons in the spinal cord in the absence of prominent axonal degeneration. These signs of early axonal damage were associated with microgliosis and an upregulation of IL-1β and TNFα. Following in vivo focal white matter demyelination we found that OPCs differentiated more efficiently in P301S-htau mice than wild type (Wt) mice. We also found an increased level of myelin basic protein within the lesions, which however did not translate into increased remyelination due to higher susceptibility of P301S-htau axons to demyelination-induced degeneration compared to Wt axons. In vitro experiments confirmed higher differentiation capacity of OPCs from P301S-htau mice compared with Wt mice-derived OPCs. Because the OPCs from P301S-htau mice do not ectopically express the transgene, and when isolated from newborn mice behave like Wt mice-derived OPCs, we infer that their enhanced differentiation capacity must have been acquired through microenvironmental priming. Our data suggest the intriguing concept that damaged axons may signal to OPCs and promote their differentiation in the attempt at rescue by remyelination. PMID:26576485

  19. Remyelinating Oligodendrocyte Precursor Cell miRNAs from the Sfmbt2 Cluster Promote Cell Cycle Arrest and Differentiation

    PubMed Central

    Kuypers, Nicholas J.; Bankston, Andrew N.; Howard, Russell M.; Beare, Jason E.

    2016-01-01

    Oligodendrocyte (OL) loss contributes to the functional deficits underlying diseases with a demyelinating component. Remyelination by oligodendrocyte progenitor cells (OPCs) can restore these deficits. To understand the role that microRNAs (miRNAs) play in remyelination, 2′,3′-cyclic-nucleotide 3′-phosphodiesterase-EGFP+ mice were treated with cuprizone, and OPCs were sorted from the corpus callosum. Microarray analysis revealed that Sfmbt2 family miRNAs decreased during cuprizone treatment. One particular Sfmbt2 miRNA, miR-297c-5p, increased during mouse OPC differentiation in vitro and during callosal development in vivo. When overexpressed in both mouse embryonic fibroblasts and rat OPCs (rOPCs), cell cycle analysis revealed that miR-297c-5p promoted G1/G0 arrest. Additionally, miR-297c-5p transduction increased the number of O1+ rOPCs during differentiation. Luciferase reporter assays confirmed that miR-297c-5p targets cyclin T2 (CCNT2), the regulatory subunit of positive transcription elongation factor b, a complex that inhibits OL maturation. Furthermore, CCNT2-specific knockdown promoted rOPC differentiation while not affecting cell cycle status. Together, these data support a dual role for miR-297c-5p as both a negative regulator of OPC proliferation and a positive regulator of OL maturation via its interaction with CCNT2. SIGNIFICANCE STATEMENT This work describes the role of oligodendrocyte progenitor cell (OPC) microRNAs (miRNAs) during remyelination and development in vivo and differentiation in vitro. This work highlights the importance of miRNAs to OPC biology and describes miR-297c-5p, a novel regulator of OPC function. In addition, we identified CCNT2 as a functional target, thus providing a mechanism by which miR-297c-5p imparts its effects on differentiation. These data are important, given our lack of understanding of OPC miRNA regulatory networks and their potential clinical value. Therefore, efforts to understand the role of miR-297c-5p

  20. Disturbance of oligodendrocyte function plays a key role in the pathogenesis of schizophrenia and major depressive disorder.

    PubMed

    Miyata, Shingo; Hattori, Tsuyoshi; Shimizu, Shoko; Ito, Akira; Tohyama, Masaya

    2015-01-01

    The major psychiatric disorders such as schizophrenia (SZ) and major depressive disorder (MDD) are thought to be multifactorial diseases related to both genetic and environmental factors. However, the genes responsible and the molecular mechanisms underlying the pathogenesis of SZ and MDD remain unclear. We previously reported that abnormalities of disrupted-in-Schizophrenia-1 (DISC1) and DISC1 binding zinc finger (DBZ) might cause major psychiatric disorders such as SZ. Interestingly, both DISC and DBZ have been further detected in oligodendrocytes and implicated in regulating oligodendrocyte differentiation. DISC1 negatively regulates the differentiation of oligodendrocytes, whereas DBZ plays a positive regulatory role in oligodendrocyte differentiation. We have reported that repeated stressful events, one of the major risk factors of MDD, can induce sustained upregulation of plasma corticosterone levels and serum/glucocorticoid regulated kinase 1 (Sgk1) mRNA expression in oligodendrocytes. Repeated stressful events can also activate the SGK1 cascade and cause excess arborization of oligodendrocyte processes, which is thought to be related to depressive-like symptoms. In this review, we discuss the expression of DISC1, DBZ, and SGK1 in oligodendrocytes, their roles in the regulation of oligodendrocyte function, possible interactions of DISC1 and DBZ in relation to SZ, and the activation of the SGK1 signaling cascade in relation to MDD. PMID:25705664

  1. Protection of p27(Kip1) mRNA by quaking RNA binding proteins promotes oligodendrocyte differentiation.

    PubMed

    Larocque, Daniel; Galarneau, André; Liu, Hsueh-Ning; Scott, Michelle; Almazan, Guillermina; Richard, Stéphane

    2005-01-01

    The quaking (Qk) locus expresses a family of RNA binding proteins, and the expression of several alternatively spliced isoforms coincides with the development of oligodendrocytes and the onset of myelination. Quaking viable (Qk(v)) mice harboring an autosomal recessive mutation in this locus have uncompacted myelin in the central nervous system owing to the inability of oligodendrocytes to properly mature. Here we show that the expression of two QKI isoforms, absent from oligodendrocytes of Qk(v) mice, induces cell cycle arrest of primary rat oligodendrocyte progenitor cells and differentiation into oligodendrocytes. Injection of retroviruses expressing QKI into the telencephalon of mouse embryos induced differentiation and migration of multipotential neural progenitor cells into mature oligodendrocytes localized in the corpus callosum. The mRNA encoding the cyclin-dependent kinase (CDK)-inhibitor p27(Kip1) was bound and stabilized by QKI, leading to an increased accumulation of p27(Kip1) protein in oligodendrocytes. Our findings demonstrate that QKI is upstream of p27(Kip1) during oligodendrocyte differentiation.

  2. Overexpression of the Dominant-Negative Form of Interferon Regulatory Factor 1 in Oligodendrocytes Protects against Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Ren, Zhihua; Wang, Yan; Tao, Duan; Liebenson, David; Liggett, Thomas; Goswami, Rajendra; Clarke, Robert; Stefoski, Dusan

    2011-01-01

    Interferon regulatory factor 1 (IRF-1) is a transcription factor that has been implicated in the pathogenesis of the human autoimmune demyelinating disease multiple sclerosis (MS) and in its animal model, experimental autoimmune encephalomyelitis (EAE). The goal of the present study was to directly examine the role of IRF-1 in oligodendrocyte injury and inflammatory demyelination. For the purpose of this study, we generated a transgenic mouse line (CNP/dnIRF-1) that overexpresses the dominant-negative form of IRF-1 (dnIRF1) specifically in oligodendrocytes. CNP/dnIRF-1 mice exhibited no phenotypic abnormalities but displayed suppressed IRF-1 signaling in oligodendrocytes. The major finding of our study was that the CNP/dnIRF-1 mice, compared with the wild-type mice, were protected against EAE, a phenomenon associated with significant reduction of inflammatory demyelination and with oligodendrocyte and axonal preservation. The observed protection was related to suppressed IRF-1 signaling and impaired expression of immune and proapoptotic genes in oligodendrocytes. No significant differences in the peripheral immune responses between the wild-type and the CNP/dnIRF-1 mice were identified throughout the experiments. This study indicates that IRF-1 plays a critical role in the pathogenesis of EAE by mediating oligodendrocyte response to inflammation and injury. It also suggests that oligodendrocytes are actively involved in the neuroimmune network, and that exploring oligodendrocyte-related pathogenic mechanisms, in addition to the conventional immune-based ones, may have important therapeutic implications in MS. PMID:21653838

  3. Involvement of MeCP2 in Regulation of Myelin-Related Gene Expression in Cultured Rat Oligodendrocytes.

    PubMed

    Sharma, Kedarlal; Singh, Juhi; Pillai, Prakash P; Frost, Emma E

    2015-10-01

    Methyl CpG binding protein 2 (MeCP2) is a multifunctional protein which binds to methylated CpG, mutation of which cause a neurodevelopmental disorder, Rett syndrome. MeCP2 can function as both transcriptional activator and repressor of target gene. MeCP2 regulate gene expression in both neuron and glial cells in central nervous system (CNS). Oligodendrocytes, the myelinating cells of CNS, are required for normal functioning of neurons and are regulated by several transcription factors during their differentiation. In current study, we focused on the role of MeCP2 as transcription regulator of myelin genes in cultured rat oligodendrocytes. We have observed expression of MeCP2 at all stages of oligodendrocyte development. MeCP2 knockdown in cultured oligodendrocytes by small interference RNA (siRNA) has shown increase in myelin genes (myelin basic protein (MBP), proteolipid protein (PLP), myelin oligodendrocyte glycoprotein (MOG), and myelin-associated oligodendrocyte basic protein (MOBP)), neurotrophin (brain-derived neurotrophic factor (BDNF)), and transcriptional regulator (YY1) transcripts level, which are involved in regulation of oligodendrocyte differentiation and myelination. Further, we also found that protein levels of MBP, PLP, DM-20, and BDNF also significantly upregulated in MeCP2 knockdown oligodendrocytes. Our study suggests that the MeCP2 acts as a negative regulator of myelin protein expression.

  4. Disturbance of oligodendrocyte function plays a key role in the pathogenesis of schizophrenia and major depressive disorder.

    PubMed

    Miyata, Shingo; Hattori, Tsuyoshi; Shimizu, Shoko; Ito, Akira; Tohyama, Masaya

    2015-01-01

    The major psychiatric disorders such as schizophrenia (SZ) and major depressive disorder (MDD) are thought to be multifactorial diseases related to both genetic and environmental factors. However, the genes responsible and the molecular mechanisms underlying the pathogenesis of SZ and MDD remain unclear. We previously reported that abnormalities of disrupted-in-Schizophrenia-1 (DISC1) and DISC1 binding zinc finger (DBZ) might cause major psychiatric disorders such as SZ. Interestingly, both DISC and DBZ have been further detected in oligodendrocytes and implicated in regulating oligodendrocyte differentiation. DISC1 negatively regulates the differentiation of oligodendrocytes, whereas DBZ plays a positive regulatory role in oligodendrocyte differentiation. We have reported that repeated stressful events, one of the major risk factors of MDD, can induce sustained upregulation of plasma corticosterone levels and serum/glucocorticoid regulated kinase 1 (Sgk1) mRNA expression in oligodendrocytes. Repeated stressful events can also activate the SGK1 cascade and cause excess arborization of oligodendrocyte processes, which is thought to be related to depressive-like symptoms. In this review, we discuss the expression of DISC1, DBZ, and SGK1 in oligodendrocytes, their roles in the regulation of oligodendrocyte function, possible interactions of DISC1 and DBZ in relation to SZ, and the activation of the SGK1 signaling cascade in relation to MDD.

  5. Disturbance of Oligodendrocyte Function Plays a Key Role in the Pathogenesis of Schizophrenia and Major Depressive Disorder

    PubMed Central

    Ito, Akira; Tohyama, Masaya

    2015-01-01

    The major psychiatric disorders such as schizophrenia (SZ) and major depressive disorder (MDD) are thought to be multifactorial diseases related to both genetic and environmental factors. However, the genes responsible and the molecular mechanisms underlying the pathogenesis of SZ and MDD remain unclear. We previously reported that abnormalities of disrupted-in-Schizophrenia-1 (DISC1) and DISC1 binding zinc finger (DBZ) might cause major psychiatric disorders such as SZ. Interestingly, both DISC and DBZ have been further detected in oligodendrocytes and implicated in regulating oligodendrocyte differentiation. DISC1 negatively regulates the differentiation of oligodendrocytes, whereas DBZ plays a positive regulatory role in oligodendrocyte differentiation. We have reported that repeated stressful events, one of the major risk factors of MDD, can induce sustained upregulation of plasma corticosterone levels and serum/glucocorticoid regulated kinase 1 (Sgk1) mRNA expression in oligodendrocytes. Repeated stressful events can also activate the SGK1 cascade and cause excess arborization of oligodendrocyte processes, which is thought to be related to depressive-like symptoms. In this review, we discuss the expression of DISC1, DBZ, and SGK1 in oligodendrocytes, their roles in the regulation of oligodendrocyte function, possible interactions of DISC1 and DBZ in relation to SZ, and the activation of the SGK1 signaling cascade in relation to MDD. PMID:25705664

  6. Oligodendrocyte, Astrocyte, and Microglia Crosstalk in Myelin Development, Damage, and Repair.

    PubMed

    Domingues, Helena S; Portugal, Camila C; Socodato, Renato; Relvas, João B

    2016-01-01

    Oligodendrocytes are the myelinating glia of the central nervous system. Myelination of axons allows rapid saltatory conduction of nerve impulses and contributes to axonal integrity. Devastating neurological deficits caused by demyelinating diseases, such as multiple sclerosis, illustrate well the importance of the process. In this review, we focus on the positive and negative interactions between oligodendrocytes, astrocytes, and microglia during developmental myelination and remyelination. Even though many lines of evidence support a crucial role for glia crosstalk during these processes, the nature of such interactions is often neglected when designing therapeutics for repair of demyelinated lesions. Understanding the cellular and molecular mechanisms underlying glial cell communication and how they influence oligodendrocyte differentiation and myelination is fundamental to uncover novel therapeutic strategies for myelin repair. PMID:27551677

  7. Characterization of cultured rat oligodendrocytes proliferating in a serum-free, chemically defined medium

    SciTech Connect

    Saneto, R.P.; de Vellis, J.

    1985-05-01

    A serumless, chemically defined medium has been developed for the culture of oligodendrocytes isolated from primary neonatal rat cerebral cultures. Combined together, insulin, transferrin, and fibroblast growth factor synergistically induced an essentially homogeneous population (95-98%) of cells expressing glycerol-3-phosphate dehydrogenase activity to undergo cell division. Proliferating cells were characterized by several criteria: (i) ultrastructural analysis by transmission electron microscopy identified the cell type as an oligodendrocyte; (ii) biochemical assays showed expression of three oligodendrocyte biochemical markers, induction of both glycerol phosphate dehydrogenase and lactate dehydrogenase, and presence of 2',3'-cyclic nucleotide 3'-phosphodiesterase; and (iii) immunocytochemical staining showed cultures to be 95-98% positive for glycerol phosphate dehydrogenase, 90% for myelin basic protein, 60-70% for galactocerebroside, and 70% for A2B5.

  8. Neurotransplantation of magnetically labeled oligodendrocyte progenitors: Magnetic resonance tracking of cell migration and myelination

    PubMed Central

    Bulte, J. W. M.; Zhang, S.-C.; van Gelderen, P.; Herynek, V.; Jordan, E. K.; Duncan, I. D.; Frank, J. A.

    1999-01-01

    Demyelination is a common pathological finding in human neurological diseases and frequently persists as a result of failure of endogenous repair. Transplanted oligodendrocytes and their precursor cells can (re)myelinate axons, raising the possibility of therapeutic intervention. The migratory capacity of transplanted cells is of key importance in determining the extent of (re)myelination and can, at present, be evaluated only by using invasive and irreversible procedures. We have exploited the transferrin receptor as an efficient intracellular delivery device for magnetic nanoparticles, and transplanted tagged oligodendrocyte progenitor cells into the spinal cord of myelin-deficient rats. Cell migration could be easily detected by using three-dimensional magnetic resonance microscopy, with a close correlation between the areas of contrast enhancement and the achieved extent of myelination. The present results demonstrate that magnetic resonance tracking of transplanted oligodendrocyte progenitors is feasible; this technique has the potential to be easily extended to other neurotransplantation studies involving different precursor cell types. PMID:10611372

  9. Oligodendrocyte, Astrocyte, and Microglia Crosstalk in Myelin Development, Damage, and Repair

    PubMed Central

    Domingues, Helena S.; Portugal, Camila C.; Socodato, Renato; Relvas, João B.

    2016-01-01

    Oligodendrocytes are the myelinating glia of the central nervous system. Myelination of axons allows rapid saltatory conduction of nerve impulses and contributes to axonal integrity. Devastating neurological deficits caused by demyelinating diseases, such as multiple sclerosis, illustrate well the importance of the process. In this review, we focus on the positive and negative interactions between oligodendrocytes, astrocytes, and microglia during developmental myelination and remyelination. Even though many lines of evidence support a crucial role for glia crosstalk during these processes, the nature of such interactions is often neglected when designing therapeutics for repair of demyelinated lesions. Understanding the cellular and molecular mechanisms underlying glial cell communication and how they influence oligodendrocyte differentiation and myelination is fundamental to uncover novel therapeutic strategies for myelin repair. PMID:27551677

  10. Fluoxetine prevents oligodendrocyte cell death by inhibiting microglia activation after spinal cord injury.

    PubMed

    Lee, Jee Y; Kang, So R; Yune, Tae Y

    2015-05-01

    Oligodendrocyte cell death and axon demyelination after spinal cord injury (SCI) are known to be important secondary injuries contributing to permanent neurological disability. Thus, blocking oligodendrocyte cell death should be considered for therapeutic intervention after SCI. Here, we demonstrated that fluoxetine, an antidepressant drug, alleviates oligodendrocyte cell death by inhibiting microglia activation after SCI. After injury at the T9 level with a Precision Systems and Instrumentation (Lexington, KY) device, fluoxetine (10 mg/kg, intraperitoneal) was administered once a day for the indicated time points. Immunostaining with CD11b (OX-42) antibody and quantification analysis showed that microglia activation was significantly inhibited by fluoxetine at 5 days after injury. Fluoxetine also significantly inhibited activation of p38 mitogen-activated protein kinase (p38-MAPK) and expression of pro-nerve growth factor (pro-NGF), which is known to mediate oligodendrocyte cell death through the p75 neurotrophin receptor after SCI. In addition, fluoxetine attenuated activation of Ras homolog gene family member A and decreased the level of phosphorylated c-Jun and, ultimately, alleviated caspase-3 activation and significantly reduced cell death of oligodendrocytes at 5 days after SCI. Further, the decrease of myelin basic protein, myelin loss, and axon loss in white matter was also significantly blocked by fluoxetine, as compared to vehicle control. These results suggest that fluoxetine inhibits oligodendrocyte cell death by inhibiting microglia activation and p38-MAPK activation, followed by pro-NGF production after SCI, and provide a potential usage of fluoxetine for a therapeutic agent after acute SCI in humans.

  11. Fluoxetine Prevents Oligodendrocyte Cell Death by Inhibiting Microglia Activation after Spinal Cord Injury

    PubMed Central

    Lee, Jee Y.; Kang, So R.

    2015-01-01

    Abstract Oligodendrocyte cell death and axon demyelination after spinal cord injury (SCI) are known to be important secondary injuries contributing to permanent neurological disability. Thus, blocking oligodendrocyte cell death should be considered for therapeutic intervention after SCI. Here, we demonstrated that fluoxetine, an antidepressant drug, alleviates oligodendrocyte cell death by inhibiting microglia activation after SCI. After injury at the T9 level with a Precision Systems and Instrumentation (Lexington, KY) device, fluoxetine (10 mg/kg, intraperitoneal) was administered once a day for the indicated time points. Immunostaining with CD11b (OX-42) antibody and quantification analysis showed that microglia activation was significantly inhibited by fluoxetine at 5 days after injury. Fluoxetine also significantly inhibited activation of p38 mitogen-activated protein kinase (p38-MAPK) and expression of pro-nerve growth factor (pro-NGF), which is known to mediate oligodendrocyte cell death through the p75 neurotrophin receptor after SCI. In addition, fluoxetine attenuated activation of Ras homolog gene family member A and decreased the level of phosphorylated c-Jun and, ultimately, alleviated caspase-3 activation and significantly reduced cell death of oligodendrocytes at 5 days after SCI. Further, the decrease of myelin basic protein, myelin loss, and axon loss in white matter was also significantly blocked by fluoxetine, as compared to vehicle control. These results suggest that fluoxetine inhibits oligodendrocyte cell death by inhibiting microglia activation and p38-MAPK activation, followed by pro-NGF production after SCI, and provide a potential usage of fluoxetine for a therapeutic agent after acute SCI in humans. PMID:25366938

  12. Fyn is an intermediate kinase that BDNF utilizes to promote oligodendrocyte myelination.

    PubMed

    Peckham, Haley; Giuffrida, Lauren; Wood, Rhiannon; Gonsalvez, David; Ferner, Anita; Kilpatrick, Trevor J; Murray, Simon S; Xiao, Junhua

    2016-02-01

    Fyn, a member of the Src family of nonreceptor tyrosine kinases, promotes central nervous system myelination during development; however the mechanisms mediating this effect remain unknown. Here we show that Fyn phosphorylation is modulated by BDNF in vivo. Concordant with this, we find that BDNF stimulates Fyn phosphorylation in myelinating cocultures, an effect dependent on oligodendroglial expression of TrkB. Importantly, PP2, a pharmacological inhibitor of Src family kinases, not only abrogated the promyelinating influence of BDNF in vitro, but also attenuated BDNF-induced phosphorylation of Erk1/2 in oligodendrocytes. Over-expression of Fyn in oligodendrocytes significantly promotes phosphorylation of Erk1/2, and promotes myelination to the extent that exogenous BDNF exerts no additive effect in vitro. In contrast, expression of a kinase-dead mutant of Fyn in oligodendrocytes significantly inhibited BDNF-induced activation of Erk1/2 and abrogated the promyelinating effect of BDNF. Analysis of white matter tracts in vivo revealed that phosphorylated Fyn primarily colocalized with mature oligodendrocytes, and was rarely observed in oligodendrocyte progenitor cells, a profile that closely parallels the detection of phosphorylated Erk1/2 in the developing central nervous system. Taken together, these data identify that Fyn kinase exerts a key role in mediating the promyelinating influence of BDNF. Here we identify a pathway in which BDNF activation of oligodendroglial TrkB receptors stimulates the phosphorylation of Fyn, a necessary step required to potentiate the phosphorylation of Erk1/2, which in turn regulates oligodendrocyte myelination.

  13. Olig2-expressing progenitor cells preferentially differentiate into oligodendrocytes in cuprizone-induced demyelinated lesions.

    PubMed

    Islam, Mohammad Shyful; Tatsumi, Kouko; Okuda, Hiroaki; Shiosaka, Sadao; Wanaka, Akio

    2009-01-01

    Many oligodendrocyte progenitor cells (OPCs) are found in acute or chronic demyelinated area, but not all of them differentiate efficiently into mature oligodendrocytes in the demyelinated central nervous system (CNS). Recent studies have shown that the basic helix-loop-helix transcription factor Olig2, which stimulates OPCs to differentiate into oligodendrocyte, is strongly up-regulated in many pathological conditions including acute or chronic demyelinating lesions in the adult CNS. Despite their potential role in the treatment of demyelinating diseases, the long-term fate of these up-regulated Olig2 cells has not been identified due to the lack of stable labeling methods. To trace their fate we have used double-transgenic mice, in which we were able to label Olig2-positive cells conditionally with green fluorescent protein (GFP). Demyelination was induced in these mice by feeding cuprizone, a copper chelator. After 6 weeks of cuprizone exposure, GFP-positive (GFP(+)) cells were processed for a second labeling with antibodies to major neural cell markers APC (mature oligodendrocyte marker), GFAP (astrocyte marker), NeuN (neuron marker), Iba1 (microglia marker) and NG2 proteoglycan (oligodendrocyte progenitor marker). More than half of the GFP(+) cells in the external capsule showed co-localization with NG2 proteoglycan. While the percentages of NG2-positive (NG2(+)) and APC-positive (APC(+)) oligodendrocyte lineage cells in cuprizone-treated mice were significantly higher than those in the normal diet group, no significant difference was observed for GFAP-positive (GFAP(+)) astrocytic lineage cells. Our data therefore provide direct evidence that proliferation and differentiation of local and/or recruited Olig2 progenitors contribute to remyelination in demyelinated lesions. PMID:19070638

  14. Ablation response testing of simulated radioisotope power supplies

    NASA Astrophysics Data System (ADS)

    Lutz, Steven A.; Chan, Chris C.

    1994-05-01

    Results of an experimental program to assess the aerothermal ablation response of simulated radioisotope power supplies are presented. Full-scale general purpose heat source, graphite impact shell, and lightweight radioisotope heater unit test articles are all tested without nuclear fuel in simulated reentry environments. Convective stagnation heating, stagnation pressure, stagnation surface temperature, surface recession profile, and weight loss measurements are obtained for diffusion-limited and sublimation ablation conditions. The recession profile and weight loss measurements show an effect of surface features on the stagnation face. The surface features alter the local heating which in turn affects the local ablation.

  15. Subcortical ischemic vascular disease: Roles of oligodendrocyte function in experimental models of subcortical white-matter injury.

    PubMed

    Shindo, Akihiro; Liang, Anna C; Maki, Takakuni; Miyamoto, Nobukazu; Tomimoto, Hidekazu; Lo, Eng H; Arai, Ken

    2016-01-01

    Oligodendrocytes are one of the major cell types in cerebral white matter. Under normal conditions, they form myelin sheaths that encircle axons to support fast nerve conduction. Under conditions of cerebral ischemia, oligodendrocytes tend to die, resulting in white-matter dysfunction. Repair of white matter involves the ability of oligodendrocyte precursors to proliferate and mature. However, replacement of lost oligodendrocytes may not be the only mechanism for white-matter recovery. Emerging data now suggest that coordinated signaling between neural, glial, and vascular cells in the entire neurovascular unit may be required. In this mini-review, we discuss how oligodendrocyte lineage cells participate in signaling and crosstalk with other cell types to underlie function and recovery in various experimental models of subcortical white-matter injury.

  16. Disturbed macro-connectivity in schizophrenia linked to oligodendrocyte dysfunction: from structural findings to molecules

    PubMed Central

    Cassoli, Juliana Silva; Guest, Paul C; Malchow, Berend; Schmitt, Andrea; Falkai, Peter; Martins-de-Souza, Daniel

    2015-01-01

    Schizophrenia is a severe psychiatric disorder with multi-factorial characteristics. A number of findings have shown disrupted synaptic connectivity in schizophrenia patients and emerging evidence suggests that this results from dysfunctional oligodendrocytes, the cells responsible for myelinating axons in white matter to promote neuronal conduction. The exact cause of this is not known, although recent imaging and molecular profiling studies of schizophrenia patients have identified changes in white matter tracts connecting multiple brain regions with effects on protein signaling networks involved in the myelination process. Further understanding of oligodendrocyte dysfunction in schizophrenia could lead to identification of novel drug targets for this devastating disease. PMID:27336040

  17. Glial metabotropic glutamate receptor-4 increases maturation and survival of oligodendrocytes

    PubMed Central

    Spampinato, Simona Federica; Merlo, Sara; Chisari, Mariangela; Nicoletti, Ferdinando; Sortino, Maria Angela

    2015-01-01

    Group III metabotropic glutamate (mGlu) receptors mediate important neuroprotective and anti-inflammatory effects. Stimulation of mGlu4 receptor reduces neuroinflammation in a mouse model of experimental autoimmune encephalomyelitis (EAE) whereas mGlu4 knockout mice display exacerbated EAE clinical scores. We now show that mGlu4 receptors are expressed in oligodendrocytes, astrocytes and microglia in culture. Oligodendrocytes express mGlu4 receptors only at early stages of maturation (O4 positive), but not when more differentiated (myelin basic protein, MBP positive). Treatment of immature oligodendrocytes with the mGlu4 receptor agonist L-2-Amino-4-phosphonobutyrate (L-AP4; 50 μM for 48 h) accelerates differentiation with enhanced branching and earlier appearance of MBP staining. Oligodendrocyte death induced by exposure to 1 mM kainic acid for 24 h is significantly reduced by a 30-min pretreatment with L-AP4 (50 μM), an effect observed only in the presence of astrocytes, mimicked by the specific mGlu4 receptor positive allosteric modulator N-Phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC) (30 μM) and prevented by pretreatment with the mGlu4 receptor antagonist, cyclopropyl-4-phosphonophenylglycine (CPPG) (100 μM). In astrocytes, mGlu4 receptor is the most expressed among group III mGlu receptors, as by Quantitative real time PCR (QRT-PCR), and its silencing prevents protective effects. Protection is also observed when conditioned medium (CM) from L-AP4-pretreated astrocytes is transferred to oligodendrocytes challenged with kainic acid. Transforming growth factor β (TGF-β) mediates the increased oligodendrocyte survival as the effect of L-AP4 is mimicked by addition of 10 ng/ml TGF-β and prevented by incubation with a neutralizing anti-TGF-β antibody. In contrast, despite the expression of mGlu4 receptor in resting and activated microglia, CM from L-AP4-stimulated microglia does not modify kainate-induced oligodendrocyte toxicity. Our

  18. Human Embryonic Stem Cell-Derived Oligodendrocyte Progenitors Aid in Functional Recovery of Sensory Pathways following Contusive Spinal Cord Injury

    PubMed Central

    All, Angelo H.; Bazley, Faith A.; Gupta, Siddharth; Pashai, Nikta; Hu, Charles; Pourmorteza, Amir; Kerr, Candace

    2012-01-01

    Background Transplantations of human stem cell derivatives have been widely investigated in rodent models for the potential restoration of function of neural pathways after spinal cord injury (SCI). Studies have already demonstrated cells survival following transplantation in SCI. We sought to evaluate survival and potential therapeutic effects of transplanted human embryonic stem (hES) cell-derived oligodendrocyte progenitor cells (OPCs) in a contusive injury in rats. Bioluminescence imaging was utilized to verify survivability of cells up to 4 weeks, and somatosensory evoked potential (SSEPs) were recorded at the cortex to monitor function of sensory pathways throughout the 6-week recovery period. Principal Findings hES cells were transduced with the firefly luciferase gene and differentiated into OPCs. OPCs were transplanted into the lesion epicenter of rat spinal cords 2 hours after inducing a moderate contusive SCI. The hES-treatment group showed improved SSEPs, including increased amplitude and decreased latencies, compared to the control group. The bioluminescence of transplanted OPCs decreased by 97% in the injured spinal cord compared to only 80% when injected into an uninjured spinal cord. Bioluminescence increased in both experimental groups such that by week 3, no statistical difference was detected, signifying that the cells survived and proliferated independent of injury. Post-mortem histology of the spinal cords showed integration of human cells expressing mature oligodendrocyte markers and myelin basic protein without the expression of markers for astrocytes (GFAP) or pluripotent cells (OCT4). Conclusions hES-derived OPCs transplanted 2 hours after contusive SCI survive and differentiate into OLs that produce MBP. Treated rats demonstrated functional improvements in SSEP amplitudes and latencies compared to controls as early as 1 week post-injury. Finally, the hostile injury microenvironment at 2 hours post-injury initially caused increased cell

  19. Activation of PPAR-γ and PTEN Cascade Participates in Lovastatin-mediated Accelerated Differentiation of Oligodendrocyte Progenitor Cells

    PubMed Central

    Paintlia, Ajaib S; Paintlia, Manjeet K; Singh, Avtar K; Singh, Inderjit

    2010-01-01

    Previously, we and others documented that statins including—lovastatin (LOV) promote the differentiation of oligodendrocyte progenitor cells (OPCs) and remyelination in experimental autoimmune encephalomyelitis (EAE), an multiple sclerosis (MS) model. Conversely, some recent studies demonstrated that statins negatively influence oligodendrocyte (OL) differentiation in vitro and remyelination in a cuprizone-CNS demyelinating model. Therefore, herein, we first investigated the cause of impaired differentiation of OLs by statins in vitro settings. Our observations indicated that the depletion of cholesterol was detrimental to LOV treated OPCs under cholesterol/serum-deprived culture conditions similar to that were used in conflicting studies. However, the depletion of geranylgeranyl-pp under normal cholesterol homeostasis conditions enhanced the phenotypic commitment and differentiation of LOV-treated OPCs ascribed to inhibition of RhoA-Rho kinase. Interestingly, this effect of LOV was associated with increased activation and expression of both PPAR-γ and PTEN in OPCs as confirmed by various pharmacological and molecular based approaches. Furthermore, PTEN was involved in an inhibition of OPCs proliferation via PI3K-Akt inhibition and induction of cell cycle arrest at G1 phase, but without affecting their cell survival. These effects of LOV on OPCs in vitro were absent in the CNS of normal rats chronically treated with LOV concentrations used in EAE indicating that PPAR-γ induction in normal brain may be tightly regulated — providing evidences that statins are therapeutically safe for humans. Collectively, these data provide initial evidence that statin-mediated activation of the PPAR-γ — PTEN cascade participates in OL differentiation, thus suggesting new therapeutic-interventions for MS or related CNS-demyelinating diseases. PMID:20578043

  20. Sgk1 regulates desmoglein 1 expression levels in oligodendrocytes in the mouse corpus callosum after chronic stress exposure.

    PubMed

    Miyata, Shingo; Yoshikawa, Keiko; Taniguchi, Manabu; Ishikawa, Toshiko; Tanaka, Takashi; Shimizu, Shoko; Tohyama, Masaya

    2015-08-14

    Major depression, one of the most prevalent mental illnesses, is thought to be a multifactorial disease related to both genetic and environmental factors. However, the genes responsible for and the pathogenesis of major depression at the molecular level remain unclear. Recently, we reported that stressed mice with elevated plasma corticosterone levels show upregulation and activation of serum glucocorticoid-regulated kinase (Sgk1) in oligodendrocytes. Active Sgk1 causes phosphorylation of N-myc downstream-regulated gene 1 (Ndrg1), and phospho-Ndrg1 increases the expression of N-cadherin, α-catenin, and β-catenin in oligodendrocytes. This activation of the Sgk1 cascade results in morphological changes in the oligodendrocytes of nerve fiber bundles, such as those present in the corpus callosum. However, little is known about the molecular functions of the traditional and/or desmosomal cadherin superfamily in oligodendrocytes. Therefore, in this study, we aimed to elucidate the functions of the desmosomal cadherin superfamily in oligodendrocytes. Desmoglein (Dsg) 1, Dsg2, and desmocollin 1 (Dsc1) were found to be expressed in the corpus callosum of mouse brain, and the expression of a subtype of Dsg1, Dsg1c, was upregulated in oligodendrocytes after chronic stress exposure. Furthermore, Dsg1 proteins were localized around the plasma membrane regions of oligodendrocytes. A study in primary oligodendrocyte cultures also revealed that chronic upregulation of Sgk1 by dexamethasone administration is involved in upregulation of Dsg1c mRNA. These results may indicate that chronic stress induced Sgk1 activation in oligodendrocytes, which increases Dsg1 expression near the plasma membrane. Thus, Dsg1 upregulation may be implicated in the molecular mechanisms underlying the morphological changes in oligodendrocytes in response to chronic stress exposure. PMID:26043694

  1. Increased Cx32 expression in spinal cord TrkB oligodendrocytes following peripheral axon injury.

    PubMed

    Coulibaly, Aminata P; Isaacson, Lori G

    2016-08-01

    Following injury to motor axons in the periphery, retrograde influences from the injury site lead to glial cell plasticity in the vicinity of the injured neurons. Following the transection of peripherally located preganglionic axons of the cervical sympathetic trunk (CST), a population of oligodendrocyte (OL) lineage cells expressing full length TrkB, the cognate receptor for brain derived neurotrophic factor (BDNF), is significantly increased in number in the spinal cord. Such robust plasticity in OL lineage cells in the spinal cord following peripheral axon transection led to the hypothesis that the gap junction communication protein connexin 32 (Cx32), which is specific to OL lineage cells, was influenced by the injury. Following CST transection, Cx32 expression in the spinal cord intermediolateral cell column (IML), the location of the parent cell bodies, was significantly increased. The increased Cx32 expression was localized specifically to TrkB OLs in the IML, rather than other cell types in the OL cell lineage, with the population of Cx32/TrkB cells increased by 59%. Cx32 expression in association with OPCs was significantly decreased at one week following the injury. The results of this study provide evidence that peripheral axon injury can differentially affect the gap junction protein expression in OL lineage cells in the adult rat spinal cord. We conclude that the retrograde influences originating from the peripheral injury site elicit dramatic changes in the CNS expression of Cx32, which in turn may mediate the plasticity of OL lineage cells observed in the spinal cord following peripheral axon injury.

  2. Increased Cx32 expression in spinal cord TrkB oligodendrocytes following peripheral axon injury.

    PubMed

    Coulibaly, Aminata P; Isaacson, Lori G

    2016-08-01

    Following injury to motor axons in the periphery, retrograde influences from the injury site lead to glial cell plasticity in the vicinity of the injured neurons. Following the transection of peripherally located preganglionic axons of the cervical sympathetic trunk (CST), a population of oligodendrocyte (OL) lineage cells expressing full length TrkB, the cognate receptor for brain derived neurotrophic factor (BDNF), is significantly increased in number in the spinal cord. Such robust plasticity in OL lineage cells in the spinal cord following peripheral axon transection led to the hypothesis that the gap junction communication protein connexin 32 (Cx32), which is specific to OL lineage cells, was influenced by the injury. Following CST transection, Cx32 expression in the spinal cord intermediolateral cell column (IML), the location of the parent cell bodies, was significantly increased. The increased Cx32 expression was localized specifically to TrkB OLs in the IML, rather than other cell types in the OL cell lineage, with the population of Cx32/TrkB cells increased by 59%. Cx32 expression in association with OPCs was significantly decreased at one week following the injury. The results of this study provide evidence that peripheral axon injury can differentially affect the gap junction protein expression in OL lineage cells in the adult rat spinal cord. We conclude that the retrograde influences originating from the peripheral injury site elicit dramatic changes in the CNS expression of Cx32, which in turn may mediate the plasticity of OL lineage cells observed in the spinal cord following peripheral axon injury. PMID:27246301

  3. Lipopolysaccharide-activated microglia induce death of oligodendrocyte progenitor cells and impede their development.

    PubMed

    Pang, Y; Campbell, L; Zheng, B; Fan, L; Cai, Z; Rhodes, P

    2010-03-17

    Damage to oligodendrocyte (OL) progenitor cells (OPCs) and hypomyelination are two hallmark features of periventricular leukomalacia (PVL), the most common form of brain damage in premature infants. Clinical and animal studies have linked the incidence of PVL to maternal infection/inflammation, and activated microglia have been proposed to play a central role. However, the precise mechanism of how activated microglia adversely affects the survival and development of OPCs is still not clear. Here we demonstrate that lipopolysaccharide (LPS)-activated microglia are deleterious to OPCs, that is, impeding OL lineage progression, reducing the production of myelin basic protein (MBP), and mediating OPC death. We further demonstrate that LPS-activated microglia mediate OPC death by two distinct mechanisms in a time-dependent manner. The early phase of cell damage occurs within 24 h after LPS treatment, which is mediated by nitric oxide (NO)-dependent oxidative damage and is prevented by N(G)-nitro-l-arginine methyl ester (l-NAME), a general inhibitor of nitric oxide synthase. The delayed cell death is evident at 48 h after LPS treatment, is mediated by cytokines, and is prevented by blocking the activity of tumor necrosis factor-alpha (TNF-alpha) and pro-nerve growth factor (proNGF), but not by l-NAME. Furthermore, microglia-derived insulin-like growth factor-1 (IGF-1) and ciliary neurotrophic factor (CNTF) were significantly suppressed by LPS, and exogenous IGF-1 and CNTF synergistically protected OLs from death induced by LPS-treated microglia conditioned medium, indicating that a deficiency in trophic support may also be involved in OL death. Our finding that LPS-activated microglia not only induce two waves of cell death but also greatly impair OL development may shed some light on the mechanisms underlying selective white matter damage and hypomyelination in PVL.

  4. Protracted abstinence from chronic ethanol exposure alters the structure of neurons and expression of oligodendrocytes and myelin in the medial prefrontal cortex

    PubMed Central

    Navarro, Alvaro I.; Mandyam, Chitra D.

    2015-01-01

    In rodents, chronic intermittent ethanol vapor exposure (CIE) produces alcohol dependence, alters the structure and activity of pyramidal neurons and decreases the number of oligodendroglial progenitors in the medial prefrontal cortex (mPFC). In this study, adult Wistar rats were exposed to seven weeks of CIE and were withdrawn from CIE for 21 days (protracted abstinence; PA) and tissue enriched in the mPFC was processed for Western blot analysis and Golgi-Cox staining to investigate the long-lasting effects of CIE on structure of mPFC neurons and levels of myelin associated proteins. PA increased dendritic arborization within apical dendrites of pyramidal neurons and these changes occurred concurrently with hypophosphorylation of the NMDA receptor 2B (NR2B) at Tyr-1472. PA increased myelin basic protein (MBP) levels that occurred concurrently with hypophosphorylation of the premyelinating oligodendrocyte bHLH transcription factor Olig2 in the mPFC. Given that PA is associated with increased sensitivity to stress and hypothalamic-pituitary-adrenal (HPA) axis dysregulation, and stress alters oligodendrocyte expression as a function of glucocorticoid receptor (GR) activation, the levels of total GR and phosphorylated GR were also evaluated. PA produces hypophosphorylation of the GR at Ser-232 without affecting expression of total protein. These findings demonstrate persistent and compensatory effects of ethanol in the mPFC long after cessation of CIE, including enhanced myelin production and impaired GR function. Collectively, these results suggest a novel relationship between oligodendrocytes and GR in the mPFC, in which stress may alter frontal cortex function in alcohol dependent subjects by promoting hypermyelination, thereby altering the cellular composition and white matter structure in the mPFC. PMID:25732140

  5. Protracted abstinence from chronic ethanol exposure alters the structure of neurons and expression of oligodendrocytes and myelin in the medial prefrontal cortex.

    PubMed

    Navarro, A I; Mandyam, C D

    2015-05-01

    In rodents, chronic intermittent ethanol vapor exposure (CIE) produces alcohol dependence, alters the structure and activity of pyramidal neurons and decreases the number of oligodendroglial progenitors in the medial prefrontal cortex (mPFC). In this study, adult Wistar rats were exposed to seven weeks of CIE and were withdrawn from CIE for 21 days (protracted abstinence; PA). Tissue enriched in the mPFC was processed for Western blot analysis and Golgi-Cox staining to investigate the long-lasting effects of CIE on the structure of mPFC neurons and the levels of myelin-associated proteins. PA increased dendritic arborization within apical dendrites of pyramidal neurons. These changes occurred concurrently with hypophosphorylation of the N-methyl-d-aspartate (NMDA) receptor 2B (NR2B) at Tyr-1472. PA increased myelin basic protein (MBP) levels which occurred concurrently with hypophosphorylation of the premyelinating oligodendrocyte bHLH transcription factor Olig2 in the mPFC. Given that PA is associated with increased sensitivity to stress and hypothalamic-pituitary-adrenal (HPA) axis dysregulation, and stress alters oligodendrocyte expression as a function of glucocorticoid receptor (GR) activation, the levels of total GR and phosphorylated GR were also evaluated. PA produced hypophosphorylation of the GR at Ser-232 without affecting expression of total protein. These findings demonstrate persistent and compensatory effects of ethanol in the mPFC long after cessation of CIE, including enhanced myelin production and impaired GR function. Collectively, these results suggest a novel relationship between oligodendrocytes and GR in the mPFC, in which stress may alter frontal cortex function in alcohol dependent subjects by promoting hypermyelination, thereby altering the cellular composition and white matter structure in the mPFC.

  6. Femtosecond laser for cavity preparation in enamel and dentin: ablation efficiency related factors.

    PubMed

    Chen, H; Li, H; Sun, Yc; Wang, Y; Lü, Pj

    2016-02-11

    To study the effects of laser fluence (laser energy density), scanning line spacing and ablation depth on the efficiency of a femtosecond laser for three-dimensional ablation of enamel and dentin. A diode-pumped, thin-disk femtosecond laser (wavelength 1025 nm, pulse width 400 fs) was used for the ablation of enamel and dentin. The laser spot was guided in a series of overlapping parallel lines on enamel and dentin surfaces to form a three-dimensional cavity. The depth and volume of the ablated cavity was then measured under a 3D measurement microscope to determine the ablation efficiency. Different values of fluence, scanning line spacing and ablation depth were used to assess the effects of each variable on ablation efficiency. Ablation efficiencies for enamel and dentin were maximized at different laser fluences and number of scanning lines and decreased with increases in laser fluence or with increases in scanning line spacing beyond spot diameter or with increases in ablation depth. Laser fluence, scanning line spacing and ablation depth all significantly affected femtosecond laser ablation efficiency. Use of a reasonable control for each of these parameters will improve future clinical application.

