Science.gov

Sample records for oligodendrocyte precursor cell

  1. Alterations in hippocampal myelin and oligodendrocyte precursor cells during epileptogenesis.

    PubMed

    Luo, Yuanyuan; Hu, Qiao; Zhang, Qian; Hong, Siqi; Tang, Xiaoju; Cheng, Li; Jiang, Li

    2015-11-19

    Recent reports have described damage to myelinated fibers in the central nervous system (CNS) in patients with temporal lobe epilepsy (TLE) and animal models. However, only limited data are available on the dynamic changes that occur in myelinated fibers, oligodendrocytes (which are myelin-forming cells), and oligodendrocyte precursor cells (OPCs), which are a reservoir of new oligodendrocytes, in the hippocampus throughout epileptogenesis. The current study was designed to examine this issue using a rat model of lithium-pilocarpine-induced epilepsy. Electroencephalography (EEG), immunofluorescence, and Western blot analysis showed that the loss of myelin and oligodendrocytes in the rat hippocampus began during the acute stage of epileptogenesis, and the severity of this loss increased throughout epileptogenesis. Accompanying this loss of myelin and oligodendrocytes, OPCs in the rat hippocampus became activated and their populations increased during several phases of epileptogenesis (the acute, latent and chronic phases). The transcription factors olig1 and olig2, which play crucial roles in regulating OPC proliferation, differentiation and remyelination, were up-regulated during the early phases (the acute and latent phases) followed by a sharp decline in their expression during the chronic and late chronic phases. This study is the first to confirm the loss of myelin and oligodendrocytes during lithium-pilocarpine-induced epileptogenesis accompanied by a transient increase in the number of OPCs. Prevention of the loss of myelin and oligodendrocytes may provide a novel treatment strategy for epilepsy.

  2. Adrenomedullin promotes differentiation of oligodendrocyte precursor cells into myelin-basic-protein expressing oligodendrocytes under pathological conditions in vitro.

    PubMed

    Maki, Takakuni; Takahashi, Yoko; Miyamoto, Nobukazu; Liang, Anna C; Ihara, Masafumi; Lo, Eng H; Arai, Ken

    2015-07-01

    Oligodendrocytes, which are the main cell type in cerebral white matter, are generated from their precursor cells (oligodendrocyte precursor cells: OPCs). However, the differentiation from OPCs to oligodendrocytes is disturbed under stressed conditions. Therefore, drugs that can improve oligodendrocyte regeneration may be effective for white matter-related diseases. Here we show that a vasoactive peptide adrenomedullin (AM) promotes the in vitro differentiation of OPCs under pathological conditions. Primary OPCs were prepared from neonatal rat brains, and differentiated into myelin-basic-protein expressing oligodendrocytes over time. This in vitro OPC differentiation was inhibited by prolonged chemical hypoxic stress induced by non-lethal CoCl(2) treatment. However, AM promoted the OPC differentiation under the hypoxic stress conditions, and the AM receptor antagonist AM(22-52) canceled the AM-induced OPC differentiation. In addition, AM treatment increased the phosphorylation level of Akt in OPC cultures, and correspondingly, the PI3K/Akt inhibitor LY294002 blocked the AM-induced OPC differentiation. Taken together, AM treatment rescued OPC maturation under pathological conditions via an AM-receptor-PI3K/Akt pathway. Oligodendrocytes play critical roles in white matter by forming myelin sheath. Therefore, AM signaling may be a promising therapeutic target to boost oligodendrocyte regeneration in CNS disorders.

  3. In vitro transdifferentiation of human cultured CD34+ stem cells into oligodendrocyte precursors using thyroid hormones.

    PubMed

    Venkatesh, Katari; Srikanth, Lokanathan; Vengamma, Bhuma; Chandrasekhar, Chodimella; Prasad, Bodapati Chandra Mouleshwara; Sarma, Potukuchi Venkata Gurunadha Krishna

    2015-02-19

    The extent of myelination on the axon promotes transmission of impulses in the neural network, any disturbances in this process results in the neurodegenerative condition. Transplantation of oligodendrocyte precursors that supports in the regeneration of axons through myelination is an important step in the restoration of damaged neurons. Therefore, in the present study, the differentiation of human CD34+ stem cells into oligodendrocytes was carried out. The pure human CD34+ culture developed from the stem cells obtained from a peripheral blood of a donor were subjected to oligodendrocyte differentiation medium (ODM). The ODM at a concentration of 40ng/ml thyroxine, 40ng/ml 3,3',5-tri-iodo-thyronine showed distinct morphological changes from day 6 to 9 with cells exhibiting conspicuous stellate morphology and extensive foot processes. The real-time PCR analysis showed prominent expression of Olig2, CNPase, PDGFRα and PLP1/DM20 in the differentiated cells confirming the formed cells are oligodendrocyte precursors. The expression of these genes increased from days 6 to 9 corresponding to the morphological changes observed with almost no expression of GFAP+ cells. The distinct CNPase activity was observed in these differentiated cells compared to normal CD34+ stem cells correlating with results of real-time PCR conclusively explains the development of oligodendrocytes from human CD34+ stem cells.

  4. Characterization of oligodendrocyte lineage precursor cells in the mouse cerebral cortex: a confocal microscopy approach to demyelinating diseases.

    PubMed

    Girolamo, Francesco; Strippoli, Maurizio; Errede, Mariella; Benagiano, Vincenzo; Roncali, Luisa; Ambrosi, Glauco; Virgintino, Daniela

    2010-01-01

    The identification of stem cells resident in the adult central nervous system has redirected the focus of research into demyelinating diseases, such as multiple sclerosis, mainly affecting the brain white matter. This immunocytochemical and morphometrical study was carried out by confocal microscopy in the adult mouse cerebral cortex, with the aim of analysing, in the brain grey matter, the characteristics of the oligodendrocyte lineage cells, whose capability to remyelinate is still controversial. The observations demonstrated the presence in all the cortex layers of glial restricted progenitors, reactive to A2B5 marker, oligodendrocyte precursor cells, expressing the NG2 proteoglycan, and pre-oligodendrocytes and pre-myelinating oligodendrocytes, reactive to the specific marker O4. NG2 expressing cells constitute the major immature population of the cortex, since not only oligodendrocyte precursor cells and pre-oligodendrocytes but also a part of the glial restrict progenitors express the NG2 proteoglycan. Together with the population of these immature cells, a larger population of mature oligodendrocytes was revealed by the classical oligodendrocyte and myelin markers, 2',3'-cyclic nucleotide 3'-phosphodiesterase, myelin basic protein and myelin oligodendrocyte glycoprotein. The results indicate that oligodendrocyte precursors committed to differentiate into myelin forming oligodendrocytes are present through all layers of the adult cortex and that their phenotypic features exactly recall those of the oligodendroglial lineage cells during development.

  5. Oligodendrocyte Precursor Cells in Spinal Cord Injury: A Review and Update

    PubMed Central

    Li, Ning; Leung, Gilberto K. K.

    2015-01-01

    Spinal cord injury (SCI) is a devastating condition to individuals, families, and society. Oligodendrocyte loss and demyelination contribute as major pathological processes of secondary damages after injury. Oligodendrocyte precursor cells (OPCs), a subpopulation that accounts for 5 to 8% of cells within the central nervous system, are potential sources of oligodendrocyte replacement after SCI. OPCs react rapidly to injuries, proliferate at a high rate, and can differentiate into myelinating oligodendrocytes. However, posttraumatic endogenous remyelination is rarely complete, and a better understanding of OPCs' characteristics and their manipulations is critical to the development of novel therapies. In this review, we summarize known characteristics of OPCs and relevant regulative factors in both health and demyelinating disorders including SCI. More importantly, we highlight current evidence on post-SCI OPCs transplantation as a potential treatment option as well as the impediments against regeneration. Our aim is to shed lights on important knowledge gaps and to provoke thoughts for further researches and the development of therapeutic strategies. PMID:26491661

  6. Slit2 regulates the dispersal of oligodendrocyte precursor cells via Fyn/RhoA signaling.

    PubMed

    Liu, Xiujie; Lu, Yan; Zhang, Yong; Li, Yuanyuan; Zhou, Jiazhen; Yuan, Yimin; Gao, Xiaofei; Su, Zhida; He, Cheng

    2012-05-18

    Oligodendrocyte precursor cells (OPCs) are a unique type of glia that are responsible for the myelination of the central nervous system. OPC migration is important for myelin formation during central nervous system development and repair. However, the precise extracellular and intracellular mechanisms that regulate OPC migration remain elusive. Slits were reported to regulate neurodevelopmental processes such as migration, adhesion, axon guidance, and elongation through binding to roundabout receptors (Robos). However, the potential roles of Slits/Robos in oligodendrocytes remain unknown. In this study, Slit2 was found to be involved in regulating the dispersal of OPCs through the association between Robo1 and Fyn. Initially, we examined the expression of Robos in OPCs both in vitro and in vivo. Subsequently, the Boyden chamber assay showed that Slit2 could inhibit OPC migration. RoboN, a specific inhibitor of Robos, could significantly attenuate this effect. The effects were confirmed through the explant migration assay. Furthermore, treating OPCs with Slit2 protein deactivated Fyn and increased the level of activated RhoA-GTP. Finally, Fyn was found to form complexes with Robo1, but this association was decreased after Slit2 stimulation. Thus, we demonstrate for the first time that Slit2 regulates the dispersal of oligodendrocyte precursor cells through Fyn and RhoA signaling.

  7. Transplanted microvascular endothelial cells promote oligodendrocyte precursor cell survival in ischemic demyelinating lesions.

    PubMed

    Iijima, Keiya; Kurachi, Masashi; Shibasaki, Koji; Naruse, Masae; Puentes, Sandra; Imai, Hideaki; Yoshimoto, Yuhei; Mikuni, Masahiko; Ishizaki, Yasuki

    2015-11-01

    We previously showed that transplantation of brain microvascular endothelial cells (MVECs) greatly stimulated remyelination in the white matter infarct of the internal capsule (IC) induced by endothelin-1 injection and improved the behavioral outcome. In the present study, we examined the effect of MVEC transplantation on the infarct volume using intermittent magnetic resonance image and on the behavior of oligodendrocyte lineage cells histochemically. Our results in vivo show that MVEC transplantation reduced the infarct volume in IC and apoptotic death of oligodendrocyte precursor cells (OPCs). These results indicate that MVECs have a survival effect on OPCs, and this effect might contribute to the recovery of the white matter infarct. The conditioned-medium from cultured MVECs reduced apoptosis of cultured OPCs, while the conditioned medium from cultured fibroblasts did not show such effect. These results suggest a possibility that transplanted MVECs increased the number of OPCs through the release of humoral factors that prevent their apoptotic death. Identification of such humoral factors may lead to the new therapeutic strategy against ischemic demyelinating diseases.

  8. Transplanted microvascular endothelial cells promote oligodendrocyte precursor cell survival in ischemic demyelinating lesions.

    PubMed

    Iijima, Keiya; Kurachi, Masashi; Shibasaki, Koji; Naruse, Masae; Puentes, Sandra; Imai, Hideaki; Yoshimoto, Yuhei; Mikuni, Masahiko; Ishizaki, Yasuki

    2015-11-01

    We previously showed that transplantation of brain microvascular endothelial cells (MVECs) greatly stimulated remyelination in the white matter infarct of the internal capsule (IC) induced by endothelin-1 injection and improved the behavioral outcome. In the present study, we examined the effect of MVEC transplantation on the infarct volume using intermittent magnetic resonance image and on the behavior of oligodendrocyte lineage cells histochemically. Our results in vivo show that MVEC transplantation reduced the infarct volume in IC and apoptotic death of oligodendrocyte precursor cells (OPCs). These results indicate that MVECs have a survival effect on OPCs, and this effect might contribute to the recovery of the white matter infarct. The conditioned-medium from cultured MVECs reduced apoptosis of cultured OPCs, while the conditioned medium from cultured fibroblasts did not show such effect. These results suggest a possibility that transplanted MVECs increased the number of OPCs through the release of humoral factors that prevent their apoptotic death. Identification of such humoral factors may lead to the new therapeutic strategy against ischemic demyelinating diseases. PMID:26212499

  9. Co-ultramicronized Palmitoylethanolamide/Luteolin Promotes the Maturation of Oligodendrocyte Precursor Cells

    PubMed Central

    Barbierato, Massimo; Facci, Laura; Marinelli, Carla; Zusso, Morena; Argentini, Carla; Skaper, Stephen D.; Giusti, Pietro

    2015-01-01

    Oligodendrocytes have limited ability to repair the damage to themselves or to other nerve cells, as seen in demyelinating diseases like multiple sclerosis. An important strategy may be to replace the lost oligodendrocytes and/or promote the maturation of undifferentiated oligodendrocyte precursor cells (OPCs). Recent studies show that a composite of co-ultramicronized N-palmitoylethanolamine (PEA) and luteolin (co-ultramicronized PEA/luteolin, 10:1 by mass) is efficacious in improving outcome in experimental models of spinal cord and traumatic brain injuries. Here, we examined the ability of co-ultramicronized PEA/luteolin to promote progression of OPCs into a more differentiated phenotype. OPCs derived from newborn rat cortex were placed in culture and treated the following day with 10 μM co-ultramicronized PEA/luteolin. Cells were collected 1, 4 and 8 days later and analyzed for expression of myelin basic protein (MBP). qPCR and Western blot analyses revealed a time-dependent increase in expression of both mRNA for MBP and MBP content, along with an increased expression of genes involved in lipid biogenesis. Ultramicronized PEA or luteolin, either singly or in simple combination, were ineffective. Further, co-ultramicronized PEA/luteolin promoted morphological development of OPCs and total protein content without affecting proliferation. Co-ultramicronized PEA/luteolin may represent a novel pharmacological strategy to promote OPC maturation. PMID:26578323

  10. Antioxidant Protection of NADPH-Depleted Oligodendrocyte Precursor Cells Is Dependent on Supply of Reduced Glutathione

    PubMed Central

    Kilanczyk, Ewa; Saraswat Ohri, Sujata; Whittemore, Scott R.

    2016-01-01

    The pentose phosphate pathway is the main source of NADPH, which by reducing oxidized glutathione, contributes to antioxidant defenses. Although oxidative stress plays a major role in white matter injury, significance of NADPH for oligodendrocyte survival has not been yet investigated. It is reported here that the NADPH antimetabolite 6-amino-NADP (6AN) was cytotoxic to cultured adult rat spinal cord oligodendrocyte precursor cells (OPCs) as well as OPC-derived oligodendrocytes. The 6AN-induced necrosis was preceded by increased production of superoxide, NADPH depletion, and lower supply of reduced glutathione. Moreover, survival of NADPH-depleted OPCs was improved by the antioxidant drug trolox. Such cells were also protected by physiological concentrations of the neurosteroid dehydroepiandrosterone (10−8 M). The protection by dehydroepiandrosterone was associated with restoration of reduced glutathione, but not NADPH, and was sensitive to inhibition of glutathione synthesis. A similar protective mechanism was engaged by the cAMP activator forskolin or the G protein-coupled estrogen receptor (GPER/GPR30) ligand G1. Finally, treatment with the glutathione precursor N-acetyl cysteine reduced cytotoxicity of 6AN. Taken together, NADPH is critical for survival of OPCs by supporting their antioxidant defenses. Consequently, injury-associated inhibition of the pentose phosphate pathway may be detrimental for the myelination or remyelination potential of the white matter. Conversely, steroid hormones and cAMP activators may promote survival of NADPH-deprived OPCs by increasing a NADPH-independent supply of reduced glutathione. Therefore, maintenance of glutathione homeostasis appears as a critical effector mechanism for OPC protection against NADPH depletion and preservation of the regenerative potential of the injured white matter. PMID:27449129

  11. TIP30 inhibits oligodendrocyte precursor cell differentiation via cytoplasmic sequestration of Olig1.

    PubMed

    Yang, Wenjing; Xiao, Lin; Li, Cui; Liu, Xiuyun; Liu, Mingdong; Shao, Qi; Wang, Dan; Huang, Aijun; He, Cheng

    2015-04-01

    Differentiation of oligodendrocyte precursor cells (OPCs) is a prerequisite for both developmental myelination and adult remyelination in the central nervous system. The molecular mechanisms underlying OPC differentiation remain largely unknown. Here, we show that the thirty-kDa HIV-1 Tat interacting protein (TIP30) is a negative regulator in oligodendrocyte development. The TIP30(-/-) mice displayed an increased myelin protein level at postnatal day 14 and 21. By using a primary OPC culture system, we demonstrated that overexpression of TIP30 dramatically inhibited the stage progression of differentiating OPCs, while knockdown of TIP30 enhanced the differentiation of oligodendroglial cells remarkably. Moreover, overexpression of TIP30 was found to sequester the transcription factor Olig1 in the cytoplasm and weaken its nuclear translocation due to the interaction between TIP30 and Olig1, whereas knockdown of TIP30 led to more Olig1 localized in the nucleus in the initiation stage during OPC differentiation. In the cuprizone-induced demyelination model, there was a dramatic increase in NG2-expressing cells with nuclear location of Olig1 in the corpus callosum during remyelination. In contrast, within chronic demyelinated lesions in multiple sclerosis, TIP30 was abnormally expressed in NG2-expressing cells, and few nuclear Olig1 was observed in these cells. Taken together, our findings suggest that TIP30 plays a negative regulatory role in oligodendroglial differentiation.

  12. Oligodendrocyte precursor cells are accurate sensors of local K+ in mature gray matter.

    PubMed

    Maldonado, Paloma P; Vélez-Fort, Mateo; Levavasseur, Françoise; Angulo, María Cecilia

    2013-02-01

    Oligodendrocyte precursor cells (OPCs) are the major source of myelinating oligodendrocytes during development. These progenitors are highly abundant at birth and persist in the adult where they are distributed throughout the brain. The large abundance of OPCs after completion of myelination challenges their unique role as progenitors in the healthy adult brain. Here we show that adult OPCs of the barrel cortex sense fine extracellular K(+) increases generated by neuronal activity, a property commonly assigned to differentiated astrocytes rather than to progenitors. Biophysical, pharmacological, and single-cell RT-PCR analyses demonstrate that this ability of OPCs establishes itself progressively through the postnatal upregulation of Kir4.1 K(+) channels. In animals with advanced cortical myelination, extracellular stimulation of layer V axons induces slow K(+) currents in OPCs, which amplitude correlates with presynaptic action potential rate. Moreover, using paired recordings, we demonstrate that the discharge of a single neuron can be detected by nearby adult OPCs, indicating that these cells are strategically located to detect local changes in extracellular K(+) concentration during physiological neuronal activity. These results identify a novel unitary neuron-OPC connection, which transmission does not rely on neurotransmitter release and appears late in development. Beyond their abundance in the mature brain, the postnatal emergence of a physiological response of OPCs to neuronal network activity supports the view that in the adult these cells are not progenitors only.

  13. Abnormal expression of TIP30 and arrested nucleocytoplasmic transport within oligodendrocyte precursor cells in multiple sclerosis

    PubMed Central

    Nakahara, Jin; Kanekura, Kohsuke; Nawa, Mikiro; Aiso, Sadakazu; Suzuki, Norihiro

    2008-01-01

    Oligodendrocyte precursor cells (OPCs) persist near the demyelinated axons arising in MS but inefficiently differentiate into oligodendrocytes and remyelinate these axons. The pathogenesis of differentiation failure remains elusive. We initially hypothesized that injured axons fail to present Contactin, a positive ligand for the oligodendroglial Notch1 receptor to induce myelination, and thus tracked axoglial Contactin/Notch1 signaling in situ, using immunohistochemistry in brain tissue from MS patients containing chronic demyelinated lesions. Instead, we found that Contactin was saturated on demyelinated axons, Notch1-positive OPCs accumulated in Contactin-positive lesions, and the receptor was engaged, as demonstrated by cleavage to Notch1-intracellular domain (NICD). However, nuclear translocalization of NICD, required for myelinogenesis, was virtually absent in these cells. NICD and related proteins carrying nuclear localization signals were associated with the nuclear transporter Importin but were trapped in the cytoplasm. Abnormal expression of TIP30, a direct inhibitor of Importin, was observed in these OPCs. Overexpression of TIP30 in a rat OPC cell line resulted in cytoplasmic entrapment of NICD and arrest of differentiation upon stimulation with Contactin-Fc. Our results suggest that extracellular inhibitory factors as well as an intrinsic nucleocytoplasmic transport blockade within OPCs may be involved in the pathogenesis of remyelination failure in MS. PMID:19104151

  14. Extracellular Vesicles from Vascular Endothelial Cells Promote Survival, Proliferation and Motility of Oligodendrocyte Precursor Cells

    PubMed Central

    Kurachi, Masashi; Mikuni, Masahiko; Ishizaki, Yasuki

    2016-01-01

    We previously examined the effect of brain microvascular endothelial cell (MVEC) transplantation on rat white matter infarction, and found that MVEC transplantation promoted remyelination of demyelinated axons in the infarct region and reduced apoptotic death of oligodendrocyte precursor cells (OPCs). We also found that the conditioned medium (CM) from cultured MVECs inhibited apoptosis of cultured OPCs. In this study, we examined contribution of extracellular vesicles (EVs) contained in the CM to its inhibitory effect on OPC apoptosis. Removal of EVs from the CM by ultracentrifugation reduced its inhibitory effect on OPC apoptosis. To confirm whether EVs derived from MVECs are taken up by cultured OPCs, we labeled EVs with PKH67, a fluorescent dye, and added them to OPC cultures. Many vesicular structures labeled with PKH67 were found within OPCs immediately after their addition. Next we examined the effect of MVEC-derived EVs on OPC behaviors. After 2 days in culture with EVs, there was significantly less pyknotic and more BrdU-positive OPCs when compared to control. We also examined the effect of EVs on motility of OPCs. OPCs migrated longer in the presence of EVs when compared to control. To examine whether these effects on cultured OPCs are shared by EVs from endothelial cells, we prepared EVs from conditioned media of several types of endothelial cells, and tested their effects on cultured OPCs. EVs from all types of endothelial cells we examined reduced apoptosis of OPCs and promoted their motility. Identification of the molecules contained in EVs from endothelial cells may prove helpful for establishment of effective therapies for demyelinating diseases. PMID:27403742

  15. Magnetic nanoparticles for oligodendrocyte precursor cell transplantation therapies: progress and challenges.

    PubMed

    Jenkins, Stuart I; Yiu, Humphrey H P; Rosseinsky, Matthew J; Chari, Divya M

    2014-01-01

    Oligodendrocyte precursor cells (OPCs) have shown high promise as a transplant population to promote regeneration in the central nervous system, specifically, for the production of myelin - the protective sheath around nerve fibers. While clinical trials for these cells have commenced in some areas, there are currently key barriers to the translation of neural cell therapies. These include the ability to (a) image transplant populations in vivo; (b) genetically engineer transplant cells to augment their repair potential; and (c) safely target cells to sites of pathology. Here, we review the evidence that magnetic nanoparticles (MNPs) are a 'multifunctional nanoplatform' that can aid in safely addressing these translational challenges in neural cell/OPC therapy: by facilitating real-time and post-mortem assessment of transplant cell biodistribution, and biomolecule delivery to transplant cells, as well as non-invasive 'magnetic cell targeting' to injury sites by application of high gradient fields. We identify key issues relating to the standardization and reporting of physicochemical and biological data in the field; we consider that it will be essential to systematically address these issues in order to fully evaluate the utility of the MNP platform for neural cell transplantation, and to develop efficacious neurocompatible particles for translational applications. PMID:26056590

  16. Anosmin-1 over-expression regulates oligodendrocyte precursor cell proliferation, migration and myelin sheath thickness.

    PubMed

    Murcia-Belmonte, Verónica; Esteban, Pedro F; Martínez-Hernández, José; Gruart, Agnès; Luján, Rafael; Delgado-García, José María; de Castro, Fernando

    2016-04-01

    During development of the central nervous system, anosmin-1 (A1) works as a chemotropic cue contributing to axonal outgrowth and collateralization, as well as modulating the migration of different cell types, fibroblast growth factor receptor 1 (FGFR1) being the main receptor involved in all these events. To further understand the role of A1 during development, we have analysed the over-expression of human A1 in a transgenic mouse line. Compared with control mice during development and in early adulthood, A1 over-expressing transgenic mice showed an enhanced oligodendrocyte precursor cell (OPC) proliferation and a higher number of OPCs in the subventricular zone and in the corpus callosum (CC). The migratory capacity of OPCs from the transgenic mice is increased in vitro due to a higher basal activation of ERK1/2 mediated through FGFR1 and they also produced more myelin basic protein (MBP). In vivo, the over-expression of A1 resulted in an elevated number of mature oligodendrocytes with higher levels of MBP mRNA and protein, as well as increased levels of activation of the ERK1/2 proteins, while electron microscopy revealed thicker myelin sheaths around the axons of the CC in adulthood. Also in the mature CC, the nodes of Ranvier were significantly longer and the conduction velocity of the nerve impulse in vivo was significantly increased in the CC of A1 over-expressing transgenic mice. Altogether, these data confirmed the involvement of A1 in oligodendrogliogenesis and its relevance for myelination.

  17. Neuregulin-1/ErbB4 signaling controls the migration of oligodendrocyte precursor cells during development.

    PubMed

    Ortega, M Cristina; Bribián, Ana; Peregrín, Sandra; Gil, M Trinidad; Marín, Oscar; de Castro, Fernando

    2012-06-01

    During embryonic development, the oligodendrocyte precursors (OPCs) are generated in specific oligodendrogliogenic sites within the neural tube and migrate to colonize the entire CNS. Different factors have been shown to influence the OPC migration and differentiation, including morphogens, growth factors, chemotropic molecules, and extracellular matrix proteins. Neuregulins have been shown to influence the migration of neuronal precursors as well as the movement and differentiation of Schwann cells for peripheral myelination, but their role in the motility of OPCs has not been explored. In the present study, we have used the optic nerve as an experimental model to examine the function of Nrg1 and its ErbB4 receptor in the migration of OPCs in the developing embryo. In vitro experiments revealed that Nrg1 is a potent chemoattractant for the first wave of OPCs, and that this effect is mediated via ErbB4 receptor. In contrast, OPCs colonizing the optic nerve at postnatal stages (PDGFRα(+)-OPCs) does not respond to Nrg1-chemoattraction. We also found that mouse embryos lacking ErbB4 display deficits in early OPC migration away from different oligodendrogliogenic regions in vivo. The present findings reveal a new role for Nrg1/ErbB4 signaling in regulating OPC migration selectively during early stages of CNS development.

  18. Transformation of quiescent adult oligodendrocyte precursor cells into malignant glioma through a multistep reactivation process.

    PubMed

    Galvao, Rui Pedro; Kasina, Anita; McNeill, Robert S; Harbin, Jordan E; Foreman, Oded; Verhaak, Roel G W; Nishiyama, Akiko; Miller, C Ryan; Zong, Hui

    2014-10-01

    How malignant gliomas arise in a mature brain remains a mystery, hindering the development of preventive and therapeutic interventions. We previously showed that oligodendrocyte precursor cells (OPCs) can be transformed into glioma when mutations are introduced perinatally. However, adult OPCs rarely proliferate compared with their perinatal counterparts. Whether these relatively quiescent cells have the potential to transform is unknown, which is a critical question considering the late onset of human glioma. Additionally, the premalignant events taking place between initial mutation and a fully developed tumor mass are particularly poorly understood in glioma. Here we used a temporally controllable Cre transgene to delete p53 and NF1 specifically in adult OPCs and demonstrated that these cells consistently give rise to malignant gliomas. To investigate the transforming process of quiescent adult OPCs, we then tracked these cells throughout the premalignant phase, which revealed a dynamic multistep transformation, starting with rapid but transient hyperproliferative reactivation, followed by a long period of dormancy, and then final malignant transformation. Using pharmacological approaches, we discovered that mammalian target of rapamycin signaling is critical for both the initial OPC reactivation step and late-stage tumor cell proliferation and thus might be a potential target for both glioma prevention and treatment. In summary, our results firmly establish the transforming potential of adult OPCs and reveal an actionable multiphasic reactivation process that turns slowly dividing OPCs into malignant gliomas.

  19. Transformation of quiescent adult oligodendrocyte precursor cells into malignant glioma through a multistep reactivation process.

    PubMed

    Galvao, Rui Pedro; Kasina, Anita; McNeill, Robert S; Harbin, Jordan E; Foreman, Oded; Verhaak, Roel G W; Nishiyama, Akiko; Miller, C Ryan; Zong, Hui

    2014-10-01

    How malignant gliomas arise in a mature brain remains a mystery, hindering the development of preventive and therapeutic interventions. We previously showed that oligodendrocyte precursor cells (OPCs) can be transformed into glioma when mutations are introduced perinatally. However, adult OPCs rarely proliferate compared with their perinatal counterparts. Whether these relatively quiescent cells have the potential to transform is unknown, which is a critical question considering the late onset of human glioma. Additionally, the premalignant events taking place between initial mutation and a fully developed tumor mass are particularly poorly understood in glioma. Here we used a temporally controllable Cre transgene to delete p53 and NF1 specifically in adult OPCs and demonstrated that these cells consistently give rise to malignant gliomas. To investigate the transforming process of quiescent adult OPCs, we then tracked these cells throughout the premalignant phase, which revealed a dynamic multistep transformation, starting with rapid but transient hyperproliferative reactivation, followed by a long period of dormancy, and then final malignant transformation. Using pharmacological approaches, we discovered that mammalian target of rapamycin signaling is critical for both the initial OPC reactivation step and late-stage tumor cell proliferation and thus might be a potential target for both glioma prevention and treatment. In summary, our results firmly establish the transforming potential of adult OPCs and reveal an actionable multiphasic reactivation process that turns slowly dividing OPCs into malignant gliomas. PMID:25246577

  20. Nanofibers Support Oligodendrocyte Precursor Cell Growth and Function as a Neuron-Free Model for Myelination Study

    PubMed Central

    Li, Yongchao; Ceylan, Muhammet; Shrestha, Bikesh; Wang, Haibo; Lu, Q.Richard; Asmatulu, Ramazan; Yao, Li

    2014-01-01

    Nanofiber-based scaffolds may simultaneously provide immediate contact guidance for neural regeneration and act as a vehicle for therapeutic cell delivery to enhance axonal myelination. Additionally, nanofibers can serve as a neuron-free model to study myelination of oligodendrocytes. In this study, we fabricated nanofibers using a polycaprolactone and gelatin co-polymer. The ratio of the gelatin component in the fibers was confirmed by energy dispersive x-ray spectroscopy. The addition of gelatin to the polycaprolactone (PCL) for nanofiber fabrication decreased the contact angle of the electrospun fibers. We showed that both polycaprolactone nanofibers as well as polycaprolactone and gelatin co-polymer nanofibers can support oligodendrocyte precursor cell (OPC) growth and differentiation. OPCs maintained their phenotype and viability on nanofibers and were induced to differentiate into oligodendrocytes. The differentiated oligodendrocytes extend their processes along the nanofibers and ensheathed the nanofibers. Oligodendrocytes formed significantly more myelinated segments on the PCL and gelatin co3polymer nanofibers than those on PCL nanofibers alone. PMID:24304204

  1. Oligodendrocyte Precursor Cells Support Blood-Brain Barrier Integrity via TGF-β Signaling

    PubMed Central

    Maeda, Mitsuyo; Miyamoto, Nobukazu; Liang, Anna C.; Hayakawa, Kazuhide; Pham, Loc-Duyen D.; Suwa, Fumihiko; Taguchi, Akihiko; Matsuyama, Tomohiro; Ihara, Masafumi; Kim, Kyu-Won; Lo, Eng H.; Arai, Ken

    2014-01-01

    Trophic coupling between cerebral endothelium and their neighboring cells is required for the development and maintenance of blood-brain barrier (BBB) function. Here we report that oligodendrocyte precursor cells (OPCs) secrete soluble factor TGF-β1 to support BBB integrity. Firstly, we prepared conditioned media from OPC cultures and added them to cerebral endothelial cultures. Our pharmacological experiments showed that OPC-conditioned media increased expressions of tight-junction proteins and decreased in vitro BBB permeability by activating TGB-β-receptor-MEK/ERK signaling pathway. Secondly, our immuno-electron microscopic observation revealed that in neonatal mouse brains, OPCs attach to cerebral endothelial cells via basal lamina. And finally, we developed a novel transgenic mouse line that TGF-β1 is knocked down specifically in OPCs. Neonates of these OPC-specific TGF-β1 deficient mice (OPC-specific TGF-β1 partial KO mice: PdgfraCre/Tgfb1flox/wt mice or OPC-specific TGF-β1 total KO mice: PdgfraCre/Tgfb1flox/flox mice) exhibited cerebral hemorrhage and loss of BBB function. Taken together, our current study demonstrates that OPCs increase BBB tightness by upregulating tight junction proteins via TGF-β signaling. Although astrocytes and pericytes are well-known regulators of BBB maturation and maintenance, these findings indicate that OPCs also play a pivotal role in promoting BBB integrity. PMID:25078775

  2. Potential interactions between pericytes and oligodendrocyte precursor cells in perivascular regions of cerebral white matter

    PubMed Central

    Maki, Takakuni; Maeda, Mitsuyo; Uemura, Maiko; Lo, Evan K.; Terasaki, Yasukazu; Liang, Anna C.; Shindo, Akihiro; Choi, Yoon Kyung; Taguchi, Akihiko; Matsuyama, Tomohiro; Takahashi, Ryosuke; Ihara, Masafumi; Arai, Ken

    2015-01-01

    Pericytes are embedded within basal lamina and play multiple roles in the perivascular niche in brain. Recently, oligodendrocyte precursor cells (OPCs) have also been reported to associate with cerebral endothelium. Is it possible that within this gliovascular locus, there may also exist potential spatial and functional interactions between pericytes and OPCs? Here, we demonstrated that in the perivascular region of cerebral white matter, pericytes and OPCs may attach and support each other. Immunostaining showed that pericytes and OPCs are localized in close contact with each other in mouse white matter at postnatal days 0, 60 and 240. Electron microscopic analysis confirmed that pericytes attached to OPCs via basal lamina in the perivascular region. The close proximity between these two cell types was also observed in postmortem human brains. Functional interaction between pericytes and OPCs was assessed by in vitro media transfer experiments. When OPC cultures were treated with pericyte-conditioned media, OPC number increased. Similarly, pericyte number increased when pericytes were maintained in OPC-conditioned media. Taken together, our data suggest a potential anatomical and functional interaction between pericytes and OPCs in cerebral white matter. PMID:25936593

  3. Magnetic nanoparticle-mediated gene transfer to oligodendrocyte precursor cell transplant populations is enhanced by magnetofection strategies.

    PubMed

    Jenkins, Stuart I; Pickard, Mark R; Granger, Nicolas; Chari, Divya M

    2011-08-23

    This study has tested the feasibility of using physical delivery methods, employing static and oscillating field "magnetofection" techniques, to enhance magnetic nanoparticle-mediated gene transfer to rat oligodendrocyte precursor cells derived for transplantation therapies. These cells are a major transplant population to mediate repair of damage as occurs in spinal cord injury and neurological diseases such as multiple sclerosis. We show for the first time that magnetic nanoparticles mediate effective transfer of reporter and therapeutic genes to oligodendrocyte precursors; transfection efficacy was significantly enhanced by applied static or oscillating magnetic fields, the latter using an oscillating array employing high-gradient NdFeB magnets. The effects of oscillating fields were frequency-dependent, with 4 Hz yielding optimal results. Transfection efficacies obtained using magnetofection methods were highly competitive with or better than current widely used nonviral transfection methods (e.g., electroporation and lipofection) with the additional critical advantage of high cell viability. No adverse effects were found on the cells' ability to divide or give rise to their daughter cells, the oligodendrocytes-key properties that underpin their regeneration-promoting effects. The transplantation potential of transfected cells was tested in three-dimensional tissue engineering models utilizing brain slices as the host tissue; modified transplanted cells were found to migrate, divide, give rise to daughter cells, and integrate within host tissue, further evidencing the safety of the protocols used. Our findings strongly support the concept that magnetic nanoparticle vectors in conjunction with state-of-the-art magnetofection strategies provide a technically simple and effective alternative to current methods for gene transfer to oligodendrocyte precursor cells.

  4. Production and use of lentivirus to selectively transduce primary oligodendrocyte precursor cells for in vitro myelination assays.

    PubMed

    Peckham, Haley M; Ferner, Anita H; Giuffrida, Lauren; Murray, Simon S; Xiao, Junhua

    2015-01-12

    Myelination is a complex process that involves both neurons and the myelin forming glial cells, oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous system (PNS). We use an in vitro myelination assay, an established model for studying CNS myelination in vitro. To do this, oligodendrocyte precursor cells (OPCs) are added to the purified primary rodent dorsal root ganglion (DRG) neurons to form myelinating co-cultures. In order to specifically interrogate the roles that particular proteins expressed by oligodendrocytes exert upon myelination we have developed protocols that selectively transduce OPCs using the lentivirus overexpressing wild type, constitutively active or dominant negative proteins before being seeded onto the DRG neurons. This allows us to specifically interrogate the roles of these oligodendroglial proteins in regulating myelination. The protocols can also be applied in the study of other cell types, thus providing an approach that allows selective manipulation of proteins expressed by a desired cell type, such as oligodendrocytes for the targeted study of signaling and compensation mechanisms. In conclusion, combining the in vitro myelination assay with lentiviral infected OPCs provides a strategic tool for the analysis of molecular mechanisms involved in myelination.

  5. A complex between contactin-1 and the protein tyrosine phosphatase PTPRZ controls the development of oligodendrocyte precursor cells

    SciTech Connect

    Lamprianou, Smaragda; Chatzopoulou, Elli; Thomas, Jean-Léon; Bouyain, Samuel; Harroch, Sheila

    2013-09-23

    The six members of the contactin (CNTN) family of neural cell adhesion molecules are involved in the formation and maintenance of the central nervous system (CNS) and have been linked to mental retardation and neuropsychiatric disorders such as autism. Five of the six CNTNs bind to the homologous receptor protein tyrosine phosphatases gamma (PTPRG) and zeta (PTPRZ), but the biological roles of these interactions remain unclear. We report here the cocrystal structure of the carbonic anhydrase-like domain of PTPRZ bound to tandem Ig repeats of CNTN1 and combine these structural data with binding assays to show that PTPRZ binds specifically to CNTN1 expressed at the surface of oligodendrocyte precursor cells. Furthermore, analyses of glial cell populations in wild-type and PTPRZ-deficient mice show that the binding of PTPRZ to CNTN1 expressed at the surface of oligodendrocyte precursor cells inhibits their proliferation and promotes their development into mature oligodendrocytes. Overall, these results implicate the PTPRZ/CNTN1 complex as a previously unknown modulator of oligodendrogenesis.

  6. Proliferation and differentiation of oligodendrocyte progenitor cells induced from rat embryonic neural precursor cells followed by flow cytometry.

    PubMed

    Lü, He-Zuo; Wang, Yan-Xia; Li, Ying; Fu, Sai-Li; Hang, Qin; Lu, Pei-Hua

    2008-08-01

    Previous studies have shown that a cell-intrinsic timer might determine when oligodendrocyte progenitor cells (OPCs) isolated from the central nervous system (CNS) stop dividing and initiate differentiation in a defined environment. In this report, the proliferation and differentiation of OPCs induced from neural precursor cells (NPCs) were analyzed by flow cytometry combined with carboxyfluorescein diacetate succinimidyl ester labeling and propidium iodide staining, respectively. When OPCs were cultured in OPC-medium, more than 30% of cells were in S- and G2/M-phases, and continuously self-renewed without differentiation. After exposure to thyroid hormone, there was an obvious decrease in the fraction of cells in both S- and G2/M-phases (<10%). Furthermore, the OPCs no longer proliferated, but differentiated into oligodendrocytes. The dynamic proliferation and differentiation characteristics of OPCs induced from NPCs and analyzed by flow cytometry were similar to those of OPCs isolated from the CNS and analyzed by other methods. These studies indicated that the proliferation and differentiation of OPCs can be followed simply and rapidly by flow cytometry. PMID:18473382

  7. Differential effects of antipsychotics on the development of rat oligodendrocyte precursor cells exposed to cuprizone.

    PubMed

    Xu, Haiyun; Yang, Hong-Ju; Li, Xin-Min

    2014-03-01

    Cuprizone (CPZ) is a copper-chelating agent and has been shown to induce white matter damage in mice and rats. The compromised white matter and oligodendrocytes (OLs) respond to some antipsychotics in vivo. However, little is known about the effects of antipsychotics on cultured OLs in the presence of CPZ. The aim of this study was to examine effects of some antipsychotics on developing OLs in the presence of CPZ. Oligodendrocyte progenitor cells (OPCs) were prepared from rat embryos; OLs at different developing stages were labeled with specific antibodies; levels of CNP and MBP proteins in mature OLs were assessed by Western-blot analysis; malondialdehyde (MDA) levels and activity of catalase were evaluated as well for an assessment of oxidative stress and antioxidative status. In immunofluorescent staining, CPZ was shown to inhibit the differentiation of cultured OPCs into O4-positive cells, reduce the maturation of O4-positive cells into CNP- and MBP-positive cells, and decrease levels of CNP and MBP in mature OLs. These inhibitory effects of CPZ were ameliorated by clozapine and quetiapine (QUE), but not by haloperidol and olanzapine. Further experiments were performed to explore the mechanism of the protective effects of QUE. QUE attenuated the decreases in CNP and MBP in CPZ-treated OLs, and blocked the CPZ-induced increase in MDA and decrease in catalase activity in cultured OLs. These results are relevant to the pathophysiology and treatment of schizophrenia considering the aberrant white matter development and evidence suggesting the derangement of the oxidant and antioxidant defense system in some of the patients with schizophrenia. PMID:23728937

  8. Myelin repair in vivo is increased by targeting oligodendrocyte precursor cells with nanoparticles encapsulating leukaemia inhibitory factor (LIF)

    PubMed Central

    Rittchen, Sonja; Boyd, Amanda; Burns, Alasdair; Park, Jason; Fahmy, Tarek M.; Metcalfe, Su; Williams, Anna

    2015-01-01

    Multiple sclerosis (MS) is a progressive demyelinating disease of the central nervous system (CNS). Many nerve axons are insulated by a myelin sheath and their demyelination not only prevents saltatory electrical signal conduction along the axons but also removes their metabolic support leading to irreversible neurodegeneration, which currently is untreatable. There is much interest in potential therapeutics that promote remyelination and here we explore use of leukaemia inhibitory factor (LIF), a cytokine known to play a key regulatory role in self-tolerant immunity and recently identified as a pro-myelination factor. In this study, we tested a nanoparticle-based strategy for targeted delivery of LIF to oligodendrocyte precursor cells (OPC) to promote their differentiation into mature oligodendrocytes able to repair myelin. Poly(lactic-co-glycolic acid)-based nanoparticles of ∼120 nm diameter were constructed with LIF as cargo (LIF-NP) with surface antibodies against NG-2 chondroitin sulfate proteoglycan, expressed on OPC. In vitro, NG2-targeted LIF-NP bound to OPCs, activated pSTAT-3 signalling and induced OPC differentiation into mature oligodendrocytes. In vivo, using a model of focal CNS demyelination, we show that NG2-targeted LIF-NP increased myelin repair, both at the level of increased number of myelinated axons, and increased thickness of myelin per axon. Potency was high: a single NP dose delivering picomolar quantities of LIF is sufficient to increase remyelination. Impact statement Nanotherapy-based delivery of leukaemia inhibitory factor (LIF) directly to OPCs proved to be highly potent in promoting myelin repair in vivo: this delivery strategy introduces a novel approach to delivering drugs or biologics targeted to myelin repair in diseases such as MS. PMID:25934281

  9. Myelin repair in vivo is increased by targeting oligodendrocyte precursor cells with nanoparticles encapsulating leukaemia inhibitory factor (LIF).

    PubMed

    Rittchen, Sonja; Boyd, Amanda; Burns, Alasdair; Park, Jason; Fahmy, Tarek M; Metcalfe, Su; Williams, Anna

    2015-07-01

    Multiple sclerosis (MS) is a progressive demyelinating disease of the central nervous system (CNS). Many nerve axons are insulated by a myelin sheath and their demyelination not only prevents saltatory electrical signal conduction along the axons but also removes their metabolic support leading to irreversible neurodegeneration, which currently is untreatable. There is much interest in potential therapeutics that promote remyelination and here we explore use of leukaemia inhibitory factor (LIF), a cytokine known to play a key regulatory role in self-tolerant immunity and recently identified as a pro-myelination factor. In this study, we tested a nanoparticle-based strategy for targeted delivery of LIF to oligodendrocyte precursor cells (OPC) to promote their differentiation into mature oligodendrocytes able to repair myelin. Poly(lactic-co-glycolic acid)-based nanoparticles of ∼120 nm diameter were constructed with LIF as cargo (LIF-NP) with surface antibodies against NG-2 chondroitin sulfate proteoglycan, expressed on OPC. In vitro, NG2-targeted LIF-NP bound to OPCs, activated pSTAT-3 signalling and induced OPC differentiation into mature oligodendrocytes. In vivo, using a model of focal CNS demyelination, we show that NG2-targeted LIF-NP increased myelin repair, both at the level of increased number of myelinated axons, and increased thickness of myelin per axon. Potency was high: a single NP dose delivering picomolar quantities of LIF is sufficient to increase remyelination. Impact statement Nanotherapy-based delivery of leukaemia inhibitory factor (LIF) directly to OPCs proved to be highly potent in promoting myelin repair in vivo: this delivery strategy introduces a novel approach to delivering drugs or biologics targeted to myelin repair in diseases such as MS.

  10. Remyelinating Oligodendrocyte Precursor Cell miRNAs from the Sfmbt2 Cluster Promote Cell Cycle Arrest and Differentiation

    PubMed Central

    Kuypers, Nicholas J.; Bankston, Andrew N.; Howard, Russell M.; Beare, Jason E.

    2016-01-01

    Oligodendrocyte (OL) loss contributes to the functional deficits underlying diseases with a demyelinating component. Remyelination by oligodendrocyte progenitor cells (OPCs) can restore these deficits. To understand the role that microRNAs (miRNAs) play in remyelination, 2′,3′-cyclic-nucleotide 3′-phosphodiesterase-EGFP+ mice were treated with cuprizone, and OPCs were sorted from the corpus callosum. Microarray analysis revealed that Sfmbt2 family miRNAs decreased during cuprizone treatment. One particular Sfmbt2 miRNA, miR-297c-5p, increased during mouse OPC differentiation in vitro and during callosal development in vivo. When overexpressed in both mouse embryonic fibroblasts and rat OPCs (rOPCs), cell cycle analysis revealed that miR-297c-5p promoted G1/G0 arrest. Additionally, miR-297c-5p transduction increased the number of O1+ rOPCs during differentiation. Luciferase reporter assays confirmed that miR-297c-5p targets cyclin T2 (CCNT2), the regulatory subunit of positive transcription elongation factor b, a complex that inhibits OL maturation. Furthermore, CCNT2-specific knockdown promoted rOPC differentiation while not affecting cell cycle status. Together, these data support a dual role for miR-297c-5p as both a negative regulator of OPC proliferation and a positive regulator of OL maturation via its interaction with CCNT2. SIGNIFICANCE STATEMENT This work describes the role of oligodendrocyte progenitor cell (OPC) microRNAs (miRNAs) during remyelination and development in vivo and differentiation in vitro. This work highlights the importance of miRNAs to OPC biology and describes miR-297c-5p, a novel regulator of OPC function. In addition, we identified CCNT2 as a functional target, thus providing a mechanism by which miR-297c-5p imparts its effects on differentiation. These data are important, given our lack of understanding of OPC miRNA regulatory networks and their potential clinical value. Therefore, efforts to understand the role of miR-297c-5p

  11. Effects of hypothermia on oligodendrocyte precursor cell proliferation, differentiation and maturation following hypoxia ischemia in vivo and in vitro.

    PubMed

    Xiong, Man; Li, Jin; Ma, Si-Min; Yang, Yi; Zhou, Wen-Hao

    2013-09-01

    Hypoxic-ischemia (HI) not only causes gray matter injury but also white matter injury, leading to severe neurological deficits and mortality, and only limited therapies exist. The white matter of animal models and human patients with HI-induced brain injury contains increased oligodendrocyte precursor cells (OPCs). However, little OPC can survive and mature to repair the injured white matter. Here, we test the effects of mild hypothermia on OPC proliferation, differentiation and maturation. Animals suffered to left carotid artery ligation followed by 8% oxygen for 2h in 7-day-old rats. They were divided into a hypothermic group (rectal temperature 32-33 °C for 48 h) and a normothermic group (36-37 °C for 48 h), then animals were sacrificed at 3, 7, 14 and 42 days after HI surgery. Our results showed that hypothermia successfully enhanced early OL progenitors (NG2(+)) and its proliferation in the corpus callosum (CC) after HI. Late OL progenitor (O4(+)) accumulation decreased accompanied with increased OL maturation which is detected by myelin basic protein (MBP) and proteolipid protein. (PLP) immunostaining and immunoblotting in hypothermia compared to normothermia. Additionally, using an in vitro hypoxic-ischemia model-oxygen glucose deprivation (OGD), we demonstrated that hypothermia decreased preOL accumulation and promoted OPC differentiation and maturation. Further data indicated that OPC death was significantly suppressed by hypothermia in vitro. The myelinated axons and animal behavior both markedly increased in hypothermic- compared to normothermic-animals after HI. In summary, these data suggest that hypothermia has the effects to protect OPC and to promote OL maturation and myelin repair in hypoxic-ischemic events in the neonatal rat brain. This study proposed new aspects that may contribute to elucidate the mechanism of hypothermic neuroprotection for white matter injury in neonatal rat brain injury.

  12. Grafted Human iPS Cell-Derived Oligodendrocyte Precursor Cells Contribute to Robust Remyelination of Demyelinated Axons after Spinal Cord Injury

    PubMed Central

    Kawabata, Soya; Takano, Morito; Numasawa-Kuroiwa, Yuko; Itakura, Go; Kobayashi, Yoshiomi; Nishiyama, Yuichiro; Sugai, Keiko; Nishimura, Soraya; Iwai, Hiroki; Isoda, Miho; Shibata, Shinsuke; Kohyama, Jun; Iwanami, Akio; Toyama, Yoshiaki; Matsumoto, Morio; Nakamura, Masaya; Okano, Hideyuki

    2015-01-01

    Summary Murine- and human-induced pluripotent stem cell-derived neural stem/progenitor cells (iPSC-NS/PCs) promote functional recovery following transplantation into the injured spinal cord in rodents and primates. Although remyelination of spared demyelinated axons is a critical mechanism in the regeneration of the injured spinal cord, human iPSC-NS/PCs predominantly differentiate into neurons both in vitro and in vivo. We therefore took advantage of our recently developed protocol to obtain human-induced pluripotent stem cell-derived oligodendrocyte precursor cell-enriched neural stem/progenitor cells and report the benefits of transplanting these cells in a spinal cord injury (SCI) model. We describe how this approach contributes to the robust remyelination of demyelinated axons and facilitates functional recovery after SCI. PMID:26724902

  13. Oligodendrocyte precursors migrate along vasculature in the developing nervous system.

    PubMed

    Tsai, Hui-Hsin; Niu, Jianqin; Munji, Roeben; Davalos, Dimitrios; Chang, Junlei; Zhang, Haijing; Tien, An-Chi; Kuo, Calvin J; Chan, Jonah R; Daneman, Richard; Fancy, Stephen P J

    2016-01-22

    Oligodendrocytes myelinate axons in the central nervous system and develop from oligodendrocyte precursor cells (OPCs) that must first migrate extensively during brain and spinal cord development. We show that OPCs require the vasculature as a physical substrate for migration. We observed that OPCs of the embryonic mouse brain and spinal cord, as well as the human cortex, emerge from progenitor domains and associate with the abluminal endothelial surface of nearby blood vessels. Migrating OPCs crawl along and jump between vessels. OPC migration in vivo was disrupted in mice with defective vascular architecture but was normal in mice lacking pericytes. Thus, physical interactions with the vascular endothelium are required for OPC migration. We identify Wnt-Cxcr4 (chemokine receptor 4) signaling in regulation of OPC-endothelial interactions and propose that this signaling coordinates OPC migration with differentiation. PMID:26798014

  14. Oligodendrocyte precursors migrate along vasculature in the developing nervous system.

    PubMed

    Tsai, Hui-Hsin; Niu, Jianqin; Munji, Roeben; Davalos, Dimitrios; Chang, Junlei; Zhang, Haijing; Tien, An-Chi; Kuo, Calvin J; Chan, Jonah R; Daneman, Richard; Fancy, Stephen P J

    2016-01-22

    Oligodendrocytes myelinate axons in the central nervous system and develop from oligodendrocyte precursor cells (OPCs) that must first migrate extensively during brain and spinal cord development. We show that OPCs require the vasculature as a physical substrate for migration. We observed that OPCs of the embryonic mouse brain and spinal cord, as well as the human cortex, emerge from progenitor domains and associate with the abluminal endothelial surface of nearby blood vessels. Migrating OPCs crawl along and jump between vessels. OPC migration in vivo was disrupted in mice with defective vascular architecture but was normal in mice lacking pericytes. Thus, physical interactions with the vascular endothelium are required for OPC migration. We identify Wnt-Cxcr4 (chemokine receptor 4) signaling in regulation of OPC-endothelial interactions and propose that this signaling coordinates OPC migration with differentiation.

  15. CD200 restrains macrophage attack on oligodendrocyte precursors via toll-like receptor 4 downregulation.

    PubMed

    Hayakawa, Kazuhide; Pham, Loc-Duyen D; Seo, Ji Hae; Miyamoto, Nobukazu; Maki, Takakuni; Terasaki, Yasukazu; Sakadžić, Sava; Boas, David; van Leyen, Klaus; Waeber, Christian; Kim, Kyu-Won; Arai, Ken; Lo, Eng H

    2016-04-01

    There are numerous barriers to white matter repair after central nervous system injury and the underlying mechanisms remain to be fully understood. In this study, we propose the hypothesis that inflammatory macrophages in damaged white matter attack oligodendrocyte precursor cells via toll-like receptor 4 signaling thus interfering with this endogenous progenitor recovery mechanism. Primary cell culture experiments demonstrate that peritoneal macrophages can attack and digest oligodendrocyte precursor cells via toll-like receptor 4 signaling, and this phagocytosis of oligodendrocyte precursor cells can be inhibited by using CD200-Fc to downregulate toll-like receptor 4. In an in vivo model of white matter ischemia induced by endothelin-1, treatment with CD200-Fc suppressed toll-like receptor 4 expression in peripherally circulating macrophages, thus restraining macrophage phagocytosis of oligodendrocyte precursor cells and leading to improved myelination. Taken together, these findings suggest that deleterious macrophage effects may occur after white matter ischemia, whereby macrophages attack oligodendrocyte precursor cells and interfere with endogenous recovery responses. Targeting this pathway with CD200 may offer a novel therapeutic approach to amplify endogenous oligodendrocyte precursor cell-mediated repair of white matter damage in mammalian brain.

  16. Astrocytes Promote TNF-Mediated Toxicity to Oligodendrocyte Precursors

    PubMed Central

    Kim, SunJa; Steelman, Andrew J.; Koito, Hisami; Li, Jianrong

    2010-01-01

    Neuroinflammation and increased production of tumor necrosis factor (TNF) in the central nervous system have been implicated in many neurological diseases including white matter disorders periventricular leukomalacia and multiple sclerosis. However, the exact role of TNF in these diseases and how it mediates oligodendrocyte injury remain unclear. Previously we demonstrated that lipopolysaccharide (LPS) selectively kills oligodendrocyte precursors (preOLs) in a non-cell autonomous fashion through the induction of TNF in mixed glial cultures. Here we report that activation of oligodendroglial, but not astroglial and microglial, TNFR1 is required for LPS toxicity, and that astrocytes promote TNF-mediated preOL death through a cell contact-dependent mechanism. Microglia were the sole source for TNF production in LPS-treated mixed glial cultures. Ablation of TNFR1 in mixed glia completely prevented LPS-induced death of preOLs. TNFR1-expressing preOLs were similarly susceptible to LPS treatment when seeded into wildtype and TNFR1−/− mixed glial cultures, demonstrating a requirement for oligodendroglial TNFR1 in the cell death. Although exogenous TNF failed to cause significant cell death in enriched preOL cultures, it became cytotoxic when preOLs were in contact with astrocytes. Collectively, our results demonstrate oligodendroglial TNFR1 in mediating inflammatory destruction of preOLs and suggest a previously unrecognized role for astrocytes in promoting TNF toxicity to preOLs. PMID:21044081

  17. Oligodendrocyte precursor cell-intrinsic effect of Rheb1 controls differentiation and mediates mTORC1-dependent myelination in brain.

    PubMed

    Zou, Yi; Jiang, Wanxiang; Wang, Jianqing; Li, Zhongping; Zhang, Junyan; Bu, Jicheng; Zou, Jia; Zhou, Liang; Yu, Shouyang; Cui, Yiyuan; Yang, Weiwei; Luo, Liping; Lu, Qing R; Liu, Yanhui; Chen, Mina; Worley, Paul F; Xiao, Bo

    2014-11-19

    Rheb1 is an immediate early gene that functions to activate mammalian target of rapamycin (mTor) selectively in complex 1 (mTORC1). We have demonstrated previously that Rheb1 is essential for myelination in the CNS using a Nestin-Cre driver line that deletes Rheb1 in all neural cell lineages, and recent studies using oligodendrocyte-specific CNP-Cre have suggested a preferential role for mTORC1 is myelination in the spinal cord. Here, we examine the role of Rheb1/mTORC1 in mouse oligodendrocyte lineage using separate Cre drivers for oligodendrocyte progenitor cells (OPCs) including Olig1-Cre and Olig2-Cre as well as differentiated and mature oligodendrocytes including CNP-Cre and Tmem10-Cre. Deletion of Rheb1 in OPCs impairs their differentiation to mature oligodendrocytes. This is accompanied by reduced OPC cell-cycle exit suggesting a requirement for Rheb1 in OPC differentiation. The effect of Rheb1 on OPC differentiation is mediated by mTor since Olig1-Cre deletion of mTor phenocopies Olig1-Cre Rheb1 deletion. Deletion of Rheb1 in mature oligodendrocytes, in contrast, does not disrupt developmental myelination or myelin maintenance. Loss of Rheb1 in OPCs or neural progenitors does not affect astrocyte formation in gray and white matter, as indicated by the pan-astrocyte marker Aldh1L1. We conclude that OPC-intrinsic mTORC1 activity mediated by Rheb1 is critical for differentiation of OPCs to mature oligodendrocytes, but that mature oligodendrocytes do not require Rheb1 to make myelin or maintain it in the adult brain. These studies reveal mechanisms that may be relevant for both developmental myelination and impaired remyelination in myelin disease.

  18. Id2 Mediates Oligodendrocyte Precursor Cell Maturation Arrest and Is Tumorigenic in a PDGF-Rich Microenvironment

    PubMed Central

    Havrda, Matthew C.; Paolella, Brenton R.; Ran, Cong; Jering, Karola S.; Wray, Christina M.; Sullivan, Jaclyn M.; Nailor, Audrey; Hitoshi, Yasuyuki; Israel, Mark A.

    2016-01-01

    Maturation defects occurring in adult tissue progenitor cells have the potential to contribute to tumor development; however, there is little experimental evidence implicating this cellular mechanism in the pathogenesis of solid tumors. Inhibitor of DNA-binding 2 (Id2) is a transcription factor known to regulate the proliferation and differentiation of primitive stem and progenitor cells. Id2 is derepressed in adult tissue neural stem cells (NSC) lacking the tumor suppressor Tp53 and modulates their proliferation. Constitutive expression of Id2 in differentiating NSCs resulted in maturation-resistant oligodendroglial precursor cells (OPC), a cell population implicated in the initiation of glioma. Mechanistically, Id2 overexpression was associated with inhibition of the Notch effector Hey1, a bHLH transcription factor that we here characterize as a direct transcriptional repressor of the oligodendroglial lineage determinant Olig2. Orthotopic inoculation of NSCs with enhanced Id2 expression into brains of mice engineered to express platelet-derived growth factor in the central nervous system resulted in glioma. These data implicate a mechanism of altered NSC differentiation in glioma development and characterize a novel mouse model that reflects key characteristics of the recently described proneural subtype of glioblastoma multiforme. Such findings support the emerging concept that the cellular and molecular characteristics of tumor cells are linked to the transformation of distinct subsets of adult tissue progenitors. PMID:24425046

  19. Ncx3 gene ablation impairs oligodendrocyte precursor response and increases susceptibility to experimental autoimmune encephalomyelitis.

    PubMed

    Casamassa, Antonella; La Rocca, Claudia; Sokolow, Sophie; Herchuelz, Andre; Matarese, Giuseppe; Annunziato, Lucio; Boscia, Francesca

    2016-07-01

    The Na(+) /Ca(2+) exchanger NCX3, recently identified as a myelin membrane component, is involved in the regulation of [Ca(2+) ]i during oligodendrocyte maturation. Here NCX3 involvement was studied in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Western blotting and quantitative colocalization studies performed in wild-type ncx3(+/+) mice at different stages of EAE disease showed that NCX3 protein was intensely upregulated during the chronic stage, where it was intensely coexpressed with the oligodendrocyte precursor cells (OPC) marker NG2 and the premyelinating marker CNPase. Moreover, MOG35-55 -immunized mice lacking the ncx3 gene displayed not only a reduced diameter of axons and an intact myelin ring number but also a dramatic decrease in OPC and pre-myelinating cells in the white matter of the spinal cord when compared with ncx3(+/+) . Accordingly, ncx3(-/-) and ncx3(+/-) mutants developed early onset of EAE and more severe clinical symptoms. Interestingly, cytofluorimetric analysis revealed that during the peak stage of the disease, the number of immune T-cell subsets in ncx3(-/-) mice, was not statistically different from that measured in ncx3(+/+) . Our findings demonstrate that knocking-out NCX3 impairs oligodendrocyte response and worsens clinical symptoms in EAE without altering the immune T-cell population. GLIA 2016;64:1124-1137. PMID:27120265

  20. Directional migration and transcriptional analysis of oligodendrocyte precursors subjected to stimulation of electrical signal.

    PubMed

    Li, Yongchao; Wang, Xinkun; Yao, Li

    2015-10-15

    Loss of oligodendrocytes as the result of central nervous system disease causes demyelination that impairs axon function. Effective directional migration of endogenous or grafted oligodendrocyte precursor cells (OPCs) to a lesion is crucial in the neural remyelination process. In this study, the migration of OPCs in electric fields (EFs) was investigated. We found that OPCs migrated anodally in applied EFs, and the directedness and displacement of anodal migration increased significantly when the EF strength increased from 50 to 200 mV/mm. However, EFs did not significantly affect the cell migration speed. The transcriptome of OPCs subjected to EF stimulation (100 and 200 mV/mm) was analyzed using RNA sequencing (RNA-Seq), and results were verified by the reverse transcription quantitative polymerase chain reaction. A Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the mitogen-activated protein kinase pathway that signals cell migration was significantly upregulated in cells treated with an EF of 200 mV/mm compared with control cells. Gene ontology enrichment analysis showed the downregulation of differentially expressed genes in chemotaxis. This study suggests that an applied EF is an effective cue to guiding OPC migration in neural regeneration and that transcriptional analysis contributes to the understanding of the mechanism of EF-guided cell migration.

  1. Differential clustering of Caspr by oligodendrocytes and Schwann cells.

    PubMed

    Eisenbach, Menahem; Kartvelishvily, Elena; Eshed-Eisenbach, Yael; Watkins, Trent; Sorensen, Annette; Thomson, Christine; Ranscht, Barbara; Barnett, Susan C; Brophy, Peter; Peles, Elior

    2009-11-15

    Formation of the paranodal axoglial junction (PNJ) requires the presence of three cell adhesion molecules: the 155-kDa isoform of neurofascin (NF155) on the glial membrane and a complex of Caspr and contactin found on the axolemma. Here we report that the clustering of Caspr along myelinated axons during development differs fundamentally between the central (CNS) and peripheral (PNS) nervous systems. In cultures of Schwann cells (SC) and dorsal root ganglion (DRG) neurons, membrane accumulation of Caspr was detected only after myelination. In contrast, in oligodendrocytes (OL)/DRG neurons cocultures, Caspr was clustered upon initial glial cell contact already before myelination had begun. Premyelination clustering of Caspr was detected in cultures of oligodendrocytes and retinal ganglion cells, motor neurons, and DRG neurons as well as in mixed cell cultures of rat forebrain and spinal cords. Cocultures of oligodendrocyte precursor cells isolated from contactin- or neurofascin-deficient mice with wild-type DRG neurons showed that clustering of Caspr at initial contact sites between OL processes and the axon requires glial expression of NF155 but not of contactin. These results demonstrate that the expression of membrane proteins along the axolemma is determined by the type of the contacting glial cells and is not an intrinsic characteristic of the axon. PMID:19565653

  2. Characterization of glucose-related metabolic pathways in differentiated rat oligodendrocyte lineage cells.

    PubMed

    Amaral, Ana I; Hadera, Mussie G; Tavares, Joana M; Kotter, Mark R N; Sonnewald, Ursula

    2016-01-01

    Although oligodendrocytes constitute a significant proportion of cells in the central nervous system (CNS), little is known about their intermediary metabolism. We have, therefore, characterized metabolic functions of primary oligodendrocyte precursor cell cultures at late stages of differentiation using isotope-labelled metabolites. We report that differentiated oligodendrocyte lineage cells avidly metabolize glucose in the cytosol and pyruvate derived from glucose in the mitochondria. The labelling patterns of metabolites obtained after incubation with [1,2-(13)C]glucose demonstrated that the pentose phosphate pathway (PPP) is highly active in oligodendrocytes (approximately 10% of glucose is metabolized via the PPP as indicated by labelling patterns in phosphoenolpyruvate). Mass spectrometry and magnetic resonance spectroscopy analyses of metabolites after incubation of cells with [1-(13)C]lactate or [1,2-(13)C]glucose, respectively, demonstrated that anaplerotic pyruvate carboxylation, which was thought to be exclusive to astrocytes, is also active in oligodendrocytes. Using [1,2-(13)C]acetate, we show that oligodendrocytes convert acetate into acetyl CoA which is metabolized in the tricarboxylic acid cycle. Analysis of labelling patterns of alanine after incubation of cells with [1,2-(13)C]acetate and [1,2-(13)C]glucose showed catabolic oxidation of malate or oxaloacetate. In conclusion, we report that oligodendrocyte lineage cells at late differentiation stages are metabolically highly active cells that are likely to contribute considerably to the metabolic activity of the CNS.

  3. Corticosteroids reverse cytokine-induced block of survival and differentiation of oligodendrocyte progenitor cells from rats

    PubMed Central

    Mann, Stefan A; Versmold, Beatrix; Marx, Romy; Stahlhofen, Sabine; Dietzel, Irmgard D; Heumann, Rolf; Berger, Richard

    2008-01-01

    Background Periventricular leukomalacia (PVL) is a frequent complication of preterm delivery. Proinflammatory cytokines, such as interferon-γ (IFN-γ) and tumor necrosis factor α (TNF-α) released from astrocytes and microglia activated by infection or ischemia have previously been shown to impair survival and maturation of oligodendrocyte progenitors and could thus be considered as potential factors contributing to the generation of this disease. The first goal of the present study was to investigate whether exposure of oligodendrocyte precursors to these cytokines arrests the maturation of ion currents in parallel to its effects on myelin proteins and morphological maturation. Secondly, in the search for agents, that can protect differentiating oligodendrocyte precursor cells from cytokine-induced damage we investigated effects of coapplications of corticosteroids with proinflammatory cytokines on the subsequent survival and differentiation of oligodendrocyte progenitor cells. Methods To exclude influences from factors released from other cell types purified cultures of oligodendrocyte precursors were exposed to cytokines and/or steroids and allowed to differentiate for further 6 days in culture. Changes in membrane surface were investigated with capacitance recordings and Scanning Ion Conductance Microscopy. Na+- and K+- currents were investigated using whole cell patch clamp recordings. The expression of myelin specific proteins was investigated using western blots and the precursor cells were identified using immunostaining with A2B5 antibodies. Results Surviving IFN-γ and TNF-α treated cells continued to maintain voltage-activated Na+- and K+ currents characteristic for the immature cells after 6 days in differentiation medium. Corticosterone, dihydrocorticosterone and, most prominently dexamethasone, counteracted the deleterious effects of IFN-γ and TNF-α on cell survival, A2B5-immunostaining and expression of myelin basic protein. The most potent

  4. Differentiation of oligodendrocyte precursors is impaired in the prefrontal cortex in schizophrenia.

    PubMed

    Mauney, Sarah A; Pietersen, Charmaine Y; Sonntag, Kai-C; Woo, Tsung-Ung W

    2015-12-01

    The pathophysiology of schizophrenia involves disturbances of information processing across brain regions, possibly reflecting, at least in part, a disruption in the underlying axonal connectivity. This disruption is thought to be a consequence of the pathology of myelin ensheathment, the integrity of which is tightly regulated by oligodendrocytes. In order to gain insight into the possible neurobiological mechanisms of myelin deficit, we determined the messenger RNA (mRNA) expression profile of laser captured cells that were immunoreactive for 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), a marker for oligodendrocyte progenitor cells (OPCs) in addition to differentiating and myelinating oligodendrocytes, in the white matter of the prefrontal cortex in schizophrenia subjects. Our findings pointed to the hypothesis that OPC differentiation might be impaired in schizophrenia. To address this hypothesis, we quantified cells that were immunoreactive for neural/glial antigen 2 (NG2), a selective marker for OPCs, and those that were immunoreactive for oligodendrocyte transcription factor 2 (OLIG2), an oligodendrocyte lineage marker that is expressed by OPCs and maturing oligodendrocytes. We found that the density of NG2-immunoreactive cells was unaltered, but the density of OLIG2-immunoreactive cells was significantly decreased in subjects with schizophrenia, consistent with the notion that OPC differentiation impairment may contribute to oligodendrocyte disturbances and thereby myelin deficits in schizophrenia.

  5. Neurotransplantation of magnetically labeled oligodendrocyte progenitors: Magnetic resonance tracking of cell migration and myelination

    PubMed Central

    Bulte, J. W. M.; Zhang, S.-C.; van Gelderen, P.; Herynek, V.; Jordan, E. K.; Duncan, I. D.; Frank, J. A.

    1999-01-01

    Demyelination is a common pathological finding in human neurological diseases and frequently persists as a result of failure of endogenous repair. Transplanted oligodendrocytes and their precursor cells can (re)myelinate axons, raising the possibility of therapeutic intervention. The migratory capacity of transplanted cells is of key importance in determining the extent of (re)myelination and can, at present, be evaluated only by using invasive and irreversible procedures. We have exploited the transferrin receptor as an efficient intracellular delivery device for magnetic nanoparticles, and transplanted tagged oligodendrocyte progenitor cells into the spinal cord of myelin-deficient rats. Cell migration could be easily detected by using three-dimensional magnetic resonance microscopy, with a close correlation between the areas of contrast enhancement and the achieved extent of myelination. The present results demonstrate that magnetic resonance tracking of transplanted oligodendrocyte progenitors is feasible; this technique has the potential to be easily extended to other neurotransplantation studies involving different precursor cell types. PMID:10611372

  6. Involvement of nitric oxide on kainate-induced toxicity in oligodendrocyte precursors.

    PubMed

    Martinez-Palma, Laura; Pehar, Mariana; Cassina, Patricia; Peluffo, Hugo; Castellanos, Raquel; Anesetti, Gabriel; Beckman, Joseph S; Barbeito, Luis

    2003-01-01

    The vulnerability of oligodendrocytes to excitatory amino acids may account for the pathology of white matter occurring following hypoxia/ischemia or autoimmune attack. Here, we examined the vulnerability of immature oligodendrocytes (positively labeled by galactocerobroside-C and not expressing myelin basic protein) from neonatal rat spinal cord to kainate, an agonist of excitatory amino acid receptors that induces long-lasting inward currents in immature oligodendrocytes. In particular, we studied whether kainate toxicity was linked to the endogenous production of nitric oxide. We found cultured oligodendrocytes to be highly sensitive to 24-48 h exposure to 0.5-1 mM kainate. The toxin induced striking morphological changes in oligodendrocytes, characterized by the disruption of the process network around the cell body and the growth of one or two long, thick and non-branched processes. A longer exposure to kainate resulted in massive death of oligodendrocytes, which was prevented by 6,7, dinitroquinoxaline-2,3-dione (DNQX) (30 micro M), the antagonist of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic/kainate receptors. Remarkably, we found that those oligodendrocytes displaying bipolar morphology following kainate exposure, also expressed the inducible form of nitric oxide synthase (iNOS) and nitrotyrosine immunoreactivity, suggesting that peroxynitrite could be formed by the reaction of nitric oxide with superoxide. Moreover, kainate toxicity was significantly prevented by addition of the NOS inhibitor nitro-L-arginine methyl ester (L-NAME), further suggesting that nitric oxide-derived oxidants contribute to excitotoxic mechanisms in immature oligodendrocytes.

  7. Indian hedgehog B function is required for the specification of oligodendrocyte progenitor cells in the zebrafish CNS.

    PubMed

    Chung, Ah-Young; Kim, Suhyun; Kim, Eunmi; Kim, Dohyun; Jeong, Inyoung; Cha, Young Ryun; Bae, Young-ki; Park, Seung Woo; Lee, Jehee; Park, Hae-Chul

    2013-01-23

    A subset of ventral spinal cord precursors, known as pMN precursor cells, initially generate motor neurons and then oligodendrocyte progenitor cells (OPCs), which migrate and differentiate as myelinating oligodendrocytes in the developing neural tube. The switch between motor neuron and oligodendrocyte production by the pMN neural precursors is an important step in building a functional nervous system. However, the precise mechanism that orchestrates the sequential generation of motor neurons and oligodendrocytes within the common population of pMN precursors is still unclear. The current study demonstrates that Indian Hedgehog b (Ihhb), previously known as Echidna Hedgehog, begins to be expressed in the floor plate cells of the ventral spinal cord at the time of OPC specification in zebrafish embryos. Ihhb loss-of-function analysis revealed that Ihhb function is required for OPC specification from pMN precursors by negatively regulating the proliferation of neural precursors. Finally, results showed that Sonic Hedgehog (Shh) could not replace Ihhb function in OPC specification, suggesting that Ihhb and Shh play separate roles in OPC specification. Altogether, data from the present study suggested a novel mechanism, mediated by Ihhb, for the sequential generation of motor neurons and oligodendrocytes from pMN precursors in the ventral spinal cord of zebrafish embryos.

  8. Indian hedgehog B function is required for the specification of oligodendrocyte progenitor cells in the zebrafish CNS.

    PubMed

    Chung, Ah-Young; Kim, Suhyun; Kim, Eunmi; Kim, Dohyun; Jeong, Inyoung; Cha, Young Ryun; Bae, Young-ki; Park, Seung Woo; Lee, Jehee; Park, Hae-Chul

    2013-01-23

    A subset of ventral spinal cord precursors, known as pMN precursor cells, initially generate motor neurons and then oligodendrocyte progenitor cells (OPCs), which migrate and differentiate as myelinating oligodendrocytes in the developing neural tube. The switch between motor neuron and oligodendrocyte production by the pMN neural precursors is an important step in building a functional nervous system. However, the precise mechanism that orchestrates the sequential generation of motor neurons and oligodendrocytes within the common population of pMN precursors is still unclear. The current study demonstrates that Indian Hedgehog b (Ihhb), previously known as Echidna Hedgehog, begins to be expressed in the floor plate cells of the ventral spinal cord at the time of OPC specification in zebrafish embryos. Ihhb loss-of-function analysis revealed that Ihhb function is required for OPC specification from pMN precursors by negatively regulating the proliferation of neural precursors. Finally, results showed that Sonic Hedgehog (Shh) could not replace Ihhb function in OPC specification, suggesting that Ihhb and Shh play separate roles in OPC specification. Altogether, data from the present study suggested a novel mechanism, mediated by Ihhb, for the sequential generation of motor neurons and oligodendrocytes from pMN precursors in the ventral spinal cord of zebrafish embryos. PMID:23345245

  9. Characterization of glucose‐related metabolic pathways in differentiated rat oligodendrocyte lineage cells

    PubMed Central

    Amaral, Ana I.; Hadera, Mussie G.; Tavares, Joana M.

    2015-01-01

    Although oligodendrocytes constitute a significant proportion of cells in the central nervous system (CNS), little is known about their intermediary metabolism. We have, therefore, characterized metabolic functions of primary oligodendrocyte precursor cell cultures at late stages of differentiation using isotope‐labelled metabolites. We report that differentiated oligodendrocyte lineage cells avidly metabolize glucose in the cytosol and pyruvate derived from glucose in the mitochondria. The labelling patterns of metabolites obtained after incubation with [1,2‐13C]glucose demonstrated that the pentose phosphate pathway (PPP) is highly active in oligodendrocytes (approximately 10% of glucose is metabolized via the PPP as indicated by labelling patterns in phosphoenolpyruvate). Mass spectrometry and magnetic resonance spectroscopy analyses of metabolites after incubation of cells with [1‐13C]lactate or [1,2‐13C]glucose, respectively, demonstrated that anaplerotic pyruvate carboxylation, which was thought to be exclusive to astrocytes, is also active in oligodendrocytes. Using [1,2‐13C]acetate, we show that oligodendrocytes convert acetate into acetyl CoA which is metabolized in the tricarboxylic acid cycle. Analysis of labelling patterns of alanine after incubation of cells with [1,2‐13C]acetate and [1,2‐13C]glucose showed catabolic oxidation of malate or oxaloacetate. In conclusion, we report that oligodendrocyte lineage cells at late differentiation stages are metabolically highly active cells that are likely to contribute considerably to the metabolic activity of the CNS. GLIA 2016;64:21–34 PMID:26352325

  10. Maturation and electrophysiological properties of human pluripotent stem cell-derived oligodendrocytes.

    PubMed

    Livesey, Matthew R; Magnani, Dario; Cleary, Elaine M; Vasistha, Navneet A; James, Owain T; Selvaraj, Bhuvaneish T; Burr, Karen; Story, David; Shaw, Christopher E; Kind, Peter C; Hardingham, Giles E; Wyllie, David J A; Chandran, Siddharthan

    2016-04-01

    Rodent-based studies have shown that the membrane properties of oligodendrocytes play prominent roles in their physiology and shift markedly during their maturation from the oligodendrocyte precursor cell (OPC) stage. However, the conservation of these properties and maturation processes in human oligodendrocytes remains unknown, despite their dysfunction being implicated in human neurodegenerative diseases such as multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Here, we have defined the membrane properties of human oligodendrocytes derived from pluripotent stem cells as they mature from the OPC stage, and have identified strong conservation of maturation-specific physiological characteristics reported in rodent systems. We find that as human oligodendrocytes develop and express maturation markers, they exhibit a progressive decrease in voltage-gated sodium and potassium channels and a loss of tetrodotoxin-sensitive spiking activity. Concomitant with this is an increase in inwardly rectifying potassium channel activity, as well as a characteristic switch in AMPA receptor composition. All these steps mirror the developmental trajectory observed in rodent systems. Oligodendrocytes derived from mutant C9ORF72-carryng ALS patient induced pluripotent stem cells did not exhibit impairment to maturation and maintain viability with respect to control lines despite the presence of RNA foci, suggesting that maturation defects may not be a primary feature of this mutation. Thus, we have established that the development of human oligodendroglia membrane properties closely resemble those found in rodent cells and have generated a platform to enable the impact of human neurodegenerative disease-causing mutations on oligodendrocyte maturation to be studied. PMID:26763608

  11. Ghrelin Inhibits Oligodendrocyte Cell Death by Attenuating Microglial Activation

    PubMed Central

    Lee, Jee Youn

    2014-01-01

    Background Recently, we reported the antiapoptotic effect of ghrelin in spinal cord injury-induced apoptotic cell death of oligodendrocytes. However, how ghrelin inhibits oligodendrocytes apoptosis, is still unknown. Therefore, in the present study, we examined whether ghrelin inhibits microglia activation and thereby inhibits oligodendrocyte apoptosis. Methods Using total cell extracts prepared from BV-2 cells activated by lipopolysaccharide (LPS) with or without ghrelin, the levels of p-p38 phosphor-p38 mitogen-activated protein kinase (p-p38MAPK), phospho-c-Jun N-terminal kinase (pJNK), p-c-Jun, and pro-nerve growth factor (proNGF) were examined by Western blot analysis. Reactive oxygen species (ROS) production was investigated by using dichlorodihydrofluorescein diacetate. To examine the effect of ghrelin on oligodendrocyte cell death, oligodendrocytes were cocultured in transwell chambers of 24-well plates with LPS-stimulated BV-2 cells. After 48 hours incubation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and terminal deoxynucleotidyl transferase 2'-deoxyuridine, 5'-triphosphate nick end labeling staining were assessed. Results Ghrelin treatment significantly decreased levels of p-p38MAPK, p-JNK, p-c-Jun, and proNGF in LPS-stimulated BV-2 cells. ROS production increased in LPS-stimulated BV-2 cells was also significantly inhibited by ghrelin treatment. In addition, ghrelin significantly inhibited oligodendrocyte cell death when cocultured with LPS-stimulated BV-2 cells. Conclusion Ghrelin inhibits oligodendrocyte cell death by decreasing proNGF and ROS production as well as p38MAPK and JNK activation in activated microglia as an anti-inflammatory hormone. PMID:25309797

  12. EGF induces the progeny of subventricular zone type B cells to migrate and differentiate into oligodendrocytes

    PubMed Central

    Gonzalez-Perez, Oscar; Romero-Rodriguez, Ricardo; Soriano-Navarro, Mario; Garcia-Verdugo, Jose Manuel; Alvarez-Buylla, Arturo

    2012-01-01

    New neurons and oligodendrocytes are continuously produced in the subventricular zone (SVZ) of adult mammalian brains. Under normal conditions, the SVZ primary precursors (type B1 cells) generate type C cells, the majority of which differentiate into neurons, with a small sub-population giving rise to oligodendrocytes. Epidermal growth factor (EGF) signaling induces dramatic proliferation and migration of SVZ progenitors, a process that could have therapeutic applications. However, the fate of cells derived from adult neural stem cells after EGF stimulation remains unknown. Here, we specifically labeled SVZ B1 cells and followed their progeny after a 7-day intraventricular infusion of EGF. Cells derived from SVZ B1 cells invaded the parenchyma around the SVZ into striatum, septum, corpus callosum, and fimbria-fornix. The majority of these B1-derived cells gave rise to cells in the oligodendrocyte lineage including local NG2+ progenitors, pre-myelinating and myelinating oligodendrocytes. SVZ B1 cells also gave rise to a population of highly branched S100β+/GFAP+ cells in the striatum and septum, but no neuronal differentiation was observed. Interestingly, when demyelination was induced in the corpus callosum by a local injection of lysolecithin, increased number of cells derived from SVZ B1 cells and stimulated to migrate and proliferate by EGF infusion, differentiated into oligodendrocytes at the lesion site. This work indicates that EGF infusion can greatly expand the number of progenitors derived from the SVZ primary progenitors, which migrate and differentiate into oligodendroglial cells. This expanded population could be used for the repair of white matter lesions. PMID:19544429

  13. Pluripotent stem cell-derived radial glia-like cells as stable intermediate for efficient generation of human oligodendrocytes.

