Science.gov

Sample records for oligomers neuroblastoma damaged

  1. Neuroblastoma

    MedlinePlus

    ... Habits for TV, Video Games, and the Internet Neuroblastoma KidsHealth > For Parents > Neuroblastoma Print A A A ... infancy, the chance of recovery is good. About Neuroblastoma Neuroblastoma most commonly starts in the tissue of ...

  2. Neuroblastoma

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Neuroblastoma KidsHealth > For Parents > Neuroblastoma A A A What's ... infancy, the chance of recovery is good. About Neuroblastoma Neuroblastoma most commonly starts in the tissue of ...

  3. Effect of procyandin oligomers on oxidative hair damage.

    PubMed

    Kim, Moon-Moo

    2011-02-01

    Procyanidins are a subclass of flavonoids and consist of oligomers of catechin that naturally occur in plants and are known to exert many physiological effects, including antioxidant, anti-inflammatory, and enzyme inhibitory effects. These possible inhibitory effects of the procyanidins were known to involve metal chelation, radical trapping, or direct enzyme binding. The purpose of this study was to investigate the effect of procyandin oligomers on hair damage induced by oxidative stress. In this study, several methods for evaluating oxidative damage in bleached hair are utilized to analyze the protective effect of procyandin oligomers against oxidative hair damage. It was observed that procyanidin oligomers strongly bind to keratin in hair and inhibit the breakdown of hair caused by oxidative damage in an analysis of hair using electrophoresis, transmission electron microscope, and fluorescence dye. These results confirm that procyanidin oligomers can be applicable as a potential candidate to the development of hair care with protective effect on hair damage. © 2011 John Wiley & Sons A/S.

  4. Neuroblastoma

    MedlinePlus

    Cancer - neuroblastoma ... Neuroblastoma can occur in many areas of the body. It develops from the tissues that form the ... pressure, digestion, and levels of certain hormones. Most neuroblastomas begin in the abdomen, in the adrenal gland, ...

  5. A Kinetic Model for Cell Damage Caused by Oligomer Formation.

    PubMed

    Hong, Liu; Huang, Ya-Jing; Yong, Wen-An

    2015-10-06

    It is well known that the formation of amyloid fiber may cause invertible damage to cells, although the underlying mechanism has not been fully understood. In this article, a microscopic model considering the detailed processes of amyloid formation and cell damage is constructed based on four simple assumptions, one of which is that cell damage is raised by oligomers rather than mature fibrils. By taking the maximum entropy principle, this microscopic model in the form of infinite mass-action equations together with two reaction-convection partial differential equations (PDEs) has been greatly coarse-grained into a macroscopic system consisting of only five ordinary differential equations (ODEs). With this simple model, the effects of primary nucleation, elongation, fragmentation, and protein and seeds concentration on amyloid formation and cell damage have been extensively explored and compared with experiments. We hope that our results will provide new insights into the quantitative linkage between amyloid formation and cell damage.

  6. Neuroblastoma

    PubMed Central

    Davidoff, Andrew M.

    2011-01-01

    Neuroblastoma is a heterogeneous disease; tumors can spontaneously regress or mature, or display an aggressive, therapy-resistant phenotype. Increasing evidence indicates that the biologic and molecular features of neuroblastoma significantly influence and are highly predictive of clinical behavior. Because of this, neuroblastoma has served as a paradigm for biological risk assessment and treatment assignment. Most current clinical studies of neuroblastoma base therapy and its intensity on a risk stratification that takes into account both clinical and biologic variables predictive of relapse. For example, surgery alone offers definitive therapy with excellent outcome for patients with low-risk disease, while patients at high-risk for disease relapse are treated with intensive multimodality therapy. In this review recent advances in the understanding of the molecular genetic events involved in neuroblastoma pathogenesis are discussed, and how they are impacting the current risk stratification and providing potential targets for new therapeutic approaches for children with neuroblastoma. In addition, the results of significant recent clinical trials for the treatment of neuroblastoma are reviewed. PMID:22248965

  7. Resting microglia react to Aβ42 fibrils but do not detect oligomers or oligomer-induced neuronal damage.

    PubMed

    Ferrera, Denise; Mazzaro, Nadia; Canale, Claudio; Gasparini, Laura

    2014-11-01

    In Alzheimer's disease (AD), amyloid-β (Aβ) deposits accumulate in the brain parenchyma and contain fibrils of aggregated heterogeneous Aβ peptides. In addition to fibrils, Aβ aggregates into stable soluble species (termed Aβ oligomers), which are increasingly viewed as the key drivers of early neurodegenerative events in AD. Aβ aggregates stimulate microglia recruitment and activation. In the AD brain, microglia surround Aβ deposits, activate, and abnormally produce inflammatory mediators, contributing to AD pathogenesis. However, it remains unclear to which of the conformationally diverse Aβ species microglia specifically react. Here, we explore the "sensor" capability of murine microglia. We examine whether they can detect and discriminate the toxic Aβ oligomers, Aβ fibrils, and Aβ-induced neuronal damage and investigate whether they are activated by diverse human Aβ species cell autonomously or through neuron-derived factors. We find that, on aggregation in vitro, Aβ42 peptides form stable oligomers and fibrils, which are neurotoxic and trigger dendritic spine loss in mature primary mouse hippocampal neurons. Further, in resting primary murine microglia, Aβ42 fibrils induce a pattern of expression of inflammatory genes typical of the classical inflammatory response induced by infectious agents (e.g., the bacterial toxin lipopolysaccharide). Conversely, Aβ42 oligomers never elicit a microglia inflammatory response, whether applied alone, in combination with neuron-derived secreted factors, or in contact with neurons. Thus, microglia strongly react to Aβ42 fibrils, but do not sense Aβ oligomers or oligomer-induced neuronal damage. This suggests that early neurotoxic species can escape detection by microglia, leading to the chronic unfolding of amyloid pathology in AD. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Neuroblastoma.

    PubMed

    Matthay, Katherine K; Maris, John M; Schleiermacher, Gudrun; Nakagawara, Akira; Mackall, Crystal L; Diller, Lisa; Weiss, William A

    2016-11-10

    Neuroblastoma is the most common extracranial solid tumour occurring in childhood and has a diverse clinical presentation and course depending on the tumour biology. Unique features of these neuroendocrine tumours are the early age of onset, the high frequency of metastatic disease at diagnosis and the tendency for spontaneous regression of tumours in infancy. The most malignant tumours have amplification of the MYCN oncogene (encoding a transcription factor), which is usually associated with poor survival, even in localized disease. Although transgenic mouse models have shown that MYCN overexpression can be a tumour-initiating factor, many other cooperating genes and tumour suppressor genes are still under investigation and might also have a role in tumour development. Segmental chromosome alterations are frequent in neuroblastoma and are associated with worse outcome. The rare familial neuroblastomas are usually associated with germline mutations in ALK, which is mutated in 10-15% of primary tumours, and provides a potential therapeutic target. Risk-stratified therapy has facilitated the reduction of therapy for children with low-risk and intermediate-risk disease. Advances in therapy for patients with high-risk disease include intensive induction chemotherapy and myeloablative chemotherapy, followed by the treatment of minimal residual disease using differentiation therapy and immunotherapy; these have improved 5-year overall survival to 50%. Currently, new approaches targeting the noradrenaline transporter, genetic pathways and the tumour microenvironment hold promise for further improvements in survival and long-term quality of life.

  9. SGO1 is involved in the DNA damage response in MYCN-amplified neuroblastoma cells

    PubMed Central

    Murakami-Tonami, Yuko; Ikeda, Haruna; Yamagishi, Ryota; Inayoshi, Mao; Inagaki, Shiho; Kishida, Satoshi; Komata, Yosuke; Jan Koster, J K; Takeuchi, Ichiro; Kondo, Yutaka; Maeda, Tohru; Sekido, Yoshitaka; Murakami, Hiroshi; Kadomatsu, Kenji

    2016-01-01

    Shugoshin 1 (SGO1) is required for accurate chromosome segregation during mitosis and meiosis; however, its other functions, especially at interphase, are not clearly understood. Here, we found that downregulation of SGO1 caused a synergistic phenotype in cells overexpressing MYCN. Downregulation of SGO1 impaired proliferation and induced DNA damage followed by a senescence-like phenotype only in MYCN-overexpressing neuroblastoma cells. In these cells, SGO1 knockdown induced DNA damage, even during interphase, and this effect was independent of cohesin. Furthermore, MYCN-promoted SGO1 transcription and SGO1 expression tended to be higher in MYCN- or MYC-overexpressing cancers. Together, these findings indicate that SGO1 plays a role in the DNA damage response in interphase. Therefore, we propose that SGO1 represents a potential molecular target for treatment of MYCN-amplified neuroblastoma. PMID:27539729

  10. Postsynaptic Receptors for Amyloid-β Oligomers as Mediators of Neuronal Damage in Alzheimer's Disease.

    PubMed

    Dinamarca, Margarita C; Ríos, Juvenal A; Inestrosa, Nibaldo C

    2012-01-01

    The neurotoxic effect of amyloid-β peptide (Aβ) over the central synapses has been described and is reflected in the decrease of some postsynaptic excitatory proteins, the alteration in the number and morphology of the dendritic spines, and a decrease in long-term potentiation. Many studies has been carried out to identify the putative Aβ receptors in neurons, and is still no clear why the Aβ oligomers only affect the excitatory synapses. Aβ oligomers bind to neurite and preferentially to the postsynaptic region, where the postsynaptic protein-95 (PSD-95) is present in the glutamatergic synapse, and interacts directly with the N-methyl-D-aspartate receptor (NMDAR) and neuroligin (NL). NL is a postsynaptic protein which binds to the presynaptic protein, neurexin to form a heterophilic adhesion complex, the disruption of this interaction affects the integrity of the synaptic contact. Structurally, NL has an extracellular domain homolog to acetylcholinesterase, the first synaptic protein that was found to interact with Aβ. In the present review we will document the interaction between Aβ and the extracellular domain of NL-1 at the excitatory synapse, as well as the interaction with other postsynaptic components, including the glutamatergic receptors (NMDA and mGluR5), the prion protein, the neurotrophin receptor, and the α7-nicotinic acetylcholine receptor. We conclude that several Aβ oligomers receptors exist at the excitatory synapse, which could be the responsible for the neurotoxic effect described for the Aβ oligomers. The characterization of the interaction between Aβ receptors and Aβ oligomers could help to understand the source of the neurologic damage observed in the brain of the Alzheimer's disease patients.

  11. Visualization of co-localization in Aβ42-administered neuroblastoma cells reveals lysosome damage and autophagosome accumulation related to cell death.

    PubMed

    Soura, Violetta; Stewart-Parker, Maris; Williams, Thomas L; Ratnayaka, Arjuna; Atherton, Joe; Gorringe, Kirsti; Tuffin, Jack; Darwent, Elisabeth; Rambaran, Roma; Klein, William; Lacor, Pascale; Staras, Kevin; Thorpe, Julian; Serpell, Louise C

    2012-01-15

    Aβ42 [amyloid-β peptide-(1-42)] plays a central role in Alzheimer's disease and is known to have a detrimental effect on neuronal cell function and survival when assembled into an oligomeric form. In the present study we show that administration of freshly prepared Aβ42 oligomers to a neuroblastoma (SH-SY5Y) cell line results in a reduction in survival, and that Aβ42 enters the cells prior to cell death. Immunoconfocal and immunogold electron microscopy reveal the path of the Aβ42 with time through the endosomal system and shows that it accumulates in lysosomes. A 24 h incubation with Aβ results in cells that have damaged lysosomes showing signs of enzyme leakage, accumulate autophagic vacuoles and exhibit severely disrupted nuclei. Endogenous Aβ is evident in the cells and the results of the present study suggest that the addition of Aβ oligomers disrupts a crucial balance in Aβ conformation and concentration inside neuronal cells, resulting in catastrophic effects on cellular function and, ultimately, in cell death.

  12. Morroniside protects SK-N-SH human neuroblastoma cells against H2O2-induced damage

    PubMed Central

    Zhang, Jing-Xing; Wang, Rui; Xi, Jin; Shen, Lin; Zhu, An-You; Qi, Qi; Wang, Qi-Yi; Zhang, Lun-Jun; Wang, Feng-Chao; Lü, He-Zuo; Hu, Jian-Guo

    2017-01-01

    Oxidative stress-induced cell injury has been linked to the pathogenesis of neurodegenerative disorders such as spinal cord injury, Parkinson's disease, and multiple sclerosis. Morroniside is an antioxidant derived from the Chinese herb Shan-Zhu-Yu. The present study investigated the neuroprotective effect of morroniside against hydrogen peroxide (H2O2)-induced cell death in SK-N-SH human neuroblastoma cells. H2O2 increased cell apoptosis, as determined by flow cytometry and Hoechst 33342 staining. This effect was reversed by pretreatment with morroniside at concentrations of 1–100 µM. The increase in intracellular reactive oxygen species (ROS) generation and lipid peroxidation induced by H2O2 was also abrogated by morroniside. H2O2 induced a reduction in mitochondrial membrane potential, increased caspase-3 activity, and caused downregulation of B cell lymphoma-2 (Bcl-2) and upregulation of Bcl-2-associated X protein (Bax) expression. These effects were blocked by morroniside pretreatment. Thus, morroniside protects human neuroblastoma cells against oxidative damage by inhibiting ROS production while suppressing Bax and stimulating Bcl-2 expression, thereby blocking mitochondrial-mediated apoptosis. These results indicate that morroniside has therapeutic potential for the prevention and treatment of neurodegenerative diseases. PMID:28204825

  13. Morroniside protects SK-N-SH human neuroblastoma cells against H2O2-induced damage.

    PubMed

    Zhang, Jing-Xing; Wang, Rui; Xi, Jin; Shen, Lin; Zhu, An-You; Qi, Qi; Wang, Qi-Yi; Zhang, Lun-Jun; Wang, Feng-Chao; Lü, He-Zuo; Hu, Jian-Guo

    2017-03-01

    Oxidative stress-induced cell injury has been linked to the pathogenesis of neurodegenerative disorders such as spinal cord injury, Parkinson's disease, and multiple sclerosis. Morroniside is an antioxidant derived from the Chinese herb Shan-Zhu-Yu. The present study investigated the neuroprotective effect of morroniside against hydrogen peroxide (H2O2)-induced cell death in SK-N-SH human neuroblastoma cells. H2O2 increased cell apoptosis, as determined by flow cytometry and Hoechst 33342 staining. This effect was reversed by pretreatment with morroniside at concentrations of 1-100 µM. The increase in intracellular reactive oxygen species (ROS) generation and lipid peroxidation induced by H2O2 was also abrogated by morroniside. H2O2 induced a reduction in mitochondrial membrane potential, increased caspase-3 activity, and caused downregulation of B cell lymphoma-2 (Bcl-2) and upregulation of Bcl-2-associated X protein (Bax) expression. These effects were blocked by morroniside pretreatment. Thus, morroniside protects human neuroblastoma cells against oxidative damage by inhibiting ROS production while suppressing Bax and stimulating Bcl-2 expression, thereby blocking mitochondrial-mediated apoptosis. These results indicate that morroniside has therapeutic potential for the prevention and treatment of neurodegenerative diseases.

  14. Postsynaptic Receptors for Amyloid-β Oligomers as Mediators of Neuronal Damage in Alzheimer’s Disease

    PubMed Central

    Dinamarca, Margarita C.; Ríos, Juvenal A.; Inestrosa, Nibaldo C.

    2012-01-01

    The neurotoxic effect of amyloid-β peptide (Aβ) over the central synapses has been described and is reflected in the decrease of some postsynaptic excitatory proteins, the alteration in the number and morphology of the dendritic spines, and a decrease in long-term potentiation. Many studies has been carried out to identify the putative Aβ receptors in neurons, and is still no clear why the Aβ oligomers only affect the excitatory synapses. Aβ oligomers bind to neurite and preferentially to the postsynaptic region, where the postsynaptic protein-95 (PSD-95) is present in the glutamatergic synapse, and interacts directly with the N-methyl-D-aspartate receptor (NMDAR) and neuroligin (NL). NL is a postsynaptic protein which binds to the presynaptic protein, neurexin to form a heterophilic adhesion complex, the disruption of this interaction affects the integrity of the synaptic contact. Structurally, NL has an extracellular domain homolog to acetylcholinesterase, the first synaptic protein that was found to interact with Aβ. In the present review we will document the interaction between Aβ and the extracellular domain of NL-1 at the excitatory synapse, as well as the interaction with other postsynaptic components, including the glutamatergic receptors (NMDA and mGluR5), the prion protein, the neurotrophin receptor, and the α7-nicotinic acetylcholine receptor. We conclude that several Aβ oligomers receptors exist at the excitatory synapse, which could be the responsible for the neurotoxic effect described for the Aβ oligomers. The characterization of the interaction between Aβ receptors and Aβ oligomers could help to understand the source of the neurologic damage observed in the brain of the Alzheimer’s disease patients. PMID:23267328

  15. Pharmacologic ascorbate induces neuroblastoma cell death by hydrogen peroxide mediated DNA damage and reduction in cancer cell glycolysis.

    PubMed

    Ma, Enlong; Chen, Ping; Wilkins, Heather M; Wang, Tao; Swerdlow, Russell H; Chen, Qi

    2017-09-12

    An ascorbate-mediated production of oxidative stress has been shown to retard tumor growth. Subsequent glycolysis inhibition has been suggested. Here, we further define the mechanisms relevant to this observation. Ascorbate was cytotoxic to human neuroblastoma cells through the production of H2O2, which led to ATP depletion, inhibited GAPDH, and non-apoptotic and non-autophagic cell death. The mechanism of cytotoxicity is different when PARP-dependent DNA repair machinery is active or inhibited. Ascorbate-generated H2O2 damaged DNA, activated PARP, depleted NAD+, and reduced glycolysis flux. NAD+ supplementation prevented ATP depletion and cell death, while treatment with a PARP inhibitor, olaparib, preserved NAD+ and ATP levels but led to increased DNA double-strand breakage and did not prevent ascorbate-induced cell death. These data indicate that in cells with an intact PARP-associated DNA repair system, ascorbate-induced cell death is caused by NAD+ and ATP depletion, while in the absence of PARP activation ascorbate-induced cell death still occurs but is a consequence of ROS-induced DNA damage. In a mouse xenograft model, intraperitoneal ascorbate inhibited neuroblastoma tumor growth and prolonged survival. Collectively, these data suggest that ascorbate could be effective in the treatment of glycolysis-dependent tumors. Also, in cancers that use alternative energy metabolism pathways, combining a PARP inhibitor with ascorbate treatment could be useful. Published by Elsevier Inc.

  16. Genotoxic and anti-genotoxic effects of esculin and its oligomer fractions against mitomycin C-induced DNA damages in mice.

    PubMed

    Mokdad Bzeouich, Imen; Mustapha, Nadia; Maatouk, Mouna; Ghedira, Kamel; Ghoul, Mohamed; Chekir-Ghedira, Leila

    2016-12-01

    Mitomycin C is one of the most effective chemotherapeutic drugs against various solid tumors. However, despite its wide spectrum of clinical benefits, this agent is capable of inducing various types of genotoxicity. In this study, we investigated the effect of esculin and its oligomer fractions (E1, E2 and E3) against mitomycin C induced genotoxicity in liver and kidney cells isolated from Balb/C mice using the comet assay. Esculin and its oligomer fractions were not genotoxic at the tested doses (20 mg/kg and 40 mg/kg b.w). A significant decrease in DNA damages was observed, suggesting a protective role of esculin and its oligomer fractions against the genotoxicity induced by mitomycin C on liver and kidney cells. Moreover, esculin and its oligomer fractions did not induce an increase of malondialdehyde levels.

  17. Cellulose-Derived Oligomers Act as Damage-Associated Molecular Patterns and Trigger Defense-Like Responses.

    PubMed

    Souza, Clarice de Azevedo; Li, Shundai; Lin, Andrew Z; Boutrot, Freddy; Grossmann, Guido; Zipfel, Cyril; Somerville, Shauna C

    2017-04-01

    The plant cell wall, often the site of initial encounters between plants and their microbial pathogens, is composed of a complex mixture of cellulose, hemicellulose, and pectin polysaccharides as well as proteins. The concept of damage-associated molecular patterns (DAMPs) was proposed to describe plant elicitors like oligogalacturonides (OGs), which can be derived by the breakdown of the pectin homogalacturon by pectinases. OGs act via many of the same signaling steps as pathogen- or microbe-associated molecular patterns (PAMPs) to elicit defenses and provide protection against pathogens. Given both the complexity of the plant cell wall and the fact that many pathogens secrete a wide range of cell wall-degrading enzymes, we reasoned that the breakdown products of other cell wall polymers may be similarly biologically active as elicitors and may help to reinforce the perception of danger by plant cells. Our results indicate that oligomers derived from cellulose are perceived as signal molecules in Arabidopsis (Arabidopsis thaliana), triggering a signaling cascade that shares some similarities to responses to well-known elicitors such as chitooligomers and OGs. However, in contrast to other known PAMPs/DAMPs, cellobiose stimulates neither detectable reactive oxygen species production nor callose deposition. Confirming our idea that both PAMPs and DAMPs are likely to cooccur at infection sites, cotreatments of cellobiose with flg22 or chitooligomers led to synergistic increases in gene expression. Thus, the perception of cellulose-derived oligomers may participate in cell wall integrity surveillance and represents an additional layer of signaling following plant cell wall breakdown during cell wall remodeling or pathogen attack.

  18. How Is Neuroblastoma Diagnosed?

    MedlinePlus

    ... Neuroblastoma Early Detection, Diagnosis, and Staging How Is Neuroblastoma Diagnosed? Neuroblastomas are usually found when a child ... Ask Your Child’s Doctor About Neuroblastoma? More In Neuroblastoma About Neuroblastoma Causes, Risk Factors, and Prevention Early ...

  19. What Is Neuroblastoma?

    MedlinePlus

    ... Research and Treatment? Neuroblastoma About Neuroblastoma What Is Neuroblastoma? Cancer starts when cells in the body begin ... see the section, Signs and Symptoms of Neuroblastoma ). Neuroblastomas Neuroblastomas are cancers that start in early nerve ...

  20. Flow cytometry analysis of single-strand DNA damage in neuroblastoma cell lines using the F7-26 monoclonal antibody.

    PubMed

    Grigoryan, Rita S; Yang, Bo; Keshelava, Nino; Barnhart, Jerry R; Reynolds, C Patrick

    2007-11-01

    The F7-26 monoclonal antibody (Mab) has been reported to be specific for single-strand DNA damage (ssDNA) and to also identify cells in apoptosis. We carriedout studies to determine if F7-26 binding measured by flow cytometry was able to specifically identify exogenous ssDNA as opposed to DNA damage from apoptosis. Neuroblastoma cells were treated with melphalan (L-PAM), fenretinide, 4-hydroperoxycyclophosphamide (4-HC)+/-pan-caspase inhibitor BOC-d-fmk, topotecan or with 10Gy gamma radiation+/-hydrogen peroxide (H2O2) and fixed immediately postradiation. Cytotoxicity was measured by DIMSCAN digital imaging fluorescence assay. The degree of ssDNA damage was analyzed by flow cytometry using Mab F7-26, with DNA visualized by propidium iodide counterstaining. Flow cytometry was used to measure apoptosis detected by terminal deoxynucleotidyltransferase (TUNEL) assay and reactive oxygen species (ROS) by carboxy-dichlorofluorescein diacetate. Irradiated and immediately fixed neuroblastoma cells showed increased ssDNA, but not apoptosis by TUNEL (TUNEL-negative). 4-HC or L-PAM+/-BOC-d-fmk increased ssDNA (F7-26-positive), but BOC-d-fmk prevented TUNEL staining. Fenretinide increased apoptosis by TUNEL but not ssDNA damage detected with F7-26. Enhanced ssDNA in neuroblastoma cells treated with radiation+H2O2 was associated with increased ROS. Topotecan increased both ssDNA and cytotoxicity in 4-HC-treated cells. These data demonstrate that Mab F7-26 recognized ssDNA due to exogenous DNA damage, rather than apoptosis. This assay should be useful to characterize the mechanism of action of antineoplastic drugs. Copyright (c) 2007 International Society for Analytical Cytology.

  1. Effects of Cisplatin in Neuroblastoma Rat Cells: Damage to Cellular Organelles

    PubMed Central

    Santin, Giada; Scietti, Luigi; Veneroni, Paola; Barni, Sergio; Bernocchi, Graziella; Bottone, Maria Grazia

    2012-01-01

    Cisplatin (cisPt) is a chemotherapy agent used as a treatment for several types of cancer. The main cytotoxic effect of cisplatin is generally accepted to be DNA damage. Recently, the mechanism by which cisPt generates the cascade of events involved in the apoptotic process has been demonstrated. In particular it has been shown that some organelles are cisPt target and are involved in cell death. This paper aims to describe the morphological and functional changes of the Golgi apparatus and lysosomes during apoptosis induced in neuronal rat cells (B50) by cisplatin. The results obtained show that the cellular organelles are the target of cisPt, so their damage can induce cell death. PMID:22505928

  2. Neuroblastoma Screening

    MedlinePlus

    ... is the most common type of cancer in infants. The number of new cases of neuroblastoma is ... credited as the source. Please note that blog posts that are written by individuals from outside the ...

  3. Phytochemical Ginkgolide B Attenuates Amyloid-β1-42 Induced Oxidative Damage and Altered Cellular Responses in Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    Gill, Iqbal; Kaur, Sukhchain; Kaur, Navrattan; Dhiman, Monisha; Mantha, Anil K

    2017-02-20

    Oxidative stress is an upsurge in reactive oxygen/nitrogen species (ROS/RNS), which aggravates damage to cellular components viz. lipids, proteins, and nucleic acids resulting in impaired cellular functions and neurological pathologies including Alzheimer's disease (AD). In the present study, we have examined amyloid-β (Aβ)-induced oxidative stress responses, a major cause for AD, in the undifferentiated and differentiated human neuroblastoma SH-SY5Y cells. Aβ1 - 42-induced oxidative damage was evaluated on lipids by lipid peroxidation; proteins by protein carbonyls; antioxidant status by SOD and GSH enzyme activities; and DNA and RNA damage levels by evaluating the number of AP sites and 8-oxo-G base damages produced. In addition, the neuro-protective role of the phytochemical ginkgolide B (GB) in countering Aβ1 - 42-induced oxidative stress was assessed. We report that the differentiated cells are highly vulnerable to Aβ1 - 42-induced oxidative stress events as exerted by the deposition of Aβ in AD. Results of the current study suggest that the pre-treatment of GB, followed by Aβ1 - 42 treatment for 24 h, displayed neuro-protective potential, which countered Aβ1 - 42-induced oxidative stress responses in both undifferentiated and differentiated SH-SY5Y neuronal cells by: 1) hampering production of ROS and RNS; 2) reducing lipid peroxidation; 3) decreasing protein carbonyl content; 4) restoring antioxidant activities of SOD and GSH enzymes; and 5) maintaining genome integrity by reducing the oxidative DNA and RNA base damages. In conclusion, Aβ1 - 42 induces oxidative damage to the cellular biomolecules, which are associated with AD pathology, and are protected by the pre-treatment of GB against Aβ-toxicity. Taken together, this study advocates for phytochemical-based therapeutic interventions against AD.

  4. Genetics Home Reference: neuroblastoma

    MedlinePlus

    ... Share: Email Facebook Twitter Home Health Conditions neuroblastoma neuroblastoma Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Neuroblastoma is a type of cancer that most often ...

  5. Protective Effects of Bacopa Monnieri on Hydrogen Peroxide and Staurosporine: Induced Damage of Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    Łojewski, Maciej; Pomierny, Bartosz; Muszyńska, Bożena; Krzyżanowska, Weronika; Budziszewska, Bogusława; Szewczyk, Agnieszka

    2016-02-01

    Many herbs, and recently their biomass from in vitro cultures, are essential for the treatment of diseases. The aim of this study was to determine the optimal growth of Bacopa monnieri (water hyssop) in an in vitro culture and to examine if extracts of the B. monnieri biomass from the in vitro culture would affect hydrogen peroxide- and staurosporine-induced injury of the human neuroblastoma SH-SY5Y cell line. It has been found that B. monnieri at concentrations of 25, 50, and 100 µg/mL inhibited both hydrogen peroxide-induced efflux of lactate dehydrogenase from damaged cells to culture medium and increased cell viability determined by an MTT assay. Moreover, B. monnieri at concentrations of 10, 25, and 50 µg/mL decreased staurosporine-induced activity of an executive apoptotic enzyme-caspase-3 and protected mitochondrial membrane potential. The obtained data indicate that the biomass from the in vitro culture of B. monnieri prevented SH-SY5Y cell damage related to oxidative stress and had the ability to inhibit the apoptotic process. Thus, this study supports the traditional use of B. monnieri as a neuroprotective therapy, and further in vivo studies on the effects of this preparation on morphology and function of nerve cells could lead to its wider application.

  6. Effects of antidepressants on DSP4/CPT-induced DNA damage response in neuroblastoma SH-SY5Y cells

    PubMed Central

    Wang, Yan; Hilton, Benjamin A.; Cui, Kui; Zhu, Meng-Yang

    2015-01-01

    DNA damage is a form of cell stress and injury. Increased systemic DNA damage is related to the pathogenic development of neurodegenerative diseases. Depression occurs in a relatively high percentage of patients suffering from degenerative diseases, for whom antidepressants are often used to relieve depressive symptoms. However, few studies have attempted to elucidate why different groups of antidepressants have similar effects on relieving symptoms of depression. Previously, we demonstrated that neurotoxins N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4)- and camptothecin (CPT)-induced the DNA damage response in SH-SY5Y cells, and DSP4 caused cell cycle arrest which was predominately in the S-phase. The present study shows that CPT treatment also resulted in similar cell cycle arrest. Some classic antidepressants could reduce the DNA damage response induced by DSP4 or CPT in SH-SY5Y cells. Cell viability examination demonstrated that both DSP4 and CPT caused cell death, which was prevented by spontaneous administration of some tested antidepressants. Flow cytometric analysis demonstrated that a majority of the tested antidepressants protect cells from being arrested in S-phase. These results suggest that blocking the DNA damage response may be an important pharmacologic characteristic of antidepressants. Exploring the underlying mechanisms may allow for advances in the effort to improve therapeutic strategies for depression appearing in degenerative and psychiatric diseases. PMID:26038195

  7. Olfactory neuroblastoma

    SciTech Connect

    O'Connor, T.A.; McLean, P.; Juillard, G.J.; Parker, R.G.

    1989-06-15

    Fifteen patients with olfactory neuroblastoma were treated during the 17-year period of 1969 to 1986. Data was analyzed with respect to age at presentation, sex, presenting signs and symptoms, stage, and results of treatment. Age ranged from 4 to 67 years with the median age being 27 years. Median follow-up was 8 years. Local control was achieved in nine of nine patients or 100% with successful surgical resection, i.e., minimal residual disease, followed by postoperative radiation therapy (45 to 65 Gy) was employed. There were no distant failures when the primary site was controlled. Regional lymph node metastases were infrequent: only 13% (two of 15 patients) presented with positive nodes. Three of four patients treated initially with surgery alone had a local recurrence, two of which were successfully salvaged by combined therapy. There were four patients treated with radiation therapy alone: three had persistent disease after radiation therapy, and one patient was controlled with 65 Gy. Olfactory neuroblastoma has a propensity to recur locally when treated with surgery alone. The authors' experience suggests excellent local control can be achieved with surgery immediately followed by radiation therapy. Thus the authors recommend planned combined treatment for all resectable lesions.

  8. Interaction of amyloid-β (Aβ) oligomers with neurexin 2α and neuroligin 1 mediates synapse damage and memory loss in mice.

    PubMed

    Brito-Moreira, Jordano; Lourenco, Mychael V; Oliveira, Mauricio M; Ribeiro, Felipe C; Ledo, José Henrique; Diniz, Luan P; Vital, Juliana F S; Magdesian, Margaret H; Melo, Helen M; Barros-Aragão, Fernanda; de Souza, Jorge M; Alves-Leon, Soniza V; Gomes, Flavia C A; Clarke, Julia R; Figueiredo, Cláudia P; De Felice, Fernanda G; Ferreira, Sergio T

    2017-05-05

    Brain accumulation of the amyloid-β protein (Aβ) and synapse loss are neuropathological hallmarks of Alzheimer disease (AD). Aβ oligomers (AβOs) are synaptotoxins that build up in the brains of patients and are thought to contribute to memory impairment in AD. Thus, identification of novel synaptic components that are targeted by AβOs may contribute to the elucidation of disease-relevant mechanisms. Trans-synaptic interactions between neurexins (Nrxs) and neuroligins (NLs) are essential for synapse structure, stability, and function, and reduced NL levels have been associated recently with AD. Here we investigated whether the interaction of AβOs with Nrxs or NLs mediates synapse damage and cognitive impairment in AD models. We found that AβOs interact with different isoforms of Nrx and NL, including Nrx2α and NL1. Anti-Nrx2α and anti-NL1 antibodies reduced AβO binding to hippocampal neurons and prevented AβO-induced neuronal oxidative stress and synapse loss. Anti-Nrx2α and anti-NL1 antibodies further blocked memory impairment induced by AβOs in mice. The results indicate that Nrx2α and NL1 are targets of AβOs and that prevention of this interaction reduces the deleterious impact of AβOs on synapses and cognition. Identification of Nrx2α and NL1 as synaptic components that interact with AβOs may pave the way for development of novel approaches aimed at halting synapse failure and cognitive loss in AD. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. What Are the Key Statistics about Neuroblastoma?

    MedlinePlus

    ... About Neuroblastoma What Are the Key Statistics About Neuroblastoma? Neuroblastoma is by far the most common cancer ... New in Neuroblastoma Research and Treatment? More In Neuroblastoma About Neuroblastoma Causes, Risk Factors, and Prevention Early ...

  10. Do We Know What Causes Neuroblastoma?

    MedlinePlus

    ... Factors, and Prevention Do We Know What Causes Neuroblastoma? The causes of most neuroblastomas are not known. ... Causes Neuroblastoma? Can Neuroblastoma Be Prevented? More In Neuroblastoma About Neuroblastoma Causes, Risk Factors, and Prevention Early ...

  11. Clearance of Damaged Mitochondria Through PINK1 Stabilization by JNK and ERK MAPK Signaling in Chlorpyrifos-Treated Neuroblastoma Cells.

    PubMed

    Park, Jae Hyeon; Ko, Juyeon; Park, Yun Sun; Park, Jungyun; Hwang, Jungwook; Koh, Hyun Chul

    2017-04-01

    Mitochondrial quality control and clearance of damaged mitochondria through mitophagy are important cellular activities. Studies have shown that PTEN-induced putative protein kinase 1 (PINK1) and Parkin play central roles in triggering mitophagy; however, little is known regarding the mechanism by which PINK1 modulates mitophagy in response to reactive oxygen species (ROS)-induced stress. In this study, chlorpyrifos (CPF)-induced ROS caused mitochondrial damage and subsequent engulfing of mitochondria in double-membrane autophagic vesicles, indicating that clearance of damaged mitochondria is due to mitophagy. CPF treatment resulted in PINK1 stabilization on the outer mitochondrial membrane and subsequently increased Parkin recruitment from the cytosol to the abnormal mitochondria. We found that PINK1 physically interacts with Parkin in the mitochondria of CPF-treated cells. Furthermore, a knockdown of PINK1 strongly inhibited the LC3-II protein level by blocking Parkin recruitment. This indicates that CPF-induced mitophagy is due to PINK1 stabilization in mitochondria. We observed that PINK1 stabilization was selectively regulated by ROS-mediated c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling activation but not p38 signaling. In the mitochondria of CPF-exposed cells, pretreatment with specific inhibitors of JNK and ERK1/2 significantly decreased PINK1 stabilization and Parkin recruitment and blocked the LC3-II protein level. Specifically, JNK and ERK1/2 inhibition also dramatically blocked the interaction between PINK1 and Parkin. Our results demonstrated that PINK1 regulation plays a critical role in CPF-induced mitophagy. The simple interpretation of these results is that JNK and ERK1/2 signaling regulates PINK1/Parkin-dependent mitophagy in the mitochondria of CPF-treated cells. Overall, this study proposes a novel molecular regulatory mechanism of PINK1 stabilization under CPF exposure.

  12. Ferulic Acid Regulates the Nrf2/Heme Oxygenase-1 System and Counteracts Trimethyltin-Induced Neuronal Damage in the Human Neuroblastoma Cell Line SH-SY5Y

    PubMed Central

    Catino, Stefania; Paciello, Fabiola; Miceli, Fiorella; Rolesi, Rolando; Troiani, Diana; Calabrese, Vittorio; Santangelo, Rosaria; Mancuso, Cesare

    2016-01-01

    Over the past years, several lines of evidence have pointed out the efficacy of ferulic acid (FA) in counteracting oxidative stress elicited by β-amyloid or free radical initiators, based on the ability of this natural antioxidant to up-regulate the heme oxygenase-1 (HO-1) and biliverdin reductase (BVR) system. However, scarce results can be found in literature regarding the cytoprotective effects of FA in case of damage caused by neurotoxicants. The aim of this work is to investigate the mechanisms through which FA exerts neuroprotection in SH-SY5Y neuroblastoma cells exposed to the neurotoxin trimethyltin (TMT). FA (1–10 μM for 6 h) dose-dependently increased both basal and TMT (10 μM for 24 h)-induced HO-1 expression in SH-SY5Y cells by fostering the nuclear translocation of the transcriptional activator Nrf2. In particular, the co-treatment of FA (10 μM) with TMT was also responsible for the nuclear translocation of HO-1 in an attempt to further increase cell stress response in SH-SY5Y cells. In addition to HO-1, FA (1–10 μM for 6 h) dose-dependently increased the basal expression of BVR. The antioxidant and neuroprotective features of FA, through the increase of HO activity, were supported by the evidence that FA inhibited TMT (10 μM)-induced lipid peroxidation (evaluated by detecting 4-hydroxy-nonenal) and DNA fragmentation in SH-SY5Y cells and that this antioxidant effect was reversed by the HO inhibitor Zinc-protoporphyrin-IX (5 μM). Among the by-products of the HO/BVR system, carbon monoxide (CORM-2, 50 nM) and bilirubin (BR, 50 nM) significantly inhibited TMT-induced superoxide anion formation in SH-SY5Y cells. All together, these results corroborate the neuroprotective effect of FA through the up-regulation of the HO-1/BVR system, via carbon monoxide and BR formation, and provide the first evidence on the role of HO-1/Nrf2 axis in FA-related enhancement of cell stress response in human neurons. PMID:26779023

  13. Phenylethynyl terminated imide oligomers

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Bryant, Robert G. (Inventor); Jensen, Brian J. (Inventor); Havens, Stephen J. (Inventor)

    1995-01-01

    Four phenylethynyl amine compounds - 3 and 4-aminophenoxy-4'-phenylethynylbenzophenone, and 3 and 4-amino-4'-phenylethynylbenzophenone - were readily prepared and were used to endcap imide oligomers. Phenylethynyl-terminated amide acid oligomers and phenylethynyl-terminated imide oligomers with various molecular weights and compositions were prepared and characterized. These oligomers were cured at 300 to 400 C to provide crosslinked polyimides with excellent solvent resistance, high strength and modulus, and good high temperature properties. Adhesive panels, composites, films, and moldings from these phenylethynyl terminated imide oligomers gave excellent mechanical performance.

  14. What's New in Neuroblastoma Research and Treatment?

    MedlinePlus

    ... and Treatment? Neuroblastoma About Neuroblastoma What’s New in Neuroblastoma Research and Treatment? Important research into neuroblastoma is ... disease and how to improve treatment. Genetics of neuroblastomas Researchers now have better lab tests to look ...

  15. Neuroblastoma: A neurochemical approach

    SciTech Connect

    Schor, N.F. )

    1991-07-01

    Neuroblastoma is among the most common malignancies of childhood. Despite greatly improved therapy for some pediatric tumors, the prognosis for children with metastatic neuroblastoma has not changed significantly in the past 10 years. With conventional chemotherapy, radiation therapy, and surgery, children with metastatic neuroblastoma have a 20% long-term survival rate. The authors describe here approaches to neuroblastoma that target its neuronal characteristics. On the one hand, the neurotransmitter receptors on the surface of the neuroblastoma cells and, on the other hand, specific isozymes that distinguish neuroblastoma cells from their normal counterparts are the focus of these experimental therapies. In the former case, specificity for tumor cells is effected by (1) selective protection of normal neuronal elements from toxicity, or (2) selective potentiation of toxicity for neural tumor cells. It is hoped that these strategies will be generalizable to other neural crest-derived tumors. 32 references.

  16. Advances in neuroblastoma research

    SciTech Connect

    Evans, A.E.; D'Angio, G.J.; Seeger, R.C.

    1985-01-01

    This book contains over 50 papers. Some of the titles are: Studies on the expression of the amplified domain in human neuroblastoma cells; Comparison studies of oncogenes in retinoblastoma and neuroblastoma; Chromosome abnormalities, gene amplification and tumor progression; and Peripheral neuroepithelioma: Genetic analysis of tumor derived cell lines.

  17. Pathogenesis of Abeta oligomers in synaptic failure.

    PubMed

    Sivanesan, Senthilkumar; Tan, Aaron; Rajadas, Jayakumar

    2013-03-01

    The soluble Abeta oligomers in brain are highly correlated with memory related synaptic dysfunctions in Alzheimer's disease (AD). However, more recent studies implicate the involvement of Abeta dimers and trimers in memory related AD pathology. Apparently, Abeta oligomers can bind with cellular prion protein at the membrane receptors, forming annular amyloid pores and membrane ion channels to induce aberrant spine cytoskeletal changes. Hence synapse targeting of Abeta oligomers involves activation of many receptors such as N-Methyl-D-aspartate (NMDA), alpha-amino-3- hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), nicotinic acetylcholine (nAChRs), p75 neurotrophin (p75NTR) following aberrant clustering of metabotropic glutamate receptors (mGluR5) leading to neuronal loss and LTP failure. In particular, NMDA and AMPA receptor activation by soluble amyloid oligomers involves calcium mediated mitochondrial dysfunction, decreased Ca((2+))/calmodulin-dependent protein kinase II (CaMKII) levels at the synapses accompanying dramatic loss of synaptic proteins such as postsynaptic density-95 (PSD-95), dynamin-1 and synaptophysin. This kind of receptor-Abeta oligomer interaction might eventually affect the neuronal membrane integrity by altering dielectric barrier, various synaptic proteins, spine morphology and density and P/Q calcium currents that might provoke a cascade of events leading to neuronal loss and memory failure. In this review, we try to explain in detail the various possible mechanisms that connect Abeta oligomers with synapse damage and memory failure.

  18. Real-time investigation of cytochrome c release profiles in living neuronal cells undergoing amyloid beta oligomer-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Lee, Jae Young; Park, Younggeun; Pun, San; Lee, Sung Sik; Lo, Joe F.; Lee, Luke P.

    2015-06-01

    Intracellular Cyt c release profiles in living human neuroblastoma undergoing amyloid β oligomer (AβO)-induced apoptosis, as a model Alzheimer's disease-associated pathogenic molecule, were analysed in a real-time manner using plasmon resonance energy transfer (PRET)-based spectroscopy.Intracellular Cyt c release profiles in living human neuroblastoma undergoing amyloid β oligomer (AβO)-induced apoptosis, as a model Alzheimer's disease-associated pathogenic molecule, were analysed in a real-time manner using plasmon resonance energy transfer (PRET)-based spectroscopy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02390d

  19. Immune Therapies for Neuroblastoma

    PubMed Central

    Navid, Fariba; Armstrong, Michael; Barfield, Raymond C.

    2009-01-01

    Neuroblastoma, a solid tumor arising from developing cells of the sympathetic nervous system, is the most common extracranial tumor in children. The prognosis for high-risk neuroblastoma remains poor with conventional treatment, and new approaches are therefore being explored to treat this disease. One such alternative therapy that holds promise is immune therapy. We review here the recent advances in 4 types of immune therapy – cytokine, vaccine, antibody, and cellular therapy – to treat neuroblastoma. We present preclinical research and clinical trials on several promising candidates such as IL-12, dendritic cell vaccines, anti-GD2 antibodies, and allogeneic hematopoietic stem cell transplant. An optimal treatment plan for neuroblastoma will most likely involve multimodal approaches and combinations of immune therapies. PMID:19342881

  20. Drugs Approved for Neuroblastoma

    Cancer.gov

    This page lists cancer drugs approved by the Food and Drug Administration (FDA) for neuroblastoma. The list includes generic names and brand names. The drug names link to NCI's Cancer Drug Information summaries.

  1. Melatonin prevents cytosolic calcium overload, mitochondrial damage and cell death due to toxically high doses of dexamethasone-induced oxidative stress in human neuroblastoma SH-SY5Y cells.

    PubMed

    Suwanjang, Wilasinee; Abramov, Andrey Y; Charngkaew, Komgrid; Govitrapong, Piyarat; Chetsawang, Banthit

    2016-07-01

    Stressor exposure activates the hypothalamic-pituitary-adrenal (HPA) axis and causes elevations in the levels of glucocorticoids (GC) from the adrenal glands. Increasing evidence has demonstrated that prolonged exposure to high GC levels can lead to oxidative stress, calcium deregulation, mitochondrial dysfunction and apoptosis in a number of cell types. However, melatonin, via its antioxidant activity, exhibits a neuroprotective effect against oxidative stress-induced cell death. Therefore, in the present study, we explored the protective effect of melatonin in GC-induced toxicity in human neuroblastoma SH-SY5Y cells. Cellular treatment with the toxically high doses of the synthetic GC receptor agonist, dexamethasone (DEX) elicited marked decreases in the levels of glutathione and increases in ROS production, lipid peroxidation and cell death. DEX toxicity also induced increases in the levels of cytosolic calcium and mitochondrial fusion proteins (Mfn1 and Opa1) but decreases in the levels of mitochondrial fission proteins (Fis1 and Drp1). Mitochondrial damage was observed in large proportions of the DEX-treated cells. Pretreatment of the cells with melatonin substantially prevented the DEX-induced toxicity. These results suggest that melatonin might exert protective effects against oxidative stress, cytosolic calcium overload and mitochondrial damage in DEX-induced neurotoxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Purified high molecular weight synthetic Aβ(1-42) and biological Aβ oligomers are equipotent in rapidly inducing MTT formazan exocytosis.

    PubMed

    Weidner, Adam M; Housley, Molly; Murphy, M Paul; Levine, Harry

    2011-06-15

    Synthetic soluble Aβ oligomers are often used as a surrogate for biologic material in a number of model systems. We compared the activity of Aβ oligomers (synthetic and cell culture media derived) on the human SH-SY5Y neuroblastoma and C2C12 mouse myoblast cell lines in a novel, modified MTT assay. Separating oligomers from monomeric peptide by size exclusion chromatography produced effects at peptide concentrations approaching physiologic levels (10-100 nM). Purified oligomers, but not monomers or fibrils, elicited an increase of a detergent-insoluble form of MTT formazan within 2h as opposed to a control toxin (H(2)O(2)). This effect was comparable for biological and synthetic peptide in both cell types. Monomeric Aβ attenuated the effect of soluble oligomers. This study suggests that the activities of biological and synthetic oligomers are indistinguishable during early stages of Aβ oligomer-cell interaction.

  3. Effects of enhancing mitochondrial oxidative phosphorylation with reducing equivalents and ubiquinone on 1-methyl-4-phenylpyridinium toxicity and complex I-IV damage in neuroblastoma cells.

    PubMed

    Mazzio, Elizabeth A; Soliman, Karam F A

    2004-03-15

    The effects of increasing mitochondrial oxidative phosphorylation (OXPHOS), by enhancing electron transport chain components, were evaluated on 1-methyl-4-phenylpyridinium (MPP+) toxicity in brain neuroblastoma cells. Although glucose is a direct energy source, ultimately nicotinamide and flavin reducing equivalents fuel ATP produced through OXPHOS. The findings indicate that cell respiration/mitochondrial O(2) consumption (MOC) (in cells not treated with MPP+) is not controlled by the supply of glucose, coenzyme Q(10) (Co-Q(10)), NADH+, NAD or nicotinic acid. In contrast, MOC in whole cells is highly regulated by the supply of flavins: riboflavin, flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), where cell respiration reached up to 410% of controls. In isolated mitochondria, FAD and FMN drastically increased complex I rate of reaction (1300%) and (450%), respectively, having no effects on complex II or III. MPP+ reduced MOC in whole cells in a dose-dependent manner. In isolated mitochondria, MPP+ exerted mild inhibition at complex I, negligible effects on complexes II-III, and extensive inhibition of complex IV. Kinetic analysis of complex I revealed that MPP+ was competitive with NADH, and partially reversible by FAD and FMN. Co-Q(10) potentiated complex II ( approximately 200%), but not complex I or III. Despite positive influence of flavins and Co-Q(10) on complexes I-II function, neither protected against MPP+ toxicity, indicating inhibition of complex IV as the predominant target. The nicotinamides and glucose prevented MPP+ toxicity by fueling anaerobic glycolysis, evident by accumulation of lactate in the absence of MOC. The data also define a clear anomaly of neuroblastoma, indicating a preference for anaerobic conditions, and an adverse response to aerobic. An increase in CO(2), CO(2)/O(2) ratio, mitochondrial inhibition or O(2) deprivation was not directly toxic, but activated metabolism through glycolysis prompting depletion of glucose

  4. Damage to fuel cell membranes. Reaction of HO* with an oligomer of poly(sodium styrene sulfonate) and subsequent reaction with O(2).

    PubMed

    Dockheer, Sindy M; Gubler, Lorenz; Bounds, Patricia L; Domazou, Anastasia S; Scherer, Günther G; Wokaun, Alexander; Koppenol, Willem H

    2010-10-07

    An understanding of the reactivity of oligomeric compounds that model fuel cell membrane materials under oxidative-stress conditions that mimic the fuel cell operating environment can identify material weaknesses and yield valuable insights into how a polymer might be modified to improve oxidative stability. The reaction of HO˙ radicals with a polymer electrolyte fuel cell membrane represents an initiation step for irreversible membrane oxidation. By means of pulse radiolysis, we measured k = (9.5 ± 0.6) × 10(9) M(-1) s(-1) for the reaction of HO˙ with poly(sodium styrene sulfonate), PSSS, with an average molecular weight of 1100 Da (PSSS-1100) in aqueous solution at room temperature. In the initial reaction of HO˙ with the oligomer (90 ± 10)% react by addition to form hydroxycyclohexadienyl radicals, while the remaining abstract a hydrogen to yield benzyl radicals. The hydroxycyclohexadienyl radicals react reversibly with dioxygen to form the corresponding peroxyl radicals; the second-order rate constant for the forward reaction is k(f) = (3.0 ± 0.5) × 10(7) M(-1) s(-1), and for the back reaction, we derive an upper limit for the rate constant k(r) of (4.5 ± 0.9) × 10(3) s(-1). These data place a lower bound on the equilibrium constant K of (7 ± 2) × 10(3) M(-1) at 295 K, which allows us to calculate a lower limit of the Gibbs energy for the reaction, (-21.7 ± 0.8) kJ mol(-1). At pH 1, the hydroxycyclohexadienyl radicals decay with an overall first-order rate constant k of (6 ± 1) × 10(3) s(-1) to yield benzyl radicals. The second-order rate constant for reaction of dioxygen with benzyl radicals of PSSS-1100 is k = (2-5) × 10(8) M(-1) s(-1). We discuss hydrogen abstraction from PSSS-1100 in terms of the bond dissociation energy, and relate these to relevant electrode potentials. We propose a reaction mechanism for the decay of hydroxycyclohexadienyl radicals and subsequent reaction steps.

  5. Monofunctional hyperbranched ethylene oligomers.

    PubMed

    Wiedemann, Thomas; Voit, Gregor; Tchernook, Alexandra; Roesle, Philipp; Göttker-Schnetmann, Inigo; Mecking, Stefan

    2014-02-05

    The neutral κ(2)N,O-salicylaldiminato Ni(II) complexes [κ(2)N,O-{(2,6-(3',5'-R2C6H3)2C6H3-N═C(H)-(3,5-I2-2-O-C6H2)}]NiCH3(pyridine)] (1a-pyr, R = Me; 1b-pyr, R = Et; 1c-pyr, R = iPr) convert ethylene to hyperbranched low-molecular-weight oligomers (Mn ca. 1000 g mol(-1)) with high productivities. While all three catalysts are capable of generating hyperbranched structures, branching densities decrease significantly with the nature of the remote substituent along Me > Et > iPr and oligomer molecular weights increase. Consequently, only 1a-pyr forms hyperbranched structures over a wide range of reaction conditions (ethylene pressure 5-30 atm and 20-70 °C). An in situ catalyst system achieves similar activities and identical highly branched oligomer microstructures, eliminating the bottleneck given by the preparation and isolation of Ni-Me catalyst precursor species. Selective introduction of one primary carboxylic acid ester functional group per highly branched oligoethylene molecule was achieved by isomerizing ethoxycarbonylation and alternatively cross metathesis with ethyl acrylate followed by hydrogenation. The latter approach results in complete functionalization and no essential loss of branched oligomer material and molecular weight, as the reacting double bonds are close to a chain end. Reduction yielded a monoalcohol-functionalized oligomer. Introduction of one reactive epoxide group per branched oligomer occurs completely and selectively under mild conditions. All reaction steps involved in oligomerization and monofunctionalization are efficient and readily scalable.

  6. MEIS homeobox genes in neuroblastoma.

    PubMed

    Geerts, Dirk; Revet, Ingrid; Jorritsma, Gerda; Schilderink, Nathalie; Versteeg, Rogier

    2005-10-18

    The common pediatric tumor neuroblastoma originates from primitive neural crest-derived precursor cells of the peripheral nervous system. Neuroblastoma especially affects very young children, and can already be present at birth. Its early onset and cellular origin predict the involvement of developmental control genes in neuroblastoma etiology. These genes are indispensable for the tight regulation of normal embryonic development but as a consequence cause cancer and congenital diseases upon mutation or aberrant expression. To date however, the connotation of these genes in neuroblastoma pathogenesis is scant. This review recapitulates data on the MEIS homeobox control genes in cancer and focuses on neuroblastoma.

  7. Acquired resistance to oxaliplatin is not directly associated with increased resistance to DNA damage in SK-N-ASrOXALI4000, a newly established oxaliplatin-resistant sub-line of the neuroblastoma cell line SK-N-AS

    PubMed Central

    Saintas, Emily; Abrahams, Liam; Ahmad, Gulshan T.; Ajakaiye, Anu-Oluwa M.; AlHumaidi, Abdulaziz S. H. A. M.; Ashmore-Harris, Candice; Clark, Iain; Dura, Usha K.; Fixmer, Carine N.; Ike-Morris, Chinedu; Mato Prado, Mireia; Mccullough, Danielle; Mishra, Shishir; Schöler, Katia M. U.; Timur, Husne; Williamson, Maxwell D. C.; Alatsatianos, Markella; Bahsoun, Basma; Blackburn, Edith; Hogwood, Catherine E.; Lithgow, Pamela E.; Rowe, Michelle; Yiangou, Lyto; Rothweiler, Florian; Cinatl, Jindrich; Zehner, Richard; Baines, Anthony J.; Garrett, Michelle D.; Gourlay, Campbell W.; Griffin, Darren K.; Gullick, William J.; Hargreaves, Emma; Howard, Mark J.; Lloyd, Daniel R.; Rossman, Jeremy S.; Smales, C. Mark; Tsaousis, Anastasios D.; von der Haar, Tobias; Wass, Mark N.