  7. Femtosecond laser for cavity preparation in enamel and dentin: ablation efficiency related factors

    NASA Astrophysics Data System (ADS)

    Chen, H.; Li, H.; Sun, Yc.; Wang, Y.; Lü, Pj.

    2016-02-01

    To study the effects of laser fluence (laser energy density), scanning line spacing and ablation depth on the efficiency of a femtosecond laser for three-dimensional ablation of enamel and dentin. A diode-pumped, thin-disk femtosecond laser (wavelength 1025 nm, pulse width 400 fs) was used for the ablation of enamel and dentin. The laser spot was guided in a series of overlapping parallel lines on enamel and dentin surfaces to form a three-dimensional cavity. The depth and volume of the ablated cavity was then measured under a 3D measurement microscope to determine the ablation efficiency. Different values of fluence, scanning line spacing and ablation depth were used to assess the effects of each variable on ablation efficiency. Ablation efficiencies for enamel and dentin were maximized at different laser fluences and number of scanning lines and decreased with increases in laser fluence or with increases in scanning line spacing beyond spot diameter or with increases in ablation depth. Laser fluence, scanning line spacing and ablation depth all significantly affected femtosecond laser ablation efficiency. Use of a reasonable control for each of these parameters will improve future clinical application.

  8. Femtosecond laser for cavity preparation in enamel and dentin: ablation efficiency related factors

    PubMed Central

    Chen, H.; Li, H.; Sun, YC.; Wang, Y.; Lü, PJ.

    2016-01-01

    To study the effects of laser fluence (laser energy density), scanning line spacing and ablation depth on the efficiency of a femtosecond laser for three-dimensional ablation of enamel and dentin. A diode-pumped, thin-disk femtosecond laser (wavelength 1025 nm, pulse width 400 fs) was used for the ablation of enamel and dentin. The laser spot was guided in a series of overlapping parallel lines on enamel and dentin surfaces to form a three-dimensional cavity. The depth and volume of the ablated cavity was then measured under a 3D measurement microscope to determine the ablation efficiency. Different values of fluence, scanning line spacing and ablation depth were used to assess the effects of each variable on ablation efficiency. Ablation efficiencies for enamel and dentin were maximized at different laser fluences and number of scanning lines and decreased with increases in laser fluence or with increases in scanning line spacing beyond spot diameter or with increases in ablation depth. Laser fluence, scanning line spacing and ablation depth all significantly affected femtosecond laser ablation efficiency. Use of a reasonable control for each of these parameters will improve future clinical application. PMID:26864679

  9. Oligodendrocyte Precursor Cells in Spinal Cord Injury: A Review and Update

    PubMed Central

    Li, Ning; Leung, Gilberto K. K.

    2015-01-01

    Spinal cord injury (SCI) is a devastating condition to individuals, families, and society. Oligodendrocyte loss and demyelination contribute as major pathological processes of secondary damages after injury. Oligodendrocyte precursor cells (OPCs), a subpopulation that accounts for 5 to 8% of cells within the central nervous system, are potential sources of oligodendrocyte replacement after SCI. OPCs react rapidly to injuries, proliferate at a high rate, and can differentiate into myelinating oligodendrocytes. However, posttraumatic endogenous remyelination is rarely complete, and a better understanding of OPCs' characteristics and their manipulations is critical to the development of novel therapies. In this review, we summarize known characteristics of OPCs and relevant regulative factors in both health and demyelinating disorders including SCI. More importantly, we highlight current evidence on post-SCI OPCs transplantation as a potential treatment option as well as the impediments against regeneration. Our aim is to shed lights on important knowledge gaps and to provoke thoughts for further researches and the development of therapeutic strategies. PMID:26491661

  10. Endoplasmic reticulum stress modulates the response of myelinating oligodendrocytes to the immune cytokine interferon-gamma.

    PubMed

    Lin, Wensheng; Harding, Heather P; Ron, David; Popko, Brian

    2005-05-23

    Interferon-gamma (IFN-gamma) is believed to contribute to immune-mediated demyelinating disorders by targeting the myelin-producing oligodendrocyte, a cell known to be highly sensitive to the disruption of protein synthesis and to the perturbation of the secretory pathway. We found that apoptosis induced by IFN-gamma in cultured rat oligodendrocytes was associated with endoplasmic reticulum (ER) stress. ER stress also accompanied oligodendrocyte apoptosis and hypomyelination in transgenic mice that inappropriately expressed IFN-gamma in the central nervous system (CNS). Compared with a wild-type genetic background, the enforced expression of IFN-gamma in mice that were heterozygous for a loss of function mutation in pancreatic ER kinase (PERK) dramatically reduced animal survival, promoted CNS hypomyelination, and enhanced oligodendrocyte loss. PERK encodes an ER stress-inducible kinase that phosphorylates eukaryotic translation initiation factor 2alpha and specifically maintains client protein homeostasis in the stressed ER. Therefore, the hypersensitivity of PERK+/- mice to IFN-gamma implicates ER stress in demyelinating disorders that are induced by CNS inflammation. PMID:15911877

  11. Effects of Rolipram on Adult Rat Oligodendrocytes and Functional Recovery after Contusive Cervical Spinal Cord Injury

    PubMed Central

    Beaumont, Eric; Whitaker, Christopher M.; Burke, Darlene A.; Hetman, Michal; Onifer, Stephen M.

    2009-01-01

    Traumatic human spinal cord injury causes devastating and long-term hardships. These are due to the irreparable primary mechanical injury and secondary injury cascade. In particular, oligodendrocyte cell death, white matter axon damage, spared axon demyelination, and the ensuing dysfunction in action potential conduction lead to the initial deficits and impair functional recovery. For these reasons, and that oligodendrocyte and axon survival may be related, various neuroprotective strategies after SCI are being investigated. We previously demonstrated that oligodendrocytes in the adult rat epicenter ventrolateral funiculus express 3′-5′-cyclic adenosine monophosphate-dependent phosphodiesterase 4 subtypes and that their death was attenuated up to 3 days after contusive cervical spinal cord injury when rolipram, a specific inhibitor of phosphodiesterase 4, was administered. Here, we report that 1) there are more oligodendrocyte somata in the adult rat epicenter ventrolateral funiculus, 2) descending and ascending axonal conductivity in the ventrolateral funiculus improves, and that 3) there are fewer hindlimb footfall errors during grid-walking at 5 weeks after contusive cervical spinal cord injury when rolipram is delivered for 2 weeks. This is the first demonstration of improved descending and ascending long-tract axonal conductivity across a spinal cord injury with this pharmacological approach. Since descending long-tract axonal conductivity did not return to normal, further evaluations of the pharmacokinetics and therapeutic window of rolipram as well as optimal combinations are necessary before consideration for neuroprotection in humans with spinal cord injury. PMID:19635528

  12. Altered Oligodendrocyte Maturation and Myelin Maintenance: The Role of Antiretrovirals in HIV-Associated Neurocognitive Disorders.

    PubMed

    Jensen, Brigid K; Monnerie, Hubert; Mannell, Maggie V; Gannon, Patrick J; Espinoza, Cagla Akay; Erickson, Michelle A; Bruce-Keller, Annadora J; Gelman, Benjamin B; Briand, Lisa A; Pierce, R Christopher; Jordan-Sciutto, Kelly L; Grinspan, Judith B

    2015-11-01

    Despite effective viral suppression through combined antiretroviral therapy (cART), approximately half of HIV-positive individuals have HIV-associated neurocognitive disorders (HAND). Studies of antiretroviral-treated patients have revealed persistent white matter abnormalities including diffuse myelin pallor, diminished white matter tracts, and decreased myelin protein mRNAs. Loss of myelin can contribute to neurocognitive dysfunction because the myelin membrane generated by oligodendrocytes is essential for rapid signal transduction and axonal maintenance. We hypothesized that myelin changes in HAND are partly due to effects of antiretroviral drugs on oligodendrocyte survival and/or maturation. We showed that primary mouse oligodendrocyte precursor cell cultures treated with therapeutic concentrations of HIV protease inhibitors ritonavir or lopinavir displayed dose-dependent decreases in oligodendrocyte maturation; however, this effect was rapidly reversed after drug removal. Conversely, nucleoside reverse transcriptase inhibitor zidovudine had no effect. Furthermore, in vivo ritonavir administration to adult mice reduced frontal cortex myelin protein levels. Finally, prefrontal cortex tissue from HIV-positive individuals with HAND on cART showed a significant decrease in myelin basic protein compared with untreated HIV-positive individuals with HAND or HIV-negative controls. These findings demonstrate that antiretrovirals can impact myelin integrity and have implications for myelination in juvenile HIV patients and myelin maintenance in adults on lifelong therapy.

  13. Effect of MK-801 and Clozapine on the Proteome of Cultured Human Oligodendrocytes

    PubMed Central

    Cassoli, Juliana S.; Iwata, Keiko; Steiner, Johann; Guest, Paul C.; Turck, Christoph W.; Nascimento, Juliana M.; Martins-de-Souza, Daniel

    2016-01-01

    Separate lines of evidence have demonstrated the involvement of N-methyl-D-aspartate (NMDA) receptor and oligodendrocyte dysfunctions in schizophrenia. Here, we have carried out shotgun mass spectrometry proteome analysis of oligodendrocytes treated with the NMDA receptor antagonist MK-801 to gain potential insights into these effects at the molecular level. The MK-801 treatment led to alterations in the levels of 68 proteins, which are associated with seven distinct biological processes. Most of these proteins are involved in energy metabolism and many have been found to be dysregulated in previous proteomic studies of post-mortem brain tissues from schizophrenia patients. Finally, addition of the antipsychotic clozapine to MK-801-treated oligodendrocyte cultures resulted in changes in the levels of 45 proteins and treatment with clozapine alone altered 122 proteins and many of these showed opposite changes to the MK-801 effects. Therefore, these proteins and the associated energy metabolism pathways should be explored as potential biomarkers of antipsychotic efficacy. In conclusion, MK-801 treatment of oligodendrocytes may provide a useful model for testing the efficacy of novel treatment approaches. PMID:26973466

  14. Noscapine protects OLN-93 oligodendrocytes from ischemia-reperfusion damage: Calcium and nitric oxide involvement.

    PubMed

    Nadjafi, S; Ebrahimi, S-A; Rahbar-Roshandel, N

    2015-12-01

    This study was carried out to evaluate the effects of noscapine, a benzylisoquinoline alkaloid from opium poppy, on oligodendrocyte during ischemia/reperfusion-induced excitotoxic injury. Changes in intracellular calcium levels due to chemical ischemia and nitric oxide (NO) production during ischemia/reperfusion were evaluated as the hallmarks of ischemia-derived excitotoxic event. OLN-93 cell line (a permanent immature rat oligodendrocyte) was used as a model of oligodendrocyte. 30- or 60-minute-oxygen-glucose deprivation/24 hours reperfusion were used to induce excitotoxicity. MTT (3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) assay was used to evaluate cell viability. Ratiometric fluorescence microscopy using Ca(2+)-sensitive indicator Fura-2/AM was utilized to assess intracellular calcium levels. NO production was evaluated by Griess method. Noscapine (4 μM) significantly attenuated intracellular Ca(2+) elevation (P < 0.001). Also, noscapine significantly decreased NO production during a 30-minute oxygen-glucose deprivation/reperfusion (P < 0.01). The inhibitory effect of noscapine (4 μM) on intracellular Ca(2+) was greater than ionotropic glutamate receptors antagonists. Noscapine is protective against ischemia/reperfusion-induced excitotoxic injury in OLN-93 oligodendrocyte. This protective effect seems to be related to attenuation of intracellular Ca(2+) overload and NO production. PMID:26690027

  15. Neurite outgrowth inhibitor Nogo-A establishes spatial segregation and extent of oligodendrocyte myelination.

    PubMed

    Chong, S Y Christin; Rosenberg, Sheila S; Fancy, Stephen P J; Zhao, Chao; Shen, Yun-An A; Hahn, Angela T; McGee, Aaron W; Xu, Xiaomei; Zheng, Binhai; Zhang, Li I; Rowitch, David H; Franklin, Robin J M; Lu, Q Richard; Chan, Jonah R

    2012-01-24

    A requisite component of nervous system development is the achievement of cellular recognition and spatial segregation through competition-based refinement mechanisms. Competition for available axon space by myelinating oligodendrocytes ensures that all relevant CNS axons are myelinated properly. To ascertain the nature of this competition, we generated a transgenic mouse with sparsely labeled oligodendrocytes and establish that individual oligodendrocytes occupying similar axon tracts can greatly vary the number and lengths of their myelin internodes. Here we show that intercellular interactions between competing oligodendroglia influence the number and length of myelin internodes, referred to as myelinogenic potential, and identify the amino-terminal region of Nogo-A, expressed by oligodendroglia, as necessary and sufficient to inhibit this process. Exuberant and expansive myelination/remyelination is detected in the absence of Nogo during development and after demyelination, suggesting that spatial segregation and myelin extent is limited by microenvironmental inhibition. We demonstrate a unique physiological role for Nogo-A in the precise myelination of the developing CNS. Maximizing the myelinogenic potential of oligodendrocytes may offer an effective strategy for repair in future therapies for demyelination.

  16. Differential regulation of sphingomyelin synthesis and catabolism in oligodendrocytes and neurons

    PubMed Central

    Kilkus, John P.; Goswami, Rajendra; Dawson, Sylvia A.; Testai, Fernando D.; Berdyshev, Eugeny V.; Han, Xianlin; Dawson, Glyn

    2008-01-01

    Neurons (both primary cultures of 3-day rat hippocampal neurons and embryonic chick neurons) rapidly converted exogenous NBD-sphingomyelin (SM) to NBD-Cer but only slowly converted NBD-Cer to NBD-SM. This was confirmed by demonstrating low in vitro sphingomyelin synthase (SMS) and high sphingomyelinase (SMase) activity in neurons. Similar results were observed in a human neuroblastoma cell line (LA-N-5). In contrast, primary cultures of 3-day-old rat oligodendrocytes only slowly converted NBD-SM to NBD-Cer but rapidly converted NBD-Cer to NBD-SM. This difference was confirmed by high in vitro SMS and low SMase activity in neonatal rat oligodendrocytes. Similar results were observed in a human oligodendroglioma cell line. Mass-Spectrometric analyses confirmed that neurons had a low SM/Cer ratio of (1.5 : 1) whereas oligodendroglia had a high SM/Cer ratio (9 : 1). Differences were also confirmed by [3H]palmitate-labeling of ceramide, which was higher in neurons compared with oligodendrocytes. Stable transfection of human oligodendroglioma cells with neutral SMase, which enhanced the conversion of NBD-SM to NBD-Cer and increased cell death, whereas transfection with SMS1 or SMS2 enhanced conversion of NBD-Cer to NBD-SM and was somewhat protective against cell death. Thus, SMS rather than SMases may be more important for sphingolipid homeostasis in oligodendrocytes, whereas the reverse may be true for neurons. PMID:18489714

  17. Ablation of Martian glaciers

    NASA Technical Reports Server (NTRS)

    Moore, Henry J.; Davis, Philip A.

    1987-01-01

    Glacier like landforms are observed in the fretted terrain of Mars in the latitude belts near + or - 42 deg. It was suggested that sublimation or accumulation-ablation rates could be estimated for these glaciers if their shapes were known. To this end, photoclinometric profiles were obtained of a number of these landforms. On the basis of analyses of these profiles, it was concluded that ice is chiefly ablating from these landforms that either are inactive rock-glaciers or have materials within them that are moving exceedingly slowly at this time. These conclusions are consistent with other geologic information. The analyses were performed using a two-dimensional model of an isothermal glacier.

  18. [Ablative and fractional lasers].

    PubMed

    Beylot, C; Grognard, C; Michaud, T

    2009-10-01

    The use of pulsed or scanning Carbon Dioxide, and pulsed Erbium-YAG lasers allows the programmable and reproducible photocoagulation of thin layers of the epidermis and superficial dermis. Thermal damage depends on the type of laser and is greater with CO(2) lasers. The degree of neocollagenesis is proportional to the thermal damage and is better with CO(2) lasers. Their main indication is the correction of photoaged facial skin but they can also be used for corrective dermatology, e.g. for scars and genodermatosis. Results are highly satisfactory but the technique is invasive and the patient experiences a social hindrance of around two weeks. Fractionated techniques treat 25% of the defective skin area at each session in noncontiguous microzones; four sessions are therefore necessary to treat the entire cutaneous surface. The treatment is given under topical anesthesia and is much less invasive, particularly with nonablative fractional laser treatment in which photothermolysis does not penetrate below the epidermis and/or the effects are slight, with no or very little social isolation. However, the results are much less satisfactory than the results of ablative laser and there is no firming effect. Other zones than the face can be treated. With the fractional CO(2) and Erbium ablative lasers, which have multiplied over the past 2 years, the much wider impacts cause perforation of the epidermis and there is a zone of ablation by laser photovaporization, with a zone of thermal damage below. The results are better in correcting photoaging of the face, without, however, achieving the efficacy of ablative lasers, which remain the reference technique. However, the effects are not insignificant, requiring at least 5 days of social isolation.

  19. Spatiotemporal gradient of oligodendrocyte differentiation in chick optic tectum requires brain integrity and cell-cell interactions.

    PubMed

    Galileo, Deni S

    2003-01-01

    The development of oligodendrocytes in the chicken optic tectum (OT) was studied in vivo and in vitro by analyzing expression of myelin-associated glycoprotein (MAG) with a monoclonal antibody. MAG(+) cells first appeared in the anterior OT on embryonic day (E) 12, were present throughout the anterior half on E15, and eventually filled the tectum on E17. This spatiotemporal appearance of MAG(+) oligodendrocytes resembled two streams of cells entering the OT along the afferent and efferent axonal layers. However, experiments determined that this appearance of MAG immunoreactivity was the result of a gradient of oligodendrocyte differentiation and was not cell migration. First, retroviral vector labeling of OT progenitors in vivo on E3 resulted in labeled oligodendrocytes in late embryos. In addition, pieces of OT from as early as E3 kept in culture for a week developed numerous MAG(+) oligodendrocytes. Pieces of both anterior and posterior E7 OT developed MAG(+) oligodendrocytes after 3 days in culture, well ahead of their normal schedule in vivo. BrdU incorporation studies revealed that these cells were not born in culture, but merely differentiated. Monolayer cultures made from dissociated E10 or later OT cells developed MAG(+) oligodendrocytes, but monolayers made from E7 OT cells did not. These experiments demonstrate that oligodendrocyte progenitors were present in the OT as early as E3, that they could differentiate precociously, and that their normal progressive differentiation in situ must be due to removal of inhibitory constraints rather than the onset of inductive factors. Also, certain cell-cell interactions occur between E7 and E10, which cannot be disrupted if oligodendrocyte differentiation is to occur.

  20. OCDR guided laser ablation device

    DOEpatents

    Dasilva, Luiz B.; Colston, Jr., Bill W.; James, Dale L.

    2002-01-01

    A guided laser ablation device. The device includes a mulitmode laser ablation fiber that is surrounded by one or more single mode optical fibers that are used to image in the vicinity of the laser ablation area to prevent tissue damage. The laser ablation device is combined with an optical coherence domain reflectometry (OCDR) unit and with a control unit which initializes the OCDR unit and a high power laser of the ablation device. Data from the OCDR unit is analyzed by the control unit and used to control the high power laser. The OCDR images up to about 3 mm ahead of the ablation surface to enable a user to see sensitive tissue such as a nerve or artery before damaging it by the laser.

  1. Zn2+ -induced ERK activation mediates PARP-1-dependent ischemic-reoxygenation damage to oligodendrocytes.

    PubMed

    Domercq, Maria; Mato, Susana; Soria, Federico N; Sánchez-gómez, M Victoria; Alberdi, Elena; Matute, Carlos

    2013-03-01

    Much of the cell death following episodes of anoxia and ischemia in the mammalian central nervous system has been attributed to extracellular accumulation of glutamate and ATP, which causes a rise in [Ca(2+)](i), loss of mitochondrial potential, and cell death. However, restoration of blood flow and reoxygenation are frequently associated with exacerbation of tissue injury (the oxygen paradox). Herein we describe a novel signaling pathway that is activated during ischemia-like conditions (oxygen and glucose deprivation; OGD) and contributes to ischemia-induced oligodendroglial cell death. OGD induced a retarded and sustained increase in extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation after restoring glucose and O(2) (reperfusion-like conditions). Blocking the ERK1/2 pathway with the MEK inhibitor UO126 largely protected oligodendrocytes against ischemic insults. ERK1/2 activation was blocked by the high-affinity Zn(2+) chelator TPEN, but not by antagonists of AMPA/kainate or P2X7 receptors that were previously shown to be involved in ischemic oligodendroglial cell death. Using a high-affinity Zn(2+) probe, we showed that ischemia induced an intracellular Zn(2+) rise in oligodendrocytes, and that incubation with TPEN prevented mitochondrial depolarization and ROS generation after ischemia. Accordingly, exposure to TPEN and the antioxidant Trolox reduced ischemia-induced oligodendrocyte death. Moreover, UO126 blocked the ischemia-induced increase in poly-[ADP]-ribosylation of proteins, and the poly[ADP]-ribose polymerase 1 (PARP-1) inhibitor DPQ significantly inhibited ischemia-induced oligodendroglial cell death-demonstrating that PARP-1 was required downstream in the Zn(2+)-ERK oligodendrocyte cell death pathway. Chelation of cytosolic Zn(2+), blocking ERK signaling, and antioxidants may be beneficial for treating CNS white matter ischemia-reperfusion injury. Importantly, all the inhibitors of this pathway protected oligodendrocytes when applied

  2. Apoptosis and proliferation of oligodendrocyte progenitor cells in the irradiated rodent spinal cord

    SciTech Connect

    Atkinson, Shelley L.; Li Yuqing; Wong, C. Shun . E-mail: shun.wong@sw.ca

    2005-06-01

    Purpose: Oligodendrocytes undergo early apoptosis after irradiation. The aim of this study was to determine the relationship between oligodendroglial apoptosis and proliferation of oligodendrocyte progenitor cells (OPC) in the irradiated central nervous system. Methods and Materials: Adult rats and p53 transgenic mice were given single doses of 2 Gy, 8 Gy, or 22 Gy to the cervical spinal cord. Apoptosis was assessed using TUNEL (Tdt-mediated dUTP terminal nick-end labeling) staining or by examining nuclear morphology. Oligodendrocyte progenitor cells were identified with an NG2 antibody or by in situ hybridization for platelet-derived growth factor receptor {alpha}. Proliferation of OPC was assessed by in vivo bromodeoxyuridine (BrdU) labeling and subsequent immunohistochemistry. Because radiation-induced apoptosis of oligodendroglial cells is p53 dependent, p53 transgenic mice were used to study the relationship between apoptosis and cell proliferation. Results: Oligodendrocyte progenitor cells underwent apoptosis within 24 h of irradiation in the rat. That did not result in a change in OPC density at 24 h. Oligodendrocyte progenitor cell density was significantly reduced by 2-4 weeks, but showed recovery by 6 weeks after irradiation. An increase in BrdU-labeled cells was observed at 2 weeks after 8 Gy or 22 Gy, and proliferating cells in the rat spinal cord were immunoreactive for NG2. The mouse spinal cord showed a similar early cell proliferation after irradiation. No difference was observed in the proliferation response in the spinal cord of p53 -/- mice compared with wild type animals. Conclusions: Oligodendroglial cells undergo early apoptosis and OPC undergo early proliferation after ionizing radiation. However, apoptosis is not likely to be the trigger for early proliferation of OPC in the irradiated central nervous system.

  3. EGF induces the progeny of subventricular zone type B cells to migrate and differentiate into oligodendrocytes

    PubMed Central

    Gonzalez-Perez, Oscar; Romero-Rodriguez, Ricardo; Soriano-Navarro, Mario; Garcia-Verdugo, Jose Manuel; Alvarez-Buylla, Arturo

    2012-01-01

    New neurons and oligodendrocytes are continuously produced in the subventricular zone (SVZ) of adult mammalian brains. Under normal conditions, the SVZ primary precursors (type B1 cells) generate type C cells, the majority of which differentiate into neurons, with a small sub-population giving rise to oligodendrocytes. Epidermal growth factor (EGF) signaling induces dramatic proliferation and migration of SVZ progenitors, a process that could have therapeutic applications. However, the fate of cells derived from adult neural stem cells after EGF stimulation remains unknown. Here, we specifically labeled SVZ B1 cells and followed their progeny after a 7-day intraventricular infusion of EGF. Cells derived from SVZ B1 cells invaded the parenchyma around the SVZ into striatum, septum, corpus callosum, and fimbria-fornix. The majority of these B1-derived cells gave rise to cells in the oligodendrocyte lineage including local NG2+ progenitors, pre-myelinating and myelinating oligodendrocytes. SVZ B1 cells also gave rise to a population of highly branched S100β+/GFAP+ cells in the striatum and septum, but no neuronal differentiation was observed. Interestingly, when demyelination was induced in the corpus callosum by a local injection of lysolecithin, increased number of cells derived from SVZ B1 cells and stimulated to migrate and proliferate by EGF infusion, differentiated into oligodendrocytes at the lesion site. This work indicates that EGF infusion can greatly expand the number of progenitors derived from the SVZ primary progenitors, which migrate and differentiate into oligodendroglial cells. This expanded population could be used for the repair of white matter lesions. PMID:19544429

  4. Impact of simulated microgravity on oligodendrocyte development: implications for central nervous system repair.

    PubMed

    Espinosa-Jeffrey, Araceli; Paez, Pablo M; Cheli, Veronica T; Spreuer, Vilma; Wanner, Ina; de Vellis, Jean

    2013-01-01

    We have recently established a culture system to study the impact of simulated microgravity on oligodendrocyte progenitor cells (OPCs) development. We subjected mouse and human OPCs to a short exposure of simulated microgravity produced by a 3D-Clinostat robot. Our results demonstrate that rodent and human OPCs display enhanced and sustained proliferation when exposed to simulated microgravity as assessed by several parameters, including a decrease in the cell cycle time. Additionally, OPC migration was examined in vitro using time-lapse imaging of cultured OPCs. Our results indicated that OPCs migrate to a greater extent after stimulated microgravity than in normal conditions, and this enhanced motility was associated with OPC morphological changes. The lack of normal gravity resulted in a significant increase in the migration speed of mouse and human OPCs and we found that the average leading process in migrating bipolar OPCs was significantly longer in microgravity treated cells than in controls, demonstrating that during OPC migration the lack of gravity promotes leading process extension, an essential step in the process of OPC migration. Finally, we tested the effect of simulated microgravity on OPC differentiation. Our data showed that the expression of mature oligodendrocyte markers was significantly delayed in microgravity treated OPCs. Under conditions where OPCs were allowed to progress in the lineage, simulated microgravity decreased the proportion of cells that expressed mature markers, such as CC1 and MBP, with a concomitant increased number of cells that retained immature oligodendrocyte markers such as Sox2 and NG2. Development of methodologies aimed at enhancing the number of OPCs and their ability to progress on the oligodendrocyte lineage is of great value for treatment of demyelinating disorders. To our knowledge, this is the first report on the gravitational modulation of oligodendrocyte intrinsic plasticity to increase their progenies. PMID

  5. Effects of lipopolysaccharide on oligodendrocyte progenitor cells are mediated by astrocytes and microglia.

    PubMed

    Pang, Y; Cai, Z; Rhodes, P G

    2000-11-15

    Oligodendrocytes are the primary cells injured in periventricular leukomalacia (PVL), a predominant form of brain white matter lesion in preterm infants. To explore the possible linkage between white matter injury and maternal infection, purified rat O-2A progenitor (Oligodendrocyte-type 2 astrocyte progenitor) cell cultures were used as a model in studying the effects of lipopolysaccharide (LPS), an endotoxin, on survival and differentiation of oligodendrocytes and the involvement of other glial cells in the effects of LPS. O-2A progenitor cells were cultured from optic nerves of 7-day-old rat pups in a chemically defined medium (CDM). Astrocyte and microglia cell cultures were prepared from the cortex of 1-day-old rat brains in the CDM. Direct treatment of LPS (1 microg/ml) to O-2A cells had no effect on viability or differentiation of these cells. When O-2A progenitor cells were cultured in the conditioned medium obtained from either astrocyte or microglial cell cultures for 48 hr, survival rate and differentiation of O-2A cells into mature oligodendrocytes were greatly enhanced as measured by the MTT assay and immunocytochemistry. The conditioned medium obtained from astrocytes or microglia treated with LPS for 48 hr, however, failed to show such a promotional effect on viability and differentiation of O-2A cells. When 5 microg/ml LPS was used to stimulate astrocytes or microglia, the conditioned medium from these glial cell cultures caused O-2A cell injury. The overall results indicate that astrocytes and microglia may promote viability and differentiation of O-2A progenitor cells under physiological conditions, but they may also mediate cytotoxic effects of LPS on oligodendrocytes under an infectious disease biochemical environment.

  6. Impact of simulated microgravity on oligodendrocyte development: implications for central nervous system repair.

    PubMed

    Espinosa-Jeffrey, Araceli; Paez, Pablo M; Cheli, Veronica T; Spreuer, Vilma; Wanner, Ina; de Vellis, Jean

    2013-01-01

    We have recently established a culture system to study the impact of simulated microgravity on oligodendrocyte progenitor cells (OPCs) development. We subjected mouse and human OPCs to a short exposure of simulated microgravity produced by a 3D-Clinostat robot. Our results demonstrate that rodent and human OPCs display enhanced and sustained proliferation when exposed to simulated microgravity as assessed by several parameters, including a decrease in the cell cycle time. Additionally, OPC migration was examined in vitro using time-lapse imaging of cultured OPCs. Our results indicated that OPCs migrate to a greater extent after stimulated microgravity than in normal conditions, and this enhanced motility was associated with OPC morphological changes. The lack of normal gravity resulted in a significant increase in the migration speed of mouse and human OPCs and we found that the average leading process in migrating bipolar OPCs was significantly longer in microgravity treated cells than in controls, demonstrating that during OPC migration the lack of gravity promotes leading process extension, an essential step in the process of OPC migration. Finally, we tested the effect of simulated microgravity on OPC differentiation. Our data showed that the expression of mature oligodendrocyte markers was significantly delayed in microgravity treated OPCs. Under conditions where OPCs were allowed to progress in the lineage, simulated microgravity decreased the proportion of cells that expressed mature markers, such as CC1 and MBP, with a concomitant increased number of cells that retained immature oligodendrocyte markers such as Sox2 and NG2. Development of methodologies aimed at enhancing the number of OPCs and their ability to progress on the oligodendrocyte lineage is of great value for treatment of demyelinating disorders. To our knowledge, this is the first report on the gravitational modulation of oligodendrocyte intrinsic plasticity to increase their progenies.

  7. Multiple target laser ablation system

    DOEpatents

    Mashburn, Douglas N.

    1996-01-01

    A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film.

  8. Multiple target laser ablation system

    DOEpatents

    Mashburn, D.N.

    1996-01-09

    A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film. 3 figs.

  9. Systemic inflammation disrupts oligodendrocyte gap junctions and induces ER stress in a model of CNS manifestations of X-linked Charcot-Marie-Tooth disease.

    PubMed

    Olympiou, Margarita; Sargiannidou, Irene; Markoullis, Kyriaki; Karaiskos, Christos; Kagiava, Alexia; Kyriakoudi, Styliana; Abrams, Charles K; Kleopa, Kleopas A

    2016-01-01

    X-linked Charcot-Marie-Tooth disease (CMT1X) is a common form of inherited neuropathy resulting from different mutations affecting the gap junction (GJ) protein connexin32 (Cx32). A subset of CMT1X patients may additionally present with acute fulminant CNS dysfunction, typically triggered by conditions of systemic inflammation and metabolic stress. To clarify the underlying mechanisms of CNS phenotypes in CMT1X we studied a mouse model of systemic inflammation induced by lipopolysaccharide (LPS) injection to compare wild type (WT), connexin32 (Cx32) knockout (KO), and KO T55I mice expressing the T55I Cx32 mutation associated with CNS phenotypes. Following a single intraperitoneal LPS or saline (controls) injection at the age of 40-60 days systemic inflammatory response was documented by elevated TNF-α and IL-6 levels in peripheral blood and mice were evaluated 1 week after injection. Behavioral analysis showed graded impairment of motor performance in LPS treated mice, worse in KO T55I than in Cx32 KO and in Cx32 KO worse than WT. Iba1 immunostaining revealed widespread inflammation in LPS treated mice with diffusely activated microglia throughout the CNS. Immunostaining for the remaining major oligodendrocyte connexin Cx47 and for its astrocytic partner Cx43 revealed widely reduced expression of Cx43 and loss of Cx47 GJs in oligodendrocytes. Real-time PCR and immunoblot analysis indicated primarily a down regulation of Cx43 expression with secondary loss of Cx47 membrane localization. Inflammatory changes and connexin alterations were most severe in the KO T55I group. To examine why the presence of the T55I mutant exacerbates pathology even more than in Cx32 KO mice, we analyzed the expression of ER-stress markers BiP, Fas and CHOP by immunostaining, immunoblot and Real-time PCR. All markers were increased in LPS treated KO T55I mice more than in other genotypes. In conclusion, LPS induced neuroinflammation causes disruption of the main astrocyte-oligodendrocyte

  10. Matricectomy and nail ablation.

    PubMed

    Baran, Robert; Haneke, Eckart

    2002-11-01

    Matricectomy refers to the complete extirpation of the nail matrix, resulting in permanent nail loss. Usually however, matricectomy is only partial, restricted to one or both lateral horns of the matrix. Nail ablation is the definitive removal of the entire nail organ. The most important common denominator in the successful matricectomy is the total removal or destruction of the matrix tissue. Matricectomy may be indicated for the management of onychauxis, onychogryphosis, congenital nail dystrophies, and chronic painful nail, such as recalcitrant ingrown toenail or split within the medial or lateral one-third of the nail.

  11. High temperature ablative foam

    NASA Technical Reports Server (NTRS)

    Liu, Matthew T. (Inventor)

    1992-01-01

    An ablative foam composition is formed of approximately 150 to 250 parts by weight polymeric isocyanate having an isocyanate functionality of 2.6 to 3.2; approximately 15 to 30 parts by weight reactive flame retardant having a hydroxyl number range from 200-260; approximately 10 to 40 parts by weight non-reactive flame retardant; approximately 10 to 40 parts by weight nonhydrolyzable silicone copolymer having a hydroxyl number range from 75-205; and approximately 3 to 16 parts by weight amine initiated polyether resin having an isocyanate functionality greater than or equal to 3.0 and a hydroxyl number range from 400-800.

  12. Programming Hippocampal Neural Stem/Progenitor Cells into Oligodendrocytes Enhances Remyelination in the Adult Brain after Injury.

    PubMed

    Braun, Simon M G; Pilz, Gregor-Alexander; Machado, Raquel A C; Moss, Jonathan; Becher, Burkhard; Toni, Nicolas; Jessberger, Sebastian

    2015-06-23

    Demyelinating diseases are characterized by a loss of oligodendrocytes leading to axonal degeneration and impaired brain function. Current strategies used for the treatment of demyelinating disease such as multiple sclerosis largely rely on modulation of the immune system. Only limited treatment options are available for treating the later stages of the disease, and these treatments require regenerative therapies to ameliorate the consequences of oligodendrocyte loss and axonal impairment. Directed differentiation of adult hippocampal neural stem/progenitor cells (NSPCs) into oligodendrocytes may represent an endogenous source of glial cells for cell-replacement strategies aiming to treat demyelinating disease. Here, we show that Ascl1-mediated conversion of hippocampal NSPCs into mature oligodendrocytes enhances remyelination in a diphtheria-toxin (DT)-inducible, genetic model for demyelination. These findings highlight the potential of targeting hippocampal NSPCs for the treatment of demyelinated lesions in the adult brain.

  13. Changes in NG2 cells and oligodendrocytes in a new model of intraspinal hemorrhage

    PubMed Central

    Sahinkaya, F. Rezan; Milich, Lindsay; McTigue, Dana M.

    2014-01-01

    Spinal cord injury (SCI) evokes rapid deleterious and reparative glial reactions. Understanding the triggers for these responses is necessary for designing strategies to maximize repair. This study examined lesion formation and glial responses to vascular disruption and hemorrhage, a prominent feature of acute SCI. The specific role of hemorrhage is difficult to evaluate in trauma-induced lesions, because mechanical injury initiates many downstream responses. To isolate vascular disruption from trauma-induced effects, we created a novel and reproducible model of collagenase-induced intraspinal hemorrhage (ISH) and compared glial reactions between unilateral ISH and a hemi-contusion injury. Similar to contusion injuries, ISH lesions caused loss of myelin and axons and became filled with iron-laden macrophages. We hypothesized that intraspinal hemorrhage would also initiate reparative cellular responses including NG2+ oligodendrocyte progenitor cell (OPC) proliferation and oligodendrocyte genesis. Indeed, ISH induced OPC proliferation within 1d post-injury (dpi), which continued throughout the first week and resulted in a sustained elevation of NG2+ OPCs. ISH also caused oligodendrocyte loss within 4h that was sustained through 3d post-ISH. However, oligodendrogenesis, as determined by bromo-deoxyuridine (BrdU) positive oligodendrocytes, restored oligodendrocyte numbers by 7dpi, revealing that proliferating OPCs differentiated into new oligodendrocytes after ISH. The signaling molecules pERK1/2 and pSTAT3 were robustly increased acutely after ISH, with pSTAT3 being expressed in a portion of OPCs, suggesting that activators of this signaling cascade may initiate OPC responses. Aside from subtle differences in timing of OPC responses, changes in ISH tissue closely mimicked those in hemi-contusion tissue. These results are important for elucidating the contribution of hemorrhage to lesion formation and endogenous cell-mediated repair, and will provide the foundation for

  14. ERK1/ERK2 MAPK signaling is required to increase myelin thickness independent of oligodendrocyte differentiation and initiation of myelination.

    PubMed

    Ishii, Akihiro; Fyffe-Maricich, Sharyl L; Furusho, Miki; Miller, Robert H; Bansal, Rashmi

    2012-06-27

    Wrapping of the myelin sheath around axons by oligodendrocytes is critical for the rapid conduction of electrical signals required for the normal functioning of the CNS. Myelination is a multistep process where oligodendrocytes progress through a well coordinated differentiation program regulated by multiple extracellular growth and differentiation signals. The intracellular transduction of the extracellular signals that regulate myelination is poorly understood. Here we demonstrate a critical role for two important signaling molecules, extracelluar signal-regulated protein kinases 1 and 2 (ERK1/ERK2), downstream mediators of mitogen-activated protein kinases, in the control of CNS myelin thickness. We generated and analyzed two lines of mice lacking both ERK1/ERK2 function specifically in oligodendrocyte-lineage cells. In the absence of ERK1/ERK2 signaling NG2⁺ oligodendrocyte progenitor cells proliferated and differentiated on schedule. Mutant oligodendrocytes also ensheathed axons normally and made a few wraps of compact myelin. However, the subsequent increase in myelination that correlated myelin thickness in proportion to the axon caliber failed to occur. Furthermore, although the numbers of differentiated oligodendrocytes in the adult mutants were unchanged, they showed an inability to upregulate the transcription of major myelin genes that normally occurs during active myelination. Similarly, in vitro ERK1/ERK2-deficient oligodendrocytes differentiated normally but failed to form typical myelin-like membrane sheets. None of these effects were observed in single ERK1 or ERK2 mutants. These studies suggest that the predominant role of ERK1/ERK2 signaling in vivo is in promoting rapid myelin growth to increase its thickness, subsequent to oligodendrocyte differentiation and the initiation of myelination.

  15. Percutaneous Ablation in the Kidney

    PubMed Central

    Wood, Bradford J.; Gervais, Debra A.

    2011-01-01

    Percutaneous ablation in the kidney is now performed as a standard therapeutic nephron-sparing option in patients who are poor candidates for resection. Its increasing use has been largely prompted by the rising incidental detection of renal cell carcinomas with cross-sectional imaging and the need to preserve renal function in patients with comorbid conditions, multiple renal cell carcinomas, and/or heritable renal cancer syndromes. Clinical studies to date indicate that radiofrequency ablation and cryoablation are effective therapies with acceptable short- to intermediate-term outcomes and with a low risk in the appropriate setting, with attention to pre-, peri-, and postprocedural detail. The results following percutaneous radiofrequency ablation and cryoablation in the treatment of renal cell carcinoma are reviewed in this article, including those of several larger scale studies of ablation of T1a tumors. Clinical and technical considerations unique to ablation in the kidney are presented, and potential complications are discussed. © RSNA, 2011 PMID:22012904

  16. Elevated in vivo levels of a single transcription factor directly convert satellite glia into oligodendrocyte-like cells.

    PubMed

    Weider, Matthias; Wegener, Amélie; Schmitt, Christian; Küspert, Melanie; Hillgärtner, Simone; Bösl, Michael R; Hermans-Borgmeyer, Irm; Nait-Oumesmar, Brahim; Wegner, Michael

    2015-02-01

    Oligodendrocytes are the myelinating glia of the central nervous system and ensure rapid saltatory conduction. Shortage or loss of these cells leads to severe malfunctions as observed in human leukodystrophies and multiple sclerosis, and their replenishment by reprogramming or cell conversion strategies is an important research aim. Using a transgenic approach we increased levels of the transcription factor Sox10 throughout the mouse embryo and thereby prompted Fabp7-positive glial cells in dorsal root ganglia of the peripheral nervous system to convert into cells with oligodendrocyte characteristics including myelin gene expression. These rarely studied and poorly characterized satellite glia did not go through a classic oligodendrocyte precursor cell stage. Instead, Sox10 directly induced key elements of the regulatory network of differentiating oligodendrocytes, including Olig2, Olig1, Nkx2.2 and Myrf. An upstream enhancer mediated the direct induction of the Olig2 gene. Unlike Sox10, Olig2 was not capable of generating oligodendrocyte-like cells in dorsal root ganglia. Our findings provide proof-of-concept that Sox10 can convert conducive cells into oligodendrocyte-like cells in vivo and delineates options for future therapeutic strategies.

  17. Human Dental Pulp Stem Cells Differentiate into Oligodendrocyte Progenitors Using the Expression of Olig2 Transcription Factor.