    PubMed

    Gorris, Raphaela; Fischer, Julia; Erwes, Kim Lina; Kesavan, Jaideep; Peterson, Daniel A; Alexander, Michael; Nöthen, Markus M; Peitz, Michael; Quandel, Tamara; Karus, Michael; Brüstle, Oliver

    2015-12-01

    Neural precursor cells (NPCs) derived from human pluripotent stem cells (hPSCs) represent an attractive tool for the in vitro generation of various neural cell types. However, the developmentally early NPCs emerging during hPSC differentiation typically show a strong propensity for neuronal differentiation, with more limited potential for generating astrocytes and, in particular, for generating oligodendrocytes. This phenomenon corresponds well to the consecutive and protracted generation of neurons and GLIA during normal human development. To obtain a more gliogenic NPC type, we combined growth factor-mediated expansion with pre-exposure to the differentiation-inducing agent retinoic acid and subsequent immunoisolation of CD133-positive cells. This protocol yields an adherent and self-renewing population of hindbrain/spinal cord radial glia (RG)-like neural precursor cells (RGL-NPCs) expressing typical neural stem cell markers such as nestin, ASCL1, SOX2, and PAX6 as well as RG markers BLBP, GLAST, vimentin, and GFAP. While RGL-NPCs maintain the ability for tripotential differentiation into neurons, astrocytes, and oligodendrocytes, they exhibit greatly enhanced propensity for oligodendrocyte generation. Under defined differentiation conditions promoting the expression of the major oligodendrocyte fate-determinants OLIG1/2, NKX6.2, NKX2.2, and SOX10, RGL-NPCs efficiently convert into NG2-positive oligodendroglial progenitor cells (OPCs) and are subsequently capable of in vivo myelination. Representing a stable intermediate between PSCs and OPCs, RGL-NPCs expedite the generation of PSC-derived oligodendrocytes with O4-, 4860-, and myelin basic protein (MBP)-positive cells that already appear within 7 weeks following growth factor withdrawal-induced differentiation. Thus, RGL-NPCs may serve as robust tool for time-efficient generation of human oligodendrocytes from embryonic and induced pluripotent stem cells.

  14. Elevated in vivo levels of a single transcription factor directly convert satellite glia into oligodendrocyte-like cells.

    PubMed

    Weider, Matthias; Wegener, Amélie; Schmitt, Christian; Küspert, Melanie; Hillgärtner, Simone; Bösl, Michael R; Hermans-Borgmeyer, Irm; Nait-Oumesmar, Brahim; Wegner, Michael

    2015-02-01

    Oligodendrocytes are the myelinating glia of the central nervous system and ensure rapid saltatory conduction. Shortage or loss of these cells leads to severe malfunctions as observed in human leukodystrophies and multiple sclerosis, and their replenishment by reprogramming or cell conversion strategies is an important research aim. Using a transgenic approach we increased levels of the transcription factor Sox10 throughout the mouse embryo and thereby prompted Fabp7-positive glial cells in dorsal root ganglia of the peripheral nervous system to convert into cells with oligodendrocyte characteristics including myelin gene expression. These rarely studied and poorly characterized satellite glia did not go through a classic oligodendrocyte precursor cell stage. Instead, Sox10 directly induced key elements of the regulatory network of differentiating oligodendrocytes, including Olig2, Olig1, Nkx2.2 and Myrf. An upstream enhancer mediated the direct induction of the Olig2 gene. Unlike Sox10, Olig2 was not capable of generating oligodendrocyte-like cells in dorsal root ganglia. Our findings provide proof-of-concept that Sox10 can convert conducive cells into oligodendrocyte-like cells in vivo and delineates options for future therapeutic strategies.

  15. WIN55, 212-2 promotes differentiation of oligodendrocyte precursor cells and improve remyelination through regulation of the phosphorylation level of the ERK 1/2 via cannabinoid receptor 1 after stroke-induced demyelination.

    PubMed

    Sun, Jing; Fang, Yinquan; Chen, Tao; Guo, Jingjing; Yan, Jun; Song, Shu; Zhang, Luyong; Liao, Hong

    2013-01-23

    In stroke, a common cause of neurological disability in adults is that the myelin sheaths are lost through the injury or death of mature oligodendrocytes, and the failure of remyelination may be often due to insufficient proliferation and differentiation of oligodendroglial progenitors. In the current study, we used middle cerebral artery occlusion (MCAO) to induced transient focal cerebral ischemia, and found that WIN55, 212-2 augmented actively proliferating oligodendrocytes measured by CC1 immunoreactive cells within the peri-infarct areas. To establish whether these effects were associated with changes in myelin formation, we analyzed the expression of myelin basic protein (MBP) and myelin ultrastructure. We found that WIN55, 212-2 showed more extensive remyelination than vehicle at 14 days post injection (dpi). The extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling pathway may be involved in OPCs differentiation. To determine the regulatory effect of WIN55, 212-2 post-treatment on phospho-ERK 1/2 (p-ERK 1/2) after ischemia/reperfusion, Western blot analysis was performed. We found that WIN55, 212-2 regulated the phosphorylation level of the ERK 1/2 to promote OPCs survival and differentiation. Notably, cannabinoid receptor 1 is coupled to the activation of the ERK cascade. Following rimonabant combined treatment, the effect of WIN55, 212-2 on regulating the phosphorylation level of the ERK 1/2 was reversed, and the effect of accelerated myelin formation was partially inhibited. Together, we first found that WIN55, 212-2 promoted OPCs differentiation and remyelination through regulation of the level of the p-ERK 1/2 via cannabinoid receptor 1.

  16. Erythropoietin (EPO) increases myelin gene expression in CG4 oligodendrocyte cells through the classical EPO receptor.

    PubMed

    Cervellini, Ilaria; Annenkov, Alexander; Brenton, Thomas; Chernajovsky, Yuti; Ghezzi, Pietro; Mengozzi, Manuela

    2013-08-28

    Erythropoietin (EPO) has protective effects in neurodegenerative and neuroinflammatory diseases, including in animal models of multiple sclerosis, where EPO decreases disease severity. EPO also promotes neurogenesis and is protective in models of toxic demyelination. In this study, we asked whether EPO could promote neurorepair by also inducing remyelination. In addition, we investigated whether the effect of EPO could be mediated by the classical erythropoietic EPO receptor (EPOR), since it is still questioned if EPOR is functional in nonhematopoietic cells. Using CG4 cells, a line of rat oligodendrocyte precursor cells, we found that EPO increases the expression of myelin genes (myelin oligodendrocyte glycoprotein [MOG] and myelin basic protein [MBP]). EPO had no effect in wild-type CG4 cells, which do not express EPOR, whereas it increased MOG and MBP expression in cells engineered to overexpress EPOR (CG4-EPOR). This was reflected in a marked increase in MOG protein levels, as detected by Western blot. In these cells, EPO induced by 10-fold the early growth response gene 2 (Egr2), which is required for peripheral myelination. However, Egr2 silencing with a siRNA did not reverse the effect of EPO, indicating that EPO acts through other pathways. In conclusion, EPO induces the expression of myelin genes in oligodendrocytes and this effect requires the presence of EPOR. This study demonstrates that EPOR can mediate neuroreparative effects.

  17. Human Traumatic Brain Injury Results in Oligodendrocyte Death and Increases the Number of Oligodendrocyte Progenitor Cells.

    PubMed

    Flygt, Johanna; Gumucio, Astrid; Ingelsson, Martin; Skoglund, Karin; Holm, Jonatan; Alafuzoff, Irina; Marklund, Niklas

    2016-06-01

    Oligodendrocyte (OL) death may contribute to white matter pathology, a common cause of network dysfunction and persistent cognitive problems in patients with traumatic brain injury (TBI). Oligodendrocyte progenitor cells (OPCs) persist throughout the adult CNS and may replace dead OLs. OL death and OPCs were analyzed by immunohistochemistry of human brain tissue samples, surgically removed due to life-threatening contusions and/or focal brain swelling at 60.6 ± 75 hours (range 4-192 hours) postinjury in 10 severe TBI patients (age 51.7 ± 18.5 years). Control brain tissue was obtained postmortem from 5 age-matched patients without CNS disorders. TUNEL and CC1 co-labeling was used to analyze apoptotic OLs, which were increased in injured brain tissue (p < 0.05), without correlation with time from injury until surgery. The OPC markers Olig2, A2B5, NG2, and PDGFR-α were used. In contrast to the number of single-labeled Olig2, A2B5, NG2, and PDGFR-α-positive cells, numbers of Olig2 and A2B5 co-labeled cells were increased in TBI samples (p < 0.05); this was inversely correlated with time from injury to surgery (r = -0.8, p < 0.05). These results indicate that severe focal human TBI results in OL death and increases in OPCs postinjury, which may influence white matter function following TBI.

  18. Laminin promotes metalloproteinase-mediated dystroglycan processing to regulate oligodendrocyte progenitor cell proliferation.

    PubMed

    Leiton, Cindy V; Aranmolate, Azeez; Eyermann, Christopher; Menezes, Michael J; Escobar-Hoyos, Luisa F; Husain, Solomon; Winder, Steve J; Colognato, Holly

    2015-11-01

    The cell surface receptor dystroglycan mediates interactions between oligodendroglia and laminin-211, an extracellular matrix protein that regulates timely oligodendroglial development. However, dystroglycan's precise role in oligodendroglial development and the potential mechanisms to regulate laminin-dystroglycan interactions remain unknown. Here we report that oligodendroglial dystroglycan is cleaved by metalloproteinases, thereby uncoupling oligodendroglia from laminin binding. Dystroglycan cleavage is selectively stimulated by oligodendrocyte progenitor cell attachment to laminin-211, but not laminin-111 or poly-D-lysine. In addition, dystroglycan cleavage occurs most prominently in oligodendrocyte progenitor cells, with limited dystroglycan cleavage observed in differentiating oligodendrocytes. When dystroglycan cleavage is blocked by metalloproteinase inhibitors, oligodendrocyte progenitor cell proliferation is substantially decreased. Conversely, expression of the intracellular portion of cleaved dystroglycan results in increased oligodendrocyte progenitor cell proliferation, suggesting that endogenous dystroglycan cleavage may promote oligodendrocyte progenitor cell cycle progression. Intriguingly, while matrix metalloproteinase-2 and/or -9 have been reported to be responsible for dystroglycan cleavage, we find that these two metalloproteinases are neither necessary nor sufficient for cleavage of oligodendroglial dystroglycan. In summary, laminin-211 stimulates metalloproteinase-mediated dystroglycan cleavage in oligodendrocyte progenitor cells (but not in differentiated oligodendrocytes), which in turn promotes oligodendrocyte progenitor cell proliferation. This novel regulation of oligodendroglial laminin-dystroglycan interactions may have important consequences for oligodendroglial differentiation, both during development and during disease when metalloproteinase levels become elevated.

  19. Mechanisms of oligodendrocyte regeneration from ventricular-subventricular zone-derived progenitor cells in white matter diseases

    PubMed Central

    Maki, Takakuni; Liang, Anna C.; Miyamoto, Nobukazu; Lo, Eng H.; Arai, Ken

    2013-01-01

    White matter dysfunction is an important part of many CNS disorders including multiple sclerosis (MS) and vascular dementia. Within injured areas, myelin loss and oligodendrocyte death may trigger endogenous attempts at regeneration. However, during disease progression, remyelination failure may eventually occur due to impaired survival/proliferation, migration/recruitment, and differentiation of oligodendrocyte precursor cells (OPCs). The ventricular-subventricular zone (V-SVZ) and the subgranular zone (SGZ) are the main sources of neural stem/progenitor cells (NSPCs), which can give rise to neurons as well as OPCs. Under normal conditions in the adult brain, the V-SVZ progenitors generate a large number of neurons with a small number of oligodendrocyte lineage cells. However, after demyelination, the fate of V-SVZ-derived progenitor cells shifts from neurons to OPCs, and these newly generated OPCs migrate to the demyelinating lesions to ease white matter damage. In this mini-review, we will summarize the recent studies on extrinsic (e.g., vasculature, extracellular matrix (ECM), cerebrospinal fluid (CSF)) and intrinsic (e.g., transcription factors, epigenetic modifiers) factors, which mediate oligodendrocyte generation from the V-SVZ progenitor cells. A deeper understanding of the mechanisms that regulate the fate of V-SVZ progenitor cells may lead to new therapeutic approaches for ameliorating white matter dysfunction and damage in CNS disorders. PMID:24421755

  20. Migrating Oligodendrocyte Progenitor Cells Swell Prior to Soma Dislocation

    PubMed Central

    Happel, Patrick; Möller, Kerstin; Schwering, Nina K.; Dietzel, Irmgard D.

    2013-01-01

    The migration of oligodendrocyte progenitor cells (OPCs) to the white matter is an indispensable requirement for an intact brain function. The mechanism of cell migration in general is not yet completely understood. Nevertheless, evidence is accumulating that besides the coordinated rearrangement of the cytoskeleton, a finetuned interplay of ion and water fluxes across the cell membrane is essential for cell migration. One part of a general hypothesis is that a local volume increase towards the direction of movement triggers a mechano-activated calcium influx that regulates various procedures at the rear end of a migrating cell. Here, we investigated cell volume changes of migrating OPCs using scanning ion conductance microscopy. We found that during accelerated migration OPCs undergo an increase in the frontal cell body volume. These findings are supplemented with time lapse calcium imaging data that hint an increase in calcium content the frontal part of the cell soma. PMID:23657670

  1. Cdon, a cell surface protein, mediates oligodendrocyte differentiation and myelination.

    PubMed

    Wang, Li-Chun; Almazan, Guillermina

    2016-06-01

    During central nervous system development, oligodendrocyte progenitors (OLPs) establish multiple branched processes and axonal contacts to initiate myelination. A complete understanding of the molecular signals implicated in cell surface interaction to initiate myelination/remyelination is currently lacking. The objective of our study was to assess whether Cdon, a cell surface protein that was shown to participate in muscle and neuron cell development, is involved in oligodendrocyte (OLG) differentiation and myelination. Here, we demonstrate that endogenous Cdon protein is expressed in OLPs, increasing in the early differentiation stages and decreasing in mature OLGs. Immunocytochemistry of endogenous Cdon showed localization on both OLG cell membranes and cellular processes exhibiting puncta- or varicosity-like structures. Cdon knockdown with siRNA decreased protein levels by 62% as well as two myelin-specific proteins, MBP and MAG. Conversely, overexpression of full-length rat Cdon increased myelin proteins in OLGs. The complexity of OLGs branching and contact point numbers with axons were also increased in Cdon overexpressing cells growing alone or in coculture with dorsal root ganglion neurons (DRGNs). Furthermore, myelination of DRGNs was decreased when OLPs were transfected with Cdon siRNA. Altogether, our results suggest that Cdon participates in OLG differentiation and myelination, most likely in the initial stages of development.

  2. Spatiotemporal ablation of CXCR2 on oligodendrocyte lineage cells

    PubMed Central

    Spangler, Lisa C.; Prager, Briana; Benson, Bryan; Hu, BingQing; Shi, Samuel; Love, Anna; Zhang, CunJin; Yu, Meigen; Cotleur, Anne C.

    2015-01-01

    Background: Residual CXCR2 expression on CNS cells in Cxcr2+/−→Cxcr2−/− chimeric animals slowed remyelination after both experimental autoimmune encephalomyelitis and cuprizone-induced demyelination. Methods: We generated Cxcr2fl/−:PLPCre-ER(T) mice enabling an inducible, conditional deletion of Cxcr2 on oligodendrocyte lineage cells of the CNS. Cxcr2fl/−:PLPCre-ER(T) mice were evaluated in 2 demyelination/remyelination models: cuprizone-feeding and in vitro lysophosphatidylcholine (LPC) treatment of cerebellar slice cultures. Results: Cxcr2fl/−:PLPCre-ER(T)+ (termed Cxcr2-cKO) mice showed better myelin repair 4 days after LPC-induced demyelination of cerebellar slice cultures. Cxcr2-cKOs also displayed enhanced hippocampal remyelination after a 2-week recovery from 6-week cuprizone feeding. Conclusion: Using 2 independent demyelination/remyelination models, our data document enhanced myelin repair in Cxcr2-cKO mice, consistent with the data obtained from radiation chimerism studies of germline CXCR2. Further experiments are appropriate to explore how CXCR2 function in the oligodendrocyte lineage accelerates myelin repair. PMID:26668819

  3. A Novel Approach for Amplification and Purification of Mouse Oligodendrocyte Progenitor Cells

    PubMed Central

    Yang, Junlin; Cheng, Xuejun; Shen, Jiaxi; Xie, Binghua; Zhao, Xiaofeng; Zhang, Zunyi; Cao, Qilin; Shen, Ying; Qiu, Mengsheng

    2016-01-01

    Although transgenic and knockout mice are widely used to study the specification and differentiation of oligodendrocyte precursor cells (OPCs), mouse primary OPCs are difficult to be purified and maintained, and many in vitro studies have to resort to rat OPCs as substitutes. In this study, we reported that mouse O4 negative early-stage OPCs can be obtained by culturing cortical tissue blocks, and the simultaneous treatment of OPCs with Platelet Derived Growth Factor-AA (PDGFaa), basic fibroblast growth factor (bFGF), and epidermal growth factor (EGF) is the key for the propagation of mouse OPCs in culture. EGF was found to be a potent mitogen for OPCs and cooperate with PDGFaa to extend cell division and inhibit their differentiation. EGF also collaborates with PDGFaa and bFGF to convert bipolar or tripolar OPCs to more vital fibroblast-like OPCs without compromising their oligodendrocyte differentiation potential. In addition, EGF promoted the survival and proliferation of glial progenitor cells (GPCs) derived from primary OPC cultures, and a mixture of GPCs and OPCs can be obtained and propagated in the presence of EGF, bFGF, and PDGFaa. Once EGF is withdrawn, GPC population decreased sharply and fibroblast-like OPCs changed into typical OPCs morphology, then homogeneous OPCs were obtained subsequently. PMID:27597818

  4. A Novel Approach for Amplification and Purification of Mouse Oligodendrocyte Progenitor Cells

    PubMed Central

    Yang, Junlin; Cheng, Xuejun; Shen, Jiaxi; Xie, Binghua; Zhao, Xiaofeng; Zhang, Zunyi; Cao, Qilin; Shen, Ying; Qiu, Mengsheng

    2016-01-01

    Although transgenic and knockout mice are widely used to study the specification and differentiation of oligodendrocyte precursor cells (OPCs), mouse primary OPCs are difficult to be purified and maintained, and many in vitro studies have to resort to rat OPCs as substitutes. In this study, we reported that mouse O4 negative early-stage OPCs can be obtained by culturing cortical tissue blocks, and the simultaneous treatment of OPCs with Platelet Derived Growth Factor-AA (PDGFaa), basic fibroblast growth factor (bFGF), and epidermal growth factor (EGF) is the key for the propagation of mouse OPCs in culture. EGF was found to be a potent mitogen for OPCs and cooperate with PDGFaa to extend cell division and inhibit their differentiation. EGF also collaborates with PDGFaa and bFGF to convert bipolar or tripolar OPCs to more vital fibroblast-like OPCs without compromising their oligodendrocyte differentiation potential. In addition, EGF promoted the survival and proliferation of glial progenitor cells (GPCs) derived from primary OPC cultures, and a mixture of GPCs and OPCs can be obtained and propagated in the presence of EGF, bFGF, and PDGFaa. Once EGF is withdrawn, GPC population decreased sharply and fibroblast-like OPCs changed into typical OPCs morphology, then homogeneous OPCs were obtained subsequently.

  5. A Novel Approach for Amplification and Purification of Mouse Oligodendrocyte Progenitor Cells.

    PubMed

    Yang, Junlin; Cheng, Xuejun; Shen, Jiaxi; Xie, Binghua; Zhao, Xiaofeng; Zhang, Zunyi; Cao, Qilin; Shen, Ying; Qiu, Mengsheng

    2016-01-01

    Although transgenic and knockout mice are widely used to study the specification and differentiation of oligodendrocyte precursor cells (OPCs), mouse primary OPCs are difficult to be purified and maintained, and many in vitro studies have to resort to rat OPCs as substitutes. In this study, we reported that mouse O4 negative early-stage OPCs can be obtained by culturing cortical tissue blocks, and the simultaneous treatment of OPCs with Platelet Derived Growth Factor-AA (PDGFaa), basic fibroblast growth factor (bFGF), and epidermal growth factor (EGF) is the key for the propagation of mouse OPCs in culture. EGF was found to be a potent mitogen for OPCs and cooperate with PDGFaa to extend cell division and inhibit their differentiation. EGF also collaborates with PDGFaa and bFGF to convert bipolar or tripolar OPCs to more vital fibroblast-like OPCs without compromising their oligodendrocyte differentiation potential. In addition, EGF promoted the survival and proliferation of glial progenitor cells (GPCs) derived from primary OPC cultures, and a mixture of GPCs and OPCs can be obtained and propagated in the presence of EGF, bFGF, and PDGFaa. Once EGF is withdrawn, GPC population decreased sharply and fibroblast-like OPCs changed into typical OPCs morphology, then homogeneous OPCs were obtained subsequently. PMID:27597818

  6. Direct and indirect effects of immune and central nervous system-resident cells on human oligodendrocyte progenitor cell differentiation.

    PubMed

    Moore, Craig S; Cui, Qiao-Ling; Warsi, Nebras M; Durafourt, Bryce A; Zorko, Nika; Owen, David R; Antel, Jack P; Bar-Or, Amit

    2015-01-15

    In multiple sclerosis, successful remyelination within the injured CNS is largely dependent on the survival and differentiation of oligodendrocyte progenitor cells. During inflammatory injury, oligodendrocytes and oligodendrocyte progenitor cells within lesion sites are exposed to secreted products derived from both infiltrating immune cell subsets and CNS-resident cells. Such products may be considered either proinflammatory or anti-inflammatory and have the potential to contribute to both injury and repair processes. Within the CNS, astrocytes also contribute significantly to oligodendrocyte biology during development and following inflammatory injury. The overall objective of the current study was to determine how functionally distinct proinflammatory and anti-inflammatory human immune cell subsets, implicated in multiple sclerosis, can directly and/or indirectly (via astrocytes) impact human oligodendrocyte progenitor cell survival and differentiation. Proinflammatory T cell (Th1/Th17) and M1-polarized myeloid cell supernatants had a direct cytotoxic effect on human A2B5(+) neural progenitors, resulting in decreased O4(+) and GalC(+) oligodendrocyte lineage cells. Astrocyte-conditioned media collected from astrocytes pre-exposed to the same proinflammatory supernatants also resulted in decreased oligodendrocyte progenitor cell differentiation without an apparent increase in cell death and was mediated through astrocyte-derived CXCL10, yet this decrease in differentiation was not observed in the more differentiated oligodendrocytes. Th2 and M2 macrophage or microglia supernatants had neither a direct nor an indirect impact on oligodendrocyte progenitor cell differentiation. We conclude that proinflammatory immune cell responses can directly and indirectly (through astrocytes) impact the fate of immature oligodendrocyte-lineage cells, with oligodendrocyte progenitor cells more vulnerable to injury compared with mature oligodendrocytes.

  7. Myelin-mediated inhibition of oligodendrocyte precursor differentiation can be overcome by pharmacological modulation of Fyn-RhoA and protein kinase C signalling

    PubMed Central

    Baer, Alexandra S.; Syed, Yasir A.; Kang, Sung Ung; Mitteregger, Dieter; Vig, Raluca; ffrench-Constant, Charles; Franklin, Robin J. M.; Altmann, Friedrich; Lubec, Gert

    2009-01-01

    Failure of oligodendrocyte precursor cell (OPC) differentiation contributes significantly to failed myelin sheath regeneration (remyelination) in chronic demyelinating diseases. Although the reasons for this failure are not completely understood, several lines of evidence point to factors present following demyelination that specifically inhibit differentiation of cells capable of generating remyelinating oligodendrocytes. We have previously demonstrated that myelin debris generated by demyelination inhibits remyelination by inhibiting OPC differentiation and that the inhibitory effects are associated with myelin proteins. In the present study, we narrow down the spectrum of potential protein candidates by proteomic analysis of inhibitory protein fractions prepared by CM and HighQ column chromatography followed by BN/SDS/SDS–PAGE gel separation using Nano-HPLC-ESI-Q-TOF mass spectrometry. We show that the inhibitory effects on OPC differentiation mediated by myelin are regulated by Fyn-RhoA-ROCK signalling as well as by modulation of protein kinase C (PKC) signalling. We demonstrate that pharmacological or siRNA-mediated inhibition of RhoA-ROCK-II and/or PKC signalling can induce OPC differentiation in the presence of myelin. Our results, which provide a mechanistic link between myelin, a mediator of OPC differentiation inhibition associated with demyelinating pathologies and specific signalling pathways amenable to pharmacological manipulation, are therefore of significant potential value for future strategies aimed at enhancing CNS remyelination. PMID:19208690

  8. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system.

    PubMed

    Marques, Sueli; Zeisel, Amit; Codeluppi, Simone; van Bruggen, David; Mendanha Falcão, Ana; Xiao, Lin; Li, Huiliang; Häring, Martin; Hochgerner, Hannah; Romanov, Roman A; Gyllborg, Daniel; Muñoz-Manchado, Ana B; La Manno, Gioele; Lönnerberg, Peter; Floriddia, Elisa M; Rezayee, Fatemah; Ernfors, Patrik; Arenas, Ernest; Hjerling-Leffler, Jens; Harkany, Tibor; Richardson, William D; Linnarsson, Sten; Castelo-Branco, Gonçalo

    2016-06-10

    Oligodendrocytes have been considered as a functionally homogeneous population in the central nervous system (CNS). We performed single-cell RNA sequencing on 5072 cells of the oligodendrocyte lineage from 10 regions of the mouse juvenile and adult CNS. Thirteen distinct populations were identified, 12 of which represent a continuum from Pdgfra(+) oligodendrocyte precursor cells (OPCs) to distinct mature oligodendrocytes. Initial stages of differentiation were similar across the juvenile CNS, whereas subsets of mature oligodendrocytes were enriched in specific regions in the adult brain. Newly formed oligodendrocytes were detected in the adult CNS and were responsive to complex motor learning. A second Pdgfra(+) population, distinct from OPCs, was found along vessels. Our study reveals the dynamics of oligodendrocyte differentiation and maturation, uncoupling them at a transcriptional level and highlighting oligodendrocyte heterogeneity in the CNS. PMID:27284195

  9. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system.

    PubMed

    Marques, Sueli; Zeisel, Amit; Codeluppi, Simone; van Bruggen, David; Mendanha Falcão, Ana; Xiao, Lin; Li, Huiliang; Häring, Martin; Hochgerner, Hannah; Romanov, Roman A; Gyllborg, Daniel; Muñoz-Manchado, Ana B; La Manno, Gioele; Lönnerberg, Peter; Floriddia, Elisa M; Rezayee, Fatemah; Ernfors, Patrik; Arenas, Ernest; Hjerling-Leffler, Jens; Harkany, Tibor; Richardson, William D; Linnarsson, Sten; Castelo-Branco, Gonçalo

    2016-06-10

    Oligodendrocytes have been considered as a functionally homogeneous population in the central nervous system (CNS). We performed single-cell RNA sequencing on 5072 cells of the oligodendrocyte lineage from 10 regions of the mouse juvenile and adult CNS. Thirteen distinct populations were identified, 12 of which represent a continuum from Pdgfra(+) oligodendrocyte precursor cells (OPCs) to distinct mature oligodendrocytes. Initial stages of differentiation were similar across the juvenile CNS, whereas subsets of mature oligodendrocytes were enriched in specific regions in the adult brain. Newly formed oligodendrocytes were detected in the adult CNS and were responsive to complex motor learning. A second Pdgfra(+) population, distinct from OPCs, was found along vessels. Our study reveals the dynamics of oligodendrocyte differentiation and maturation, uncoupling them at a transcriptional level and highlighting oligodendrocyte heterogeneity in the CNS.

  10. G protein-coupled receptor 37 is a negative regulator of oligodendrocyte differentiation and myelination

    PubMed Central

    Yang, Hyun-Jeong; Vainshtein, Anna; Maik-Rachline, Galia; Peles, Elior

    2016-01-01

    While the formation of myelin by oligodendrocytes is critical for the function of the central nervous system, the molecular mechanism controlling oligodendrocyte differentiation remains largely unknown. Here we identify G protein-coupled receptor 37 (GPR37) as an inhibitor of late-stage oligodendrocyte differentiation and myelination. GPR37 is enriched in oligodendrocytes and its expression increases during their differentiation into myelin forming cells. Genetic deletion of Gpr37 does not affect the number of oligodendrocyte precursor cells, but results in precocious oligodendrocyte differentiation and hypermyelination. The inhibition of oligodendrocyte differentiation by GPR37 is mediated by suppression of an exchange protein activated by cAMP (EPAC)-dependent activation of Raf-MAPK-ERK1/2 module and nuclear translocation of ERK1/2. Our data suggest that GPR37 regulates central nervous system myelination by controlling the transition from early-differentiated to mature oligodendrocytes. PMID:26961174

  11. G protein-coupled receptor 37 is a negative regulator of oligodendrocyte differentiation and myelination.

    PubMed

    Yang, Hyun-Jeong; Vainshtein, Anna; Maik-Rachline, Galia; Peles, Elior

    2016-01-01

    While the formation of myelin by oligodendrocytes is critical for the function of the central nervous system, the molecular mechanism controlling oligodendrocyte differentiation remains largely unknown. Here we identify G protein-coupled receptor 37 (GPR37) as an inhibitor of late-stage oligodendrocyte differentiation and myelination. GPR37 is enriched in oligodendrocytes and its expression increases during their differentiation into myelin forming cells. Genetic deletion of Gpr37 does not affect the number of oligodendrocyte precursor cells, but results in precocious oligodendrocyte differentiation and hypermyelination. The inhibition of oligodendrocyte differentiation by GPR37 is mediated by suppression of an exchange protein activated by cAMP (EPAC)-dependent activation of Raf-MAPK-ERK1/2 module and nuclear translocation of ERK1/2. Our data suggest that GPR37 regulates central nervous system myelination by controlling the transition from early-differentiated to mature oligodendrocytes.

  12. Epigenetic Modulation of Human Induced Pluripotent Stem Cell Differentiation to Oligodendrocytes

    PubMed Central

    Douvaras, Panagiotis; Rusielewicz, Tomasz; Kim, Kwi Hye; Haines, Jeffery D.; Casaccia, Patrizia; Fossati, Valentina

    2016-01-01

    Pluripotent stem cells provide an invaluable tool for generating human, disease-relevant cells. Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system, characterized by myelin damage. Oligodendrocytes are the myelinating cells of the central nervous system (CNS); they differentiate from progenitor cells, and their membranes ensheath axons, providing trophic support and allowing fast conduction velocity. The current understanding of oligodendrocyte biology was founded by rodent studies, where the establishment of repressive epigenetic marks on histone proteins, followed by activation of myelin genes, leads to lineage progression. To assess whether this epigenetic regulation is conserved across species, we differentiated human embryonic and induced pluripotent stem cells to oligodendrocytes and asked whether similar histone marks and relative enzymatic activities could be detected. The transcriptional levels of enzymes responsible for methylation and acetylation of histone marks were analyzed during oligodendrocyte differentiation, and the post-translational modifications on histones were detected using immunofluorescence. These studies showed that also in human cells, differentiation along the oligodendrocyte lineage is characterized by the acquisition of multiple repressive histone marks, including deacetylation of lysine residues on histone H3 and trimethylation of residues K9 and K27. These data suggest that the epigenetic modulation of oligodendrocyte identity is highly conserved across species. PMID:27110779

  13. FGF-2 signal promotes proliferation of cerebellar progenitor cells and their oligodendrocytic differentiation at early postnatal stage

    SciTech Connect

    Naruse, Masae; Shibasaki, Koji; Ishizaki, Yasuki

    2015-08-07

    The origins and developmental regulation of cerebellar oligodendrocytes are largely unknown, although some hypotheses of embryonic origins have been suggested. Neural stem cells exist in the white matter of postnatal cerebellum, but it is unclear whether these neural stem cells generate oligodendrocytes at postnatal stages. We previously showed that cerebellar progenitor cells, including neural stem cells, widely express CD44 at around postnatal day 3. In the present study, we showed that CD44-positive cells prepared from the postnatal day 3 cerebellum gave rise to neurospheres, while CD44-negative cells prepared from the same cerebellum did not. These neurospheres differentiated mainly into oligodendrocytes and astrocytes, suggesting that CD44-positive neural stem/progenitor cells might generate oligodendrocytes in postnatal cerebellum. We cultured CD44-positive cells from the postnatal day 3 cerebellum in the presence of signaling molecules known as mitogens or inductive differentiation factors for oligodendrocyte progenitor cells. Of these, only FGF-2 promoted survival and proliferation of CD44-positive cells, and these cells differentiated into O4+ oligodendrocytes. Furthermore, we examined the effect of FGF-2 on cerebellar oligodendrocyte development ex vivo. FGF-2 enhanced proliferation of oligodendrocyte progenitor cells and increased the number of O4+ and CC1+ oligodendrocytes in slice cultures. These results suggest that CD44-positive cells might be a source of cerebellar oligodendrocytes and that FGF-2 plays important roles in their development at an early postnatal stage. - Highlights: • CD44 is expressed in cerebellar neural stem/progenitor cells at postnatal day 3 (P3). • FGF-2 promoted proliferation of CD44-positive progenitor cells from P3 cerebellum. • FGF-2 promoted oligodendrocytic differentiation of CD44-positive progenitor cells. • FGF-2 increased the number of oligodendrocytes in P3 cerebellar slice culture.

  14. Modulation of the Innate Immune Response by Human Neural Precursors Prevails over Oligodendrocyte Progenitor Remyelination to Rescue a Severe Model of Pelizaeus-Merzbacher Disease.

    PubMed

    Marteyn, Antoine; Sarrazin, Nadège; Yan, Jun; Bachelin, Corinne; Deboux, Cyrille; Santin, Mathieu D; Gressens, Pierre; Zujovic, Violetta; Baron-Van Evercooren, Anne

    2016-04-01

    Pelizaeus-Merzbacher disease (PMD) results from an X-linked misexpression of proteolipid protein 1 (PLP1). This leukodystrophy causes severe hypomyelination with progressive inflammation, leading to neurological dysfunctions and shortened life expectancy. While no cure exists for PMD, experimental cell-based therapy in the dysmyelinated shiverer model suggested that human oligodendrocyte progenitor cells (hOPCs) or human neural precursor cells (hNPCs) are promising candidates to treat myelinopathies. However, the fate and restorative advantages of human NPCs/OPCs in a relevant model of PMD has not yet been addressed. Using a model of Plp1 overexpression, resulting in demyelination with progressive inflammation, we compared side-by-side the therapeutic benefits of intracerebrally grafted hNPCs and hOPCs. Our findings reveal equal integration of the donor cells within presumptive white matter tracks. While the onset of exogenous remyelination was earlier in hOPCs-grafted mice than in hNPC-grafted mice, extended lifespan occurred only in hNPCs-grafted animals. This improved survival was correlated with reduced neuroinflammation (microglial and astrocytosis loads) and microglia polarization toward M2-like phenotype followed by remyelination. Thus modulation of neuroinflammation combined with myelin restoration is crucial to prevent PMD pathology progression and ensure successful rescue of PMD mice. These findings should help to design novel therapeutic strategies combining immunomodulation and stem/progenitor cell-based therapy for disorders associating hypomyelination with inflammation as observed in PMD.

  15. Oligodendrocyte differentiation from adult multipotent stem cells is modulated by glutamate.

    PubMed

    Cavaliere, F; Urra, O; Alberdi, E; Matute, C

    2012-02-02

    We used multipotent stem cells (MSCs) derived from the young rat subventricular zone (SVZ) to study the effects of glutamate in oligodendrocyte maturation. Glutamate stimulated oligodendrocyte differentiation from SVZ-derived MSCs through the activation of specific N-methyl-D-aspartate (NMDA) receptor subunits. The effect of glutamate and NMDA on oligodendrocyte differentiation was evident in both the number of newly generated oligodendrocytes and their morphology. In addition, the levels of NMDAR1 and NMDAR2A protein increased during differentiation, whereas NMDAR2B and NMDAR3 protein levels decreased, suggesting differential expression of NMDA receptor subunits during maturation. Microfluorimetry showed that the activation of NMDA receptors during oligodendrocyte differentiation elevated cytosolic calcium levels and promoted myelination in cocultures with neurons. Moreover, we observed that stimulation of MSCs by NMDA receptors induced the generation of reactive oxygen species (ROS), which were negatively modulated by the NADPH inhibitor apocynin, and that the levels of ROS correlated with the degree of differentiation. Taken together, these findings suggest that ROS generated by NADPH oxidase by the activation of NMDA receptors promotes the maturation of oligodendrocytes and favors myelination.

  16. Oligodendrocyte differentiation from adult multipotent stem cells is modulated by glutamate

    PubMed Central

    Cavaliere, F; Urra, O; Alberdi, E; Matute, C

    2012-01-01

    We used multipotent stem cells (MSCs) derived from the young rat subventricular zone (SVZ) to study the effects of glutamate in oligodendrocyte maturation. Glutamate stimulated oligodendrocyte differentiation from SVZ-derived MSCs through the activation of specific N-methyl--aspartate (NMDA) receptor subunits. The effect of glutamate and NMDA on oligodendrocyte differentiation was evident in both the number of newly generated oligodendrocytes and their morphology. In addition, the levels of NMDAR1 and NMDAR2A protein increased during differentiation, whereas NMDAR2B and NMDAR3 protein levels decreased, suggesting differential expression of NMDA receptor subunits during maturation. Microfluorimetry showed that the activation of NMDA receptors during oligodendrocyte differentiation elevated cytosolic calcium levels and promoted myelination in cocultures with neurons. Moreover, we observed that stimulation of MSCs by NMDA receptors induced the generation of reactive oxygen species (ROS), which were negatively modulated by the NADPH inhibitor apocynin, and that the levels of ROS correlated with the degree of differentiation. Taken together, these findings suggest that ROS generated by NADPH oxidase by the activation of NMDA receptors promotes the maturation of oligodendrocytes and favors myelination. PMID:22297298

  17. Neuronal expression of pathological tau accelerates oligodendrocyte progenitor cell differentiation.

    PubMed

    Ossola, Bernardino; Zhao, Chao; Compston, Alastair; Pluchino, Stefano; Franklin, Robin J M; Spillantini, Maria Grazia

    2016-03-01

    Oligodendrocyte progenitor cell (OPC) differentiation is an important therapeutic target to promote remyelination in multiple sclerosis (MS). We previously reported hyperphosphorylated and aggregated microtubule-associated protein tau in MS lesions, suggesting its involvement in axonal degeneration. However, the influence of pathological tau-induced axonal damage on the potential for remyelination is unknown. Therefore, we investigated OPC differentiation in human P301S tau (P301S-htau) transgenic mice, both in vitro and in vivo following focal demyelination. In 2-month-old P301S-htau mice, which show hyperphosphorylated tau in neurons, we found atrophic axons in the spinal cord in the absence of prominent axonal degeneration. These signs of early axonal damage were associated with microgliosis and an upregulation of IL-1β and TNFα. Following in vivo focal white matter demyelination we found that OPCs differentiated more efficiently in P301S-htau mice than wild type (Wt) mice. We also found an increased level of myelin basic protein within the lesions, which however did not translate into increased remyelination due to higher susceptibility of P301S-htau axons to demyelination-induced degeneration compared to Wt axons. In vitro experiments confirmed higher differentiation capacity of OPCs from P301S-htau mice compared with Wt mice-derived OPCs. Because the OPCs from P301S-htau mice do not ectopically express the transgene, and when isolated from newborn mice behave like Wt mice-derived OPCs, we infer that their enhanced differentiation capacity must have been acquired through microenvironmental priming. Our data suggest the intriguing concept that damaged axons may signal to OPCs and promote their differentiation in the attempt at rescue by remyelination.

  18. Neuronal expression of pathological tau accelerates oligodendrocyte progenitor cell differentiation.

    PubMed

    Ossola, Bernardino; Zhao, Chao; Compston, Alastair; Pluchino, Stefano; Franklin, Robin J M; Spillantini, Maria Grazia

    2016-03-01

    Oligodendrocyte progenitor cell (OPC) differentiation is an important therapeutic target to promote remyelination in multiple sclerosis (MS). We previously reported hyperphosphorylated and aggregated microtubule-associated protein tau in MS lesions, suggesting its involvement in axonal degeneration. However, the influence of pathological tau-induced axonal damage on the potential for remyelination is unknown. Therefore, we investigated OPC differentiation in human P301S tau (P301S-htau) transgenic mice, both in vitro and in vivo following focal demyelination. In 2-month-old P301S-htau mice, which show hyperphosphorylated tau in neurons, we found atrophic axons in the spinal cord in the absence of prominent axonal degeneration. These signs of early axonal damage were associated with microgliosis and an upregulation of IL-1β and TNFα. Following in vivo focal white matter demyelination we found that OPCs differentiated more efficiently in P301S-htau mice than wild type (Wt) mice. We also found an increased level of myelin basic protein within the lesions, which however did not translate into increased remyelination due to higher susceptibility of P301S-htau axons to demyelination-induced degeneration compared to Wt axons. In vitro experiments confirmed higher differentiation capacity of OPCs from P301S-htau mice compared with Wt mice-derived OPCs. Because the OPCs from P301S-htau mice do not ectopically express the transgene, and when isolated from newborn mice behave like Wt mice-derived OPCs, we infer that their enhanced differentiation capacity must have been acquired through microenvironmental priming. Our data suggest the intriguing concept that damaged axons may signal to OPCs and promote their differentiation in the attempt at rescue by remyelination. PMID:26576485

  19. Thyroid hormones promote differentiation of oligodendrocyte progenitor cells and improve remyelination after cuprizone-induced demyelination.

    PubMed

    Franco, P G; Silvestroff, L; Soto, E F; Pasquini, J M

    2008-08-01

    In the present work we analyzed the capacity of thyroid hormones (THs) to improve remyelination using a rat model of cuprizone-induced demyelination previously described in our laboratories. Twenty one days old Wistar rats were fed a diet containing 0.6% cuprizone for two weeks to induce demyelination. After cuprizone withdrawal, rats were injected with triiodothyronine (T3). Histological studies carried out in these animals revealed that remyelination in the corpus callosum (CC) of T3-treated rats improved markedly when compared to saline treated animals. The cellular events occurring in the CC and in the subventricular zone (SVZ) during the first week of remyelination were analyzed using specific oligodendroglial cell (OLGc) markers. In the CC of saline treated demyelinated animals, mature OLGcs decreased and oligodendroglial precursor cells (OPCs) increased after one week of spontaneous remyelination. Furthermore, the SVZ of these animals showed an increase in early progenitor cell numbers, dispersion of OPCs and inhibition of Olig and Shh expression compared to non-demyelinated animals. The changes triggered by demyelination were reverted after T3 administration, suggesting that THs could be regulating the emergence of remyelinating oligodendrocytes from the pool of proliferating cells residing in the SVZ. Our results also suggest that THs receptor beta mediates T3 effects on remyelination. These results support a potential role for THs in the remyelination process that could be used to develop new therapeutic approaches for demyelinating diseases.

  20. Spatiotemporal gradient of oligodendrocyte differentiation in chick optic tectum requires brain integrity and cell-cell interactions.

    PubMed

    Galileo, Deni S

    2003-01-01

    The development of oligodendrocytes in the chicken optic tectum (OT) was studied in vivo and in vitro by analyzing expression of myelin-associated glycoprotein (MAG) with a monoclonal antibody. MAG(+) cells first appeared in the anterior OT on embryonic day (E) 12, were present throughout the anterior half on E15, and eventually filled the tectum on E17. This spatiotemporal appearance of MAG(+) oligodendrocytes resembled two streams of cells entering the OT along the afferent and efferent axonal layers. However, experiments determined that this appearance of MAG immunoreactivity was the result of a gradient of oligodendrocyte differentiation and was not cell migration. First, retroviral vector labeling of OT progenitors in vivo on E3 resulted in labeled oligodendrocytes in late embryos. In addition, pieces of OT from as early as E3 kept in culture for a week developed numerous MAG(+) oligodendrocytes. Pieces of both anterior and posterior E7 OT developed MAG(+) oligodendrocytes after 3 days in culture, well ahead of their normal schedule in vivo. BrdU incorporation studies revealed that these cells were not born in culture, but merely differentiated. Monolayer cultures made from dissociated E10 or later OT cells developed MAG(+) oligodendrocytes, but monolayers made from E7 OT cells did not. These experiments demonstrate that oligodendrocyte progenitors were present in the OT as early as E3, that they could differentiate precociously, and that their normal progressive differentiation in situ must be due to removal of inhibitory constraints rather than the onset of inductive factors. Also, certain cell-cell interactions occur between E7 and E10, which cannot be disrupted if oligodendrocyte differentiation is to occur.

  1. Olig2-expressing progenitor cells preferentially differentiate into oligodendrocytes in cuprizone-induced demyelinated lesions.

    PubMed

    Islam, Mohammad Shyful; Tatsumi, Kouko; Okuda, Hiroaki; Shiosaka, Sadao; Wanaka, Akio

    2009-01-01

    Many oligodendrocyte progenitor cells (OPCs) are found in acute or chronic demyelinated area, but not all of them differentiate efficiently into mature oligodendrocytes in the demyelinated central nervous system (CNS). Recent studies have shown that the basic helix-loop-helix transcription factor Olig2, which stimulates OPCs to differentiate into oligodendrocyte, is strongly up-regulated in many pathological conditions including acute or chronic demyelinating lesions in the adult CNS. Despite their potential role in the treatment of demyelinating diseases, the long-term fate of these up-regulated Olig2 cells has not been identified due to the lack of stable labeling methods. To trace their fate we have used double-transgenic mice, in which we were able to label Olig2-positive cells conditionally with green fluorescent protein (GFP). Demyelination was induced in these mice by feeding cuprizone, a copper chelator. After 6 weeks of cuprizone exposure, GFP-positive (GFP(+)) cells were processed for a second labeling with antibodies to major neural cell markers APC (mature oligodendrocyte marker), GFAP (astrocyte marker), NeuN (neuron marker), Iba1 (microglia marker) and NG2 proteoglycan (oligodendrocyte progenitor marker). More than half of the GFP(+) cells in the external capsule showed co-localization with NG2 proteoglycan. While the percentages of NG2-positive (NG2(+)) and APC-positive (APC(+)) oligodendrocyte lineage cells in cuprizone-treated mice were significantly higher than those in the normal diet group, no significant difference was observed for GFAP-positive (GFAP(+)) astrocytic lineage cells. Our data therefore provide direct evidence that proliferation and differentiation of local and/or recruited Olig2 progenitors contribute to remyelination in demyelinated lesions. PMID:19070638

  2. Motor neurons and oligodendrocytes arise from distinct cell lineages by progenitor recruitment

    PubMed Central

    Ravanelli, Andrew M.; Appel, Bruce

    2015-01-01

    During spinal cord development, ventral neural progenitor cells that express the transcription factors Olig1 and Olig2, called pMN progenitors, produce motor neurons and then oligodendrocytes. Whether motor neurons and oligodendrocytes arise from common or distinct progenitors in vivo is not known. Using zebrafish, we found that motor neurons and oligodendrocytes are produced sequentially by distinct progenitors that have distinct origins. When olig2+ cells were tracked during the peak period of motor neuron formation, most differentiated as motor neurons without further cell division. Using time-lapse imaging, we found that, as motor neurons differentiated, more dorsally positioned neuroepithelial progenitors descended to the pMN domain and initiated olig2 expression. Inhibition of Hedgehog signaling during motor neuron differentiation blocked the ventral movement of progenitors, the progressive initiation of olig2 expression, and oligodendrocyte formation. We therefore propose that the motor neuron-to-oligodendrocyte switch results from Hedgehog-mediated recruitment of glial-fated progenitors to the pMN domain subsequent to neurogenesis. PMID:26584621

  3. The adhesion GPCR Gpr56 regulates oligodendrocyte development via interactions with Gα12/13 and RhoA

    PubMed Central

    Ackerman, Sarah D.; Garcia, Cynthia; Piao, Xianhua; Gutmann, David H.; Monk, Kelly R.

    2014-01-01

    In the vertebrate central nervous system, myelinating oligodendrocytes are postmitotic and derive from proliferative oligodendrocyte precursor cells (OPCs). The molecular mechanisms that govern oligodendrocyte development are incompletely understood, but recent studies implicate the adhesion class of G protein-coupled receptors (aGPCRs) as important regulators of myelination. Here, we use zebrafish and mouse models to dissect the function of the aGPCR Gpr56 in oligodendrocyte development. We show that gpr56 is expressed during early stages of oligodendrocyte development. Additionally, we observe a significant reduction of mature oligodendrocyte number and of myelinated axons in gpr56 zebrafish mutants. This reduction results from decreased OPC proliferation, rather than increased cell death or altered neural precursor differentiation potential. Finally, we show that these functions are mediated by Gα12/13 proteins and Rho activation. Together, our data establish Gpr56 as a regulator of oligodendrocyte development. PMID:25607772

  4. Fibroblast growth factor signaling in oligodendrocyte-lineage cells facilitates recovery of chronically demyelinated lesions but is redundant in acute lesions.

    PubMed

    Furusho, Miki; Roulois, Aude J; Franklin, Robin J M; Bansal, Rashmi

    2015-10-01

    Remyelination is a potent regenerative process in demyelinating diseases, such as multiple sclerosis, the effective therapeutic promotion of which will fill an unmet clinical need. The development of proregenerative therapies requires the identification of key regulatory targets that are likely to be involved in the integration of multiple signaling mechanisms. Fibroblast growth factor (FGF) signaling system, which comprises multiple ligands and receptors, potentially provides one such target. Since the FGF/FGF receptor (FGFR) interactions are complex and regulate multiple diverse functions of oligodendrocyte lineage cells, it is difficult to predict their overall therapeutic potential in the regeneration of oligodendrocytes and myelin. Therefore, to assess the integrated effects of FGFR signaling on this process, we simultaneously inactivated both FGFR1 and FGFR2 in oligodendrocytes and their precursors using two Cre-driver mouse lines. Acute and chronic cuprizone-induced or lysolecithin-induced demyelination was established in Fgfr1/Fgfr2 double knockout mice (dKO). We found that in the acute cuprizone model, there was normal differentiation of oligodendrocytes and recovery of myelin in the corpus callosum of both control and dKO mice. Similarly, in the spinal cord, lysolecithin-induced demyelinated lesions regenerated similarly in the dKO and control mice. In contrast, in the chronic cuprizone model, fewer differentiated oligodendrocytes and less efficient myelin recovery were observed in the dKO compared to control mice. These data suggest that while cell-autonomous FGF signaling is redundant during recovery of acute demyelinated lesions, it facilitates regenerative processes in chronic demyelination. Thus, FGF-based therapies have potential value in stimulating oligodendrocyte and myelin regeneration in late-stage disease.

  5. Fluoxetine prevents oligodendrocyte cell death by inhibiting microglia activation after spinal cord injury.

    PubMed

    Lee, Jee Y; Kang, So R; Yune, Tae Y

    2015-05-01

    Oligodendrocyte cell death and axon demyelination after spinal cord injury (SCI) are known to be important secondary injuries contributing to permanent neurological disability. Thus, blocking oligodendrocyte cell death should be considered for therapeutic intervention after SCI. Here, we demonstrated that fluoxetine, an antidepressant drug, alleviates oligodendrocyte cell death by inhibiting microglia activation after SCI. After injury at the T9 level with a Precision Systems and Instrumentation (Lexington, KY) device, fluoxetine (10 mg/kg, intraperitoneal) was administered once a day for the indicated time points. Immunostaining with CD11b (OX-42) antibody and quantification analysis showed that microglia activation was significantly inhibited by fluoxetine at 5 days after injury. Fluoxetine also significantly inhibited activation of p38 mitogen-activated protein kinase (p38-MAPK) and expression of pro-nerve growth factor (pro-NGF), which is known to mediate oligodendrocyte cell death through the p75 neurotrophin receptor after SCI. In addition, fluoxetine attenuated activation of Ras homolog gene family member A and decreased the level of phosphorylated c-Jun and, ultimately, alleviated caspase-3 activation and significantly reduced cell death of oligodendrocytes at 5 days after SCI. Further, the decrease of myelin basic protein, myelin loss, and axon loss in white matter was also significantly blocked by fluoxetine, as compared to vehicle control. These results suggest that fluoxetine inhibits oligodendrocyte cell death by inhibiting microglia activation and p38-MAPK activation, followed by pro-NGF production after SCI, and provide a potential usage of fluoxetine for a therapeutic agent after acute SCI in humans.

  6. Fluoxetine Prevents Oligodendrocyte Cell Death by Inhibiting Microglia Activation after Spinal Cord Injury

    PubMed Central

    Lee, Jee Y.; Kang, So R.

    2015-01-01

    Abstract Oligodendrocyte cell death and axon demyelination after spinal cord injury (SCI) are known to be important secondary injuries contributing to permanent neurological disability. Thus, blocking oligodendrocyte cell death should be considered for therapeutic intervention after SCI. Here, we demonstrated that fluoxetine, an antidepressant drug, alleviates oligodendrocyte cell death by inhibiting microglia activation after SCI. After injury at the T9 level with a Precision Systems and Instrumentation (Lexington, KY) device, fluoxetine (10 mg/kg, intraperitoneal) was administered once a day for the indicated time points. Immunostaining with CD11b (OX-42) antibody and quantification analysis showed that microglia activation was significantly inhibited by fluoxetine at 5 days after injury. Fluoxetine also significantly inhibited activation of p38 mitogen-activated protein kinase (p38-MAPK) and expression of pro-nerve growth factor (pro-NGF), which is known to mediate oligodendrocyte cell death through the p75 neurotrophin receptor after SCI. In addition, fluoxetine attenuated activation of Ras homolog gene family member A and decreased the level of phosphorylated c-Jun and, ultimately, alleviated caspase-3 activation and significantly reduced cell death of oligodendrocytes at 5 days after SCI. Further, the decrease of myelin basic protein, myelin loss, and axon loss in white matter was also significantly blocked by fluoxetine, as compared to vehicle control. These results suggest that fluoxetine inhibits oligodendrocyte cell death by inhibiting microglia activation and p38-MAPK activation, followed by pro-NGF production after SCI, and provide a potential usage of fluoxetine for a therapeutic agent after acute SCI in humans. PMID:25366938

  7. Effects of lipopolysaccharide on oligodendrocyte progenitor cells are mediated by astrocytes and microglia.

    PubMed

    Pang, Y; Cai, Z; Rhodes, P G

    2000-11-15

    Oligodendrocytes are the primary cells injured in periventricular leukomalacia (PVL), a predominant form of brain white matter lesion in preterm infants. To explore the possible linkage between white matter injury and maternal infection, purified rat O-2A progenitor (Oligodendrocyte-type 2 astrocyte progenitor) cell cultures were used as a model in studying the effects of lipopolysaccharide (LPS), an endotoxin, on survival and differentiation of oligodendrocytes and the involvement of other glial cells in the effects of LPS. O-2A progenitor cells were cultured from optic nerves of 7-day-old rat pups in a chemically defined medium (CDM). Astrocyte and microglia cell cultures were prepared from the cortex of 1-day-old rat brains in the CDM. Direct treatment of LPS (1 microg/ml) to O-2A cells had no effect on viability or differentiation of these cells. When O-2A progenitor cells were cultured in the conditioned medium obtained from either astrocyte or microglial cell cultures for 48 hr, survival rate and differentiation of O-2A cells into mature oligodendrocytes were greatly enhanced as measured by the MTT assay and immunocytochemistry. The conditioned medium obtained from astrocytes or microglia treated with LPS for 48 hr, however, failed to show such a promotional effect on viability and differentiation of O-2A cells. When 5 microg/ml LPS was used to stimulate astrocytes or microglia, the conditioned medium from these glial cell cultures caused O-2A cell injury. The overall results indicate that astrocytes and microglia may promote viability and differentiation of O-2A progenitor cells under physiological conditions, but they may also mediate cytotoxic effects of LPS on oligodendrocytes under an infectious disease biochemical environment.

  8. Apoptosis and proliferation of oligodendrocyte progenitor cells in the irradiated rodent spinal cord

    SciTech Connect

    Atkinson, Shelley L.; Li Yuqing; Wong, C. Shun . E-mail: shun.wong@sw.ca

    2005-06-01

    Purpose: Oligodendrocytes undergo early apoptosis after irradiation. The aim of this study was to determine the relationship between oligodendroglial apoptosis and proliferation of oligodendrocyte progenitor cells (OPC) in the irradiated central nervous system. Methods and Materials: Adult rats and p53 transgenic mice were given single doses of 2 Gy, 8 Gy, or 22 Gy to the cervical spinal cord. Apoptosis was assessed using TUNEL (Tdt-mediated dUTP terminal nick-end labeling) staining or by examining nuclear morphology. Oligodendrocyte progenitor cells were identified with an NG2 antibody or by in situ hybridization for platelet-derived growth factor receptor {alpha}. Proliferation of OPC was assessed by in vivo bromodeoxyuridine (BrdU) labeling and subsequent immunohistochemistry. Because radiation-induced apoptosis of oligodendroglial cells is p53 dependent, p53 transgenic mice were used to study the relationship between apoptosis and cell proliferation. Results: Oligodendrocyte progenitor cells underwent apoptosis within 24 h of irradiation in the rat. That did not result in a change in OPC density at 24 h. Oligodendrocyte progenitor cell density was significantly reduced by 2-4 weeks, but showed recovery by 6 weeks after irradiation. An increase in BrdU-labeled cells was observed at 2 weeks after 8 Gy or 22 Gy, and proliferating cells in the rat spinal cord were immunoreactive for NG2. The mouse spinal cord showed a similar early cell proliferation after irradiation. No difference was observed in the proliferation response in the spinal cord of p53 -/- mice compared with wild type animals. Conclusions: Oligodendroglial cells undergo early apoptosis and OPC undergo early proliferation after ionizing radiation. However, apoptosis is not likely to be the trigger for early proliferation of OPC in the irradiated central nervous system.

  9. PPARγ Agonists Promote Oligodendrocyte Differentiation of Neural Stem Cells by Modulating Stemness and Differentiation Genes

    PubMed Central

    Kanakasabai, Saravanan; Pestereva, Ecaterina; Chearwae, Wanida; Gupta, Sushil K.; Ansari, Saif; Bright, John J.

    2012-01-01

    Neural stem cells (NSCs) are a small population of resident cells that can grow, migrate and differentiate into neuro-glial cells in the central nervous system (CNS). Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor transcription factor that regulates cell growth and differentiation. In this study we analyzed the influence of PPARγ agonists on neural stem cell growth and differentiation in culture. We found that in vitro culture of mouse NSCs in neurobasal medium with B27 in the presence of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) induced their growth and expansion as neurospheres. Addition of all-trans retinoic acid (ATRA) and PPARγ agonist ciglitazone or 15-Deoxy-Δ12,14-Prostaglandin J2 (15d-PGJ2) resulted in a dose-dependent inhibition of cell viability and proliferation of NSCs in culture. Interestingly, NSCs cultured with PPARγ agonists, but not ATRA, showed significant increase in oligodendrocyte precursor-specific O4 and NG2 reactivity with a reduction in NSC marker nestin, in 3–7 days. In vitro treatment with PPARγ agonists and ATRA also induced modest increase in the expression of neuronal β-III tubulin and astrocyte-specific GFAP in NSCs in 3–7 days. Further analyses showed that PPARγ agonists and ATRA induced significant alterations in the expression of many stemness and differentiation genes associated with neuro-glial differentiation in NSCs. These findings highlight the influence of PPARγ agonists in promoting neuro-glial differentiation of NSCs and its significance in the treatment of neurodegenerative diseases. PMID:23185633

  10. The mitotic history and radiosensitivity of developing oligodendrocytes in vitro

    SciTech Connect

    Hirayama, M.; Eccleston, P.A.; Silberberg, D.H.

    1984-08-01

    By use of pulse-chase exposure of dissociated cells of rat fetal spinal cord or brain to (3H)thymidine (TdR) and unlabeled TdR it has been shown that oligodendroglial precursors which do not express galactocerebroside (GalC) divide first and later differentiate to express GalC. The rate of proliferation of more mature GalC+ oligodendrocytes is considerably lower than that of their GalC- precursors. It has been found that oligodendrocyte precursor cells are extremely sensitive to (3H)TdR irradiation. Exposure to as little as 0.03 microCi/ml for 24 hr proved to be harmful, particularly during a critical period before birth. This critical period corresponded to the peak of division of oligodendrocyte precursor cells.

  11. Cytolysis of oligodendrocytes is mediated by killer (K) cells but not by natural killer (NK) cells.

    PubMed

    Satoh, J; Kim, S U; Kastrukoff, L F

    1991-03-01

    The cytotoxic activity of killer (K) cells against enriched cultures of bovine oligodendrocytes (BOL) was investigated in multiple sclerosis (MS) and controls. Human K cells mediated cytotoxicity to primary cultures of BOL in the presence of anti-BOL antiserum in all study groups, while BOL were resistant to human natural killer (NK) cells. Cytotoxic activity was significantly reduced in MS when compared to age-matched normal controls but not when compared to other neurologic disease (OND) patients. K cell-mediated lysis of BOL could also be induced with anti-galactocerebroside antibody but not with other antibodies including those specific for OL antigens (myelin basic protein, proteolipid apoprotein, and 2',3'-cyclic nucleotide 3'-phosphodiesterase). Enrichment of the effector population indicated that antibody-dependent cell-mediated cytotoxicity (ADCC) to BOL was mediated by large granular lymphocytes, and the effector population was further characterized by flow cytometry. The effector cells mediating ADCC could be inhibited by protein A of Staphylococcus aureus, and by K562 cells in cold competition assay. These observations indicate that oligodendrocytes are resistant to NK cells but are susceptible to cytolysis mediated by K cells. This may represent a potentially important immune mechanism in the pathogenesis of MS.

  12. Oligodendrocyte Lineage Cells in Chronic Demyelination of Multiple Sclerosis Optic Nerve.

    PubMed

    Jennings, Alison Ruth; Carroll, William M

    2015-09-01

    Reports that chronically demyelinated multiple sclerosis brain and spinal cord lesions contained immature oligodendrocyte lineage cells have generated major interest aimed at the potential for promotion of endogenous repair. Despite the prominence of the optic nerve as a lesion site and its importance in clinical disease assessment, no detailed studies of multiple sclerosis-affected optic nerve exist. This study aims to provide insight into the cellular pathology of chronic demyelination in multiple sclerosis through direct morphological and immunohistochemical analysis of optic nerve in conjunction with observations from an experimental cat optic nerve model of successful remyelination. Myelin staining was followed by immunohistochemistry to differentially label neuroglia. Digitally immortalized sections were then analyzed to generate quantification data and antigenic phenotypes including maturational stages within the oligodendrocyte lineage. It was found that some chronically demyelinated multiple sclerosis optic nerve lesions contained oligodendroglial cells and that heterogeneity existed in the presence of myelin sheaths, oligodendrocyte maturational stages and extent of axonal investment. The findings advance our understanding of oligodendrocyte activity in chronically demyelinated human optic nerve and may have implications for studies aimed at enhancement of endogenous repair in multiple sclerosis.

  13. Regulation of serum response factor by miRNA-200 and miRNA-9 modulates oligodendrocyte progenitor cell differentiation

    PubMed Central

    Buller, Benjamin; Chopp, Michael; Ueno, Yuji; Zhang, Li; Zhang, Rui Lan; Morris, Daniel; Zhang, Yi; Zhang, Zheng Gang

    2012-01-01

    Serum response factor (SRF) is a transcription factor that transactivates actin associated genes, and has been implicated in oligodendrocyte (OL) differentiation. To date, it has not been investigated in cerebral ischemia. We investigated the dynamics of SRF expression after stroke in vivo and the role of SRF in oligodendrocyte differentiation in vitro. Using immunohistochemistry, we found that SRF was upregulated in OLs and OL precursor cells (OPCs) after stroke. Moreover, upregulation of SRF was concurrent with downregulation of the microRNAs (miRNAs) miR-9 and the miR-200 family in the ischemic white matter region, the corpus callosum. Inhibition of SRF activation by CCG-1423, a specific inhibitor of SRF function, blocked OPCs from differentiating into OLs. Over-expression of miR-9 and miR-200 in cultured OPCs suppressed SRF expression and inhibited OPC differentiation. Moreover, co-expression of miR-9 and miR-200 attenuated activity of a luciferase reporter assay containing the Srf 3′ untranslated region (UTR). Collectively, this study is the first to show that stroke upregulates SRF expression in OPCs and OLs, and that SRF levels are mediated by miRNAs and regulate OPC differentiation. PMID:22907787

  14. Expression of proteolipid protein gene in spinal cord stem cells and early oligodendrocyte progenitor cells is dispensable for normal cell migration and myelination.

    PubMed

    Harlow, Danielle E; Saul, Katherine E; Culp, Cecilia M; Vesely, Elisa M; Macklin, Wendy B

    2014-01-22

    Plp1 gene expression occurs very early in development, well before the onset of myelination, creating a conundrum with regard to the function of myelin proteolipid protein (PLP), one of the major proteins in compact myelin. Using PLP-EGFP mice to investigate Plp1 promoter activity, we found that, at very early time points, PLP-EGFP was expressed in Sox2+ undifferentiated precursors in the spinal cord ventricular zone (VZ), as well as in the progenitors of both neuronal and glial lineages. As development progressed, most PLP-EGFP-expressing cells gave rise to oligodendrocyte progenitor cells (OPCs). The expression of PLP-EGFP in the spinal cord was quite dynamic during development. PLP-EGFP was highly expressed as cells delaminated from the VZ. Expression was downregulated as cells moved laterally through the cord, and then robustly upregulated as OPCs differentiated into mature myelinating oligodendrocytes. The presence of PLP-EGFP expression in OPCs raises the question of its role in this migratory population. We crossed PLP-EGFP reporter mice into a Plp1-null background to investigate the role of PLP in early OPC development. In the absence of PLP, normal numbers of OPCs were generated and their distribution throughout the spinal cord was unaffected. However, the orientation and length of OPC processes during migration was abnormal in Plp1-null mice, suggesting that PLP plays a role either in the structural integrity of OPC processes or in their response to extracellular cues that orient process outgrowth.

  15. Myelin basic protein gene contains separate enhancers for oligodendrocyte and Schwann cell expression

    PubMed Central

    1992-01-01

    The DNA sequence between position +36 and -1907 of the murine myelin basic protein gene contains the enhancer and promoter elements necessary for abundant and cell specific expression in transgenic mice. Surprisingly, the pattern of expression promoted by this DNA fragment is a subset of that exhibited by the endogenous myelin basic protein (MBP) gene. Fusion genes prepared with this promoter/enhancer and a Lac Z reporter gene are expressed only in oligodendrocytes and not in Schwann cells, whereas the endogenous MBP gene is expressed in both cell types. The level of transgene expression measured by nuclear run- on experiments is very substantial and rivals that of the endogenous MBP gene. Furthermore, this 1.9-kb DNA fragment directs transcription on the same (or very similar) developmental schedule as the endogenous gene. These results indicate that the MBP promoter/enhancer sequences are at least tripartite: a core promoter, the oligodendrocyte enhancer elements, and a third component that either expands the specificity of the oligodendrocyte enhancer to include Schwann cells or acts independently to specifically stimulate transcription in Schwann cells. PMID:1383235

  16. The Innate Lymphoid Cell Precursor.

    PubMed

    Ishizuka, Isabel E; Constantinides, Michael G; Gudjonson, Herman; Bendelac, Albert

    2016-05-20

    The discovery of tissue-resident innate lymphoid cell populations effecting different forms of type 1, 2, and 3 immunity; tissue repair; and immune regulation has transformed our understanding of mucosal immunity and allergy. The emerging complexity of these populations along with compounding issues of redundancy and plasticity raise intriguing questions about their precise lineage relationship. Here we review advances in mapping the emergence of these lineages from early lymphoid precursors. We discuss the identification of a common innate lymphoid cell precursor characterized by transient expression of the transcription factor PLZF, and the lineage relationships of innate lymphoid cells with conventional natural killer cells and lymphoid tissue inducer cells. We also review the rapidly growing understanding of the network of transcription factors that direct the development of these lineages.

  17. Microenvironmental regulation of oligodendrocyte replacement and remyelination in spinal cord injury.

    PubMed

    Alizadeh, Arsalan; Karimi-Abdolrezaee, Soheila

    2016-07-01

    Myelin is a proteolipid sheath enwrapping axons in the nervous system that facilitates signal transduction along the axons. In the central nervous system (CNS), oligodendrocytes are specialized glial cells responsible for myelin formation and maintenance. Following spinal cord injury (SCI), oligodendroglia cell death and myelin damage (demyelination) cause chronic axonal damage and irreparable loss of sensory and motor functions. Accumulating evidence shows that replacement of damaged oligodendrocytes and renewal of myelin (remyelination) are promising approaches to prevent axonal degeneration and restore function following SCI. Neural precursor cells (NPCs) and oligodendrocyte progenitor cells (OPCs) are two main resident cell populations in the spinal cord with innate capacities to foster endogenous oligodendrocyte replacement and remyelination. However, due to the hostile microenvironment of SCI, the regenerative capacity of these endogenous precursor cells is conspicuously restricted. Activated resident glia, along with infiltrating immune cells, are among the key modulators of secondary injury mechanisms that create a milieu impermissible to oligodendrocyte differentiation and remyelination. Recent studies have uncovered inhibitory roles for astrocyte-associated molecules such as matrix chondroitin sulfate proteoglycans (CSPGs), and a plethora of pro-inflammatory cytokines and neurotoxic factors produced by activated microglia/macrophages. The quality of axonal remyelination is additionally challenged by dysregulation of the supportive growth factors required for maturation of new oligodendrocytes and axo-oligodendrocyte signalling. Careful understanding of factors that modulate the activity of endogenous precursor cells in the injury microenvironment is a key step in developing efficient repair strategies for remyelination and functional recovery following SCI. PMID:26857216

  18. Programming Hippocampal Neural Stem/Progenitor Cells into Oligodendrocytes Enhances Remyelination in the Adult Brain after Injury.

    PubMed

    Braun, Simon M G; Pilz, Gregor-Alexander; Machado, Raquel A C; Moss, Jonathan; Becher, Burkhard; Toni, Nicolas; Jessberger, Sebastian

    2015-06-23

    Demyelinating diseases are characterized by a loss of oligodendrocytes leading to axonal degeneration and impaired brain function. Current strategies used for the treatment of demyelinating disease such as multiple sclerosis largely rely on modulation of the immune system. Only limited treatment options are available for treating the later stages of the disease, and these treatments require regenerative therapies to ameliorate the consequences of oligodendrocyte loss and axonal impairment. Directed differentiation of adult hippocampal neural stem/progenitor cells (NSPCs) into oligodendrocytes may represent an endogenous source of glial cells for cell-replacement strategies aiming to treat demyelinating disease. Here, we show that Ascl1-mediated conversion of hippocampal NSPCs into mature oligodendrocytes enhances remyelination in a diphtheria-toxin (DT)-inducible, genetic model for demyelination. These findings highlight the potential of targeting hippocampal NSPCs for the treatment of demyelinated lesions in the adult brain.

  19. Human Dental Pulp Stem Cells Differentiate into Oligodendrocyte Progenitors Using the Expression of Olig2 Transcription Factor.

    PubMed

    Askari, Nahid; Yaghoobi, Mohammad Mehdi; Shamsara, Mehdi; Esmaeili-Mahani, Saeed

    2014-01-01

    The helix-loop-helix transcription factor Olig2 is essential for lineage determination of oligodendrocytes. Differentiation of stem cells into oligodendrocytes and transplanting them is a novel strategy for the repair of different demyelination diseases. Dental pulp stem cells (DPSCs) are of great interest in regenerative medicine due to their potential for repairing damaged tissues. In this study, DPSCs were isolated from human third molars and transfected with the human Olig2 gene as a differentiation inducer for the oligodendrogenic pathway. Following the differentiation procedure, the expression of Sox2, NG2, PDGFRα, Nestin, MBP, Olig2, Oct4, glial fibrillary acidic protein and A2B5 as stage-specific markers was studied by real-time RT-qPCR, immunocytochemistry and Western blot analysis. The cells were transplanted into a mouse model of local sciatic damage by lysolecithin as a model for demyelination. Oligodendrocyte progenitor cells (OPCs) actively remyelinated and recovered the lysolecithin-induced damages in the sciatic nerve as revealed by treadmill exercise, the von Frey filament test and hind paw withdrawal in response to a thermal stimulus. Recovery of behavioral reflexes occurred 2-6 weeks after OPC transplantation. The results demonstrate that the expression of Olig2 in DPSCs reduces the expression of stem cell markers and induces the development of oligodendrocyte progenitors as revealed by the emergence of oligodendrocyte markers. DPSCs could be programmed into oligodendrocyte progenitors and considered as a simple and valuable source for the cell therapy of neurodegenerative diseases. PMID:25966902

  20. Gain of Olig2 function in oligodendrocyte progenitors promotes remyelination.

    PubMed

    Wegener, Amélie; Deboux, Cyrille; Bachelin, Corinne; Frah, Magali; Kerninon, Christophe; Seilhean, Danielle; Weider, Matthias; Wegner, Michael; Nait-Oumesmar, Brahim

    2015-01-01

    The basic helix-loop-helix transcription factor Olig2 is a key determinant for the specification of neural precursor cells into oligodendrocyte progenitor cells. However, the functional role of Olig2 in oligodendrocyte migration and differentiation remains elusive both during developmental myelination and under demyelinating conditions of the adult central nervous system. To decipher Olig2 functions, we generated transgenic mice (TetOlig2:Sox10(rtTA/+)) overexpressing Olig2 in Sox10(+) oligodendroglial cells in a doxycycline inducible manner. We show that Olig2 overexpression increases the generation of differentiated oligodendrocytes, leading to precocious myelination of the central nervous system. Unexpectedly, we found that gain of Olig2 function in oligodendrocyte progenitor cells enhances their migration rate. To determine whether Olig2 overexpression in adult oligodendrocyte progenitor cells promotes oligodendrocyte regeneration for myelin repair, we induced lysophosphatidylcholine demyelination in the corpus callosum of TetOlig2:Sox10(rtTA/+) and control mice. We found that Olig2 overexpression enhanced oligodendrocyte progenitor cell differentiation and remyelination. To assess the relevance of these findings in demyelinating diseases, we also examined OLIG2 expression in multiple sclerosis lesions. We demonstrate that OLIG2 displays a differential expression pattern in multiple sclerosis lesions that correlates with lesion activity. Strikingly, OLIG2 was predominantly detected in NOGO-A(+) (now known as RTN4-A) maturing oligodendrocytes, which prevailed in active lesion borders, rather than chronic silent and shadow plaques. Taken together, our data provide proof of principle indicating that OLIG2 overexpression in oligodendrocyte progenitor cells might be a possible therapeutic mechanism for enhancing myelin repair.

  1. Gain of Olig2 function in oligodendrocyte progenitors promotes remyelination

    PubMed Central

    Wegener, Amélie; Deboux, Cyrille; Bachelin, Corinne; Frah, Magali; Kerninon, Christophe; Seilhean, Danielle; Weider, Matthias; Wegner, Michael

    2015-01-01

    The basic helix-loop-helix transcription factor Olig2 is a key determinant for the specification of neural precursor cells into oligodendrocyte progenitor cells. However, the functional role of Olig2 in oligodendrocyte migration and differentiation remains elusive both during developmental myelination and under demyelinating conditions of the adult central nervous system. To decipher Olig2 functions, we generated transgenic mice (TetOlig2:Sox10rtTA/+) overexpressing Olig2 in Sox10+ oligodendroglial cells in a doxycycline inducible manner. We show that Olig2 overexpression increases the generation of differentiated oligodendrocytes, leading to precocious myelination of the central nervous system. Unexpectedly, we found that gain of Olig2 function in oligodendrocyte progenitor cells enhances their migration rate. To determine whether Olig2 overexpression in adult oligodendrocyte progenitor cells promotes oligodendrocyte regeneration for myelin repair, we induced lysophosphatidylcholine demyelination in the corpus callosum of TetOlig2:Sox10rtTA/+ and control mice. We found that Olig2 overexpression enhanced oligodendrocyte progenitor cell differentiation and remyelination. To assess the relevance of these findings in demyelinating diseases, we also examined OLIG2 expression in multiple sclerosis lesions. We demonstrate that OLIG2 displays a differential expression pattern in multiple sclerosis lesions that correlates with lesion activity. Strikingly, OLIG2 was predominantly detected in NOGO-A+ (now known as RTN4-A) maturing oligodendrocytes, which prevailed in active lesion borders, rather than chronic silent and shadow plaques. Taken together, our data provide proof of principle indicating that OLIG2 overexpression in oligodendrocyte progenitor cells might be a possible therapeutic mechanism for enhancing myelin repair. PMID:25564492

  2. Changes in NG2 cells and oligodendrocytes in a new model of intraspinal hemorrhage

    PubMed Central

    Sahinkaya, F. Rezan; Milich, Lindsay; McTigue, Dana M.

    2014-01-01

    Spinal cord injury (SCI) evokes rapid deleterious and reparative glial reactions. Understanding the triggers for these responses is necessary for designing strategies to maximize repair. This study examined lesion formation and glial responses to vascular disruption and hemorrhage, a prominent feature of acute SCI. The specific role of hemorrhage is difficult to evaluate in trauma-induced lesions, because mechanical injury initiates many downstream responses. To isolate vascular disruption from trauma-induced effects, we created a novel and reproducible model of collagenase-induced intraspinal hemorrhage (ISH) and compared glial reactions between unilateral ISH and a hemi-contusion injury. Similar to contusion injuries, ISH lesions caused loss of myelin and axons and became filled with iron-laden macrophages. We hypothesized that intraspinal hemorrhage would also initiate reparative cellular responses including NG2+ oligodendrocyte progenitor cell (OPC) proliferation and oligodendrocyte genesis. Indeed, ISH induced OPC proliferation within 1d post-injury (dpi), which continued throughout the first week and resulted in a sustained elevation of NG2+ OPCs. ISH also caused oligodendrocyte loss within 4h that was sustained through 3d post-ISH. However, oligodendrogenesis, as determined by bromo-deoxyuridine (BrdU) positive oligodendrocytes, restored oligodendrocyte numbers by 7dpi, revealing that proliferating OPCs differentiated into new oligodendrocytes after ISH. The signaling molecules pERK1/2 and pSTAT3 were robustly increased acutely after ISH, with pSTAT3 being expressed in a portion of OPCs, suggesting that activators of this signaling cascade may initiate OPC responses. Aside from subtle differences in timing of OPC responses, changes in ISH tissue closely mimicked those in hemi-contusion tissue. These results are important for elucidating the contribution of hemorrhage to lesion formation and endogenous cell-mediated repair, and will provide the foundation for

  3. CNS Myelin Sheath Lengths Are an Intrinsic Property of Oligodendrocytes.

    PubMed

    Bechler, Marie E; Byrne, Lauren; Ffrench-Constant, Charles

    2015-09-21

    Since Río-Hortega's description of oligodendrocyte morphologies nearly a century ago, many studies have observed myelin sheath-length diversity between CNS regions. Myelin sheath length directly impacts axonal conduction velocity by influencing the spacing between nodes of Ranvier. Such differences likely affect neural signal coordination and synchronization. What accounts for regional differences in myelin sheath lengths is unknown; are myelin sheath lengths determined solely by axons or do intrinsic properties of different oligodendrocyte precursor cell populations affect length? The prevailing view is that axons provide molecular cues necessary for oligodendrocyte myelination and appropriate sheath lengths. This view is based upon the observation that axon diameters correlate with myelin sheath length, as well as reports that PNS axonal neuregulin-1 type III regulates the initiation and properties of Schwann cell myelin sheaths. However, in the CNS, no such instructive molecules have been shown to be required, and increasing in vitro evidence supports an oligodendrocyte-driven, neuron-independent ability to differentiate and form initial sheaths. We test this alternative signal-independent hypothesis--that variation in internode lengths reflects regional oligodendrocyte-intrinsic properties. Using microfibers, we find that oligodendrocytes have a remarkable ability to self-regulate the formation of compact, multilamellar myelin and generate sheaths of physiological length. Our results show that oligodendrocytes respond to fiber diameters and that spinal cord oligodendrocytes generate longer sheaths than cortical oligodendrocytes on fibers, co-cultures, and explants, revealing that oligodendrocytes have regional identity and generate different sheath lengths that mirror internodes in vivo.