    2017-01-01

    The formation of acquired drug resistance is a major reason for the failure of anti-cancer therapies after initial response. Here, we introduce a novel model of acquired oxaliplatin resistance, a sub-line of the non-MYCN-amplified neuroblastoma cell line SK-N-AS that was adapted to growth in the presence of 4000 ng/mL oxaliplatin (SK-N-ASrOXALI4000). SK-N-ASrOXALI4000 cells displayed enhanced chromosomal aberrations compared to SK-N-AS, as indicated by 24-chromosome fluorescence in situ hybridisation. Moreover, SK-N-ASrOXALI4000 cells were resistant not only to oxaliplatin but also to the two other commonly used anti-cancer platinum agents cisplatin and carboplatin. SK-N-ASrOXALI4000 cells exhibited a stable resistance phenotype that was not affected by culturing the cells for 10 weeks in the absence of oxaliplatin. Interestingly, SK-N-ASrOXALI4000 cells showed no cross resistance to gemcitabine and increased sensitivity to doxorubicin and UVC radiation, alternative treatments that like platinum drugs target DNA integrity. Notably, UVC-induced DNA damage is thought to be predominantly repaired by nucleotide excision repair and nucleotide excision repair has been described as the main oxaliplatin-induced DNA damage repair system. SK-N-ASrOXALI4000 cells were also more sensitive to lysis by influenza A virus, a candidate for oncolytic therapy, than SK-N-AS cells. In conclusion, we introduce a novel oxaliplatin resistance model. The oxaliplatin resistance mechanisms in SK-N-ASrOXALI4000 cells appear to be complex and not to directly depend on enhanced DNA repair capacity. Models of oxaliplatin resistance are of particular relevance since research on platinum drugs has so far predominantly focused on cisplatin and carboplatin. PMID:28192521

  8. Acquired resistance to oxaliplatin is not directly associated with increased resistance to DNA damage in SK-N-ASrOXALI4000, a newly established oxaliplatin-resistant sub-line of the neuroblastoma cell line SK-N-AS.

    PubMed

    Saintas, Emily; Abrahams, Liam; Ahmad, Gulshan T; Ajakaiye, Anu-Oluwa M; AlHumaidi, Abdulaziz S H A M; Ashmore-Harris, Candice; Clark, Iain; Dura, Usha K; Fixmer, Carine N; Ike-Morris, Chinedu; Mato Prado, Mireia; Mccullough, Danielle; Mishra, Shishir; Schöler, Katia M U; Timur, Husne; Williamson, Maxwell D C; Alatsatianos, Markella; Bahsoun, Basma; Blackburn, Edith; Hogwood, Catherine E; Lithgow, Pamela E; Rowe, Michelle; Yiangou, Lyto; Rothweiler, Florian; Cinatl, Jindrich; Zehner, Richard; Baines, Anthony J; Garrett, Michelle D; Gourlay, Campbell W; Griffin, Darren K; Gullick, William J; Hargreaves, Emma; Howard, Mark J; Lloyd, Daniel R; Rossman, Jeremy S; Smales, C Mark; Tsaousis, Anastasios D; von der Haar, Tobias; Wass, Mark N; Michaelis, Martin

    2017-01-01

    The formation of acquired drug resistance is a major reason for the failure of anti-cancer therapies after initial response. Here, we introduce a novel model of acquired oxaliplatin resistance, a sub-line of the non-MYCN-amplified neuroblastoma cell line SK-N-AS that was adapted to growth in the presence of 4000 ng/mL oxaliplatin (SK-N-ASrOXALI4000). SK-N-ASrOXALI4000 cells displayed enhanced chromosomal aberrations compared to SK-N-AS, as indicated by 24-chromosome fluorescence in situ hybridisation. Moreover, SK-N-ASrOXALI4000 cells were resistant not only to oxaliplatin but also to the two other commonly used anti-cancer platinum agents cisplatin and carboplatin. SK-N-ASrOXALI4000 cells exhibited a stable resistance phenotype that was not affected by culturing the cells for 10 weeks in the absence of oxaliplatin. Interestingly, SK-N-ASrOXALI4000 cells showed no cross resistance to gemcitabine and increased sensitivity to doxorubicin and UVC radiation, alternative treatments that like platinum drugs target DNA integrity. Notably, UVC-induced DNA damage is thought to be predominantly repaired by nucleotide excision repair and nucleotide excision repair has been described as the main oxaliplatin-induced DNA damage repair system. SK-N-ASrOXALI4000 cells were also more sensitive to lysis by influenza A virus, a candidate for oncolytic therapy, than SK-N-AS cells. In conclusion, we introduce a novel oxaliplatin resistance model. The oxaliplatin resistance mechanisms in SK-N-ASrOXALI4000 cells appear to be complex and not to directly depend on enhanced DNA repair capacity. Models of oxaliplatin resistance are of particular relevance since research on platinum drugs has so far predominantly focused on cisplatin and carboplatin.

  9. Recent Advances in Neuroblastoma

    PubMed Central

    Finklestein, Jerry Z.; Gilchrist, Gerald S.

    1972-01-01

    Neuroblastoma is one of the commoner tumors of infancy and childhood. There is great variation in the histological picture and even within one tumor. One unique feature is the apparently high rate of spontaneous regression, particularly during the first year of life. There is also a tendency for neuroblastoma to mature to the more benign ganglioneuroma and recent in vitro studies suggest that a serum factor may influence this process. Approximately 90 percent of patients with neuroblastoma excrete abnormally high quantities of various catecholamines, thus providing a useful diagnostic tool and a means for evaluating the effect of therapy. Treatment requires a multidisciplinary team approach involving a surgeon, radiotherapist and chemotherapist. Prognosis is influenced by a number of host factors and the most important of these seem to be the patient's age at diagnosis and the extent of the disease, although some children with widespread disease appear to have a particularly good prognosis. It is difficult to evaluate the influence of chemotherapy on survival in patients with neuroblastoma but it has not been of great significance. The unique biologic characteristics of this tumor require further study in the hope of providing more effective therapy. PMID:4622580

  10. Pediatrics: diagnosis of neuroblastoma.

    PubMed

    Sharp, Susan E; Gelfand, Michael J; Shulkin, Barry L

    2011-09-01

    Neuroblastoma is the most common pediatric extracranial soft-tissue tumor, accounting for approximately 8% of childhood malignancies. Its prognosis is widely variable, ranging from spontaneous regression to fatal disease despite multimodality therapy. Multiple imaging and clinical tests are needed to accurately assess patient risk with risk groups based on disease stage, patient age, and biological tumor factors. Approximately 60% of patients with neuroblastoma have metastatic disease, most commonly involving bone marrow or cortical bone. Metaiodobenzylguanidine (mIBG) scintigraphy plays an important role in the assessment of neuroblastoma, allowing whole-body disease assessment. mIBG is used to define extent of disease at diagnosis, assess disease response during therapy, and detect residual and recurrent disease during follow-up. mIBG is highly sensitive and specific for neuroblastoma, concentrating in >90% of tumors. mIBG was initially labeled with (131)I, but (123)I-mIBG yields higher quality images at a lower patient radiation dose. (123)I-mIBG (AdreView; GE Healthcare, Arlington Heights, IL) was approved for clinical use in children by the Food and Drug Administration in 2008 and is now commercially available throughout the United States. The use of single-photon emission computed tomography and single-photon emission computed tomography/computed tomography in (123)I-mIBG imaging has improved certainty of lesion detection and localization. Fluorodeoxyglucose positron-emission tomography has recently been compared with mIBG and found to be most useful in neuroblastomas which fail to or weakly accumulate mIBG.

  11. Phenylethynyl terminated reactive oligomer

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor); Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor)

    1995-01-01

    A composition of matter having the general structure: ##STR1## (wherein X is F, Cl, or NO.sub.2, and Y is CO, SO.sub.2 or C(CF.sub.3).sub.2) is employed to terminate a nucleophilic reagent, resulting in the exclusive production of phenylethynyl terminated reactive oligomers which display unique thermal characteristics. A reactive diluent having the general structure: ##STR2## (wherein R is any aliphatic or aromatic moiety) is employed to decrease the melt viscosity of a phenylethynyl terminated reactive oligomer and to subsequently react therewith to provide a thermosetting material of enhanced density. These materials have features which make them attractive candidates for use as composite matrices and adhesives.

  12. Monoclonal antibodies and neuroblastoma

    SciTech Connect

    Miraldi, F. )

    1989-10-01

    Several antineuroblastoma monoclonal antibodies (MoAbs) have been described and two have been used in radioimmunoimaging and radioimmunotherapy in patients. MoAb 3F8 is a murine IgG3 antibody specific for the ganglioside GD2. Radioiodine-labeled 3F8 has been shown to specifically target human neuroblastoma in patients, and radioimmunoimaging with this agent has provided consistently high uptakes with tumor-to-background ratios of greater than or equal to 10:1. Radioimmunotherapy has been attempted with both MoAb 3F8 and MoAb UJ13A, and although encouraging results have been obtained, dosimetry data and tissue dose response information for these agents is lacking, which impedes the development of such therapy. 124I, a positron emitter, can be used with 3F8 in positron emission tomography (PET) scanning to provide dosimetry information for radioimmunotherapy. The tumor radiation dose response from radiolabeled MoAb also can be followed with PET images with fluorodeoxyglucose (FDG) scanning of neuroblastoma tumors. Results to date indicate that radioimmunoimaging has clinical use in the diagnosis of neuroblastoma and the potential for radioimmunotherapy for this cancer remains high.48 references.

  13. Neuroblastoma | Office of Cancer Genomics

    Cancer.gov

    The TARGET Neuroblastoma projects elucidate comprehensive molecular characterization to determine the genetic changes that drive the initiation and progression of high-risk or hard-to-treat childhood cancers. Neuroblastoma (NBL) is a cancer that arises in immature nerve cells of the sympathetic nervous system, primarily affecting infants and children.

  14. Using Chemistry to Target Neuroblastoma.

    PubMed

    Hansen, Jeanne N; Li, Xingguo; Zheng, Y George; Lotta, Louis T; Dedhe, Abhishek; Schor, Nina F

    2017-08-11

    Neuroblastoma is a cancer of the neural crest almost exclusively seen in childhood. While children with single, small primary tumors are often cured with surgery alone, the 65% of children with neuroblastoma whose disease has metastasized have less than a 50% chance of surviving five years after diagnosis. Innovative pharmacological strategies are critically needed for these children. Efforts to identify novel targets that afford ablation of neuroblastoma with minimal toxicity to normal tissues are underway. Developing approaches to neuroblastoma include those that target the catecholamine transporter; ubiquitin E3 ligase; the ganglioside, GD2; the retinoic acid receptor; the protein kinases ALK and Aurora; and protein arginine N-methyltransferases. Here, as examples of the use of chemistry to combat neuroblastoma, we describe targeting of: the protein arginine N-methyltransferases and their role in prolonging the half-life of the neuroblastoma oncoprotein N-Myc; redox signaling in neuroblastoma; and developmentally regulated proteins expressed in primitive neuroblastoma cells but not in mature neural crest elements.

  15. Inactivation of SMC2 shows a synergistic lethal response in MYCN-amplified neuroblastoma cells

    PubMed Central

    Murakami-Tonami, Yuko; Kishida, Satoshi; Takeuchi, Ichiro; Katou, Yuki; Maris, John M; Ichikawa, Hitoshi; Kondo, Yutaka; Sekido, Yoshitaka; Shirahige, Katsuhiko; Murakami, Hiroshi; Kadomatsu, Kenji

    2014-01-01

    The condensin complex is required for chromosome condensation during mitosis; however, the role of this complex during interphase is unclear. Neuroblastoma is the most common extracranial solid tumor of childhood, and it is often lethal. In human neuroblastoma, MYCN gene amplification is correlated with poor prognosis. This study demonstrates that the gene encoding the condensin complex subunit SMC2 is transcriptionally regulated by MYCN. SMC2 also transcriptionally regulates DNA damage response genes in cooperation with MYCN. Downregulation of SMC2 induced DNA damage and showed a synergistic lethal response in MYCN-amplified/overexpression cells, leading to apoptosis in human neuroblastoma cells. Finally, this study found that patients bearing MYCN-amplified tumors showed improved survival when SMC2 expression was low. These results identify novel functions of SMC2 in DNA damage response, and we propose that SMC2 (or the condensin complex) is a novel molecular target for the treatment of MYCN-amplified neuroblastoma. PMID:24553121

  16. Effects of YM155 on survivin levels and viability in neuroblastoma cells with acquired drug resistance

    PubMed Central

    Voges, Yvonne; Michaelis, Martin; Rothweiler, Florian; Schaller, Torsten; Schneider, Constanze; Politt, Katharina; Mernberger, Marco; Nist, Andrea; Stiewe, Thorsten; Wass, Mark N; Rödel, Franz; Cinatl, Jindrich

    2016-01-01

    Resistance formation after initial therapy response (acquired resistance) is common in high-risk neuroblastoma patients. YM155 is a drug candidate that was introduced as a survivin suppressant. This mechanism was later challenged, and DNA damage induction and Mcl-1 depletion were suggested instead. Here we investigated the efficacy and mechanism of action of YM155 in neuroblastoma cells with acquired drug resistance. The efficacy of YM155 was determined in neuroblastoma cell lines and their sublines with acquired resistance to clinically relevant drugs. Survivin levels, Mcl-1 levels, and DNA damage formation were determined in response to YM155. RNAi-mediated depletion of survivin, Mcl-1, and p53 was performed to investigate their roles during YM155 treatment. Clinical YM155 concentrations affected the viability of drug-resistant neuroblastoma cells through survivin depletion and p53 activation. MDM2 inhibitor-induced p53 activation further enhanced YM155 activity. Loss of p53 function generally affected anti-neuroblastoma approaches targeting survivin. Upregulation of ABCB1 (causes YM155 efflux) and downregulation of SLC35F2 (causes YM155 uptake) mediated YM155-specific resistance. YM155-adapted cells displayed increased ABCB1 levels, decreased SLC35F2 levels, and a p53 mutation. YM155-adapted neuroblastoma cells were also characterized by decreased sensitivity to RNAi-mediated survivin depletion, further confirming survivin as a critical YM155 target in neuroblastoma. In conclusion, YM155 targets survivin in neuroblastoma. Furthermore, survivin is a promising therapeutic target for p53 wild-type neuroblastomas after resistance acquisition (neuroblastomas are rarely p53-mutated), potentially in combination with p53 activators. In addition, we show that the adaptation of cancer cells to molecular-targeted anticancer drugs is an effective strategy to elucidate a drug's mechanism of action. PMID:27735941

  17. Lack of Associations between XPC Gene Polymorphisms and Neuroblastoma Susceptibility in a Chinese Population

    PubMed Central

    Zheng, Jintao; Zhang, Ruizhong; Zhu, Jinhong; Wang, Fenghua; Yang, Tianyou

    2016-01-01

    Neuroblastoma is one of the most malignant solid tumors in infants and young children. No more than 40% of neuroblastoma patients can survive for longer than five years after it has been diagnosed. XPC protein is a pivotal factor that recognizes DNA damage and starts up the nucleotide excision repair (NER) in mammalian cells. This makes up the first group to defend against the cancer. Previous studies have identified that XPC gene polymorphisms were associated with various types of cancer. However, the associations between XPC gene polymorphisms and neuroblastoma risk have not yet been studied. We investigated the associations between three XPC gene polymorphisms (rs2228001 A>C, rs2228000 C>T, and rs2229090 G>C) and neuroblastoma risk with 256 neuroblastoma patients and 531 healthy controls in a Chinese Han population. Odds ratios and 95% confidence intervals were used to access the association between these three polymorphisms and neuroblastoma risk. No significant association was detected between these three polymorphisms and neuroblastoma risk in the overall analysis as well as in the stratification analysis. These results suggest that none of these three polymorphisms may be associated with the risk of neuroblastoma in the Chinese Han population. PMID:27847809

  18. Ataxia-telangiectasia mutated (ATM) silencing promotes neuroblastoma progression through a MYCN independent mechanism.

    PubMed

    Mandriota, Stefano J; Valentijn, Linda J; Lesne, Laurence; Betts, David R; Marino, Denis; Boudal-Khoshbeen, Mary; London, Wendy B; Rougemont, Anne-Laure; Attiyeh, Edward F; Maris, John M; Hogarty, Michael D; Koster, Jan; Molenaar, Jan J; Versteeg, Rogier; Ansari, Marc; Gumy-Pause, Fabienne

    2015-07-30

    Neuroblastoma, a childhood cancer with highly heterogeneous biology and clinical behavior, is characterized by genomic aberrations including amplification of MYCN. Hemizygous deletion of chromosome 11q is a well-established, independent marker of poor prognosis. While 11q22-q23 is the most frequently deleted region, the neuroblastoma tumor suppressor in this region remains to be identified. Chromosome bands 11q22-q23 contain ATM, a cell cycle checkpoint kinase and tumor suppressor playing a pivotal role in the DNA damage response. Here, we report that haploinsufficiency of ATM in neuroblastoma correlates with lower ATM expression, event-free survival, and overall survival. ATM loss occurs in high stage neuroblastoma without MYCN amplification. In SK-N-SH, CLB-Ga and GI-ME-N human neuroblastoma cells, stable ATM silencing promotes neuroblastoma progression in soft agar assays, and in subcutaneous xenografts in nude mice. This effect is dependent on the extent of ATM silencing and does not appear to involve MYCN. Our findings identify ATM as a potential haploinsufficient neuroblastoma tumor suppressor, whose inactivation mirrors the increased aggressiveness associated with 11q deletion in neuroblastoma.

  19. Ataxia-telangiectasia mutated (ATM) silencing promotes neuroblastoma progression through a MYCN independent mechanism

    PubMed Central

    Mandriota, Stefano J.; Valentijn, Linda J.; Lesne, Laurence; Betts, David R.; Marino, Denis; Boudal-Khoshbeen, Mary; London, Wendy B.; Rougemont, Anne-Laure; Attiyeh, Edward F.; Maris, John M.; Hogarty, Michael D.; Koster, Jan; Molenaar, Jan J.; Versteeg, Rogier

    2015-01-01

    Neuroblastoma, a childhood cancer with highly heterogeneous biology and clinical behavior, is characterized by genomic aberrations including amplification of MYCN. Hemizygous deletion of chromosome 11q is a well-established, independent marker of poor prognosis. While 11q22-q23 is the most frequently deleted region, the neuroblastoma tumor suppressor in this region remains to be identified. Chromosome bands 11q22-q23 contain ATM, a cell cycle checkpoint kinase and tumor suppressor playing a pivotal role in the DNA damage response. Here, we report that haploinsufficiency of ATM in neuroblastoma correlates with lower ATM expression, event-free survival, and overall survival. ATM loss occurs in high stage neuroblastoma without MYCN amplification. In SK-N-SH, CLB-Ga and GI-ME-N human neuroblastoma cells, stable ATM silencing promotes neuroblastoma progression in soft agar assays, and in subcutaneous xenografts in nude mice. This effect is dependent on the extent of ATM silencing and does not appear to involve MYCN. Our findings identify ATM as a potential haploinsufficient neuroblastoma tumor suppressor, whose inactivation mirrors the increased aggressiveness associated with 11q deletion in neuroblastoma. PMID:26053094

  20. Lack of Associations between XPC Gene Polymorphisms and Neuroblastoma Susceptibility in a Chinese Population.

    PubMed

    Zheng, Jintao; Zhang, Ruizhong; Zhu, Jinhong; Wang, Fenghua; Yang, Tianyou; He, Jing; Xia, Huimin

    2016-01-01

    Neuroblastoma is one of the most malignant solid tumors in infants and young children. No more than 40% of neuroblastoma patients can survive for longer than five years after it has been diagnosed. XPC protein is a pivotal factor that recognizes DNA damage and starts up the nucleotide excision repair (NER) in mammalian cells. This makes up the first group to defend against the cancer. Previous studies have identified that XPC gene polymorphisms were associated with various types of cancer. However, the associations between XPC gene polymorphisms and neuroblastoma risk have not yet been studied. We investigated the associations between three XPC gene polymorphisms (rs2228001 A>C, rs2228000 C>T, and rs2229090 G>C) and neuroblastoma risk with 256 neuroblastoma patients and 531 healthy controls in a Chinese Han population. Odds ratios and 95% confidence intervals were used to access the association between these three polymorphisms and neuroblastoma risk. No significant association was detected between these three polymorphisms and neuroblastoma risk in the overall analysis as well as in the stratification analysis. These results suggest that none of these three polymorphisms may be associated with the risk of neuroblastoma in the Chinese Han population.

  1. Transthyretin suppresses the toxicity of oligomers formed by misfolded proteins in vitro.

    PubMed

    Cascella, Roberta; Conti, Simona; Mannini, Benedetta; Li, Xinyi; Buxbaum, Joel N; Tiribilli, Bruno; Chiti, Fabrizio; Cecchi, Cristina

    2013-12-01

    Although human transthyretin (TTR) is associated with systemic amyloidoses, an anti-amyloidogenic effect that prevents Aβ fibril formation in vitro and in animal models has been observed. Here we studied the ability of three different types of TTR, namely human tetramers (hTTR), mouse tetramers (muTTR) and an engineered monomer of the human protein (M-TTR), to suppress the toxicity of oligomers formed by two different amyloidogenic peptides/proteins (HypF-N and Aβ42). muTTR is the most stable homotetramer, hTTR can dissociate into partially unfolded monomers, whereas M-TTR maintains a monomeric state. Preformed toxic HypF-N and Aβ42 oligomers were incubated in the presence of each TTR then added to cell culture media. hTTR, and to a greater extent M-TTR, were found to protect human neuroblastoma cells and rat primary neurons against oligomer-induced toxicity, whereas muTTR had no protective effect. The thioflavin T assay and site-directed labeling experiments using pyrene ruled out disaggregation and structural reorganization within the discrete oligomers following incubation with TTRs, while confocal microscopy, SDS-PAGE, and intrinsic fluorescence measurements indicated tight binding between oligomers and hTTR, particularly M-TTR. Moreover, atomic force microscopy (AFM), light scattering and turbidimetry analyses indicated that larger assemblies of oligomers are formed in the presence of M-TTR and, to a lesser extent, with hTTR. Overall, the data suggest a generic capacity of TTR to efficiently neutralize the toxicity of oligomers formed by misfolded proteins and reveal that such neutralization occurs through a mechanism of TTR-mediated assembly of protein oligomers into larger species, with an efficiency that correlates inversely with TTR tetramer stability. © 2013.

  2. Long noncoding RNAs and neuroblastoma

    PubMed Central

    Pandey, Gaurav Kumar; Kanduri, Chandrasekhar

    2015-01-01

    Neuroblastoma is a disease that affects infants and despite intense multimodal therapy, high-risk patients have low survival rates (<50%). In recent years long noncoding RNAs (lncRNAs) have become the cutting edge of cancer research with inroads made in understanding their roles in multiple cancer types, including prostate and breast cancers. The roles of lncRNAs in neuroblastoma have just begun to be elucidated. This review summarises where we are with regards to lncRNAs in neuroblastoma. The known mechanistic roles of lncRNAs during neuroblastoma pathogenesis are discussed, as well as the relationship between lncRNA expression and the differentiation capacity of neuroblastoma cells. We speculate about the use of some of these lncRNAs, such as those mapping to the 6p22 hotspot, as biomarkers for neuroblastoma prognosis and treatment. This novel way of thinking about both neuroblastoma and lncRNAs brings a new perspective to the prognosis and treatment of high-risk patients. PMID:26087192

  3. Long noncoding RNAs and neuroblastoma.

    PubMed

    Pandey, Gaurav Kumar; Kanduri, Chandrasekhar

    2015-07-30

    Neuroblastoma is a disease that affects infants and despite intense multimodal therapy, high-risk patients have low survival rates (<50%). In recent years long noncoding RNAs (lncRNAs) have become the cutting edge of cancer research with inroads made in understanding their roles in multiple cancer types, including prostate and breast cancers. The roles of lncRNAs in neuroblastoma have just begun to be elucidated. This review summarises where we are with regards to lncRNAs in neuroblastoma. The known mechanistic roles of lncRNAs during neuroblastoma pathogenesis are discussed, as well as the relationship between lncRNA expression and the differentiation capacity of neuroblastoma cells. We speculate about the use of some of these lncRNAs, such as those mapping to the 6p22 hotspot, as biomarkers for neuroblastoma prognosis and treatment. This novel way of thinking about both neuroblastoma and lncRNAs brings a new perspective to the prognosis and treatment of high-risk patients.

  4. Direct observation of single amyloid-β(1-40) oligomers on live cells: binding and growth at physiological concentrations.

    PubMed

    Johnson, Robin D; Schauerte, Joseph A; Wisser, Kathleen C; Gafni, Ari; Steel, Duncan G

    2011-01-01

    Understanding how amyloid-β peptide interacts with living cells on a molecular level is critical to development of targeted treatments for Alzheimer's disease. Evidence that oligomeric Aβ interacts with neuronal cell membranes has been provided, but the mechanism by which membrane binding occurs and the exact stoichiometry of the neurotoxic aggregates remain elusive. Physiologically relevant experimentation is hindered by the high Aβ concentrations required for most biochemical analyses, the metastable nature of Aβ aggregates, and the complex variety of Aβ species present under physiological conditions. Here we use single molecule microscopy to overcome these challenges, presenting direct optical evidence that small Aβ(1-40) oligomers bind to living neuroblastoma cells at physiological Aβ concentrations. Single particle fluorescence intensity measurements indicate that cell-bound Aβ species range in size from monomers to hexamers and greater, with the majority of bound oligomers falling in the dimer-to-tetramer range. Furthermore, while low-molecular weight oligomeric species do form in solution, the membrane-bound oligomer size distribution is shifted towards larger aggregates, indicating either that bound Aβ oligomers can rapidly increase in size or that these oligomers cluster at specific sites on the membrane. Calcium indicator studies demonstrate that small oligomer binding at physiological concentrations induces only mild, sporadic calcium leakage. These findings support the hypothesis that small oligomers are the primary Aβ species that interact with neurons at physiological concentrations.

  5. Presenting features of thoracic neuroblastoma.

    PubMed Central

    McLatchie, G R; Young, D G

    1980-01-01

    In a retrospective study carried out at the Royal Hospital for Sick Children, Glasgow, for the period 1952-79, 7 cases of primary thoracic neuroblastoma were identified. The average age at presentation was 2 years. Respiratory symptoms were the modes of presentation in 2 patients, neurological symptoms in 4, and urinary tract symptoms in 1 patient. Dilatation of the urinary tract was present in 2 cases, and a third had a normal urinary tract but previous infections. After a maximum of 27 years and a minimum of 20 months, 5 of the patients remain well. One child died as a direct result of her tumour, the other from an unrelated tumour 25 years after partial excision of his neuroblastoma. The better prognosis of primary thoracic neuroblastoma and the variability of presentation compared with neuroblastoma in other sites are stressed. PMID:7458396

  6. Neuroblastoma: diagnostic imaging and staging

    SciTech Connect

    Stark, D.D.; Moss, A.A.; Brasch, R.C.; deLorimier, A.A.; Albin, A.R.; London, D.A.; Gooding, C.A.

    1983-07-01

    Results of computed tomography (CT), scintigraphy, excretory urography, and other imaging tests used to diagnose and stage 38 cases of neuroblastoma prior to treatment were reviewed. Findings of these examinations were correlated with clinical data, laboratory data, results of biopsy, and surgical findings. CT was the most sensitive single test (100%) for the detection and delineation of the primary tumor. Calcifications that suggested the histologic diagnosis of neuroblastoma were present in 79% of the cases. Rim calcifications, the most specific pattern for neuroblastoma, were identified in 29% of all cases. CT alone accurately staged 82% of cases; when complemented by bone marrow biopsy, staging accuracy was 97%. CT alone was more accurate than any combination of imaging tests that excluded CT. An algorithm using CT is presented for the diagnosis and staging of neuroblastoma at reduced cost and with increased efficiency.

  7. Prefibrillar transthyretin oligomers and cold stored native tetrameric transthyretin are cytotoxic in cell culture

    SciTech Connect

    Soergjerd, Karin; Klingstedt, Therese; Lindgren, Mikael; Kagedal, Katarina; Hammarstroem, Per

    2008-12-26

    Recent studies suggest that soluble, oligomeric species, which are intermediates in the fibril formation process in amyloid disease, might be the key species in amyloid pathogenesis. Soluble oligomers of human wild type transthyretin (TTR) were produced to elucidate oligomer properties. Employing ThT fluorescence, time-resolved fluorescence anisotropy of pyrene-labeled TTR, chemical cross-linking, and electron microscopy we demonstrated that early formed soluble oligomers (within minutes) from A-state TTR comprised on the average 20-30 TTR monomers. When administered to neuroblastoma cells these early oligomers proved highly cytotoxic and induced apoptosis after 48 h of incubation. More mature fibrils (>24 h of fibrillation) were non-toxic. Surprisingly, we also found that native tetrameric TTR, when purified and stored under cold conditions (4 deg. C) was highly cytotoxic. The effect could be partially restored by increasing the temperature of the protein. The cytotoxic effects of native tetrameric TTR likely stems from a hitherto unexplored low temperature induced rearrangement of the tetramer conformation that possibly is related to the conformation of misfolded TTR in amyloigogenic oligomers.

  8. Quantitative analysis of co-oligomer formation by amyloid-beta peptide isoforms

    NASA Astrophysics Data System (ADS)

    Iljina, Marija; Garcia, Gonzalo A.; Dear, Alexander J.; Flint, Jennie; Narayan, Priyanka; Michaels, Thomas C. T.; Dobson, Christopher M.; Frenkel, Daan; Knowles, Tuomas P. J.; Klenerman, David

    2016-06-01

    Multiple isoforms of aggregation-prone proteins are present under physiological conditions and have the propensity to assemble into co-oligomers with different properties from self-oligomers, but this process has not been quantitatively studied to date. We have investigated the amyloid-β (Aβ) peptide, associated with Alzheimer’s disease, and the aggregation of its two major isoforms, Aβ40 and Aβ42, using a statistical mechanical modelling approach in combination with in vitro single-molecule fluorescence measurements. We find that at low concentrations of Aβ, corresponding to its physiological abundance, there is little free energy penalty in forming co-oligomers, suggesting that the formation of both self-oligomers and co-oligomers is possible under these conditions. Our model is used to predict the oligomer concentration and size at physiological concentrations of Aβ and suggests the mechanisms by which the ratio of Aβ42 to Aβ40 can affect cell toxicity. An increased ratio of Aβ42 to Aβ40 raises the fraction of oligomers containing Aβ42, which can increase the hydrophobicity of the oligomers and thus promote deleterious binding to the cell membrane and increase neuronal damage. Our results suggest that co-oligomers are a common form of aggregate when Aβ isoforms are present in solution and may potentially play a significant role in Alzheimer’s disease.

  9. Wnt-5a occludes Abeta oligomer-induced depression of glutamatergic transmission in hippocampal neurons.

    PubMed

    Cerpa, Waldo; Farías, Ginny G; Godoy, Juan A; Fuenzalida, Marco; Bonansco, Christian; Inestrosa, Nibaldo C

    2010-01-18

    Soluble amyloid-beta (Abeta;) oligomers have been recognized to be early and key intermediates in Alzheimer's disease (AD)-related synaptic dysfunction. Abeta oligomers block hippocampal long-term potentiation (LTP) and impair rodent spatial memory. Wnt signaling plays an important role in neural development, including synaptic differentiation. We report here that the Wnt signaling activation prevents the synaptic damage triggered by Abeta oligomers. Electrophysiological analysis of Schaffer collaterals-CA1 glutamatergic synaptic transmission in hippocampal slices indicates that Wnt-5a increases the amplitude of field excitatory postsynaptic potentials (fEPSP) and both AMPA and NMDA components of the excitatory postsynaptic currents (EPSCs), without modifying the paired pulse facilitation (PPF). Conversely, in the presence of Abeta oligomers the fEPSP and EPSCs amplitude decreased without modification of the PPF, while the postsynaptic scaffold protein (PSD-95) decreased as well. Co-perfusion of hippocampal slices with Wnt-5a and Abeta oligomers occludes against the synaptic depression of EPSCs as well as the reduction of PSD-95 clusters induced by Abeta oligomers in neuronal cultures. Taken together these results indicate that Wnt-5a and Abeta oligomers inversely modulate postsynaptic components. These results indicate that post-synaptic damage induced by Abeta oligomers in hippocampal neurons is prevented by non-canonical Wnt pathway activation.

  10. Wnt-5a occludes Aβ oligomer-induced depression of glutamatergic transmission in hippocampal neurons

    PubMed Central

    2010-01-01

    Background Soluble amyloid-β (Aβ;) oligomers have been recognized to be early and key intermediates in Alzheimer's disease (AD)-related synaptic dysfunction. Aβ oligomers block hippocampal long-term potentiation (LTP) and impair rodent spatial memory. Wnt signaling plays an important role in neural development, including synaptic differentiation. Results We report here that the Wnt signaling activation prevents the synaptic damage triggered by Aβ oligomers. Electrophysiological analysis of Schaffer collaterals-CA1 glutamatergic synaptic transmission in hippocampal slices indicates that Wnt-5a increases the amplitude of field excitatory postsynaptic potentials (fEPSP) and both AMPA and NMDA components of the excitatory postsynaptic currents (EPSCs), without modifying the paired pulse facilitation (PPF). Conversely, in the presence of Aβ oligomers the fEPSP and EPSCs amplitude decreased without modification of the PPF, while the postsynaptic scaffold protein (PSD-95) decreased as well. Co-perfusion of hippocampal slices with Wnt-5a and Aβ oligomers occludes against the synaptic depression of EPSCs as well as the reduction of PSD-95 clusters induced by Aβ oligomers in neuronal cultures. Taken together these results indicate that Wnt-5a and Aβ oligomers inversely modulate postsynaptic components. Conclusion These results indicate that post-synaptic damage induced by Aβ oligomers in hippocampal neurons is prevented by non-canonical Wnt pathway activation. PMID:20205789

  11. Targeting tachykinin receptors in neuroblastoma

    PubMed Central

    Szymansky, Annabell; Seiler, Marleen; Althoff, Kristina; Beckers, Anneleen; Speleman, Frank; Schäfers, Simon; De Preter, Katleen; Astrahanseff, Kathy; Struck, Joachim; Schramm, Alexander; Eggert, Angelika; Bergmann, Andreas; Schulte, Johannes H.

    2017-01-01

    Neuroblastoma is the most common extracranial tumor in children. Despite aggressive multimodal treatment, high-risk neuroblastoma remains a clinical challenge with survival rates below 50%. Adding targeted drugs to first-line therapy regimens is a promising approach to improve survival in these patients. TACR1 activation by substance P has been reported to be mitogenic in cancer cell lines. Tachykinin receptor (TACR1) antagonists are approved for clinical use as an antiemetic remedy since 2003. Tachykinin receptor inhibition has recently been shown to effectively reduce growth of several tumor types. Here, we report that neuroblastoma cell lines express TACR1, and that targeting TACR1 activity significantly reduced cell viability and induced apoptosis in neuroblastoma cell lines. Gene expression profiling revealed that TACR1 inhibition repressed E2F2 and induced TP53 signaling. Treating mice harboring established neuroblastoma xenograft tumors with Aprepitant also significantly reduced tumor burden. Thus, we provide evidence that the targeted inhibition of tachykinin receptor signaling shows therapeutic efficacy in preclinical models for high-risk neuroblastoma. PMID:27888795

  12. Oligomer-oligomer versus oligomer-monomer C(2)-C(2)' coupling reactions in polypyrrole growth.

    PubMed

    Lacroix, J C; Maurel, F; Lacaze, P C

    2001-03-07

    The C(2)-C(2)' coupling reactions of oligopyrrole radical-cations of increasing length generated by electrochemical oxidation have been modeled by transition state calculations. The modeling approach takes into account solvent effects and (i) shows that the coupling distance in the transition state decreases with oligomer length, (ii) demonstrates that dimerization rates in the gas phase decrease with oligomer length but increase in water, (iii) suggests that in a less solvating medium the dimerization rates could be equivalent, (iv) indicates that in all solvents quaterpyrrole and sexipyrrole formation is faster through a coupling reaction between oligomer and monomer radical-cations than two oligomer radical-cations, and (v) suggests that for the formation of a long oligopyrrole from oligopyrrole-pyrrole reactions the mechanism might involve the coupling of the oligopyrrole dication with a non-oxidized pyrrole unit instead of the coupling of two radical-cations or that of the oligopyrrole dication with a pyrrole radical-cation.

  13. Self-propagative replication of Aβ oligomers suggests potential transmissibility in Alzheimer disease.

    PubMed

    Kumar, Amit; Pate, Kayla M; Moss, Melissa A; Dean, Dexter N; Rangachari, Vijayaraghavan

    2014-01-01

    The aggregation of amyloid-β (Aβ) peptide and its deposition in parts of the brain form the central processes in the etiology of Alzheimer disease (AD). The low-molecular weight oligomers of Aβ aggregates (2 to 30 mers) are known to be the primary neurotoxic agents whose mechanisms of cellular toxicity and synaptic dysfunction have received substantial attention in the recent years. However, how these toxic agents proliferate and induce widespread amyloid deposition throughout the brain, and what mechanism is involved in the amplification and propagation of toxic oligomer species, are far from clear. Emerging evidence based on transgenic mice models indicates a transmissible nature of Aβ aggregates and implicates a prion-like mechanism of oligomer propagation, which manifests as the dissemination and proliferation of Aβ toxicity. Despite accumulating evidence in support of a transmissible nature of Aβ aggregates, a clear, molecular-level understanding of this intriguing mechanism is lacking. Recently, we reported the characterization of unique replicating oligomers of Aβ42 (12-24 mers) in vitro called Large Fatty Acid-derived Oligomers (LFAOs) (Kumar et al., 2012, J. Biol. Chem). In the current report, we establish that LFAOs possess physiological activity by activating NF-κB in human neuroblastoma cells, and determine the experimental parameters that control the efficiency of LFAO replication by self-propagation. These findings constitute the first detailed report on monomer - oligomer lateral propagation reactions that may constitute potential mechanism governing transmissibility among Aβ oligomers. These data support the previous reports on transmissible mechanisms observed in transgenic animal models.

  14. Neuroblastoma in Children: Just Diagnosed Information

    MedlinePlus

    ... Other Press Room Employment Feedback Contact Select Page Neuroblastoma in Children – Just Diagnosed Home > Cancer Resources > Types ... Diagnosed Just Diagnosed In Treatment After Treatment Diagnosing Neuroblastoma Depending on the location of the tumor and ...

  15. Autologous antibodies that bind neuroblastoma cells.

    PubMed

    Sun, Yujing; Sholler, Giselle S; Shukla, Girja S; Pero, Stephanie C; Carman, Chelsea L; Zhao, Ping; Krag, David N

    2015-11-01

    Antibody therapy of neuroblastoma is promising and our goal is to derive antibodies from patients with neuroblastoma for developing new therapeutic antibodies. The feasibility of using residual bone marrow obtained for clinical indications as a source of tumor cells and a source of antibodies was assessed. From marrow samples, neuroblastoma cells were recovered, grown in cell culture and also implanted into mice to create xenografts. Mononuclear cells from the marrow were used as a source to generate phage display antibody libraries and also hybridomas. Growth of neuroblastoma patient cells was possible both in vitro and as xenografts. Antibodies from the phage libraries and from the monoclonal hybridomas bound autologous neuroblastoma cells with some selectivity. It appears feasible to recover neuroblastoma cells from residual marrow specimens and to generate human antibodies that bind autologous neuroblastoma cells. Expansion of this approach is underway to collect more specimens, optimize methods to generate antibodies, and to evaluate the bioactivity of neuroblastoma-binding antibodies.

  16. Counterion condensation on ionic oligomers

    NASA Astrophysics Data System (ADS)

    Manning, Gerald S.; Mohanty, Udayan

    1997-02-01

    The Ramanathan-Woodbury formulas representing the charge density critical for the onset of counterion condensation on finite-length polymers are derived by three alternate methods, an extension of Debye-Huckel theory, a theory of end effects, and by density functional theory. For charged oligomers with length of the same order as the Debye length, the threshold for condensation is the same as for polymers of length much greater than the Debye lenght. However, the threshold depends both on length and salt concentration if the oligomer is shorter than the Debye length, in such a way as to recede to infinity as the ratio of oligomer length to Debye length tends to zero (i.e., condensation vanishes in this limit). The extended Debye-Huckel theory additionally provides a new result for the partition function of the condensed layer, showing that the free energy of the condensed counterions is different on an oligomer and a polymer, even when the fractional extent of condensation is the same. The end effect theory discloses a hitherto unnoticed connection between the number of counterions condensed at the ends of a long polymer and the number condensed on a short oligomer.

  17. Environment-Mediated Drug Resistance in Neuroblastoma

    DTIC Science & Technology

    2014-10-01

    Neuroblastoma PRINCIPAL INVESTIGATOR: Yves A. DeClerck CONTRACTING ORGANIZATION... Neuroblastoma 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0571 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) DE CLERCK, YVES 5d. PROJECT...experiments have demonstrated that monocytes collaborate with MSC in inducing STAT3-dependent drug resistance in neuroblastoma . Further

  18. Improve T Cell Therapy in Neuroblastoma

    DTIC Science & Technology

    2014-07-01

    AD_________________ Award Number: W81XWH-10-1-0425 TITLE: Improve T Cell Therapy in Neuroblastoma ...2014 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Improve T Cell Therapy in Neuroblastoma 5b. GRANT NUMBER W81XWH-10-1-0425 5c. PROGRAM...AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Neuroblastoma (NB) is

  19. Overcoming the Mechanism of Radioresistance in Neuroblastoma

    DTIC Science & Technology

    2014-06-01

    of Radioresistance in Neuroblastoma PRINCIPAL INVESTIGATOR: Brian Marples PhD CONTRACTING ORGANIZATION: William Beaumont Hospital Inc...COVERED 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Overcoming the Mechanism of Radioresistance in Neuroblastoma 5b. GRANT NUMBER 5c. PROGRAM...for highly aggressive advanced-stage neuroblastoma remains poor despite a multidisciplinary approach involving aggressive surgery, chemotherapy and

  20. Differential Aminoacylase Expression in Neuroblastoma

    PubMed Central

    Long, Patrick M.; Stradecki, Holly M.; Minturn, Jane E.; Wesley, Umadevi V.; Jaworski, Diane M.

    2012-01-01

    Neuroblastoma, a cancer of the sympathetic nervous system, is the most common extracranial solid tumor in children. MYCN amplification and increased BDNF/TrkB signaling are features of high-risk tumors; yet, only ~25% of malignant tumors display these features. Thus, the identification of additional biomarkers and therapeutic targets is essential. Since aminoacylase 1 (ACY1), an amino acid deacetylase, is a putative tumor suppressor in small cell lung and renal cell carcinomas, we investigated whether it or the other family members aspartoacylase (ASPA, aminoacylase 2) or aminoacylase 3 (ACY3) could serve a similar function in neuroblastoma. Aminoacylase expression was examined in TrkB-positive, MYCN-amplified (SMS-KCNR and SK-N-BE) and TrkB-negative, non-MYCN amplified (SK-N-AS, SK-N-SH, SH-SY5Y, and SH-EP) neuroblastoma cell lines. Each aminoacylase exhibited distinct spatial localization (i.e., cytosolic ACY1, membrane-associated ASPA, and nuclear ACY3). When SK-N-SH cells were treated with neural differentiation agents (e.g., retinoic acid, cAMP) in media containing 10% serum ACY1 was the only aminoacylase whose expression was up-regulated. ASPA was primarily expressed in SH-EP cells of a glial sublineage. ACY3 was more highly expressed in the TrkB-positive, MYCN-amplified lines. All three aminoacylases were expressed in normal human adrenal gland, a common site of neuroblastoma origin, but only ACY1 and ACY3 displayed detectable expression in primary neuroblastoma tumor. Bioinformatics data mining of Kaplan-Meier survival revealed that high ACY3 expression is correlated with poor prognosis; while, low expression of ACY1 or ASPA is correlated with poor prognosis. These data suggest that aminoacylase expression is dysregulated in neuroblastoma. PMID:21128244

  1. [Biochemical studies on familial neuroblastoma].

    PubMed

    Plöchl, E

    1978-01-01

    According to the two-mutation model of neuroblastoma several investigations were performed in order to find the gene carrier in a family with familial neuroblastoma. The results of these former studies are as follows: 1. Neither chromosomal analyses of the peripheral blood nor the examinations of catecholamines nor of cystathionine in the urine could mark the first step to neuroblastoma. 2. Since cystathioniuria was not only seen in blood-relations but also in relatives by marriage and since vitamin B6 deficiency was revealed, cystathioninuria was interpreted as secondary to vitamin B6 deficiency. In this study the normal values of cystathioninuria and vitamin B6 supply were examined. Furthermore the effect of oral vitamin B6 loading on cystathioninuria and oxaluria in familial neuroblastoma was investigated and the vitamin B6 supply in the neighbours of the family was analysed. The results permitted the following conclusions: 1. In 46 of 58 children and adults cystathioninuria was found in an immeasurable range by column chromatography. Only in 12 persons it could be measured quantitatively. With the exception of 6 explanable elevations no value exceeded 20 mumol/24 hr. These results show that the acceptance of the limiting value of 20 mumol/24 hr for increased cystathioninuria is justified. 2. Vitamine B6 deficiency was found in two of 7 patients. In one child this could be explained by the underlying disease. This finding supports the suggestion that vitamine B6 deficiency can relative frequently observed. 3. The examinations of cystathioninuria and oxaluria before and after loading with vitamine B6 showed different results. Whereas oxaluria decreased after loading cystathioninuria was not surely influenced. 4. The neighbours of the members with familial neuroblastoma showed mostly a reduced vitamine B6 supply. This fact could be an indication of exogenous reason of vitamine B6 deficiency in familial neuroblastoma.

  2. Neuroblastoma and Its Zebrafish Model.

    PubMed

    Zhu, Shizhen; Thomas Look, A

    2016-01-01

    Neuroblastoma, an important developmental tumor arising in the peripheral sympathetic nervous system (PSNS), accounts for approximately 10 % of all cancer-related deaths in children. Recent genomic analyses have identified a spectrum of genetic alterations in this tumor. Amplification of the MYCN oncogene is found in 20 % of cases and is often accompanied by mutational activation of the ALK (anaplastic lymphoma kinase) gene, suggesting their cooperation in tumor initiation and spread. Understanding how complex genetic changes function together in oncogenesis has been a continuing and daunting task in cancer research. This challenge was addressed in neuroblastoma by generating a transgenic zebrafish model that overexpresses human MYCN and activated ALK in the PSNS, leading to tumors that closely resemble human neuroblastoma and new opportunities to probe the mechanisms that underlie the pathogenesis of this tumor. For example, coexpression of activated ALK with MYCN in this model triples the penetrance of neuroblastoma and markedly accelerates tumor onset, demonstrating the interaction of these modified genes in tumor development. Further, MYCN overexpression induces adrenal sympathetic neuroblast hyperplasia, blocks chromaffin cell differentiation, and ultimately triggers a developmentally-timed apoptotic response in the hyperplastic sympathoadrenal cells. In the context of MYCN overexpression, activated ALK provides prosurvival signals that block this apoptotic response, allowing continued expansion and oncogenic transformation of hyperplastic neuroblasts, thus promoting progression to neuroblastoma. This application of the zebrafish model illustrates its value in rational assessment of the multigenic changes that define neuroblastoma pathogenesis and points the way to future studies to identify novel targets for therapeutic intervention.

  3. [Neuroblastoma presenting as obstructive jaundice].

    PubMed

    García de Andoin Barandiaran, N; Lassaletta Atienza, A; Scaglione Ríos, C; Contra Martín, T; Madero López, L

    2006-01-01

    Obstructive jaundice as a presentation of abdominal tumors in childhood is extremely rare. To date, only 4 cases of neuroblastoma causing obstructive jaundice at diagnosis have been reported in children. We report a 4-year-old boy who presented to the emergency department with abdominal pain, jaundice, choluria and acholia. A diagnosis of unresectable, nonmetastatic neuroblastoma was made. Chemotherapy reduced the size of the tumor and relieved the symptoms of obstructive jaundice without the need for decompressive surgery. Abdominal tumors should be included in the differential diagnoses of obstructive jaundice in childhood.

  4. Targeting Cancer with Antisense Oligomers

    SciTech Connect

    Hnatowich, DJ

    2008-10-28

    With financial assistance from the Department of Energy, we have shown definitively that radiolabeled antisense DNAs and other oligomers will accumulate in target cancer cells in vitro and in vivo by an antisense mechanism. We have also shown that the number of mRNA targets for our antisense oligomers in the cancer cell types that we have investigated so far is sufficient to provide and antisense image and/or radiotherapy of cancer in mice. These studies have been reported in about 10 publications. However our observation over the past several years has shown that radiolabeled antisense oligomers administered intravenously in their native and naked form will accumulate and be retained in target xenografts by an antisense mechanism but will also accumulate at high levels in normal organs such as liver, spleen and kidneys. We have investigated unsuccessfully several commercially available vectors. Thus the use of radiolabeled antisense oligomers for the imaging of cancer must await novel approaches to delivery. This laboratory has therefore pursued two new paths, optical imaging of tumor and Auger radiotherapy. We are developing a novel method of optical imaging tumor using antisense oligomers with a fluorophore is administered while hybridized with a shorter complementary oligomer with an inhibitor. In culture and in tumored mice that the duplex remains intact and thus nonfluorescent until it encounters its target mRNA at which time it dissociates and the antisense oligomer binds along with its fluorophore to the target. Simultaneous with the above, we have also observed, as have others, that antisense oligomers migrate rapidly and quantitatively to the nucleus upon crossing cell membranes. The Auger electron radiotherapy path results from this observation since the nuclear migration properties could be used effectively to bring and to retain in the nucleus an Auger emitting radionuclide such as 111In or 125I bound to the antisense oligomer. Since the object becomes

  5. Environment-Mediated Drug Resistance in Neuroblastoma

    DTIC Science & Technology

    2013-10-01

    Neuroblastoma PRINCIPAL INVESTIGATOR: Yves A. DeClerck, MD CONTRACTING ORGANIZATION: Children’s Hospital Los Angeles Los Angeles, CA...3. DATES COVERED 30September2012 – 29September2013 4. TITLE AND SUBTITLE Environment-Mediated Drug Resistance in Neuroblastoma 5a. CONTRACT...demonstrating that interleukin-6 protects neuroblastoma cells from drug-induced apoptosis via activation of signal transduction and activator of

  6. HOXC9-Induced Differentiation in Neuroblastoma Development

    DTIC Science & Technology

    2014-10-01

    Neuroblastoma Development PRINCIPAL INVESTIGATOR: Han-Fei Ding RECIPIENT: Georgia Health Sciences University Research Institute, Inc... Neuroblastoma  Development   5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0613 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...role in determining the differentiation states of neuroblastoma tumors, with higher levels of HOXC9 promoting differentiation. At the cellular level

  7. Environment-Mediated Drug Resistance in Neuroblastoma

    DTIC Science & Technology

    2014-10-01

    AD_________________ Award Number: W81XWH-12-1-0572 TITLE: Environment-Mediated Drug Resistance in Neuroblastoma PRINCIPAL INVESTIGATOR: Yu...Resistance in Neuroblastoma 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0572 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Yu, Hua E 5d. PROJECT...collaborative experiments have demonstrated that monocytes collaborate with MSC in inducing STAT3-dependent drug resistance in neuroblastoma (Task 1), that S1P

  8. Imide Oligomers Containing Pendent and Terminal Phenylethynyl Groups-2

    NASA Technical Reports Server (NTRS)

    Connell, J. W.; Smith, J. G., Jr.; Hergenrother, P. M.

    1998-01-01

    As part of a program to develop high-performance/high-temperature structural resins for aeronautical applications, imide oligomers containing pendent and terminal phenylethynyl groups were prepared, characterized and the cured resins evaluated as composite matrices. The oligomers were prepared at a calculated number-average molecular weight of 5000 g/mol and contained 15-20 mol% pendent phenylethynyl groups. In previous work, an oligomer containing pendent and terminal phenylethynyl groups exhibited a high glass transition temperature (approximately 313 C), and laminates therefrom exhibited high compressive properties, but processability, fracture toughness, microcrack resistance and damage tolerance were less than desired. In an attempt to improve these deficiencies, modifications in the oligomeric backbone involving the incorporation of 1,3-bis(3-aminophenoxy)benzene were investigated as a means of improving processability and toughness without detracting from the high glass transition temperature and high compressive properties. The amide acid oligomeric solutions were prepared in N-methyl-2-pyrrolidinone and were subsequently processed into imide powder, thin films, adhesive tape and carbon fiber prepreg. Neat resin plaques were fabricated from imide powder by compression moulding. The maximum processing pressure was 1.4 MPa and the cure temperature ranged from 350 to 371 C for 1 h for the mouldings, adhesives, films and composites. The properties of the 1,3-bis(3-aniinophenoxy)benzene modified cured imide oligomers containing pendent and terminal phenylethynyl groups are compared with those of previously prepared oligomers containing pendent and terminal phenylethynyl groups of similar composition and molecular weight.

  9. Yi-Zhi-Fang-Dai Formula Protects against Aβ1–42 Oligomer Induced Cell Damage via Increasing Hsp70 and Grp78 Expression in SH-SY5Y Cells

    PubMed Central

    Liu, Lumei; Wan, Wenbin; Chen, Wenjing; Chan, Yuanjin; Shen, Qi

    2016-01-01

    Yi-Zhi-Fang-Dai formula (YZFDF) is an experiential prescription used to cure dementia cases like Alzheimer's disease (AD). In this study, the main effective compounds of YZFDF have been identified from this formula, and the neuroprotective effect against Aβ1–42 oligomer of YZFDF has been tested in SH-SY5Y cells. Our results showed that YZFDF could increase cell viability and could attenuate endothelial reticula- (ER-) mediated apoptosis. Evidence indicated that protein folding and endothelial reticula stress (ERS) played an important role in the AD pathological mechanism. We further explored the expression of Hsp70, an important molecular chaperon facilitating the folding of other proteins, and Grp78, the marker protein of ERS in SH-SY5Y cells. Data told us that YZFDF pretreatment could influence the mRNA and protein expression of these two proteins. At last, we also found that YZFDF pretreatment could activate Akt in SH-SY5Y cells. All these above indicate that YZFDF could be a potent therapeutic candidate for AD treatment. PMID:27829867

  10. Paraneoplastic syndromes in olfactory neuroblastoma

    PubMed Central

    Gabrych, Anna; Czapiewski, Piotr; Sworczak, Krzysztof

    2015-01-01

    Olfactory neuroblastoma (ONB) is a rare malignant neoplasm of sinonasal tract, derived from olfactory epithelium. Unilateral nasal obstruction, epistaxis, sinusitis, and headaches are common symptoms. Olfactory neuroblastoma shows neuroendocrine differentiation and similarly to other neuroendocrine tumors can produce several types of peptic substances and hormones. Excess production of these substances can be responsible for different types of endocrinological paraneoplastic syndromes (PNS). Moreover, besides endocrinological, in ONB may also occur neurological PNS, caused by immune cross-reactivity between tumor and normal host tissues in the nervous system. Paraneoplastic syndromes in ONB include: syndrome of inappropriate ADH secretion (SIADH), ectopic ACTH syndrome (EAS), humoral hypercalcemia of malignancy (HHM), hypertension due to catecholamine secretion by tumor, opsoclonus-myoclonus-ataxia (OMA) and paraneoplastic cerebellar degeneration. Paraneoplastic syndromes in ONB tend to have atypical features, therefore diagnosis may be difficult. In this review, we described initial symptoms, patterns of presentation, treatment and outcome of paraneoplastic syndromes in ONB, reported in the literature. PMID:26199564

  11. Depletion of TFAP2E attenuates adriamycin-mediated apoptosis in human neuroblastoma cells.

    PubMed

    Hoshi, Reina; Watanabe, Yosuke; Ishizuka, Yoshiaki; Hirano, Takayuki; Nagasaki-Maeoka, Eri; Yoshizawa, Shinsuke; Uekusa, Shota; Kawashima, Hiroyuki; Ohashi, Kensuke; Sugito, Kiminobu; Fukuda, Noboru; Nagase, Hiroki; Soma, Masayoshi; Ozaki, Toshinori; Koshinaga, Tsugumichi; Fujiwara, Kyoko

    2017-04-01

    Neuroblastoma is a childhood malignancy originating from the sympathetic nervous system and accounts for approximately 15% of all pediatric cancer-related deaths. To newly identify gene(s) implicated in the progression of neuroblastoma, we investigated aberrantly methylated genomic regions in mouse skin tumors. Previously, we reported that TFAP2E, a member of activator protein-2 transcription factor family, is highly methylated within its intron and its expression is strongly suppressed in mouse skin tumors compared with the normal skin. In the present study, we analyzed public data of neuroblastoma patients and found that lower expression levels of TFAP2E are significantly associated with a shorter survival. The data indicate that TFAP2E acts as a tumor suppressor of neuroblastoma. Consistent with this notion, TFAP2E-depleted neuroblastoma NB1 and NB9 cells displayed a substantial resistance to DNA damage arising from adriamycin (ADR), cisplatin (CDDP) and ionizing radiation (IR). Silencing of TFAP2E caused a reduced ADR-induced proteolytic cleavage of caspase-3 and PARP. Of note, compared with the untransfected control cells, ADR-mediated stimulation of CDK inhibitor p21WAF1 was markedly upregulated in TFAP2E‑knocked down cells. Therefore, our present findings strongly suggest that TFAP2E has a pivotal role in the regulation of DNA damage response in NB cells through the induction of p21WAF1.