    PubMed

    Askari, Nahid; Yaghoobi, Mohammad Mehdi; Shamsara, Mehdi; Esmaeili-Mahani, Saeed

    2014-01-01

    The helix-loop-helix transcription factor Olig2 is essential for lineage determination of oligodendrocytes. Differentiation of stem cells into oligodendrocytes and transplanting them is a novel strategy for the repair of different demyelination diseases. Dental pulp stem cells (DPSCs) are of great interest in regenerative medicine due to their potential for repairing damaged tissues. In this study, DPSCs were isolated from human third molars and transfected with the human Olig2 gene as a differentiation inducer for the oligodendrogenic pathway. Following the differentiation procedure, the expression of Sox2, NG2, PDGFRα, Nestin, MBP, Olig2, Oct4, glial fibrillary acidic protein and A2B5 as stage-specific markers was studied by real-time RT-qPCR, immunocytochemistry and Western blot analysis. The cells were transplanted into a mouse model of local sciatic damage by lysolecithin as a model for demyelination. Oligodendrocyte progenitor cells (OPCs) actively remyelinated and recovered the lysolecithin-induced damages in the sciatic nerve as revealed by treadmill exercise, the von Frey filament test and hind paw withdrawal in response to a thermal stimulus. Recovery of behavioral reflexes occurred 2-6 weeks after OPC transplantation. The results demonstrate that the expression of Olig2 in DPSCs reduces the expression of stem cell markers and induces the development of oligodendrocyte progenitors as revealed by the emergence of oligodendrocyte markers. DPSCs could be programmed into oligodendrocyte progenitors and considered as a simple and valuable source for the cell therapy of neurodegenerative diseases. PMID:25966902

  18. Negative regulation of miRNA-9 on oligodendrocyte lineage gene 1 during hypoxic-ischemic brain damage

    PubMed Central

    Yang, Lijun; Cui, Hong; Cao, Ting

    2014-01-01

    Oligodendrocyte lineage gene 1 plays a key role in hypoxic-ischemic brain damage and myelin repair. miRNA-9 is involved in the occurrence of many related neurological disorders. Bioinformatics analysis demonstrated that miRNA-9 complementarily, but incompletely, bound oligodendrocyte lineage gene 1, but whether miRNA-9 regulates oligodendrocyte lineage gene 1 remains poorly understood. Whole brain slices of 3-day-old Sprague-Dawley rats were cultured and divided into four groups: control group; oxygen-glucose deprivation group (treatment with 8% O2 + 92% N2 and sugar-free medium for 60 minutes); transfection control group (after oxygen and glucose deprivation for 60 minutes, transfected with control plasmid) and miRNA-9 transfection group (after oxygen and glucose deprivation for 60 minutes, transfected with miRNA-9 plasmid). From the third day of transfection, and with increasing culture days, oligodendrocyte lineage gene 1 expression increased in each group, peaked at 14 days, and then decreased at 21 days. Real-time quantitative PCR results, however, demonstrated that oligodendrocyte lineage gene 1 expression was lower in the miRNA-9 transfection group than that in the transfection control group at 1, 3, 7, 14, 21 and 28 days after transfection. Results suggested that miRNA-9 possibly negatively regulated oligodendrocyte lineage gene 1 in brain tissues during hypoxic-ischemic brain damage. PMID:25206848

  19. Nanoparticle-mediated conversion of primary human astrocytes into neurons and oligodendrocytes.

    PubMed

    Li, Xiaowei; Kozielski, Kristen; Cheng, Yu-Hao; Liu, Huanhuan; Zamboni, Camila Gadens; Green, Jordan; Mao, Hai-Quan

    2016-06-21

    Central nervous system (CNS) diseases and injuries are accompanied by reactive gliosis and scarring involving the activation and proliferation of astrocytes to form hypertrophic and dense structures, which present a significant barrier to neural regeneration. Engineering astrocytes to functional neurons or oligodendrocytes may constitute a novel therapeutic strategy for CNS diseases and injuries. Such direct cellular programming has been successfully demonstrated using viral vectors via the transduction of transcriptional factors, such as Sox2, which could program resident astrocytes into neurons in the adult brain and spinal cord, albeit the efficiency was low. Here we report a non-viral nanoparticle-based transfection method to deliver Sox2 or Olig2 into primary human astrocytes and demonstrate the effective conversion of the astrocytes into neurons and oligodendrocyte progenitors following the transgene expression of Sox2 and Olig2, respectively. This approach is highly translatable for engineering astrocytes to repair injured CNS tissues. PMID:27328202

  20. Interplay between transcriptional control and chromatin regulation in the oligodendrocyte lineage

    PubMed Central

    Hernandez, Marylens; Casaccia, Patrizia

    2015-01-01

    The recent years have been characterized by a surge of studies on the role of transcription factors and histone modifications in regulating the progression of progenitors into oligodendrocytes. This review summarizes this body of evidence and presents an integrated view of transcriptional networks and epigenetic regulators defining proliferating progenitors and their differentiation along the oligodendrocyte lineage. We suggest that transcription factors in proliferating progenitors have direct access to DNA, due to predominantly euchromatic nuclei. As progenitors differentiate, however, transcriptional competence is modulated by the formation of heterochromatin, which modifies the association of DNA with nucleosomal histones and renders the access of transcription factor dependent on the activity of epigenetic modulators. These concepts are delineated within the context of development and the potential functional implications are discussed. PMID:25970296

  1. In vitro analysis of the oligodendrocyte lineage in mice during demyelination and remyelination

    SciTech Connect

    Armstrong, R.; Friedrich, V.L. Jr.; Holmes, K.V.; Dubois-Dalcq, M. )

    1990-09-01

    A demyelinating disease induced in C57B1/6N mice by intracranial injection of a coronavirus (murine hepatitis virus strain A59) is followed by functional recovery and efficient CNS myelin repair. To study the biological properties of the cells involved in this repair process, glial cells were isolated and cultured from spinal cords of these young adult mice during demyelination and remyelination. Using three-color immunofluorescence combined with (3H)thymidine autoradiography, we have analyzed the antigenic phenotype and mitotic potential of individual glial cells. We identified oligodendrocytes with an antibody to galactocerebroside, astrocytes with an antibody to glial fibrillary acidic protein, and oligodendrocyte-type 2 astrocyte (O-2A) progenitor cells with the O4 antibody. Cultures from demyelinated tissue differed in several ways from those of age-matched controls: first, the total number of O-2A lineage cells was strikingly increased; second, the O-2A population consisted of a higher proportion of O4-positive astrocytes and cells of mixed oligodendrocyte-astrocyte phenotype; and third, all the cell types within the O-2A lineage showed enhanced proliferation. This proliferation was not further enhanced by adding PDGF, basic fibroblast growth factor (bFGF), or insulin-like growth factor I (IGF-I) to the defined medium. However, bFGF and IGF-I seemed to influence the fate of O-2A lineage cells in cultures of demyelinated tissue. Basic FGF decreased the percentage of cells expressing galactocerebroside. In contrast, IGF-I increased the relative proportion of oligodendrocytes. Thus, O-2A lineage cells from adult mice display greater phenotypic plasticity and enhanced mitotic potential in response to an episode of demyelination. These properties may be linked to the efficient remyelination achieved in this demyelinating disease.

  2. Thermal response and ablation characteristics of light weight ceramic ablators

    NASA Technical Reports Server (NTRS)

    Tran, Huy K.; Rasky, Daniel J.; Esfahani, Lili

    1993-01-01

    An account is given of the thermal performance and ablation characteristics of the NASA-Ames Lightweight Ceramic Ablators (LCAs) in supersonic, high-enthalpy convective environments, which use low density ceramic or carbon fiber matrices as substrates for main structural support, with organic resin fillers. LCA densities are in the 0.224-1.282 g/cu cm range. In-depth temperature data have been obtained to determine thermal penetration depths and conductivity. The addition of SiC and PPMA is noted to significantly improve the ablation performance of LCAs with silica substrates. Carbon-based LCAs are the most mass-efficient at high flux levels.

  3. p38 Mitogen-Activated Protein Kinase Pathway Regulates Genes during Proliferation and Differentiation in Oligodendrocytes

    PubMed Central

    Haines, Jeffery D.; Fulton, Debra L.; Richard, Stephane; Almazan, Guillermina

    2015-01-01

    We have previously shown that p38 mitogen-activated protein kinase (p38 MAPK) is important for oligodendrocyte (OLG) differentiation and myelination. However, the precise cellular mechanisms by which p38 regulates OLG differentiation remain largely unknown. To determine whether p38 functions in part through transcriptional events in regulating OLG identity, we performed microarray analysis on differentiating oligodendrocyte progenitors (OLPs) treated with a p38 inhibitor. Consistent with a role in OLG differentiation, pharmacological inhibition of p38 down-regulated the transcription of genes that are involved in myelin biogenesis, transcriptional control and cell cycle. Proliferation assays showed that OLPs treated with the p38 inhibitor retained a proliferative capacity which could be induced upon application of mitogens demonstrating that after two days of p38-inhibition OLGs remained poised to continue mitosis. Together, our results suggest that the p38 pathway regulates gene transcription which can coordinate OLG differentiation. Our microarray dataset will provide a useful resource for future studies investigating the molecular mechanisms by which p38 regulates oligodendrocyte differentiation and myelination. PMID:26714323

  4. CXCR4 Signaling Regulates Remyelination by Endogenous Oligodendrocyte Progenitor Cells in a Viral Model of Demyelination

    PubMed Central

    CARBAJAL, KEVIN S.; MIRANDA, JUAN L.; TSUKAMOTO, MICHELLE R.; LANE, THOMAS E.

    2016-01-01

    Following intracranial infection with the neurotropic JHM strain of mouse hepatitis virus (JHMV), susceptible mice will develop widespread myelin destruction that results in pathological and clinical outcomes similar to those seen in humans with the demyelinating disease Multiple Sclerosis (MS). Partial remyelination and clinical recovery occurs during the chronic phase following control of viral replication yet the signaling mechanisms regulating these events remain enigmatic. Here we report the kinetics of proliferation and maturation of oligodendrocyte progenitor cells (OPCs) within the spinal cord following JHMV-induced demyelination and that CXCR4 signaling contributes to the maturation state of OPCs. Following treatment with AMD3100, a specific inhibitor of CXCR4, mice recovering from widespread demyelination exhibit a significant (P < 0.01) increase in the number of OPCs and fewer (P < 0.05) mature oligodendrocytes compared with HBSS-treated animals. These results suggest that CXCR4 signaling is required for OPCs to mature and contribute to remyelination in response to JHMV-induced demyelination. To assess if this effect is reversible and has potential therapeutic benefit, we pulsed mice with AMD3100 and then allowed them to recover. This treatment strategy resulted in increased numbers of mature oligodendrocytes, enhanced remyelination, and improved clinical outcome. These findings highlight the possibility to manipulate OPCs in order to increase the pool of remyelination-competent cells that can participate in recovery. PMID:21830237

  5. Slit2 regulates the dispersal of oligodendrocyte precursor cells via Fyn/RhoA signaling.

    PubMed

    Liu, Xiujie; Lu, Yan; Zhang, Yong; Li, Yuanyuan; Zhou, Jiazhen; Yuan, Yimin; Gao, Xiaofei; Su, Zhida; He, Cheng

    2012-05-18

    Oligodendrocyte precursor cells (OPCs) are a unique type of glia that are responsible for the myelination of the central nervous system. OPC migration is important for myelin formation during central nervous system development and repair. However, the precise extracellular and intracellular mechanisms that regulate OPC migration remain elusive. Slits were reported to regulate neurodevelopmental processes such as migration, adhesion, axon guidance, and elongation through binding to roundabout receptors (Robos). However, the potential roles of Slits/Robos in oligodendrocytes remain unknown. In this study, Slit2 was found to be involved in regulating the dispersal of OPCs through the association between Robo1 and Fyn. Initially, we examined the expression of Robos in OPCs both in vitro and in vivo. Subsequently, the Boyden chamber assay showed that Slit2 could inhibit OPC migration. RoboN, a specific inhibitor of Robos, could significantly attenuate this effect. The effects were confirmed through the explant migration assay. Furthermore, treating OPCs with Slit2 protein deactivated Fyn and increased the level of activated RhoA-GTP. Finally, Fyn was found to form complexes with Robo1, but this association was decreased after Slit2 stimulation. Thus, we demonstrate for the first time that Slit2 regulates the dispersal of oligodendrocyte precursor cells through Fyn and RhoA signaling.

  6. Myelin basic protein gene contains separate enhancers for oligodendrocyte and Schwann cell expression

    PubMed Central

    1992-01-01

    The DNA sequence between position +36 and -1907 of the murine myelin basic protein gene contains the enhancer and promoter elements necessary for abundant and cell specific expression in transgenic mice. Surprisingly, the pattern of expression promoted by this DNA fragment is a subset of that exhibited by the endogenous myelin basic protein (MBP) gene. Fusion genes prepared with this promoter/enhancer and a Lac Z reporter gene are expressed only in oligodendrocytes and not in Schwann cells, whereas the endogenous MBP gene is expressed in both cell types. The level of transgene expression measured by nuclear run- on experiments is very substantial and rivals that of the endogenous MBP gene. Furthermore, this 1.9-kb DNA fragment directs transcription on the same (or very similar) developmental schedule as the endogenous gene. These results indicate that the MBP promoter/enhancer sequences are at least tripartite: a core promoter, the oligodendrocyte enhancer elements, and a third component that either expands the specificity of the oligodendrocyte enhancer to include Schwann cells or acts independently to specifically stimulate transcription in Schwann cells. PMID:1383235

  7. Multiple splice isoforms of proteolipid M6B in neurons and oligodendrocytes.

    PubMed

    Werner, H; Dimou, L; Klugmann, M; Pfeiffer, S; Nave, K A

    2001-12-01

    Proteolipids are abundant integral membrane proteins, initially described as structural proteins of CNS myelin. More recently, two neuronal proteins related to proteolipid protein (PLP), termed M6A and M6B, were identified, suggesting a common function of proteolipids in oligodendrocytes and neurons. We have analyzed the X-linked M6B gene and discovered an unexpected complexity of protein isoforms. Two promoters and alternative exons yield at least eight M6B proteins and polypeptides, differentially expressed in neurons and oligodendrocytes. Six isoforms are tetraspan membrane proteins that differ by highly conserved amino- and carboxy-terminal domains, termed alpha, beta, psi, and omega. In MDCK cells, the beta-domain of M6B stabilizes tetraspan proteolipids at the cell surface, whereas non-beta isoforms are more abundant in intracellular compartments. Cotransfection experiments suggest a physical interaction of M6B and mutant PLP, when retained in the endoplasmic reticulum, that may also contribute to oligodendrocyte dysfunction in Pelizaeus-Merzbacher disease. PMID:11749036

  8. Aorta-derived mesoangioblasts differentiate into the oligodendrocytes by inhibition of the Rho kinase signaling pathway.

    PubMed

    Wang, Lei; Kamath, Anant; Frye, Janie; Iwamoto, Gary A; Chun, Ju Lan; Berry, Suzanne E

    2012-05-01

    Mesoangioblasts are vessel-derived stem cells that differentiate into mesodermal derivatives. We have isolated postnatal aorta-derived mesoangioblasts (ADMs) that differentiate into smooth, skeletal, and cardiac muscle, and adipocytes, and regenerate damaged skeletal muscle in a murine model for Duchenne muscular dystrophy. We report that the marker profile of ADM is similar to that of mesoangioblasts isolated from embryonic dorsal aorta, postnatal bone marrow, and heart, but distinct from mesoangioblasts derived from skeletal muscle. We also demonstrate that ADM differentiate into myelinating glial cells. ADM localize to peripheral nerve bundles in regenerating muscles and exhibit morphology and marker expression of mature Schwann cells, and myelinate axons. In vitro, ADM spontaneously express markers of oligodendrocyte progenitors, including the chondroitin sulphate proteoglycan NG2, nestin, platelet-derived growth factor (PDGF) receptor α, the A2B5 antigen, thyroid hormone nuclear receptor α, and O4. Pharmacological inhibition of Rho kinase (ROCK) initiated process extension by ADM, and when combined with insulin-like growth factor 1, PDGF, and thyroid hormone, enhanced ADM expression of oligodendrocyte precursor markers and maturation into the oligodendrocyte lineage. ADM injected into the right lateral ventricle of the brain migrate to the corpus callosum, and cerebellar white matter, where they express components of myelin. Because ADM differentiate or mature into cell types of both mesodermal and ectodermal origin, they may be useful for treatment of a variety of degenerative diseases, or repair and regeneration of multiple cell types in severely damaged tissue. PMID:21793703

  9. Electroacupuncture ameliorates memory impairments by enhancing oligodendrocyte regeneration in a mouse model of prolonged cerebral hypoperfusion

    PubMed Central

    Ahn, Sung Min; Kim, Yu Ri; Kim, Ha Neui; Shin, Yong-Il; Shin, Hwa Kyoung; Choi, Byung Tae

    2016-01-01

    We modeled prolonged cerebral hypoperfusion in mice using bilateral common carotid artery stenosis (BCAS) and electroacupuncture (EA) stimulation was applied at two acupoints, Baihui (GV20) and Dazhui (GV14). In behavioral tests of memory, BCAS produced impairments in spatial and short-term memory in mice that were attenuated by therapeutic EA stimulation. Therapeutic use of EA in BCAS also enhanced oligodendrocyte (OL) differentiation from oligodendrocyte precursor cells (OPCs), in association with white matter improvements in the corpus callosum (CC). In PCR analyses of growth factor gene expression, significant positive changes in 3 genes were observed following EA stimulation in BCAS, and here we highlight alterations in neurotrophin-4/5 (NT4/5). We confirmed EA-mediated positive changes in the expression of NT4/5 and its receptor, tyrosine receptor kinase B (TrkB). Treatment of naïve and BCAS + EA animals with a selective TrkB antagonist, ANA-12, produced losses of myelin and cognitive function that were ameliorated by EA therapy. Moreover, following BCAS we observed an EA-dependent increase in phospho-activated CREB (a downstream mediator of NT4/5-TrkB signaling) in OPCs and OLs of the CC. Our results suggest that EA stimulation promotes the recovery of memory function following white matter injury via a mechanism that promotes oligodendrocyte regeneration and involves NT4/5-TrkB signaling. PMID:27350403

  10. Plasma Corticosterone Activates SGK1 and Induces Morphological Changes in Oligodendrocytes in Corpus Callosum

    PubMed Central

    Miyata, Shingo; Koyama, Yoshihisa; Takemoto, Kana; Yoshikawa, Keiko; Ishikawa, Toshiko; Taniguchi, Manabu; Inoue, Kiyoshi; Aoki, Miwa; Hori, Osamu; Katayama, Taiichi; Tohyama, Masaya

    2011-01-01

    Repeated stressful events are known to be associated with onset of depression. Further, stress activates the hypothalamic–pituitary–adrenocortical (HPA) system by elevating plasma cortisol levels. However, little is known about the related downstream molecular pathway. In this study, by using repeated water-immersion and restraint stress (WIRS) as a stressor for mice, we attempted to elucidate the molecular pathway induced by elevated plasma corticosterone levels. We observed the following effects both, in vivo and in vitro: (1) repeated exposure to WIRS activates the 3-phosphoinositide-dependent protein kinase (PDK1)–serum glucocorticoid regulated kinase (SGK1)–N-myc downstream-regulated gene 1 (NDRG1)–adhesion molecule (i.e., N-cadherin, α-catenin, and β-catenin) stabilization pathway via an increase in plasma corticosterone levels; (2) the activation of this signaling pathway induces morphological changes in oligodendrocytes; and (3) after recovery from chronic stress, the abnormal arborization of oligodendrocytes and depression-like symptoms return to the control levels. Our data strongly suggest that these abnornalities of oligodendrocytes are possibly related to depression-like symptoms. PMID:21655274

  11. Erythropoietin (EPO) increases myelin gene expression in CG4 oligodendrocyte cells through the classical EPO receptor.

    PubMed

    Cervellini, Ilaria; Annenkov, Alexander; Brenton, Thomas; Chernajovsky, Yuti; Ghezzi, Pietro; Mengozzi, Manuela

    2013-08-28

    Erythropoietin (EPO) has protective effects in neurodegenerative and neuroinflammatory diseases, including in animal models of multiple sclerosis, where EPO decreases disease severity. EPO also promotes neurogenesis and is protective in models of toxic demyelination. In this study, we asked whether EPO could promote neurorepair by also inducing remyelination. In addition, we investigated whether the effect of EPO could be mediated by the classical erythropoietic EPO receptor (EPOR), since it is still questioned if EPOR is functional in nonhematopoietic cells. Using CG4 cells, a line of rat oligodendrocyte precursor cells, we found that EPO increases the expression of myelin genes (myelin oligodendrocyte glycoprotein [MOG] and myelin basic protein [MBP]). EPO had no effect in wild-type CG4 cells, which do not express EPOR, whereas it increased MOG and MBP expression in cells engineered to overexpress EPOR (CG4-EPOR). This was reflected in a marked increase in MOG protein levels, as detected by Western blot. In these cells, EPO induced by 10-fold the early growth response gene 2 (Egr2), which is required for peripheral myelination. However, Egr2 silencing with a siRNA did not reverse the effect of EPO, indicating that EPO acts through other pathways. In conclusion, EPO induces the expression of myelin genes in oligodendrocytes and this effect requires the presence of EPOR. This study demonstrates that EPOR can mediate neuroreparative effects.

  12. Epicardial Ablation of Ventricular Tachycardia

    PubMed Central

    Tung, Roderick; Shivkumar, Kalyanam

    2015-01-01

    Epicardial mapping and ablation via a percutaneous subxiphoid technique has been instrumental in improving the working understanding of complex myocardial scars in various arrhythmogenic substrates. Endocardial ablation alone may not be sufficient in patients with ischemic cardiomyopathy, dilated cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, hypertrophic cardiomyopathy, and Chagas disease to prevent recurrent ventricular tachycardia. Multiple observational studies have demonstrated greater freedom from recurrence with adjunctive epicardial ablation compared with endocardial ablation alone. While epicardial ablation is performed predominantly at tertiary referral centers, knowledge of the technical approach, clinical indications, and potential complications is imperative to maximizing clinical success and patient safety. In 1996, Sosa and colleagues modified the pericardiocentesis technique to enable percutaneous access to the pericardial space for mapping and catheter ablation of ventricular tachycardia.1 Originally developed for patients with epicardial scarring due to chagasic cardiomyopathy and patients with ischemic cardiomyopathy refractory to endocardial ablationm,2,3 this approach has since become an essential part of the armamentarium for the treatment of ventricular tachycardia. Myocardial scars are three-dimensionally complex with varying degrees of transmurality, and the ability to map and ablate the epicardial surface has contributed to a greater understanding of scar-related VT in postinfarction cardiomyopathy and nonischemic substrates including idiopathic dilated cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, hypertrophic cardiomyopathy, and chagasic cardiomyopathy. In this review, we highlight the percutaneous approach and discuss clinical indications and potential complications. PMID:26306131

  13. [New techniques of tumor ablation (microwaves, electroporation)].

    PubMed

    de Baere, T

    2011-09-01

    Since the introduction of radiofrequency tumor ablation of liver tumors in the late 1990s, local destructive therapies have been applied to lung, renal and bone lesions. In addition, new techniques have been introduced to compensate for the limitations of radiofrequency ablation, namely the reduced rate of complete ablation for tumors larger than 3 cm and tumors near vessels larger than 3 mm. Microwave ablation is currently evolving rapidly. While it is a technique based on thermal ablation similar to radiofrequency ablation, there are significant differences between both techniques. Electroporation, of interest because of the non-thermal nature of the ablation process, also is under evaluation.

  14. Intracisternal delivery of AAV9 results in oligodendrocyte and motor neuron transduction in the whole central nervous system of cats

    PubMed Central

    Bucher, T; Dubreil, L; Colle, M-A; Maquigneau, M; Deniaud, J; Ledevin, M; Moullier, P; Joussemet, B

    2014-01-01

    Systemic and intracerebrospinal fluid delivery of adeno-associated virus serotype 9 (AAV9) has been shown to achieve widespread gene delivery to the central nervous system (CNS). However, after systemic injection, the neurotropism of the vector has been reported to vary according to age at injection, with greater neuronal transduction in newborns and preferential glial cell tropism in adults. This difference has not yet been reported after cerebrospinal fluid (CSF) delivery. The present study analyzed both neuronal and glial cell transduction in the CNS of cats according to age of AAV9 CSF injection. In both newborns and young cats, administration of AAV9-GFP in the cisterna magna resulted in high levels of motor neurons (MNs) transduction from the cervical (84±5%) to the lumbar (99±1%) spinal cord, demonstrating that the remarkable tropism of AAV9 for MNs is not affected by age at CSF delivery. Surprisingly, numerous oligodendrocytes were also transduced in the brain and in the spinal cord white matter of young cats, but not of neonates, indicating that (i) age of CSF delivery influences the tropism of AAV9 for glial cells and (ii) AAV9 intracisternal delivery could be relevant for both the treatment of MN and demyelinating disorders. PMID:24572783

  15. Integrin-linked kinase regulates oligodendrocyte cytoskeleton, growth cone, and adhesion dynamics.

    PubMed

    Michalski, John-Paul; Cummings, Sarah E; O'Meara, Ryan W; Kothary, Rashmi

    2016-02-01

    Integrin-linked kinase (ILK), a focal adhesion protein, brokers the link between cytoskeleton, cell membrane, and extracellular environment. Here, we demonstrate a role for ILK in laminin-2-mediated adhesion in primary murine oligodendrocytes (OLs) - with ILK loss leading to severe defects in process branching and outgrowth. These defects were partially recovered when the ILK-depleted OLs were instead grown on the non-integrin-activating substrate poly-l-lysine. Intriguingly, ILK loss on the neutral poly-l-lysine substrate led to swelling at the tips of OL processes, which we identified as enlarged growth cones. Employing the bloated ILK-depleted growth cones as template, we demonstrate the appearance of distinct cytoskeletal domains within OL growth cones bearing classic neuronal growth cone architecture. Further, microtubule organization was severely perturbed following ILK loss, with centripetal microtubule looping and failure to bundle occurring in a laminin-2-independent manner. Together, our work highlights differences in specific aspects of OL biology as driven by laminin-2-dependent or independent ILK governed mechanisms. We also reinforce the idea of OLs as growth cone bearing cells and describe the neuronal-like cytoskeleton therein. Finally, we demonstrate a role for ILK in OL growth cone maturation through microtubule regulation, the loss of which translates to decreased process length and myelin production capacity. We describe herein how different substrates fundamentally alter the oligodendrocyte's response to loss of integrin-linked kinase (ILK). On laminin-2 (Ln-2), ILK-depleted oligodendrocytes appear stunted and malformed, while on the non-integrin-activating substrate PLL branching and membrane formation are restored. We also reinforce the idea of oligodendrocytes as growth cone-bearing cells, detailing the growth cone's cytoskeletal architecture. Strikingly, loss of ILK on poly-l-lysine leads to growth cone swelling, the structure's size and

  16. Ion acceleration enhanced by target ablation

    SciTech Connect

    Zhao, S.; Lin, C. Wang, H. Y.; Lu, H. Y.; He, X. T.; Yan, X. Q.; Chen, J. E.; Cowan, T. E.

    2015-07-15

    Laser proton acceleration can be enhanced by using target ablation, due to the energetic electrons generated in the ablation preplasma. When the ablation pulse matches main pulse, the enhancement gets optimized because the electrons' energy density is highest. A scaling law between the ablation pulse and main pulse is confirmed by the simulation, showing that for given CPA pulse and target, proton energy improvement can be achieved several times by adjusting the target ablation.

  17. Ablative Approaches for Pulmonary Metastases.

    PubMed

    Boyer, Matthew J; Ricardi, Umberto; Ball, David; Salama, Joseph K

    2016-02-01

    Pulmonary metastases are common in patients with cancer for which surgery is considered a standard approach in appropriately selected patients. A number of patients are not candidates for surgery due to a medical comorbidities or the extent of surgery required. For these patients, noninvasive or minimally invasive approaches to ablate pulmonary metastases are potential treatment strategies. This article summarizes the rationale and outcomes for non-surgical treatment approaches, including radiotherapy, radiofrequency and microwave ablation, for pulmonary metastases.

  18. Laser ablation in analytical chemistry.

    PubMed

    Russo, Richard E; Mao, Xianglei; Gonzalez, Jhanis J; Zorba, Vassilia; Yoo, Jong

    2013-07-01

    In 2002, we wrote an Analytical Chemistry feature article describing the Physics of Laser Ablation in Microchemical Analysis. In line with the theme of the 2002 article, this manuscript discusses current issues in fundamental research, applications based on detecting photons at the ablation site (LIBS and LAMIS) and by collecting particles for excitation in a secondary source (ICP), and directions for the technology. PMID:23614661

  19. Bone and Soft Tissue Ablation

    PubMed Central

    Foster, Ryan C.B.; Stavas, Joseph M.

    2014-01-01

    Bone and soft tissue tumor ablation has reached widespread acceptance in the locoregional treatment of various benign and malignant musculoskeletal (MSK) lesions. Many principles of ablation learned elsewhere in the body are easily adapted to the MSK system, particularly the various technical aspects of probe/antenna design, tumoricidal effects, selection of image guidance, and methods to reduce complications. Despite the common use of thermal and chemical ablation procedures in bone and soft tissues, there are few large clinical series that show longitudinal benefit and cost-effectiveness compared with conventional methods, namely, surgery, external beam radiation, and chemotherapy. Percutaneous radiofrequency ablation of osteoid osteomas has been evaluated the most and is considered a first-line treatment choice for many lesions. Palliation of painful metastatic bone disease with thermal ablation is considered safe and has been shown to reduce pain and analgesic use while improving quality of life for cancer patients. Procedure-related complications are rare and are typically easily managed. Similar to all interventional procedures, bone and soft tissue lesions require an integrated approach to disease management to determine the optimum type of and timing for ablation techniques within the context of the patient care plan. PMID:25053865

  20. Intraductal radiofrequency ablation for management of malignant biliary obstruction.

    PubMed

    Rustagi, Tarun; Jamidar, Priya A

    2014-11-01

    Self-expandable metal stents (SEMS) are the current standard of care for the palliative management of malignant biliary strictures. Recently, endoscopic ablative techniques with direct affect to local tumor have been developed to improve SEMS patency. Several reports have demonstrated the technical feasibility and safety of intraductal radiofrequency ablation (RFA), by both endoscopic and percutaneous approaches, in palliation of malignant strictures of the bile duct. Intraductal RFA has also been used in the treatment of occlusion of both covered and uncovered SEMS occlusion from tumor ingrowth or overgrowth. This article provides a comprehensive review of intraductal RFA in the management of malignant biliary obstruction.

  1. Indian hedgehog B function is required for the specification of oligodendrocyte progenitor cells in the zebrafish CNS.

    PubMed

    Chung, Ah-Young; Kim, Suhyun; Kim, Eunmi; Kim, Dohyun; Jeong, Inyoung; Cha, Young Ryun; Bae, Young-ki; Park, Seung Woo; Lee, Jehee; Park, Hae-Chul

    2013-01-23

    A subset of ventral spinal cord precursors, known as pMN precursor cells, initially generate motor neurons and then oligodendrocyte progenitor cells (OPCs), which migrate and differentiate as myelinating oligodendrocytes in the developing neural tube. The switch between motor neuron and oligodendrocyte production by the pMN neural precursors is an important step in building a functional nervous system. However, the precise mechanism that orchestrates the sequential generation of motor neurons and oligodendrocytes within the common population of pMN precursors is still unclear. The current study demonstrates that Indian Hedgehog b (Ihhb), previously known as Echidna Hedgehog, begins to be expressed in the floor plate cells of the ventral spinal cord at the time of OPC specification in zebrafish embryos. Ihhb loss-of-function analysis revealed that Ihhb function is required for OPC specification from pMN precursors by negatively regulating the proliferation of neural precursors. Finally, results showed that Sonic Hedgehog (Shh) could not replace Ihhb function in OPC specification, suggesting that Ihhb and Shh play separate roles in OPC specification. Altogether, data from the present study suggested a novel mechanism, mediated by Ihhb, for the sequential generation of motor neurons and oligodendrocytes from pMN precursors in the ventral spinal cord of zebrafish embryos.

  2. Transcriptional expression of myelin basic protein in oligodendrocytes depends on functional syntaxin 4: a potential correlation with autocrine signaling.

    PubMed

    Bijlard, Marjolein; Klunder, Bert; de Jonge, Jenny C; Nomden, Anita; Tyagi, Sanjay; de Vries, Hans; Hoekstra, Dick; Baron, Wia

    2015-02-01

    Myelination of axons by oligodendrocytes is essential for saltatory nerve conduction. To form myelin membranes, a coordinated synthesis and subsequent polarized transport of myelin components are necessary. Here, we show that as part of the mechanism to establish membrane polarity, oligodendrocytes exploit a polarized distribution of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) machinery components syntaxins 3 and 4, localizing to the cell body and the myelin membrane, respectively. Our data further reveal that the expression of myelin basic protein (MBP), a myelin-specific protein that is synthesized "on site" after transport of its mRNA, depends on the correct functioning of the SNARE machinery, which is not required for mRNA granule assembly and transport per se. Thus, downregulation and overexpression of syntaxin 4 but not syntaxin 3 in oligodendrocyte progenitor cells but not immature oligodendrocytes impeded MBP mRNA transcription, thereby preventing MBP protein synthesis. The expression and localization of another myelin-specific protein, proteolipid protein (PLP), was unaltered. Strikingly, conditioned medium obtained from developing oligodendrocytes was able to rescue the block of MBP mRNA transcription in syntaxin 4-downregulated cells. These findings indicate that the initiation of the biosynthesis of MBP mRNA relies on a syntaxin 4-dependent mechanism, which likely involves activation of an autocrine signaling pathway.

  3. Nanofibers Support Oligodendrocyte Precursor Cell Growth and Function as a Neuron-Free Model for Myelination Study

    PubMed Central

    Li, Yongchao; Ceylan, Muhammet; Shrestha, Bikesh; Wang, Haibo; Lu, Q.Richard; Asmatulu, Ramazan; Yao, Li

    2014-01-01

    Nanofiber-based scaffolds may simultaneously provide immediate contact guidance for neural regeneration and act as a vehicle for therapeutic cell delivery to enhance axonal myelination. Additionally, nanofibers can serve as a neuron-free model to study myelination of oligodendrocytes. In this study, we fabricated nanofibers using a polycaprolactone and gelatin co-polymer. The ratio of the gelatin component in the fibers was confirmed by energy dispersive x-ray spectroscopy. The addition of gelatin to the polycaprolactone (PCL) for nanofiber fabrication decreased the contact angle of the electrospun fibers. We showed that both polycaprolactone nanofibers as well as polycaprolactone and gelatin co-polymer nanofibers can support oligodendrocyte precursor cell (OPC) growth and differentiation. OPCs maintained their phenotype and viability on nanofibers and were induced to differentiate into oligodendrocytes. The differentiated oligodendrocytes extend their processes along the nanofibers and ensheathed the nanofibers. Oligodendrocytes formed significantly more myelinated segments on the PCL and gelatin co3polymer nanofibers than those on PCL nanofibers alone. PMID:24304204

  4. Indian hedgehog B function is required for the specification of oligodendrocyte progenitor cells in the zebrafish CNS.

    PubMed

    Chung, Ah-Young; Kim, Suhyun; Kim, Eunmi; Kim, Dohyun; Jeong, Inyoung; Cha, Young Ryun; Bae, Young-ki; Park, Seung Woo; Lee, Jehee; Park, Hae-Chul

    2013-01-23

    A subset of ventral spinal cord precursors, known as pMN precursor cells, initially generate motor neurons and then oligodendrocyte progenitor cells (OPCs), which migrate and differentiate as myelinating oligodendrocytes in the developing neural tube. The switch between motor neuron and oligodendrocyte production by the pMN neural precursors is an important step in building a functional nervous system. However, the precise mechanism that orchestrates the sequential generation of motor neurons and oligodendrocytes within the common population of pMN precursors is still unclear. The current study demonstrates that Indian Hedgehog b (Ihhb), previously known as Echidna Hedgehog, begins to be expressed in the floor plate cells of the ventral spinal cord at the time of OPC specification in zebrafish embryos. Ihhb loss-of-function analysis revealed that Ihhb function is required for OPC specification from pMN precursors by negatively regulating the proliferation of neural precursors. Finally, results showed that Sonic Hedgehog (Shh) could not replace Ihhb function in OPC specification, suggesting that Ihhb and Shh play separate roles in OPC specification. Altogether, data from the present study suggested a novel mechanism, mediated by Ihhb, for the sequential generation of motor neurons and oligodendrocytes from pMN precursors in the ventral spinal cord of zebrafish embryos. PMID:23345245

  5. Decreased Oligodendrocyte and Neuron Number in Anterior Hippocampal Areas and the Entire Hippocampus in Schizophrenia: A Stereological Postmortem Study.

    PubMed

    Falkai, Peter; Malchow, Berend; Wetzestein, Katharina; Nowastowski, Verena; Bernstein, Hans-Gert; Steiner, Johann; Schneider-Axmann, Thomas; Kraus, Theo; Hasan, Alkomiet; Bogerts, Bernhard; Schmitz, Christoph; Schmitt, Andrea

    2016-07-01

    The hippocampus is involved in cognition as well as emotion, with deficits in both domains consistently described in schizophrenia. Moreover, the whole volumes of both the anterior and posterior region have been reported to be decreased in schizophrenia patients. While fewer oligodendrocyte numbers in the left and right cornu ammonis CA4 subregion of the posterior part of the hippocampus have been reported, the aim of this stereological study was to investigate cell numbers in either the dentate gyrus (DG) or subregions of the anterior hippocampus. In this design-based stereological study of the anterior part of the hippocampus comparing 10 patients with schizophrenia to 10 age- and gender-matched healthy controls were examined. Patients showed a decreased number of oligodendrocytes in the left CA4, fewer neurons in the left DG and smaller volumes in both the left CA4 and DG, which correlated with oligodendrocyte and neuron numbers, respectively. When exploring the total hippocampus, keeping previously published own results from the posterior part of the same brains in mind, both decreased oligodendrocyte numbers in the left CA4 and reduced volume remained significant. The decreased oligodendrocyte number speaks for a deficit in myelination and connectivity in schizophrenia which may originate from disturbed maturational processes. The reduced neuron number of the DG in the anterior hippocampus may well point to a reduced capacity of this region to produce new neurons up to adulthood. Both mechanisms may be involved in cognitive dysfunction in schizophrenia patients. PMID:27460617

  6. Predictive analysis of optical ablation in several dermatological tumoral tissues

    NASA Astrophysics Data System (ADS)

    Fanjul-Vélez, F.; Blanco-Gutiérrez, A.; Salas-García, I.; Ortega-Quijano, N.; Arce-Diego, J. L.

    2013-06-01

    Optical techniques for treatment and characterization of biological tissues are revolutionizing several branches of medical praxis, for example in ophthalmology or dermatology. The non-invasive, non-contact and non-ionizing character of optical radiation makes it specially suitable for these applications. Optical radiation can be employed in medical ablation applications, either for tissue resection or surgery. Optical ablation may provide a controlled and clean cut on a biological tissue. This is particularly relevant in tumoral tissue resection, where a small amount of cancerous cells could make the tumor appear again. A very important aspect of tissue optical ablation is then the estimation of the affected volume. In this work we propose a complete predictive model of tissue ablation that provides an estimation of the resected volume. The model is based on a Monte Carlo approach for the optical propagation of radiation inside the tissue, and a blow-off model for tissue ablation. This model is applied to several types of dermatological tumoral tissues, specifically squamous cells, basocellular and infiltrative carcinomas. The parameters of the optical source are varied and the estimated resected volume is calculated. The results for the different tumor types are presented and compared. This model can be used for surgical planning, in order to assure the complete resection of the tumoral tissue.

  7. Pío del Río Hortega and the discovery of the oligodendrocytes

    PubMed Central

    Pérez-Cerdá, Fernando; Sánchez-Gómez, María Victoria; Matute, Carlos

    2015-01-01

    Pío del Río Hortega (1882–1945) discovered microglia and oligodendrocytes (OLGs), and after Ramón y Cajal, was the most prominent figure of the Spanish school of neurology. He began his scientific career with Nicolás Achúcarro from whom he learned the use of metallic impregnation techniques suitable to study non-neuronal cells. Later on, he joined Cajal’s laboratory. and Subsequently, he created his own group, where he continued to develop other innovative modifications of silver staining methods that revolutionized the study of glial cells a century ago. He was also interested in neuropathology and became a leading authority on Central Nervous System (CNS) tumors. In parallel to this clinical activity, del Río Hortega rendered the first systematic description of a major polymorphism present in a subtype of macroglial cells that he named as oligodendroglia and later OLGs. He established their ectodermal origin and suggested that they built the myelin sheath of CNS axons, just as Schwann cells did in the periphery. Notably, he also suggested the trophic role of OLGs for neuronal functionality, an idea that has been substantiated in the last few years. Del Río Hortega became internationally recognized and established an important neurohistological school with outstanding pupils from Spain and abroad, which nearly disappeared after his exile due to the Spanish civil war. Yet, the difficulty of metal impregnation methods and their variability in results, delayed for some decades the confirmation of his great insights into oligodendrocyte biology until the development of electron microscopy and immunohistochemistry. This review aims at summarizing the pioneer and essential contributions of del Río Hortega to the current knowledge of oligodendrocyte structure and function, and to provide a hint of the scientific personality of this extraordinary and insufficiently recognized man. PMID:26217196

  8. Progesterone attenuates astro- and microgliosis and enhances oligodendrocyte differentiation following spinal cord injury.

    PubMed

    Labombarda, Florencia; González, Susana; Lima, Analia; Roig, Paulina; Guennoun, Rachida; Schumacher, Michael; De Nicola, Alejandro F

    2011-09-01

    Reactive gliosis, demyelination and proliferation of NG2+ oligodendrocyte precursor cells (OPC) are common responses to spinal cord injury (SCI). We previously reported that short-term progesterone treatment stimulates OPC proliferation whereas chronic treatment enhances OPC differentiation after SCI. Presently, we further studied the proliferation/differentiation of glial cells involved in inflammation and remyelination in male rats with SCI subjected to acute (3 days) or chronic (21 days) progesterone administration. Rats received several pulses of bromodeoyuridine (BrdU) 48 and 72 h post-SCI, and sacrificed 3 or 21 days post-SCI. Double colocalization of BrdU and specific cell markers showed that 3 days of SCI induced a strong proliferation of S100β+ astrocytes, OX-42+ microglia/macrophages and NG2+ cells. At this stage, the intense GFAP+ astrogliosis was BrdU negative. Twenty one days of SCI enhanced maturation of S100β+ cells into GFAP+ astrocytes, but decreased the number of CC1+ oligodendrocytes. Progesterone treatment inhibited astrocyte and microglia /macrophage proliferation and activation in the 3-day SCI group, and inhibited activation in the 21-day SCI group. BrdU/NG2 double labeled cells were increased by progesterone at 3 days, indicating a proliferation stimulus, but decreased them at 21 days. However, progesterone-enhancement of CC1+/BrdU+ oligodendrocyte density, suggest differentiation of OPC into mature oligondendrocytes. We conclude that progesterone effects after SCI involves: a) inhibition of astrocyte proliferation and activation; b) anti-inflammatory effects by preventing microglial activation and proliferation, and c) early proliferation of NG2+ progenitors and late remyelination. Thus, progesterone behaves as a glioactive factor favoring remyelination and inhibiting reactive gliosis.

  9. Antibody-Mediated Oligodendrocyte Remyelination Promotes Axon Health in Progressive Demyelinating Disease.

    PubMed

    Wootla, Bharath; Denic, Aleksandar; Watzlawik, Jens O; Warrington, Arthur E; Rodriguez, Moses

    2016-10-01

    Demyelination underlies early neurological symptoms in multiple sclerosis (MS); however, axonal damage is considered critical for permanent chronic deficits. The precise mechanisms by which axonal injury occurs in MS are unclear; one hypothesis is the absence or failure of remyelination, suggesting that promoting remyelination may protect axons from death. This report provides direct evidence that promoting oligodendrocyte remyelination protects axons and maintains transport function. Persistent Theiler's virus infection of Swiss Jim Lambert (SJL)/J mice was used as a model of MS to assess the effects of remyelination on axonal injury following demyelination in the spinal cord. Remyelination was induced using an oligodendrocyte/myelin-specific recombinant human monoclonal IgM, rHIgM22. The antibody is endowed with strong anti-apoptotic and pro-proliferative effects on oligodendrocyte progenitor cells. We used (1)H-magnetic resonance spectroscopy (MRS) at the brainstem to measure N-acetyl-aspartate (NAA) as a surrogate of neuronal health and spinal cord integrity. We found increased brainstem NAA concentrations at 5 weeks post-treatment with rHIgM22, which remained stable out to 10 weeks. Detailed spinal cord morphology studies revealed enhanced remyelination in the rHIgM22-treated group but not in the isotype control antibody- or saline-treated groups. Importantly, we found rHIgM22-mediated remyelination protected small- and medium-caliber mid-thoracic spinal cord axons from damage despite similar demyelination and inflammation across all experimental groups. The most direct confirmation of remyelination-mediated protection of descending neurons was an improvement in retrograde transport. Treatment with rHIgM22 significantly increased the number of retrograde-labeled neurons in the brainstem, indicating that preserved axons are functionally competent. This is direct validation that remyelination preserves spinal cord axons and protects functional axon integrity

  10. Antioxidant Protection of NADPH-Depleted Oligodendrocyte Precursor Cells Is Dependent on Supply of Reduced Glutathione

    PubMed Central

    Kilanczyk, Ewa; Saraswat Ohri, Sujata; Whittemore, Scott R.