  4. CXCR4 Signaling Regulates Remyelination by Endogenous Oligodendrocyte Progenitor Cells in a Viral Model of Demyelination

    PubMed Central

    CARBAJAL, KEVIN S.; MIRANDA, JUAN L.; TSUKAMOTO, MICHELLE R.; LANE, THOMAS E.

    2016-01-01

    Following intracranial infection with the neurotropic JHM strain of mouse hepatitis virus (JHMV), susceptible mice will develop widespread myelin destruction that results in pathological and clinical outcomes similar to those seen in humans with the demyelinating disease Multiple Sclerosis (MS). Partial remyelination and clinical recovery occurs during the chronic phase following control of viral replication yet the signaling mechanisms regulating these events remain enigmatic. Here we report the kinetics of proliferation and maturation of oligodendrocyte progenitor cells (OPCs) within the spinal cord following JHMV-induced demyelination and that CXCR4 signaling contributes to the maturation state of OPCs. Following treatment with AMD3100, a specific inhibitor of CXCR4, mice recovering from widespread demyelination exhibit a significant (P < 0.01) increase in the number of OPCs and fewer (P < 0.05) mature oligodendrocytes compared with HBSS-treated animals. These results suggest that CXCR4 signaling is required for OPCs to mature and contribute to remyelination in response to JHMV-induced demyelination. To assess if this effect is reversible and has potential therapeutic benefit, we pulsed mice with AMD3100 and then allowed them to recover. This treatment strategy resulted in increased numbers of mature oligodendrocytes, enhanced remyelination, and improved clinical outcome. These findings highlight the possibility to manipulate OPCs in order to increase the pool of remyelination-competent cells that can participate in recovery. PMID:21830237

  5. Golli myelin basic proteins stimulate oligodendrocyte progenitor cell proliferation and differentiation in remyelinating adult mouse brain.

    PubMed

    Paez, Pablo M; Cheli, Veronica T; Ghiani, Cristina A; Spreuer, Vilma; Handley, Vance W; Campagnoni, Anthony T

    2012-07-01

    Golli myelin basic proteins are necessary for normal myelination, acting via voltage and store-dependent Ca(2+) entry at multiple steps during oligodendrocyte progenitor cell (OPC) development. To date nothing is known regarding the role of golli proteins in demyelination or remyelination events. Here the effects of golli ablation and overexpression in myelin loss and recovery were examined using the cuprizone (CPZ) model of demyelination/remyelination. We found severe demyelination in the corpus callosum (CC) of golli-overexpressing mice (JOE) during the CPZ treatment, which was accompanied by an increased number of reactive astrocytes and activation of microglia/macrophages. During demyelination of JOE brains, a significant increase in the number of proliferating OPCs was found in the CC as well as in the subventricular zone, and our data indicate that these progenitors matured and fully remyelinated the CC of JOE animals after CPZ withdrawal. In contrast, in the absence of golli (golli-KO mice) delayed myelin loss associated with a smaller immune response, and a lower number of OPCs was found in these mice during the CPZ treatment. Furthermore, incomplete remyelination was observed after CPZ removal in large areas of the CC of golli-KO mice, reflecting irregular recovery of the oligodendrocyte population and subsequent myelin sheath formation. Our findings demonstrate that golli proteins sensitize mature oligodendrocytes to CPZ-induced demyelination, while at the same time stimulate the proliferation/recruitment of OPCs during demyelination, resulting in accelerated remyelination.

  6. Anti-reovirus receptor antibody accelerates expression of the optic nerve oligodendrocyte developmental program.

    PubMed Central

    Cohen, J A; Williams, W V; Geller, H M; Greene, M I

    1991-01-01

    Previous studies showed that the cell-surface receptor for reovirus serotype 3 (Reo3R) appears at an early stage of oligodendrocyte differentiation and that anti-Reo3R antibodies and Reo3R-binding peptides induce galactocerebroside expression by developing oligodendrocytes. In the present studies, anti-Reo3R antibodies are shown to stimulate additional features of the program of oligodendrocyte development, including the loss of the A2B5 marker and expression of myelin basic protein. In anti-Reo3R antibody-treated cultures, galactocerebroside was expressed by cells having the morphology of immature oligodendrocyte precursors. Reo3R binding did not appear directly to inhibit or stimulate proliferation of glial progenitor cells or to affect their lineage commitment. Cell-surface structures utilized as a receptor by reovirus type 3 appear to play a role in the regulation of the initiation or rate of execution of the oligodendrocyte developmental program. Images PMID:1705032

  7. Early Intervention for Spinal Cord Injury with Human Induced Pluripotent Stem Cells Oligodendrocyte Progenitors

    PubMed Central

    All, Angelo H.; Gharibani, Payam; Gupta, Siddharth; Bazley, Faith A.; Pashai, Nikta; Chou, Bin-Kuan; Shah, Sandeep; Resar, Linda M.; Cheng, Linzhao; Gearhart, John D.; Kerr, Candace L.

    2015-01-01

    Induced pluripotent stem (iPS) cells are at the forefront of research in regenerative medicine and are envisaged as a source for personalized tissue repair and cell replacement therapy. Here, we demonstrate for the first time that oligodendrocyte progenitors (OPs) can be derived from iPS cells generated using either an episomal, non-integrating plasmid approach or standard integrating retroviruses that survive and differentiate into mature oligodendrocytes after early transplantation into the injured spinal cord. The efficiency of OP differentiation in all 3 lines tested ranged from 40% to 60% of total cells, comparable to those derived from human embryonic stem cells. iPS cell lines derived using episomal vectors or retroviruses generated a similar number of early neural progenitors and glial progenitors while the episomal plasmid-derived iPS line generated more OPs expressing late markers O1 and RIP. Moreover, we discovered that iPS-derived OPs (iPS-OPs) engrafted 24 hours following a moderate contusive spinal cord injury (SCI) in rats survived for approximately two months and that more than 70% of the transplanted cells differentiated into mature oligodendrocytes that expressed myelin associated proteins. Transplanted OPs resulted in a significant increase in the number of myelinated axons in animals that received a transplantation 24 h after injury. In addition, nearly a 5-fold reduction in cavity size and reduced glial scarring was seen in iPS-treated groups compared to the control group, which was injected with heat-killed iPS-OPs. Although further investigation is needed to understand the mechanisms involved, these results provide evidence that patient-specific, iPS-derived OPs can survive for three months and improve behavioral assessment (BBB) after acute transplantation into SCI. This is significant as determining the time in which stem cells are injected after SCI may influence their survival and differentiation capacity. PMID:25635918

  8. CXCR2 Signaling Protects Oligodendrocyte Progenitor Cells from IFN-γ/CXCL10-Mediated Apoptosis

    PubMed Central

    TIROTTA, EMANUELE; RANSOHOFF, RICHARD M.; LANE, THOMAS E.

    2016-01-01

    Infiltration of activated lymphocytes into the central nervous system (CNS) is potentially harmful by damaging resident cells through release of cytokines. Among these is IFN-γ that is secreted by activated natural killer (NK) cells and T lymphocytes and can exert a cytotoxic effect on resident glial populations including oligodendrocytes. Here we show that treatment of mouse oligodendrocyte progenitor cell (OPC)-enriched cultures with IFN-γ resulted in a dose-dependent increase in apoptosis. IFN-γ-induced apoptosis is mediated, in part, through induction of the CXC chemokine ligand 10 (CXCL10; IP-10) from cultured OPCs. Treatment of OPCs with CXCL10 resulted in cell death in a concentration-dependent manner and IFN-γ-treatment of CXCL10−/− OPCs resulted in >50% reduction in cell death. Further, treatment of CXCR3−/− OPC cultures with either IFN-γ or CXCL10 resulted in reduced cell death supporting an important role for CXCL10 signaling in IFN-γ-mediated OPC apoptosis. Data is also provided demonstrating that signaling through CXCR2 protects either IFN-γ or CXCL10-treated OPC cultures from apoptosis and this effect is abolished in CXCR2−/− OPCs. CXCR2-mediated protection from apoptosis is associated with impaired cleavage of caspase 3 and elevated expression of the anti-apoptotic protein Bcl-2. These findings demonstrate a previously unappreciated role for CXCL10 in contributing to neuropathology by promoting oligodendrocyte apoptosis and emphasize the potential relevance in targeting CXCL10 in treating human demyelinating diseases including multiple sclerosis (MS). PMID:21656856

  9. How to make an oligodendrocyte.

    PubMed

    Goldman, Steven A; Kuypers, Nicholas J

    2015-12-01

    Oligodendrocytes produce myelin, an insulating sheath required for the saltatory conduction of electrical impulses along axons. Oligodendrocyte loss results in demyelination, which leads to impaired neurological function in a broad array of diseases ranging from pediatric leukodystrophies and cerebral palsy, to multiple sclerosis and white matter stroke. Accordingly, replacing lost oligodendrocytes, whether by transplanting oligodendrocyte progenitor cells (OPCs) or by mobilizing endogenous progenitors, holds great promise as a therapeutic strategy for the diseases of central white matter. In this Primer, we describe the molecular events regulating oligodendrocyte development and how our understanding of this process has led to the establishment of methods for producing OPCs and oligodendrocytes from embryonic stem cells and induced pluripotent stem cells, as well as directly from somatic cells. In addition, we will discuss the safety of engrafted stem cell-derived OPCs, as well as approaches by which to modulate their differentiation and myelinogenesis in vivo following transplantation.

  10. Chemical inducers and transcriptional markers of oligodendrocyte differentiation.

    PubMed

    Joubert, Lara; Foucault, Isabelle; Sagot, Yves; Bernasconi, Lilia; Duval, François; Alliod, Chantal; Frossard, Marie-José; Pescini Gobert, Rosanna; Curchod, Marie-Laure; Salvat, Catherine; Nichols, Anthony; Pouly, Sandrine; Rommel, Christian; Roach, Arthur; Hooft van Huijsduijnen, Rob

    2010-09-01

    Oligodendrocytes generate and maintain myelin, which is essential for axonal function and protection of the mammalian central nervous system. To advance our molecular understanding of differentiation by these cells, we screened libraries of pharmacologically active compounds and identified inducers of differentiation of Oli-neu, a stable cell line of mouse oligodendrocyte precursors (OPCs). We identified four broad classes of inducers, namely, forskolin/cAMP (protein kinase A activators), steroids (glucocorticoids and retinoic acid), ErbB2 inhibitors, and nucleoside analogs, and confirmed the activity of these compounds on rat primary oligodendrocyte precursors and mixed cortical cultures. We also analyzed transcriptional responses in the chemically induced mouse and rat OPC differentiation processes and compared these with earlier studies. We confirm the view that ErbB2 is a natural signaling component that is required for OPC proliferation, whereas ErbB2 inhibition or genetic knockdown results in OPC differentiation.

  11. Sequential Differentiation of Embryonic Stem Cells into Neural Epithelial-Like Stem Cells and Oligodendrocyte Progenitor Cells

    PubMed Central

    Bian, Jing; Zheng, Jiao; Li, Shen; Luo, Lan; Ding, Fei

    2016-01-01

    Background Recent advances in stem cell technology afford an unlimited source of neural progenitors and glial cells for cell based therapy in central nervous system (CNS) disorders. However, current differentiation strategies still need to be improved due to time-consuming processes, poorly defined culture conditions, and low yield of target cell populations. Methodology/Principle Findings This study aimed to provide a precise sequential differentiation to capture two transient stages: neural epithelia-like stem cells (NESCs) and oligodendrocytes progenitor cells (OPCs) derived from mouse embryonic stem cells (ESCs). CHIR99021, a glycogen synthase kinase 3 (GSK-3) inhibitor, in combination with dual SMAD inhibitors, could induce ESCs to rapidly differentiate into neural rosette-like colonies, which facilitated robust generation of NESCs that had a high self-renewal capability and stable neuronal and glial differentiation potentials. Furthermore, SHH combined with FGF-2 and PDGF-AA could induce NESCs to differentiate into highly expandable OPCs. These OPCs not only robustly differentiated into oligodendrocytes, but also displayed an increased migratory activity in vitro. Conclusions/Significance We developed a precise and reliable strategy for sequential differentiation to capture NESCs and OPCs derived from ESCs, thus providing unlimited cell source for cell transplantation and drug screening towards CNS repair. PMID:27192219

  12. Oct4-induced oligodendrocyte progenitor cells enhance functional recovery in spinal cord injury model.

    PubMed

    Kim, Jeong Beom; Lee, Hyunah; Araúzo-Bravo, Marcos J; Hwang, Kyujin; Nam, Donggyu; Park, Myung Rae; Zaehres, Holm; Park, Kook In; Lee, Seok-Jin

    2015-12-01

    The generation of patient-specific oligodendrocyte progenitor cells (OPCs) holds great potential as an expandable cell source for cell replacement therapy as well as drug screening in spinal cord injury or demyelinating diseases. Here, we demonstrate that induced OPCs (iOPCs) can be directly derived from adult mouse fibroblasts by Oct4-mediated direct reprogramming, using anchorage-independent growth to ensure high purity. Homogeneous iOPCs exhibit typical small-bipolar morphology, maintain their self-renewal capacity and OPC marker expression for more than 31 passages, share high similarity in the global gene expression profile to wild-type OPCs, and give rise to mature oligodendrocytes and astrocytes in vitro and in vivo. Notably, transplanted iOPCs contribute to functional recovery in a spinal cord injury (SCI) model without tumor formation. This study provides a simple strategy to generate functional self-renewing iOPCs and yields insights for the in-depth study of demyelination and regenerative medicine.

  13. Direct involvement of p53 in programmed cell death of oligodendrocytes.

    PubMed Central

    Eizenberg, O; Faber-Elman, A; Gottlieb, E; Oren, M; Rotter, V; Schwartz, M

    1995-01-01

    A covalent dimer of interleukin (IL)-2, produced in vitro by the action of a nerve-derived transglutaminase, has been shown previously to be cytotoxic to mature rat brain oligodendrocytes. Here we report that this cytotoxic effect operates via programmed cell death (apoptosis) and that the p53 tumor suppressor gene is involved directly in the process. The apoptotic death of mature rat brain oligodendrocytes in culture following treatment with dimeric IL-2 was demonstrated by chromatin condensation and internucleosomal DNA fragmentation. The peak of apoptosis was observed 16-24 h after treatment, while the commitment to death was already observed after 3-4 h. An involvement of p53 in this process was indicated by the shift in location of constitutively expressed endogenous p53 from the cytoplasm to the nucleus, as early as 15 min after exposure to dimeric IL-2. Moreover, infection with a recombinant retrovirus encoding a C-terminal p53 miniprotein, shown previously to act as a dominant negative inhibitor of endogenous wild-type p53 activity, protected these cells from apoptosis. Images PMID:7720704

  14. Efficient Generation of Viral and Integration-Free Human Induced Pluripotent Stem Cell-Derived Oligodendrocytes.

    PubMed

    Espinosa-Jeffrey, Araceli; Blanchi, Bruno; Biancotti, Juan Carlos; Kumar, Shalini; Hirose, Megumi; Mandefro, Berhan; Talavera-Adame, Dodanim; Benvenisty, Nissim; de Vellis, Jean

    2016-01-01

    Here we document three highly reproducible protocols: (1) a culture system for the derivation of human oligodendrocytes (OLs) from human induced pluripotent stem cells (hiPS) and their further maturation-our protocol generates viral- and integration-free OLs that efficiently commit and move forward in the OL lineage, recapitulating all the steps known to occur during in vivo development; (2) a method for the isolation, propagation and maintenance of neural stem cells (NSCs); and (3) a protocol for the production, isolation, and maintenance of OLs from perinatal rodent and human brain-derived NSCs. Our unique culture systems rely on a series of chemically defined media, specifically designed and carefully characterized for each developmental stage of OL as they advance from OL progenitors to mature, myelinating cells. We are confident that these protocols bring our field a step closer to efficient autologous cell replacement therapies and disease modeling. © 2016 by John Wiley & Sons, Inc. PMID:27532816

  15. Insulin-like growth factor I/somatomedin C: a potent inducer of oligodendrocyte development

    SciTech Connect

    McMorris, F.A.; Smith, T.M.; DeSalvo, S.; Furlanetto, R.W.

    1986-02-01

    Cell cultures established from cerebrum of 1-day-old rats were used to investigate hormonal regulation of the development of oligodendrocytes, which synthesize myelin in the central nervous system. The number of oligodendrocytes that developed was preferentially increased by insulin, or by insulin-like growth factor I (IGF-I), also known as somatomedin C. High concentrations of insulin were required for substantial induction of oligodendrocyte development, whereas only 3.3 ng of IGF-I per ml was needed for a 2-fold increase in oligodendrocyte numbers. At an IGF-I concentration of 100 ng/ml, oligodendrocyte numbers were increased 6-fold in cultures grown in the presence of 10% fetal bovine serum, or up to 60-fold in cultures maintained in serum-free medium. IGF-I produced less than a 2-fold increase in the number of nonoligodendroglial cells in the same cultures. Type I IGF receptors were identified on oligodendrocytes and on a putative oligodendrocyte precursor cell population identified by using mouse monoclonal antibody A2B5. Radioligand binding assays were done. These results indicate that IGF-I is a potent inducer of oligodendrocyte development and suggest a possible mechanism based on IGF deficiency for the hypomyelination that results from early postnatal malnutrition.

  16. Cannabidiol protects oligodendrocyte progenitor cells from inflammation-induced apoptosis by attenuating endoplasmic reticulum stress

    PubMed Central

    Mecha, M; Torrao, A S; Mestre, L; Carrillo-Salinas, F J; Mechoulam, R; Guaza, C

    2012-01-01

    Cannabidiol (CBD) is the most abundant cannabinoid in Cannabis sativa that has no psychoactive properties. CBD has been approved to treat inflammation, pain and spasticity associated with multiple sclerosis (MS), of which demyelination and oligodendrocyte loss are hallmarks. Thus, we investigated the protective effects of CBD against the damage to oligodendrocyte progenitor cells (OPCs) mediated by the immune system. Doses of 1 μM CBD protect OPCs from oxidative stress by decreasing the production of reactive oxygen species. CBD also protects OPCs from apoptosis induced by LPS/IFNγ through the decrease of caspase 3 induction via mechanisms that do not involve CB1, CB2, TRPV1 or PPARγ receptors. Tunicamycin-induced OPC death was attenuated by CBD, suggesting a role of endoplasmic reticulum (ER) stress in the mode of action of CBD. This protection against ER stress-induced apoptosis was associated with reduced phosphorylation of eiF2α, one of the initiators of the ER stress pathway. Indeed, CBD diminished the phosphorylation of PKR and eiF2α induced by LPS/IFNγ. The pro-survival effects of CBD in OPCs were accompanied by decreases in the expression of ER apoptotic effectors (CHOP, Bax and caspase 12), and increased expression of the anti-apoptotic Bcl-2. These findings suggest that attenuation of the ER stress pathway is involved in the ‘oligoprotective' effects of CBD during inflammation. PMID:22739983

  17. Glatiramer acetate-reactive T lymphocytes regulate oligodendrocyte progenitor cell number in vitro: role of IGF-2

    PubMed Central

    Zhang, Y.; Jalili, F.; Ouamara, N.; Zameer, A.; Cosentino, G.; Mayne, M.; Hayardeny, L.; Antel, J. P.; Bar-Or, A.; John, G. R.

    2010-01-01

    Glatiramer acetate (GA) is an immunomodulator approved for therapy of relapsing-remitting multiple sclerosis (RRMS), but recent findings indicate that it may also have additional, neurotrophic effects. Here, we found that supernatants from human GA-reactive T lymphocytes potentiated oligodendrocyte numbers in rodent and human oligodendrocyte progenitor (OPC) cultures. Effects of Th2-polarized lines were stronger than Th1-polarized cells. Microarray and ELISA analyses revealed that neurotrophic factors induced in Th2- and Th1-polarized GA-reactive lines included IGF-2 and BMP-7 respectively, and functional studies confirmed IGF-2 as trophic for OPCs. Our results support the concept that GA therapy may result in supportive effects on oligodendrocytes in RRMS patients. PMID:20637510

  18. Convergent functional genomics of oligodendrocyte differentiation identifies multiple autoinhibitory signaling circuits.

    PubMed

    Gobert, Rosanna Pescini; Joubert, Lara; Curchod, Marie-Laure; Salvat, Catherine; Foucault, Isabelle; Jorand-Lebrun, Catherine; Lamarine, Marc; Peixoto, Hélène; Vignaud, Chloé; Frémaux, Christèle; Jomotte, Thérèse; Françon, Bernard; Alliod, Chantal; Bernasconi, Lilia; Abderrahim, Hadi; Perrin, Dominique; Bombrun, Agnes; Zanoguera, Francisca; Rommel, Christian; Hooft van Huijsduijnen, Rob

    2009-03-01

    Inadequate remyelination of brain white matter lesions has been associated with a failure of oligodendrocyte precursors to differentiate into mature, myelin-producing cells. In order to better understand which genes play a critical role in oligodendrocyte differentiation, we performed time-dependent, genome-wide gene expression studies of mouse Oli-neu cells as they differentiate into process-forming and myelin basic protein-producing cells, following treatment with three different agents. Our data indicate that different inducers activate distinct pathways that ultimately converge into the completely differentiated state, where regulated gene sets overlap maximally. In order to also gain insight into the functional role of genes that are regulated in this process, we silenced 88 of these genes using small interfering RNA and identified multiple repressors of spontaneous differentiation of Oli-neu, most of which were confirmed in rat primary oligodendrocyte precursors cells. Among these repressors were CNP, a well-known myelin constituent, and three phosphatases, each known to negatively control mitogen-activated protein kinase cascades. We show that a novel inhibitor for one of the identified genes, dual-specificity phosphatase DUSP10/MKP5, was also capable of inducing oligodendrocyte differentiation in primary oligodendrocyte precursors. Oligodendrocytic differentiation feedback loops may therefore yield pharmacological targets to treat disease related to dysfunctional myelin deposition.

  19. Convergent Functional Genomics of Oligodendrocyte Differentiation Identifies Multiple Autoinhibitory Signaling Circuits▿ †

    PubMed Central

    Pescini Gobert, Rosanna; Joubert, Lara; Curchod, Marie-Laure; Salvat, Catherine; Foucault, Isabelle; Jorand-Lebrun, Catherine; Lamarine, Marc; Peixoto, Hélène; Vignaud, Chloé; Frémaux, Christèle; Jomotte, Thérèse; Françon, Bernard; Alliod, Chantal; Bernasconi, Lilia; Abderrahim, Hadi; Perrin, Dominique; Bombrun, Agnes; Zanoguera, Francisca; Rommel, Christian; van Huijsduijnen, Rob Hooft

    2009-01-01

    Inadequate remyelination of brain white matter lesions has been associated with a failure of oligodendrocyte precursors to differentiate into mature, myelin-producing cells. In order to better understand which genes play a critical role in oligodendrocyte differentiation, we performed time-dependent, genome-wide gene expression studies of mouse Oli-neu cells as they differentiate into process-forming and myelin basic protein-producing cells, following treatment with three different agents. Our data indicate that different inducers activate distinct pathways that ultimately converge into the completely differentiated state, where regulated gene sets overlap maximally. In order to also gain insight into the functional role of genes that are regulated in this process, we silenced 88 of these genes using small interfering RNA and identified multiple repressors of spontaneous differentiation of Oli-neu, most of which were confirmed in rat primary oligodendrocyte precursors cells. Among these repressors were CNP, a well-known myelin constituent, and three phosphatases, each known to negatively control mitogen-activated protein kinase cascades. We show that a novel inhibitor for one of the identified genes, dual-specificity phosphatase DUSP10/MKP5, was also capable of inducing oligodendrocyte differentiation in primary oligodendrocyte precursors. Oligodendrocytic differentiation feedback loops may therefore yield pharmacological targets to treat disease related to dysfunctional myelin deposition. PMID:19139271

  20. Subcortical ischemic vascular disease: Roles of oligodendrocyte function in experimental models of subcortical white-matter injury.

    PubMed

    Shindo, Akihiro; Liang, Anna C; Maki, Takakuni; Miyamoto, Nobukazu; Tomimoto, Hidekazu; Lo, Eng H; Arai, Ken

    2016-01-01

    Oligodendrocytes are one of the major cell types in cerebral white matter. Under normal conditions, they form myelin sheaths that encircle axons to support fast nerve conduction. Under conditions of cerebral ischemia, oligodendrocytes tend to die, resulting in white-matter dysfunction. Repair of white matter involves the ability of oligodendrocyte precursors to proliferate and mature. However, replacement of lost oligodendrocytes may not be the only mechanism for white-matter recovery. Emerging data now suggest that coordinated signaling between neural, glial, and vascular cells in the entire neurovascular unit may be required. In this mini-review, we discuss how oligodendrocyte lineage cells participate in signaling and crosstalk with other cell types to underlie function and recovery in various experimental models of subcortical white-matter injury.

  1. IL-17A activates ERK1/2 and enhances differentiation of oligodendrocyte progenitor cells.

    PubMed

    Rodgers, Jane M; Robinson, Andrew P; Rosler, Elen S; Lariosa-Willingham, Karen; Persons, Rachael E; Dugas, Jason C; Miller, Stephen D

    2015-05-01

    Inflammatory signals present in demyelinated multiple sclerosis lesions affect the reparative remyelination process conducted by oligodendrocyte progenitor cells (OPCs). Interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and interleukin (IL)-6 have differing effects on the viability and growth of OPCs, however the effects of IL-17A are largely unknown. Primary murine OPCs were stimulated with IL-17A and their viability, proliferation, and maturation were assessed in culture. IL-17A-stimulated OPCs exited the cell cycle and differentiated with no loss in viability. Expression of the myelin-specific protein, proteolipid protein, increased in a cerebellar slice culture assay in the presence of IL-17A. Downstream, IL-17A activated ERK1/2 within 15 min and induced chemokine expression in 2 days. These results demonstrate that IL-17A exposure stimulates OPCs to mature and participate in the inflammatory response.

  2. MMP-3 secreted from endothelial cells of blood vessels after spinal cord injury activates microglia, leading to oligodendrocyte cell death.

    PubMed

    Lee, Jee Y; Choi, Hae Y; Yune, Tae Y

    2015-10-01

    The activation of microglia after spinal cord injury (SCI) contributes to secondary damage by producing pro-inflammatory cytokines and mediators, leading to cell death of oligodendrocytes and neurons. Here, we show that matrix metalloprotease-3 (MMP-3) produced and secreted in the endothelial cells of blood vessels after SCI mediates microglial activation. MMP-3 was produced and secreted in bEnd.3 cells, a mouse brain-derived endothelial cell line, by oxygen-glucose deprivation/reoxygenation (OGD/RO). OGD/RO-induced MMP-3 expression and activity was also significantly inhibited by ghrelin, which was dependent on the ghrelin receptor GHS-R1a. Furthermore, the secreted MMP-3 from OGD/RO-induced bEnd.3 cells activated BV-2 cells, a murine microglial cell line. We also found that microglial activation after SCI was attenuated in MMP-3 knockout (KO) mice compared with wild type (WT) mice. Both p38 mitogen-activated protein kinase (MAPK) activation and pro-nerve growth factor (proNGF) production were more inhibited in MMP-3 KO than WT mice at 5d after injury. When WT mice were treated with Mmp-3 siRNA after injury, MMP-3 activity, microglial activation, p38MAPK activation and proNGF expression were significantly inhibited. Ghrelin treatment also significantly inhibited MMP-3 expression and activation after SCI, which was dependent on GHS-R1a. Finally, RhoA activation and oligodendrocyte cell death after injury were attenuated by Mmp-3 siRNA or ghrelin treatment compared with vehicle control. Thus, our study indicates that MMP-3 produced in blood vessel endothelial cells after SCI serves as an endogenous molecule for microglial activation followed by p38MAPK activation and proNGF production, and further indicates that the protective effect of ghrelin on oligodendrocytes cell death may be at least partly mediated by the inhibition of MMP-3-induced microglial activation after SCI.

  3. Comparative Effects of Human Neural Stem Cells and Oligodendrocyte Progenitor Cells on the Neurobehavioral Disorders of Experimental Autoimmune Encephalomyelitis Mice

    PubMed Central

    Bae, Dae-Kwon; Park, Dongsun; Lee, Sun Hee; Yang, Goeun; Kyung, Jangbeen; Kim, Dajeong; Shin, Kyungha; Choi, Ehn-Kyoung; Kim, Gonhyung; Hong, Jin Tae; Kim, Seung U.

    2016-01-01

    Since multiple sclerosis (MS) is featured with widespread demyelination caused by autoimmune response, we investigated the recovery effects of F3.olig2 progenitors, established by transducing human neural stem cells (F3 NSCs) with Olig2 transcription factor, in myelin oligodendrocyte glycoprotein- (MOG-) induced experimental autoimmune encephalomyelitis (EAE) model mice. Six days after EAE induction, F3 or F3.olig2 cells (1 × 106/mouse) were intravenously transplanted. MOG-injected mice displayed severe neurobehavioral deficits which were remarkably attenuated and restored by cell transplantation, in which F3.olig2 cells were superior to its parental F3 cells. Transplanted cells migrated to the injured spinal cord, matured to oligodendrocytes, and produced myelin basic proteins (MBP). The F3.olig2 cells expressed growth and neurotrophic factors including brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), ciliary neurotrophic factor (CNTF), and leukemia inhibitory factor (LIF). In addition, the transplanted cells markedly attenuated inflammatory cell infiltration, reduced cytokine levels in the spinal cord and lymph nodes, and protected host myelins. The results indicate that F3.olig2 cells restore neurobehavioral symptoms of EAE mice by regulating autoimmune inflammatory responses as well as by stimulating remyelination and that F3.olig2 progenitors could be a candidate for the cell therapy of demyelinating diseases including MS. PMID:27429621

  4. A functional progesterone receptor is required for immunomodulation, reduction of reactive gliosis and survival of oligodendrocyte precursors in the injured spinal cord.

    PubMed

    Labombarda, Florencia; Jure, Ignacio; Gonzalez, Susana; Lima, Analia; Roig, Paulina; Guennoun, Rachida; Schumacher, Michael; De Nicola, Alejandro F

    2015-11-01

    The anti-inflammatory effects of progesterone have been increasingly recognized in several neuropathological models, including spinal cord inflammation. In the present investigation, we explored the regulation of proinflammatory factors and enzymes by progesterone at several time points after spinal cord injury (SCI) in male rats. We also demonstrated the role of the progesterone receptor (PR) in inhibiting inflammation and reactive gliosis, and in enhancing the survival of oligodendrocyte progenitors cells (OPC) in injured PR knockout (PRKO) mice receiving progesterone. First, after SCI in rats, progesterone greatly attenuated the injury-induced hyperexpression of the mRNAs of interleukin 1β (IL1β), IL6, tumor necrosis factor alpha (TNFα), inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2), all involved in oligodendrocyte damage. Second, the role of the PR was investigated in PRKO mice after SCI, in which progesterone failed to reduce the high expression of IL1β, IL6, TNFα and IκB-α mRNAs, the latter being considered an index of reduced NF-κB transactivation. These effects occurred in a time framework coincident with a reduction in the astrocyte and microglial responses. In contrast to wild-type mice, progesterone did not increase the density of OPC and did not prevent apoptotic death of these cells in PRKO mice. Our results support a role of PR in: (a) the anti-inflammatory effects of progesterone; (b) the modulation of astrocyte and microglial responses and (c) the prevention of OPC apoptosis, a mechanism that would enhance the commitment of progenitors to the remyelination pathway in the injured spinal cord.

  5. Induction of caspase-dependent apoptosis in cultured rat oligodendrocytes by murine coronavirus is mediated during cell entry and does not require virus replication.

    PubMed

    Liu, Yin; Cai, Yingyun; Zhang, Xuming

    2003-11-01

    Murine coronavirus mouse hepatitis virus (MHV) causes demyelination of the central nervous system (CNS) in rats and mice. Apoptotic oligodendrocytes have been detected in the vicinity of the CNS demyelinating lesions in these animals. However, whether MHV can directly induce oligodendrocyte apoptosis has not been documented. Here, we established a rat oligodendrocyte culture that is morphologically and phenotypically indistinguishable from the primary rat oligodendrocytes. Using this culture, we showed that mature rat oligodendrocytes were permissive to MHV infection but did not support productive virus replication. Significantly, oligodendrocytes infected with both live and ultraviolet light-inactivated viruses underwent apoptosis to a similar extent, which was readily detectable at 24 h postinfection as revealed by apoptotic bodies and DNA fragmentation, indicating that MHV-induced apoptosis is mediated during the early stages of the virus life cycle and does not require virus replication. Prior treatment of cells with the lysosomotropic agents NH(4)Cl and chloroquine as well as the vacuolar proton pump-ATPase inhibitor bafilomycin A1, all of which block the acidification of the endosome, prevented oligodendrocytes from succumbing to apoptosis induced by MHV mutant OBLV60, which enters cells via endocytosis, indicating that fusion between the viral envelope and cell membranes triggers the apoptotic cascade. Treatment with the pan-caspase inhibitor Z-VAD-fmk blocked MHV-induced apoptosis, suggesting an involvement of the caspase-dependent pathway. Our results, thus, for the first time provide unequivocal evidence that infection of oligodendrocytes with MHV directly results in apoptosis. This finding provides an explanation for the destruction of oligodendrocytes and the damage of myelin sheath in MHV-infected CNS and suggests that oligodendrocyte apoptosis may be one of the underlying mechanisms for the pathogenesis of MHV-induced demyelinating diseases in animals.

  6. Persistent Wnt/β-catenin signaling determines dorsalization of the postnatal subventricular zone and neural stem cell specification into oligodendrocytes and glutamatergic neurons.

    PubMed

    Azim, Kasum; Fischer, Bruno; Hurtado-Chong, Anahi; Draganova, Kalina; Cantù, Claudio; Zemke, Martina; Sommer, Lukas; Butt, Arthur; Raineteau, Olivier

    2014-05-01

    In the postnatal and adult central nervous system (CNS), the subventricular zone (SVZ) of the forebrain is the main source of neural stem cells (NSCs) that generate olfactory neurons and oligodendrocytes (OLs), the myelinating cells of the CNS. Here, we provide evidence of a primary role for canonical Wnt/β-catenin signaling in regulating NSC fate along neuronal and oligodendroglial lineages in the postnatal SVZ. Our findings demonstrate that glutamatergic neuronal precursors (NPs) and oligodendrocyte precursors (OPs) are derived strictly from the dorsal SVZ (dSVZ) microdomain under the control of Wnt/β-catenin, whereas GABAergic NPs are derived mainly from the lateral SVZ (lSVZ) microdomain independent of Wnt/β-catenin. Transcript analysis of microdissected SVZ microdomains revealed that canonical Wnt/β-catenin signaling was more pronounced in the dSVZ microdomain. This was confirmed using the β-catenin-activated Wnt-reporter mouse and by pharmacological stimulation of Wnt/β-catenin by infusion of the specific glycogen synthase kinase 3β inhibitor, AR-A014418, which profoundly increased the generation of cycling cells. In vivo genetic/pharmacological stimulation or inhibition of Wnt/β-catenin, respectively, increased and decreased the differentiation of dSVZ-NSCs into glutamatergic NPs, and had a converse effect on GABAergic NPs. Activation of Wnt/β-catenin dramatically stimulated the generation of OPs, but its inhibition had no effect, indicating other factors act in concert with Wnt/β-catenin to fine tune oligodendrogliogenesis in the postnatal dSVZ. These results demonstrate a role for Wnt/β-catenin signaling within the dorsal microdomain of the postnatal SVZ, in regulating the genesis of glutamatergic neurons and OLs.

  7. Lithium improves cell viability in psychosine-treated MO3.13 human oligodendrocyte cell line via autophagy activation.

    PubMed

    Del Grosso, Ambra; Antonini, Sara; Angella, Lucia; Tonazzini, Ilaria; Signore, Giovanni; Cecchini, Marco

    2016-11-01

    Globoid cell leukodystrophy (GLD) is a rare, rapidly progressing childhood leukodystrophy triggered by deficit of the lysosomal enzyme galactosylceramidase (GALC) and characterized by the accumulation of galactosylsphingosine (psychosine; PSY) in the nervous system. PSY is a cytotoxic sphingolipid, which leads to widespread degeneration of oligodendrocytes and Schwann cells, causing demyelination. Here we report on autophagy in the human oligodendrocyte cell line MO3.13 treated with PSY and exploitation of Li as an autophagy modulator to rescue cell viability. We demonstrate that PSY causes upregulation of the autophagic flux at the level of autophagosome and autolysosome formation and LC3-II expression. We show that pretreatment with Li, a drug clinically used to treat bipolar disorders, can further stimulate autophagy, improving cell tolerance to PSY. This Li protective effect is found not to be linked to reduction of PSY-induced oxidative stress and might not stem from a reduction of PSY accumulation. These data provide novel information on the intracellular pathways activated during PSY-induced toxicity and suggest the autophagy pathway as a promising novel therapeutic target for ameliorating the GLD phenotype. © 2016 Wiley Periodicals, Inc. PMID:27638607

  8. Ceramide and neurodegeneration: Susceptibility of neurons and oligodendrocytes to cell damage and death

    PubMed Central

    Jana, Arundhati; Hogan, Edward L.; Pahan, Kalipada

    2009-01-01

    Neurodegenerative disorders are marked by extensive neuronal apoptosis and gliosis. Although several apoptosis-inducing agents have been described, understanding of the regulatory mechanisms underlying modes of cell death is incomplete. A major breakthrough in delineation of the mechanism of cell death came from elucidation of the sphingomyelin (SM)-ceramide pathway that has received worldwide attention in recent years. The SM pathway induces apoptosis, differentiation, proliferation, and growth arrest depending upon cell and receptor types, and on downstream targets. Sphingomyelin, a plasma membrane constituent, is abundant in mammalian nervous system, and ceramide, its primary catabolic product released by activation of either neutral or acidic sphingomyelinase, serves as a potential lipid second messenger or mediator molecule modulating diverse cellular signaling pathways. Neutral sphingomyelinase (NSMase) is a key enzyme in the regulated activation of the SM cycle and is particularly sensitive to oxidative stress. In a context of increasing clarification of the mechanisms of neurodegeneration, we thought that it would be useful to review details of recent findings that we and others have made concerning different pro-apoptotic neurotoxins including proinflammatory cytokines, hypoxia-induced SM hydrolysis and ceramide production that induce cell death in human primary neurons and primary oligodendrocytes: redox sensitive events. What has and is emerging is a vista of therapeutically important ceramide regulation affecting a variety of different neurodegenerative and neuroinflammatory disorders. PMID:19147160

  9. Lipopolysaccharide-activated microglia induce death of oligodendrocyte progenitor cells and impede their development.

    PubMed

    Pang, Y; Campbell, L; Zheng, B; Fan, L; Cai, Z; Rhodes, P

    2010-03-17

    Damage to oligodendrocyte (OL) progenitor cells (OPCs) and hypomyelination are two hallmark features of periventricular leukomalacia (PVL), the most common form of brain damage in premature infants. Clinical and animal studies have linked the incidence of PVL to maternal infection/inflammation, and activated microglia have been proposed to play a central role. However, the precise mechanism of how activated microglia adversely affects the survival and development of OPCs is still not clear. Here we demonstrate that lipopolysaccharide (LPS)-activated microglia are deleterious to OPCs, that is, impeding OL lineage progression, reducing the production of myelin basic protein (MBP), and mediating OPC death. We further demonstrate that LPS-activated microglia mediate OPC death by two distinct mechanisms in a time-dependent manner. The early phase of cell damage occurs within 24 h after LPS treatment, which is mediated by nitric oxide (NO)-dependent oxidative damage and is prevented by N(G)-nitro-l-arginine methyl ester (l-NAME), a general inhibitor of nitric oxide synthase. The delayed cell death is evident at 48 h after LPS treatment, is mediated by cytokines, and is prevented by blocking the activity of tumor necrosis factor-alpha (TNF-alpha) and pro-nerve growth factor (proNGF), but not by l-NAME. Furthermore, microglia-derived insulin-like growth factor-1 (IGF-1) and ciliary neurotrophic factor (CNTF) were significantly suppressed by LPS, and exogenous IGF-1 and CNTF synergistically protected OLs from death induced by LPS-treated microglia conditioned medium, indicating that a deficiency in trophic support may also be involved in OL death. Our finding that LPS-activated microglia not only induce two waves of cell death but also greatly impair OL development may shed some light on the mechanisms underlying selective white matter damage and hypomyelination in PVL.

  10. Diosgenin promotes oligodendrocyte progenitor cell differentiation through estrogen receptor-mediated ERK1/2 activation to accelerate remyelination.

    PubMed

    Xiao, Lin; Guo, Dazhi; Hu, Chun; Shen, Weiran; Shan, Lei; Li, Cui; Liu, Xiuyun; Yang, Wenjing; Zhang, Weidong; He, Cheng

    2012-07-01

    Differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes is a prerequisite for remyelination after demyelination, and impairment of this process is suggested to be a major reason for remyelination failure. Diosgenin, a plant-derived steroid, has been implicated for therapeutic use in many diseases, but little is known about its effect on the central nervous system. In this study, using a purified rat OPC culture model, we show that diosgenin significantly and specifically promotes OPC differentiation without affecting the viability, proliferation, or migration of OPC. Interestingly, the effect of diosgenin can be blocked by estrogen receptor (ER) antagonist ICI 182780 but not by glucocorticoid and progesterone receptor antagonist RU38486, nor by mineralocorticoid receptor antagonist spirolactone. Moreover, it is revealed that both ER-alpha and ER-beta are expressed in OPC, and diosgenin can activate the extracellular signal-regulated kinase 1/2 (ERK1/2) in OPC via ER. The pro-differentiation effect of diosgenin can also be obstructed by the ERK inhibitor PD98059. Furthermore, in the cuprizone-induced demyelination model, it is demonstrated that diosgenin administration significantly accelerates/enhances remyelination as detected by Luxol fast blue stain, MBP immunohistochemistry and real time RT-PCR. Diosgenin also increases the number of mature oligodendrocytes in the corpus callosum while it does not affect the number of OPCs. Taking together, our results suggest that diosgenin promotes the differentiation of OPC into mature oligodendrocyte through an ER-mediated ERK1/2 activation pathway to accelerate remyelination, which implicates a novel therapeutic usage of this steroidal natural product in demyelinating diseases such as multiple sclerosis (MS).

  11. Oligodendrocyte Development and Myelination in Neurodevelopment: Molecular Mechanisms in Health and Disease.

    PubMed

    Barateiro, Andreia; Brites, Dora; Fernandes, Adelaide

    2016-01-01

    Oligodendrocytes are the myelinating cells of the central nervous system that constitute about 5 to 10% of the total glial population. These cells are responsible for myelin sheath production, which is essential not only for the rapid and efficient conduction of the electrical impulses along the axons, but also for preserving axonal integrity. Oligodendrocytes arise from oligodendrocyte progenitor cells that proliferate and differentiate just before and after birth, under a highly-regulated program. Both oligodendrocytes and their precursors are very susceptible to injury by several mechanisms, including excitotoxic damage, oxidative stress and inflammatory events. In this review, we will cover not only several important aspects of oligodendrocyte development and regulatory mechanisms involved in this process, but also some of the most important pathways of injury associated to oligodendrogenesis. Moreover, we will also address some neurological disorders along life journey that present impairment in oligodendrocyte function and in myelination during neurodevelopment, such as periventricular leukomalacia, hypoxia/ischemia and hyperbilirubinemia that in turn can potentiate the emergence of neurological and neurodegenerative diseases like schizophrenia, multiple sclerosis and Alzheimer's disease. PMID:26635271

  12. Systematic Review of Pharmacological Properties of the Oligodendrocyte Lineage

    PubMed Central

    Marinelli, Carla; Bertalot, Thomas; Zusso, Morena; Skaper, Stephen D.; Giusti, Pietro

    2016-01-01

    Oligodendrogenesis and oligodendrocyte precursor maturation are essential processes during the course of central nervous system development, and lead to the myelination of axons. Cells of the oligodendrocyte lineage are generated in the germinal zone from migratory bipolar oligodendrocyte precursor cells (OPCs), and acquire cell surface markers as they mature and respond specifically to factors which regulate proliferation, migration, differentiation, and survival. Loss of myelin underlies a wide range of neurological disorders, some of an autoimmune nature—multiple sclerosis probably being the most prominent. Current therapies are based on the use of immunomodulatory agents which are likely to promote myelin repair (remyelination) indirectly by subverting the inflammatory response, aspects of which impair the differentiation of OPCs. Cells of the oligodendrocyte lineage express and are capable of responding to a diverse array of ligand-receptor pairs, including neurotransmitters and nuclear receptors such as γ-aminobutyric acid, glutamate, adenosine triphosphate, serotonin, acetylcholine, nitric oxide, opioids, prostaglandins, prolactin, and cannabinoids. The intent of this review is to provide the reader with a synopsis of our present state of knowledge concerning the pharmacological properties of the oligodendrocyte lineage, with particular attention to these receptor-ligand (i.e., neurotransmitters and nuclear receptor) interactions that can influence oligodendrocyte migration, proliferation, differentiation, and myelination, and an appraisal of their therapeutic potential. For example, many promising mediators work through Ca2+ signaling, and the balance between Ca2+ influx and efflux can determine the temporal and spatial properties of oligodendrocytes (OLs). Moreover, Ca2+ signaling in OPCs can influence not only differentiation and myelination, but also process extension and migration, as well as cell death in mature mouse OLs. There is also evidence

  13. Protandim Protects Oligodendrocytes against an Oxidative Insult

    PubMed Central

    Lim, Jamie L.; van der Pol, Susanne M. A.; Baron, Wia; McCord, Joe M.; de Vries, Helga E.; van Horssen, Jack

    2016-01-01

    Oligodendrocyte damage and loss are key features of multiple sclerosis (MS) pathology. Oligodendrocytes appear to be particularly vulnerable to reactive oxygen species (ROS) and cytokines, such as tumor necrosis factor-α (TNF), which induce cell death and prevent the differentiation of oligodendrocyte progenitor cells (OPCs). Here, we investigated the efficacy of sulforaphane (SFN), monomethyl fumarate (MMF) and Protandim to induce Nrf2-regulated antioxidant enzyme expression, and protect oligodendrocytes against ROS-induced cell death and ROS-and TNF-mediated inhibition of OPC differentiation. OLN-93 cells and primary rat oligodendrocytes were treated with SFN, MMF or Protandim resulting in significant induction of Nrf2-driven (antioxidant) proteins heme oygenase-1, nicotinamide adenine dinucleotide phosphate (NADPH): quinone oxidoreductase-1 and p62/SQSTM1, as analysed by Western blotting. After incubation with the compounds, oligodendrocytes were exposed to hydrogen peroxide. Protandim most potently promoted oligodendrocyte cell survival as measured by live/death viability assay. Moreover, OPCs were treated with Protandim or vehicle control prior to exposing them to TNF or hydrogen peroxide for five days, which inhibited OPC differentiation. Protandim significantly promoted OPC differentiation under influence of ROS, but not TNF. Protandim, a combination of five herbal ingredients, potently induces antioxidants in oligodendrocytes and is able to protect oligodendrocytes against oxidative stress by preventing ROS-induced cell death and promoting OPC differentiation. PMID:27618111

  14. Protandim Protects Oligodendrocytes against an Oxidative Insult.

    PubMed

    Lim, Jamie L; van der Pol, Susanne M A; Baron, Wia; McCord, Joe M; de Vries, Helga E; van Horssen, Jack

    2016-01-01

    Oligodendrocyte damage and loss are key features of multiple sclerosis (MS) pathology. Oligodendrocytes appear to be particularly vulnerable to reactive oxygen species (ROS) and cytokines, such as tumor necrosis factor-α (TNF), which induce cell death and prevent the differentiation of oligodendrocyte progenitor cells (OPCs). Here, we investigated the efficacy of sulforaphane (SFN), monomethyl fumarate (MMF) and Protandim to induce Nrf2-regulated antioxidant enzyme expression, and protect oligodendrocytes against ROS-induced cell death and ROS-and TNF-mediated inhibition of OPC differentiation. OLN-93 cells and primary rat oligodendrocytes were treated with SFN, MMF or Protandim resulting in significant induction of Nrf2-driven (antioxidant) proteins heme oygenase-1, nicotinamide adenine dinucleotide phosphate (NADPH): quinone oxidoreductase-1 and p62/SQSTM1, as analysed by Western blotting. After incubation with the compounds, oligodendrocytes were exposed to hydrogen peroxide. Protandim most potently promoted oligodendrocyte cell survival as measured by live/death viability assay. Moreover, OPCs were treated with Protandim or vehicle control prior to exposing them to TNF or hydrogen peroxide for five days, which inhibited OPC differentiation. Protandim significantly promoted OPC differentiation under influence of ROS, but not TNF. Protandim, a combination of five herbal ingredients, potently induces antioxidants in oligodendrocytes and is able to protect oligodendrocytes against oxidative stress by preventing ROS-induced cell death and promoting OPC differentiation. PMID:27618111

  15. Glial-restricted precursors as potential candidates for ALS cell-replacement therapy.

    PubMed

    Kruminis-Kaszkiel, Ewa; Wojtkiewicz, Joanna; Maksymowicz, Wojciech

    2014-01-01

    Amyotrophic lateral sclerosis is a multifactorial progressive neurodegenerative disorder leading to severe disability and death within 3-5 years after diagnosis. The main mechanisms underlying the disease progression are poorly known but according to the current knowledge, neuroinflammation is a key player in motor neurons damage. Astrocytes constitute an important cell population involved in neuroinflammatory reaction. Many studies confirmed their striking connection with motor neuron pathology and therefore they might be a target for the treatment of ALS. Cell-based therapy appears to be a promising strategy. Since direct replacement or restoring of motor neurons using various stem cells is challenging, enrichment of healthy donor-derived astrocytes appears to be a more realistic and beneficial approach. The effects of astrocytes have been examined using transplantation of glial-restricted precursors (GRPs) that represent one of the earliest precursors within the oligodendrocytic and astrocytic cell lineage. In this review, we focused on evidence-based data on astrocyte replacement transplantation therapy using GRPs in animal models of motor neuron diseases. The efficacy of GRPs engrafting is very encouraging. Furthermore, the lesson learned from application of lineage-restricted precursors in spinal cord injury (SCI) indicates that differentiation of GRPs into astrocytes before transplantation might be more advantageous in the context of axon regeneration. To sum up, the studies of glial-restricted precursors have made a step forward to ALS research and might bring breakthroughs to the field of ALS therapy in the future.

  16. Protective Effects of N-Acetyl-L-Cysteine in Human Oligodendrocyte Progenitor Cells and Restoration of Motor Function in Neonatal Rats with Hypoxic-Ischemic Encephalopathy

    PubMed Central

    Park, Dongsun; Shin, Kyungha; Choi, Ehn-Kyoung; Choi, Youngjin; Jang, Ja-Young; Kim, Jihyun; Jeong, Heon-Sang; Lee, Wooryoung; Lee, Yoon-Bok; Kim, Seung Up; Joo, Seong Soo; Kim, Yun-Bae

    2015-01-01

    Objective. Since oligodendrocyte progenitor cells (OPCs) are the target cells of neonatal hypoxic-ischemic encephalopathy (HIE), the present study was aimed at investigating the protective effects of N-acetyl-l-cysteine (NAC), a well-known antioxidant and precursor of glutathione, in OPCs as well as in neonatal rats. Methods. In in vitro study, protective effects of NAC on KCN cytotoxicity in F3.Olig2 OPCs were investigated via MTT assay and apoptotic signal analysis. In in vivo study, NAC was administered to rats with HIE induced by hypoxia-ischemia surgery at postnatal day 7, and their motor functions and white matter demyelination were analyzed. Results. NAC decreased KCN cytotoxicity in F3.Olig2 cells and especially suppressed apoptosis by regulating Bcl2 and p-ERK. Administration of NAC recovered motor functions such as the using ratio of forelimb contralateral to the injured brain, locomotor activity, and rotarod performance of neonatal HIE animals. It was also confirmed that NAC attenuated demyelination in the corpus callosum, a white matter region vulnerable to HIE. Conclusion. The results indicate that NAC exerts neuroprotective effects in vitro and in vivo by preserving OPCs, via regulation of antiapoptotic signaling, and that F3.Olig2 human OPCs could be a good tool for screening of candidates for demyelinating diseases. PMID:25918547

  17. The balance between oligodendrocyte and astrocyte production in major white matter tracts is linearly related to serum total thyroxine

    EPA Science Inventory

    Thyroid hormone (TH) may control the ratio of oligodendrocytes to astrocytes in white matter by acting on a common precursor of these two cell types. If so, then TH should produce an equal but opposite effect on the density of these two cells types across all TH levels. To test t...

  18. Human Embryonic Stem Cell-Derived Oligodendrocyte Progenitors Aid in Functional Recovery of Sensory Pathways following Contusive Spinal Cord Injury

    PubMed Central

    All, Angelo H.; Bazley, Faith A.; Gupta, Siddharth; Pashai, Nikta; Hu, Charles; Pourmorteza, Amir; Kerr, Candace

    2012-01-01

    Background Transplantations of human stem cell derivatives have been widely investigated in rodent models for the potential restoration of function of neural pathways after spinal cord injury (SCI). Studies have already demonstrated cells survival following transplantation in SCI. We sought to evaluate survival and potential therapeutic effects of transplanted human embryonic stem (hES) cell-derived oligodendrocyte progenitor cells (OPCs) in a contusive injury in rats. Bioluminescence imaging was utilized to verify survivability of cells up to 4 weeks, and somatosensory evoked potential (SSEPs) were recorded at the cortex to monitor function of sensory pathways throughout the 6-week recovery period. Principal Findings hES cells were transduced with the firefly luciferase gene and differentiated into OPCs. OPCs were transplanted into the lesion epicenter of rat spinal cords 2 hours after inducing a moderate contusive SCI. The hES-treatment group showed improved SSEPs, including increased amplitude and decreased latencies, compared to the control group. The bioluminescence of transplanted OPCs decreased by 97% in the injured spinal cord compared to only 80% when injected into an uninjured spinal cord. Bioluminescence increased in both experimental groups such that by week 3, no statistical difference was detected, signifying that the cells survived and proliferated independent of injury. Post-mortem histology of the spinal cords showed integration of human cells expressing mature oligodendrocyte markers and myelin basic protein without the expression of markers for astrocytes (GFAP) or pluripotent cells (OCT4). Conclusions hES-derived OPCs transplanted 2 hours after contusive SCI survive and differentiate into OLs that produce MBP. Treated rats demonstrated functional improvements in SSEP amplitudes and latencies compared to controls as early as 1 week post-injury. Finally, the hostile injury microenvironment at 2 hours post-injury initially caused increased cell

  19. Transplanted Oligodendrocytes and Motoneuron Progenitors Generated from Human Embryonic Stem Cells Promote Locomotor Recovery After Spinal Cord Transection

    PubMed Central

    Erceg, Slaven; Ronaghi, Mohammad; Oria, Marc; García Roselló, Mireia; Aragó, Maria Amparo Pérez; Lopez, Maria Gomez; Radojevic, Ivana; Moreno-Manzano, Victoria; Rodríguez-Jiménez, Francisco-Javier; Shanker Bhattacharya, Shom; Cordoba, Juan; Stojkovic, Miodrag

    2010-01-01

    Human embryonic stem cells (hESC) hold great promise for the treatment of patients with many neurodegenerative diseases particularly those arising from cell loss or neural dysfunction including spinal cord injury. This study evaluates the therapeutic effects of transplanted hESC-derived oligodendrocyte progenitors (OPC) and/or motoneuron progenitors (MP) on axonal remyelination and functional recovery of adult rats after complete spinal cord transection. OPC and/or MP were grafted into the site of injury in the acute phase. Based on Basso-Beattie-Bresnahan scores recovery of locomotor function was significantly enhanced in rats treated with OPC and/or MP when compared with control animals. When transplanted into the spinal cord immediately after complete transection, OPC and MP survived, migrated, and differentiated into mature oligodendrocytes and neurons showing in vivo electrophysiological activity. Taken together, these results indicate that OPC and MP derived from hESC could be a useful therapeutic strategy to repair injured spinal cord. Stem Cells 2010; 28:1541–1549. PMID:20665739

  20. Contact-mediated inhibition between oligodendrocyte progenitor cells and motor exit point glia establishes the spinal cord transition zone.

    PubMed

    Smith, Cody J; Morris, Angela D; Welsh, Taylor G; Kucenas, Sarah

    2014-09-01

    Rapid conduction of action potentials along motor axons requires that oligodendrocytes and Schwann cells myelinate distinct central and peripheral nervous system (CNS and PNS) domains along the same axon. Despite the importance of this arrangement for nervous system function, the mechanisms that establish and maintain this precise glial segregation at the motor exit point (MEP) transition zone are unknown. Using in vivo time-lapse imaging in zebrafish, we observed that prior to myelination, oligodendrocyte progenitor cells (OPCs) extend processes into the periphery via the MEP and immediately upon contact with spinal motor root glia retract back into the spinal cord. Characterization of the peripheral cell responsible for repelling OPC processes revealed that it was a novel, CNS-derived population of glia we propose calling MEP glia. Ablation of MEP glia resulted in the absence of myelinating glia along spinal motor root axons and an immediate breach of the MEP by OPCs. Taken together, our results identify a novel population of CNS-derived peripheral glia located at the MEP that selectively restrict the migration of OPCs into the periphery via contact-mediated inhibition.

  1. Protective Effect of Electroacupuncture on Neural Myelin Sheaths is Mediated via Promotion of Oligodendrocyte Proliferation and Inhibition of Oligodendrocyte Death After Compressed Spinal Cord Injury.

    PubMed

    Huang, Siqin; Tang, Chenglin; Sun, Shanquan; Cao, Wenfu; Qi, Wei; Xu, Jin; Huang, Juan; Lu, Weitian; Liu, Qian; Gong, Biao; Zhang, Yi; Jiang, Jin

    2015-12-01

    Electroacupuncture (EA) has been used worldwide to treat demyelinating diseases, but its therapeutic mechanism is poorly understood. In this study, a custom-designed model of compressed spinal cord injury (CSCI) was used to induce demyelination. Zusanli (ST36) and Taixi (KI3) acupoints of adult rats were stimulated by EA to demonstrate its protective effect. At 14 days after EA, both locomotor skills and ultrastructural features of myelin sheath were significantly improved. Phenotypes of proliferating cells were identified by double immunolabeling of 5-ethynyl-2'-deoxyuridine with antibodies to cell markers: NG2 [oligodendrocyte precursor cell (OPC) marker], 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase) (oligodendrocyte marker), and glial fibrillary acidic protein (GFAP) (astrocyte marker). EA enhanced the proliferation of OPCs and CNPase, as well as the differentiation of OPCs by promoting Olig2 (the basic helix-loop-helix protein) and attenuating Id2 (the inhibitor of DNA binding 2). EA could also improve myelin basic protein (MBP) and protect existing oligodendrocytes from apoptosis by inhibiting caspase-12 (a representative of endoplasmic reticulum stress) and cytochrome c (an apoptotic factor and hallmark of mitochondria). Therefore, our results indicate that the protective effect of EA on neural myelin sheaths is mediated via promotion of oligodendrocyte proliferation and inhibition of oligodendrocyte death after CSCI.

  2. Increased expression of Nkx2.2 and Olig2 identifies reactive oligodendrocyte progenitor cells responding to demyelination in the adult CNS.

    PubMed

    Fancy, Stephen P J; Zhao, Chao; Franklin, Robin J M

    2004-11-01

    Within the adult CNS, a quiescent population of oligodendrocyte progenitor cells (OPCs) become activated in response to demyelination and give rise to remyelinating oligodendrocytes. During development, OPC differentiation is controlled by several transcription factors including Olig1 and Olig2, and Nkx2.2. We hypothesized that these genes may serve similar functions in activated adult OPCs allowing them to become remyelinating oligodendrocytes and tested this hypothesis by examining their expression during the remyelination of a toxin-induced rodent model of demyelination. During the acute phase of demyelination, OPCs within the lesion increased their expression of Nkx2.2 and Olig2, two transcription factors that in combination are critical for oligodendrocyte differentiation during developmental myelination. This activation was not associated with increases in Sonic hedgehog (Shh) expression, which does not appear essential for CNS remyelination. Consistent with a role in the activation and differentiation of OPCs, these increases were delayed in old adult animals where the rate of remyelination is slowed. Our data suggest the hypothesis that increased expression of Nkx2.2 and Olig2 plays a critically important role in the differentiation of adult OPCs into remyelinating oligodendrocytes and that these genes may present novel targets for therapeutic manipulation in cases where remyelination is impaired.

  3. Myelin inhibits oligodendroglial maturation and regulates oligodendrocytic transcription factor expression.

    PubMed

    Plemel, Jason R; Manesh, Sohrab B; Sparling, Joseph S; Tetzlaff, Wolfram

    2013-09-01

    Myelin loss is a hallmark of multiple sclerosis (MS) and promoting central nervous system myelin repair has become a major therapeutic target. Despite the presence of oligodendrocytes precursors cells (OPCs) in chronic lesions of MS, remyelination often fails. The mechanism underlying this failure of remyelination remains unknown, but it is hypothesized that environmental cues act to inhibit the maturation/differentiation of oligodendroglia, preventing remyelination. The rate of CNS remyelination is correlated to the speed of phagocytosis of myelin debris, which is present following demyelination and trauma. Thus, myelin debris could inhibit CNS remyelination. Here, we demonstrate that OPCs cultured on myelin were robustly inhibited in their maturation, as characterized by the decreased expression of immature and mature oligodendrocytes markers, the impaired production of myelin gene products, as well as their stalled morphological complexity relative to OPCs cultured on a control substrate. OPCs in contact with myelin stopped proliferating and decreased the expression of OPC markers to a comparable degree as cells grown on a control substrate. The expression of two transcription factors known to prevent OPC differentiation and maturation were increased in cells that were in contact with myelin: inhibitor of differentiation family (ID) members 2 and 4. Overexpression of ID2 and ID4 in OPCs was previously reported to decrease the percentage of cells expressing mature oligodendrocyte markers. However, knockdown of ID2 and/or ID4 in OPCs did not increase oligodendroglial maturation on or off of myelin, suggesting that contact with myelin regulates additional regulatory elements.

  4. Activation of PPAR-γ and PTEN Cascade Participates in Lovastatin-mediated Accelerated Differentiation of Oligodendrocyte Progenitor Cells

    PubMed Central

    Paintlia, Ajaib S; Paintlia, Manjeet K; Singh, Avtar K; Singh, Inderjit

    2010-01-01

    Previously, we and others documented that statins including—lovastatin (LOV) promote the differentiation of oligodendrocyte progenitor cells (OPCs) and remyelination in experimental autoimmune encephalomyelitis (EAE), an multiple sclerosis (MS) model. Conversely, some recent studies demonstrated that statins negatively influence oligodendrocyte (OL) differentiation in vitro and remyelination in a cuprizone-CNS demyelinating model. Therefore, herein, we first investigated the cause of impaired differentiation of OLs by statins in vitro settings. Our observations indicated that the depletion of cholesterol was detrimental to LOV treated OPCs under cholesterol/serum-deprived culture conditions similar to that were used in conflicting studies. However, the depletion of geranylgeranyl-pp under normal cholesterol homeostasis conditions enhanced the phenotypic commitment and differentiation of LOV-treated OPCs ascribed to inhibition of RhoA-Rho kinase. Interestingly, this effect of LOV was associated with increased activation and expression of both PPAR-γ and PTEN in OPCs as confirmed by various pharmacological and molecular based approaches. Furthermore, PTEN was involved in an inhibition of OPCs proliferation via PI3K-Akt inhibition and induction of cell cycle arrest at G1 phase, but without affecting their cell survival. These effects of LOV on OPCs in vitro were absent in the CNS of normal rats chronically treated with LOV concentrations used in EAE indicating that PPAR-γ induction in normal brain may be tightly regulated — providing evidences that statins are therapeutically safe for humans. Collectively, these data provide initial evidence that statin-mediated activation of the PPAR-γ — PTEN cascade participates in OL differentiation, thus suggesting new therapeutic-interventions for MS or related CNS-demyelinating diseases. PMID:20578043

  5. Fibroblast growth factor receptor signaling in oligodendrocytes regulates myelin sheath thickness.

    PubMed

    Furusho, Miki; Dupree, Jeffrey L; Nave, Klaus-Armin; Bansal, Rashmi

    2012-05-01

    Formation of the CNS white matter is developmentally tightly regulated, but the molecules and mechanisms of myelination control in the postnatal CNS are poorly understood. Here, we show that myelin growth is controlled by fibroblast growth factor (FGF) signaling, originally identified as a proliferative signal for oligodendrocyte precursor cells (OPCs) in vitro. We created two lines of mice lacking both FGF receptor 1 (Fgfr1) and Fgfr2 in oligodendrocyte-lineage cells but found that in these mice OPC proliferation and differentiation were unaffected. In addition, axonal ensheathment and the initiation of myelination were on time. However, the rapid growth of CNS myelin, normally occurring in the second postnatal week, was strongly inhibited. Throughout adulthood, the myelin sheath remained disproportionately thin relative to the axon caliber. In adult mice, mutant oligodendrocytes were normal in number, whereas the transcription of major myelin genes was reduced. This FGF receptor-mediated stimulation of mature oligodendrocytes could also be modeled in vitro, demonstrating that enhanced expansion of oligodendroglial processes requires signaling by extracellular signal regulated kinase-1 and -2 (Erk1/2), downstream mediators of mitogen-activated protein kinase (MAPK). In vivo, Erk1/2-MAPK activity was reduced in the hypomyelinated CNS of Fgfr1/Fgfr2 mutant mice. These studies reveal a previously unrecognized function of FGF receptor signaling in oligodendrocytes that contributes to the regulation of myelin sheath thickness and that uncouples the initiation of ensheathment from the later phase of continued myelin growth.

  6. Adult neurogenesis and cellular brain repair with neural progenitors, precursors and stem cells

    PubMed Central

    Shivraj Sohur, U; Emsley, Jason G; Mitchell, Bartley D; Macklis, Jeffrey D

    2006-01-01

    Recent work in neuroscience has shown that the adult central nervous system (CNS) contains neural progenitors, precursors and stem cells that are capable of generating new neurons, astrocytes and oligodendrocytes. While challenging the previous dogma that no new neurons are born in the adult mammalian CNS, these findings bring with them the future possibilities for development of novel neural repair strategies. The purpose of this review is to present the current knowledge about constitutively occurring adult mammalian neurogenesis, highlight the critical differences between ‘neurogenic’ and ‘non-neurogenic’ regions in the adult brain, and describe the cardinal features of two well-described neurogenic regions—the subventricular zone/olfactory bulb system and the dentate gyrus of the hippocampus. We also provide an overview of presently used models for studying neural precursors in vitro, mention some precursor transplantation models and emphasize that, in this rapidly growing field of neuroscience, one must be cautious with respect to a variety of methodological considerations for studying neural precursor cells both in vitro and in vivo. The possibility of repairing neural circuitry by manipulating neurogenesis is an intriguing one, and, therefore, we also review recent efforts to understand the conditions under which neurogenesis can be induced in non-neurogenic regions of the adult CNS. This work aims towards molecular and cellular manipulation of endogenous neural precursors in situ, without transplantation. We conclude this review with a discussion of what might be the function of newly generated neurons in the adult brain, and provide a summary of present thinking about the consequences of disturbed adult neurogenesis and the reaction of neurogenic regions to disease. PMID:16939970

  7. Myelin oligodendrocyte glycoprotein-specific T and B cells cooperate to induce a Devic-like disease in mice.

    PubMed

    Bettelli, Estelle; Baeten, Dominique; Jäger, Anneli; Sobel, Raymond A; Kuchroo, Vijay K

    2006-09-01

    Multiple sclerosis (MS) is a clinically and pathologically heterogeneous inflammatory/demyelinating disease of the CNS. In the MS variant Devic disease, lesions are predominantly found in the optic nerves and spinal cord but not the brain. The immunological bases of the different forms of MS are unknown. We previously generated myelin oligodendrocyte glycoprotein-specific (MOG-specific) TCR transgenic mice (TCRMOG mice; also referred to as 2D2 mice) and reported that a large proportion of these mice develop spontaneous isolated optic neuritis. We have now crossed the TCRMOG mice with MOG-specific Ig heavy-chain knock-in mice (IgHMOG mice; also referred to as Th mice), in which one-third of the B cells are specific for MOG. In these mice, MOG-specific B cells are very efficient in presenting MOG to the transgenic T cells and undergo class switching to IgG1 in the presence of the transgenic T cells. Sixty percent of TCRMOG x IgHMOG mice spontaneously developed a severe form of experimental autoimmune encephalomyelitis (EAE). Histological examination of the CNS revealed a selective distribution of meningeal and parenchymal inflammatory lesions in the spinal cord and optic nerves. Thus, CNS antigen-specific T and B cells cooperate to induce a distinct clinicopathologic EAE pattern that closely replicates human Devic disease. PMID:16955141

  8. EphB3 receptors function as dependence receptors to mediate oligodendrocyte cell death following contusive spinal cord injury

    PubMed Central

    Tsenkina, Y; Ricard, J; Runko, E; Quiala- Acosta, M M; Mier, J; Liebl, D J

    2015-01-01

    We demonstrate that EphB3 receptors mediate oligodendrocyte (OL) cell death in the injured spinal cord through dependence receptor mechanism. OLs in the adult spinal cord express EphB3 as well as other members of the Eph receptor family. Spinal cord injury (SCI) is associated with tissue damage, cellular loss and disturbances in EphB3-ephrinB3 protein balance acutely (days) after the initial impact creating an environment for a dependence receptor-mediated cell death to occur. Genetic ablation of EphB3 promotes OL survival associated with increased expression of myelin basic protein and improved locomotor function in mice after SCI. Moreover, administration of its ephrinB3 ligand to the spinal cord after injury also promotes OL survival. Our in vivo findings are supported by in vitro studies showing that ephrinB3 administration promotes the survival of both oligodendroglial progenitor cells and mature OLs cultured under pro-apoptotic conditions. In conclusion, the present study demonstrates a novel dependence receptor role of EphB3 in OL cell death after SCI, and supports further development of ephrinB3-based therapies to promote recovery. PMID:26469970

  9. New methods for inducing the differentiation of amniotic-derived mesenchymal stem cells into motor neuron precursor cells.

    PubMed

    Hu, Wei; Guan, Fang-xia; Li, Yuan; Tang, You-jia; Yang, Feng; Yang, Bo

    2013-10-01

    Our study investigates the differentiation of amniotic-derived mesenchymal stem cells (ADMSCs) into motor neuron (MN) precursor cells induced by a combination of extracellular matrix (ECM) and multi-cell factors. Membrane-like ECM was made by an enzymatic and chemical extraction method and exhibited good biological compatibility. Cells in the experimental group (EG) were treated with ECM and multi-cell factors in a multi-step induction process, while the control group (CG) was treated similarly, except without ECM. In the EG, after induction, the cells formed processes that connected with neighboring cells to form a net that had directionality. In these cells, neuron-specific enolase (NSE) and synaptophysin (SYN) expression levels increased and glial fibrillary acidic protein (GFAP) expression decreased. The SYN expression in the EG cells was higher compared with those in the CG. In the CG, NSE expression increased, while the expression of Nestin and SYN did not change. These were several changes in the levels of other genes: ADMSCs at passage 1 expressed Nanog, SOX2, octamer-binding transcription factor 4 (OCT4) and Nestin. In the EG, at the beginning of induction, the expression of Nanog decreased and that of SOX2 and Nestin increased. After 2 days, the cells expressed Nestin, OCT4 and SYNIII, and after 3 days, they expressed Olig2, OCT4, Nestin, SYNII and Islet1 (ISL1). Finally, at day 6, the cells expressed Nestin, SYNI, SYNIII, ISL-1, homeobox 9 (Hb9) and oligodendrocyte lineage transcription factor 2 (Olig2). In the CG, the cells never expressed SYNI, SYNII or Hb9. Our studies therefore demonstrate that the extracted ECM was capable of promoting the maturation of synapses. Human ADMSCs are composed of multiple cell subsets, including neural progenitor cells. The multi-step induction method used in this study causes human ADMSCs to differentiate into MN precursor cells.

  10. Topographical effects on fiber-mediated microRNA delivery to control oligodendroglial precursor cells development

    PubMed Central

    Diao, Hua Jia; Low, Wei Ching; Lu, Q. Richard; Chew, Sing Yian

    2016-01-01

    Effective remyelination in the central nervous system (CNS) facilitates the reversal of disability in patients with demyelinating diseases such as multiple sclerosis. Unfortunately until now, effective strategies of controlling oligodendrocyte (OL) differentiation and maturation remain limited. It is well known that topographical and biochemical signals play crucial roles in modulating cell fate commitment. Therefore, in this study, we explored the combined effects of scaffold topography and sustained gene silencing on oligodendroglial precursor cell (OPC) development. Specifically, microRNAs (miRs) were incorporated onto electrospun polycaprolactone (PCL) fiber scaffolds with different fiber diameters and orientations. Regardless of fiber diameter and orientation, efficient knockdown of differentiation inhibitory factors were achieved by either topography alone (up to 70%) or fibers integrated with miR-219 and miR-338 (up to 80%, p < 0.05). Small fiber promoted OPC differentiation by inducing more RIP+ cells (p < 0.05) while large fiber promoted OL maturation by inducing more MBP+ cells (p < 0.05). Random fiber enhanced more RIP+ cells than aligned fibers (p < 0.05), regardless of fiber diameter. Upon miR-219/miR-338 incorporation, 2 μm aligned fibers supported the most MBP+ cells (~17%). These findings indicated that the coupling of substrate topographic cues with efficient gene silencing by sustained microRNA delivery is a promising way for directing OPC maturation in neural tissue engineering and controlling remyelination in the CNS. PMID:26310106

  11. Tamoxifen promotes differentiation of oligodendrocyte progenitors in vitro.

    PubMed

    Barratt, H E; Budnick, H C; Parra, R; Lolley, R J; Perry, C N; Nesic, O

    2016-04-01

    The most promising therapeutic approach to finding the cure for devastating demyelinating conditions is the identification of clinically safe pharmacological agents that can promote differentiation of endogenous oligodendrocyte precursor cells (OPCs). Here we show that the breast cancer medication tamoxifen (TMX), with well-documented clinical safety and confirmed beneficial effects in various models of demyelinating conditions, stimulates differentiation of rat glial progenitors to mature oligodendrocytes in vitro. Clinically applicable doses of TMX significantly increased both the number of CNPase-positive oligodendrocytes and protein levels of myelin basic protein, measured with Western blots. Furthermore, we also found that OPC differentiation was stimulated, not only by the pro-drug TMX-citrate (TMXC), but also by two main TMX metabolites, 4-hydroxy-TMX and endoxifen. Differentiating effects of TMXC and its metabolites were completely abolished in the presence of estrogen receptor (ER) antagonist, ICI182780. In contrast to TMXC and 4-hydroxy-TMX, endoxifen also induced astrogliogenesis, but independent of the ER activation. In sum, we showed that the TMX prodrug and its two main metabolites (4-hydroxy-TMX and endoxifen) promote ER-dependent oligodendrogenesis in vitro, not reported before. Given that differentiating effects of TMX were achieved with clinically safe doses, TMX is likely one of the most promising FDA-approved drugs for the possible treatment of demyelinating diseases. PMID:26820594

  12. Nicotinic acetylcholine receptors mediate donepezil-induced oligodendrocyte differentiation.

    PubMed

    Imamura, Osamu; Arai, Masaaki; Dateki, Minori; Ogata, Toru; Uchida, Ryuji; Tomoda, Hiroshi; Takishima, Kunio

    2015-12-01

    Oligodendrocytes are the myelin-forming cells of the central nervous system (CNS). Failure of myelin development and oligodendrocyte loss results in serious human disorders, including multiple sclerosis. Here, we show that donepezil, an acetlycholinesterase inhibitor developed for the treatment of Alzheimer's disease, can stimulate oligodendrocyte differentiation and maturation of neural stem cell-derived oligodendrocyte progenitor cells without affecting proliferation or cell viability. Transcripts for essential myelin-associated genes, such as PLP, MAG, MBP, CNPase, and MOG, in addition to transcription factors that regulate oligodendrocyte differentiation and myelination, were rapidly increased after treatment with donepezil. Furthermore, luciferase assays confirmed that both MAG and MBP promoters display increased activity upon donepezil-induced oligodendrocytes differentiation, suggesting that donepezil increases myelin gene expression mainly through enhanced transcription. We also found that the increase in the number of oligodendrocytes observed following donepezil treatment was significantly inhibited by the nicotinic acetylcholine receptor (nAChR) antagonist mecamylamine, but not by the muscarinic acetylcholine receptor antagonist scopolamine. Moreover, donepezil-induced myelin-related gene expression was suppressed by mecamylamine at both the mRNA and protein level. These results suggest that donepezil stimulates oligodendrocyte differentiation and myelin-related gene expression via nAChRs in neural stem cell-derived oligodendrocyte progenitor cells. We show that donepezil, a drug for the treatment of Alzheimer disease, can stimulate oligodendrocyte differentiation and maturation of oligodendrocyte progenitor cells. Transcripts for essential myelin-associated genes, such as PLP, MAG, MBP, CNPase and MOG in addition to transcripton factors that regulate oligodendrocyte differentiation and myelination were rapidly increased after treatment with donepezil

  13. Mechanostimulation Promotes Nuclear and Epigenetic Changes in Oligodendrocytes

    PubMed Central

    Hernandez, Marylens; Patzig, Julia; Mayoral, Sonia R.; Costa, Kevin D.; Chan, Jonah R.

    2016-01-01

    Oligodendrocyte progenitors respond to biophysical or mechanical signals, and it has been reported that mechanostimulation modulates cell proliferation, migration, and differentiation. Here we report the effect of three mechanical stimuli on mouse oligodendrocyte progenitor differentiation and identify the molecular components of the linker of nucleoskeleton and cytoskeleton (LINC) complex (i.e., SYNE1) as transducers of mechanical signals to the nucleus, where they modulate the deposition of repressive histone marks and heterochromatin formation. The expression levels of LINC components increased during progenitor differentiation and silencing the Syne1 gene resulted in aberrant histone marks deposition, chromatin reorganization and impaired myelination. We conclude that spatial constraints, via the actin cytoskeleton and LINC complex, mediate nuclear changes in oligodendrocyte progenitors that favor a default pathway of differentiation. SIGNIFICANCE STATEMENT It is recognized that oligodendrocyte progenitors are mechanosensitive cells. However, the molecular mechanisms translating mechanical stimuli into oligodendrocyte differentiation remain elusive. This study identifies components of the mechanotransduction pathway in the oligodendrocyte lineage. PMID:26791211

  14. Human embryonic epidermis contains a diverse Langerhans cell precursor pool.

    PubMed

    Schuster, Christopher; Mildner, Michael; Mairhofer, Mario; Bauer, Wolfgang; Fiala, Christian; Prior, Marion; Eppel, Wolfgang; Kolbus, Andrea; Tschachler, Erwin; Stingl, Georg; Elbe-Bürger, Adelheid

    2014-02-01

    Despite intense efforts, the exact phenotype of the epidermal Langerhans cell (LC) precursors during human ontogeny has not been determined yet. These elusive precursors are believed to migrate into the embryonic skin and to express primitive surface markers, including CD36, but not typical LC markers such as CD1a, CD1c and CD207. The aim of this study was to further characterize the phenotype of LC precursors in human embryonic epidermis and to compare it with that of LCs in healthy adult skin. We found that epidermal leukocytes in first trimester human skin are negative for CD34 and heterogeneous with regard to the expression of CD1c, CD14 and CD36, thus contrasting the phenotypic uniformity of epidermal LCs in adult skin. These data indicate that LC precursors colonize the developing epidermis in an undifferentiated state, where they acquire the definitive LC marker profile with time. Using a human three-dimensional full-thickness skin model to mimic in vivo LC development, we found that FACS-sorted, CD207(-) cord blood-derived haematopoietic precursor cells resembling foetal LC precursors but not CD14(+)CD16(-) blood monocytes integrate into skin equivalents, and without additional exogenous cytokines give rise to cells that morphologically and phenotypically resemble LCs. Overall, it appears that CD14(-) haematopoietic precursors possess a much higher differentiation potential than CD14(+) precursor cells.

  15. Therapeutic effect of transplanted human Wharton's jelly stem cell-derived oligodendrocyte progenitor cells (hWJ-MSC-derived OPCs) in an animal model of multiple sclerosis.

    PubMed

    Mikaeili Agah, Elmira; Parivar, Kazem; Joghataei, Mohammad Taghi

    2014-04-01

    Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system (CNS). A potential new therapeutic approach for MS is cell transplantation which may promote remyelination. We transplanted human Wharton's jelly stem cell-derived oligodendrocyte progenitor cells (hWJ-MSC-derived OPCs) into the brain ventricles of mice induced with experimental autoimmune encephalomyelitis (EAE), the animal model of MS. We studied the effect of the transplanted OPCs on the functional and pathological manifestations of the disease. Transplanted hWJ-MSC-derived OPCs significantly reduced the clinical signs of EAE. Histological examinations showed that remyelination was significantly increased after transplantation. These results suggest that hWJ-MSC-derived OPCs promote the regeneration of myelin sheaths in the brain.

  16. The EIIIA domain from astrocyte‐derived fibronectin mediates proliferation of oligodendrocyte progenitor cells following CNS demyelination

    PubMed Central

    Stoffels, Josephine M. J.; Hoekstra, Dick; Franklin, Robin J. M.