  12. PrPSc-Specific Antibodies with the Ability to Immunodetect Prion Oligomers

    PubMed Central

    Tayebi, Mourad; Jones, Daryl Rhys; Taylor, William Alexander; Stileman, Benjamin Frederick; Chapman, Charlotte; Zhao, Deming; David, Monique

    2011-01-01

    The development of antibodies with binding capacity towards soluble oligomeric forms of PrPSc recognised in the aggregation process in early stage of the disease would be of paramount importance in diagnosing prion diseases before extensive neuropathology has ensued. As blood transfusion appears to be efficient in the transmission of the infectious prion agent, there is an urgent need to develop reagents that would specifically recognize oligomeric forms of the abnormally folded prion protein, PrPSc. To that end, we show that anti-PrP monoclonal antibodies (called PRIOC mAbs) derived from mice immunised with native PrP-coated microbeads are able to immunodetect oligomers/multimers of PrPSc. Oligomer-specific immunoreactivity displayed by these PRIOC mAbs was demonstrated as large aggregates of immunoreactive deposits in prion-permissive neuroblastoma cell lines but not in equivalent non-infected or prn-p0/0 cell lines. In contrast, an anti-monomer PrP antibody displayed diffuse immunoreactivity restricted to the cell membrane. Furthermore, our PRIOC mAbs did not display any binding with monomeric recombinant and cellular prion proteins but strongly detected PrPSc oligomers as shown by a newly developed sensitive and specific ELISA. Finally, PrioC antibodies were also able to bind soluble oligomers formed of Aβ and α-synuclein. These findings demonstrate the potential use of anti-prion antibodies that bind PrPSc oligomers, recognised in early stage of the disease, for the diagnosis of prion diseases in blood and other body fluids. PMID:21625515

  13. [Cervical neuroblastoma in an infant].

    PubMed

    Arvai, Krisztina; Tóth, Judit; Németh, Tamás; Kiss, Csongor; Molnár, Péter; Oláh, Eva

    2004-01-01

    The case of a one-month-old patient admitted to the Department of Pediatrics (Medical and Health Science Center, Debrecen University) because of respiratory distress caused by a cervical mass compressing the upper respiratory pathways is presented. The mass could only be partially removed, the histological diagnosis proved to be neuroblastoma (SBCT: "small blue cell tumor"). Despite the fact that the DNA index of tumor cells (ploidy measurements) and the age of the patient suggested a favourable prognosis, the tumor continued to grow and metastases appeared. Because of symptoms of compression exerted on the respiratory system by the tumor, chemotherapy had to be applied. Since a standard OPEC/OJEC chemotherapeutic protocol proved to be not entirely effective and a residual tumor was still present, retinoic acid and interferon treatment was introduced. Presently, 4 years after the diagnosis, the patient is in complete remission and can be considered to be cured. The case presented here demonstrates that despite the favorable prognosis of the majority of infant neuroblastomas, in some cases the anatomic location of the tumor, leading to disturbance of vital functions, may serve as indication of chemotherapy. Our experience also proved the efficacy of retinoic acid and interferon treatment in relapsed neuroblastoma.

  14. Hyperphosphorylation-induced tau oligomers.

    PubMed

    Iqbal, Khalid; Gong, Cheng-Xin; Liu, Fei

    2013-01-01

    In normal adult brain the microtubule associated protein (MAP) tau contains 2-3 phosphates per mol of the protein and at this level of phosphorylation it is a soluble cytosolic protein. The normal brain tau interacts with tubulin and promotes its assembly into microtubules and stabilizes these fibrils. In Alzheimer disease (AD) brain tau is three to fourfold hyperphosphorylated. The abnormally hyperphosphorylated tau binds to normal tau instead of the tubulin and this binding leads to the formation of tau oligomers. The tau oligomers can be sedimented at 200,000 × g whereas the normal tau under these conditions remains in the supernatant. The abnormally hyperphosphorylated tau is capable of sequestering not only normal tau but also MAP MAP1 and MAP2 and causing disruption of the microtubule network promoted by these proteins. Unlike Aβ and prion protein (PrP) oligomers, tau oligomerization in AD and related tauopathies is hyperphosphorylation-dependent; in vitro dephosphorylation of AD P-tau with protein phosphatase 2A (PP2A) inhibits and rehyperphosphorylation of the PP2A-AD P-tau with more than one combination of tau protein kinases promotes its oligomerization. In physiological assembly conditions the AD P-tau readily self-assembles into paired helical filaments. Missense tau mutations found in frontotemporal dementia apparently lead to tau oligomerization and neurofibrillary pathology by promoting its abnormal hyperphosphorylation. Dysregulation of the alternative splicing of tau that alters the 1:1 ratio of the 3-repeat: 4-repeat taus such as in Down syndrome, Pick disease, and progressive supranuclear palsy leads to the abnormal hyperphosphorylation of tau.

  15. Counterion condensation on heparin oligomers.

    PubMed

    Minsky, Burcu Baykal; Atmuri, Anand; Kaltashov, Igor A; Dubin, Paul L

    2013-04-08

    The electropherogram of native heparin shows a broad distribution of mobilities μ, which truncates abruptly at a notably high μ = 4.7 × 10(-4) cm(2) V(-1) s(-1). This highly skewed mobility distribution is also found for the 20-saccharide chain, which shows from mass spectrometry a more uniform (symmetrical) with respect to sulfation level. Since a partially degraded heparin exhibits oligomer peaks with μ> 5 × 10(-4) cm(2) V(-1) s(-1) (appearing to escape the limitation of the mobility value for native heparin), we examined the electrophoretic behavior of chain-length monodisperse heparin oligomers. Their mobilities varied inversely with the logarithm of the contour length, L, for L from 3 to 10 nm and reached an asymptotic limit for L > 20 nm. The generality of this effect was indicated by similar behavior for oligomers of poly(styrene sulfonate). A recent theory of polyelectrolyte end effects (Manning, G. S. Macromolecules2008, 41, 6217-6227), in which chain termini exhibit reduced counterion condensation was found to quantitatively account for these results. A qualitative explanation for the anomalously high value of μ of native heparin, 10-20% higher than those seen for synthetic polyelectrolytes of higher linear charge density, is suggested on the basis of similar junction effects (Manning, G. S. Macromolecules2008, 41, 6217-6227), which reduce counterion condensation at the interfaces of regions of high and low sulfation. We suggest that these effects should be considered in models for the biofunctionality of the regulated high and low sulfation (NS/NA) domains of heparan sulfate.

  16. Neuroblastoma Metastases: Leveraging the Avian Neural Crest.

    PubMed

    Zheng, Tina; Ménard, Marie; Weiss, William A

    2017-10-09

    Neuroblastoma, an embryonal cancer of neural crest origin, shows metastases frequently at diagnosis. In this issue of Cancer Cell, Delloye-Bourgeois and colleagues demonstrate that neuroblastoma cell lines and patient-derived xenografts engraft and adopt a metastatic program in chick embryos. They identify Sema3C as a candidate switch that regulates metastatic spread. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Advances in the translational genomics of neuroblastoma

    PubMed Central

    Bosse, Kristopher R.; Maris, John M.

    2015-01-01

    Neuroblastoma is an embryonal malignancy that commonly affects young children and is remarkably heterogenous in its malignant potential. Recently, the genetic basis of neuroblastoma has come into focus, which has catalyzed not only a more comprehensive understanding of neuroblastoma tumorigenesis, but has also revealed novel oncogenic vulnerabilities that are being leveraged therapeutically. Neuroblastoma is a model pediatric solid tumor in its use of recurrent genomic alterations, such as high-level MYCN amplification, for risk stratification. Given the relative paucity of recurrent activating somatic point mutations or gene fusions in primary neuroblastoma tumors studied at initial diagnosis, innovative treatment approaches beyond small molecules targeting mutated or dysregulated kinases will be required moving forward to achieve noticeable improvements in overall patient survival. However, the clonally acquired, oncogenic aberrations in relapsed neuroblastomas are currently being defined and may offer an opportunity to improve patient outcomes with molecularly targeted therapy directed towards aberrantly regulated pathways in relapsed disease. This review will summarize the current state of knowledge of neuroblastoma genetics and genomics, highlighting the improved prognostication and potential therapeutic opportunities that have arisen from recent advances in understanding germline predisposition, recurrent segmental chromosomal alterations, somatic point mutations and translocations, and clonal evolution in relapsed neuroblastoma. PMID:26539795

  18. Sublethal irradiation promotes invasiveness of neuroblastoma cells

    SciTech Connect

    Schweigerer, Lothar; Rave-Fraenk, Margret; Schmidberger, Heinz; Hecht, Monica . E-mail: monica.hecht@med.uni-goettingen.de

    2005-05-13

    Neuroblastoma is the most frequent extracranial solid tumour of childhood. Despite multiple clinical efforts, clinical outcome has remained poor. Neuroblastoma is considered to be radiosensitive, but some clinical studies including the German trial NB90 failed to show a clinical benefit of radiation therapy. The mechanisms underlying this apparent discrepancy are still unclear. We have therefore investigated the effects of radiation on neuroblastoma cell behaviour in vitro. We show that sublethal doses of irradiation up-regulated the expression of the hepatocyte growth factor (HGF) and its receptor c-Met in some neuroblastoma cell lines. The increase in HGF/c-Met expression was correlated with enhanced invasiveness and activation of proteases degrading the extracellular matrix. Thus, irradiation at sublethal doses may promote the metastatic dissemination of neuroblastoma cells through activating the HGF/c-Met pathway and triggering matrix degradation.

  19. The effect of explosive blast loading on human neuroblastoma cells.

    PubMed

    Zander, Nicole E; Piehler, Thuvan; Banton, Rohan; Boggs, Mary

    2016-07-01

    Diagnosis of mild to moderate traumatic brain injury is challenging because brain tissue damage progresses slowly and is not readily detectable by conventional imaging techniques. We have developed a novel in vitro model to study primary blast loading on dissociated neurons using nitroamine explosives such as those used on the battlefield. Human neuroblastoma cells were exposed to single and triple 50-psi explosive blasts and single 100-psi blasts. Changes in membrane permeability and oxidative stress showed a significant increase for the single and triple 100-psi blast conditions compared with single 50-psi blast and controls. Published by Elsevier Inc.

  20. Absorption enhancing effects of chitosan oligomers on the intestinal absorption of low molecular weight heparin in rats.

    PubMed

    Zhang, Hailong; Mi, Jie; Huo, Yayu; Huang, Xiaoyan; Xing, Jianfeng; Yamamoto, Akira; Gao, Yang

    2014-05-15

    Absorption enhancing effects of chitosan oligomers with different type and varying concentration on the intestinal absorption of low molecular weight heparin (LMWH) were examined by an in situ closed loop method in different intestinal sections of rats. Chitosan hexamer with the optimal concentration of 0.5% (w/v) showed the highest absorption enhancing ability both in the small intestine and large intestine. The membrane toxicities of chitosan oligomers were evaluated by morphological observation and determining the biological markers including amount of protein and activity of lactate dehydrogenase (LDH) released from intestinal epithelium cells. There was no obvious change both in levels of protein and LDH and morphology in the intestinal membrane between control and various chitosan oligomers groups, suggesting that chitosan oligomers did not induce any significant membrane damage to the intestinal epithelium. In addition, zeta potentials became less negative and amount of free LMWH gradually decreased when various chitosan oligomers were added to LMWH solution, revealing that electrostatic interaction between positively charged chitosan oligomers and negative LMWH was included in the absorption enhancing mechanism of chitosan oligomers. In conclusion, chitosan oligomers, especially chitosan hexamer, are safe and efficient absorption enhancers and can be used promisingly to improve oral absorption of LMWH.

  1. Human neuroblastoma cultures for biorobotics.

    PubMed

    Ferrández, J M; Lorente, V; de Santos, D; Cuadra, J M; de la Paz, F; Alvarez, J R; Fernández, E

    2011-01-01

    This paper introduces a new biorobotic system using human neuroblastoma cultures and centre of area learning for basic robotic guidance. Multielectrode Arrays Setups have been designed for direct culturing neural cells over silicon or glass substrates, providing the capability to stimulate and record simultaneously populations of neural cells. The main objective of this work will be to control a robot using this biological neuroprocessor and a new simple centre of area learning scheme. The final system could be applied for testing how chemicals affect the behaviour of the robot or to establish the basis for new hybrid optogenetic neuroprostheses based on stimulating optically genetic-modified neurons.

  2. PARP inhibitors enhance replication stress and cause mitotic catastrophe in MYCN-dependent neuroblastoma.

    PubMed

    Colicchia, V; Petroni, M; Guarguaglini, G; Sardina, F; Sahún-Roncero, M; Carbonari, M; Ricci, B; Heil, C; Capalbo, C; Belardinilli, F; Coppa, A; Peruzzi, G; Screpanti, I; Lavia, P; Gulino, A; Giannini, G

    2017-04-10

    High-risk and MYCN-amplified neuroblastomas are among the most aggressive pediatric tumors. Despite intense multimodality therapies, about 50% of these patients succumb to their disease, making the search for effective therapies an absolute priority. Due to the important functions of poly (ADP-ribose) polymerases, PARP inhibitors have entered the clinical settings for cancer treatment and are being exploited in a variety of preclinical studies and clinical trials. PARP inhibitors based combination schemes have also been tested in neuroblastoma preclinical models with encouraging results. However, the expression of PARP enzymes in human neuroblastoma and the biological consequences of their inhibition remained largely unexplored. Here, we show that high PARP1 and PARP2 expression is significantly associated with high-risk neuroblastoma cases and poor survival, highlighting its previously unrecognized prognostic value for human neuroblastoma. In vitro, PARP1 and 2 are abundant in MYCN amplified and MYCN-overexpressing cells. In this context, PARP inhibitors with high 'PARP trapping' potency, such as olaparib or talazoparib, yield DNA damage and cell death preceded by intense signs of replication stress. Notwithstanding the activation of a CHK1-CDC25A replication stress response, PARP-inhibited MYCN amplified and overexpressing cells fail to sustain a prolonged checkpoint and progress through mitosis in the presence of damaged DNA, eventually undergoing mitotic catastrophe. CHK1-targeted inhibition of the replication stress checkpoint exacerbated this phenotype. These data highlight a novel route for cell death induction by PARP inhibitors and support their introduction, together with CHK1 inhibitors, in therapeutic approaches for neuroblastomas with high MYC(N) activity.Oncogene advance online publication, 10 April 2017; doi:10.1038/onc.2017.40.

  3. Butyrylcholinesterase as a Blood Biomarker in Neuroblastoma.

    PubMed

    Coulter, Don W; Boettner, Angela D; Kortylewicz, Zbigniew P; Enke, Stephen P; Luther, Jake A; Verma, Vivek; Baranowska-Kortylewicz, Janina

    2017-04-03

    Blood-based biomarkers are important in the detection of the disease and in the assessment of responses to therapy. In this study, butyrylcholinesterase was evaluated as a potential biomarker in newly diagnosed neuroblastoma (NB) patients at diagnosis and longitudinally during treatment. Plasma butyrylcholinesterase activities in age-matched and sex-matched children were used as controls. Pretreatment butyrylcholinesterase levels in NB subjects are on an average 2 times lower than butyrylcholinesterase levels in healthy subjects. Significantly, butyrylcholinesterase activities are ∼40% lower in MYCN-amplified as compared with nonamplified disease. As the course of chemotherapy progresses, butyrylcholinesterase activities recover and normalize to control values. The evident response to treatment indicates that plasma butyrylcholinesterase is a good biomarker of tumor response to therapy. Depressed butyrylcholinesterase levels in NB subjects are not caused by hepatic deficits suggesting a specific role for butyrylcholinesterase in NB. Further examination of the mechanism of altered butyrylcholinesterase production require an animal model that best approximates human condition. Studies in mice show that murine NB allografts significantly reduce butyrylcholinesterase activity in plasma. This finding correlates with changes observed in NB patients. In contrast, human NB xenografts produce the opposite effect, that is, butyrylcholinesterase plasma levels rise as the xenograft size increases. In the absence of any liver damage, dissimilarities between butyrylcholinesterase production in murine and human NB models suggest species-specific signaling pathways. This disparity also suggests that human NB xenograft mouse models do not approximate the human disease.

  4. Antidepressants modulate intracellular amyloid peptide species in N2a neuroblastoma cells.

    PubMed

    Aboukhatwa, Marwa; Luo, Yuan

    2011-01-01

    It is estimated that 30%-50% of Alzheimer's disease (AD) patients are diagnosed with major or minor depression. Research that addresses the relationship between these two diseases will benefit patients who suffer from depression comorbid with AD and allow further understanding of the neuroanatomy of depression. A clinical study showed that the use of the antidepressant fluoxetin concomitantly with the FDA-approved AD drug rivastigmine provided an improvement in the daily activities and the overall functioning in the patients with cognitive impairment. In an attempt to understand the underlying mechanism for the antidepressant's beneficial effect in AD patients, we evaluated the effects of different classes of antidepressants on the amyloid-β peptide (Aβ) species in N2a neuroblastoma cells overexpressing amyloid-β protein precursor. The effect of increasing antidepressant concentrations on the intracellular and secreted Aβ species is investigated by Western blotting. The tested antidepressants include fluoxetine, paroxetine, maprotiline, and imipramine. Fluoxetine and paroxetine at 10 μM significantly decreased the intracellular level of Aβ oligomers and increased the level of Aβ monomers. However, imipramine and maprotiline increased the intracellular amount of Aβ monomers without affecting Aβ oligomers. Based on these results, it is possible that fluoxetine and paroxetine could be beneficial to AD patients via reducing the level of the cytotoxic oligomers and keeping the Aβ peptide in the monomeric form. These data could explain some of the beneficial effects of antidepressants in AD patients observed in clinical studies.

  5. Neuroblastoma: A Tough Nut to Crack.

    PubMed

    Speleman, Frank; Park, Julie R; Henderson, Tara O

    2016-01-01

    Neuroblastoma, an embryonal tumor arising from neural crest-derived progenitor cells, is the most common solid tumor in childhood, with more than 700 cases diagnosed per year in the United States. In the past several decades, significant advances have been made in the treatment of neuroblastoma. Treatment advances reflect improved understanding of the biology of neuroblastoma. Although amplification of MYCN was discovered in the early 1980s, our understanding of neuroblastoma oncogenesis has advanced in the last decade as a result of high-throughput genomic analysis, exome and whole-genome sequencing, genome-wide association studies, and synthetic lethal drug screens. Our refined understanding of neuroblastoma biology and genetics is reflected in improved prognostic stratification and appropriate tailoring of therapy in recent clinical trials. Moreover, for high-risk neuroblastoma, a disease that was uniformly fatal 3 decades ago, recent clinical trials incorporating autologous hematopoietic transplant and immunotherapy utilizing anti-GD2 antibody plus cytokines have shown improved event-free and overall survival. These advances have resulted in a growing population of long-term survivors of neuroblastoma. Examination of the late effects and second malignant neoplasms (SMNs) in both older generations of survivors and more recently treated survivors will inform both design of future trials and surveillance guidelines for long-term follow-up. As a consequence of advances in understanding of the biology of neuroblastoma, successful clinical trials, and refined understanding of the late effects and SMNs of survivors, the promise of precision medicine is becoming a reality for patients with neuroblastoma.

  6. Ballistic Energy Transport in Oligomers.

    PubMed

    Rubtsova, Natalia I; Qasim, Layla N; Kurnosov, Arkady A; Burin, Alexander L; Rubtsov, Igor V

    2015-09-15

    The development of nanocomposite materials with desired heat management properties, including nanowires, layered semiconductor structures, and self-assembled monolayer (SAM) junctions, attracts broad interest. Such materials often involve polymeric/oligomeric components and can feature high or low thermal conductivity, depending on their design. For example, in SAM junctions made of alkane chains sandwiched between metal layers, the thermal conductivity can be very low, whereas the fibers of ordered polyethylene chains feature high thermal conductivity, exceeding that of many pure metals. The thermal conductivity of nanostructured materials is determined by the energy transport between and within each component of the material, which all need to be understood for optimizing the properties. For example, in the SAM junctions, the energy transport across the metal-chain interface as well as the transport through the chains both determine the overall heat conductivity, however, to separate these contributions is difficult. Recently developed relaxation-assisted two-dimensional infrared (RA 2DIR) spectroscopy is capable of studying energy transport in individual molecules in the time domain. The transport in a molecule is initiated by exciting an IR-active group (a tag); the method records the influence of the excess energy on another mode in the molecule (a reporter). The energy transport time can be measured for different reporters, and the transport speed through the molecule is evaluated. Various molecules were interrogated by RA 2DIR: in molecules without repeating units (disordered), the transport mechanism was expected and found to be diffusive. The transport via an oligomer backbone can potentially be ballistic, as the chain offers delocalized vibrational states. Indeed, the transport regime via three tested types of oligomers, alkanes, polyethyleneglycols, and perfluoroalkanes was found to be ballistic, whereas the transport within the end groups was diffusive

  7. Hologram recording in azobenzene oligomers

    NASA Astrophysics Data System (ADS)

    Ozols, Andris O.; Kampars, Valdis; Reinfelde, Mara; Kokars, Valdis

    2003-08-01

    Elementary hologram (holographic grating) recording and their coherent optical erasure have been experimentally studied in azobenzene oligomer (ABO) layers differing by their chemical composition, matrices and by the connection type of azobenzene chromophores to the matrix (dispersed or covalently bound). The best holographic parameters (7.9% diffraction efficiency and 86 J/cm2 specific recording energy) were achieved in the samples with covalent bonding to the matrix. Vector recording is also possible. Recording is unstable and reversible. The coherent optical erasure studies have shown its efficiency dependencies on the initial diffraction efficiency, erasing beam intensity and grating period which are different for three groups of ABO samples. The conclusion is made that recording is due to the photoinduced alignment of the azobenzene chromophores followed by refractive index changes. These are the first results and further studies are in progress.

  8. Optical Spectra of Silicon Oligomers

    NASA Astrophysics Data System (ADS)

    Kishida, Hideo; Tachibana, Hiroaki; Sakurai, Kouhei; Matsumoto, Mutsuyoshi; Abe, Shuji; Tokura, Yoshinori

    1996-06-01

    Optical absorption spectra have been measured for finite-chain analogs of linear polysilane, silicon oligomers CH3[Si(CH3)2]nCH3, with controlled chain length n(=2 to 16).The intense lowest electronic absorption peak and its higher-lying side bands,which correspond to the one-dimensional exciton series in the infinite chain,shift to higher energy with decrease of the chain length because of the confinement of the excited states.The oscillator strength of the main absorption peak increases with the chain length, while the linewidth of the main peak drastically decreases, especially in the region n=2 to 6.These finite size effects of the electronic (excitonic) absorptionare argued in terms of spatial extension of the excited states, motional narrowing and electron correlation effect.

  9. Hypoxia-induced dedifferentiation in neuroblastoma cells.

    PubMed

    Jögi, Annika; Øra, Ingrid; Nilsson, Helen; Poellinger, Lorenz; Axelson, Håkan; Påhlman, Sven

    2003-07-18

    Hypoxia in solid tumors is associated with aggressive behavior and poor outcome. We recently discovered that hypoxia alters the expression of differentiation marker genes in neuroblastoma cells, in that the tumor cells adjust to the hypoxic environment by down-regulating genes associated with a neuronal and upregulating genes associated with a neural crest-like phenotype. As there is a correlation in neuroblastoma between low stage of differentiation and high (aggressive) clinical stage, we propose that dedifferentiation of neuroblastoma cells in hypoxic tumor regions contribute to the malignancy of the tumor.

  10. Pediatric neuroblastomas: genetic and epigenetic 'danse macabre'.

    PubMed

    van Noesel, Max M; Versteeg, Rogier

    2004-01-21

    Neuroblastomas are the most frequently occurring solid tumors in children under 5 years. Spontaneous regression is more common in neuroblastomas than in any other tumor type, especially in young patients under 12 months. Unfortunately, the full clinical spectrum of neuroblastomas also includes very aggressive tumors, unresponsive to multi-modality treatment and accounting for most of the pediatric cancer mortalities under 5 years of age. It is generally emphasized that more than one biological entity of neuroblastoma exists. Structural genetic defects such as amplification of MYCN, gain of chromosome 17q and LOH of 1p and several other chromosomal regions have proven to be valuable as prognostic factors and will be discussed in relation to their clinical relevance. Recent research is starting to uncover important molecular pathways involved in the pathogenesis of neuroblastomas. The aim of this review is to discuss several important aspects of the biology of the neuroblast, such as the role of overexpressed oncogenes like MYCN and cyclin D1, the mechanisms leading to decreased apoptosis, like overexpression of BCL-2, survivin, NM23, epigenetic silencing of caspase 8 and the role of tumor suppressor genes, like p53, p73 and RASSF1A. In addition, the role of specific proteins overexpressed in neuroblastomas, such as the neurotrophin receptors TrkA, B and C in relation to spontaneous regression and anti-angiogenesis will be discussed. Finally, we will try to relate these pathways to the embryonal origin of neuroblastomas and discuss possible new avenues in the therapeutic approach of future neuroblastoma patients.

  11. Olfactory neuroblastoma: A case report

    PubMed Central

    USLU, GONCA HANEDAN; CANYILMAZ, EMINE; ZENGIN, AHMET YASAR; MUNGAN, SEVDEGUL; YONEY, ADNAN; BAHADIR, OSMAN; GOCMEZ, HUSEYIN

    2015-01-01

    Olfactory neuroblastoma (ON) is a rare type of malignant neoplasm originating from the olfactory neuroepithelial cells of the nasal cavity. ON is also known as esthesioneuroblastoma or neuroendocrine carcinoma. The malignancy accounts for <3% of tumors originating in the nasal cavity. Through the nasal cavity, ON may infiltrate the sinuses, the orbit and the cranium. The tumor is characterized by a pattern of slow growth and local recurrences. Treatment options are surgical excision or surgery combined with a radiotherapy (RT) and/or chemotherapy combination treatment. The present study reports the case of a 69-year-old patient with a mass in the nasal cavity who was treated by combined surgical excision and RT. The literature for ON and the treatment of the tumor are also discussed. PMID:26788185

  12. Radiolabeled Metaiodobenzylguanidine for the Treatment of Neuroblastoma

    PubMed Central

    DuBois, Steven G.; Matthay, Katherine K.

    2008-01-01

    Introduction Neuroblastoma is the most common pediatric extracranial solid cancer. This tumor is characterized by metaiodobenzylguanidine (MIBG) avidity in 90% of cases, prompting the use of radiolabeled MIBG for targeted radiotherapy in these tumors. Methods The available English language literature was reviewed for original research investigating in vitro, in vivo, and clinical applications of radiolabeled MIBG for neuroblastoma. Results MIBG is actively transported into neuroblastoma cells by the norepinephrine transporter. Preclinical studies demonstrate substantial activity of radiolabeled MIBG in neuroblastoma models, with 131I-MIBG showing enhanced activity in larger tumors compared to 125I-MIBG. Clinical studies of 131I-MIBG in patients with relapsed or refractory neuroblastoma have identified myelosuppression as the main dose-limiting toxicity, necessitating stem cell reinfusion at higher doses. Most studies report a response rate of 30–40% with 131I-MIBG in this population. More recent studies have focused on the use of 131I-MIBG in combination with chemotherapy or myeloablative regimens. Conclusions 131I-MIBG is an active agent for the treatment of patients with neuroblastoma. Future studies will need to define the optimal role of this targeted radiopharmaceutical in the therapy of this disease. PMID:18707633

  13. Chitosan oligomers as potential and safe absorption enhancers for improving the pulmonary absorption of interferon-alpha in rats.

    PubMed

    Yamada, Keigo; Odomi, Masaaki; Okada, Naoki; Fujita, Takuya; Yamamoto, Akira

    2005-11-01

    Effects of chitosan oligomers on pulmonary absorption of interferon-alpha (IFN) were examined by means of an in vivo pulmonary absorption experiment. Chitosan oligomers used in this study were chitosan dimer, tetramer, hexamer, and water-soluble (WS) chitosan. A significant increase in serum IFN concentrations was observed after intratracheal administration of IFN with these oligomers. Of these chitosan oligomers, 0.5% w/v chitosan hexamer appeared to be more effective in enhancing the pulmonary absorption of IFN than other oligomers at the same concentration, and the AUC value of IFN with chitosan hexamer increased 2.6-fold as compared with the control. On the other hand, chitosan polymers, which have relatively high molecular weights (22-96 kDa), were not effective in enhancing the pulmonary absorption of IFN due to their low solubility in water. Additionally, the effect of different concentrations (0.1%-1% w/v) of chitosan hexamer on the pulmonary absorption of IFN was studied. Of these different concentrations of chitosan hexamers, the highest AUC value of IFN was obtained in the presence of 0.5% w/v chitosan hexamer. Furthermore, chitosan oligomers did not cause any membrane damage to the rat pulmonary tissues, as determined by leakage of protein and lactate dehydrogenase (LDH) in bronchoalveolar lavage (BAL) fluid. Therefore, these findings indicated that the use of chitosan oligomers would be a promising approach for improving of the pulmonary absorption of biologically active peptides including IFN.

  14. Nanopore formation in neuroblastoma cells following ultrashort electric pulse exposure

    NASA Astrophysics Data System (ADS)

    Roth, Caleb C.; Payne, Jason A.; Wilmink, Gerald J.; Ibey, Bennett L.

    2011-03-01

    Ultrashort or nanosecond electrical pulses (USEP) cause repairable damage to the plasma membranes of cells through formation of nanopores. These nanopores are able to pass small ions such as sodium, calcium, and potassium, but remain impermeable to larger molecules like trypan blue and propidium iodide. What remains uncertain is whether generation of nanopores by ultrashort electrical pulses can inhibit action potentials in excitable cells. In this paper, we explored the sensitivity of excitable cells to USEP using Calcium Green AM 1 ester fluorescence to measure calcium uptake indicative of nanopore formation in the plasma membrane. We determined the threshold for nanopore formation in neuroblastoma cells for three pulse parameters (amplitude, pulse width, and pulse number). Measurement of such thresholds will guide future studies to determine if USEP can inhibit action potentials without causing irreversible membrane damage.

  15. Marrow-Derived Antibody Library for Treatment of Neuroblastoma

    DTIC Science & Technology

    2013-09-01

    Treatment of Neuroblastoma PRINCIPAL INVESTIGATOR: Giselle Sholler CONTRACTING...Treatment of Neuroblastoma 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0332 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Giselle Sholler...Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Neuroblastoma (NB) is the most common solid tumor in children

  16. Studies of the Tumor Microenvironment in Pathogenesis of Neuroblastoma

    DTIC Science & Technology

    2013-07-01

    of Neuroblastoma PRINCIPAL INVESTIGATOR: Shahab Asgharzadeh, M D CONTRACTING ORGANIZATION: Children’s Hospital Los Angeles Los Angeles...2012 - 30 June 2013 4. TITLE AND SUBTITLE Studies of the Tumor Microenvironment in Pathogenesis of Neuroblastoma 5a. CONTRACT NUMBER 5b...NOTES 14. ABSTRACT The NBL-Tag neuroblastoma tumors were assessed for presence of macrophages and their role in promoting tumor growth

  17. Identifying microRNAs that Regulate Neuroblastoma Cell Differentiation

    DTIC Science & Technology

    2014-09-01

    AD_________________ Award Number: W81XWH-13-1-0241 TITLE: Identifying that Regulate Neuroblastoma ...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT We identified 14 microRNA candidates that induce neuroblastoma cell differentiation based on a high...content screening of neurite outgrowth — the morphological differentiation marker of neuroblastoma cells. We further validated that the identified

  18. When LMO1 Meets MYCN, Neuroblastoma Is Metastatic.

    PubMed

    Liu, Zhihui; Thiele, Carol J

    2017-09-11

    LMO1 is a high-risk neuroblastoma susceptibility gene, but how LMO1 cooperates with MYCN in neuroblastoma tumorigenesis is unclear. In this issue of Cancer Cell, Zhu et al. develop a novel zebrafish model that elucidates a mechanism by which LMO1 and MYCN synergistically initiate neuroblastoma and contribute to metastatic disease progression. Published by Elsevier Inc.

  19. [Anesthetic management of an infant with giant abdominal neuroblastoma].

    PubMed

    Gómez-Ríos, Manuel Ángel; Nuño, Federico Curt; Barreto-Calvo, Purísima

    Neuroblastoma is the most common, non-central nervous system tumor of childhood. It has the potential to synthesize catecholamines. However, the presences of hypertension are uncommon. We report the perioperative management of a 15-month-old infant with giant abdominal neuroblastoma who presented severe hypertension. The pathophysiological alterations of neuroblastoma are reviewed and perioperative management presented.

  20. Anesthetic management of an infant with giant abdominal neuroblastoma.

    PubMed

    Gómez-Ríos, Manuel Ángel; Nuño, Federico Curt; Barreto-Calvo, Purísima

    Neuroblastoma is the most common, non-central nervous system tumor of childhood. It has the potential to synthesize catecholamines. However, the presences of hypertension are uncommon. We report the perioperative management of a 15-month-old infant with giant abdominal neuroblastoma who presented severe hypertension. The pathophysiological alterations of neuroblastoma are reviewed and perioperative management presented.

  1. The epidemiology of neuroblastoma: a review.

    PubMed

    Heck, Julia E; Ritz, Beate; Hung, Rayjean J; Hashibe, Mia; Boffetta, Paolo

    2009-03-01

    Neuroblastoma is the most common tumour in children less than 1 year of age. The goal of this review was to summarise the existing epidemiological research on risk factors for neuroblastoma. A comprehensive search of the literature was undertaken using PubMed for epidemiological studies on neuroblastoma risk factors. We ascertained 47 articles which examined the risk factors. Ten studies employed population-based case-control designs; six were hospital-based case-control studies; two were cohort studies; and five employed ecological designs. Studies ranged in size from 42 to 538 cases. Three studies showed evidence of an increased risk of disease with use of alcohol during pregnancy (OR range 1.1, 12.0). Protective effects were seen with maternal vitamin intake during pregnancy (OR range 0.5, 0.7) in two studies, while risk of disease increased with maternal intake of diuretics (OR range 1.2, 5.8) in three studies. Three studies reported a decrease in risk for children with a history of allergic disease prior to neuroblastoma diagnosis (OR range 0.2, 0.4). The rarity of neuroblastoma makes this disease particularly challenging to study epidemiologically. We review the methodological limitations of prior research and make suggestions for further areas of study.

  2. Autologous cord blood transplantation for metastatic neuroblastoma.

    PubMed

    Ning, Botao; Cheuk, Daniel Ka-Leung; Chiang, Alan Kwok-Shing; Lee, Pamela Pui-Wah; Ha, Shau-Yin; Chan, Godfrey Chi-Fung

    2016-03-01

    Auto-SCT is a common approach for metastatic neuroblastoma with the intention to rescue hematopoiesis after megadose chemotherapy. PBSC or BM is the usual stem cell source for auto-SCT. Auto-CBT for neuroblastoma has very rarely been performed. Currently, case reports are available for two patients only. We performed 13 auto-SCTs for high-risk neuroblastoma from 2007 to 2013, including four cases of metastatic neuroblastoma aged 11-64 months treated with auto-CBT. All four patients had partial or CR to upfront treatments before auto-CBT. Nucleated cell dose and CD34+ cell dose infused were 2.8-8.7 × 10(7) /kg and 0.36-3.9 × 10(5) /kg, respectively. Post-thawed viability was 57-76%. Neutrophil engraftment (>0.5 × 10(9) /L) occurred at 15-33 days, while platelet engraftment occurred at 31-43 days (>20 × 10(9) /L) and 33-65 days (>50 × 10(9) /L) post-transplant, respectively. There was no severe acute or chronic complication. Three patients survived for 1.9-7.7 yr without evidence of recurrence. One patient relapsed at 16 months post-transplant and died of progressive disease. Cord blood may be a feasible alternative stem cell source for auto-SCT in patients with stage 4 neuroblastoma, and outcomes may be improved compared to autologous PBSC or BM transplants.

  3. Diagnosis and treatment of neuroblastoma using metaiodobenzylguanidine

    SciTech Connect

    Edeling, C.J.; Frederiksen, P.B.; Kamper, J.; Jeppesen, P.

    1987-08-01

    Neuroblastoma is a lethal and not uncommon tumor in childhood. Early detection and display of the spread of the tumor is highly desirable for proper treatment. Nine children suspected of having neuroblastomas were examined by I-131 metaiodobenzylguanidine (I-131 MIBG) imaging. In two recent studies I-123 metaiodobenzylguanidine (I-123 MIBG) was used. A primary adrenal neuroblastoma was correctly identified in three cases. In two patients additional tumor sites were found. In one patient, who was in complete remission, no pathologic accumulation of I-131 MIBG was found. I-131 MIBG images were also normal in four patients with other types of neoplastic diseases. A boy with multiple metastases was treated with 100 mCi of I-131 MIBG. He developed transient gastrointestinal illness and there was no regression of the tumor deposits. In one girl with a large adrenal neuroblastoma high uptake of I-131 MIBG was observed. She received two therapy doses of I-131 MIBG (35 mCi and 75 mCi) with curative intention giving a total absorbed dose in the tumor of approximately 76 Gy. In spite of high retention of radioactivity in the tumor, regression did not occur, but her general condition was improved. In the present study, images of superior quality were obtained with I-123 MIBG imaging. It is concluded that imaging using I-131 MIBG or I-123 MIBG should be used in both the initial evaluation and the follow-up of children with neuroblastoma.

  4. The TP53 gene rs1042522 C>G polymorphism and neuroblastoma risk in Chinese children.

    PubMed

    He, Jing; Wang, Fenghua; Zhu, Jinhong; Zhang, Zhuorong; Zou, Yan; Zhang, Ruizhong; Yang, Tianyou; Xia, Huimin

    2017-03-08

    TP53, a tumor suppressor gene, plays a critical role in cell cycle control, apoptosis, and DNA damage repair. Previous studies have indicated that the TP53 gene Arg72Pro (rs1042522 C>G) polymorphism is associated with susceptibility to various types of cancer. We evaluated the association of the TP53 gene rs1042522 C>G polymorphism with neuroblastoma susceptibility in a hospital-based study among the Chinese Han population. Enrolled were 256 patients and 531 controls. Odds ratios (ORs) and 95% confidence intervals (CIs) generated using logistic regression models were used to determine the strength of the association of interest. No association was detected between rs1042522 C>G polymorphism and neuroblastoma risk. In our stratification analysis of age, gender, sites of origin, and clinical stages, we observed that subjects with rs1042522 CG/GG genotypes had a lower risk of developing neuroblastoma in the mediastinum (Adjusted OR=0.52, 95% CI=0.33-0.82, P=0.005) than those carrying the CC genotype. These results indicate that TP53 gene rs1042522 C>G polymorphism may exert a weak and site-specific effect on neuroblastoma risk in Southern Chinese children and warrant further confirmation.

  5. Lipid raft disruption protects mature neurons against amyloid oligomer toxicity.

    PubMed

    Malchiodi-Albedi, Fiorella; Contrusciere, Valentina; Raggi, Carla; Fecchi, Katia; Rainaldi, Gabriella; Paradisi, Silvia; Matteucci, Andrea; Santini, Maria Teresa; Sargiacomo, Massimo; Frank, Claudio; Gaudiano, Maria Cristina; Diociaiuti, Marco

    2010-04-01

    A specific neuronal vulnerability to amyloid protein toxicity may account for brain susceptibility to protein misfolding diseases. To investigate this issue, we compared the effects induced by oligomers from salmon calcitonin (sCTOs), a neurotoxic amyloid protein, on cells of different histogenesis: mature and immature primary hippocampal neurons, primary astrocytes, MG63 osteoblasts and NIH-3T3 fibroblasts. In mature neurons, sCTOs increased apoptosis and induced neuritic and synaptic damages similar to those caused by amyloid beta oligomers. Immature neurons and the other cell types showed no cytotoxicity. sCTOs caused cytosolic Ca(2+) rise in mature, but not in immature neurons and the other cell types. Comparison of plasma membrane lipid composition showed that mature neurons had the highest content in lipid rafts, suggesting a key role for them in neuronal vulnerability to sCTOs. Consistently, depletion in gangliosides protected against sCTO toxicity. We hypothesize that the high content in lipid rafts makes mature neurons especially vulnerable to amyloid proteins, as compared to other cell types; this may help explain why the brain is a target organ for amyloid-related diseases.

  6. Lactic acid oligomers (OLAs) as prodrug moieties.

    PubMed

    Kruse, J; Lachmann, B; Lauer, R; Eppacher, S; Noe, C R

    2013-02-01

    In this paper we propose the use of lactic acid oligomers (OLAs) as prodrug moieties. Two synthetic approaches are presented, on the one hand a non selective oligomerisation of lactic acid and on the other hand a block synthesis to tetramers of lactic acid. Dimers of lactic acid were investigated with respect to their plasma stability and their adsorption to albumine. Ibuprofen was chosen as the first drug for OLAylation. The ester 19 of LA(1)-ibuprofen was evaluated with respect to the degradation to human plasma and the adsorption to albumine. All results indicate that lactic acid oligomers are promising prodrug moieties.

  7. Neuroblastoma and pediatric delirium: a case series.

    PubMed

    Traube, Chani; Augenstein, Julie; Greenwald, Bruce; LaQuaglia, Michael; Silver, Gabrielle

    2014-06-01

    Delirium occurs frequently in critically ill children, and children with neuroblastoma may be at particular risk. Early diagnosis and treatment may improve short- and long-term outcomes. In this case series, we present four critically ill children with neuroblastoma who were diagnosed with delirium in the post-operative period. In all four patients, the diagnosis of delirium facilitated targeted intervention and improvement. Heightened awareness by pediatric oncologists, surgeons, and intensivists may lead to earlier diagnosis and improvement in clinical outcomes. © 2013 Wiley Periodicals, Inc.

  8. PHOX2B Is Associated with Neuroblastoma Cell Differentiation.

    PubMed

    Yang, Liqun; Ke, Xiao-Xue; Xuan, Fan; Tan, Juan; Hou, Jianbing; Wang, Mei; Cui, Hongjuan; Zhang, Yundong

    2016-03-01

    Neuroblastoma is a common pediatric malignancy that accounts for ∼15% of tumor-related deaths in children. The tumor is generally believed to originate from neural crest cells during early sympathetic neurogenesis. As the degree of neuroblastoma differentiation has been correlated with clinical outcome, clarifying the molecular mechanisms that drive neuroblastoma progression and differentiation is important for increasing the survival of these patients. In a previous study, the authors identified paired-like homeobox 2b (PHOX2B) as a key mediator of neuroblastoma pathogenesis in a TH-MYCN mouse model. In the present study, they aimed to define whether PHOX2B is also associated with proliferation and differentiation of human neuroblastoma cells. PHOX2B expression in neuroblastoma cells was evaluated by immunoblot analyses, and the effects of PHOX2B on the proliferation of neuroblastoma cells in vitro were determined using clonogenic and sphere formation assays. Xenograft experiments in NOD/SCID mice were used to examine the in vivo response to PHOX2B knockdown. Their data demonstrated that PHOX2B acts as a prognostic marker in neuroblastoma and that retinoic acid-induced neuronal differentiation downregulates PHOX2B expression, thereby suppressing the self-renewal capacity of neuroblastoma cells and inhibiting tumorigenicity. These findings confirmed that PHOX2B is a key regulator of neuroblastoma differentiation and stemness maintenance and indicated that PHOX2B might serve as a potential therapeutic target in neuroblastoma patients.

  9. Tau Oligomers Associate with Inflammation in the Brain and Retina of Tauopathy Mice and in Neurodegenerative Diseases

    PubMed Central

    Nilson, Ashley N.; English, Kelsey C.; Gerson, Julia E.; Barton Whittle, T.; Nicolas Crain, C.; Xue, Judy; Sengupta, Urmi; Castillo-Carranza, Diana L.; Zhang, Wenbo; Gupta, Praveena; Kayed, Rakez

    2016-01-01

    It is well-established that inflammation plays an important role in Alzheimer’s disease (AD) and frontotemporal lobar dementia (FTLD). Inflammation and synapse loss occur in disease prior to the formation of larger aggregates, but the contribution of tau to inflammation has not yet been thoroughly investigated. Tau pathologically aggregates to form large fibrillar structures known as tangles. However, evidence suggests that smaller soluble aggregates, called oligomers, are the most toxic species and form prior to tangles. Furthermore, tau oligomers can spread to neighboring cells and between anatomically connected brain regions. In addition, recent evidence suggests that inspecting the retina may be a window to brain pathology. We hypothesized that there is a relationship between tau oligomers and inflammation, which are hallmarks of early disease. We conducted immunofluorescence and biochemical analyses on tauopathy mice, FTLD, and AD subjects. We showed that oligomers co-localize with astrocytes, microglia, and HMGB1, a pro-inflammatory cytokine. Additionally, we show that tau oligomers are present in the retina and are associated with inflammatory cells suggesting that the retina may be a valid non-invasive biomarker for brain pathology. These results suggest that there may be a toxic relationship between tau oligomers and inflammation. Therefore, the ability of tau oligomers to spread may initiate a feed-forward cycle in which tau oligomers induce inflammation, leading to neuronal damage, and thus more inflammation. Further mechanistic studies are warranted in order to understand this relationship, which may have critical implications for improving the treatment of tauopathies. PMID:27716675

  10. Treatment of Neuroblastoma with an Engineered “Obligate” Anaerobic Salmonella typhimurium Strain YB1

    PubMed Central

    Ning, Bo-Tao; Yu, Bin; Chan, Shing; Chan, Jian-liang; Huang, Jian-Dong; Chan, Godfrey Chi-Fung

    2017-01-01

    Purpose Neuroblastoma is an embryonic solid tumor derived from the progenitors of the sympathetic nervous system. More than half of the patients developed metastatic disease at the time of initial diagnosis and had poor outcome with current therapeutic approaches. In recent years, some obligate and facultative anaerobic bacteria were reported to target the hypoxic and necrotic region of solid tumor models and caused tumor regression. We recently successfully constructed an “obligate” anaerobic Salmonella strain YB1 that was applied in breast cancer nude mice model by us. Here, we report the application of YB1 in neuroblastoma treatment. Methods The anti-cancer effect and side-effects of YB1 was examined in both in vitro and in vivo experiment. Previous established orthotopic neuroblastoma SCID/beige murine model using SK-NLP/luciferase cell line was adopted. Results In vitro, YB1 induced apoptosis for up to 31.4% of the neuroblastoma cells under anaerobic condition, three times more than that under aerobic condition (10.9%). The expression of both Toll like Receptor 4 and 5 (TLR4 and TLR5) in cancer cells were significantly up-regulated (p<0.05, p<0.01 respectively) after the treatment of YB1 under anaerobic condition. In mouse model, YB1 preferentially accumulated inside the core of the tumors, rather than in normal tissues as our previous reported. This is suggestive of the hypoxic nature of tumor core. Tumor growth was significantly retarded in YB1 treatment group (n=6, P<0.01). Furthermore, there was no long-term organ damage noted in all the organs examined including heart, lung, liver, spleen and brain in the YB1 treated mice. Conclusion The genetic modified Salmonella strain YB1 is a promising anti-tumor strategy against the tumor bulk for neuroblastoma. Future study can be extended to other common cancer types to verify the relative efficacy on different neoplastic cells. PMID:28775780

  11. Designing Surface-Confined Coordination Oligomers

    SciTech Connect

    Altman, M.; Rachamim, M; Ichiki, T; Iron, M; Evmenenko, G; Dutta, P; van der Boom, M

    2010-01-01

    HOMO-LUMO engineering of coordination-based oligomers covalently bound to silicon or glass has been achieved by the use of a partially fluorinated chromophore (see graphic). The experimental and computationally derived physical chemical properties of these assemblies are compared to their non-fluorinated analogues.

  12. Glucosamine oligomers: 1. Preparation and characterization.

    PubMed

    Domard, A; Cartier, N

    1989-10-01

    Hydrolysis of chitosan in hot concentrated HCl led to chito-oligosaccharides [beta-(1----4) linked 2-amino-2-deoxy-D-glucose]. The time dependence of the distribution was studied. A convenient choice of the conditions for steric exclusion chromatography of these hydrolysates allowed the separation of the first 15 oligomers and of fractions up to DP = 40.

  13. Bilateral neuroblastoma in situ associated with microcephaly.

    PubMed Central

    Park, W. S.; Chi, J. G.

    1993-01-01

    We present an autopsy case of a two-day-old female infant with a very unusual combination of neuroblastoma in situ in both adrenals and microcephaly. This baby was born to a 28-year-old mother after 38 weeks of gestation, and died of respiratory difficulty 2 days later. At autopsy, the baby weighted 1,840gm, and the brain was extraordinarily small with a weight of 125gm. The gyral pattern was simplified and irregular. Microscopically massive migration defects, pachygyria, micropolygyria, leptomeningeal glioneuronal islands, small corticospinal tract and heterotopic Purkinje cells in the cerebellum were found. In addition, there were medullary nodules in both adrenals. They measured 0.7 x 0.4cm and 0.7 x 0.3cm, respectively. These nodules showed the typical histological features of undifferentiated neuroblastoma. The tumor nodules were confined to the medullary portion and did not extend to the cortex or contiguous structures meeting the criteria of neuroblastoma in situ. Based on these unusual and seemingly unrelated sets of findings, it is suggested that the histogenesis of neuroblastoma in situ could be a part of the generalized dysontogenic process. PMID:8397936

  14. Whole-body MRI of neuroblastoma.

    PubMed

    Goo, Hyun Woo

    2010-09-01

    Whole-body MRI (WBMRI) is an emerging imaging method that has a great potential in pediatric oncologic imaging. It appears useful in staging and monitoring neuroblastoma although its clinical impact has not been thoroughly evaluated. Among various imaging techniques currently available for WBMRI, coronal and sagittal STIR imaging with a quadrature body coil at 1.5T MR system is recommended for a standard protocol. Nevertheless, further technical improvements are anticipated at 3.0T MR system and multi-channel surface coil system. Scan time of WBMRI is reasonably short ranging from 20 min to 60 min. In localized neuroblastoma, WBMRI may help in predicting surgical risks by evaluating image-defined risk factors accurately. In addition, WBMRI is quite useful in detecting distant metastasis, assessing initial treatment responses, and identifying tumor recurrence of neuroblastoma. We should understand limitations of WBMRI in the evaluation of lymph node involvement, in the differentiation between viable tumor and non-viable residual lesion, and in the detection of calcified lesion. Diffusion-weighted imaging may improve diagnostic accuracy of WBMRI. Complementary use of WBMRI and other metabolic imaging method such as MIBG scintigraphy or PET probably increases diagnostic accuracy and, subsequently, improves clinical outcome of children with neuroblastoma. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.

  15. Genetic Discoveries and Treatment Advances in Neuroblastoma

    PubMed Central

    Bagatell, Rochelle; Cohn, Susan L.

    2016-01-01

    Purpose of review Major advances in our understanding of the genetic basis of neuroblastoma and the role somatic alterations play in driving tumor growth have led to improvements in risk-stratified therapy and have provided the rationale for targeted therapies. In this review, we highlight current risk-based treatment approaches and discuss the opportunities and challenges of translating recent genomic discoveries into the clinic. Recent Findings Significant progress in the treatment of neuroblastoma has been realized using risk-based treatment strategies. Outcome has improved for all patients, including those classified as high-risk, although survival remains poor for this cohort. Integration of whole-genome DNA copy number and comprehensive molecular profiles into neuroblastoma classification systems will allow more precise prognostication and refined treatment assignment. Promising treatments that include targeted systemic radiotherapy, pathway-targeted small molecules, and therapy targeted at cell surface molecules are being evaluated in clinical trials, and recent genomic discoveries in relapsed tumor samples have led to the identification of new actionable mutations. Summary The integration of refined treatment stratification based on whole-genome profiles with therapeutics that target the molecular drivers of malignant behavior in neuroblastoma has the potential to dramatically improve survival with decreased toxicity. PMID:26576010

  16. Monoclonal Antibody Therapy for Advanced Neuroblastoma

    Cancer.gov

    NCI is sponsoring two clinical trials of a monoclonal antibody called ch14.18, in combination with other drugs, to see if the antibody may be helpful for children or young adults (up to age 21) with relapsed or refractory neuroblastoma.

  17. Capping of Aβ42 Oligomers by Small Molecule Inhibitors

    PubMed Central

    2015-01-01

    Aβ42 peptides associate into soluble oligomers and protofibrils in the process of forming the amyloid fibrils associated with Alzheimer’s disease. The oligomers have been reported to be more toxic to neurons than fibrils, and have been targeted by a wide range of small molecule and peptide inhibitors. With single touch atomic force microscopy (AFM), we show that monomeric Aβ42 forms two distinct types of oligomers, low molecular weight (MW) oligomers with heights of 1–2 nm and high MW oligomers with heights of 3–5 nm. In both cases, the oligomers are disc-shaped with diameters of ∼10–15 nm. The similar diameters suggest that the low MW species stack to form the high MW oligomers. The ability of Aβ42 inhibitors to interact with these oligomers is probed using atomic force microscopy and NMR spectroscopy. We show that curcumin and resveratrol bind to the N-terminus (residues 5–20) of Aβ42 monomers and cap the height of the oligomers that are formed at 1–2 nm. A second class of inhibitors, which includes sulindac sulfide and indomethacin, exhibit very weak interactions across the Aβ42 sequence and do not block the formation of the high MW oligomers. The correlation between N-terminal interactions and capping of the height of the Aβ oligomers provides insights into the mechanism of inhibition and the pathway of Aβ aggregation. PMID:25422864

  18. Stabilization, Characterization, and Selective Removal of Cystatin C Amyloid Oligomers*

    PubMed Central

    Östner, Gustav; Lindström, Veronica; Hjort Christensen, Per; Kozak, Maciej; Abrahamson, Magnus; Grubb, Anders

    2013-01-01

    The pathophysiological process in amyloid disorders usually involves the transformation of a functional monomeric protein via potentially toxic oligomers into amyloid fibrils. The structure and properties of the intermediary oligomers have been difficult to study due to their instability and dynamic equilibrium with smaller and larger species. In hereditary cystatin C amyloid angiopathy, a cystatin C variant is deposited in arterial walls and cause brain hemorrhage in young adults. In the present investigation, we use redox experiments of monomeric cystatin C, stabilized against domain swapping by an intramolecular disulfide bond, to generate stable oligomers (dimers, trimers, tetramers, decamers, and high molecular weight oligomers). These oligomers were characterized concerning size by gel filtration, polyacrylamide gel electrophoresis, and mass spectrometry, shape by electron and atomic force microscopy, and, function by assays of their capacity to inhibit proteases. The results showed the oligomers to be highly ordered, domain-swapped assemblies of cystatin C and that the oligomers could not build larger oligomers, or fibrils, without domain swapping. The stabilized oligomers were used to induce antibody formation in rabbits. After immunosorption, using immobilized monomeric cystatin C, and elution from columns with immobilized cystatin C oligomers, oligomer-specific antibodies were obtained. These could be used to selectively remove cystatin C dimers from biological fluids containing both dimers and monomers. PMID:23629649

  19. The Effect of Molecular Weight on the Composite Properties of Cured Phenylethynyl Terminated Imide Oligomers

    NASA Technical Reports Server (NTRS)

    Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.