    2016-01-01

    The pentose phosphate pathway is the main source of NADPH, which by reducing oxidized glutathione, contributes to antioxidant defenses. Although oxidative stress plays a major role in white matter injury, significance of NADPH for oligodendrocyte survival has not been yet investigated. It is reported here that the NADPH antimetabolite 6-amino-NADP (6AN) was cytotoxic to cultured adult rat spinal cord oligodendrocyte precursor cells (OPCs) as well as OPC-derived oligodendrocytes. The 6AN-induced necrosis was preceded by increased production of superoxide, NADPH depletion, and lower supply of reduced glutathione. Moreover, survival of NADPH-depleted OPCs was improved by the antioxidant drug trolox. Such cells were also protected by physiological concentrations of the neurosteroid dehydroepiandrosterone (10−8 M). The protection by dehydroepiandrosterone was associated with restoration of reduced glutathione, but not NADPH, and was sensitive to inhibition of glutathione synthesis. A similar protective mechanism was engaged by the cAMP activator forskolin or the G protein-coupled estrogen receptor (GPER/GPR30) ligand G1. Finally, treatment with the glutathione precursor N-acetyl cysteine reduced cytotoxicity of 6AN. Taken together, NADPH is critical for survival of OPCs by supporting their antioxidant defenses. Consequently, injury-associated inhibition of the pentose phosphate pathway may be detrimental for the myelination or remyelination potential of the white matter. Conversely, steroid hormones and cAMP activators may promote survival of NADPH-deprived OPCs by increasing a NADPH-independent supply of reduced glutathione. Therefore, maintenance of glutathione homeostasis appears as a critical effector mechanism for OPC protection against NADPH depletion and preservation of the regenerative potential of the injured white matter. PMID:27449129

  11. CXCR2 Signaling Protects Oligodendrocyte Progenitor Cells from IFN-γ/CXCL10-Mediated Apoptosis

    PubMed Central

    TIROTTA, EMANUELE; RANSOHOFF, RICHARD M.; LANE, THOMAS E.

    2016-01-01

    Infiltration of activated lymphocytes into the central nervous system (CNS) is potentially harmful by damaging resident cells through release of cytokines. Among these is IFN-γ that is secreted by activated natural killer (NK) cells and T lymphocytes and can exert a cytotoxic effect on resident glial populations including oligodendrocytes. Here we show that treatment of mouse oligodendrocyte progenitor cell (OPC)-enriched cultures with IFN-γ resulted in a dose-dependent increase in apoptosis. IFN-γ-induced apoptosis is mediated, in part, through induction of the CXC chemokine ligand 10 (CXCL10; IP-10) from cultured OPCs. Treatment of OPCs with CXCL10 resulted in cell death in a concentration-dependent manner and IFN-γ-treatment of CXCL10−/− OPCs resulted in >50% reduction in cell death. Further, treatment of CXCR3−/− OPC cultures with either IFN-γ or CXCL10 resulted in reduced cell death supporting an important role for CXCL10 signaling in IFN-γ-mediated OPC apoptosis. Data is also provided demonstrating that signaling through CXCR2 protects either IFN-γ or CXCL10-treated OPC cultures from apoptosis and this effect is abolished in CXCR2−/− OPCs. CXCR2-mediated protection from apoptosis is associated with impaired cleavage of caspase 3 and elevated expression of the anti-apoptotic protein Bcl-2. These findings demonstrate a previously unappreciated role for CXCL10 in contributing to neuropathology by promoting oligodendrocyte apoptosis and emphasize the potential relevance in targeting CXCL10 in treating human demyelinating diseases including multiple sclerosis (MS). PMID:21656856

  12. Pío del Río Hortega and the discovery of the oligodendrocytes.

    PubMed

    Pérez-Cerdá, Fernando; Sánchez-Gómez, María Victoria; Matute, Carlos

    2015-01-01

    Pío del Río Hortega (1882-1945) discovered microglia and oligodendrocytes (OLGs), and after Ramón y Cajal, was the most prominent figure of the Spanish school of neurology. He began his scientific career with Nicolás Achúcarro from whom he learned the use of metallic impregnation techniques suitable to study non-neuronal cells. Later on, he joined Cajal's laboratory. and Subsequently, he created his own group, where he continued to develop other innovative modifications of silver staining methods that revolutionized the study of glial cells a century ago. He was also interested in neuropathology and became a leading authority on Central Nervous System (CNS) tumors. In parallel to this clinical activity, del Río Hortega rendered the first systematic description of a major polymorphism present in a subtype of macroglial cells that he named as oligodendroglia and later OLGs. He established their ectodermal origin and suggested that they built the myelin sheath of CNS axons, just as Schwann cells did in the periphery. Notably, he also suggested the trophic role of OLGs for neuronal functionality, an idea that has been substantiated in the last few years. Del Río Hortega became internationally recognized and established an important neurohistological school with outstanding pupils from Spain and abroad, which nearly disappeared after his exile due to the Spanish civil war. Yet, the difficulty of metal impregnation methods and their variability in results, delayed for some decades the confirmation of his great insights into oligodendrocyte biology until the development of electron microscopy and immunohistochemistry. This review aims at summarizing the pioneer and essential contributions of del Río Hortega to the current knowledge of oligodendrocyte structure and function, and to provide a hint of the scientific personality of this extraordinary and insufficiently recognized man. PMID:26217196

  13. Early Intervention for Spinal Cord Injury with Human Induced Pluripotent Stem Cells Oligodendrocyte Progenitors

    PubMed Central

    All, Angelo H.; Gharibani, Payam; Gupta, Siddharth; Bazley, Faith A.; Pashai, Nikta; Chou, Bin-Kuan; Shah, Sandeep; Resar, Linda M.; Cheng, Linzhao; Gearhart, John D.; Kerr, Candace L.

    2015-01-01

    Induced pluripotent stem (iPS) cells are at the forefront of research in regenerative medicine and are envisaged as a source for personalized tissue repair and cell replacement therapy. Here, we demonstrate for the first time that oligodendrocyte progenitors (OPs) can be derived from iPS cells generated using either an episomal, non-integrating plasmid approach or standard integrating retroviruses that survive and differentiate into mature oligodendrocytes after early transplantation into the injured spinal cord. The efficiency of OP differentiation in all 3 lines tested ranged from 40% to 60% of total cells, comparable to those derived from human embryonic stem cells. iPS cell lines derived using episomal vectors or retroviruses generated a similar number of early neural progenitors and glial progenitors while the episomal plasmid-derived iPS line generated more OPs expressing late markers O1 and RIP. Moreover, we discovered that iPS-derived OPs (iPS-OPs) engrafted 24 hours following a moderate contusive spinal cord injury (SCI) in rats survived for approximately two months and that more than 70% of the transplanted cells differentiated into mature oligodendrocytes that expressed myelin associated proteins. Transplanted OPs resulted in a significant increase in the number of myelinated axons in animals that received a transplantation 24 h after injury. In addition, nearly a 5-fold reduction in cavity size and reduced glial scarring was seen in iPS-treated groups compared to the control group, which was injected with heat-killed iPS-OPs. Although further investigation is needed to understand the mechanisms involved, these results provide evidence that patient-specific, iPS-derived OPs can survive for three months and improve behavioral assessment (BBB) after acute transplantation into SCI. This is significant as determining the time in which stem cells are injected after SCI may influence their survival and differentiation capacity. PMID:25635918

  14. Correction of brain oligodendrocytes by AAVrh.10 intracerebral gene therapy in metachromatic leukodystrophy mice.

    PubMed

    Piguet, Françoise; Sondhi, Dolan; Piraud, Monique; Fouquet, Françoise; Hackett, Neil R; Ahouansou, Ornella; Vanier, Marie-Thérèse; Bieche, Ivan; Aubourg, Patrick; Crystal, Ronald G; Cartier, Nathalie; Sevin, Caroline

    2012-08-01

    Metachromatic leukodystrophy (MLD) is a lysosomal storage disorder characterized by accumulation of sulfatides in glial cells and neurons, the result of an inherited deficiency of arylsulfatase A (ARSA; EC 3.1.6.8) and myelin degeneration in the central and peripheral nervous systems. No effective treatment is currently available for the most frequent late infantile (LI) form of MLD, which results in rapid neurological degradation and early death after the onset of clinical manifestations. To potentially arrest or reverse disease progression, ARSA enzyme must be rapidly delivered to brain oligodendrocytes of patients with LI MLD. We previously showed that brain gene therapy with adeno-associated virus serotype 5 (AAV5) driving the expression of human ARSA cDNA under the control of the murine phosphoglycerate kinase (PGK) promoter alleviated most long-term disease manifestations in MLD mice. Herein, we evaluated the short-term effects of AAVrh.10 driving the expression of human ARSA cDNA under the control of the cytomegalovirus/β-actin hybrid (CAG/cu) promoter in 8-month-old MLD mice that already show marked sulfatide accumulation and brain pathology. Within 2 months, and in contrast to results with the AAV5-PGK-ARSA vector, a single intrastriatal injection of AAVrh.10cuARSA resulted in correction of brain sulfatide storage, accumulation of specific sulfatide species in oligodendrocytes, and associated brain pathology in the injected hemisphere. Better potency of the AAVrh.10cuARSA vector was mediated by higher neuronal and oligodendrocyte transduction, axonal transport of the AAVrh.10 vector and ARSA enzyme, as well as higher CAG/cu promoter driven expression of ARSA enzyme. These results strongly support the use of AAVrh.10cuARSA vector for intracerebral gene therapy in rapidly progressing early-onset forms of MLD. PMID:22642214

  15. Expression of the Receptor for Advanced Glycation End Products in Oligodendrocytes in Response to Oxidative Stress

    PubMed Central

    Qin, Jingdong; Goswami, Rajendra; Dawson, Sylvia; Dawson, Glyn

    2008-01-01

    Demyelination is a common result of oxidative stress in the nervous system, and we report here that the response of oligodendrocytes to oxidative stress involves the receptor for advanced glycation end products (RAGE). RAGE has not previously been reported in neonatal rat oligodendrocytes (NRO), but, by using primers specific for rat RAGE, we were able to show expression of messenger RNA (mRNA) for RAGE in NRO, and a 55-kDa protein was detected by Western blotting with antibodies to RAGE. Neonatal rat oligodendrocytes stained strongly for RAGE, suggesting membrane localization of RAGE. Addition of low concentrations of hydrogen peroxide (100 μM) initiated 55-kDa RAGE shedding from the cell membrane and the appearance of “soluble” 45-kDa RAGE in the culture medium, followed by restoration of RAGE expression to normal levels. Increasing hydrogen peroxide concentration (>200 μM) resulted in no restoration of RAGE, and the cells underwent apoptosis and necrosis. We further confirmed the observation in a human oligodendroglioma-derived (HOG) cell line. Both the antioxidant N-acetyl-L-cysteine and the broad-spectrum metalloproteases inhibitor TAPI0 were able partially to inhibit shedding of RAGE, suggesting involvement of metalloproteases in cleavage to produce soluble RAGE. The level of 55-kDa RAGE in autopsy brain of patients undergoing neurodegeneration with accompanying inflammation [multiple sclerosis and neuronal ceroid-lipofuscinosis (Batten's disease)] was much lower than that in age-matched controls, suggesting that shedding of RAGE might occur as reactive oxygen species accumulate in brain cells and be part of the process of neurodegeneration. PMID:18438937

  16. Expression of hypoxia-inducible factor 1 alpha and oligodendrocyte lineage gene-1 in cultured brain slices after oxygen-glucose deprivation☆

    PubMed Central

    Cui, Hong; Han, Weijuan; Yang, Lijun; Chang, Yanzhong

    2013-01-01

    Oligodendrocyte lineage gene-1 expressed in oligodendrocytes may trigger the repair of neuronal myelin impairment, and play a crucial role in myelin repair. Hypoxia-inducible factor 1α, a transcription factor, is of great significance in premature infants with hypoxic-ischemic brain damage. There is little evidence of direct regulatory effects of hypoxia-inducible factor 1α on oligodendrocyte lineage gene-1. In this study, brain slices of Sprague-Dawley rats were cultured and subjected to oxygen-glucose deprivation. Then, slices were transfected with hypoxia-inducible factor 1α or oligodendrocyte lineage gene-1. The expression levels of hypoxia-inducible factor 1α and oligodendrocyte lineage gene-1 were significantly up-regulated in rat brains prior to transfection, as detected by immunohistochemical staining. Eight hours after transfection of slices with hypoxia-inducible factor 1α, oligodendrocyte lineage gene-1 expression was upregulated, and reached a peak 24 hours after transfection. Oligodendrocyte lineage gene-1 transfection induced no significant differences in hypoxia-inducible factor 1α levels in rat brain tissues with oxygen-glucose deprivation. These experimental findings indicate that hypoxia-inducible factor 1α can regulate oligodendrocyte lineage gene-1 expression in hypoxic brain tissue, thus repairing the neural impairment. PMID:25206673

  17. Glatiramer acetate-reactive T lymphocytes regulate oligodendrocyte progenitor cell number in vitro: role of IGF-2

    PubMed Central

    Zhang, Y.; Jalili, F.; Ouamara, N.; Zameer, A.; Cosentino, G.; Mayne, M.; Hayardeny, L.; Antel, J. P.; Bar-Or, A.; John, G. R.

    2010-01-01

    Glatiramer acetate (GA) is an immunomodulator approved for therapy of relapsing-remitting multiple sclerosis (RRMS), but recent findings indicate that it may also have additional, neurotrophic effects. Here, we found that supernatants from human GA-reactive T lymphocytes potentiated oligodendrocyte numbers in rodent and human oligodendrocyte progenitor (OPC) cultures. Effects of Th2-polarized lines were stronger than Th1-polarized cells. Microarray and ELISA analyses revealed that neurotrophic factors induced in Th2- and Th1-polarized GA-reactive lines included IGF-2 and BMP-7 respectively, and functional studies confirmed IGF-2 as trophic for OPCs. Our results support the concept that GA therapy may result in supportive effects on oligodendrocytes in RRMS patients. PMID:20637510

  18. Chromosomal localization of murine and human oligodendrocyte-specific protein genes

    SciTech Connect

    Bronstein, J.M.; Wu, S.; Korenberg, J.R.

    1996-06-01

    Oligodendrocyte-specific protein (OSP) is a recently described protein present only in myelin of the central nervous system. Several inherited disorders of myelin are caused by mutations in myelin genes but the etiology of many remain unknown. We mapped the location of the mouse OSP gene to the proximal region of chromosome 3 using two sets of multilocus crosses and to human chromosome 3 using somatic cell hybrids. Fine mapping with fluorescence in situ hybridization placed the OSP gene at human chromosome 3q26.2-q26.3. To date, there are no known inherited neurological disorders that localize to these regions. 24 refs., 2 figs.

  19. The myelin oligodendrocyte glycoprotein directly binds nerve growth factor to modulate central axon circuitry.

    PubMed

    von Büdingen, H-Christian; Mei, Feng; Greenfield, Ariele; Jahn, Sarah; Shen, Yun-An A; Reid, Hugh H; McKemy, David D; Chan, Jonah R

    2015-09-14

    Myelin oligodendrocyte glycoprotein (MOG) is a central nervous system myelin-specific molecule expressed on the outer lamellae of myelin. To date, the exact function of MOG has remained unknown, with MOG knockout mice displaying normal myelin ultrastructure and no apparent specific phenotype. In this paper, we identify nerve growth factor (NGF) as a binding partner for MOG and demonstrate that this interaction is capable of sequestering NGF from TrkA-expressing neurons to modulate axon growth and survival. Deletion of MOG results in aberrant sprouting of nociceptive neurons in the spinal cord. Binding of NGF to MOG may offer widespread implications into mechanisms that underlie pain pathways.

  20. Current hot potatoes in atrial fibrillation ablation.

    PubMed

    Roten, Laurent; Derval, Nicolas; Pascale, Patrizio; Scherr, Daniel; Komatsu, Yuki; Shah, Ashok; Ramoul, Khaled; Denis, Arnaud; Sacher, Frédéric; Hocini, Mélèze; Haïssaguerre, Michel; Jaïs, Pierre

    2012-11-01

    Atrial fibrillation (AF) ablation has evolved to the treatment of choice for patients with drug-resistant and symptomatic AF. Pulmonary vein isolation at the ostial or antral level usually is sufficient for treatment of true paroxysmal AF. For persistent AF ablation, drivers and perpetuators outside of the pulmonary veins are responsible for AF maintenance and have to be targeted to achieve satisfying arrhythmia-free success rate. Both complex fractionated atrial electrogram (CFAE) ablation and linear ablation are added to pulmonary vein isolation for persistent AF ablation. Nevertheless, ablation failure and necessity of repeat ablations are still frequent, especially after persistent AF ablation. Pulmonary vein reconduction is the main reason for arrhythmia recurrence after paroxysmal and to a lesser extent after persistent AF ablation. Failure of persistent AF ablation mostly is a consequence of inadequate trigger ablation, substrate modification or incompletely ablated or reconducting linear lesions. In this review we will discuss these points responsible for AF recurrence after ablation and review current possibilities on how to overcome these limitations. PMID:22920482

  1. Femtosecond laser ablation of enamel

    NASA Astrophysics Data System (ADS)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  2. Femtosecond laser ablation of enamel

    NASA Astrophysics Data System (ADS)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  3. Laser ablation studies of concrete

    SciTech Connect

    Savina, M.; Xu, Z.; Wang, Y.; Reed, C.; Pellin, M.

    1999-10-20

    Laser ablation was studied as a means of removing radioactive contaminants from the surface and near-surface regions of concrete. The authors present the results of ablation tests on cement and concrete samples using a 1.6 kW pulsed Nd:YAG laser with fiber optic beam delivery. The laser-surface interaction was studied using cement and high density concrete as targets. Ablation efficiency and material removal rates were determined as functions of irradiance and pulse overlap. Doped samples were also ablated to determine the efficiency with which surface contaminants were removed and captured in the effluent. The results show that the cement phase of the material melts and vaporizes, but the aggregate portion (sand and rock) fragments. The effluent consists of both micron-size aerosol particles and chunks of fragmented aggregate material. Laser-induced optical emission spectroscopy was used to analyze the surface during ablation. Analysis of the effluent showed that contaminants such as cesium and strontium were strongly segregated into different regions of the particle size distribution of the aerosol.

  4. Fragmentation and ablation during entry

    SciTech Connect

    Canavan, G.H.

    1997-09-01

    This note discusses objects that both fragment and ablate during entry, using the results of previous reports to describe the velocity, pressure, and fragmentation of entering objects. It shows that the mechanisms used there to describe the breakup of non-ablating objects during deceleration remain valid for most ablating objects. It treats coupled fragmentation and ablation during entry, building on earlier models that separately discuss the entry of objects that are hard, whose high heat of ablation permits little erosion, and those who are strong whose strength prevents fragmentation, which are discussed in ``Radiation from Hard Objects,`` ``Deceleration and Radiation of Strong, Hard, Asteroids During Atmospheric Impact,`` and ``Meteor Signature Interpretation.`` This note provides a more detailed treatment of the further breakup and separation of fragments during descent. It replaces the constraint on mass per unit area used earlier to determine the altitude and magnitude of peak power radiation with a detailed analytic solution of deceleration. Model predictions are shown to be in agreement with the key features of numerical calculations of deceleration. The model equations are solved for the altitudes of maximum radiation, which agree with numerical integrations. The model is inverted analytically to infer object size and speed from measurements of peak power and altitude to provide a complete model for the approximate inversion of meteor data.

  5. Intracellular Ca2+ release through ryanodine receptors contributes to AMPA receptor-mediated mitochondrial dysfunction and ER stress in oligodendrocytes

    PubMed Central

    Ruiz, A; Matute, C; Alberdi, E

    2010-01-01

    Overactivation of ionotropic glutamate receptors in oligodendrocytes induces cytosolic Ca2+ overload and excitotoxic death, a process that contributes to demyelination and multiple sclerosis. Excitotoxic insults cause well-characterized mitochondrial alterations and endoplasmic reticulum (ER) dysfunction, which is not fully understood. In this study, we analyzed the contribution of ER-Ca2+ release through ryanodine receptors (RyRs) and inositol triphosphate receptors (IP3Rs) to excitotoxicity in oligodendrocytes in vitro. First, we observed that oligodendrocytes express all previously characterized RyRs and IP3Rs. Blockade of Ca2+-induced Ca2+ release by TMB-8 following α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor-mediated insults attenuated both oligodendrocyte death and cytosolic Ca2+ overload. In turn, RyR inhibition by ryanodine reduced as well the Ca2+ overload whereas IP3R inhibition was ineffective. Furthermore, AMPA-triggered mitochondrial membrane depolarization, oxidative stress and activation of caspase-3, which in all instances was diminished by RyR inhibition. In addition, we observed that AMPA induced an ER stress response as revealed by α subunit of the eukaryotic initiation factor 2α phosphorylation, overexpression of GRP chaperones and RyR-dependent cleavage of caspase-12. Finally, attenuating ER stress with salubrinal protected oligodendrocytes from AMPA excitotoxicity. Together, these results show that Ca2+ release through RyRs contributes to cytosolic Ca2+ overload, mitochondrial dysfunction, ER stress and cell death following AMPA receptor-mediated excitotoxicity in oligodendrocytes. PMID:21364659

  6. Downregulation of the microtubule associated protein tau impairs process outgrowth and myelin basic protein mRNA transport in oligodendrocytes.

    PubMed

    Seiberlich, Veronika; Bauer, Nina G; Schwarz, Lisa; Ffrench-Constant, Charles; Goldbaum, Olaf; Richter-Landsberg, Christiane

    2015-09-01

    Oligodendrocytes, the myelin forming cells of the CNS, are characterized by their numerous membranous extensions, which enwrap neuronal axons and form myelin sheaths. During differentiation oligodendrocytes pass different morphological stages, downregulate the expression of the proteoglycan NG2, and acquire major myelin specific proteins, such as myelin basic proteins (MBP) and proteolipid protein. MBP mRNA is transported in RNA granules along the microtubules (MTs) to the periphery and translated locally. MTs participate in the elaboration and stabilization of the myelin forming extensions and are essential for cellular sorting processes. Their dynamic properties are regulated by microtubule associated proteins (MAPs). The MAP tau is present in oligodendrocytes and involved in the regulation and stabilization of the MT network. To further elucidate the functional significance of tau in oligodendrocytes, we have downregulated tau by siRNA technology and studied the effects on cell differentiation and neuron-glia contact formation. The data show that tau knockdown impairs process outgrowth and leads to a decrease in MBP expression. Furthermore, MBP mRNA transport to distant cellular extensions is impaired and cells remain in the NG2 stage. In myelinating cocultures with dorsal root ganglion neurons, oligodendrocyte precursor cells after tau miR RNA lentiviral knockdown develop into NG2 positive cells with very long and thin processes, contacting axons loosely, but fail to form internodes. This demonstrates that tau is important for MBP mRNA transport and involved in process formation. The disturbance of the balance of tau leads to abnormalities in oligodendrocyte differentiation, neuron-glia contact formation and the early myelination process.

  7. Pluripotent stem cell-derived radial glia-like cells as stable intermediate for efficient generation of human oligodendrocytes.

    PubMed

    Gorris, Raphaela; Fischer, Julia; Erwes, Kim Lina; Kesavan, Jaideep; Peterson, Daniel A; Alexander, Michael; Nöthen, Markus M; Peitz, Michael; Quandel, Tamara; Karus, Michael; Brüstle, Oliver

    2015-12-01

    Neural precursor cells (NPCs) derived from human pluripotent stem cells (hPSCs) represent an attractive tool for the in vitro generation of various neural cell types. However, the developmentally early NPCs emerging during hPSC differentiation typically show a strong propensity for neuronal differentiation, with more limited potential for generating astrocytes and, in particular, for generating oligodendrocytes. This phenomenon corresponds well to the consecutive and protracted generation of neurons and GLIA during normal human development. To obtain a more gliogenic NPC type, we combined growth factor-mediated expansion with pre-exposure to the differentiation-inducing agent retinoic acid and subsequent immunoisolation of CD133-positive cells. This protocol yields an adherent and self-renewing population of hindbrain/spinal cord radial glia (RG)-like neural precursor cells (RGL-NPCs) expressing typical neural stem cell markers such as nestin, ASCL1, SOX2, and PAX6 as well as RG markers BLBP, GLAST, vimentin, and GFAP. While RGL-NPCs maintain the ability for tripotential differentiation into neurons, astrocytes, and oligodendrocytes, they exhibit greatly enhanced propensity for oligodendrocyte generation. Under defined differentiation conditions promoting the expression of the major oligodendrocyte fate-determinants OLIG1/2, NKX6.2, NKX2.2, and SOX10, RGL-NPCs efficiently convert into NG2-positive oligodendroglial progenitor cells (OPCs) and are subsequently capable of in vivo myelination. Representing a stable intermediate between PSCs and OPCs, RGL-NPCs expedite the generation of PSC-derived oligodendrocytes with O4-, 4860-, and myelin basic protein (MBP)-positive cells that already appear within 7 weeks following growth factor withdrawal-induced differentiation. Thus, RGL-NPCs may serve as robust tool for time-efficient generation of human oligodendrocytes from embryonic and induced pluripotent stem cells.

  8. Lysophosphatidic acid can support the formation of membranous structures and an increase in MBP mRNA levels in differentiating oligodendrocytes

    PubMed Central

    Nogaroli, Luciana; Yuelling, Larra M.; Dennis, Jameel; Gorse, Karen; Payne, Shawn G.; Fuss, Babette

    2009-01-01

    During development, differentiating oligodendrocytes progress in distinct maturation steps from premyelinating to myelinating cells. Such maturing oligodendrocytes express both receptors mediating signaling via extracellular lysophosphatidic acid (LPA) and the major enzyme generating extracellular LPA, namely phosphodiesterase-Iα/autotaxin (PD-Iα/ATX). However, the biological role of extracellular LPA during the maturation of differentiating oligodendrocytes is currently unclear. Here, we demonstrate that application of exogenous LPA induced an increase in the area occupied by the oligodendrocytes’ process network, but only when PD-Iα/ATX expression was down-regulated. This increase in network area was caused primarily by the formation of membranous structures. In addition, LPA increased the number of cells positive for myelin basic protein (MBP). This effect was associated by an increase in the mRNA levels coding for MBP but not myelin oligodendrocyte glycoprotein (MOG). Taken together, these data suggest that LPA may play a crucial role in regulating the later stages of oligodendrocyte maturation. PMID:18594965

  9. Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging

    PubMed Central

    Stein, Liana R; Imai, Shin-ichiro

    2014-01-01

    Neural stem/progenitor cell (NSPC) proliferation and self-renewal, as well as insult-induced differentiation, decrease markedly with age. The molecular mechanisms responsible for these declines remain unclear. Here, we show that levels of NAD+ and nicotinamide phosphoribosyltransferase (Nampt), the rate-limiting enzyme in mammalian NAD+ biosynthesis, decrease with age in the hippocampus. Ablation of Nampt in adult NSPCs reduced their pool and proliferation in vivo. The decrease in the NSPC pool during aging can be rescued by enhancing hippocampal NAD+ levels. Nampt is the main source of NSPC NAD+ levels and required for G1/S progression of the NSPC cell cycle. Nampt is also critical in oligodendrocytic lineage fate decisions through a mechanism mediated redundantly by Sirt1 and Sirt2. Ablation of Nampt in the adult NSPCs in vivo reduced NSPC-mediated oligodendrogenesis upon insult. These phenotypes recapitulate defects in NSPCs during aging, giving rise to the possibility that Nampt-mediated NAD+ biosynthesis is a mediator of age-associated functional declines in NSPCs. PMID:24811750

  10. Spinal motor neurons are regenerated after mechanical lesion and genetic ablation in larval zebrafish

    PubMed Central

    Ohnmacht, Jochen; Yang, Yujie; Maurer, Gianna W.; Barreiro-Iglesias, Antón; Tsarouchas, Themistoklis M.; Wehner, Daniel; Sieger, Dirk; Becker, Catherina G.; Becker, Thomas

    2016-01-01

    ABSTRACT In adult zebrafish, relatively quiescent progenitor cells show lesion-induced generation of motor neurons. Developmental motor neuron generation from the spinal motor neuron progenitor domain (pMN) sharply declines at 48 hours post-fertilisation (hpf). After that, mostly oligodendrocytes are generated from the same domain. We demonstrate here that within 48 h of a spinal lesion or specific genetic ablation of motor neurons at 72 hpf, the pMN domain reverts to motor neuron generation at the expense of oligodendrogenesis. By contrast, generation of dorsal Pax2-positive interneurons was not altered. Larval motor neuron regeneration can be boosted by dopaminergic drugs, similar to adult regeneration. We use larval lesions to show that pharmacological suppression of the cellular response of the innate immune system inhibits motor neuron regeneration. Hence, we have established a rapid larval regeneration paradigm. Either mechanical lesions or motor neuron ablation is sufficient to reveal a high degree of developmental flexibility of pMN progenitor cells. In addition, we show an important influence of the immune system on motor neuron regeneration from these progenitor cells. PMID:26965370

  11. Theoretical Modeling for Hepatic Microwave Ablation

    PubMed Central

    Prakash, Punit

    2010-01-01

    Thermal tissue ablation is an interventional procedure increasingly being used for treatment of diverse medical conditions. Microwave ablation is emerging as an attractive modality for thermal therapy of large soft tissue targets in short periods of time, making it particularly suitable for ablation of hepatic and other tumors. Theoretical models of the ablation process are a powerful tool for predicting the temperature profile in tissue and resultant tissue damage created by ablation devices. These models play an important role in the design and optimization of devices for microwave tissue ablation. Furthermore, they are a useful tool for exploring and planning treatment delivery strategies. This review describes the status of theoretical models developed for microwave tissue ablation. It also reviews current challenges, research trends and progress towards development of accurate models for high temperature microwave tissue ablation. PMID:20309393

  12. Image-Guided Ablation of Adrenal Lesions

    PubMed Central

    Yamakado, Koichiro

    2014-01-01

    Although laparoscopic adrenalectomy has remained the standard of care for the treatment for adrenal tumors, percutaneous image-guided ablation therapy, such as chemical ablation, radiofrequency ablation, cryoablation, and microwave ablation, has been shown to be clinically useful in many nonsurgical candidates. Ablation therapy has been used to treat both functioning adenomas and malignant tumors, including primary adrenal carcinoma and metastasis. For patients with functioning adenomas, biochemical and symptomatic improvement is achieved in 96 to 100% after ablation; for patients with malignant adrenal neoplasms, however, the survival benefit from ablation therapy remains unclear, though good initial results have been reported. This article outlines the current role of ablation therapy for adrenal lesions, as well as identifying some of the technical considerations for this procedure. PMID:25049444

  13. Femtosecond lasers for machining of transparent, brittle materials: ablative vs. non-ablative femtosecond laser processing

    NASA Astrophysics Data System (ADS)

    Hendricks, F.; Matylitsky, V. V.

    2016-03-01

    This paper focuses on precision machining of transparent materials by means of ablative and non-ablative femtosecond laser processing. Ablation technology will be compared with a newly developed patent pending non-ablative femtosecond process, ClearShapeTM, using the Spectra-Physics Spirit industrial femtosecond laser.

  14. Induction of caspase-dependent apoptosis in cultured rat oligodendrocytes by murine coronavirus is mediated during cell entry and does not require virus replication.

    PubMed

    Liu, Yin; Cai, Yingyun; Zhang, Xuming

    2003-11-01

    Murine coronavirus mouse hepatitis virus (MHV) causes demyelination of the central nervous system (CNS) in rats and mice. Apoptotic oligodendrocytes have been detected in the vicinity of the CNS demyelinating lesions in these animals. However, whether MHV can directly induce oligodendrocyte apoptosis has not been documented. Here, we established a rat oligodendrocyte culture that is morphologically and phenotypically indistinguishable from the primary rat oligodendrocytes. Using this culture, we showed that mature rat oligodendrocytes were permissive to MHV infection but did not support productive virus replication. Significantly, oligodendrocytes infected with both live and ultraviolet light-inactivated viruses underwent apoptosis to a similar extent, which was readily detectable at 24 h postinfection as revealed by apoptotic bodies and DNA fragmentation, indicating that MHV-induced apoptosis is mediated during the early stages of the virus life cycle and does not require virus replication. Prior treatment of cells with the lysosomotropic agents NH(4)Cl and chloroquine as well as the vacuolar proton pump-ATPase inhibitor bafilomycin A1, all of which block the acidification of the endosome, prevented oligodendrocytes from succumbing to apoptosis induced by MHV mutant OBLV60, which enters cells via endocytosis, indicating that fusion between the viral envelope and cell membranes triggers the apoptotic cascade. Treatment with the pan-caspase inhibitor Z-VAD-fmk blocked MHV-induced apoptosis, suggesting an involvement of the caspase-dependent pathway. Our results, thus, for the first time provide unequivocal evidence that infection of oligodendrocytes with MHV directly results in apoptosis. This finding provides an explanation for the destruction of oligodendrocytes and the damage of myelin sheath in MHV-infected CNS and suggests that oligodendrocyte apoptosis may be one of the underlying mechanisms for the pathogenesis of MHV-induced demyelinating diseases in animals.

  15. Microwave ablation of hepatocellular carcinoma

    PubMed Central

    Poggi, Guido; Tosoratti, Nevio; Montagna, Benedetta; Picchi, Chiara

    2015-01-01

    Although surgical resection is still the optimal treatment option for early-stage hepatocellular carcinoma (HCC) in patients with well compensated cirrhosis, thermal ablation techniques provide a valid non-surgical treatment alternative, thanks to their minimal invasiveness, excellent tolerability and safety profile, proven efficacy in local disease control, virtually unlimited repeatability and cost-effectiveness. Different energy sources are currently employed in clinics as physical agents for percutaneous or intra-surgical thermal ablation of HCC nodules. Among them, radiofrequency (RF) currents are the most used, while microwave ablations (MWA) are becoming increasingly popular. Starting from the 90s’, RF ablation (RFA) rapidly became the standard of care in ablation, especially in the treatment of small HCC nodules; however, RFA exhibits substantial performance limitations in the treatment of large lesions and/or tumors located near major heat sinks. MWA, first introduced in the Far Eastern clinical practice in the 80s’, showing promising results but also severe limitations in the controllability of the emitted field and in the high amount of power employed for the ablation of large tumors, resulting in a poor coagulative performance and a relatively high complication rate, nowadays shows better results both in terms of treatment controllability and of overall coagulative performance, thanks to the improvement of technology. In this review we provide an extensive and detailed overview of the key physical and technical aspects of MWA and of the currently available systems, and we want to discuss the most relevant published data on MWA treatments of HCC nodules in regard to clinical results and to the type and rate of complications, both in absolute terms and in comparison with RFA. PMID:26557950

  16. Microwave ablation of hepatocellular carcinoma.

    PubMed

    Poggi, Guido; Tosoratti, Nevio; Montagna, Benedetta; Picchi, Chiara

    2015-11-01

    Although surgical resection is still the optimal treatment option for early-stage hepatocellular carcinoma (HCC) in patients with well compensated cirrhosis, thermal ablation techniques provide a valid non-surgical treatment alternative, thanks to their minimal invasiveness, excellent tolerability and safety profile, proven efficacy in local disease control, virtually unlimited repeatability and cost-effectiveness. Different energy sources are currently employed in clinics as physical agents for percutaneous or intra-surgical thermal ablation of HCC nodules. Among them, radiofrequency (RF) currents are the most used, while microwave ablations (MWA) are becoming increasingly popular. Starting from the 90s', RF ablation (RFA) rapidly became the standard of care in ablation, especially in the treatment of small HCC nodules; however, RFA exhibits substantial performance limitations in the treatment of large lesions and/or tumors located near major heat sinks. MWA, first introduced in the Far Eastern clinical practice in the 80s', showing promising results but also severe limitations in the controllability of the emitted field and in the high amount of power employed for the ablation of large tumors, resulting in a poor coagulative performance and a relatively high complication rate, nowadays shows better results both in terms of treatment controllability and of overall coagulative performance, thanks to the improvement of technology. In this review we provide an extensive and detailed overview of the key physical and technical aspects of MWA and of the currently available systems, and we want to discuss the most relevant published data on MWA treatments of HCC nodules in regard to clinical results and to the type and rate of complications, both in absolute terms and in comparison with RFA. PMID:26557950

  17. Transhemangioma Ablation of Hepatocellular Carcinoma

    SciTech Connect

    Pua, Uei

    2012-12-15

    Radiofrequency ablation (RFA) is a well-established treatment modality in the treatment of early hepatocellular carcinoma (HCC) [1]. Safe trajectory of the RFA probe is crucial in decreasing collateral tissue damage and unwarranted probe transgression. As a percutaneous technique, however, the trajectory of the needle is sometimes constrained by the available imaging plane. The presence of a hemangioma beside an HCC is uncommon but poses the question of safety related to probe transgression. We hereby describe a case of transhemangioma ablation of a dome HCC.

  18. Photochemical ablation of organic solids

    NASA Astrophysics Data System (ADS)

    Yingling, Yaroslava G.; Garrison, Barbara J.

    2003-04-01

    We have investigated by molecular dynamics simulations the ablation of material that is onset by photochemical processes. We compare this system with only photochemical processes to a system containing photochemical and photothermal processes. The simulations reveal that ablation by purely photochemical processes is accompanied by the ejection of relatively cold massive molecular clusters from the surface of the sample. The top of the plume exhibits high temperatures whereas the residual part of the sample is cold. The removal of the damaged material through big molecular cluster ejection is consistent with experimental observations of low heat damage of material.

  19. Laser ablation based fuel ignition

    DOEpatents

    Early, J.W.; Lester, C.S.

    1998-06-23

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition. 3 figs.

  20. Laser ablation based fuel ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    1998-01-01

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition.

  1. Atrial Fibrillation Ablation and Stroke.

    PubMed

    Aagaard, Philip; Briceno, David; Csanadi, Zoltan; Mohanty, Sanghamitra; Gianni, Carola; Trivedi, Chintan; Nagy-Baló, Edina; Danik, Stephan; Barrett, Conor; Santoro, Francesco; Burkhardt, J David; Sanchez, Javier; Natale, Andrea; Di Biase, Luigi

    2016-05-01

    Catheter ablation has become a widely available and accepted treatment to restore sinus rhythm in atrial fibrillation patients who fail antiarrhythmic drug therapy. Although generally safe, the procedure carries a non-negligible risk of complications, including periprocedural cerebral insults. Uninterrupted anticoagulation, maintenance of an adequate ACT during the procedure, and measures to avoid and detect thrombus build-up on sheaths and atheters during the procedure, appears useful to reduce the risk of embolic events. This is a review of the incidence, mechanisms, impact, and methods to reduce catheter ablation related cerebral insults. PMID:27150179

  2. Radiofrequency ablation of lung tumours

    PubMed Central

    Goh, PYT

    2006-01-01

    Radiofrequency ablation (RFA) is a well-established local therapy for hepatic malignancies. It is rapidly emerging as an effective treatment modality for small lesions elsewhere in the body, in particular, the kidney and the lung. It is a relatively safe and minimally invasive treatment for small lung malignancies, both primary and secondary. In particular, it is the preferred form of treatment for non-surgical candidates. This paper describes the technique employed for radiofrequency ablation of lung tumours, as well as the protocol established, at the Mount Elizabeth Hospital, Singapore. PMID:21614247

  3. Ablative Therapies for Barrett's Esophagus

    PubMed Central

    Garman, Katherine S.; Shaheen, Nicholas J.

    2011-01-01

    Barrett's esophagus has gained increased clinical attention because of its association with esophageal adenocarcinoma, a cancer with increasing incidence and poor survival rates. The goals of ablating Barrett's esophagus are to decrease esophageal cancer rates and to improve overall survival and quality of life. Different techniques have been developed and tested for their effectiveness eradicating Barrett's epithelium. This review assesses the literature associated with different ablative techniques. The safety and efficacy of different techniques are discussed. This review concludes with recommendations for the clinician, including specific strategies for patient care decisions for patients with Barrett's esophagus with varying degrees of dysplasia. PMID:21373836

  4. Tektite ablation - Some confirming calculations.

    NASA Technical Reports Server (NTRS)

    O'Keefe, J. A., III; Silver, A. D.; Cameron, W. S.; Adams , E. W.; Warmbrod, J. D.

    1973-01-01

    The calculation of tektite ablation has been redone, taking into account transient effects, internal radiation, melting and nonequilibrium vaporization of the glass, and the drag effect of the flanges. It is found that the results confirm the earlier calculations of Chapman and his group and of Adams and his co-workers. The general trend of the results is not sensitive to reasonable changes of the physical parameters. The ablation is predominantly by melting rather than by vaporization at all velocities up to 11 km/sec; this is surprising in view of the lack of detectable melt flow in most tektites. Chemical effects have not been considered.