    2014-01-01

    Central nervous system remyelination by oligodendrocyte progenitor cells (OPCs) ultimately fails in the majority of multiple sclerosis (MS) lesions. Remyelination benefits from transient expression of factors that promote migration and proliferation of OPCs, which may include fibronectin (Fn). Fn is present in demyelinated lesions in two major forms; plasma Fn (pFn), deposited following blood‐brain barrier disruption, and cellular Fn, synthesized by resident glial cells and containing alternatively spliced domains EIIIA and EIIIB. Here, we investigated the distinctive roles that astrocyte‐derived Fn (aFn) and pFn play in remyelination. We used an inducible Cre‐lox recombination strategy to selectively remove pFn, aFn or both from mice, and examined the impact on remyelination of toxin‐induced demyelinated lesions of spinal cord white matter. This approach revealed that astrocytes are a major source of Fn in demyelinated lesions. Furthermore, following aFn conditional knockout, the number of OPCs recruited to the demyelinated lesion decreased significantly, whereas OPC numbers were unaltered following pFn conditional knockout. However, remyelination completed normally following conditional knockout of aFn and pFn. Both the EIIIA and EIIIB domains of aFn were expressed following demyelination, and in vitro assays demonstrated that the EIIIA domain of aFn mediates proliferation of OPCs, but not migration. Therefore, although the EIIIA domain from aFn mediates OPC proliferation, aFn is not essential for successful remyelination. Since previous findings indicated that astrocyte‐derived Fn aggregates in chronic MS lesions inhibit remyelination, aFn removal may benefit therapeutic strategies to promote remyelination in MS. GLIA 2015;63:242–256 PMID:25156142

  17. The cellular form of the prion protein guides the differentiation of human embryonic stem cells into neuron-, oligodendrocyte-, and astrocyte-committed lineages.

    PubMed

    Lee, Young Jin; Baskakov, Ilia V

    2014-01-01

    Prion protein, PrP(C), is a glycoprotein that is expressed on the cell surface beginning with the early stages of embryonic stem cell differentiation. Previously, we showed that ectopic expression of PrP(C) in human embryonic stem cells (hESCs) triggered differentiation toward endodermal, mesodermal, and ectodermal lineages, whereas silencing of PrP(C) suppressed differentiation toward ectodermal but not endodermal or mesodermal lineages. Considering that PrP(C) might be involved in controlling the balance between cells of different lineages, the current study was designed to test whether PrP(C) controls differentiation of hESCs into cells of neuron-, oligodendrocyte-, and astrocyte-committed lineages. PrP(C) was silenced in hESCs cultured under three sets of conditions that were previously shown to induce hESCs differentiation into predominantly neuron-, oligodendrocyte-, and astrocyte-committed lineages. We found that silencing of PrP(C) suppressed differentiation toward all three lineages. Similar results were observed in all three protocols, arguing that the effect of PrP(C) was independent of differentiation conditions employed. Moreover, switching PrP(C) expression during a differentiation time course revealed that silencing PrP(C) expression during the very initial stage that corresponds to embryonic bodies has a more significant impact than silencing at later stages of differentiation. The current work illustrates that PrP(C) controls differentiation of hESCs toward neuron-, oligodendrocyte-, and astrocyte-committed lineages and is likely involved at the stage of uncommitted neural progenitor cells rather than lineage-committed neural progenitors.

  18. Loss of lysophosphatidic acid receptor LPA1 alters oligodendrocyte differentiation and myelination in the mouse cerebral cortex.

    PubMed

    García-Díaz, Beatriz; Riquelme, Raquel; Varela-Nieto, Isabel; Jiménez, Antonio Jesús; de Diego, Isabel; Gómez-Conde, Ana Isabel; Matas-Rico, Elisa; Aguirre, José Ángel; Chun, Jerold; Pedraza, Carmen; Santín, Luis Javier; Fernández, Oscar; Rodríguez de Fonseca, Fernando; Estivill-Torrús, Guillermo

    2015-11-01

    Lysophosphatidic acid (LPA) is an intercellular signaling lipid that regulates multiple cellular functions, acting through specific G-protein coupled receptors (LPA(1-6)). Our previous studies using viable Malaga variant maLPA1-null mice demonstrated the requirement of the LPA1 receptor for normal proliferation, differentiation, and survival of the neuronal precursors. In the cerebral cortex LPA1 is expressed extensively in differentiating oligodendrocytes, in parallel with myelination. Although exogenous LPA-induced effects have been investigated in myelinating cells, the in vivo contribution of LPA1 to normal myelination remains to be demonstrated. This study identified a relevant in vivo role for LPA1 as a regulator of cortical myelination. Immunochemical analysis in adult maLPA1-null mice demonstrated a reduction in the steady-state levels of the myelin proteins MBP, PLP/DM20, and CNPase in the cerebral cortex. The myelin defects were confirmed using magnetic resonance spectroscopy and electron microscopy. Stereological analysis limited the defects to adult differentiating oligodendrocytes, without variation in the NG2+ precursor cells. Finally, a possible mechanism involving oligodendrocyte survival was demonstrated by the impaired intracellular transport of the PLP/DM20 myelin protein which was accompanied by cellular loss, suggesting stress-induced apoptosis. These findings describe a previously uncharacterized in vivo functional role for LPA1 in the regulation of oligodendrocyte differentiation and myelination in the CNS, underlining the importance of the maLPA1-null mouse as a model for the study of demyelinating diseases.

  19. UCB Transplant of Inherited Metabolic Diseases With Administration of Intrathecal UCB Derived Oligodendrocyte-Like Cells

    ClinicalTrials.gov

    2016-07-27

    Adrenoleukodystrophy; Batten Disease; Mucopolysaccharidosis II; Leukodystrophy, Globoid Cell; Leukodystrophy, Metachromatic; Neimann Pick Disease; Pelizaeus-Merzbacher Disease; Sandhoff Disease; Tay-Sachs Disease; Brain Diseases, Metabolic, Inborn

  20. Regulation of PERK–eIF2α signalling by tuberous sclerosis complex-1 controls homoeostasis and survival of myelinating oligodendrocytes

    PubMed Central

    Jiang, Minqing; Liu, Lei; He, Xuelian; Wang, Haibo; Lin, Wensheng; Wang, Huimin; Yoon, Sung O.; Wood, Teresa L.; Lu, Q. Richard

    2016-01-01

    Tuberous sclerosis complex-1 or 2 (TSC1/2) mutations cause white matter abnormalities, including myelin deficits in the CNS; however, underlying mechanisms are not fully understood. TSC1/2 negatively regulate the function of mTOR, which is required for oligodendrocyte differentiation. Here we report that, unexpectedly, constitutive activation of mTOR signalling by Tsc1 deletion in the oligodendrocyte lineage results in severe myelination defects and oligodendrocyte cell death in mice, despite an initial increase of oligodendrocyte precursors during early development. Expression profiling analysis reveals that Tsc1 ablation induces prominent endoplasmic reticulum (ER) stress responses by activating a PERK–eIF2α signalling axis and Fas–JNK apoptotic pathways. Enhancement of the phospho-eIF2α adaptation pathway by inhibition of Gadd34-PP1 phosphatase with guanabenz protects oligodendrocytes and partially rescues myelination defects in Tsc1 mutants. Thus, TSC1-mTOR signalling acts as an important checkpoint for maintaining oligodendrocyte homoeostasis, pointing to a previously uncharacterized ER stress mechanism that contributes to hypomyelination in tuberous sclerosis. PMID:27416896

  1. Regulation of PERK-eIF2α signalling by tuberous sclerosis complex-1 controls homoeostasis and survival of myelinating oligodendrocytes.

    PubMed

    Jiang, Minqing; Liu, Lei; He, Xuelian; Wang, Haibo; Lin, Wensheng; Wang, Huimin; Yoon, Sung O; Wood, Teresa L; Lu, Q Richard

    2016-07-15

    Tuberous sclerosis complex-1 or 2 (TSC1/2) mutations cause white matter abnormalities, including myelin deficits in the CNS; however, underlying mechanisms are not fully understood. TSC1/2 negatively regulate the function of mTOR, which is required for oligodendrocyte differentiation. Here we report that, unexpectedly, constitutive activation of mTOR signalling by Tsc1 deletion in the oligodendrocyte lineage results in severe myelination defects and oligodendrocyte cell death in mice, despite an initial increase of oligodendrocyte precursors during early development. Expression profiling analysis reveals that Tsc1 ablation induces prominent endoplasmic reticulum (ER) stress responses by activating a PERK-eIF2α signalling axis and Fas-JNK apoptotic pathways. Enhancement of the phospho-eIF2α adaptation pathway by inhibition of Gadd34-PP1 phosphatase with guanabenz protects oligodendrocytes and partially rescues myelination defects in Tsc1 mutants. Thus, TSC1-mTOR signalling acts as an important checkpoint for maintaining oligodendrocyte homoeostasis, pointing to a previously uncharacterized ER stress mechanism that contributes to hypomyelination in tuberous sclerosis.

  2. Regulation of PERK-eIF2α signalling by tuberous sclerosis complex-1 controls homoeostasis and survival of myelinating oligodendrocytes.

    PubMed

    Jiang, Minqing; Liu, Lei; He, Xuelian; Wang, Haibo; Lin, Wensheng; Wang, Huimin; Yoon, Sung O; Wood, Teresa L; Lu, Q Richard

    2016-01-01

    Tuberous sclerosis complex-1 or 2 (TSC1/2) mutations cause white matter abnormalities, including myelin deficits in the CNS; however, underlying mechanisms are not fully understood. TSC1/2 negatively regulate the function of mTOR, which is required for oligodendrocyte differentiation. Here we report that, unexpectedly, constitutive activation of mTOR signalling by Tsc1 deletion in the oligodendrocyte lineage results in severe myelination defects and oligodendrocyte cell death in mice, despite an initial increase of oligodendrocyte precursors during early development. Expression profiling analysis reveals that Tsc1 ablation induces prominent endoplasmic reticulum (ER) stress responses by activating a PERK-eIF2α signalling axis and Fas-JNK apoptotic pathways. Enhancement of the phospho-eIF2α adaptation pathway by inhibition of Gadd34-PP1 phosphatase with guanabenz protects oligodendrocytes and partially rescues myelination defects in Tsc1 mutants. Thus, TSC1-mTOR signalling acts as an important checkpoint for maintaining oligodendrocyte homoeostasis, pointing to a previously uncharacterized ER stress mechanism that contributes to hypomyelination in tuberous sclerosis. PMID:27416896

  3. Downregulation of the microtubule associated protein tau impairs process outgrowth and myelin basic protein mRNA transport in oligodendrocytes.

    PubMed

    Seiberlich, Veronika; Bauer, Nina G; Schwarz, Lisa; Ffrench-Constant, Charles; Goldbaum, Olaf; Richter-Landsberg, Christiane

    2015-09-01

    Oligodendrocytes, the myelin forming cells of the CNS, are characterized by their numerous membranous extensions, which enwrap neuronal axons and form myelin sheaths. During differentiation oligodendrocytes pass different morphological stages, downregulate the expression of the proteoglycan NG2, and acquire major myelin specific proteins, such as myelin basic proteins (MBP) and proteolipid protein. MBP mRNA is transported in RNA granules along the microtubules (MTs) to the periphery and translated locally. MTs participate in the elaboration and stabilization of the myelin forming extensions and are essential for cellular sorting processes. Their dynamic properties are regulated by microtubule associated proteins (MAPs). The MAP tau is present in oligodendrocytes and involved in the regulation and stabilization of the MT network. To further elucidate the functional significance of tau in oligodendrocytes, we have downregulated tau by siRNA technology and studied the effects on cell differentiation and neuron-glia contact formation. The data show that tau knockdown impairs process outgrowth and leads to a decrease in MBP expression. Furthermore, MBP mRNA transport to distant cellular extensions is impaired and cells remain in the NG2 stage. In myelinating cocultures with dorsal root ganglion neurons, oligodendrocyte precursor cells after tau miR RNA lentiviral knockdown develop into NG2 positive cells with very long and thin processes, contacting axons loosely, but fail to form internodes. This demonstrates that tau is important for MBP mRNA transport and involved in process formation. The disturbance of the balance of tau leads to abnormalities in oligodendrocyte differentiation, neuron-glia contact formation and the early myelination process.

  4. Intravenous Administration of Human ES-derived Neural Precursor Cells Attenuates Cuprizone-induced CNS Demyelination

    PubMed Central

    Crocker, Stephen J.; Bajpai, Ruchi; Moore, Craig S.; Frausto, Ricardo F.; Brown, Graham D.; Pagarigan, Roberto R.; Whitton, J. Lindsay; Terskikh, Alexey V.

    2011-01-01

    Aims Previous studies have demonstrated the therapeutic potential for human embryonic stem cell-derived neural precursor cells (hES-NPCs) in autoimmune and genetic animal models of demyelinating diseases. Herein, we tested whether intravenous (i.v) administration of hES-NPCs would impact central nervous system (CNS) demyelination in a cuprizone model of demyelination. Methods C57Bl/6 mice were fed cuprizone (0.2%) for two weeks and then separated into two groups that either received an i.v. injection of hES-NPCs or i.v. administration of media without these cells. After an additional two weeks of dietary cuprizone treatment, CNS tissues were analyzed for detection of transplanted cells and differences in myelination in the region of the corpus callosum (CC). Results Cuprizone-induced demyelination in the CC was significantly reduced in mice treated with hES-NPCs compared with cuprizone-treated controls that did not receive stem cells. hES-NPCs were identified within the brain tissues of treated mice and revealed migration of transplanted cells into the CNS. A limited number of human cells were found to express the mature oligodendrocyte marker, O1, or the astrocyte marker, GFAP. Reduced apoptosis and attenuated microglial and astrocytic responses were also observed in the CC of hES-NPC-treated mice. Conclusions These findings indicated that systemically-administered hES-NPCs migrated from circulation into a demyelinated lesion within the CNS and effectively reduced demyelination. Observed reductions in astrocyte and microglial responses, and (c) the benefit of hES-NPC treatment in this model of myelin injury was not obviously accountable to tissue replacement by exogenously administered cells. PMID:21276029

  5. Altered Oligodendrocyte Maturation and Myelin Maintenance: The Role of Antiretrovirals in HIV-Associated Neurocognitive Disorders.

    PubMed

    Jensen, Brigid K; Monnerie, Hubert; Mannell, Maggie V; Gannon, Patrick J; Espinoza, Cagla Akay; Erickson, Michelle A; Bruce-Keller, Annadora J; Gelman, Benjamin B; Briand, Lisa A; Pierce, R Christopher; Jordan-Sciutto, Kelly L; Grinspan, Judith B

    2015-11-01

    Despite effective viral suppression through combined antiretroviral therapy (cART), approximately half of HIV-positive individuals have HIV-associated neurocognitive disorders (HAND). Studies of antiretroviral-treated patients have revealed persistent white matter abnormalities including diffuse myelin pallor, diminished white matter tracts, and decreased myelin protein mRNAs. Loss of myelin can contribute to neurocognitive dysfunction because the myelin membrane generated by oligodendrocytes is essential for rapid signal transduction and axonal maintenance. We hypothesized that myelin changes in HAND are partly due to effects of antiretroviral drugs on oligodendrocyte survival and/or maturation. We showed that primary mouse oligodendrocyte precursor cell cultures treated with therapeutic concentrations of HIV protease inhibitors ritonavir or lopinavir displayed dose-dependent decreases in oligodendrocyte maturation; however, this effect was rapidly reversed after drug removal. Conversely, nucleoside reverse transcriptase inhibitor zidovudine had no effect. Furthermore, in vivo ritonavir administration to adult mice reduced frontal cortex myelin protein levels. Finally, prefrontal cortex tissue from HIV-positive individuals with HAND on cART showed a significant decrease in myelin basic protein compared with untreated HIV-positive individuals with HAND or HIV-negative controls. These findings demonstrate that antiretrovirals can impact myelin integrity and have implications for myelination in juvenile HIV patients and myelin maintenance in adults on lifelong therapy.

  6. Stable tRNA precursors in HeLa cells.

    PubMed Central

    Harada, F; Matsubara, M; Kato, N

    1984-01-01

    Two tRNA precursors were isolated from 32P-labeled or unlabeled HeLa cells by two dimensional polyacrylamide gel electrophoresis, and were sequenced. These were the precursors of tRNAMet and tRNALeu, and both contained four extra nucleotides including 5'-triphosphates at their 5'-end and nine extra nucleotides including oligo U at their 3'-end. These RNAs are the first naturally occurring tRNA precursors from higher eukaryotes whose sequences have been determined. In these molecules, several modified nucleosides such as m2G, t6A and ac4C in mature tRNAs were undermodified. Two additional hydrogen bonds were formed in the clover leaf structures of these tRNA precursors. These extra hydrogen bonds may be responsible for the stabilities of these tRNA precursors. Images PMID:6514577

  7. NG2-expressing glial precursor cells are a new potential oligodendroglioma cell initiating population in N-ethyl-N-nitrosourea-induced gliomagenesis.

    PubMed

    Briançon-Marjollet, Anne; Balenci, Laurent; Fernandez, Manuel; Estève, François; Honnorat, Jérôme; Farion, Régine; Beaumont, Marine; Barbier, Emmanuel; Rémy, Chantal; Baudier, Jacques

    2010-10-01

    Gliomas are the most common primary brain tumor affecting human adults and remain a therapeutic challenge because cells of origin are still unknown. Here, we investigated the cellular origin of low-grade gliomas in a rat model based on transplacental exposure to N-ethyl-N-nitrosourea (ENU). Longitudinal magnetic resonance imaging coupled to immunohistological and immunocytochemical analyses were used to further characterize low-grade rat gliomas at different stages of evolution. We showed that early low-grade gliomas have characteristics of oligodendroglioma-like tumors and exclusively contain NG2-expressing slow dividing precursor cells, which express early markers of oligodendroglial lineage. These tumor-derived precursors failed to fully differentiate into oligodendrocytes and exhibited multipotential abilities in vitro. Moreover, a few glioma NG2+ cells are resistant to radiotherapy and may be responsible for tumor recurrence, frequently observed in humans. Overall, these findings suggest that transformed multipotent NG2 glial precursor cell may be a potential cell of origin in the genesis of rat ENU-induced oligodendroglioma-like tumors. This work may open up new perspectives for understanding biology of human gliomas.

  8. Efficient differentiation of human embryonic stem cells into oligodendrocyte progenitors for application in a rat contusion model of spinal cord injury.

    PubMed

    Kerr, Candace L; Letzen, Brian S; Hill, Christine M; Agrawal, Gracee; Thakor, Nitish V; Sterneckert, Jared L; Gearhart, John D; All, Angelo H

    2010-04-01

    This study utilized a contusion model of spinal cord injury (SCI) in rats using the standardized NYU-MASCIS impactor, after which oligodendrocyte progenitor cells (OPCs) derived from human embryonic stem cell (ESC) were transplanted into the spinal cord to study their survival and migration route toward the areas of injury. One critical aspect of successful cell-based SCI therapy is the time of injection following injury. OPCs were injected at two clinically relevant times when most damage occurs to the surrounding tissue, 3 and 24 hours following injury. Migration and survivability after eight days was measured postmortem. In-vitro immunofluorescence revealed that most ESC-derived OPCs expressed oligodendrocyte markers, including CNPase, GalC, Olig1, O4, and O1. Results showed that OPCs survived when injected at the center of injury and migrated away from the injection sites after one week. Histological sections revealed integration of ESC-derived OPCs into the spinal cord with contusion injury without disruption to the parenchyma. Cells survived for a minimum of eight days after injury, without tumor or cyst formation. The extent of injury and effect of early cell transplant was measured using behavioral and electrophysiological assessments which demonstrated increased neurological responses in rats transplanted with OPCs compared to controls. PMID:20374080

  9. Behavioural consequences of oligodendrocyte progenitor cell transplantation into experimental demyelinating lesions in the rat spinal cord.

    PubMed

    Jeffery, N D; Crang, A J; O'leary, M T; Hodge, S J; Blakemore, W F

    1999-05-01

    Glial cell transplantation has the potential to be developed into a clinical treatment for human demyelinating diseases because of its demonstrated efficacy in remyelinating experimentally demyelinated axons. As a step towards clinical application it is necessary to demonstrate that the procedure is safe and efficacious in promoting behavioural recovery. In this study we transplanted glial cell progenitors into demyelinating lesions induced by intraspinal injection of ethidium bromide in the rat. Locomotor function after transplantation was assessed using a beam-walking test that has previously been shown able to detect deficits associated with demyelination in the dorsal funiculus of the rat spinal cord. Two groups of animals with transplants were examined. In one group, spontaneous remyelination was prevented by exposure of the lesion to 40 Gy of X-irradiation; in the other, male glial cells were transplanted into nonirradiated female recipients, permitting their identification by use of a probe specific to the rat Y chromosome. Following transplantation, there was severe axon loss in a large proportion of the irradiated animals and those affected did not recover normal behavioural function. In contrast, both the small proportion of the irradiated group that sustained only mild axon loss and the nonirradiated recipients of transplants recovered normal function on our behavioural test. We conclude that glial cell transplantation is able to reverse the functional deficits associated with demyelination, provided axonal loss is minimal. PMID:10215903

  10. Improved Single-Source Precursors for Solar-Cell Absorbers

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder K.; Harris, Jerry; Hepp, Aloysius

    2007-01-01

    Improved single-source precursor compounds have been invented for use in spray chemical vapor deposition (spray CVD) of chalcopyrite semiconductor absorber layers of thin-film cells. A "single-source precursor compound" is a single molecular compound that contains all the required elements, which when used under the spray CVD conditions, thermally decomposes to form CuIn(x)Ga(1-x)S(y)Se(2-y).

  11. Functional N-methyl-D-aspartate receptors in O-2A glial precursor cells: a critical role in regulating polysialic acid-neural cell adhesion molecule expression and cell migration

    PubMed Central

    1996-01-01

    The capacity for long-distance migration of the oligodendrocyte precursor cell, oligodendrocyte-type 2 astrocyte (O-2A), is essential for myelin formation. To study the molecular mechanisms that control this process, we used an in vitro migration assay that uses neurohypophysial explants. We provide evidence that O-2A cells in these preparations express functional N-methyl-D-aspartate (NMDA) receptors, most likely as homomeric complexes of the NR1 subunit. We show that NMDA evokes an increase in cytosolic Ca2+ that can be blocked by the NMDA receptor antagonist AP-5 and by Mg2+. Blocking the activity of these receptors dramatically diminished O-2A cell migration from explants. We also show that NMDA receptor activity is necessary for the expression by O-2A cells of the highly sialylated polysialic acid- neural cell adhesion molecule (PSA-NCAM) that is required for their migration. Thus, glutamate or glutamate receptor ligands may regulate O- 2A cell migration by modulating expression of PSA-NCAM. These studies demonstrate how interactions between ionotropic receptors, intracellular signaling, and cell adhesion molecule expression influence cell surface properties, which in turn are critical determinants of cell migration. PMID:8978823

  12. Optimizing Culture Medium Composition to Improve Oligodendrocyte Progenitor Cell Yields In Vitro from Subventricular Zone-Derived Neural Progenitor Cell Neurospheres

    PubMed Central

    Franco, Paula G.; Pasquini, Juana M.; Silvestroff, Lucas

    2015-01-01

    Neural Stem and Progenitor Cells (NSC/NPC) are gathering tangible recognition for their uses in cell therapy and cell replacement therapies for human disease, as well as a model system to continue research on overall neural developmental processes in vitro. The Subventricular Zone is one of the largest NSC/NPC niches in the developing mammalian Central Nervous System, and persists through to adulthood. Oligodendrocyte progenitor cell (OPC) enriched cultures are usefull tools for in vitro studies as well as for cell replacement therapies for treating demyelination diseases. We used Subventricular Zone-derived NSC/NPC primary cultures from newborn mice and compared the effects of different growth factor combinations on cell proliferation and OPC yield. The Platelet Derived Growth Factor-AA and BB homodimers had a positive and significant impact on OPC generation. Furthermore, heparin addition to the culture media contributed to further increase overall culture yields. The OPC generated by this protocol were able to mature into Myelin Basic Protein-expressing cells and to interact with neurons in an in vitro co-culture system. As a whole, we describe an optimized in vitro method for increasing OPC. PMID:25837625

  13. Developmental Origin of Oligodendrocyte Lineage Cells Determines Response to Demyelination and Susceptibility to Age-Associated Functional Decline

    PubMed Central

    Crawford, Abbe H.; Tripathi, Richa B.; Richardson, William D.; Franklin, Robin J.M.

    2016-01-01

    Summary Oligodendrocyte progenitors (OPs) arise from distinct ventral and dorsal domains within the ventricular germinal zones of the embryonic CNS. The functional significance, if any, of these different populations is not known. Using dual-color reporter mice to distinguish ventrally and dorsally derived OPs, we show that, in response to focal demyelination of the young adult spinal cord or corpus callosum, dorsally derived OPs undergo enhanced proliferation, recruitment, and differentiation as compared with their ventral counterparts, making a proportionally larger contribution to remyelination. However, with increasing age (up to 13 months), the dorsally derived OPs become less able to differentiate into mature oligodendrocytes. Comparison of dorsally and ventrally derived OPs in culture revealed inherent differences in their migration and differentiation capacities. Therefore, the responsiveness of OPs to demyelination, their contribution to remyelination, and their susceptibility to age-associated functional decline are markedly dependent on their developmental site of origin in the developing neural tube. PMID:27149850

  14. IκB kinase 2 determines oligodendrocyte loss by non-cell-autonomous activation of NF-κB in the central nervous system

    PubMed Central

    Raasch, Jenni; Zeller, Nicolas; van Loo, Geert; Merkler, Doron; Mildner, Alexander; Erny, Daniel; Knobeloch, Klaus-Peter; Bethea, John R.; Waisman, Ari; Knust, Markus; Del Turco, Domenico; Deller, Thomas; Blank, Thomas; Priller, Josef; Brück, Wolfgang

    2011-01-01

    The IκB kinase complex induces nuclear factor kappa B activation and has recently been recognized as a key player of autoimmunity in the central nervous system. Notably, IκB kinase/nuclear factor kappa B signalling regulates peripheral myelin formation by Schwann cells, however, its role in myelin formation in the central nervous system during health and disease is largely unknown. Surprisingly, we found that brain-specific IκB kinase 2 expression is dispensable for proper myelin assembly and repair in the central nervous system, but instead plays a fundamental role for the loss of myelin in the cuprizone model. During toxic demyelination, inhibition of nuclear factor kappa B activation by conditional ablation of IκB kinase 2 resulted in strong preservation of central nervous system myelin, reduced expression of proinflammatory mediators and a significantly attenuated glial response. Importantly, IκB kinase 2 depletion in astrocytes, but not in oligodendrocytes, was sufficient to protect mice from myelin loss. Our results reveal a crucial role of glial cell-specific IκB kinase 2/nuclear factor kappa B signalling for oligodendrocyte damage during toxic demyelination. Thus, therapies targeting IκB kinase 2 function in non-neuronal cells may represent a promising strategy for the treatment of distinct demyelinating central nervous system diseases. PMID:21310728

  15. An Extract of Chinpi, the Dried Peel of the Citrus Fruit Unshiu, Enhances Axonal Remyelination via Promoting the Proliferation of Oligodendrocyte Progenitor Cells

    PubMed Central

    Seiwa, Chika; Yoshioka, Nozomu; Mizoguchi, Kazushige; Yamamoto, Masahiro; Asou, Hiroaki; Aiso, Sadakazu

    2016-01-01

    The aging-induced decrease in axonal myelination/remyelination is due to impaired recruitment and differentiation of oligodendrocyte progenitor cells (OPCs). Our previous studies have shown that a monoclonal antibody to DEAD (Asp-Glu-Ala-Asp) box polypeptide 54 (Ddx54), a member of the DEAD box family of RNA helicases, (1) specifically labels oligodendrocyte lineages, (2) binds to mRNA and protein isoforms of myelin basic proteins (MBP), and (3) regulates migration of OPCs from ventricular zone to corpus callosum in mice. It has also been demonstrated that specific loss of a 21.5 kDa MBP isoform (MBP21.5) reflects demyelination status, and oral administration of an extract of Chinpi, citrus unshiu peel, reversed the aging-induced demyelination. Here, we report that Chinpi treatment induced a specific increase in the MBP21.5, led to the reappearance of Ddx54-expressing cells in ventricular-subventricular zone and corpus callosum of aged mice, and promoted remyelination. Treatment of in vitro OPC cultures with Chinpi constituents, hesperidin plus narirutin, led to an increase in 5-bromo-2′-deoxyuridine incorporation in Ddx54-expressing OPCs, but not in NG2- or Olig2-expressing cell populations. The present study suggests that Ddx54 plays crucial role in remyelination. Furthermore, Chinpi and Chinpi-containing herbal medicines may be a therapeutic option for the aging-induced demyelination diseases. PMID:27022404

  16. Therapeutic activities of engrafted neural stem/precursor cells are not dormant in the chronically injured spinal cord.

    PubMed

    Kumamaru, Hiromi; Saiwai, Hirokazu; Kubota, Kensuke; Kobayakawa, Kazu; Yokota, Kazuya; Ohkawa, Yasuyuki; Shiba, Keiichiro; Iwamoto, Yukihide; Okada, Seiji

    2013-08-01

    The transplantation of neural stem/precursor cells (NSPCs) is a promising therapeutic strategy for many neurodegenerative disorders including spinal cord injury (SCI) because it provides for neural replacement or trophic support. This strategy is now being extended to the treatment of chronic SCI patients. However, understanding of biological properties of chronically transplanted NSPCs and their surrounding environments is limited. Here, we performed temporal analysis of injured spinal cords and demonstrated their multiphasic cellular and molecular responses. In particular, chronically injured spinal cords were growth factor-enriched environments, whereas acutely injured spinal cords were enriched by neurotrophic and inflammatory factors. To determine how these environmental differences affect engrafted cells, NSPCs transplanted into acutely, subacutely, and chronically injured spinal cords were selectively isolated by flow cytometry, and their whole transcriptomes were compared by RNA sequencing. This analysis revealed that NSPCs produced many regenerative/neurotrophic molecules irrespective of transplantation timing, and these activities were prominent in chronically transplanted NSPCs. Furthermore, chronically injured spinal cords permitted engrafted NSPCs to differentiate into neurons/oligodendrocytes and provided more neurogenic environment for NSPCs than other environments. Despite these results demonstrate that transplanted NSPCs have adequate capacity in generating neurons/oligodendrocytes and producing therapeutic molecules in chronic SCI microenvironments, they did not improve locomotor function. Our results indicate that failure in chronic transplantation is not due to the lack of therapeutic activities of engrafted NSPCs but the refractory state of chronically injured spinal cords. Environmental modulation, rather modification of transplanting cells, will be significant for successful translation of stem cell-based therapies into chronic SCI patients.

  17. Aorta-derived mesoangioblasts differentiate into the oligodendrocytes by inhibition of the Rho kinase signaling pathway.

    PubMed

    Wang, Lei; Kamath, Anant; Frye, Janie; Iwamoto, Gary A; Chun, Ju Lan; Berry, Suzanne E

    2012-05-01

    Mesoangioblasts are vessel-derived stem cells that differentiate into mesodermal derivatives. We have isolated postnatal aorta-derived mesoangioblasts (ADMs) that differentiate into smooth, skeletal, and cardiac muscle, and adipocytes, and regenerate damaged skeletal muscle in a murine model for Duchenne muscular dystrophy. We report that the marker profile of ADM is similar to that of mesoangioblasts isolated from embryonic dorsal aorta, postnatal bone marrow, and heart, but distinct from mesoangioblasts derived from skeletal muscle. We also demonstrate that ADM differentiate into myelinating glial cells. ADM localize to peripheral nerve bundles in regenerating muscles and exhibit morphology and marker expression of mature Schwann cells, and myelinate axons. In vitro, ADM spontaneously express markers of oligodendrocyte progenitors, including the chondroitin sulphate proteoglycan NG2, nestin, platelet-derived growth factor (PDGF) receptor α, the A2B5 antigen, thyroid hormone nuclear receptor α, and O4. Pharmacological inhibition of Rho kinase (ROCK) initiated process extension by ADM, and when combined with insulin-like growth factor 1, PDGF, and thyroid hormone, enhanced ADM expression of oligodendrocyte precursor markers and maturation into the oligodendrocyte lineage. ADM injected into the right lateral ventricle of the brain migrate to the corpus callosum, and cerebellar white matter, where they express components of myelin. Because ADM differentiate or mature into cell types of both mesodermal and ectodermal origin, they may be useful for treatment of a variety of degenerative diseases, or repair and regeneration of multiple cell types in severely damaged tissue. PMID:21793703

  18. Coculture with endothelial cells reduces the population of cycling LeX neural precursors but increases that of quiescent cells with a side population phenotype

    SciTech Connect

    Mathieu, Celine . E-mail: marc-andre.mouthon@cea.fr

    2006-04-01

    Neural stem cell proliferation and differentiation are regulated by external cues from their microenvironment. As endothelial cells are closely associated with neural stem cell in brain germinal zones, we investigated whether endothelial cells may interfere with neurogenesis. Neural precursor cells (NPC) from telencephalon of EGFP mouse embryos were cocultured in direct contact with endothelial cells. Endothelial cells did not modify the overall proliferation and apoptosis of neural cells, albeit they transiently delayed spontaneous apoptosis. These effects appeared to be specific to endothelial cells since a decrease in proliferation and a raise in apoptosis were observed in cocultures with fibroblasts. Endothelial cells stimulated the differentiation of NPC into astrocytes and into neurons, whereas they reduced differentiation into oligodendrocytes in comparison to adherent cultures on polyornithine. Determination of NPC clonogenicity and quantification of LeX expression, a marker for NPC, showed that endothelial cells decreased the number of cycling NPC. On the other hand, the presence of endothelial cells increased the number of neural cells having 'side population' phenotype, another marker reported on NPC, which we have shown to contain quiescent cells. Thus, we show that endothelial cells may regulate neurogenesis by acting at different level of NPC differentiation, proliferation and quiescence.

  19. TGFβ signaling regulates the timing of CNS myelination by modulating oligodendrocyte progenitor cell cycle exit through SMAD3/4/FoxO1/Sp1.

    PubMed

    Palazuelos, Javier; Klingener, Michael; Aguirre, Adan

    2014-06-01

    Research on myelination has focused on identifying molecules capable of inducing oligodendrocyte (OL) differentiation in an effort to develop strategies that promote functional myelin regeneration in demyelinating disorders. Here, we show that transforming growth factor β (TGFβ) signaling is crucial for allowing oligodendrocyte progenitor (OP) cell cycle withdrawal, and therefore, for oligodendrogenesis and postnatal CNS myelination. Enhanced oligodendrogenesis and subcortical white matter (SCWM) myelination was detected after TGFβ gain of function, while TGFβ receptor II (TGFβ-RII) deletion in OPs prevents their development into mature myelinating OLs, leading to SCWM hypomyelination in mice. TGFβ signaling modulates OP cell cycle withdrawal and differentiation through the transcriptional modulation of c-myc and p21 gene expression, mediated by the interaction of SMAD3/4 with Sp1 and FoxO1 transcription factors. Our study is the first to demonstrate an autonomous and crucial role of TGFβ signaling in OL development and CNS myelination, and may provide new avenues in the treatment of demyelinating diseases.

  20. TGFβ Signaling Regulates the Timing of CNS Myelination by Modulating Oligodendrocyte Progenitor Cell Cycle Exit through SMAD3/4/FoxO1/Sp1

    PubMed Central

    Palazuelos, Javier; Klingener, Michael

    2014-01-01

    Research on myelination has focused on identifying molecules capable of inducing oligodendrocyte (OL) differentiation in an effort to develop strategies that promote functional myelin regeneration in demyelinating disorders. Here, we show that transforming growth factor β (TGFβ) signaling is crucial for allowing oligodendrocyte progenitor (OP) cell cycle withdrawal, and therefore, for oligodendrogenesis and postnatal CNS myelination. Enhanced oligodendrogenesis and subcortical white matter (SCWM) myelination was detected after TGFβ gain of function, while TGFβ receptor II (TGFβ-RII) deletion in OPs prevents their development into mature myelinating OLs, leading to SCWM hypomyelination in mice. TGFβ signaling modulates OP cell cycle withdrawal and differentiation through the transcriptional modulation of c-myc and p21 gene expression, mediated by the interaction of SMAD3/4 with Sp1 and FoxO1 transcription factors. Our study is the first to demonstrate an autonomous and crucial role of TGFβ signaling in OL development and CNS myelination, and may provide new avenues in the treatment of demyelinating diseases. PMID:24899714

  1. Intramyocardial angiogenic cell precursors in nonischemic dilated cardiomyopathy.

    PubMed

    Arom, Kitipan V; Ruengsakulrach, Permyos; Belkin, Michael; Tiensuwan, Montip

    2009-08-01

    To determine the efficacy of intramyocardial injection of angiogenic cell precursors in nonischemic dilated cardiomyopathy, 35 patients with nonischemic dilated cardiomyopathy underwent injections of angiogenic cell precursors into the left ventricle (cell group). Seventeen patients with nonischemic dilated cardiomyopathy were matched from the heart failure database to form a control group that was treated medically. Angiogenic cell precursors were obtained from autologous blood, cultured in vitro, and injected into all free-wall areas of the left ventricle in the cell group. After these injections, New York Heart Association functional class improved significantly by 1.1 +/- 0.7 classes at 284.7 +/- 136.2 days, and left ventricular ejection fraction improved in 71.4% of patients (25/35); the mean increase in left ventricular ejection fraction was 4.4% +/- 10.6% at 192.7 +/- 135.1 days. Improved quality of life was demonstrated by better physical function, role-physical, general health, and vitality domains in a short-form health survey at the 3-month follow-up. In the control group, there were no significant improvements in left ventricular ejection fraction or New York Heart Association class which increased by 0.6 +/- 0.8 classes. It was concluded that intramyocardial angiogenic cell precursor injection is probably effective in the treatment of nonischemic dilated cardiomyopathy. PMID:19713335

  2. Substratum of pleiotrophin (HB-GAM) stimulates rat CG-4 line oligodendrocytes to adopt a bipolar morphology and disperse: primary O-2A progenitor glial cells disperse similarly on pleiotrophin.

    PubMed

    Rumsby, M; Suggitt, F; Haynes, L; Hughson, E; Kidd, D; McNulty, S

    1999-06-01

    Pleiotrophin (HB-GAM), an extracellular matrix-associated protein with a high content of basic amino acid residues, is expressed in the central nervous system during late pre- and early post-natal development and promotes neurite outgrowth in vitro. Here, we show that, on a substratum of pleiotrophin formed from a 5 or 10 microg/ml solution, undifferentiated rat CG-4 line oligodendrocytes adopt a bipolar morphology and disperse over the substratum, as we have previously shown with poly-L-lysine (Rumsby et al. Neurosci. Res. Commun. 23:101-109, 1998). On pleiotrophin substrata formed from coating solutions of 1 microg/ml and below, CG-4 line cells form aggregates and do not disperse, as is also the case with poly-L-lysine. The same dispersing effect is observed with rat primary 0-2A progenitor glial cells on pleiotrophin substrata from solutions of 5 and 10 microg/ml: 0-2A cells aggregate together on pleiotrophin substrata formed from lower concentrations and do not disperse. A pleiotrophin substratum enhances proliferation of CG-4 line oligodendrocytes and primary 0-2A progenitor glial cells. The results show that pleiotrophin provides a substratum that can influence progenitor oligodendrocyte morphology, aid cell dispersion, and perhaps also enhance progenitor oligodendrocyte cell growth.

  3. MicroRNA: Key regulators of oligodendrocyte development and pathobiology.

    PubMed

    Fitzpatrick, John-Mark K; Anderson, Rebecca C; McDermott, Kieran W

    2015-08-01

    MicroRNAs (miRNAs or miRs) are a group of small non-coding RNAs that function through binding to messenger RNA (mRNA) targets and downregulating gene expression. miRNAs have been shown to regulate many cellular functions including proliferation, differentiation, development and apoptosis. Recently, evidence has grown which shows the involvement of miRs in oligodendrocyte (OL) specification and development. In particular, miRs-138, -219, -338, and -9 have been classified as key regulators of OL development, acting at various points in the OL lineage and influencing precursor cell transit into mature myelinating OLs. Many studies have emerged which link miRNAs with OL and myelin pathology in various central nervous system (CNS) diseases including multiple sclerosis (MS), ischemic stroke, spinal cord injury, and adult-onset autosomal dominant leukodystrophy (ADLD).

  4. Review: R28 retinal precursor cells: The first 20 years

    PubMed Central

    2014-01-01

    The R28 retinal precursor cell line was established 20 years ago, originating from a postnatal day 6 rat retinal culture immortalized with the 12S E1A (NP-040507) gene of the adenovirus in a replication-incompetent viral vector. Since that time, R28 cells have been characterized and used for a variety of in vitro and in vivo studies of retinal cell behavior, including differentiation, neuroprotection, cytotoxicity, and light stimulation, as well as retinal gene expression and neuronal function. While no cell culture is equivalent to the intact eye, R28 cells continue to provide an important experimental system for the study of many retinal processes. PMID:24644404

  5. Effects of mycobacterial infection on proliferation of hematopoietic precursor cells.

    PubMed

    Choi, Hong-Hee; Kim, Kwang-Kyu; Kim, Kwang Dong; Kim, Hwa-Jung; Jo, Eun-Kyeong; Song, Chang-Hwa

    2011-12-01

    Bacterial infection can affect hematopoietic precursor cells in bone marrow, because the infected tissues produce various cytokines and chemokines. Little is known about hematopoietic precursor cells, including hematopoietic stem cells and their progenitors, during mycobacterial infection. Here, we showed that mycobacterial infections result in the expansion of not only the lin-c-kit+sca-1+ (LKS+) cell population, but also granulocyte-monocyte progenitor cells in a chronic murine tuberculosis model. Interestingly, stimulation of LKS+ cells with attenuated Mycobacterium tuberculosis H37Ra culture filtrate (RaCF) was significantly stronger than that by virulent H37Rv culture filtrate (RvCF). Lower TNF-α and IL-6 levels were observed in RvCF-stimulated bone marrow cells. Neutralization of TNF-α or IL-6 in RaCF-stimulated bone marrow cells markedly suppressed LKS+ cell clonal expansion. Additionally, numbers of LKS+ cells were lower in TLR2(-/-) and MyD88(-/-) mice after mycobacterial infection. Taken together, LKS+ cell proliferation related to mycobacterial virulence may be related to the secretion of TNF-α and IL-6 associated with TLR signaling. Expansion of hematopoietic progenitor cells may, therefore, play an important role during mycobacterial infection.

  6. Lymphocryptovirus Infection of Nonhuman Primate B Cells Converts Destructive into Productive Processing of the Pathogenic CD8 T Cell Epitope in Myelin Oligodendrocyte Glycoprotein

    PubMed Central

    Jagessar, S. Anwar; Holtman, Inge R.; Hofman, Sam; Morandi, Elena; Heijmans, Nicole; Laman, Jon D.; Gran, Bruno; Faber, Bart W.; van Kasteren, Sander I.; Eggen, Bart J. L.

    2016-01-01

    EBV is the major infectious environmental risk factor for multiple sclerosis (MS), but the underlying mechanisms remain obscure. Patient studies do not allow manipulation in vivo. We used the experimental autoimmune encephalomyelitis (EAE) models in the common marmoset and rhesus monkey to model the association of EBV and MS. We report that B cells infected with EBV-related lymphocryptovirus (LCV) are requisite APCs for MHC-E–restricted autoaggressive effector memory CTLs specific for the immunodominant epitope 40-48 of myelin oligodendrocyte glycoprotein (MOG). These T cells drive the EAE pathogenesis to irreversible neurologic deficit. The aim of this study was to determine why LCV infection is important for this pathogenic role of B cells. Transcriptome comparison of LCV-infected B cells and CD20+ spleen cells from rhesus monkeys shows increased expression of genes encoding elements of the Ag cross-presentation machinery (i.e., of proteasome maturation protein and immunoproteasome subunits) and enhanced expression of MHC-E and of costimulatory molecules (CD70 and CD80, but not CD86). It was also shown that altered expression of endolysosomal proteases (cathepsins) mitigates the fast endolysosomal degradation of the MOG40–48 core epitope. Finally, LCV infection also induced expression of LC3-II+ cytosolic structures resembling autophagosomes, which seem to form an intracellular compartment where the MOG40–48 epitope is protected against proteolytic degradation by the endolysosomal serine protease cathepsin G. In conclusion, LCV infection induces a variety of changes in B cells that underlies the conversion of destructive processing of the immunodominant MOG40–48 epitope into productive processing and cross-presentation to strongly autoaggressive CTLs. PMID:27412414

  7. Lymphocryptovirus Infection of Nonhuman Primate B Cells Converts Destructive into Productive Processing of the Pathogenic CD8 T Cell Epitope in Myelin Oligodendrocyte Glycoprotein.

    PubMed

    Jagessar, S Anwar; Holtman, Inge R; Hofman, Sam; Morandi, Elena; Heijmans, Nicole; Laman, Jon D; Gran, Bruno; Faber, Bart W; van Kasteren, Sander I; Eggen, Bart J L; 't Hart, Bert A

    2016-08-15

    EBV is the major infectious environmental risk factor for multiple sclerosis (MS), but the underlying mechanisms remain obscure. Patient studies do not allow manipulation in vivo. We used the experimental autoimmune encephalomyelitis (EAE) models in the common marmoset and rhesus monkey to model the association of EBV and MS. We report that B cells infected with EBV-related lymphocryptovirus (LCV) are requisite APCs for MHC-E-restricted autoaggressive effector memory CTLs specific for the immunodominant epitope 40-48 of myelin oligodendrocyte glycoprotein (MOG). These T cells drive the EAE pathogenesis to irreversible neurologic deficit. The aim of this study was to determine why LCV infection is important for this pathogenic role of B cells. Transcriptome comparison of LCV-infected B cells and CD20(+) spleen cells from rhesus monkeys shows increased expression of genes encoding elements of the Ag cross-presentation machinery (i.e., of proteasome maturation protein and immunoproteasome subunits) and enhanced expression of MHC-E and of costimulatory molecules (CD70 and CD80, but not CD86). It was also shown that altered expression of endolysosomal proteases (cathepsins) mitigates the fast endolysosomal degradation of the MOG40-48 core epitope. Finally, LCV infection also induced expression of LC3-II(+) cytosolic structures resembling autophagosomes, which seem to form an intracellular compartment where the MOG40-48 epitope is protected against proteolytic degradation by the endolysosomal serine protease cathepsin G. In conclusion, LCV infection induces a variety of changes in B cells that underlies the conversion of destructive processing of the immunodominant MOG40-48 epitope into productive processing and cross-presentation to strongly autoaggressive CTLs. PMID:27412414

  8. Intraspinal transplantation of mouse and human neural precursor cells

    PubMed Central

    Weinger, Jason G.; Chen, Lu; Coleman, Ronald; Leang, Ronika; Plaisted, Warren C.; Loring, Jeanne F.; Lane, Thomas E.

    2013-01-01

    This unit describes the preparation and transplantation of human neural precursor cells (hNPCs) and mouse neural precursor cells (mNPCs) into the thoracic region of the mouse spinal cord. The techniques in this unit also describe how to prepare the mouse for surgery by performing a laminectomy to expose the spinal cord for transplantation. Here we show NPCs genetically labeled with eGFP transplanted into the spinal cord of a mouse following viralmediated demyelination can efficiently be detected via eGFP expression. Transplantation of these cells into the spinal cord is an efficacious way to determine their effects in neurological disorders such as multiple sclerosis, Alzheimer's disease, and spinal cord injury. PMID:24510791

  9. Oligodendrocytes in HIV-associated pain pathogenesis

    PubMed Central

    Shi, Yuqiang; Shu, Jianhong; Liang, Zongsuo; Yuan, Subo

    2016-01-01

    Background Although the contributions of microglia and astrocytes to chronic pain pathogenesis have been a focal point of investigation in recent years, the potential role of oligodendrocytes, another major type of glial cells in the CNS that generates myelin, remains largely unknown. Results We report here that cell markers of the oligodendrocyte lineage, including NG2, PDGFRα, and Olig2, are significantly increased in the spinal dorsal horn of HIV patients who developed chronic pain. The levels of myelin proteins myelin basic protein and proteolipid protein are also aberrant in the spinal dorsal horn of “pain-positive” HIV patients. Similarly, the oligodendrocyte and myelin markers are up-regulated in the spinal dorsal horn of a mouse model of HIV-1 gp120-induced pain. Surprisingly, the expression of gp120-induced mechanical allodynia appears intact up to 4 h after myelin basic protein is knocked down or knocked out. Conclusion These findings suggest that oligodendrocytes are reactive during the pathogenesis of HIV-associated pain. However, interfering with myelination does not alter the induction of gp120-induced pain. PMID:27306410

  10. Functional activity of mitochondria in cultured neural precursor cells.

    PubMed

    Plotnikov, E Yu; Marei, M V; Podgornyi, O V; Aleksandrova, M A; Zorov, D B; Sukhikh, G T

    2006-01-01

    We studied mitochondrial transmembrane potential of neural precursor cells forming neurospheres in culture. Uneven energization of mitochondria in neurosphere cells was detected. Heterogeneity of cells by the mitochondrial potential increased with neurosphere enlargement during culturing. Decrease in the mitochondrial potential in the central cells in large spheres, presumably caused by insufficient diffusion of oxygen and nutrients, can provoke their damage and death. Population of cells with high mitochondrial potential responded to addition of the nuclear dye by a decrease in mitochondrial potential, which can indicate functioning of ABCG2 complex in these cells, characteristic of undifferentiated stem cells. These data will help to create optimum conditions for culturing of neural stem cells for the maintenance of their maximum functional and proliferative activity. PMID:16929986

  11. Injury and differentiation following inhibition of mitochondrial respiratory chain complex IV in rat oligodendrocytes

    PubMed Central

    Ziabreva, Iryna; Campbell, Graham; Rist, Julia; Zambonin, Jessica; Rorbach, Joanna; Wydro, Mateusz M; Lassmann, Hans; Franklin, Robin J M; Mahad, Don

    2010-01-01

    Oligodendrocyte lineage cells are susceptible to a variety of insults including hypoxia, excitotoxicity, and reactive oxygen species. Demyelination is a well-recognized feature of several CNS disorders including multiple sclerosis, white matter strokes, progressive multifocal leukoencephalopathy, and disorders due to mitochondrial DNA mutations. Although mitochondria have been implicated in the demise of oligodendrocyte lineage cells, the consequences of mitochondrial respiratory chain defects have not been examined. We determine the in vitro impact of established inhibitors of mitochondrial respiratory chain complex IV or cytochrome c oxidase on oligodendrocyte progenitor cells (OPCs) and mature oligodendrocytes as well as on differentiation capacity of OPCs from P0 rat. Injury to mature oligodendrocytes following complex IV inhibition was significantly greater than to OPCs, judged by cell detachment and mitochondrial membrane potential (MMP) changes, although viability of cells that remained attached was not compromised. Active mitochondria were abundant in processes of differentiated oligodendrocytes and MMP was significantly greater in differentiated oligodendrocytes than OPCs. MMP dissipated following complex IV inhibition in oligodendrocytes. Furthermore, complex IV inhibition impaired process formation within oligodendrocyte lineage cells. Injury to and impaired process formation of oligodendrocytes following complex IV inhibition has potentially important implications for the pathogenesis and repair of CNS myelin disorders. © 2010 Wiley-Liss, Inc. PMID:20665559

  12. Whole-cell fungal transformation of precursors into dyes

    PubMed Central

    2010-01-01

    Background Chemical methods of producing dyes involve extreme temperatures and unsafe toxic compounds. Application of oxidizing enzymes obtained from fungal species, for example laccase, is an alternative to chemical synthesis of dyes. Laccase can be replaced by fungal biomass acting as a whole-cell biocatalyst with properties comparable to the isolated form of the enzyme. The application of the whole-cell system simplifies the transformation process and reduces the time required for its completion. In the present work, four fungal strains with a well-known ability to produce laccase were tested for oxidation of 17 phenolic and non-phenolic precursors into stable and non-toxic dyes. Results An agar-plate screening test of the organic precursors was carried out using four fungal strains: Trametes versicolor, Fomes fomentarius, Abortiporus biennis, and Cerrena unicolor. Out of 17 precursors, nine were transformed into coloured substances in the presence of actively growing fungal mycelium. The immobilized fungal biomass catalyzed the transformation of 1 mM benzene and naphthalene derivatives in liquid cultures yielding stable and non-toxic products with good dyeing properties. The type of fungal strain had a large influence on the absorbance of the coloured products obtained after 48-hour transformation of the selected precursors, and the most effective was Fomes fomentarius (FF25). Whole-cell transformation of AHBS (3-amino-4-hydroxybenzenesulfonic acid) into a phenoxazinone dye was carried out in four different systems: in aqueous media comprising low amounts of carbon and nitrogen source, in buffer, and in distilled water. Conclusions This study demonstrated the ability of four fungal strains belonging to the ecological type of white rot fungi to transform precursors into dyes. This paper highlights the potential of fungal biomass for replacing isolated enzymes as a cheaper industrial-grade biocatalyst for the synthesis of dyes and other commercially important

  13. Electroacupuncture ameliorates memory impairments by enhancing oligodendrocyte regeneration in a mouse model of prolonged cerebral hypoperfusion

    PubMed Central

    Ahn, Sung Min; Kim, Yu Ri; Kim, Ha Neui; Shin, Yong-Il; Shin, Hwa Kyoung; Choi, Byung Tae

    2016-01-01

    We modeled prolonged cerebral hypoperfusion in mice using bilateral common carotid artery stenosis (BCAS) and electroacupuncture (EA) stimulation was applied at two acupoints, Baihui (GV20) and Dazhui (GV14). In behavioral tests of memory, BCAS produced impairments in spatial and short-term memory in mice that were attenuated by therapeutic EA stimulation. Therapeutic use of EA in BCAS also enhanced oligodendrocyte (OL) differentiation from oligodendrocyte precursor cells (OPCs), in association with white matter improvements in the corpus callosum (CC). In PCR analyses of growth factor gene expression, significant positive changes in 3 genes were observed following EA stimulation in BCAS, and here we highlight alterations in neurotrophin-4/5 (NT4/5). We confirmed EA-mediated positive changes in the expression of NT4/5 and its receptor, tyrosine receptor kinase B (TrkB). Treatment of naïve and BCAS + EA animals with a selective TrkB antagonist, ANA-12, produced losses of myelin and cognitive function that were ameliorated by EA therapy. Moreover, following BCAS we observed an EA-dependent increase in phospho-activated CREB (a downstream mediator of NT4/5-TrkB signaling) in OPCs and OLs of the CC. Our results suggest that EA stimulation promotes the recovery of memory function following white matter injury via a mechanism that promotes oligodendrocyte regeneration and involves NT4/5-TrkB signaling. PMID:27350403

  14. Thin film solar cells by selenization sulfurization using diethyl selenium as a selenium precursor

    SciTech Connect

    Dhere, Neelkanth G.; Kadam, Ankur A.

    2009-12-15

    A method of forming a CIGSS absorber layer includes the steps of providing a metal precursor, and selenizing the metal precursor using diethyl selenium to form a selenized metal precursor layer (CIGSS absorber layer). A high efficiency solar cell includes a CIGSS absorber layer formed by a process including selenizing a metal precursor using diethyl selenium to form the CIGSS absorber layer.

  15. Cytoskeletal Linker Protein Dystonin Is Not Critical to Terminal Oligodendrocyte Differentiation or CNS Myelination.

    PubMed

    Kornfeld, Samantha F; Lynch-Godrei, Anisha; Bonin, Sawyer R; Gibeault, Sabrina; De Repentigny, Yves; Kothary, Rashmi

    2016-01-01

    Oligodendrocyte differentiation and central nervous system myelination require massive reorganization of the oligodendrocyte cytoskeleton. Loss of specific actin- and tubulin-organizing factors can lead to impaired morphological and/or molecular differentiation of oligodendrocytes, resulting in a subsequent loss of myelination. Dystonin is a cytoskeletal linker protein with both actin- and tubulin-binding domains. Loss of function of this protein results in a sensory neuropathy called Hereditary Sensory Autonomic Neuropathy VI in humans and dystonia musculorum in mice. This disease presents with severe ataxia, dystonic muscle and is ultimately fatal early in life. While loss of the neuronal isoforms of dystonin primarily leads to sensory neuron degeneration, it has also been shown that peripheral myelination is compromised due to intrinsic Schwann cell differentiation abnormalities. The role of this cytoskeletal linker in oligodendrocytes, however, remains unclear. We sought to determine the effects of the loss of neuronal dystonin on oligodendrocyte differentiation and central myelination. To address this, primary oligodendrocytes were isolated from a severe model of dystonia musculorum, Dstdt-27J, and assessed for morphological and molecular differentiation capacity. No defects could be discerned in the differentiation of Dstdt-27J oligodendrocytes relative to oligodendrocytes from wild-type littermates. Survival was also compared between Dstdt-27J and wild-type oligodendrocytes, revealing no significant difference. Using a recently developed migration assay, we further analysed the ability of primary oligodendrocyte progenitor cell motility, and found that Dstdt-27J oligodendrocyte progenitor cells were able to migrate normally. Finally, in vivo analysis of oligodendrocyte myelination was done in phenotype-stage optic nerve, cerebral cortex and spinal cord. The density of myelinated axons and g-ratios of Dstdt-27J optic nerves was normal, as was myelin basic

  16. In vitro osteogenesis from human skin-derived precursor cells.

    PubMed

    Buranasinsup, Shutipen; Sila-Asna, Monnipha; Bunyaratvej, Narong; Bunyaratvej, Ahnond

    2006-05-01

    Embryonic tissue and organ development are initiated from three embryonic germ layers: ectoderm (skin and neuron), mesoderm (blood, bone, muscle, cartilage and fat) and endoderm (respiratory and digestive tract). In former times, it was believed that cell types in each germ layer are specific and do not cross from one to another throughout life. A new finding is that one tissue lineage can differentiate across to another tissue lineage, and this is termed transdifferentiation. We were interested in studying the transdifferentiation of skin-derived precursor cells (ectoderm layer) to osteoblastic cells (mesoderm layer). Human skin-derived precursor cells (hSKP) were isolated and induced into an osteoblastic lineage using osteogenic induction medium (alpha-MEM plus 10% fetal bovine serum supplemented with ascorbic acid, beta-glycerophosphate and dexamethasone). The specific characteristics of osteoblastic cells, including the expression of enzyme alkaline phosphatase, the deposition of mineral and the expression of osterix, bone sialoprotein and osteocalcin, were detected only from the inductive group. The results in our study show that SKP from human skin are a practically available source for osteogenesis. The samples are easily obtainable for autologous use with a high expansion capacity.

  17. Perfluorooctane sulfonate induces neuronal and oligodendrocytic differentiation in neural stem cells and alters the expression of PPARγ in vitro and in vivo

    SciTech Connect

    Wan Ibrahim, Wan Norhamidah; Tofighi, Roshan; Onishchenko, Natalia; Rebellato, Paola; Bose, Raj; Uhlén, Per; Ceccatelli, Sandra

    2013-05-15

    Perfluorinated compounds are ubiquitous chemicals of major concern for their potential adverse effects on the human population. We have used primary rat embryonic neural stem cells (NSCs) to study the effects of perfluorooctane sulfonate (PFOS) on the process of NSC spontaneous differentiation. Upon removal of basic fibroblast growth factor, NSCs were exposed to nanomolar concentrations of PFOS for 48 h, and then allowed to differentiate for additional 5 days. Exposure to 25 or 50 nM concentration resulted in a lower number of proliferating cells and a higher number of neurite-bearing TuJ1-positive cells, indicating an increase in neuronal differentiation. Exposure to 50 nM also significantly increased the number of CNPase-positive cells, pointing to facilitation of oligodendrocytic differentiation. PPAR genes have been shown to be involved in PFOS toxicity. By q-PCR we detected an upregulation of PPARγ with no changes in PPARα or PPARδ genes. One of the downstream targets of PPARs, the mitochondrial uncoupling protein 2 (UCP2) was also upregulated. The number of TuJ1- and CNPase-positive cells increased after exposure to PPARγ agonist rosiglitazone (RGZ, 3 μM) and decreased after pre-incubation with the PPARγ antagonist GW9662 (5 μM). RGZ also upregulated the expression of PPARγ and UCP2 genes. Meanwhile GW9662 abolished the UCP2 upregulation and decreased Ca{sup 2+} activity induced by PFOS. Interestingly, a significantly higher expression of PPARγ and UCP3 genes was also detected in mouse neonatal brain after prenatal exposure to PFOS. These data suggest that PPARγ plays a role in the alteration of spontaneous differentiation of NSCs induced by nanomolar concentrations of PFOS. - Highlights: • PFOS decreases proliferation of neural stem cells (NSCs). • PFOS induces neuronal and oligodendrocytic differentiation in NSCs. • PFOS alters expression of PPARγ and UCP2 in vitro. • PFOS alters expression of PPARγ and UCP3 in vivo. • Block of PPAR

  18. The Effect of Pro-Neurogenic Gene Expression on Adult Subventricular Zone Precursor Cell Recruitment and Fate Determination After Excitotoxic Brain Injury

    PubMed Central

    Jones, Kathryn S; Connor, Bronwen J

    2016-01-01

    Despite the presence of on-going neurogenesis in the adult mammalian brain, neurons are generally not replaced after injury. Using a rodent model of excitotoxic cell loss and retroviral (RV) lineage tracing, we previously demonstrated transient recruitment of precursor cells from the subventricular zone (SVZ) into the lesioned striatum. In the current study we determined that these cells included migratory neuroblasts and oligodendrocyte precursor cells (OPC), with the predominant response from glial cells. We attempted to override this glial response by ectopic expression of the pro-neurogenic genes Pax6 or Dlx2 in the adult rat SVZ following quinolinic acid lesioning. RV-Dlx2 over-expression stimulated repair at a previously non-neurogenic time point by enhancing neuroblast recruitment and the percentage of cells that retained a neuronal fate within the lesioned area, compared to RV-GFP controls. RV-Pax6 expression was unsuccessful at inhibiting glial fate and intriguingly, increased OPC cell numbers with no change in neuronal recruitment. These findings suggest that gene choice is important when attempting to augment endogenous repair as the lesioned environment can overcome pro-neurogenic gene expression. Dlx2 over-expression however was able to partially overcome an anti-neuronal environment and therefore is a promising candidate for further study of striatal regeneration. PMID:27397999

  19. Oligodendrocyte Responses to Buprenorphine Uncover Novel and Opposing Roles of μ-Opioid- and Nociceptin/Orphanin FQ Receptors in Cell Development: Implications for Drug Addiction Treatment During Pregnancy

    PubMed Central

    Eschenroeder, Andrew C.; Vestal-Laborde, Allison A.; Sanchez, Emilse S.; Robinson, Susan E.; Sato-Bigbee, Carmen

    2011-01-01

    While the classical function of myelin is the facilitation of saltatory conduction, this membrane and the oligodendrocytes, the cells that make myelin in the central nervous system (CNS), are now recognized as important regulators of plasticity and remodeling in the developing brain. As such, oligodendrocyte maturation and myelination are among the most vulnerable processes along CNS development. We have shown previously that rat brain myelination is significantly altered by buprenorphine, an opioid analogue currently used in clinical trials for managing pregnant opioid addicts. Perinatal exposure to low levels of this drug induced accelerated and increased expression of myelin basic proteins (MBPs), cellular and myelin components that are markers of mature oligodendrocytes. In contrast, supra-therapeutic drug doses delayed MBP brain expression and resulted in a decreased number of myelinated axons. We have now found that this biphasic-dose response to buprenorphine can be attributed to the participation of both the μ-opioid receptor (MOR) and the nociceptin/orphanin FQ receptor (NOP receptor) in the oligodendrocytes. This is particularly intriguing because the NOP receptor/nociceptin system has been primarily linked to behavior and pain regulation, but a role in CNS development or myelination has not been described before. Our findings suggest that balance between signaling mediated by (a) MOR activation and (b) a novel, yet unidentified pathway that includes the NOP receptor, plays a crucial role in the timing of oligodendrocyte maturation and myelin synthesis. Moreover, exposure to opioids could disrupt the normal interplay between these two systems altering the developmental pattern of brain myelination. PMID:22002899

  20. Loss of lysophosphatidic acid receptor LPA1 alters oligodendrocyte differentiation and myelination in the mouse cerebral cortex.

    PubMed

    García-Díaz, Beatriz; Riquelme, Raquel; Varela-Nieto, Isabel; Jiménez, Antonio Jesús; de Diego, Isabel; Gómez-Conde, Ana Isabel; Matas-Rico, Elisa; Aguirre, José Ángel; Chun, Jerold; Pedraza, Carmen; Santín, Luis Javier; Fernández, Oscar; Rodríguez de Fonseca, Fernando; Estivill-Torrús, Guillermo

    2015-11-01

    Lysophosphatidic acid (LPA) is an intercellular signaling lipid that regulates multiple cellular functions, acting through specific G-protein coupled receptors (LPA(1-6)). Our previous studies using viable Malaga variant maLPA1-null mice demonstrated the requirement of the LPA1 receptor for normal proliferation, differentiation, and survival of the neuronal precursors. In the cerebral cortex LPA1 is expressed extensively in differentiating oligodendrocytes, in parallel with myelination. Although exogenous LPA-induced effects have been investigated in myelinating cells, the in vivo contribution of LPA1 to normal myelination remains to be demonstrated. This study identified a relevant in vivo role for LPA1 as a regulator of cortical myelination. Immunochemical analysis in adult maLPA1-null mice demonstrated a reduction in the steady-state levels of the myelin proteins MBP, PLP/DM20, and CNPase in the cerebral cortex. The myelin defects were confirmed using magnetic resonance spectroscopy and electron microscopy. Stereological analysis limited the defects to adult differentiating oligodendrocytes, without variation in the NG2+ precursor cells. Finally, a possible mechanism involving oligodendrocyte survival was demonstrated by the impaired intracellular transport of the PLP/DM20 myelin protein which was accompanied by cellular loss, suggesting stress-induced apoptosis. These findings describe a previously uncharacterized in vivo functional role for LPA1 in the regulation of oligodendrocyte differentiation and myelination in the CNS, underlining the importance of the maLPA1-null mouse as a model for the study of demyelinating diseases. PMID:25226845

  1. Myelin oligodendrocyte glycoprotein induces incomplete tolerance of CD4(+) T cells specific for both a myelin and a neuronal self-antigen in mice.

    PubMed

    Lucca, Liliana E; Axisa, Pierre-Paul; Aloulou, Meryem; Perals, Corine; Ramadan, Abdulraouf; Rufas, Pierre; Kyewski, Bruno; Derbinski, Jens; Fazilleau, Nicolas; Mars, Lennart T; Liblau, Roland S

    2016-09-01

    T-cell polyspecificity, predicting that individual T cells recognize a continuum of related ligands, implies that multiple antigens can tolerize T cells specific for a given self-antigen. We previously showed in C57BL/6 mice that part of the CD4(+) T-cell repertoire specific for myelin oligodendrocyte glycoprotein (MOG) 35-55 also recognizes the neuronal antigen neurofilament medium (NF-M) 15-35. Such bi-specific CD4(+) T cells are frequent and produce inflammatory cytokines after stimulation. Since T cells recognizing two self-antigens would be expected to be tolerized more efficiently, this finding prompted us to study how polyspecificity impacts tolerance. We found that similar to MOG, NF-M is expressed in the thymus by medullary thymic epithelial cells, a tolerogenic population. Nevertheless, the frequency, phenotype, and capacity to transfer experimental autoimmune encephalomyelitis (EAE) of MOG35-55 -reactive CD4(+) T cells were increased in MOG-deficient but not in NF-M-deficient mice. We found that presentation of NF-M15-35 by I-A(b) on dendritic cells is of short duration, suggesting unstable MHC class II binding. Consistently, introducing an MHC-anchoring residue into NF-M15-35 (NF-M15-35 T20Y) increased its immunogenicity, activating a repertoire able to induce EAE. Our results show that in C57BL/6 mice bi-specific encephalitogenic T cells manage to escape tolerization due to inefficient exposure to two self-antigens. PMID:27334749

  2. Alpha-Synuclein Expression in the Oligodendrocyte Lineage: an In Vitro and In Vivo Study Using Rodent and Human Models.

    PubMed

    Djelloul, Mehdi; Holmqvist, Staffan; Boza-Serrano, Antonio; Azevedo, Carla; Yeung, Maggie S; Goldwurm, Stefano; Frisén, Jonas; Deierborg, Tomas; Roybon, Laurent

    2015-08-11

    In this study, we sought evidence for alpha-synuclein (ASYN) expression in oligodendrocytes, as a possible endogenous source of ASYN to explain its presence in glial inclusions found in multiple system atrophy (MSA) and Parkinson's disease (PD). We identified ASYN in oligodendrocyte lineage progenitors isolated from the rodent brain, in oligodendrocytes generated from embryonic stem cells, and in induced pluripotent stem cells produced from fibroblasts of a healthy individual and patients diagnosed with MSA or PD, in cultures in vitro. Notably, we observed a significant decrease in ΑSYN during oligodendrocyte maturation. Additionally, we show the presence of transcripts in PDGFRΑ/CD140a(+) cells and SOX10(+) oligodendrocyte lineage nuclei isolated by FACS from rodent and human healthy and diseased brains, respectively. Our work identifies ASYN in oligodendrocyte lineage cells, and it offers additional in vitro cellular models that should provide significant insights of the functional implication of ASYN during oligodendrocyte development and disease.

  3. Single Source Precursors for Thin Film Solar Cells

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder K.; Hollingsworth, Jennifer A.; Harris, Jerry D.; Cowen, Jonathan; Buhro, William E.; Hepp, Aloysius F.

    2002-01-01

    The development of thin film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power, (W/kg). The use of a polycrystalline chalcopyrite absorber layer for thin film solar cells is considered as the next generation photovoltaic devices. At NASA GRC we have focused on the development of new single source precursors (SSP) and their utility to deposit the chalcopyrite semi-conducting layer (CIS) onto flexible substrates for solar cell fabrication. The syntheses and thermal modulation of SSPs via molecular engineering is described. Thin-film fabrication studies demonstrate the SSPs can be used in a spray CVD (chemical vapor deposition) process, for depositing CIS at reduced temperatures, which display good electrical properties, suitable for PV (photovoltaic) devices.

  4. Oligodendrocyte progenitor programming and reprogramming: Toward myelin regeneration.

    PubMed

    Lopez Juarez, Alejandro; He, Danyang; Richard Lu, Q

    2016-05-01

    Demyelinating diseases such as multiple sclerosis (MS) are among the most disabling and cost-intensive neurological disorders. The loss of myelin in the central nervous system, produced by oligodendrocytes (OLs), impairs saltatory nerve conduction, leading to motor and cognitive deficits. Immunosuppression therapy has a limited efficacy in MS patients, arguing for a paradigm shift to strategies that target OL lineage cells to achieve myelin repair. The inhibitory microenvironment in MS lesions abrogates the expansion and differentiation of resident OL precursor cells (OPCs) into mature myelin-forming OLs. Recent studies indicate that OPCs display a highly plastic ability to differentiate into alternative cell lineages under certain circumstances. Thus, understanding the mechanisms that maintain and control OPC fate and differentiation into mature OLs in a hostile, non-permissive lesion environment may open new opportunities for regenerative therapies. In this review, we will focus on 1) the plasticity of OPCs in terms of their developmental origins, distribution, and differentiation potentials in the normal and injured brain; 2) recent discoveries of extrinsic and intrinsic factors and small molecule compounds that control OPC specification and differentiation; and 3) therapeutic potential for motivation of neural progenitor cells and reprogramming of differentiated cells into OPCs and their likely impacts on remyelination. OL-based therapies through activating regenerative potentials of OPCs or cell replacement offer exciting opportunities for innovative strategies to promote remyelination and neuroprotection in devastating demyelinating diseases like MS. This article is part of a Special Issue entitled SI:NG2-glia(Invited only). PMID:26546966

  5. Oligodendrocyte progenitor programming and reprogramming: Toward myelin regeneration.

    PubMed

    Lopez Juarez, Alejandro; He, Danyang; Richard Lu, Q

    2016-05-01

    Demyelinating diseases such as multiple sclerosis (MS) are among the most disabling and cost-intensive neurological disorders. The loss of myelin in the central nervous system, produced by oligodendrocytes (OLs), impairs saltatory nerve conduction, leading to motor and cognitive deficits. Immunosuppression therapy has a limited efficacy in MS patients, arguing for a paradigm shift to strategies that target OL lineage cells to achieve myelin repair. The inhibitory microenvironment in MS lesions abrogates the expansion and differentiation of resident OL precursor cells (OPCs) into mature myelin-forming OLs. Recent studies indicate that OPCs display a highly plastic ability to differentiate into alternative cell lineages under certain circumstances. Thus, understanding the mechanisms that maintain and control OPC fate and differentiation into mature OLs in a hostile, non-permissive lesion environment may open new opportunities for regenerative therapies. In this review, we will focus on 1) the plasticity of OPCs in terms of their developmental origins, distribution, and differentiation potentials in the normal and injured brain; 2) recent discoveries of extrinsic and intrinsic factors and small molecule compounds that control OPC specification and differentiation; and 3) therapeutic potential for motivation of neural progenitor cells and reprogramming of differentiated cells into OPCs and their likely impacts on remyelination. OL-based therapies through activating regenerative potentials of OPCs or cell replacement offer exciting opportunities for innovative strategies to promote remyelination and neuroprotection in devastating demyelinating diseases like MS. This article is part of a Special Issue entitled SI:NG2-glia(Invited only).

  6. Subtype-specific oligodendrocyte dynamics in organotypic culture.

    PubMed

    Haber, Michael; Vautrin, Sandrine; Fry, Elizabeth J; Murai, Keith K

    2009-07-01

    The morphogenesis of oligodendrocytes is essential for central nervous system myelin formation and the rapid propagation of axon potentials through saltatory conduction. However, the discrete cellular events involved in the three-dimensional maturation of oligodendrocytes remain to be fully described. To address this, we followed the developmental stages of oligodendrocytes in mouse organotypic hippocampal slice cultures for 7-60 days using viral-mediated gene delivery of membrane-targeted fluorescent proteins. Using static and time-lapse confocal imaging, we find that postmigratory NG2-expressing cells exhibit slow anatomical reorganization over the course of hours. This is in direct contrast to oligodendrocytes that take on a promyelinating and transitional phenotype, which display a more complex morphology and undergo dramatic actin-dependent structural remodeling over just minutes. More mature myelinating oligodendrocytes, which have pruned most of their processes, still retain some local remodeling behavior at developing internodes, but in general, revert to a relatively stable state. Our findings provide a detailed characterization of cellular events that help shape oligodendrocyte morphology and likely participate in neuron-glial cell interactions and the process of myelination.

  7. Mesenchymal precursor cells in the blood of normal individuals.

    PubMed

    Zvaifler, N J; Marinova-Mutafchieva, L; Adams, G; Edwards, C J; Moss, J; Burger, J A; Maini, R N

    2000-01-01

    STATEMENT OF FINDINGS: Mesenchymal precursor cells found in the blood (BMPCs) of normal persons adhere to plastic and glass and proliferate logarithmically in DMEM-20% fetal calf serum (FCS) without growth factors. They form cells with fibroblast-like and stromal morphology, which is not affected by eliminating CD34, CD3, or CD14 cells. Osteogenic supplements (dexamethasone, ascorbic acid, and beta-glycerophosphate) added to the culture inhibited fibroblast formation, and BMPCs assumed the cuboidal shape of osteoblasts. After 5 days in supplemented medium, the elutriated cells displayed alkaline phosphatase (AP), and the addition of bone morphogenetic protein (BMP)2 (1 ng) doubled AP production (P < 0.04). Two weeks later, 30% of the cells were very large and reacted with anti-osteocalcin antibody. The same cultures also contained sudanophlic adipocytes and multinucleated giant cells that stained for tartrate-resistant acid phosphatase (TRAP) and vitronectin receptors. Cultured BMPCs immunostain with antibodies to vimentin, type I collagen, and BMP receptors, heterodimeric structures expressed on mesenchymal lineage cells. In addition, BMPCs stain with anti-CD105 (endoglin), a putative marker for bone-marrow mesenchymal stem cells (MSCs). PMID:11056678

  8. Progesterone attenuates astro- and microgliosis and enhances oligodendrocyte differentiation following spinal cord injury.

    PubMed

    Labombarda, Florencia; González, Susana; Lima, Analia; Roig, Paulina; Guennoun, Rachida; Schumacher, Michael; De Nicola, Alejandro F

    2011-09-01

    Reactive gliosis, demyelination and proliferation of NG2+ oligodendrocyte precursor cells (OPC) are common responses to spinal cord injury (SCI). We previously reported that short-term progesterone treatment stimulates OPC proliferation whereas chronic treatment enhances OPC differentiation after SCI. Presently, we further studied the proliferation/differentiation of glial cells involved in inflammation and remyelination in male rats with SCI subjected to acute (3 days) or chronic (21 days) progesterone administration. Rats received several pulses of bromodeoyuridine (BrdU) 48 and 72 h post-SCI, and sacrificed 3 or 21 days post-SCI. Double colocalization of BrdU and specific cell markers showed that 3 days of SCI induced a strong proliferation of S100β+ astrocytes, OX-42+ microglia/macrophages and NG2+ cells. At this stage, the intense GFAP+ astrogliosis was BrdU negative. Twenty one days of SCI enhanced maturation of S100β+ cells into GFAP+ astrocytes, but decreased the number of CC1+ oligodendrocytes. Progesterone treatment inhibited astrocyte and microglia /macrophage proliferation and activation in the 3-day SCI group, and inhibited activation in the 21-day SCI group. BrdU/NG2 double labeled cells were increased by progesterone at 3 days, indicating a proliferation stimulus, but decreased them at 21 days. However, progesterone-enhancement of CC1+/BrdU+ oligodendrocyte density, suggest differentiation of OPC into mature oligondendrocytes. We conclude that progesterone effects after SCI involves: a) inhibition of astrocyte proliferation and activation; b) anti-inflammatory effects by preventing microglial activation and proliferation, and c) early proliferation of NG2+ progenitors and late remyelination. Thus, progesterone behaves as a glioactive factor favoring remyelination and inhibiting reactive gliosis.

  9. Anti-muscarinic adjunct therapy accelerates functional human oligodendrocyte repair.

    PubMed

    Abiraman, Kavitha; Pol, Suyog U; O'Bara, Melanie A; Chen, Guang-Di; Khaku, Zainab M; Wang, Jing; Thorn, David; Vedia, Bansi H; Ekwegbalu, Ezinne C; Li, Jun-Xu; Salvi, Richard J; Sim, Fraser J

    2015-02-25

    Therapeutic repair of myelin disorders may be limited by the relatively slow rate of human oligodendrocyte differentiation. To identify appropriate pharmacological targets with which to accelerate differentiation of human oligodendrocyte progenitors (hOPCs) directly, we used CD140a/O4-based FACS of human forebrain and microarray to hOPC-specific receptors. Among these, we identified CHRM3, a M3R muscarinic acetylcholine receptor, as being restricted to oligodendrocyte-biased CD140a(+)O4(+) cells. Muscarinic agonist treatment of hOPCs resulted in a specific and dose-dependent blockade of oligodendrocyte commitment. Conversely, when hOPCs were cocultured with human neurons, M3R antagonist treatment stimulated oligodendrocytic differentiation. Systemic treatment with solifenacin, an FDA-approved muscarinic receptor antagonist, increased oligodendrocyte differentiation of transplanted hOPCs in hypomyelinated shiverer/rag2 brain. Importantly, solifenacin treatment of engrafted animals reduced auditory brainstem response interpeak latency, indicative of increased conduction velocity and thereby enhanced functional repair. Therefore, solifenacin and other selective muscarinic antagonists represent new adjunct approaches to accelerate repair by engrafted human progenitors.

  10. Anti-Muscarinic Adjunct Therapy Accelerates Functional Human Oligodendrocyte Repair

    PubMed Central

    Abiraman, Kavitha; Pol, Suyog U.; O'Bara, Melanie A.; Chen, Guang-Di; Khaku, Zainab M.; Wang, Jing; Thorn, David; Vedia, Bansi H.; Ekwegbalu, Ezinne C.; Li, Jun-Xu; Salvi, Richard J.

    2015-01-01

    Therapeutic repair of myelin disorders may be limited by the relatively slow rate of human oligodendrocyte differentiation. To identify appropriate pharmacological targets with which to accelerate differentiation of human oligodendrocyte progenitors (hOPCs) directly, we used CD140a/O4-based FACS of human forebrain and microarray to hOPC-specific receptors. Among these, we identified CHRM3, a M3R muscarinic acetylcholine receptor, as being restricted to oligodendrocyte-biased CD140a+O4+ cells. Muscarinic agonist treatment of hOPCs resulted in a specific and dose-dependent blockade of oligodendrocyte commitment. Conversely, when hOPCs were cocultured with human neurons, M3R antagonist treatment stimulated oligodendrocytic differentiation. Systemic treatment with solifenacin, an FDA-approved muscarinic receptor antagonist, increased oligodendrocyte differentiation of transplanted hOPCs in hypomyelinated shiverer/rag2 brain. Importantly, solifenacin treatment of engrafted animals reduced auditory brainstem response interpeak latency, indicative of increased conduction velocity and thereby enhanced functional repair. Therefore, solifenacin and other selective muscarinic antagonists represent new adjunct approaches to accelerate repair by engrafted human progenitors. PMID:25716865

  11. Interneurons and oligodendrocyte progenitors form a structured synaptic network in the developing neocortex

    PubMed Central

    Orduz, David; Maldonado, Paloma P; Balia, Maddalena; Vélez-Fort, Mateo; de Sars, Vincent; Yanagawa, Yuchio; Emiliani, Valentina; Angulo, Maria Cecilia

    2015-01-01

    NG2 cells, oligodendrocyte progenitors, receive a major synaptic input from interneurons in the developing neocortex. It is presumed that these precursors integrate cortical networks where they act as sensors of neuronal activity. We show that NG2 cells of the developing somatosensory cortex form a transient and structured synaptic network with interneurons that follows its own rules of connectivity. Fast-spiking interneurons, highly connected to NG2 cells, target proximal subcellular domains containing GABAA receptors with γ2 subunits. Conversely, non-fast-spiking interneurons, poorly connected with these progenitors, target distal sites lacking this subunit. In the network, interneuron-NG2 cell connectivity maps exhibit a local spatial arrangement reflecting innervation only by the nearest interneurons. This microcircuit architecture shows a connectivity peak at PN10, coinciding with a switch to massive oligodendrocyte differentiation. Hence, GABAergic innervation of NG2 cells is temporally and spatially regulated from the subcellular to the network level in coordination with the onset of oligodendrogenesis. DOI: http://dx.doi.org/10.7554/eLife.06953.001 PMID:25902404

  12. Catecholamine regulation of stromal precursors and hemopoietic stem cells in cytostatic myelosuppression.

    PubMed

    Dygai, A M; Khmelevskaya, E S; Skurikhin, E G; Pershina, O V; Andreeva, T V; Ermakova, N N

    2012-04-01

    Effects of a sympatholytic drug on bone marrow stromal and hemopoietic precursors were studied on the model of cyclophosphamide-induced myelosuppression. Sympatholytic treatment increased the content of hemopoietic stem cells of different classes in the bone marrow. Selective stimulation of differentiation of polypotent precursors into granulocyte-macrophage precursors was noted. Acceleration of proliferation and maturation of granulocytic precursors was observed at later terms during regeneration of the hemopoietic tissue. The sympatholytic inhibited proliferation of stromal precursors and reduced feeder activity of fibroblasts for granulocyte precursors.