    1997-01-01

    As part of a program to develop high temperature/high performance structural resins for aeronautical applications, imide oligomers containing terminal phenylethynyl groups with calculated number average molecular weights of 1250, 2500 and 5000 g/mol were prepared, characterized, and evaluated as adhesives and composite matrix resins. The goal of this work was to develop resin systems that are processable using conventional processing equipment into void free composites that exhibit high mechanical properties with long term high temperature durability, and are not affected by exposure to common aircraft fluids. The imide oligomers containing terminal phenylethynyl groups were fabricated into titanium adhesive specimens and IM-7 carbon fiber laminates under 0.1 - 1.4 MPa for 1 hr at 350-371 C. The lower molecular weight oligomers exhibited higher cured Tg, better processability, and better retention of mechanical properties at elevated temperature without significantly sacrificing toughness or damage tolerance than the higher molecular weight oligomer. The neat resin, adhesive and composite properties of the cured polymers will be presented.

  20. DOPAL derived alpha-synuclein oligomers impair synaptic vesicles physiological function

    PubMed Central

    Plotegher, N.; Berti, G.; Ferrari, E.; Tessari, I.; Zanetti, M.; Lunelli, L.; Greggio, E.; Bisaglia, M.; Veronesi, M.; Girotto, S.; Dalla Serra, M.; Perego, C.; Casella, L.; Bubacco, L.

    2017-01-01

    Parkinson’s disease is a neurodegenerative disorder characterized by the death of dopaminergic neurons and by accumulation of alpha-synuclein (aS) aggregates in the surviving neurons. The dopamine catabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) is a highly reactive and toxic molecule that leads to aS oligomerization by covalent modifications to lysine residues. Here we show that DOPAL-induced aS oligomer formation in neurons is associated with damage of synaptic vesicles, and with alterations in the synaptic vesicles pools. To investigate the molecular mechanism that leads to synaptic impairment, we first aimed to characterize the biochemical and biophysical properties of the aS-DOPAL oligomers; heterogeneous ensembles of macromolecules able to permeabilise cholesterol-containing lipid membranes. aS-DOPAL oligomers can induce dopamine leak in an in vitro model of synaptic vesicles and in cellular models. The dopamine released, after conversion to DOPAL in the cytoplasm, could trigger a noxious cycle that further fuels the formation of aS-DOPAL oligomers, inducing neurodegeneration. PMID:28084443

  1. DOPAL derived alpha-synuclein oligomers impair synaptic vesicles physiological function.

    PubMed

    Plotegher, N; Berti, G; Ferrari, E; Tessari, I; Zanetti, M; Lunelli, L; Greggio, E; Bisaglia, M; Veronesi, M; Girotto, S; Dalla Serra, M; Perego, C; Casella, L; Bubacco, L

    2017-01-13

    Parkinson's disease is a neurodegenerative disorder characterized by the death of dopaminergic neurons and by accumulation of alpha-synuclein (aS) aggregates in the surviving neurons. The dopamine catabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) is a highly reactive and toxic molecule that leads to aS oligomerization by covalent modifications to lysine residues. Here we show that DOPAL-induced aS oligomer formation in neurons is associated with damage of synaptic vesicles, and with alterations in the synaptic vesicles pools. To investigate the molecular mechanism that leads to synaptic impairment, we first aimed to characterize the biochemical and biophysical properties of the aS-DOPAL oligomers; heterogeneous ensembles of macromolecules able to permeabilise cholesterol-containing lipid membranes. aS-DOPAL oligomers can induce dopamine leak in an in vitro model of synaptic vesicles and in cellular models. The dopamine released, after conversion to DOPAL in the cytoplasm, could trigger a noxious cycle that further fuels the formation of aS-DOPAL oligomers, inducing neurodegeneration.

  2. Targeted expression of MYCN causes neuroblastoma in transgenic mice.

    PubMed

    Weiss, W A; Aldape, K; Mohapatra, G; Feuerstein, B G; Bishop, J M

    1997-06-02

    The proto-oncogene MYCN is often amplified in human neuroblastomas. The assumption that the amplification contributes to tumorigenesis has never been tested directly. We have created transgenic mice that overexpress MYCN in neuroectodermal cells and develop neuroblastoma. Analysis of tumors by comparative genomic hybridization revealed gains and losses of at least seven chromosomal regions, all of which are syntenic with comparable abnormalities detected in human neuroblastomas. In addition, we have shown that increases in MYCN dosage or deficiencies in either of the tumor suppressor genes NF1 or RB1 can augment tumorigenesis by the transgene. Our results provide direct evidence that MYCN can contribute to the genesis of neuroblastoma, suggest that the genetic events involved in the genesis of neuroblastoma can be tumorigenic in more than one chronological sequence, and offer a model for further study of the pathogenesis and therapy of neuroblastoma.

  3. Monte Carlo Simulation of Endlinking Oligomers

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A.; Young, Jennifer A.

    1998-01-01

    This report describes initial efforts to model the endlinking reaction of phenylethynyl-terminated oligomers. Several different molecular weights were simulated using the Bond Fluctuation Monte Carlo technique on a 20 x 20 x 20 unit lattice with periodic boundary conditions. After a monodisperse "melt" was equilibrated, chain ends were linked whenever they came within the allowed bond distance. Ends remained reactive throughout, so that multiple links were permitted. Even under these very liberal crosslinking assumptions, geometrical factors limited the degree of crosslinking. Average crosslink functionalities were 2.3 to 2.6; surprisingly, they did not depend strongly on the chain length. These results agreed well with the degrees of crosslinking inferred from experiment in a cured phenylethynyl-terminated polyimide oligomer.

  4. Oligomer functionalized nanotubes and composites formed therewith

    DOEpatents

    Zettl, Alexander K; Sainsbury, Toby; Frechet, Jean M.J.

    2014-03-18

    Disclosed herein is a sequential functionalization methodology for the covalent modification of nanotubes with between one and four repeat units of a polymer. Covalent attachment of oligomer units to the surface of nanotubes results in oligomer units forming an organic sheath around the nanotubes, polymer-functionalized-nanotubes (P-NTs). P-NTs possess chemical functionality identical to that of the functionalizing polymer, and thus provide nanoscale scaffolds which may be readily dispersed within a monomer solution and participate in the polymerization reaction to form a polymer-nanotube/polymer composite. Formation of polymer in the presence of P-NTs leads to a uniform dispersion of nanotubes within the polymer matrix, in contrast to aggregated masses of nanotubes in the case of pristine-NTs. The covalent attachment of oligomeric units to the surface of nanotubes represents the formation of a functional nanoscale building block which can be readily dispersed and integrated within the polymer to form a novel composite material.

  5. Cure Chemistry of Phenylethynyl Terminated Oligomers

    NASA Technical Reports Server (NTRS)

    Wood, Karen H.; Orwoll, Robert A.; Young, Philip R.; Jensen, Brian J.; McNair, Harold M.

    1997-01-01

    The ability to process high performance polymers into quality, void-free composites has been significantly advanced using oligomers terminated with reactive groups which cure or crosslink at elevated temperature without the evolution of volatile byproducts. Several matrix resin systems of considerable interest to the aerospace community utilize phenylethynyl-terminated imide (PETI) technology to achieve this advantage. The present paper addresses the cure chemistry of PETI oligomers. The thermal cure of a low molecular weight model compound was studied using a variety of analytical techniques including differential scanning calorimetry, Fourier transform infrared spectroscopy, and liquid chromatography-mass spectroscopy. The studies indicate an extremely complex cure process. Many stable products were isolated and this paper reports current work on identification of those products. The intent of this research is to provide fundamental insight into the molecular structure of the cured PETI engineering materials so that performance and durability can be more fully assessed.

  6. Interaction of arginine oligomer with model membrane

    SciTech Connect

    Yi, Dandan . E-mail: yi_dandan@yahoo.com.cn; Guoming, Li; Gao, Li; Wei, Liang

    2007-08-10

    Short oligomers of arginine (R8) have been shown to cross readily a variety of biological barriers. A hypothesis was put forward that inverted micelles form in biological membranes in the presence of arginine oligomer peptides, facilitating their transfer through the membranes. In order to define the role of peptide-lipid interaction in this mechanism, we prepared liposomes as the model membrane to study the ability of R8 inducing calcein release from liposomes, the fusion of liposomes, R8 binding to liposomes and membrane disturbing activity of the bound R8. The results show that R8 binding to liposome membrane depends on lipid compositions, negative surface charge density and interior water phase pH values of liposomes. R8 has no activity to induce the leakage of calcein from liposomes or improve liposome fusion. R8 does not permeabilize through the membrane spontaneously. These peptides delivering drugs through membranes may depend on receptors and energy.

  7. Conducting Acetylene-Terminated Polyaniline Oligomers

    NASA Astrophysics Data System (ADS)

    Wilbur, J.; Sandreczki, T. C.; Park, J.; Zhong, Z.; Brown, I. M.; Leopold, D. J.

    1996-03-01

    Short polyaniline oligomers terminated with acetylene groups were synthesized and characterized. Synthesis was by adaptation of the procedures of Wudl, et al. (JACS 109, 3677 (1987)) and Manassen and Khalif. (JACS 88, 1943 (1966)) The as-synthesized materials were in oxidation states between fully reduced leucoemeraldine and half- oxidized emeraldine. Further oxidation was with O2. Typical conductivities were on the order of 0.01 S/cm. The oligomers were characterized using several spectroscopic methods including UV-vis, FTIR, and ESR. Oxidation states were determined by recording the total coulombs required to convert the partially-oxidized conducting forms to fully-reduced forms. Conductivity was monitored as a function of time at 150 C. Data from conventional high molecular weight polyaniline were collected for comparison.

  8. Identifying microRNAs that Regulate Neuroblastoma Cell Differentiation

    DTIC Science & Technology

    2015-10-01

    Award Number: W81XWH-13-1-0241 TITLE: Identifying that Regulate Neuroblastoma Cell Differentiation PRINCIPAL INVESTIGATOR: Dr. Liqin Du...inducing miRNA, miR- 449a. We examined the differentiation-inducing function of miR-449a in multiple neuroblastoma cell lines. We have demonstrated that...miR-449a functions as an inducer of cell differentiation in neuroblastoma cell lines with distinct genetic backgrounds, including the MYCN

  9. Stage 4S Bilateral Adrenal Neuroblastoma in a Newborn

    PubMed Central

    Mala, Tariq Ahmed; Mathur, Praveen; Paul, Rozy; Mala, Shahid Amin

    2014-01-01

    Stage 4S bilateral adrenal neuroblastoma presenting in the neonatal period is extremely rare. A 1-day-old male with 4Sbilateral adrenal neuroblastoma complicated by marked hepatomegaly managed by chemotherapy is being reported. The provisional diagnosis of neuroblastoma was made in the fetal life during the last trimester of pregnancy. Cardiomyopathy due to doxorubicin cytotoxicity developed over ensuing years, which is being treated. PMID:24834390

  10. Ethynyl terminated ester oligomers and polymers therefrom

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); hesives and composite matrices. (Inventor)

    1987-01-01

    A new class of ethynyl-terminated oligomers and the process for preparing same are disclosed. Upon the application of heat, with or without a catalyst, the ethynyl groups react to provide crosslinking and chain extension to increase the polymer use temperature and improve the polymer solvent resistance. These improved polyesters are potentially useful in packaging, magnetic tapes, capacitors, industrial belting, protective coatings, structural adhesives and composite matrices.

  11. New Acetylene-Terminated Quinoxaline Oligomers

    DTIC Science & Technology

    1982-03-01

    diketone . In this work, we tried other bases, but potassium t-butoxide and lithium t- butoxide gave unsatisfactory results. Synthesis of acetone adduct...the most expensive ingredient. We have previously been able to improve the synthesis of the bisglyoxals needed for these adhesives,2 and are now...general method of synthesis which have been developed is to first condense the quinoxallne oligomer with glyoxal end groups. 2 r ),-CO--CO-Ar--CO--C&O--j

  12. Didymin: an orally active citrus flavonoid for targeting neuroblastoma.

    PubMed

    Singhal, Sharad S; Singhal, Sulabh; Singhal, Preeti; Singhal, Jyotsana; Horne, David; Awasthi, Sanjay

    2017-02-08

    Neuroblastoma, a rapidly growing yet treatment responsive cancer, is the third most common cancer of children and the most common solid tumor in infants. Unfortunately, neuroblastoma that has lost p53 function often has a highly treatment-resistant phenotype leading to tragic outcomes. In the context of neuroblastoma, the functions of p53 and MYCN (which is amplified in ~25% of neuroblastomas) are integrally linked because they are mutually transcriptionally regulated, and because they together regulate the catalytic activity of RNA polymerases. Didymin is a citrus-derived natural compound that kills p53 wild-type as well as drug-resistant p53-mutant neuroblastoma cells in culture. In addition, orally administered didymin causes regression of neuroblastoma xenografts in mouse models, without toxicity to non-malignant cells, neural tissues, or neural stem cells. RKIP is a Raf-inhibitory protein that regulates MYCN activation, is transcriptionally upregulated by didymin, and appears to play a key role in the anti-neuroblastoma actions of didymin. In this review, we discuss how didymin overcomes drug-resistance in p53-mutant neuroblastoma through RKIP-mediated inhibition of MYCN and its effects on GRK2, PKCs, Let-7 micro-RNA, and clathrin-dependent endocytosis by Raf-dependent and -independent mechanisms. In addition, we will discuss studies supporting potential clinical impact and translation of didymin as a low cost, safe, and effective oral agent that could change the current treatment paradigm for refractory neuroblastoma.

  13. Neuroblastoma treatment in the post-genomic era.

    PubMed

    Esposito, Maria Rosaria; Aveic, Sanja; Seydel, Anke; Tonini, Gian Paolo

    2017-02-08

    Neuroblastoma is an embryonic malignancy of early childhood originating from neural crest cells and showing heterogeneous biological, morphological, genetic and clinical characteristics. The correct stratification of neuroblastoma patients within risk groups (low, intermediate, high and ultra-high) is critical for the adequate treatment of the patients.High-throughput technologies in the Omics disciplines are leading to significant insights into the molecular pathogenesis of neuroblastoma. Nonetheless, further study of Omics data is necessary to better characterise neuroblastoma tumour biology. In the present review, we report an update of compounds that are used in preclinical tests and/or in Phase I-II trials for neuroblastoma. Furthermore, we recapitulate a number of compounds targeting proteins associated to neuroblastoma: MYCN (direct and indirect inhibitors) and downstream targets, Trk, ALK and its downstream signalling pathways. In particular, for the latter, given the frequency of ALK gene deregulation in neuroblastoma patients, we discuss on second-generation ALK inhibitors in preclinical or clinical phases developed for the treatment of neuroblastoma patients resistant to crizotinib.We summarise how Omics drive clinical trials for neuroblastoma treatment and how much the research of biological targets is useful for personalised medicine. Finally, we give an overview of the most recent druggable targets selected by Omics investigation and discuss how the Omics results can provide us additional advantages for overcoming tumour drug resistance.

  14. Neonatal Sacrococcygeal Neuroblastoma Mimicking a Teratoma

    PubMed Central

    Lugo-Vicente, Humberto; Correa-Rivas, María; Bouet, Kary; Reyes Bou, Zayhara; Suleiman, Mohammed

    2017-01-01

    We reported the first case of a congenital intrapelvic presacral neuroblastoma in Puerto Rico managed in the early neonatal period. The preoperative diagnosis was a sacrococcygeal teratoma Altman stage IV classification. This case confirms the importance of a comprehensive physical examination and observation of low-risk newborn infants with a history of adequate prenatal care and an unremarkable fetal ultrasonogram during pregnancy. PMID:28116200

  15. Improve T Cell Therapy in Neuroblastoma

    DTIC Science & Technology

    2015-09-01

    Neuroblastoma (NB) is the most common malignant extracranial tumor of childhood. Since NB appears susceptible to immunotherapies that include monoclonal...the anti tumor response. We demonstrated indeed that adoptive transfer of Epstein-Barr- virus (EBV)-specific cytotoxic T lymphocytes (EBV-CTLs...3. OVERALL PROJECT SUMMARY In our recent Phase I study we found that the adoptive transfer of Epstein-Barr- virus (EBV)-specific cytotoxic T

  16. [Unusual presentation of scurvy mimicking a neuroblastoma].

    PubMed

    Rethore, S; Leblond, P; Thebaud, E; Sonna, M; Legrand, C; Rocourt, N; Defachelles, A-S

    2011-01-01

    Scurvy, a disease related to ascorbic acid deficiency, remains rare in industrial countries. Ascorbic acid is a vitamin that intervenes most notably in the synthesis of collagen and catecholamines. We report the case of a 2-year-old boy hospitalized in a pediatric oncology unit because of an unusual presentation of scurvy revealed by pain and a significant increase in urinary catecholamine levels, raising fear of a neuroblastoma.

  17. Action of HMGB1 on miR-221/222 cluster in neuroblastoma cell lines

    PubMed Central

    Mari, Emanuela; Zicari, Alessandra; Fico, Flavia; Massimi, Isabella; Martina, Lolli; Mardente, Stefania

    2016-01-01

    microRNA (miR/miRNA) are small non-coding RNAs that control gene expression at the post-transcriptional level by targeting mRNAs. Aberrant expression of miRNAs is often observed in different types of cancer. Specific miRNAs function as tumor suppressors or oncogenes and interfere with various aspects of carcinogenesis, including differentiation, proliferation and invasion. Upregulation of miRNAs 221 and 222 has been shown to induce a malignant phenotype in numerous human cancers via inhibition of phosphatase and tensin homolog (PTEN) expression. Neuroblastoma is the most common extracranial solid malignancy in children, which is characterized by cellular heterogeneity that corresponds to different clinical outcomes. The different cellular phenotypes are associated with different gene mutations and miRs that control genetic and epigenetic factors. For this reason miRs are considered a potential therapeutic target in neuroblastoma. The aim of the present study was to investigate the mechanisms by which extracellular high mobility group box 1 (HMGB1) promotes cell growth in neuroblastoma. SK-N-BE(2) and SH-SY5Y neuroblastoma derived cell lines were transfected with the antisense oligonucleotides, anti-miR-221 and −222, followed by treatment with HMGB1 to investigate the expression of the oncosuppressor PTEN. In this study, it was demonstrated that HMGB1, which is released by damaged cells and tumor cells, upregulates miR-221/222 oncogenic clusters in the two human neuroblastoma derived cell lines. The results revealed that the oncogenic cluster miRs 221/222 were more highly expressed by the most undifferentiated cell line [SK-N-BE(2)] compared with the the less tumorigenic cell line (SH-SY5Y) and that exogenous HMGB1 increases this expression. In addition, HMGB1 modulates PTEN expression via miR-221/222, as demonstrated by transiently blocking miR-221/222 with anti-sense oligonucleotides. These results may lead to the development of novel therapeutic strategies for

  18. Action of HMGB1 on miR-221/222 cluster in neuroblastoma cell lines.

    PubMed

    Mari, Emanuela; Zicari, Alessandra; Fico, Flavia; Massimi, Isabella; Martina, Lolli; Mardente, Stefania

    2016-09-01

    microRNA (miR/miRNA) are small non-coding RNAs that control gene expression at the post-transcriptional level by targeting mRNAs. Aberrant expression of miRNAs is often observed in different types of cancer. Specific miRNAs function as tumor suppressors or oncogenes and interfere with various aspects of carcinogenesis, including differentiation, proliferation and invasion. Upregulation of miRNAs 221 and 222 has been shown to induce a malignant phenotype in numerous human cancers via inhibition of phosphatase and tensin homolog (PTEN) expression. Neuroblastoma is the most common extracranial solid malignancy in children, which is characterized by cellular heterogeneity that corresponds to different clinical outcomes. The different cellular phenotypes are associated with different gene mutations and miRs that control genetic and epigenetic factors. For this reason miRs are considered a potential therapeutic target in neuroblastoma. The aim of the present study was to investigate the mechanisms by which extracellular high mobility group box 1 (HMGB1) promotes cell growth in neuroblastoma. SK-N-BE(2) and SH-SY5Y neuroblastoma derived cell lines were transfected with the antisense oligonucleotides, anti-miR-221 and -222, followed by treatment with HMGB1 to investigate the expression of the oncosuppressor PTEN. In this study, it was demonstrated that HMGB1, which is released by damaged cells and tumor cells, upregulates miR-221/222 oncogenic clusters in the two human neuroblastoma derived cell lines. The results revealed that the oncogenic cluster miRs 221/222 were more highly expressed by the most undifferentiated cell line [SK-N-BE(2)] compared with the the less tumorigenic cell line (SH-SY5Y) and that exogenous HMGB1 increases this expression. In addition, HMGB1 modulates PTEN expression via miR-221/222, as demonstrated by transiently blocking miR-221/222 with anti-sense oligonucleotides. These results may lead to the development of novel therapeutic strategies for

  19. Neuroblastoma with intracranial involvement: an ENSG Study.

    PubMed

    Shaw, P J; Eden, T

    1992-01-01

    We report the experience of the European Neuroblastoma Study Group (ENSG) with central nervous system (CNS) involvement of neuroblastoma. Among this series of intensively treated patients, CNS neuroblastoma was diagnosed by computerised tomography (CT) scanning, rather than by autopsy. Cranial disease occurred in 5% of ENSG patients. Of 11 patients with intracranial disease, 4 had disease in the posterior fossa, a site rarely reported previously. Furthermore, 5 cases had CNS metastases at a time when there was no detectable disease elsewhere, rather than as part of extensive relapse. The pattern of disease we observed, at least for those with parenchymal disease, is in keeping with arterial spread. Although CT scanning is the optimal modality for identifying CNS disease, 2 cases had normal head CT scans prior to the onset of CNS disease. As most patients had symptoms of raised intracranial pressure (RICP) at the time the CNS disease was diagnosed, there does not seem to be any indication for routine CT scanning of the head at diagnosis, but this should be performed as soon as any symptoms or signs appear. With patients living longer with their disease, vigilance must be maintained during follow-up.

  20. Anti-GD2 immunotherapy for neuroblastoma.

    PubMed

    Sait, Sameer; Modak, Shakeel

    2017-10-01

    Current therapeutic approaches for high-risk neuroblastoma (HR-NB) include high-dose chemotherapy, surgery and radiotherapy; interventions that are associated with long and short-term toxicities. Effective immunotherapy holds particular promise for improving survival and quality of life by reducing exposure to cytotoxic agents. GD2, a surface glycolipid is the most common target for immunotherapy. Areas covered: We review the status of anti-GD2 immunotherapies currently in clinical use for neuroblastomas and novel GD2-targeted strategies in preclinical development. Expert commentary: Anti-GD2 monoclonal antibodies are associated with improved survival in patients in their first remission and are increasingly being used for chemorefractory and relapsed neuroblastoma. As protein engineering technology has become more accessible, newer antibody constructs are being tested. GD2 is also being targeted by natural killer cells and T-cells. Active immunity can be elicited by anti-GD2 vaccines. The rational combination of currently available and soon-to-emerge immunotherapeutic approaches, and their integration into conventional multimodality therapies will require further investigation to optimize their use for HR-NB.

  1. Translational compensation of genomic instability in neuroblastoma

    PubMed Central

    Dassi, Erik; Greco, Valentina; Sidarovich, Viktoryia; Zuccotti, Paola; Arseni, Natalia; Scaruffi, Paola; Paolo Tonini, Gian; Quattrone, Alessandro

    2015-01-01

    Cancer-associated gene expression imbalances are conventionally studied at the genomic, epigenomic and transcriptomic levels. Given the relevance of translational control in determining cell phenotypes, we evaluated the translatome, i.e., the transcriptome engaged in translation, as a descriptor of the effects of genetic instability in cancer. We performed this evaluation in high-risk neuroblastomas, which are characterized by a low frequency of point mutations or known cancer-driving genes and by the presence of several segmental chromosomal aberrations that produce gene-copy imbalances that guide aggressiveness. We thus integrated genome, transcriptome, translatome and miRome profiles in a representative panel of high-risk neuroblastoma cell lines. We identified a number of genes whose genomic imbalance was corrected by compensatory adaptations in translational efficiency. The transcriptomic level of these genes was predictive of poor prognosis in more than half of cases, and the genomic imbalances found in their loci were shared by 27 other tumor types. This homeostatic process is also not limited to copy number-altered genes, as we showed the translational stoichiometric rebalance of histone genes. We suggest that the translational buffering of fluctuations in these dose-sensitive transcripts is a potential driving process of neuroblastoma evolution. PMID:26399178

  2. Transcriptional Profiling Reveals a Common Metabolic Program in High-Risk Human Neuroblastoma and Mouse Neuroblastoma Sphere-Forming Cells.

    PubMed

    Liu, Mengling; Xia, Yingfeng; Ding, Jane; Ye, Bingwei; Zhao, Erhu; Choi, Jeong-Hyeon; Alptekin, Ahmet; Yan, Chunhong; Dong, Zheng; Huang, Shuang; Yang, Liqun; Cui, Hongjuan; Zha, Yunhong; Ding, Han-Fei

    2016-10-04

    High-risk neuroblastoma remains one of the deadliest childhood cancers. Identification of metabolic pathways that drive or maintain high-risk neuroblastoma may open new avenues of therapeutic interventions. Here, we report the isolation and propagation of neuroblastoma sphere-forming cells with self-renewal and differentiation potential from tumors of the TH-MYCN mouse, an animal model of high-risk neuroblastoma with MYCN amplification. Transcriptional profiling reveals that mouse neuroblastoma sphere-forming cells acquire a metabolic program characterized by transcriptional activation of the cholesterol and serine-glycine synthesis pathways, primarily as a result of increased expression of sterol regulatory element binding factors and Atf4, respectively. This metabolic reprogramming is recapitulated in high-risk human neuroblastomas and is prognostic for poor clinical outcome. Genetic and pharmacological inhibition of the metabolic program markedly decreases the growth and tumorigenicity of both mouse neuroblastoma sphere-forming cells and human neuroblastoma cell lines. These findings suggest a therapeutic strategy for targeting the metabolic program of high-risk neuroblastoma. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Structural studies on HCN oligomers. [catalysts for prebiotic processes

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Edelson, E. H.; Auyeung, J. M.; Joshi, P. C.

    1981-01-01

    NMR spectral studies on the HCN oligomers suggest the presence of carboxamide and urea groupings. The release of CO2, H2O, HCN, CH3CN, HCONH2 and pyridine on pyrolysis is consistent with the presence of these groupings as well as carboxylic acid groups. No basic primary amine groupings could be detected with fluorescamine. Hydrazinolysis of the HCN oligomers releases 10% of the amino acids normally released by acid hydrolysis. The oligomers give a positive biuret test but this is not due to the presence of peptide bonds. There is no conclusive evidence for the presence of peptide bonds in the HCN oligomers. No diglycine was detected on partial hydrolysis of the HCN oligomers at pH 8.5 suggesting that HCN oligomers were not a source of prebiotic peptides.

  4. Prefibrillar Tau oligomers alter the nucleic acid protective function of Tau in hippocampal neurons in vivo.

    PubMed

    Violet, Marie; Chauderlier, Alban; Delattre, Lucie; Tardivel, Meryem; Chouala, Meliza Sendid; Sultan, Audrey; Marciniak, Elodie; Humez, Sandrine; Binder, Lester; Kayed, Rakez; Lefebvre, Bruno; Bonnefoy, Eliette; Buée, Luc; Galas, Marie-Christine

    2015-10-01

    The accumulation of DNA and RNA oxidative damage is observed in cortical and hippocampal neurons from Alzheimer's disease (AD) brains at early stages of pathology. We recently reported that Tau is a key nuclear player in the protection of neuronal nucleic acid integrity in vivo under physiological conditions and hyperthermia, a strong inducer of oxidative stress. In a mouse model of tauopathy (THY-Tau22), we demonstrate that hyperthermia selectively induces nucleic acid oxidative damage and nucleic acid strand breaks in the nucleus and cytoplasm of hippocampal neurons that display early Tau phosphorylation but no Tau fibrils. Nucleic acid-damaged neurons were exclusively immunoreactive for prefibrillar Tau oligomers. A similar association between prefibrillar Tau oligomers and nucleic acid oxidative damage was observed in AD brains. Pretreatment with Methylene Blue (MB), a Tau aggregation inhibitor and a redox cycler, reduced hyperthermia-induced Tau oligomerization as well as nucleic acid damage. This study clearly highlights the existence of an early and critical time frame for hyperthermia-induced Tau oligomerization, which most likely occurs through increased oxidative stress, and nucleic acid vulnerability during the progression of Tau pathology. These results suggest that at early stages of AD, Tau oligomerization triggers the loss of the nucleic acid protective function of monomeric Tau. This study highlights the existence of a short therapeutic window in which to prevent the formation of pathological forms of Tau and their harmful consequences on nucleic acid integrity during the progression of Tau pathology. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Nuclear FOXO3 predicts adverse clinical outcome and promotes tumor angiogenesis in neuroblastoma

    PubMed Central

    Salvador, Christina; Meister, Bernhard; Kiechl-Kohlendorfer, Ursula; Müller, Thomas; Geiger, Kathrin; Sergi, Consolato; Obexer, Petra; Ausserlechner, Michael J.

    2016-01-01

    Neuroblastoma is the most frequent, extracranial solid tumor in children with still poor prognosis in stage IV disease. In this study, we analyzed FOXO3-phosphorylation and cellular localization in tumor biopsies and determined the function of this homeostasis regulator in vitro and in vivo. FOXO3-phosphorylation at threonine-32 (T32) and nuclear localization in biopsies significantly correlated with stage IV disease. DNA-damaging drugs induced nuclear accumulation of FOXO3, which was associated with elevated T32-phosphorylation in stage IV-derived neuroblastoma cells, thereby reflecting the in situ results. In contrast, hypoxic conditions repressed PKB-activity and caused dephosphorylation of FOXO3 in both, stroma-like SH-EP and high-stage-derived STA-NB15 cells. The activation of an ectopically-expressed FOXO3 in these cells reduced viability at normoxia, but promoted growth at hypoxic conditions and elevated VEGF-C-expression. In chorioallantoic membrane (CAM) assays STA-NB15 tumors with ectopic FOXO3 showed increased micro-vessel formation and, when xenografted into nude mice, a gene-dosage-dependent effect of FOXO3 in high-stage STA-NB15 cells became evident: low-level activation increased tumor-vascularization, whereas hyper-activation repressed tumor growth. The combined data suggest that, depending on the mode and intensity of activation, cellular FOXO3 acts as a homeostasis regulator promoting tumor growth at hypoxic conditions and tumor angiogenesis in high-stage neuroblastoma. PMID:27769056

  6. Expression and methylation pattern of p16 in neuroblastoma tumorigenesis.

    PubMed

    Aktas, Safiye; Celebiler, Aydan Cavusoglu; Zadeoğlulari, Zeynep; Diniz, Gulden; Kargi, Aydanur; Olgun, Nur

    2010-03-01

    Understanding migration, population and differentiation of primordial neural crest cells will help in evolving biology of neuroblastoma. P16 is a tumour suppressor gene contributing in cell cycle arrest as cyclin dependent kinase inhibitor. Methylation is an important mechanism for silencing tumor suppressor genes. The aim of this study was to evaluate the role of p16 and its methylation pattern in neuroblastoma tumorigenesis. This study included 23 cases (11 male; 12 female) and 31 samples from archival paraffin embedded tissues. P16 was studied in 5 samples of normal adrenal medullar tissue, 5 samples of adrenal tissue including blastic rests, 5 samples of neuroblastoma in situ tissue and in 8 samples of neuroblastoma tissues primary and after chemotherapy in each group. The adrenal gland tissues were obtained from paediatric autopsy cases. Expression of p16 was searched by immunohistochemistry. Methylation specific PCR was used to detect the methylation rate of p16. The age range of autopsy cases was between 20 weeks of foetal age and 36 months of infant age. The mean age of neuroblastoma cases was 45 months. P16 expression was positive in normal adrenal tissues, in one of 5 samples of adrenal blastic rest tissue and in all of samples of after chemotherapy; while no expression was observed in neuroblastoma and neuroblastoma in situ tissues. P16 methylation was observed in samples of neuroblastoma in situ and primary neuroblastoma tissues. Our results suggest that p16 and its methylation seems to play role in neuroblastoma tumorigenesis and in the migration, population and differentiation of primordial neural crest cells. Inhibitors of DNA methylation may provide a useful tool for restoring p16 activity in neuroblastoma treatment.

  7. DNA sequence similarity recognition by hybridization to short oligomers

    DOEpatents

    Milosavljevic, Aleksandar

    1999-01-01

    Methods are disclosed for the comparison of nucleic acid sequences. Data is generated by hybridizing sets of oligomers with target nucleic acids. The data thus generated is manipulated simultaneously with respect to both (i) matching between oligomers and (ii) matching between oligomers and putative reference sequences available in databases. Using data compression methods to manipulate this mutual information, sequences for the target can be constructed.

  8. Amyloid β-protein oligomers and Alzheimer’s disease

    PubMed Central

    2013-01-01

    The oligomer cascade hypothesis, which states that oligomers are the initiating pathologic agents in Alzheimer’s disease, has all but supplanted the amyloid cascade hypothesis, which suggested that fibers were the key etiologic agents in Alzheimer’s disease. We review here the results of in vivo, in vitro and in silico studies of amyloid β-protein oligomers, and discuss important caveats that should be considered in the evaluation of these results. This article is divided into four sections that mirror the main approaches used in the field to better understand oligomers: (1) attempts to locate and examine oligomers in vivo in situ; that is, without removing these species from their environment; (2) studies involving oligomers extracted from human or animal tissues and the subsequent characterization of their properties ex vivo; (3) studies of oligomers that have been produced synthetically and studied using a reductionist approach in relatively simple in vitro biophysical systems; and (4) computational studies of oligomers in silico. These multiple orthogonal approaches have revealed much about the molecular and cell biology of amyloid β-protein. However, as informative as these approaches have been, the amyloid β-protein oligomer system remains enigmatic. PMID:24289820

  9. Polyetherurethane oligomers with aldehyde groups as additives for lubricating oils

    SciTech Connect

    Nikolaev, V.N.; Abramov, E.G.; Tenyushev, A.I.

    1995-01-01

    Polyetherurethane oligomers with aldehyde groups, which we synthesized from polyoxypropylene diols (molecular weight 500, 1000, 1500, 2000, or 3000) with toluene diisocyanate and salicylaldehyde, are of interest as additives for lubricating oils. The effects of these oligomers on the service properties and physicochemical characteristics of lubricating oils were investigated by methods prreviously described. As the lube base stocks we used castor oil, a polyoxypropylene diol and a polyethoxysiloxane. The oligomers are readily soluble in organic solvents and in the lube base stocks, and their solutions are stable during storage and use. We found that the optimal concentration of oligomers is 5%, providing the best lubricating properties, in particular the best antiwear properties.

  10. Functional characterization of a new p53 mutant generated by homozygous deletion in a neuroblastoma cell line

    SciTech Connect

    Nakamura, Yohko; Ozaki, Toshinori; Niizuma, Hidetaka; Ohira, Miki; Kamijo, Takehiko; Nakagawara, Akira . E-mail: akiranak@chiba-cc.jp

    2007-03-23

    p53 is a key modulator of a variety of cellular stresses. In human neuroblastomas, p53 is rarely mutated and aberrantly expressed in cytoplasm. In this study, we have identified a novel p53 mutant lacking its COOH-terminal region in neuroblastoma SK-N-AS cells. p53 accumulated in response to cisplatin (CDDP) and thereby promoting apoptosis in neuroblastoma SH-SY5Y cells bearing wild-type p53, whereas SK-N-AS cells did not undergo apoptosis. We found another p53 (p53{delta}C) lacking a part of oligomerization domain and nuclear localization signals in SK-N-AS cells. p53{delta}C was expressed largely in cytoplasm and lost the transactivation function. Furthermore, a 3'-part of the p53 locus was homozygously deleted in SK-N-AS cells. Thus, our present findings suggest that p53 plays an important role in the DNA-damage response in certain neuroblastoma cells and it seems to be important to search for p53 mutations outside DNA-binding domain.

  11. Small Molecule MRP1 Inhibitor Reversan Increases the Therapeutic Index of Chemotherapy in Mouse Model of Neuroblastoma

    PubMed Central

    Burkhart, Catherine A.; Watt, Fujiko; Murray, Jayne; Pajic, Marina; Prokvolit, Anatoly; Xue, Chengyuan; Flemming, Claudia; Smith, Janice; Purmal, Andrei; Isachenko, Nadezhda; Komarov, Pavel G.; Gurova, Katerina V.; Sartorelli, Alan C.; Marshall, Glenn M.; Norris, Murray D.; Gudkov, Andrei V.; Haber, Michelle

    2009-01-01

    The multidrug resistance-associated protein (MRP1) has been closely linked to poor treatment response in several cancers, most notably neuroblastoma. Homozygous deletion of the MRP1 gene in primary murine neuroblastoma tumors resulted in increased sensitivity to MRP1 substrate drugs (vincristine, etoposide, doxorubicin) compared to tumors containing both copies of wild-type MRP1, indicating that MRP1 plays a significant role in the drug resistance in this tumor type and defining this multidrug transporter as a target for pharmacological suppression. Cell-based readout system was created to functionally determine intracellular accumulation of MRP1 substrates using p53-responsive reporter as an indicator of drug-induced DNA damage. Screening of small molecule libraries in this readout system revealed pyrazolopyrimidines as a prominent structural class of potent MRP1 inhibitors. Reversan, the lead compound of this class, increased the efficacy of both vincristine and etoposide in murine models of neuroblastoma (syngeneic and human xenografts). As opposed to the majority of inhibitors of multidrug transporters, Reversan was not toxic by itself nor did it increase the toxicity of chemotherapeutic drug exposure in mice. Therefore, Reversan represents a new class of non-toxic MRP1 inhibitor, which may be clinically useful for the treatment of neuroblastoma and other MRP1 over-expressing drug refractory tumors by increasing their sensitivity to conventional chemotherapy. PMID:19654298

  12. Ferulic acid inhibits oxidative stress and cell death induced by Ab oligomers: improved delivery by solid lipid nanoparticles.

    PubMed

    Picone, Pasquale; Bondi, Maria L; Montana, Giovanna; Bruno, Andreina; Pitarresi, Giovanna; Giammona, Gaetano; Di Carlo, Marta

    2009-01-01

    Oxidative stress and dysfunctional mitochondria are among the earliest events in AD, triggering neurodegeneration. The use of natural antioxidants could be a neuroprotective strategy for blocking cell death. Here, the antioxidant action of ferulic acid (FA) on different paths leading to degeneration of recombinant beta-amyloid peptide (rAbeta42) treated cells was investigated. Further, to improve its delivery, a novel drug delivery system (DDS) was used. Solid lipid nanoparticles (SLNs), empty or containing ferulic acid (FA-SNL), were developed as DDS. The resulting particles had small colloidal size and highly negative surface charge in water. Using neuroblastoma cells and rAbeta42 oligomers, it was demonstrated that free and SLNs-loaded FA recover cell viability. FA treatment, in particular if loaded into SLNs, decreased ROS generation, restored mitochondrial membrane potential (Deltapsi(m)) and reduced cytochrome c release and intrinsic pathway apoptosis activation. Further, FA modulated the expression of Peroxiredoxin, an anti-oxidative protein, and attenuated phosphorylation of ERK1/2 activated by Abeta oligomers.

  13. Patient-derived xenografts as preclinical neuroblastoma models.

    PubMed

    Braekeveldt, Noémie; Bexell, Daniel

    2017-09-19

    The prognosis for children with high-risk neuroblastoma is often poor and survivors can suffer from severe side effects. Predictive preclinical models and novel therapeutic strategies for high-risk disease are therefore a clinical imperative. However, conventional cancer cell line-derived xenografts can deviate substantially from patient tumors in terms of their molecular and phenotypic features. Patient-derived xenografts (PDXs) recapitulate many biologically and clinically relevant features of human cancers. Importantly, PDXs can closely parallel clinical features and outcome and serve as excellent models for biomarker and preclinical drug development. Here, we review progress in and applications of neuroblastoma PDX models. Neuroblastoma orthotopic PDXs share the molecular characteristics, neuroblastoma markers, invasive properties and tumor stroma of aggressive patient tumors and retain spontaneous metastatic capacity to distant organs including bone marrow. The recent identification of genomic changes in relapsed neuroblastomas opens up opportunities to target treatment-resistant tumors in well-characterized neuroblastoma PDXs. We highlight and discuss the features and various sources of neuroblastoma PDXs, methodological considerations when establishing neuroblastoma PDXs, in vitro 3D models, current limitations of PDX models and their application to preclinical drug testing.

  14. Scratching the Surface of Immunotherapeutic Targets in Neuroblastoma.

    PubMed

    Malone, Clare F; Stegmaier, Kimberly

    2017-09-11

    In this issue of Cancer Cell, Bosse et al. report GPC2 as a therapeutic target in neuroblastoma. They show that GPC2 is selectively expressed on the cell surface of neuroblastoma and is a dependency in this disease. Moreover, they demonstrate the therapeutic potential of an antibody-drug conjugate targeting GPC2. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. A Neuroblastoma × Glioma Hybrid Cell Line with Morphine Receptors

    PubMed Central

    Klee, Werner A.; Nirenberg, Marshall

    1974-01-01

    A neuroblastoma × glioma hybrid cell line with well-developed neural properties was found that has high-affinity morphine receptors. The average cell contains approximately 3 × 106 receptors. In contrast, parent cells and other neuroblastoma or hybrid cell lines tested had few or no morphine receptors. PMID:4530316

  16. Rho-associated kinase is a therapeutic target in neuroblastoma.

    PubMed

    Dyberg, Cecilia; Fransson, Susanne; Andonova, Teodora; Sveinbjörnsson, Baldur; Lännerholm-Palm, Jessika; Olsen, Thale K; Forsberg, David; Herlenius, Eric; Martinsson, Tommy; Brodin, Bertha; Kogner, Per; Johnsen, John Inge; Wickström, Malin

    2017-08-08

    Neuroblastoma is a peripheral neural system tumor that originates from the neural crest and is the most common and deadly tumor of infancy. Here we show that neuroblastoma harbors frequent mutations of genes controlling the Rac/Rho signaling cascade important for proper migration and differentiation of neural crest cells during neuritogenesis. RhoA is activated in tumors from neuroblastoma patients, and elevated expression of Rho-associated kinase (ROCK)2 is associated with poor patient survival. Pharmacological or genetic inhibition of ROCK1 and 2, key molecules in Rho signaling, resulted in neuroblastoma cell differentiation and inhibition of neuroblastoma cell growth, migration, and invasion. Molecularly, ROCK inhibition induced glycogen synthase kinase 3β-dependent phosphorylation and degradation of MYCN protein. Small-molecule inhibition of ROCK suppressed MYCN-driven neuroblastoma growth in TH-MYCN homozygous transgenic mice and MYCN gene-amplified neuroblastoma xenograft growth in nude mice. Interference with Rho/Rac signaling might offer therapeutic perspectives for high-risk neuroblastoma.

  17. Anharmonic Vibrational Dynamics of DNA Oligomers

    NASA Astrophysics Data System (ADS)

    Kühn, O.; Došlić, N.; Krishnan, G. M.; Fidder, H.; Heyne, K.

    Combining two-color infared pump-probe spectroscopy and anharmonic force field calculations we characterize the anharmonic coupling patterns between fingerprint modes and the hydrogen-bonded symmetric vNH2 stretching vibration in adenine-thymine dA20-dT20 DNA oligomers. Specifically, it is shown that the anharmonic coupling between the δNH2 bending and the vC4=O4 stretching vibration, both absorbing around 1665 cm-1, can be used to assign the vNH2 fundamental transition at 3215 cm-1 despite the broad background absorption of water.

  18. Macrocyclic 2,7-Anthrylene Oligomers.

    PubMed

    Yamamoto, Yuta; Wakamatsu, Kan; Iwanaga, Tetsuo; Sato, Hiroyasu; Toyota, Shinji

    2016-05-06

    A macrocyclic compound consisting of six 2,7-anthrylene units was successfully synthesized by Ni-mediated coupling of the corresponding dibromo precursor as a novel π-conjugated compound. This compound was sufficiently stable and soluble in organic solvents due to the presence of mesityl groups. X-ray analysis showed that the molecule had a nonplanar and hexagonal wheel-shaped framework of approximately S6 symmetry. The dynamic process between two S6 structures was observed by using the dynamic NMR technique, the barrier being 58 kJ mol(-1) . The spectroscopic properties of the hexamer were compared with those of analogous linear oligomers.

  19. International consensus for neuroblastoma molecular diagnostics: report from the International Neuroblastoma Risk Group (INRG) Biology Committee.

    PubMed

    Ambros, P F; Ambros, I M; Brodeur, G M; Haber, M; Khan, J; Nakagawara, A; Schleiermacher, G; Speleman, F; Spitz, R; London, W B; Cohn, S L; Pearson, A D J; Maris, J M

    2009-05-05

    Neuroblastoma serves as a paradigm for utilising tumour genomic data for determining patient prognosis and treatment allocation. However, before the establishment of the International Neuroblastoma Risk Group (INRG) Task Force in 2004, international consensus on markers, methodology, and data interpretation did not exist, compromising the reliability of decisive genetic markers and inhibiting translational research efforts. The objectives of the INRG Biology Committee were to identify highly prognostic genetic aberrations to be included in the new INRG risk classification schema and to develop precise definitions, decisive biomarkers, and technique standardisation. The review of the INRG database (n=8800 patients) by the INRG Task Force finally enabled the identification of the most significant neuroblastoma biomarkers. In addition, the Biology Committee compared the standard operating procedures of different cooperative groups to arrive at international consensus for methodology, nomenclature, and future directions. Consensus was reached to include MYCN status, 11q23 allelic status, and ploidy in the INRG classification system on the basis of an evidence-based review of the INRG database. Standardised operating procedures for analysing these genetic factors were adopted, and criteria for proper nomenclature were developed. Neuroblastoma treatment planning is highly dependant on tumour cell genomic features, and it is likely that a comprehensive panel of DNA-based biomarkers will be used in future risk assignment algorithms applying genome-wide techniques. Consensus on methodology and interpretation is essential for uniform INRG classification and will greatly facilitate international and cooperative clinical and translational research studies.

  20. Primary Sellar Neuroblastoma in an Elderly Patient: Case Report

    PubMed Central

    Yamamuro, Shun; Fukushima, Takao; Yoshino, Atsuo; Yachi, Kazunari; Ogino, Akiyoshi; Katayama, Yoichi

    2015-01-01

    A 71-year-old male presented with an isolated well-enhanced sellar lesion accompanied by hypopituitarism, diagnosed preoperatively as a pituitary adenoma, meningioma, or metastatic brain tumor. However, histological examinations yielded a diagnosis of neuroblastoma. Primary sellar neuroblastoma in the elderly is very rare. We therefore describe this case of primary sellar neuroblastoma, mimicking common pituitary tumor, and review the literature. There have so far been only nine reported cases of primary sellar neuroblastoma in the English literature. All reports like the present case, demonstrated similar neuroimaging of a “dumbbell-shaped extension in the sellar region.” Moreover, the tumors may exhibit characteristic features, such as rapid tumor growth, hypopituitarism, or oculomotor nerve palsy, and these findings may represent helpful signs for the diagnosis of primary sellar neuroblastoma. PMID:28663965

  1. Dye-mediated photosensitization of murine neuroblastoma cells

    SciTech Connect

    Sieber, F.; Sieber-Blum, M.

    1986-04-01

    The purpose of this study was to determine if photosensitization mediated by the fluorescent dye, merocyanine 540, could be used to preferentially kill murine neuroblastoma cells in simulated autologous remission marrow grafts. Simultaneous exposure of Neuro 2a or NB41A3 neuroblastoma cells to merocyanine 540 and white light reduced the concentration of in vitro-clonogenic tumor cells 50,000-fold. By contrast, the same treatment had little effect on the graft's ability to rescue lethally irradiated syngeneic hosts. Lethally irradiated C57BL/6J X A/J F1 mice transplanted with photosensitized mixtures of neuroblastoma cells and normal marrow cells (1:100 or 1:10) survived without developing neuroblastomas. It is conceivable that merocyanine 540-mediated photosensitization will prove useful for the extracorporeal purging of residual neuroblastoma cells from human autologous remission marrow grafts.

  2. Management of Neuroblastoma: ICMR Consensus Document.

    PubMed

    Bansal, Deepak; Totadri, Sidharth; Chinnaswamy, Girish; Agarwala, Sandeep; Vora, Tushar; Arora, Brijesh; Prasad, Maya; Kapoor, Gauri; Radhakrishnan, Venkatraman; Laskar, Siddharth; Kaur, Tanvir; Rath, G K; Bakhshi, Sameer

    2017-04-03

    Neuroblastoma (NBL) is the most common extra-cranial solid tumor in childhood. High-risk NBL is considered challenging and has one of the least favourable outcomes amongst pediatric cancers. Primary tumor can arise anywhere along the sympathetic chain. Advanced disease at presentation is common. Diagnosis is established by tumor biopsy and elevated urinary catecholamines. Staging is performed using bone marrow and mIBG scan (FDG-PET/bone scan if mIBG unavailable or non-avid). Age, stage, histopathological grading, MYCN amplification and 11q aberration are important prognostic factors utilized in risk stratification. Low-risk disease including Stage 1 and asymptomatic Stage 2 disease has an excellent prognosis with non-mutilating surgery alone. Perinatal adrenal neuroblastoma may be managed with close observation alone. Intermediate-risk disease consisting largely of unresectable/symptomatic Stage 2/3 disease and infants with Stage 4 disease has good outcome with few cycles of chemotherapy followed by surgical resection. Paraspinal neuroblastomas with cord compression are treated emergently, typically with upfront chemotherapy. Asymptomatic Stage 4S disease may be followed closely without treatment. Organ dysfunction and age below 3 mo would warrant chemotherapy in 4S. High-risk disease includes older children with Stage 4 disease and MYCN amplified tumors. High-risk disease has a suboptimal outcome, though the survival is improving with multimodality therapy including autologous stem cell transplant and immunotherapy. Relapse after multimodality therapy is difficult to salvage. Late presentation, lack of transplant facility, malnutrition and treatment abandonment are additional hurdles for survival in India. The review provides a consensus document on management of NBL for developing countries, including India.

  3. Spinal deformity in children treated for neuroblastoma

    SciTech Connect

    Mayfield, J.K.; Riseborough, E.J.; Jaffe, N.; Nehme, M.E.

    1981-02-01

    Of seventy-four children who were treated at a mean age of seventeen months for neuroblastoma and survived more than five years, fifty-six had spinal deformity due either to the disease or to the treatment after a mean follow-up of 12.9 years. Of these fifty-six, 50 per cent had post-radiation scoliosis, and 16 per cent had post-radiation kyphosis, most frequently at the thoracolumbar junction, at the time of follow-up. Two kyphotic thoracolumbar curve patterns were identified: an angular kyphosis with a short radius of curvature and its apex at the twelfth thoracic and first lumbar vertebrae, and a thoracic kyphosis with a long radius of curvature that extended into the lumbar spine. The post-radiation deformity - both the scoliosis and the kyphosis - progressed with growth, the scoliosis at a rate of 1 degree per year and the kyphosis at a rate of 3 degrees per year. Epidural spread of the neuroblastoma was associated with most of the cases of severe scoliosis and kyphosis. The deformity was due either to the laminectomy or to the paraplegia acting in conjunction with the radiation. Eighteen per cent of 419 children with this malignant disease survived more than five years, and of the survivors, 20 per cent had spinal deformity severe enough to warrant treatment. The factors associated with the development of spinal deformity in patient treated for neuroblastoma were: orthovoltage radiation exceeding 3000 rads, asymmetrical radiation of the spine, thoracolumbar kyphosis, and epidural spread of the tumor.

  4. Cooperative Switching in Nanofibers of Azobenzene Oligomers

    NASA Astrophysics Data System (ADS)

    Weber, Christopher; Liebig, Tobias; Gensler, Manuel; Zykov, Anton; Pithan, Linus; Rabe, Jürgen P.; Hecht, Stefan; Bléger, David; Kowarik, Stefan

    2016-05-01

    Next-generation molecular devices and machines demand the integration of molecular switches into hierarchical assemblies to amplify the response of the system from the molecular level to the meso- or macro-scale. Here, we demonstrate that multi-azobenzene oligomers can assemble to form robust supramolecular nanofibers in which they can be switched repeatedly between the E- and Z-configuration. While in isolated oligomers the azobenzene units undergo reversible photoisomerization independently, in the nanofibers they are coupled via intermolecular interactions and switch cooperatively as evidenced by unusual thermal and kinetic behavior. We find that the photoisomerization rate from the Z-isomer to the E-isomer depends on the fraction of Z-azobenzene in the nanofibers, and is increased by more than a factor of 4 in Z-rich fibers when compared to E-rich fibers. This demonstrates the great potential of coupling individual photochromic units for increasing their quantum efficiency in the solid state with potential relevance for actuation and sensing.

  5. Cooperative Switching in Nanofibers of Azobenzene Oligomers

    PubMed Central

    Weber, Christopher; Liebig, Tobias; Gensler, Manuel; Zykov, Anton; Pithan, Linus; Rabe, Jürgen P.; Hecht, Stefan; Bléger, David; Kowarik, Stefan

    2016-01-01

    Next-generation molecular devices and machines demand the integration of molecular switches into hierarchical assemblies to amplify the response of the system from the molecular level to the meso- or macro-scale. Here, we demonstrate that multi-azobenzene oligomers can assemble to form robust supramolecular nanofibers in which they can be switched repeatedly between the E- and Z-configuration. While in isolated oligomers the azobenzene units undergo reversible photoisomerization independently, in the nanofibers they are coupled via intermolecular interactions and switch cooperatively as evidenced by unusual thermal and kinetic behavior. We find that the photoisomerization rate from the Z-isomer to the E-isomer depends on the fraction of Z-azobenzene in the nanofibers, and is increased by more than a factor of 4 in Z-rich fibers when compared to E-rich fibers. This demonstrates the great potential of coupling individual photochromic units for increasing their quantum efficiency in the solid state with potential relevance for actuation and sensing. PMID:27161608

  6. Computing highly specific and mismatch tolerant oligomers efficiently.

    PubMed

    Yamada, Tomoyuki; Morishita, Shinichi

    2003-01-01

    The sequencing of the genomes of a variety of species and the growing databases containing expressed sequence tags (ESTs) and complementary DNAs (cDNAs) facilitate the design of highly specific oligomers for use as genomic markers, PCR primers, or DNA oligo microarrays. The first step in evaluating the specificity of short oligomers of about twenty units in length is to determine the frequencies at which the oligomers occur. However, for oligomers longer than about fifty units this is not efficient, as they usually have a frequency of only 1. A more suitable procedure is to consider the mismatch tolerance of an oligomer, that is, the minimum number of mismatches that allows a given oligomer to match a sub-sequence other than the target sequence anywhere in the genome or the EST database. However, calculating the exact value of mismatch tolerance is computationally costly and impractical. Therefore, we studied the problem of checking whether an oligomer meets the constraint that its mismatch tolerance is no less than a given threshold. Here, we present an efficient dynamic programming algorithm solution that utilizes suffix and height arrays. We demonstrated the effectiveness of this algorithm by efficiently computing a dense list of oligo-markers applicable to the human genome. Experimental results show that the algorithm runs faster than well-known Abrahamson's algorithm by orders of magnitude and is able to enumerate 63% to approximately 79% of qualified oligomers.