  5. Direct involvement of p53 in programmed cell death of oligodendrocytes.

    PubMed Central

    Eizenberg, O; Faber-Elman, A; Gottlieb, E; Oren, M; Rotter, V; Schwartz, M

    1995-01-01

    A covalent dimer of interleukin (IL)-2, produced in vitro by the action of a nerve-derived transglutaminase, has been shown previously to be cytotoxic to mature rat brain oligodendrocytes. Here we report that this cytotoxic effect operates via programmed cell death (apoptosis) and that the p53 tumor suppressor gene is involved directly in the process. The apoptotic death of mature rat brain oligodendrocytes in culture following treatment with dimeric IL-2 was demonstrated by chromatin condensation and internucleosomal DNA fragmentation. The peak of apoptosis was observed 16-24 h after treatment, while the commitment to death was already observed after 3-4 h. An involvement of p53 in this process was indicated by the shift in location of constitutively expressed endogenous p53 from the cytoplasm to the nucleus, as early as 15 min after exposure to dimeric IL-2. Moreover, infection with a recombinant retrovirus encoding a C-terminal p53 miniprotein, shown previously to act as a dominant negative inhibitor of endogenous wild-type p53 activity, protected these cells from apoptosis. Images PMID:7720704

  6. Multiple sclerosis patient-derived CSF induces transcriptional changes in proliferating oligodendrocyte progenitors

    PubMed Central

    Haines, Jeffery D.; Vidaurre, Oscar G.; Zhang, Fan; Riffo-Campos, Ángela L.; Castillo, Josefa; Casanova, Bonaventura; Casaccia, Patrizia; Lopez-Rodas, Gerardo

    2015-01-01

    BACKGROUND Cerebrospinal fluid is in contact with brain parenchyma and ventricles, and its composition might influence the cellular physiology of oligodendrocyte progenitor cells (OPCs) thereby contributing to disease pathogenesis. OBJECTIVE To identify the transcriptional changes that distinguish the transcriptional response induced in proliferating rat OPCs upon exposure to CSF from PPMS or RRMS patients and other neurological controls. METHODS We performed gene microarray analysis of OPCs exposed to CSF from neurological controls, or definitive RRMS or PPMS disease course. Results were confirmed by qRT-PCR, immunocytochemistry and western blot of cultured cells and validated in human brain specimens. RESULTS We identified common and unique genes for each treatment group. Exposure to CSF from PPMS uniquely induced branching of cultured progenitors and related transcriptional changes, including up-regulation (p < 0.05) of the adhesion molecule GALECTIN-3/Lgals3, which was also detected at the protein level in brain specimens from PPMS patients. However it also resulted in discordant patterns of gene expression when compared with the transcriptional program of oligodendrocyte differentiation during development. CONCLUSIONS Despite evidence of morphological differentiation induced by exposure to CSF of PPMS patients, the overall transcriptional response elicited in cultured OPCs was consistent with the activation of an aberrant transcriptional program. PMID:25948622

  7. Down Syndrome Developmental Brain Transcriptome Reveals Defective Oligodendrocyte Differentiation and Myelination.

    PubMed

    Olmos-Serrano, Jose Luis; Kang, Hyo Jung; Tyler, William A; Silbereis, John C; Cheng, Feng; Zhu, Ying; Pletikos, Mihovil; Jankovic-Rapan, Lucija; Cramer, Nathan P; Galdzicki, Zygmunt; Goodliffe, Joseph; Peters, Alan; Sethares, Claire; Delalle, Ivana; Golden, Jeffrey A; Haydar, Tarik F; Sestan, Nenad

    2016-03-16

    Trisomy 21, or Down syndrome (DS), is the most common genetic cause of developmental delay and intellectual disability. To gain insight into the underlying molecular and cellular pathogenesis, we conducted a multi-region transcriptome analysis of DS and euploid control brains spanning from mid-fetal development to adulthood. We found genome-wide alterations in the expression of a large number of genes, many of which exhibited temporal and spatial specificity and were associated with distinct biological processes. In particular, we uncovered co-dysregulation of genes associated with oligodendrocyte differentiation and myelination that were validated via cross-species comparison to Ts65Dn trisomy mice. Furthermore, we show that hypomyelination present in Ts65Dn mice is in part due to cell-autonomous effects of trisomy on oligodendrocyte differentiation and results in slower neocortical action potential transmission. Together, these results identify defects in white matter development and function in DS, and they provide a transcriptional framework for further investigating DS neuropathogenesis. PMID:26924435

  8. A Novel Approach for Amplification and Purification of Mouse Oligodendrocyte Progenitor Cells

    PubMed Central

    Yang, Junlin; Cheng, Xuejun; Shen, Jiaxi; Xie, Binghua; Zhao, Xiaofeng; Zhang, Zunyi; Cao, Qilin; Shen, Ying; Qiu, Mengsheng

    2016-01-01

    Although transgenic and knockout mice are widely used to study the specification and differentiation of oligodendrocyte precursor cells (OPCs), mouse primary OPCs are difficult to be purified and maintained, and many in vitro studies have to resort to rat OPCs as substitutes. In this study, we reported that mouse O4 negative early-stage OPCs can be obtained by culturing cortical tissue blocks, and the simultaneous treatment of OPCs with Platelet Derived Growth Factor-AA (PDGFaa), basic fibroblast growth factor (bFGF), and epidermal growth factor (EGF) is the key for the propagation of mouse OPCs in culture. EGF was found to be a potent mitogen for OPCs and cooperate with PDGFaa to extend cell division and inhibit their differentiation. EGF also collaborates with PDGFaa and bFGF to convert bipolar or tripolar OPCs to more vital fibroblast-like OPCs without compromising their oligodendrocyte differentiation potential. In addition, EGF promoted the survival and proliferation of glial progenitor cells (GPCs) derived from primary OPC cultures, and a mixture of GPCs and OPCs can be obtained and propagated in the presence of EGF, bFGF, and PDGFaa. Once EGF is withdrawn, GPC population decreased sharply and fibroblast-like OPCs changed into typical OPCs morphology, then homogeneous OPCs were obtained subsequently. PMID:27597818

  9. A Novel Approach for Amplification and Purification of Mouse Oligodendrocyte Progenitor Cells

    PubMed Central

    Yang, Junlin; Cheng, Xuejun; Shen, Jiaxi; Xie, Binghua; Zhao, Xiaofeng; Zhang, Zunyi; Cao, Qilin; Shen, Ying; Qiu, Mengsheng

    2016-01-01

    Although transgenic and knockout mice are widely used to study the specification and differentiation of oligodendrocyte precursor cells (OPCs), mouse primary OPCs are difficult to be purified and maintained, and many in vitro studies have to resort to rat OPCs as substitutes. In this study, we reported that mouse O4 negative early-stage OPCs can be obtained by culturing cortical tissue blocks, and the simultaneous treatment of OPCs with Platelet Derived Growth Factor-AA (PDGFaa), basic fibroblast growth factor (bFGF), and epidermal growth factor (EGF) is the key for the propagation of mouse OPCs in culture. EGF was found to be a potent mitogen for OPCs and cooperate with PDGFaa to extend cell division and inhibit their differentiation. EGF also collaborates with PDGFaa and bFGF to convert bipolar or tripolar OPCs to more vital fibroblast-like OPCs without compromising their oligodendrocyte differentiation potential. In addition, EGF promoted the survival and proliferation of glial progenitor cells (GPCs) derived from primary OPC cultures, and a mixture of GPCs and OPCs can be obtained and propagated in the presence of EGF, bFGF, and PDGFaa. Once EGF is withdrawn, GPC population decreased sharply and fibroblast-like OPCs changed into typical OPCs morphology, then homogeneous OPCs were obtained subsequently.

  10. A Novel Approach for Amplification and Purification of Mouse Oligodendrocyte Progenitor Cells.

    PubMed

    Yang, Junlin; Cheng, Xuejun; Shen, Jiaxi; Xie, Binghua; Zhao, Xiaofeng; Zhang, Zunyi; Cao, Qilin; Shen, Ying; Qiu, Mengsheng

    2016-01-01

    Although transgenic and knockout mice are widely used to study the specification and differentiation of oligodendrocyte precursor cells (OPCs), mouse primary OPCs are difficult to be purified and maintained, and many in vitro studies have to resort to rat OPCs as substitutes. In this study, we reported that mouse O4 negative early-stage OPCs can be obtained by culturing cortical tissue blocks, and the simultaneous treatment of OPCs with Platelet Derived Growth Factor-AA (PDGFaa), basic fibroblast growth factor (bFGF), and epidermal growth factor (EGF) is the key for the propagation of mouse OPCs in culture. EGF was found to be a potent mitogen for OPCs and cooperate with PDGFaa to extend cell division and inhibit their differentiation. EGF also collaborates with PDGFaa and bFGF to convert bipolar or tripolar OPCs to more vital fibroblast-like OPCs without compromising their oligodendrocyte differentiation potential. In addition, EGF promoted the survival and proliferation of glial progenitor cells (GPCs) derived from primary OPC cultures, and a mixture of GPCs and OPCs can be obtained and propagated in the presence of EGF, bFGF, and PDGFaa. Once EGF is withdrawn, GPC population decreased sharply and fibroblast-like OPCs changed into typical OPCs morphology, then homogeneous OPCs were obtained subsequently. PMID:27597818

  11. Transplanted microvascular endothelial cells promote oligodendrocyte precursor cell survival in ischemic demyelinating lesions.

    PubMed

    Iijima, Keiya; Kurachi, Masashi; Shibasaki, Koji; Naruse, Masae; Puentes, Sandra; Imai, Hideaki; Yoshimoto, Yuhei; Mikuni, Masahiko; Ishizaki, Yasuki

    2015-11-01

    We previously showed that transplantation of brain microvascular endothelial cells (MVECs) greatly stimulated remyelination in the white matter infarct of the internal capsule (IC) induced by endothelin-1 injection and improved the behavioral outcome. In the present study, we examined the effect of MVEC transplantation on the infarct volume using intermittent magnetic resonance image and on the behavior of oligodendrocyte lineage cells histochemically. Our results in vivo show that MVEC transplantation reduced the infarct volume in IC and apoptotic death of oligodendrocyte precursor cells (OPCs). These results indicate that MVECs have a survival effect on OPCs, and this effect might contribute to the recovery of the white matter infarct. The conditioned-medium from cultured MVECs reduced apoptosis of cultured OPCs, while the conditioned medium from cultured fibroblasts did not show such effect. These results suggest a possibility that transplanted MVECs increased the number of OPCs through the release of humoral factors that prevent their apoptotic death. Identification of such humoral factors may lead to the new therapeutic strategy against ischemic demyelinating diseases.

  12. Oligodendrocyte precursor cells are accurate sensors of local K+ in mature gray matter.

    PubMed

    Maldonado, Paloma P; Vélez-Fort, Mateo; Levavasseur, Françoise; Angulo, María Cecilia

    2013-02-01

    Oligodendrocyte precursor cells (OPCs) are the major source of myelinating oligodendrocytes during development. These progenitors are highly abundant at birth and persist in the adult where they are distributed throughout the brain. The large abundance of OPCs after completion of myelination challenges their unique role as progenitors in the healthy adult brain. Here we show that adult OPCs of the barrel cortex sense fine extracellular K(+) increases generated by neuronal activity, a property commonly assigned to differentiated astrocytes rather than to progenitors. Biophysical, pharmacological, and single-cell RT-PCR analyses demonstrate that this ability of OPCs establishes itself progressively through the postnatal upregulation of Kir4.1 K(+) channels. In animals with advanced cortical myelination, extracellular stimulation of layer V axons induces slow K(+) currents in OPCs, which amplitude correlates with presynaptic action potential rate. Moreover, using paired recordings, we demonstrate that the discharge of a single neuron can be detected by nearby adult OPCs, indicating that these cells are strategically located to detect local changes in extracellular K(+) concentration during physiological neuronal activity. These results identify a novel unitary neuron-OPC connection, which transmission does not rely on neurotransmitter release and appears late in development. Beyond their abundance in the mature brain, the postnatal emergence of a physiological response of OPCs to neuronal network activity supports the view that in the adult these cells are not progenitors only.

  13. TIP30 inhibits oligodendrocyte precursor cell differentiation via cytoplasmic sequestration of Olig1.

    PubMed

    Yang, Wenjing; Xiao, Lin; Li, Cui; Liu, Xiuyun; Liu, Mingdong; Shao, Qi; Wang, Dan; Huang, Aijun; He, Cheng

    2015-04-01

    Differentiation of oligodendrocyte precursor cells (OPCs) is a prerequisite for both developmental myelination and adult remyelination in the central nervous system. The molecular mechanisms underlying OPC differentiation remain largely unknown. Here, we show that the thirty-kDa HIV-1 Tat interacting protein (TIP30) is a negative regulator in oligodendrocyte development. The TIP30(-/-) mice displayed an increased myelin protein level at postnatal day 14 and 21. By using a primary OPC culture system, we demonstrated that overexpression of TIP30 dramatically inhibited the stage progression of differentiating OPCs, while knockdown of TIP30 enhanced the differentiation of oligodendroglial cells remarkably. Moreover, overexpression of TIP30 was found to sequester the transcription factor Olig1 in the cytoplasm and weaken its nuclear translocation due to the interaction between TIP30 and Olig1, whereas knockdown of TIP30 led to more Olig1 localized in the nucleus in the initiation stage during OPC differentiation. In the cuprizone-induced demyelination model, there was a dramatic increase in NG2-expressing cells with nuclear location of Olig1 in the corpus callosum during remyelination. In contrast, within chronic demyelinated lesions in multiple sclerosis, TIP30 was abnormally expressed in NG2-expressing cells, and few nuclear Olig1 was observed in these cells. Taken together, our findings suggest that TIP30 plays a negative regulatory role in oligodendroglial differentiation.

  14. Oct4-induced oligodendrocyte progenitor cells enhance functional recovery in spinal cord injury model.

    PubMed

    Kim, Jeong Beom; Lee, Hyunah; Araúzo-Bravo, Marcos J; Hwang, Kyujin; Nam, Donggyu; Park, Myung Rae; Zaehres, Holm; Park, Kook In; Lee, Seok-Jin

    2015-12-01

    The generation of patient-specific oligodendrocyte progenitor cells (OPCs) holds great potential as an expandable cell source for cell replacement therapy as well as drug screening in spinal cord injury or demyelinating diseases. Here, we demonstrate that induced OPCs (iOPCs) can be directly derived from adult mouse fibroblasts by Oct4-mediated direct reprogramming, using anchorage-independent growth to ensure high purity. Homogeneous iOPCs exhibit typical small-bipolar morphology, maintain their self-renewal capacity and OPC marker expression for more than 31 passages, share high similarity in the global gene expression profile to wild-type OPCs, and give rise to mature oligodendrocytes and astrocytes in vitro and in vivo. Notably, transplanted iOPCs contribute to functional recovery in a spinal cord injury (SCI) model without tumor formation. This study provides a simple strategy to generate functional self-renewing iOPCs and yields insights for the in-depth study of demyelination and regenerative medicine.

  15. Cannabidiol protects oligodendrocyte progenitor cells from inflammation-induced apoptosis by attenuating endoplasmic reticulum stress

    PubMed Central

    Mecha, M; Torrao, A S; Mestre, L; Carrillo-Salinas, F J; Mechoulam, R; Guaza, C

    2012-01-01

    Cannabidiol (CBD) is the most abundant cannabinoid in Cannabis sativa that has no psychoactive properties. CBD has been approved to treat inflammation, pain and spasticity associated with multiple sclerosis (MS), of which demyelination and oligodendrocyte loss are hallmarks. Thus, we investigated the protective effects of CBD against the damage to oligodendrocyte progenitor cells (OPCs) mediated by the immune system. Doses of 1 μM CBD protect OPCs from oxidative stress by decreasing the production of reactive oxygen species. CBD also protects OPCs from apoptosis induced by LPS/IFNγ through the decrease of caspase 3 induction via mechanisms that do not involve CB1, CB2, TRPV1 or PPARγ receptors. Tunicamycin-induced OPC death was attenuated by CBD, suggesting a role of endoplasmic reticulum (ER) stress in the mode of action of CBD. This protection against ER stress-induced apoptosis was associated with reduced phosphorylation of eiF2α, one of the initiators of the ER stress pathway. Indeed, CBD diminished the phosphorylation of PKR and eiF2α induced by LPS/IFNγ. The pro-survival effects of CBD in OPCs were accompanied by decreases in the expression of ER apoptotic effectors (CHOP, Bax and caspase 12), and increased expression of the anti-apoptotic Bcl-2. These findings suggest that attenuation of the ER stress pathway is involved in the ‘oligoprotective' effects of CBD during inflammation. PMID:22739983

  16. Myelinating satellite oligodendrocytes are integrated in a glial syncytium constraining neuronal high-frequency activity

    PubMed Central

    Battefeld, Arne; Klooster, Jan; Kole, Maarten H. P.

    2016-01-01

    Satellite oligodendrocytes (s-OLs) are closely apposed to the soma of neocortical layer 5 pyramidal neurons but their properties and functional roles remain unresolved. Here we show that s-OLs form compact myelin and action potentials of the host neuron evoke precisely timed Ba2+-sensitive K+ inward rectifying (Kir) currents in the s-OL. Unexpectedly, the glial K+ inward current does not require oligodendrocytic Kir4.1. Action potential-evoked Kir currents are in part mediated by gap–junction coupling with neighbouring OLs and astrocytes that form a syncytium around the pyramidal cell body. Computational modelling predicts that glial Kir constrains the perisomatic [K+]o increase most importantly during high-frequency action potentials. Consistent with these predictions neurons with s-OLs showed a reduced probability for action potential burst firing during [K+]o elevations. These data suggest that s-OLs are integrated into a glial syncytium for the millisecond rapid K+ uptake limiting activity-dependent [K+]o increase in the perisomatic neuron domain. PMID:27161034

  17. Abnormal expression of TIP30 and arrested nucleocytoplasmic transport within oligodendrocyte precursor cells in multiple sclerosis

    PubMed Central

    Nakahara, Jin; Kanekura, Kohsuke; Nawa, Mikiro; Aiso, Sadakazu; Suzuki, Norihiro

    2008-01-01

    Oligodendrocyte precursor cells (OPCs) persist near the demyelinated axons arising in MS but inefficiently differentiate into oligodendrocytes and remyelinate these axons. The pathogenesis of differentiation failure remains elusive. We initially hypothesized that injured axons fail to present Contactin, a positive ligand for the oligodendroglial Notch1 receptor to induce myelination, and thus tracked axoglial Contactin/Notch1 signaling in situ, using immunohistochemistry in brain tissue from MS patients containing chronic demyelinated lesions. Instead, we found that Contactin was saturated on demyelinated axons, Notch1-positive OPCs accumulated in Contactin-positive lesions, and the receptor was engaged, as demonstrated by cleavage to Notch1-intracellular domain (NICD). However, nuclear translocalization of NICD, required for myelinogenesis, was virtually absent in these cells. NICD and related proteins carrying nuclear localization signals were associated with the nuclear transporter Importin but were trapped in the cytoplasm. Abnormal expression of TIP30, a direct inhibitor of Importin, was observed in these OPCs. Overexpression of TIP30 in a rat OPC cell line resulted in cytoplasmic entrapment of NICD and arrest of differentiation upon stimulation with Contactin-Fc. Our results suggest that extracellular inhibitory factors as well as an intrinsic nucleocytoplasmic transport blockade within OPCs may be involved in the pathogenesis of remyelination failure in MS. PMID:19104151

  18. Transplanted microvascular endothelial cells promote oligodendrocyte precursor cell survival in ischemic demyelinating lesions.

    PubMed

    Iijima, Keiya; Kurachi, Masashi; Shibasaki, Koji; Naruse, Masae; Puentes, Sandra; Imai, Hideaki; Yoshimoto, Yuhei; Mikuni, Masahiko; Ishizaki, Yasuki

    2015-11-01

    We previously showed that transplantation of brain microvascular endothelial cells (MVECs) greatly stimulated remyelination in the white matter infarct of the internal capsule (IC) induced by endothelin-1 injection and improved the behavioral outcome. In the present study, we examined the effect of MVEC transplantation on the infarct volume using intermittent magnetic resonance image and on the behavior of oligodendrocyte lineage cells histochemically. Our results in vivo show that MVEC transplantation reduced the infarct volume in IC and apoptotic death of oligodendrocyte precursor cells (OPCs). These results indicate that MVECs have a survival effect on OPCs, and this effect might contribute to the recovery of the white matter infarct. The conditioned-medium from cultured MVECs reduced apoptosis of cultured OPCs, while the conditioned medium from cultured fibroblasts did not show such effect. These results suggest a possibility that transplanted MVECs increased the number of OPCs through the release of humoral factors that prevent their apoptotic death. Identification of such humoral factors may lead to the new therapeutic strategy against ischemic demyelinating diseases. PMID:26212499

  19. NMDA receptor signaling in oligodendrocyte progenitors is not required for oligodendrogenesis and myelination

    PubMed Central

    De Biase, L. M.; Kang, S. H.; Baxi, E. G.; Fukaya, M.; Pucak, M. L.; Mishina, M.; Calabresi, P. A.; Bergles, D. E.

    2011-01-01

    Oligodendrocyte precursor cells (OPCs) express NMDA receptors (NMDARs) and form synapses with glutamatergic neurons throughout the central nervous system (CNS). Although glutamate influences the proliferation and maturation of these progenitors in vitro, the role of NMDAR signaling in oligodendrogenesis and myelination in vivo is not known. Here, we investigated the consequences of genetically deleting the obligatory NMDAR subunit NR1 from OPCs and their oligodendrocyte progeny in the CNS of developing and mature mice. NMDAR-deficient OPCs proliferated normally, achieved appropriate densities in gray and white matter, and differentiated to form major white matter tracts without delay. OPCs also retained their characteristic physiological and morphological properties in the absence of NMDAR signaling, and were able to form synapses with glutamatergic axons. However, expression of calcium permeable AMPA receptors was enhanced in NMDAR-deficient OPCs. These results suggest that NMDAR signaling is not used to control OPC development, but to regulate AMPAR-dependent signaling with surrounding axons, pointing to additional functions for these ubiquitous glial cells. PMID:21880926

  20. Cytolysis of oligodendrocytes is mediated by killer (K) cells but not by natural killer (NK) cells.

    PubMed

    Satoh, J; Kim, S U; Kastrukoff, L F

    1991-03-01

    The cytotoxic activity of killer (K) cells against enriched cultures of bovine oligodendrocytes (BOL) was investigated in multiple sclerosis (MS) and controls. Human K cells mediated cytotoxicity to primary cultures of BOL in the presence of anti-BOL antiserum in all study groups, while BOL were resistant to human natural killer (NK) cells. Cytotoxic activity was significantly reduced in MS when compared to age-matched normal controls but not when compared to other neurologic disease (OND) patients. K cell-mediated lysis of BOL could also be induced with anti-galactocerebroside antibody but not with other antibodies including those specific for OL antigens (myelin basic protein, proteolipid apoprotein, and 2',3'-cyclic nucleotide 3'-phosphodiesterase). Enrichment of the effector population indicated that antibody-dependent cell-mediated cytotoxicity (ADCC) to BOL was mediated by large granular lymphocytes, and the effector population was further characterized by flow cytometry. The effector cells mediating ADCC could be inhibited by protein A of Staphylococcus aureus, and by K562 cells in cold competition assay. These observations indicate that oligodendrocytes are resistant to NK cells but are susceptible to cytolysis mediated by K cells. This may represent a potentially important immune mechanism in the pathogenesis of MS.

  1. Interneurons and oligodendrocyte progenitors form a structured synaptic network in the developing neocortex

    PubMed Central

    Orduz, David; Maldonado, Paloma P; Balia, Maddalena; Vélez-Fort, Mateo; de Sars, Vincent; Yanagawa, Yuchio; Emiliani, Valentina; Angulo, Maria Cecilia

    2015-01-01

    NG2 cells, oligodendrocyte progenitors, receive a major synaptic input from interneurons in the developing neocortex. It is presumed that these precursors integrate cortical networks where they act as sensors of neuronal activity. We show that NG2 cells of the developing somatosensory cortex form a transient and structured synaptic network with interneurons that follows its own rules of connectivity. Fast-spiking interneurons, highly connected to NG2 cells, target proximal subcellular domains containing GABAA receptors with γ2 subunits. Conversely, non-fast-spiking interneurons, poorly connected with these progenitors, target distal sites lacking this subunit. In the network, interneuron-NG2 cell connectivity maps exhibit a local spatial arrangement reflecting innervation only by the nearest interneurons. This microcircuit architecture shows a connectivity peak at PN10, coinciding with a switch to massive oligodendrocyte differentiation. Hence, GABAergic innervation of NG2 cells is temporally and spatially regulated from the subcellular to the network level in coordination with the onset of oligodendrogenesis. DOI: http://dx.doi.org/10.7554/eLife.06953.001 PMID:25902404

  2. TACE/ADAM17 is essential for oligodendrocyte development and CNS myelination.

    PubMed

    Palazuelos, Javier; Crawford, Howard C; Klingener, Michael; Sun, Bingru; Karelis, Jason; Raines, Elaine W; Aguirre, Adan

    2014-09-01

    Several studies have elucidated the significance of a disintegrin and metalloproteinase proteins (ADAMs) in PNS myelination, but there is no evidence if they also play a role in oligodendrogenesis and CNS myelination. Our study identifies ADAM17, also called tumor necrosis factor-α converting enzyme (TACE), as a novel key modulator of oligodendrocyte (OL) development and CNS myelination. Genetic deletion of TACE in oligodendrocyte progenitor cells (OPs) induces premature cell cycle exit and reduces OL cell survival during postnatal myelination of the subcortical white matter (SCWM). These cellular and molecular changes lead to deficits in SCWM myelination and motor behavior. Mechanistically, TACE regulates oligodendrogenesis by modulating the shedding of EGFR ligands TGFα and HB-EGF and, consequently, EGFR signaling activation in OL lineage cells. Constitutive TACE depletion in OPs in vivo leads to similar alterations in CNS myelination and motor behavior as to what is observed in the EGFR hypofunctional mouse line EgfrWa2. EGFR overexpression in TACE-deficient OPs restores OL survival and development. Our study reveals an essential function of TACE in oligodendrogenesis, and demonstrates how this molecule modulates EGFR signaling activation to regulate postnatal CNS myelination.

  3. TACE/ADAM17 Is Essential for Oligodendrocyte Development and CNS Myelination

    PubMed Central

    Palazuelos, Javier; Crawford, Howard C.; Klingener, Michael; Sun, Bingru; Karelis, Jason; Raines, Elaine W.

    2014-01-01

    Several studies have elucidated the significance of a disintegrin and metalloproteinase proteins (ADAMs) in PNS myelination, but there is no evidence if they also play a role in oligodendrogenesis and CNS myelination. Our study identifies ADAM17, also called tumor necrosis factor-α converting enzyme (TACE), as a novel key modulator of oligodendrocyte (OL) development and CNS myelination. Genetic deletion of TACE in oligodendrocyte progenitor cells (OPs) induces premature cell cycle exit and reduces OL cell survival during postnatal myelination of the subcortical white matter (SCWM). These cellular and molecular changes lead to deficits in SCWM myelination and motor behavior. Mechanistically, TACE regulates oligodendrogenesis by modulating the shedding of EGFR ligands TGFα and HB-EGF and, consequently, EGFR signaling activation in OL lineage cells. Constitutive TACE depletion in OPs in vivo leads to similar alterations in CNS myelination and motor behavior as to what is observed in the EGFR hypofunctional mouse line EgfrWa2. EGFR overexpression in TACE-deficient OPs restores OL survival and development. Our study reveals an essential function of TACE in oligodendrogenesis, and demonstrates how this molecule modulates EGFR signaling activation to regulate postnatal CNS myelination. PMID:25186737

  4. Catheter ablation of parahisian premature ventricular complex.

    PubMed

    Kim, Jun; Kim, Jeong Su; Park, Yong Hyun; Kim, June Hong; Chun, Kook Jin

    2011-12-01

    Catheter ablation is performed in selected patients with a symptomatic premature ventricular complex (PVC) or PVC-induced cardiomyopathy. Ablation of PVC from the His region has a high risk of inducing a complete atrioventricular block. Here we report successful catheter ablation of a parahisian PVC in a 63-year-old man.

  5. The effect of elastic modulus on ablation catheter contact area

    NASA Astrophysics Data System (ADS)

    Camp, Jon J.; Linte, Cristian A.; Rettmann, Maryam E.; Sun, Deyu; Packer, Douglas L.; Robb, Richard A.; Holmes, David R.

    2015-03-01

    Cardiac ablation consists of navigating a catheter into the heart and delivering RF energy to electrically isolate tissue regions that generate or propagate arrhythmia. Besides the challenges of accurate and precise targeting of the arrhythmic sites within the beating heart, limited information is currently available to the cardiologist regarding intricate electrodetissue contact, which directly impacts the quality of produced lesions. Recent advances in ablation catheter design provide intra-procedural estimates of tissue-catheter contact force, but the most direct indicator of lesion quality for any particular energy level and duration is the tissue-catheter contact area, and that is a function of not only force, but catheter pose and material elasticity as well. In this experiment, we have employed real-time ultrasound (US) imaging to determine the complete interaction between the ablation electrode and tissue to accurately estimate contact, which will help to better understand the effect of catheter pose and position relative to the tissue. By simultaneously recording tracked position, force reading and US image of the ablation catheter, the differing material properties of polyvinyl alcohol cryogel[1] phantoms are shown to produce varying amounts of tissue depression and contact area (implying varying lesion quality) for equivalent force readings. We have shown that the elastic modulus significantly affects the surface-contact area between the catheter and tissue at any level of contact force. Thus we provide evidence that a prescribed level of catheter force may not always provide sufficient contact area to produce an effective ablation lesion in the prescribed ablation time.

  6. Conditional Lineage Ablation to Model Human Diseases

    NASA Astrophysics Data System (ADS)

    Lee, Paul; Morley, Gregory; Huang, Qian; Fischer, Avi; Seiler, Stephanie; Horner, James W.; Factor, Stephen; Vaidya, Dhananjay; Jalife, Jose; Fishman, Glenn I.

    1998-09-01

    Cell loss contributes to the pathogenesis of many inherited and acquired human diseases. We have developed a system to conditionally ablate cells of any lineage and developmental stage in the mouse by regulated expression of the diphtheria toxin A (DTA) gene by using tetracycline-responsive promoters. As an example of this approach, we targeted expression of DTA to the hearts of adult mice to model structural abnormalities commonly observed in human cardiomyopathies. Induction of DTA expression resulted in cell loss, fibrosis, and chamber dilatation. As in many human cardiomyopathies, transgenic mice developed spontaneous arrhythmias in vivo, and programmed electrical stimulation of isolated-perfused transgenic hearts demonstrated a strikingly high incidence of spontaneous and inducible ventricular tachycardia. Affected mice showed marked perturbations of cardiac gap junction channel expression and localization, including a subset with disorganized epicardial activation patterns as revealed by optical action potential mapping. These studies provide important insights into mechanisms of arrhythmogenesis and suggest that conditional lineage ablation may have wide applicability for studies of disease pathogenesis.

  7. Modern Advances in Ablative TPS

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj

    2013-01-01

    Topics covered include: Physics of Hypersonic Flow and TPS Considerations. Destinations, Missions and Requirements. State of the Art Thermal Protection Systems Capabilities. Modern Advances in Ablative TPS. Entry Systems Concepts. Flexible TPS for Hypersonic Inflatable Aerodynamic Decelerators. Conformal TPS for Rigid Aeroshell. 3-D Woven TPS for Extreme Entry Environment. Multi-functional Carbon Fabric for Mechanically Deployable.

  8. Reconstruction of an ablated breast.

    PubMed

    Scarfì, A; Ordemann, K; Hüter, J

    1986-01-01

    It is the aim of the reconstruction of an ablated breast to repair the woman's integrity. The technique of this operation, according to Bomert, is the sliding of a flap of skin in the case of a horizontal breast scar. For the reconstruction, a silicone prosthesis is implanted which in most cases is prepectoral.

  9. Mechanisms of oligodendrocyte regeneration from ventricular-subventricular zone-derived progenitor cells in white matter diseases

    PubMed Central

    Maki, Takakuni; Liang, Anna C.; Miyamoto, Nobukazu; Lo, Eng H.; Arai, Ken

    2013-01-01

    White matter dysfunction is an important part of many CNS disorders including multiple sclerosis (MS) and vascular dementia. Within injured areas, myelin loss and oligodendrocyte death may trigger endogenous attempts at regeneration. However, during disease progression, remyelination failure may eventually occur due to impaired survival/proliferation, migration/recruitment, and differentiation of oligodendrocyte precursor cells (OPCs). The ventricular-subventricular zone (V-SVZ) and the subgranular zone (SGZ) are the main sources of neural stem/progenitor cells (NSPCs), which can give rise to neurons as well as OPCs. Under normal conditions in the adult brain, the V-SVZ progenitors generate a large number of neurons with a small number of oligodendrocyte lineage cells. However, after demyelination, the fate of V-SVZ-derived progenitor cells shifts from neurons to OPCs, and these newly generated OPCs migrate to the demyelinating lesions to ease white matter damage. In this mini-review, we will summarize the recent studies on extrinsic (e.g., vasculature, extracellular matrix (ECM), cerebrospinal fluid (CSF)) and intrinsic (e.g., transcription factors, epigenetic modifiers) factors, which mediate oligodendrocyte generation from the V-SVZ progenitor cells. A deeper understanding of the mechanisms that regulate the fate of V-SVZ progenitor cells may lead to new therapeutic approaches for ameliorating white matter dysfunction and damage in CNS disorders. PMID:24421755

  10. The balance between oligodendrocyte and astrocyte production in major white matter tracts is linearly related to serum total thyroxine

    EPA Science Inventory

    Thyroid hormone (TH) may control the ratio of oligodendrocytes to astrocytes in white matter by acting on a common precursor of these two cell types. If so, then TH should produce an equal but opposite effect on the density of these two cells types across all TH levels. To test t...

  11. Loss of lysophosphatidic acid receptor LPA1 alters oligodendrocyte differentiation and myelination in the mouse cerebral cortex.

    PubMed

    García-Díaz, Beatriz; Riquelme, Raquel; Varela-Nieto, Isabel; Jiménez, Antonio Jesús; de Diego, Isabel; Gómez-Conde, Ana Isabel; Matas-Rico, Elisa; Aguirre, José Ángel; Chun, Jerold; Pedraza, Carmen; Santín, Luis Javier; Fernández, Oscar; Rodríguez de Fonseca, Fernando; Estivill-Torrús, Guillermo

    2015-11-01

    Lysophosphatidic acid (LPA) is an intercellular signaling lipid that regulates multiple cellular functions, acting through specific G-protein coupled receptors (LPA(1-6)). Our previous studies using viable Malaga variant maLPA1-null mice demonstrated the requirement of the LPA1 receptor for normal proliferation, differentiation, and survival of the neuronal precursors. In the cerebral cortex LPA1 is expressed extensively in differentiating oligodendrocytes, in parallel with myelination. Although exogenous LPA-induced effects have been investigated in myelinating cells, the in vivo contribution of LPA1 to normal myelination remains to be demonstrated. This study identified a relevant in vivo role for LPA1 as a regulator of cortical myelination. Immunochemical analysis in adult maLPA1-null mice demonstrated a reduction in the steady-state levels of the myelin proteins MBP, PLP/DM20, and CNPase in the cerebral cortex. The myelin defects were confirmed using magnetic resonance spectroscopy and electron microscopy. Stereological analysis limited the defects to adult differentiating oligodendrocytes, without variation in the NG2+ precursor cells. Finally, a possible mechanism involving oligodendrocyte survival was demonstrated by the impaired intracellular transport of the PLP/DM20 myelin protein which was accompanied by cellular loss, suggesting stress-induced apoptosis. These findings describe a previously uncharacterized in vivo functional role for LPA1 in the regulation of oligodendrocyte differentiation and myelination in the CNS, underlining the importance of the maLPA1-null mouse as a model for the study of demyelinating diseases.

  12. Production and use of lentivirus to selectively transduce primary oligodendrocyte precursor cells for in vitro myelination assays.

    PubMed

    Peckham, Haley M; Ferner, Anita H; Giuffrida, Lauren; Murray, Simon S; Xiao, Junhua

    2015-01-12

    Myelination is a complex process that involves both neurons and the myelin forming glial cells, oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous system (PNS). We use an in vitro myelination assay, an established model for studying CNS myelination in vitro. To do this, oligodendrocyte precursor cells (OPCs) are added to the purified primary rodent dorsal root ganglion (DRG) neurons to form myelinating co-cultures. In order to specifically interrogate the roles that particular proteins expressed by oligodendrocytes exert upon myelination we have developed protocols that selectively transduce OPCs using the lentivirus overexpressing wild type, constitutively active or dominant negative proteins before being seeded onto the DRG neurons. This allows us to specifically interrogate the roles of these oligodendroglial proteins in regulating myelination. The protocols can also be applied in the study of other cell types, thus providing an approach that allows selective manipulation of proteins expressed by a desired cell type, such as oligodendrocytes for the targeted study of signaling and compensation mechanisms. In conclusion, combining the in vitro myelination assay with lentiviral infected OPCs provides a strategic tool for the analysis of molecular mechanisms involved in myelination.

  13. Alpha-Synuclein Expression in the Oligodendrocyte Lineage: an In Vitro and In Vivo Study Using Rodent and Human Models

    PubMed Central

    Djelloul, Mehdi; Holmqvist, Staffan; Boza-Serrano, Antonio; Azevedo, Carla; Yeung, Maggie S.; Goldwurm, Stefano; Frisén, Jonas; Deierborg, Tomas; Roybon, Laurent

    2015-01-01

    Summary In this study, we sought evidence for alpha-synuclein (ASYN) expression in oligodendrocytes, as a possible endogenous source of ASYN to explain its presence in glial inclusions found in multiple system atrophy (MSA) and Parkinson’s disease (PD). We identified ASYN in oligodendrocyte lineage progenitors isolated from the rodent brain, in oligodendrocytes generated from embryonic stem cells, and in induced pluripotent stem cells produced from fibroblasts of a healthy individual and patients diagnosed with MSA or PD, in cultures in vitro. Notably, we observed a significant decrease in ΑSYN during oligodendrocyte maturation. Additionally, we show the presence of transcripts in PDGFRΑ/CD140a+ cells and SOX10+ oligodendrocyte lineage nuclei isolated by FACS from rodent and human healthy and diseased brains, respectively. Our work identifies ASYN in oligodendrocyte lineage cells, and it offers additional in vitro cellular models that should provide significant insights of the functional implication of ASYN during oligodendrocyte development and disease. PMID:26235891

  14. Esophageal papilloma: Flexible endoscopic ablation by radiofrequency

    PubMed Central

    del Genio, Gianmattia; del Genio, Federica; Schettino, Pietro; Limongelli, Paolo; Tolone, Salvatore; Brusciano, Luigi; Avellino, Manuela; Vitiello, Chiara; Docimo, Giovanni; Pezzullo, Angelo; Docimo, Ludovico

    2015-01-01

    Squamous papilloma of the esophagus is a rare benign lesion of the esophagus. Radiofrequency ablation is an established endoscopic technique for the eradication of Barrett esophagus. No cases of endoscopic ablation of esophageal papilloma by radiofrequency ablation (RFA) have been reported. We report a case of esophageal papilloma successfully treated with a single session of radiofrequency ablation. Endoscopic ablation of the lesion was achieved by radiofrequency using a new catheter inserted through the working channel of endoscope. The esophageal ablated tissue was removed by a specifically designed cup. Complete ablation was confirmed at 3 mo by endoscopy with biopsies. This case supports feasibility and safety of as a new potential indication for BarrxTM RFA in patients with esophageal papilloma. PMID:25789102

  15. Connexin-47 and connexin-32 in gap junctions of oligodendrocyte somata, myelin sheaths, paranodal loops and Schmidt-Lanterman incisures: implications for ionic homeostasis and potassium siphoning.

    PubMed

    Kamasawa, N; Sik, A; Morita, M; Yasumura, T; Davidson, K G V; Nagy, J I; Rash, J E

    2005-01-01

    The subcellular distributions and co-associations of the gap junction-forming proteins connexin 47 and connexin 32 were investigated in oligodendrocytes of adult mouse and rat CNS. By confocal immunofluorescence light microscopy, abundant connexin 47 was co-localized with astrocytic connexin 43 on oligodendrocyte somata, and along myelinated fibers, whereas connexin 32 without connexin 47 was co-localized with contactin-associated protein (caspr) in paranodes. By thin-section transmission electron microscopy, connexin 47 immunolabeling was on the oligodendrocyte side of gap junctions between oligodendrocyte somata and astrocytes. By freeze-fracture replica immunogold labeling, large gap junctions between oligodendrocyte somata and astrocyte processes contained much more connexin 47 than connexin 32. Along surfaces of internodal myelin, connexin 47 was several times as abundant as connexin 32, and in the smallest gap junctions, often occurred without connexin 32. In contrast, connexin 32 was localized without connexin 47 in newly-described autologous gap junctions in Schmidt-Lanterman incisures and between paranodal loops bordering nodes of Ranvier. Thus, connexin 47 in adult rodent CNS is the most abundant connexin in most heterologous oligodendrocyte-to-astrocyte gap junctions, whereas connexin 32 is the predominant if not sole connexin in autologous ("reflexive") oligodendrocyte gap junctions. These results clarify the locations and connexin compositions of heterologous and autologous oligodendrocyte gap junctions, identify autologous gap junctions at paranodes as potential sites for modulating paranodal electrical properties, and reveal connexin 47-containing and connexin 32-containing gap junctions as conduits for long-distance intracellular and intercellular movement of ions and associated osmotic water. The autologous gap junctions may regulate paranodal electrical properties during saltatory conduction. Acting in series and in parallel, autologous and

  16. TDP6, a brain-derived neurotrophic factor-based trkB peptide mimetic, promotes oligodendrocyte myelination.

    PubMed

    Wong, Agnes W; Giuffrida, Lauren; Wood, Rhiannon; Peckham, Haley; Gonsalvez, David; Murray, Simon S; Hughes, Richard A; Xiao, Junhua

    2014-11-01

    Brain-derived neurotrophic factor (BDNF) plays critical roles in the development and maintenance of the central (CNS) and peripheral nervous systems (PNS). BDNF exerts its biological effects via tropomyosin-related kinase B (TrkB) and the p75 neurotrophin receptor (p75NTR). We have recently identified that BDNF promotes CNS myelination via oligodendroglial TrkB receptors. In order to selectively target TrkB to promote CNS myelination, we have used a putative TrkB agonist, a small multicyclic peptide (tricyclic dimeric peptide 6, TDP6) previously described by us that structurally mimics a region of BDNF that binds TrkB. We confirmed that TDP6 acts as a TrkB agonist as it provoked autophosphorylation of TrkB and its downstream signalling effector extracellular related-kinase 1 and 2 (Erk1/2) in primary oligodendrocytes. Using an in vitro myelination assay, we show that TDP6 significantly promotes myelination by oligodendrocytes in vitro, as evidenced by enhanced myelin protein expression and an increased number of myelinated axonal segments. In contrast, a second, structurally distinct BDNF mimetic (cyclo-dPAKKR) that targets p75NTR had no effect upon oligodendrocyte myelination in vitro, despite the fact that cyclo-dPAKKR is a very effective promoter of peripheral (Schwann cell) myelination. The selectivity of TDP6 was further verified by using TrkB-deficient oligodendrocytes, in which TDP6 failed to promote myelination, indicating that the pro-myelinating effect of TDP6 is oligodendroglial TrkB-dependent. Together, our results demonstrate that TDP6 is a novel BDNF mimetic that promotes oligodendrocyte myelination in vitro via targeting TrkB.

  17. PTEN inhibitor bisperoxovanadium protects oligodendrocytes and myelin and prevents neuronal atrophy in adult rats following cervical hemicontusive spinal cord injury

    PubMed Central

    Walker, Chandler L.; Xu, Xiao-Ming

    2014-01-01

    Cervical spinal cord injury (SCI) damages axons and motor neurons responsible for ipsilateral forelimb function and causes demyelination and oligodendrocyte death. Inhibition of the phosphatase and tensin homologue, PTEN, promotes neural cell survival, neuroprotection and regeneration in vivo and in vitro. PTEN inhibition can also promote oligodendrocyte-mediated myelination of axons in vitro likely through Akt activation. We recently demonstrated that acute treatment with phosphatase PTEN inhibitor, bisperoxovanadium (bpV)-pic reduced tissue damage, neuron death, and promoted functional recovery after cervical hemi-contusion SCI. Evidence suggests bpV can promote myelin stability; however, bpV effects on myelination and oligodendrocytes in contusive SCI models are unclear. We hypothesized that bpV could increase myelin around the injury site through sparing or remyelination, and that bpV treatment may promote increased numbers of oligodendrocytes. Using histological and immunofluorescence labeling, we found that bpV treatment promoted significant spared white matter (30%; p < 0.01) and Luxol Fast Blue (LFB)+ myelin area rostral (Veh: 0.56 ± 0.01 vs. bpV: 0.64 ± 0.02; p < 0.05) and at the epicenter (Veh: 0.4175 ± 0.03 vs. bpV: 0.5400 ± 0.03; p < 0.05). VLF oligodendrocytes were also significantly greater with bpV therapy (109 ± 5.3 vs. Veh: 77 ± 2.7/mm2; p < 0.01). In addition, bpV increased mean motor neuron soma area versus vehicle-treatment (1.0 ± 0.02 vs. Veh: 0.77 ± 0.02) relative to Sham neuron size. This study provides key insight into additional cell and tissue effects that could contribute to bpV-mediated functional recovery observed after contusive cervical SCI. PMID:24582904

  18. Survival after Radiofrequency Ablation in 122 Patients with Inoperable Colorectal Lung Metastases

    SciTech Connect

    Gillams, Alice; Khan, Zahid; Osborn, Peter; Lees, William

    2013-06-15

    Purpose. To analyze the factors associated with favorable survival in patients with inoperable colorectal lung metastases treated with percutaneous image-guided radiofrequency ablation. Methods. Between 2002 and 2011, a total of 398 metastases were ablated in 122 patients (87 male, median age 68 years, range 29-90 years) at 256 procedures. Percutaneous CT-guided cool-tip radiofrequency ablation was performed under sedation/general anesthesia. Maximum tumor size, number of tumors ablated, number of procedures, concurrent/prior liver ablation, previous liver or lung resection, systemic chemotherapy, disease-free interval from primary resection to lung metastasis, and survival from first ablation were recorded prospectively. Kaplan-Meier analysis was performed, and factors were compared by log rank test. Results. The initial number of metastases ablated was 2.3 (range 1-8); the total number was 3.3 (range 1-15). The maximum tumor diameter was 1.7 (range 0.5-4) cm, and the number of procedures was 2 (range 1-10). The major complication rate was 3.9 %. Overall median and 3-year survival rate were 41 months and 57 %. Survival was better in patients with smaller tumors-a median of 51 months, with 3-year survival of 64 % for tumors 2 cm or smaller versus 31 months and 44 % for tumors 2.1-4 cm (p = 0.08). The number of metastases ablated and whether the tumors were unilateral or bilateral did not affect survival. The presence of treated liver metastases, systemic chemotherapy, or prior lung resection did not affect survival. Conclusion. Three-year survival of 57 % in patients with inoperable colorectal lung metastases is better than would be expected with chemotherapy alone. Patients with inoperable but small-volume colorectal lung metastases should be referred for ablation.