  13. cFLIP is critical for oligodendrocyte protection from inflammation.

    PubMed

    Tanner, D C; Campbell, A; O'Banion, K M; Noble, M; Mayer-Pröschel, M

    2015-09-01

    Neuroinflammation associated with degenerative central nervous system disease and injury frequently results in oligodendrocyte death. While promoting oligodendrocyte viability is a major therapeutic goal, little is known about protective signaling strategies. We report that in highly purified rat oligodendrocytes, interferon gamma (IFNγ) activates a signaling pathway that protects these cells from tumor necrosis factor alpha (TNFα)-induced cytotoxicity. IFNγ protection requires Jak (Janus kinase) activation, components of the integrated stress response and NF-κB activation. Although NF-κB activation also occurred transiently in the absence of IFNγ and presence of TNFα, this activation was not sufficient to prevent induction of the TNFα-responsive cell death pathway. Genetic inhibition of NF-κB translocation to the nucleus abrogated IFNγ-mediated protection and did not change the cell death induced by TNFα, suggesting that NF-κB activation via IFNγ induces a different set of responses than activation of NF-κB via TNFα. A promising candidate is the NF-κB target cFLIP (cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein), which is protease-deficient caspase homolog that inhibits caspase-3 activation. We show that IFNγ-mediated protection led to upregulation of cFLIP. Overexpression of cFLIP was sufficient for oligodendrocyte protection from TNFα and short hairpin RNA knockdown of cFLIP-abrogated IFNγ -mediated protection. To determine the relevance of our in vitro finding to the more complex in vivo situation, we determined the impact on oligodendrocyte death of regional cFLIP loss of function in a murine model of neuroinflammation. Our data show that downregulation of cFLIP during inflammation leads to death of oligodendrocytes and decrease of myelin in vivo. Taken together, we show that IFNγ-mediated induction of cFLIP expression provides a new mechanism by which this cytokine can protect oligodendrocytes from TNF

  14. Regulation of DM-20 mRNA expression and intracellular translocation of glutathione-S-transferase pi isoform during oligodendrocyte differentiation in the adult rat spinal cord.

    PubMed

    Kitada, Masaaki; Takeda, Kazuya; Dezawa, Mari

    2016-07-01

    We previously demonstrated that NG2-positive oligodendrocyte precursor cells (OPCs) do not express DM-20 mRNA and identified a distinct DM-20 mRNA-positive cell population expressing glutathione-S-transferase pi isoform (GST-pi) in the nucleus (GST-pi(Nuc)) of the adult rat spinal cord. As GST-pi intranuclear localization correlates with progenitor cell properties, we examined the differentiation status of this cell population under the intensive 5-bromo-2'-deoxyuridine (BrdU) administration method, consisting of intraperitoneal BrdU injections every 2 h for 48 h. We observed that a certain population of proliferating/proliferated cells expressed DM-20 mRNA, and sometimes two proliferating/proliferated cells were observed still attached to each other. We performed triple staining for BrdU, DM-20 mRNA, and NG2 and found pairs of neighboring BrdU-positive cells, which were considered to originate from the same progenitor cells and where both cells expressed DM-20 mRNA. Triple staining for BrdU, DM-20 mRNA, and GST-pi detected proliferating/proliferated cells exhibiting the GST-pi(Nuc)/DM-20 mRNA-positive expression pattern. These findings suggested the presence of a GST-pi(Nuc)/DM-20 mRNA-positive oligodendrocyte-lineage progenitor cell population in the adult rat spinal cord. However, we did not find any pair of neighboring BrdU-positive cells with this expression pattern. These observations collectively support the idea that GST-pi(Nuc)/DM-20 mRNA-expressing cells are the progeny of NG2-positive OPCs rather than a novel type of oligodendrocyte-lineage progenitor cells and that DM-20 mRNA expression is dynamically regulated during differentiation of OPCs into oligodendrocytes.

  15. Aldehyde dehydrogenase activity promotes survival of human muscle precursor cells

    PubMed Central

    Jean, Elise; Laoudj-Chenivesse, Dalila; Notarnicola, Cécile; Rouger, Karl; Serratrice, Nicolas; Bonnieu, Anne; Gay, Stéphanie; Bacou, Francis; Duret, Cédric; Carnac, Gilles

    2011-01-01

    Abstract Aldehyde dehydrogenases (ALDH) are a family of enzymes that efficiently detoxify aldehydic products generated by reactive oxygen species and might therefore participate in cell survival. Because ALDH activity has been used to identify normal and malignant cells with stem cell properties, we asked whether human myogenic precursor cells (myoblasts) could be identified and isolated based on their levels of ALDH activity. Human muscle explant-derived cells were incubated with ALDEFLUOR, a fluorescent substrate for ALDH, and we determined by flow cytometry the level of enzyme activity. We found that ALDH activity positively correlated with the myoblast-CD56+ fraction in those cells, but, we also observed heterogeneity of ALDH activity levels within CD56-purified myoblasts. Using lentiviral mediated expression of shRNA we demonstrated that ALDH activity was associated with expression of Aldh1a1 protein. Surprisingly, ALDH activity and Aldh1a1 expression levels were very low in mouse, rat, rabbit and non-human primate myoblasts. Using different approaches, from pharmacological inhibition of ALDH activity by diethylaminobenzaldehyde, an inhibitor of class I ALDH, to cell fractionation by flow cytometry using the ALDEFLUOR assay, we characterized human myoblasts expressing low or high levels of ALDH. We correlated high ALDH activity ex vivo to resistance to hydrogen peroxide (H2O2)-induced cytotoxic effect and in vivo to improved cell viability when human myoblasts were transplanted into host muscle of immune deficient scid mice. Therefore detection of ALDH activity, as a purification strategy, could allow non-toxic and efficient isolation of a fraction of human myoblasts resistant to cytotoxic damage. PMID:19840193

  16. Oligodendrocyte Development in the Absence of Their Target Axons In Vivo

    PubMed Central

    Lyons, David

    2016-01-01

    Oligodendrocytes form myelin around axons of the central nervous system, enabling saltatory conduction. Recent work has established that axons can regulate certain aspects of oligodendrocyte development and myelination, yet remarkably oligodendrocytes in culture retain the ability to differentiate in the absence of axons and elaborate myelin sheaths around synthetic axon-like substrates. It remains unclear the extent to which the life-course of oligodendrocytes requires the presence of, or signals derived from axons in vivo. In particular, it is unclear whether the specific axons fated for myelination regulate the oligodendrocyte population in a living organism, and if so, which precise steps of oligodendrocyte-cell lineage progression are regulated by target axons. Here, we use live-imaging of zebrafish larvae carrying transgenic reporters that label oligodendrocyte-lineage cells to investigate which aspects of oligodendrocyte development, from specification to differentiation, are affected when we manipulate the target axonal environment. To drastically reduce the number of axons targeted for myelination, we use a previously identified kinesin-binding protein (kbp) mutant, in which the first myelinated axons in the spinal cord, reticulospinal axons, do not fully grow in length, creating a region in the posterior spinal cord where most initial targets for myelination are absent. We find that a 73% reduction of reticulospinal axon surface in the posterior spinal cord of kbp mutants results in a 27% reduction in the number of oligodendrocytes. By time-lapse analysis of transgenic OPC reporters, we find that the reduction in oligodendrocyte number is explained by a reduction in OPC proliferation and survival. Interestingly, OPC specification and migration are unaltered in the near absence of normal axonal targets. Finally, we find that timely differentiation of OPCs into oligodendrocytes does not depend at all on the presence of target axons. Together, our data

  17. Tim-2 is the receptor for H-ferritin on oligodendrocytes.

    PubMed

    Todorich, Bozho; Zhang, Xuesheng; Slagle-Webb, Becky; Seaman, William E; Connor, James R

    2008-12-01

    Oligodendrocytes stain more strongly for iron than any other cell in the CNS, and they require iron for the production of myelin. For most cell types transferrin is the major iron delivery protein, yet neither transferrin receptor protein nor mRNA are detectable in mature oligodendrocytes. Thus an alternative iron delivery mechanism must exist. Given the significant long term consequences of developmental iron deficiency and the iron requirements for normal myelination, identification of the iron delivery mechanism for oligodendrocytes is important. Previously we have reported that oligodendrocytes bind H-ferritin and that H-ferritin binds to white matter tracts in vivo. Recently, T cell immunoglobulin and mucin domain-containing protein-2 (Tim-2) was shown to bind and internalize H-ferritin. In the present study we show that Tim-2 is expressed on oligodendrocytes both in vivo and in vitro. Further, the onset of saturable H-ferritin binding in CG4 oligodendrocyte cell line is accompanied by Tim-2 expression. Application of a blocking antibody to the extracellular domain of Tim-2 significantly reduces H-ferritin binding to the differentiated CG4 cells and primary oligodendrocytes. Tim-2 expression on CG4 cells is responsive to iron; decreasing with iron loading and increasing with iron chelation. Taken together, these data provide compelling evidence that Tim-2 is the H-ferritin receptor on oligodendrocytes suggesting it is the primary mechanism for iron acquisition by these cells.

  18. Oligodendrocyte pathophysiology: a new view of schizophrenia.

    PubMed

    Segal, Devorah; Koschnick, Jessica R; Slegers, Linda H A; Hof, Patrick R

    2007-08-01

    A recent focus of schizophrenia research is disruption of white-matter integrity as a key facet of this complex disorder. This was spurred, partly, by new imaging modalities, magnetic transfer imaging and diffusion tensor imaging, which showed differences in white-matter integrity and tract coherence in persons with schizophrenia compared to controls. Oligodendrocytes, in particular, have been the subject of increased study after gene microarray analyses revealed that six myelin-related genes specific to oligodendrocytes have decreased expression levels in schizophrenia. Oligodendrocytes have also been shown to be decreased in number in the superior frontal gyrus of subjects with schizophrenia. The MAG knockout mouse, missing a myelin-related gene linked to schizophrenia, may prove to be a useful animal model for the dysmyelination observed in the human disease. Studies currently ongoing on this model have found changes in dendritic branching patterns of pyramidal cells in layer III of the prefrontal cortex. Further characterization of the pathology in these mice is underway.

  19. Oxidized phosphatidylcholine formation and action in oligodendrocytes

    PubMed Central

    Qin, Jingdong; Testai, Fernando D; Dawson, Sylvia; Kilkus, John; Dawson, Glyn

    2010-01-01

    Reactive oxygen species play a major role in neurodegeneration. Increasing concentrations of peroxide induce neural cell death through activation of pro-apoptotic pathways. We now report that hydrogen peroxide generated sn-2 oxidized phosphatidylcholine (OxPC) in neonatal rat oligodendrocytes and that synthetic oxidized phosphatidylcholine (1-palmitoyl-2-(5′-oxo)valeryl-sn-glycero-3 phosphorylcholine, POVPC) also induced apoptosis in neonatal rat oligodendrocytes. POVPC activated caspases 3 and 8, and neutral sphingomyelinase (NSMase), but not acid sphingomyelinase. Downstream pro-apoptotic pathways activated by POVPC treatment included the Jun N-terminal kinase (JNK) proapoptotic cascade and the degradation of phospho-Akt. Activation of NSMase occurred within 1h, was blocked by inhibitors of caspase 8, increased mainly C18 and C24:1-ceramides, and appeared to be concentrated in detergent-resistant microdomains (Rafts). We conclude that OxPC initially activates NSMase and converts sphingomyelin into ceramide, to mediate a series of downstream pro-apoptotic events in oligodendrocytes. PMID:19545281

  20. Effects of Amphotericin B on Macrophages and Their Precursor Cells

    PubMed Central

    Lin, Hsiu-San; Medoff, Gerald; Kobayashi, George S.

    1977-01-01

    The effect of amphotericin B (AmB) treatment on the mononuclear phagocyte system of mice was investigated. Peritoneal macrophages from mice that received AmB treatment showed a higher phagocytic and antibacterial activity than those from normal untreated mice. When the levels of macrophage precursor cells in bone marrow and spleen were followed in mice after AmB treatment, an eightfold increase in the splenic content of limited stem cells for both macrophages and granulocytes (colony-forming units in culture) and a threefold increase in the number of pluripotent hemopoietic stem cells (colony-forming units in spleen) were observed on day 4. These were also accompanied by a slight increase in the colony-forming units in spleen and in culture in femoral marrows. AmB was capable of inducing a large number of peritoneal colony-forming cells in the peritoneum, and caused a significant rise in the serum level of colony-stimulating factor. No significant change in the level of blood monocytes was noted, although a transient increase in the proportion of neutrophils was observed within 24 h after AmB treatment. PMID:836011

  1. Age-associated decrease in muscle precursor cell differentiation.

    PubMed

    Lees, Simon J; Rathbone, Christopher R; Booth, Frank W

    2006-02-01

    Muscle precursor cells (MPCs) are required for the regrowth, regeneration, and/or hypertrophy of skeletal muscle, which are deficient in sarcopenia. In the present investigation, we have addressed the issue of age-associated changes in MPC differentiation. MPCs, including satellite cells, were isolated from both young and old rat skeletal muscle with a high degree of myogenic purity (>90% MyoD and desmin positive). MPCs isolated from skeletal muscle of 32-mo-old rats exhibited decreased differentiation into myotubes and demonstrated decreased myosin heavy chain (MHC) and muscle creatine kinase (CK-M) expression compared with MPCs isolated from 3-mo-old rats. p27(Kip1) is a cyclin-dependent kinase inhibitor that has been shown to enhance muscle differentiation in culture. Herein we describe our finding that p27(Kip1) protein was lower in differentiating MPCs from skeletal muscle of 32-mo-old rats than in 3-mo-old rat skeletal muscle. Although MHC and CK-M expression were approximately 50% lower in differentiating MPCs isolated from 32-mo-old rats, MyoD protein content was not different and myogenin protein concentration was twofold higher. These data suggest that there are inherent differences in cell signaling during the transition from cell cycle arrest to the formation of myotubes in MPCs isolated from sarcopenic muscle. Furthermore, there is an age-associated decrease in muscle-specific protein expression in differentiating MPCs despite normal MyoD and elevated myogenin levels. PMID:16192302

  2. Astrocytic TIMP-1 Promotes Oligodendrocyte Differentiation and Enhances CNS Myelination

    PubMed Central

    Moore, Craig S.; Milner, Richard; Nishiyama, Akiko; Frausto, Ricardo F.; Serwanski, David R.; Pagarigan, Roberto R.; Whitton, J. Lindsay; Miller, Robert H.; Crocker, Stephen J.

    2011-01-01

    Tissue inhibitor of metalloproteinase-1 (TIMP-1) is an extracellular protein and endogenous regulator of matrix metalloproteinases (MMPs) secreted by astrocytes in response to CNS myelin injury. We have previously reported that adult TIMP-1KO mice exhibit poor myelin repair following demyelinating injury. This observation led us to hypothesize a role for TIMP-1 in oligodendrogenesis and CNS myelination. Herein, we demonstrate that compact myelin formation is significantly delayed in TIMP-1KO mice which coincided with dramatically reduced numbers of white matter astrocytes in the developing CNS. Analysis of differentiation in CNS progenitor cells (neurosphere) cultures from TIMP-1KO mice revealed a specific deficit of NG2+ oligodendrocyte progenitor cells. Application of rmTIMP-1 to TIMP-1KO neurosphere cultures evoked a dose-dependent increase in NG2+ cell numbers, while treatment with GM6001, a potent broad spectrum MMP inhibitor did not. Similarly, administration of recombinant murine TIMP-1 (rmTIMP-1) to A2B5+ immunopanned oligodendrocyte progenitors significantly increased the number of differentiated O1+ oligodendrocytes, while antisera to TIMP-1 reduced oligodendrocyte numbers. We also determined that A2B5+ oligodendrocyte progenitors grown in conditioned media derived from TIMP-1KO primary glial cultures resulted in reduced differentiation of mature O1+ oligodendrocytes. Finally, we report that addition of rmTIMP-1 to primary glial cultures resulted in a dose-dependent proliferative response of astrocytes. Together, these findings describe a previously uncharacterized role for TIMP-1 in the regulation of oligodendrocytes and astrocytes during development and provide a novel function for TIMP-1 on myelination in the developing CNS. PMID:21508247

  3. Expression of zonula occludens-1 (ZO-1) and the transcription factor ZO-1-associated nucleic acid-binding protein (ZONAB)-MsY3 in glial cells and colocalization at oligodendrocyte and astrocyte gap junctions in mouse brain.

    PubMed

    Penes, Mihai C; Li, Xinbo; Nagy, James I

    2005-07-01

    The PDZ domain-containing protein zonula occludens-1 (ZO-1) interacts with several members of the connexin (Cx) family of gap junction-forming proteins and has been localized to gap junctions, including those containing Cx47 in oligodendrocytes. We now provide evidence for ZO-1 expression in astrocytes in vivo and association with astrocytic connexins by confocal immunofluorescence demonstration of ZO-1 colocalization with astrocytic Cx30 and Cx43, and by ZO-1 coimmunoprecipitation with Cx30 and Cx43. Evidence for direct interaction of Cx30 with ZO-1 was obtained by pull-down assays that indicated binding of Cx30 to the second of the three PDZ domains in ZO-1. Further, we investigated mouse Y-box transcription factor MsY3, the canine ortholog of which has been termed ZO-1-associated nucleic acid-binding protein (ZONAB) and previously reported to interact with ZO-1. By immunofluorescence using specific antimouse ZONAB antibody, ZONAB was found to be associated with oligodendrocytes throughout mouse brain and spinal cord, and to be colocalized with oligodendrocytic Cx47 and Cx32 as well as with astrocytic Cx43. Our results extend the CNS cell types that express the multifunctional protein ZO-1, demonstrate an additional connexin (Cx30) that directly interacts with ZO-1, and show for the first time the association of a transcription factor (ZONAB) with ZO-1 localized to oligodendrocyte and astrocyte gap junctions. Given previous observations that ZONAB and ZO-1 in combination regulate gene expression, our results suggest roles of glial gap junction-mediated anchoring of signalling molecules in a wide variety of glial homeostatic processes. PMID:16045494

  4. CHO cells synthesize amidated neuropeptide Y from a C-peptide deleted form of the precursor.

    PubMed

    Johansen, T E; O'Hare, M M; Wulff, B S; Schwartz, T W

    1991-07-01

    Post-translational processing of peptide precursors producing amidated, biologically active peptides is generally believed to occur only in specially differentiated endocrine or neural cells. Previously it has been shown that endoproteolytic processing of peptide precursors is very inefficient in non-endocrine cells like CHO cells. We have studied the processing of a C-peptide-deleted precursor of neuropeptide Y (NPY) in which the precursor terminates in the sequence Gly-Lys-Arg and does not require any dibasic specific endoproteolytic processing. Following transfection of CHO cells with an expression plasmid encoding this mutated NPY precursor, between 50 and 80 percent of the synthesized NPY was secreted from stable transfectants as authentic amidated NPY as assessed by both a C-terminal amide specific radioimmunoassay and by isoelectric focusing. It is concluded that amidated peptides can be produced in non-endocrine cells provided they are presented with a precursor which does not have to be endoproteolytically processed.

  5. Glial versus melanocyte cell fate choice: Schwann cell precursors as a cellular origin of melanocytes.

    PubMed

    Adameyko, Igor; Lallemend, Francois

    2010-09-01

    Melanocytes and Schwann cells are derived from the multipotent population of neural crest cells. Although both cell types were thought to be generated through completely distinct pathways and molecular processes, a recent study has revealed that these different cell types are intimately interconnected far beyond previously postulated limits in that they share a common post-neural crest progenitor, i.e. the Schwann cell precursor. This finding raises interesting questions about the lineage relationships of hitherto unrelated cell types such as melanocytes and Schwann cells, and may provide clinical insights into mechanisms of pigmentation disorders and for cancer involving Schwann cells and melanocytes.

  6. Antigens of monoclonal antibody NB3C4 are novel markers for oligodendrocytes.

    PubMed

    Yoshimura, K; Kametani, F; Shimoda, Y; Fujimaki, K; Sakurai, Y; Kitamura, K; Asou, H; Nomura, M

    2001-02-12

    We produced NB3C4, a novel monoclonal antibody specific for oligodendrocytes, using human neuroblastoma IMR-32 cells. NB3C4 specifically recognized oligodendrocytes in the CNS, although it bound to neuroblastoma IMR-32 cells and oligodendrocytes in vitro. Double immunofluorescence staining of rat brain using NB3C4 and anti-GST-pi, anti-glial fibrillary acidic protein (GFAP), or anti-neurofilament 200 (NF) antibody revealed that anti-GST-pi antibody identified an oligodendrocyte marker recognizing NB3C4-positive cells, while both anti-GFAP and anti-NF antibody did not. Western blotting of rat brain homogenates showed that NB3C4 bound three proteins of 22-28 kDa, while the anti-GST-pi recognized a 27 kDa protein. Therefore, antigens recognized by NB3C4 could be novel markers for oligodendrocytes.

  7. Oligodendrocyte death results in immune-mediated CNS demyelination

    PubMed Central

    Traka, Maria; Podojil, Joseph R; McCarthy, Derrick P; Miller, Stephen D; Popko, Brian

    2016-01-01

    Although multiple sclerosis is a common neurological disorder, the origin of the autoimmune response against myelin, which is the characteristic feature of the disease, remains unclear. To investigate whether oligodendrocyte death could cause this autoimmune response, we examined the oligodendrocyte ablation Plp1-CreERT;ROSA26-eGFP-DTA (DTA) mouse model. Approximately 30 weeks after recovering from oligodendrocyte loss and demyelination, DTA mice develop a fatal secondary disease characterized by extensive myelin and axonal loss. Strikingly, late-onset disease was associated with increased numbers of T lymphocytes in the CNS and myelin oligodendrocyte glycoprotein (MOG)-specific T cells in lymphoid organs. Transfer of T cells derived from DTA mice to naive recipients resulted in neurological defects that correlated with CNS white matter inflammation. Furthermore, immune tolerization against MOG ameliorated symptoms. Overall, these data indicate that oligodendrocyte death is sufficient to trigger an adaptive autoimmune response against myelin, suggesting that a similar process can occur in the pathogenesis of multiple sclerosis. PMID:26656646

  8. Oligodendrocyte death results in immune-mediated CNS demyelination.

    PubMed

    Traka, Maria; Podojil, Joseph R; McCarthy, Derrick P; Miller, Stephen D; Popko, Brian

    2016-01-01

    Although multiple sclerosis is a common neurological disorder, the origin of the autoimmune response against myelin, which is the characteristic feature of the disease, remains unclear. To investigate whether oligodendrocyte death could cause this autoimmune response, we examined the oligodendrocyte ablation Plp1-CreER(T);ROSA26-eGFP-DTA (DTA) mouse model. Approximately 30 weeks after recovering from oligodendrocyte loss and demyelination, DTA mice develop a fatal secondary disease characterized by extensive myelin and axonal loss. Strikingly, late-onset disease was associated with increased numbers of T lymphocytes in the CNS and myelin oligodendrocyte glycoprotein (MOG)-specific T cells in lymphoid organs. Transfer of T cells derived from DTA mice to naive recipients resulted in neurological defects that correlated with CNS white matter inflammation. Furthermore, immune tolerization against MOG ameliorated symptoms. Overall, these data indicate that oligodendrocyte death is sufficient to trigger an adaptive autoimmune response against myelin, suggesting that a similar process can occur in the pathogenesis of multiple sclerosis.

  9. IL-1β induces hypomyelination in the periventricular white matter through inhibition of oligodendrocyte progenitor cell maturation via FYN/MEK/ERK signaling pathway in septic neonatal rats.

    PubMed

    Xie, Di; Shen, Fengcai; He, Shaoru; Chen, Mengmeng; Han, Qianpeng; Fang, Ming; Zeng, Hongke; Chen, Chunbo; Deng, Yiyu

    2016-04-01

    Neuroinflammation elicited by microglia plays a key role in periventricular white matter (PWM) damage (PWMD) induced by infectious exposure. This study aimed to determine if microglia-derived interleukin-1β (IL-1β) would induce hypomyelination through suppression of maturation of oligodendrocyte progenitor cells (OPCs) in the developing PWM. Sprague-Dawley rats (1-day old) were injected with lipopolysaccharide (LPS) (1 mg/kg) intraperitoneally, following which upregulated expression of IL-1β and IL-1 receptor 1 (IL-1R1 ) was observed. This was coupled with enhanced apoptosis and suppressed proliferation of OPCs in the PWM. The number of PDGFR-α and NG2-positive OPCs was significantly decreased in the PWM at 24 h and 3 days after injection of LPS, whereas it was increased at 14 days and 28 days. The protein expression of Olig1, Olig2, and Nkx2.2 was significantly reduced, and mRNA expression of Tcf4 and Axin2 was upregulated in the developing PWM after LPS injection. The expression of myelin basic protein (MBP) and 2',3'-cyclic-nucleotide 3"-phosphodiesterase (CNPase) was downregulated in the PWM at 14 days and 28 days after LPS injection; this was linked to reduction of the proportion of myelinated axons and thinner myelin sheath as revealed by electron microscopy. Primary cultured OPCs treated with IL-1β showed the failure of maturation and proliferation. Furthermore, FYN/MEK/ERK signaling pathway was involved in suppression of maturation of primary OPCs induced by IL-1β administration. Our results suggest that following LPS injection, microglia are activated and produce IL-1β in the PWM in the neonatal rats. Excess IL-1β inhibits the maturation of OPCs via suppression of FYN/MEK/ERK phosphorylation thereby leading to axonal hypomyelination.

  10. Multiple sclerosis. Oligodendrocyte survival and proliferation in an active established lesion.

    PubMed

    Raine, C S; Scheinberg, L; Waltz, J M

    1981-12-01

    Oligodendrocytes have been studied ultrastructurally in relationship to areas of active demyelination in multiple sclerosis. The tissue came from a central nervous system plaque sampled at biopsy during a neurosurgical procedure to correct severe intention tremor in a case of chronic progressive multiple sclerosis. Cells interpreted as oligodendrocytes were abundant within the demyelinated zone, were easily identifiable, and sometimes occurred as nests of cells suggestive of proliferation. Oligodendrocytes were also common within areas of active demyelination where numerous macrophages displayed active phagocytosis of myelin. These oligodendrocytes were paler and perhaps represented residual, surviving cells. In the relatively normal white matter adjacent to the plaque, increased numbers of oligodendrocytes occurred in association with remyelination. In the demyelinated zone, the astrocyte:macrophage:oligodendrocyte ratio was 1:2.25:4.5; within the region of ongoing demyelination, 1:4:4; and in the adjacent white matter, 1:0.1:2.1. On the basis of an apparent proliferation and survival of oligodendrocytes, the findings support the notions that there is no selective depletion of oligodendrocytes either during or shortly following central nervous system demyelination in multiple sclerosis, and that the myelin sheath is the primary target. PMID:7321526

  11. NMDA receptor signaling in oligodendrocyte progenitors is not required for oligodendrogenesis and myelination

    PubMed Central

    De Biase, L. M.; Kang, S. H.; Baxi, E. G.; Fukaya, M.; Pucak, M. L.; Mishina, M.; Calabresi, P. A.; Bergles, D. E.

    2011-01-01

    Oligodendrocyte precursor cells (OPCs) express NMDA receptors (NMDARs) and form synapses with glutamatergic neurons throughout the central nervous system (CNS). Although glutamate influences the proliferation and maturation of these progenitors in vitro, the role of NMDAR signaling in oligodendrogenesis and myelination in vivo is not known. Here, we investigated the consequences of genetically deleting the obligatory NMDAR subunit NR1 from OPCs and their oligodendrocyte progeny in the CNS of developing and mature mice. NMDAR-deficient OPCs proliferated normally, achieved appropriate densities in gray and white matter, and differentiated to form major white matter tracts without delay. OPCs also retained their characteristic physiological and morphological properties in the absence of NMDAR signaling, and were able to form synapses with glutamatergic axons. However, expression of calcium permeable AMPA receptors was enhanced in NMDAR-deficient OPCs. These results suggest that NMDAR signaling is not used to control OPC development, but to regulate AMPAR-dependent signaling with surrounding axons, pointing to additional functions for these ubiquitous glial cells. PMID:21880926

  12. Purification of neural precursor cells reveals the presence of distinct, stimulus-specific subpopulations of quiescent precursors in the adult mouse hippocampus.

    PubMed

    Jhaveri, Dhanisha J; O'Keeffe, Imogen; Robinson, Gregory J; Zhao, Qiong-Yi; Zhang, Zong Hong; Nink, Virginia; Narayanan, Ramesh K; Osborne, Geoffrey W; Wray, Naomi R; Bartlett, Perry F

    2015-05-27

    The activity of neural precursor cells in the adult hippocampus is regulated by various stimuli; however, whether these stimuli regulate the same or different precursor populations remains unknown. Here, we developed a novel cell-sorting protocol that allows the purification to homogeneity of neurosphere-forming neural precursors from the adult mouse hippocampus and examined the responsiveness of individual precursors to various stimuli using a clonal assay. We show that within the Hes5-GFP(+)/Nestin-GFP(+)/EGFR(+) cell population, which comprises the majority of neurosphere-forming precursors, there are two distinct subpopulations of quiescent precursor cells, one directly activated by high-KCl depolarization, and the other activated by norepinephrine (NE). We then demonstrate that these two populations are differentially distributed along the septotemporal axis of the hippocampus, and show that the NE-responsive precursors are selectively regulated by GABA, whereas the KCl-responsive precursors are selectively modulated by corticosterone. Finally, based on RNAseq analysis by deep sequencing, we show that the progeny generated by activating NE-responsive versus KCl-responsive quiescent precursors are molecularly different. These results demonstrate that the adult hippocampus contains phenotypically similar but stimulus-specific populations of quiescent precursors, which may give rise to neural progeny with different functional capacity.

  13. Oligodendrocyte ablation as a tool to study demyelinating diseases.

    PubMed

    Pajoohesh-Ganji, Ahdeah; Miller, Robert H

    2016-06-01

    Multiple sclerosis (MS) is an autoimmune mediated neurodegenerative disease characterized by demyelination and oligodendrocyte (OL) loss in the central nervous system and accompanied by local inflammation and infiltration of peripheral immune cells. Although many risk factors and symptoms have been identified in MS, the pathology is complicated and the cause remains unknown. It is also unclear whether OL apoptosis precedes the inflammation or whether the local inflammation is the cause of OL death and demyelination. This review briefly discusses several models that have been developed to specifically ablate oligodendrocytes in an effort to separate the effects of demyelination from inflammation. PMID:27482202

  14. Recombinant Escherichia coli produces tailor-made biopolyester granules for applications in fluorescence activated cell sorting: functional display of the mouse interleukin-2 and myelin oligodendrocyte glycoprotein

    PubMed Central

    Bäckström, B Thomas; Brockelbank, Jane A; Rehm, Bernd HA

    2007-01-01

    Background Fluorescence activated cell sorting (FACS) is a powerful technique for the qualitative and quantitative detection of biomolecules used widely in both basic research and clinical diagnostic applications. Beads displaying a specific antigen are used to bind antibodies which are then fluorescently labelled using secondary antibodies. As the individual suspension bead passes through the sensing region of the FACS machine, fluorescent signals are acquired and analysed. Currently, antigens are tediously purified and chemically cross-linked to preformed beads. Purification and coupling of proteins often renders them inactive and they will not be displayed in its native configuration. As an alternative, we genetically engineered Escherichia coli to produce biopolyester (polyhdroxyalkanoate=PHA) granules displaying diagnostically relevant antigens in their native conformation and suitable for FACS analysis. Results Hybrid genes were constructed, which encode either the mouse interleukin-2 (IL2) or the myelin oligodendrocyte glycoprotein (MOG) fused via an enterokinase site providing linker region to the C terminus of the PHA granule associated protein PhaP, respectively. The hybrid genes were expressed in PHA-accumulating recombinant E. coli. MOG and IL2 fusion proteins were abundantly attached to PHA granules and were identified by MALDI-TOF/MS analysis and N terminal sequencing. A more abundant second fusion protein of either MOG or IL2 resulted from an additional N terminal fusion, which did surprisingly not interfere with attachment to PHA granule. PHA granules displaying either IL2 or MOG were used for FACS using monoclonal anti-IL2 or anti-MOG antibodies conjugated to a fluorescent dye. FACS analysis showed significant and specific binding of respective antibodies. Enterokinase treatment of IL2 displaying PHA granules enabled removal of IL2 as monitored by FACS analysis. Mice were immunized with either MOG or OVA (ovalbumin) and the respective sera were

  15. Cyclin dependent kinase 5 is required for the normal development of oligodendrocytes and myelin formation.

    PubMed

    Yang, Yan; Wang, Haibo; Zhang, Jie; Luo, Fucheng; Herrup, Karl; Bibb, James A; Lu, Richard; Miller, Robert H

    2013-06-15

    The development of oligodendrocytes, the myelinating cells of the vertebrate CNS, is regulated by a cohort of growth factors and transcription factors. Less is known about the signaling pathways that integrate extracellular signals with intracellular transcriptional regulators to control oligodendrocyte development. Cyclin dependent kinase 5 (Cdk5) and its co-activators play critical roles in the regulation of neuronal differentiation, cortical lamination, neuronal cell migration and axon outgrowth. Here we demonstrate a previously unrecognized function of Cdk5 in regulating oligodendrocyte maturation and myelination. During late embryonic development Cdk5 null animals displayed a reduction in the number of MBP+ cells in the spinal cord, but no difference in the number of OPCs. To determine whether the reduction of oligodendrocytes reflected a cell-intrinsic loss of Cdk5, it was selectively deleted from Olig1+ oligodendrocyte lineage cells. In Olig1(Cre/+); Cdk5(fl/fl) conditional mutants, reduced levels of expression of MBP and PLP mRNA were observed throughout the CNS and ultrastructural analyses demonstrated a significant reduction in the proportion of myelinated axons in the optic nerve and spinal cord. Pharmacological inhibition or RNAi knockdown of Cdk5 in vitro resulted in the reduction in oligodendrocyte maturation, but had no effect on OPC cell proliferation. Conversely, over-expression of Cdk5 promoted oligodendrocyte maturation and enhanced process outgrowth. Consistent with this data, Cdk5(-/-) oligodendrocytes developed significantly fewer primary processes and branches than control cells. Together, these findings suggest that Cdk5 function as a signaling integrator to regulate oligodendrocyte maturation and myelination.

  16. Hypoxia-Induced Iron Accumulation in Oligodendrocytes Mediates Apoptosis by Eliciting Endoplasmic Reticulum Stress.

    PubMed

    Rathnasamy, Gurugirijha; Murugan, Madhuvika; Ling, Eng-Ang; Kaur, Charanjit

    2016-09-01

    This study was aimed at evaluating the role of increased iron accumulation in oligodendrocytes and its role in their apoptosis in the periventricular white matter damage (PWMD) following a hypoxic injury to the neonatal brain. In response to hypoxia, in the PWM, there was increased expression of proteins involved in iron acquisition, such as iron regulatory proteins (IRP1, IRP2) and transferrin receptor in oligodendrocytes. Consistent with this, following a hypoxic exposure, there was increased accumulation of iron in primary cultured oligodendrocytes. The increased concentration of iron within hypoxic oligodendrocytes was found to elicit ryanodine receptor (RyR) expression, and the expression of endoplasmic reticulum (ER) stress markers such as binding-immunoglobulin protein (BiP) and inositol-requiring enzyme (IRE)-1α. Associated with ER stress, there was reduced adenosine triphosphate (ATP) levels within hypoxic oligodendrocytes. However, treatment with deferoxamine reduced the increased expression of RyR, BiP, and IRE-1α and increased ATP levels in hypoxic oligodendrocytes. Parallel to ER stress there was enhanced reactive oxygen species production within mitochondria of hypoxic oligodendrocytes, which was attenuated when these cells were treated with deferoxamine. At the ultrastructural level, hypoxic oligodendrocytes frequently showed dilated ER and disrupted mitochondria, which became less evident in those treated with deferoxamine. Associated with these subcellular changes, the apoptosis of hypoxic oligodendrocytes was evident with an increase in p53 and caspase-3 expression, which was attenuated when these cells were treated with deferoxamine. Thus, the present study emphasizes that the excess iron accumulated within oligodendrocytes in hypoxic PWM could result in their death by eliciting ER stress and mitochondrial disruption.

  17. Neurosteroids: oligodendrocyte mitochondria convert cholesterol to pregnenolone

    SciTech Connect

    Hu, Z.Y.; Bourreau, E.; Jung-Testas, I.; Robel, P.; Baulieu, E.E.

    1987-12-01

    Oligodendrocyte mitochondria from 21-day-old Sprague-Dawley male rats were incubated with 100 nM (/sup 3/H)cholesterol. It yielded (/sup 3/H)pregnenolone at a rate of 2.5 +/- 0.7 and 5-(/sup 3/H)pregnene-3..beta..,20..cap alpha..-diol at a rate of 2.5 +/- 1.1 pmol per mg of protein per hr. Cultures of glial cells from 19- to 21-day-old fetuses (a mixed population of astrocytes and oligodendrocytes) were incubated for 24 hr with (/sup 3/H)mevalonolactone. (/sup 3/H)Cholesterol, (/sup 3/H)pregnenolone, and 5-(/sup 3/H)pregnene-3..beta..,20..cap alpha..-diol were characterized in cellular extracts. The formation of the /sup 3/H-labeled steroids was increased by dibutyryl cAMP (0.2 mM) added to the culture medium. The active cholesterol side-chain cleavage mechanism, recently suggested immunohistochemically and already observed in cultures of C6 glioma cells, reinforces the concept of neurosteroids applied to ..delta../sup 5/-3..beta..-hydroxysteroids previously isolated from brain.

  18. CD4+ T cell anergy prevents autoimmunity and generates regulatory T cell precursors

    PubMed Central

    Kalekar, Lokesh A.; Schmiel, Shirdi E.; Nandiwada, Sarada L.; Lam, Wing Y.; Barsness, Laura O.; Zhang, Na; Stritesky, Gretta L.; Malhotra, Deepali; Pauken, Kristen E.; Linehan, Jonathan L.; O’Sullivan, M. Gerard; Fife, Brian T.; Hogquist, Kristin A.; Jenkins, Marc K.; Mueller, Daniel L.

    2015-01-01

    The role that anergy, an acquired state of T cell functional unresponsiveness, plays in natural peripheral tolerance remains unclear. In this study, we demonstrate that anergy is selectively induced in fetal antigen-specific maternal CD4+ T cells during pregnancy. A naturally occurring subpopulation of anergic polyclonal CD4+ T cells, enriched in self antigen-specific T cell receptors, is also observed in healthy hosts. Neuropilin-1 expression in anergic conventional CD4+ T cells is associated with thymic regulatory T cell (Treg cell)-related gene hypomethylation, and this correlates with their capacity to differentiate into Foxp3+ Treg cells that suppress immunopathology. Thus, our data suggest that not only is anergy induction important in preventing autoimmunity, but it also generates the precursors for peripheral Treg cell differentiation. PMID:26829766

  19. Oligodendrocyte Regeneration and CNS Remyelination Require TACE/ADAM17

    PubMed Central

    Klingener, Michael; Raines, Elaine W.; Crawford, Howard C.

    2015-01-01

    The identification of the molecular network that supports oligodendrocyte (OL) regeneration under demyelinating conditions has been a primary goal for regenerative medicine in demyelinating disorders. We recently described an essential function for TACE/ADAM17 in regulating oligodendrogenesis during postnatal myelination, but it is unknown whether this protein also plays a role in OL regeneration and remyelination under demyelinating conditions. By using genetic mouse models to achieve selective gain- or loss-of-function of TACE or EGFR in OL lineage cells in vivo, we found that TACE is critical for EGFR activation in OLs following demyelination, and therefore, for sustaining OL regeneration and CNS remyelination. TACE deficiency in oligodendrocyte progenitor cells following demyelination disturbs OL lineage cell expansion and survival, leading to a delay in the remyelination process. EGFR overexpression in TACE deficient OLs in vivo restores OL development and postnatal CNS myelination, but also OL regeneration and CNS remyelination following demyelination. Our study reveals an essential function of TACE in supporting OL regeneration and CNS remyelination that may contribute to the design of new strategies for therapeutic intervention in demyelinating disorders by promoting oligodendrocyte regeneration and myelin repair. SIGNIFICANCE STATEMENT Oligodendrocyte (OL) regeneration has emerged as a promising new approach for the treatment of demyelinating disorders. By using genetic mouse models to selectively delete TACE expression in oligodendrocyte progenitors cells (OPs), we found that TACE/ADAM17 is required for supporting OL regeneration following demyelination. TACE genetic depletion in OPs abrogates EGFR activation in OL lineage cells, and perturbs cell expansion and survival, blunting the process of CNS remyelination. Moreover, EGFR overexpression in TACE-deficient OPs in vivo overcomes the defects in OL development during postnatal development but also OL

  20. Partial processing of the neuropeptide Y precursor in transfected CHO cells.

    PubMed

    Wulff, B S; O'Hare, M M; Boel, E; Theill, L E; Schwartz, T W

    1990-02-12

    The activation of regulatory peptides by post-translational modification of their biosynthetic precursors is generally thought to occur only in neuroendocrine cells. We have selected clones of Chinese hamster ovary cells, a non-neuroendocrine cell line, which were transfected with a eukaryotic expression vector coding for the precursor for neuropeptide Y. Although the majority of the immunoreactive NPY was found in the form of pro-NPY, some degree of intracellular proteolytic processing of the precursor occurred in all clones. Part of the intracellular NPY immunoreactivity was even correctly amidated. Extracellular degradation of pro-NPY in the tissue culture medium generated immunoreactivity which corresponded in size to NPY. It is concluded that precursor processing can occur in non-neuroendocrine cells both as a biological process within the cells and as apparent processing, degradation in the tissue culture medium.

  1. Loss of T cell precursors after spaceflight and exposure to vector-averaged gravity

    NASA Technical Reports Server (NTRS)

    Woods, Chris C.; Banks, Krista E.; Gruener, Raphael; DeLuca, Dominick

    2003-01-01

    Using fetal thymus organ culture (FTOC), we examined the effects of spaceflight and vector-averaged gravity on T cell development. Under both conditions, the development of T cells was significantly attenuated. Exposure to spaceflight for 16 days resulted in a loss of precursors for CD4+, CD8+, and CD4+CD8+ T cells in a rat/mouse xenogeneic co-culture. A significant decrease in the same precursor cells, as well as a decrease in CD4-CD8- T cell precursors, was also observed in a murine C57BL/6 FTOC after rotation in a clinostat to produce a vector-averaged microgravity-like environment. The block in T cell development appeared to occur between the pre-T cell and CD4+CD8+ T cell stage. These data indicate that gravity plays a decisive role in the development of T cells.

  2. Inducible T-cell receptor expression in precursor T cells for leukemia control.

    PubMed

    Hoseini, S S; Hapke, M; Herbst, J; Wedekind, D; Baumann, R; Heinz, N; Schiedlmeier, B; Vignali, D A A; van den Brink, M R M; Schambach, A; Blazar, B R; Sauer, M G

    2015-07-01

    Co-transplantation of hematopoietic stem cells with those engineered to express leukemia-reactive T-cell receptors (TCRs) and differentiated ex vivo into precursor T cells (preTs) may reduce the risk of leukemia relapse. As expression of potentially self-(leukemia-) reactive TCRs will lead to negative selection or provoke autoimmunity upon thymic maturation, we investigated a novel concept whereby TCR expression set under the control of an inducible promoter would allow timely controlled TCR expression. After in vivo maturation and gene induction, preTs developed potent anti-leukemia effects. Engineered preTs provided protection even after repeated leukemia challenges by giving rise to effector and central memory cells. Importantly, adoptive transfer of TCR-transduced allogeneic preTs mediated anti-leukemia effect without evoking graft-versus-host disease (GVHD). Earlier transgene induction forced CD8(+) T-cell development was required to obtain a mature T-cell subset of targeted specificity, allowed engineered T cells to efficiently pass positive selection and abrogated the endogenous T-cell repertoire. Later induction favored CD4 differentiation and failed to produce a leukemia-reactive population emphasizing the dominant role of positive selection. Taken together, we provide new functional insights for the employment of TCR-engineered precursor cells as a controllable immunotherapeutic modality with significant anti-leukemia activity.

  3. Inducible T-cell receptor expression in precursor T cells for leukemia control.

    PubMed

    Hoseini, S S; Hapke, M; Herbst, J; Wedekind, D; Baumann, R; Heinz, N; Schiedlmeier, B; Vignali, D A A; van den Brink, M R M; Schambach, A; Blazar, B R; Sauer, M G

    2015-07-01

    Co-transplantation of hematopoietic stem cells with those engineered to express leukemia-reactive T-cell receptors (TCRs) and differentiated ex vivo into precursor T cells (preTs) may reduce the risk of leukemia relapse. As expression of potentially self-(leukemia-) reactive TCRs will lead to negative selection or provoke autoimmunity upon thymic maturation, we investigated a novel concept whereby TCR expression set under the control of an inducible promoter would allow timely controlled TCR expression. After in vivo maturation and gene induction, preTs developed potent anti-leukemia effects. Engineered preTs provided protection even after repeated leukemia challenges by giving rise to effector and central memory cells. Importantly, adoptive transfer of TCR-transduced allogeneic preTs mediated anti-leukemia effect without evoking graft-versus-host disease (GVHD). Earlier transgene induction forced CD8(+) T-cell development was required to obtain a mature T-cell subset of targeted specificity, allowed engineered T cells to efficiently pass positive selection and abrogated the endogenous T-cell repertoire. Later induction favored CD4 differentiation and failed to produce a leukemia-reactive population emphasizing the dominant role of positive selection. Taken together, we provide new functional insights for the employment of TCR-engineered precursor cells as a controllable immunotherapeutic modality with significant anti-leukemia activity. PMID:25652739

  4. Oligodendrocytes: Myelination and Axonal Support.

    PubMed

    Simons, Mikael; Nave, Klaus-Armin

    2015-06-22

    Myelinated nerve fibers have evolved to enable fast and efficient transduction of electrical signals in the nervous system. To act as an electric insulator, the myelin sheath is formed as a multilamellar membrane structure by the spiral wrapping and subsequent compaction of the oligodendroglial plasma membrane around central nervous system (CNS) axons. Current evidence indicates that the myelin sheath is more than an inert insulating membrane structure. Oligodendrocytes are metabolically active and functionally connected to the subjacent axon via cytoplasmic-rich myelinic channels for movement of macromolecules to and from the internodal periaxonal space under the myelin sheath. This review summarizes our current understanding of how myelin is generated and also the role of oligodendrocytes in supporting the long-term integrity of myelinated axons.

  5. Derivation of Neural Precursor Cells from Human Embryonic Stem Cells for DNA Methylomic Analysis.

    PubMed

    Roubal, Ivan; Park, Sun Joo; Kim, Yong

    2016-01-01

    Embryonic stem cells are self-renewing pluripotent cells with competency to differentiate into all three-germ lineages. Many studies have demonstrated the importance of genetic and epigenetic molecular mechanisms in the maintenance of self-renewal and pluripotency. Stem cells are under unique molecular and cellular regulations different from somatic cells. Proper regulation should be ensured to maintain their unique self-renewal and undifferentiated characteristics. Understanding key mechanisms in stem cell biology will be important for the successful application of stem cells for regenerative therapeutic medicine. More importantly practical use of stem cells will require our knowledge on how to properly direct and differentiate stem cells into the necessary type of cells. Embryonic stem cells and adult stem cells have been used as study models to unveil molecular and cellular mechanisms in various signaling pathways. They are especially beneficial to developmental studies where in vivo molecular/cellular study models are not available. We have derived neural stem cells from human embryonic stem cells as a model to study the effect of teratogen in neural development. We have tested commercial neural differentiation system and successfully derived neural precursor cells exhibiting key molecular features of neural stem cells, which will be useful for experimental application.

  6. The potential for oligodendrocyte proliferation during demyelinating disease.

    PubMed

    Prayoonwiwat, N; Rodriguez, M

    1993-01-01

    The potential for oligodendrocytes to proliferate in response to central nervous system injury was examined. We used intracerebral infection of Theiler's murine encephalomyelitis virus, a model for multiple sclerosis, which results in chronic demyelinating disease of SJL/J mice. Proliferating cells in spinal cord sections of adult mice were identified using simultaneous immunohistochemistry and in situ autoradiography ([3H]-thymidine incorporation). Seven different cell-specific markers were used to characterize proliferating cells as oligodendrocytes (myelin basic protein, proteolipid protein, galactocerebroside, CNPase), astrocytes (glial fibrillary acidic protein), microglia/macrophages (Griffonia simplicifolia isolectin B4) or T-lymphocytes (CD3). The average number of proliferating cells per area of spinal cord white matter was 11/mm2 in normal young adult mice compared to 61/mm2 in chronically infected mice. Most proliferating cells in normal spinal cord were not identified with these markers and were presumed to be progenitor glial cells. However, in spinal cord white matter of mice infected with Theiler's virus for approximately 4 months, 88% of proliferating cells were identified. Approximately one-third of all proliferating cells were in the oligodendrocyte lineage and expressed markers observed late in myelin differentiation. In demyelinated areas as compared to normal white matter, there was an 80- to 211-fold increase in the number of proliferating oligodendrocytes expressing myelin basic protein or proteolipid protein, respectively. The remainder of the proliferating cells in areas of demyelination were astrocytes, microglial cells and T-cells. These experiments support the hypothesis that factors within a demyelinating lesion promote the proliferation and differentiation of cells within the oligodendroglial lineage.

  7. Apoptosis of Oligodendrocytes during Early Development Delays Myelination and Impairs Subsequent Responses to Demyelination

    PubMed Central

    Caprariello, Andrew V.; Batt, Courtney E.; Zippe, Ingrid; Romito-DiGiacomo, Rita R.; Karl, Molly

    2015-01-01

    During mammalian development, myelin-forming oligodendrocytes are generated and axons ensheathed according to a tightly regulated sequence of events. Excess premyelinating oligodendrocytes are eliminated by apoptosis and the timing of the onset of myelination in any specific CNS region is highly reproducible. Although the developing CNS recovers more effectively than the adult CNS from similar insults, it is unknown whether early loss of oligodendrocyte lineage cells leads to long-term functional deficits. To directly assess whether the loss of oligodendrocytes during early postnatal spinal cord development impacted oligodendrogenesis, myelination, and remyelination, transgenic mouse lines were generated in which a modified caspase-9 molecule allowed spatial and temporal control of the apoptotic pathway specifically in mature, myelin basic protein expressing oligodendrocytes (MBP-iCP9). Activating apoptosis in MBP+ cells of the developing spinal cord during the first postnatal week inhibited myelination. This inhibition was transient, and the levels of myelination largely returned to normal after 2 weeks. Despite robust developmental plasticity, MBP-iCP9-induced oligodendrocyte apoptosis compromised the rate and extent of adult remyelination. Remyelination failure correlated with a truncated proliferative response of oligodendrocyte progenitor cells, suggesting that depleting the oligodendrocyte pool during critical developmental periods compromises the regenerative response to subsequent demyelinating lesions. SIGNIFICANCE STATEMENT This manuscript demonstrates that early insults leading to oligodendrocyte apoptosis result in the impairment of recovery from demyelinating diseases in the adult. These studies begin to provide an initial understanding of the potential failure of recovery in insults, such as periventricular leukomalacia and multiple sclerosis. PMID:26468203

  8. The Overexpression of TDP-43 Protein in the Neuron and Oligodendrocyte Cells Causes the Progressive Motor Neuron Degeneration in the SOD1 G93A Transgenic Mouse Model of Amyotrophic Lateral Sclerosis.

    PubMed

    Lu, Yi; Tang, Chunyan; Zhu, Lei; Li, Jiao; Liang, Huiting; Zhang, Jie; Xu, Renshi

    2016-01-01

    The recent investigation suggested that the TDP-43 protein was closely related to the motor neuron degeneration in amyotrophic lateral sclerosis (ALS), but the pathogenesis contributed to motor neuron degeneration largely remained unknown. Therefore, we detected the alteration of TDP-43 expression and distribution in the adult spinal cord of the SOD1 G93A transgenic mouse model for searching the possible pathogenesis of ALS. We examined the TDP-43 expression and distribution in the different anatomic regions, segments and neural cells in the adult spinal cord at the different stages of the SOD1 wild-type and G93A transgenic model by the fluorescent immunohistochemical technology. We revealed that the amount of TDP-43 positive cell was cervical>lumbar>thoracic segment, that in the ventral horn was more than that in the dorsal horn, a few of TDP-43 protein sparsely expressed and distributed in the other regions, the TDP-43 protein weren't detected in the white matter and the central canal. The TDP-43 protein was mostly expressed and distributed in the nuclear of neuron cells and the cytoplasm of oligodendrocyte cells of the gray matter surrounding the central canal of spinal cord by the granular shape in the SOD1 wild-type and G93A transgenic mice. The amount of TDP-43 positive cell significantly increased at the onset and progression stages of ALS following with the increase of neuron death in spinal cord, particularly in the ventral horn of cervical segment at the progression stage. Our results suggested that the overexpression of TDP-43 protein in the neuron and oligodendrocyte cell causes the progressive motor neuron degeneration in the ALS-like mouse model. PMID:27570488

  9. The Overexpression of TDP-43 Protein in the Neuron and Oligodendrocyte Cells Causes the Progressive Motor Neuron Degeneration in the SOD1 G93A Transgenic Mouse Model of Amyotrophic Lateral Sclerosis

    PubMed Central

    Lu, Yi; Tang, Chunyan; Zhu, Lei; Li, Jiao; Liang, Huiting; Zhang, Jie; Xu, Renshi

    2016-01-01

    The recent investigation suggested that the TDP-43 protein was closely related to the motor neuron degeneration in amyotrophic lateral sclerosis (ALS), but the pathogenesis contributed to motor neuron degeneration largely remained unknown. Therefore, we detected the alteration of TDP-43 expression and distribution in the adult spinal cord of the SOD1 G93A transgenic mouse model for searching the possible pathogenesis of ALS. We examined the TDP-43 expression and distribution in the different anatomic regions, segments and neural cells in the adult spinal cord at the different stages of the SOD1 wild-type and G93A transgenic model by the fluorescent immunohistochemical technology. We revealed that the amount of TDP-43 positive cell was cervical>lumbar>thoracic segment, that in the ventral horn was more than that in the dorsal horn, a few of TDP-43 protein sparsely expressed and distributed in the other regions, the TDP-43 protein weren't detected in the white matter and the central canal. The TDP-43 protein was mostly expressed and distributed in the nuclear of neuron cells and the cytoplasm of oligodendrocyte cells of the gray matter surrounding the central canal of spinal cord by the granular shape in the SOD1 wild-type and G93A transgenic mice. The amount of TDP-43 positive cell significantly increased at the onset and progression stages of ALS following with the increase of neuron death in spinal cord, particularly in the ventral horn of cervical segment at the progression stage. Our results suggested that the overexpression of TDP-43 protein in the neuron and oligodendrocyte cell causes the progressive motor neuron degeneration in the ALS-like mouse model. PMID:27570488

  10. Neuropeptide Y is important for basal and seizure-induced precursor cell proliferation in the hippocampus.

    PubMed

    Howell, Owain W; Silva, Sharmalene; Scharfman, Helen E; Sosunov, Alexander A; Zaben, Malik; Shtaya, Anan; Shatya, Anan; McKhann, Guy; Herzog, Herbert; Laskowski, Alexandra; Gray, William P

    2007-04-01

    We have shown that neuropeptide Y (NPY) regulates neurogenesis in the normal dentate gyrus (DG) via Y(1) receptors (Howell, O.W., Scharfman, H.E., Herzog, H., Sundstrom, L.E., Beck-Sickinger, A. and Gray, W.P. (2003) Neuropeptide Y is neuroproliferative for post-natal hippocampal precursor cells. J Neurochem, 86, 646-659; Howell, O.W., Doyle, K., Goodman, J.H., Scharfman, H.E., Herzog, H., Pringle, A., Beck-Sickinger, A.G. and Gray, W.P. (2005) Neuropeptide Y stimulates neuronal precursor proliferation in the post-natal and adult dentate gyrus. J Neurochem, 93, 560-570). This regulation may be relevant to epilepsy, because seizures increase both NPY expression and precursor cell proliferation in the DG. Therefore, the effects of NPY on DG precursors were evaluated in normal conditions and after status epilepticus. In addition, potentially distinct NPY-responsive precursors were identified, and an analysis performed not only of the DG, but also the caudal subventricular zone (cSVZ) and subcallosal zone (SCZ) where seizures modulate glial precursors. We show a proliferative effect of NPY on multipotent nestin cells expressing the stem cell marker Lewis-X from both the DG and the cSVZ/SCZ in vitro. We confirm an effect on proliferation in the cSVZ/SCZ of Y(1) receptor(-/-) mice and demonstrate a significant reduction in basal and seizure-induced proliferation in the DG of NPY(-/-) mice.

  11. Pulsed DC Electric Field–Induced Differentiation of Cortical Neural Precursor Cells

    PubMed Central

    Chang, Hui-Fang; Lee, Ying-Shan; Tang, Tang K.; Cheng, Ji-Yen

    2016-01-01

    We report the differentiation of neural stem and progenitor cells solely induced by direct current (DC) pulses stimulation. Neural stem and progenitor cells in the adult mammalian brain are promising candidates for the development of therapeutic neuroregeneration strategies. The differentiation of neural stem and progenitor cells depends on various in vivo environmental factors, such as nerve growth factor and endogenous EF. In this study, we demonstrated that the morphologic and phenotypic changes of mouse neural stem and progenitor cells (mNPCs) could be induced solely by exposure to square-wave DC pulses (magnitude 300 mV/mm at frequency of 100-Hz). The DC pulse stimulation was conducted for 48 h, and the morphologic changes of mNPCs were monitored continuously. The length of primary processes and the amount of branching significantly increased after stimulation by DC pulses for 48 h. After DC pulse treatment, the mNPCs differentiated into neurons, astrocytes, and oligodendrocytes simultaneously in stem cell maintenance medium. Our results suggest that simple DC pulse treatment could control the fate of NPCs. With further studies, DC pulses may be applied to manipulate NPC differentiation and may be used for the development of therapeutic strategies that employ NPCs to treat nervous system disorders. PMID:27352251

  12. Precursor B Cells Increase in the Lung during Airway Allergic Inflammation: A Role for B Cell-Activating Factor

    PubMed Central

    Malmhäll, Carina; Rådinger, Madeleine; Ramos-Ramirez, Patricia; Lu, You; Deák, Tünde; Semitekolou, Maria; Gaga, Mina; Sjöstrand, Margareta; Lötvall, Jan; Bossios, Apostolos

    2016-01-01

    Background B cells, key cells in allergic inflammation, differentiate in the bone marrow and their precursors include pro-B, pre-B and immature B cells. Eosinophil progenitor cells increase in the lung after allergen exposure. However, the existence and possible role of B cell precursors in the lung during allergic inflammation remains elusive. Methods A BALB/c mouse model of allergic airway inflammation was utilized to perform phenotypic and quantification analyses of pro-B and pre-B cells in the lung by flow cytometry. B cell maturation factors IL-7 and B cell-activating factor (BAFF) and their receptors (CD127 and BAFFR, BCMA, TACI, respectively) were also evaluated in the lung and serum. The effect of anti-BAFF treatment was investigated both in vivo (i.p. administration of BAFF-R-Ig fusion protein) and in vitro (colony forming cell assay). Finally, BAFF levels were examined in the bronchoalveolar lavage (BAL) of asthmatic patients and healthy controls. Results Precursor pro and pre-B cells increase in the lung after allergen exposure, proliferate in the lung tissue in vivo, express markers of chemotaxis (CCR10 and CXCR4) and co-stimulation (CD40, CD86) and are resistant to apoptosis (Bax). Precursor B cells express receptors for BAFF at baseline, while after allergen challenge both their ligand BAFF and the BCMA receptor expression increases in B cell precursors. Blocking BAFFR in the lung in vivo decreases eosinophils and proliferating precursor B cells. Blocking BAFFR in bone marrow cultures in vitro reduces pre-B colony formation units. BAFF is increased in the BAL of severe asthmatics. Conclusion Our data support the concept of a BAFF-mediated role for B cell precursors in allergic airway inflammation. PMID:27513955

  13. Transcriptional regulation of MHC class I gene expression in rat oligodendrocytes.

    PubMed Central

    Mavria, G; Hall, K T; Jones, R A; Blair, G E

    1998-01-01

    MHC class I molecules are normally expressed at very low levels in the brain and their up-regulation in response to cytokines and viral infections has been associated with a number of neurological disorders. Here we demonstrate that the down-regulation of surface class I molecules in differentiated primary rat oligodendrocytes was accompanied by reduced steady-state levels of class I heavy-chain mRNA. Transient expression assays were performed in oligodendrocytes and fibroblasts, using a mouse H-2Kb class I promoter chloramphenicol acetyltransferase plasmid termed pH2KCAT (which contained 5'-flanking sequences from -2033 to +5 bp of the H-2Kb gene relative to the transcriptional start site at +1 bp). These assays showed that H-2Kb promoter activity was reduced in oligodendrocytes but not in class I-expressing fibroblasts. H-2Kb promoter activity was up-regulated in oligodendrocytes co-transfected with a plasmid expression vector encoding the transcriptional activator tax of human T-cell leukaemia virus type I, showing that down-regulation of promoter activity was reversible. Deletion mutant analysis of the H-2Kb promoter revealed the presence of negative regulatory elements that were functional in oligodendrocytes at -1.61 to -1.07 kb and -242 to -190 bp. Deletion of sequences in pH2KCAT encompassing the downstream element totally abolished promoter activity in both oligodendrocytes and fibroblasts, whereas a deletion within the upstream negative regulatory element increased promoter activity specifically in oligodendrocytes. The upstream negative regulatory element also down-regulated a linked heterologous herpes simplex virus thymidine kinase promoter in oligodendrocytes, but not in fibroblasts. Gel retardation assays using overlapping DNA probes that spanned the entire -1.61 to -1.07 kb region revealed the presence of a number of DNA-binding activities that were present in oligodendrocyte, but not in fibroblast nuclear extracts. PMID:9461504

  14. Protection of p27(Kip1) mRNA by quaking RNA binding proteins promotes oligodendrocyte differentiation.

    PubMed

    Larocque, Daniel; Galarneau, André; Liu, Hsueh-Ning; Scott, Michelle; Almazan, Guillermina; Richard, Stéphane

    2005-01-01

    The quaking (Qk) locus expresses a family of RNA binding proteins, and the expression of several alternatively spliced isoforms coincides with the development of oligodendrocytes and the onset of myelination. Quaking viable (Qk(v)) mice harboring an autosomal recessive mutation in this locus have uncompacted myelin in the central nervous system owing to the inability of oligodendrocytes to properly mature. Here we show that the expression of two QKI isoforms, absent from oligodendrocytes of Qk(v) mice, induces cell cycle arrest of primary rat oligodendrocyte progenitor cells and differentiation into oligodendrocytes. Injection of retroviruses expressing QKI into the telencephalon of mouse embryos induced differentiation and migration of multipotential neural progenitor cells into mature oligodendrocytes localized in the corpus callosum. The mRNA encoding the cyclin-dependent kinase (CDK)-inhibitor p27(Kip1) was bound and stabilized by QKI, leading to an increased accumulation of p27(Kip1) protein in oligodendrocytes. Our findings demonstrate that QKI is upstream of p27(Kip1) during oligodendrocyte differentiation.

  15. Impaired oligodendrocyte maturation in preterm infants: Potential therapeutic targets.

    PubMed

    van Tilborg, Erik; Heijnen, Cobi J; Benders, Manon J; van Bel, Frank; Fleiss, Bobbi; Gressens, Pierre; Nijboer, Cora H

    2016-01-01

    Preterm birth is an evolving challenge in neonatal health care. Despite declining mortality rates among extremely premature neonates, morbidity rates remain very high. Currently, perinatal diffuse white matter injury (WMI) is the most commonly observed type of brain injury in preterm infants and has become an important research area. Diffuse WMI is associated with impaired cognitive, sensory and psychological functioning and is increasingly being recognized as a risk factor for autism-spectrum disorders, ADHD, and other psychological disturbances. No treatment options are currently available for diffuse WMI and the underlying pathophysiological mechanisms are far from being completely understood. Preterm birth is associated with maternal inflammation, perinatal infections and disrupted oxygen supply which can affect the cerebral microenvironment by causing activation of microglia, astrogliosis, excitotoxicity, and oxidative stress. This intricate interplay of events negatively influences oligodendrocyte development, causing arrested oligodendrocyte maturation or oligodendrocyte cell death, which ultimately results in myelination failure in the developing white matter. This review discusses the current state in perinatal WMI research, ranging from a clinical perspective to basic molecular pathophysiology. The complex regulation of oligodendrocyte development in healthy and pathological conditions is described, with a specific focus on signaling cascades that may play a role in WMI. Furthermore, emerging concepts in the field of WMI and issues regarding currently available animal models are put forward. Novel insights into the molecular mechanisms underlying impeded oligodendrocyte maturation in diffuse WMI may aid the development of novel treatment options which are desperately needed to improve the quality-of-life of preterm neonates. PMID:26655283

  16. Oligodendrocyte and Interneuron Density in Hippocampal Subfields in Schizophrenia and Association of Oligodendrocyte Number with Cognitive Deficits

    PubMed Central

    Falkai, Peter; Steiner, Johann; Malchow, Berend; Shariati, Jawid; Knaus, Andreas; Bernstein, Hans-Gert; Schneider-Axmann, Thomas; Kraus, Theo; Hasan, Alkomiet; Bogerts, Bernhard; Schmitt, Andrea

    2016-01-01

    Olig1-, Olig2-, or parvalbumin-positive cell density between SZ and controls in any of the subregions of the posterior hippocampus. Based on the results from our stereological study we hypothesize that a decreased number of oligodendrocytes in the anterior and entire hippocampus may be involved in cognitive deficits by impairing the connectivity of this structure in schizophrenia. In the posterior hippocampus, we could not replicate previously reported findings of decreased interneurons from the entire hippocampus. PMID:27065804

  17. SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells.

    PubMed

    Biernaskie, Jeffrey; Paris, Maryline; Morozova, Olena; Fagan, B Matthew; Marra, Marco; Pevny, Larysa; Miller, Freda D

    2009-12-01

    Despite the remarkable regenerative capacity of mammalian skin, an adult dermal stem cell has not yet been identified. Here, we investigated whether skin-derived precursors (SKPs) might fulfill such a role. We show that SKPs derive from Sox2(+) hair follicle dermal cells and that these two cell populations are similar with regard to their transcriptome and functional properties. Both clonal SKPs and endogenous Sox2(+) cells induce hair morphogenesis, differentiate into dermal cell types, and home to a hair follicle niche upon transplantation. Moreover, hair follicle-derived SKPs self-renew, maintain their multipotency, and serially reconstitute hair follicles. Finally, grafting experiments show that follicle-associated dermal cells move out of their niche to contribute cells for dermal maintenance and wound-healing. Thus, SKPs derive from Sox2(+) follicle-associated dermal precursors and display functional properties predicted of a dermal stem cell, contributing to dermal maintenance, wound-healing, and hair follicle morphogenesis.

  18. B-cell precursor acute lymphoblastic leukemia and stromal cells communicate through Galectin-3

    PubMed Central

    Fei, Fei; Joo, Eun Ji; Tarighat, Somayeh S.; Schiffer, Isabelle; Paz, Helicia; Fabbri, Muller; Abdel-Azim, Hisham; Groffen, John; Heisterkamp, Nora

    2015-01-01

    The molecular interactions between B-cell precursor acute lymphoblastic leukemia (pre-B ALL) cells and stromal cells in the bone marrow that provide microenvironmentally-mediated protection against therapeutic drugs are not well-defined. Galectin-3 (Lgals3) is a multifunctional galactose-binding lectin with reported location in the nucleus, cytoplasm and extracellular space in different cell types. We previously reported that ALL cells co-cultured with stroma contain high levels of Galectin-3. We here establish that, in contrast to more mature B-lineage cancers, Galectin-3 detected in and on the ALL cells originates from stromal cells, which express it on their surface, secrete it as soluble protein and also in exosomes. Soluble and stromal-bound Galectin-3 is internalized by ALL cells, transported to the nucleus and stimulates transcription of endogenous LGALS3 mRNA. When human and mouse ALL cells develop tolerance to different drugs while in contact with protective stromal cells, Galectin-3 protein levels are consistently increased. This correlates with induction of Galectin-3 transcription in the ALL cells. Thus Galectin-3 sourced from stroma becomes supplemented by endogenous Galectin-3 production in the pre-B ALL cells that are under continuous stress from drug treatment. Our data suggest that stromal Galectin-3 may protect ALL cells through auto-induction of Galectin-3 mRNA and tonic NFκB pathway activation. Since endogenously synthesized Galectin-3 protects pre-B ALL cells against drug treatment, we identify Galectin-3 as one possible target to counteract the protective effects of stroma. PMID:25869099

  19. Retrovirus-mediated conditional immortalization and analysis of established cell lines of osteoclast precursor cells

    SciTech Connect

    Kawata, Shigehisa; Suzuki, Jun; Maruoka, Masahiro; Mizutamari, Megumi; Ishida-Kitagawa, Norihiro; Yogo, Keiichiro; Jat, Parmjit S.; Shishido, Tomoyuki . E-mail: shishid@bs.naist.jp

    2006-11-10

    Osteoclast precursor cells (OPCs) have previously been established from bone marrow cells of SV40 temperature-sensitive T antigen-expressing transgenic mice. Here, we use retrovirus-mediated gene transfer to conditionally immortalize OPCs by expressing temperature-sensitive large T antigen (tsLT) from wild type bone marrow cells. The immortalized OPCs proliferated at the permissive temperature of 33.5 deg. C, but stopped growing at the non-permissive temperature of 39 deg. C. In the presence of receptor activator of NF{kappa}B ligand (RANKL), the OPCs differentiated into tartrate-resistant acid phosphatase (TRAP)-positive cells and formed multinucleate osteoclasts at 33.5 deg. C. From these OPCs, we cloned two types of cell lines. Both differentiated into TRAP-positive cells, but one formed multinucleate osteoclasts while the other remained unfused in the presence of RANKL. These results indicate that the established cell lines are useful for analyzing mechanisms of differentiation, particularly multinucleate osteoclast formation. Retrovirus-mediated conditional immortalization should be a useful method to immortalize OPCs from primary bone marrow cells.

  20. Involvement of MeCP2 in Regulation of Myelin-Related Gene Expression in Cultured Rat Oligodendrocytes.

    PubMed

    Sharma, Kedarlal; Singh, Juhi; Pillai, Prakash P; Frost, Emma E

    2015-10-01

    Methyl CpG binding protein 2 (MeCP2) is a multifunctional protein which binds to methylated CpG, mutation of which cause a neurodevelopmental disorder, Rett syndrome. MeCP2 can function as both transcriptional activator and repressor of target gene. MeCP2 regulate gene expression in both neuron and glial cells in central nervous system (CNS). Oligodendrocytes, the myelinating cells of CNS, are required for normal functioning of neurons and are regulated by several transcription factors during their differentiation. In current study, we focused on the role of MeCP2 as transcription regulator of myelin genes in cultured rat oligodendrocytes. We have observed expression of MeCP2 at all stages of oligodendrocyte development. MeCP2 knockdown in cultured oligodendrocytes by small interference RNA (siRNA) has shown increase in myelin genes (myelin basic protein (MBP), proteolipid protein (PLP), myelin oligodendrocyte glycoprotein (MOG), and myelin-associated oligodendrocyte basic protein (MOBP)), neurotrophin (brain-derived neurotrophic factor (BDNF)), and transcriptional regulator (YY1) transcripts level, which are involved in regulation of oligodendrocyte differentiation and myelination. Further, we also found that protein levels of MBP, PLP, DM-20, and BDNF also significantly upregulated in MeCP2 knockdown oligodendrocytes. Our study suggests that the MeCP2 acts as a negative regulator of myelin protein expression.

  1. THE MECHANISM OF ANTIGENIC STIMULATION OF PRIMARY AND SECONDARY CLONAL PRECURSOR CELLS

    PubMed Central

    Klinman, Norman R.

    1972-01-01

    Cell transfers to carrier-immunized irradiated mice have permitted an analysis of the in vitro stimulation of clonal precursors of anti-2,4-dinitrophenyl (DNP) antibody-producing cells derived from both immune and nonimmune mice. The results indicate that: (a) carrier-specific enhancement is obligatory for stimulation of primary precursor cells and increases both the size and number of detectable foci derived from secondary precursors. (b) This carrier-specific enhancement is most apparent in the stimulation of precursors of high-affinity antibody producer cells. (c) The antibody produced by primary foci, like that of secondary foci, appears homogeneous. (d) The frequency of clonal precursors in normal spleens is 38% that in spleens from mice 4–8 months after immunization, and the number of such precursors in normal spleens can be reduced fivefold by specific suppression of donor mice with soluble antigen. (e) The average of association constants of primary monofocal antibodies, like that of primary serum antibody produced in carrier-primed mice, is less than 10-fold lower than that of secondary clonal or serum antibody. (f) The affinity of primary monofocal antibodies shows a slight dependence on stimulating antigen concentration; however, a minimum threshold affinity consonant with stimulation is apparent. (g) Free hapten inhibits antigenic stimulation of primary precursor cells at a much lower concentration than is required for the inhibition of secondary precursors. These results are interpreted as indicating that (a) primary stimulation, like secondary stimulation, results from the selective stimulation by antigen of a population of cells differing from one another in their potential antibody product but each having only a single such product; (b) the antigen receptors of primary cells interact with antigen as if they are monovalent while receptors of secondary cells evidence multivalence; (c) antigenic stimulation appears to require both a relatively high

  2. Oligodendrocytes contribute to motor neuron death in ALS via SOD1-dependent mechanism

    PubMed Central

    Ferraiuolo, Laura; Meyer, Kathrin; Sherwood, Thomas W.; Vick, Jonathan; Likhite, Shibi; Frakes, Ashley; Miranda, Carlos J.; Braun, Lyndsey; Heath, Paul R.; Pineda, Ricardo; Beattie, Christine E.; Shaw, Pamela J.; Askwith, Candice C.; McTigue, Dana; Kaspar, Brian K.

    2016-01-01

    Oligodendrocytes have recently been implicated in the pathophysiology of amyotrophic lateral sclerosis (ALS). Here we show that, in vitro, mutant superoxide dismutase 1 (SOD1) mouse oligodendrocytes induce WT motor neuron (MN) hyperexcitability and death. Moreover, we efficiently derived human oligodendrocytes from a large number of controls and patients with sporadic and familial ALS, using two different reprogramming methods. All ALS oligodendrocyte lines induced MN death through conditioned medium (CM) and in coculture. CM-mediated MN death was associated with decreased lactate production and release, whereas toxicity in coculture was lactate-independent, demonstrating that MN survival is mediated not only by soluble factors. Remarkably, human SOD1 shRNA treatment resulted in MN rescue in both mouse and human cultures when knockdown was achieved in progenitor cells, whereas it was ineffective in differentiated oligodendrocytes. In fact, early SOD1 knockdown rescued lactate impairment and cell toxicity in all lines tested, with the exclusion of samples carrying chromosome 9 ORF 72 (C9orf72) repeat expansions. These did not respond to SOD1 knockdown nor did they show lactate release impairment. Our data indicate that SOD1 is directly or indirectly involved in ALS oligodendrocyte pathology and suggest that in this cell type, some damage might be irreversible. In addition, we demonstrate that patients with C9ORF72 represent an independent patient group that might not respond to the same treatment. PMID:27688759

  3. Processing of two homologous precursors, pro-neuropeptide Y and pro-pancreatic polypeptide, in transfected cell lines expressing different precursor convertases.

    PubMed

    Wulff, B S; Johansen, T E; Dalbøge, H; O'Hare, M M; Schwartz, T W

    1993-06-25

    The processing of two homologous precursors, pro-neuropeptide Y (pro-NPY) and pro-pancreatic poly-peptide (pro-PP), was studied in four neuroendocrine cell lines after transfection: CA-77 medullary thyroid carcinoma cells, AtT-20 corticotrope pituitary cells, RIN2A-19 pancreatic endocrine cells, and NB1 neuroblastoma cells. Northern blot analysis indicated that the AtT-20 cells only expressed precursor convertase 3; in contrast, NB1 cells only expressed precursor convertase 2, whereas the RIN2A-19 and CA-77 cells expressed both enzymes. Despite these differences in expression pattern of precursor convertases the four cell lines were, surprisingly, indistinguishable in respect to their processing of pro-PP and pro-NPY. In all four cell lines, pro-NPY was almost completely converted to NPY, and, in all four cell lines, only around 50% of the PP precursor was converted to PP. The relatively poor processing efficiency of pro-PP was rather similar to the processing efficiency of the endogenously produced precursors in the respective cell lines, pro-calcitonin (CA-77), proopiomelanocortin (AtT-20), proinsulin (RIN2A-19), and pro-vasoactive intestinal polypeptide (NB1). At least in the CA-77 cells, NPY and PP were apparently sorted to the regulated secretory pathway, as upon stimulation with secretagogue the release of the transfected peptides increased in parallel with the endogenously expressed peptide, calcitonin gene-related peptide. Mutagenesis studies showed that on the N-terminal side of the di-basic processing site, the otherwise important difference in structure between PP and NPY, a proline for glutamine in position 34, was not responsible for the difference in processing efficiency. On the C-terminal side of the processing site, the efficient processing of pro-NPY could not be transferred to pro-PP by exchanging the whole C-terminal domains of the precursors. It is concluded that pro-NPY is processed more efficiently than pro-PP in all neuroendocrine cell lines

  4. Expression of human epidermal growth factor precursor cDNA in transfected mouse NIH 3T3 cells.

    PubMed Central

    Mroczkowski, B; Reich, M; Whittaker, J; Bell, G I; Cohen, S

    1988-01-01

    Stable cell lines expressing the human epidermal growth factor (EGF) precursor have been prepared by transfection of mouse NIH 3T3 cells with a bovine papillomavirus-based vector in which the human kidney EGF precursor cDNA has been placed under the control of the inducible mouse metallothionein I promoter. Synthesis of the EGF precursor can be induced by culturing the cells in 5 mM butyric acid or 100 microM ZnCl2. The EGF precursor synthesized by these cells appears to be membrane associated; none is detectable in the cytoplasm. The size of the EGF precursor expressed by these cells is approximately 150-180 kDa, which is larger than expected from its amino acid sequence, suggesting that it is posttranslationally modified, presumably by glycosylation. The EGF precursor was also detected in the conditioned medium from these cells, indicating that some fraction of the EGF precursor synthesized by these transfected cells may be secreted. Preliminary data suggest that this soluble form of the EGF precursor may compete with 125I-labeled EGF for binding to the EGF receptor. These cell lines should be useful for studying the processing of the EGF precursor to EGF as well as determining the properties and possible functions of the EGF precursor itself. Images PMID:3257563

  5. [Pulmonary arterial hypertension, bone marrow, endothelial cell precursors and serotonin].

    PubMed

    Ayme-Dietrich, Estelle; Banas, Sophie M; Monassier, Laurent; Maroteaux, Luc

    2016-01-01

    Serotonin and bone-marrow-derived stem cells participate together in triggering pulmonary hypertension. Our work has shown that the absence of 5-HT2B receptors generates permanent changes in the composition of the blood and bone-marrow in the myeloid lineages, particularly in endothelial cell progenitors. The initial functions of 5-HT2B receptors in pulmonary arterial hypertension (PAH) are restricted to bone-marrow cells. They contribute to the differentiation/proliferation/mobilization of endothelial progenitor cells from the bone-marrow. Those bone-marrow-derived cells have a critical role in the development of pulmonary hypertension and pulmonary vascular remodeling. These data indicate that bone-marrow derived endothelial progenitors play a key role in the pathogenesis of PAH and suggest that interactions involving serotonin and bone morphogenic protein type 2 receptor (BMPR2) could take place at the level of the bone-marrow. PMID:27687599

  6. Skin-derived neural precursors competitively generate functional myelin in adult demyelinated mice.

    PubMed

    Mozafari, Sabah; Laterza, Cecilia; Roussel, Delphine; Bachelin, Corinne; Marteyn, Antoine; Deboux, Cyrille; Martino, Gianvito; Baron-Van Evercooren, Anne

    2015-09-01

    Induced pluripotent stem cell-derived (iPS-derived) neural precursor cells may represent the ideal autologous cell source for cell-based therapy to promote remyelination and neuroprotection in myelin diseases. So far, the therapeutic potential of reprogrammed cells has been evaluated in neonatal demyelinating models. However, the repair efficacy and safety of these cells has not been well addressed in the demyelinated adult CNS, which has decreased cell plasticity and scarring. Moreover, it is not clear if these induced pluripotent-derived cells have the same reparative capacity as physiologically committed CNS-derived precursors. Here, we performed a side-by-side comparison of CNS-derived and skin-derived neural precursors in culture and following engraftment in murine models of adult spinal cord demyelination. Grafted induced neural precursors exhibited a high capacity for survival, safe integration, migration, and timely differentiation into mature bona fide oligodendrocytes. Moreover, grafted skin-derived neural precursors generated compact myelin around host axons and restored nodes of Ranvier and conduction velocity as efficiently as CNS-derived precursors while outcompeting endogenous cells. Together, these results provide important insights into the biology of reprogrammed cells in adult demyelinating conditions and support use of these cells for regenerative biomedicine of myelin diseases that affect the adult CNS.