  7. Computing highly specific and noise-tolerant oligomers efficiently.

    PubMed

    Yamada, Tomoyuki; Morishita, Shinichi

    2004-03-01

    The sequencing of the genomes of a variety of species and the growing databases containing expressed sequence tags (ESTs) and complementary DNAs (cDNAs) facilitate the design of highly specific oligomers for use as genomic markers, PCR primers, or DNA oligo microarrays. The first step in evaluating the specificity of short oligomers of about 20 units in length is to determine the frequencies at which the oligomers occur. However, for oligomers longer than about fifty units this is not efficient, as they usually have a frequency of only 1. A more suitable procedure is to consider the mismatch tolerance of an oligomer, that is, the minimum number of mismatches that allows a given oligomer to match a substring other than the target sequence anywhere in the genome or the EST database. However, calculating the exact value of mismatch tolerance is computationally costly and impractical. Therefore, we studied the problem of checking whether an oligomer meets the constraint that its mismatch tolerance is no less than a given threshold. Here, we present an efficient dynamic programming algorithm solution that utilizes suffix and height arrays. We demonstrated the effectiveness of this algorithm by efficiently computing a dense list of numerous oligo-markers applicable to the human genome. Experimental results show that the algorithm runs faster than well-known Abrahamson's algorithm by orders of magnitude and is able to enumerate 65% approximately 76% of qualified oligomers.

  8. Remote orbital recurrence of olfactory neuroblastoma (esthesioneuroblastoma).

    PubMed

    Breazzano, Mark P; Lewis, James S; Chambless, Lola B; Rohde, Sarah L; Sobel, Rachel K

    2017-03-31

    Olfactory neuroblastoma is a rare and often locally aggressive malignancy that invades the orbit via local destruction. It is known to recur in a delayed fashion, particularly to the neck lymph nodes. This is a case of a 65-year-old gentleman who presents with recurrence in the orbit and a neck lymph node 19 years after treatment for his initial disease. This report describes the longest known interval in orbital recurrence and should alert the monitoring physician that extreme delays in recurrence can occur.

  9. Role of the Fast Kinetics of Pyroglutamate-Modified Amyloid-β Oligomers in Membrane Binding and Membrane Permeability

    PubMed Central

    2015-01-01

    Membrane permeability to ions and small molecules is believed to be a critical step in the pathology of Alzheimer’s disease (AD). Interactions of oligomers formed by amyloid-β (Aβ) peptides with the plasma cell membrane are believed to play a fundamental role in the processes leading to membrane permeability. Among the family of Aβs, pyroglutamate (pE)-modified Aβ peptides constitute the most abundant oligomeric species in the brains of AD patients. Although membrane permeability mechanisms have been studied for full-length Aβ1–40/42 peptides, these have not been sufficiently characterized for the more abundant AβpE3–42 fragment. Here we have compared the adsorbed and membrane-inserted oligomeric species of AβpE3–42 and Aβ1–42 peptides. We find lower concentrations and larger dimensions for both species of membrane-associated AβpE3–42 oligomers. The larger dimensions are attributed to the faster self-assembly kinetics of AβpE3–42, and the lower concentrations are attributed to weaker interactions with zwitterionic lipid headgroups. While adsorbed oligomers produced little or no significant membrane structural damage, increased membrane permeabilization to ionic species is understood in terms of enlarged membrane-inserted oligomers. Membrane-inserted AβpE3–42 oligomers were also found to modify the mechanical properties of the membrane. Taken together, our results suggest that membrane-inserted oligomers are the primary species responsible for membrane permeability. PMID:24950761

  10. Alpha-Synuclein Oligomers Interact with Metal Ions to Induce Oxidative Stress and Neuronal Death in Parkinson's Disease

    PubMed Central

    Deas, Emma; Cremades, Nunilo; Angelova, Plamena R.; Ludtmann, Marthe H.R.; Yao, Zhi; Chen, Serene; Horrocks, Mathew H.; Banushi, Blerida; Little, Daniel; Devine, Michael J.; Gissen, Paul; Klenerman, David; Dobson, Christopher M.; Wood, Nicholas W.

    2016-01-01

    Abstract Aims: Protein aggregation and oxidative stress are both key pathogenic processes in Parkinson's disease, although the mechanism by which misfolded proteins induce oxidative stress and neuronal death remains unknown. In this study, we describe how aggregation of alpha-synuclein (α-S) from its monomeric form to its soluble oligomeric state results in aberrant free radical production and neuronal toxicity. Results: We first demonstrate excessive free radical production in a human induced pluripotent stem-derived α-S triplication model at basal levels and on application of picomolar doses of β-sheet-rich α-S oligomers. We probed the effects of different structural species of α-S in wild-type rat neuronal cultures and show that both oligomeric and fibrillar forms of α-S are capable of generating free radical production, but that only the oligomeric form results in reduction of endogenous glutathione and subsequent neuronal toxicity. We dissected the mechanism of oligomer-induced free radical production and found that it was interestingly independent of several known cellular enzymatic sources. Innovation: The oligomer-induced reactive oxygen species (ROS) production was entirely dependent on the presence of free metal ions as addition of metal chelators was able to block oligomer-induced ROS production and prevent oligomer-induced neuronal death. Conclusion: Our findings further support the causative role of soluble amyloid oligomers in triggering neurodegeneration and shed light into the mechanisms by which these species cause neuronal damage, which, we show here, can be amenable to modulation through the use of metal chelation. Antioxid. Redox Signal. 24, 376–391. PMID:26564470

  11. Origin and diversification of a metabolic cycle in oligomer world.

    PubMed

    Nishio, Tomoaki; Narikiyo, Osamu

    2013-02-01

    Based on the oligomer-world hypothesis we propose an abstract model where the molecular recognition among oligomers is described in the shape space. The origin of life in the oligomer world is regarded as the establishment of a metabolic cycle in a primitive cell. The cycle is sustained by the molecular recognition. If an original cell acquires the ability of the replication of oligomers, the relationship among oligomers changes due to the poor fidelity of the replication. This change leads to the diversification of metabolic cycles. The selection among diverse cycles is the basis of the evolution. The evolvability is one of the essential characters of life. We demonstrate the origin and diversification of the metabolic cycle by the computer simulation of our model. Such a simulation is expected to be the simplified demonstration of what actually occurred in the primordial soup. Our model describes an analog era preceding the digital era based on the genetic code.

  12. Atomic View of a Toxic Amyloid Small Oligomer

    SciTech Connect

    Laganowsky, Arthur; Liu, Cong; Sawaya, Michael R.; Whitelegge, Julian P.; Park, Jiyong; Zhao, Minglei; Pensalfini, Anna; Soriaga, Angela B.; Landau, Meytal; Teng, Poh K.; Cascio, Duilio; Glabe, Charles; Eisenberg, David

    2012-04-30

    Amyloid diseases, including Alzheimer's, Parkinson's, and the prion conditions, are each associated with a particular protein in fibrillar form. These amyloid fibrils were long suspected to be the disease agents, but evidence suggests that smaller, often transient and polymorphic oligomers are the toxic entities. Here, we identify a segment of the amyloid-forming protein {alpha}{beta} crystallin, which forms an oligomeric complex exhibiting properties of other amyloid oligomers: {beta}-sheet-rich structure, cytotoxicity, and recognition by an oligomer-specific antibody. The x-ray-derived atomic structure of the oligomer reveals a cylindrical barrel, formed from six antiparallel protein strands, that we term a cylindrin. The cylindrin structure is compatible with a sequence segment from the {beta}-amyloid protein of Alzheimer's disease. Cylindrins offer models for the hitherto elusive structures of amyloid oligomers.

  13. Non-aqueous dispersion coatings based on crystalline oligomers

    SciTech Connect

    Jones, F.N.

    1993-12-31

    Amorphous oligomers and polymers are generally used in coatings; crystalline ones are avoided because of the difficulty of achieving homogeneous, defect-free films. However, dispersions of crystalline oligomers offer potential advantages of stability, useful application rheology, and excellent film properties. The authors describe non-aqueous dispersions of mixtures of crystalline and amorphous oligomers. An example is a dispersion of mixtures of crystalline (at ambient temperature) hydroxyl-functional oligomer of terephthalic acid and 1,6-hexanediol mixed with an amorphous hydroxyl-functional oligomer of terephthalic acid and glycidyl neodecanote. Microscopy, WAXD and DSC indicate that the dispersion particles are crystalline and have a diameter of 5 to 20 {mu}m. The dispersions are stable and are thixotropic. Coatings formulated with melamine and polyisocyanate resin crosslinkers form glossy, transparent film with excellent mechanical properties.

  14. Glucosamine oligomers: 4. Solid state-crystallization and sustained dissolution.

    PubMed

    Domard, A; Cartier, N

    1992-04-01

    When glucosamine oligomers are stored in the solid state they undergo a process of crystallization. The extent to which this occurs depends on whether the samples are isolated in the -NH3+ or -NH2 form, on the storage time, and on the degree of polymerization of the isolated oligomer. The allomorph obtained by this process seems to correspond to the so-called 'tendon-chitosan'. Dissolution of such aged oligomer samples gives rise to a process of dissociation of the associated chains in the crystal, leading to the establishment of a pseudo-equilibrium between single and associated oligomer chains and hence the simultaneous presence of the 'monomeric', 'dimeric', 'trimeric', etc., forms of the oligomer. The phenomenon cannot be attributed to a process of aggregation in solution. The effects of various parameters on this behaviour have been investigated.

  15. Accumulation of oligomer-prone α-synuclein exacerbates synaptic and neuronal degeneration in vivo

    PubMed Central

    Rockenstein, Edward; Nuber, Silke; Overk, Cassia R.; Ubhi, Kiren; Mante, Michael; Patrick, Christina; Adame, Anthony; Trejo-Morales, Margarita; Gerez, Juan; Picotti, Paola; Jensen, Poul H.; Campioni, Silvia; Riek, Roland; Winkler, Jürgen; Gage, Fred H.; Winner, Beate

    2014-01-01

    In Parkinson’s disease and dementia with Lewy bodies, α-synuclein aggregates to form oligomers and fibrils; however, the precise nature of the toxic α-synuclein species remains unclear. A number of synthetic α-synuclein mutations were recently created (E57K and E35K) that produce species of α-synuclein that preferentially form oligomers and increase α-synuclein-mediated toxicity. We have shown that acute lentiviral expression of α-synuclein E57K leads to the degeneration of dopaminergic neurons; however, the effects of chronic expression of oligomer-prone α-synuclein in synapses throughout the brain have not been investigated. Such a study could provide insight into the possible mechanism(s) through which accumulation of α-synuclein oligomers in the synapse leads to neurodegeneration. For this purpose, we compared the patterns of neurodegeneration and synaptic damage between a newly generated mThy-1 α-synuclein E57K transgenic mouse model that is prone to forming oligomers and the mThy-1 α-synuclein wild-type mouse model (Line 61), which accumulates various forms of α-synuclein. Three lines of α-synuclein E57K (Lines 9, 16 and 54) were generated and compared with the wild-type. The α-synuclein E57K Lines 9 and 16 were higher expressings of α-synuclein, similar to α-synuclein wild-type Line 61, and Line 54 was a low expressing of α-synuclein compared to Line 61. By immunoblot analysis, the higher-expressing α-synuclein E57K transgenic mice showed abundant oligomeric, but not fibrillar, α-synuclein whereas lower-expressing mice accumulated monomeric α-synuclein. Monomers, oligomers, and fibrils were present in α-synuclein wild-type Line 61. Immunohistochemical and ultrastructural analyses demonstrated that α-synuclein accumulated in the synapses but not in the neuronal cells bodies, which was different from the α-synuclein wild-type Line 61, which accumulates α-synuclein in the soma. Compared to non-transgenic and lower-expressing mice, the

  16. Accumulation of oligomer-prone α-synuclein exacerbates synaptic and neuronal degeneration in vivo.

    PubMed

    Rockenstein, Edward; Nuber, Silke; Overk, Cassia R; Ubhi, Kiren; Mante, Michael; Patrick, Christina; Adame, Anthony; Trejo-Morales, Margarita; Gerez, Juan; Picotti, Paola; Jensen, Poul H; Campioni, Silvia; Riek, Roland; Winkler, Jürgen; Gage, Fred H; Winner, Beate; Masliah, Eliezer

    2014-05-01

    In Parkinson's disease and dementia with Lewy bodies, α-synuclein aggregates to form oligomers and fibrils; however, the precise nature of the toxic α-synuclein species remains unclear. A number of synthetic α-synuclein mutations were recently created (E57K and E35K) that produce species of α-synuclein that preferentially form oligomers and increase α-synuclein-mediated toxicity. We have shown that acute lentiviral expression of α-synuclein E57K leads to the degeneration of dopaminergic neurons; however, the effects of chronic expression of oligomer-prone α-synuclein in synapses throughout the brain have not been investigated. Such a study could provide insight into the possible mechanism(s) through which accumulation of α-synuclein oligomers in the synapse leads to neurodegeneration. For this purpose, we compared the patterns of neurodegeneration and synaptic damage between a newly generated mThy-1 α-synuclein E57K transgenic mouse model that is prone to forming oligomers and the mThy-1 α-synuclein wild-type mouse model (Line 61), which accumulates various forms of α-synuclein. Three lines of α-synuclein E57K (Lines 9, 16 and 54) were generated and compared with the wild-type. The α-synuclein E57K Lines 9 and 16 were higher expressings of α-synuclein, similar to α-synuclein wild-type Line 61, and Line 54 was a low expressing of α-synuclein compared to Line 61. By immunoblot analysis, the higher-expressing α-synuclein E57K transgenic mice showed abundant oligomeric, but not fibrillar, α-synuclein whereas lower-expressing mice accumulated monomeric α-synuclein. Monomers, oligomers, and fibrils were present in α-synuclein wild-type Line 61. Immunohistochemical and ultrastructural analyses demonstrated that α-synuclein accumulated in the synapses but not in the neuronal cells bodies, which was different from the α-synuclein wild-type Line 61, which accumulates α-synuclein in the soma. Compared to non-transgenic and lower-expressing mice, the

  17. Aβ40 Oligomers Identified as a Potential Biomarker for the Diagnosis of Alzheimer's Disease

    PubMed Central

    Wang, Xuemei; Magdangal, Erika; Salisbury, Cleo; Peretz, David; Zuckermann, Ronald N.; Connolly, Michael D.; Hansson, Oskar; Minthon, Lennart; Zetterberg, Henrik; Blennow, Kaj; Fedynyshyn, Joseph P.; Allauzen, Sophie

    2010-01-01

    Alzheimer's Disease (AD) is the most prevalent form of dementia worldwide, yet the development of therapeutics has been hampered by the absence of suitable biomarkers to diagnose the disease in its early stages prior to the formation of amyloid plaques and the occurrence of irreversible neuronal damage. Since oligomeric Aβ species have been implicated in the pathophysiology of AD, we reasoned that they may correlate with the onset of disease. As such, we have developed a novel misfolded protein assay for the detection of soluble oligomers composed of Aβ x-40 and x-42 peptide (hereafter Aβ40 and Aβ42) from cerebrospinal fluid (CSF). Preliminary validation of this assay with 36 clinical samples demonstrated the presence of aggregated Aβ40 in the CSF of AD patients. Together with measurements of total Aβ42, diagnostic sensitivity and specificity greater than 95% and 90%, respectively, were achieved. Although larger sample populations will be needed to confirm this diagnostic sensitivity, our studies demonstrate a sensitive method of detecting circulating Aβ40 oligomers from AD CSF and suggest that these oligomers could be a powerful new biomarker for the early detection of AD. PMID:21209907

  18. Heterogeneity of neuroblastoma cell identity defined by transcriptional circuitries.

    PubMed

    Boeva, Valentina; Louis-Brennetot, Caroline; Peltier, Agathe; Durand, Simon; Pierre-Eugène, Cécile; Raynal, Virginie; Etchevers, Heather C; Thomas, Sophie; Lermine, Alban; Daudigeos-Dubus, Estelle; Geoerger, Birgit; Orth, Martin F; Grünewald, Thomas G P; Diaz, Elise; Ducos, Bertrand; Surdez, Didier; Carcaboso, Angel M; Medvedeva, Irina; Deller, Thomas; Combaret, Valérie; Lapouble, Eve; Pierron, Gaelle; Grossetête-Lalami, Sandrine; Baulande, Sylvain; Schleiermacher, Gudrun; Barillot, Emmanuel; Rohrer, Hermann; Delattre, Olivier; Janoueix-Lerosey, Isabelle

    2017-09-01

    Neuroblastoma is a tumor of the peripheral sympathetic nervous system, derived from multipotent neural crest cells (NCCs). To define core regulatory circuitries (CRCs) controlling the gene expression program of neuroblastoma, we established and analyzed the neuroblastoma super-enhancer landscape. We discovered three types of identity in neuroblastoma cell lines: a sympathetic noradrenergic identity, defined by a CRC module including the PHOX2B, HAND2 and GATA3 transcription factors (TFs); an NCC-like identity, driven by a CRC module containing AP-1 TFs; and a mixed type, further deconvoluted at the single-cell level. Treatment of the mixed type with chemotherapeutic agents resulted in enrichment of NCC-like cells. The noradrenergic module was validated by ChIP-seq. Functional studies demonstrated dependency of neuroblastoma with noradrenergic identity on PHOX2B, evocative of lineage addiction. Most neuroblastoma primary tumors express TFs from the noradrenergic and NCC-like modules. Our data demonstrate a previously unknown aspect of tumor heterogeneity relevant for neuroblastoma treatment strategies.

  19. Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration.

    PubMed

    Mor, Danielle E; Tsika, Elpida; Mazzulli, Joseph R; Gould, Neal S; Kim, Hanna; Daniels, Malcolm J; Doshi, Shachee; Gupta, Preetika; Grossman, Jennifer L; Tan, Victor X; Kalb, Robert G; Caldwell, Kim A; Caldwell, Guy A; Wolfe, John H; Ischiropoulos, Harry

    2017-09-18

    Parkinson's disease (PD) is defined by the loss of dopaminergic neurons in the substantia nigra and the formation of Lewy body inclusions containing aggregated α-synuclein. Efforts to explain dopamine neuron vulnerability are hindered by the lack of dopaminergic cell death in α-synuclein transgenic mice. To address this, we manipulated both dopamine levels and α-synuclein expression. Nigrally targeted expression of mutant tyrosine hydroxylase with enhanced catalytic activity increased dopamine levels without damaging neurons in non-transgenic mice. In contrast, raising dopamine levels in mice expressing human A53T mutant α-synuclein induced progressive nigrostriatal degeneration and reduced locomotion. Dopamine elevation in A53T mice increased levels of potentially toxic α-synuclein oligomers, resulting in conformationally and functionally modified species. Moreover, in genetically tractable Caenorhabditis elegans models, expression of α-synuclein mutated at the site of interaction with dopamine prevented dopamine-induced toxicity. These data suggest that a unique mechanism links two cardinal features of PD: dopaminergic cell death and α-synuclein aggregation.

  20. Intersectin 1 is required for neuroblastoma tumorigenesis

    PubMed Central

    Russo, Angela; O'Bryan, John P.

    2011-01-01

    Intersectin 1 (ITSN1) is a scaffold protein that regulates diverse cellular pathways including endocytosis and several signal transduction pathways including phosphotidylinositol 3-kinase, Class IIβ (PI3K-C2β). ITSN1's transforming potential in vitro suggests that this scaffold protein may be involved in human tumorigenesis. Herein, we demonstrate that ITSN1 is expressed in primary human neuroblastoma tumors and tumor cell lines and is necessary for their in vitro and in vivo tumorigenic properties. Silencing ITSN1 dramatically inhibits the anchorage independent growth of tumor cells in vitro and tumor formation in xenograft assays independent of MYCN status. Overexpression of the ITSN1 target, PI3K-C2β, rescues the soft agar growth of ITSN1-silenced cells demonstrating the importance of the ITSN1-PI3K-C2β pathway in NB tumorigenesis. These findings represent the first demonstration that the ITSN1-PI3K-C2β pathway plays a requisite role in human cancer, specifically neuroblastomas. PMID:22266851

  1. Neuroblastoma: MIBG Imaging and New Tracers.

    PubMed

    Pfluger, Thomas; Piccardo, Arnoldo

    2017-03-01

    Neuroblastoma is an embryonic tumor of the peripheral sympathetic nervous system, and is metastatic or otherwise high risk for relapse in nearly 50% of cases, with a long-term survival of <40%. Therefore, exact staging with radiological and nuclear medicine imaging methods is crucial for finding the adequate therapeutic choice. The tumor cells express the norepinephrine transporter, which makes metaiodobenzylguanidine (MIBG), an analogue of norepinephrine, an ideal tumor-specific agent for imaging. On the contrary, MIBG imaging has several disadvantages such as limited spatial resolution, limited sensitivity in small lesions, need for two or even more acquisition sessions, and a delay between the start of the examination and result. Most of these limitations can be overcome with positron emission tomography (PET) using different radiotracers. Furthermore, for operative or biopsy planning, a combination with morphological imaging methods is indispensable. This article would discuss the therapeutic strategy for primary and follow-up diagnosis in neuroblastoma using MIBG scintigraphy and different new PET tracers as well as multimodality imaging.

  2. Activation of Akt predicts poor outcome in neuroblastoma.

    PubMed

    Opel, Daniela; Poremba, Christopher; Simon, Thorsten; Debatin, Klaus-Michael; Fulda, Simone

    2007-01-15

    Whereas aberrant activation of the phosphatidylinositol 3'-kinase (PI3K)/Akt pathway, a key survival cascade, has previously been linked to poor prognosis in several human malignancies, its prognostic effect in neuroblastoma has not yet been explored. We therefore investigated the phosphorylation status of Akt, S6 ribosomal protein as target of mammalian target of rapamycin, and extracellular signal-regulated kinase (ERK) in 116 primary neuroblastoma samples by tissue microarray and its correlation with established prognostic markers and survival outcome. Here, we provide for the first time evidence that phosphorylation of Akt at serine 473 (S473) and/or threonine 308 (T308), S6 ribosomal protein, and ERK frequently occurs in primary neuroblastoma. Importantly, we identified Akt activation as a novel prognostic indicator of decreased event-free or overall survival in neuroblastoma, whereas phosphorylation of S6 ribosomal protein or ERK had no prognostic effect. In addition, Akt activation correlated with variables of aggressive disease, including MYCN amplification, 1p36 aberrations, advanced disease stage, age at diagnosis, and unfavorable histology. Monitoring Akt at T308 or both phosphorylation sites improved the prognostic significance of Akt activation in neuroblastoma specimens compared with S473 phosphorylation. Parallel experiments in neuroblastoma cell lines revealed that activation of Akt by insulin-like growth factor (IGF)-I significantly inhibited tumor necrosis factor-related apoptosis-inducing ligand- or chemotherapy-induced apoptosis in a PI3K-dependent manner because the PI3K inhibitor LY294002 completely reversed the IGF-I-mediated protection of neuroblastoma cells from apoptosis. By showing that activation of Akt correlates with poor prognosis in primary neuroblastoma in vivo and with apoptosis resistance in vitro, our findings indicate that Akt presents a clinically relevant target in neuroblastoma that warrants further investigation.

  3. Syndrome of inappropriate antidiuretic hormone secretion associated with olfactory neuroblastoma.

    PubMed

    Yumusakhuylu, Ali Cemal; Binnetoglu, Adem; Topuz, Muhammet Fatih; Bozkurtlar, Emine Baş; Baglam, Tekin; Sari, Murat

    2013-11-01

    This study reports a patient having olfactory neuroblastoma complicated by syndrome of inappropriate antidiuretic hormone secretion. Olfactory neuroblastoma is a rare tumor that begins in the olfactory membrane. Only 10 cases have been reported previously. Because of having nonspecific symptoms, most patients manifest at an advanced stage at the time of diagnosis. Olfactory neuroblastoma may show local invasion and/or distant metastasis. We demonstrated preoperatively clinical and biochemical parameters consistent with antidiuretic hormone syndrome turned to normal ranges after the treatment. Surgery, chemotherapy, and radiotherapy are the choices of treatment; among these, surgery is an indispensible treatment.

  4. Protection against the synaptic targeting and toxicity of Alzheimer's-associated Aβ oligomers by insulin mimetic chiro-inositols

    PubMed Central

    Pitt, Jason; Thorner, Michael; Brautigan, David; Larner, Joseph; Klein, William L.

    2013-01-01

    Alzheimer's disease (AD) is a progressive dementia that correlates highly with synapse loss. This loss appears due to the synaptic accumulation of toxic Aβ oligomers (ADDLs), which damages synapse structure and function. Although it has been reported that oligomer binding and toxicity can be prevented by stimulation of neuronal insulin signaling with PPARγ agonists, these agonists have problematic side effects. We therefore investigated the therapeutic potential of chiro-inositols, insulin-sensitizing compounds safe for human consumption. Chiro-inositols have been studied extensively for treatment of diseases associated with peripheral insulin resistance, but their insulin mimetic function in memory-relevant central nervous system (CNS) cells is unknown. Here we demonstrate that mature cultures of hippocampal neurons respond to d-chiro-inositol (DCI), pinitol (3-O-methyl DCI), and the inositol glycan INS-2 (pinitol β-1-4 galactosamine) with increased phosphorylation in key upstream components in the insulin-signaling pathway (insulin receptor, insulin receptor substrate-1, and Akt). Consistent with insulin stimulation, DCI treatment promotes rapid withdrawal of dendritic insulin receptors. With respect to neuroprotection, DCI greatly enhances the ability of insulin to prevent ADDL-induced synapse damage (EC50 of 90 nM). The mechanism comprises inhibition of oligomer binding at synapses and requires insulin/IGF signaling. DCI showed no effects on Aβ oligomerization. We propose that inositol glycans and DCI, a compound already established as safe for human consumption, have potential as AD therapeutics by protecting CNS synapses against Aβ oligomers through their insulin mimetic activity.—Pitt, J., Thorner, M., Brautigan, D., Larner, J., Klein, W. L. Protection against the synaptic targeting and toxicity of Alzheimer's-associated Aβ oligomers by insulin mimetic chiro-inositols. PMID:23073831

  5. Rectification mechanism in diblock oligomer molecular diodes.

    PubMed

    Oleynik, I I; Kozhushner, M A; Posvyanskii, V S; Yu, L

    2006-03-10

    We investigated a mechanism of rectification in diblock oligomer diode molecules that have recently been synthesized and showed a pronounced asymmetry in the measured I-V spectrum. The observed rectification effect is due to the resonant nature of electron transfer in the system and the localization properties of bound state wave functions of resonant states of the tunneling electron interacting with an asymmetric molecule in an electric field. The asymmetry of the tunneling wave function is enhanced or weakened depending on the polarity of the applied bias. The conceptually new theoretical approach, the Green's function theory of sub-barrier scattering, is able to provide a physically transparent explanation of this rectification effect based on the concept of the bound state spectrum of a tunneling electron. The theory predicts the characteristic features of the I-V spectrum in qualitative agreement with experiment.

  6. Soluble Aβ oligomer production and toxicity

    PubMed Central

    Larson, Megan E.; Lesné, Sylvain E.

    2011-01-01

    For nearly 100 years following the first description of this neurological disorder by Dr. Alois Alzheimer, amyloid plaques and neurofibrillary tangles have been hypothesized to cause neuronal loss. With evidence that the extent of insoluble, deposited amyloid poorly correlated with cognitive impairment, research efforts focused on soluble forms of Aβ, also referred as Aβ oligomers. Following a decade of studies, soluble oligomeric forms of Aβ are now believed to induce the deleterious cascade(s) involved in the pathophysiology of Alzheimer’s disease. In this review, we will discuss our current understanding about endogenous oligomeric Aβ production, their relative toxicity in vivo and in vitro, and explore the potential future directions needed for the field. PMID:22121920

  7. First-principles simulations of thiophene oligomers

    NASA Astrophysics Data System (ADS)

    Scherlis, Damian; Marzari, Nicola

    2003-03-01

    Conducting polymers, extensively investigated for their use in electronic and nanotechnology applications, have recently gained prominence for their possible use as molecular actuators in mechanical and bioengineering devices. We have focused our efforts on thiophene-based compounds, a class of materials that can be designed for high stress generation and large linear displacement (actuation strain), ideally outperforming mammalian muscle. Key features for the development of these materials are the microscopic binding properties of thiophene and thiophene oligomers stacks, where applied electric fields lead to oxidation and enhanced pi-pi bonding. We have completed the structural studies of neutral and charged oligothiophene dimers, in the search for efficient dimerization mechanisms. A comparison between different density-functional and quantum-chemistry approaches is critically presented, as are solvation effects, described in this work with a combination of first-principles molecular dynamics and a QM/MM approach for the solvating medium.

  8. Structural and functional properties of prefibrillar α-synuclein oligomers.

    PubMed

    Pieri, Laura; Madiona, Karine; Melki, Ronald

    2016-04-14

    The deposition of fibrillar alpha-synuclein (α-syn) within inclusions (Lewy bodies and Lewy neurites) in neurons and glial cells is a hallmark of synucleinopathies. α-syn populates a variety of assemblies ranging from prefibrillar oligomeric species to fibrils whose specific contribution to neurodegeneration is still unclear. Here, we compare the specific structural and biological properties of distinct soluble prefibrillar α-syn oligomers formed either spontaneously or in the presence of dopamine and glutaraldehyde. We show that both on-fibrillar assembly pathway and distinct dopamine-mediated and glutaraldehyde-cross-linked α-syn oligomers are only slightly effective in perturbing cell membrane integrity and inducing cytotoxicity, while mature fibrils exhibit the highest toxicity. In contrast to low-molecular weight and unstable oligomers, large stable α-syn oligomers seed the aggregation of soluble α-syn within reporter cells although to a lesser extent than mature α-syn fibrils. These oligomers appear elongated in shape. Our findings suggest that α-syn oligomers represent a continuum of species ranging from unstable low molecular weight particles to mature fibrils via stable elongated oligomers composed of more than 15 α-syn monomers that possess seeding capacity.

  9. A Generic Method for Design of Oligomer-Specific Antibodies

    PubMed Central

    Brännström, Kristoffer; Lindhagen-Persson, Malin; Gharibyan, Anna L.; Iakovleva, Irina; Vestling, Monika; Sellin, Mikael E.; Brännström, Thomas; Morozova-Roche, Ludmilla; Forsgren, Lars; Olofsson, Anders

    2014-01-01

    Antibodies that preferentially and specifically target pathological oligomeric protein and peptide assemblies, as opposed to their monomeric and amyloid counterparts, provide therapeutic and diagnostic opportunities for protein misfolding diseases. Unfortunately, the molecular properties associated with oligomer-specific antibodies are not well understood, and this limits targeted design and development. We present here a generic method that enables the design and optimisation of oligomer-specific antibodies. The method takes a two-step approach where discrimination between oligomers and fibrils is first accomplished through identification of cryptic epitopes exclusively buried within the structure of the fibrillar form. The second step discriminates between monomers and oligomers based on differences in avidity. We show here that a simple divalent mode of interaction, as within e.g. the IgG isotype, can increase the binding strength of the antibody up to 1500 times compared to its monovalent counterpart. We expose how the ability to bind oligomers is affected by the monovalent affinity and the turnover rate of the binding and, importantly, also how oligomer specificity is only valid within a specific concentration range. We provide an example of the method by creating and characterising a spectrum of different monoclonal antibodies against both the Aβ peptide and α-synuclein that are associated with Alzheimer's and Parkinson's diseases, respectively. The approach is however generic, does not require identification of oligomer-specific architectures, and is, in essence, applicable to all polypeptides that form oligomeric and fibrillar assemblies. PMID:24618582

  10. Antiparallel Triple-strand Architecture for Prefibrillar Aβ42 Oligomers*

    PubMed Central

    Gu, Lei; Liu, Cong; Stroud, James C.; Ngo, Sam; Jiang, Lin; Guo, Zhefeng

    2014-01-01

    Aβ42 oligomers play key roles in the pathogenesis of Alzheimer disease, but their structures remain elusive partly due to their transient nature. Here, we show that Aβ42 in a fusion construct can be trapped in a stable oligomer state, which recapitulates characteristics of prefibrillar Aβ42 oligomers and enables us to establish their detailed structures. Site-directed spin labeling and electron paramagnetic resonance studies provide structural restraints in terms of side chain mobility and intermolecular distances at all 42 residue positions. Using these restraints and other biophysical data, we present a novel atomic-level oligomer model. In our model, each Aβ42 protein forms a single β-sheet with three β-strands in an antiparallel arrangement. Each β-sheet consists of four Aβ42 molecules in a head-to-tail arrangement. Four β-sheets are packed together in a face-to-back fashion. The stacking of identical segments between different β-sheets within an oligomer suggests that prefibrillar oligomers may interconvert with fibrils via strand rotation, wherein β-strands undergo an ∼90° rotation along the strand direction. This work provides insights into rational design of therapeutics targeting the process of interconversion between toxic oligomers and non-toxic fibrils. PMID:25118290

  11. Structural and functional properties of prefibrillar α-synuclein oligomers

    PubMed Central

    Pieri, Laura; Madiona, Karine; Melki, Ronald

    2016-01-01

    The deposition of fibrillar alpha-synuclein (α-syn) within inclusions (Lewy bodies and Lewy neurites) in neurons and glial cells is a hallmark of synucleinopathies. α-syn populates a variety of assemblies ranging from prefibrillar oligomeric species to fibrils whose specific contribution to neurodegeneration is still unclear. Here, we compare the specific structural and biological properties of distinct soluble prefibrillar α-syn oligomers formed either spontaneously or in the presence of dopamine and glutaraldehyde. We show that both on-fibrillar assembly pathway and distinct dopamine-mediated and glutaraldehyde-cross-linked α-syn oligomers are only slightly effective in perturbing cell membrane integrity and inducing cytotoxicity, while mature fibrils exhibit the highest toxicity. In contrast to low-molecular weight and unstable oligomers, large stable α-syn oligomers seed the aggregation of soluble α-syn within reporter cells although to a lesser extent than mature α-syn fibrils. These oligomers appear elongated in shape. Our findings suggest that α-syn oligomers represent a continuum of species ranging from unstable low molecular weight particles to mature fibrils via stable elongated oligomers composed of more than 15 α-syn monomers that possess seeding capacity. PMID:27075649

  12. Toxic species in amyloid disorders: Oligomers or mature fibrils

    PubMed Central

    Verma, Meenakshi; Vats, Abhishek; Taneja, Vibha

    2015-01-01

    Protein aggregation is the hallmark of several neurodegenerative disorders. These protein aggregation (fibrillization) disorders are also known as amyloid disorders. The mechanism of protein aggregation involves conformation switch of the native protein, oligomer formation leading to protofibrils and finally mature fibrils. Mature fibrils have long been considered as the cause of disease pathogenesis; however, recent evidences suggest oligomeric intermediates formed during fibrillization to be toxic. In this review, we have tried to address the ongoing debate for these toxic amyloid species. We did an extensive literature search and collated information from Pubmed (http://www.ncbi.nlm.nih.gov) and Google search using various permutations and combinations of the following keywords: Neurodegeneration, amyloid disorders, protein aggregation, fibrils, oligomers, toxicity, Alzheimer's Disease, Parkinson's Disease. We describe different instances showing the toxicity of mature fibrils as well as oligomers in Alzheimer's Disease and Parkinson's Disease. Distinct structural framework and morphology of amyloid oligomers suggests difference in toxic effect between oligomers and fibrils. We highlight the difference in structure and proposed toxicity pathways for fibrils and oligomers. We also highlight the evidences indicating that intermediary oligomeric species can act as potential diagnostic biomarker. Since the formation of these toxic species follow a common structural switch among various amyloid disorders, the protein aggregation events can be targeted for developing broad-range therapeutics. The therapeutic trials based on the understanding of different protein conformers (monomers, oligomers, protofibrils and fibrils) in amyloid cascade are also described. PMID:26019408

  13. Elucidating molecular mass and shape of a neurotoxic Aβ oligomer.

    PubMed

    Sebollela, Adriano; Mustata, Gina-Mirela; Luo, Kevin; Velasco, Pauline T; Viola, Kirsten L; Cline, Erika N; Shekhawat, Gajendra S; Wilcox, Kyle C; Dravid, Vinayak P; Klein, William L

    2014-12-17

    Alzheimer's disease (AD), the most prevalent type of dementia, has been associated with the accumulation of amyloid β oligomers (AβOs) in the central nervous system. AβOs vary widely in size, ranging from dimers to larger than 100 kDa. Evidence indicates that not all oligomers are toxic, and there is yet no consensus on the size of the actual toxic oligomer. Here we used NU4, a conformation-dependent anti-AβO monoclonal antibody, to investigate size and shape of a toxic AβO assembly. By using size-exclusion chromatography and immuno-based detection, we isolated an AβO-NU4 complex amenable for biochemical and morphological studies. The apparent molecular mass of the NU4-targeted oligomer was 80 kDa. Atomic force microscopy imaging of the AβO-NU4 complex showed a size distribution centered at 5.37 nm, an increment of 1.5 nm compared to the size of AβOs (3.85 nm). This increment was compatible with the size of NU4 (1.3 nm), suggesting a 1:1 oligomer to NU4 ratio. NU4-reactive oligomers extracted from AD human brain concentrated in a molecular mass range similar to that found for in vitro prepared oligomers, supporting the relevance of the species herein studied. These results represent an important step toward understanding the connection between AβO size and toxicity.

  14. The slowly aggregating salmon Calcitonin: a useful tool for the study of the amyloid oligomers structure and activity.

    PubMed

    Diociaiuti, Marco; Gaudiano, Maria Cristina; Malchiodi-Albedi, Fiorella

    2011-01-01

    Amyloid proteins of different aminoacidic composition share the tendency to misfold and aggregate in a similar way, following common aggregation steps. The process includes the formation of dimers, trimers, and low molecular weight prefibrillar oligomers, characterized by the typical morphology of globules less than 10 nm diameter. The globules spontaneously form linear or annular structures and, eventually, mature fibers. The rate of this process depends on characteristics intrinsic to the different proteins and to environmental conditions (i.e., pH, ionic strength, solvent composition, temperature). In the case of neurodegenerative diseases, it is now generally agreed that the pathogenic aggregates are not the mature fibrils, but the intermediate, soluble oligomers. However, the molecular mechanism by which these oligomers trigger neuronal damage is still unclear. In particular, it is not clear if there is a peculiar structure at the basis of the neurotoxic effect and how this structure interacts with neurons. This review will focus on the results we obtained using salmon Calcitonin, an amyloid protein characterized by a very slow aggregation rate, which allowed us to closely monitor the aggregation process. We used it as a tool to investigate the characteristics of amyloid oligomers formation and their interactions with neuronal cells. Our results indicate that small globules of about 6 nm could be the responsible for the neurotoxic effects. Moreover, our data suggest that the rich content in lipid rafts of neuronal cell plasma membrane may render neurons particularly vulnerable to the amyloid protein toxic effect.

  15. Binding affinity of amyloid oligomers to cellular membranes is a generic indicator of cellular dysfunction in protein misfolding diseases

    PubMed Central

    Evangelisti, Elisa; Cascella, Roberta; Becatti, Matteo; Marrazza, Giovanna; Dobson, Christopher M.; Chiti, Fabrizio; Stefani, Massimo; Cecchi, Cristina

    2016-01-01

    The conversion of peptides or proteins from their soluble native states into intractable amyloid deposits is associated with a wide range of human disorders. Misfolded protein oligomers formed during the process of aggregation have been identified as the primary pathogenic agents in many such conditions. Here, we show the existence of a quantitative relationship between the degree of binding to neuronal cells of different types of oligomers formed from a model protein, HypF-N, and the GM1 content of the plasma membranes. In addition, remarkably similar behavior is observed for oligomers of the Aβ42 peptide associated with Alzheimer’s disease. Further analysis has revealed the existence of a linear correlation between the level of the influx of Ca2+ across neuronal membranes that triggers cellular damage, and the fraction of oligomeric species bound to the membrane. Our findings indicate that the susceptibility of neuronal cells to different types of misfolded oligomeric assemblies is directly related to the extent of binding of such oligomers to the cellular membrane. PMID:27619987

  16. Binding affinity of amyloid oligomers to cellular membranes is a generic indicator of cellular dysfunction in protein misfolding diseases.

    PubMed

    Evangelisti, Elisa; Cascella, Roberta; Becatti, Matteo; Marrazza, Giovanna; Dobson, Christopher M; Chiti, Fabrizio; Stefani, Massimo; Cecchi, Cristina

    2016-09-13

    The conversion of peptides or proteins from their soluble native states into intractable amyloid deposits is associated with a wide range of human disorders. Misfolded protein oligomers formed during the process of aggregation have been identified as the primary pathogenic agents in many such conditions. Here, we show the existence of a quantitative relationship between the degree of binding to neuronal cells of different types of oligomers formed from a model protein, HypF-N, and the GM1 content of the plasma membranes. In addition, remarkably similar behavior is observed for oligomers of the Aβ42 peptide associated with Alzheimer's disease. Further analysis has revealed the existence of a linear correlation between the level of the influx of Ca(2+) across neuronal membranes that triggers cellular damage, and the fraction of oligomeric species bound to the membrane. Our findings indicate that the susceptibility of neuronal cells to different types of misfolded oligomeric assemblies is directly related to the extent of binding of such oligomers to the cellular membrane.

  17. Pramipexole prevents neurotoxicity induced by oligomers of beta-amyloid.

    PubMed

    Uberti, Daniela; Bianchi, Irene; Olivari, Luca; Ferrari-Toninelli, Giulia; Canonico, PierLuigi; Memo, Maurizio

    2007-08-27

    Here we demonstrate that pramipexole, an antiparkinsonian dopamine receptor agonist drug, exerts neuroprotective effects against beta-amyloid neurotoxicity. Using a specific protocol to test individually oligomers, fibrils, or unaggregated amyloid beta-peptide, we found pramipexole able to protect cells against oligomers and fibrils. Unaggregated amyloid beta-peptide was found unable to cause cell death. Fibrils and oligomers were also found to produce elevated amount of free radicals, and this effect was prevented by pramipexole. We propose pramipexole may become in the future a coadjuvant in the treatment of neuropathologies, besides Parkinson's disease, where amyloid beta-peptide-mediated oxidative injury exerts a relevant role.

  18. The Essential Role of Soluble Aβ Oligomers in Alzheimer's Disease.

    PubMed

    Wang, Zi-Xuan; Tan, Lan; Liu, Jinyuan; Yu, Jin-Tai

    2016-04-01

    Alzheimer's disease (AD) is a common neurodegenerative disease characterized by amyloid plaque and neurofibrillary tangles (NFT). With the finding that soluble nonfibrillar Aβ levels actually correlate strongly with the severity of the disease, the initial focus on amyloid plaques shifted to the contemporary concept that AD memory failure is caused by soluble Aβ oligomers. The soluble Aβ are known to be more neurotoxicthan fibrillar Aβ species. In this paper, we summarize the essential role of soluble Aβ oligomers in AD and discuss therapeutic strategies that target soluble Aβ oligomers.

  19. Diagnosis of pediatric neuroblastoma by urine cytology: A case report.

    PubMed

    Nishikawa, Shiori; Noguchi, Hiroshi; Tokumitsu, Takako; Ohno, Akinobu; Moriguchi-Goto, Sayaka; Maekawa, Kazunari; Asada, Yujiro; Moritake, Hiroshi; Kinoshita, Mariko; Yamada, Ai; Takamura, Kazunari; Sato, Yuichiro

    2017-10-06

    Neuroblastomas are embryonal tumors arising from the neuronal crest cells of the synaptic nervous system. Findings from aspiration cytology have been reported, but there have been no reports of urine cytology findings. Here, we report a case of pediatric neuroblastoma characterized by urine cytology. A 2-year-old boy presented with abdominal pain, nausea, and loss of appetite. Computed tomography revealed a large tumor in the left suprarenal region with massive infiltration into the kidney. Urinary cytology showed highly cellular clusters composed of small, round, atypical cells with little cytoplasm and high nuclear/cytoplasmic ratio; nuclear molding was also noted in some places. Immunocytochemical staining was positive for synaptophysin and chromogranin A, and neuroblastoma was suggested by urine cytology. A biopsy of the left adrenal tumor later confirmed a diagnosis of poorly differentiated neuroblastoma. Urine cytology may be useful for rapid diagnosis and management of similar cases. © 2017 Wiley Periodicals, Inc.

  20. Acquired Intermittent Pediatric Horner Syndrome due to Neuroblastoma.

    PubMed

    Cohen, Liza M; Elliott, Alexandra; Freitag, Suzanne K

    2017-09-13

    A 3-month-old male developed intermittent left upper eyelid ptosis at the age of 1 month that was gradually increasing in frequency and duration. Examination revealed anisocoria and left upper and lower eyelid ptosis, consistent with a left Horner syndrome. Imaging showed a mass in the left superior posterior mediastinum, which was resected, and pathology was consistent with neuroblastoma. Eight months thereafter, the patient underwent left upper eyelid ptosis repair. Cases of infantile acquired Horner syndrome due to neuroblastoma are rare. To the authors' knowledge, there has only been one case described that presented with intermittent symptoms. The authors report the second case of intermittent acquired Horner syndrome due to neuroblastoma. This case demonstrates the importance of recognizing that Horner syndrome may present with subtle and intermittent symptoms. In a pediatric patient, one should maintain suspicion for neuroblastoma.

  1. Growth and functional behavior neuroblastomas in man and nude mice.

    PubMed

    Hata, J; Ueyama, Y; Tamaoki, N

    1983-12-01

    Nine human neuroblastoma were serially transplanted in nude mice. These tumor lines were established from the patients older than 1 year 10 month year old. None of the tumors taken from under the age of 1 year and 7 months grew in nude mice. All transplanted tumors produced catecholamines in varying degree. The growth of low catecholamines producing tumors was apparently aggressive compared with high catecholamines producing tumor lines. These results may indicate that tumor aggressiveness decreases with increased functional differentiation in human neuroblastoma in nude mice. The contents of catecholamine was closely correlated with the number and size of secretory granules in tumor cells. This human neuroblastoma/nude mice system may prove to be a useful tool for basic research on the biological behavior as well as on the cytological and functional differentiation of human neuroblastoma.

  2. Anti-GD2 Strategy in the Treatment of Neuroblastoma

    PubMed Central

    Yang, Richard K.; Sondel, Paul M.

    2010-01-01

    The prognosis for advanced neuroblastoma remains poor with high risk of recurrence after consolidation. Therapies based on monoclonal antibodies that specifically target disialoganglioside GD2 on tumor cells are improving treatment results for high-risk neuroblastoma. This article reviews the use of anti-GD2 antibodies either as monotherapy or as part of a larger and more complex treatment approach for advanced neuroblastoma. We review how anti-GD2 antibodies can be combined with other treatments or strategies to enhance their clinical effects. Tumor resistance and other problems that decrease the efficacy of anti-GD2 antibodies are discussed. Future developments in the area of anti-GD2 immunotherapies for neuroblastoma are also addressed. PMID:21037966

  3. Constitutional Ip36 deletion in a child with neuroblastoma

    SciTech Connect

    Biegel, J.A.; Zackai, E.H.; Scher, C.D.; Emanuel, B.S. Univ. of Pennsylvania, Philadelphia ); White, P.S.; Marshall, H.N.; Fujimori, Minoru; Brodeur, G.M. )

    1993-01-01

    The authors describe a child with dysmorphic features, as well as developmental and growth delay, who developed neuroblastoma at 5 mo of age. Cytogenetic analysis of blood lymphocytes revealed an interstitial deletion of 1p36.1 [r arrow] 1p36.2, which was apparent only with high-resolution banding. Molecular analysis with a collection of polymorphic DNA probes for 1p confirmed an interstitial deletion involving subbands of 1p36. Deletions of this region are a common finding in neuroblastoma cells from patients with advanced stages of disease. Therefore, these results (a) suggest that constitutional deletion of this region predisposed the patient to the development of neuroblastoma and (b) support the localization of a neuroblastoma tumor-suppressor locus to 1p36. 48 refs., 2 figs.

  4. Overcoming the Mechanism of Radioresistance in Neuroblastoma

    DTIC Science & Technology

    2013-10-01

    radiation and chemotherapy. Moreover, damage produced at this dose level evades ATM dose-dependent DNA damage detection and repair mechanisms. In vitro...cells, and thus DNA damage accumulates, causing cell death by apoptosis at the next mitosis. The hypothesis was investigated initially in...since this increases tumor resistance to radiation and chemotherapy. Moreover, damage produced at this dose level evades ATM dose-dependent DNA damage

  5. Synchronous Ipsilateral Wilms’ Tumor and Neuroblastoma in an Infant

    PubMed Central

    Thakkar, Nirali Chirag; Sinha, Shalini

    2016-01-01

    Wilms’ tumor (WT) and neuroblastoma (NB), the two most common extra-cranial solid malignant tumors, are seldom seen together in the same patient. A 10-month girl presented with a right retroperitoneal mass. A preoperative diagnosis of Wilms’ tumor (WT) was made. She was given preoperative chemotherapy followed by surgery. At surgery a renal mass (WT) and a suprarenal mass (neuroblastoma – NB) were removed. She finally succumbed to metastatic NB in the postoperative period. PMID:26816675

  6. Tumor Growth Model with PK Input for Neuroblastoma Drug Development

    DTIC Science & Technology

    2015-09-01

    AWARD NUMBER: W81XWH-14-1-0103 TITLE: Tumor Growth Model with PK Input for Neuroblastoma Drug Development PRINCIPAL INVESTIGATOR: Clinton...AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-14-1-0103 Tumor Growth Model with PK Input for Neuroblastoma Drug Development 5b. GRANT NUMBER 5c...STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The long-term goal for our project is to develop a

  7. Rapamycin induces the anti-apoptotic protein survivin in neuroblastoma.

    PubMed

    Samkari, Ayman; Cooper, Zachary A; Holloway, Michael P; Liu, Jiebin; Altura, Rachel A

    2012-01-01

    Neuroblastoma is the most common solid tumor of infancy, accounting for 15% of all cancer cell deaths in children. Expression of the anti-apoptotic protein survivin in these tumors correlates with poor prognostic features and resistance to therapy. The mammalian target of rapamycin (mTOR) protein is being explored as a potential therapeutic target in patients with this disease. The objective of this study was to test the hypothesis that rapamycin regulates survivin expression and function in neuroblastoma cells. To explore this hypothesis, we treated two different neuroblastoma lines (NB7, NB8) and a well-characterized control lung cancer cell line, A549, with varying doses of rapamycin (0.1-10μM) for serial time points (2-48 hours). RNA and protein expression levels were then evaluated by quantitative RT-PCR and western blotting, respectively. Cell proliferation and apoptosis were assayed by WST-1 and Annexin V. The results showed a rapamycin-dependent increase in survivin mRNA and protein levels in the neuroblastoma cell lines in a dose- and time-dependent fashion, while a decrease in these levels was observed in control cells. Rapamycin inhibited cell proliferation in both A549 and neuroblastoma cells however neuroblastoma cells had less apoptosis than A549 cells (9% vs. 20%). In summary, our results indicate that rapamycin induces expression of the anti-apoptotic protein survivin in neuroblastoma cells which may protect these cells from programmed cell death. Induction of survivin by rapamycin could therefore be a potential mechanism of neuroblastoma tumor cell resistance and rapamycin may not be an effective therapeutic agent for these tumors.

  8. Scintigraphy of a neuroblastoma with I-131 meta-iodobenzylguanidine

    SciTech Connect

    Kimmig, B.; Brandeis, W.E.; Eisenhut, M.; Bubeck, B.; Hermann, H.J.; zum Winkel, K.

    1984-07-01

    Radioiodinated m-iodobenzylguanidine has been applied mainly for the diagnosis of pheochromocytoma and blastoma. In this paper the author shows that an ontogenetically related tumor, the neuroblastoma, is also scintigraphically visualized by its high uptake of I-131 MIBG. Because of the kinetic findings and the high uptake of more than 30% of the injected activity, it is likely that the neuroblastoma, by analogy with pheochromocytoma, is susceptible to specific radionuclide therapy.

  9. Scintigraphy of a neuroblastoma with I-131 meta-iodobenzylguanidine

    SciTech Connect

    Kimmig, B.; Brandeis, W.E.; Eisenhut, M.; Bubeck, B.; Hermann, H.J.; Zum Winkel, K.

    1984-07-01

    Radioiodinated m-iodobenzylguanidine has been applied mainly for the diagnosis of pheochromocytoma and blastoma. In this paper the authors show that an ontogenetically related tumor, the neuroblastoma, is also scintigraphically visualized by its high uptake of I-131 MIBG. Because of the kinetic findings and the high uptake of more than 30% of the injected activity, it is likely that the neuroblastoma, by analogy with pheochromocytoma, is susceptible to specific radionuclide therapy.

  10. Natural Killer Cells to the Attack: Combination Therapy against Neuroblastoma.

    PubMed

    Zenarruzabeitia, Olatz; Vitallé, Joana; Astigarraga, Itziar; Borrego, Francisco

    2017-02-01

    TGFβ in the tumor microenvironment diminishes natural killer (NK) cell-mediated anti-disialoganglioside (anti-GD2) mAb elimination of neuroblastoma cells. Consequently, blockade of TGFβ signaling with galunisertib in combination with the anti-GD2 mAb dinutuximab plus adoptively transferred NK cells is a promising tool for the treatment of neuroblastoma. Clin Cancer Res; 23(3); 615-7. ©2016 AACRSee related article by Tran et al., p. 804.

  11. Congenital neuroblastoma in a neonate with isotretinoin embryopathy.

    PubMed

    Aguilar, Shiley; Louis, Chrystal; Hicks, John; Zage, Peter; Russell, Heidi

    2014-03-01

    We describe a neonate with isotretinoin embryopathy and an incidental finding of congenital neuroblastoma. Diffuse liver metastases led to the decision to provide oncologic therapy followed by tumor resection. Despite the possible need for chronic care related to the comorbidities of the isotretinoin embryopathy and oncologic management, the patient remains disease-free. Because of the uncertain etiology of neuroblastoma, it remains unclear whether exposure to isotretinoin during embryogenesis and fetal development had an oncogenic effect on this patient.

  12. Fractionated total body irradiation for metastatic neuroblastoma

    SciTech Connect

    Kun, L.E.; Casper, J.T.; Kline, R.W.; Piaskowski, V.D.

    1981-11-01

    Twelve patients over one year old with neuroblastoma (NBL) metastatic to bone and bone marrow entered a study of adjuvant low-dose, fractionated total body irradiation (TBI). Six children who achieved a ''complete clinical response'' following chemotherapy (cyclophosphamide and adriamycin) and surgical resection of the abdominal primary received TBI (10 rad/fraction to totals of 100-120 rad/10-12 fx/12-25 days). Two children received concurrent local irradiation for residual abdominal tumor. The intervals from cessation of chemotherapy to documented progression ranged from 2-16 months, not substatially different from patients receiving similar chemotherapy and surgery without TBI. Three additional children with progressive NBL received similar TBI (80-120 rad/8-12 fx) without objective response.