  19. [Catheter ablation of persistent atrial fibrillation : pulmonary vein isolation, ablation of fractionated electrograms, stepwise approach or rotor ablation?].

    PubMed

    Scherr, D

    2015-02-01

    Catheter ablation is an established treatment option for patients with atrial fibrillation (AF). In paroxysmal AF ablation, pulmonary vein isolation alone is a well-defined procedural endpoint, leading to success rates of up to 80% with multiple procedures over 5 years of follow-up. The success rate in persistent AF ablation is significantly more limited. This is partly due to the rudimentary understanding of the substrate maintaining persistent AF. Three main pathophysiological concepts for this arrhythmia exist: the multiple wavelet hypothesis, the concept of focal triggers, mainly located in the pulmonary veins and the rotor hypothesis. However, the targets and endpoints of persistent AF ablation are ill-defined and there is no consensus on the optimal ablation strategy in these patients. Based on these concepts, several ablation approaches for persistent AF have emerged: pulmonary vein isolation, the stepwise approach (i.e. pulmonary vein isolation, ablation of fractionated electrograms and linear ablation), magnetic resonance imaging (MRI) and rotor-based approaches. Currently, persistent AF ablation is a second-line therapy option to restore and maintain sinus rhythm. Several factors, such as the presence of structural heart disease, duration of persistent AF and dilatation and possibly also the degree of fibrosis of the left atrium should influence the decision to perform persistent AF ablation. PMID:25687615

  20. Glass particles produced by laser ablation for ICP-MSmeasurements

    SciTech Connect

    Gonzalez, J.; Liu, C.; Wen, S.; Mao, X.; Russo, R.E.

    2007-06-01

    Pulsed laser ablation (266nm) was used to generate glass particles from two sets of standard reference materials using femtosecond (150fs) and nanosecond (4ns) laser pulses with identical fluences of 50 J cm{sup -2}. Scanning electron microscopy (SEM) images of the collected particles revealed that there are more and larger agglomerations of particles produced by nanosecond laser ablation. In contrast to the earlier findings for metal alloy samples, no correlation between the concentration of major elements and the median particle size was found. When the current data on glass were compared with the metal alloy data, there were clear differences in terms of particle size, crater depth, heat affected zone, and ICP-MS response. For example, glass particles were larger than metal alloy particles, the craters in glass were less deep than craters in metal alloys, and damage to the sample was less pronounced in glass compared to metal alloys samples. The femtosecond laser generated more intense ICP-MS signals compared to nanosecond laser ablation for both types of samples, although glass sample behavior was more similar between ns and fs-laser ablation than for metals alloys.

  1. Healing responses following cryothermic and hyperthermic tissue ablation

    NASA Astrophysics Data System (ADS)

    Godwin, Braden L.; Coad, James E.

    2009-02-01

    Minimally invasive, thermally ablative, interventional technologies have been changing the practice of medicine since before the turn of the 20th century. More recently, cryothermic and hyperthermic therapies have expanded in terms of their spectrum of thermal generators, modes for controlling and monitoring the treatment zone and both benign and malignant medical applications. The final tissue, and hence clinical outcome, of a thermal ablation is determined by the summation of direct primary (thermal) and secondary (apoptosis, ischemia, free radical, inflammation, wound healing, etc.) injury followed by possible cellular regeneration and scar formation. The initial thermal lesion can be broadly divided into two major zones of cellular death: 1) the complete ablation zone closer to the thermal source and 2) the peripheral transition zone with a decreasing gradient of cell death. While not applicable to cryotherapy, hyperthermic complete ablation zones are subdivided into two zones: 1) thermal or heat fixation and 2) coagulative necrosis. It is important to clearly differentiate these tissue zones because of their substantially different healing responses. Therefore, the development of clinically successful thermal therapies requires an understanding of tissue healing responses. The healing responses can be affected by a number of additional factors such as the tissue's anatomy, organ specific healing differences, blood supply, protein vs. lipid content, and other factors. Thus, effective biomedical instrument development requires both an understanding of thermal cell injury/death and the body's subsequent healing responses. This paper provides a general overview of the healing pathways that follow thermal tissue treatment.

  2. Glue septal ablation: A promising alternative to alcohol septal ablation

    PubMed Central

    Aytemir, Kudret; Oto, Ali

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is defined as myocardial hypertrophy in the absence of another cardiac or systemic disease capable of producing the magnitude of present hypertrophy. In about 70% of patients with HCM, there is left ventricular outflow tract (LVOT) obstruction (LVOTO) and this is known as obstructive type of hypertrophic cardiomyopathy (HOCM). Cases refractory to medical treatment have had two options either surgical septal myectomy or alcohol septal ablation (ASA) to alleviate LVOT gradient. ASA may cause some life-threatening complications including conduction disturbances and complete heart block, hemodynamic compromise, ventricular arrhythmias, distant and massive myocardial necrosis. Glue septal ablation (GSA) is a promising technique for the treatment of HOCM. Glue seems to be superior to alcohol due to some intrinsic advantageous properties of glue such as immediate polymerization which prevents the leak into the left anterior descending coronary artery and it is particularly useful in patients with collaterals to the right coronary artery in whom alcohol ablation is contraindicated. In our experience, GSA is effective and also a safe technique without significant complications. GSA decreases LVOT gradient immediately after the procedure and this reduction persists during 12 months of follow-up. It improves New York Heart Association functional capacity and decrease interventricular septal wall thickness. Further studies are needed in order to assess the long-term efficacy and safety of this technique. PMID:27011786

  3. Electrical stimulation promotes the survival of oligodendrocytes in mixed cortical cultures.

    PubMed

    Gary, Devin S; Malone, Misti; Capestany, Paul; Houdayer, Thierry; McDonald, John W

    2012-01-01

    Oligodendrocyte (OLG) death plays a major role in white matter dysfunction and demyelination following injury to the CNS. Axonal contact, communication, and neuronal activity appear to promote OLG survival and function in cell culture and during development. The application of electrical stimulation to mixed neural cultures has been shown to promote OLG differentiation and the formation of myelin in vitro. Here we show that OLG viability can be significantly enhanced in mixed cortical cultures by applying biphasic pulses of electrical stimulation (ESTIM). Enhanced survival via ESTIM requires the presence of neurons and is suppressed by inhibition of voltage-gated sodium channels. Additionally, contact between the axon and OLG is necessary for ESTIM to promote OLG survival. This report suggests that patterned neuronal activity could repress delayed progression of white matter injury and promote CNS repair in neurological conditions that involve white matter damage.

  4. Structure of the human myelin/oligodendrocyte glycoprotein gene and multiple alternative spliced isoforms

    SciTech Connect

    Pham-Dinh, D.; Gaspera, D.B.; Dautigny, A.

    1995-09-20

    Myelin/oligodendrocyte glycoprotein (MOG), a special component of the central nervous system localization on the outermost lamellae of mature myelin, is a member of the immunoglobulin superfamily. We report here the organization of the human MOG gene, which spans approximately 17 kb, and the characterization of six MOG mRNA splicing variants. The intron/exon structure of the human MOG gene confirmed the splicing pattern, supporting the hypothesis that mRNA isoforms could arise by alternative splicing of a single gene. In addition to the eight exons coding for the major MOG isoform, the human MOG gene also contains 3` region, a previously unknown alternatively spliced coding exon, VIA. Alternative utilization of two acceptor splicing sites for exon VIII could produce two different C-termini. The nucleotide sequences presented here may be a useful tool to study further possible involvement if the MOG gene in hereditary neurological disorders. 23 refs., 5 figs.

  5. Structure and polymorphism of the mouse myelin/oligodendrocyte glycoprotein gene

    SciTech Connect

    Daubas, P.; Pham-Dinh, D.; Dautigny, A.

    1994-09-01

    The authors have isolated and characterized genomic clones containing the mouse myelin/oligodendrocyte glycoprotein (MOG) gene. It spans a region of 12.5 kb and consists of eight exons. Its exon-intron structure differs from that of classical MHC-class I genes, with which it is linked in the mouse genome. Nucleotide sequencing of the 5{prime} flanking region revelas that it contains several putative protein-binding sites, some of them in common with other myelin gene promoters. One intragenic polymorphism has been identified: it consists of a GA repeat, defining at least three alleles in mouse inbred strains, and is easily detectable using the polymerase chain reaction method.

  6. Efficient Generation of Viral and Integration-Free Human Induced Pluripotent Stem Cell-Derived Oligodendrocytes.

    PubMed

    Espinosa-Jeffrey, Araceli; Blanchi, Bruno; Biancotti, Juan Carlos; Kumar, Shalini; Hirose, Megumi; Mandefro, Berhan; Talavera-Adame, Dodanim; Benvenisty, Nissim; de Vellis, Jean

    2016-01-01

    Here we document three highly reproducible protocols: (1) a culture system for the derivation of human oligodendrocytes (OLs) from human induced pluripotent stem cells (hiPS) and their further maturation-our protocol generates viral- and integration-free OLs that efficiently commit and move forward in the OL lineage, recapitulating all the steps known to occur during in vivo development; (2) a method for the isolation, propagation and maintenance of neural stem cells (NSCs); and (3) a protocol for the production, isolation, and maintenance of OLs from perinatal rodent and human brain-derived NSCs. Our unique culture systems rely on a series of chemically defined media, specifically designed and carefully characterized for each developmental stage of OL as they advance from OL progenitors to mature, myelinating cells. We are confident that these protocols bring our field a step closer to efficient autologous cell replacement therapies and disease modeling. © 2016 by John Wiley & Sons, Inc. PMID:27532816

  7. Topiramate Treatment Is Neuroprotective and Reduces Oligodendrocyte Loss after Cervical Spinal Cord Injury

    PubMed Central

    Gensel, John C.; Tovar, C. Amy; Bresnahan, Jacqueline C.; Beattie, Micheal S.

    2012-01-01

    Excess glutamate release and associated neurotoxicity contributes to cell death after spinal cord injury (SCI). Indeed, delayed administration of glutamate receptor antagonists after SCI in rodents improves tissue sparing and functional recovery. Despite their therapeutic potential, most glutamate receptor antagonists have detrimental side effects and have largely failed clinical trials. Topiramate is an AMPA-specific, glutamate receptor antagonists that is FDA-approved to treat CNS disorders. In the current study we tested whether topiramate treatment is neuroprotective after cervical contusion injury in rats. We report that topiramate, delivered 15-minutes after SCI, increases tissue sparing and preserves oligodendrocytes and neurons when compared to vehicle treatment. In addition, topiramate is more effective than the AMPA-receptor antagonist, NBQX. To the best of our knowledge, this is the first report documenting a neuroprotective effect of topiramate treatment after spinal cord injury. PMID:22428066

  8. Differential roles of astrocyte and microglia in supporting oligodendrocyte development and myelination in vitro.

    PubMed

    Pang, Yi; Fan, Lir-Wan; Tien, Lu-Tai; Dai, Xuemei; Zheng, Baoying; Cai, Zhengwei; Lin, Rick C S; Bhatt, Abhay

    2013-09-01

    Oligodendrocyte (OL) development relies on many extracellular cues, most of which are secreted cytokines from neighboring neural cells. Although it is generally accepted that both astrocytes and microglia are beneficial for OL development, there is a lack of understanding regarding whether astrocytes and microglia play similar or distinct roles. The current study examined the effects of astrocytes and microglia on OL developmental phenotypes including cell survival, proliferation, differentiation, and myelination in vitro. Our data reveal that, although both astrocytes- and microglia-conditioned medium (ACDM and MCDM, respectively) protect OL progenitor cells (OPCs) against growth factor withdrawal-induced apoptosis, ACDM is significantly more effective than MCDM in supporting long-term OL survival. In contrast, MCDM preferentially promotes OL differentiation and myelination. These differential effects of ACDM and MCDM on OL development are highlighted by distinct pattern of cytokine/growth factors in the conditioned medium, which correlates with differentially activated intracellular signaling pathways in OPCs upon exposure to the conditioned medium.

  9. Suramin induces and enhances apoptosis in a model of hyperoxia-induced oligodendrocyte injury.

    PubMed

    Stark, Simone; Schuller, Alexandra; Sifringer, Marco; Gerstner, Bettina; Brehmer, Felix; Weber, Sven; Altmann, Rodica; Obladen, Michael; Buhrer, Christoph; Felderhoff-Mueser, Ursula

    2008-01-01

    Recent evidence suggests oxygen as a powerful trigger for cell death in the immature white matter, leading to periventricular leukomalacia (PVL) as a cause of adverse neurological outcome in survivors of preterm birth. This oligodendrocyte (OL) death is associated with oxidative stress, upregulation of apoptotic signaling factors (i.e., Fas, caspase-3) and decreased amounts of neurotrophins. In search of neuroprotective strategies we investigated whether the polysulfonated urea derivative suramin, recently identified as a potent inhibitor of Fas signaling, affords neuroprotection in an in vitro model of hyperoxia-induced injury to immature oligodendrocytes. Immature OLs (OLN-93) were subjected to 80% hyperoxia (48 h) in the presence or absence of suramin (0, 30, 60, 120 microM). Cell death was assessed by flow cytometry (Annexin V, caspase-3 activity assay) and immunohistochemistry for activated caspase-3. Immunoblotting for the death receptor Fas, cleaved caspase-8 and the phosphorylated isoform of the serine-threonin kinase Akt (pAkt) was performed. Suramin lead to OL apoptosis and potentiated hyperoxia-induced injury in a dose-dependent manner. Immunoblotting revealed increased Fas and caspase-8 expression by suramin treatment. This effect was significantly enhanced when suramin was combined with hyperoxia. Furthermore, pAkt levels decreased following suramin exposure, indicating interference with neurotrophin-dependent growth factor signaling. These data indicate that suramin causes apoptotic cell death and aggravates hyperoxia-induced cell death in immature OLs. Its mechanism of action includes an increase of previously described hyperoxia-induced expression of pro-apoptotic factors and deprivation of growth factor dependent signaling components.

  10. How big is the myelinating orchestra? Cellular diversity within the oligodendrocyte lineage: facts and hypotheses.

    PubMed

    Tomassy, Giulio Srubek; Fossati, Valentina

    2014-01-01

    Since monumental studies from scientists like His, Ramón y Cajal, Lorente de Nó and many others have put down roots for modern neuroscience, the scientific community has spent a considerable amount of time, and money, investigating any possible aspect of the evolution, development and function of neurons. Today, the complexity and diversity of myriads of neuronal populations, and their progenitors, is still focus of extensive studies in hundreds of laboratories around the world. However, our prevalent neuron-centric perspective has dampened the efforts in understanding glial cells, even though their active participation in the brain physiology and pathophysiology has been increasingly recognized over the years. Among all glial cells of the central nervous system (CNS), oligodendrocytes (OLs) are a particularly specialized type of cells that provide fundamental support to neuronal activity by producing the myelin sheath. Despite their functional relevance, the developmental mechanisms regulating the generation of OLs are still poorly understood. In particular, it is still not known whether these cells share the same degree of heterogeneity of their neuronal companions and whether multiple subtypes exist within the lineage. Here, we will review and discuss current knowledge about OL development and function in the brain and spinal cord. We will try to address some specific questions: do multiple OL subtypes exist in the CNS? What is the evidence for their existence and those against them? What are the functional features that define an oligodendrocyte? We will end our journey by reviewing recent advances in human pluripotent stem cell differentiation towards OLs. This exciting field is still at its earliest days, but it is quickly evolving with improved protocols to generate functional OLs from different spatial origins. As stem cells constitute now an unprecedented source of human OLs, we believe that they will become an increasingly valuable tool for deciphering

  11. Muscarinic receptor subtypes as potential targets to modulate oligodendrocyte progenitor survival, proliferation, and differentiation.

    PubMed

    De Angelis, Federica; Bernardo, Antonietta; Magnaghi, Valerio; Minghetti, Luisa; Tata, Ada Maria

    2012-05-01

    Acetylcholine (ACh) is a major neurotransmitter but also an important signaling molecule in neuron-glia interactions. Expression of ACh receptors has been reported in several glial cell populations, including oligodendrocytes (OLs). Nonetheless, the characterization of muscarinic receptors in these cells, as well as the description of the cholinergic effects at different stages of OL development, is still incomplete. In this study, we characterized the pattern of expression of muscarinic receptor subtypes in primary cultures of rat oligodendrocyte progenitor cells (OPC) and mature OLs, at both mRNA and protein levels. We found that muscarinic receptor expression is developmentally regulated. M1, M3, and M4 receptors were the main subtypes expressed in OPC, whereas all receptor subtypes were expressed at low levels in mature OLs. Exposure of OPC to muscarine enhanced cell proliferation, an effect mainly due to M1, M3, and M4 receptor subtypes as demonstrated by pharmacological competition with selective antagonists. Conversely, M2 receptor activation impaired OPC survival. In line with the mitogenic activity, muscarinic receptor activation increased the expression of platelet derived growth factor receptor α. Muscarine stimulation increased CX32 and myelin basic protein expression, left unaffected that of myelin proteolipid protein (PLP), and decreased member of the family of epidermal growth factor receptor (EGFR) ErbB3/ErbB4 receptor expression indicating a predominant role of muscarinic receptors in OPC. These findings suggest that ACh may contribute to the maintenance of an immature proliferating progenitor pool and impair the progression toward mature stage. This hypothesis is further supported by increased expression of Notch-1 in OL on muscarinic activation.

  12. Anosmin-1 over-expression regulates oligodendrocyte precursor cell proliferation, migration and myelin sheath thickness.

    PubMed

    Murcia-Belmonte, Verónica; Esteban, Pedro F; Martínez-Hernández, José; Gruart, Agnès; Luján, Rafael; Delgado-García, José María; de Castro, Fernando

    2016-04-01

    During development of the central nervous system, anosmin-1 (A1) works as a chemotropic cue contributing to axonal outgrowth and collateralization, as well as modulating the migration of different cell types, fibroblast growth factor receptor 1 (FGFR1) being the main receptor involved in all these events. To further understand the role of A1 during development, we have analysed the over-expression of human A1 in a transgenic mouse line. Compared with control mice during development and in early adulthood, A1 over-expressing transgenic mice showed an enhanced oligodendrocyte precursor cell (OPC) proliferation and a higher number of OPCs in the subventricular zone and in the corpus callosum (CC). The migratory capacity of OPCs from the transgenic mice is increased in vitro due to a higher basal activation of ERK1/2 mediated through FGFR1 and they also produced more myelin basic protein (MBP). In vivo, the over-expression of A1 resulted in an elevated number of mature oligodendrocytes with higher levels of MBP mRNA and protein, as well as increased levels of activation of the ERK1/2 proteins, while electron microscopy revealed thicker myelin sheaths around the axons of the CC in adulthood. Also in the mature CC, the nodes of Ranvier were significantly longer and the conduction velocity of the nerve impulse in vivo was significantly increased in the CC of A1 over-expressing transgenic mice. Altogether, these data confirmed the involvement of A1 in oligodendrogliogenesis and its relevance for myelination.

  13. Differential effects of antipsychotics on the development of rat oligodendrocyte precursor cells exposed to cuprizone.

    PubMed

    Xu, Haiyun; Yang, Hong-Ju; Li, Xin-Min

    2014-03-01

    Cuprizone (CPZ) is a copper-chelating agent and has been shown to induce white matter damage in mice and rats. The compromised white matter and oligodendrocytes (OLs) respond to some antipsychotics in vivo. However, little is known about the effects of antipsychotics on cultured OLs in the presence of CPZ. The aim of this study was to examine effects of some antipsychotics on developing OLs in the presence of CPZ. Oligodendrocyte progenitor cells (OPCs) were prepared from rat embryos; OLs at different developing stages were labeled with specific antibodies; levels of CNP and MBP proteins in mature OLs were assessed by Western-blot analysis; malondialdehyde (MDA) levels and activity of catalase were evaluated as well for an assessment of oxidative stress and antioxidative status. In immunofluorescent staining, CPZ was shown to inhibit the differentiation of cultured OPCs into O4-positive cells, reduce the maturation of O4-positive cells into CNP- and MBP-positive cells, and decrease levels of CNP and MBP in mature OLs. These inhibitory effects of CPZ were ameliorated by clozapine and quetiapine (QUE), but not by haloperidol and olanzapine. Further experiments were performed to explore the mechanism of the protective effects of QUE. QUE attenuated the decreases in CNP and MBP in CPZ-treated OLs, and blocked the CPZ-induced increase in MDA and decrease in catalase activity in cultured OLs. These results are relevant to the pathophysiology and treatment of schizophrenia considering the aberrant white matter development and evidence suggesting the derangement of the oxidant and antioxidant defense system in some of the patients with schizophrenia. PMID:23728937

  14. Comparative study on laser tissue ablation between PV and HPS lasers

    NASA Astrophysics Data System (ADS)

    Kang, Hyun Wook; Jebens, David; Mitchell, Gerald; Koullick, Ed

    2008-02-01

    Laser therapy for obstructive benign prostatic hyperplasia (BPH) has gained broad adoption due to effective tissue removal, immediate hemostasis, and minor complications. The aim of this study is to quantitatively compare ablation characteristics of PV (Photoselective Vaporization) and the newly introduced HPS (High Performance System) 532 nm lasers. Bovine prostatic tissues were ablated in vitro, using a custom-made scanning system. Laser-induced volume produced by two lasers was quantified as a function of applied power, fiber working distance (WD), and treatment speed. Given the same power of 80 W and speed of 4 mm/s, HPS created up to 50 % higher tissue ablation volume than PV did. PV induced a rapid decrease of ablation volume when WD increased from 0.5 mm to 3 mm while HPS yielded almost constant tissue removal up to 3 mm for both 80 W and 120 W. As the treatment speed increased, both lasers reached saturation in tissue ablation volume. Lastly, both PV and HPS lasers exhibited approximately 1 mm thick heat affected zone (HAZ) in this study although HPS created twice deeper ablation channels with a depth of up to 4 mm. Due to a smaller beam size and a higher output power, HPS maximized tissue ablation rate with minimal thermal effects to the adjacent tissue. Furthermore, more collimated beam characteristics provides more spatial flexibility and may even help to decrease the rate of fiber degradation associated with thermal damage from debris reattachment to the tip.

  15. Characterization of tracked radiofrequency ablation in phantom

    SciTech Connect

    Chen, Chun-Cheng R.; Miga, Michael I.; Galloway, Robert L.

    2007-10-15

    In radiofrequency ablation (RFA), successful therapy requires accurate, image-guided placement of the ablation device in a location selected by a predictive treatment plan. Current planning methods rely on geometric models of ablations that are not sensitive to underlying physical processes in RFA. Implementing plans based on computational models of RFA with image-guided techniques, however, has not been well characterized. To study the use of computational models of RFA in planning needle placement, this work compared ablations performed with an optically tracked RFA device with corresponding models of the ablations. The calibration of the tracked device allowed the positions of distal features of the device, particularly the tips of the needle electrodes, to be determined to within 1.4{+-}0.6 mm of uncertainty. Ablations were then performed using the tracked device in a phantom system based on an agarose-albumin mixture. Images of the sliced phantom obtained from the ablation experiments were then compared with the predictions of a bioheat transfer model of RFA, which used the positional data of the tracked device obtained during ablation. The model was demonstrated to predict 90% of imaged pixels classified as being ablated. The discrepancies between model predictions and observations were analyzed and attributed to needle tracking inaccuracy as well as to uncertainties in model parameters. The results suggest the feasibility of using finite element modeling to plan ablations with predictable outcomes when implemented using tracked RFA.

  16. Effect of Twisted Fiber Anisotropy in Cardiac Tissue on Ablation with Pulsed Electric Fields

    PubMed Central

    Xie, Fei; Zemlin, Christian W.

    2016-01-01

    Background Ablation of cardiac tissue with pulsed electric fields is a promising alternative to current thermal ablation methods, and it critically depends on the electric field distribution in the heart. Methods We developed a model that incorporates the twisted anisotropy of cardiac tissue and computed the electric field distribution in the tissue. We also performed experiments in rabbit ventricles to validate our model. We find that the model agrees well with the experimentally determined ablation volume if we assume that all tissue that is exposed to a field greater than 3 kV/cm is ablated. In our numerical analysis, we considered how tissue thickness, degree of anisotropy, and electrode configuration affect the geometry of the ablated volume. We considered two electrode configurations: two parallel needles inserted into the myocardium (“penetrating needles” configuration) and one circular electrode each on epi- and endocardium, opposing each other (“epi-endo” configuration). Results For thick tissues (10 mm) and moderate anisotropy ratio (a = 2), we find that the geometry of the ablated volume is almost unaffected by twisted anisotropy, i.e. it is approximately translationally symmetric from epi- to endocardium, for both electrode configurations. Higher anisotropy ratio (a = 10) leads to substantial variation in ablation width across the wall; these variations were more pronounced for the penetrating needle configuration than for the epi-endo configuration. For thinner tissues (4 mm, typical for human atria) and higher anisotropy ratio (a = 10), the epi-endo configuration yielded approximately translationally symmetric ablation volumes, while the penetrating electrodes configuration was much more sensitive to fiber twist. Conclusions These results suggest that the epi-endo configuration will be reliable for ablation of atrial fibrillation, independently of fiber orientation, while the penetrating electrode configuration may experience problems when the

  17. Preliminary results of human scleral ablation in vitro with Ho:YAG laser

    NASA Astrophysics Data System (ADS)

    Pergadia, Vani R.; Vari, Sandor G.; Fishbein, Michael C.; Shi, Wei-Qiang; Grundfest, Warren S.

    1994-02-01

    This study evaluated the effect of the Ho:YAG laser operating at a wavelength of 2.1 micrometers and a repetition rate of 2 Hz on a human scleral tissue. The effects were assessed in terms of the ablation rate (micrometers /pulse) and the thermal damage (micrometers ) induced. The results were compared to those found from porcine scleral ablation. Data indicate that for the pulsed Ho:YAG laser, the ablation rate of scleral tissue increases linearly with laser fluence. The ablation rates are about 40% lower for the human scleral tissue than for the porcine scleral tissue at the same fluences. Data indicate that the mean Ho:YAG laser induced thermal damage is not significantly affected by varying the fluence.

  18. Global Endometrial Ablation in the Presence of Essure® Microinserts

    PubMed Central

    Aldape, Diana; Chudnoff, Scott G; Levie, Mark D

    2013-01-01

    Abnormal uterine bleeding (AUB) affects 30% of women at some time during their reproductive years and is one of the most common reasons a woman sees a gynecologist. Many women are turning to endometrial ablation to manage their AUB. This article reviews the data relating to the available endometrial ablation techniques performed with hysteroscopic sterilization, and focuses on data from patients who had Essure® (Conceptus, San Carlos, CA) coils placed prior to performance of endometrial ablation. Reviewed specifically are data regarding safety and efficacy of these two procedures when combined. Data submitted to the US Food and Drug Administration for the three devices currently approved are reviewed, as well as all published case series. Articles included were selected based on a PubMed search for endometrial ablation (also using the brand names of the different techniques currently available), hysteroscopic sterilization, and Essure. PMID:24358407

  19. Analysis of iodinated contrast delivered during thermal ablation: is material trapped in the ablation zone?

    NASA Astrophysics Data System (ADS)

    Wu, Po-hung; Brace, Chris L.

    2016-08-01

    Intra-procedural contrast-enhanced CT (CECT) has been proposed to evaluate treatment efficacy of thermal ablation. We hypothesized that contrast material delivered concurrently with thermal ablation may become trapped in the ablation zone, and set out to determine whether such an effect would impact ablation visualization. CECT images were acquired during microwave ablation in normal porcine liver with: (A) normal blood perfusion and no iodinated contrast, (B) normal perfusion and iodinated contrast infusion or (C) no blood perfusion and residual iodinated contrast. Changes in CT attenuation were analyzed from before, during and after ablation to evaluate whether contrast was trapped inside of the ablation zone. Visualization was compared between groups using post-ablation contrast-to-noise ratio (CNR). Attenuation gradients were calculated at the ablation boundary and background to quantitate ablation conspicuity. In Group A, attenuation decreased during ablation due to thermal expansion of tissue water and water vaporization. The ablation zone was difficult to visualize (CNR  =  1.57  ±  0.73, boundary gradient  =  0.7  ±  0.4 HU mm‑1), leading to ablation diameter underestimation compared to gross pathology. Group B ablations saw attenuation increase, suggesting that iodine was trapped inside the ablation zone. However, because the normally perfused liver increased even more, Group B ablations were more visible than Group A (CNR  =  2.04  ±  0.84, boundary gradient  =  6.3  ±  1.1 HU mm‑1) and allowed accurate estimation of the ablation zone dimensions compared to gross pathology. Substantial water vaporization led to substantial attenuation changes in Group C, though the ablation zone boundary was not highly visible (boundary gradient  =  3.9  ±  1.1 HU mm‑1). Our results demonstrate that despite iodinated contrast being trapped in the ablation zone, ablation visibility

  20. Analysis of iodinated contrast delivered during thermal ablation: is material trapped in the ablation zone?

    NASA Astrophysics Data System (ADS)

    Wu, Po-hung; Brace, Chris L.

    2016-08-01

    Intra-procedural contrast-enhanced CT (CECT) has been proposed to evaluate treatment efficacy of thermal ablation. We hypothesized that contrast material delivered concurrently with thermal ablation may become trapped in the ablation zone, and set out to determine whether such an effect would impact ablation visualization. CECT images were acquired during microwave ablation in normal porcine liver with: (A) normal blood perfusion and no iodinated contrast, (B) normal perfusion and iodinated contrast infusion or (C) no blood perfusion and residual iodinated contrast. Changes in CT attenuation were analyzed from before, during and after ablation to evaluate whether contrast was trapped inside of the ablation zone. Visualization was compared between groups using post-ablation contrast-to-noise ratio (CNR). Attenuation gradients were calculated at the ablation boundary and background to quantitate ablation conspicuity. In Group A, attenuation decreased during ablation due to thermal expansion of tissue water and water vaporization. The ablation zone was difficult to visualize (CNR  =  1.57  ±  0.73, boundary gradient  =  0.7  ±  0.4 HU mm-1), leading to ablation diameter underestimation compared to gross pathology. Group B ablations saw attenuation increase, suggesting that iodine was trapped inside the ablation zone. However, because the normally perfused liver increased even more, Group B ablations were more visible than Group A (CNR  =  2.04  ±  0.84, boundary gradient  =  6.3  ±  1.1 HU mm-1) and allowed accurate estimation of the ablation zone dimensions compared to gross pathology. Substantial water vaporization led to substantial attenuation changes in Group C, though the ablation zone boundary was not highly visible (boundary gradient  =  3.9  ±  1.1 HU mm-1). Our results demonstrate that despite iodinated contrast being trapped in the ablation zone, ablation visibility was

  1. Developmental Origin of Oligodendrocyte Lineage Cells Determines Response to Demyelination and Susceptibility to Age-Associated Functional Decline

    PubMed Central

    Crawford, Abbe H.; Tripathi, Richa B.; Richardson, William D.; Franklin, Robin J.M.

    2016-01-01

    Summary Oligodendrocyte progenitors (OPs) arise from distinct ventral and dorsal domains within the ventricular germinal zones of the embryonic CNS. The functional significance, if any, of these different populations is not known. Using dual-color reporter mice to distinguish ventrally and dorsally derived OPs, we show that, in response to focal demyelination of the young adult spinal cord or corpus callosum, dorsally derived OPs undergo enhanced proliferation, recruitment, and differentiation as compared with their ventral counterparts, making a proportionally larger contribution to remyelination. However, with increasing age (up to 13 months), the dorsally derived OPs become less able to differentiate into mature oligodendrocytes. Comparison of dorsally and ventrally derived OPs in culture revealed inherent differences in their migration and differentiation capacities. Therefore, the responsiveness of OPs to demyelination, their contribution to remyelination, and their susceptibility to age-associated functional decline are markedly dependent on their developmental site of origin in the developing neural tube. PMID:27149850

  2. Micro-ablation with high power pulsed copper vapor lasers.

    PubMed

    Knowles, M

    2000-07-17

    Visible and UV lasers with nanosecond pulse durations, diffraction-limited beam quality and high pulse repetition rates have demonstrated micro-ablation in a wide variety of materials with sub-micron precision and sub-micron-sized heat-affected zones. The copper vapour laser (CVL) is one of the important industrial lasers for micro-ablation applications. Manufacturing applications for the CVL include orifice drilling in fuel injection components and inkjet printers, micro-milling of micromoulds, via hole drilling in printed circuit boards and silicon machining. Recent advances in higher power (100W visible, 5W UV), diffraction-limited, compact CVLs are opening new possibilities for manufacturing with this class of nanosecond laser.

  3. Study of breakdown in an ablative pulsed plasma thruster

    SciTech Connect

    Huang, Tiankun; Wu, Zhiwen; Liu, Xiangyang; Xie, Kan; Wang, Ningfei; Cheng, Yue

    2015-10-15

    Breakdown in ablative pulsed plasma thrusters (APPTs) must be studied in order to design new types of APPTs and measure particular parameters. In this paper, we studied a parallel-plate ablative pulsed plasma thruster that used a coaxial semiconductor spark plug. By operating the APPT about 500 times with various capacitor voltages and electrode gaps, we measured and analyzed the voltage of the spark plug, the voltage between the electrodes, and the discharge current. These experiments revealed a time delay (∼1–10 μs) between spark plug ignition and capacitor discharge, which may affect the performance of high-pulsing-rate (>10 kHz) and double-discharge APPTs, and the measurements of some of the APPT parameters. The delay time decreased as the capacitor voltage increased, and it increased with an increasing electrode gap and increasing number of ignitions. We explain our results through a simple theoretical analysis.

  4. Magnetic nanoparticle-mediated gene transfer to oligodendrocyte precursor cell transplant populations is enhanced by magnetofection strategies.

    PubMed

    Jenkins, Stuart I; Pickard, Mark R; Granger, Nicolas; Chari, Divya M

    2011-08-23

    This study has tested the feasibility of using physical delivery methods, employing static and oscillating field "magnetofection" techniques, to enhance magnetic nanoparticle-mediated gene transfer to rat oligodendrocyte precursor cells derived for transplantation therapies. These cells are a major transplant population to mediate repair of damage as occurs in spinal cord injury and neurological diseases such as multiple sclerosis. We show for the first time that magnetic nanoparticles mediate effective transfer of reporter and therapeutic genes to oligodendrocyte precursors; transfection efficacy was significantly enhanced by applied static or oscillating magnetic fields, the latter using an oscillating array employing high-gradient NdFeB magnets. The effects of oscillating fields were frequency-dependent, with 4 Hz yielding optimal results. Transfection efficacies obtained using magnetofection methods were highly competitive with or better than current widely used nonviral transfection methods (e.g., electroporation and lipofection) with the additional critical advantage of high cell viability. No adverse effects were found on the cells' ability to divide or give rise to their daughter cells, the oligodendrocytes-key properties that underpin their regeneration-promoting effects. The transplantation potential of transfected cells was tested in three-dimensional tissue engineering models utilizing brain slices as the host tissue; modified transplanted cells were found to migrate, divide, give rise to daughter cells, and integrate within host tissue, further evidencing the safety of the protocols used. Our findings strongly support the concept that magnetic nanoparticle vectors in conjunction with state-of-the-art magnetofection strategies provide a technically simple and effective alternative to current methods for gene transfer to oligodendrocyte precursor cells.

  5. Loss of lysophosphatidic acid receptor LPA1 alters oligodendrocyte differentiation and myelination in the mouse cerebral cortex.

    PubMed

    García-Díaz, Beatriz; Riquelme, Raquel; Varela-Nieto, Isabel; Jiménez, Antonio Jesús; de Diego, Isabel; Gómez-Conde, Ana Isabel; Matas-Rico, Elisa; Aguirre, José Ángel; Chun, Jerold; Pedraza, Carmen; Santín, Luis Javier; Fernández, Oscar; Rodríguez de Fonseca, Fernando; Estivill-Torrús, Guillermo

    2015-11-01

    Lysophosphatidic acid (LPA) is an intercellular signaling lipid that regulates multiple cellular functions, acting through specific G-protein coupled receptors (LPA(1-6)). Our previous studies using viable Malaga variant maLPA1-null mice demonstrated the requirement of the LPA1 receptor for normal proliferation, differentiation, and survival of the neuronal precursors. In the cerebral cortex LPA1 is expressed extensively in differentiating oligodendrocytes, in parallel with myelination. Although exogenous LPA-induced effects have been investigated in myelinating cells, the in vivo contribution of LPA1 to normal myelination remains to be demonstrated. This study identified a relevant in vivo role for LPA1 as a regulator of cortical myelination. Immunochemical analysis in adult maLPA1-null mice demonstrated a reduction in the steady-state levels of the myelin proteins MBP, PLP/DM20, and CNPase in the cerebral cortex. The myelin defects were confirmed using magnetic resonance spectroscopy and electron microscopy. Stereological analysis limited the defects to adult differentiating oligodendrocytes, without variation in the NG2+ precursor cells. Finally, a possible mechanism involving oligodendrocyte survival was demonstrated by the impaired intracellular transport of the PLP/DM20 myelin protein which was accompanied by cellular loss, suggesting stress-induced apoptosis. These findings describe a previously uncharacterized in vivo functional role for LPA1 in the regulation of oligodendrocyte differentiation and myelination in the CNS, underlining the importance of the maLPA1-null mouse as a model for the study of demyelinating diseases. PMID:25226845

  6. A complex between contactin-1 and the protein tyrosine phosphatase PTPRZ controls the development of oligodendrocyte precursor cells

    SciTech Connect

    Lamprianou, Smaragda; Chatzopoulou, Elli; Thomas, Jean-Léon; Bouyain, Samuel; Harroch, Sheila

    2013-09-23

    The six members of the contactin (CNTN) family of neural cell adhesion molecules are involved in the formation and maintenance of the central nervous system (CNS) and have been linked to mental retardation and neuropsychiatric disorders such as autism. Five of the six CNTNs bind to the homologous receptor protein tyrosine phosphatases gamma (PTPRG) and zeta (PTPRZ), but the biological roles of these interactions remain unclear. We report here the cocrystal structure of the carbonic anhydrase-like domain of PTPRZ bound to tandem Ig repeats of CNTN1 and combine these structural data with binding assays to show that PTPRZ binds specifically to CNTN1 expressed at the surface of oligodendrocyte precursor cells. Furthermore, analyses of glial cell populations in wild-type and PTPRZ-deficient mice show that the binding of PTPRZ to CNTN1 expressed at the surface of oligodendrocyte precursor cells inhibits their proliferation and promotes their development into mature oligodendrocytes. Overall, these results implicate the PTPRZ/CNTN1 complex as a previously unknown modulator of oligodendrogenesis.

  7. Nf1 Loss and Ras Hyperactivation in Oligodendrocytes Induce NOS-Driven Defects in Myelin and Vasculature

    PubMed Central

    Mayes, Debra A.; Rizvi, Tilat A.; Titus-Mitchell, Haley; Oberst, Rachel; Ciraolo, Georgianne M.; Vorhees, Charles V.; Robinson, Andrew P.; Miller, Stephen D.; Cancelas, Jose A.; Stemmer-Rachamimov, Anat O.; Ratner, Nancy

    2014-01-01

    SUMMARY Patients with neurofibromatosis type 1 (NF1) and Costello syndrome Rasopathy have behavioral deficits. In NF1 patients, these may correlate with white matter enlargement and aberrant myelin. To model these features, we induced Nf1 loss or HRas hyperactivation in mouse oligodendrocytes. Enlarged brain white matter tracts correlated with myelin decompaction, downregulation of claudin-11, and mislocalization of connexin-32. Surprisingly, non-cell-autonomous defects in perivascular astrocytes and the blood-brain barrier (BBB) developed, implicating a soluble mediator. Nitric oxide (NO) can disrupt tight junctions and gap junctions, and NO and NO synthases (NOS1–NOS3) were upregulated in mutant white matter. Treating mice with the NOS inhibitor NG-nitro-L-arginine methyl ester or the antioxidant N-acetyl cysteine corrected cellular phenotypes. CNP-HRasG12V mice also displayed locomotor hyperactivity, which could be rescued by antioxidant treatment. We conclude that Nf1/Ras regulates oligodendrocyte NOS and that dysregulated NO signaling in oligodendrocytes can alter the surrounding vasculature. The data suggest that anti-oxidants may improve some behavioral deficits in Rasopathy patients. PMID:24035394

  8. Mitochondria, oligodendrocytes and inflammation in bipolar disorder: evidence from transcriptome studies points to intriguing parallels with multiple sclerosis

    PubMed Central

    Konradi, Christine; Sillivan, Stephanie E.; Clay, Hayley B.

    2011-01-01

    Gene expression studies of bipolar disorder (BPD) have shown changes in transcriptome profiles in multiple brain regions. Here we summarize the most consistent findings in the scientific literature, and compare them to data from schizophrenia (SZ) and major depressive disorder (MDD). The transcriptome profiles of all three disorders overlap, making the existence of a BPD-specific profile unlikely. Three groups of functionally related genes are consistently expressed at altered levels in BPD, SZ and MDD. Genes involved in energy metabolism and mitochondrial function are downregulated, genes involved in immune response and inflammation are upregulated, and genes expressed in oligodendrocytes are downregulated. Experimental paradigms for multiple sclerosis demonstrate a tight link between energy metabolism, inflammation and demyelination. These studies also show variabilities in the extent of oligodendrocyte stress, which can vary from a downregulation of oligodendrocyte genes, such as observed in psychiatric disorders, to cell death and brain lesions seen in multiple sclerosis. We conclude that experimental models of multiple sclerosis could be of interest for the research of BPD, SZ and MDD. PMID:21310238

  9. d-LSD-induced c-Fos expression occurs in a population of oligodendrocytes in rat prefrontal cortex.

    PubMed

    Reissig, Chad J; Rabin, Richard A; Winter, Jerrold C; Dlugos, Cynthia A

    2008-03-31

    Induction of mRNA or protein for immediate-early genes, such as c-fos, is used to identify brain areas, specific cell types, and neuronal circuits that become activated in response to various stimuli including psychoactive drugs. The objective of the present study was to identify the cell types in the prefrontal cortex in which lysergic acid diethylamide (d-LSD) induces c-Fos expression. Systemic administration of d-LSD resulted in a dose-dependent increase in c-Fos immunoreactivity. Although c-Fos-positive cells were found in all cortical layers, they were most numerous in layers III, IV, and V. d-LSD-induced c-Fos immunoreactivity was found in cells co-labeled with anti-neuron-specific enolase or anti-oligodendrocyte Oligo1. The Oligo1-labeled cells had small, round bodies and nuclear diameters characteristic of oligodendrocytes. Studies using confocal microscopy confirmed colocalization of c-Fos-labeled nuclei in NeuN-labeled neurons. Astrocytes and microglia labeled with glial fibrillary acidic protein antibody and OX-42 antibody, respectively, did not display LSD-induced c-Fos expression. Pyramidal neurons labeled with anti-neurofilament antibody also did not show induction of c-Fos immunoreactivity after systemic d-LSD administration. The present study demonstrates that d-LSD induced expression of c-Fos in the prefrontal cortex occurs in subpopulations of neurons and in oligodendrocytes, but not in pyramidal neurons, astrocytes, and microglia.

  10. The Autotaxin–Lysophosphatidic Acid Axis Modulates Histone Acetylation and Gene Expression during Oligodendrocyte Differentiation

    PubMed Central

    Wheeler, Natalie A.; Lister, James A.