  7. Export of Precursor tRNAIle from the Nucleus to the Cytoplasm in Human Cells.

    PubMed

    Wei, Min; Zhao, Xia; Liu, Mi; Niu, Meijuan; Seif, Elias; Kleiman, Lawrence

    2016-01-01

    In the current concept, tRNA maturation in vertebrate cells, including splicing of introns, trimming of 5' leader and 3' trailer, and adding of CCA, is thought to occur exclusively in the nucleus. Here we provide evidence to challenge this concept. Unspliced intron-containing precursor tRNAIle was identified in Human Immunodeficiency Virus type 1 (HIV-1) virions, which are synthesized in the cytoplasm. Northern blot, confocal microscopy and quantitative RT-PCR further verified enrichment of this unspliced tRNAIle within the cytoplasm in human cells. In addition to containing an intron, the cytoplasmic precursor tRNAIle also contains a short incompletely processed 5´ leader and a 3´ trailer, which abundance is around 1000 fold higher than the nuclear precursor tRNAIle with long 5' leader and long 3' trailer. In vitro data also suggest that the cytoplasmic unspliced end-immature precursor tRNAIle could be processed by short isoform of RNase Z, but not long isoform of RNase Z. These data suggest that precursor tRNAs could export from the nucleus to the cytoplasm in human cells, instead of be processed only in the nucleus.

  8. Olig1 function is required for oligodendrocyte differentiation in the mouse brain.

    PubMed

    Dai, Jinxiang; Bercury, Kathryn K; Ahrendsen, Jared T; Macklin, Wendy B

    2015-03-11

    Oligodendrocyte differentiation and myelination are tightly regulated processes orchestrated by a complex transcriptional network. Two bHLH transcription factors in this network, Olig1 and Olig2, are expressed exclusively by oligodendrocytes after late embryonic development. Although the role of Olig2 in the lineage is well established, the role of Olig1 is still unclear. The current studies analyzed the function of Olig1 in oligodendrocyte differentiation and developmental myelination in brain. Both oligodendrocyte progenitor cell commitment and oligodendrocyte differentiation were impaired in the corpus callosum of Olig1-null mice, resulting in hypomyelination throughout adulthood in the brain. As seen in previous studies with this mouse line, although there was an early myelination deficit in the spinal cord, essentially full recovery with normal spinal cord myelination was seen. Intriguingly, this regional difference may be partially attributed to compensatory upregulation of Olig2 protein expression in the spinal cord after Olig1 deletion, which is not seen in brain. The current study demonstrates a unique role for Olig1 in promoting oligodendrocyte progenitor cell commitment, differentiation, and subsequent myelination primarily in brain, but not spinal cord.

  9. Neurobehavioral and cytotoxic effects of vanadium during oligodendrocyte maturation: a protective role for erythropoietin.

    PubMed

    Mustapha, Oluwaseun; Oke, Bankole; Offen, Nils; Sirén, Anna-Leena; Olopade, James

    2014-07-01

    Vanadium exposure has been known to lead to lipid peroxidation, demyelination and oligodendrocytes depletion. We investigated behaviour and glial reactions in juvenile mice after early neonatal exposure to vanadium, and examined the direct effects of vanadium in oligodendrocyte progenitor cultures from embryonic mice. Neonatal pups exposed to vanadium via lactation for 15 and 22 days all had lower body weights. Behavioural tests showed in most instances a reduction in locomotor activity and negative geotaxis. Brain analyses revealed astrocytic activation and demyelination in the vanadium exposed groups compared to the controls. In cell culture, exposure of oligodendrocytes to 300 μM sodium metavanadate significantly increased cell death. Expression of the oligodendrocyte specific proteins, 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) and oligodendrocyte specific protein (OSP/Claudin) were reduced upon vanadium treatment while simultaneous administration of erythropoietin (EPO; 4-12 U/ml) counteracted vanadium-toxicity. The data suggest that oligodendrocyte damage may explain the increased vulnerability of the juvenile brain to vanadium and support a potential for erythropoietin as a protective agent against vanadium-toxicity during perinatal brain development and maturation. PMID:24927405

  10. Neurobehavioral and cytotoxic effects of vanadium during oligodendrocyte maturation: a protective role for erythropoietin.

    PubMed

    Mustapha, Oluwaseun; Oke, Bankole; Offen, Nils; Sirén, Anna-Leena; Olopade, James

    2014-07-01

    Vanadium exposure has been known to lead to lipid peroxidation, demyelination and oligodendrocytes depletion. We investigated behaviour and glial reactions in juvenile mice after early neonatal exposure to vanadium, and examined the direct effects of vanadium in oligodendrocyte progenitor cultures from embryonic mice. Neonatal pups exposed to vanadium via lactation for 15 and 22 days all had lower body weights. Behavioural tests showed in most instances a reduction in locomotor activity and negative geotaxis. Brain analyses revealed astrocytic activation and demyelination in the vanadium exposed groups compared to the controls. In cell culture, exposure of oligodendrocytes to 300 μM sodium metavanadate significantly increased cell death. Expression of the oligodendrocyte specific proteins, 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) and oligodendrocyte specific protein (OSP/Claudin) were reduced upon vanadium treatment while simultaneous administration of erythropoietin (EPO; 4-12 U/ml) counteracted vanadium-toxicity. The data suggest that oligodendrocyte damage may explain the increased vulnerability of the juvenile brain to vanadium and support a potential for erythropoietin as a protective agent against vanadium-toxicity during perinatal brain development and maturation.

  11. Redox changes induced in hippocampal precursor cells by heavy ion irradiation.

    PubMed

    Limoli, C L; Giedzinski, E; Baure, J; Rola, R; Fike, J R

    2007-06-01

    Hippocampal precursors retain the capacity to proliferate and differentiate throughout life, and their progeny, immature neurons, can undergo neurogenesis, a process believed to be important in maintaining the cognitive health of an organism. A variety of stresses including irradiation have been shown to deplete neural precursor cells, an effect that inhibits neurogenesis and is associated with the onset of cognitive impairments. Our past work has shown that neural precursor cells exposed to X-rays or protons exhibit a prolonged increase in oxidative stress, a factor we hypothesize to be critical in regulating the function of these cells after irradiation and other stresses. Here we report that irradiation of hippocampal precursor cells with high-linear energy transfer (LET) 1 GeV/nucleon 56Fe ions leads to significantly higher levels of oxidative stress when compared to lower LET radiations (X-rays, protons). Irradiation with 1 Gy of 56Fe ions elicits twofold to fivefold higher levels of reactive oxygen species (ROS) compared to unirradiated controls, and at lower doses (precursors exhibit a linear dose response 6 h after heavy ion exposure. The use of the antioxidant lipoic acid (LA) was able to reduce ROS levels below background levels when added before or after 56Fe ion irradiation. These results conclusively show that low doses of 56Fe ions can elicit significant levels of oxidative stress in neural precursor cells. Given the prevalence of heavy ions in space and the duration of interplanetary travel, these data suggest that astronauts are at risk for developing cognitive decrements. However, our results also indicate that antioxidants delivered before as radioprotective agents or after as mitigating agents hold promise as effective countermeasures for ameliorating certain adverse effects of heavy ion exposure to the CNS.

  12. Isolation of Precursor Cells from Waste Solid Fat Tissue

    NASA Technical Reports Server (NTRS)

    Byerly, Diane; Sognier, Marguerite A.

    2009-01-01

    A process for isolating tissue-specific progenitor cells exploits solid fat tissue obtained as waste from such elective surgical procedures as abdominoplasties (tummy tucks) and breast reductions. Until now, a painful and risky process of aspiration of bone marrow has been used to obtain a limited number of tissue- specific progenitor cells. The present process yields more tissue-specific progenitor cells and involves much less pain and risk for the patient. This process includes separation of fat from skin, mincing of the fat into small pieces, and forcing a fat saline mixture through a sieve. The mixture is then digested with collagenase type I in an incubator. After centrifugation tissue-specific progenitor cells are recovered and placed in a tissue-culture medium in flasks or Petri dishes. The tissue-specific progenitor cells can be used for such purposes as (1) generating three-dimensional tissue equivalent models for studying bone loss and muscle atrophy (among other deficiencies) and, ultimately, (2) generating replacements for tissues lost by the fat donor because of injury or disease.

  13. Decrease in circulating myeloid dendritic cell precursors in patients with intracranial large artery atherosclerosis.

    PubMed

    Zhang, Jin-Xia; Li, Bing-Ling; Lin, Zhong-Qiu; Zhang, Ni; Peng, Xiong; Gong, Zhi-Hua; Long, Liu-Cheng; Zhou, Xuan; Xiang, Ding-Cheng

    2015-01-01

    Intracranial large artery atherosclerosis (ILAA) is a major cause of ischemic cerebrovascular disease. The aim of this study was to investigate whether the levels of circulating dendritic cell precursors (DCP) could reflect the severity of intracranial large artery atherosclerosis (ILAA). For this purpose, a series of angiography were taken to determine the severity and extent of coronary artery and intracranial large artery stenosis, and flow cytometry were taken to determine the levels of circulating mDC precursors and pDC precursors in patients with severe intracranial large artery atherosclerosis (ILAA) (n = 101) and mild intracranial large artery atherosclerosis (ILAA) (n = 123) according to the angiography. Circulating mDC precursors were lower in patients with severe intracranial large artery atherosclerosis (ILAA) than in mild intracranial large artery atherosclerosis (ILAA) (P < 0.05), but circulating pDC precursors were not significant differences (P > 0.05). According to these data, circulating mDC precursors could predict the severity of ILAA, which also could be able to reflect the severity of ILAA.

  14. Localisation of N-acetylaspartate in oligodendrocytes/myelin.

    PubMed

    Nordengen, Kaja; Heuser, Christoph; Rinholm, Johanne Egge; Matalon, Reuben; Gundersen, Vidar

    2015-03-01

    The role of N-acetylaspartate in the brain is unclear. Here we used specific antibodies against N-acetylaspartate and immunocytochemistry of carbodiimide-fixed adult rodent brain to show that, besides staining of neuronal cell bodies in the grey matter, N-acetylaspartate labelling was present in oligodendrocytes/myelin in white matter tracts. Immunoelectron microscopy of the rat hippocampus showed that N-acetylaspartate was concentrated in the myelin. Also neuronal cell bodies and axons contained significant amounts of N-acetylaspartate, while synaptic elements and astrocytes were low in N-acetylaspartate. Mitochondria in axons and neuronal cell bodies contained higher levels of N-acetylaspartate compared to the cytosol, compatible with synthesis of N-acetylaspartate in mitochondria. In aspartoacylase knockout mice, in which catabolism of N-acetylaspartate is blocked, the levels of N-acetylaspartate were largely increased in oligodendrocytes/myelin. In these mice, the highest myelin concentration of N-acetylaspartate was found in the cerebellum, a region showing overt dysmyelination. In organotypic cortical slice cultures there was no evidence for N-acetylaspartate-induced myelin toxicity, supporting the notion that myelin damage is induced by the lack of N-acetylaspartate for lipid production. Our findings also implicate that N-acetylaspartate signals on magnetic resonance spectroscopy reflect not only vital neurons but also vital oligodendrocytes/myelin.

  15. Early postradition recovery of hematopoietic stromal precursor cells

    SciTech Connect

    Todriya, T.V.

    1985-04-01

    The aim of this investigation was an immunohistochemical study of alpha-endorphin-producing cells and also a study of rat mast cells (MC in the antral mucosa of the human stomach. Men aged 18 to 30 years undergoing in-patient treatment wre studied. According to the results of radioimmunoassay, antibodies against alpha-endorphin did not react with enkephalins, beta-endorphin, or the C-terminal fragment of beta-endorphin, but had cross reactivity of about 10% with gammaendorphin. Results were subjected to statistical analysis by Student's test at a 85% level of significance and they are shown. The facts presented here suggest that MC of human gastric mucosa include argyrophilic cells which contain alpha-endorphin.

  16. Transplanted neural stem/precursor cells instruct phagocytes and reduce secondary tissue damage in the injured spinal cord.

    PubMed

    Cusimano, Melania; Biziato, Daniela; Brambilla, Elena; Donegà, Matteo; Alfaro-Cervello, Clara; Snider, Silvia; Salani, Giuliana; Pucci, Ferdinando; Comi, Giancarlo; Garcia-Verdugo, Jose Manuel; De Palma, Michele; Martino, Gianvito; Pluchino, Stefano

    2012-02-01

    Transplanted neural stem/precursor cells possess peculiar therapeutic plasticity and can simultaneously instruct several therapeutic mechanisms in addition to cell replacement. Here, we interrogated the therapeutic plasticity of neural stem/precursor cells after their focal implantation in the severely contused spinal cord. We injected syngeneic neural stem/precursor cells at the proximal and distal ends of the contused mouse spinal cord and analysed locomotor functions and relevant secondary pathological events in the mice, cell fate of transplanted neural stem/precursor cells, and gene expression and inflammatory cell infiltration at the injured site. We used two different doses of neural stem/precursor cells and two treatment schedules, either subacute (7 days) or early chronic (21 days) neural stem/precursor cell transplantation after the induction of experimental thoracic severe spinal cord injury. Only the subacute transplant of neural stem/precursor cells enhanced the recovery of locomotor functions of mice with spinal cord injury. Transplanted neural stem/precursor cells survived undifferentiated at the level of the peri-lesion environment and established contacts with endogenous phagocytes via cellular-junctional coupling. This was associated with significant modulation of the expression levels of important inflammatory cell transcripts in vivo. Transplanted neural stem/precursor cells skewed the inflammatory cell infiltrate at the injured site by reducing the proportion of 'classically-activated' (M1-like) macrophages, while promoting the healing of the injured cord. We here identify a precise window of opportunity for the treatment of complex spinal cord injuries with therapeutically plastic somatic stem cells, and suggest that neural stem/precursor cells have the ability to re-programme the local inflammatory cell microenvironment from a 'hostile' to an 'instructive' role, thus facilitating the healing or regeneration past the lesion.

  17. PROGRAMMED CELL DEATH IN EXTRAOCULAR MUSCLE TENDON/SCLERA PRECURSORS

    EPA Science Inventory

    Abstract

    Purpose: This study was designed to examine the occurrence of natural cell death in the periocular mesenchyme of mouse embryos.

    Methods: Vital staining with LysoTracker Red and Nile blue sulphate as well as terminal nick end labeling (TUNEL) were utiliz...

  18. Non-Viral Generation of Neural Precursor-like Cells from Adult Human Fibroblasts

    PubMed Central

    Maucksch, C; Firmin, E; Butler-Munro, C; Montgomery, JM; Dottori, M; Connor, B

    2012-01-01

    Recent studies have reported direct reprogramming of human fibroblasts to mature neurons by the introduction of defined neural genes. This technology has potential use in the areas of neurological disease modeling and drug development. However, use of induced neurons for large-scale drug screening and cell-based replacement strategies is limited due to their inability to expand once reprogrammed. We propose it would be more desirable to induce expandable neural precursor cells directly from human fibroblasts. To date several pluripotent and neural transcription factors have been shown to be capable of converting mouse fibroblasts to neural stem/precursor-like cells when delivered by viral vectors. Here we extend these findings and demonstrate that transient ectopic insertion of the transcription factors SOX2 and PAX6 to adult human fibroblasts through use of non-viral plasmid transfection or protein transduction allows the generation of induced neural precursor (iNP) colonies expressing a range of neural stem and pro-neural genes. Upon differentiation, iNP cells give rise to neurons exhibiting typical neuronal morphologies and expressing multiple neuronal markers including tyrosine hydroxylase and GAD65/67. Importantly, iNP-derived neurons demonstrate electrophysiological properties of functionally mature neurons with the capacity to generate action potentials. In addition, iNP cells are capable of differentiating into glial fibrillary acidic protein (GFAP)-expressing astrocytes. This study represents a novel virusfree approach for direct reprogramming of human fibroblasts to a neural precursor fate. PMID:24693194

  19. Blockade of microglial KATP -channel abrogates suppression of inflammatory-mediated inhibition of neural precursor cells.

    PubMed

    Ortega, Francisco J; Vukovic, Jana; Rodríguez, Manuel J; Bartlett, Perry F

    2014-02-01

    Microglia positively affect neural progenitor cell physiology through the release of inflammatory mediators or trophic factors. We demonstrated previously that reactive microglia foster K(ATP) -channel expression and that blocking this channel using glibenclamide administration enhances striatal neurogenesis after stroke. In this study, we investigated whether the microglial K(ATP) -channel directly influences the activation of neural precursor cells (NPCs) from the subventricular zone using transgenic Csf1r-GFP mice. In vitro exposure of NPCs to lipopolysaccharide and interferon-gamma resulted in a significant decrease in precursor cell number. The complete removal of microglia from the culture or exposure to enriched microglia culture also decreased the precursor cell number. The addition of glibenclamide rescued the negative effects of enriched microglia on neurosphere formation and promoted a ∼20% improvement in precursor cell number. Similar results were found using microglial-conditioned media from isolated microglia. Using primary mixed glial and pure microglial cultures, glibenclamide specifically targeted reactive microglia to restore neurogenesis and increased the microglial production of the chemokine monocyte chemoattractant protein-1 (MCP-1). These findings provide the first direct evidence that the microglial K(ATP) -channel is a regulator of the proliferation of NPCs under inflammatory conditions.

  20. Identification of embryonic precursor cells that differentiate into thymic epithelial cells expressing autoimmune regulator.

    PubMed

    Akiyama, Nobuko; Takizawa, Nobukazu; Miyauchi, Maki; Yanai, Hiromi; Tateishi, Ryosuke; Shinzawa, Miho; Yoshinaga, Riko; Kurihara, Masaaki; Demizu, Yosuke; Yasuda, Hisataka; Yagi, Shintaro; Wu, Guoying; Matsumoto, Mitsuru; Sakamoto, Reiko; Yoshida, Nobuaki; Penninger, Josef M; Kobayashi, Yasuhiro; Inoue, Jun-Ichiro; Akiyama, Taishin

    2016-07-25

    Medullary thymic epithelial cells (mTECs) expressing autoimmune regulator (Aire) are critical for preventing the onset of autoimmunity. However, the differentiation program of Aire-expressing mTECs (Aire(+) mTECs) is unclear. Here, we describe novel embryonic precursors of Aire(+) mTECs. We found the candidate precursors of Aire(+) mTECs (pMECs) by monitoring the expression of receptor activator of nuclear factor-κB (RANK), which is required for Aire(+) mTEC differentiation. pMECs unexpectedly expressed cortical TEC molecules in addition to the mTEC markers UEA-1 ligand and RANK and differentiated into mTECs in reaggregation thymic organ culture. Introduction of pMECs in the embryonic thymus permitted long-term maintenance of Aire(+) mTECs and efficiently suppressed the onset of autoimmunity induced by Aire(+) mTEC deficiency. Mechanistically, pMECs differentiated into Aire(+) mTECs by tumor necrosis factor receptor-associated factor 6-dependent RANK signaling. Moreover, nonclassical nuclear factor-κB activation triggered by RANK and lymphotoxin-β receptor signaling promoted pMEC induction from progenitors exhibiting lower RANK expression and higher CD24 expression. Thus, our findings identified two novel stages in the differentiation program of Aire(+) mTECs. PMID:27401343

  1. Alcohol-Induced Molecular Dysregulation in Human Embryonic Stem Cell-Derived Neural Precursor Cells

    PubMed Central

    Kim, Yi Young; Roubal, Ivan; Lee, Youn Soo; Kim, Jin Seok; Hoang, Michael; Mathiyakom, Nathan; Kim, Yong

    2016-01-01

    Adverse effect of alcohol on neural function has been well documented. Especially, the teratogenic effect of alcohol on neurodevelopment during embryogenesis has been demonstrated in various models, which could be a pathologic basis for fetal alcohol spectrum disorders (FASDs). While the developmental defects from alcohol abuse during gestation have been described, the specific mechanisms by which alcohol mediates these injuries have yet to be determined. Recent studies have shown that alcohol has significant effect on molecular and cellular regulatory mechanisms in embryonic stem cell (ESC) differentiation including genes involved in neural development. To test our hypothesis that alcohol induces molecular alterations during neural differentiation we have derived neural precursor cells from pluripotent human ESCs in the presence or absence of ethanol treatment. Genome-wide transcriptomic profiling identified molecular alterations induced by ethanol exposure during neural differentiation of hESCs into neural rosettes and neural precursor cell populations. The Database for Annotation, Visualization and Integrated Discovery (DAVID) functional analysis on significantly altered genes showed potential ethanol’s effect on JAK-STAT signaling pathway, neuroactive ligand-receptor interaction, Toll-like receptor (TLR) signaling pathway, cytokine-cytokine receptor interaction and regulation of autophagy. We have further quantitatively verified ethanol-induced alterations of selected candidate genes. Among verified genes we further examined the expression of P2RX3, which is associated with nociception, a peripheral pain response. We found ethanol significantly reduced the level of P2RX3 in undifferentiated hESCs, but induced the level of P2RX3 mRNA and protein in hESC-derived NPCs. Our result suggests ethanol-induced dysregulation of P2RX3 along with alterations in molecules involved in neural activity such as neuroactive ligand-receptor interaction may be a molecular event

  2. Remyelination by oligodendrocytes stimulated by antiserum to spinal cord.

    PubMed

    Rodriguez, M; Lennon, V A; Benveniste, E N; Merrill, J E

    1987-01-01

    The new synthesis of myelin and the proliferation of oligodendrocytes was stimulated by serum from syngeneic mice immunized with homogenized spinal cord (SCH). Treatment with this antiserum produced a 10-fold increase in the area of remyelination in spinal cords that had become demyelinated previously as a result of infection by Theiler's murine encephalomyelitis virus. Inflammation was decreased in regions of white matter that showed remyelination. Oligodendrocytes exposed to anti-SCH in vitro incorporated three to five times more [3H]thymidine than resting cells did and expressed more myelin basic protein in their cytoplasm, suggesting stimulation of myelinogenesis. Thus, there is a factor present in anti-SCH antiserum that stimulates central nervous system-type remyelination. This finding may provide clues for the therapy of patients with demyelinating disorders such as multiple sclerosis.

  3. NG2-glia as multipotent neural stem cells – fact or fantasy?

    PubMed Central

    Richardson, William D; Young, Kaylene M; Tripathi, Richa B; McKenzie, Ian

    2011-01-01

    Summary Cycling glial precursors - “NG2-glia” - are abundant in the developing and mature central nervous system (CNS). During development they generate oligodendrocytes. In culture, they can revert to a multipotent state, suggesting that they might have latent stem cell potential that could be harnessed to treat neurodegenerative disease. This hope has been subdued recently by a series of fate mapping studies that cast NG2-glia as dedicated oligodendrocyte precursors in the healthy adult CNS - though rare neuron production in the piriform cortex remains a possibility. Following CNS damage, the repertoire of NG2-glia expands to include Schwann cells and possibly astrocytes – but so far not neurons. This confirms the central role of NG2-glia in myelin repair. The realization that oligodendrocyte generation continues throughout normal adulthood has seeded the idea that myelin genesis might also be involved in neural plasticity. We review these developments, highlighting areas of current interest, contention and speculation. PMID:21609823

  4. Smooth Muscle Precursor Cells Derived from Human Pluripotent Stem Cells for Treatment of Stress Urinary Incontinence

    PubMed Central

    Wang, Zhe; Li, Yan Hui; Wei, Yi; Green, Morgaine; Wani, Prachi; Zhang, Pengbo; Pera, Renee Reijo; Chen, Bertha

    2016-01-01

    There is great interest in using stem cells (SC) to regenerate a deficient urethral sphincter in patients with urinary incontinence. The smooth muscle component of the sphincter is a significant contributor to sphincter function. However, current translational efforts for sphincter muscle restoration focus only on skeletal muscle regeneration because they rely on adult mesenchymal SC as cell source. These adult SC do not yield sufficient smooth muscle cells (SMCs) for transplantation. We may be able to overcome this limitation by using pluripotent stem cell (PSC) to derive SMCs. Hence, we sought to investigate whether smooth muscle precursor cells (pSMCs) derived from human PSCs can restore urethral function in an animal model generated by surgical urethrolysis and ovariectomy. Rats were divided into four groups: control (no intervention), sham saline (surgery + saline injection), bladder SMC (surgery + human bladder SMC injection), and treatment (surgery + pSMC injection, which includes human embryonic stem cell (hESC) H9-derived pSMC, episomal reprogrammed induced pluripotent stem cells (iPSCs)-derived pSMC, or viral reprogrammed iPSC-derived pSMC). pSMCs (2 × 106 cells/rat) were injected periurethrally 3 weeks postsurgery. Leak point pressure (LPP) and baseline external urethral sphincter electromyography were measured 5 weeks postinjection. Both iPSC-derived pSMC treatment groups showed significantly higher LPP compared to the sham saline group, consistent with restoration of urethral sphincter function. While the difference between the H9-derived pSMC treatment and sham saline group was not significant, it did show a trend toward restoration of the LPP to the level of intact controls. Our data indicate that pSMCs derived from human PSCs (hESC and iPSC) can restore sphincter function. PMID:26785911

  5. SNX27, a protein involved in down syndrome, regulates GPR17 trafficking and oligodendrocyte differentiation.

    PubMed

    Meraviglia, Veronica; Ulivi, Alessandro Francesco; Boccazzi, Marta; Valenza, Fabiola; Fratangeli, Alessandra; Passafaro, Maria; Lecca, Davide; Stagni, Fiorenza; Giacomini, Andrea; Bartesaghi, Renata; Abbracchio, Maria P; Ceruti, Stefania; Rosa, Patrizia

    2016-08-01

    The G protein-coupled receptor 17 (GPR17) plays crucial roles in myelination. It is highly expressed during transition of oligodendrocyte progenitor cells to immature oligodendrocytes, but, after this stage, it must be down-regulated to allow generation of mature myelinating cells. After endocytosis, GPR17 is sorted into lysosomes for degradation or recycled to the plasma membrane. Balance between degradation and recycling is important for modulation of receptor levels at the cell surface and thus for the silencing/activation of GPR17-signaling pathways that, in turn, affect oligodendrocyte differentiation. The molecular mechanisms at the basis of these processes are still partially unknown and their characterization will allow a better understanding of myelination and provide cues to interpret the consequences of GPR17 dysfunction in diseases. Here, we demonstrate that the endocytic trafficking of GPR17 is mediated by the interaction of a type I PDZ-binding motif located at the C-terminus of the receptor and SNX27, a recently identified protein of the endosome-associated retromer complex and whose functions in oligodendrocytes have never been studied. SNX27 knock-down significantly reduces GPR17 plasma membrane recycling in differentiating oligodendrocytes while accelerating cells' terminal maturation. Interestingly, trisomy-linked down-regulation of SNX27 expression in the brain of Ts65Dn mice, a model of Down syndrome, correlates with a decrease in GPR17(+) cells and an increase in mature oligodendrocytes, which, however, fail in reaching full maturation, eventually leading to hypomyelination. Our data demonstrate that SNX27 modulates GPR17 plasma membrane recycling and stability, and that disruption of the SNX27/GPR17 interaction might contribute to pathological oligodendrocyte differentiation defects. GLIA 2016. GLIA 2016;64:1437-1460.

  6. SNX27, a protein involved in down syndrome, regulates GPR17 trafficking and oligodendrocyte differentiation.

    PubMed

    Meraviglia, Veronica; Ulivi, Alessandro Francesco; Boccazzi, Marta; Valenza, Fabiola; Fratangeli, Alessandra; Passafaro, Maria; Lecca, Davide; Stagni, Fiorenza; Giacomini, Andrea; Bartesaghi, Renata; Abbracchio, Maria P; Ceruti, Stefania; Rosa, Patrizia

    2016-08-01

    The G protein-coupled receptor 17 (GPR17) plays crucial roles in myelination. It is highly expressed during transition of oligodendrocyte progenitor cells to immature oligodendrocytes, but, after this stage, it must be down-regulated to allow generation of mature myelinating cells. After endocytosis, GPR17 is sorted into lysosomes for degradation or recycled to the plasma membrane. Balance between degradation and recycling is important for modulation of receptor levels at the cell surface and thus for the silencing/activation of GPR17-signaling pathways that, in turn, affect oligodendrocyte differentiation. The molecular mechanisms at the basis of these processes are still partially unknown and their characterization will allow a better understanding of myelination and provide cues to interpret the consequences of GPR17 dysfunction in diseases. Here, we demonstrate that the endocytic trafficking of GPR17 is mediated by the interaction of a type I PDZ-binding motif located at the C-terminus of the receptor and SNX27, a recently identified protein of the endosome-associated retromer complex and whose functions in oligodendrocytes have never been studied. SNX27 knock-down significantly reduces GPR17 plasma membrane recycling in differentiating oligodendrocytes while accelerating cells' terminal maturation. Interestingly, trisomy-linked down-regulation of SNX27 expression in the brain of Ts65Dn mice, a model of Down syndrome, correlates with a decrease in GPR17(+) cells and an increase in mature oligodendrocytes, which, however, fail in reaching full maturation, eventually leading to hypomyelination. Our data demonstrate that SNX27 modulates GPR17 plasma membrane recycling and stability, and that disruption of the SNX27/GPR17 interaction might contribute to pathological oligodendrocyte differentiation defects. GLIA 2016. GLIA 2016;64:1437-1460. PMID:27270750

  7. Hdac3 Interaction with p300 Histone Acetyltransferase Regulates the Oligodendrocyte and Astrocyte Lineage Fate Switch.

    PubMed

    Zhang, Liguo; He, Xuelian; Liu, Lei; Jiang, Minqing; Zhao, Chuntao; Wang, Haibo; He, Danyang; Zheng, Tao; Zhou, Xianyao; Hassan, Aishlin; Ma, Zhixing; Xin, Mei; Sun, Zheng; Lazar, Mitchell A; Goldman, Steven A; Olson, Eric N; Lu, Q Richard

    2016-02-01

    Establishment and maintenance of CNS glial cell identity ensures proper brain development and function, yet the epigenetic mechanisms underlying glial fate control remain poorly understood. Here, we show that the histone deacetylase Hdac3 controls oligodendrocyte-specification gene Olig2 expression and functions as a molecular switch for oligodendrocyte and astrocyte lineage determination. Hdac3 ablation leads to a significant increase of astrocytes with a concomitant loss of oligodendrocytes. Lineage tracing indicates that the ectopic astrocytes originate from oligodendrocyte progenitors. Genome-wide occupancy analysis reveals that Hdac3 interacts with p300 to activate oligodendroglial lineage-specific genes, while suppressing astroglial differentiation genes including NFIA. Furthermore, we find that Hdac3 modulates the acetylation state of Stat3 and competes with Stat3 for p300 binding to antagonize astrogliogenesis. Thus, our data suggest that Hdac3 cooperates with p300 to prime and maintain oligodendrocyte identity while inhibiting NFIA and Stat3-mediated astrogliogenesis, and thereby regulates phenotypic commitment at the point of oligodendrocyte-astrocytic fate decision.

  8. Hdac3 Interaction with p300 Histone Acetyltransferase Regulates the Oligodendrocyte and Astrocyte Lineage Fate Switch.

    PubMed

    Zhang, Liguo; He, Xuelian; Liu, Lei; Jiang, Minqing; Zhao, Chuntao; Wang, Haibo; He, Danyang; Zheng, Tao; Zhou, Xianyao; Hassan, Aishlin; Ma, Zhixing; Xin, Mei; Sun, Zheng; Lazar, Mitchell A; Goldman, Steven A; Olson, Eric N; Lu, Q Richard

    2016-02-01

    Establishment and maintenance of CNS glial cell identity ensures proper brain development and function, yet the epigenetic mechanisms underlying glial fate control remain poorly understood. Here, we show that the histone deacetylase Hdac3 controls oligodendrocyte-specification gene Olig2 expression and functions as a molecular switch for oligodendrocyte and astrocyte lineage determination. Hdac3 ablation leads to a significant increase of astrocytes with a concomitant loss of oligodendrocytes. Lineage tracing indicates that the ectopic astrocytes originate from oligodendrocyte progenitors. Genome-wide occupancy analysis reveals that Hdac3 interacts with p300 to activate oligodendroglial lineage-specific genes, while suppressing astroglial differentiation genes including NFIA. Furthermore, we find that Hdac3 modulates the acetylation state of Stat3 and competes with Stat3 for p300 binding to antagonize astrogliogenesis. Thus, our data suggest that Hdac3 cooperates with p300 to prime and maintain oligodendrocyte identity while inhibiting NFIA and Stat3-mediated astrogliogenesis, and thereby regulates phenotypic commitment at the point of oligodendrocyte-astrocytic fate decision. PMID:26859354

  9. Oligodendrocyte-microglia cross-talk in the central nervous system.

    PubMed

    Peferoen, Laura; Kipp, Markus; van der Valk, Paul; van Noort, Johannes M; Amor, Sandra

    2014-03-01

    Communication between the immune system and the central nervous system (CNS) is exemplified by cross-talk between glia and neurons shown to be essential for maintaining homeostasis. While microglia are actively modulated by neurons in the healthy brain, little is known about the cross-talk between oligodendrocytes and microglia. Oligodendrocytes, the myelin-forming cells in the CNS, are essential for the propagation of action potentials along axons, and additionally serve to support neurons by producing neurotrophic factors. In demyelinating diseases such as multiple sclerosis, oligodendrocytes are thought to be the victims. Here, we review evidence that oligodendrocytes also have strong immune functions, express a wide variety of innate immune receptors, and produce and respond to chemokines and cytokines that modulate immune responses in the CNS. We also review evidence that during stress events in the brain, oligodendrocytes can trigger a cascade of protective and regenerative responses, in addition to responses that elicit progressive neurodegeneration. Knowledge of the cross-talk between microglia and oligodendrocytes may continue to uncover novel pathways of immune regulation in the brain that could be further exploited to control neuroinflammation and degeneration.

  10. Histone Deacetylase Expression in White Matter Oligodendrocytes after Stroke

    PubMed Central

    Kassis, Haifa; Chopp, Michael; Liu, Xian Shuang; Shehadah, Amjad; Roberts, Cynthia; Zhang, Zheng Gang

    2015-01-01

    Histone deacetylases (HDACs) constitute a super-family of enzymes grouped into four major classes (Class I–IV) that deacetylate histone tails leading to chromatin condensation and gene repression. Whether stroke-induced oligodendrogenesis is related to the expression of individual HDACs in the oligodendrocyte lineage has not been investigated. We found that 2 days after stroke, oligodendrocyte progenitor cells (OPCs) and mature oligodendrocytes (OLGs) were substantially reduced in the peri-infarct corpus callosum, whereas at 7 days after stroke, a robust increase in OPCs and OLGs was observed. Ischemic brains isolated from rats sacrificed 7 days after stroke were used to test levels of individual members of Class I (1 and 2) and Class II (4 and 5) HDACs in white matter oligodendrocytes during stroke-induced oligodendrogenesis. Double immunohistochemistry analysis revealed that stroke substantially increased the number of NG2+ OPCs with nuclear HDAC1 and HDAC2 immunoreactivity and cytoplasmic HDAC4 which were associated with augmentation of proliferating OPCs, as determined by BrdU and Ki67 double reactive cells after stroke. A decrease in HDAC1 and an increase in HDAC2 immunoreactivity were detected in mature adenomatous polyposis coli (APC) positive OLGs, which paralleled an increase in newly generated BrdU positive OLGs in the peri-infarct corpus callosum. Concurrently, stroke substantially decreased the acetylation levels of histones H3 and H4 in both OPCs and OLGs. Taken together, these findings demonstrate that stroke induces distinct profiles of Class I and Class II HDACs in white matter OPCs and OLGs, suggesting that the individual members of Class I and II HDACs play divergent roles in the regulation of OPC proliferation and differentiation during brain repair after stroke. PMID:24657831

  11. Review of terminology of precursors of vulvar squamous cell carcinoma.

    PubMed

    Scurry, James; Wilkinson, Edward J

    2006-07-01

    The popular term for vulvar squamous cell carcinoma in situ/dysplasia is vulvar intraepithelial neoplasia (VIN). VIN is a histological diagnosis based on loss of squamous epithelial maturation associated with enlarged, hyperchromatic, pleomorphic nuclei and increased, usually atypical mitoses. There are two types of VIN: the usual (not otherwise specified) type, also known as warty-basaloid, and the differentiated type. There are 3 grading systems for warty-basaloid VIN: the traditional 3-grade system of VIN 1-3, a low-grade/high grade Bethesda-like system and the International Society for the Study of Vulvovaginal Disease's proposal for only 1 grade. The ISSVD system eliminates VIN 1 and combines VIN 2 and 3 on the grounds that VIN 1 has not been shown to be a reproducible diagnosis and VIN 2 and 3 are not reliably separated. The evidence supports the ISSVD proposal. Warty basaloid VIN may be sub-typed into warty and basaloid VIN. Sub-typing has clinical relevance but its reproducibility is not proven. Warty-basaloid VIN may regress. Differentiated VIN has been typically diagnosed co-incident with squamous cell carcinoma. With increased frequency of performance of biopsy of hyperplastic lesions, differentiated VIN should be diagnosed more commonly before squamous carcinoma occurs.

  12. In vitro differentiation of porcine aortic vascular precursor cells to endothelial and vascular smooth muscle cells.

    PubMed

    Zaniboni, Andrea; Bernardini, Chiara; Bertocchi, Martina; Zannoni, Augusta; Bianchi, Francesca; Avallone, Giancarlo; Mangano, Chiara; Sarli, Giuseppe; Calzà, Laura; Bacci, Maria Laura; Forni, Monica

    2015-09-01

    Recent findings suggest that progenitor and multipotent mesenchymal stromal cells (MSCs) are associated with vascular niches. Cells displaying mesenchymal properties and differentiating to whole components of a functional blood vessel, including endothelial and smooth muscle cells, can be defined as vascular stem cells (VSCs). Recently, we isolated a population of porcine aortic vascular precursor cells (pAVPCs), which have MSC- and pericyte-like properties. The aim of the present work was to investigate whether pAVPCs possess VSC-like properties and assess their differentiation potential toward endothelial and smooth muscle lineages. pAVPCs, maintained in a specific pericyte growth medium, were cultured in high-glucose DMEM + 10% FBS (long-term medium, LTM) or in human endothelial serum-free medium + 5% FBS and 50 ng/ml of hVEGF (endothelial differentiation medium, EDM). After 21 days of culture in LTM, pAVPCs showed an elongated fibroblast-like morphology, and they seem to organize in cord-like structures. qPCR analysis of smooth muscle markers [α-smooth muscle actin (α-SMA), calponin, and smooth muscle myosin (SMM) heavy chain] showed a significant increment of the transcripts, and immunofluorescence analysis confirmed the presence of α-SMA and SMM proteins. After 21 days of culture in EDM, pAVPCs displayed an endothelial cell-like morphology and revealed the upregulation of the expression of endothelial markers (CD31, vascular endothelial-cadherin, von Willebrand factor, and endothelial nitric oxide synthase) showing the CD31-typical pattern. In conclusion, pAVPCs could be defined as a VSC-like population considering that, if they are maintained in a specific pericyte medium, they express MSC markers, and they have, in addition to the classical mesenchymal trilineage differentiation potential, the capacity to differentiate in vitro toward the smooth muscle and the endothelial cell phenotypes.

  13. JC virus inclusions in progressive multifocal leukoencephalopathy: scaffolding promyelocytic leukemia nuclear bodies grow with cell cycle transition through an S-to-G2-like state in enlarging oligodendrocyte nuclei.

    PubMed

    Shishido-Hara, Yukiko; Yazawa, Takuya; Nagane, Motoo; Higuchi, Kayoko; Abe-Suzuki, Shiho; Kurata, Morito; Kitagawa, Masanobu; Kamma, Hiroshi; Uchihara, Toshiki

    2014-05-01

    In progressive multifocal leukoencephalopathy, JC virus-infected oligodendroglia display 2 distinct patterns of intranuclear viral inclusions: full inclusions in which progeny virions are present throughout enlarged nuclei and dot-shaped inclusions in which virions are clustered in subnuclear domains termed "promyelocytic leukemia nuclear bodies" (PML-NBs). Promyelocytic leukemia nuclear bodies may serve a scaffolding role in viral progeny production. We analyzed the formation process of intranuclear viral inclusions by morphometry and assessed PML-NB alterations in the brains of 2 patients with progressive multifocal leukoencephalopathy. By immunohistochemistry, proliferating cell nuclear antigen was most frequently detected in smaller nuclei; cyclin A was detected in larger nuclei. This suggests an S-to-G2 cell cycle transition in infected cells associated with nuclear enlargement. Sizes of PML-NBs were variable, but they were usually either small speckles 200 to 400 nm in diameter or distinct spherical shells with a diameter of 1 μm or more. By confocal microscopy, JC virus capsid proteins were associated with both small and large PML-NBs, but disruption of large PML-NBs was observed by ground-state depletion fluorescence nanoscopy. Clusters of progeny virions were also detected by electron microscopy. Our data suggest that, in progressive multifocal leukoencephalopathy, JC virus produces progeny virions in enlarging oligodendrocyte nuclei in association with growing PML-NBs and with cell cycle transition through an S-to-G2-like state.

  14. Meninges harbor cells expressing neural precursor markers during development and adulthood.

    PubMed

    Bifari, Francesco; Berton, Valeria; Pino, Annachiara; Kusalo, Marijana; Malpeli, Giorgio; Di Chio, Marzia; Bersan, Emanuela; Amato, Eliana; Scarpa, Aldo; Krampera, Mauro; Fumagalli, Guido; Decimo, Ilaria

    2015-01-01

    Brain and skull developments are tightly synchronized, allowing the cranial bones to dynamically adapt to the brain shape. At the brain-skull interface, meninges produce the trophic signals necessary for normal corticogenesis and bone development. Meninges harbor different cell populations, including cells forming the endosteum of the cranial vault. Recently, we and other groups have described the presence in meninges of a cell population endowed with neural differentiation potential in vitro and, after transplantation, in vivo. However, whether meninges may be a niche for neural progenitor cells during embryonic development and in adulthood remains to be determined. In this work we provide the first description of the distribution of neural precursor markers in rat meninges during development up to adulthood. We conclude that meninges share common properties with the classical neural stem cell niche, as they: (i) are a highly proliferating tissue; (ii) host cells expressing neural precursor markers such as nestin, vimentin, Sox2 and doublecortin; and (iii) are enriched in extracellular matrix components (e.g., fractones) known to bind and concentrate growth factors. This study underlines the importance of meninges as a potential niche for endogenous precursor cells during development and in adulthood.

  15. Shortened telomere length in white matter oligodendrocytes in major depression: potential role of oxidative stress.

    PubMed

    Szebeni, Attila; Szebeni, Katalin; DiPeri, Timothy; Chandley, Michelle J; Crawford, Jessica D; Stockmeier, Craig A; Ordway, Gregory A

    2014-10-01

    Telomere shortening is observed in peripheral mononuclear cells from patients with major depressive disorder (MDD). Whether this finding and its biological causes impact the health of the brain in MDD is unknown. Brain cells have differing vulnerabilities to biological mechanisms known to play a role in accelerating telomere shortening. Here, two glia cell populations (oligodendrocytes and astrocytes) known to have different vulnerabilities to a key mediator of telomere shortening, oxidative stress, were studied. The two cell populations were separately collected by laser capture micro-dissection of two white matter regions shown previously to demonstrate pathology in MDD patients. Cells were collected from brain donors with MDD at the time of death and age-matched psychiatrically normal control donors (N = 12 donor pairs). Relative telomere lengths in white matter oligodendrocytes, but not astrocytes, from both brain regions were significantly shorter for MDD donors as compared to matched control donors. Gene expression levels of telomerase reverse transcriptase were significantly lower in white matter oligodendrocytes from MDD as compared to control donors. Likewise, the gene expression of oxidative defence enzymes superoxide dismutases (SOD1 and SOD2), catalase (CAT) and glutathione peroxidase (GPX1) were significantly lower in oligodendrocytes from MDD as compared to control donors. No such gene expression changes were observed in astrocytes from MDD donors. These findings suggest that attenuated oxidative stress defence and deficient telomerase contribute to telomere shortening in oligodendrocytes in MDD, and suggest an aetiological link between telomere shortening and white matter abnormalities previously described in MDD.

  16. HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen

    PubMed Central

    Jardine, Joseph G.; Kulp, Daniel W.; Havenar-Daughton, Colin; Sarkar, Anita; Briney, Bryan; Sok, Devin; Sesterhenn, Fabian; Ereño-Orbea, June; Kalyuzhniy, Oleksandr; Deresa, Isaiah; Hu, Xiaozhen; Spencer, Skye; Jones, Meaghan; Georgeson, Erik; Adachi, Yumiko; Kubitz, Michael; deCamp, Allan C.; Julien, Jean-Philippe; Wilson, Ian A.; Burton, Dennis R.; Crotty, Shane; Schief, William R.

    2016-01-01

    Induction of broadly neutralizing antibodies (bnAbs) is a major HIV vaccine goal. Germline-targeting immunogens aim to initiate bnAb induction by activating bnAb germline precursor B cells. Critical unmet challenges are to determine whether bnAb precursor naïve B cells bind germline-targeting immunogens and occur at sufficient frequency in humans for reliable vaccine responses. We employed deep mutational scanning and multi-target optimization to develop a germline-targeting immunogen (eOD-GT8) for diverse VRC01-class bnAbs. We then used the immunogen to isolate VRC01-class precursor naïve B cells from HIV-uninfected donors. Frequencies of true VRC01-class precursors, their structures, and their eOD-GT8 affinities support this immunogen as a candidate human vaccine prime. These methods could be applied to germline targeting for other classes of HIV bnAbs and for Abs to other pathogens. PMID:27013733

  17. HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen.

    PubMed

    Jardine, Joseph G; Kulp, Daniel W; Havenar-Daughton, Colin; Sarkar, Anita; Briney, Bryan; Sok, Devin; Sesterhenn, Fabian; Ereño-Orbea, June; Kalyuzhniy, Oleksandr; Deresa, Isaiah; Hu, Xiaozhen; Spencer, Skye; Jones, Meaghan; Georgeson, Erik; Adachi, Yumiko; Kubitz, Michael; deCamp, Allan C; Julien, Jean-Philippe; Wilson, Ian A; Burton, Dennis R; Crotty, Shane; Schief, William R

    2016-03-25

    Induction of broadly neutralizing antibodies (bnAbs) is a major HIV vaccine goal. Germline-targeting immunogens aim to initiate bnAb induction by activating bnAb germline precursor B cells. Critical unmet challenges are to determine whether bnAb precursor naïve B cells bind germline-targeting immunogens and occur at sufficient frequency in humans for reliable vaccine responses. Using deep mutational scanning and multitarget optimization, we developed a germline-targeting immunogen (eOD-GT8) for diverse VRC01-class bnAbs. We then used the immunogen to isolate VRC01-class precursor naïve B cells from HIV-uninfected donors. Frequencies of true VRC01-class precursors, their structures, and their eOD-GT8 affinities support this immunogen as a candidate human vaccine prime. These methods could be applied to germline targeting for other classes of HIV bnAbs and for Abs to other pathogens.

  18. Interaction of type A lantibiotics with undecaprenol-bound cell envelope precursors.

    PubMed

    Müller, Anna; Ulm, Hannah; Reder-Christ, Katrin; Sahl, Hans-Georg; Schneider, Tanja

    2012-06-01

    Lantibiotics are a unique group within the antimicrobial peptides characterized by the presence of thioether amino acids (lanthionine and methyllanthionine). These peptides are produced by and primarily act on Gram-positive bacteria exerting multiple activities at the cytoplasmic membrane of susceptible strains. Previously, the cell wall precursor lipid II was identified as the molecular target for the prototype lantibiotic nisin. Binding and sequestration of lipid II blocks the incorporation of the central cell wall precursor into the growing peptidoglycan network, thereby inhibiting the formation of a functional cell wall. Additionally, nisin combines this activity with a unique target-mediated pore formation, using lipid II as a docking molecule. The interaction with the pyrophosphate moiety of lipid II is crucial for nisin binding. We show that, besides binding to lipid II, nisin interacts with the lipid intermediates lipid III (undecaprenol-pyrophosphate-N-acetyl-glucosamine) and lipid IV (undecaprenol-pyrophosphate-N-acetyl-glucosamine-N-acetyl-mannosamine) of the wall teichoic acid (WTA) biosynthesis pathway. Binding of nisin to the precursors was observed at a stoichiometry of 2:1. The specific interaction with WTA precursors further promoted target-mediated pore formation in artificial lipid bilayers. Specific interactions with lipid III and lipid IV could also be demonstrated for related type A lantibiotics, for example, gallidermin, containing the conserved lipid-II-binding motif. PMID:22432708

  19. Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells.

    PubMed

    Kulikova, Veronika; Shabalin, Konstantin; Nerinovski, Kirill; Dölle, Christian; Niere, Marc; Yakimov, Alexander; Redpath, Philip; Khodorkovskiy, Mikhail; Migaud, Marie E; Ziegler, Mathias; Nikiforov, Andrey

    2015-11-01

    NAD is essential for cellular metabolism and has a key role in various signaling pathways in human cells. To ensure proper control of vital reactions, NAD must be permanently resynthesized. Nicotinamide and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR) are the major precursors for NAD biosynthesis in humans. In this study, we explored whether the ribosides NR and NAR can be generated in human cells. We demonstrate that purified, recombinant human cytosolic 5'-nucleotidases (5'-NTs) CN-II and CN-III, but not CN-IA, can dephosphorylate the mononucleotides nicotinamide mononucleotide and nicotinic acid mononucleotide (NAMN) and thus catalyze NR and NAR formation in vitro. Similar to their counterpart from yeast, Sdt1, the human 5'-NTs require high (millimolar) concentrations of nicotinamide mononucleotide or NAMN for efficient catalysis. Overexpression of FLAG-tagged CN-II and CN-III in HEK293 and HepG2 cells resulted in the formation and release of NAR. However, NAR accumulation in the culture medium of these cells was only detectable under conditions that led to increased NAMN production from nicotinic acid. The amount of NAR released from cells engineered for increased NAMN production was sufficient to maintain viability of surrounding cells unable to use any other NAD precursor. Moreover, we found that untransfected HeLa cells produce and release sufficient amounts of NAR and NR under normal culture conditions. Collectively, our results indicate that cytosolic 5'-NTs participate in the conversion of NAD precursors and establish NR and NAR as integral constituents of human NAD metabolism. In addition, they point to the possibility that different cell types might facilitate each other's NAD supply by providing alternative precursors. PMID:26385918

  20. The Activators of Cyclin-Dependent Kinase 5 p35 and p39 Are Essential for Oligodendrocyte Maturation, Process Formation, and Myelination

    PubMed Central

    Luo, Fucheng; Zhang, Jessie; Burke, Kathryn

    2016-01-01

    The regulation of oligodendrocyte development and myelin formation in the CNS is poorly defined. Multiple signals influence the rate and extent of CNS myelination, including the noncanonical cyclin-dependent kinase 5 (Cdk5) whose functions are regulated by its activators p35 and p39. Here we show that selective loss of either p35 or p39 perturbed specific aspects of oligodendrocyte development, whereas loss of both p35 and p39 completely inhibited the development of mature oligodendrocytes and myelination. In the absence of p35, oligodendrocyte differentiation was delayed, process outgrowth was truncated in vitro, and the patterning and extent of myelination were perturbed in the CNS of p35−/− mice. In the absence of p39, oligodendrocyte maturation was transiently affected both in vitro and in vivo. However, loss of both p35 and p39 in oligodendrocyte lineage cells completely inhibited oligodendrocyte progenitor cell differentiation and myelination both in vitro and after transplantation into shiverer slice cultures. Loss of p35 and p39 had a more profound effect on oligodendrocyte development than simply the loss of Cdk5 and could not be rescued by Cdk5 overexpression. These data suggest p35 and p39 have specific and overlapping roles in oligodendrocyte development, some of which may be independent of Cdk5 activation. SIGNIFICANCE STATEMENT The development of oligodendrocytes and myelination is essential for normal CNS function and cyclin-dependent kinase 5 (Cdk5) activity is critical for oligodendrocyte maturation, but how Cdk5 activity is controlled is unclear. Here we show that the coactivators of Cdk5, p35 and p39, regulate distinct stages of oligodendrocyte development and myelination. Loss of p35 perturbs oligodendrocyte progenitor cell differentiation, whereas loss of p39 delays oligodendrocyte maturation. Loss of both completely inhibits oligodendrogenesis and myelination. Disruption of oligodendrocyte development was more pronounced in p35−/−;p39

  1. Neurogenesis and precursor cell differences in the dorsal and ventral adult canine hippocampus.

    PubMed

    Lowe, Aileen; Dalton, Marshall; Sidhu, Kuldip; Sachdev, Perminder; Reynolds, Brent; Valenzuela, Michael

    2015-04-23

    During evolution a unique anterior-posterior flexure posited the canine dentate gyrus in two distinct dorsal and ventral positions. We therefore sought to explore neurogenesis and neurogenic cell-related difference along the canine hippocampal dorsal-ventral axis. Post mortem histological analysis revealed 49.1% greater doublecortin (DCX)-positive cells and a 158.5% greater percentage of double labeled DCX-positive/neuronal nuclei (NeuN) positive cells in the dorsal subgranular zone compared to the ventral. We then show neural precursor cells isolated from fresh hippocampal tissue are capable of proliferating long term, and after differentiation, express neuronal and glial markers. Dorsal hippocampal isolates produced a 120.0% higher frequency of sphere-forming neural precursor cells compared to ventral hippocampal tissue. Histological DCX and neurosphere assay results were highly correlated. Overall, we provide the first evidence that the dorsal canine hippocampus has a markedly higher rate of adult neurogenesis than the ventral hippocampus, possibly related to a greater frequency of contributory neural precursor cells.

  2. The Activators of Cyclin-Dependent Kinase 5 p35 and p39 Are Essential for Oligodendrocyte Maturation, Process Formation, and Myelination.

    PubMed

    Luo, Fucheng; Zhang, Jessie; Burke, Kathryn; Miller, Robert H; Yang, Yan

    2016-03-01

    The regulation of oligodendrocyte development and myelin formation in the CNS is poorly defined. Multiple signals influence the rate and extent of CNS myelination, including the noncanonical cyclin-dependent kinase 5 (Cdk5) whose functions are regulated by its activators p35 and p39. Here we show that selective loss of either p35 or p39 perturbed specific aspects of oligodendrocyte development, whereas loss of both p35 and p39 completely inhibited the development of mature oligodendrocytes and myelination. In the absence of p35, oligodendrocyte differentiation was delayed, process outgrowth was truncated in vitro, and the patterning and extent of myelination were perturbed in the CNS of p35(-/-) mice. In the absence of p39, oligodendrocyte maturation was transiently affected both in vitro and in vivo. However, loss of both p35 and p39 in oligodendrocyte lineage cells completely inhibited oligodendrocyte progenitor cell differentiation and myelination both in vitro and after transplantation into shiverer slice cultures. Loss of p35 and p39 had a more profound effect on oligodendrocyte development than simply the loss of Cdk5 and could not be rescued by Cdk5 overexpression. These data suggest p35 and p39 have specific and overlapping roles in oligodendrocyte development, some of which may be independent of Cdk5 activation.

  3. Neuronal activity regulates remyelination via glutamate signalling to oligodendrocyte progenitors

    PubMed Central

    Gautier, Hélène O. B.; Evans, Kimberley A.; Volbracht, Katrin; James, Rachel; Sitnikov, Sergey; Lundgaard, Iben; James, Fiona; Lao-Peregrin, Cristina; Reynolds, Richard; Franklin, Robin J. M.; Káradóttir, Ragnhildur T

    2015-01-01

    Myelin regeneration can occur spontaneously in demyelinating diseases such as multiple sclerosis (MS). However, the underlying mechanisms and causes of its frequent failure remain incompletely understood. Here we show, using an in-vivo remyelination model, that demyelinated axons are electrically active and generate de novo synapses with recruited oligodendrocyte progenitor cells (OPCs), which, early after lesion induction, sense neuronal activity by expressing AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)/kainate receptors. Blocking neuronal activity, axonal vesicular release or AMPA receptors in demyelinated lesions results in reduced remyelination. In the absence of neuronal activity there is a ∼6-fold increase in OPC number within the lesions and a reduced proportion of differentiated oligodendrocytes. These findings reveal that neuronal activity and release of glutamate instruct OPCs to differentiate into new myelinating oligodendrocytes that recover lost function. Co-localization of OPCs with the presynaptic protein VGluT2 in MS lesions implies that this mechanism may provide novel targets to therapeutically enhance remyelination. PMID:26439639

  4. Age-Related Changes in Population of Stromal Precursor Cells in Hematopoietic and Lymphoid Organs.

    PubMed

    Gorskaya, Yulia F.; Latzinik, Natalia V.; Shuklina, Ekaterina U.; Nesterenko, Vladimir G.

    2000-07-01

    It is shown that the content of precursor cells of stromal tissue (CFC-F) in the hemopoietic and lymphoid organs of SAMP (rapidly-ageing mice) and SAMR mice (mice with a normal ageing rate) decreases as the animals grow older. However the decrease in the content of CFC-F in SAMP mice begins substantially earlier - in the age group of 9-11 months, while in the SAMR mice - only in the age group of 16-19 months. It was found that the age reduction of the number to an equal degree relates to the whole population of CFC-F, in particular both the fraction of weakly-linked CFC-F, which is isolated by means of mechanical disaggregation of the tissue, and the fraction which may only be isolated using trypsin. It is shown that the concentration of inducible osteogenic precursor cells (IOPC) in the spleen of guinea pigs does not change with age, but their content in that organ in old animals (2-3 years old) drops by two times. It was found that in elderly animals the mass of the ectopic osseous tissue, formed by the implantation of an osteoinductor (autologous epithelium of the urinary bladder) in a system open for entrance of cells, decreases by two times. After curettage of the medullary cavity of guinea pig tibia (i.e. under conditions of an increased demand for osteogenic cells) the mass of induced ectopic osseous tissue decreases by 4 times, which indicates to the possible functional relationship between the pool of determined and inducible osteogenic precursor cells. On the whole, the obtained data show that during ageing there is a reduction in the number of stromal precursor cells (CFC-F and IOPC), which form a specific microenvironment for hemopoietic and lymphoid organs, which is important to understand the role of these cells in the development of age pathologies, in particular senile osteoporosis. PMID:12687170

  5. Characterization of cultured rat oligodendrocytes proliferating in a serum-free, chemically defined medium

    SciTech Connect

    Saneto, R.P.; de Vellis, J.

    1985-05-01

    A serumless, chemically defined medium has been developed for the culture of oligodendrocytes isolated from primary neonatal rat cerebral cultures. Combined together, insulin, transferrin, and fibroblast growth factor synergistically induced an essentially homogeneous population (95-98%) of cells expressing glycerol-3-phosphate dehydrogenase activity to undergo cell division. Proliferating cells were characterized by several criteria: (i) ultrastructural analysis by transmission electron microscopy identified the cell type as an oligodendrocyte; (ii) biochemical assays showed expression of three oligodendrocyte biochemical markers, induction of both glycerol phosphate dehydrogenase and lactate dehydrogenase, and presence of 2',3'-cyclic nucleotide 3'-phosphodiesterase; and (iii) immunocytochemical staining showed cultures to be 95-98% positive for glycerol phosphate dehydrogenase, 90% for myelin basic protein, 60-70% for galactocerebroside, and 70% for A2B5.

  6. Vitreous humor and albumin augment the proliferation of cultured retinal precursor cells.

    PubMed

    Yang, Jing; Klassen, Henry; Pries, Mette; Wang, Wei; Nissen, Mogens H

    2009-02-01

    Intravitreal injection is an important delivery route for studies involving the transplantation of various types of precursor cells to the retina; however, the effect on these cells of exposure to the vitreous microenvironment has not been specifically investigated. Here vitreous humor was evaluated for the potential to influence the proliferation of rat retinal precursor cells in vitro. Cells were isolated at embryonic day 19 and plated in standard proliferation medium in the presence or absence of fluid expressed from porcine vitreous humor. Cellular proliferation at different concentrations of vitreous fluid supplementation was quantified by using a (3)H-thymidine incorporation assay. Active components of vitreous fluid were partially characterized by gel filtration chromatography (GFC) and UV spectral analysis. The effect of each vitreous fraction on proliferation was determined as well. Results showed that addition of 20% vitreous fluid to primary rat retinal cultures significantly increased (3)H-thymidine incorporation compared with growth medium without vitreous supplementation. A vitreous fraction showing growth-promoting activity was localized to a molecular mass range <1000 Da, consistent with ascorbic acid. Ascorbic acid was confirmed in vitreous fluid by UV spectral analysis. Growth-augmenting activity was present in higher molecular mass vitreous fractions, consistent with protein components. Albumin, the major protein in vitreous fluid, was found to augment proliferation. Because vitreous-associated augmentation of retinal precursor proliferation remains an epidermal growth factor-dependent phenomenon, the proliferative status of transplanted cells in the vitreous cavity is likely determined by a combination of factors. PMID:18803297

  7. Putative prethymic T cell precursors within the early human embryonic liver: a molecular and functional analysis

    PubMed Central

    1993-01-01

    Hematopoietic cells present in the liver in early human fetal life were characterized by phenotypic analysis using a broad panel of monoclonal antibodies. Expression of very late antigen 4 and leukocyte function- associated antigen 3 cell adhesion receptors and 4F2 cell activation molecules was found in all fetal liver hematopoietic cells before acquisition of T cell-, B cell-, or myeloid-specific surface markers, and before the time of intrathymic colonization. Molecular studies showed that expression of the interleukin 2 receptor beta (IL-2R beta) also occurred in the embryonic liver at this early ontogenic stage. In contrast, no expression of IL-2R alpha or IL-2 transcripts was found in fetal liver cells, whereas transcription of the IL-4 gene was detected in a small fetal liver cell subset. Putative T cell precursors were identified among the hematopoietic fetal liver cells by the expression of genes encoding the gamma, delta, epsilon, and zeta invariant chains of the CD3-T cell receptor (TCR) complex. However, no transcription of the polymorphic alpha and beta TCR genes was detected. Functional in vitro assays further demonstrated that fetal liver hematopoietic cells from those early embryos were capable of proliferating in response to T cell growth factors, including IL-4 and IL-2. However, whereas IL-4- induced proliferation paralleled the appearance in vitro of CD45+CD7- CD4dull cells expressing the CD14 myeloid antigen, as well as of CD34+ primitive hematopoietic progenitors, differentiation into CD45+CD7+CD8+CD3- immature T cells was observed when using IL-2. Moreover, coculture with thymic epithelial cell monolayers provided additional evidence that early fetal liver hematopoietic cells may include very primitive T cell precursors, which were able to differentiate in vitro into TCR alpha/beta+ mature T cells. Therefore, our results indicate that, after triggering of the T cell-specific maturation program in primitive fetal liver hematopoietic progenitors

  8. Apcdd1 stimulates oligodendrocyte differentiation after white matter injury.

    PubMed

    Lee, Hyun Kyoung; Laug, Dylan; Zhu, Wenyi; Patel, Jay M; Ung, Kevin; Arenkiel, Benjamin R; Fancy, Stephen P J; Mohila, Carrie; Deneen, Benjamin

    2015-10-01

    Wnt signaling plays an essential role in developmental and regenerative myelination of the CNS, therefore it is critical to understand how the factors associated with the various regulatory layers of this complex pathway contribute to these processes. Recently, Apcdd1 was identified as a negative regulator of proximal Wnt signaling, however its role in oligodendrocyte (OL) differentiation and reymelination in the CNS remain undefined. Analysis of Apcdd1 expression revealed dynamic expression during OL development, where its expression is upregulated during differentiation. Functional studies using ex vivo and in vitro OL systems revealed that Apcdd1 promotes OL differentiation, suppresses Wnt signaling, and associates with β-catenin. Application of these findings to white matter injury (WMI) models revealed that Apcdd1 similarly promotes OL differentiation after gliotoxic injury in vivo and acute hypoxia ex vivo. Examination of Apcdd1 expression in white matter lesions from neonatal WMI and adult multiple sclerosis revealed its expression in subsets of oligodendrocyte (OL) precursors. These studies describe, for the first time, the role of Apcdd1 in OLs after WMI and reveal that negative regulators of the proximal Wnt pathway can influence regenerative myelination, suggesting a new therapeutic strategy for modulating Wnt signaling and stimulating repair after WMI.

  9. Chondroitin Sulfate Proteoglycans Negatively Modulate Spinal Cord Neural Precursor Cells by Signaling Through LAR and RPTPσ and Modulation of the Rho/ROCK Pathway.

    PubMed

    Dyck, Scott M; Alizadeh, Arsalan; Santhosh, Kallivalappil T; Proulx, Evan H; Wu, Chia-Lun; Karimi-Abdolrezaee, Soheila

    2015-08-01

    Multipotent adult neural precursor cells (NPCs) have tremendous intrinsic potential to repair the damaged spinal cord. However, evidence shows that the regenerative capabilities of endogenous and transplanted NPCs are limited in the microenvironment of spinal cord injury (SCI). We previously demonstrated that injury-induced upregulation of matrix chondroitin sulfate proteoglycans (CSPGs) restricts the survival, migration, integration, and differentiation of NPCs following SCI. CSPGs are long-lasting components of the astroglial scar that are formed around the lesion. Our recent in vivo studies demonstrated that removing CSPGs from the SCI environment enhances the potential of transplanted and endogenous adult NPCs for spinal cord repair; however, the mechanisms by which CSPGs regulate NPCs remain unclear. In this study, using in vitro models recapitulating the extracellular matrix of SCI, we investigated the direct role of CSPGs in modulating the properties of adult spinal cord NPCs. We show that CSPGs significantly decrease NPCs growth, attachment, survival, proliferation, and oligodendrocytes differentiation. Moreover, using genetic models, we show that CSPGs regulate NPCs by signaling on receptor protein tyrosine phosphate sigma (RPTPσ) and leukocyte common antigen-related phosphatase (LAR). Intracellularly, CSPGs inhibitory effects are mediated through Rho/ROCK pathway and inhibition of Akt and Erk1/2 phosphorylation. Downregulation of RPTPσ and LAR and blockade of ROCK in NPCs attenuates the inhibitory effects of CSPGS. Our work provide novel evidence uncovering how upregulation of CSPGs challenges the response of NPCs in their post-SCI niche and identifies new therapeutic targets for enhancing NPC-based therapies for SCI repair.

  10. Modulation of oligodendrocyte differentiation and maturation by combined biochemical and mechanical cues

    PubMed Central

    Lourenço, Tânia; Paes de Faria, Joana; Bippes, Christian A.; Maia, João; Lopes-da-Silva, José A.; Relvas, João B.; Grãos, Mário

    2016-01-01

    Extracellular matrix (ECM) proteins play a key role during oligodendrogenesis. While fibronectin (FN) is involved in the maintenance and proliferation of oligodendrocyte progenitor cells (OPCs), merosin (MN) promotes differentiation into oligodendrocytes (OLs). Mechanical properties of the ECM also seem to affect OL differentiation, hence this study aimed to clarify the impact of combined biophysical and biochemical elements during oligodendrocyte differentiation and maturation using synthetic elastic polymeric ECM-like substrates. CG-4 cells presented OPC- or OL-like morphology in response to brain-compliant substrates functionalised with FN or MN, respectively. The expression of the differentiation and maturation markers myelin basic protein — MBP — and proteolipid protein — PLP — (respectively) by primary rat oligodendrocytes was enhanced in presence of MN, but only on brain-compliant conditions, considering the distribution (MBP) or amount (PLP) of the protein. It was also observed that maturation of OLs was attained earlier (by assessing PLP expression) by cells differentiated on MN-functionalised brain-compliant substrates than on standard culture conditions. Moreover, the combination of MN and substrate compliance enhanced the maturation and morphological complexity of OLs. Considering the distinct degrees of stiffness tested ranging within those of the central nervous system, our results indicate that 6.5 kPa is the most suitable rigidity for oligodendrocyte differentiation. PMID:26879561

  11. Astrocytes and oligodendrocytes can be generated from NG2+ progenitors after acute brain injury: intracellular localization of oligodendrocyte transcription factor 2 is associated with their fate choice.

    PubMed

    Zhao, Jing-Wei; Raha-Chowdhury, Ruma; Fawcett, James W; Watts, Colin

    2009-05-01

    Brain injury induces gliosis and scar formation; its principal cell types are mainly astrocytes and some oligodendrocytes. The origin of the astrocytes and oligodendrocytes in the scar remains unclear together with the underlying mechanism of their fate choice. We examined the response of oligodendrocyte transcription factor (Olig)2(+) glial progenitors to acute brain injury. Both focal cortical (mechanical or excitotoxic) and systemic (kainic acid-induced seizure or lipopolysaccharide-induced inflammation) injury caused cytoplasmic translocation of Olig2 (Olig2(TL)) exclusively in affected brain regions as early as 2 h after injury in two-thirds of Olig2(+) cells. Many of the proliferating Olig2(+) cells reacting to injury co-expressed chondroitin sulphate proteoglycan neuron/glia antigen 2 (NG2). Using 5-bromodeoxyuridine (BrdU) tracing protocols, proliferating Olig2(TL)GFAP(+)BrdU(+) cells were observed from 2 days post-lesion (dpl). Immature oligodendrocytes were also seen from 2 dpl and all of them retained Olig2 in the nucleus (Olig2(Nuc)). From 5 dpl Olig2(TL)NG2(+)GFAP(+) cells were observed in the wound and some of them were proliferative. From 5 dpl NG2(+)RIP(+) cells were also seen, all of which were Olig2(Nuc) and some of which were also BrdU(+). Our results suggest that, in response to brain injury, NG2(+) progenitors may generate a subpopulation of astrocytes in addition to oligodendrocytes and their fate choice was associated with Olig2(TL) or Olig2(Nuc). However, the NG2(+)GFAP(+) phenotype was only seen within a limited time window (5-8 dpl) when up to 20% of glial fibrillary acidic protein (GFAP) cells co-expressed NG2. We also observed Olig2(TL)GFAP(+) cells that appeared after injury and before the NG2(+)GFAP(+) phenotype. This suggests that not all astrocytes are derived from an NG2(+) population. PMID:19473238

  12. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells*

    PubMed Central

    van Furth, R.; Cohn, Z. A.; Hirsch, J. G.; Humphrey, J. H.; Spector, W. G.; Langevoort, H. L.

    1972-01-01

    There have been many attempts in the past to classify phagocytic mononuclear cells and to define the cell system they are considered to form—among these being the “macrophage system” of Metchnikoff, the “reticulo-endothelial system” of Aschoff, and the “reticulo-histiocyte system” proposed by Volterra and reintroduced by Thomas. None of these is entirely adequate in the light of present knowledge. In 1969, therefore, a group of workers proposed a new classification of all highly phagocytic mononuclear cells and their precursors in what they termed the “mononuclear phagocyte system”. This system includes the promonocytes and their precursors in the bone marrow, the monocytes in the peripheral blood, and the macrophages in the tissues. Subsequent consultation with numerous other specialists throughout the world led to a certain number of changes in this classification, which is now proposed in revised form. Inclusion of cells in the “mononuclear phagocyte system” is based on similarities in the morphology, function, origin, and kinetics of the phagocytes. By these criteria reticular cells, dendritic cells, endothelial cells, and fibroblasts (fibrocytes) are excluded. The proponents point out that as new knowledge is acquired modifications may have to be made, certain cells being added to or removed from the new classification. PMID:4538544

  13. Derivation of Skeletal Myogenic Precursors from Human Pluripotent Stem Cells Using Conditional Expression of PAX7.

    PubMed

    Darabi, Radbod; Perlingeiro, Rita C R

    2016-01-01

    Cell-based therapies are considered as one of the most promising approaches for the treatment of degenerating pathologies including muscle disorders and dystrophies. Advances in the approach of reprogramming somatic cells into induced pluripotent stem (iPS) cells allow for the possibility of using the patient's own pluripotent cells to generate specific tissues for autologous transplantation. In addition, patient-specific tissue derivatives have been shown to represent valuable material for disease modeling and drug discovery. Nevertheless, directed differentiation of pluripotent stem cells into a specific lineage is not a trivial task especially in the case of skeletal myogenesis, which is generally poorly recapitulated during the in vitro differentiation of pluripotent stem cells.Here, we describe a practical and efficient method for the derivation of skeletal myogenic precursors from differentiating human pluripotent stem cells using controlled expression of PAX7. Flow cytometry (FACS) purified myogenic precursors can be expanded exponentially and differentiated in vitro into myotubes, enabling researchers to use these cells for disease modeling as well as therapeutic purposes.

  14. New melanogenesis and photobiological processes in activation and proliferation of precursor melanocytes after UV-exposure: ultrastructural differentiation of precursor melanocytes from Langerhans cells

    SciTech Connect

    Jimbow, K.; Uesugi, T.

    1982-02-01

    Photobiological processes involving new melanogenesis after exposure to ultraviolet (UV) light were experimentally studied in C57 black adult mice by histochemistry, cytochemistry, and autoradiography. The trunk and the plantar region of the foot, where no functioning melanocytes were present before exposure, were exposed to UV-A for 14 consecutive days. Both regions revealed a basically similar pattern for new melanogenesis which involved an activation of precursor melanocytes. Essentially all of ''indeterminate'' cells appeared to be precursor melanocytes, the fine structure of which could be differentiated even from poorly developed Langerhans cells. New melanogenesis was manifested by 4 stages of cellular and subcellular reactions of these cells as indicated by histochemistry of dihydroxyphenylalanine (dopa) and autoradiography of thymidine incorporation: (a) an initial lag in the activation of precursor melanocytes with development of Golgi cisternae and rough endoplasmic reticulum followed by formation of unmelanized melanosomes (day 0 to 2); (b) synthesis of active tyrosinase accumulated in Golgi cisternae and vesicles with subsequent formation of melanized melanosomes in these cells (day 3 to 5); (c) mitotic proliferation of many of these activated cells, followed by an exponential increase of new melanocytes (day 6 to 7); and (d) melanosome transfer with differentiation of 10 nm filaments and arborization of dendrites, but without any significant change in the melanocyte population (day 8 to 14). The melanosome transfer was, however, not obvious until after 7 days of exposure. The size of newly synthesized melanosomes was similar to that of tail skin where native melanocytes were present before exposure.

  15. Mitotic position and morphology of committed precursor cells in the zebrafish retina adapt to architectural changes upon tissue maturation.

    PubMed

    Weber, Isabell P; Ramos, Ana P; Strzyz, Paulina J; Leung, Louis C; Young, Stephen; Norden, Caren

    2014-04-24

    The development of complex neuronal tissues like the vertebrate retina requires the tight orchestration of cell proliferation and differentiation. Although the complexity of transcription factors and signaling pathways involved in retinogenesis has been studied extensively, the influence of tissue maturation itself has not yet been systematically explored. Here, we present a quantitative analysis of mitotic events during zebrafish retinogenesis that reveals three types of committed neuronal precursors in addition to the previously known apical progenitors. The identified precursor types present at distinct developmental stages and exhibit different mitotic location (apical versus nonapical), cleavage plane orientation, and morphology. Interestingly, the emergence of nonapically dividing committed bipolar cell precursors can be linked to an increase in apical crowding caused by the developing photoreceptor cell layer. Furthermore, genetic interference with neuronal subset specification induces ectopic divisions of committed precursors, underlining the finding that progressing morphogenesis can effect precursor division position.

  16. Human Haemato-Endothelial Precursors: Cord Blood CD34+ Cells Produce Haemogenic Endothelium

    PubMed Central

    Pelosi, Elvira; Castelli, Germana; Martin-Padura, Ines; Bordoni, Veronica; Santoro, Simona; Conigliaro, Alice; Cerio, Anna Maria; De Santis Puzzonia, Marco; Marighetti, Paola; Biffoni, Mauro; Alonzi, Tonino; Amicone, Laura; Alcalay, Myriam; Bertolini, Francesco; Testa, Ugo; Tripodi, Marco

    2012-01-01

    Embryologic and genetic evidence suggest a common origin of haematopoietic and endothelial lineages. In the murine embryo, recent studies indicate the presence of haemogenic endothelium and of a common haemato-endothelial precursor, the haemangioblast. Conversely, so far, little evidence supports the presence of haemogenic endothelium and haemangioblasts in later stages of development. Our studies indicate that human cord blood haematopoietic progenitors (CD34+45+144−), triggered by murine hepatocyte conditioned medium, differentiate into adherent proliferating endothelial precursors (CD144+CD105+CD146+CD31+CD45−) capable of functioning as haemogenic endothelium. These cells, proven to give rise to functional vasculature in vivo, if further instructed by haematopoietic growth factors, first switch to transitional CD144+45+ cells and then to haematopoietic cells. These results highlight the plasticity of haemato-endhothelial precursors in human post-natal life. Furthermore, these studies may provide highly enriched populations of human post-fetal haemogenic endothelium, paving the way for innovative projects at a basic and possibly clinical level. PMID:23226561

  17. Dual-specific Phosphatase-6 (Dusp6) and ERK Mediate AMPA Receptor-induced Oligodendrocyte Death*

    PubMed Central

    Domercq, Maria; Alberdi, Elena; Sánchez-Gómez, Maria Victoria; Ariz, Usue; Pérez-Samartín, Alberto; Matute, Carlos

    2011-01-01

    Oligodendrocytes, the myelinating cells of the CNS, are highly vulnerable to glutamate excitotoxicity, a mechanism involved in tissue damage in multiple sclerosis. Thus, understanding oligodendrocyte death at the molecular level is important to develop new therapeutic approaches to treat the disease. Here, using microarray analysis and quantitative PCR, we observed that dual-specific phosphatase-6 (Dusp6), an extracellular regulated kinase-specific phosphatase, is up-regulated in oligodendrocyte cultures as well as in optic nerves after AMPA receptor activation. In turn, Dusp6 is overexpressed in optic nerves from multiple sclerosis patients before the appearance of evident damage in this structure. We further analyzed the role of Dusp6 and ERK signaling in excitotoxic oligodendrocyte death and observed that AMPA receptor activation induces a rapid increase in ERK1/2 phosphorylation. Blocking Dusp6 expression, which enhances ERK1/2 phosphorylation, significantly diminished AMPA receptor-induced oligodendrocyte death. In contrast, MAPK/ERK pathway inhibition with UO126 significantly potentiates excitotoxic oligodendrocyte death and increases cytochrome c release, mitochondrial depolarization, and mitochondrial calcium overload produced by AMPA receptor stimulation. Upstream analysis demonstrated that MAPK/ERK signaling alters AMPA receptor properties. Indeed, Dusp6 overexpression as well as incubation with UO126 produced an increase in AMPA receptor-induced inward currents and cytosolic calcium overload. Together, these data suggest that levels of phosphorylated ERK, controlled by Dusp6 phosphatase, regulate glutamate receptor permeability and oligodendroglial excitotoxicity. Therefore, targeting Dusp6 may be a useful strategy to prevent oligodendrocyte death in multiple sclerosis and other diseases involving CNS white matter. PMID:21300799

  18. Lead Poisoning Disturbs Oligodendrocytes Differentiation Involved in Decreased Expression of NCX3 Inducing Intracellular Calcium Overload.

    PubMed

    Ma, Teng; Wu, Xiyan; Cai, Qiyan; Wang, Yun; Xiao, Lan; Tian, Yanping; Li, Hongli

    2015-08-13

    Lead (Pb) poisoning has always been a serious health concern, as it permanently damages the central nervous system. Chronic Pb accumulation in the human body disturbs oligodendrocytes (OLs) differentiation, resulting in dysmyelination, but the molecular mechanism remains unknown. In this study, Pb at 1 μM inhibits OLs precursor cells (OPCs) differentiation via decreasing the expression of Olig 2, CNPase proteins in vitro. Moreover, Pb treatment inhibits the sodium/calcium exchanger 3 (NCX3) mRNA expression, one of the major means of calcium (Ca(2+)) extrusion at the plasma membrane during OPCs differentiation. Also addition of KB-R7943, NCX3 inhibitor, to simulate Pb toxicity, resulted in decreased myelin basic protein (MBP) expression and cell branching. Ca(2+) response trace with Pb and KB-R7943 treatment did not drop down in the same recovery time as the control, which elevated intracellular Ca(2+) concentration reducing MBP expression. In contrast, over-expression of NCX3 in Pb exposed OPCs displayed significant increase MBP fluorescence signal in positive regions and CNPase expression, which recovered OPCs differentiation to counterbalance Pb toxicity. In conclusion, Pb exposure disturbs OLs differentiation via affecting the function of NCX3 by inducing intracellular calcium overload.

  19. Phosphorylation Regulates OLIG2 Cofactor Choice and the Motor Neuron-Oligodendrocyte Fate Switch

    PubMed Central

    Li, Huiliang; Paes de Faria, Joana; Andrew, Paul; Nitarska, Justyna; Richardson, William D.