  13. Proton-Beam Therapy for Olfactory Neuroblastoma

    SciTech Connect

    Nishimura, Hideki . E-mail: westvill@med.kobe-u.ac.jp; Ogino, Takashi; Kawashima, Mitsuhiko; Nihei, Keiji; Arahira, Satoko; Onozawa, Masakatsu; Katsuta, Shoichi; Nishio, Teiji

    2007-07-01

    Purpose: To analyze the feasibility and efficacy of proton-beam therapy (PBT) for olfactory neuroblastoma (ONB) as a definitive treatment, by reviewing our preliminary experience. Olfactory neuroblastoma is a rare disease, and a standard treatment strategy has not been established. Radiation therapy for ONB is challenging because of the proximity of ONBs to critical organs. Proton-beam therapy can provide better dose distribution compared with X-ray irradiation because of its physical characteristics, and is deemed to be a feasible treatment modality. Methods and Materials: A retrospective review was performed on 14 patients who underwent PBT for ONB as definitive treatment at the National Cancer Center Hospital East (Kashiwa, Chiba, Japan) from November 1999 to February 2005. A total dose of PBT was 65 cobalt Gray equivalents (Gy{sub E}), with 2.5-Gy{sub E} once-daily fractionations. Results: The median follow-up period for surviving patients was 40 months. One patient died from disseminated disease. There were two persistent diseases, one of which was successfully salvaged with surgery. The 5-year overall survival rate was 93%, the 5-year local progression-free survival rate was 84%, and the 5-year relapse-free survival rate was 71%. Liquorrhea was observed in one patient with Kadish's stage C disease (widely destroying the skull base). Most patients experienced Grade 1 to 2 dermatitis in the acute phase. No other adverse events of Grade 3 or greater were observed according to the RTOG/EORTC acute and late morbidity scoring system. Conclusions: Our preliminary results of PBT for ONB achieved excellent local control and survival outcomes without serious adverse effects. Proton-beam therapy is considered a safe and effective modality that warrants further study.

  14. Polysialic acid in human neuroblastoma cells

    SciTech Connect

    Livingston, B.D.; Jacobs, J.; Shaw, G.W.; Glick, M.C.; Troy, F.A.

    1987-05-01

    Prokaryotic-derived probes that specifically detect ..cap alpha..-2,8-linked polysialic acid (PSA) units on embryonic neural cell adhesion molecules (N-CAM) were used to show that membrane glycoproteins (GPs) from metastatic human neuroblastoma cells (CHP-134) also contain these unique carbohydrate moieties. This conclusion was based on the following evidence: (1) membranes from CHP-134 cells served as an exogenous acceptor of (/sup 14/C)NeuNAc units in an E. coli K1 sialyltransferase (ST) assay. The bacterial ST is specific for the transfer of (/sup 14/C)NeuNAc to exogenous acceptors containing at least 3 sialyl units (DP3); (2) in SDS-PAGE, the (/sup 14/C)NeuNAc-labeled CHP-134 membranes showed a major peak of radioactivity that was polydisperse. N-CAM shows a similar Mr heterogeneity; (3) treatment of the high Mr CHP-134 product with Endo-N-acetylneuraminidase (Endo-N) released the (/sup 14/C)NeuNAc label as a DP4. Endo-N is specific for hydrolysing ..cap alpha..-2,8-linked PSA chains containing a minimum of 5 sialyl residues; (4) treatment of the DP4 with sialidase converted the label to (/sup 14/C)NeuNAc, thus proving the tetramer contained sialic acid; (5) CHP-134 cells were labeled in vivo with (/sup 3/H)GlcN. A glycopeptide fraction representing ca. 1% of the (/sup 3/H)GlcN incorporated was isolated. Based on Endo-N sensitivity, this glycopeptide contained at least 15-20% of the (/sup 3/H)GlcN label as PSA. Endo-N digestion of the (/sup 3/H)-labeled glycopeptide released (/sup 3/H)-DP4. These results suggest that the surface expression of PSA-containing GPs may be important in neuroblastoma metastasis.

  15. HAUSP deubiquitinated and stabilizes N-Myc in neuroblastoma

    PubMed Central

    Tavana, Omid; Li, Dawei; Dai, Chao; Lopez, Gonzalo; Banerjee, Debarshi; Kon, Ning; Chen, Chao; Califano, Andrea; Yamashiro, Darrell J; Sun, Hongbin; Gu, Wei

    2016-01-01

    The MYCN protooncogene is amplified in a number of advanced-stage human tumors such as neuroblastomas. Like other members of Myc family proteins, N-Myc is a transcription factor and its stability and activity are tightly controlled by ubiquitination-dependent proteasome degradation1-4. Although numerous studies demonstrate that N-Myc acts as a driver of neuroblastoma tumorigenesis, therapies that directly suppress N-Myc activity in human tumors are limited. Here, we have identified the herpesvirus-associated ubiquitin-specific protease (HAUSP or USP75-7) as a regulator of N-Myc in neuroblastoma. HAUSP interacts with N-Myc, and HAUSP expression induces deubiquitination and subsequent stabilization of N-Myc. Conversely, RNAi-mediated knockdown of HAUSP in neuroblastoma cancer cell lines, or genetic ablation of Hausp in the mouse brain destabilizes N-Myc, which leads to inhibition of N-Myc function. Notably, HAUSP is more abundant in neuroblastoma patients with poorer prognosis and HAUSP expression significantly correlates with N-Myc transcriptional activity. Furthermore, small molecule inhibitors against HAUSP deubiquitinase activity significantly suppress the growth of MYCN-amplified human neuroblastoma cell lines in xenograft mouse models. Together, our findings demonstrate a crucial role of HAUSP in regulating N-Myc function in vivo and suggest that HAUSP inhibition is a potential therapy for MYCN-amplified tumors. PMID:27618649

  16. FX11 inhibits aerobic glycolysis and growth of neuroblastoma cells.

    PubMed

    Rellinger, Eric J; Craig, Brian T; Alvarez, Alexandra L; Dusek, Haley L; Kim, Kwang W; Qiao, Jingbo; Chung, Dai H

    2017-03-01

    The MYC family of proteins promotes neuroblastoma tumorigenesis at least in part through the induction of aerobic glycolysis by promoting the transcription of key glycolytic enzymes, such as LDHA. FX11 is a selective inhibitor of LDHA that has demonstrated preclinical efficacy in adult cancers. Herein, we hypothesized that FX11 would inhibit aerobic glycolysis and block growth of neuroblastoma cells. We surveyed 3 MYCN-single copy and 5 MYCN-amplified neuroblastoma cell lines to correlate C-MYC/N-MYC protein levels with LDHA expression. Cell viability was measured with FX11 using a tetrazolium-based assay. Cell cycle analysis using propidium iodide with flow cytometry was performed to evaluate for growth arrest. Immunoblotting demonstrated PARP and Caspase 3 cleavage as evidence of apoptosis. LDHA is frequently expressed in both MYCN--amplified and MYCN-single copy cell lines. N-MYC and C-MYC protein levels did not correlate with LDHA protein expression. FX11 inhibits aerobic glycolysis and growth in three MYCN-amplified and one MYCN-single copy neuroblastoma cell lines. FX11 induces modest G1 cell cycle arrest with selective induction of apoptosis. Small molecule LDHA inhibition is capable of blocking aerobic glycolysis and growth of neuroblastoma cell lines in vitro and merits further in vivo evaluation of its preclinical efficacy in neuroblastomas. Copyright © 2016. Published by Elsevier Inc.

  17. Upregulation of LYAR induces neuroblastoma cell proliferation and survival.

    PubMed

    Sun, Yuting; Atmadibrata, Bernard; Yu, Denise; Wong, Matthew; Liu, Bing; Ho, Nicholas; Ling, Dora; Tee, Andrew E; Wang, Jenny; Mungrue, Imran N; Liu, Pei Y; Liu, Tao

    2017-09-01

    The N-Myc oncoprotein induces neuroblastoma by regulating gene transcription and consequently causing cell proliferation. Paradoxically, N-Myc is well known to induce apoptosis by upregulating pro-apoptosis genes, and it is not clear how N-Myc overexpressing neuroblastoma cells escape N-Myc-mediated apoptosis. The nuclear zinc finger protein LYAR has recently been shown to modulate gene expression by forming a protein complex with the protein arginine methyltransferase PRMT5. Here we showed that N-Myc upregulated LYAR gene expression by binding to its gene promoter. Genome-wide differential gene expression studies revealed that knocking down LYAR considerably upregulated the expression of oxidative stress genes including CHAC1, which depletes intracellular glutathione and induces oxidative stress. Although knocking down LYAR expression with siRNAs induced oxidative stress, neuroblastoma cell growth inhibition and apoptosis, co-treatment with the glutathione supplement N-acetyl-l-cysteine or co-transfection with CHAC1 siRNAs blocked the effect of LYAR siRNAs. Importantly, high levels of LYAR gene expression in human neuroblastoma tissues predicted poor event-free and overall survival in neuroblastoma patients, independent of the best current markers for poor prognosis. Taken together, our data suggest that LYAR induces proliferation and promotes survival of neuroblastoma cells by repressing the expression of oxidative stress genes such as CHAC1 and suppressing oxidative stress, and identify LYAR as a novel co-factor in N-Myc oncogenesis.

  18. PHOX2B is a suppressor of neuroblastoma metastasis.

    PubMed

    Naftali, Osnat; Maman, Shelly; Meshel, Tsipi; Sagi-Assif, Orit; Ginat, Ravit; Witz, Isaac P

    2016-03-01

    Paired like homeobox 2B (PHOX2B) is a minimal residual disease (MRD) marker of neuroblastoma. The presence of MRD, also referred to as micro-metastases, is a powerful marker of poor prognosis in neuroblastoma. Lung metastasis is considered a terminal event in neuroblastoma. Lung micro-metastatic neuroblastoma (MicroNB) cells show high expression levels of PHOX2B and possess a less malignant and metastatic phenotype than lung macro metastatic neuroblastoma (MacroNB) cells, which hardly express PHOX2B. In vitro assays showed that PHOX2B knockdown in MicroNB cells did not affect cell viability; however it decreased the migratory capacity of the MicroNB-shPHOX2B cells. An orthotopic inoculation of MicroNB-shPHOX2B cells into the adrenal gland of nude mice resulted in significantly larger primary tumors and a heavier micro-metastatic load in the lungs and bone-marrow, than when control cells were inoculated. PHOX2B expression was found to be regulated by methylation. The PHOX2B promoter in MacroNB cells is significantly more methylated than in MicroNB cells. Demethylation assays using 5-azacytidine demonstrated that methylation can indeed inhibit PHOX2B transcription in MacroNB cells. These pre-clinical data strongly suggest that PHOX2B functions as a suppressor of neuroblastoma progression.

  19. Oligomer formation in the radiation-induced polymerization of styrene

    NASA Astrophysics Data System (ADS)

    Harayma, Hiroshi; Al-Sheikhly, Mohamad; Silverman, Joseph

    2003-12-01

    Analyses of the oligomers formed in radiation-induced polymerization of purified styrene were performed. The principal dimeric products were cis- and trans-diphenyl-cyclobutane with a relatively small amount of 1-phenyltetralin; the trimeric products were the optical isomers of 1-phenyl-4-[1'-phenylethyl-(1')]-tetralin in gamma-ray and 60 MeV proton irradiation. Oligomer formation increased with increasing dose, but more gradually than the linear formation of high polymer with dose. The yield was 0.25-3.1 μmol/J at low doses and decreased to an asymptotic value of 0.15 at higher doses. It appears that oligomers act as chain transfer agents during the polymerization reaction which would account for the observed decrease in molecular weight of the high polymer with increase in dose. Although the thermal and radiation-induced polymerization of styrene have different initiation steps, the oligomers produced by both reactions are similar in composition.

  20. Biomimetic peptoid oligomers as dual-action antifreeze agents

    PubMed Central

    Huang, Mia L.; Ehre, David; Jiang, Qi; Hu, Chunhua; Kirshenbaum, Kent; Ward, Michael D.

    2012-01-01

    The ability of natural peptides and proteins to influence the formation of inorganic crystalline materials has prompted the design of synthetic compounds for the regulation of crystal growth, including the freezing of water and growth of ice crystals. Despite their versatility and ease of structural modification, peptidomimetic oligomers have not yet been explored extensively as crystallization modulators. This report describes a library of synthetic N-substituted glycine peptoid oligomers that possess “dual-action” antifreeze activity as exemplified by ice crystal growth inhibition concomitant with melting temperature reduction. We investigated the structural features responsible for these phenomena and observed that peptoid antifreeze activities depend both on oligomer backbone structure and side chain chemical composition. These studies reveal the capability of peptoids to act as ice crystallization regulators, enabling the discovery of a unique and diverse family of synthetic oligomers with potential as antifreeze agents in food production and biomedicine. PMID:23169638

  1. Identification and characterization of an aβ oligomer precipitating peptide that may be useful to explore gene therapeutic approaches to Alzheimer disease.

    PubMed

    Funke, Susanne Aileen; Liu, Hongmei; Sehl, Torsten; Bartnik, Dirk; Brener, Oleksandr; Nagel-Steger, Luitgard; Wiesehan, Katja; Willbold, Dieter

    2012-04-01

    A key feature of Alzheimer disease (AD) is the pathologic self-association of the amyloid-β (Aβ) peptide, leading to the formation of diffusible toxic Aβ oligomers and extracellular amyloid plaques. Next to extracellular Aβ, intraneuronal Aβ has important pathological functions in AD. Agents that specifically interfere with the oligomerization processes either outside or inside of neurons are highly desired for the elucidation of the pathologic mechanisms of AD and might even pave the way for new AD gene therapeutic approaches. Here, we characterize the Aβ binding peptide L3 and its influence on Aβ oligomerization in vitro. Preliminary studies in cell culture demonstrate that stably expressed L3 reduces cell toxicity of externally added Aβ in neuroblastoma cells.

  2. Maximizing the stereochemical diversity of spiro-ladder oligomers.

    PubMed

    Levins, Christopher G; Brown, Zachary Z; Schafmeister, Christian E

    2006-06-22

    [reaction: see text] We introduce all stereoisomers of a bis-amino acid building block derived from trans-4-hydroxy-L-proline. This small library of monomers allows arbitrary stereochemical configuration at any chiral center within our spiro-ladder oligomers. Three tetramer oligomers containing several combinations of the monomers 1-4 were synthesized; we explored the effect of monomer sequence on scaffold conformation by NMR.

  3. Natural killer cells facilitate PRAME-specific T-cell reactivity against neuroblastoma.

    PubMed

    Spel, Lotte; Boelens, Jaap-Jan; van der Steen, Dirk M; Blokland, Nina J G; van Noesel, Max M; Molenaar, Jan J; Heemskerk, Mirjam H M; Boes, Marianne; Nierkens, Stefan

    2015-11-03

    Neuroblastoma is the most common solid tumor in children with an estimated 5-year progression free survival of 20-40% in stage 4 disease. Neuroblastoma actively avoids recognition by natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). Although immunotherapy has gained traction for neuroblastoma treatment, these immune escape mechanisms restrain clinical results. Therefore, we aimed to improve neuroblastoma immunogenicity to further the development of antigen-specific immunotherapy against neuroblastoma. We found that neuroblastoma cells significantly increase surface expression of MHC I upon exposure to active NK cells which thereby readily sensitize neuroblastoma cells for recognition by CTLs. We show that oncoprotein PRAME serves as an immunodominant antigen for neuroblastoma as NK-modulated neuroblastoma cells are recognized by PRAMESLLQHLIGL/A2-specific CTL clones. Furthermore, NK cells induce MHC I upregulation in neuroblastoma through contact-dependent secretion of IFNγ. Our results demonstrate remarkable plasticity in the peptide/MHC I surface expression of neuroblastoma cells, which is reversed when neuroblastoma cells experience innate immune attack by sensitized NK cells. These findings support the exploration of NK cells as adjuvant therapy to enforce neuroblastoma-specific CTL responses.

  4. Subdiffusion of proteins and oligomers on membranes

    NASA Astrophysics Data System (ADS)

    Lepzelter, David; Zaman, Muhammad

    2012-11-01

    Diffusion of proteins on lipid membranes plays a central role in cell signaling processes. From a mathematical perspective, most membrane diffusion processes are explained by the Saffman-Delbrück theory. However, recent studies have suggested a major limitation in the theoretical framework, the lack of complexity in the modeled lipid membrane. Lipid domains (sometimes termed membrane rafts) are known to slow protein diffusion, but there have been no quantitative theoretical examinations of how much diffusion is slowed in a general case. We provide an overall theoretical framework for confined-domain ("corralled") diffusion. Further, there have been multiple apparent contradictions of the basic conclusions of Saffman and Delbrück, each involving cases in which a single protein or an oligomer has multiple transmembrane regions passing through a lipid phase barrier. We present a set of corrections to the Saffman-Delbrück theory to account for these experimental observations. Our corrections are able to provide a quantitative explanation of numerous cellular signaling processes that have been considered beyond the scope of the Saffman-Delbrück theory, and may be extendable to other forms of subdiffusion.

  5. Amphipathic helices from aromatic amino acid oligomers.

    PubMed

    Gillies, Elizabeth R; Dolain, Christel; Léger, Jean-Michel; Huc, Ivan

    2006-10-13

    Synthetic helical foldamers are of significant interest for mimicking the conformations of naturally occurring molecules while at the same time introducing new structures and properties. In particular, oligoamides of aromatic amino acids are attractive targets, as their folding is highly predictable and stable. Here the design and synthesis of new amphipathic helical oligoamides based on quinoline-derived amino acids having either hydrophobic or cationic side chains are described. Their structures were characterized in the solid state by single-crystal X-ray diffraction and in solution by NMR. Results of these studies suggest that an oligomer as short as a pentamer folds into a stable helical conformation in protic solvents, including MeOH and H(2)O. The introduction of polar proteinogenic side chains to these foldamers, as described here for the first time, promises to provide possibilities for the biological applications of these molecules. In particular, amphipathic helices are versatile targets to explore due to their importance in a variety of biological processes, and the unique structure and properties of the quinoline-derived oligoamides may allow new structure-activity relationships to be developed.

  6. UBE4B Levels Are Correlated with Clinical Outcomes in Neuroblastoma Patients and with Altered Neuroblastoma Cell Proliferation and Sensitivity to EGFR Inhibitors

    PubMed Central

    Zage, Peter E.; Sirisaengtaksin, Natalie; Liu, Yin; Gireud, Monica; Brown, Brandon S.; Palla, Shana; Richards, Kristen N.; Hughes, Dennis P.M.; Bean, Andrew J.

    2012-01-01

    Background The UBE4B gene, located on chromosome 1p36, encodes a ubiquitin ligase that interacts with Hrs, a protein involved in EGFR trafficking, suggesting a link between EGFR trafficking and neuroblastoma pathogenesis. We have analyzed the roles of UBE4B in the outcomes of neuroblastoma patients and in neuroblastoma tumor cell proliferation, EGFR trafficking, and response to EGFR inhibition. Methods We examined the association of UBE4B expression with neuroblastoma patient survival using available microarray datasets. We measured UBE4B and EGFR protein levels in patient tumor samples and EGFR degradation rates in neuroblastoma cell lines and analyzed the effects of UBE4B on neuroblastoma tumor cell growth. The effects of the EGFR inhibitor cetuximab were examined in neuroblastoma cells expressing wild-type and mutant UBE4B. Results Low UBE4B gene expression is associated with poor outcomes in patients with neuroblastoma. UBE4B overexpression reduced neuroblastoma tumor cell proliferation, and UBE4B expression was inversely related to EGFR expression in patient tumor samples. EGFR degradation rates correlated with cellular UBE4B levels. Enhanced expression of catalytically active UBE4B resulted in reduced sensitivity to EGFR inhibition. Conclusions We have demonstrated associations between UBE4B expression and neuroblastoma patient outcomes and between UBE4B and EGFR expression in neuroblastoma tumor samples. Moreover, levels of UBE4B influenced neuroblastoma tumor cell proliferation, EGFR degradation, and response to EGFR inhibition. These results suggest UBE4B-mediated GFR trafficking may contribute to the poor prognosis of neuroblastoma tumors with 1p36 deletions, and that UBE4B expression may be a marker that can predict responses of neuroblastoma tumors to treatment. PMID:22990745

  7. Identification of GALNT14 as a novel neuroblastoma predisposition gene

    PubMed Central

    Chierici, Marco; Furlanello, Cesare; Conte, Massimo; Garaventa, Alberto; Croce, Michela; Ferrini, Silvano; Tonini, Gian Paolo; Longo, Luca

    2015-01-01

    Although several genes have been associated to neuroblastoma (NB) predisposition and aggressiveness, further genes are likely involved in the overall risk of developing this pediatric cancer. We thus carried out whole-exome sequencing on germline DNA from two affected second cousins and two unlinked healthy relatives from a large family with hereditary NB. Bioinformatics analysis revealed 6999 variations that were exclusively shared by the two familial NB cases. We then considered for further analysis all unknown or rare missense mutations, which involved 30 genes. Validation and analysis of these variants led to identify a GALNT14 mutation (c.802C > T) that properly segregated in the family and was predicted as functionally damaging by PolyPhen2 and SIFT. Screening of 8 additional NB families and 167 sporadic cases revealed this GALNT14 mutation in the tumors of two twins and in the germline of one sporadic NB patient. Moreover, a significant association between MYCN amplification and GALNT14 expression was observed in both NB patients and cell lines. Also, GALNT14 higher expression is associated with a worse OS in a public dataset of 88 NB samples (http://r2.amc.nl). GALNT14 is a member of the polypeptide N-acetylgalactosaminyl-transferase family and maps closely to ALK on 2p23.1, a region we previously discovered in linkage with NB in the family here considered. The aberrant function of GALNTs can result in altered glycoproteins that have been associated to the promotion of tumor aggressiveness in various cancers. Although rare, the recurrence of this mutation suggests GALNT14 as a novel gene potentially involved in NB predisposition. PMID:26309160

  8. Telomerase activation by genomic rearrangements in high-risk neuroblastoma

    PubMed Central

    Peifer, Martin; Hertwig, Falk; Roels, Frederik; Dreidax, Daniel; Gartlgruber, Moritz; Menon, Roopika; Krämer, Andrea; Roncaioli, Justin L.; Sand, Frederik; Heuckmann, Johannes M.; Ikram, Fakhera; Schmidt, Rene; Ackermann, Sandra; Engesser, Anne; Kahlert, Yvonne; Vogel, Wenzel; Altmüller, Janine; Nürnberg, Peter; Thierry-Mieg, Jean; Thierry-Mieg, Danielle; Mariappan, Aruljothi; Heynck, Stefanie; Mariotti, Erika; Henrich, Kai-Oliver; Glöckner, Christian; Bosco, Graziella; Leuschner, Ivo; Schweiger, Michal R.; Savelyeva, Larissa; Watkins, Simon C.; Shao, Chunxuan; Bell, Emma; Höfer, Thomas; Achter, Viktor; Lang, Ulrich; Theissen, Jessica; Volland, Ruth; Saadati, Maral; Eggert, Angelika; de Wilde, Bram; Berthold, Frank; Peng, Zhiyu; Zhao, Chen; Shi, Leming; Ortmann, Monika; Büttner, Reinhard; Perner, Sven; Hero, Barbara; Schramm, Alexander; Schulte, Johannes H.; Herrmann, Carl; O’Sullivan, Roderick J.; Westermann, Frank; Thomas, Roman K.; Fischer, Matthias

    2016-01-01

    Neuroblastoma is a malignant paediatric tumour of the sympathetic nervous system1. Roughly half of these tumours regress spontaneously or are cured by limited therapy. By contrast, high-risk neuroblastomas have an unfavourable clinical course despite intensive multimodal treatment, and their molecular basis has remained largely elusive2–4. Here we have performed whole-genome sequencing of 56 neuroblastomas (high-risk, n = 39; low-risk, n = 17) and discovered recurrent genomic rearrangements affecting a chromosomal region at 5p15.33 proximal of the telomerase reverse transcriptase gene (TERT). These rearrangements occurred only in high-risk neuroblastomas (12/39, 31%) in a mutually exclusive fashion with MYCN amplifications and ATRX mutations, which are known genetic events in this tumour type1,2,5. In an extended case series (n = 217), TERT rearrangements defined a subgroup of high-risk tumours with particularly poor outcome. Despite a large structural diversity of these rearrangements, they all induced massive transcriptional upregulation of TERT. In the remaining high-risk tumours, TERT expression was also elevated in MYCN-amplified tumours, whereas alternative lengthening of telomeres was present in neuroblastomas without TERT or MYCN alterations, suggesting that telomere lengthening represents a central mechanism defining this subtype. The 5p15.33 rearrangements juxtapose the TERT coding sequence to strong enhancer elements, resulting in massive chromatin remodelling and DNA methylation of the affected region. Supporting a functional role of TERT, neuroblastoma cell lines bearing rearrangements or amplified MYCN exhibited both upregulated TERT expression and enzymatic telomerase activity. In summary, our findings show that remodelling of the genomic context abrogates transcriptional silencing of TERT in high-risk neuroblastoma and places telomerase activation in the centre of transformation in a large fraction of these tumours. PMID:26466568

  9. Telomerase activation by genomic rearrangements in high-risk neuroblastoma.

    PubMed

    Peifer, Martin; Hertwig, Falk; Roels, Frederik; Dreidax, Daniel; Gartlgruber, Moritz; Menon, Roopika; Krämer, Andrea; Roncaioli, Justin L; Sand, Frederik; Heuckmann, Johannes M; Ikram, Fakhera; Schmidt, Rene; Ackermann, Sandra; Engesser, Anne; Kahlert, Yvonne; Vogel, Wenzel; Altmüller, Janine; Nürnberg, Peter; Thierry-Mieg, Jean; Thierry-Mieg, Danielle; Mariappan, Aruljothi; Heynck, Stefanie; Mariotti, Erika; Henrich, Kai-Oliver; Gloeckner, Christian; Bosco, Graziella; Leuschner, Ivo; Schweiger, Michal R; Savelyeva, Larissa; Watkins, Simon C; Shao, Chunxuan; Bell, Emma; Höfer, Thomas; Achter, Viktor; Lang, Ulrich; Theissen, Jessica; Volland, Ruth; Saadati, Maral; Eggert, Angelika; de Wilde, Bram; Berthold, Frank; Peng, Zhiyu; Zhao, Chen; Shi, Leming; Ortmann, Monika; Büttner, Reinhard; Perner, Sven; Hero, Barbara; Schramm, Alexander; Schulte, Johannes H; Herrmann, Carl; O'Sullivan, Roderick J; Westermann, Frank; Thomas, Roman K; Fischer, Matthias

    2015-10-29

    Neuroblastoma is a malignant paediatric tumour of the sympathetic nervous system. Roughly half of these tumours regress spontaneously or are cured by limited therapy. By contrast, high-risk neuroblastomas have an unfavourable clinical course despite intensive multimodal treatment, and their molecular basis has remained largely elusive. Here we have performed whole-genome sequencing of 56 neuroblastomas (high-risk, n = 39; low-risk, n = 17) and discovered recurrent genomic rearrangements affecting a chromosomal region at 5p15.33 proximal of the telomerase reverse transcriptase gene (TERT). These rearrangements occurred only in high-risk neuroblastomas (12/39, 31%) in a mutually exclusive fashion with MYCN amplifications and ATRX mutations, which are known genetic events in this tumour type. In an extended case series (n = 217), TERT rearrangements defined a subgroup of high-risk tumours with particularly poor outcome. Despite a large structural diversity of these rearrangements, they all induced massive transcriptional upregulation of TERT. In the remaining high-risk tumours, TERT expression was also elevated in MYCN-amplified tumours, whereas alternative lengthening of telomeres was present in neuroblastomas without TERT or MYCN alterations, suggesting that telomere lengthening represents a central mechanism defining this subtype. The 5p15.33 rearrangements juxtapose the TERT coding sequence to strong enhancer elements, resulting in massive chromatin remodelling and DNA methylation of the affected region. Supporting a functional role of TERT, neuroblastoma cell lines bearing rearrangements or amplified MYCN exhibited both upregulated TERT expression and enzymatic telomerase activity. In summary, our findings show that remodelling of the genomic context abrogates transcriptional silencing of TERT in high-risk neuroblastoma and places telomerase activation in the centre of transformation in a large fraction of these tumours.

  10. Correlation between the International Neuroblastoma Pathology Classification and genomic signature in neuroblastoma.

    PubMed

    Nakazawa, Atsuko; Haga, Chizuko; Ohira, Miki; Okita, Hajime; Kamijo, Takehiko; Nakagawara, Akira

    2015-06-01

    The International Neuroblastoma Pathology Classification (INPC) has a prognostic impact that distinguishes two categories of neuroblastoma: favorable histology (FH) and unfavorable histology (UH). We analyzed 92 cases of neuroblastoma with the INPC evaluation and genomic grouping to investigate the correlation between the INPC and genomic signature, together with their prognostic significance. The correlation of UH tumor and partial gains and/or losses (GGP), as well as the correlation of FH tumor and whole gains and/or losses (GGW), was statistically significant. Both UH and GGP were late-onset (median age at diagnosis was 36 and 48 months, respectively) and had poor prognosis (overall survival rate [OS], 43.1% and 42.4%, respectively). In contrast, both FH and GGW were early-onset (median age at diagnosis, 4 and 9.5 months, respectively) and had favorable prognosis (OS, 88.6% and 87.1%, respectively). Unfavorable histology and GGP had significantly inferior OS compared to FH and GGW. Overall survival was not significantly different among the genomic groups in FH; however, it was inferior in UH with GGP. In UH with a single copy MYCN, genomic subgroups GGP2s (both 1p and 11q losses) and GGP3s (partial 11q loss but not 1p loss) indicated significantly poor prognosis compared to GGP4s (no partial 1p and 11q loss). As INPC and MYCN amplification were found to be the most powerful prognostic biological factors, they should be included with genomic grouping as treatment stratification for patients with UH and single copy of MYCN.

  11. Renal Function Outcomes of High-risk Neuroblastoma Patients Undergoing Radiation Therapy.

    PubMed

    Beckham, Thomas H; Casey, Dana L; LaQuaglia, Michael P; Kushner, Brian H; Modak, Shakeel; Wolden, Suzanne L

    2017-10-01

    To analyze the renal function outcomes in patients undergoing radiation therapy for neuroblastoma. The clinical metrics of renal function were analyzed in patients undergoing radiation therapy for high-risk neuroblastoma from 2000 to 2015. The blood urea nitrogen (BUN) and creatinine values before radiation therapy were compared with last available follow-up values and analyzed with the clinical circumstances, including follow-up length, age at primary irradiation, nephrectomy, and radiation technique. The creatinine clearance was estimated using the Shull method. With a median follow-up period of 3.5 years, none of the 266 patients studied developed a chronic renal insufficiency. For all patients, the creatinine level increased from 0.44 to 0.51 mg/dL and the BUN increased from 10.53 to 15.52 mg/dL. Three patients required antihypertensive medication. The patients who underwent intensity modulated radiation therapy did not experience increased creatinine levels during the follow-up period; however, they had a reduced median follow-up length compared with patients treated with anteroposterior/posteroanterior beams (4.7 vs 3.3 years). A longer follow-up length was associated with an increased creatinine level. The preradiation therapy creatinine level increased with patient age, similar to that of the last follow-up creatinine level, suggesting that the changes in creatinine could likely be explained by physiologic increases associated with aging rather than radiation-induced renal damage. The creatinine clearance did not decrease in any circumstance. The present cohort had excellent renal outcomes after radiation therapy for neuroblastoma. No patient developed chronic renal insufficiency, and the small increases in BUN and creatinine we observed correlated, as expected, with increases in patient age. The results of the present study revealed a possible advantage for intensity modulated radiation therapy in preserving renal function; however, the follow

  12. Interaction between optineurin and Rab1a regulates autophagosome formation in neuroblastoma cells.

    PubMed

    Song, Gyun Jee; Jeon, Hyejin; Seo, Minchul; Jo, Myungjin; Suk, Kyoungho

    2017-08-26

    Optineurin (OPTN) is an autophagy receptor protein that has been implicated in glaucoma and amyotrophic lateral sclerosis. OPTN-mediated autophagy is a complex process involving many autophagy-regulating proteins. Autophagy plays a critical role in removing damaged organelles, intracellular pathogens, and protein aggregates to maintain cellular homeostasis. We identified Ypt1 as a novel interaction partner of OPTN by performing a large-scale yeast-human two-hybrid assay. Coimmunoprecipitation assay showed that OPTN interacted with Rab1, the mammalian homolog of yeast Ypt1, in N2a mouse neuroblastoma cell line. We confirmed this interaction by confocal microscopy showing intracellular colocalization of the two proteins. We observed that a zinc finger domain of OPTN is important for Rab1a binding. Rab1a activity is also required for the binding with OPTN. The role of the OPTN-Rab1a complex in neuronal autophagy was determined by measuring the translocation of microtubule-associated protein light chain 3-EGFP to autophagosomes. In N2a cells, OPTN-induced autophagosome formation was inhibited by Rab1a knockdown, indicating the important role of OPTN-Rab1a interaction in neuronal autophagy processes. Similarly, in N2a cells overexpressing Rab1a, serum starvation-induced formation of autophagosome was enhanced, while OPTN knockdown reduced the Rab1a-induced autophagy. These results show that the OPTN-Rab1a complex modulates autophagosome formation in neuroblastoma cells. © 2017 Wiley Periodicals, Inc.

  13. Weightlessness influences the cytoskeleton and ROS level in SH-SY5Y neuroblastoma cells

    NASA Astrophysics Data System (ADS)

    Bo, Wang; Lina, Qu; Yingxian, Li; Qi, Li; Lei, Bi; Yinghui, Li

    During Spaceflight the nerve system of astronauts was obviously influenced To investigate how gravity effects nerve system the SH-SY5Y neuroblastoma cells were taken as research object By utilizing clinostat and parabolic flight for the model of gravity changing the level of reactive oxygen species was assayed in different time under simulated microgravity the cytomorphology and cytoskeleton of SH-SY5Y neuroblastoma cells were also observed after parabolic flight and clinostat by the conventional and the confocal laser scanning microscope The data showed that ROS level was enhanced and the cytoskeleton was damaged which microfilaments and microtubules were highly disorganized the cell shape was deteriorated under simulated microgravity indicating the relativity between the ROS level fluctuating and cytoskeleton changing It illuminates signal transduction disturbed by oxidative stress also regulates the cytoskeleton changing in SH-SY5Y cells The results suggest the cytoskeleton which is the receptor for sensing gravity was also regulated by cellular redox state which clues on the complexity of cell for self-adjusting to gravity changing

  14. Formation and Toxicity of Soluble Polyglutamine Oligomers in Living Cells

    PubMed Central

    Lajoie, Patrick; Snapp, Erik Lee

    2010-01-01

    Background Aggregation and cytotoxicity of mutant proteins containing an expanded number of polyglutamine (polyQ) repeats is a hallmark of several diseases, including Huntington's disease (HD). Within cells, mutant Huntingtin (mHtt) and other polyglutamine expansion mutant proteins exist as monomers, soluble oligomers, and insoluble inclusion bodies (IBs). Determining which of these forms constitute a toxic species has proven difficult. Recent studies support a role for IBs as a cellular coping mechanism to sequester levels of potentially toxic soluble monomeric and oligomeric species of mHtt. Methodology/Principal Findings When fused to a fluorescent reporter (GFP) and expressed in cells, the soluble monomeric and oligomeric polyglutamine species are visually indistinguishable. Here, we describe two complementary biophysical fluorescence microscopy techniques to directly detect soluble polyglutamine oligomers (using Htt exon 1 or Httex1) and monitor their fates in live cells. Photobleaching analyses revealed a significant reduction in the mobilities of mHttex1 variants consistent with their incorporation into soluble microcomplexes. Similarly, when fused to split-GFP constructs, both wildtype and mHttex1 formed oligomers, as evidenced by the formation of a fluorescent reporter. Only the mHttex1 split-GFP oligomers assembled into IBs. Both FRAP and split-GFP approaches confirmed the ability of mHttex1 to bind and incorporate wildtype Htt into soluble oligomers. We exploited the irreversible binding of split-GFP fragments to forcibly increase levels of soluble oligomeric mHttex1. A corresponding increase in the rate of IBs formation and the number formed was observed. Importantly, higher levels of soluble mHttex1 oligomers significantly correlated with increased mutant cytotoxicity, independent of the presence of IBs. Conclusions/Significance Our study describes powerful and sensitive tools for investigating soluble oligomeric forms of expanded polyglutamine

  15. Density functional theory study of neutral and oxidized thiophene oligomers

    NASA Astrophysics Data System (ADS)

    Dai, Yafei; Wei, Chengwei; Blaisten-Barojas, Estela

    2013-11-01

    The effect of oxidation on the energetics and structure of thiophene (Th) oligomers is studied with density functional theory at the B3PW91/6-311++G(d,p) level. Neutral n-Th oligomers (2 < n < 13) are gently curved planar chains. Ionization potential and electron affinity results show that n-Th oligomers are easier to be oxidized as their chain length increases. Oxidation states +2, +4, +6, and +8 are energetically stable in 12-Th. Upon oxidation the conjugated backbone of 12-Th switches from extended benzenoid phase to quinoid phase localized on groups of monomers regularly spaced along the chain. Oxidized states +2, +4, +6, and +8 of 12-Th display two +1e localized at the ends of their chains only because of the finite size of the chains. In 12-Th this end-effect extends over the two terminal monomers forming a positive-negative charge duet. This peculiar charge localization makes n-Th oligomers different from other conducting polymers with similar structure, such as polypyrrole. The spectrum of single-electron molecular states of oxidized 12-Th displays two localized single-electron states in the HOMO-LUMO energy gap per +2 oxidation state. Oligothiophene 12-Th doped with F atoms at 1:2 concentration presents a charge transfer of 3.4 e from oligomer to dopants that increases to 4.8 e in the presence of solvent. The charge distribution in these F-doped oligomers is similar to the +4 oxidation state of 12-Th. It is predicted that dopants produce an enhanced charge transfer localized in the proximity of their locations enhancing the formation of bipolarons in the central part of the oligomer chain.

  16. Functional Diversity of Isoamylase Oligomers: The ISA1 Homo-Oligomer Is Essential for Amylopectin Biosynthesis in Rice Endosperm1[W][OA

    PubMed Central

    Utsumi, Yoshinori; Utsumi, Chikako; Sawada, Takayuki; Fujita, Naoko; Nakamura, Yasunori

    2011-01-01

    Rice (Oryza sativa) endosperm has two isoamylase (ISA) oligomers, ISA1 homo-oligomer and ISA1-ISA2 hetero-oligomer. To examine their contribution to starch synthesis, expression of the ISA1 or ISA2 gene was differently regulated in various transgenic plants. Although suppression of ISA2 gene expression caused the endosperm to have only the homo-oligomer, no significant effects were detected on the starch phenotypes. In contrast, ISA2 overexpression led to endosperm having only the hetero-oligomer, and starch synthesis in the endosperm was drastically impaired, both quantitatively and qualitatively, because the starch was devoid of typical starch features, such as thermal and x-ray diffraction properties, and water-soluble highly branched maltodextrins were accumulated. In the ISA2 overexpressed line, about 60% to 70% of the ISA1-ISA2 hetero-oligomer was bound to starch, while the ISA homo- and hetero-oligomers from the wild type were mostly present in the soluble form at the early milking stage of the endosperm. Detailed analysis of the relative amounts of homo- and hetero-oligomers in various lines also led us to the conclusion that the ISA1 homo-oligomer is essential, but not the ISA1-ISA2 oligomer, for starch production in rice endosperm. The relative amounts of ISA1 and ISA2 proteins were shown to determine the ratio of both oligomers and the stoichiometry of both ISAs in the hetero-oligomer. It was noted when compared with the homo-oligomer that all the hetero-oligomers from rice endosperm and leaf and potato (Solanum tuberosum) tuber were much more stable at 40°C. This study provides substantial data on the structural and functional diversity of ISA oligomers between plant tissues and species. PMID:21436381

  17. Neuroblastoma patient-derived orthotopic xenografts retain metastatic patterns and geno- and phenotypes of patient tumours.

    PubMed

    Braekeveldt, Noémie; Wigerup, Caroline; Gisselsson, David; Mohlin, Sofie; Merselius, My; Beckman, Siv; Jonson, Tord; Börjesson, Anna; Backman, Torbjörn; Tadeo, Irene; Berbegall, Ana P; Ora, Ingrid; Navarro, Samuel; Noguera, Rosa; Påhlman, Sven; Bexell, Daniel

    2015-03-01

    Neuroblastoma is a childhood tumour with heterogeneous characteristics and children with metastatic disease often have a poor outcome. Here we describe the establishment of neuroblastoma patient-derived xenografts (PDXs) by orthotopic implantation of viably cryopreserved or fresh tumour explants of patients with high risk neuroblastoma into immunodeficient mice. In vivo tumour growth was monitored by magnetic resonance imaging and fluorodeoxyglucose-positron emission tomography. Neuroblastoma PDXs retained the undifferentiated histology and proliferative capacity of their corresponding patient tumours. The PDXs expressed neuroblastoma markers neural cell adhesion molecule, chromogranin A, synaptophysin and tyrosine hydroxylase. Whole genome genotyping array analyses demonstrated that PDXs retained patient-specific chromosomal aberrations such as MYCN amplification, deletion of 1p and gain of chromosome 17q. Thus, neuroblastoma PDXs recapitulate the hallmarks of high-risk neuroblastoma in patients. PDX-derived cells were cultured in serum-free medium where they formed free-floating neurospheres, expressed neuroblastoma gene markers MYCN, CHGA, TH, SYP and NPY, and retained tumour-initiating and metastatic capacity in vivo. PDXs showed much higher degree of infiltrative growth and distant metastasis as compared to neuroblastoma SK-N-BE(2)c cell line-derived orthotopic tumours. Importantly, the PDXs presented with bone marrow involvement, a clinical feature of aggressive neuroblastoma. Thus, neuroblastoma PDXs serve as clinically relevant models for studying and targeting high-risk metastatic neuroblastoma. © 2014 The Authors. Published by Wiley Periodicals, Inc. on behalf of UICC.

  18. Stromal heparan sulfate differentiates neuroblasts to suppress neuroblastoma growth.

    PubMed

    Knelson, Erik H; Gaviglio, Angela L; Nee, Jasmine C; Starr, Mark D; Nixon, Andrew B; Marcus, Stephen G; Blobe, Gerard C

    2014-07-01

    Neuroblastoma prognosis is dependent on both the differentiation state and stromal content of the tumor. Neuroblastoma tumor stroma is thought to suppress neuroblast growth via release of soluble differentiating factors. Here, we identified critical growth-limiting components of the differentiating stroma secretome and designed a potential therapeutic strategy based on their central mechanism of action. We demonstrated that expression of heparan sulfate proteoglycans (HSPGs), including TβRIII, GPC1, GPC3, SDC3, and SDC4, is low in neuroblasts and high in the Schwannian stroma. Evaluation of neuroblastoma patient microarray data revealed an association between TGFBR3, GPC1, and SDC3 expression and improved prognosis. Treatment of neuroblastoma cell lines with soluble HSPGs promoted neuroblast differentiation via FGFR1 and ERK phosphorylation, leading to upregulation of the transcription factor inhibitor of DNA binding 1 (ID1). HSPGs also enhanced FGF2-dependent differentiation, and the anticoagulant heparin had a similar effect, leading to decreased neuroblast proliferation. Dissection of individual sulfation sites identified 2-O, 3-O-desulfated heparin (ODSH) as a differentiating agent, and treatment of orthotopic xenograft models with ODSH suppressed tumor growth and metastasis without anticoagulation. These studies support heparan sulfate signaling intermediates as prognostic and therapeutic neuroblastoma biomarkers and demonstrate that tumor stroma biology can inform the design of targeted molecular therapeutics.

  19. AKT pathway in neuroblastoma and its therapeutic implication.

    PubMed

    Sartelet, Hervé; Oligny, Luc-Laurier; Vassal, Gilles

    2008-05-01

    Neuroblastoma is a frequent pediatric tumor with a poor outcome in spite of aggressive treatment, even with autologous hematopoietic stem cell transplantation. The overall cure rate of 40% is unsatisfactory and new therapeutic strategies are urgently needed. AKT is a major mediator of survival signals that protect cells from apoptosis and regulate cell proliferation. The AKT signaling network is considered a key determinant of the biological aggressiveness of these tumors. In this article, the authors discuss the relation between activators of AKT in neuroblastoma, in particular, growth factors such as IGF-1, TRK, GDNF, VEGF and EGF, and their effects on tumoral proliferation, differentiation and apoptosis. Numerous other proteins interact with AKT in neuroblastoma. Several are relatively well characterized, such as PTEN and retinoic acid; others are new and potentially interesting, such as PKC and anaplastic lymphoma kinase. Specific inhibition of AKT has been studied, such as with LY249002, with significant effects on cell progression and apoptosis in tumoral cells. Moreover, a series of new drugs, such as geldanamycin and rapamycin, directly modify the expression of AKT in tumoral cells. Few specific inhibitors of AKT are available; less specific inhibitors are probably unsuitable therapeutic options in neuroblastoma. Drugs with a direct or indirect inhibitory effect on the AKT pathway, used alone or in combination with other drugs, seem to hold great promise as a new therapeutic modality in neuroblastoma.

  20. Neuroblastoma, a Paradigm for Big Data Science in Pediatric Oncology

    PubMed Central

    Salazar, Brittany M.; Balczewski, Emily A.; Ung, Choong Yong; Zhu, Shizhen

    2016-01-01

    Pediatric cancers rarely exhibit recurrent mutational events when compared to most adult cancers. This poses a challenge in understanding how cancers initiate, progress, and metastasize in early childhood. Also, due to limited detected driver mutations, it is difficult to benchmark key genes for drug development. In this review, we use neuroblastoma, a pediatric solid tumor of neural crest origin, as a paradigm for exploring “big data” applications in pediatric oncology. Computational strategies derived from big data science–network- and machine learning-based modeling and drug repositioning—hold the promise of shedding new light on the molecular mechanisms driving neuroblastoma pathogenesis and identifying potential therapeutics to combat this devastating disease. These strategies integrate robust data input, from genomic and transcriptomic studies, clinical data, and in vivo and in vitro experimental models specific to neuroblastoma and other types of cancers that closely mimic its biological characteristics. We discuss contexts in which “big data” and computational approaches, especially network-based modeling, may advance neuroblastoma research, describe currently available data and resources, and propose future models of strategic data collection and analyses for neuroblastoma and other related diseases. PMID:28035989

  1. Advances in Risk Classification and Treatment Strategies for Neuroblastoma

    PubMed Central

    Pinto, Navin R.; Applebaum, Mark A.; Volchenboum, Samuel L.; Matthay, Katherine K.; London, Wendy B.; Ambros, Peter F.; Nakagawara, Akira; Berthold, Frank; Schleiermacher, Gudrun; Park, Julie R.; Valteau-Couanet, Dominique; Pearson, Andrew D.J.

    2015-01-01

    Risk-based treatment approaches for neuroblastoma have been ongoing for decades. However, the criteria used to define risk in various institutional and cooperative groups were disparate, limiting the ability to compare clinical trial results. To mitigate this problem and enhance collaborative research, homogenous pretreatment patient cohorts have been defined by the International Neuroblastoma Risk Group classification system. During the past 30 years, increasingly intensive, multimodality approaches have been developed to treat patients who are classified as high risk, whereas patients with low- or intermediate-risk neuroblastoma have received reduced therapy. This treatment approach has resulted in improved outcome, although survival for high-risk patients remains poor, emphasizing the need for more effective treatments. Increased knowledge regarding the biology and genetic basis of neuroblastoma has led to the discovery of druggable targets and promising, new therapeutic approaches. Collaborative efforts of institutions and international cooperative groups have led to advances in our understanding of neuroblastoma biology, refinements in risk classification, and stratified treatment strategies, resulting in improved outcome. International collaboration will be even more critical when evaluating therapies designed to treat small cohorts of patients with rare actionable mutations. PMID:26304901

  2. Advances in Risk Classification and Treatment Strategies for Neuroblastoma.

    PubMed

    Pinto, Navin R; Applebaum, Mark A; Volchenboum, Samuel L; Matthay, Katherine K; London, Wendy B; Ambros, Peter F; Nakagawara, Akira; Berthold, Frank; Schleiermacher, Gudrun; Park, Julie R; Valteau-Couanet, Dominique; Pearson, Andrew D J; Cohn, Susan L

    2015-09-20

    Risk-based treatment approaches for neuroblastoma have been ongoing for decades. However, the criteria used to define risk in various institutional and cooperative groups were disparate, limiting the ability to compare clinical trial results. To mitigate this problem and enhance collaborative research, homogenous pretreatment patient cohorts have been defined by the International Neuroblastoma Risk Group classification system. During the past 30 years, increasingly intensive, multimodality approaches have been developed to treat patients who are classified as high risk, whereas patients with low- or intermediate-risk neuroblastoma have received reduced therapy. This treatment approach has resulted in improved outcome, although survival for high-risk patients remains poor, emphasizing the need for more effective treatments. Increased knowledge regarding the biology and genetic basis of neuroblastoma has led to the discovery of druggable targets and promising, new therapeutic approaches. Collaborative efforts of institutions and international cooperative groups have led to advances in our understanding of neuroblastoma biology, refinements in risk classification, and stratified treatment strategies, resulting in improved outcome. International collaboration will be even more critical when evaluating therapies designed to treat small cohorts of patients with rare actionable mutations. © 2015 by American Society of Clinical Oncology.

  3. TIAM1 variants improve clinical outcome in neuroblastoma.

    PubMed

    Sanmartín, Elena; Yáñez, Yania; Fornés-Ferrer, Victoria; Zugaza, José L; Cañete, Adela; Castel, Victoria; Font de Mora, Jaime

    2017-07-11

    Identification of tumor driver mutations is crucial for improving clinical outcome using a personalized approach to the treatment of cancer. Neuroblastoma is a tumor of the peripheral sympathetic nervous system for which only a few driver alterations have been described including MYCN amplification and ALK mutations. We assessed 106 primary neuroblastoma tumors by next generation sequencing using a customized amplicon-based gene panel. Our results reveal that genetic variants in TIAM1 gene associate with better clinical outcome, suggesting a role for these TIAM1 variants in preventing progression of this disease. The detected variants are located within the different domains of TIAM1 that signal to the upstream regulator RAS and downstream effector molecules MYC and RAC, which are all implicated in neuroblastoma etiology and progression. Clinical outcome was improved in tumors where a TIAM1 variant was present concomitantly with either ALK mutation or MYCN amplification. Given the function of these signaling molecules in cell survival, proliferation, differentiation and neurite outgrowth, our data suggest that the TIAM1-mediated network is essential to neuroblastoma and thus, inhibiting TIAM1 reflects a rational strategy for improving therapy efficacy in neuroblastoma.

  4. TIAM1 variants improve clinical outcome in neuroblastoma

    PubMed Central

    Sanmartín, Elena; Yáñez, Yania; Fornés-Ferrer, Victoria; Zugaza, José L.; Cañete, Adela; Castel, Victoria; de Mora, Jaime Font

    2017-01-01

    Identification of tumor driver mutations is crucial for improving clinical outcome using a personalized approach to the treatment of cancer. Neuroblastoma is a tumor of the peripheral sympathetic nervous system for which only a few driver alterations have been described including MYCN amplification and ALK mutations. We assessed 106 primary neuroblastoma tumors by next generation sequencing using a customized amplicon-based gene panel. Our results reveal that genetic variants in TIAM1 gene associate with better clinical outcome, suggesting a role for these TIAM1 variants in preventing progression of this disease. The detected variants are located within the different domains of TIAM1 that signal to the upstream regulator RAS and downstream effector molecules MYC and RAC, which are all implicated in neuroblastoma etiology and progression. Clinical outcome was improved in tumors where a TIAM1 variant was present concomitantly with either ALK mutation or MYCN amplification. Given the function of these signaling molecules in cell survival, proliferation, differentiation and neurite outgrowth, our data suggest that the TIAM1-mediated network is essential to neuroblastoma and thus, inhibiting TIAM1 reflects a rational strategy for improving therapy efficacy in neuroblastoma. PMID:28423360

  5. Day care, childhood infections, and risk of neuroblastoma

    PubMed Central

    Menegaux, Florence; Olshan, Andrew F.; Neglia, Joseph P.; Pollock, Brad H.; Bondy, Melissa L.

    2004-01-01

    Neuroblastoma is the most common cancer in infants worldwide but little is known about its etiology. Infectious etiologies involving the immune system have been hypothesized for some childhood cancers, especially leukemia, but the role of infectious agents in neuroblastoma has not been fully investigated. We used data from a large case-control study conducted by the Children’s Oncology Group over the period 1992–1994 in United States or Canada to investigate if there was any relation between day care attendance, childhood infections, allergies and neuroblastoma. We interviewed mothers of 538 case and 504 age-matched control children by telephone about several factors including pregnancy, medical history, lifestyle, and childhood medical conditions and exposures. Our results suggested decreased risks associated with day care attendance (odds ratio (OR) = 0.81; 95% confidence interval ([CI]: 0.56–1.17), childhood infectious diseases (chickenpox, mumps, red and German measles) (OR = 0.60;CI: 0.39–0.93) and allergies (OR = 0.68; CI: 0.44–1.07). We found reduced neuroblastoma risk associated with markers of potential childhood infections, which suggests a possible role of infectious agents in neuroblastoma etiology. Future epidemiologic studies should incorporate more direct infection data. PMID:15105177

  6. Neuroblastoma, a Paradigm for Big Data Science in Pediatric Oncology.

    PubMed

    Salazar, Brittany M; Balczewski, Emily A; Ung, Choong Yong; Zhu, Shizhen

    2016-12-27

    Pediatric cancers rarely exhibit recurrent mutational events when compared to most adult cancers. This poses a challenge in understanding how cancers initiate, progress, and metastasize in early childhood. Also, due to limited detected driver mutations, it is difficult to benchmark key genes for drug development. In this review, we use neuroblastoma, a pediatric solid tumor of neural crest origin, as a paradigm for exploring "big data" applications in pediatric oncology. Computational strategies derived from big data science-network- and machine learning-based modeling and drug repositioning-hold the promise of shedding new light on the molecular mechanisms driving neuroblastoma pathogenesis and identifying potential therapeutics to combat this devastating disease. These strategies integrate robust data input, from genomic and transcriptomic studies, clinical data, and in vivo and in vitro experimental models specific to neuroblastoma and other types of cancers that closely mimic its biological characteristics. We discuss contexts in which "big data" and computational approaches, especially network-based modeling, may advance neuroblastoma research, describe currently available data and resources, and propose future models of strategic data collection and analyses for neuroblastoma and other related diseases.

  7. A Metastatic Mouse Model Identifies Genes That Regulate Neuroblastoma Metastasis.

    PubMed

    Seong, Bo Kyung A; Fathers, Kelly E; Hallett, Robin; Yung, Christina K; Stein, Lincoln D; Mouaaz, Samar; Kee, Lynn; Hawkins, Cynthia E; Irwin, Meredith S; Kaplan, David R

    2017-02-01

    Metastatic relapse is the major cause of death in pediatric neuroblastoma, where there remains a lack of therapies to target this stage of disease. To understand the molecular mechanisms mediating neuroblastoma metastasis, we developed a mouse model using intracardiac injection and in vivo selection to isolate malignant cell subpopulations with a higher propensity for metastasis to bone and the central nervous system. Gene expression profiling revealed primary and metastatic cells as two distinct cell populations defined by differential expression of 412 genes and of multiple pathways, including CADM1, SPHK1, and YAP/TAZ, whose expression independently predicted survival. In the metastatic subpopulations, a gene signature was defined (MET-75) that predicted survival of neuroblastoma patients with metastatic disease. Mechanistic investigations demonstrated causal roles for CADM1, SPHK1, and YAP/TAZ in mediating metastatic phenotypes in vitro and in vivo Notably, pharmacologic targeting of SPHK1 or YAP/TAZ was sufficient to inhibit neuroblastoma metastasis in vivo Overall, we identify gene expression signatures and candidate therapeutics that could improve the treatment of metastatic neuroblastoma. Cancer Res; 77(3); 696-706. ©2017 AACR.