    2015-01-01

    During development, oligodendrocytes (OLGs), the myelinating cells of the CNS, undergo a stepwise progression during which OLG progenitors, specified from neural stem/progenitor cells, differentiate into fully mature myelinating OLGs. This progression along the OLG lineage is characterized by well synchronized changes in morphology and gene expression patterns. The latter have been found to be particularly critical during the early stages of the lineage, and they have been well described to be regulated by epigenetic mechanisms, especially by the activity of the histone deacetylases HDAC1 and HDAC2. The data presented here identify the extracellular factor autotaxin (ATX) as a novel upstream signal modulating HDAC1/2 activity and gene expression in cells of the OLG lineage. Using the zebrafish as an in vivo model system as well as rodent primary OLG cultures, this functional property of ATX was found to be mediated by its lysophospholipase D (lysoPLD) activity, which has been well characterized to generate the lipid signaling molecule lysophosphatidic acid (LPA). More specifically, the lysoPLD activity of ATX was found to modulate HDAC1/2 regulated gene expression during a time window coinciding with the transition from OLG progenitor to early differentiating OLG. In contrast, HDAC1/2 regulated gene expression during the transition from neural stem/progenitor to OLG progenitor appeared unaffected by ATX and its lysoPLD activity. Thus, together, our data suggest that an ATX–LPA–HDAC1/2 axis regulates OLG differentiation specifically during the transition from OLG progenitor to early differentiating OLG and via a molecular mechanism that is evolutionarily conserved from at least zebrafish to rodent. SIGNIFICANCE STATEMENT The formation of the axon insulating and supporting myelin sheath by differentiating oligodendrocytes (OLGs) in the CNS is considered an essential step during vertebrate development. In addition, loss and/or dysfunction of the myelin sheath has

  11. Possible role for cryoballoon ablation of right atrial appendage tachycardia when conventional ablation fails.

    PubMed

    Amasyali, Basri; Kilic, Ayhan

    2015-06-01

    Focal atrial tachycardia arising from the right atrial appendage usually responds well to radiofrequency ablation; however, successful ablation in this anatomic region can be challenging. Surgical excision of the right atrial appendage has sometimes been necessary to eliminate the tachycardia and prevent or reverse the resultant cardiomyopathy. We report the case of a 48-year-old man who had right atrial appendage tachycardia resistant to multiple attempts at ablation with use of conventional radiofrequency energy guided by means of a 3-dimensional mapping system. The condition led to cardiomyopathy in 3 months. The arrhythmia was successfully ablated with use of a 28-mm cryoballoon catheter that had originally been developed for catheter ablation of paroxysmal atrial fibrillation. To our knowledge, this is the first report of cryoballoon ablation without isolation of the right atrial appendage. It might also be an alternative to epicardial ablation or surgery when refractory atrial tachycardia originates from the right atrial appendage.

  12. Testing and evaluation of light ablation decontamination

    SciTech Connect

    Demmer, R.L.; Ferguson, R.L.

    1994-10-01

    This report details the testing and evaluation of light ablation decontamination. It details WINCO contracted research and application of light ablation efforts by Ames Laboratory. Tests were conducted with SIMCON (simulated contamination) coupons and REALCON (actual radioactive metal coupons) under controlled conditions to compare cleaning effectiveness, speed and application to plant process type equipment.

  13. Lung Cancer Ablation: Technologies and Techniques

    PubMed Central

    Alexander, Erica S.; Dupuy, Damian E.

    2013-01-01

    The incidence of lung cancers in 2012 is estimated to reach 226,160 new cases, with only a third of patients suitable surgical candidates. Tumor ablation has emerged as an important and efficacious treatment option for nonsurgical lung cancer patients. This localized minimally invasive therapy is best suited for small oligonodular lesions or favorably located metastatic tumors. Radiofrequency ablation has been in use for over a decade, and newer modalities including microwave ablation, cryoablation, and irreversible electroporation have emerged as additional treatment options for patients. Ablation therapies can offer patients and clinicians a repeatable and effective therapy for palliation and, in some cases, cure of thoracic malignancies. This article discusses the available technologies and techniques available for tumor ablation of thoracic malignancies including patient selection, basic aspects of procedure technique, imaging follow-up, treatment outcomes, and comparisons between various therapies. PMID:24436530

  14. Ablative shielding for hypervelocity projectiles

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A. (Inventor)

    1993-01-01

    A hypervelocity projectile shield which includes a hollow semi-flexible housing fabricated from a plastic like, or otherwise transparent membrane which is filled with a fluid (gas or liquid) is presented. The housing has a inlet valve, similar to that on a tire or basketball, to introduce an ablating fluid into the housing. The housing is attached by a Velcro mount or double-sided adhesive tape to the outside surface of a structure to be protected. The housings are arrayed in a side-by-side relationship for complete coverage of the surface to be protected. In use, when a hypervelocity projectile penetrates the outer wall of a housing it is broken up and then the projectile is ablated as it travels through the fluid, much like a meteorite 'burns up' as it enters the earth's atmosphere, and the housing is deflated. The deflated housing can be easily spotted for replacement, even from a distance. Replacement is then accomplished by simply pulling a deflated housing off the structure and installing a new housing.

  15. Stellar Ablation of Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Moore, Thomas E.; Horwitz, J. L.

    2007-01-01

    We review observations and theories of the solar ablation of planetary atmospheres, focusing on the terrestrial case where a large magnetosphere holds off the solar wind, so that there is little direct atmospheric impact, but also couples the solar wind electromagnetically to the auroral zones. We consider the photothermal escape flows known as the polar wind or refilling flows, the enhanced mass flux escape flows that result from localized solar wind energy dissipation in the auroral zones, and the resultant enhanced neutral atom escape flows. We term these latter two escape flows the "auroral wind." We review observations and theories of the heating and acceleration of auroral winds, including energy inputs from precipitating particles, electromagnetic energy flux at magnetohydrodynamic and plasma wave frequencies, and acceleration by parallel electric fields and by convection pickup processes also known as "centrifugal acceleration." We consider also the global circulation of ionospheric plasmas within the magnetosphere, their participation in magnetospheric disturbances as absorbers of momentum and energy, and their ultimate loss from the magnetosphere into the downstream solar wind, loading reconnection processes that occur at high altitudes near the magnetospheric boundaries. We consider the role of planetary magnetization and the accumulating evidence of stellar ablation of extrasolar planetary atmospheres. Finally, we suggest and discuss future needs for both the theory and observation of the planetary ionospheres and their role in solar wind interactions, to achieve the generality required for a predictive science of the coupling of stellar and planetary atmospheres over the full range of possible conditions.

  16. Laser ablation of persistent twist cells in Drosophila: muscle precursor fate is not segmentally restricted

    NASA Technical Reports Server (NTRS)

    Farrell, E. R.; Keshishian, H.

    1999-01-01

    In Drosophila the precursors of the adult musculature arise during embryogenesis. These precursor cells have been termed Persistent Twist Cells (PTCs), as they continue to express the transcription factor Twist after that gene ceases expression elsewhere in the mesoderm. In the larval abdomen, the PTCs are associated with peripheral nerves in stereotypic ventral, dorsal, and lateral clusters, which give rise, respectively, to the ventral, dorsal, and lateral muscle fiber groups of the adult. We tested the developmental potential of the PTCs by using a microbeam laser to ablate specific clusters in larvae. We found that the ablation of a single segmental PTC cluster does not usually result in the deletion of the corresponding adult fibers of that segment. Instead, normal or near normal numbers of adult fibers can form after the ablation. Examination of pupae following ablation showed that migrating PTCs from adjacent segments are able to invade the affected segment, replenishing the ablated cells. However, the ablation of homologous PTCs in multiple segments does result in the deletion of the corresponding adult muscle fibers. These data indicate that the PTCs in an abdominal segment can contribute to the formation of muscle fibers in adjacent abdominal segments, and thus are not inherently restricted to the formation of muscle fibers within their segment of origin.

  17. Electric Ablation with Irreversible Electroporation (IRE) in Vital Hepatic Structures and Follow-up Investigation.

    PubMed

    Chen, Xinhua; Ren, Zhigang; Zhu, Tongyin; Zhang, Xiongxin; Peng, Zhiyi; Xie, Haiyang; Zhou, Lin; Yin, Shengyong; Sun, Junhui; Zheng, Shusen

    2015-01-01

    Irreversible electroporation (IRE) with microsecond-pulsed electric fields (μsPEFs) can effectively ablate hepatocellular carcinomas in animal models. This preclinical study evaluates the feasibility and safety of IRE on porcine livers. Altogether, 10 pigs were included. Computed tomography (CT) was used to guide two-needle electrodes that were inserted near the hilus hepatis and gall bladder. Animals were followed-up at 2 hours and at 2, 7 and 14 days post-treatment. During and after μsPEF ablation, electrocardiographs found no cardiovascular events, and contrast CT found no portal vein thrombosis. There was necrosis in the ablation zone. Mild cystic oedema around the gall bladder was found 2 hours post-treatment. Pathological studies showed extensive cell death. There was no large vessel damage, but there was mild endothelial damage in some small vessels. Follow-up liver function tests and routine blood tests showed immediate liver function damage and recovery from the damage, which correlated to the pathological changes. These results indicate that μsPEF ablation affects liver tissue and is less effective in vessels, which enable μsPEFs to ablate central tumour lesions close to the hilus hepatis and near large vessels and bile ducts, removing some of the limitations and contraindications of conventional thermal ablation. PMID:26549662

  18. Rear-side picosecond laser ablation of indium tin oxide micro-grooves

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Wang, Wenjun; Mei, Xuesong; Liu, Bin; Zhao, Wanqin

    2015-06-01

    A comparative study of the fabrication of micro-grooves in indium tin oxide films by picosecond laser ablation for application in thin film solar cells is presented, evaluating the variation of different process parameters. Compared with traditional front-side ablation, rear-side ablation results in thinner grooves with varying laser power at a certain scan speed. In particular, and in contrast to front-side ablation, the width of the micro-grooves remains unchanged when the scan speed was changed. Thus, the micro-groove quality can be optimized by adjusting the scan speed while the groove width would not be affected. Furthermore, high-quality micro-grooves with ripple free surfaces and steep sidewalls could only be achieved when applying rear-side ablation. Finally, the formation mechanism of micro-cracks on the groove rims during rear-side ablation is analyzed and the cracks can be almost entirely eliminated by an optimization of the scan speed.

  19. Ablation front rayleigh taylor dispersion curve in indirect drive

    SciTech Connect

    Budil, K S; Lasinski, B; Edwards, M J; Wan, A S; Remington, B A; Weber, S V; Glendinning, S G; Suter, L; Stry, P

    2000-11-17

    The Rayleigh-Taylor (RT) instability, which occurs when a lower-density fluid accelerates a higher-density layer, is common in nature. At an ablation front a sharp reduction in the growth rate of the instability at short wave-lengths can occur, in marked contrast to the classical case where growth rates are highest at the shortest wavelengths. Theoretical and numerical investigations of the ablative RT instability are numerous and differ considerably on the level of stabilization expected. We present here the results of a series of laser experiments designed to probe the roll-over and cutoff region of the ablation-front RT dispersion curve in indirect drive. Aluminum foils with imposed sinusoidal perturbations ranging in wavelength from 10 to 70 pm were ablatively accelerated with a radiation drive generated in a gold cylindrical hohlraum. A strong shock wave compresses the package followed by an {approx}2 ns period of roughly constant acceleration and the experiment is diagnosed via face-on radiography. Perturbations with wavelengths {ge} 20 {micro}m experienced substantial growth during the acceleration phase while shorter wavelengths showed a sharp drop off in overall growth. These experimental results compared favorably to calculations with a 2-D radiation-hydrodynamics code, however, the growth is significantly affected by the rippled shock launched by the drive. We performed numerical simulations to elucidate the influence of the rippled shock wave on the eventual growth of the perturbations, allowing comparisons to the analytic model developed by Betti et al. This combination of experiments, simulations and analytic modeling illustrates the qualitative simplicity yet quantitative complexity of the compressible RT instability. We have measured the Rayleigh-Taylor (RT) dispersion curve for a radiatively-driven sample in a series of experiments on the Nova laser facility. Planar aluminum foils were ablatively-accelerated and the subsequent perturbation growth

  20. miR-23 regulation of lamin B1 is crucial for oligodendrocyte development and myelination

    PubMed Central

    Lin, Shu-Ting; Fu, Ying-Hui

    2009-01-01

    SUMMARY Duplication of the gene encoding lamin B1 (LMNB1) with increased mRNA and protein levels has been shown to cause severe myelin loss in the brains of adult-onset autosomal dominant leukodystrophy patients. Similar to many neurodegenerative disorders, patients with adult-onset autosomal dominant leukodystrophy are phenotypically normal until adulthood and the defect is specific to the central nervous system despite the ubiquitous expression pattern of lamin B1. We set out to dissect the molecular mechanisms underlying this demyelinating phenotype. Increased lamin B1 expression results in disturbances of inner nuclear membrane proteins, chromatin organization and nuclear pore transport in vitro. It also leads to premature arrest of oligodendrocyte differentiation, which might be caused by reduced transcription of myelin genes and by mislocalization of myelin proteins. We identified the microRNA miR-23 as a negative regulator of lamin B1 that can ameliorate the consequences of excessive lamin B1 at the cellular level. Our results indicate that regulation of lamin B1 is important for myelin maintenance and that miR-23 contributes to this process, at least in part, by downregulating lamin B1, therefore establishing novel functions of lamin B1 and miR-23 in the regulation of oligodendroglia development and myelin formation in vitro. PMID:19259393

  1. Neuregulin-1/ErbB4 signaling controls the migration of oligodendrocyte precursor cells during development.

    PubMed

    Ortega, M Cristina; Bribián, Ana; Peregrín, Sandra; Gil, M Trinidad; Marín, Oscar; de Castro, Fernando

    2012-06-01

    During embryonic development, the oligodendrocyte precursors (OPCs) are generated in specific oligodendrogliogenic sites within the neural tube and migrate to colonize the entire CNS. Different factors have been shown to influence the OPC migration and differentiation, including morphogens, growth factors, chemotropic molecules, and extracellular matrix proteins. Neuregulins have been shown to influence the migration of neuronal precursors as well as the movement and differentiation of Schwann cells for peripheral myelination, but their role in the motility of OPCs has not been explored. In the present study, we have used the optic nerve as an experimental model to examine the function of Nrg1 and its ErbB4 receptor in the migration of OPCs in the developing embryo. In vitro experiments revealed that Nrg1 is a potent chemoattractant for the first wave of OPCs, and that this effect is mediated via ErbB4 receptor. In contrast, OPCs colonizing the optic nerve at postnatal stages (PDGFRα(+)-OPCs) does not respond to Nrg1-chemoattraction. We also found that mouse embryos lacking ErbB4 display deficits in early OPC migration away from different oligodendrogliogenic regions in vivo. The present findings reveal a new role for Nrg1/ErbB4 signaling in regulating OPC migration selectively during early stages of CNS development.

  2. Magnetic nanoparticles for oligodendrocyte precursor cell transplantation therapies: progress and challenges.

    PubMed

    Jenkins, Stuart I; Yiu, Humphrey H P; Rosseinsky, Matthew J; Chari, Divya M

    2014-01-01

    Oligodendrocyte precursor cells (OPCs) have shown high promise as a transplant population to promote regeneration in the central nervous system, specifically, for the production of myelin - the protective sheath around nerve fibers. While clinical trials for these cells have commenced in some areas, there are currently key barriers to the translation of neural cell therapies. These include the ability to (a) image transplant populations in vivo; (b) genetically engineer transplant cells to augment their repair potential; and (c) safely target cells to sites of pathology. Here, we review the evidence that magnetic nanoparticles (MNPs) are a 'multifunctional nanoplatform' that can aid in safely addressing these translational challenges in neural cell/OPC therapy: by facilitating real-time and post-mortem assessment of transplant cell biodistribution, and biomolecule delivery to transplant cells, as well as non-invasive 'magnetic cell targeting' to injury sites by application of high gradient fields. We identify key issues relating to the standardization and reporting of physicochemical and biological data in the field; we consider that it will be essential to systematically address these issues in order to fully evaluate the utility of the MNP platform for neural cell transplantation, and to develop efficacious neurocompatible particles for translational applications. PMID:26056590

  3. Knockdown of Unconventional Myosin ID Expression Induced Morphological Change in Oligodendrocytes

    PubMed Central

    Yamazaki, Reiji; Ishibashi, Tomoko; Baba, Hiroko

    2016-01-01

    Myelin is a special multilamellar structure involved in various functions in the nervous system. In the central nervous system, the oligodendrocyte (OL) produces myelin and has a unique morphology. OLs have a dynamic membrane sorting system associated with cytoskeletal organization, which aids in the production of myelin. Recently, it was reported that the assembly and disassembly of actin filaments is crucial for myelination. However, the partner myosin molecule which associates with actin filaments during the myelination process has not yet been identified. One candidate myosin is unconventional myosin ID (Myo1d) which is distributed throughout central nervous system myelin; however, its function is still unclear. We report here that Myo1d is expressed during later stages of OL differentiation, together with myelin proteolipid protein (PLP). In addition, Myo1d is distributed at the leading edge of the myelin-like membrane in cultured OL, colocalizing mainly with actin filaments, 2′,3′-cyclic nucleotide phosphodiesterase and partially with PLP. Myo1d-knockdown with specific siRNA induces significant morphological changes such as the retraction of processes and degeneration of myelin-like membrane, and finally apoptosis. Furthermore, loss of Myo1d by siRNA results in the impairment of intracellular PLP transport. Together, these results suggest that Myo1d may contribute to membrane dynamics either in wrapping or transporting of myelin membrane proteins during formation and maintenance of myelin. PMID:27655972

  4. Potential interactions between pericytes and oligodendrocyte precursor cells in perivascular regions of cerebral white matter

    PubMed Central

    Maki, Takakuni; Maeda, Mitsuyo; Uemura, Maiko; Lo, Evan K.; Terasaki, Yasukazu; Liang, Anna C.; Shindo, Akihiro; Choi, Yoon Kyung; Taguchi, Akihiko; Matsuyama, Tomohiro; Takahashi, Ryosuke; Ihara, Masafumi; Arai, Ken

    2015-01-01

    Pericytes are embedded within basal lamina and play multiple roles in the perivascular niche in brain. Recently, oligodendrocyte precursor cells (OPCs) have also been reported to associate with cerebral endothelium. Is it possible that within this gliovascular locus, there may also exist potential spatial and functional interactions between pericytes and OPCs? Here, we demonstrated that in the perivascular region of cerebral white matter, pericytes and OPCs may attach and support each other. Immunostaining showed that pericytes and OPCs are localized in close contact with each other in mouse white matter at postnatal days 0, 60 and 240. Electron microscopic analysis confirmed that pericytes attached to OPCs via basal lamina in the perivascular region. The close proximity between these two cell types was also observed in postmortem human brains. Functional interaction between pericytes and OPCs was assessed by in vitro media transfer experiments. When OPC cultures were treated with pericyte-conditioned media, OPC number increased. Similarly, pericyte number increased when pericytes were maintained in OPC-conditioned media. Taken together, our data suggest a potential anatomical and functional interaction between pericytes and OPCs in cerebral white matter. PMID:25936593

  5. PI(3,5)P2 biosynthesis regulates oligodendrocyte differentiation by intrinsic and extrinsic mechanisms

    PubMed Central

    Mironova, Yevgeniya A; Lenk, Guy M; Lin, Jing-Ping; Lee, Seung Joon; Twiss, Jeffery L; Vaccari, Ilaria; Bolino, Alessandra; Havton, Leif A; Min, Sang H; Abrams, Charles S; Shrager, Peter; Meisler, Miriam H; Giger, Roman J

    2016-01-01

    Proper development of the CNS axon-glia unit requires bi-directional communication between axons and oligodendrocytes (OLs). We show that the signaling lipid phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2] is required in neurons and in OLs for normal CNS myelination. In mice, mutations of Fig4, Pikfyve or Vac14, encoding key components of the PI(3,5)P2 biosynthetic complex, each lead to impaired OL maturation, severe CNS hypomyelination and delayed propagation of compound action potentials. Primary OLs deficient in Fig4 accumulate large LAMP1+ and Rab7+ vesicular structures and exhibit reduced membrane sheet expansion. PI(3,5)P2 deficiency leads to accumulation of myelin-associated glycoprotein (MAG) in LAMP1+perinuclear vesicles that fail to migrate to the nascent myelin sheet. Live-cell imaging of OLs after genetic or pharmacological inhibition of PI(3,5)P2 synthesis revealed impaired trafficking of plasma membrane-derived MAG through the endolysosomal system in primary cells and brain tissue. Collectively, our studies identify PI(3,5)P2 as a key regulator of myelin membrane trafficking and myelinogenesis. DOI: http://dx.doi.org/10.7554/eLife.13023.001 PMID:27008179

  6. The human myelin oligodendrocyte glycoprotein (MOG) gene: Complete nucleotide sequence and structural characterization

    SciTech Connect

    Paule Roth, M.; Malfroy, L.; Offer, C.; Sevin, J.; Enault, G.; Borot, N.; Pontarotti, P.; Coppin, H.

    1995-07-20

    Human myelin oligodendrocyte glycoprotein (MOG), a myelin component of the central nervous system, is a candidate target antigen for autoimmune-mediated demyelination. We have isolated and sequenced part of a cosmid clone that contains the entire human MOG gene. The primary nuclear transcript, extending from the putative start of transcription to the site of poly(A) addition, is 15,561 nucleotides in length. The human MOG gene contains 8 exons, separated by 7 introns; canonical intron/exon boundary sites are observed at each junction. The introns vary in size from 242 to 6484 bp and contain numerous repetitive DNA elements, including 14 Alu sequences within 3 introns. Another Alu element is located in the 3{prime}-untranslated region of the gene. Alu sequences were classified with respect to subfamily assignment. Seven hundred sixty-three nucleotides 5{prime} of the transcription start and 1214 nucleotides 3{prime} of the poly(A) addition sites were also sequenced. The 5{prime}-flanking region revealed the presence of several consensus sequences that could be relevant in the transcription of the MOG gene, in particular binding sites in common with other myelin gene promoters. Two polymorphic intragenic dinucleotide (CA){sub n} and tetranucleotide (TAAA){sub n} repeats were identified and may provide genetic marker tools for association and linkage studies. 50 refs., 3 figs., 3 tabs.

  7. Phosphorylation Regulates OLIG2 Cofactor Choice and the Motor Neuron-Oligodendrocyte Fate Switch

    PubMed Central

    Li, Huiliang; Paes de Faria, Joana; Andrew, Paul; Nitarska, Justyna; Richardson, William D.

    2011-01-01

    Summary A fundamental feature of central nervous system development is that neurons are generated before glia. In the embryonic spinal cord, for example, a group of neuroepithelial stem cells (NSCs) generates motor neurons (MNs), before switching abruptly to oligodendrocyte precursors (OLPs). We asked how transcription factor OLIG2 participates in this MN-OLP fate switch. We found that Serine 147 in the helix-loop-helix domain of OLIG2 was phosphorylated during MN production and dephosphorylated at the onset of OLP genesis. Mutating Serine 147 to Alanine (S147A) abolished MN production without preventing OLP production in transgenic mice, chicks, or cultured P19 cells. We conclude that S147 phosphorylation, possibly by protein kinase A, is required for MN but not OLP genesis and propose that dephosphorylation triggers the MN-OLP switch. Wild-type OLIG2 forms stable homodimers, whereas mutant (unphosphorylated) OLIG2S147A prefers to form heterodimers with Neurogenin 2 or other bHLH partners, suggesting a molecular basis for the switch. PMID:21382552

  8. Thyroid hormones promote differentiation of oligodendrocyte progenitor cells and improve remyelination after cuprizone-induced demyelination.

    PubMed

    Franco, P G; Silvestroff, L; Soto, E F; Pasquini, J M

    2008-08-01

    In the present work we analyzed the capacity of thyroid hormones (THs) to improve remyelination using a rat model of cuprizone-induced demyelination previously described in our laboratories. Twenty one days old Wistar rats were fed a diet containing 0.6% cuprizone for two weeks to induce demyelination. After cuprizone withdrawal, rats were injected with triiodothyronine (T3). Histological studies carried out in these animals revealed that remyelination in the corpus callosum (CC) of T3-treated rats improved markedly when compared to saline treated animals. The cellular events occurring in the CC and in the subventricular zone (SVZ) during the first week of remyelination were analyzed using specific oligodendroglial cell (OLGc) markers. In the CC of saline treated demyelinated animals, mature OLGcs decreased and oligodendroglial precursor cells (OPCs) increased after one week of spontaneous remyelination. Furthermore, the SVZ of these animals showed an increase in early progenitor cell numbers, dispersion of OPCs and inhibition of Olig and Shh expression compared to non-demyelinated animals. The changes triggered by demyelination were reverted after T3 administration, suggesting that THs could be regulating the emergence of remyelinating oligodendrocytes from the pool of proliferating cells residing in the SVZ. Our results also suggest that THs receptor beta mediates T3 effects on remyelination. These results support a potential role for THs in the remyelination process that could be used to develop new therapeutic approaches for demyelinating diseases.

  9. Transformation of quiescent adult oligodendrocyte precursor cells into malignant glioma through a multistep reactivation process.

    PubMed

    Galvao, Rui Pedro; Kasina, Anita; McNeill, Robert S; Harbin, Jordan E; Foreman, Oded; Verhaak, Roel G W; Nishiyama, Akiko; Miller, C Ryan; Zong, Hui

    2014-10-01

    How malignant gliomas arise in a mature brain remains a mystery, hindering the development of preventive and therapeutic interventions. We previously showed that oligodendrocyte precursor cells (OPCs) can be transformed into glioma when mutations are introduced perinatally. However, adult OPCs rarely proliferate compared with their perinatal counterparts. Whether these relatively quiescent cells have the potential to transform is unknown, which is a critical question considering the late onset of human glioma. Additionally, the premalignant events taking place between initial mutation and a fully developed tumor mass are particularly poorly understood in glioma. Here we used a temporally controllable Cre transgene to delete p53 and NF1 specifically in adult OPCs and demonstrated that these cells consistently give rise to malignant gliomas. To investigate the transforming process of quiescent adult OPCs, we then tracked these cells throughout the premalignant phase, which revealed a dynamic multistep transformation, starting with rapid but transient hyperproliferative reactivation, followed by a long period of dormancy, and then final malignant transformation. Using pharmacological approaches, we discovered that mammalian target of rapamycin signaling is critical for both the initial OPC reactivation step and late-stage tumor cell proliferation and thus might be a potential target for both glioma prevention and treatment. In summary, our results firmly establish the transforming potential of adult OPCs and reveal an actionable multiphasic reactivation process that turns slowly dividing OPCs into malignant gliomas.

  10. Oligodendrocyte Precursor Cells Support Blood-Brain Barrier Integrity via TGF-β Signaling

    PubMed Central

    Maeda, Mitsuyo; Miyamoto, Nobukazu; Liang, Anna C.; Hayakawa, Kazuhide; Pham, Loc-Duyen D.; Suwa, Fumihiko; Taguchi, Akihiko; Matsuyama, Tomohiro; Ihara, Masafumi; Kim, Kyu-Won; Lo, Eng H.; Arai, Ken

    2014-01-01

    Trophic coupling between cerebral endothelium and their neighboring cells is required for the development and maintenance of blood-brain barrier (BBB) function. Here we report that oligodendrocyte precursor cells (OPCs) secrete soluble factor TGF-β1 to support BBB integrity. Firstly, we prepared conditioned media from OPC cultures and added them to cerebral endothelial cultures. Our pharmacological experiments showed that OPC-conditioned media increased expressions of tight-junction proteins and decreased in vitro BBB permeability by activating TGB-β-receptor-MEK/ERK signaling pathway. Secondly, our immuno-electron microscopic observation revealed that in neonatal mouse brains, OPCs attach to cerebral endothelial cells via basal lamina. And finally, we developed a novel transgenic mouse line that TGF-β1 is knocked down specifically in OPCs. Neonates of these OPC-specific TGF-β1 deficient mice (OPC-specific TGF-β1 partial KO mice: PdgfraCre/Tgfb1flox/wt mice or OPC-specific TGF-β1 total KO mice: PdgfraCre/Tgfb1flox/flox mice) exhibited cerebral hemorrhage and loss of BBB function. Taken together, our current study demonstrates that OPCs increase BBB tightness by upregulating tight junction proteins via TGF-β signaling. Although astrocytes and pericytes are well-known regulators of BBB maturation and maintenance, these findings indicate that OPCs also play a pivotal role in promoting BBB integrity. PMID:25078775

  11. PI(3,5)P2 biosynthesis regulates oligodendrocyte differentiation by intrinsic and extrinsic mechanisms.

    PubMed

    Mironova, Yevgeniya A; Lenk, Guy M; Lin, Jing-Ping; Lee, Seung Joon; Twiss, Jeffery L; Vaccari, Ilaria; Bolino, Alessandra; Havton, Leif A; Min, Sang H; Abrams, Charles S; Shrager, Peter; Meisler, Miriam H; Giger, Roman J

    2016-01-01

    Proper development of the CNS axon-glia unit requires bi-directional communication between axons and oligodendrocytes (OLs). We show that the signaling lipid phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2] is required in neurons and in OLs for normal CNS myelination. In mice, mutations of Fig4, Pikfyve or Vac14, encoding key components of the PI(3,5)P2 biosynthetic complex, each lead to impaired OL maturation, severe CNS hypomyelination and delayed propagation of compound action potentials. Primary OLs deficient in Fig4 accumulate large LAMP1(+) and Rab7(+) vesicular structures and exhibit reduced membrane sheet expansion. PI(3,5)P2 deficiency leads to accumulation of myelin-associated glycoprotein (MAG) in LAMP1(+)perinuclear vesicles that fail to migrate to the nascent myelin sheet. Live-cell imaging of OLs after genetic or pharmacological inhibition of PI(3,5)P2 synthesis revealed impaired trafficking of plasma membrane-derived MAG through the endolysosomal system in primary cells and brain tissue. Collectively, our studies identify PI(3,5)P2 as a key regulator of myelin membrane trafficking and myelinogenesis. PMID:27008179

  12. Transformation of quiescent adult oligodendrocyte precursor cells into malignant glioma through a multistep reactivation process.

    PubMed

    Galvao, Rui Pedro; Kasina, Anita; McNeill, Robert S; Harbin, Jordan E; Foreman, Oded; Verhaak, Roel G W; Nishiyama, Akiko; Miller, C Ryan; Zong, Hui

    2014-10-01

    How malignant gliomas arise in a mature brain remains a mystery, hindering the development of preventive and therapeutic interventions. We previously showed that oligodendrocyte precursor cells (OPCs) can be transformed into glioma when mutations are introduced perinatally. However, adult OPCs rarely proliferate compared with their perinatal counterparts. Whether these relatively quiescent cells have the potential to transform is unknown, which is a critical question considering the late onset of human glioma. Additionally, the premalignant events taking place between initial mutation and a fully developed tumor mass are particularly poorly understood in glioma. Here we used a temporally controllable Cre transgene to delete p53 and NF1 specifically in adult OPCs and demonstrated that these cells consistently give rise to malignant gliomas. To investigate the transforming process of quiescent adult OPCs, we then tracked these cells throughout the premalignant phase, which revealed a dynamic multistep transformation, starting with rapid but transient hyperproliferative reactivation, followed by a long period of dormancy, and then final malignant transformation. Using pharmacological approaches, we discovered that mammalian target of rapamycin signaling is critical for both the initial OPC reactivation step and late-stage tumor cell proliferation and thus might be a potential target for both glioma prevention and treatment. In summary, our results firmly establish the transforming potential of adult OPCs and reveal an actionable multiphasic reactivation process that turns slowly dividing OPCs into malignant gliomas. PMID:25246577

  13. Protective effects of BMP-7 against tumor necrosis factor α-induced oligodendrocyte apoptosis.

    PubMed

    Wang, Xin; Xu, Jun-Mei; Wang, Ya-Ping; Yang, Lin; Li, Zhi-Jian

    2016-10-01

    Bone morphogenic protein-7 (BMP7) is a multifunctional cytokine with demonstrated neurogenic potential. Oligodendrocytes (OLs) death after spinal cord injury (SCI) contributes to demyelination of spared axons, even leading to a permanent neurological deficit. Therefore, therapeutic approaches to prevent OLs death after SCI should be considered. Since the effects of BMP7 on OLs after injury are largely unknown, we demonstrated the effects of BMP7 on TNF-α-induced OLs apoptosis in vitro. The effects of BMP7 on TNF-α-induced OLs apoptosis were verified by flow cytometry, spectrophotometry and western blotting on primary cultures from spinal cord of postnatal day 1 (P1) to P2 rats. As shown by flow cytometry, apoptosis rate was 25.6% for the control group, 59.0% for the TNF-α group, and 33.5% for the BMP7+TNF-α group; spectrophotometry showed caspase-3 and caspase-8 activity were significantly increased in the TNF-α group than in the control group, and BMP7 could reverse the increase. The involvement of cIAP1 in the protection of BMP7 was determined by western blotting and silencing cIAP1. In summary, our results demonstrated that BMP7 could potently inhibite TNF-α-induced OLs apoptosis and identified the cIAP1 expression level, the activity of caspase-3 and caspase-8 as important mediators of OLs survival after cellular stress and cytokine challenge. PMID:27224662

  14. Identification and two-photon imaging of oligodendrocyte in CA1 region of hippocampal slices

    SciTech Connect

    Zhou Wei; Ge Wooping; Zeng Shaoqun; Duan Shumin; Luo Qingming . E-mail: qluo@mail.hust.edu.cn

    2007-01-19

    Oligodendrocyte (OL) plays a critical role in myelination and axon maintenance in central nervous system. Recent studies show that OL can also express NMDA receptors in development and pathological situations in white matter. There is still lack of studies about OL properties and function in gray matter of brain. Here we reported that some glial cells in CA1 region of rat hippocampal slices (P15-23) had distinct electrophysiological characteristics from the other glia cells in this region, while they displayed uniform properties with OL from white matter in previous report; therefore, they were considered as OL in hippocampus. By loading dye in recording pipette and imaging with two-photon laser scanning microscopy, we acquired the high spatial resolution, three-dimension images of these special cells in live slices. The OL in hippocampus shows a complex process-bearing shape and the distribution of several processes is parallel to Schaffer fiber in CA1 region. When stimulating Schaffer fiber, OL displays a long duration depolarization mediated by inward rectifier potassium channel. This suggested that the OL in CA1 region could sense the neuronal activity and contribute to potassium clearance.

  15. Oligodendrocyte-encoded HIF function couples postnatal myelination and white matter angiogenesis.

    PubMed

    Yuen, Tracy J; Silbereis, John C; Griveau, Amelie; Chang, Sandra M; Daneman, Richard; Fancy, Stephen P J; Zahed, Hengameh; Maltepe, Emin; Rowitch, David H

    2014-07-17

    Myelin sheaths provide critical functional and trophic support for axons in white matter tracts of the brain. Oligodendrocyte precursor cells (OPCs) have extraordinary metabolic requirements during development as they differentiate to produce multiple myelin segments, implying that they must first secure adequate access to blood supply. However, mechanisms that coordinate myelination and angiogenesis are unclear. Here, we show that oxygen tension, mediated by OPC-encoded hypoxia-inducible factor (HIF) function, is an essential regulator of postnatal myelination. Constitutive HIF1/2α stabilization resulted in OPC maturation arrest through autocrine activation of canonical Wnt7a/7b. Surprisingly, such OPCs also show paracrine activity that induces excessive postnatal white matter angiogenesis in vivo and directly stimulates endothelial cell proliferation in vitro. Conversely, OPC-specific HIF1/2α loss of function leads to insufficient angiogenesis in corpus callosum and catastrophic axon loss. These findings indicate that OPC-intrinsic HIF signaling couples postnatal white matter angiogenesis, axon integrity, and the onset of myelination in mammalian forebrain.

  16. The Orphan G Protein-coupled Receptor GPR17 Negatively Regulates Oligodendrocyte Differentiation via Gαi/o and Its Downstream Effector Molecules.

    PubMed

    Simon, Katharina; Hennen, Stephanie; Merten, Nicole; Blättermann, Stefanie; Gillard, Michel; Kostenis, Evi; Gomeza, Jesus

    2016-01-01

    Recent studies have recognized G protein-coupled receptors as important regulators of oligodendrocyte development. GPR17, in particular, is an orphan G protein-coupled receptor that has been identified as oligodendroglial maturation inhibitor because its stimulation arrests primary mouse oligodendrocytes at a less differentiated stage. However, the intracellular signaling effectors transducing its activation remain poorly understood. Here, we use Oli-neu cells, an immortalized cell line derived from primary murine oligodendrocytes, and primary rat oligodendrocyte cultures as model systems to identify molecular targets that link cell surface GPR17 to oligodendrocyte maturation blockade. We demonstrate that stimulation of GPR17 by the small molecule agonist MDL29,951 (2-carboxy-4,6-dichloro-1H-indole-3-propionic acid) decreases myelin basic protein expression levels mainly by triggering the Gαi/o signaling pathway, which in turn leads to reduced activity of the downstream cascade adenylyl cyclase-cAMP-PKA-cAMP response element-binding protein (CREB). In addition, we show that GPR17 activation also diminishes myelin basic protein abundance by lessening stimulation of the exchange protein directly activated by cAMP (EPAC), thus uncovering a previously unrecognized role for EPAC to regulate oligodendrocyte differentiation. Together, our data establish PKA and EPAC as key downstream effectors of GPR17 that inhibit oligodendrocyte maturation. We envisage that treatments augmenting PKA and/or EPAC activity represent a beneficial approach for therapeutic enhancement of remyelination in those demyelinating diseases where GPR17 is highly expressed, such as multiple sclerosis.

  17. Damage in materials following ablation by ultrashort laser pulses: A molecular-dynamics study

    SciTech Connect

    Bouilly, Delphine; Perez, Danny; Lewis, Laurent J.

    2007-11-01

    The formation of craters following femtosecond- and picosecond-pulse laser ablation in the thermal regime is studied using a generic two-dimensional numerical model based on molecular-dynamics simulations and the Lennard-Jones potential. Femtosecond pulses are found to produce very clean craters through a combination of etching of the walls and the formation of a very thin heat affected zone. Our simulations also indicate that dislocations are emitted continuously during all of the ablation process (i.e., for hundreds of ps). For picosecond pulses, we observe much thicker heat affected zones which result from melting and recrystallization following the absorption of the light. In this case also, continuous emission of dislocations--though fewer in number--takes place throughout the ablation process.

  18. Feeding schedule controls circadian timing of daily torpor in SCN-ablated Siberian hamsters.

    PubMed

    Paul, Matthew J; Kauffman, Alexander S; Zucker, Irving

    2004-06-01

    Timing of daily torpor was assessed in suprachiasmatic nucleus-ablated (SCNx) and sham-ablated Siberian hamsters fed restricted amounts of food each day either in the light or dark phase of a 14:10 light-dark cycle. Eighty-five percent of sham-ablated and 45% of SCNx hamsters displayed a preferred hour for torpor onset. In each group, time of torpor onset was not random but occurred at a mean hour that differed significantly from chance. Time of food presentation almost completely accounted for the timing of torpor onset in SCNx animals and significantly affected timing of this behavior in intact hamsters. These results suggest that the circadian pacemaker in the SCN controls the time of torpor onset indirectly by affecting timing of food intake, rather than by, or in addition to, direct neural and humoral outputs to relevant target tissues.

  19. Early snowmelt decreases ablation period carbon uptake in a high elevation, subalpine forest, Niwot Ridge, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Winchell, T. S.; Molotch, N. P.; Barnard, D. M.

    2015-12-01

    The snow ablation period is a time of great potential for carbon uptake in high-elevation, subalpine forests. During this period, water availability associated with snowmelt promotes photosynthetic carbon uptake, while snow cover diminishes carbon losses from soil respiration. Although the ablation period can be as short as two weeks, as much as 30% of the total seasonal carbon uptake can occur during this period. Varying ablation period dynamics, however, can result in varying rates of carbon uptake during this integral uptake period. We use fifteen years of observational climate flux and snow water equivalent (SWE) data for a subalpine forest in the Colorado Rocky Mountains to analyze carbon uptake trends during the annual ablation period. Specifically, we focus on how the timing of peak SWE affects carbon uptake during the ablation period. We find that when the snowmelt period occurs one month earlier than average, the forest experiences an ablation period mean air temperature of 2.7° C, approximately 5° C colder than an ablation period that occurs one month later than average. This early, colder atmospheric condition leads to daytime carbon uptake rates that are 2.5 gC/m2/day less than the later, warmer period, which results in 47 gC/m2 less ablation period carbon uptake. As most climate models project peak SWE to occur earlier under various warming scenarios, we can expect to see a trend of less carbon uptake during future ablation periods. We expect to see a decrease in total growing season carbon uptake if the post-snowmelt period is unable to compensate for the decrease in ablation period carbon uptake.

  20. On the Ablation Models of Fuel Pellets

    SciTech Connect

    Rozhansky, V.A.; Senichenkov, I.Yu.

    2005-12-15

    The neutral gas shielding model and neutral-gas-plasma shielding model are analyzed qualitatively. The main physical processes that govern the formation of the shielding gas cloud and, consequently, the ablation rate are considered. For the neutral gas shielding model, simple formulas relating the ablation rate and cloud parameters to the parameters of the pellet and the background plasma are presented. The estimates of the efficiency of neutral gas shielding and plasma shielding are compared. It is shown that the main portion of the energy flux of the background electrons is released in the plasma cloud. Formulas for the ablation rate and plasma parameters are derived in the neutral-gas-plasma shielding model. The question is discussed as to why the neutral gas shielding model describes well the ablation rate of the pellet material, although it does not take into account the ionization effects and the effects associated with the interaction of ionized particles with the magnetic field. The reason is that the ablation rate depends weakly on the energy flux of hot electrons; as a result, the attenuation of this flux by the electrostatic shielding and plasma shielding has little effect on the ablation rate. This justifies the use of the neutral gas shielding model to estimate the ablation rate (to within a factor of about 2) over a wide range of parameters of the pellet and the background plasma.

  1. Dynamics of mid-infrared femtosecond laser resonant ablation

    NASA Astrophysics Data System (ADS)

    Pang, Dongqing; Li, Yunxuan; Wang, Qingyue

    2014-06-01

    Resonant ablation is beneficial to avoiding uncontrollable subsurface damages in the laser ablation of polymers. In this paper the dynamics of mid-infrared laser resonant ablation of polylactic acid and toluene was calculated by using fluid dynamic equations. The merits and drawbacks of mid-infrared femtosecond laser resonant ablation of high molecular weight polymers have been discussed.

  2. Thermal protection system ablation sensor

    NASA Technical Reports Server (NTRS)

    Gorbunov, Sergey (Inventor); Martinez, Edward R. (Inventor); Scott, James B. (Inventor); Oishi, Tomomi (Inventor); Fu, Johnny (Inventor); Mach, Joseph G. (Inventor); Santos, Jose B. (Inventor)

    2011-01-01

    An isotherm sensor tracks space vehicle temperatures by a thermal protection system (TPS) material during vehicle re-entry as a function of time, and surface recession through calibration, calculation, analysis and exposed surface modeling. Sensor design includes: two resistive conductors, wound around a tube, with a first end of each conductor connected to a constant current source, and second ends electrically insulated from each other by a selected material that becomes an electrically conductive char at higher temperatures to thereby complete an electrical circuit. The sensor conductors become shorter as ablation proceeds and reduced resistance in the completed electrical circuit (proportional to conductor length) is continually monitored, using measured end-to-end voltage change or current in the circuit. Thermocouple and/or piezoelectric measurements provide consistency checks on local temperatures.

  3. Transplanted transgenically marked oligodendrocytes survive, migrate and myelinate in the normal mouse brain as they do in the shiverer mouse brain.