    2011-01-01

    Summary A fundamental feature of central nervous system development is that neurons are generated before glia. In the embryonic spinal cord, for example, a group of neuroepithelial stem cells (NSCs) generates motor neurons (MNs), before switching abruptly to oligodendrocyte precursors (OLPs). We asked how transcription factor OLIG2 participates in this MN-OLP fate switch. We found that Serine 147 in the helix-loop-helix domain of OLIG2 was phosphorylated during MN production and dephosphorylated at the onset of OLP genesis. Mutating Serine 147 to Alanine (S147A) abolished MN production without preventing OLP production in transgenic mice, chicks, or cultured P19 cells. We conclude that S147 phosphorylation, possibly by protein kinase A, is required for MN but not OLP genesis and propose that dephosphorylation triggers the MN-OLP switch. Wild-type OLIG2 forms stable homodimers, whereas mutant (unphosphorylated) OLIG2S147A prefers to form heterodimers with Neurogenin 2 or other bHLH partners, suggesting a molecular basis for the switch. PMID:21382552

  20. Oligodendrocyte-encoded HIF function couples postnatal myelination and white matter angiogenesis.

    PubMed

    Yuen, Tracy J; Silbereis, John C; Griveau, Amelie; Chang, Sandra M; Daneman, Richard; Fancy, Stephen P J; Zahed, Hengameh; Maltepe, Emin; Rowitch, David H

    2014-07-17

    Myelin sheaths provide critical functional and trophic support for axons in white matter tracts of the brain. Oligodendrocyte precursor cells (OPCs) have extraordinary metabolic requirements during development as they differentiate to produce multiple myelin segments, implying that they must first secure adequate access to blood supply. However, mechanisms that coordinate myelination and angiogenesis are unclear. Here, we show that oxygen tension, mediated by OPC-encoded hypoxia-inducible factor (HIF) function, is an essential regulator of postnatal myelination. Constitutive HIF1/2α stabilization resulted in OPC maturation arrest through autocrine activation of canonical Wnt7a/7b. Surprisingly, such OPCs also show paracrine activity that induces excessive postnatal white matter angiogenesis in vivo and directly stimulates endothelial cell proliferation in vitro. Conversely, OPC-specific HIF1/2α loss of function leads to insufficient angiogenesis in corpus callosum and catastrophic axon loss. These findings indicate that OPC-intrinsic HIF signaling couples postnatal white matter angiogenesis, axon integrity, and the onset of myelination in mammalian forebrain.

  1. miRNAs As Emerging Regulators of Oligodendrocyte Development and Differentiation

    PubMed Central

    Galloway, Dylan A.; Moore, Craig S.

    2016-01-01

    Chronic demyelination is a hallmark of neurological disorders such as multiple sclerosis (MS) and several leukodystrophies. In the central nervous system (CNS), remyelination is a regenerative process that is often inadequate during these pathological states. In the MS context, in situ evidence suggests that remyelination is mediated by populations of oligodendrocyte progenitor cells (OPCs) that proliferate, migrate, and differentiate into mature, myelin-producing oligodendrocytes at sites of demyelinated lesions. The molecular programming of OPCs into mature oligodendrocytes is governed by a myriad of complex intracellular signaling pathways that modulate this process. Recent research has demonstrated the importance of specific and short non-coding RNAs, known as microRNAs (miRNAs), in regulating OPC differentiation and remyelination. Fortunately, it may be possible to take advantage of numerous developmental studies (both human and rodent) that have previously characterized miRNA expression profiles from the early neural progenitor cell to the late myelin-producing oligodendrocyte. Here we review much of the work to date and discuss the impact of miRNAs on OPC and oligodendrocyte biology. Additionally, we consider the potential for miRNA-mediated therapy in the context of remyelination and brain repair. PMID:27379236

  2. Iron efflux from oligodendrocytes is differentially regulated in gray and white matter.

    PubMed

    Schulz, Katrin; Vulpe, Chris D; Harris, Leah Z; David, Samuel

    2011-09-14

    Accumulation of iron occurs in the CNS in several neurodegenerative diseases. Iron is essential for life but also has the ability to generate toxic free radicals if not properly handled. Iron homeostasis at the cellular level is therefore important to maintain proper cellular function, and its dysregulation can contribute to neurodegenerative diseases. Iron export, a key mechanism to maintain proper levels in cells, occurs via ferroportin, a ubiquitously expressed transmembrane protein that partners with a ferroxidase. A membrane-bound form of the ferroxidase ceruloplasmin is expressed by astrocytes in the CNS and regulates iron efflux. We now show that oligodendrocytes use another ferroxidase, called hephaestin, which was first identified in enterocytes in the gut. Mice with mutations in the hephaestin gene (sex-linked anemia mice) show iron accumulation in oligodendrocytes in the gray matter, but not in the white matter, and exhibit motor deficits. This was accompanied by a marked reduction in the levels of the paranodal proteins contactin-associated protein 1 (Caspr) and reticulon-4 (Nogo A). We show that the sparing of iron accumulation in white matter oligodendrocytes in sex-linked anemia mice is due to compensatory upregulation of ceruloplasmin in these cells. This was further confirmed in ceruloplasmin/hephaestin double-mutant mice, which show iron accumulation in both gray and white matter oligodendrocytes. These data indicate that gray and white matter oligodendrocytes can use different iron efflux mechanisms to maintain iron homeostasis. Dysregulation of such efflux mechanisms leads to iron accumulation in the CNS. PMID:21917813

  3. Role of CNPase in the oligodendrocytic extracellular 2',3'-cAMP-adenosine pathway.

    PubMed

    Verrier, Jonathan D; Jackson, Travis C; Gillespie, Delbert G; Janesko-Feldman, Keri; Bansal, Rashmi; Goebbels, Sandra; Nave, Klaus-Armin; Kochanek, Patrick M; Jackson, Edwin K

    2013-10-01

    Extracellular adenosine 3',5'-cyclic monophosphate (3',5'-cAMP) is an endogenous source of localized adenosine production in many organs. Recent studies suggest that extracellular 2',3'-cAMP (positional isomer of 3',5'-cAMP) is also a source of adenosine, particularly in the brain in vivo post-injury. Moreover, in vitro studies show that both microglia and astrocytes can convert extracellular 2',3'-cAMP to adenosine. Here, we examined the ability of primary mouse oligodendrocytes and neurons to metabolize extracellular 2',3'-cAMP and their respective adenosine monophosphates (2'-AMP and 3'-AMP). Cells were also isolated from mice deficient in 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNPase). Oligodendrocytes metabolized 2',3'-cAMP to 2'-AMP with 10-fold greater efficiency than did neurons (and also more than previously examined microglia and astrocytes); whereas, the production of 3'-AMP was minimal in both oligodendrocytes and neurons. The production of 2'-AMP from 2',3'-cAMP was reduced by 65% in CNPase -/- versus CNPase +/+ oligodendrocytes. Oligodendrocytes also converted 2'-AMP to adenosine, and this was also attenuated in CNPase -/- oligodendrocytes. Inhibition of classic 3',5'-cAMP-3'-phosphodiesterases with 3-isobutyl-1-methylxanthine did not block metabolism of 2',3'-cAMP to 2'-AMP and inhibition of classic ecto-5'-nucleotidase (CD73) with α,β-methylene-adenosine-5'-diphosphate did not attenuate the conversion of 2'-AMP to adenosine. These studies demonstrate that oligodendrocytes express the extracellular 2',3'-cAMP-adenosine pathway (2',3'-cAMP → 2'-AMP → adenosine). This pathway is more robustly expressed in oligodendrocytes than in all other CNS cell types because CNPase is the predominant enzyme that metabolizes 2',3'-cAMP to 2-AMP in CNS cells. By reducing levels of 2',3'-cAMP (a mitochondrial toxin) and increasing levels of adenosine (a neuroprotectant), oligodendrocytes may protect axons from injury. PMID:23922219

  4. Zinc Deficiency Induces Apoptosis via Mitochondrial p53- and Caspase-Dependent Pathways in Human Neuronal Precursor Cells

    ERIC Educational Resources Information Center

    Seth, Rohit; Corniola, Rikki S.; Gower-Winter, Shannon D.; Morgan, Thomas J., Jr.; Bishop, Brian; Levenson, Cathy W.

    2015-01-01

    Previous studies have shown that zinc deficiency leads to apoptosis of neuronal precursor cells in vivo and in vitro. In addition to the role of p53 as a nuclear transcription factor in zinc deficient cultured human neuronal precursors (NT-2), we have now identified the translocation of phosphorylated p53 to the mitochondria and p53-dependent…

  5. Epidermal growth factor precursor in mouse lactating mammary gland alveolar cells

    SciTech Connect

    Brown, C.F.; Teng, C.T.; Pentecost, B.T.; DiAugustine, R.P. )

    1989-07-01

    Previous studies have demonstrated that high levels of epidermal growth factor (EGF) occur in human and rodent milk and that oral administration of this polypeptide stimulates rodent gastrointestinal development. It is not known whether EGF in milk originates from cells of the lactating mammary gland or is sequestered from an extramammary source. In the present study, prepro-EGF mRNA (approximately 4.7 kilobases) was detected in the CD-1 mouse mammary gland throughout the period of lactation; by comparison, negligible levels of this EGF transcript were found in the gland during pregnancy. Low levels of EGF immunoreactivity (4-5 ng/g wet wt tissue) were extracted from lactating (day 18) mammary glands with dilute acetic acid. Immunolocalization was evident with antisera to either EGF or two other regions of the EGF precursor in essentially all alveolar cells of the lactating gland. The most prominent staining with antiserum to EGF was observed along the luminal borders of cells; this pattern of cellular staining required proteolytic pretreatment of tissue sections. Western blot analyses of cell membranes isolated from the day 16 lactating mammary gland revealed an EGF-immunoreactive band at about 145K, which was equivalent in size to the EGF precursor found in mouse kidney cell membranes. Despite these findings, labeling of lactating mammary gland mince with L-(35S)methionine and cysteine for up to 4 h did not reveal any specific bands in immunoprecipitates. These cumulative findings suggest that the precursor form of EGF occurs in alveolar cells of lactating mammary gland and that this protein is translocated to the cell membrane.

  6. An 8% ?-based solar cell formed from an electrodeposited precursor film

    NASA Astrophysics Data System (ADS)

    Fernandez, A. M.; Sebastian, P. J.; Bhattacharya, R. N.; Noufi, R.; Contreras, M.; Hermann, A. M.

    1996-06-01

    An 8% 0268-1242/11/6/020/img9 (CIS) based solar cell was developed using an electrodeposited CIS precursor film subjected to post-deposition heat treatment at 0268-1242/11/6/020/img10 in Se and In atmospheres. The cell structure consisted of 0268-1242/11/6/020/img11. The cell parameters such as 0268-1242/11/6/020/img12, 0268-1242/11/6/020/img13, FF = 62.3% and 0268-1242/11/6/020/img14 were determined from I - V characterization of the annealed cell at a light intensity of 0268-1242/11/6/020/img15. The cell parameters improved after annealing in air at 0268-1242/11/6/020/img16. A carrier density of 0268-1242/11/6/020/img17 was obtained from the C - V characterization of the cell.

  7. Secretory clusterin inhibits osteoclastogenesis by attenuating M-CSF-dependent osteoclast precursor cell proliferation

    SciTech Connect

    Choi, Bongkun; Kang, Soon-Suk; Kang, Sang-Wook; Min, Bon-Hong; Lee, Eun-Jin; Song, Da-Hyun; Kim, Sang-Min; Song, Youngsup; Yoon, Seung-Yong; Chang, Eun-Ju

    2014-07-18

    Highlights: • We describe the expression and secretion of clusterin in osteoclasts. • Endogenous clusterin deficiency does not affect osteoclast formation. • Exogenous treatment with secretory clusterin decreases osteoclast differentiation. • Secretory clusterin attenuates osteoclast precursor cell proliferation by inhibiting M-CSF-mediated ERK activation. - Abstract: Secretory clusterin (sCLU)/apolipoprotein J is a multifunctional glycoprotein that is ubiquitously expressed in various tissues. Reduced sCLU in the joints of patients with bone erosive disease is associated with disease activity; however, its exact role has yet to be elucidated. Here, we report that CLU is expressed and secreted during osteoclastogenesis in mouse bone marrow-derived macrophages (BMMs) that are treated with receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). CLU-deficient BMMs obtained from CLU{sup −/−} mice exhibited no significant alterations in OC differentiation in comparison with BMMs obtained from wild-type mice. In contrast, exogenous sCLU treatment significantly inhibited OC formation in both BMMs and OC precursor cultures. The inhibitory effect of sCLU was more prominent in BMMs than OC precursor cultures. Interestingly, treating BMMs with sCLU decreased the proliferative effects elicited by M-CSF and suppressed M-CSF-induced ERK activation of OC precursor cells without causing apoptotic cell death. This study provides the first evidence that sCLU reduces OC formation by inhibiting the actions of M-CSF, thereby suggesting its protective role in bone erosion.

  8. Msx genes define a population of mural cell precursors required for head blood vessel maturation.

    PubMed

    Lopes, Miguel; Goupille, Olivier; Saint Cloment, Cécile; Lallemand, Yvan; Cumano, Ana; Robert, Benoît

    2011-07-01

    Vessels are primarily formed from an inner endothelial layer that is secondarily covered by mural cells, namely vascular smooth muscle cells (VSMCs) in arteries and veins and pericytes in capillaries and veinules. We previously showed that, in the mouse embryo, Msx1(lacZ) and Msx2(lacZ) are expressed in mural cells and in a few endothelial cells. To unravel the role of Msx genes in vascular development, we have inactivated the two Msx genes specifically in mural cells by combining the Msx1(lacZ), Msx2(lox) and Sm22α-Cre alleles. Optical projection tomography demonstrated abnormal branching of the cephalic vessels in E11.5 mutant embryos. The carotid and vertebral arteries showed an increase in caliber that was related to reduced vascular smooth muscle coverage. Taking advantage of a newly constructed Msx1(CreERT2) allele, we demonstrated by lineage tracing that the primary defect lies in a population of VSMC precursors. The abnormal phenotype that ensues is a consequence of impaired BMP signaling in the VSMC precursors that leads to downregulation of the metalloprotease 2 (Mmp2) and Mmp9 genes, which are essential for cell migration and integration into the mural layer. Improper coverage by VSMCs secondarily leads to incomplete maturation of the endothelial layer. Our results demonstrate that both Msx1 and Msx2 are required for the recruitment of a population of neural crest-derived VSMCs.

  9. Transgenic expression of cyclin D1 in thymic epithelial precursors promotes epithelial and T cell development.

    PubMed

    Klug, D B; Crouch, E; Carter, C; Coghlan, L; Conti, C J; Richie, E R

    2000-02-15

    We previously reported that precursors within the keratin (K) 8+5+ thymic epithelial cell (TEC) subset generate the major cortical K8+5- TEC population in a process dependent on T lineage commitment. This report demonstrates that expression of a cyclin D1 transgene in K8+5+ TECs expands this subset and promotes TEC and thymocyte development. Cyclin D1 transgene expression is not sufficient to induce TEC differentiation in the absence of T lineage-committed thymocytes because TECs from both hCD3epsilon transgenic and hCD3epsilon/cyclin D1 double transgenic mice remain blocked at the K8+5+ maturation stage. However, enforced cyclin D1 expression does expand the developmental window during which K8+5+ cells can differentiate in response to normal hemopoietic precursors. Thus, enhancement of thymic function may be achieved by manipulating the growth and/or survival of TEC precursors within the K8+5+ subset.

  10. Astrocytes in Oligodendrocyte Lineage Development and White Matter Pathology

    PubMed Central

    Li, Jiasi; Zhang, Lei; Chu, Yongxin; Namaka, Michael; Deng, Benqiang; Kong, Jiming; Bi, Xiaoying

    2016-01-01

    White matter is primarily composed of myelin and myelinated axons. Structural and functional completeness of myelin is critical for the reliable and efficient transmission of information. White matter injury has been associated with the development of many demyelinating diseases. Despite a variety of scientific advances aimed at promoting re-myelination, their benefit has proven at best to be marginal. Research suggests that the failure of the re-myelination process may be the result of an unfavorable microenvironment. Astrocytes, are the most ample and diverse type of glial cells in central nervous system (CNS) which display multiple functions for the cells of the oligodendrocytes lineage. As such, much attention has recently been drawn to astrocyte function in terms of white matter myelin repair. They are different in white matter from those in gray matter in specific regards to development, morphology, location, protein expression and other supportive functions. During the process of demyelination and re-myelination, the functions of astrocytes are dynamic in that they are able to change functions in accordance to different time points, triggers or reactive pathways resulting in vastly different biologic effects. They have pivotal effects on oligodendrocytes and other cell types in the oligodendrocyte lineage by serving as an energy supplier, a participant of immunological and inflammatory functions, a source of trophic factors and iron and a sustainer of homeostasis. Astrocytic impairment has been shown to be directly linked to the development of neuromyelities optica (NMO). In addition, astroctyes have also been implicated in other white matter conditions such as psychiatric disorders and neurodegenerative diseases such as Alzheimer’s disease (AD), multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Inhibiting specifically detrimental signaling pathways in astrocytes while preserving their beneficial functions may be a promising approach for

  11. Astrocytes in Oligodendrocyte Lineage Development and White Matter Pathology.

    PubMed

    Li, Jiasi; Zhang, Lei; Chu, Yongxin; Namaka, Michael; Deng, Benqiang; Kong, Jiming; Bi, Xiaoying

    2016-01-01

    White matter is primarily composed of myelin and myelinated axons. Structural and functional completeness of myelin is critical for the reliable and efficient transmission of information. White matter injury has been associated with the development of many demyelinating diseases. Despite a variety of scientific advances aimed at promoting re-myelination, their benefit has proven at best to be marginal. Research suggests that the failure of the re-myelination process may be the result of an unfavorable microenvironment. Astrocytes, are the most ample and diverse type of glial cells in central nervous system (CNS) which display multiple functions for the cells of the oligodendrocytes lineage. As such, much attention has recently been drawn to astrocyte function in terms of white matter myelin repair. They are different in white matter from those in gray matter in specific regards to development, morphology, location, protein expression and other supportive functions. During the process of demyelination and re-myelination, the functions of astrocytes are dynamic in that they are able to change functions in accordance to different time points, triggers or reactive pathways resulting in vastly different biologic effects. They have pivotal effects on oligodendrocytes and other cell types in the oligodendrocyte lineage by serving as an energy supplier, a participant of immunological and inflammatory functions, a source of trophic factors and iron and a sustainer of homeostasis. Astrocytic impairment has been shown to be directly linked to the development of neuromyelities optica (NMO). In addition, astroctyes have also been implicated in other white matter conditions such as psychiatric disorders and neurodegenerative diseases such as Alzheimer's disease (AD), multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Inhibiting specifically detrimental signaling pathways in astrocytes while preserving their beneficial functions may be a promising approach for

  12. Astrocytes in Oligodendrocyte Lineage Development and White Matter Pathology.

    PubMed

    Li, Jiasi; Zhang, Lei; Chu, Yongxin; Namaka, Michael; Deng, Benqiang; Kong, Jiming; Bi, Xiaoying

    2016-01-01

    White matter is primarily composed of myelin and myelinated axons. Structural and functional completeness of myelin is critical for the reliable and efficient transmission of information. White matter injury has been associated with the development of many demyelinating diseases. Despite a variety of scientific advances aimed at promoting re-myelination, their benefit has proven at best to be marginal. Research suggests that the failure of the re-myelination process may be the result of an unfavorable microenvironment. Astrocytes, are the most ample and diverse type of glial cells in central nervous system (CNS) which display multiple functions for the cells of the oligodendrocytes lineage. As such, much attention has recently been drawn to astrocyte function in terms of white matter myelin repair. They are different in white matter from those in gray matter in specific regards to development, morphology, location, protein expression and other supportive functions. During the process of demyelination and re-myelination, the functions of astrocytes are dynamic in that they are able to change functions in accordance to different time points, triggers or reactive pathways resulting in vastly different biologic effects. They have pivotal effects on oligodendrocytes and other cell types in the oligodendrocyte lineage by serving as an energy supplier, a participant of immunological and inflammatory functions, a source of trophic factors and iron and a sustainer of homeostasis. Astrocytic impairment has been shown to be directly linked to the development of neuromyelities optica (NMO). In addition, astroctyes have also been implicated in other white matter conditions such as psychiatric disorders and neurodegenerative diseases such as Alzheimer's disease (AD), multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Inhibiting specifically detrimental signaling pathways in astrocytes while preserving their beneficial functions may be a promising approach for

  13. Role of Chondroitin Sulfate (CS) Modification in the Regulation of Protein-tyrosine Phosphatase Receptor Type Z (PTPRZ) Activity: PLEIOTROPHIN-PTPRZ-A SIGNALING IS INVOLVED IN OLIGODENDROCYTE DIFFERENTIATION.

    PubMed

    Kuboyama, Kazuya; Fujikawa, Akihiro; Suzuki, Ryoko; Tanga, Naomi; Noda, Masaharu

    2016-08-26

    Protein-tyrosine phosphatase receptor type Z (PTPRZ) is predominantly expressed in the developing brain as a CS proteoglycan. PTPRZ has long (PTPRZ-A) and short type (PTPRZ-B) receptor forms by alternative splicing. The extracellular CS moiety of PTPRZ is required for high-affinity binding to inhibitory ligands, such as pleiotrophin (PTN), midkine, and interleukin-34; however, its functional significance in regulating PTPRZ activity remains obscure. We herein found that protein expression of CS-modified PTPRZ-A began earlier, peaking at approximately postnatal days 5-10 (P5-P10), and then that of PTN peaked at P10 at the developmental stage corresponding to myelination onset in the mouse brain. Ptn-deficient mice consistently showed a later onset of the expression of myelin basic protein, a major component of the myelin sheath, than wild-type mice. Upon ligand application, PTPRZ-A/B in cultured oligodendrocyte precursor cells exhibited punctate localization on the cell surface instead of diffuse distribution, causing the inactivation of PTPRZ and oligodendrocyte differentiation. The same effect was observed with the removal of CS chains with chondroitinase ABC but not polyclonal antibodies against the extracellular domain of PTPRZ. These results indicate that the negatively charged CS moiety prevents PTPRZ from spontaneously clustering and that the positively charged ligand PTN induces PTPRZ clustering, potentially by neutralizing electrostatic repulsion between CS chains. Taken altogether, these data indicate that PTN-PTPRZ-A signaling controls the timing of oligodendrocyte precursor cell differentiation in vivo, in which the CS moiety of PTPRZ receptors maintains them in a monomeric active state until its ligand binding. PMID:27445335

  14. Antiadipogenic properties of retinol in primary cultured differentiating human adipocyte precursor cells.

    PubMed

    Garcia, E; Lacasa, D; Agli, B; Giudicelli, Y; Castelli, D

    2000-04-01

    The aim of this study was to investigate the effect of retinol on the human adipose conversion process using primary cultured human adipocyte precursor cells. When these cells were seeded in a medium containing retinol (concentrations ranging from 3.5 nM to 3.5 muM), cell proliferation was slightly inhibited by high concentrations of retinol, as demonstrated by cell counting and [(3)H]-thymidine incorporation. Moreover, the differentiation capacities of these cells were markedly and dose-dependently inhibited by retinol, as shown by the reduced expression of the lipogenic enzyme glycerol-3-phosphate dehydrogenase and by microscopic morphological analysis. These results strongly suggest that retinol, by inhibiting the ability of human preadipocytes to convert into mature adipocytes, could be of potential interest in the prevention of human adipose tissue development in general and of cellulitis in particular. PMID:18503465

  15. Lysophosphatidic acid can support the formation of membranous structures and an increase in MBP mRNA levels in differentiating oligodendrocytes

    PubMed Central

    Nogaroli, Luciana; Yuelling, Larra M.; Dennis, Jameel; Gorse, Karen; Payne, Shawn G.; Fuss, Babette

    2009-01-01

    During development, differentiating oligodendrocytes progress in distinct maturation steps from premyelinating to myelinating cells. Such maturing oligodendrocytes express both receptors mediating signaling via extracellular lysophosphatidic acid (LPA) and the major enzyme generating extracellular LPA, namely phosphodiesterase-Iα/autotaxin (PD-Iα/ATX). However, the biological role of extracellular LPA during the maturation of differentiating oligodendrocytes is currently unclear. Here, we demonstrate that application of exogenous LPA induced an increase in the area occupied by the oligodendrocytes’ process network, but only when PD-Iα/ATX expression was down-regulated. This increase in network area was caused primarily by the formation of membranous structures. In addition, LPA increased the number of cells positive for myelin basic protein (MBP). This effect was associated by an increase in the mRNA levels coding for MBP but not myelin oligodendrocyte glycoprotein (MOG). Taken together, these data suggest that LPA may play a crucial role in regulating the later stages of oligodendrocyte maturation. PMID:18594965

  16. Oligodendrocyte Regeneration after Neonatal Hypoxia Requires FoxO1-Mediated p27Kip1 Expression

    PubMed Central

    Jablonska, Beata; Scafidi, Joseph; Aguirre, Adan; Vaccarino, Flora; Nguyen, Vien; Borok, Erzsebet; Horvath, Tamas L.; Rowitch, David H.; Gallo, Vittorio

    2012-01-01

    Diffuse white matter injury (DWMI) caused by hypoxia is associated with permanent neurodevelopmental disabilities in preterm infants. The cellular and molecular mechanisms producing DWMI are poorly defined. Using a mouse model of neonatal hypoxia, we demonstrate a biphasic effect on oligodendrocyte development, resulting in hypomyelination. Oligodendrocyte death and oligodendrocyte progenitor cell (OPC) proliferation during the week after hypoxia were followed by delayed oligodendrocyte differentiation and abnormal myelination, as demonstrated by electron microscopy. Cdk2 activation was essential for the regenerative OPC response after hypoxia and was accompanied by reduced FoxO1-dependent p27 Kip1 expression. p27 Kip1 was also reduced in OPCs in human infant white matter lesions after hypoxia. The negative effects of hypoxia on oligodendrogenesis and myelination were more pronounced in p27 Kip1-null mice; conversely, overexpression of FoxO1 or p27 Kip1 in OPCs after hypoxia promoted oligodendrogenesis. Our studies demonstrate for the first time that neonatal hypoxia affects the Foxo1/p27 Kip1 pathway during white matter development. We also show that molecular manipulation of this pathway enhances oligodendrocyte regeneration during a critical developmental time window after DWMI. Thus, FoxO1 and p27 Kip1 may serve as promising target molecules for promoting timely oligodendrogenesis in neonatal DWMI. PMID:23077062

  17. Movement and structure of mitochondria in oligodendrocytes and their myelin sheaths.

    PubMed

    Rinholm, Johanne E; Vervaeke, Koen; Tadross, Michael R; Tkachuk, Ariana N; Kopek, Benjamin G; Brown, Timothy A; Bergersen, Linda H; Clayton, David A

    2016-05-01

    Mitochondria play several crucial roles in the life of oligodendrocytes. During development of the myelin sheath they are essential providers of carbon skeletons and energy for lipid synthesis. During normal brain function their consumption of pyruvate will be a key determinant of how much lactate is available for oligodendrocytes to export to power axonal function. Finally, during calcium-overload induced pathology, as occurs in ischemia, mitochondria may buffer calcium or induce apoptosis. Despite their important functions, very little is known of the properties of oligodendrocyte mitochondria, and mitochondria have never been observed in the myelin sheaths. We have now used targeted expression of fluorescent mitochondrial markers to characterize the location and movement of mitochondria within oligodendrocytes. We show for the first time that mitochondria are able to enter and move within the myelin sheath. Within the myelin sheath the highest number of mitochondria was in the cytoplasmic ridges along the sheath. Mitochondria moved more slowly than in neurons and, in contrast to their behavior in neurons and astrocytes, their movement was increased rather than inhibited by glutamate activating NMDA receptors. By electron microscopy we show that myelin sheath mitochondria have a low surface area of cristae, which suggests a low ATP production. These data specify fundamental properties of the oxidative phosphorylation system in oligodendrocytes, the glial cells that enhance cognition by speeding action potential propagation and provide metabolic support to axons.

  18. Early postnatal GFAP-expressing cells produce multilineage progeny in cerebrum and astrocytes in cerebellum of adult mice.

    PubMed

    Guo, Zhibao; Wang, Xijuan; Xiao, Jun; Wang, Yihui; Lu, Hong; Teng, Junfang; Wang, Wei

    2013-09-26

    Early postnatal GFAP-expressing cells are thought to be immature astrocytes. However, it is not clear if they possess multilineage capacity and if they can generate different lineages (astrocytes, neurons and oligodendrocytes) in the brain of adult mice. In order to identify the fate of astroglial cells in the postnatal brain, hGFAP-Cre-ER(T2) transgenic mice were crossed with the R26R Cre reporter mouse strains which exhibit constitutive expression of β-galactosidase (β-gal). Mice carrying the hGFAP-Cre-ER(T2)/R26R transgene were treated with Tamoxifen to induce Cre recombination in astroglial cells at postnatal (P) day 6 and Cre recombinase-expressing cells were identified by X-gal staining. Immunohistochemical staining was used to identify the type(s) of these reporter-tagged cells. Sixty days after recombination, X-gal-positive cells in different cerebral regions of the adult mice expressed the astroglial markers Blbp and GFAP, the neuronal marker NeuN, the oligodendrocyte precursor cell marker NG2 and the mature oligodendrocyte marker CC1. X-gal-positive cells in the cerebellum coexpressed the astroglial marker Blbp, but not the granule cell marker NeuN, Purkinje cell marker Calbindin or oligodendrocyte precursor cell marker NG2. Our genetic fate mapping data demonstrated that early postnatal GFAP-positive cells possessed multilineage potential and eventually differentiated into neurons, astrocytes, and oligodendrocyte precursor cells in the cerebrum and into astrocytes (including Bergmann glia) in the cerebellum of adult mice.

  19. Mechanical vibration inhibits osteoclast formation by reducing DC-STAMP receptor expression in osteoclast precursor cells.

    PubMed

    Kulkarni, Rishikesh N; Voglewede, Philip A; Liu, Dawei

    2013-12-01

    It is well known that physical inactivity leads to loss of muscle mass, but it also causes bone loss. Mechanistically, osteoclastogenesis and bone resorption have recently been shown to be regulated by vibration. However, the underlying mechanism behind the inhibition of osteoclast formation is yet unknown. Therefore, we investigated whether mechanical vibration of osteoclast precursor cells affects osteoclast formation by the involvement of fusion-related molecules such as dendritic cell-specific transmembrane protein (DC-STAMP) and P2X7 receptor (P2X7R). RAW264.7 (a murine osteoclastic-like cell line) cells were treated with 20ng/ml receptor activator of NF-κB ligand (RANKL). For 3 consecutive days, the cells were subjected to 1h of mechanical vibration with 20μm displacement at a frequency of 4Hz and compared to the control cells that were treated under the same condition but without the vibration. After 5days of culture, osteoclast formation was determined. Gene expression of DC-STAMP and P2X7R by RAW264.7 cells was determined after 1h of mechanical vibration, while protein production of the DC-STAMP was determined after 6h of postincubation after vibration. As a result, mechanical vibration of RAW264.7 cells inhibited the formation of osteoclasts. Vibration down-regulated DC-STAMP gene expression by 1.6-fold in the presence of RANKL and by 1.4-fold in the absence of RANKL. Additionally, DC-STAMP protein production was also down-regulated by 1.4-fold in the presence of RANKL and by 1.2-fold in the absence of RANKL in RAW264.7 cells in response to mechanical vibration. However, vibration did not affect P2X7R gene expression. Mouse anti-DC-STAMP antibody inhibited osteoclast formation in the absence of vibration. Our results suggest that mechanical vibration of osteoclast precursor cells reduces DC-STAMP expression in osteoclast precursor cells leading to the inhibition of osteoclast formation.

  20. Zinc deficiency impairs neuronal precursor cell proliferation and induces apoptosis via p53-mediated mechanisms.

    PubMed

    Corniola, Rikki S; Tassabehji, Nadine M; Hare, Joan; Sharma, Girdhari; Levenson, Cathy W

    2008-10-27

    The potential importance of stem cells in the adult central nervous system (CNS) that cannot only divide, but also participate in neurogenesis, is now widely appreciated. While we know that the trace element zinc is needed for brain development, the role of this essential nutrient in adult stem cell proliferation and neurogenesis has not been investigated. Adult male rats fed a zinc-restricted diet had approximately 50% fewer Ki67-positive stem cells in the subgranular zone (SGZ) and granular cell layer of the dentate gyrus compared to both zinc-adequate and pair-fed controls (p<0.05). Zinc-deficient rats also had a significant increase the number of TUNEL-labeled cells in the SGZ compared to pair-fed rats (p<0.05). To explore the mechanisms responsible for the effects of zinc deficiency, cultured human Ntera-2 (NT2) neuronal precursor cells were deprived of zinc using the chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN). Consistent with the effects of deficiency in vivo, TPEN treatment resulted in a significant decrease in cellular proliferation, as measured by bromodeoxyuridine (BrdU) uptake, and an increase in caspase3/7-dependent apoptosis. These changes were accompanied by increases in nuclear p53. Oligonucleotide arrays, coupled with use of a dominant-negative p53 construct in NT2 cells, identified 14 differentially regulated p53 target genes. In the early phases zinc deficiency, p53 targets responsible for cell cycle arrest were induced. Continuation of deficiency resulted in the induction of a variety of pro-apoptotic genes such as transforming growth factor-beta (TGF-beta) and retinoblastoma-1 (Rb-1), as well as cellular protection genes such as glutathione peroxidase (GPx). These data suggest that zinc plays a role in neurogenesis by regulating p53-dependent molecular mechanisms that control neuronal precursor cell proliferation and survival.

  1. Oligodendrocyte, Astrocyte, and Microglia Crosstalk in Myelin Development, Damage, and Repair.

    PubMed

    Domingues, Helena S; Portugal, Camila C; Socodato, Renato; Relvas, João B

    2016-01-01

    Oligodendrocytes are the myelinating glia of the central nervous system. Myelination of axons allows rapid saltatory conduction of nerve impulses and contributes to axonal integrity. Devastating neurological deficits caused by demyelinating diseases, such as multiple sclerosis, illustrate well the importance of the process. In this review, we focus on the positive and negative interactions between oligodendrocytes, astrocytes, and microglia during developmental myelination and remyelination. Even though many lines of evidence support a crucial role for glia crosstalk during these processes, the nature of such interactions is often neglected when designing therapeutics for repair of demyelinated lesions. Understanding the cellular and molecular mechanisms underlying glial cell communication and how they influence oligodendrocyte differentiation and myelination is fundamental to uncover novel therapeutic strategies for myelin repair. PMID:27551677

  2. Oligodendrocyte, Astrocyte, and Microglia Crosstalk in Myelin Development, Damage, and Repair

    PubMed Central

    Domingues, Helena S.; Portugal, Camila C.; Socodato, Renato; Relvas, João B.

    2016-01-01

    Oligodendrocytes are the myelinating glia of the central nervous system. Myelination of axons allows rapid saltatory conduction of nerve impulses and contributes to axonal integrity. Devastating neurological deficits caused by demyelinating diseases, such as multiple sclerosis, illustrate well the importance of the process. In this review, we focus on the positive and negative interactions between oligodendrocytes, astrocytes, and microglia during developmental myelination and remyelination. Even though many lines of evidence support a crucial role for glia crosstalk during these processes, the nature of such interactions is often neglected when designing therapeutics for repair of demyelinated lesions. Understanding the cellular and molecular mechanisms underlying glial cell communication and how they influence oligodendrocyte differentiation and myelination is fundamental to uncover novel therapeutic strategies for myelin repair. PMID:27551677

  3. Transforming growth factor-alpha precursors in human colon carcinoma cells.

    PubMed

    Asbert, M; Montaner, B; Pérez-Tomás, R

    2001-06-01

    Among the proteins of the epidermal growth factor family, transforming growth factor-alpha (TGF-alpha) may be an especially reliable indicator of metastasis or prognosis in human colorectal carcinomas. Moreover, anomalous forms of TGF-alpha have been detected in several tissues of cancer origin, suggesting a role of these forms in the development of the disease. This study was designed to identify the presence of TGF-alpha precursors in different colon cancer cell lines by mean of immunocytochemistry and western blotting techniques. Pro-TGF-alpha was detected in all cell lines tested. Staining for pro-TGF-alpha was observed in cytoplasm. Monoclonal antibody to TGF-alpha detected two bands of 20 and 21 kDa. Polyclonal antibody to pro-TGF-alpha revealed five bands ranging from 15 to 24 kDa. All these proteins were also detected in nonmalignant cells expressing a transfected rat pro-TGF-alpha gene. In conclusions, transformation in these human colon carcinoma cells is not due to the presence of anomalous forms of TGF-alpha precursors.

  4. Adaptive peripheral immune response increases proliferation of neural precursor cells in the adult hippocampus.

    PubMed

    Wolf, Susanne A; Steiner, Barbara; Wengner, Antje; Lipp, Martin; Kammertoens, Thomas; Kempermann, Gerd

    2009-09-01

    To understand the link between peripheral immune activation and neuronal precursor biology, we investigated the effect of T-cell activation on adult hippocampal neurogenesis in female C57Bl/6 mice. A peripheral adaptive immune response triggered by adjuvant-induced rheumatoid arthritis (2 microg/microl methylated BSA) or staphylococcus enterotoxin B (EC(50) of 0.25 microg/ml per 20 g body weight) was associated with a transient increase in hippocampal precursor cell proliferation and neurogenesis as assessed by immunohistochemistry and confocal microscopy. Both treatments were paralleled by an increase in corticosterone levels in the hippocampus 1- to 2-fold over the physiological amount measured by quantitative radioimmunoassay. In contrast, intraperitoneal administration of the innate immune response activator lipopolysaccaride (EC(50) of 0.5 microg/ml per 20 g body weight) led to a chronic 5-fold increase of hippocampal glucocorticoid levels and a decrease of adult neurogenesis. In vitro exposure of murine neuronal progenitor cells to corticosterone triggered either cell death at high (1.5 nM) or proliferation at low (0.25 nM) concentrations. This effect could be blocked using a viral vector system expressing a transdomain of the glucocorticoid receptor. We suggest an evolutionary relevant communication route for the brain to respond to environmental stressors like inflammation mediated by glucocorticoid levels in the hippocampus.

  5. The lantibiotic NAI-107 binds to bactoprenol-bound cell wall precursors and impairs membrane functions.

    PubMed

    Münch, Daniela; Müller, Anna; Schneider, Tanja; Kohl, Bastian; Wenzel, Michaela; Bandow, Julia Elisabeth; Maffioli, Sonia; Sosio, Margherita; Donadio, Stefano; Wimmer, Reinhard; Sahl, Hans-Georg

    2014-04-25

    The lantibiotic NAI-107 is active against Gram-positive bacteria including vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus. To identify the molecular basis of its potency, we studied the mode of action in a series of whole cell and in vitro assays and analyzed structural features by nuclear magnetic resonance (NMR). The lantibiotic efficiently interfered with late stages of cell wall biosynthesis and induced accumulation of the soluble peptidoglycan precursor UDP-N-acetylmuramic acid-pentapeptide (UDP-MurNAc-pentapeptide) in the cytoplasm. Using membrane preparations and a complete cascade of purified, recombinant late stage peptidoglycan biosynthetic enzymes (MraY, MurG, FemX, PBP2) and their respective purified substrates, we showed that NAI-107 forms complexes with bactoprenol-pyrophosphate-coupled precursors of the bacterial cell wall. Titration experiments indicate that first a 1:1 stoichiometric complex occurs, which then transforms into a 2:1 (peptide: lipid II) complex, when excess peptide is added. Furthermore, lipid II and related molecules obviously could not serve as anchor molecules for the formation of defined and stable nisin-like pores, however, slow membrane depolarization was observed after NAI-107 treatment, which could contribute to killing of the bacterial cell. PMID:24627484

  6. Characterization of the Murine Myeloid Precursor Cell Line MuMac-E8

    PubMed Central

    Fricke, Stephan; Riemschneider, Sina; Kohlschmidt, Janine; Hilger, Nadja; Fueldner, Christiane; Knauer, Jens; Sack, Ulrich; Emmrich, Frank; Lehmann, Jörg

    2014-01-01

    Starting point for the present work was the assumption that the cell line MuMac-E8 represents a murine cell population with stem cell properties. Preliminary studies already pointed to the expression of stem-cell associated markers and a self-regenerative potential of the cells. The cell line MuMac-E8 should be examined for their differential stage within stem cell hierarchy. MuMac-E8 cells were derived from a chimeric mouse model of arthritis. It could be shown that MuMac-E8 cells express mRNA of some genes associated with pluripotent stem cells (Nanog, Nucleostemin), of genes for hematopoietic markers (EPCR, Sca-1, CD11b, CD45), for the mesenchymal marker CD105 and of genes for the neural markers Pax-6 and Ezrin. In methylcellulose and May-Grünwald-Giemsa staining, hematopoietic colonies were obtained but the hematopoietic system of lethally irradiated mice could not be rescued. Osteogenic differentiation was not detectable. Thus, it became evident that MuMac-E8 represents not a stem cell line. However, MuMac-E8 cells expressed several myeloid surface markers (i.e. CD11b, F4/80, CD14, CD64), showed phagocytosis and is capable of producing nitric oxide. Thus, this cell line seems to be arrested an advanced stage of myeloid differentiation. Adherence data measured by impedance-based real-time cell analysis together with cell morphology data suggested that MuMac-E8 represents a new macrophage precursor cell line exhibiting weak adherence. This cell line is suitable as an in-vitro model for testing of macrophage functions. Moreover, it might be also useful for differentiation or reprogramming studies. PMID:25546418

  7. Characterization of the murine myeloid precursor cell line MuMac-E8.

    PubMed

    Fricke, Stephan; Pfefferkorn, Cathleen; Wolf, Doris; Riemschneider, Sina; Kohlschmidt, Janine; Hilger, Nadja; Fueldner, Christiane; Knauer, Jens; Sack, Ulrich; Emmrich, Frank; Lehmann, Jörg

    2014-01-01

    Starting point for the present work was the assumption that the cell line MuMac-E8 represents a murine cell population with stem cell properties. Preliminary studies already pointed to the expression of stem-cell associated markers and a self-regenerative potential of the cells. The cell line MuMac-E8 should be examined for their differential stage within stem cell hierarchy. MuMac-E8 cells were derived from a chimeric mouse model of arthritis. It could be shown that MuMac-E8 cells express mRNA of some genes associated with pluripotent stem cells (Nanog, Nucleostemin), of genes for hematopoietic markers (EPCR, Sca-1, CD11b, CD45), for the mesenchymal marker CD105 and of genes for the neural markers Pax-6 and Ezrin. In methylcellulose and May-Grünwald-Giemsa staining, hematopoietic colonies were obtained but the hematopoietic system of lethally irradiated mice could not be rescued. Osteogenic differentiation was not detectable. Thus, it became evident that MuMac-E8 represents not a stem cell line. However, MuMac-E8 cells expressed several myeloid surface markers (i.e. CD11b, F4/80, CD14, CD64), showed phagocytosis and is capable of producing nitric oxide. Thus, this cell line seems to be arrested an advanced stage of myeloid differentiation. Adherence data measured by impedance-based real-time cell analysis together with cell morphology data suggested that MuMac-E8 represents a new macrophage precursor cell line exhibiting weak adherence. This cell line is suitable as an in-vitro model for testing of macrophage functions. Moreover, it might be also useful for differentiation or reprogramming studies.

  8. Disturbed macro-connectivity in schizophrenia linked to oligodendrocyte dysfunction: from structural findings to molecules

    PubMed Central

    Cassoli, Juliana Silva; Guest, Paul C; Malchow, Berend; Schmitt, Andrea; Falkai, Peter; Martins-de-Souza, Daniel

    2015-01-01

    Schizophrenia is a severe psychiatric disorder with multi-factorial characteristics. A number of findings have shown disrupted synaptic connectivity in schizophrenia patients and emerging evidence suggests that this results from dysfunctional oligodendrocytes, the cells responsible for myelinating axons in white matter to promote neuronal conduction. The exact cause of this is not known, although recent imaging and molecular profiling studies of schizophrenia patients have identified changes in white matter tracts connecting multiple brain regions with effects on protein signaling networks involved in the myelination process. Further understanding of oligodendrocyte dysfunction in schizophrenia could lead to identification of novel drug targets for this devastating disease. PMID:27336040

  9. Vessel-associated myogenic precursors control macrophage activation and clearance of apoptotic cells.

    PubMed

    Bosurgi, L; Brunelli, S; Rigamonti, E; Monno, A; Manfredi, A A; Rovere-Querini, P

    2015-01-01

    Swift and regulated clearance of apoptotic cells prevents the accumulation of cell remnants in injured tissues and contributes to the shift of macrophages towards alternatively activated reparatory cells that sustain wound healing. Environmental signals, most of which are unknown, in turn control the efficiency of the clearance of apoptotic cells and as such determine whether tissues eventually heal. In this study we show that vessel-associated stem cells (mesoangioblasts) specifically modulate the expression of genes involved in the clearance of apoptotic cells and in macrophage alternative activation, including those of scavenger receptors and of molecules that bridge dying cells and phagocytes. Mesoangioblasts, but not immortalized myoblasts or neural precursor cells, enhance CD163 membrane expression in vitro as assessed by flow cytometry, indicating that the effect is specific. Mesoangioblasts transplanted in acutely or chronically injured skeletal muscles determine the expansion of the population of CD163(+) infiltrating macrophages and increase the extent of CD163 expression. Conversely, macrophages challenged with mesoangioblasts engulf significantly better apoptotic cells in vitro. Collectively, the data reveal a feed-forward loop between macrophages and vessel-associated stem cells, which has implications for the skeletal muscle homeostatic response to sterile injury and for diseases in which homeostasis is jeopardized, including muscle dystrophies and inflammatory myopathies. PMID:24749786

  10. ERK1/ERK2 MAPK signaling is required to increase myelin thickness independent of oligodendrocyte differentiation and initiation of myelination.

    PubMed

    Ishii, Akihiro; Fyffe-Maricich, Sharyl L; Furusho, Miki; Miller, Robert H; Bansal, Rashmi

    2012-06-27

    Wrapping of the myelin sheath around axons by oligodendrocytes is critical for the rapid conduction of electrical signals required for the normal functioning of the CNS. Myelination is a multistep process where oligodendrocytes progress through a well coordinated differentiation program regulated by multiple extracellular growth and differentiation signals. The intracellular transduction of the extracellular signals that regulate myelination is poorly understood. Here we demonstrate a critical role for two important signaling molecules, extracelluar signal-regulated protein kinases 1 and 2 (ERK1/ERK2), downstream mediators of mitogen-activated protein kinases, in the control of CNS myelin thickness. We generated and analyzed two lines of mice lacking both ERK1/ERK2 function specifically in oligodendrocyte-lineage cells. In the absence of ERK1/ERK2 signaling NG2⁺ oligodendrocyte progenitor cells proliferated and differentiated on schedule. Mutant oligodendrocytes also ensheathed axons normally and made a few wraps of compact myelin. However, the subsequent increase in myelination that correlated myelin thickness in proportion to the axon caliber failed to occur. Furthermore, although the numbers of differentiated oligodendrocytes in the adult mutants were unchanged, they showed an inability to upregulate the transcription of major myelin genes that normally occurs during active myelination. Similarly, in vitro ERK1/ERK2-deficient oligodendrocytes differentiated normally but failed to form typical myelin-like membrane sheets. None of these effects were observed in single ERK1 or ERK2 mutants. These studies suggest that the predominant role of ERK1/ERK2 signaling in vivo is in promoting rapid myelin growth to increase its thickness, subsequent to oligodendrocyte differentiation and the initiation of myelination.

  11. Differential regulation of sphingomyelin synthesis and catabolism in oligodendrocytes and neurons

    PubMed Central

    Kilkus, John P.; Goswami, Rajendra; Dawson, Sylvia A.; Testai, Fernando D.; Berdyshev, Eugeny V.; Han, Xianlin; Dawson, Glyn

    2008-01-01

    Neurons (both primary cultures of 3-day rat hippocampal neurons and embryonic chick neurons) rapidly converted exogenous NBD-sphingomyelin (SM) to NBD-Cer but only slowly converted NBD-Cer to NBD-SM. This was confirmed by demonstrating low in vitro sphingomyelin synthase (SMS) and high sphingomyelinase (SMase) activity in neurons. Similar results were observed in a human neuroblastoma cell line (LA-N-5). In contrast, primary cultures of 3-day-old rat oligodendrocytes only slowly converted NBD-SM to NBD-Cer but rapidly converted NBD-Cer to NBD-SM. This difference was confirmed by high in vitro SMS and low SMase activity in neonatal rat oligodendrocytes. Similar results were observed in a human oligodendroglioma cell line. Mass-Spectrometric analyses confirmed that neurons had a low SM/Cer ratio of (1.5 : 1) whereas oligodendroglia had a high SM/Cer ratio (9 : 1). Differences were also confirmed by [3H]palmitate-labeling of ceramide, which was higher in neurons compared with oligodendrocytes. Stable transfection of human oligodendroglioma cells with neutral SMase, which enhanced the conversion of NBD-SM to NBD-Cer and increased cell death, whereas transfection with SMS1 or SMS2 enhanced conversion of NBD-Cer to NBD-SM and was somewhat protective against cell death. Thus, SMS rather than SMases may be more important for sphingolipid homeostasis in oligodendrocytes, whereas the reverse may be true for neurons. PMID:18489714

  12. Early postnatal development of glial cells in the canine cervical spinal cord.

    PubMed

    Lord, K E; Duncan, I D

    1987-11-01

    To study qualitative and quantitative changes in the glial cell population of young postnatal dogs, the cervical spinal cords of 20 beagle pups, ranging in age from 1 to 28 days, were prepared for light and electron microscopy. Glial cells in the lateral corticospinal tract were classified and quantified directly on the electron microscope. Quantification was performed by means of a stereological method designed to correct for sampling bias, and glia were classified according to morphological criteria as immature glial cell precursors, light and dark oligodendrocytes, astrocytes, and microglia. Glial cell precursors, which include undifferentiated glioblasts, oligodendroblasts, and astroblasts, predominated in the first few days after birth, constituting 43% of the glial cell population, and then declined to less than 5% by 28 days. Light and dark oligodendrocytes differed morphologically in their electron density and the appearance of their organelles. Light oligodendrocytes increased slightly prior to myelination, and then declined, whereas dark oligodendrocytes continued to increase throughout the 4-week period and became the predominant cell type at 28 days (66%). In contrast to the oligodendroglial population, the sizes of the astroglial and microglial cell populations were relatively stable. This study shows that the population of immature glial cell precursors, abundant at birth in the lateral corticospinal tract, appear to be differentiating primarily into oligodendroglia, because this population exhibits a rapid increase in size, and relatively little change occurs in the astrocyte population. The trends in glial cell development in the dog are similar to those reported for rodents, although there may be some variation in the maturation and activity of oligodendrocytes.

  13. Higher vulnerability and stress sensitivity of neuronal precursor cells carrying an alpha-synuclein gene triplication.

    PubMed

    Flierl, Adrian; Oliveira, Luís M A; Falomir-Lockhart, Lisandro J; Mak, Sally K; Hesley, Jayne; Soldner, Frank; Arndt-Jovin, Donna J; Jaenisch, Rudolf; Langston, J William; Jovin, Thomas M; Schüle, Birgitt

    2014-01-01

    Parkinson disease (PD) is a multi-factorial neurodegenerative disorder with loss of dopaminergic neurons in the substantia nigra and characteristic intracellular inclusions, called Lewy bodies. Genetic predisposition, such as point mutations and copy number variants of the SNCA gene locus can cause very similar PD-like neurodegeneration. The impact of altered α-synuclein protein expression on integrity and developmental potential of neuronal stem cells is largely unexplored, but may have wide ranging implications for PD manifestation and disease progression. Here, we investigated if induced pluripotent stem cell-derived neuronal precursor cells (NPCs) from a patient with Parkinson's disease carrying a genomic triplication of the SNCA gene (SNCA-Tri). Our goal was to determine if these cells these neuronal precursor cells already display pathological changes and impaired cellular function that would likely predispose them when differentiated to neurodegeneration. To achieve this aim, we assessed viability and cellular physiology in human SNCA-Tri NPCs both under normal and environmentally stressed conditions to model in vitro gene-environment interactions which may play a role in the initiation and progression of PD. Human SNCA-Tri NPCs displayed overall normal cellular and mitochondrial morphology, but showed substantial changes in growth, viability, cellular energy metabolism and stress resistance especially when challenged by starvation or toxicant challenge. Knockdown of α-synuclein in the SNCA-Tri NPCs by stably expressed short hairpin RNA (shRNA) resulted in reversal of the observed phenotypic changes. These data show for the first time that genetic alterations such as the SNCA gene triplication set the stage for decreased developmental fitness, accelerated aging, and increased neuronal cell loss. The observation of this "stem cell pathology" could have a great impact on both quality and quantity of neuronal networks and could provide a powerful new tool for

  14. Higher Vulnerability and Stress Sensitivity of Neuronal Precursor Cells Carrying an Alpha-Synuclein Gene Triplication

    PubMed Central

    Flierl, Adrian; Oliveira, Luís M. A.; Falomir-Lockhart, Lisandro J.; Mak, Sally K.; Hesley, Jayne; Soldner, Frank; Arndt-Jovin, Donna J.; Jaenisch, Rudolf; Langston, J. William; Jovin, Thomas M.; Schüle, Birgitt

    2014-01-01

    Parkinson disease (PD) is a multi-factorial neurodegenerative disorder with loss of dopaminergic neurons in the substantia nigra and characteristic intracellular inclusions, called Lewy bodies. Genetic predisposition, such as point mutations and copy number variants of the SNCA gene locus can cause very similar PD-like neurodegeneration. The impact of altered α-synuclein protein expression on integrity and developmental potential of neuronal stem cells is largely unexplored, but may have wide ranging implications for PD manifestation and disease progression. Here, we investigated if induced pluripotent stem cell-derived neuronal precursor cells (NPCs) from a patient with Parkinson’s disease carrying a genomic triplication of the SNCA gene (SNCA-Tri). Our goal was to determine if these cells these neuronal precursor cells already display pathological changes and impaired cellular function that would likely predispose them when differentiated to neurodegeneration. To achieve this aim, we assessed viability and cellular physiology in human SNCA-Tri NPCs both under normal and environmentally stressed conditions to model in vitro gene-environment interactions which may play a role in the initiation and progression of PD. Human SNCA-Tri NPCs displayed overall normal cellular and mitochondrial morphology, but showed substantial changes in growth, viability, cellular energy metabolism and stress resistance especially when challenged by starvation or toxicant challenge. Knockdown of α-synuclein in the SNCA-Tri NPCs by stably expressed short hairpin RNA (shRNA) resulted in reversal of the observed phenotypic changes. These data show for the first time that genetic alterations such as the SNCA gene triplication set the stage for decreased developmental fitness, accelerated aging, and increased neuronal cell loss. The observation of this “stem cell pathology” could have a great impact on both quality and quantity of neuronal networks and could provide a powerful new

  15. Melatonin and its precursors in Y79 human retinoblastoma cells: Effect of sodium butyrate

    NASA Technical Reports Server (NTRS)

    Deng, Mei Hua; Coviella, Ignacio Lopez G.; Lynch, Harry J.; Wurtman, Richard J.

    1991-01-01

    The release of melatonin and the production of its precursors, S-hydroxytryptophan and serotonin, in cultured Y79 human retinoblastoma cells were studied. This biosynthetic capability was found to be dependent on cell differentiation, which was initiated by culturing Y79 cells for 7 days in dishes coated with poly-D-lysine to promote cell adhesion to the surface of the culture dishes. Differentiation was further induced by exposing the cell monolayer to sodium butyrate (3 mM) for 3 days. This protocol dramatically increased the release of melatonin, and the syntheses of 5-hydroxytryptophan and serotonin in response to forskolin stimulation. Exposure to dopamine (10 micro-M) or L-DOPA (100 micro-M) markedly diminished the forskolin-stimulated release of melatonin, as well as the production of 5-hydroxytryptophan and serotonin. These observations indicate that Y79 cells represent a primitive cell line which, following appropriate differentiation (e.g. treatment with sodium butyrate) can display biochemical characteristics similar to those of the human retina. Moreover, serotonin synthesis and melatonin release appear to be coupled in Y79 cells. The inhibition of melatonin release by dopamine supports the hypothesis that in these cells, melatonin and dopamine are components of a retinal feedback loop.

  16. Stabilized metal nanoparticles from organometallic precursors for low temperature fuel cells.

    PubMed

    Ramirez-Meneses, E; Dominguez-Crespo, M A; Torres-Huerta, A M

    2013-01-01

    In this work, a review of articles and patents related to the utilization of colloidal metal nanoparticles produced by the decomposition of organometallic precursors as supported electrocatalysts in different electrochemical reactions including hydrogen evolution reaction (HER), oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) is discussed. In the case of stabilized metal nanoparticles, the kind of functional group contained in the stabilizer as well as the metal/stabilizer ratio, to evaluate the effect of particle size on the electrochemical performance, were also debated. Potential applications and perspectives of these electrocatalysts in proton exchange membrane fuel cells (PEMFC) are contended with reference to the role played by the coordination compounds and costs.

  17. Alternative Splicing in the Differentiation of Human Embryonic Stem Cells into Cardiac Precursors

    PubMed Central

    Salomonis, Nathan; Nelson, Brandon; Vranizan, Karen; Pico, Alexander R.; Hanspers, Kristina; Kuchinsky, Allan; Ta, Linda; Mercola, Mark; Conklin, Bruce R.

    2009-01-01

    The role of alternative splicing in self-renewal, pluripotency and tissue lineage specification of human embryonic stem cells (hESCs) is largely unknown. To better define these regulatory cues, we modified the H9 hESC line to allow selection of pluripotent hESCs by neomycin resistance and cardiac progenitors by puromycin resistance. Exon-level microarray expression data from undifferentiated hESCs and cardiac and neural precursors were used to identify splice isoforms with cardiac-restricted or common cardiac/neural differentiation expression patterns. Splice events for these groups corresponded to the pathways of cytoskeletal remodeling, RNA splicing, muscle specification, and cell cycle checkpoint control as well as genes with serine/threonine kinase and helicase activity. Using a new program named AltAnalyze (http://www.AltAnalyze.org), we identified novel changes in protein domain and microRNA binding site architecture that were predicted to affect protein function and expression. These included an enrichment of splice isoforms that oppose cell-cycle arrest in hESCs and that promote calcium signaling and cardiac development in cardiac precursors. By combining genome-wide predictions of alternative splicing with new functional annotations, our data suggest potential mechanisms that may influence lineage commitment and hESC maintenance at the level of specific splice isoforms and microRNA regulation. PMID:19893621

  18. Laser ablation of persistent twist cells in Drosophila: muscle precursor fate is not segmentally restricted

    NASA Technical Reports Server (NTRS)

    Farrell, E. R.; Keshishian, H.

    1999-01-01

    In Drosophila the precursors of the adult musculature arise during embryogenesis. These precursor cells have been termed Persistent Twist Cells (PTCs), as they continue to express the transcription factor Twist after that gene ceases expression elsewhere in the mesoderm. In the larval abdomen, the PTCs are associated with peripheral nerves in stereotypic ventral, dorsal, and lateral clusters, which give rise, respectively, to the ventral, dorsal, and lateral muscle fiber groups of the adult. We tested the developmental potential of the PTCs by using a microbeam laser to ablate specific clusters in larvae. We found that the ablation of a single segmental PTC cluster does not usually result in the deletion of the corresponding adult fibers of that segment. Instead, normal or near normal numbers of adult fibers can form after the ablation. Examination of pupae following ablation showed that migrating PTCs from adjacent segments are able to invade the affected segment, replenishing the ablated cells. However, the ablation of homologous PTCs in multiple segments does result in the deletion of the corresponding adult muscle fibers. These data indicate that the PTCs in an abdominal segment can contribute to the formation of muscle fibers in adjacent abdominal segments, and thus are not inherently restricted to the formation of muscle fibers within their segment of origin.

  19. Stochastic specification of primordial germ cells from mesoderm precursors in axolotl embryos.

    PubMed

    Chatfield, Jodie; O'Reilly, Marie-Anne; Bachvarova, Rosemary F; Ferjentsik, Zoltan; Redwood, Catherine; Walmsley, Maggie; Patient, Roger; Loose, Mathew; Johnson, Andrew D

    2014-06-01

    A common feature of development in most vertebrate models is the early segregation of the germ line from the soma. For example, in Xenopus and zebrafish embryos primordial germ cells (PGCs) are specified by germ plasm that is inherited from the egg; in mice, Blimp1 expression in the epiblast mediates the commitment of cells to the germ line. How these disparate mechanisms of PGC specification evolved is unknown. Here, in order to identify the ancestral mechanism of PGC specification in vertebrates, we studied PGC specification in embryos from the axolotl (Mexican salamander), a model for the tetrapod ancestor. In the axolotl, PGCs develop within mesoderm, and classic studies have reported their induction from primitive ectoderm (animal cap). We used an axolotl animal cap system to demonstrate that signalling through FGF and BMP4 induces PGCs. The role of FGF was then confirmed in vivo. We also showed PGC induction by Brachyury, in the presence of BMP4. These conditions induced pluripotent mesodermal precursors that give rise to a variety of somatic cell types, in addition to PGCs. Irreversible restriction of the germ line did not occur until the mid-tailbud stage, days after the somatic germ layers are established. Before this, germline potential was maintained by MAP kinase signalling. We propose that this stochastic mechanism of PGC specification, from mesodermal precursors, is conserved in vertebrates.

  20. Generation of Dopamine Neurons from Rodent Fibroblasts through the Expandable Neural Precursor Cell Stage*

    PubMed Central

    Lim, Mi-Sun; Chang, Mi-Yoon; Kim, Sang-Mi; Yi, Sang-Hoon; Suh-Kim, Haeyoung; Jung, Sung Jun; Kim, Min Jung; Kim, Jin Hyuk; Lee, Yong-Sung; Lee, Soo Young; Kim, Dong-Wook; Lee, Sang-Hun; Park, Chang-Hwan

    2015-01-01

    Recent groundbreaking work has demonstrated that combined expression of the transcription factors Brn2, Ascl1, and Myt1L (BAM; also known as Wernig factors) convert mouse fibroblasts into postmitotic neuronal cells. However, questions remain regarding whether trans-conversion is achieved directly or involves an intermediary precursor stage. Trans-conversion toward expandable neural precursor cells (NPCs) is more useful than direct one-step neuron formation with respect to yielding a sufficient number of cells and the feasibility of manipulating NPC differentiation toward certain neuron subtypes. Here, we show that co-expression of Wernig factors and Bcl-xL induces fibroblast conversion into NPCs (induced NPCs (iNPCs)) that are highly expandable for >100 passages. Gene expression analyses showed that the iNPCs exhibited high expression of common NPC genes but not genes specific to defined embryonic brain regions. This finding indicated that a regional identity of iNPCs was not established. Upon induction, iNPCs predominantly differentiated into astrocytes. However, the differentiation potential was not fixed and could be efficiently manipulated into general or specific subtypes of neurons by expression of additional genes. Specifically, overexpression of Nurr1 and Foxa2, transcription factors specific for midbrain dopamine neuron development, drove iNPCs to yield mature midbrain dopamine neurons equipped with presynaptic DA neuronal functions. We further assessed the therapeutic potential of iNPCs in Parkinson disease model rats. PMID:26023233

  1. Stochastic specification of primordial germ cells from mesoderm precursors in axolotl embryos

    PubMed Central

    Chatfield, Jodie; O'Reilly, Marie-Anne; Bachvarova, Rosemary F.; Ferjentsik, Zoltan; Redwood, Catherine; Walmsley, Maggie; Patient, Roger; Loose, Mathew; Johnson, Andrew D.

    2014-01-01

    A common feature of development in most vertebrate models is the early segregation of the germ line from the soma. For example, in Xenopus and zebrafish embryos primordial germ cells (PGCs) are specified by germ plasm that is inherited from the egg; in mice, Blimp1 expression in the epiblast mediates the commitment of cells to the germ line. How these disparate mechanisms of PGC specification evolved is unknown. Here, in order to identify the ancestral mechanism of PGC specification in vertebrates, we studied PGC specification in embryos from the axolotl (Mexican salamander), a model for the tetrapod ancestor. In the axolotl, PGCs develop within mesoderm, and classic studies have reported their induction from primitive ectoderm (animal cap). We used an axolotl animal cap system to demonstrate that signalling through FGF and BMP4 induces PGCs. The role of FGF was then confirmed in vivo. We also showed PGC induction by Brachyury, in the presence of BMP4. These conditions induced pluripotent mesodermal precursors that give rise to a variety of somatic cell types, in addition to PGCs. Irreversible restriction of the germ line did not occur until the mid-tailbud stage, days after the somatic germ layers are established. Before this, germline potential was maintained by MAP kinase signalling. We propose that this stochastic mechanism of PGC specification, from mesodermal precursors, is conserved in vertebrates. PMID:24917499

  2. Serum of patients with active rheumatoid arthritis inhibits differentiation of osteochondrogenic precursor cells.

    PubMed

    Pathak, Janak L; Verschueren, Patrick; Lems, Willem F; Bravenboer, Nathalie; Klein-Nulend, Jenneke; Bakker, Astrid D; Luyten, Frank P

    2016-05-01

    Delayed fracture healing is frequently experienced in patients with systemic inflammation such as during rheumatoid arthritis (RA). The reasons for this are diverse, but could also be caused by inflammatory cytokines and/or growth factors in serum from patients with active disease. We hypothesized that serum from patients with active RA contains circulating inflammatory factors that inhibit differentiation of osteochondrogenic precursors. Serum was obtained from 15 patients with active RA (active RA-sera) and from the same patients in clinical remission 1 year later (remission RA-sera; controls). The effect of active RA-sera on osteochondrogenic differentiation of chondrogenic ATDC5 cells and primary human periosteum-derived progenitor cells (HPDC) was determined in micromass culture. In ATDC5 cells, active RA-sera reduced Ki67 transcription levels by 40% and cartilage matrix accumulation by 14% at day 14, and Alp transcription levels by 16%, and matrix mineralization by 17% at day 21 compared with remission RA-sera. In HPDCs, active RA-sera inhibited metabolic activity by 8%, SOX9 transcription levels by 14%, and cartilage matrix accumulation by 7% at day 7 compared with remission RA-sera. In conclusion, sera from patients with active RA negatively affect differentiation of osteochondrogenic precursors, and as a consequence may contribute to delayed fracture healing in these patients.

  3. Stochastic specification of primordial germ cells from mesoderm precursors in axolotl embryos.

    PubMed

    Chatfield, Jodie; O'Reilly, Marie-Anne; Bachvarova, Rosemary F; Ferjentsik, Zoltan; Redwood, Catherine; Walmsley, Maggie; Patient, Roger; Loose, Mathew; Johnson, Andrew D

    2014-06-01

    A common feature of development in most vertebrate models is the early segregation of the germ line from the soma. For example, in Xenopus and zebrafish embryos primordial germ cells (PGCs) are specified by germ plasm that is inherited from the egg; in mice, Blimp1 expression in the epiblast mediates the commitment of cells to the germ line. How these disparate mechanisms of PGC specification evolved is unknown. Here, in order to identify the ancestral mechanism of PGC specification in vertebrates, we studied PGC specification in embryos from the axolotl (Mexican salamander), a model for the tetrapod ancestor. In the axolotl, PGCs develop within mesoderm, and classic studies have reported their induction from primitive ectoderm (animal cap). We used an axolotl animal cap system to demonstrate that signalling through FGF and BMP4 induces PGCs. The role of FGF was then confirmed in vivo. We also showed PGC induction by Brachyury, in the presence of BMP4. These conditions induced pluripotent mesodermal precursors that give rise to a variety of somatic cell types, in addition to PGCs. Irreversible restriction of the germ line did not occur until the mid-tailbud stage, days after the somatic germ layers are established. Before this, germline potential was maintained by MAP kinase signalling. We propose that this stochastic mechanism of PGC specification, from mesodermal precursors, is conserved in vertebrates. PMID:24917499

  4. Gene Signature of High White Blood Cell Count in B-Precursor Acute Lymphoblastic Leukemia

    PubMed Central

    Dombkowski, Alan A.; Caldwell, J. Timothy; Chu, Roland; Xavier, Ana C.; Thummel, Ryan; Neely, Melody; Matherly, Larry H.; Ge, Yubin; Taub, Jeffrey W.

    2016-01-01

    In this study we sought to identify genetic factors associated with the presenting white blood cell (WBC) count in B-precursor acute lymphoblastic leukemia (BP-ALL). Using ETV6-RUNX1-positive BP-ALL patient samples, a homogeneous subtype, we identified 16 differentially expressed genes based on the presenting WBC count (< 50,000/cumm vs > 50,000). We further confirmed that IL1R1, BCAR3, KCNH2, PIR, and ZDHHC23 were differentially expressed in a larger cohort of ETV6-RUNX1-negative BP-ALL patient samples. Statistical analysis demonstrated that expression levels of these genes could accurately categorize high and low WBC count subjects using two independent patient sets, representing positive and negative ETV6-RUNX1 cases. Further studies in leukemia cell line models will better delineate the role of these genes in regulating the white blood cell count and potentially identify new therapeutic targets. PMID:27536776

  5. ETOH inhibits embryonic neural stem/precursor cell proliferation via PLD signaling

    SciTech Connect

    Fujita, Yuko; Hiroyama, Masami; Sanbe, Atsushi Yamauchi, Junji; Murase, Shoko; Tanoue, Akito

    2008-05-23

    While a mother's excessive alcohol consumption during pregnancy is known to have adverse effects on fetal neural development, little is known about the underlying mechanism of these effects. In order to investigate these mechanisms, we investigated the toxic effect of ethanol (ETOH) on neural stem/precursor cell (NSC) proliferation. In cultures of NSCs, phospholipase D (PLD) is activated following stimulation with epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF2). Exposure of NSCs to ETOH suppresses cell proliferation, while it has no effect on cell death. Phosphatidic acid (PA), which is a signaling messenger produced by PLD, reverses ETOH inhibition of NSC proliferation. Blocking the PLD signal by 1-butanol suppresses the proliferation. ETOH-induced suppression of NSC proliferation and the protective effect of PA for ETOH-induced suppression are mediated through extracellular signal-regulated kinase signaling. These results indicate that exposure to ETOH impairs NSC proliferation by altering the PLD signaling pathway.

  6. Gene Signature of High White Blood Cell Count in B-Precursor Acute Lymphoblastic Leukemia.

    PubMed

    Edwards, Holly; Rubenstein, Mara; Dombkowski, Alan A; Caldwell, J Timothy; Chu, Roland; Xavier, Ana C; Thummel, Ryan; Neely, Melody; Matherly, Larry H; Ge, Yubin; Taub, Jeffrey W

    2016-01-01

    In this study we sought to identify genetic factors associated with the presenting white blood cell (WBC) count in B-precursor acute lymphoblastic leukemia (BP-ALL). Using ETV6-RUNX1-positive BP-ALL patient samples, a homogeneous subtype, we identified 16 differentially expressed genes based on the presenting WBC count (< 50,000/cumm vs > 50,000). We further confirmed that IL1R1, BCAR3, KCNH2, PIR, and ZDHHC23 were differentially expressed in a larger cohort of ETV6-RUNX1-negative BP-ALL patient samples. Statistical analysis demonstrated that expression levels of these genes could accurately categorize high and low WBC count subjects using two independent patient sets, representing positive and negative ETV6-RUNX1 cases. Further studies in leukemia cell line models will better delineate the role of these genes in regulating the white blood cell count and potentially identify new therapeutic targets.

  7. Cell wall precursors are required to organize the chlamydial division septum

    PubMed Central

    Jacquier, Nicolas; Frandi, Antonio; Pillonel, Trestan; Viollier, Patrick; Greub, Gilbert

    2014-01-01

    Members of the Chlamydiales order are major bacterial pathogens that divide at mid-cell, without a sequence homologue of the FtsZ cytokinetic tubulin and without a classical peptidoglycan cell wall. Moreover, the spatiotemporal mechanisms directing constriction in Chlamydia are not known. Here we show that the MreB actin homologue and its conserved regulator RodZ localize to the division furrow in Waddlia chondrophila, a member of the Chlamydiales order implicated in human miscarriage. RodZ is recruited to the septal site earlier than MreB and in a manner that depends on biosynthesis of the peptidoglycan precursor lipid II by the MurA enzyme. By contrast, crosslinking of lipid II peptides by the Pbp3 transpeptidase disperses RodZ from the septum. Altogether, these findings provide a cytological framework for understanding chlamydial cytokinesis driven by septal cell wall synthesis. PMID:24709914

  8. Molecular Features of Neural Stem Cells Enable their Enrichment Using Pharmacological Inhibitors of Survival-Promoting Kinases

    PubMed Central

    Brazel, Christine Y.; Alaythan, Abdulaziz A.; Felling, Ryan J.; Calderon, Frances; Levison, Steven W.

    2013-01-01

    Isolating a pure population of neural stem cells (NSCs) has been difficult since no exclusive surface markers have been identified for panning or FACS purification. Moreover, additional refinements for maintaining NSCs in culture are required, since NSCs generate a variety of neural precursors (NPs) as they proliferate. Here, we demonstrate that postnatal rat NPs express low levels of pro-apoptotic molecules and resist PI3K and ERK1/2 inhibition as compared to late oligodendrocyte progenitors. Furthermore, maintaining SVZ precursors in LY294002 and PD98059, inhibitors of PI3K and ERK1/2 signaling, eliminated lineage-restricted precursors as revealed by enrichment for Nestin+/SOX-2+ cells. The cells that survived formed neurospheres and 89% of these neurospheres were tripotential, generating neurons, astrocytes and oligodendrocytes. Without this enrichment step, less than 50% of the NPs were Nestin+/SOX-2+ and 42% of the neurospheres were tripotential. Additionally, neurospheres enriched using this procedure produced 3-times more secondary neurospheres, supporting the conclusion that this procedure enriches for NSCs. A number of genes that enhance survival were more highly expressed in neurospheres compared to late oligodendrocyte progenitors. Altogether, these studies demonstrate that primitive neural precursors can be enriched using a relatively simple and inexpensive means that will facilitate cell replacement strategies using stem cells as well as other studies whose goal is to reveal the fundamental properties of primitive neural precursors. PMID:24032666

  9. Learning-induced synaptic potentiation in implanted neural precursor cell-derived neurons

    PubMed Central

    Park, Kyungjoon; Heo, Hwon; Han, Ma Eum; Choi, Kyuhyun; Yi, Jee Hyun; Kang, Shin Jung; Kwon, Yunhee Kim; Shin, Ki Soon

    2015-01-01

    Neuronal loss caused by neurodegenerative diseases, traumatic brain injury and stroke results in cognitive dysfunctioning. Implantation of neural stem/precursor cells (NPCs) can improve the brain function by replacing lost neurons. Proper synaptic integration following neuronal differentiation of implanted cells is believed to be a prerequisite for the functional recovery. In the present study, we characterized the functional properties of immortalized neural progenitor HiB5 cells implanted into the rat hippocampus with chemically induced lesion. The implanted HiB5 cells migrated toward CA1 pyramidal layer and differentiated into vGluT1-positive glutamatergic neurons with morphological and electrophysiological properties of endogenous CA1 pyramidal cells. Functional synaptic integration of HiB5 cell-derived neurons was also evidenced by immunohistochemical and electrophysiological data. Lesion-caused memory deficit was significantly recovered after the implantation when assessed by inhibitory avoidance (IA) learning. Remarkably, IA learning preferentially produced long-term potentiation (LTP) at the synapses onto HiB5 cell-derived neurons, which occluded paring protocol-induced LTP ex vivo. We conclude that the implanted HiB5 cell-derived neurons actively participate in learning process through LTP formation, thereby counteracting lesion-mediated memory impairment. PMID:26634434

  10. Effects of insulin-like growth factor-1 on B-cell precursor acute lymphoblastic leukemia.

    PubMed

    Yamada, Hiroyuki; Iijima, Kazutoshi; Tomita, Osamu; Taguchi, Tomoko; Miharu, Masashi; Kobayashi, Kenichiro; Okita, Hajime; Saito, Masahiro; Shimizu, Toshiaki; Kiyokawa, Nobutaka

    2013-01-01

    Insulin-like growth factor-1 (IGF-1) is known to be a major growth factor with effects on various cell types, including hematopoietic cells, as well as neoplasms, and is regulated by IGF-binding proteins (IGFBPs). In this study, we investigated the effects of IGF-1 on B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cells. When the expression of IGF-1R in clinical samples of BCP-ALL was examined, five of thirty-two cases showed IGF-1R expression, whereas IGF-1R was expressed in most BCP-ALL cell lines. We observed that IGF-1 enhanced the proliferation of BCP-ALL cell lines that can be partially inhibited by IGFBP-1, -3, and -4, but not other IGFBPs. IGF-1 also partially inhibited dexamethasone-induced apoptosis, but not apoptosis mediated by VP-16 and irradiation. Interestingly, the proliferative effect of IGF-1 was partially blocked by inhibitors of MAPK and AKT, whereas the inhibition of dexamethasone-induced apoptosis was completely blocked by both inhibitors. Our data indicate that IGF-1 is involved in cell proliferation and apoptosis regulation in BCP-ALL cells. Since some BCP-ALL cases express IGF-1R, it appears to be a plausible target for prognostic evaluation and may represent a new therapeutic strategy.

  11. Learning-induced synaptic potentiation in implanted neural precursor cell-derived neurons.

    PubMed

    Park, Kyungjoon; Heo, Hwon; Han, Ma Eum; Choi, Kyuhyun; Yi, Jee Hyun; Kang, Shin Jung; Kwon, Yunhee Kim; Shin, Ki Soon

    2015-12-04

    Neuronal loss caused by neurodegenerative diseases, traumatic brain injury and stroke results in cognitive dysfunctioning. Implantation of neural stem/precursor cells (NPCs) can improve the brain function by replacing lost neurons. Proper synaptic integration following neuronal differentiation of implanted cells is believed to be a prerequisite for the functional recovery. In the present study, we characterized the functional properties of immortalized neural progenitor HiB5 cells implanted into the rat hippocampus with chemically induced lesion. The implanted HiB5 cells migrated toward CA1 pyramidal layer and differentiated into vGluT1-positive glutamatergic neurons with morphological and electrophysiological properties of endogenous CA1 pyramidal cells. Functional synaptic integration of HiB5 cell-derived neurons was also evidenced by immunohistochemical and electrophysiological data. Lesion-caused memory deficit was significantly recovered after the implantation when assessed by inhibitory avoidance (IA) learning. Remarkably, IA learning preferentially produced long-term potentiation (LTP) at the synapses onto HiB5 cell-derived neurons, which occluded paring protocol-induced LTP ex vivo. We conclude that the implanted HiB5 cell-derived neurons actively participate in learning process through LTP formation, thereby counteracting lesion-mediated memory impairment.

  12. Expression of mutant amyloid precursor proteins decreases adhesion and delays differentiation of Hep-1 cells.

    PubMed

    Kusiak, J W; Lee, L L; Zhao, B

    2001-03-30

    The amyloid precursor protein (APP) is a type I integral membrane protein and is processed to generate several intra-cellular and secreted fragments. The physiological role of APP and its processed fragments is unclear. Several mutations have been discovered in APP, which are causative of early-onset, familial, neurological disease, including Alzheimer's disease (FAD). These mutations alter the processing of APP and lead to excess production and extra-cellular deposition of A-beta peptide (Abeta). We have examined the role of APP in a cell culture model of endothelial cell function. The endothelial cell line, Hep-1, was stably transfected with wild-type (wt) and FAD mutant forms of APP (mAPP). Secretion of sAPPalpha was reduced in cell lines over-expressing mAPP when these cells were grown on several different substrates. Levels of secreted Abeta were increased as measured by ELISA in the mutant cell lines. Cell adhesion to laminin-, fibronectin-, collagen I-, and collagen IV-coated culture flasks was reduced in all mAPP-expressing cell lines, while in lines over-expressing wt-APP, adhesiveness was slightly increased. Cell lines over-expressing mAPP differentiated more slowly into capillary network-like structures on Matrigel than those expressing wt-APP. No differences were detected among all cell lines in a migration/invasion assay. The results suggest that APP may have a role in cell adhesiveness and maturation of endothelial cells into capillary-like networks. The reduction in adhesion and differentiation in mutant cell lines may be due to reduced amounts of sAPPalpha released into the culture media or toxic effects of increased extracellular Abeta.

  13. Amyloid precursor protein regulates migration and metalloproteinase gene expression in prostate cancer cells

    SciTech Connect

    Miyazaki, Toshiaki; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Inoue, Satoshi

    2014-09-26

    Highlights: • APP knockdown reduced proliferation and migration of prostate cancer cells. • APP knockdown reduced expression of metalloproteinase and EMT-related genes. • APP overexpression promoted LNCaP cell migration. • APP overexpression increased expression of metalloproteinase and EMT-related genes. - Abstract: Amyloid precursor protein (APP) is a type I transmembrane protein, and one of its processed forms, β-amyloid, is considered to play a central role in the development of Alzheimer’s disease. We previously showed that APP is a primary androgen-responsive gene in prostate cancer and that its increased expression is correlated with poor prognosis for patients with prostate cancer. APP has also been implicated in several human malignancies. Nevertheless, the mechanism underlying the pro-proliferative effects of APP on cancers is still not well-understood. In the present study, we explored a pathophysiological role for APP in prostate cancer cells using siRNA targeting APP (siAPP). The proliferation and migration of LNCaP and DU145 prostate cancer cells were significantly suppressed by siAPP. Differentially expressed genes in siAPP-treated cells compared to control siRNA-treated cells were identified by microarray analysis. Notably, several metalloproteinase genes, such as ADAM10 and ADAM17, and epithelial–mesenchymal transition (EMT)-related genes, such as VIM, and SNAI2, were downregulated in siAPP-treated cells as compared to control cells. The expression of these genes was upregulated in LNCaP cells stably expressing APP when compared with control cells. APP-overexpressing LNCaP cells exhibited enhanced migration in comparison to control cells. These results suggest that APP may contribute to the proliferation and migration of prostate cancer cells by modulating the expression of metalloproteinase and EMT-related genes.