  8. Implantable chemotherapy-loaded silk protein materials for neuroblastoma treatment.

    PubMed

    Coburn, Jeannine; Harris, Jamie; Zakharov, Alexander D; Poirier, Jennifer; Ikegaki, Naohiko; Kajdacsy-Balla, Andre; Pilichowska, Monika; Lyubimov, Alexander V; Shimada, Hiroyuki; Kaplan, David L; Chiu, Bill

    2017-02-01

    Neuroblastoma is the most common extracranial childhood solid tumor. Treatment of high risk tumors require intense multicycle chemotherapies, resulting in short- and long-term toxicities. Here, we present treatment of an orthotopic neuroblastoma mouse model, with silk fibroin materials loaded with vincristine, doxorubicin or the combination as a intratumoral, sustained release system. The materials, loaded with vincristine with or without doxorubicin, significantly decreased neuroblastoma tumor growth compared to materials loaded without drug or doxorubicin only as well as intravenous (IV) drug treatment. The intratumoral drug concentration was significantly higher with intratumoral delivery versus IV. Furthermore, intratumor delivery decreased the maximum plasma concentration compared to IV delivery, reducing systemic exposure and possibly reduing long-term side effects of chemotherapy exposure. Histopathologically, tumors with remission periods >25 days before recurrence transformed from a "small-round-blue cell" (SBRC) to predominantly "large cell" neuroblastoma (LCN) histopathology, a more aggressive tumor subtype with unfavorable clinical outcomes. These results show that intratumoral chemotherapy delivery may be a treatment strategy for pediatric neuroblastoma, potentially translatable to other focal tumors types. Furthermore, this treatment modality allows for a clinically relevant mouse model of tumor transformation that may be used for studying the phenotypical tumor recurrence and developing more effective treatment strategies for recurrent tumors.

  9. A comprehensive characterization of rare mitochondrial DNA variants in neuroblastoma

    PubMed Central

    Pignataro, Piero; Lasorsa, Vito Alessandro; Hogarty, Michael D.; Castellano, Aurora; Conte, Massimo; Tonini, Gian Paolo; Iolascon, Achille; Gasparre, Giuseppe; Capasso, Mario

    2016-01-01

    Background Neuroblastoma, a tumor of the developing sympathetic nervous system, is a common childhood neoplasm that is often lethal. Mitochondrial DNA (mtDNA) mutations have been found in most tumors including neuroblastoma. We extracted mtDNA data from a cohort of neuroblastoma samples that had undergone Whole Exome Sequencing (WES) and also used snap-frozen samples in which mtDNA was entirely sequenced by Sanger technology. We next undertook the challenge of determining those mutations that are relevant to, or arisen during tumor development. The bioinformatics pipeline used to extract mitochondrial variants from matched tumor/blood samples was enriched by a set of filters inclusive of heteroplasmic fraction, nucleotide variability, and in silico prediction of pathogenicity. Results Our in silico multistep workflow applied both on WES and Sanger-sequenced neuroblastoma samples, allowed us to identify a limited burden of somatic and germline mitochondrial mutations with a potential pathogenic impact. Conclusions The few singleton germline and somatic mitochondrial mutations emerged, according to our in silico analysis, do not appear to impact on the development of neuroblastoma. Our findings are consistent with the hypothesis that most mitochondrial somatic mutations can be considered as ‘passengers’ and consequently have no discernible effect in this type of cancer. PMID:27351283

  10. A comprehensive characterization of rare mitochondrial DNA variants in neuroblastoma.

    PubMed

    Calabrese, Francesco Maria; Clima, Rosanna; Pignataro, Piero; Lasorsa, Vito Alessandro; Hogarty, Michael D; Castellano, Aurora; Conte, Massimo; Tonini, Gian Paolo; Iolascon, Achille; Gasparre, Giuseppe; Capasso, Mario

    2016-08-02

    Neuroblastoma, a tumor of the developing sympathetic nervous system, is a common childhood neoplasm that is often lethal. Mitochondrial DNA (mtDNA) mutations have been found in most tumors including neuroblastoma. We extracted mtDNA data from a cohort of neuroblastoma samples that had undergone Whole Exome Sequencing (WES) and also used snap-frozen samples in which mtDNA was entirely sequenced by Sanger technology. We next undertook the challenge of determining those mutations that are relevant to, or arisen during tumor development. The bioinformatics pipeline used to extract mitochondrial variants from matched tumor/blood samples was enriched by a set of filters inclusive of heteroplasmic fraction, nucleotide variability, and in silico prediction of pathogenicity. Our in silico multistep workflow applied both on WES and Sanger-sequenced neuroblastoma samples, allowed us to identify a limited burden of somatic and germline mitochondrial mutations with a potential pathogenic impact. The few singleton germline and somatic mitochondrial mutations emerged, according to our in silico analysis, do not appear to impact on the development of neuroblastoma. Our findings are consistent with the hypothesis that most mitochondrial somatic mutations can be considered as 'passengers' and consequently have no discernible effect in this type of cancer.

  11. In vitro synthesis and purification of PhIP-deoxyguanosine and PhIP-DNA oligomer covalent complexes

    SciTech Connect

    Freeman, J.

    1994-12-01

    2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a heterocyclic amine compound formed when meats are cooked at high temperatures. PhIP damages DNA by forming covalent complexes with DNA carcinogen. In an effort to understand how the binding of PhIP to DNA may cause cancer, it is important to characterize the structures of PhIP-damaged DNA molecules. Our HPLC data support fluorescence and {sup 32}P Post-labeling studies which indicate the formation of several species of 2{prime}deoxyguanosine-(dG) or oligodeoxynucleotide-PhIP adducts. The reaction of PhIP with dG resulted in a reddish precipitate that was likely the major adduct, N-(deoxyguanosin-8-yl)-PhIP (dG-C8-PhIP) adduct, with a more polar adduct fraction remaining in the supernatant. Reversed-phase HPLC analysis of the adducts in the supernatant revealed the existence of species of much shorter retention times than the dG-C8-PhIP adduct, confirming that these species are more polar than dG-C8-PhIP. At least four adducts were formed in the reaction of PhIP with DNA oligomer. HPLC analysis of the PhIP-DNA oligomer supernatant after butanol extractions revealed four unresolved peaks which spectra had maximum wavelengths between 340 and 360 nm. Though adduct peaks were not completely resolved, there was {approximately}3 minutes interval between the DNA oligomer peak and the adduct peaks. Furthermore, fluorescence emission data of the DNA oligomer-PhIP adduct solution show heterogeneous binding. The more polar PhIP adducts were fraction-collected and their structures will be solved by nuclear magnetic resonance or x-ray crystallography.

  12. Refractory diarrhea: A paraneoplastic syndrome of neuroblastoma.

    PubMed

    Han, Wei; Wang, Huan-Min

    2015-07-07

    Neuroblastoma (NB) is the most common extracranial solid tumor in children. Diarrheal NB is quite rare and is not easy to diagnose in the early stage. Six cases of diarrheal NB in our hospital treated from 1996 to 2006 were retrospectively analyzed, including characteristics such as electrolyte imbalance, pathologic features, vasoactive intestinal peptide (VIP) immunohistochemical staining results, treatment, and prognosis. All patients were boys with 3-8 loose or watery stools each day and routine fecal tests were normal. Abdominal tumors were identified by B-ultrasound. Drugs were ineffective. Three patients underwent surgery, and the remaining three patients received surgery and chemotherapy. Diarrhea stopped after treatment in five patients. Two patients died due to intractable hypokalemia. The tumor was located in the adrenal gland in four patients, in the upper retroperitoneum in one patient, and in the presacral area in one patient. Pathologic findings were NB and ganglioneuroblastoma. Five patients were at clinical stage I-II, and one was at stage III. Four patients survived (followed-up for 6 mo to 4 years). Immunohistochemical staining for VIP was positive. Refractory diarrhea is a paraneoplastic syndrome of NB and is rare. Patients aged 1-3 years who present with chronic intractable diarrhea should be followed closely. Intractable diarrhea, hypokalemia, and dysplasia are the initial clinical manifestations. Increased VIP is characteristic of this disease. Potassium supplementation plays a vital role in the treatment procedure, especially preoperatively. The prognosis of diarrheal NB is good following appropriate treatment.

  13. Olfactory Neuroblastomas: An Experience of 24 Years

    PubMed Central

    Tural, Deniz; Yildiz, Ozcan; Selcukbiricik, Fatih; Ozturk, Mehmet Akif; Keles, Yildiz; Oz, Buge; Uzel, Omer; Demir, Gokhan; Mandel, Nil Molinas

    2011-01-01

    Objective. The aim of this study was to evaluate clinicopathological findings and the efficacy of the treatment modalities used in patients with olfactory neuroblastomas. Study Design. Retrospective record review. Setting. Istanbul University, Cerrahpasa Medical Faculty, medical oncology outpatient clinic. Subjects and Methods. There were 3 stage A tumors, 5 stage B and 11 stage C according to the Kadish staging system. There were 5 grade I/II and 12 grade III/IV according to the Hyams' histopathologic system. Involvement to orbita was detected in eight patients at the time of diagnosis. Results. The median follow-up period was 23.7 months. The 5-year survival rate for the whole group was 26%. The stage A/B groups exhibited a better survival rate than the C group with 2-year survival rates being 25 versus 71% respectively (P = .008). The grade I/II groups exhibited a better survival rate than the grade III/IV groups with 2-year survival rates being 50 versus 16% respectively (P = .001). The group who had orbital involvement exhibited a poor survival rate than the group of patients who had no involvement of the orbital. Conclusion. In our study, tumor stage, histopathologic grading, involvement of the orbita, brain and bone marow metastases were the statistically significant prognostic factors. PMID:22084732

  14. Imide Oligomers Endcapped with Phenylethynl Phthalic Anhydrides and Polymers Therefrom

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Smith, Joseph G., Jr. (Inventor)

    1998-01-01

    Controlled molecular weight phenylethynyl terminated imide oligomers (PETIs) have been prepared by the cyclodehydration of precursor phenylethynyl terminated amic acid oligomers. Amino terminated amic acid oligomers are prepared from the reaction of dianhydride(s) with an excess of diamine(s) and subsequently endcapped with phenylethynyl phthalic anhydride(s) (PEPA). The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N.N-dimethylacetamide under nitrogen at room temperature. The amic acid oligomers are subsequently cyclodehydrated either thermally or cheznicauy to the corresponding imide oligomers. Direct preparation of PETIs from the reaction of dianhydxide(s) with an excess of diamine(s) and endcapped with phenylethynyl phthalic anhydride(s) has been performed in m-cresol. Phenylethynyl phthalic anhydrides are synthesized by the palladium catalyzed reaction of phenylacetylene with bromo substituted phthalic anhydrides in triethylamine. These new materials exhibit excellent properties and are potentially useful as adhesives, coatings, films, moldings and composite matrices.

  15. Imide oligomers endcapped with phenylethynyl phthalic anhydrides and polymers therefrom

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Smith, Jr., Joseph G. (Inventor)

    1996-01-01

    Controlled molecular weight phenylethynyl terminated imide oligomers (PETIs) have been prepared by the cyclodehydration of precursor phenylethynyl terminated amic acid oligomers. Amino terminated amic acid oligomers are prepared from the reaction of dianhydride(s) with an excess of diamine(s) and subsequently endcapped with phenylethynyl phthalic anhydride(s) (PEPA). The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide under nitrogen at room temperature. The amic acid oligomers are subsequently cyclodehydrated either thermally or chemically to the corresponding imide oligomers. Direct preparation of PETIs from the reaction of dianhydride(s) with an excess of diamine(s) and endcapped with phenylethynyl phthalic anhydride(s) has been performed in m-cresol. Phenylethynyl phthalic anhydrides are synthesized by the palladium catalyzed reaction of phenylacetylene with bromo substituted phthalic anhydrides in triethylamine. These new materials exhibit excellent properties and are potentially useful as adhesives, coatings, films, moldings and composite matrices.

  16. ortho-Phenylene oligomers with terminal push-pull substitution.

    PubMed

    He, Jian; Mathew, Sanyo M; Cornett, Sarah D; Grundy, Stephan C; Hartley, C Scott

    2012-05-07

    ortho-Phenylenes are an emerging class of helical oligomers and polymers. We have synthesized a series of push-pull-substituted o-phenylene oligomers (dimethylamino/nitro) up to the octamer. Conformational analysis of the hexamer using a combination of low-temperature NMR spectroscopy and ab initio predictions of (1)H NMR chemical shifts indicates that, like other o-phenylenes, they exist as compact helices in solution. However, the substituents are found to have a significant effect on their conformational behavior: the nitro-functionalized terminus is 3-fold more likely to twist out of the helix. Protonation of the dimethylamino group favors the helical conformer. UV/vis spectroscopy indicates that the direct charge-transfer interaction between the push-pull substituents attenuates quickly compared to other conjugated systems, with no significant charge-transfer band for oligomers longer than the trimer. On protonation of the dimethylamino group, significant bathochromic shifts with increasing oligomer length are observed: the effective conjugation length is 9 repeat units, more than twice that of the parent oligomer. This behavior may be rationalized through examination of the frontier molecular orbitals of these compounds, which exhibit greater delocalization after protonation, as shown by DFT calculations.

  17. Degradation of a Sodium Acrylate Oligomer by an Arthrobacter sp

    PubMed Central

    Hayashi, Takaya; Mukouyama, Masaharu; Sakano, Kouichi; Tani, Yoshiki

    1993-01-01

    Arthrobacter sp. strain NO-18 was first isolated from soil as a bacterium which could degrade the sodium acrylate oligomer and utilize it as the sole source of carbon. When 0.2% (wt/wt) oligomer was added to the culture medium, the acrylate oligomer was found to be degraded by 70 to 80% in 2 weeks, using gel permeation chromatography. To determine the maximum molecular weight for biodegradation, the degradation test was done with the hexamer, heptamer, and octamer, which were separated from the oligomer mixture by fractional gel permeation chromatography. The hexamer and heptamer were consumed to the extents of 58 and 36%, respectively, in 2 weeks, but the octamer was not degraded. Oligomers with three different terminal groups were synthesized to examine the effect of the different terminal groups on biodegradation, but few differences were found. Arthrobacter sp. NO-18 assimilated acrylic acid, propionic acid, glutaric acid, 2-methylglutaric acid, and 1,3,5-pentanetricarboxylic acid. Degradation of the acrylic unit structure by this strain is discussed. PMID:8517751

  18. Binding to saxitoxin to electrically excitable neuroblastoma cells.

    PubMed Central

    Catterall, W A; Morrow, C S

    1978-01-01

    Saxitoxin inhibits the action potential Na+ ionophore of electrically excitable neuroblastoma cells with a KI of 3.7 nM. Binding experiments detect a single class of saturable binding sites with KD = 3.9 nM and a binding capacity of 156 fmol/mg of cell protein (78 sites per micrometer2 of cell surface). Saturable binding is completely inhibited by tetrodotoxin but is unaffected by scorpion toxin or batrachotoxin. No saturable binding is observed in cultures of clone N103, a variant neuroblastoma clone lacking the action potential Na+ response. Thus, saxitoxin binds specifically to the action potential Na+ ionophore in neuroblastoma cells. Comparison of saxitoxin and scorpion toxin binding reveals that there are three saxitoxin receptor sites for each scorpion toxin receptors site. The implications of this stoichiometry are considered. PMID:272638

  19. I-131 metaiodobenzylguanidine: diagnostic use in neuroblastoma patients in relapse

    SciTech Connect

    Heyman, S.; Evans, A.E.; D'Angio, G.J.

    1988-01-01

    Metaiodobenzylguanidine (MIBG) has been used for the detection and treatment of neuroectodermal tumors, including neuroblastoma. We report our experience with /sup 131/I-MIBG used diagnostically in neuroblastoma patients with relapse. Thirty-eight studies were performed in 26 patients. There were 24 children (range 3 months-14 years) and two adults. While the study was found to be both sensitive and specific for the presence of disease, there are instances of discordance. False-negative studies were found with a markedly anaplastic tumor and with two mature ganglioneuromas. A bone lesion was negative with /sup 131/I-MIBG, but positive on bone scan. A biopsy confirmed the presence of neuroblastoma. Caution should be exercised when scanning pretreated patients, and perhaps with newly diagnosed patients as well.

  20. Establishment of functional clonal lines of neurons from mouse neuroblastoma.

    PubMed

    Augusti-Tocco, G; Sato, G

    1969-09-01

    Clonal lines of neurons were obtained in culture from a mouse neuroblastoma. The neuroblastoma cells were adapted to culture growth by the animal-culture alternate passage technique and cloned after single-cell plating. The clonal lines retained the ability to form tumors when injected back into mice. A striking morphological change was observed in the cells adapted to culture growth; they appeared as mature neurons, while the cells of the tumor appeared as immature neuroblasts. Acetylcholinesterase and the enzymes for the synthesis of neurotransmitters, cholineacetylase and tyrosine hydroxylase were assayed in the tumor and compared with brain levels; tyrosine hydroxylase was found to be particularly high, as described previously in human neuroblastomas. The three enzymes were found in the clonal cultures at levels comparable to those found in the tumors. Similarly, there were no remarkable differences between the three clones examined.

  1. A Hybrid Robotic Control System Using Neuroblastoma Cultures

    NASA Astrophysics Data System (ADS)

    Ferrández, J. M.; Lorente, V.; Cuadra, J. M.; Delapaz, F.; Álvarez-Sánchez, José Ramón; Fernández, E.

    The main objective of this work is to analyze the computing capabilities of human neuroblastoma cultured cells and to define connection schemes for controlling a robot behavior. Multielectrode Array (MEA) setups have been designed for direct culturing neural cells over silicon or glass substrates, providing the capability to stimulate and record simultaneously populations of neural cells. This paper describes the process of growing human neuroblastoma cells over MEA substrates and tries to modulate the natural physiologic responses of these cells by tetanic stimulation of the culture. We show that the large neuroblastoma networks developed in cultured MEAs are capable of learning: establishing numerous and dynamic connections, with modifiability induced by external stimuli and we propose an hybrid system for controlling a robot to avoid obstacles.

  2. Activated ALK Collaborates with MYCN in Neuroblastoma Pathogenesis

    PubMed Central

    Zhu, Shizhen; Lee, Jeong-Soo; Guo, Feng; Shin, Jimann; Perez-Atayde, Antonio R.; Kutok, Jeffery L.; Rodig, Scott J.; Neuberg, Donna S.; Helman, Daniel; Feng, Hui; Stewart, Rodney A.; Wang, Wenchao; George, Rani E.; Kanki, John P.; Look, A. Thomas

    2012-01-01

    SUMMARY Amplification of the MYCN oncogene in childhood neuroblastoma is often accompanied by mutational activation of ALK (anaplastic lymphoma kinase), suggesting their pathogenic cooperation. We generated a transgenic zebrafish model of neuroblastoma in which MYCN-induced tumors arise from a subpopulation of neuroblasts that migrate into the adrenal medulla analogue following organogenesis. Coexpression of activated ALK with MYCN in this model triples the disease penetrance and markedly accelerates tumor onset. MYCN overexpression induces adrenal sympathetic neuroblast hyperplasia, blocks chromaffin cell differentiation, and ultimately triggers a developmentally-timed apoptotic response in the hyperplastic sympathoadrenal cells. Coexpression of activated ALK with MYCN provides prosurvival signals that block this apoptotic response and allow continued expansion and oncogenic transformation of hyperplastic neuroblasts, thus promoting progression to neuroblastoma. PMID:22439933

  3. Preparation and applications of a variety of fluoroalkyl end-capped oligomer/hydroxyapatite composites.

    PubMed

    Takashima, Hiroki; Iwaki, Ken-Ichi; Furukuwa, Rika; Takishita, Katsuhisa; Sawada, Hideo

    2008-04-15

    A variety of fluoroalkyl end-capped oligomers were applied to the preparation of fluorinated oligomer/hydroxyapatite (HAp) composites (particle size: 38-356 nm), which exhibit a good dispersibility in water and traditional organic solvents. These fluoroalkyl end-capped oligomer/HAp composites were easily prepared by the reactions of disodium hydrogen phosphate and calcium chloride in the presence of self-assembled molecular aggregates formed by fluoroalkyl end-capped oligomers in aqueous solutions. In these fluorinated HAp composites thus obtained, fluoroalkyl end-capped acrylic acid oligomers and 2-methacryloyloxyethanesulfonic acid oligomer/HAp nanocomposites afforded transparent colorless solutions toward water; however, fluoroalkyl end-capped N,N-dimethylacrylamide oligomer and acryloylmorpholine oligomer were found to afford transparent colorless solutions with trace amounts of white-colored HAp precipitants under similar conditions. HAp could be encapsulated more effectively into fluorinated 2-methacryloyloxyethanesulfonic acid oligomeric aggregate cores to afford colloidal stable fluorinated oligomer/HAp composites, compared to that of fluorinated acrylic acid oligomers. These fluorinated oligomer/HAp composites were applied to the surface modification of glass and PVA to exhibit a good oleophobicity imparted by fluorine. HAp formation was newly observed on the modified polyethylene terephthalate film surface treated with fluorinated 2-methacryloyloxyethanesulfonic acid oligomers and acrylic acid oligomer/HAp composites by soaking these films into the simulated body fluid.

  4. Acetaminophen Induces Human Neuroblastoma Cell Death through NFKB Activation

    PubMed Central

    Posadas, Inmaculada; Santos, Pablo; Ceña, Valentín

    2012-01-01

    Neuroblastoma resistance to apoptosis may contribute to the aggressive behavior of this tumor. Therefore, it would be relevant to activate endogenous cellular death mechanisms as a way to improve neuroblastoma therapy. We used the neuroblastoma SH-SY5Y cell line as a model to study the mechanisms involved in acetaminophen (AAP)-mediated toxicity by measuring CYP2E1 enzymatic activity, NFkB p65 subunit activation and translocation to the nucleus, Bax accumulation into the mitochondria, cytochrome c release and caspase activation. AAP activates the intrinsic death pathway in the SH-SY5Y human neuroblastoma cell line. AAP metabolism is partially responsible for this activation, because blockade of the cytochrome CYP2E1 significantly reduced but did not totally prevent, AAP-induced SH-SY5Y cell death. AAP also induced NFkB p65 activation by phosphorylation and its translocation to the nucleus, where NFkB p65 increased IL-1β production. This increase contributed to neuroblastoma cell death through a mechanism involving Bax accumulation into the mitochondria, cytochrome c release and caspase3 activation. Blockade of NFkB translocation to the nucleus by the peptide SN50 prevented AAP-mediated cell death and IL-1β production. Moreover, overexpression of the antiapoptotic protein Bcl-xL did not decrease AAP-mediated IL-1β production, but prevented both AAP and IL-1β-mediated cell death. We also confirmed the AAP toxic actions on SK-N-MC neuroepithelioma and U87MG glioblastoma cell lines. The results presented here suggest that AAP activates the intrinsic death pathway in neuroblastoma cells through a mechanism involving NFkB and IL-1β. PMID:23166834

  5. Acetaminophen induces human neuroblastoma cell death through NFKB activation.

    PubMed

    Posadas, Inmaculada; Santos, Pablo; Ceña, Valentín

    2012-01-01

    Neuroblastoma resistance to apoptosis may contribute to the aggressive behavior of this tumor. Therefore, it would be relevant to activate endogenous cellular death mechanisms as a way to improve neuroblastoma therapy. We used the neuroblastoma SH-SY5Y cell line as a model to study the mechanisms involved in acetaminophen (AAP)-mediated toxicity by measuring CYP2E1 enzymatic activity, NFkB p65 subunit activation and translocation to the nucleus, Bax accumulation into the mitochondria, cytochrome c release and caspase activation. AAP activates the intrinsic death pathway in the SH-SY5Y human neuroblastoma cell line. AAP metabolism is partially responsible for this activation, because blockade of the cytochrome CYP2E1 significantly reduced but did not totally prevent, AAP-induced SH-SY5Y cell death. AAP also induced NFkB p65 activation by phosphorylation and its translocation to the nucleus, where NFkB p65 increased IL-1β production. This increase contributed to neuroblastoma cell death through a mechanism involving Bax accumulation into the mitochondria, cytochrome c release and caspase3 activation. Blockade of NFkB translocation to the nucleus by the peptide SN50 prevented AAP-mediated cell death and IL-1β production. Moreover, overexpression of the antiapoptotic protein Bcl-x(L) did not decrease AAP-mediated IL-1β production, but prevented both AAP and IL-1β-mediated cell death. We also confirmed the AAP toxic actions on SK-N-MC neuroepithelioma and U87MG glioblastoma cell lines. The results presented here suggest that AAP activates the intrinsic death pathway in neuroblastoma cells through a mechanism involving NFkB and IL-1β.

  6. Crizotinib Synergizes with Chemotherapy in Preclinical Models of Neuroblastoma.

    PubMed

    Krytska, Kateryna; Ryles, Hannah T; Sano, Renata; Raman, Pichai; Infarinato, Nicole R; Hansel, Theodore D; Makena, Monish R; Song, Michael M; Reynolds, C Patrick; Mossé, Yael P

    2016-02-15

    The presence of an ALK aberration correlates with inferior survival for patients with high-risk neuroblastoma. The emergence of ALK inhibitors such as crizotinib has provided novel treatment opportunities. However, certain ALK mutations result in de novo crizotinib resistance, and a phase I trial of crizotinib showed a lack of response in patients harboring those ALK mutations. Thus, understanding mechanisms of resistance and defining circumvention strategies for the clinic is critical. The sensitivity of human neuroblastoma-derived cell lines, cell line-derived, and patient-derived xenograft (PDX) models with varying ALK statuses to crizotinib combined with topotecan and cyclophosphamide (topo/cyclo) was examined. Cultured cells and xenografts were evaluated for effects of these drugs on proliferation, signaling, and cell death, and assessment of synergy. In neuroblastoma murine xenografts harboring the most common ALK mutations, including those mutations associated with resistance to crizotinib (but not in those with wild-type ALK), crizotinib combined with topo/cyclo enhanced tumor responses and mouse event-free survival. Crizotinib + topo/cyclo showed synergistic cytotoxicity and higher caspase-dependent apoptosis than crizotinib or topo/cyclo alone in neuroblastoma cell lines with ALK aberrations (mutation or amplification). Combining crizotinib with chemotherapeutic agents commonly used in treating newly diagnosed patients with high-risk neuroblastoma restores sensitivity in preclinical models harboring both sensitive ALK aberrations and de novo-resistant ALK mutations. These data support clinical testing of crizotinib and conventional chemotherapy with the goal of integrating ALK inhibition into multiagent therapy for ALK-aberrant neuroblastoma patients. ©2015 American Association for Cancer Research.

  7. Crizotinib Synergizes with Chemotherapy in Preclinical Models of Neuroblastoma

    PubMed Central

    Krytska, Kateryna; Ryles, Hannah T.; Sano, Renata; Raman, Pichai; Infarinato, Nicole R.; Hansel, Theodore D.; Makena, Monish R.; Song, Michael M.; Reynolds, C. Patrick; Mossé, Yael P.

    2015-01-01

    Purpose The presence of an ALK aberration correlates with inferior survival for patients with high-risk neuroblastoma. The emergence of ALK inhibitors such as crizotinib has provided novel treatment opportunities. However, certain ALK mutations result in de novo crizotinib resistance, and a phase I trial of crizotinib showed a lack of response in patients harboring those ALK mutations. Thus, understanding mechanisms of resistance and defining circumvention strategies for the clinic is critical. Experimental Design The sensitivity of human neuroblastoma-derived cell lines, cell line-derived and patient-derived xenograft (PDX) models with varying ALK statuses to crizotinib combined with topotecan and cyclophosphamide (topo/cyclo) was examined. Cultured cells and xenografts were evaluated for effects of these drugs on proliferation, signaling, and cell death, and assessment of synergy. Results In neuroblastoma murine xenografts harboring the most common ALK mutations, including those mutations associated with resistance to crizotinib (but not in those with wild-type ALK), crizotinib combined with topo/cyclo enhanced tumor responses and mouse event-free-survival. Crizotinib + topo/cyclo showed synergistic cytotoxicity and higher caspase-dependent apoptosis than crizotinib or topo/cyclo alone in neuroblastoma cell lines with ALK aberrations (mutation or amplification). Conclusions Combining crizotinib with chemotherapeutic agents commonly used in treating newly diagnosed patients with high-risk neuroblastoma restores sensitivity in preclinical models harboring both sensitive ALK aberrations and de novo resistant ALK mutations. These data support clinical testing of crizotinib and conventional chemotherapy with the goal of integrating ALK inhibition into multi-agent therapy for ALK-aberrant neuroblastoma patients. PMID:26438783

  8. Involvement of insulin-like growth factor 1 receptor signaling in the amyloid-β peptide oligomers-induced p75 neurotrophin receptor protein expression in mouse hippocampus.

    PubMed

    Ito, Shingo; Ménard, Michel; Atkinson, Trevor; Gaudet, Chantal; Brown, Leslie; Whitfield, James; Chakravarthy, Balu

    2012-01-01

    The p75 neurotrophin receptor (p75NTR) has been thought to play a critical role in amyloid-β peptide (Aβ)-mediated neurodegeneration and Aβ metabolism in Alzheimer's disease (AD) brains. Our previous report showed that membrane-associated p75NTR protein expression was significantly increased in the hippocampi of two different strains of transgenic AD mice and was associated with the age-dependent elevation of Aβ1-42 levels. Here, we provide evidence that the Aβ1-42 oligomers known as ADDLs (Aβ-derived diffusible ligands) induce p75NTR protein expression through insulin-like growth factor 1 receptor (IGF-1R) phosphorylation in SH-SY5Y human neuroblastoma cells. An in vivo microinjection study demonstrated that microinjected ADDLs increased the p75NTR protein expression by 1.4-fold in the ipsilateral hippocampus compared to the contralateral hippocampus. In addition, ADDLs microinjected into mouse hippocampi facilitated IGF-1R phosphorylation within 30 min and the co-administration of picropodophyllin, an IGF-1R kinase inhibitor, blocked ADDLs-induced p75NTR expression. We examined the possible involvement of IGF-1R in the increased p75NTR protein expression in the hippocampi of 6-month-old AβPPswe/PS1dE9 AD model mice that had accumulated significant amounts of Aβ1-42 and showed significantly higher p75NTR expression than age-matched wild-type mice. We found that IGF-1R phosphorylation in these transgenic mice was higher than that in the wild-type mice. These findings indicate that Aβ1-42 oligomers stimulate the p75NTR protein expression in the hippocampus through IGF-1R signaling. Thus, Aβ1-42 oligomers-mediated IGF-1R activation may trigger an increase in p75NTR protein expression in the hippocampus of AD brain during the early stages of disease development.

  9. Aggregation of inorganic nanoparticles mediated by biomimetic oligomers.

    PubMed

    Tigger-Zaborov, Hagar; Maayan, Galia

    2015-09-14

    Assemblies of nanoparticles (NPs) have been broadly used for the construction of materials with unique spectroscopic and chiral properties for applications in various scientific disciplines such as sensing, bio-nanotechnology and medicine. Mediating the aggregation of NPs by synthetic biomimetic oligomers, namely, DNA, PNA, peptides and peptide mimics, rather than by small organic molecules has been shown to produce interesting supramolecular structures and enable the combination of the biocompatibility of the mediators and the spectroscopic properties of the NPs. Yet, the key to using this powerful approach for designing new functional materials is to understand the NPs aggregation patterns induced by biopolymers and biomimetic oligomers. Herein we describe the important developments in this field, from early studies to recent work with an emphasis on synthetic methods and tools for controlled assembly of metal NPs by biomimetic polymers and oligomers.

  10. Proportion effect in diblock co-oligomer molecular diodes

    NASA Astrophysics Data System (ADS)

    Hu, G. C.; Zhang, G. P.; Li, Y.; Ren, J. F.; Wang, C. K.

    2014-10-01

    Based on ab-initio theory and nonequilibrium Green's function method, the effect of proportion on the rectification in pyrimidinyl-phenyl diblock co-oligomer diodes is investigated in two regimes. For a short co-oligomer diode, it is found that the 1:1 proportion of the two moieties favors the largest rectification ratio. For a long co-oligomer diode, an interesting proportion-dependent variation of the rectifying direction is observed. Furthermore, the optimal proportion for the largest rectification ratio is not 1:1 any longer. A deep understanding can be achieved by analyzing the bias-dependent transmission spectra combined with the evolution of the molecular orbitals.

  11. Single Particle Characterization of Aβ Oligomers in Solution

    PubMed Central

    Yusko, Erik C.; Prangkio, Panchika; Sept, David; Rollings, Ryan C.; Li, Jiali; Mayer, Michael

    2012-01-01

    Determining the pathological role of amyloids in amyloid-associated diseases will require a method for determining the dynamic distributions in size and shape of amyloid oligomers with high resolution. Here, we explored the potential of resistive-pulse sensing through lipid bilayer-coated nanopores to measure the size of individual amyloid-β oligomers directly in solution and without chemical modification. This method classified individual amyloid-β aggregates as spherical oligomers, protofibrils, or mature fibers and made it possible to account for the large heterogeneity of amyloid-β aggregate sizes. The approach revealed the distribution of protofibrillar lengths as well as the average cross-sectional area of protofibrils and fibers. PMID:22686709

  12. Probenecid Sensitizes Neuroblastoma Cancer Stem Cells to Cisplatin.

    PubMed

    Campos-Arroyo, Denise; Maldonado, Vilma; Bahena, Ivan; Quintanar, Valeria; Patiño, Nelly; Carlos Martinez-Lazcano, Juan; Melendez-Zajgla, Jorge

    2016-01-01

    We used both in vitro cultures of neuroblastoma cell lines and nude-mice xenotransplants to explore the effects of co-administration of cisplatin and probenecid. Probenecid sensitized neuroblastoma cells, including tumor cells with stem features, to the effects of cisplatin, both in vitro and in vivo. This effect was mediated by an increase in the apoptotic cell death and a concomitant decrease in cell proliferation. This effect is accompanied by modulation of the mRNA and protein of the drug efflux transporters MDR1, MRP2, and BCRP. The co-administration of probenecid with cisplatin should be explored as a possible therapeutic strategy.

  13. Melatonin attenuates methamphetamine-induced disturbances in mitochondrial dynamics and degeneration in neuroblastoma SH-SY5Y cells.

    PubMed

    Parameyong, Arisa; Charngkaew, Komgrid; Govitrapong, Piyarat; Chetsawang, Banthit

    2013-10-01

    Methamphetamine (METH) is a psychostimulant drug that can cause toxicity and degeneration in the brain. The toxicity due to METH involves multiple pathways, including the mitochondrial-dependent death pathway. Several pieces of evidence have emphasized that the fragmentation of mitochondria into smaller structures plays some role in the cell-death process. In this study, we investigated the role of mitochondrial dynamics in METH-induced toxicity in human dopaminergic neuroblastoma SH-SY5Y cultured cell lines. In addition, the protective effect of melatonin against METH-induced toxicity was investigated. Our results show that METH significantly decreased cell viability and increased the levels of the mitochondrial fission protein, Fis1 and the Drp1 oligomer. However, the levels of the mitochondrial fusion proteins OPA1 and Mfn1 did not change in METH-treated cells. Melatonin can reverse the toxic effects of the METH-induced reduction in cell viability and the production of the Fis1 protein and the Drp1 oligomer. Moreover, the morphological alteration of mitochondria was investigated in METH-treated cells in the presence of melatonin using transmission electron microscopy (TEM). At 24 hr after METH exposure, typical cell shrinkage was observed in SH-SY5Y cells. Mitochondria were fragmented into small globular structures in a large proportion of METH-treated cells, but tubular networks of mitochondria were present in large proportions of control-untreated cells and METH-treated cells in the presence of melatonin. The results of the present study demonstrate the potential of melatonin to reduce cell death and restore mitochondrial function in neurons affected by METH-induced toxicity.

  14. Direct detection of alpha synuclein oligomers in vivo

    PubMed Central

    2013-01-01

    Background Rat models of Parkinson’s disease are widely used to elucidate the mechanisms underlying disease etiology or to investigate therapeutic approaches. Models were developed using toxins such as MPTP or 6-OHDA to specifically target dopaminergic neurons resulting in acute neuronal loss in the substantia nigra or by using viral vectors to induce the specific and gradual expression of alpha synuclein in the substantia nigra. The detection of alpha- synuclein oligomers, the presumed toxic species, in these models and others has been possible using only indirect biochemical approaches to date. Here we coinjected AAVs encoding alpha-synuclein fused to the N- or C-terminal half of VenusYFP in rat substantia nigra pars compacta and describe for the first time a novel viral vector rodent model with the unique ability to directly detect and track alpha synuclein oligomers ex vivo and in vivo. Results Viral coinjection resulted in widespread VenusYFP signal within the nigrostriatal pathway, including cell bodies in the substantia nigra and synaptic accumulation in striatal terminals, suggestive of in vivo alpha-synuclein oligomers formation. Transduced rats showed alpha-synuclein induced dopaminergic neuron loss in the substantia nigra, the appearance of dystrophic neurites, and gliosis in the striatum. Moreover, we have applied in vivo imaging techniques in the living mouse to directly image alpha-synuclein oligomers in the cortex. Conclusion We have developed a unique animal model that provides a tool for the Parkinson’s disease research community with which to directly detect alpha- synuclein oligomers in vivo and screen therapeutic approaches targeting alpha-synuclein oligomers. PMID:24252244

  15. Different effects of Alzheimer's peptide Aβ(1-40) oligomers and fibrils on supported lipid membranes.

    PubMed

    Canale, Claudio; Seghezza, Silvia; Vilasi, Silvia; Carrotta, Rita; Bulone, Donatella; Diaspro, Alberto; San Biagio, Pier Luigi; Dante, Silvia

    2013-12-01

    Beta-amyloid (1-40) is one of the two most abundant species of amyloid-beta peptides present as fibrils in the extracellular senile plaques in the brain of Alzheimer's patients. Recently, the molecular aggregates constituting the early stage of fibril formation, i.e., oligomers and protofibrils, have been investigated as the main responsible for amyloid-beta cytotoxic effect. The molecular mechanism leading to neurodegeneration is still under debate, and it is common opinion that it may reside in the interaction between amyloid species and the neural membrane. In this investigation Atomic Force Microscopy and spectroscopy have been used to understand how structural (and mechanical) properties of POPC/POPS lipid bilayers, simulating the phospholipid composition and negative net charge of neuritic cell membranes, are influenced by the interaction with Aβ(1-40), in different stages of the peptide aggregation. Substantial differences in the damage caused to the lipid bilayers have been observed, confirming the toxic effect exerted especially by Aβ(1-40) prefibrillar oligomers. © 2013 Elsevier B.V. All rights reserved.

  16. Simultaneous Measurement of Neural Spike Recordings and Multi-Photon Calcium Imaging in Neuroblastoma Cells

    PubMed Central

    Kim, Suhwan; Jung, Unsang; Baek, Juyeong; Kang, Shinwon; Kim, Jeehyun

    2012-01-01

    This paper proposes the design and implementation of a micro-electrode array (MEA) for neuroblastoma cell culturing. It also explains the implementation of a multi-photon microscope (MPM) customized for neuroblastoma cell excitation and imaging under ambient light. Electrical signal and fluorescence images were simultaneously acquired from the neuroblastoma cells on the MEA. MPM calcium images of the cultured neuroblastoma cell on the MEA are presented and also the neural activity was acquired through the MEA recording. A calcium green-1 (CG-1) dextran conjugate of 10,000 D molecular weight was used in this experiment for calcium imaging. This study also evaluated the calcium oscillations and neural spike recording of neuroblastoma cells in an epileptic condition. Based on our observation of neural spikes in neuroblastoma cells with our proposed imaging modality, we report that neuroblastoma cells can be an important model for epileptic activity studies. PMID:23202210

  17. Simultaneous measurement of neural spike recordings and multi-photon calcium imaging in neuroblastoma cells.

    PubMed

    Kim, Suhwan; Jung, Unsang; Baek, Juyeong; Kang, Shinwon; Kim, Jeehyun

    2012-11-08

    This paper proposes the design and implementation of a micro-electrode array (MEA) for neuroblastoma cell culturing. It also explains the implementation of a multi-photon microscope (MPM) customized for neuroblastoma cell excitation and imaging under ambient light. Electrical signal and fluorescence images were simultaneously acquired from the neuroblastoma cells on the MEA. MPM calcium images of the cultured neuroblastoma cell on the MEA are presented and also the neural activity was acquired through the MEA recording. A calcium green-1 (CG-1) dextran conjugate of 10,000 D molecular weight was used in this experiment for calcium imaging. This study also evaluated the calcium oscillations and neural spike recording of neuroblastoma cells in an epileptic condition. Based on our observation of neural spikes in neuroblastoma cells with our proposed imaging modality, we report that neuroblastoma cells can be an important model for epileptic activity studies.

  18. Mesenchymal change and drug resistance in neuroblastoma.

    PubMed

    Naiditch, Jessica A; Jie, Chunfa; Lautz, Timothy B; Yu, Songtao; Clark, Sandra; Voronov, Dimitry; Chu, Fei; Madonna, Mary Beth

    2015-01-01

    Metastatic initiation has many phenotypic similarities to epithelial-to-mesenchymal transition, including loss of cell-cell adhesion, increased invasiveness, and increased cell mobility. We have previously demonstrated that drug resistance is associated with a metastatic phenotype in neuroblastoma (NB). The purpose of this project was to determine if the development of doxorubicin resistance is associated with characteristics of mesenchymal change in human NB cells. Total RNA was isolated from wild type (WT) and doxorubicin-resistant (DoxR) human NB cell lines (SK-N-SH and SK-N-BE(2)C) and analyzed using the Illumina Human HT-12 version 4 Expression BeadChip. Differentially expressed genes (DEGs) were identified. Volcano plots and heat maps were generated. Genes of interest with a fold change in expression >1.5 and an adjusted P < 0.1 were analyzed. Immunofluorescence (IF) and Western blot analysis confirmed microarray results of interest. Matrigel invasion assay and migration wounding assays were performed. Volcano plots and heat maps visually demonstrated a similar pattern of DEGs in the SK-N-SH and SK-N-BE(2)C DoxR cell lines relative to their parental WT lines. Venn diagramming revealed 1594 DEGs common to both DoxR cell lines relative to their parental cell lines. Network analysis pointed to several significantly upregulated epithelial-to-mesenchymal transition pathways, through TGF-beta pathways via RhoA, PI3K, and ILK and via SMADs, as well as via notch signaling pathways. DoxR cell lines displayed a more invasive phenotype than respective WT cell lines. Human SK-N-SH and SK-N-BE(2)C NB cells display characteristics of mesenchymal change via multiple pathways in the transition to a drug-resistant state. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Lung Metastases in Neuroblastoma at Initial Diagnosis: A Report from the International Neuroblastoma Risk Group (INRG) Project

    PubMed Central

    DuBois, Steven G.; London, Wendy B.; Zhang, Yang; Matthay, Katherine K.; Monclair, Tom; Ambros, Peter F.; Cohn, Susan L.; Pearson, Andrew; Diller, Lisa

    2009-01-01

    Background Neuroblastoma is the most common extracranial pediatric solid cancer. Lung metastasis is rarely detected in children with newly diagnosed neuroblastoma. We aimed to describe the incidence, clinical characteristics, and outcome of patients with lung metastasis at initial diagnosis using a large international database. Procedure The subset of patients from the International Neuroblastoma Risk Group database with INSS stage 4 neuroblastoma and known data regarding lung metastasis at diagnosis was selected for analysis. Clinical and biological characteristics were compared between patients with and without lung metastasis. Survival for patients with and without lung metastasis was estimated by Kaplan-Meier methods. Cox proportional hazards methods were used to determine the independent prognostic value of lung metastasis at diagnosis. Results Of the 2,808 patients with INSS stage 4 neuroblastoma diagnosed between 1990 and 2002, 100 patients (3.6%) were reported to have lung metastasis at diagnosis. Lung metastasis was more common among patients with MYCN amplified tumors, adrenal primary tumors, or elevated lactate dehydrogenase (LDH) levels (p < 0.02 in each case). Five-year overall survival ± standard error for patients with lung metastasis was 34.5% ± 6.8% compared to 44.7% ± 1.3% for patients without lung metastasis (p=0.0002). However, in multivariable analysis, the presence of lung metastasis was not independently predictive of outcome. Conclusions Lung metastasis at initial diagnosis of neuroblastoma is associated with MYCN amplification and elevated LDH levels. Although lung metastasis at diagnosis was not independently predictive of outcome in this analysis, it remains a useful prognostic marker of unfavorable outcome. PMID:18649370

  20. Significance of clinical and biologic features in Stage 3 neuroblastoma: a report from the International Neuroblastoma Risk Group project.

    PubMed

    Meany, Holly J; London, Wendy B; Ambros, Peter F; Matthay, Katherine K; Monclair, Tom; Simon, Thorsten; Garaventa, Alberto; Berthold, Frank; Nakagawara, Akira; Cohn, Susan L; Pearson, Andrew D J; Park, Julie R

    2014-11-01

    International Neuroblastoma Staging System (INSS) Stage 3 neuroblastoma is a heterogeneous disease. Data from the International Neuroblastoma Risk Group (INRG) database were analyzed to define patient and tumor characteristics predictive of outcome. Of 8,800 patients in the INRG database, 1,483 with INSS Stage 3 neuroblastoma and complete follow-up data were analyzed. Secondary analysis was performed in 1,013 patients (68%) with MYCN-non-amplified (NA) tumors. Significant prognostic factors were identified via log-rank test comparisons of survival curves. Multivariable Cox proportional hazards regression model was used to identify factors independently predictive of event-free survival (EFS). Age at diagnosis (P < 0.0001), tumor MYCN status (P < 0.0001), and poorly differentiating/undifferentiated histology (P = 0.03) were independent predictors of EFS. Compared to other Stage 3 subgroups, outcome was inferior for patients ≥ 547 days with MYCN-NA neuroblastoma (P < 0.0001), and within this cohort, serum ferritin ≥ 96 ng/ml was associated with inferior EFS (P = 0.02). For patients <547 days of age with MYCN-NA tumors, serum ferritin levels were prognostic of overall survival (OS) (P = 0.04) and chromosome 11q aberration was prognostic of EFS (P = 0.03). Among patients with INSS Stage 3 neuroblastoma patients, age at diagnosis, MYCN status and histology predict outcome. Patients <547 days of age with MYCN-NA tumors that lack chromosome 11q aberrations or those with serum ferritin <96 ng/ml have excellent prognosis and should be considered for therapy reduction. Prospective clinical trials are needed to identify optimal therapy for those patients ≥ 547 days of age with undifferentiated histology or elevated serum ferritin. © 2014 Wiley Periodicals, Inc.

  1. Memantine rescues transient cognitive impairment caused by high-molecular-weight aβ oligomers but not the persistent impairment induced by low-molecular-weight oligomers.

    PubMed

    Figueiredo, Cláudia P; Clarke, Julia R; Ledo, José Henrique; Ribeiro, Felipe C; Costa, Carine V; Melo, Helen M; Mota-Sales, Axa P; Saraiva, Leonardo M; Klein, William L; Sebollela, Adriano; De Felice, Fernanda G; Ferreira, Sergio T

    2013-06-05

    Brain accumulation of soluble amyloid-β oligomers (AβOs) has been implicated in synapse failure and cognitive impairment in Alzheimer's disease (AD). However, whether and how oligomers of different sizes induce synapse dysfunction is a matter of controversy. Here, we report that low-molecular-weight (LMW) and high-molecular-weight (HMW) Aβ oligomers differentially impact synapses and memory. A single intracerebroventricular injection of LMW AβOs (10 pmol) induced rapid and persistent cognitive impairment in mice. On the other hand, memory deficit induced by HMW AβOs (10 pmol) was found to be reversible. While memory impairment in LMW oligomer-injected mice was associated with decreased hippocampal synaptophysin and GluN2B immunoreactivities, synaptic pathology was not detected in the hippocampi of HMW oligomer-injected mice. On the other hand, HMW oligomers, but not LMW oligomers, induced oxidative stress in hippocampal neurons. Memantine rescued both neuronal oxidative stress and the transient memory impairment caused by HMW oligomers, but did not prevent the persistent cognitive deficit induced by LMW oligomers. Results establish that different Aβ oligomer assemblies act in an orchestrated manner, inducing different pathologies and leading to synapse dysfunction. Furthermore, results suggest a mechanistic explanation for the limited efficacy of memantine in preventing memory loss in AD.

  2. Oligomer Molecules for Efficient Organic Photovoltaics.

    PubMed

    Lin, Yuze; Zhan, Xiaowei

    2016-02-16

    Solar cells, a renewable, clean energy technology that efficiently converts sunlight into electricity, are a promising long-term solution for energy and environmental problems caused by a mass of production and the use of fossil fuels. Solution-processed organic solar cells (OSCs) have attracted much attention in the past few years because of several advantages, including easy fabrication, low cost, lightweight, and flexibility. Now, OSCs exhibit power conversion efficiencies (PCEs) of over 10%. In the early stage of OSCs, vapor-deposited organic dye materials were first used in bilayer heterojunction devices in the 1980s, and then, solution-processed polymers were introduced in bulk heterojunction (BHJ) devices. Relative to polymers, vapor-deposited small molecules offer potential advantages, such as a defined molecular structure, definite molecular weight, easy purification, mass-scale production, and good batch-to-batch reproducibility. However, the limited solubility and high crystallinity of vapor-deposited small molecules are unfavorable for use in solution-processed BHJ OSCs. Conversely, polymers have good solution-processing and film-forming properties and are easily processed into flexible devices, whereas their polydispersity of molecular weights and difficulty in purification results in batch to batch variation, which may hamper performance reproducibility and commercialization. Oligomer molecules (OMs) are monodisperse big molecules with intermediate molecular weights (generally in the thousands), and their sizes are between those of small molecules (generally with molecular weights <1000) and polymers (generally with molecular weights >10000). OMs not only overcome shortcomings of both vapor-deposited small molecules and solution-processed polymers, but also combine their advantages, such as defined molecular structure, definite molecular weight, easy purification, mass-scale production, good batch-to-batch reproducibility, good solution processability

  3. Bilateral Cystic Adrenal Neuroblastoma with Cystic Liver metastasis

    PubMed Central

    Aslan, Mine; Kalyoncu, Ayse Ucar; Habibi, Hatice Arioz; Ozdemir, Gul Nihal; Koc, Basak; Adaletli, Ibrahim

    2017-01-01

    Bilateral congenital cystic adrenal neuroblastoma (NB) with cystic liver metastasis is a very rare condition and only few cases have been reported in the literature. Herein we report a case of a congenital bilateral cystic adrenal NB with cystic liver metastasis and briefly discuss characteristic imaging features of cystic NB. PMID:28163998

  4. Transcriptomic profiling of 39 commonly-used neuroblastoma cell lines.

    PubMed

    Harenza, Jo Lynne; Diamond, Maura A; Adams, Rebecca N; Song, Michael M; Davidson, Heather L; Hart, Lori S; Dent, Maiah H; Fortina, Paolo; Reynolds, C Patrick; Maris, John M

    2017-03-28

    Neuroblastoma cell lines are an important and cost-effective model used to study oncogenic drivers of the disease. While many of these cell lines have been previously characterized with SNP, methylation, and/or mRNA expression microarrays, there has not been an effort to comprehensively sequence these cell lines. Here, we present raw whole transcriptome data generated by RNA sequencing of 39 commonly-used neuroblastoma cell lines. These data can be used to perform differential expression analysis based on a genetic aberration or phenotype in neuroblastoma (e.g., MYCN amplification status, ALK mutation status, chromosome arm 1p, 11q and/or 17q status, sensitivity to pharmacologic perturbation). Additionally, we designed this experiment to enable structural variant and/or long-noncoding RNA analysis across these cell lines. Finally, as more DNase/ATAC and histone/transcription factor ChIP sequencing is performed in these cell lines, our RNA-Seq data will be an important complement to inform transcriptional targets as well as regulatory (enhancer or repressor) elements in neuroblastoma.

  5. Invariant natural killer T infiltration in neuroblastoma with favorable outcome.

    PubMed

    Hishiki, Tomoro; Mise, Naoko; Harada, Kazuaki; Ihara, Fumie; Takami, Mariko; Saito, Takeshi; Terui, Keita; Nakata, Mitsuyuki; Komatsu, Shugo; Yoshida, Hideo; Motohashi, Shinichiro

    2017-10-10

    Tumor immunity has been suggested to play a key role in clinical and biological behavior of neuroblastomas. Given that CD1-restricted invariant natural killer T (iNKT) cells enhance both innate and acquired tumor immunity, we investigated the expression of the iNKT-cell-specific T-cell receptor Vα24-Jα18 in neuroblastoma tissues and its correlation with clinical and biological characteristics. Using real- time quantitative PCR, we quantified the expression of Vα24-Jα18 in untreated tumor samples from 107 neuroblastoma cases followed in our institution and analyzed the correlation between the presence of infiltrated iNKT cells and clinical characteristics or patients' outcome. Vα24-Jα18 receptor was detected in 62 untreated cases (57.9%). The expression was significantly higher in stages 1, 2, 3, or 4S (P = 0.0099), in tumors with low or intermediate risk (P = 0.0050), with high TrkA expression (P = 0.0229), with favorable histology (P = 0.0026), with aneuploidy (P = 0.0348), and in younger patients (P = 0.0036). The overall survival rate was significantly higher in patients with iNKT-cell infiltration (log-rank; P = 0.0089). Since tumor-infiltrating iNKT cells were predominantly observed in neuroblastomas undergoing spontaneous differentiation and/or regression, we suggest that iNKT cells might play a key role in these processes.

  6. ARID1A gene knockdown promotes neuroblastoma migration and invasion.

    PubMed

    Li, C; Xu, Z; Zhao, Z; An, Q; Wang, L; Yu, Y; Piao, D

    2017-03-03

    Neuroblastoma is the most common extracranial solid tumor in childhood which often acquires drug resistance and becomes aggressive phenotypes. The high-risk patients suffer from high mortality due to the limitation of the treatment strategies. ARID1A (AT-rich interactive domain-containing protein 1A), a subunit of SWI/SNF complexes, is considered as a tumor suppressor in many cancers. The aim of the present study was to investigate the effect of ARID1A on migration and invasion in neuroblastoma cells. The shRNA targeting ARID1A was designed and delivered into SK-N-SH cells to knock down ARID1A expression. Knockdown of ARID1A by shRNA significantly increased the viability and invasion ability, and caused G1 arrest inhibition and DNA synthesis increase in SK-N-SH cells. Moreover, Knockdown of ARID1A increased the activity and expression of matrix metalloproteinase (MMP)-2 and -9 in SK-N-SH cells. Furthermore, ARID1A knockdown caused diminished expression of E-cadherin, enhanced expression of N-cadherin and β-catenin nuclear translocation in SK-N-SH cells. These results suggest that loss of ARID1A may associate with the promotion of invasion and metastasis of neuroblastoma. Our findings indicate ARID1A is a tumor suppressor in neuroblastoma.

  7. Cytokines Synergize to Combat Metastatic Neuroblastoma | Center for Cancer Research

    Cancer.gov

    Neuroblastoma is the most common extracranial solid tumor in children, and clinical outcomes of patients with this disease are quite variable. Prognosis is particularly poor for patients with high-risk tumors (classification based on patients’ age, extent of disease spread, and other biological features).