    PubMed

    Lachapelle, F; Duhamel-Clerin, E; Gansmüller, A; Baron-Van Evercooren, A; Villarroya, H; Gumpel, M

    1994-05-01

    The dye Hoechst 33342 was combined with an immunodetectable transgene product (chloramphenicol acetyltransferase, CAT) expressed in differentiated oligodendrocytes to trace their fate after transplantation in the normal and the shiverer mouse brain. In the shiverer brain, the technique allowed us to visualize grafted cells inside myelin basic protein-positive myelin patches. Most of these cells were CAT-positive/Hoechst 33342-negative, reinforcing our hypothesis that cell division probably follows migration of grafted oligodendrocytes. Correlation of their morphology and distribution with their location in the host CNS suggested a local effect on the cell division and morphogenesis of the grafted material. When compared with transplantation of fragments of normal newborn donor tissue into the newborn shiverer brain, no difference could be seen between the behaviour of normal and transgenic oligodendrocytes. In the normal brain, transgenic oligodendrocytes survived at least 150 days and successfully myelinated the host axons. The timing of differentiation of grafted cells was similar in both types of recipient brains. Migration occurred rostrally and caudally. Although migrating cells could be observed along the meninges and the blood vessels, migration occurred preferentially along white matter tracts. The extent of migration was influenced by the site of implantation, and grafted cells could be found up to 6 mm from the grafting point. No differences in the timing of differentiation or the pattern or extent of migration could thus be demonstrated when transgenic oligodendrocytes were transplanted in the normal or the shiverer brain. This validates our previous studies using the newborn shiverer mouse as recipient.

  4. Increased expression of Nkx2.2 and Olig2 identifies reactive oligodendrocyte progenitor cells responding to demyelination in the adult CNS.

    PubMed

    Fancy, Stephen P J; Zhao, Chao; Franklin, Robin J M

    2004-11-01

    Within the adult CNS, a quiescent population of oligodendrocyte progenitor cells (OPCs) become activated in response to demyelination and give rise to remyelinating oligodendrocytes. During development, OPC differentiation is controlled by several transcription factors including Olig1 and Olig2, and Nkx2.2. We hypothesized that these genes may serve similar functions in activated adult OPCs allowing them to become remyelinating oligodendrocytes and tested this hypothesis by examining their expression during the remyelination of a toxin-induced rodent model of demyelination. During the acute phase of demyelination, OPCs within the lesion increased their expression of Nkx2.2 and Olig2, two transcription factors that in combination are critical for oligodendrocyte differentiation during developmental myelination. This activation was not associated with increases in Sonic hedgehog (Shh) expression, which does not appear essential for CNS remyelination. Consistent with a role in the activation and differentiation of OPCs, these increases were delayed in old adult animals where the rate of remyelination is slowed. Our data suggest the hypothesis that increased expression of Nkx2.2 and Olig2 plays a critically important role in the differentiation of adult OPCs into remyelinating oligodendrocytes and that these genes may present novel targets for therapeutic manipulation in cases where remyelination is impaired.

  5. Effect of sample storage conditions on Er:YAG laser ablation of enamel, dentin, and bone

    NASA Astrophysics Data System (ADS)

    Selting, Wayne J.

    2007-02-01

    Samples of bone, dentin and enamel were stored in distilled water, 10% neutral buffered formalin, 70% ethyl alcohol or 6% sodium hypochlorite solutions for fifteen days. Other samples were stored in the same solutions for 36 hours and then transferred to distilled water for the remainder of the fifteen day period. Finally, samples than had been stored dry for up to 5 years were rehydrated and ablated. All enamel specimens appeared unaffected by the storage conditions. Dentin samples were very significantly affected by all storage methods. Bone samples were affected by most storage conditions. Samples stored in sodium hypochlorite had as much as a 100 percent increase in ablation rate. Surprisingly, dry stored samples that were reconstituted for 36 hours ablated at virtually the same rate as those stored in distilled water. None of the storage conditions studied produced ablation rates that mirrored in vivo ablation. Sterilization by autoclave is the only reliable and safe method studied but cannot be used on teeth with amalgam fillings for safety reasons. Teeth with fillings should be stored in 10% neutral bufferred formalin for a minimum of one week.

  6. Diamond Ablators for Inertial Confinement Fusion

    SciTech Connect

    Biener, J; Mirkarimi, P B; Tringe, J W; Baker, S L; Wang, Y M; Kucheyev, S O; Teslich, N E; Wu, K J; Hamza, A V; Wild, C; Woerner, E; Koidl, P; Bruehne, K; Fecht, H

    2005-06-21

    Diamond has a unique combination of physical properties for the inertial confinement fusion ablator application, such as appropriate optical properties, high atomic density, high yield strength, and high thermal conductivity. Here, we present a feasible concept to fabricate diamond ablator shells. The fabrication of diamond capsules is a multi-step process, which involves diamond chemical vapor deposition on silicon mandrels followed by polishing, microfabrication of holes, and removing of the silicon mandrel by an etch process. We also discuss the pros and cons of coarse-grained optical quality and nanocrystalline chemical vapor deposition diamond films for the ablator application.

  7. notch3 is essential for oligodendrocyte development and vascular integrity in zebrafish

    PubMed Central

    Zaucker, Andreas; Mercurio, Sara; Sternheim, Nitzan; Talbot, William S.; Marlow, Florence L.

    2013-01-01

    SUMMARY Mutations in the human NOTCH3 gene cause CADASIL syndrome (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy). CADASIL is an inherited small vessel disease characterized by diverse clinical manifestations including vasculopathy, neurodegeneration and dementia. Here we report two mutations in the zebrafish notch3 gene, one identified in a previous screen for mutations with reduced expression of myelin basic protein (mbp) and another caused by a retroviral insertion. Reduced mbp expression in notch3 mutant embryos is associated with fewer oligodendrocyte precursor cells (OPCs). Despite an early neurogenic phenotype, mbp expression recovered at later developmental stages and some notch3 homozygous mutants survived to adulthood. These mutants, as well as adult zebrafish carrying both mutant alleles together, displayed a striking stress-associated accumulation of blood in the head and fins. Histological analysis of mutant vessels revealed vasculopathy, including: an enlargement (dilation) of vessels in the telencephalon and fin, disorganization of the normal stereotyped arrangement of vessels in the fin, and an apparent loss of arterial morphological structure. Expression of hey1, a well-known transcriptional target of Notch signaling, was greatly reduced in notch3 mutant fins, suggesting that Notch3 acts via a canonical Notch signaling pathway to promote normal vessel structure. Ultrastructural analysis confirmed the presence of dilated vessels in notch3 mutant fins and revealed that the vessel walls of presumed arteries showed signs of deterioration. Gaps in the arterial wall and the presence of blood cells outside of vessels in mutants indicated that compromised vessel structure led to hemorrhage. In notch3 heterozygotes, we found elevated expression of both notch3 itself and target genes, indicating that specific alterations in gene expression due to partial loss of Notch3 function might contribute to the

  8. Myelin oligodendrocyte glycoprotein antibodies are associated with a non-MS course in children

    PubMed Central

    Hacohen, Yael; Absoud, Michael; Deiva, Kumaran; Hemingway, Cheryl; Nytrova, Petra; Woodhall, Mark; Palace, Jacqueline; Wassmer, Evangeline; Tardieu, Marc; Vincent, Angela; Waters, Patrick

    2015-01-01

    Objective: To determine whether myelin oligodendrocyte glycoprotein antibodies (MOG-Abs) were predictive of a demyelination phenotype in children presenting with acquired demyelinating syndrome (ADS). Method: Sixty-five children with a first episode of ADS (12 acute disseminated encephalomyelitis, 24 optic neuritis, 18 transverse myelitis, 11 other clinically isolated syndrome) were identified from 2 national demyelination programs in the United Kingdom and France. Acute serum samples were tested for MOG-Abs by cell-based assay. Antibodies were used to predict diagnosis of multiple sclerosis (MS) at 1 year. Results: Twenty-three of 65 (35%) children had MOG-Abs. Antibody-positive and antibody-negative patients were not clinically different at presentation, but identification of MOG-Abs predicted a non-MS course at 1-year follow-up: only 2/23 (9%) MOG-Ab–positive patients were diagnosed with MS compared to 16/42 (38%) MOG-Ab–negative patients (p = 0.019, Fisher exact test). Antibody positivity at outset was a useful predictor for a non-MS disease course, with a positive predictive value of 91% (95% confidence interval [CI] 72–99), negative predictive value of 38% (95% CI 24–54), positive likelihood ratio of 4.02 (CI 1.0–15.4), and odds ratio of 6.5 (CI 1.3–31.3). Conclusions: MOG-Abs are found at presentation in 35% of patients with childhood ADS, across a range of demyelinating disorders. Antibody positivity can be useful in predicting a non-MS disease course at onset. PMID:25798445

  9. Brain-Derived Neurotrophic Factor Deficiency Restricts Proliferation of Oligodendrocyte Progenitors Following Cuprizone-Induced Demyelination

    PubMed Central

    Tsiperson, Vladislav; Huang, Yangyang; Bagayogo, Issa; Song, Yeri; VonDran, Melissa W; DiCicco-Bloom, Emanuel

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors that through its neurotrophic tyrosine kinase, receptor, type 2 (TrkB) receptor, increases 5-bromo-2-deoxyuridine incorporation in oligodendrocyte progenitor cells (OPCs) in culture. Roles in vivo are less well understood; however, increases in numbers of OPCs are restricted in BDNF+/− mice following cuprizone-elicited demyelination. Here, we investigate whether these blunted increases in OPCs are associated with changes in proliferation. BDNF+/+ and BDNF+/− mice were fed cuprizone-containing or control feed. To assess effects on OPC numbers, platelet-derived growth factor receptor alpha (PDGFRα)+ or NG2+ cells were counted. To monitor DNA synthesis, 5-ethynyl-2′-deoxyuridine (EdU) was injected intraperitoneally and colocalized with PDGFRα+ cells. Alternatively, proliferating cell nuclear antigen (PCNA) was colocalized with PDGFRα or NG2. Labeling indices were determined in the BDNF+/+ and BDNF+/− animals. After 4 or 5 weeks of control feed, BDNF+/− mice exhibit similar numbers of OPCs compared with BDNF+/+ animals. The labeling indices for EdU and PCNA also were not significantly different, suggesting that neither the DNA synthesis phase (S phase) nor the proliferative pool size was different between genotypes. In contrast, when mice were challenged by cuprizone for 4 or 5 weeks, increases in OPCs observed in BDNF+/+ mice were reduced in the BDNF+/− mice. This difference in elevations in cell number was accompanied by decreases in EdU labeling and PCNA labeling without changes in cell death, indicating a reduction in the DNA synthesis and the proliferative pool. Therefore, levels of BDNF influence the proliferation of OPCs resulting from a demyelinating lesion. PMID:25586993

  10. Extracellular Vesicles from Vascular Endothelial Cells Promote Survival, Proliferation and Motility of Oligodendrocyte Precursor Cells

    PubMed Central

    Kurachi, Masashi; Mikuni, Masahiko; Ishizaki, Yasuki

    2016-01-01

    We previously examined the effect of brain microvascular endothelial cell (MVEC) transplantation on rat white matter infarction, and found that MVEC transplantation promoted remyelination of demyelinated axons in the infarct region and reduced apoptotic death of oligodendrocyte precursor cells (OPCs). We also found that the conditioned medium (CM) from cultured MVECs inhibited apoptosis of cultured OPCs. In this study, we examined contribution of extracellular vesicles (EVs) contained in the CM to its inhibitory effect on OPC apoptosis. Removal of EVs from the CM by ultracentrifugation reduced its inhibitory effect on OPC apoptosis. To confirm whether EVs derived from MVECs are taken up by cultured OPCs, we labeled EVs with PKH67, a fluorescent dye, and added them to OPC cultures. Many vesicular structures labeled with PKH67 were found within OPCs immediately after their addition. Next we examined the effect of MVEC-derived EVs on OPC behaviors. After 2 days in culture with EVs, there was significantly less pyknotic and more BrdU-positive OPCs when compared to control. We also examined the effect of EVs on motility of OPCs. OPCs migrated longer in the presence of EVs when compared to control. To examine whether these effects on cultured OPCs are shared by EVs from endothelial cells, we prepared EVs from conditioned media of several types of endothelial cells, and tested their effects on cultured OPCs. EVs from all types of endothelial cells we examined reduced apoptosis of OPCs and promoted their motility. Identification of the molecules contained in EVs from endothelial cells may prove helpful for establishment of effective therapies for demyelinating diseases. PMID:27403742

  11. PPARγ Agonists Promote Oligodendrocyte Differentiation of Neural Stem Cells by Modulating Stemness and Differentiation Genes

    PubMed Central

    Kanakasabai, Saravanan; Pestereva, Ecaterina; Chearwae, Wanida; Gupta, Sushil K.; Ansari, Saif; Bright, John J.

    2012-01-01

    Neural stem cells (NSCs) are a small population of resident cells that can grow, migrate and differentiate into neuro-glial cells in the central nervous system (CNS). Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor transcription factor that regulates cell growth and differentiation. In this study we analyzed the influence of PPARγ agonists on neural stem cell growth and differentiation in culture. We found that in vitro culture of mouse NSCs in neurobasal medium with B27 in the presence of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) induced their growth and expansion as neurospheres. Addition of all-trans retinoic acid (ATRA) and PPARγ agonist ciglitazone or 15-Deoxy-Δ12,14-Prostaglandin J2 (15d-PGJ2) resulted in a dose-dependent inhibition of cell viability and proliferation of NSCs in culture. Interestingly, NSCs cultured with PPARγ agonists, but not ATRA, showed significant increase in oligodendrocyte precursor-specific O4 and NG2 reactivity with a reduction in NSC marker nestin, in 3–7 days. In vitro treatment with PPARγ agonists and ATRA also induced modest increase in the expression of neuronal β-III tubulin and astrocyte-specific GFAP in NSCs in 3–7 days. Further analyses showed that PPARγ agonists and ATRA induced significant alterations in the expression of many stemness and differentiation genes associated with neuro-glial differentiation in NSCs. These findings highlight the influence of PPARγ agonists in promoting neuro-glial differentiation of NSCs and its significance in the treatment of neurodegenerative diseases. PMID:23185633

  12. Reactive Oxygen Species Derived from NOX3 and NOX5 Drive Differentiation of Human Oligodendrocytes

    PubMed Central

    Accetta, Roberta; Damiano, Simona; Morano, Annalisa; Mondola, Paolo; Paternò, Roberto; Avvedimento, Enrico V.; Santillo, Mariarosaria

    2016-01-01

    Reactive oxygen species (ROS) are signaling molecules that mediate stress response, apoptosis, DNA damage, gene expression and differentiation. We report here that differentiation of oligodendrocytes (OLs), the myelin forming cells in the CNS, is driven by ROS. To dissect the OL differentiation pathway, we used the cell line MO3-13, which display the molecular and cellular features of OL precursors. These cells exposed 1–4 days to low levels of H2O2 or to the protein kinase C (PKC) activator, phorbol-12-Myristate-13-Acetate (PMA) increased the expression of specific OL differentiation markers: the specific nuclear factor Olig-2, and Myelin Basic Protein (MBP), which was processed and accumulated selectively in membranes. The induction of differentiation genes was associated with the activation of ERK1-2 and phosphorylation of the nuclear cAMP responsive element binding protein 1 (CREB). PKC mediates ROS-induced differentiation because PKC depletion or bis-indolyl-maleimide (BIM), a PKC inhibitor, reversed the induction of differentiation markers by H2O2. H2O2 and PMA increased the expression of membrane-bound NADPH oxidases, NOX3 and NOX5. Selective depletion of these proteins inhibited differentiation induced by PMA. Furthermore, NOX5 silencing down regulated NOX3 mRNA levels, suggesting that ROS produced by NOX5 up-regulate NOX3 expression. These data unravel an elaborate network of ROS-generating enzymes (NOX5 to NOX3) activated by PKC and necessary for differentiation of OLs. Furthermore, NOX3 and NOX5, as inducers of OL differentiation, represent novel targets for therapies of demyelinating diseases, including multiple sclerosis, associated with impairment of OL differentiation. PMID:27313511

  13. Characterization of the Na/K pump current in N20.1 oligodendrocytes.

    PubMed

    Dobretsov, M; Stimers, J R

    1996-06-10

    Glial cell Na,K-ATPase is suggested to participate in extracellular K+ concentration ([K+]o) control by being activated when [K+]o rises in the brain. The extent of that activation directly depends on the Na/K pump affinity to [K+]o, intracellular Na+ ([Na+]i) and, indirectly on pump cycle regulation by membrane potential (Vm). In the present investigation, these Na/K pump properties were studied with the whole-cell patch-clamp technique in cultured mouse oligodendrocytes (N20.1 cell line). N20.1 cells possess ouabain-sensitive Na/K pump current (Ip) with a maximal density of 0.5-0.6 pA/pF (estimated for conditions of Na/K pump stimulation by saturating [Na+]i, [ATP]i, [K+]o and at positive Vm). This current was half-inhibited at 83 +/- 31 microM ouabain, and half-activated by [Na+]i of 9.6 +/- 1.1 mM, by [K+]o of 2.0 +/- 0.1 mM and by membrane potential at about -65 mV. High levels of nervous activity may increase [K+]o from 3 to 12 mM which would only increase Na/K pump current by 40% due to the direct effect of [K+]o. However, elevated [K+]o would also depolarize the glial cell membrane which would indirectly activate Ip and together with the direct effect of [K+]o would increase Ip as much as 2-2.5-fold. These data suggest that glial cell Na/K pump regulation by Vm may be an important factor in determining the participation of the Na/K pump in [K+]o homeostasis in the nervous system.

  14. Interleukin (IL)-8 immunoreactivity of injured axons and surrounding oligodendrocytes in traumatic head injury.

    PubMed

    Hayashi, Takahito; Ago, Kazutoshi; Nakamae, Takuma; Higo, Eri; Ogata, Mamoru

    2016-06-01

    Interleukin (IL)-8 has been suggested to be a positive regulator of myelination in the central nervous system, in addition to its principal role as a chemokine for neutrophils. Immunostaining for beta-amyloid precursor protein (AβPP) is an effective tool for detecting traumatic axonal injury, although AβPP immunoreactivity can also indicate axonal injury due to hypoxic causes. In this study, we examined IL-8 and AβPP immunoreactivity in sections of corpus callosum obtained from deceased patients with blunt head injury and from equivalent control tissue. AβPP immunoreactivity was detected in injured axons, such as axonal bulbs and varicose axons, in 24 of 44 head injury cases. These AβPP immunoreactive cases had survived for more than 3h. The AβPP immunostaining pattern can be classified into two types: traumatic (Pattern 1) and non-traumatic (Pattern 2) axonal injuries, which we described previously [Hayashi et al. Int. J. Legal Med. 129 (2015) 1085-1090]. Three of 44 control cases also showed AβPP immunoreactive injured axons as Pattern 2. In contrast, IL-8 immunoreactivity was detected in 7 AβPP immunoreactive and in 2 non-AβPP immunoreactive head injury cases, but was not detected in any of the 44 control cases, including the 3 AβPP immunoreactive control cases. The IL-8 immunoreactive cases had survived from 3 to 24 days, whereas those cases who survived less than 3 days (n=29) and who survived 90 days (n=1) were not IL-8 immunoreactive. Moreover, IL-8 was detected as Pattern 1 axons only. In addition, double immunofluorescence analysis showed that IL-8 is expressed by oligodendrocytes surrounding injured axons. In conclusion, our results suggest that immunohistochemical detection of IL-8 may be useful as a complementary diagnostic marker of traumatic axonal injury.

  15. Reactive Oxygen Species Derived from NOX3 and NOX5 Drive Differentiation of Human Oligodendrocytes.

    PubMed

    Accetta, Roberta; Damiano, Simona; Morano, Annalisa; Mondola, Paolo; Paternò, Roberto; Avvedimento, Enrico V; Santillo, Mariarosaria

    2016-01-01

    Reactive oxygen species (ROS) are signaling molecules that mediate stress response, apoptosis, DNA damage, gene expression and differentiation. We report here that differentiation of oligodendrocytes (OLs), the myelin forming cells in the CNS, is driven by ROS. To dissect the OL differentiation pathway, we used the cell line MO3-13, which display the molecular and cellular features of OL precursors. These cells exposed 1-4 days to low levels of H2O2 or to the protein kinase C (PKC) activator, phorbol-12-Myristate-13-Acetate (PMA) increased the expression of specific OL differentiation markers: the specific nuclear factor Olig-2, and Myelin Basic Protein (MBP), which was processed and accumulated selectively in membranes. The induction of differentiation genes was associated with the activation of ERK1-2 and phosphorylation of the nuclear cAMP responsive element binding protein 1 (CREB). PKC mediates ROS-induced differentiation because PKC depletion or bis-indolyl-maleimide (BIM), a PKC inhibitor, reversed the induction of differentiation markers by H2O2. H2O2 and PMA increased the expression of membrane-bound NADPH oxidases, NOX3 and NOX5. Selective depletion of these proteins inhibited differentiation induced by PMA. Furthermore, NOX5 silencing down regulated NOX3 mRNA levels, suggesting that ROS produced by NOX5 up-regulate NOX3 expression. These data unravel an elaborate network of ROS-generating enzymes (NOX5 to NOX3) activated by PKC and necessary for differentiation of OLs. Furthermore, NOX3 and NOX5, as inducers of OL differentiation, represent novel targets for therapies of demyelinating diseases, including multiple sclerosis, associated with impairment of OL differentiation. PMID:27313511

  16. Femtosecond laser ablation of dentin and enamel: relationship between laser fluence and ablation efficiency

    NASA Astrophysics Data System (ADS)

    Chen, Hu; Liu, Jing; Li, Hong; Ge, Wenqi; Sun, Yuchun; Wang, Yong; Lü, Peijun

    2015-02-01

    The objective was to study the relationship between laser fluence and ablation efficiency of a femtosecond laser with a Gaussian-shaped pulse used to ablate dentin and enamel for prosthodontic tooth preparation. A diode-pumped thin-disk femtosecond laser with wavelength of 1025 nm and pulse width of 400 fs was used for the ablation of dentin and enamel. The laser spot was guided in a line on the dentin and enamel surfaces to form a groove-shaped ablation zone under a series of laser pulse energies. The width and volume of the ablated line were measured under a three-dimensional confocal microscope to calculate the ablation efficiency. Ablation efficiency for dentin reached a maximum value of 0.020 mm3/J when the laser fluence was set at 6.51 J/cm2. For enamel, the maximum ablation efficiency was 0.009 mm3/J at a fluence of 7.59 J/cm2. Ablation efficiency of the femtosecond laser on dentin and enamel is closely related to the laser fluence and may reach a maximum when the laser fluence is set to an appropriate value.

  17. Peroxisome proliferator activated receptor-γ agonists protect oligodendrocyte progenitors against tumor necrosis factor-alpha-induced damage: Effects on mitochondrial functions and differentiation.

    PubMed

    De Nuccio, C; Bernardo, A; Cruciani, C; De Simone, R; Visentin, S; Minghetti, L

    2015-09-01

    The activation of the nuclear receptor peroxisome proliferator-activated receptor-γ (PPAR-γ) is known to exert anti-inflammatory and neuroprotective effects and PPAR-γ agonists are considered potential therapeutic agents in brain diseases including those affecting myelin. In demyelinating diseases such as multiple sclerosis (MS), inflammation is one of the causes of myelin and axonal damage. Oligodendrocyte (OL) differentiation is highly dependent on mitochondria, which are major targets of inflammatory insult. Here we show that PPAR-γ agonists protect OL progenitors against the maturational arrest induced by the inflammatory cytokine TNF-α by affecting mitochondrial functions. We demonstrate that the inhibition of OL differentiation by TNF-α is associated with i) increased mitochondrial superoxide production; ii) decreased mitochondrial membrane potential (mMP); and iii) decreased ADP-induced Ca(2+) oscillations, which we previously showed to be dependent on efficient mitochondria. The TNF-α effects were comparable to those of the mitochondrial toxin rotenone, further suggesting that TNF-α damage is mediated by mitochondrial function impairment. PPAR-γ agonists protected OL progenitors against the inhibitory activities of both TNF-α and rotenone on mMP, mitochondrial ROS production, Ca(2+) oscillations and OL differentiation. Finally, the PPAR-γ agonist pioglitazone increased the expression of PGC-1α (a mitochondrial biogenesis master regulator), UCP2 (a mitochondrial protein known to reduce ROS production), and cytochrome oxidase subunit COX1. These findings confirm the central role of mitochondria in OL differentiation and point to mitochondria as major targets of PPAR-γ agonist protection against TNF-α damage. PMID:26210873

  18. Myelin repair in vivo is increased by targeting oligodendrocyte precursor cells with nanoparticles encapsulating leukaemia inhibitory factor (LIF)

    PubMed Central

    Rittchen, Sonja; Boyd, Amanda; Burns, Alasdair; Park, Jason; Fahmy, Tarek M.; Metcalfe, Su; Williams, Anna

    2015-01-01

    Multiple sclerosis (MS) is a progressive demyelinating disease of the central nervous system (CNS). Many nerve axons are insulated by a myelin sheath and their demyelination not only prevents saltatory electrical signal conduction along the axons but also removes their metabolic support leading to irreversible neurodegeneration, which currently is untreatable. There is much interest in potential therapeutics that promote remyelination and here we explore use of leukaemia inhibitory factor (LIF), a cytokine known to play a key regulatory role in self-tolerant immunity and recently identified as a pro-myelination factor. In this study, we tested a nanoparticle-based strategy for targeted delivery of LIF to oligodendrocyte precursor cells (OPC) to promote their differentiation into mature oligodendrocytes able to repair myelin. Poly(lactic-co-glycolic acid)-based nanoparticles of ∼120 nm diameter were constructed with LIF as cargo (LIF-NP) with surface antibodies against NG-2 chondroitin sulfate proteoglycan, expressed on OPC. In vitro, NG2-targeted LIF-NP bound to OPCs, activated pSTAT-3 signalling and induced OPC differentiation into mature oligodendrocytes. In vivo, using a model of focal CNS demyelination, we show that NG2-targeted LIF-NP increased myelin repair, both at the level of increased number of myelinated axons, and increased thickness of myelin per axon. Potency was high: a single NP dose delivering picomolar quantities of LIF is sufficient to increase remyelination. Impact statement Nanotherapy-based delivery of leukaemia inhibitory factor (LIF) directly to OPCs proved to be highly potent in promoting myelin repair in vivo: this delivery strategy introduces a novel approach to delivering drugs or biologics targeted to myelin repair in diseases such as MS. PMID:25934281

  19. MMP-3 secreted from endothelial cells of blood vessels after spinal cord injury activates microglia, leading to oligodendrocyte cell death.

    PubMed

    Lee, Jee Y; Choi, Hae Y; Yune, Tae Y

    2015-10-01

    The activation of microglia after spinal cord injury (SCI) contributes to secondary damage by producing pro-inflammatory cytokines and mediators, leading to cell death of oligodendrocytes and neurons. Here, we show that matrix metalloprotease-3 (MMP-3) produced and secreted in the endothelial cells of blood vessels after SCI mediates microglial activation. MMP-3 was produced and secreted in bEnd.3 cells, a mouse brain-derived endothelial cell line, by oxygen-glucose deprivation/reoxygenation (OGD/RO). OGD/RO-induced MMP-3 expression and activity was also significantly inhibited by ghrelin, which was dependent on the ghrelin receptor GHS-R1a. Furthermore, the secreted MMP-3 from OGD/RO-induced bEnd.3 cells activated BV-2 cells, a murine microglial cell line. We also found that microglial activation after SCI was attenuated in MMP-3 knockout (KO) mice compared with wild type (WT) mice. Both p38 mitogen-activated protein kinase (MAPK) activation and pro-nerve growth factor (proNGF) production were more inhibited in MMP-3 KO than WT mice at 5d after injury. When WT mice were treated with Mmp-3 siRNA after injury, MMP-3 activity, microglial activation, p38MAPK activation and proNGF expression were significantly inhibited. Ghrelin treatment also significantly inhibited MMP-3 expression and activation after SCI, which was dependent on GHS-R1a. Finally, RhoA activation and oligodendrocyte cell death after injury were attenuated by Mmp-3 siRNA or ghrelin treatment compared with vehicle control. Thus, our study indicates that MMP-3 produced in blood vessel endothelial cells after SCI serves as an endogenous molecule for microglial activation followed by p38MAPK activation and proNGF production, and further indicates that the protective effect of ghrelin on oligodendrocytes cell death may be at least partly mediated by the inhibition of MMP-3-induced microglial activation after SCI.

  20. Myelin repair in vivo is increased by targeting oligodendrocyte precursor cells with nanoparticles encapsulating leukaemia inhibitory factor (LIF).

    PubMed

    Rittchen, Sonja; Boyd, Amanda; Burns, Alasdair; Park, Jason; Fahmy, Tarek M; Metcalfe, Su; Williams, Anna

    2015-07-01

    Multiple sclerosis (MS) is a progressive demyelinating disease of the central nervous system (CNS). Many nerve axons are insulated by a myelin sheath and their demyelination not only prevents saltatory electrical signal conduction along the axons but also removes their metabolic support leading to irreversible neurodegeneration, which currently is untreatable. There is much interest in potential therapeutics that promote remyelination and here we explore use of leukaemia inhibitory factor (LIF), a cytokine known to play a key regulatory role in self-tolerant immunity and recently identified as a pro-myelination factor. In this study, we tested a nanoparticle-based strategy for targeted delivery of LIF to oligodendrocyte precursor cells (OPC) to promote their differentiation into mature oligodendrocytes able to repair myelin. Poly(lactic-co-glycolic acid)-based nanoparticles of ∼120 nm diameter were constructed with LIF as cargo (LIF-NP) with surface antibodies against NG-2 chondroitin sulfate proteoglycan, expressed on OPC. In vitro, NG2-targeted LIF-NP bound to OPCs, activated pSTAT-3 signalling and induced OPC differentiation into mature oligodendrocytes. In vivo, using a model of focal CNS demyelination, we show that NG2-targeted LIF-NP increased myelin repair, both at the level of increased number of myelinated axons, and increased thickness of myelin per axon. Potency was high: a single NP dose delivering picomolar quantities of LIF is sufficient to increase remyelination. Impact statement Nanotherapy-based delivery of leukaemia inhibitory factor (LIF) directly to OPCs proved to be highly potent in promoting myelin repair in vivo: this delivery strategy introduces a novel approach to delivering drugs or biologics targeted to myelin repair in diseases such as MS.

  1. Femtosecond laser ablation of the stapes

    PubMed Central

    McCaughey, Ryan G.; Sun, Hui; Rothholtz, Vanessa S.; Juhasz, Tibor; Wong, Brian J. F.

    2014-01-01

    A femtosecond laser, normally used for LASIK eye surgery, is used to perforate cadaveric human stapes. The thermal side effects of bone ablation are measured with a thermocouple in an inner ear model and are found to be within acceptable limits for inner ear surgery. Stress and acoustic events, recorded with piezoelectric film and a microphone, respectively, are found to be negligible. Optical microscopy, scanning electron microscopy, and optical coherence tomography are used to confirm the precision of the ablation craters and lack of damage to the surrounding tissue. Ablation is compared to that from an Er:YAG laser, the current laser of choice for stapedotomy, and is found to be superior. Ultra-short-pulsed lasers offer a precise and efficient ablation of the stapes, with minimal thermal and negligible mechanical and acoustic damage. They are, therefore, ideal for stapedotomy operations. PMID:19405768

  2. Simple spherical ablative-implosion model

    SciTech Connect

    Mayer, F.J.; Steele, J.T.; Larsen, J.T.

    1980-06-23

    A simple model of the ablative implosion of a high-aspect-ratio (shell radius to shell thickness ratio) spherical shell is described. The model is similar in spirit to Rosenbluth's snowplow model. The scaling of the implosion time was determined in terms of the ablation pressure and the shell parameters such as diameter, wall thickness, and shell density, and compared these to complete hydrodynamic code calculations. The energy transfer efficiency from ablation pressure to shell implosion kinetic energy was examined and found to be very efficient. It may be possible to attach a simple heat-transport calculation to our implosion model to describe the laser-driven ablation-implosion process. The model may be useful for determining other energy driven (e.g., ion beam) implosion scaling.

  3. Nanosecond laser ablation of silver nanoparticle film

    NASA Astrophysics Data System (ADS)

    Chung, Jaewon; Han, Sewoon; Lee, Daeho; Ahn, Sanghoon; Grigoropoulos, Costas P.; Moon, Jooho; Ko, Seung H.

    2013-02-01

    Nanosecond laser ablation of polyvinylpyrrolidone (PVP) protected silver nanoparticle (20 nm diameter) film is studied using a frequency doubled Nd:YAG nanosecond laser (532 nm wavelength, 6 ns full width half maximum pulse width). In the sintered silver nanoparticle film, absorbed light energy conducts well through the sintered porous structure, resulting in ablation craters of a porous dome shape or crown shape depending on the irradiation fluence due to the sudden vaporization of the PVP. In the unsintered silver nanoparticle film, the ablation crater with a clean edge profile is formed and many coalesced nanoparticles of 50 to 100 nm in size are observed inside the ablation crater. These results and an order of magnitude analysis indicate that the absorbed thermal energy is confined within the nanoparticles, causing melting of nanoparticles and their coalescence to larger agglomerates, which are removed following melting and subsequent partial vaporization.

  4. Laser ablation in analytical chemistry - A review

    SciTech Connect

    Russo, Richard E.; Mao, Xianglei; Liu, Haichen; Gonzalez, Jhanis; Mao, Samuel S.

    2001-10-10

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling, with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas.

  5. Neocuproine ablates melanocytes in adult zebrafish.

    PubMed

    O'Reilly-Pol, Thomas; Johnson, Stephen L

    2008-12-01

    The simplest regeneration experiments involve the ablation of a single cell type. While methods exist to ablate the melanocytes of the larval zebrafish,(1,2) no convenient method exists to ablate melanocytes in adult zebrafish. Here, we show that the copper chelator neocuproine (NCP) causes fragmentation and disappearance of melanin in adult zebrafish melanocytes. Adult melanocytes expressing eGFP under the control of a melanocyte-specific promoter also lose eGFP fluorescence in the presence of NCP. We conclude that NCP causes melanocyte death. This death is independent of p53 and melanin, but can be suppressed by the addition of exogenous copper. NCP is ineffective at ablating larval melanocytes. This now provides a tool for addressing questions about stem cells and the maintenance of the adult pigment pattern in zebrafish.

  6. Photodynamic therapy toward selective endometrial ablation

    NASA Astrophysics Data System (ADS)

    Tadir, Yona; Tromberg, Bruce J.; Krasieva, Tatiana B.; Berns, Michael W.

    1993-05-01

    Potential applications of photodynamic therapy for endometrial disease are discussed. Experimental models that may lead to diagnosis and treatment of endometriosis as well as selective endometrial ablation are summarized.

  7. Nanoscale ablation through optically trapped microspheres

    NASA Astrophysics Data System (ADS)

    Fardel, Romain; McLeod, Euan; Tsai, Yu-Cheng; Arnold, Craig B.

    2010-10-01

    The ability to directly create patterns with size scales below 100 nm is important for many applications where the production or repair of high resolution and density features is needed. Laser-based direct-write methods have the benefit of being able to quickly and easily modify and create structures on existing devices, but ablation can negatively impact the overall technique. In this paper we show that self-positioning of near-field objectives through the optical trap assisted nanopatterning (OTAN) method allows for ablation without harming the objective elements. Small microbeads are positioned in close proximity to a substrate where ablation is initiated. Upon ablation, these beads are temporarily displaced from the trap but rapidly return to the initial position. We analyze the range of fluence values for which this process occurs and find that there exists a critical threshold beyond which the beads are permanently ejected.

  8. Thermal Ablation Modeling for Silicate Materials

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq

    2016-01-01

    A general thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in the ablation simulation of the meteoroid and the glassy ablator for spacecraft Thermal Protection Systems. Time-dependent axisymmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. The predicted mass loss rates will be compared with available data for model validation, and parametric studies will also be performed for meteoroid earth entry conditions.

  9. Co-culture of oligodendrocytes and neurons can be used to assess drugs for axon regeneration in the central nervous system.

    PubMed

    Gang, Lin; Yao, Yu-Chen; Liu, Ying-Fu; Li, Yi-Peng; Yang, Kai; Lu, Lei; Cheng, Yuan-Chi; Chen, Xu-Yi; Tu, Yue

    2015-10-01

    We present a novel in vitro model in which to investigate the efficacy of experimental drugs for the promotion of axon regeneration in the central nervous system. We co-cultured rat hippocampal neurons and cerebral cortical oligodendrocytes, and tested the co-culture system using a Nogo-66 receptor antagonist peptide (NEP1-40), which promotes axonal growth. Primary cultured oligodendrocytes suppressed axonal growth in the rat hippocampus, but NEP1-40 stimulated axonal growth in the co-culture system. Our results confirm the validity of the neuron-oligodendrocyte co-culture system as an assay for the evaluation of drugs for axon regeneration in the central nervous system. PMID:26692858

  10. Co-culture of oligodendrocytes and neurons can be used to assess drugs for axon regeneration in the central nervous system.

    PubMed

    Gang, Lin; Yao, Yu-Chen; Liu, Ying-Fu; Li, Yi-Peng; Yang, Kai; Lu, Lei; Cheng, Yuan-Chi; Chen, Xu-Yi; Tu, Yue

    2015-10-01

    We present a novel in vitro model in which to investigate the efficacy of experimental drugs for the promotion of axon regeneration in the central nervous system. We co-cultured rat hippocampal neurons and cerebral cortical oligodendrocytes, and tested the co-culture system using a Nogo-66 receptor antagonist peptide (NEP1-40), which promotes axonal growth. Primary cultured oligodendrocytes suppressed axonal growth in the rat hippocampus, but NEP1-40 stimulated axonal growth in the co-culture system. Our results confirm the validity of the neuron-oligodendrocyte co-culture system as an assay for the evaluation of drugs for axon regeneration in the central nervous system.

  11. Evidence that an RGD-dependent receptor mediates the binding of oligodendrocytes to a novel ligand in a glial-derived matrix

    PubMed Central

    1988-01-01

    A simple adhesion assay was used to measure the interaction between rat oligodendrocytes and various substrata, including a matrix secreted by glial cells. Oligodendrocytes bound to surfaces coated with fibronectin, vitronectin and a protein component of the glial matrix. The binding of cells to all of these substrates was inhibited by a synthetic peptide (GRGDSP) modeled after the cell-binding domain of fibronectin. The component of the glial matrix responsible for the oligodendrocyte interaction is a protein which is either secreted by the glial cells or removed from serum by products of these cultures; serum alone does not promote adhesion to the same extent as the glial- derived matrix. The interaction of cells with this glial-derived matrix requires divalent cations and is not mediated by several known RGD- containing extracellular proteins, including fibronectin, vitronectin, thrombospondin, type I and type IV collagen, and tenascin. PMID:2459131

  12. Principles of the radiative ablation modeling

    NASA Astrophysics Data System (ADS)

    Saillard, Yves; Arnault, Philippe; Silvert, Virginie

    2010-12-01

    Indirectly driven inertial confinement fusion (ICF) rests on the setting up of a radiation temperature within a laser cavity and on the optimization of the capsule implosion ablated by this radiation. In both circumstances, the ablation of an optically thick medium is at work. The nonlinear radiation conduction equations that describe this phenomenon admit different kinds of solutions called generically Marshak waves. In this paper, a completely analytic model is proposed to describe the ablation in the subsonic regime relevant to ICF experiments. This model approximates the flow by a deflagrationlike structure where Hugoniot relations are used in the stationary part from the ablation front up to the isothermal sonic Chapman-Jouguet point and where the unstationary expansion from the sonic point up to the external boundary is assumed quasi-isothermal. It uses power law matter properties. It can also accommodate arbitrary boundary conditions provided the ablation wave stays very subsonic and the surface temperature does not vary too quickly. These requirements are often met in realistic situations. Interestingly, the ablated mass rate, the ablation pressure, and the absorbed radiative energy depend on the time history of the surface temperature, not only on the instantaneous temperature values. The results compare very well with self-similar solutions and with numerical simulations obtained by hydrodynamic code. This analytic model gives insight into the physical processes involved in the ablation and is helpful for optimization and sensitivity studies in many situations of interest: radiation temperature within a laser cavity, acceleration of finite size medium, and ICF capsule implosion, for instance.

  13. Principles of the radiative ablation modeling

    SciTech Connect

    Saillard, Yves; Arnault, Philippe; Silvert, Virginie

    2010-12-15

    Indirectly driven inertial confinement fusion (ICF) rests on the setting up of a radiation temperature within a laser cavity and on the optimization of the capsule implosion ablated by this radiation. In both circumstances, the ablation of an optically thick medium is at work. The nonlinear radiation conduction equations that describe this phenomenon admit different kinds of solutions called generically Marshak waves. In this paper, a completely analytic model is proposed to describe the ablation in the subsonic regime relevant to ICF experiments. This model approximates the flow by a deflagrationlike structure where Hugoniot relations are used in the stationary part from the ablation front up to the isothermal sonic Chapman-Jouguet point and where the unstationary expansion from the sonic point up to the external boundary is assumed quasi-isothermal. It uses power law matter properties. It can also accommodate arbitrary boundary conditions provided the ablation wave stays very subsonic and the surface temperature does not vary too quickly. These requirements are often met in realistic situations. Interestingly, the ablated mass rate, the ablation pressure, and the absorbed radiative energy depend on the time history of the surface temperature, not only on the instantaneous temperature values. The results compare very well with self-similar solutions and with numerical simulations obtained by hydrodynamic code. This analytic model gives insight into the physical processes involved in the ablation and is helpful for optimization and sensitivity studies in many situations of interest: radiation temperature within a laser cavity, acceleration of finite size medium, and ICF capsule implosion, for instance.

  14. Flexible Ablators: Applications and Arcjet Testing

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Venkatapathy, Ethiraj; Beck, Robin A S.; Mcguire, Kathy; Prabhu, Dinesh K.; Gorbunov, Sergey

    2011-01-01

    Flexible ablators were conceived in 2009 to meet the technology pull for large, human Mars Exploration Class, 23 m diameter hypersonic inflatable aerodynamic decelerators. As described elsewhere, they have been recently undergoing initial technical readiness (TRL) advancement by NASA. The performance limits of flexible ablators in terms of maximum heat rates, pressure and shear remain to be defined. Further, it is hoped that this emerging technology will vastly expand the capability of future NASA missions involving atmospheric entry systems. This paper considers four topics of relevance to flexible ablators: (1) Their potential applications to near/far term human and robotic missions (2) Brief consideration of the balance between heat shield diameter, flexible ablator performance limits, entry vehicle controllability and aft-body shear layer impingement of interest to designers of very large entry vehicles, (3) The approach for developing bonding processes of flexible ablators for use on rigid entry bodies and (4) Design of large arcjet test articles that will enable the testing of flexible ablators in flight-like, combined environments (heat flux, pressure, shear and structural tensile loading). Based on a review of thermal protection system performance requirements for future entry vehicles, it is concluded that flexible ablators have broad applications to conventional, rigid entry body systems and are enabling to large deployable (both inflatable and mechanical) heat shields. Because of the game-changing nature of flexible ablators, it appears that NASA's Office of the Chief Technologist (OCT) will fund a focused, 3-year TRL advancement of the new materials capable of performance in heat fluxes in the range of 200-600 W/sq. cm. This support will enable the manufacture and use of the large-scale arcjet test designs that will be a key element of this OCT funded activity.

  15. Resonant laser ablation: mechanisms and applications

    SciTech Connect

    Anderson, J.E.; Allen, T.M.; Garrett, A.W.; Gill, C.G.; Hemberger, P.H.; Kelly, P.B.; Nogar, N.S.

    1996-10-01

    We report on aspects of resonant laser ablation (RLA) behavior for a number of sample types: metals, alloys, thin films, zeolites and soil. The versatility of RLA is demonstrated, with results on a variety of samples and in several mass spectrometers. In addition, the application to depth profiling of thin films is described; absolute removal rates and detection limits are also displayed. A discussion of possible mechanisms for low-power ablation is presented.