  14. Protein translation components are colocalized in granules in oligodendrocytes.

    PubMed

    Barbarese, E; Koppel, D E; Deutscher, M P; Smith, C L; Ainger, K; Morgan, F; Carson, J H

    1995-08-01

    The intracellular distribution of various components of the protein translational machinery was visualized in mouse oligodendrocytes in culture using high resolution fluorescence in situ hybridization and immunofluorescence in conjunction with dual channel confocal laser scanning microscopy. Arginyl-tRNA synthetase, elongation factor 1a, ribosomal RNA, and myelin basic protein mRNA were all co-localized in granules in the processes, veins and membrane sheets of the cell. Colocalization was evaluated by dual channel cross correlation analysis to determine the correlation index (% colocalization) and correlation distance (granule radius), and by single granule ratiometric analysis to determine the distribution of the different components in individual granules. Most granules contained synthetase, elongation factor, ribosomal RNA and myelin basic protein mRNA. These results indicate that several different components of the protein synthetic machinery, including aminoacyl-tRNA synthetases, elongation factors, ribosomes and mRNAs, are colocalized in granules in oligodendrocytes. We propose that these granules are supramolecular complexes containing all of the necessary macromolecular components for protein translation and that they represent a heretofore undescribed subcellular organization of the protein synthetic machinery. This spatial organization may increase the efficiency of protein synthesis and may also provide a vehicle for transport and localization of specific mRNAs within the cell.

  15. Neurons and Oligodendrocytes Recycle Sphingosine 1-Phosphate to Ceramide

    PubMed Central

    Qin, Jingdong; Berdyshev, Evgeny; Goya, Jonathan; Natarajan, Viswanathan; Dawson, Glyn

    2010-01-01

    Both cultured neonatal rat hippocampal neurons and differentiated oligodendrocytes rapidly metabolized exogenous C2- and C6-ceramides to sphingosine (Sph) and sphingosine 1-phosphate (S1P) but only minimally to C16–24-ceramides. Dihydrosphinolipids were unaffected but were increased by exogenous C6-dihydroceramide. Conversely, quantitative liquid chromatography-tandem mass spectrometry technology showed that exogenous S1P (0.25–10 μm) was rapidly metabolized to both Sph (a >200-fold increase) and predominantly C18-ceramide (a >2-fold increase). Longer treatments with either C2-ceramide (>2.5 μm) or S1P (10 μm) led to apoptotic cell death. Thus, there is an active sphingolipid salvage pathway in both neurons and oligodendrocytes. Staurosporine-induced cell death was shown to be associated with decreased S1P and increased Sph and C16/18-ceramide levels. The physiological significance of this observation was confirmed by the analysis of affected white matter and plaques from brains of multiple sclerosis patients in which reduced S1P and increased Sph and C16/18-ceramides were observed. PMID:20215115

  16. Commitment and Differentiation of Osteoclast Precursor Cells by the Sequential Expression of C-Fms and Receptor Activator of Nuclear Factor κb (Rank) Receptors

    PubMed Central

    Arai, Fumio; Miyamoto, Takeshi; Ohneda, Osamu; Inada, Tomohisa; Sudo, Tetsuo; Brasel, Kenneth; Miyata, Takashi; Anderson, Dirk M.; Suda, Toshio

    1999-01-01

    Osteoclasts are terminally differentiated cells derived from hematopoietic stem cells. However, how their precursor cells diverge from macrophagic lineages is not known. We have identified early and late stages of osteoclastogenesis, in which precursor cells sequentially express c-Fms followed by receptor activator of nuclear factor κB (RANK), and have demonstrated that RANK expression in early-stage of precursor cells (c-Fms+RANK−) was stimulated by macrophage colony-stimulating factor (M-CSF). Although M-CSF and RANKL (ligand) induced commitment of late-stage precursor cells (c-Fms+RANK+) into osteoclasts, even late-stage precursors have the potential to differentiate into macrophages without RANKL. Pretreatment of precursors with M-CSF and delayed addition of RANKL showed that timing of RANK expression and subsequent binding of RANKL are critical for osteoclastogenesis. Thus, the RANK–RANKL system determines the osteoclast differentiation of bipotential precursors in the default pathway of macrophagic differentiation. PMID:10601350

  17. Alpha-Synuclein Expression in the Oligodendrocyte Lineage: an In Vitro and In Vivo Study Using Rodent and Human Models

    PubMed Central

    Djelloul, Mehdi; Holmqvist, Staffan; Boza-Serrano, Antonio; Azevedo, Carla; Yeung, Maggie S.; Goldwurm, Stefano; Frisén, Jonas; Deierborg, Tomas; Roybon, Laurent

    2015-01-01

    Summary In this study, we sought evidence for alpha-synuclein (ASYN) expression in oligodendrocytes, as a possible endogenous source of ASYN to explain its presence in glial inclusions found in multiple system atrophy (MSA) and Parkinson’s disease (PD). We identified ASYN in oligodendrocyte lineage progenitors isolated from the rodent brain, in oligodendrocytes generated from embryonic stem cells, and in induced pluripotent stem cells produced from fibroblasts of a healthy individual and patients diagnosed with MSA or PD, in cultures in vitro. Notably, we observed a significant decrease in ΑSYN during oligodendrocyte maturation. Additionally, we show the presence of transcripts in PDGFRΑ/CD140a+ cells and SOX10+ oligodendrocyte lineage nuclei isolated by FACS from rodent and human healthy and diseased brains, respectively. Our work identifies ASYN in oligodendrocyte lineage cells, and it offers additional in vitro cellular models that should provide significant insights of the functional implication of ASYN during oligodendrocyte development and disease. PMID:26235891

  18. Fyn is an intermediate kinase that BDNF utilizes to promote oligodendrocyte myelination.

    PubMed

    Peckham, Haley; Giuffrida, Lauren; Wood, Rhiannon; Gonsalvez, David; Ferner, Anita; Kilpatrick, Trevor J; Murray, Simon S; Xiao, Junhua

    2016-02-01

    Fyn, a member of the Src family of nonreceptor tyrosine kinases, promotes central nervous system myelination during development; however the mechanisms mediating this effect remain unknown. Here we show that Fyn phosphorylation is modulated by BDNF in vivo. Concordant with this, we find that BDNF stimulates Fyn phosphorylation in myelinating cocultures, an effect dependent on oligodendroglial expression of TrkB. Importantly, PP2, a pharmacological inhibitor of Src family kinases, not only abrogated the promyelinating influence of BDNF in vitro, but also attenuated BDNF-induced phosphorylation of Erk1/2 in oligodendrocytes. Over-expression of Fyn in oligodendrocytes significantly promotes phosphorylation of Erk1/2, and promotes myelination to the extent that exogenous BDNF exerts no additive effect in vitro. In contrast, expression of a kinase-dead mutant of Fyn in oligodendrocytes significantly inhibited BDNF-induced activation of Erk1/2 and abrogated the promyelinating effect of BDNF. Analysis of white matter tracts in vivo revealed that phosphorylated Fyn primarily colocalized with mature oligodendrocytes, and was rarely observed in oligodendrocyte progenitor cells, a profile that closely parallels the detection of phosphorylated Erk1/2 in the developing central nervous system. Taken together, these data identify that Fyn kinase exerts a key role in mediating the promyelinating influence of BDNF. Here we identify a pathway in which BDNF activation of oligodendroglial TrkB receptors stimulates the phosphorylation of Fyn, a necessary step required to potentiate the phosphorylation of Erk1/2, which in turn regulates oligodendrocyte myelination.

  19. Rejuvenation of MPTP-induced human neural precursor cell senescence by activating autophagy

    SciTech Connect

    Zhu, Liang; Dong, Chuanming; Sun, Chenxi; Ma, Rongjie; Yang, Danjing; Zhu, Hongwen; Xu, Jun

    2015-08-21

    Aging of neural stem cell, which can affect brain homeostasis, may be caused by many cellular mechanisms. Autophagy dysfunction was found in aged and neurodegenerative brains. However, little is known about the relationship between autophagy and human neural stem cell (hNSC) aging. The present study used 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to treat neural precursor cells (NPCs) derived from human embryonic stem cell (hESC) line H9 and investigate related molecular mechanisms involved in this process. MPTP-treated NPCs were found to undergo premature senescence [determined by increased senescence-associated-β-galactosidase (SA-β-gal) activity, elevated intracellular reactive oxygen species level, and decreased proliferation] and were associated with impaired autophagy. Additionally, the cellular senescence phenotypes were manifested at the molecular level by a significant increase in p21 and p53 expression, a decrease in SOD2 expression, and a decrease in expression of some key autophagy-related genes such as Atg5, Atg7, Atg12, and Beclin 1. Furthermore, we found that the senescence-like phenotype of MPTP-treated hNPCs was rejuvenated through treatment with a well-known autophagy enhancer rapamycin, which was blocked by suppression of essential autophagy gene Beclin 1. Taken together, these findings reveal the critical role of autophagy in the process of hNSC aging, and this process can be reversed by activating autophagy. - Highlights: • We successfully establish hESC-derived neural precursor cells. • MPTP treatment induced senescence-like state in hESC-derived NPCs. • MPTP treatment induced impaired autophagy of hESC-derived NPCs. • MPTP-induced hESC-derived NPC senescence was rejuvenated by activating autophagy.

  20. Zn2+ -induced ERK activation mediates PARP-1-dependent ischemic-reoxygenation damage to oligodendrocytes.

    PubMed

    Domercq, Maria; Mato, Susana; Soria, Federico N; Sánchez-gómez, M Victoria; Alberdi, Elena; Matute, Carlos

    2013-03-01

    Much of the cell death following episodes of anoxia and ischemia in the mammalian central nervous system has been attributed to extracellular accumulation of glutamate and ATP, which causes a rise in [Ca(2+)](i), loss of mitochondrial potential, and cell death. However, restoration of blood flow and reoxygenation are frequently associated with exacerbation of tissue injury (the oxygen paradox). Herein we describe a novel signaling pathway that is activated during ischemia-like conditions (oxygen and glucose deprivation; OGD) and contributes to ischemia-induced oligodendroglial cell death. OGD induced a retarded and sustained increase in extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation after restoring glucose and O(2) (reperfusion-like conditions). Blocking the ERK1/2 pathway with the MEK inhibitor UO126 largely protected oligodendrocytes against ischemic insults. ERK1/2 activation was blocked by the high-affinity Zn(2+) chelator TPEN, but not by antagonists of AMPA/kainate or P2X7 receptors that were previously shown to be involved in ischemic oligodendroglial cell death. Using a high-affinity Zn(2+) probe, we showed that ischemia induced an intracellular Zn(2+) rise in oligodendrocytes, and that incubation with TPEN prevented mitochondrial depolarization and ROS generation after ischemia. Accordingly, exposure to TPEN and the antioxidant Trolox reduced ischemia-induced oligodendrocyte death. Moreover, UO126 blocked the ischemia-induced increase in poly-[ADP]-ribosylation of proteins, and the poly[ADP]-ribose polymerase 1 (PARP-1) inhibitor DPQ significantly inhibited ischemia-induced oligodendroglial cell death-demonstrating that PARP-1 was required downstream in the Zn(2+)-ERK oligodendrocyte cell death pathway. Chelation of cytosolic Zn(2+), blocking ERK signaling, and antioxidants may be beneficial for treating CNS white matter ischemia-reperfusion injury. Importantly, all the inhibitors of this pathway protected oligodendrocytes when applied

  1. Intracellular nitric oxide mediates neuroproliferative effect of neuropeptide y on postnatal hippocampal precursor cells.

    PubMed

    Cheung, Angela; Newland, Philip L; Zaben, Malik; Attard, George S; Gray, William P

    2012-06-01

    Neuropeptide Y (NPY) is widely expressed in the central and peripheral nervous systems and is proliferative for a range of cells types in vitro. NPY plays a key role in regulating adult hippocampal neurogenesis in vivo under both basal and pathological conditions, although the underlying mechanisms are largely unknown. We have investigated the role of nitric oxide (NO) on the neurogenic effects of NPY. Using postnatal rat hippocampal cultures, we show that the proliferative effect of NPY on nestin(+) precursor cells is NO-dependent. As well as the involvement of neuronal nitric-oxide synthase, the proliferative effect is mediated via an NO/cyclic guanosine monophosphate (cGMP)/cGMP-dependent protein kinase (PKG) and extracellular signal-regulated kinase (ERK) 1/2 signaling pathway. We show that NPY-mediated intracellular NO signaling results in an increase in neuroproliferation. By contrast, extracellular NO had an opposite, inhibitory effect on proliferation. The importance of the NO-cGMP-PKG signaling pathway in ERK1/2 activation was confirmed using Western blotting. This work unites two significant modulators of hippocampal neurogenesis within a common signaling framework and provides a mechanism for the independent extra- and intracellular regulation of postnatal neural precursors by NO.

  2. Early phosphorylation of MARCKS at Ser25 in migrating precursor cells and differentiating peripheral neurons.

    PubMed

    Ruiz-Perera, Lucía M; Arruti, Cristina; Zolessi, Flavio R

    2013-06-01

    MARCKS is a ubiquitous actin-binding protein, with special functions in the development of the central nervous system. We have previously described a neuronal-specific isoform, phosphorylated at serine 25 (S25p-MARCKS), which is present very early during neuronal differentiation in the chick retina. However, very little is known about MARCKS expression or functions in the peripheral nervous system (PNS). In the present work, we analyzed migrating PNS precursor cells in the chick embryo, particularly those originating from the neural crest, and found that they all express a high amount of MARCKS and that a subpopulation of them also contained S25p-MARCKS from early developmental stages. MARCKS protein was also found in dorsal root and trigeminal ganglia during embryo development. Not only is the protein present in these structures but it is also phosphorylated in differentiating neurons with a maximal signal on the ganglion periphery, where neurogenesis is occurring. In conclusion, MARCKS is present and phosphorylated at early stages during the differentiation of PNS cells and precursors, indicating that it might also be important for the differentiation of these tissues.

  3. Early phosphorylation of MARCKS at Ser25 in migrating precursor cells and differentiating peripheral neurons.

    PubMed

    Ruiz-Perera, Lucía M; Arruti, Cristina; Zolessi, Flavio R

    2013-06-01

    MARCKS is a ubiquitous actin-binding protein, with special functions in the development of the central nervous system. We have previously described a neuronal-specific isoform, phosphorylated at serine 25 (S25p-MARCKS), which is present very early during neuronal differentiation in the chick retina. However, very little is known about MARCKS expression or functions in the peripheral nervous system (PNS). In the present work, we analyzed migrating PNS precursor cells in the chick embryo, particularly those originating from the neural crest, and found that they all express a high amount of MARCKS and that a subpopulation of them also contained S25p-MARCKS from early developmental stages. MARCKS protein was also found in dorsal root and trigeminal ganglia during embryo development. Not only is the protein present in these structures but it is also phosphorylated in differentiating neurons with a maximal signal on the ganglion periphery, where neurogenesis is occurring. In conclusion, MARCKS is present and phosphorylated at early stages during the differentiation of PNS cells and precursors, indicating that it might also be important for the differentiation of these tissues. PMID:23470634

  4. Retinoic acid regulates the development of a gut homing precursor for intestinal dendritic cells

    PubMed Central

    Zeng, Ruizhu; Oderup, Cecilia; Yuan, Robert; Lee, Mike; Habtezion, Aida; Hadeiba, Husein; Butcher, Eugene C

    2012-01-01

    The vitamin A metabolite retinoic acid (RA) regulates intestinal immune responses through immunomodulatory actions on intestinal dendritic cells (DCs) and lymphocytes. Here, we show that retinoic acid also controls the generation of gut-tropic migratory DC precursors, referred to as pre-mucosal DCs (pre-μDCs). Pre-μDCs express the gut trafficking receptor α4β7 and home preferentially to the intestines. They develop in the bone marrow, can differentiate into CCR9+ plasmacytoid DCs as well as conventional DCs (cDCs), but preferentially give rise to CD103+ intestinal cDCs. Generation of pre-μDCs in vivo in the bone marrow or in vitro is regulated by RA and retinoic acid receptor α signaling. The frequency of pre-μDCs is reduced in vitamin A-deficient animals and in animals treated with retinoic acid receptor inhibitors. The results define a novel vitamin A-dependent, retinoic-acid-regulated developmental sequence for dendritic cells and identify a targeted precursor for CD103+ cDCs in the gut. PMID:23235743

  5. Melatonin and its precursors in Y79 human retinoblastoma cells - Effect of sodium butyrate

    NASA Technical Reports Server (NTRS)

    Deng, Mei H.; Lopez G.-Coviella, Ignacio; Lynch, Harry J.; Wurtman, Richard J.

    1991-01-01

    We studied the release of melatonin and the production of its precursors, 5-hydroxytryptophan and serotonin, in cultured Y79 human retinoblastoma cells. This biosynthetic capability was found to be dependent on cell differentiation, which was initiated by culturing Y79 cells for 7 days in dishes coated with poly-D-lysine to promote cell adhesion to the surface of the culture dishes. Differentiation was further induced by exposing the cell monolayer to sodium butyrate (3 mM) for three days. This protocol dramatically increased the release of melatonin, and the syntheses of 5-hydroxytryptophan and serotonin in response to forskolin stimulation. Exposure to dopamine or L-DOPA markedly diminished the forskolin-stimulated release of melatonin, as well as the production of 5-hydroxytryptophan and serotonin. These observations indicate that Y79 cells represent a primitive cell line which, following appropriate differentiation can display biochemical characteristics similar to those of the human retina. Moreover, serotonin synthesis and melatonin release appear to be coupled in Y79 ceils.

  6. Variability of doublecortin-associated dendrite maturation in adult hippocampal neurogenesis is independent of the regulation of precursor cell proliferation

    PubMed Central

    Plümpe, Tobias; Ehninger, Dan; Steiner, Barbara; Klempin, Friederike; Jessberger, Sebastian; Brandt, Moritz; Römer, Benedikt; Rodriguez, Gerardo Ramirez; Kronenberg, Golo; Kempermann, Gerd

    2006-01-01

    Background In the course of adult hippocampal neurogenesis most regulation takes place during the phase of doublecortin (DCX) expression, either as pro-proliferative effect on precursor cells or as survival-promoting effect on postmitotic cells. We here obtained quantitative data about the proliferative population and the dynamics of postmitotic dendrite development during the period of DCX expression. The question was, whether any indication could be obtained that the initiation of dendrite development is timely bound to the exit from the cell cycle. Alternatively, the temporal course of morphological maturation might be subject to additional regulatory events. Results We found that (1) 20% of the DCX population were precursor cells in cell cycle, whereas more than 70% were postmitotic, (2) the time span until newborn cells had reached the most mature stage associated with DCX expression varied between 3 days and several weeks, (3) positive or negative regulation of precursor cell proliferation did not alter the pattern and dynamics of dendrite development. Dendrite maturation was largely independent of close contacts to astrocytes. Conclusion These data imply that dendrite maturation of immature neurons is initiated at varying times after cell cycle exit, is variable in duration, and is controlled independently of the regulation of precursor cell proliferation. We conclude that in addition to the major regulatory events in cell proliferation and selective survival, additional micro-regulatory events influence the course of adult hippocampal neurogenesis. PMID:17105671

  7. Impact of simulated microgravity on oligodendrocyte development: implications for central nervous system repair.

    PubMed

    Espinosa-Jeffrey, Araceli; Paez, Pablo M; Cheli, Veronica T; Spreuer, Vilma; Wanner, Ina; de Vellis, Jean

    2013-01-01

    We have recently established a culture system to study the impact of simulated microgravity on oligodendrocyte progenitor cells (OPCs) development. We subjected mouse and human OPCs to a short exposure of simulated microgravity produced by a 3D-Clinostat robot. Our results demonstrate that rodent and human OPCs display enhanced and sustained proliferation when exposed to simulated microgravity as assessed by several parameters, including a decrease in the cell cycle time. Additionally, OPC migration was examined in vitro using time-lapse imaging of cultured OPCs. Our results indicated that OPCs migrate to a greater extent after stimulated microgravity than in normal conditions, and this enhanced motility was associated with OPC morphological changes. The lack of normal gravity resulted in a significant increase in the migration speed of mouse and human OPCs and we found that the average leading process in migrating bipolar OPCs was significantly longer in microgravity treated cells than in controls, demonstrating that during OPC migration the lack of gravity promotes leading process extension, an essential step in the process of OPC migration. Finally, we tested the effect of simulated microgravity on OPC differentiation. Our data showed that the expression of mature oligodendrocyte markers was significantly delayed in microgravity treated OPCs. Under conditions where OPCs were allowed to progress in the lineage, simulated microgravity decreased the proportion of cells that expressed mature markers, such as CC1 and MBP, with a concomitant increased number of cells that retained immature oligodendrocyte markers such as Sox2 and NG2. Development of methodologies aimed at enhancing the number of OPCs and their ability to progress on the oligodendrocyte lineage is of great value for treatment of demyelinating disorders. To our knowledge, this is the first report on the gravitational modulation of oligodendrocyte intrinsic plasticity to increase their progenies. PMID

  8. Impact of simulated microgravity on oligodendrocyte development: implications for central nervous system repair.

    PubMed

    Espinosa-Jeffrey, Araceli; Paez, Pablo M; Cheli, Veronica T; Spreuer, Vilma; Wanner, Ina; de Vellis, Jean

    2013-01-01

    We have recently established a culture system to study the impact of simulated microgravity on oligodendrocyte progenitor cells (OPCs) development. We subjected mouse and human OPCs to a short exposure of simulated microgravity produced by a 3D-Clinostat robot. Our results demonstrate that rodent and human OPCs display enhanced and sustained proliferation when exposed to simulated microgravity as assessed by several parameters, including a decrease in the cell cycle time. Additionally, OPC migration was examined in vitro using time-lapse imaging of cultured OPCs. Our results indicated that OPCs migrate to a greater extent after stimulated microgravity than in normal conditions, and this enhanced motility was associated with OPC morphological changes. The lack of normal gravity resulted in a significant increase in the migration speed of mouse and human OPCs and we found that the average leading process in migrating bipolar OPCs was significantly longer in microgravity treated cells than in controls, demonstrating that during OPC migration the lack of gravity promotes leading process extension, an essential step in the process of OPC migration. Finally, we tested the effect of simulated microgravity on OPC differentiation. Our data showed that the expression of mature oligodendrocyte markers was significantly delayed in microgravity treated OPCs. Under conditions where OPCs were allowed to progress in the lineage, simulated microgravity decreased the proportion of cells that expressed mature markers, such as CC1 and MBP, with a concomitant increased number of cells that retained immature oligodendrocyte markers such as Sox2 and NG2. Development of methodologies aimed at enhancing the number of OPCs and their ability to progress on the oligodendrocyte lineage is of great value for treatment of demyelinating disorders. To our knowledge, this is the first report on the gravitational modulation of oligodendrocyte intrinsic plasticity to increase their progenies.

  9. Induction of maturation of human blood dendritic cell precursors by measles virus is associated with immunosuppression.

    PubMed

    Schnorr, J J; Xanthakos, S; Keikavoussi, P; Kämpgen, E; ter Meulen, V; Schneider-Schaulies, S

    1997-05-13

    As well as inducing a protective immune response against reinfection, acute measles is associated with a marked suppression of immune functions against superinfecting agents and recall antigens, and this association is the major cause of the current high morbidity and mortality rate associated with measles virus (MV) infections. Dendritic cells (DCs) are antigen-presenting cells crucially involved in the initiation of primary and secondary immune responses, so we set out to define the interaction of MV with these cells. We found that both mature and precursor human DCs generated from peripheral blood monocytic cells express the major MV protein receptor CD46 and are highly susceptible to infection with both MV vaccine (ED) and wild-type (WTF) strains, albeit with different kinetics. Except for the down-regulation of CD46, the expression pattern of functionally important surface antigens on mature DCs was not markedly altered after MV infection. However, precursor DCs up-regulated HLA-DR, CD83, and CD86 within 24 h of WTF infection and 72 h after ED infection, indicating their functional maturation. In addition, interleukin 12 synthesis was markedly enhanced after both ED and WTF infection in DCs. On the other hand, MV-infected DCs strongly interfered with mitogen-dependent proliferation of freshly isolated peripheral blood lymphocytes in vitro. These data indicate that the differentiation of effector functions of DCs is not impaired but rather is stimulated by MV infection. Yet, mature, activated DCs expressing MV surface antigens do give a negative signal to inhibit lymphocyte proliferation and thus contribute to MV-induced immunosuppression. PMID:9144236

  10. NFAT transcription factors regulate survival, proliferation, migration, and differentiation of neural precursor cells.

    PubMed

    Serrano-Pérez, María C; Fernández, Miriam; Neria, Fernando; Berjón-Otero, Mónica; Doncel-Pérez, Ernesto; Cano, Eva; Tranque, Pedro

    2015-06-01

    The study of factors that regulate the survival, proliferation, and differentiation of neural precursor cells (NPCs) is essential to understand neural development as well as brain regeneration. The Nuclear Factor of Activated T Cells (NFAT) is a family of transcription factors that can affect these processes besides playing key roles during development, such as stimulating axonal growth in neurons, maturation of immune system cells, heart valve formation, and differentiation of skeletal muscle and bone. Interestingly, NFAT signaling can also promote cell differentiation in adults, participating in tissue regeneration. The goal of the present study is to evaluate the expression of NFAT isoforms in NPCs, and to investigate its possible role in NPC survival, proliferation, migration, and differentiation. Our findings indicate that NFAT proteins are active not only in neurogenic brain regions such as hippocampus and subventricular zone (SVZ), but also in cultured NPCs. The inhibition of NFAT activation with the peptide VIVIT reduced neurosphere size and cell density in NPC cultures by decreasing proliferation and increasing cell death. VIVIT also decreased NPC migration and differentiation of astrocytes and neurons from NPCs. In addition, we identified NFATc3 as a predominant NFAT isoform in NPC cultures, finding that a constitutively-active form of NFATc3 expressed by adenoviral infection reduces NPC proliferation, stimulates migration, and is a potent inducer of NPC differentiation into astrocytes and neurons. In summary, our work uncovers active roles for NFAT signaling in NPC survival, proliferation and differentiation, and highlights its therapeutic potential for tissue regeneration.

  11. Trypsin and thrombin accelerate aggregation of human endocrine pancreas precursor cells.

    PubMed

    Wei, Chiju; Geras-Raaka, Elizabeth; Marcus-Samuels, Bernice; Oron, Yoram; Gershengorn, Marvin C

    2006-02-01

    Human islet-derived precursor cells (hIPCs) and human pancreatic ductal carcinoma (PANC-1) cells can be induced to form aggregates that subsequently differentiate into hormone-expressing islet-like cell aggregates (ICAs). We show that challenge of hIPCs or PANC-1 cells with thrombin or trypsin resulted in stimulation of signaling via the inositol-tris-phosphate second messenger pathway leading to rapid, transient increases in cytosolic calcium ion concentration in the majority of the cells. Because we found that hIPCs, PANC-1 cells, human fetal pancreas, and human adult islets express two protease-activated receptors (PARs), PAR-1 and PAR-2, we tested whether the effects of thrombin and trypsin were mediated, at least in part, by these receptors. Peptide agonists that are relatively specific for PAR-1 (SFLLRN-amide) or PAR-2 (SLIGRL-amide) stimulated increases in inositol phosphates and cytosolic calcium ion concentration, and increased the phosphorylation of Rho, a small G-protein associated with cytoskeletal changes affecting cellular morphology and migration. Most importantly, we show that these agonists increased the rate of hIPC aggregation leading to the formation of more viable, smaller ICAs. Our data show that thrombin and trypsin accelerate aggregation, an early stage of hIPC differentiation in vitro, and imply that pancreatic trypsin and thrombin may be involved in islet development in vivo. PMID:16021635

  12. Induced neural stem/precursor cells for fundamental studies and potential application in neurodegenerative diseases.

    PubMed

    Shen, Ting; Pu, Jiali; Zheng, Tingting; Zhang, Baorong

    2015-10-01

    Recent research has shown that defined sets of exogenous factors are sufficient to convert rodent and human somatic cells directly into induced neural stem cells or neural precursor cells (iNSCs/iNPCs). The process of transdifferentiation bypasses the step of a pluripotent state and reduces the risk of tumorigenesis and genetic instability while retaining the self-renewing capacity. This iNSC/iNPC technology has fueled much excitement in regenerative medicine, as these cells can be differentiated into target cells for re placement therapy for neurodegenerative diseases. Patients' somatic cell-derived iNSCs/iNPCs have also been proposed to serve as disease models with potential value in both fundamental studies and clinical applications. This review focuses on the mechanisms, techniques, and app lications of iNSCs/iNPCs from a series of related studies, as well as further efforts in designing novel strategies using iNSC/iNPC technology and its potential applications in neurodegenerative diseases.

  13. Notch signaling differentially regulates the cell fate of early endocrine precursor cells and their maturing descendants in the mouse pancreas and intestine.

    PubMed

    Li, Hui Joyce; Kapoor, Archana; Giel-Moloney, Maryann; Rindi, Guido; Leiter, Andrew B

    2012-11-15

    Notch signaling inhibits differentiation of endocrine cells in the pancreas and intestine. In a number of cases, the observed inhibition occurred with Notch activation in multipotential cells, prior to the initiation of endocrine differentiation. It has not been established how direct activation of Notch in endocrine precursor cells affects their subsequent cell fate. Using conditional activation of Notch in cells expressing Neurogenin3 or NeuroD1, we examined the effects of Notch in both organs, on cell fate of early endocrine precursors and maturing endocrine-restricted cells, respectively. Notch did not preclude the differentiation of a limited number of endocrine cells in either organ when activated in Ngn3(+) precursor cells. In addition, in the pancreas most Ngn3(+) cells adopted a duct but not acinar cell fate; whereas in intestinal Ngn3(+) cells, Notch favored enterocyte and goblet cell fates, while selecting against endocrine and Paneth cell differentiation. A small fraction of NeuroD1(+) cells in the pancreas retain plasticity to respond to Notch, giving rise to intraislet ductules as well as cells with no detectable pancreatic lineage markers that appear to have limited ultrastructural features of both endocrine and duct cells. These results suggest that Notch directly regulates cell fate decisions in multipotential early endocrine precursor cells. Some maturing endocrine-restricted NeuroD1(+) cells in the pancreas switch to the duct lineage in response to Notch, indicating previously unappreciated plasticity at such a late stage of endocrine differentiation.

  14. Recombinant Human Myelin-Associated Glycoprotein Promoter Drives Selective AAV-Mediated Transgene Expression in Oligodendrocytes

    PubMed Central

    von Jonquieres, Georg; Fröhlich, Dominik; Klugmann, Claudia B.; Wen, Xin; Harasta, Anne E.; Ramkumar, Roshini; Spencer, Ziggy H. T.; Housley, Gary D.; Klugmann, Matthias

    2016-01-01

    Leukodystrophies are hereditary central white matter disorders caused by oligodendrocyte dysfunction. Recent clinical trials for some of these devastating neurological conditions have employed an ex vivo gene therapy approach that showed improved endpoints because cross-correction of affected myelin-forming cells occurred following secretion of therapeutic proteins by transduced autologous grafts. However, direct gene transfer to oligodendrocytes is required for the majority of leukodystrophies with underlying mutations in genes encoding non-secreted oligodendroglial proteins. Recombinant adeno-associated viral (AAV) vectors are versatile tools for gene transfer to the central nervous system (CNS) and proof-of-concept studies in rodents have shown that the use of cellular promoters is sufficient to target AAV-mediated transgene expression to glia. The potential of this strategy has not been exploited. The major caveat of the AAV system is its limited packaging capacity of ~5 kb, providing the rationale for identifying small yet selective recombinant promoters. Here, we characterize the human myelin associated glycoprotein (MAG) promoter for reliable targeting of AAV-mediated transgene expression to oligodendrocytes in vivo. A homology screen revealed highly conserved genomic regions among mammalian species upstream of the transcription start site. Recombinant AAV expression cassettes carrying the cDNA encoding enhanced green fluorescent protein (GFP) driven by truncated versions of the recombinant MAG promoter (2.2, 1.5 and 0.3 kb in size) were packaged as cy5 vectors and delivered into the dorsal striatum of mice. At 3 weeks post-injection, oligodendrocytes, neurons and astrocytes expressing the reporter were quantified by immunohistochemical staining. Our results revealed that both 2.2 and 1.5 kb MAG promoters targeted more than 95% of transgene expression to oligodendrocytes. Even the short 0.3 kb fragment conveyed high oligodendroglial specific transgene

  15. Expression and precursor processing of neuropeptide Y in human and murine neuroblastoma and pheochromocytoma cell lines.

    PubMed

    O'Hare, M M; Schwartz, T W

    1989-12-15

    The synthesis and processing of the precursor for neuropeptide Y (NPY) were studied in 16 human and murine neuroendocrine cell lines. Eight of the cell lines, NS-20Y, PC12, LA-N-5, CHP-234, SMS-KCNR, SH-SY5Y, SMS-KCN, and BE(2)-M17, produced sufficient quantities to permit chromatographic characterization of the NPY immunoreactivity. Although the cell lines varied in the amount of NPY they produced, both within and between cell lines, they displayed a relatively constant pattern of posttranslational modifications. In contrast to observations in tumor extracts (M. M. T. O'Hare and T. W. Schwartz, Cancer Res., 49: 7010-7014, 1989), all cell lines studied contained a substantial amount of the intracellular NPY in the form of the unprocessed propeptide, 57% (range, 33-72%) as characterized by both gel filtrations (32 experiments in 8 cell lines) and "in vitro conversion" with endoproteinase Lys-C. In the majority, 4 of 6 cell lines studied, almost all of the NPY, which by size corresponded to the mature 36-amino acid form, was amidated as assessed by isoelectric focusing and by a radioimmunoassay specific for the COOH-terminal amide group of the peptide. Both the propeptide and smaller molecular forms of NPY were secreted from the cell cultures; however, proteolytic degradation in the tissue culture medium prevented a detailed, meaningful characterization of these peptides. It is concluded that many neuroendocrine cell lines, especially those derived from human neuroblastomas, express the NPY gene; the cells display a partly impaired dibasic processing capacity but they generally amidate the products efficiently.

  16. Bone marrow origin of decidual cell precursors in the pseudopregnant mouse uterus

    SciTech Connect

    Kearns, M.; Lala, P.K.

    1982-05-01

    Decidual cells are considered to be the endproduct of a hormonally induced transformation of endometrial stromal cells of the uterus. However, the source of these precursors remains unknown. This study of evaluated the possibility of their bone marrow origin by an examination of the H-2 phenotype of decidual cells in pseudopregnant bone marrow chimeras. These chimeras were produced by repopulating lethally irradiated CBA/J female (H-2k) mice with bone marrow from (CBA/J x C57BL/6J) F1 female (H-2kb) mice. Pseudopregnancy was produced with a hormonal regimen followed by an oil-induced decidual stimulus. Chimerism was evaluated radioautographically by an identification of the donor-specific Kb phenotype on cells with an immunolabeling technique with monospecific anti-H-2 serum followed by radioiodinated protein A. The extent of chimerism as indicated by the degree of Kb labeling on decidual cells as well as macrophages contained within the decidual nodules was quantitatively compared with that seen on splenic lymphocytes. Fair to good chimerism, as reflected by labeling for the donor-specific marker (Kb), was seen on splenic lymphocytes and macrophages within the decidual nodules in 6 out of 11 animals. A similar level of chimerism was detected on decidual cells in all but one of these six, in which case this was low. One animal showed low chimerism in the spleen but good chimerism on the decidual cells. The remaining four mice were nonchimeric for all three cell types. These results indicate that decidual cells and macrophages appearing within the decidual nodules of pseudopregnant mice are ultimate descendants of bone marrow cells.

  17. [Effect of precursor on growth and accumulation of alkaloids of Lycoris radiata suspension cells].

    PubMed

    Zhang, Yuqiong; Li, Yong; Zhou, Jianhui; Chen, Na; Wang, Meifang; Dong, Zhaorong; Gao, Cuiyun; Zhong, Yanlong

    2014-02-01

    In order to investigate the effects of phenylalanine, tyrosine and tyramine on the growth of Lycoris radiata suspension cells and the accumulation of alkaloids, the growth quantity of the cells as well as the content of alkaloids in cells were determined, which were treated with above three kinds of precursors alone and phenylalanine combined with tyrosine respectively. The results indicate that the addition of phenylalanine alone and addition of phenylalanine on the basis of tyrosine at high concentration (200 micromol/L) had no significant effect on the growth of Lycoris radiata suspension cells and the content of alkaloids in cells; whereas tyrosine and tyramine promoted the growth of the cells and alkaloids accumulation. Treated with tyrosine at high concentration (200 micromol/L), the content of alkaloids of the cells was 2.56-fold higher than that of the control group, the amounts of lycoramine (3.77 mg/g) and galanthamine (4.46 mg/g) were 6.61-fold and 6.97-fold higher than that of the control group, respectively. When treated with tyramine (200 micromol/L), the amount of alkaloids in Lycoris radiata suspension cells was 2.63-fold higher than that of the control group, and the amounts of lycoramine (4.45 mg/g) and galanthamine (5.14 mg/g) were 9.08-fold and 9.18-fold higher than that of the control group, respectively. The above results demonstrate that adding tyrosine and tyramine in the media significantly promoted the growth of the Lycoris radiata suspension cells and alkaloids accumulation in the cells. PMID:24945053

  18. Phenotype overlap in glial cell populations: astroglia, oligodendroglia and NG-2(+) cells

    PubMed Central

    Alghamdi, Badrah; Fern, Robert

    2015-01-01

    The extent to which NG-2(+) cells form a distinct population separate from astrocytes is central to understanding whether this important cell class is wholly an oligodendrocyte precursor cell (OPC) or has additional functions akin to those classically ascribed to astrocytes. Early immuno-staining studies indicate that NG-2(+) cells do not express the astrocyte marker GFAP, but orthogonal reconstructions of double-labeled confocal image stacks here reveal a significant degree of co-expression in individual cells within post-natal day 10 (P10) and adult rat optic nerve (RON) and rat cortex. Extensive scanning of various antibody/fixation/embedding approaches identified a protocol for selective post-embedded immuno-gold labeling. This first ultrastructural characterization of identified NG-2(+) cells revealed populations of both OPCs and astrocytes in P10 RON. NG-2(+) astrocytes had classic features including the presence of glial filaments but low levels of glial filament expression were also found in OPCs and myelinating oligodendrocytes. P0 RONs contained few OPCs but positively identified astrocytes were observed to ensheath pre-myelinated axons in a fashion previously described as a definitive marker of the oligodendrocyte lineage. Astrocyte ensheathment was also apparent in P10 RONs, was absent from developing nodes of Ranvier and was never associated with compact myelin. Astrocyte processes were also shown to encapsulate some oligodendrocyte somata. The data indicate that common criteria for delineating astrocytes and oligodendroglia are insufficiently robust and that astrocyte features ascribed to OPCs may arise from misidentification. PMID:26106302

  19. Nestin-Expressing Precursors Give Rise to Both Endothelial as well as Nonendothelial Lymph Node Stromal Cells.

    PubMed

    Koning, Jasper J; Konijn, Tanja; Lakeman, Kim A; O'Toole, Tom; Kenswil, Keane J G; Raaijmakers, Marc H G P; Michurina, Tatyana V; Enikolopov, Grigori; Mebius, Reina E

    2016-10-01

    During embryogenesis, lymph nodes form through intimate interaction between lymphoid tissue inducer and lymphoid tissue organizer (LTo) cells. Shortly after birth in mice, specialized stromal cell subsets arise that organize microenvironments within the lymph nodes; however, their direct precursors have not yet been identified. In the bone marrow, mesenchymal stem cells are labeled with GFP in nestin-GFP mice, and we show that during all stages of development, nestin(+) cells are present within lymph nodes of these mice. At day of birth, both mesenchymal CD31(-) and endothelial CD31(+) LTo cells were GFP(+), and only the population of CD31(-) LTo cells contained mesenchymal precursors. These CD31(-)nestin(+) cells are found in the T and B cell zones or in close association with high endothelial venules in adult lymph nodes. Fate mapping of nestin(+) cells unambiguously revealed the contribution of nestin(+) precursor cells to the mesenchymal as well as the endothelial stromal populations within lymph nodes. However, postnatal tamoxifen induced targeting of nestin(+) cells in nes-creER mice showed that most endothelial cells and only a minority of the nonendothelial cells were labeled. Overall our data show that nestin(+) cells contribute to all subsets of the complex stromal populations that can be found in lymph nodes. PMID:27574301

  20. Correlation of antitumor chemoimmunotherapy with bone marrow macrophage precursor cell stimulation and macrophage cytotoxicity.

    PubMed

    Fisher, B; Wolmark, N

    1976-07-01

    The present investigations have assessed the effects of prolonged cyclophosphamide (CY) and Corynebacterium (CP) treatment on the production of bone marrow macrophage precursors [colony-forming cells (CFC)] and on the cytotoxicity of macrophages comprising colonies produced by the CFC. The findings have been correlated with tumor growth in animals receiving the immunochemotherapy. In addition, studies have been directed toward ascertaining whether the administration of CP with CY might lessen the myelosuppressive effects of the latter. Following each consecutive weekly dose of CY (even after as many as 11), there was a significant depression in the number of bone marrow cells (BMC's) but, by the next injection, marrow cellularity had returned to normal. When the number of BMC's was reduced, the proportion of the remaining cells, which consisted of CFC, was increased. Upon reconstitution of the marrow, the proportion of CFC returned to the level of the controls. The total number of CFC in marrow was at no time following CY therapy significantly less than the number in marrow of untreated mice. The addition of CP to the treatment regimen with CY resulted in an absolute as well as relative increase in CFC at all times during administration of the combined therapy, i.e., when there was a depression in total numbers of marrow cells, as well as when marrow restoration had occurred. Although CP stimulated the number of cells entering into differentiation, it failed to affect the total numbers of marrow cells, as well as when marrow restoration had occurred. Although CP stimulated the number of cells entering into differentiation, it failed to affect the total BMC's had been neither increased nor prevented from decreasing, by CP administration, indicating that the use of total cellularity as an index of the CP marrow-sparing effect is without merit. The present results relative to cytotoxicity of macrophages derived from the CFC concur with and extend our previous findings

  1. Sparing of extraocular muscle in aging and muscular dystrophies: A myogenic precursor cell hypothesis

    SciTech Connect

    Kallestad, Kristen M.; Hebert, Sadie L.; McDonald, Abby A.; Daniel, Mark L.; Cu, Sharon R.; McLoon, Linda K.

    2011-04-01

    The extraocular muscles (EOM) are spared from pathology in aging and many forms of muscular dystrophy. Despite many studies, this sparing remains an enigma. The EOM have a distinct embryonic lineage compared to somite-derived muscles, and we have shown that they continuously remodel throughout life, maintaining a population of activated satellite cells even in aging. These data suggested the hypothesis that there is a population of myogenic precursor cells (mpcs) in EOM that is different from those in limb, with either elevated numbers of stem cells and/or mpcs with superior proliferative capacity compared to mpcs in limb. Using flow cytometry, EOM and limb muscle mononuclear cells were compared, and a number of differences were seen. Using two different cell isolation methods, EOM have significantly more mpcs per mg muscle than limb skeletal muscle. One specific subpopulation significantly increased in EOM compared to limb was positive for CD34 and negative for Sca-1, M-cadherin, CD31, and CD45. We named these the EOMCD34 cells. Similar percentages of EOMCD34 cells were present in both newborn EOM and limb muscle. They were retained in aged EOM, whereas the population decreased significantly in adult limb muscle and were extremely scarce in aged limb muscle. Most importantly, the percentage of EOMCD34 cells was elevated in the EOM from both the mdx and the mdx/utrophin{sup -/-} (DKO) mouse models of DMD and extremely scarce in the limb muscles of these mice. In vitro, the EOMCD34 cells had myogenic potential, forming myotubes in differentiation media. After determining a media better able to induce proliferation in these cells, a fusion index was calculated. The cells isolated from EOM had a 40% higher fusion index compared to the same cells isolated from limb muscle. The EOMCD34 cells were resistant to both oxidative stress and mechanical injury. These data support our hypothesis that the EOM may be spared in aging and in muscular dystrophies due to a

  2. Limited ethanol exposure selectively alters the proliferation of precursor cells in the cerebral cortex.

    PubMed

    Miller, M W

    1996-02-01

    The present in vivo study tests the hypothesis that limited (4-day) exposure to ethanol differentially affects the proliferation of cortical precursors in the two cortical germinal zones [the ventricular zone (VZ) and the subventricular zone (SZ)] and their descendants in the mature brain. The offspring of pregnant rats fed a liquid diet containing 6.7% (v/v) ethanol when prosencephalic stem cells [gestation day (G) 6-69], VZ cells (G12-G15), and SZ cells were proliferating (G18- G21) throughout much of gestation (G6-G21). In addition, the offspring of rats pair-fed a liquid control diet or fed chow were examined. The pregnant dams were administered with bromodeoxyuridine (BrdU) on either G15 or G21. The ratio of the number of cells that incorporated BrdU to the total number (the labeling index) was determined 1-hr postinjection (i.e., on G15 or G21) or on postnatal day 60, Ethanol treatment between G6 and G21 reduced the ratio of cells labeled by an injection of BrdU on G15 in the fetus and in the adult, and increased the ratio of cells labeled on G21. Regardless of when the injection was placed, ethanol treatment between G6 and G9 had no effect upon the ratio of BrdU-labeled cells in the fetus or mature cortex. Exposure from G12 to G15 decreased the number of VZ cells in the fetus and the number of immunolabeled cells in the adult cortex labeled by an injection on G15. This exposure had no effect on the incorporation by SZ cells. In contrast, ethanol exposure from G18 to G21 increased the labeling indices for fetal SZ cells and for cells in the adult, but it had no effect on the ratio of labeled VZ cells. Although ethanol had no apparent effect on the proliferation of stem cells, it did alter the proliferation of cells in the VZ and SZ. These effects are time-dependent and underlie the ethanol-induced changes in the number of cells in the adult.

  3. Noscapine protects OLN-93 oligodendrocytes from ischemia-reperfusion damage: Calcium and nitric oxide involvement.

    PubMed

    Nadjafi, S; Ebrahimi, S-A; Rahbar-Roshandel, N

    2015-12-01

    This study was carried out to evaluate the effects of noscapine, a benzylisoquinoline alkaloid from opium poppy, on oligodendrocyte during ischemia/reperfusion-induced excitotoxic injury. Changes in intracellular calcium levels due to chemical ischemia and nitric oxide (NO) production during ischemia/reperfusion were evaluated as the hallmarks of ischemia-derived excitotoxic event. OLN-93 cell line (a permanent immature rat oligodendrocyte) was used as a model of oligodendrocyte. 30- or 60-minute-oxygen-glucose deprivation/24 hours reperfusion were used to induce excitotoxicity. MTT (3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) assay was used to evaluate cell viability. Ratiometric fluorescence microscopy using Ca(2+)-sensitive indicator Fura-2/AM was utilized to assess intracellular calcium levels. NO production was evaluated by Griess method. Noscapine (4 μM) significantly attenuated intracellular Ca(2+) elevation (P < 0.001). Also, noscapine significantly decreased NO production during a 30-minute oxygen-glucose deprivation/reperfusion (P < 0.01). The inhibitory effect of noscapine (4 μM) on intracellular Ca(2+) was greater than ionotropic glutamate receptors antagonists. Noscapine is protective against ischemia/reperfusion-induced excitotoxic injury in OLN-93 oligodendrocyte. This protective effect seems to be related to attenuation of intracellular Ca(2+) overload and NO production. PMID:26690027

  4. Degradation of algal organic matter using microbial fuel cells and its association with trihalomethane precursor removal.

    PubMed

    Wang, Huan; Liu, Dongmei; Lu, Lu; Zhao, Zhiwei; Xu, Yongpeng; Cui, Fuyi

    2012-07-01

    In order to provide an alternative for removal of algal organic matter (AOM) produced during algal blooms in aquatic environment, microbial fuel cell (MFC) was used to study AOM degradation and its association with THM precursor removal. The chemical oxygen demand (COD) removals in MFCs were 81 ± 6% and 73 ± 3% for AOM from Microcystis aeruginosa (AOM(M)) and Chlorella vulgaris (AOM(C)), respectively. THM precursor was also effectively degraded (AOM(M) 85 ± 2%, AOM(C) 72 ± 4%). The major AOM components (proteins, lipids, and carbohydrates) were obviously removed in MFCs. The contribution of each component to the THM formation potential (THMFP) was obtained based on calculation. The THMFP produced from soluble microbial products was very low. If the energy input during operation process was not considered, MFCs treatment could recover electrical energy of 0.29 ± 0.02 kWh/kg COD (AOM(M)) and 0.35 ± 0.06 kWh/kg COD (AOM(C)).

  5. Overexpression of amyloid precursor protein increases copper content in HEK293 cells

    SciTech Connect

    Suazo, Miriam; Hodar, Christian; Morgan, Carlos; Cerpa, Waldo; Cambiazo, Veronica; Inestrosa, Nibaldo C.; Gonzalez, Mauricio

    2009-05-15

    Amyloid precursor protein (APP) is a transmembrane glycoprotein widely expressed in mammalian tissues and plays a central role in Alzheimer's disease. However, its physiological function remains elusive. Cu{sup 2+} binding and reduction activities have been described in the extracellular APP135-156 region, which might be relevant for cellular copper uptake and homeostasis. Here, we assessed Cu{sup 2+} reduction and {sup 64}Cu uptake in two human HEK293 cell lines overexpressing APP. Our results indicate that Cu{sup 2+} reduction increased and cells accumulated larger levels of copper, maintaining cell viability at supra-physiological levels of Cu{sup 2+} ions. Moreover, wild-type cells exposed to both Cu{sup 2+} ions and APP135-155 synthetic peptides increased copper reduction and uptake. Complementation of function studies in human APP751 transformed Fre1 defective Saccharomyces cerevisiae cells rescued low Cu{sup 2+} reductase activity and increased {sup 64}Cu uptake. We conclude that Cu{sup 2+} reduction activity of APP facilitates copper uptake and may represent an early step in cellular copper homeostasis.

  6. PERK Activation Promotes Medulloblastoma Tumorigenesis by Attenuating Premalignant Granule Cell Precursor Apoptosis.

    PubMed

    Ho, Yeung; Li, Xiting; Jamison, Stephanie; Harding, Heather P; McKinnon, Peter J; Ron, David; Lin, Wensheng

    2016-07-01

    Evidence suggests that activation of pancreatic endoplasmic reticulum kinase (PERK) signaling in response to endoplasmic reticulum stress negatively or positively influences cell transformation by regulating apoptosis. Patched1 heterozygous deficient (Ptch1(+/-)) mice reproduce human Gorlin's syndrome and are regarded as the best animal model to study tumorigenesis of the sonic hedgehog subgroup of medulloblastomas. It is believed that medulloblastomas in Ptch1(+/-) mice results from the transformation of granule cell precursors (GCPs) in the developing cerebellum. Here, we determined the role of PERK signaling on medulloblastoma tumorigenesis by assessing its effects on premalignant GCPs and tumor cells. We found that PERK signaling was activated in both premalignant GCPs in young Ptch1(+/-) mice and medulloblastoma cells in adult mice. We demonstrated that PERK haploinsufficiency reduced the incidence of medulloblastomas in Ptch1(+/-) mice. Interestingly, PERK haploinsufficiency enhanced apoptosis of premalignant GCPs in young Ptch1(+/-) mice but had no significant effect on medulloblastoma cells in adult mice. Moreover, we showed that the PERK pathway was activated in medulloblastomas in humans. These results suggest that PERK signaling promotes medulloblastoma tumorigenesis by attenuating apoptosis of premalignant GCPs during the course of malignant transformation. PMID:27181404

  7. Reduced Osteogenesis of Human Osteogenic Precursors' Cells Cultured in the Random Positioning Machine

    NASA Astrophysics Data System (ADS)

    Gershovich, J. G.; Buravkova, L. B.

    2008-06-01

    Recent studies have shown that simulated microgravity (SMG) results in altered proliferation and differentiation not only osteoblasts but also affects on osteogenic capacity of mesenchymal stem cells (MSCs) from various sources. For present study we used system that simulates effects of microgravity produced by the Random Positioning Machine (RPM). Cultured MCSs from human bone marrow and human osteoblasts (OBs) were exposed to SMG at RPM for 10-40 days. Induced osteogenesis of these progenitor cells was compared with the appropriate static (1g) and dynamic (horizontal shaker) controls. Clinorotated OBs and MSCs showed proliferation rate lower than static and dynamic control groups of cells in the early terms of SMG. Significant reduction of ALP activity was detected after 10 days of clinorotation of MSCs. There was no such dramatic difference in ALP activity of MSCs derived cells between SMG and control groups after 20 days of clinorotation but the expression of ALP was still reduced. However, virtually no matrix mineralization was found in OBs cultured under SMG conditions in the presence of differentiation stimuli. The similar effect was observed when we assayed matrix calcification of MSCs derived cultures. Thus, our results confirm low gravity mediated reduction of osteogenesis of different osteogenic precursors' cells and can clarify the mechanisms of bone loss during spaceflight.

  8. Reactive Oxygen Species Derived from NOX3 and NOX5 Drive Differentiation of Human Oligodendrocytes

    PubMed Central

    Accetta, Roberta; Damiano, Simona; Morano, Annalisa; Mondola, Paolo; Paternò, Roberto; Avvedimento, Enrico V.; Santillo, Mariarosaria

    2016-01-01

    Reactive oxygen species (ROS) are signaling molecules that mediate stress response, apoptosis, DNA damage, gene expression and differentiation. We report here that differentiation of oligodendrocytes (OLs), the myelin forming cells in the CNS, is driven by ROS. To dissect the OL differentiation pathway, we used the cell line MO3-13, which display the molecular and cellular features of OL precursors. These cells exposed 1–4 days to low levels of H2O2 or to the protein kinase C (PKC) activator, phorbol-12-Myristate-13-Acetate (PMA) increased the expression of specific OL differentiation markers: the specific nuclear factor Olig-2, and Myelin Basic Protein (MBP), which was processed and accumulated selectively in membranes. The induction of differentiation genes was associated with the activation of ERK1-2 and phosphorylation of the nuclear cAMP responsive element binding protein 1 (CREB). PKC mediates ROS-induced differentiation because PKC depletion or bis-indolyl-maleimide (BIM), a PKC inhibitor, reversed the induction of differentiation markers by H2O2. H2O2 and PMA increased the expression of membrane-bound NADPH oxidases, NOX3 and NOX5. Selective depletion of these proteins inhibited differentiation induced by PMA. Furthermore, NOX5 silencing down regulated NOX3 mRNA levels, suggesting that ROS produced by NOX5 up-regulate NOX3 expression. These data unravel an elaborate network of ROS-generating enzymes (NOX5 to NOX3) activated by PKC and necessary for differentiation of OLs. Furthermore, NOX3 and NOX5, as inducers of OL differentiation, represent novel targets for therapies of demyelinating diseases, including multiple sclerosis, associated with impairment of OL differentiation. PMID:27313511

  9. Reactive Oxygen Species Derived from NOX3 and NOX5 Drive Differentiation of Human Oligodendrocytes.

    PubMed

    Accetta, Roberta; Damiano, Simona; Morano, Annalisa; Mondola, Paolo; Paternò, Roberto; Avvedimento, Enrico V; Santillo, Mariarosaria

    2016-01-01

    Reactive oxygen species (ROS) are signaling molecules that mediate stress response, apoptosis, DNA damage, gene expression and differentiation. We report here that differentiation of oligodendrocytes (OLs), the myelin forming cells in the CNS, is driven by ROS. To dissect the OL differentiation pathway, we used the cell line MO3-13, which display the molecular and cellular features of OL precursors. These cells exposed 1-4 days to low levels of H2O2 or to the protein kinase C (PKC) activator, phorbol-12-Myristate-13-Acetate (PMA) increased the expression of specific OL differentiation markers: the specific nuclear factor Olig-2, and Myelin Basic Protein (MBP), which was processed and accumulated selectively in membranes. The induction of differentiation genes was associated with the activation of ERK1-2 and phosphorylation of the nuclear cAMP responsive element binding protein 1 (CREB). PKC mediates ROS-induced differentiation because PKC depletion or bis-indolyl-maleimide (BIM), a PKC inhibitor, reversed the induction of differentiation markers by H2O2. H2O2 and PMA increased the expression of membrane-bound NADPH oxidases, NOX3 and NOX5. Selective depletion of these proteins inhibited differentiation induced by PMA. Furthermore, NOX5 silencing down regulated NOX3 mRNA levels, suggesting that ROS produced by NOX5 up-regulate NOX3 expression. These data unravel an elaborate network of ROS-generating enzymes (NOX5 to NOX3) activated by PKC and necessary for differentiation of OLs. Furthermore, NOX3 and NOX5, as inducers of OL differentiation, represent novel targets for therapies of demyelinating diseases, including multiple sclerosis, associated with impairment of OL differentiation. PMID:27313511

  10. Ultrastructural Pathology of Oligodendroglial Cells in Traumatic and Hydrocephalic Human Brain Edema: A Review.

    PubMed

    Castejón, Orlando J

    2015-01-01

    Oligodendroglial cell changes in human traumatic brain injuries and hydrocephalus have been reviewed and compared with experimental brain edema. Resting unreactive oligodendrocytes, reactive oligodendrocytes, anoxic-ischemic oligodendrocytes, hyperthrophic phagocytic oligodendrocytes, and apoptotic oligodendrocytes are found. Anoxic-ischemic oligodendrocytes exhibit enlargement of endoplasmic reticulum, Golgi complex, and enlargement and disassembly of nuclear envelope. They appear in contact with degenerated myelinated axons. Hypertrophic phagocytic oligodendrocytes engulf degenerated myelinated axons exerting myelinolytic effects. A continuum oncotic and apoptotic cell death type leading to necrosis is observed. The vasogenic and cytotoxic components of brain edema are discussed in relation to oligodendroglial cell changes and reactivity. PMID:26548433

  11. PRDM6 is enriched in vascular precursors during development and inhibits endothelial cell proliferation, survival, and differentiation.

    PubMed

    Wu, Yaxu; Ferguson, James E; Wang, Hong; Kelley, Rusty; Ren, Rongqin; McDonough, Holly; Meeker, James; Charles, Peter C; Wang, Hengbin; Patterson, Cam

    2008-01-01

    The mechanisms that regulate the differentiation program of multipotential stem cells remain poorly understood. In order to define the cues that delineate endothelial commitment from precursors, we screened for candidate regulatory genes in differentiating mouse embryoid bodies. We found that the PR/SET domain protein, PRDM6, is enriched in flk1(+) hematovascular precursor cells using a microarray-based approach. As determined by 5' RACE, full-length PRDM6 protein contains a PR domain and four Krüppel-like zinc fingers. In situ hybridization in mouse embryos demonstrates staining of the primitive streak, allantois, heart, outflow tract, paraaortic splanchnopleura (P-Sp)/aorto-gonadal-mesonephric (AGM) region and yolk sac, all sites known to be enriched in vascular precursor cells. PRDM6 is also detected in embryonic and adult-derived endothelial cell lines. PRDM6 is co-localized with histone H4 and methylates H4-K20 (but not H3) in vitro and in vivo, which is consistent with the known participation of PR domains in histone methyltransferase activity. Overexpression of PRDM6 in mouse embryonic endothelial cells induces apoptosis by activating caspase-3 and inducing G1 arrest. PRDM6 inhibits cell proliferation as determined by BrdU incorporation in endothelial cells, but not in rat aortic smooth muscle cells. Overexpression of PRDM6 also results in reduced tube formation in cultured endothelial cells grown in Matrigel. Taken together, our data indicate that PRDM6 is expressed by vascular precursors, has differential effects in endothelial cells and smooth muscle cells, and may play a role in vascular precursor differentiation and survival by modulating local chromatin-remodeling activity within hematovascular subpopulations during development.

  12. Intrauterine Growth Restriction: Effects on Neural Precursor Cell Proliferation and Angiogenesis in the Foetal Subventricular Zone.

    PubMed

    Tolcos, Mary; Markwick, Rachel; O'Dowd, Rachael; Martin, Veronica; Turnley, Ann; Rees, Sandra

    2015-01-01

    Exposure to adverse prenatal factors can result in abnormal brain development, contributing to the aetiology of several neurological disorders. Intrauterine insults could occur during neurogenesis and gliogenesis, disrupting these events. Here we investigate the effects of chronic placental insufficiency (CPI) on cell proliferation and the microenvironment in the subventricular zone (SVZ). At 30 days of gestation (DG; term ∼67 DG), CPI was induced in pregnant guinea pigs via unilateral uterine artery ligation to produce growth-restricted (GR) foetuses (n = 7); controls (n = 6) were from the unoperated horn. At 60 DG, foetal brains were stained immunohistochemically to identify proliferating cells (Ki67), immature neurons (polysialylated neuronal cell adhesion molecule), astrocytes (glial fibrillary acidic protein), microglia (ionised calcium-binding adaptor molecule-1, Iba-1) and the microvasculature (von Willebrand factor) in the SVZ. There was no overall difference (p > 0.05) in the total number of Ki67-immunoreactive (IR) cells, the percentage of SVZ occupied by blood vessels or the density of Iba-1-IR microglia in control versus GR foetuses. However, regression analysis across both groups revealed that both the number of Ki67-IR cells and the percentage of SVZ occupied by blood vessels in the ventral SVZ were negatively correlated (p < 0.05) with brain weight. Furthermore, in the SVZ (dorsal and ventral) the density of blood vessels positively correlated (p < 0.05) with the number of Ki67-IR cells. Double-labelling immunofluorescence suggested that the majority of proliferating cells were likely to be neural precursor cells. Thus, we have demonstrated an association between angiogenesis and neurogenesis in the foetal neurogenic niche and have identified a window of opportunity for the administration of trophic support to enhance a neuroregenerative response.

  13. Mechanisms of cell-cell interaction in oligodendrogenesis and remyelination after stroke.

    PubMed

    Itoh, Kanako; Maki, Takakuni; Lok, Josephine; Arai, Ken

    2015-10-14

    White matter damage is a clinically important aspect of several central nervous system diseases, including stroke. Cerebral white matter primarily consists of axonal bundles ensheathed with myelin secreted by mature oligodendrocytes, which play an important role in neurotransmission between different areas of gray matter. During the acute phase of stroke, damage to oligodendrocytes leads to white matter dysfunction through the loss of myelin. On the contrary, during the chronic phase, white matter components promote an environment, which is favorable for neural repair, vascular remodeling, and remyelination. For effective remyelination to take place, oligodendrocyte precursor cells (OPCs) play critical roles by proliferating and differentiating into mature oligodendrocytes, which help to decrease the burden of axonal injury. Notably, other types of cells contribute to these OPC responses under the ischemic conditions. This mini-review summarizes the non-cell autonomous mechanisms in oligodendrogenesis and remyelination after white matter damage, focusing on how OPCs receive support from their neighboring cells. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke. PMID:25960351

  14. Different Mechanisms Must Be Considered to Explain the Increase in Hippocampal Neural Precursor Cell Proliferation by Physical Activity

    PubMed Central

    Overall, Rupert W.; Walker, Tara L.; Fischer, Tim J.; Brandt, Moritz D.; Kempermann, Gerd

    2016-01-01

    The number of proliferating neural precursor cells in the adult hippocampus is strongly increased by physical activity. The mechanisms through which this behavioral stimulus induces cell proliferation, however, are not yet understood. In fact, even the mode of proliferation of the stem and progenitor cells is not exactly known. Evidence exists for several mechanisms including cell cycle shortening, reduced cell death and stem cell recruitment, but as yet no model can account for all observations. An appreciation of how the cells proliferate, however, is crucial to our ability to model the neurogenic process and predict its behavior in response to pro-neurogenic stimuli. In a recent study, we addressed modulation of the cell cycle length as one possible mode of regulation of precursor cell proliferation in running mice. Our results indicated that the observed increase in number of proliferating cells could not be explained through a shortening of the cell cycle. We must therefore consider other mechanisms by which physical activity leads to enhanced precursor cell proliferation. Here we review the evidence for and against several different hypotheses and discuss the implications for future research in the field. PMID:27536215

  15. Altered neutrophil immunophenotypes in childhood B-cell precursor acute lymphoblastic leukemia

    PubMed Central

    Oliveira, Elen; Bacelar, Thiago S.; Ciudad, Juana; Ribeiro, Maria Cecília M.; Garcia, Daniela R.N.; Sedek, Lukasz; Maia, Simone F.; Aranha, Daniel B.; Machado, Indyara C.; Ikeda, Arissa; Baglioli, Bianca F.; Lopez-Duarte, Nathalia; Teixeira, Lisandra A. C.; Szczepanski, Tomasz; Silva, Maria Luiza M.; Land, Marcelo G.P.

    2016-01-01

    An increasing number of evidences suggest a genetic predisposition in acute lymphoblastic leukemia (ALL) that might favor the occurrence of the driver genetic alterations. Such genetic background might also translate into phenotypic alterations of residual hematopoietic cells. Whether such phenotypic alterations are present in bone marrow (BM) cells from childhood B-cell precursor (BCP)-ALL remains to be investigated. Here we analyzed the immunophenotypic profile of BM and peripheral blood (PB) maturing/matured neutrophils from 118 children with BCP-ALL and their relationship with the features of the disease. Our results showed altered neutrophil phenotypes in most (77%) BCP-ALL cases. The most frequently altered marker was CD10 (53%), followed by CD33 (34%), CD13 (15%), CD15/CD65 (10%) and CD123 (7%). Of note, patients with altered neutrophil phenotypes had younger age (p = 0.03) and lower percentages of BM maturing neutrophils (p = 0.004) together with greater BM lymphocyte (p = 0.04), and mature B-cell (p = 0.03) counts. No significant association was found between an altered neutrophil phenotype and other disease features. These findings point out the potential existence of an altered residual hematopoiesis in most childhood BCP-ALL cases. PMID:27028865

  16. Oral citrulline as arginine precursor may be beneficial in sickle cell disease: early phase two results.

    PubMed Central

    Waugh, W. H.; Daeschner, C. W.; Files, B. A.; McConnell, M. E.; Strandjord, S. E.

    2001-01-01

    L-Arginine may be a conditionally essential amino acid in children and adolescents with sickle cell disease, particularly as required substrate in the arginine-nitric oxide pathway for endogenous nitrovasodilation and vasoprotection. Vasoprotection by arginine is mediated partly by nitric oxide-induced inhibition of endothelial damage and inhibition of adhesion and activation of leukocytes. Activated leukocytes may trigger many of the complications, including vasoocclusive events and intimal hyperplasias. High blood leukocyte counts during steady states in the absence of infection are significant laboratory risk factors for adverse complications. L-Citrulline as precursor amino acid was given orally twice daily in daily doses of approximately 0.1 g/kg in a pilot Phase II clinical trial during steady states in four homozygous sickle cell disease subjects and one sickle cell-hemoglobin C disease patient (ages 10-18). There soon resulted dramatic improvements in symptoms of well-being, raised plasma arginine levels, and reductions in high total leukocyte and high segmented neutrophil counts toward or to within normal limits. Continued L-citrulline supplementation in compliant subjects continued to lessen symptomatology, to maintain plasma arginine concentrations greater than control levels, and to maintain nearly normal total leukocyte and neutrophil counts. Side effects or toxicity from citrulline were not experienced. Oral L-citrulline may portend very useful for palliative therapy in sickle cell disease. Placebo-controlled, long-term trials are now indicated. PMID:11688916

  17. Langerhans cell precursors acquire RANK/CD265 in prenatal human skin.

    PubMed

    Schöppl, Alice; Botta, Albert; Prior, Marion; Akgün, Johnnie; Schuster, Christopher; Elbe-Bürger, Adelheid

    2015-01-01

    The skin is the first barrier against foreign pathogens and the prenatal formation of a strong network of various innate and adaptive cells is required to protect the newborn from perinatal infections. While many studies about the immune system in healthy and diseased adult human skin exist, our knowledge about the cutaneous prenatal/developing immune system and especially about the phenotype and function of antigen-presenting cells such as epidermal Langerhans cells (LCs) in human skin is still scarce. It has been shown previously that LCs in healthy adult human skin express receptor activator of NF-κB (RANK), an important molecule prolonging their survival. In this study, we investigated at which developmental stage LCs acquire this important molecule. Immunofluorescence double-labeling of cryostat sections revealed that LC precursors in prenatal human skin either do not yet [10-11 weeks of estimated gestational age (EGA)] or only faintly (13-15 weeks EGA) express RANK. LCs express RANK at levels comparable to adult LCs by the end of the second trimester. Comparable with adult skin, dermal antigen-presenting cells at no gestational age express this marker. These findings indicate that epidermal leukocytes gradually acquire RANK during gestation - a phenomenon previously observed also for other markers on LCs in prenatal human skin.

  18. Langerhans cell precursors acquire RANK/CD265 in prenatal human skin

    PubMed Central

    Schöppl, Alice; Botta, Albert; Prior, Marion; Akgün, Johnnie; Schuster, Christopher; Elbe-Bürger, Adelheid

    2015-01-01

    The skin is the first barrier against foreign pathogens and the prenatal formation of a strong network of various innate and adaptive cells is required to protect the newborn from perinatal infections. While many studies about the immune system in healthy and diseased adult human skin exist, our knowledge about the cutaneous prenatal/developing immune system and especially about the phenotype and function of antigen-presenting cells such as epidermal Langerhans cells (LCs) in human skin is still scarce. It has been shown previously that LCs in healthy adult human skin express receptor activator of NF-κB (RANK), an important molecule prolonging their survival. In this study, we investigated at which developmental stage LCs acquire this important molecule. Immunofluorescence double-labeling of cryostat sections revealed that LC precursors in prenatal human skin either do not yet [10–11 weeks of estimated gestational age (EGA)] or only faintly (13–15 weeks EGA) express RANK. LCs express RANK at levels comparable to adult LCs by the end of the second trimester. Comparable with adult skin, dermal antigen-presenting cells at no gestational age express this marker. These findings indicate that epidermal leukocytes gradually acquire RANK during gestation – a phenomenon previously observed also for other markers on LCs in prenatal human skin. PMID:25722033

  19. Rejuvenation of MPTP-induced human neural precursor cell senescence by activating autophagy.

    PubMed

    Zhu, Liang; Dong, Chuanming; Sun, Chenxi; Ma, Rongjie; Yang, Danjing; Zhu, Hongwen; Xu, Jun

    2015-08-21

    Aging of neural stem cell, which can affect brain homeostasis, may be caused by many cellular mechanisms. Autophagy dysfunction was found in aged and neurodegenerative brains. However, little is known about the relationship between autophagy and human neural stem cell (hNSC) aging. The present study used 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to treat neural precursor cells (NPCs) derived from human embryonic stem cell (hESC) line H9 and investigate related molecular mechanisms involved in this process. MPTP-treated NPCs were found to undergo premature senescence [determined by increased senescence-associated-β-galactosidase (SA-β-gal) activity, elevated intracellular reactive oxygen species level, and decreased proliferation] and were associated with impaired autophagy. Additionally, the cellular senescence phenotypes were manifested at the molecular level by a significant increase in p21 and p53 expression, a decrease in SOD2 expression, and a decrease in expression of some key autophagy-related genes such as Atg5, Atg7, Atg12, and Beclin 1. Furthermore, we found that the senescence-like phenotype of MPTP-treated hNPCs was rejuvenated through treatment with a well-known autophagy enhancer rapamycin, which was blocked by suppression of essential autophagy gene Beclin 1. Taken together, these findings reveal the critical role of autophagy in the process of hNSC aging, and this process can be reversed by activating autophagy. PMID:26159917

  20. The capsaicin receptor TRPV1 as a novel modulator of neural precursor cell proliferation.

    PubMed

    Stock, Kristin; Garthe, Alexander; de Almeida Sassi, Felipe; Glass, Rainer; Wolf, Susanne A; Kettenmann, Helmut

    2014-12-01

    The capsaicin receptor (TRPV1, transient receptor potential vanilloid type 1) was first discovered in the peripheral nervous system as a detector of noxious chemical and thermal stimuli including the irritant chili pepper. Recently, there has been increasing evidence of TRPV1 expression in the central nervous system. Here, we show that TRPV1 is expressed in neural precursor cells (NPCs) during postnatal development, but not in the adult. However, expression of TRPV1 is induced in the adult in paradigms linked to an increase in neurogenesis, such as spatial learning in the Morris water maze or voluntary exercise. Loss of TRPV1 expression in knockout mice leads to an increase in NPC proliferation. Functional TRPV1 expression has been confirmed in cultured NPCs. Our results indicate that TRPV1 expression influences both postnatal and activity-induced neurogenesis in adulthood. PMID:25092424

  1. Efficiency Enhancement of Perovskite Solar Cells by Pumping Away the Solvent of Precursor Film Before Annealing.

    PubMed

    Xu, Qing-Yang; Yuan, Da-Xing; Mu, Hao-Ran; Igbari, Femi; Bao, Qiaoliang; Liao, Liang-Sheng

    2016-12-01

    A new approach to improve the quality of MAPbI3 - x Cl x perovskite film was demonstrated. It involves annealing the precursor film after pumping away the solvent, which can decrease the influence of solvent evaporation rate for the growth of the MAPbI3 - x Cl x perovskite film. The resulting film showed improved morphology, stronger absorption, fewer crystal defects, and smaller charge transfer resistance. The corresponding device demonstrated enhanced performance when compared with a reference device. The averaged value of power conversion efficiency increased from 10.61 to 12.56 %, and a champion efficiency of 14.0 % was achieved. This work paves a new way to improve the efficiency of perovskite solar cells. PMID:27173677

  2. Efficiency Enhancement of Perovskite Solar Cells by Pumping Away the Solvent of Precursor Film Before Annealing

    NASA Astrophysics Data System (ADS)

    Xu, Qing-Yang; Yuan, Da-Xing; Mu, Hao-Ran; Igbari, Femi; Bao, Qiaoliang; Liao, Liang-Sheng

    2016-05-01

    A new approach to improve the quality of MAPbI3 - x Cl x perovskite film was demonstrated. It involves annealing the precursor film after pumping away the solvent, which can decrease the influence of solvent evaporation rate for the growth of the MAPbI3 - x Cl x perovskite film. The resulting film showed improved morphology, stronger absorption, fewer crystal defects, and smaller charge transfer resistance. The corresponding device demonstrated enhanced performance when compared with a reference device. The averaged value of power conversion efficiency increased from 10.61 to 12.56 %, and a champion efficiency of 14.0 % was achieved. This work paves a new way to improve the efficiency of perovskite solar cells.

  3. Efficiency Enhancement of Perovskite Solar Cells by Pumping Away the Solvent of Precursor Film Before Annealing.

    PubMed

    Xu, Qing-Yang; Yuan, Da-Xing; Mu, Hao-Ran; Igbari, Femi; Bao, Qiaoliang; Liao, Liang-Sheng

    2016-12-01

    A new approach to improve the quality of MAPbI3 - x Cl x perovskite film was demonstrated. It involves annealing the precursor film after pumping away the solvent, which can decrease the influence of solvent evaporation rate for the growth of the MAPbI3 - x Cl x perovskite film. The resulting film showed improved morphology, stronger absorption, fewer crystal defects, and smaller charge transfer resistance. The corresponding device demonstrated enhanced performance when compared with a reference device. The averaged value of power conversion efficiency increased from 10.61 to 12.56 %, and a champion efficiency of 14.0 % was achieved. This work paves a new way to improve the efficiency of perovskite solar cells.

  4. Motor training compensates for cerebellar dysfunctions caused by oligodendrocyte ablation.

    PubMed

    Collin, Ludovic; Usiello, Alessandro; Erbs, Eric; Mathis, Carole; Borrelli, Emiliana

    2004-01-01

    The role played by oligodendrocytes (OLs), the myelinating cells of the CNS, during brain development has not been fully explored. We have addressed this question by inducing a temporal and reversible ablation of OLs on postnatal CNS development. OL ablation in newborn mice leads to a profound alteration in the structure of the cerebellar cortex, which can be progressively rescued by newly generated cells, leading to a delayed myelination. Nevertheless, the temporal shift of the OL proliferation and myelinating program cannot completely compensate for developmental defects, resulting in impaired motor functions in the adult. Strikingly, we show that, despite these abnormalities, epigenetic factors, such as motor training, are able to fully rescue cerebellar-directed motor skills. PMID:14694200

  5. Motor training compensates for cerebellar dysfunctions caused by oligodendrocyte ablation

    PubMed Central

    Collin, Ludovic; Usiello, Alessandro; Erbs, Eric; Mathis, Carole; Borrelli, Emiliana

    2004-01-01

    The role played by oligodendrocytes (OLs), the myelinating cells of the CNS, during brain development has not been fully explored. We have addressed this question by inducing a temporal and reversible ablation of OLs on postnatal CNS development. OL ablation in newborn mice leads to a profound alteration in the structure of the cerebellar cortex, which can be progressively rescued by newly generated cells, leading to a delayed myelination. Nevertheless, the temporal shift of the OL proliferation and myelinating program cannot completely compensate for developmental defects, resulting in impaired motor functions in the adult. Strikingly, we show that, despite these abnormalities, epigenetic factors, such as motor training, are able to fully rescue cerebellar-directed motor skills. PMID:14694200

  6. Oligodendrogenesis from neural stem cells: perspectives for remyelinating strategies.

    PubMed

    Grade, Sofia; Bernardino, Liliana; Malva, João O

    2013-11-01

    Mobilization of remyelinating cells spontaneously occurs in the adult brain. These cellular resources are specially active after demyelinating episodes in early phases of multiple sclerosis (MS). Indeed, oligodendrocyte precursor cells (OPCs) actively proliferate, migrate to and repopulate the lesioned areas. Ultimately, efficient remyelination is accomplished when new oligodendrocytes reinvest nude neuronal axons, restoring the normal properties of impulse conduction. As the disease progresses this fundamental process fails. Multiple causes seem to contribute to such transient decline, including the failure of OPCs to differentiate and enwrap the vulnerable neuronal axons. Regenerative medicine for MS has been mainly centered on the recruitment of endogenous self-repair mechanisms, or on transplantation approaches. The latter commonly involves grafting of neural precursor cells (NPCs) or neural stem cells (NSCs), with myelinogenic potential, in the injured areas. Both strategies require further understanding of the biology of oligodendrocyte differentiation and remyelination. Indeed, the success of transplantation largely depends on the pre-commitment of transplanted NPCs or NSCs into oligodendroglial cell type, while the endogenous differentiation of OPCs needs to be boosted in chronic stages of the disease. Thus, much effort has been focused on finding molecular targets that drive oligodendrocytes commitment and development. The present review explores several aspects of remyelination that must be considered in the design of a cell-based therapy for MS, and explores more deeply the challenge of fostering oligodendrogenesis. In this regard, we discuss herein a tool developed in our research group useful to search novel oligodendrogenic factors and to study oligodendrocyte differentiation in a time- and cost-saving manner.

  7. Apolipoprotein A-1 regulates osteoblast and lipoblast precursor cells in mice.

    PubMed

    Blair, Harry C; Kalyvioti, Elena; Papachristou, Nicholaos I; Tourkova, Irina L; Syggelos, Spryros A; Deligianni, Despina; Orkoula, Malvina G; Kontoyannis, Christos G; Karavia, Eleni A; Kypreos, Kyriakos E; Papachristou, Dionysios J

    2016-07-01

    Imbalances in lipid metabolism affect bone homeostasis, altering bone mass and quality. A link between bone mass and high-density lipoprotein (HDL) has been proposed. Indeed, it has been recently shown that absence of the HDL receptor scavenger receptor class B type I (SR-B1) causes dense bone mediated by increased adrenocorticotropic hormone (ACTH). In the present study we aimed at further expanding the current knowledge as regards the fascinating bone-HDL connection studying bone turnover in apoA-1-deficient mice. Interestingly, we found that bone mass was greatly reduced in the apoA-1-deficient mice compared with their wild-type counterparts. More specifically, static and dynamic histomorphometry showed that the reduced bone mass in apoA-1(-/-) mice reflect decreased bone formation. Biochemical composition and biomechanical properties of ApoA-1(-/-) femora were significantly impaired. Mesenchymal stem cell (MSC) differentiation from the apoA-1(-/-) mice showed reduced osteoblasts, and increased adipocytes, relative to wild type, in identical differentiation conditions. This suggests a shift in MSC subtypes toward adipocyte precursors, a result that is in line with our finding of increased bone marrow adiposity in apoA-1(-/-) mouse femora. Notably, osteoclast differentiation in vitro and osteoclast surface in vivo were unaffected in the knock-out mice. In whole bone marrow, PPARγ was greatly increased, consistent with increased adipocytes and committed precursors. Further, in the apoA-1(-/-) mice marrow, CXCL12 and ANXA2 levels were significantly decreased, whereas CXCR4 were increased, consistent with reduced signaling in a pathway that supports MSC homing and osteoblast generation. In keeping, in the apoA-1(-/-) animals the osteoblast-related factors Runx2, osterix, and Col1a1 were also decreased. The apoA-1(-/-) phenotype also included augmented CEPBa levels, suggesting complex changes in growth and differentiation that deserve further investigation. We

  8. Telencephalic neural precursor cells show transient competence to interpret the dopaminergic niche of the embryonic midbrain.

    PubMed

    Baizabal, José-Manuel; Valencia, Concepción; Guerrero-Flores, Gilda; Covarrubias, Luis

    2011-01-15

    Neural Precursor Cells (NPCs) generate complex stereotypic arrays of neuronal subtypes in the brain. This process involves the integration of patterning cues that progressively restrict the fate of specific NPCs. Yet the capacity of NPCs to interpret foreign microenvironments during development remains poorly defined. The aim of this work was to test the competence of mouse telencephalic NPCs to respond to the dopaminergic niche of the mesencephalon. Telencephalic NPCs isolated from midgestation mouse embryos (E10.5) and transplanted to age-matched mesencephalic explants efficiently differentiated into neurons but were largely unable to produce midbrain dopaminergic (mDA) neurons. Instead, E10.5 telencephalic NPCs behaved as restricted gabaergic progenitors that maintained ectopic expression of Foxg1 and Pax6. In contrast, E8.5 telencephalic NPCs were able to differentiate into Lmx1a(+)/Foxa2(+)/TH(+) neurons in the dopaminergic niche of the mesencephalic explants. In addition, these early telencephalic NPCs showed region-dependent expression of Nkx6.1, Nkx2.2 and site-specific differentiation into gabaergic neurons within the mesencephalic tissue. Significant dopaminergic differentiation of E8.5 telencephalic NPCs was not observed after transplantation to E12.5 mesencephalic explants, suggesting that inductive signals in the dopaminergic niche rapidly decay after