  8. Bilateral Synchronous Ectopic Ethmoid Sinus Olfactory Neuroblastoma: A Case Report

    PubMed Central

    Leon-Soriano, Elena; Alfonso, Carolina; Yebenes, Laura; Garcia-Polo, Julio; Lassaletta, Luis; Gavilan, Javier

    2016-01-01

    Patient: Male, 41 Final Diagnosis: Olfactory neuroblastoma Symptoms: Left nasal obstruction • occasional left epistaxis • headache Medication: None Clinical Procedure: Nasal endoscopic examination • neck palpation • CT • bilateral endoscopic resection • MRI • PET-CT • postoperative radiotherapy Specialty: Otolaryngology Objective: Unusual clinical course Background: Olfactory neuroblastoma (ONB), also known as esthesioneuroblastoma, is a rare malignant head and neck cancer thought to originate from the olfactory epithelium. It typically invades contiguous structures at presentation. We report a very rare case of multifocal and ectopic ONB. Case Report: A 41-year-old man presented with left nasal obstruction and occasional left epistaxis associated with headache. Endoscopic examination of the nasal cavities and computed tomography suggested bilateral polypoid masses. Histopathological diagnosis after endoscopic resection established bilateral olfactory neuroblastoma of the ethmoid sinuses. The patient received postoperative radiotherapy. He remains free of disease 4 years after treatment. Conclusions: To the best of our knowledge this is the second documented case of multifocal ectopic olfactory neuroblastoma. Clinicians should consider ONB in the differential diagnosis of bilateral synchronous nasal and paranasal masses to avoid delayed diagnosis. Endoscopic resection of ONB could be an option in selected cases. PMID:27097989

  9. The role of the MEIS homeobox genes in neuroblastoma.

    PubMed

    Geerts, Dirk; Schilderink, Nathalie; Jorritsma, Gerda; Versteeg, Rogier

    2003-07-18

    We recently found amplification of the TALE homeobox gene MEIS1 in the IMR32 neuroblastoma cell line. We now demonstrate high-level expression of the MEIS1 and MEIS2 genes, as well as efficient expression of most other TALE family member genes in a panel of neuroblastoma cell lines. Stable transfection of MEIS1-expressing cell lines with cDNA encoding a naturally occurring dominant-negative splice variant of MEIS1 (MEIS1E) yielded clones with impaired cell proliferation, gain of differentiated phenotype, and increased contact inhibition and cell death. This indicated a relevance of MEIS expression for neuroblastoma cell growth and proliferation. We therefore determined the gene expression profiles of several MEIS1E transfectants using serial analysis of gene expression (SAGE). A large number of genes showed differential expression as a result of MEIS1E expression. These include genes involved in developmental signalling pathways, chromatin binding, cell cycle control, proliferation, and apoptosis. The results presented provide important clues for the oncogenic function of MEIS1 in neuroblastoma.

  10. N-linked glycan profiling in neuroblastoma cell lines.

    PubMed

    Hu, Yunli; Mayampurath, Anoop; Khan, Saira; Cohen, Joanna K; Mechref, Yehia; Volchenboum, Samuel L

    2015-05-01

    Although MYCN amplification has been associated with aggressive neuroblastoma, the molecular mechanisms that differentiate low-risk, MYCN-nonamplified neuroblastoma from high-risk, MYCN-amplified disease are largely unknown. Genomic and proteomic studies have been limited in discerning differences in signaling pathways that account for this heterogeneity. N-Linked glycosylation is a common protein modification resulting from the attachment of sugars to protein residues and is important in cell signaling and immune response. Aberrant N-linked glycosylation has been routinely linked to various cancers. In particular, glycomic markers have often proven to be useful in distinguishing cancers from precancerous conditions. Here, we perform a systematic comparison of N-linked glycomic variation between MYCN-nonamplified SY5Y and MYCN-amplified NLF cell lines with the aim of identifying changes in sugar abundance linked to high-risk neuroblastoma. Through a combination of liquid chromatography-mass spectrometry and bioinformatics analysis, we identified 16 glycans that show a statistically significant change in abundance between NLF and SY5Y samples. Closer examination revealed the preference for larger (in terms of total monosaccharide count) and more sialylated glycan structures in the MYCN-amplified samples in comparison to smaller, nonsialylated glycans that are more dominant in the MYCN-nonamplified samples. These results offer clues for deriving marker candidates for accurate neuroblastoma risk diagnosis.

  11. Immunolocalization of neuroblastoma using radiolabeled monoclonal antibody UJ13A

    SciTech Connect

    Goldman, A.; Vivian, G.; Gordon, I.; Pritchard, J.; Kemshead, J.

    1984-08-01

    The monoclonal antibody UJ13A, raised after immunization of mice with human fetal brain, recognized an antigen expressed on human neuroblastoma cell lines and fresh tumors. Antibody was purified and radiolabeled with iodine isotopes using chloramine-T. In preclinical studies, 125I-labeled UJ13A was injected intravenously into nude mice bearing xenografts of human neuroblastoma. Radiolabeled UJ13A uptake by the tumors was four to 23 times greater than that by blood. In control animals, injected with a similar quantity of a monoclonal antibody known not to bind to neuroblastoma cells in vitro (FD44), there was no selective tumor uptake. Nine patients with histologically confirmed neuroblastoma each received 100 to 300 micrograms UJ13A radiolabeled with 1 to 2.8 mCi 123I or 131I. Sixteen positive sites were visible on gamma scans 1 to 7 days after injection: 15 were primary or secondary tumor sites, and one was a false positive; there were two false negatives. In two of the 15 positive sites, tumor had not been demonstrated by other imaging techniques; these were later confirmed as areas of malignant infiltration. No toxicity was encountered.

  12. N-Cadherin in Neuroblastoma Disease: Expression and Clinical Significance

    PubMed Central

    Derycke, Lara; De Craemer, Annemie; De Brouwer, Sara; De Preter, Katleen; Van Roy, Nadine; Vandesompele, Jo; Speleman, Frank; Philippé, Jan; Benoit, Yves; Beiske, Klaus; Bracke, Marc; Laureys, Geneviève

    2012-01-01

    One of the first and most important steps in the metastatic cascade is the loss of cell-cell and cell-matrix interactions. N-cadherin, a crucial mediator of homotypic and heterotypic cell-cell interactions, might play a central role in the metastasis of neuroblastoma (NB), a solid tumor of neuroectodermal origin. Using Reverse Transcription Quantitative PCR (RT-qPCR), Western blot, immunocytochemistry and Tissue MicroArrays (TMA) we demonstrate the expression of N-cadherin in neuroblastoma tumors and cell lines. All neuroblastic tumors (n = 356) and cell lines (n = 10) expressed various levels of the adhesion protein. The N-cadherin mRNA expression was significantly lower in tumor samples from patients suffering metastatic disease. Treatment of NB cell lines with the N-cadherin blocking peptide ADH-1 (Exherin, Adherex Technologies Inc.), strongly inhibited tumor cell proliferation in vitro by inducing apoptosis. Our results suggest that N-cadherin signaling may play a role in neuroblastoma disease, marking involvement of metastasis and determining neuroblastoma cell viability. PMID:22355346

  13. Transcriptomic profiling of 39 commonly-used neuroblastoma cell lines

    PubMed Central

    Harenza, Jo Lynne; Diamond, Maura A.; Adams, Rebecca N.; Song, Michael M.; Davidson, Heather L.; Hart, Lori S.; Dent, Maiah H.; Fortina, Paolo; Reynolds, C. Patrick; Maris, John M.

    2017-01-01

    Neuroblastoma cell lines are an important and cost-effective model used to study oncogenic drivers of the disease. While many of these cell lines have been previously characterized with SNP, methylation, and/or mRNA expression microarrays, there has not been an effort to comprehensively sequence these cell lines. Here, we present raw whole transcriptome data generated by RNA sequencing of 39 commonly-used neuroblastoma cell lines. These data can be used to perform differential expression analysis based on a genetic aberration or phenotype in neuroblastoma (e.g., MYCN amplification status, ALK mutation status, chromosome arm 1p, 11q and/or 17q status, sensitivity to pharmacologic perturbation). Additionally, we designed this experiment to enable structural variant and/or long-noncoding RNA analysis across these cell lines. Finally, as more DNase/ATAC and histone/transcription factor ChIP sequencing is performed in these cell lines, our RNA-Seq data will be an important complement to inform transcriptional targets as well as regulatory (enhancer or repressor) elements in neuroblastoma. PMID:28350380

  14. Discovery – Ch14.18 Immunotherapy to Treat Neuroblastoma

    Cancer.gov

    Neuroblastoma is rare yet it's the most common cancer affecting infants. Prior to a discovery 20 years in the making, there was little hope for survival in children with advanced stages of the disease. Today, research is leading to a brighter outlook.

  15. Translational development of difluoromethylornithine (DFMO) for the treatment of neuroblastoma

    PubMed Central

    Bassiri, Hamid; Benavides, Adriana; Haber, Michelle; Gilmour, Susan K.; Norris, Murray D.

    2015-01-01

    Neuroblastoma is a childhood tumor in which MYC oncogenes are commonly activated to drive tumor progression. Survival for children with high-risk neuroblastoma remains poor despite treatment that incorporates high-dose chemotherapy, stem cell support, surgery, radiation therapy and immunotherapy. More effective and less toxic treatments are sought and one approach under clinical development involves re-purposing the anti-protozoan drug difluoromethylornithine (DFMO; Eflornithine) as a neuroblastoma therapeutic. DFMO is an irreversible inhibitor of ornithine decarboxylase (Odc), a MYC target gene, bona fide oncogene, and the rate-limiting enzyme in polyamine synthesis. DFMO is approved for the treatment of Trypanosoma brucei gambiense encephalitis (“African sleeping sickness”) since polyamines are essential for the proliferation of these protozoa. However, polyamines are also critical for mammalian cell proliferation and the finding that MYC coordinately regulates all aspects of polyamine metabolism suggests polyamines may be required to support cancer promotion by MYC. Pre-emptive blockade of polyamine synthesis is sufficient to block tumor initiation in an otherwise fully penetrant transgenic mouse model of neuroblastoma driven by MYCN, underscoring the necessity of polyamines in this process. Moreover, polyamine depletion regimens exert potent anti-tumor activity in pre-clinical models of established neuroblastoma as well, in combination with numerous chemotherapeutic agents and even in tumors with unfavorable genetic features such as MYCN, ALK or TP53 mutation. This has led to the testing of DFMO in clinical trials for children with neuroblastoma. Current trial designs include testing lower dose DFMO alone (2,000 mg/m2/day) starting at the completion of standard therapy, or higher doses combined with chemotherapy (up to 9,000 mg/m2/day) for patients with relapsed disease that has progressed. In this review we will discuss important considerations for the

  16. Translational development of difluoromethylornithine (DFMO) for the treatment of neuroblastoma.

    PubMed

    Bassiri, Hamid; Benavides, Adriana; Haber, Michelle; Gilmour, Susan K; Norris, Murray D; Hogarty, Michael D

    2015-07-01

    Neuroblastoma is a childhood tumor in which MYC oncogenes are commonly activated to drive tumor progression. Survival for children with high-risk neuroblastoma remains poor despite treatment that incorporates high-dose chemotherapy, stem cell support, surgery, radiation therapy and immunotherapy. More effective and less toxic treatments are sought and one approach under clinical development involves re-purposing the anti-protozoan drug difluoromethylornithine (DFMO; Eflornithine) as a neuroblastoma therapeutic. DFMO is an irreversible inhibitor of ornithine decarboxylase (Odc), a MYC target gene, bona fide oncogene, and the rate-limiting enzyme in polyamine synthesis. DFMO is approved for the treatment of Trypanosoma brucei gambiense encephalitis ("African sleeping sickness") since polyamines are essential for the proliferation of these protozoa. However, polyamines are also critical for mammalian cell proliferation and the finding that MYC coordinately regulates all aspects of polyamine metabolism suggests polyamines may be required to support cancer promotion by MYC. Pre-emptive blockade of polyamine synthesis is sufficient to block tumor initiation in an otherwise fully penetrant transgenic mouse model of neuroblastoma driven by MYCN, underscoring the necessity of polyamines in this process. Moreover, polyamine depletion regimens exert potent anti-tumor activity in pre-clinical models of established neuroblastoma as well, in combination with numerous chemotherapeutic agents and even in tumors with unfavorable genetic features such as MYCN, ALK or TP53 mutation. This has led to the testing of DFMO in clinical trials for children with neuroblastoma. Current trial designs include testing lower dose DFMO alone (2,000 mg/m(2)/day) starting at the completion of standard therapy, or higher doses combined with chemotherapy (up to 9,000 mg/m(2)/day) for patients with relapsed disease that has progressed. In this review we will discuss important considerations for the

  17. Electronic coherence dynamics in trans-polyacetylene oligomers.

    PubMed

    Franco, Ignacio; Brumer, Paul

    2012-04-14

    Electronic coherence dynamics in trans-polyacetylene oligomers are considered by explicitly computing the time dependent molecular polarization from the coupled dynamics of electronic and vibrational degrees of freedom in a mean-field mixed quantum-classical approximation. The oligomers are described by the Su-Schrieffer-Heeger Hamiltonian and the effect of decoherence is incorporated by propagating an ensemble of quantum-classical trajectories with initial conditions obtained by sampling the Wigner distribution of the nuclear degrees of freedom. The electronic coherence of superpositions between the ground and excited and between pairs of excited states is examined for chains of different length, and the dynamics is discussed in terms of the nuclear overlap function that appears in the off-diagonal elements of the electronic reduced density matrix. For long oligomers the loss of coherence occurs in tens of femtoseconds. This time scale is determined by the decay of population into other electronic states through vibronic interactions, and is relatively insensitive to the type and class of superposition considered. By contrast, for smaller oligomers the decoherence time scale depends strongly on the initially selected superposition, with superpositions that can decay as fast as 50 fs and as slow as 250 fs. The long-lived superpositions are such that little population is transferred to other electronic states and for which the vibronic dynamics is relatively harmonic.

  18. Microdroplet temperature calibration via thermal dissociation of quenched DNA oligomers

    PubMed Central

    Hall, Eric W.; Faris, Gregory W.

    2014-01-01

    The development of microscale analytical techniques has created an increasing demand for reliable and accurate heating at the microscale. Here, we present a novel method for calibrating the temperature of microdroplets using quenched, fluorescently labeled DNA oligomers. Upon melting, the 3′ fluorophore of the reporter oligomer separates from the 5′ quencher of its reverse complement, creating a fluorescent signal recorded as a melting curve. The melting temperature for a given oligomer is determined with a conventional quantitative polymerase chain reaction (qPCR) instrument and used to calibrate the temperature within a microdroplet, with identical buffer concentrations, heated with an infrared laser. Since significant premelt fluorescence prevents the use of a conventional (single-term) sigmoid or logistic function to describe the melting curve, we present a three-term sigmoid model that provides a very good match to the asymmetric fluorescence melting curve with premelting. Using mixtures of three oligomers of different lengths, we fit multiple three-term sigmoids to obtain precise comparison of the microscale and macroscale fluorescence melting curves using “extrapolated two-state” melting temperatures. PMID:24688810

  19. Synergistic effects of atmospheric pressure plasma-emitted components on DNA oligomers: a Raman spectroscopic study.

    PubMed

    Edengeiser, Eugen; Lackmann, Jan-Wilm; Bründermann, Erik; Schneider, Simon; Benedikt, Jan; Bandow, Julia E; Havenith, Martina

    2015-11-01

    Cold atmospheric-pressure plasmas have become of increasing importance in sterilization processes especially with the growing prevalence of multi-resistant bacteria. Albeit the potential for technological application is obvious, much less is known about the molecular mechanisms underlying bacterial inactivation. X-jet technology separates plasma-generated reactive particles and photons, thus allowing the investigation of their individual and joint effects on DNA. Raman spectroscopy shows that particles and photons cause different modifications in DNA single and double strands. The treatment with the combination of particles and photons does not only result in cumulative, but in synergistic effects. Profilometry confirms that etching is a minor contributor to the observed DNA damage in vitro. Schematics of DNA oligomer treatment with cold atmospheric-pressure plasma.

  20. How human neuroblastoma cells make morphine.

    PubMed

    Boettcher, Chotima; Fellermeier, Monika; Boettcher, Christian; Dräger, Birgit; Zenk, Meinhart H

    2005-06-14

    Recently, our laboratory demonstrated that human neuroblastoma cells (SH-SY5Y) are capable of synthesizing morphine, the major active metabolite of opium poppy. Now our experiments are further substantiated by extending the biochemical studies to the entire morphine pathway in this human cell line. L-[1,2,3-13C3]- and [ring-2',5',6'-2H3]dopa showed high isotopic enrichment and incorporation in both the isoquinoline and the benzyl moiety of the endogenous morphine. [2,2-2H2]Dopamine, however, was exclusively incorporated only into the isoquinoline moiety. Neither the trioxygenated (R,S)-[1,3-13C2]norcoclaurine, the precursor of morphine in the poppy plant, nor (R)-[1,3,4-2H3]norlaudanosoline showed incorporation into endogenous morphine. However, (S)-[1,3,4-2H3]norlaudanosoline furnished a good isotopic enrichment and the loss of a single deuterium atom at the C-9 position of the morphine molecule, indicating that the change of configuration from (S)- to (R)-reticuline occurs via the intermediacy of 1,2-dehydroreticuline. Additional feeding experiments with potential morphinan precursors demonstrated substantial incorporation of [7-2H]salutaridinol, but not 7-[7-2H]episalutaridinol, and [7-2H,N-C2H3]oripavine, and [6-2H]codeine into morphine. Human morphine biosynthesis involves at least 19 chemical steps. For the most part, it is a reflection of the biosynthesis in opium poppy; however, there is a fundamental difference in the formation of the key intermediate (S)-reticuline: it proceeds via the tetraoxygenated initial isoquinoline alkaloid (S)-norlaudanosoline, whereas the plant morphine biosynthesis proceeds via the trioxygenated (S)-norcoclaurine. Following the plant biosynthetic pathway, (S)-reticuline undergoes a change of configuration at C-1 during its transformation to salutaridinol and thebaine. From thebaine, there is a bifurcate pathway leading to morphine proceeding via codeine or oripavine, in both plants and mammals.

  1. How human neuroblastoma cells make morphine

    PubMed Central

    Boettcher, Chotima; Fellermeier, Monika; Boettcher, Christian; Dräger, Birgit; Zenk, Meinhart H.

    2005-01-01

    Recently, our laboratory demonstrated that human neuroblastoma cells (SH-SY5Y) are capable of synthesizing morphine, the major active metabolite of opium poppy. Now our experiments are further substantiated by extending the biochemical studies to the entire morphine pathway in this human cell line. l-[1,2,3-13C3]- and [ring-2′,5′,6′-2H3]dopa showed high isotopic enrichment and incorporation in both the isoquinoline and the benzyl moiety of the endogenous morphine. [2,2-2H2]Dopamine, however, was exclusively incorporated only into the isoquinoline moiety. Neither the trioxygenated (R,S)-[1,3-13C2]norcoclaurine, the precursor of morphine in the poppy plant, nor (R)-[1,3,4-2H3]norlaudanosoline showed incorporation into endogenous morphine. However, (S)-[1,3,4-2H3]norlaudanosoline furnished a good isotopic enrichment and the loss of a single deuterium atom at the C-9 position of the morphine molecule, indicating that the change of configuration from (S)- to (R)-reticuline occurs via the intermediacy of 1,2-dehydroreticuline. Additional feeding experiments with potential morphinan precursors demonstrated substantial incorporation of [7-2H]salutaridinol, but not 7-[7-2H]episalutaridinol, and [7-2H,N-C2H3]oripavine, and [6-2H]codeine into morphine. Human morphine biosynthesis involves at least 19 chemical steps. For the most part, it is a reflection of the biosynthesis in opium poppy; however, there is a fundamental difference in the formation of the key intermediate (S)-reticuline: it proceeds via the tetraoxygenated initial isoquinoline alkaloid (S)-norlaudanosoline, whereas the plant morphine biosynthesis proceeds via the trioxygenated (S)-norcoclaurine. Following the plant biosynthetic pathway, (S)-reticuline undergoes a change of configuration at C-1 during its transformation to salutaridinol and thebaine. From thebaine, there is a bifurcate pathway leading to morphine proceeding via codeine or oripavine, in both plants and mammals. PMID:15937106

  2. Graphene Oxide Nanoribbons Induce Autophagic Vacuoles in Neuroblastoma Cell Lines

    PubMed Central

    Mari, Emanuela; Mardente, Stefania; Morgante, Emanuela; Tafani, Marco; Lococo, Emanuela; Fico, Flavia; Valentini, Federica; Zicari, Alessandra

    2016-01-01

    Since graphene nanoparticles are attracting increasing interest in relation to medical applications, it is important to understand their potential effects on humans. In the present study, we prepared graphene oxide (GO) nanoribbons by oxidative unzipping of single-wall carbon nanotubes (SWCNTs) and analyzed their toxicity in two human neuroblastoma cell lines. Neuroblastoma is the most common solid neoplasia in children. The hallmark of these tumors is the high number of different clinical variables, ranging from highly metastatic, rapid progression and resistance to therapy to spontaneous regression or change into benign ganglioneuromas. Patients with neuroblastoma are grouped into different risk groups that are characterized by different prognosis and different clinical behavior. Relapse and mortality in high risk patients is very high in spite of new advances in chemotherapy. Cell lines, obtained from neuroblastomas have different genotypic and phenotypic features. The cell lines SK-N-BE(2) and SH-SY5Y have different genetic mutations and tumorigenicity. Cells were exposed to low doses of GO for different times in order to investigate whether GO was a good vehicle for biological molecules delivering individualized therapy. Cytotoxicity in both cell lines was studied by measuring cellular oxidative stress (ROS), mitochondria membrane potential, expression of lysosomial proteins and cell growth. GO uptake and cytoplasmic distribution of particles were studied by Transmission Electron Microscopy (TEM) for up to 72 h. The results show that GO at low concentrations increased ROS production and induced autophagy in both neuroblastoma cell lines within a few hours of exposure, events that, however, are not followed by growth arrest or death. For this reason, we suggest that the GO nanoparticle can be used for therapeutic delivery to the brain tissue with minimal effects on healthy cells. PMID:27916824

  3. Array comparative genomic hybridization analysis of olfactory neuroblastoma.

    PubMed

    Guled, Mohamed; Myllykangas, Samuel; Frierson, Henry F; Mills, Stacey E; Knuutila, Sakari; Stelow, Edward B

    2008-06-01

    Olfactory neuroblastoma is an unusual neuroectodermal malignancy, which is thought to arise at the olfactory membrane of the sinonasal tract. Due to its rarity, little is understood regarding its molecular and cytogenetic abnormalities. The aim of the current study is to identify specific DNA copy number changes in olfactory neuroblastoma. Thirteen dissected tissue samples were analyzed using array comparative genomic hybridization. Our results show that gene copy number profiles of olfactory neuroblastoma samples are complex. The most frequent changes included gains at 7q11.22-q21.11, 9p13.3, 13q, 20p/q, and Xp/q, and losses at 2q31.1, 2q33.3, 2q37.1, 6q16.3, 6q21.33, 6q22.1, 22q11.23, 22q12.1, and Xp/q. Gains were more frequent than losses, and high-stage tumors showed more alterations than low-stage olfactory neuroblastoma. Frequent changes in high-stage tumors were gains at 13q14.2-q14.3, 13q31.1, and 20q11.21-q11.23, and loss of Xp21.1 (in 66% of cases). Gains at 5q35, 13q, and 20q, and losses at 2q31.1, 2q33.3, and 6q16-q22, were present in 50% of cases. The identified regions of gene copy number change have been implicated in a variety of tumors, especially carcinomas. In addition, our results indicate that gains in 20q and 13q may be important in the progression of this cancer, and that these regions possibly harbor genes with functional relevance in olfactory neuroblastoma.

  4. Targeting p53 Null Neuroblastomas through RLIP76**

    PubMed Central

    Singhal, Jyotsana; Yadav, Sushma; Nagaprashantha, Lokesh Dalasanur; Vatsyayan, Rit; Singhal, Sharad S; Awasthi, Sanjay

    2011-01-01

    The search for p53-independent mechanism of cancer cell killing is highly relevant to pediatric neuroblastomas, where successful therapy is limited by its transformation into p53 mutant and a highly drug-resistant neoplasm. Our studies on the drug-resistant p53 mutant as compared with drug-resistant p53 wild-type neuroblastoma revealed a novel mechanism for resistance to apoptosis: a direct role of p53 in regulating the cellular concentration of pro-apoptotic alkenals by functioning as a specific and saturable allosteric inhibitor of the alkenal-glutathione-conjugate transporter, RLIP76. The RLIP76-p53 complex was demonstrated both using immuno-precipitation analyses of purified proteins as well as by immuno-fluorescence analysis. Drug transport studies revealed that p53 inhibited both basal and PKCα stimulated transport of glutathione-conjugates of 4HNE (GS-HNE) and cisplatin. Drug resistance was significantly greater for p53 mutant as compared with p53 wild-type neuroblastoma cell lines, but both were susceptible to depletion of RLIP76 by antisense alone. In addition, inhibition of RLIP76 significantly enhanced the cytotoxicity of cisplatin. Taken together, these studies provide powerful evidence for a novel mechanism for drug and apoptosis resistance in p53 mutant neuroblastoma, based on a model of regulation of p53 induced apoptosis by RLIP76, where p53 is a saturable and specific allosteric inhibitor of RLIP76, and p53 loss results in over-expression of RLIP76; thus, in the absence of p53, the drug and glutathione-conjugate transport activities of RLIP76 are enhanced. Most importantly, our findings strongly indicate RLIP76 as a novel target for therapy of drug-resistant and p53 mutant neuroblastoma. PMID:21411502

  5. Single and multidimensional measurements underestimate neuroblastoma response to therapy.

    PubMed

    Trout, Andrew T; Towbin, Alexander J; Klingbeil, Lindsey; Weiss, Brian D; von Allmen, Daniel

    2017-01-01

    Changes in three-dimensional (3D) measurements of neuroblastoma are used to assess response. Linear measurements may not accurately characterize tumor size due to the infiltrative character of these tumors. The purpose of this study was to assess the accuracy of one-dimensional (1D), two-dimensional (2D), and 3D measurements in characterizing neuroblastoma response compared to a reference standard of tumor volume. We retrospectively reviewed imaging for 34 patients with stage 3 or 4 neuroblastoma. Blinded readers contoured or made linear measurements of tumors. Correlation coefficients were used to compare linear measurements to volumetric and 3D measurements. Bland-Altman analyses were used to assess bias between measurements. Sensitivity and specificity for patient events and survival were calculated for each measurement technique. Mean patient age was 2.9 ± 3.0 years (range 0-15 years). There was strong correlation between volumetric and 1D (r = 0.78, P < 0.0001), 2D (r = 0.86, P < 0.0001), and 3D (r = 0.88, P < 0.0001) measurements. Mean bias between volumetric measurements and 1D, 2D, and 3D measurements was 37.1% (95% limits: 6.2-67.9%), 16.1% (95% limits: -11.7-43.8%), and 7.7% (95% limits: -19.7-35.1%), respectively. 1D and 2D measurements undercategorized response versus volumetric change in 88.2% (30/34) and 29.4% (10/34) of cases. 3D measurements incorrectly characterized response in 16.7% (4/24) of cases versus volumetric change. 3D measurements were highly sensitive for patient events and survival, but all measurement techniques had poor specificity. 3D measurements most accurately quantify neuroblastoma size response versus volumetric change in patients with stage 3 and 4 neuroblastoma. 1D and 2D measurements underrepresent tumor response. © 2016 Wiley Periodicals, Inc.

  6. Graphene Oxide Nanoribbons Induce Autophagic Vacuoles in Neuroblastoma Cell Lines.

    PubMed

    Mari, Emanuela; Mardente, Stefania; Morgante, Emanuela; Tafani, Marco; Lococo, Emanuela; Fico, Flavia; Valentini, Federica; Zicari, Alessandra

    2016-11-29

    Since graphene nanoparticles are attracting increasing interest in relation to medical applications, it is important to understand their potential effects on humans. In the present study, we prepared graphene oxide (GO) nanoribbons by oxidative unzipping of single-wall carbon nanotubes (SWCNTs) and analyzed their toxicity in two human neuroblastoma cell lines. Neuroblastoma is the most common solid neoplasia in children. The hallmark of these tumors is the high number of different clinical variables, ranging from highly metastatic, rapid progression and resistance to therapy to spontaneous regression or change into benign ganglioneuromas. Patients with neuroblastoma are grouped into different risk groups that are characterized by different prognosis and different clinical behavior. Relapse and mortality in high risk patients is very high in spite of new advances in chemotherapy. Cell lines, obtained from neuroblastomas have different genotypic and phenotypic features. The cell lines SK-N-BE(2) and SH-SY5Y have different genetic mutations and tumorigenicity. Cells were exposed to low doses of GO for different times in order to investigate whether GO was a good vehicle for biological molecules delivering individualized therapy. Cytotoxicity in both cell lines was studied by measuring cellular oxidative stress (ROS), mitochondria membrane potential, expression of lysosomial proteins and cell growth. GO uptake and cytoplasmic distribution of particles were studied by Transmission Electron Microscopy (TEM) for up to 72 h. The results show that GO at low concentrations increased ROS production and induced autophagy in both neuroblastoma cell lines within a few hours of exposure, events that, however, are not followed by growth arrest or death. For this reason, we suggest that the GO nanoparticle can be used for therapeutic delivery to the brain tissue with minimal effects on healthy cells.

  7. Unique Properties of the Rabbit Prion Protein Oligomer

    PubMed Central

    Yu, Ziyao; Huang, Pei; Yu, Yuanhui; Zheng, Zhen; Huang, Zicheng; Guo, Chenyun; Lin, Donghai

    2016-01-01

    Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), are a group of fatal neurodegenerative disorders infecting both humans and animals. Recent works have demonstrated that the soluble prion protein oligomer (PrPO), the intermediate of the conformational transformation from the host-derived cellular form (PrPC) to the disease-associated Scrapie form (PrPSc), exerts the major neurotoxicity in vitro and in vivo. Rabbits show strong resistance to TSEs, the underlying mechanism is unclear to date. It is expected that the relative TSEs-resistance of rabbits is closely associated with the unique properties of rabbit prion protein oligomer which remain to be addressed in detail. In the present work, we prepared rabbit prion protein oligomer (recRaPrPO) and human prion protein oligomer (recHuPrPO) under varied conditions, analyzed the effects of pH, NaCl concentration and incubation temperature on the oligomerization, and compared the properties of recRaPrPO and recHuPrPO. We found that several factors facilitated the formation of prion protein oligomers, including low pH, high NaCl concentration, high incubation temperature and low conformational stability of monomeric prion protein. RecRaPrPO was formed more slowly than recHuPrPO at physiological-like conditions (< 57°C, < 150 mM NaCl). Furthermore, recRaPrPO possessed higher susceptibility to proteinase K and lower cytotoxicity in vitro than recHuPrPO. These unique properties of recRaPrPO might substantially contribute to the TSEs-resistance of rabbits. Our work sheds light on the oligomerization of prion proteins and is of benefit to mechanistic understanding of TSEs-resistance of rabbits. PMID:27529173

  8. Mass spectrometric characterization of oligomers in Pseudomonas aeruginosa azurin solutions

    PubMed Central

    Sokolová, Lucie; Williamson, Heather; Sýkora, Jan; Hof, Martin; Gray, Harry B.; Brutschy, Bernd; Vlček, Antonín

    2011-01-01

    We have employed laser induced liquid bead ion desorption mass spectroscopy (LILBID MS) to study the solution behavior of Pseudomonas aeruginosa azurin as well as two mutants and corresponding Re-labeled derivatives containing a Re(CO)3(4,7-dimethyl-1,10-phenanthroline) chromophore appended to a surface histidine. LILBID spectra show broad oligomer distributions whose particular patterns depend on the solution composition (pure H2O, 20–30 mM NaCl, 20 and 50 mM NaPi or NH4Pi at pH = 7). The distribution maximum shifts to smaller oligomers upon decreasing the azurin concentration and increasing the buffer concentration. Oligomerization is less extensive for native azurin than its mutants. The oligomerization propensities of unlabeled and Re-labeled proteins are generally comparable, only Re126 shows some preference for the dimer that persists even in highly diluted solutions. Peak shifts to higher masses and broadening in 20–50 mM NaPi confirm strong azurin association with buffer ions and solvation. We have found that LILBID MS reveals the solution behavior of weakly bound nonspecific oligomers, clearly distinguishing individual components of the oligomer distribution. Independently, average data on oligomerization and the dependence on solution composition were obtained by time-resolved anisotropy of the Re-label photoluminescence that confirmed relatively long rotation correlation times, 6–30 ns, depending on Re-azurin and solution composition. Labeling proteins with Re-chromophores that have long-lived phosphorescence extends the timescale of anisotropy measurements to hundreds of ns, thereby opening the way for investigations of large oligomers with long rotation times. PMID:21452827

  9. MicroRNA-181a suppresses parkin-mediated mitophagy and sensitizes neuroblastoma cells to mitochondrial uncoupler-induced apoptosis

    PubMed Central

    Lao, Yuanzhi; Liao, Weijie; Liao, Meijian; Luo, Xuan; Wu, Jiangbin; Xie, Weidong; Zhang, Yaou; Xu, Naihan

    2016-01-01

    Damage to mitochondria often results in the activation of both mitophagy and mitochondrial apoptosis. The elimination of dysfunctional mitochondria is necessary for mitochondrial quality maintenance and efficient energy supply. Here we report that miR-181a is a novel inhibitor of mitophagy. miR-181a is downregulated by mitochondrial uncouplers in human neuroblastoma SH-SY5Y cells. Overexpression of miR-181a inhibits mitochondrial uncoupling agents-induced mitophagy by inhibiting the degradation of mitochondrial proteins without affecting global autophagy. Knock down of endogenous miR-181a accelerates the autophagic degradation of damaged mitochondria. miR-181a directly targets Parkin E3 ubiquitin ligase and partially blocks the colocalization of mitochondria and autophagosomes/lysosomes. Re-expression of exogenous Parkin restores the inhibitory effect of miR-181a on mitophagy. Furthermore, miR-181a increases the sensitivity of neuroblastoma cells to mitochondrial uncoupler-induced apoptosis, whereas miR-181a antagomir prevents cell death. Because mitophagy defects are associated with a variety of human disorders, these findings indicate an important link between microRNA and Parkin-mediated mitophagy and highlights a potential therapeutic strategy for human diseases. PMID:27281615

  10. [Effect of estrogen on nucleotide excision repair of N2a neuroblastoma cells].

    PubMed

    Yoshioka, Akira; Yamamoto, Aya; Mori, Toshio; Nakamura, Yu; Morikawa, Masayuki; Yoshino, Hiroki; Kiuchi, Kuniaki; Makinodan, Manabu; Kishimoto, Toshifumi

    2007-04-01

    Until now reduced estrogen level has been considered to affect some psychiatric symptoms, because there are sex differences in onset of Schizophrenia and Alzheimer's disease. Estrogen is associated with cognitive functions, and it has been reported to protect oxidative damage of DNA related to base excision repair (BER). Some patients with Xeroderma Pigmentosum, who have normal BER and impaired nucleotide excision repair (NER), are known to be suffering from mental retardation. Therefore we hypothesized that impaired NER was partly associated with pathology of mental disorder and investigated the effects of estrogen on NER for ultraviolet-induced DNA damage. The N2a neuroblastoma cell line was used as a representative of neuronal cells and 17p-estradiol was selected as one of the most active estrogen derivatives. There were no significant effects of 17p-estradiol on prevention of DNA damage, promotion of DNA repair, or cell survival at the concentration of 0-0.1 microM 17p-estradiol (below cytotoxicity level). These results described that estrogen might not directly affect NER except through another DNA repair system.

  11. Phase I trial of lestaurtinib for children with refractory neuroblastoma: a new approaches to neuroblastoma therapy consortium study

    PubMed Central

    Minturn, Jane E.; Evans, Audrey E.; Villablanca, Judith G.; Yanik, Gregory A.; Park, Julie R.; Shusterman, Suzanne; Groshen, Susan; Hellriegel, Edward T.; Bensen-Kennedy, Debra; Matthay, Katherine K.

    2014-01-01

    Purpose TrkB acts as an oncogenic kinase in a subset of human neuroblastomas. Lestaurtinib, a multi-kinase inhibitor with potent activity against Trk kinases, has demonstrated activity in preclinical models of neuroblastoma. Methods Patients with refractory high-risk neuroblastoma received lestaurtinib twice daily for 5 days out of seven in 28-day cycles, starting at 70% of the adult recommended Phase 2 dose. Lestaurtinib dose was escalated using a 3 + 3 design. Pharmacokinetics and plasma phospho-TrkB inhibitory activity were evaluated in the first cycle. Results Forty-seven subjects were enrolled, and 10 dose levels explored starting at 25 mg/M2/dose BID. Forty-six subjects were evaluable for response, and 42 subjects were fully evaluable for determination of dose escalation. Asymptomatic and reversible grade 3–4 transaminase elevation was dose limiting in 4 subjects. Reversible pancreatitis (grade 2) was observed in 3 subjects after prolonged treatment at higher dose levels. Other toxicities were mild and reversible. Pharmacokinetic analyses revealed rapid drug absorption, however inter-patient variability was large. Plasma inhibition of phospho-TrkB activity was observed 1 h post-dosing at 85 mg/M2 with uniform inhibition at 120 mg/M2. There were two partial responses and nine subjects had prolonged stable disease at dose levels ≥ 5, (median: 6 cycles). A biologically effective and recommended phase 2 dose of 120 mg/M2/dose BID was established. Conclusions Lestaurtinib was well tolerated in patients with refractory neuroblastoma, and a dose level sufficient to inhibit TrkB activity was established. Safety and signs of activity at the higher dose levels warrant further evaluation in neuroblastoma. PMID:21340605

  12. Phase I trial of lestaurtinib for children with refractory neuroblastoma: a new approaches to neuroblastoma therapy consortium study.

    PubMed

    Minturn, Jane E; Evans, Audrey E; Villablanca, Judith G; Yanik, Gregory A; Park, Julie R; Shusterman, Suzanne; Groshen, Susan; Hellriegel, Edward T; Bensen-Kennedy, Debra; Matthay, Katherine K; Brodeur, Garrett M; Maris, John M

    2011-10-01

    TrkB acts as an oncogenic kinase in a subset of human neuroblastomas. Lestaurtinib, a multi-kinase inhibitor with potent activity against Trk kinases, has demonstrated activity in preclinical models of neuroblastoma. Patients with refractory high-risk neuroblastoma received lestaurtinib twice daily for 5 days out of seven in 28-day cycles, starting at 70% of the adult recommended Phase 2 dose. Lestaurtinib dose was escalated using a 3 + 3 design. Pharmacokinetics and plasma phospho-TrkB inhibitory activity were evaluated in the first cycle. Forty-seven subjects were enrolled, and 10 dose levels explored starting at 25 mg/M(2)/dose BID. Forty-six subjects were evaluable for response, and 42 subjects were fully evaluable for determination of dose escalation. Asymptomatic and reversible grade 3-4 transaminase elevation was dose limiting in 4 subjects. Reversible pancreatitis (grade 2) was observed in 3 subjects after prolonged treatment at higher dose levels. Other toxicities were mild and reversible. Pharmacokinetic analyses revealed rapid drug absorption, however inter-patient variability was large. Plasma inhibition of phospho-TrkB activity was observed 1 h post-dosing at 85 mg/M(2) with uniform inhibition at 120 mg/M(2). There were two partial responses and nine subjects had prolonged stable disease at dose levels ≥ 5, (median: 6 cycles). A biologically effective and recommended phase 2 dose of 120 mg/M(2)/dose BID was established. Lestaurtinib was well tolerated in patients with refractory neuroblastoma, and a dose level sufficient to inhibit TrkB activity was established. Safety and signs of activity at the higher dose levels warrant further evaluation in neuroblastoma.

  13. Capping of aβ42 oligomers by small molecule inhibitors.

    PubMed

    Fu, Ziao; Aucoin, Darryl; Ahmed, Mahiuddin; Ziliox, Martine; Van Nostrand, William E; Smith, Steven O

    2014-12-23

    Aβ42 peptides associate into soluble oligomers and protofibrils in the process of forming the amyloid fibrils associated with Alzheimer's disease. The oligomers have been reported to be more toxic to neurons than fibrils, and have been targeted by a wide range of small molecule and peptide inhibitors. With single touch atomic force microscopy (AFM), we show that monomeric Aβ42 forms two distinct types of oligomers, low molecular weight (MW) oligomers with heights of 1-2 nm and high MW oligomers with heights of 3-5 nm. In both cases, the oligomers are disc-shaped with diameters of ~10-15 nm. The similar diameters suggest that the low MW species stack to form the high MW oligomers. The ability of Aβ42 inhibitors to interact with these oligomers is probed using atomic force microscopy and NMR spectroscopy. We show that curcumin and resveratrol bind to the N-terminus (residues 5-20) of Aβ42 monomers and cap the height of the oligomers that are formed at 1-2 nm. A second class of inhibitors, which includes sulindac sulfide and indomethacin, exhibit very weak interactions across the Aβ42 sequence and do not block the formation of the high MW oligomers. The correlation between N-terminal interactions and capping of the height of the Aβ oligomers provides insights into the mechanism of inhibition and the pathway of Aβ aggregation.

  14. An evaluation in vitro of PARP-1 inhibitors, rucaparib and olaparib, as radiosensitisers for the treatment of neuroblastoma.

    PubMed

    Nile, Donna L; Rae, Colin; Hyndman, Iain J; Gaze, Mark N; Mairs, Robert J

    2016-08-11

    The radiopharmaceutical (131)I-meta-iodobenzylguanidine ((131)I-MIBG) is an effective treatment for neuroblastoma. However, maximal therapeutic benefit from (131)I-MIBG is likely to be obtained by its combination with chemotherapy. We previously reported enhanced antitumour efficacy of (131)I-MIBG by inhibition of the poly(ADP-ribose) polymerase-1 (PARP-1) DNA repair pathway using the phenanthridinone derivative PJ34. Recently developed alternative PARP-1 inhibitors have greater target specificity and are expected to be associated with reduced toxicity to normal tissue. Therefore, our purpose was to determine whether the more specific PARP-1 inhibitors rucaparib and olaparib enhanced the efficacy of X-radiation or (131)I-MIBG. Radiosensitisation of SK-N-BE(2c) neuroblastoma cells or noradrenaline transporter gene-transfected glioma cells (UVW/NAT) was investigated using clonogenic assay. Propidium iodide staining and flow cytometry was used to analyse cell cycle progression. DNA damage was quantified by the phosphorylation of H2AX (γH2AX). By combining PARP-1 inhibition with radiation treatment, it was possible to reduce the X-radiation dose or (131)I-MIBG activity concentration required to achieve 50 % cell kill by approximately 50 %. Rucaparib and olaparib were equally effective inhibitors of PARP-1 activity. X-radiation-induced DNA damage was significantly increased 2 h after irradiation by combination with PARP-1 inhibitors (10-fold greater DNA damage compared to untreated controls; p < 0.01). Moreover, combination treatment (i) prevented the restitution of DNA, exemplified by the persistence of 3-fold greater DNA damage after 24 h, compared to untreated controls (p < 0.01) and (ii) induced greater G2/M arrest (p < 0.05) than either single agent alone. Rucaparib and olaparib sensitise cancer cells to X-radiation or (131)I-MIBG treatment. It is likely that the mechanism of radiosensitisation entails the accumulation of unrepaired radiation

  15. Identification of GPC2 as an Oncoprotein and Candidate Immunotherapeutic Target in High-Risk Neuroblastoma.

    PubMed

    Bosse, Kristopher R; Raman, Pichai; Zhu, Zhongyu; Lane, Maria; Martinez, Daniel; Heitzeneder, Sabine; Rathi, Komal S; Kendsersky, Nathan M; Randall, Michael; Donovan, Laura; Morrissy, Sorana; Sussman, Robyn T; Zhelev, Doncho V; Feng, Yang; Wang, Yanping; Hwang, Jennifer; Lopez, Gonzalo; Harenza, Jo Lynne; Wei, Jun S; Pawel, Bruce; Bhatti, Tricia; Santi, Mariarita; Ganguly, Arupa; Khan, Javed; Marra, Marco A; Taylor, Michael D; Dimitrov, Dimiter S; Mackall, Crystal L; Maris, John M

    2017-09-11

    We developed an RNA-sequencing-based pipeline to discover differentially expressed cell-surface molecules in neuroblastoma that meet criteria for optimal immunotherapeutic target safety and efficacy. Here, we show that GPC2 is a strong candidate immunotherapeutic target in this childhood cancer. We demonstrate high GPC2 expression in neuroblastoma due to MYCN transcriptional activation and/or somatic gain of the GPC2 locus. We confirm GPC2 to be highly expressed on most neuroblastomas, but not detectable at appreciable levels in normal childhood tissues. In addition, we demonstrate that GPC2 is required for neuroblastoma proliferation. Finally, we develop a GPC2-directed antibody-drug conjugate that is potently cytotoxic to GPC2-expressing neuroblastoma cells. Collectively, these findings validate GPC2 as a non-mutated neuroblastoma oncoprotein and candidate immunotherapeutic target. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Sesquiterpene lactones derived from Saussurea lappa induce apoptosis and inhibit invasion and migration in neuroblastoma cells.

    PubMed

    Tabata, Keiichi; Nishimura, Yuki; Takeda, Taiji; Kurita, Masahiro; Uchiyama, Taketo; Suzuki, Takashi

    2015-04-01

    Neuroblastoma is among the most fatal of solid tumors in the pediatric age group, even when treated aggressively. Therefore, a new effective therapeutic drug(s) for neuroblastoma is urgently needed. To clarify the anticancer effects of the sesquiterpene lactones dehydrocostus lactone and costunolide, derived from Saussurea lappa, we examined the cytotoxic and migration/invasion-inhibitory effects of these compounds against neuroblastoma cell lines. Both the compounds exerted significant cytotoxicity against the neuroblastoma cell lines IMR-32, NB-39, SK-N-SH, and LA-N-1. Evidence of cellular apoptosis, such as nuclear condensation and membrane inversion, were observed after treatment with these compounds. Both compounds induced caspase-7 activation and PARP cleavage as confirmed by Western blotting. Furthermore, the sesquiterpene lactones also suppressed invasion and migration of the neuroblastoma cells. These results suggest that dehydrocostus lactone and costunolide are promising candidates for being developed into novel anticancer drugs effective against neuroblastoma.

  17. Multiple mechanisms disrupt the let-7 microRNA family in neuroblastoma.

    PubMed

    Powers, John T; Tsanov, Kaloyan M; Pearson, Daniel S; Roels, Frederik; Spina, Catherine S; Ebright, Richard; Seligson, Marc; de Soysa, Yvanka; Cahan, Patrick; Theißen, Jessica; Tu, Ho-Chou; Han, Areum; Kurek, Kyle C; LaPier, Grace S; Osborne, Jihan K; Ross, Samantha J; Cesana, Marcella; Collins, James J; Berthold, Frank; Daley, George Q

    2016-07-14

    Poor prognosis in neuroblastoma is associated with genetic amplification of MYCN. MYCN is itself a target of let-7, a tumour suppressor family of microRNAs implicated in numerous cancers. LIN28B, an inhibitor of let-7 biogenesis, is overexpressed in neuroblastoma and has been reported to regulate MYCN. Here we show, however, that LIN28B is dispensable in MYCN-amplified neuroblastoma cell lines, despite de-repression of let-7. We further demonstrate that MYCN messenger RNA levels in amplified disease are exceptionally high and sufficient to sponge let-7, which reconciles the dispensability of LIN28B. We found that genetic loss of let-7 is common in neuroblastoma, inversely associated with MYCN amplification, and independently associated with poor outcomes, providing a rationale for chromosomal loss patterns in neuroblastoma. We propose that let-7 disruption by LIN28B, MYCN sponging, or genetic loss is a unifying mechanism of neuroblastoma development with broad implications for cancer pathogenesis.

  18. Alzheimer's therapeutics targeting amyloid beta 1-42 oligomers II: Sigma-2/PGRMC1 receptors mediate Abeta 42 oligomer binding and synaptotoxicity.

    PubMed

    Izzo, Nicholas J; Xu, Jinbin; Zeng, Chenbo; Kirk, Molly J; Mozzoni, Kelsie; Silky, Colleen; Rehak, Courtney; Yurko, Raymond; Look, Gary; Rishton, Gilbert; Safferstein, Hank; Cruchaga, Carlos; Goate, Alison; Cahill, Michael A; Arancio, Ottavio; Mach, Robert H; Craven, Rolf; Head, Elizabeth; LeVine, Harry; Spires-Jones, Tara L; Catalano, Susan M

    2014-01-01

    Amyloid beta (Abeta) 1-42 oligomers accumulate in brains of patients with Mild Cognitive Impairment (MCI) and disrupt synaptic plasticity processes that underlie memory formation. Synaptic binding of Abeta oligomers to several putative receptor proteins is reported to inhibit long-term potentiation, affect membrane trafficking and induce reversible spine loss in neurons, leading to impaired cognitive performance and ultimately to anterograde amnesia in the early stages of Alzheimer's disease (AD). We have identified a receptor not previously associated with AD that mediates the binding of Abeta oligomers to neurons, and describe novel therapeutic antagonists of this receptor capable of blocking Abeta toxic effects on synapses in vitro and cognitive deficits in vivo. Knockdown of sigma-2/PGRMC1 (progesterone receptor membrane component 1) protein expression in vitro using siRNA results in a highly correlated reduction in binding of exogenous Abeta oligomers to neurons of more than 90%. Expression of sigma-2/PGRMC1 is upregulated in vitro by treatment with Abeta oligomers, and is dysregulated in Alzheimer's disease patients' brain compared to age-matched, normal individuals. Specific, high affinity small molecule receptor antagonists and antibodies raised against specific regions on this receptor can displace synthetic Abeta oligomer binding to synaptic puncta in vitro and displace endogenous human AD patient oligomers from brain tissue sections in a dose-dependent manner. These receptor antagonists prevent and reverse the effects of Abeta oligomers on membrane trafficking and synapse loss in vitro and cognitive deficits in AD mouse models. These findings suggest sigma-2/PGRMC1 receptors mediate saturable oligomer binding to synaptic puncta on neurons and that brain penetrant, small molecules can displace endogenous and synthetic oligomers and improve cognitive deficits in AD models. We propose that sigma-2/PGRMC1 is a key mediator of the pathological effects of

  19. Alzheimer's Therapeutics Targeting Amyloid Beta 1–42 Oligomers II: Sigma-2/PGRMC1 Receptors Mediate Abeta 42 Oligomer Binding and Synaptotoxicity

    PubMed Central

    Izzo, Nicholas J.; Xu, Jinbin; Zeng, Chenbo; Kirk, Molly J.; Mozzoni, Kelsie; Silky, Colleen; Rehak, Courtney; Yurko, Raymond; Look, Gary; Rishton, Gilbert; Safferstein, Hank; Cruchaga, Carlos; Goate, Alison; Cahill, Michael A.; Arancio, Ottavio; Mach, Robert H.; Craven, Rolf; Head, Elizabeth; LeVine, Harry; Spires-Jones, Tara L.; Catalano, Susan M.

    2014-01-01

    Amyloid beta (Abeta) 1–42 oligomers accumulate in brains of patients with Mild Cognitive Impairment (MCI) and disrupt synaptic plasticity processes that underlie memory formation. Synaptic binding of Abeta oligomers to several putative receptor proteins is reported to inhibit long-term potentiation, affect membrane trafficking and induce reversible spine loss in neurons, leading to impaired cognitive performance and ultimately to anterograde amnesia in the early stages of Alzheimer's disease (AD). We have identified a receptor not previously associated with AD that mediates the binding of Abeta oligomers to neurons, and describe novel therapeutic antagonists of this receptor capable of blocking Abeta toxic effects on synapses in vitro and cognitive deficits in vivo. Knockdown of sigma-2/PGRMC1 (progesterone receptor membrane component 1) protein expression in vitro using siRNA results in a highly correlated reduction in binding of exogenous Abeta oligomers to neurons of more than 90%. Expression of sigma-2/PGRMC1 is upregulated in vitro by treatment with Abeta oligomers, and is dysregulated in Alzheimer's disease patients' brain compared to age-matched, normal individuals. Specific, high affinity small molecule receptor antagonists and antibodies raised against specific regions on this receptor can displace synthetic Abeta oligomer binding to synaptic puncta in vitro and displace endogenous human AD patient oligomers from brain tissue sections in a dose-dependent manner. These receptor antagonists prevent and reverse the effects of Abeta oligomers on membrane trafficking and synapse loss in vitro and cognitive deficits in AD mouse models. These findings suggest sigma-2/PGRMC1 receptors mediate saturable oligomer binding to synaptic puncta on neurons and that brain penetrant, small molecules can displace endogenous and synthetic oligomers and improve cognitive deficits in AD models. We propose that sigma-2/PGRMC1 is a key mediator of the pathological effects of

  20. Aggressive cervical neuroblastoma with a rare paraneoplastic syndrome: A therapeutic dilemma

    PubMed Central

    Qureshi, Sajid S.; Bhagat, Monica; Anam, Jay; Vora, Tushar

    2016-01-01

    Neuroblastoma is infrequently associated with paraneoplastic syndromes. Amongst the few, opsomyoclonus (Kinsbourne syndrome) is the most common neurological paraneoplastic syndrome and diarrhea secondary to increased secretion of vasoactive intestinal peptide (Kerner-Morrison syndrome), hormonal paraneoplastic syndrome. Hypothalamic dysfunction (HD) is a rare disorder and its manifestation as a paraneoplastic syndrome of neuroblastoma is uncommonly reported. We present an interesting case of an unrelenting cervical neuroblastoma associated with HD, which posed a therapeutic challenge. PMID:27695211

  1. A Genetically Engineered Mouse Model of Neuroblastoma Driven by Mutated ALK and MYCN

    DTIC Science & Technology

    2014-09-01

    AWARD NUMBER: W81XWH-13-1-0220 TITLE: A Genetically Engineered Mouse Model of Neuroblastoma ...CONTRACT NUMBER A Genetically Engineered Mouse Model of Neuroblastoma Driven by Mutated ALK and MYCN 5b. GRANT NUMBER W81XWH-13-1-0220 5c...common ALK mutations in neuroblastoma , F1174L and R1275Q. We have determined that in tumors cells expressing mutated ALK, different downstream

  2. The Development of a Primary Neural Crest Assay for Neuroblastoma Oncogenesis

    DTIC Science & Technology

    2015-09-01

    AWARD NUMBER: W81XWH-14-1-0090 TITLE: The Development of a Primary Neural Crest Assay for Neuroblastoma Oncogenesis PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE The Development of a Primary Neural Crest Assay for Neuroblastoma Oncogenesis 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1...identification of novel oncogenic drivers of neuroblastoma as a starting point for the development of new therapies. Furthermore to use this technology to

  3. Polo-like kinase 1 is a therapeutic target in high-risk neuroblastoma.

    PubMed

    Ackermann, Sandra; Goeser, Felix; Schulte, Johannes H; Schramm, Alexander; Ehemann, Volker; Hero, Barbara; Eggert, Angelika; Berthold, Frank; Fischer, Matthias

    2011-02-15

    High-risk neuroblastoma remains a therapeutic challenge for pediatric oncologists. The Polo-like kinase 1 (PLK1) is highly expressed in many human cancers and is a target of the novel small-molecule inhibitor BI 2536, which has shown promising anticancer activity in adult malignancies. Here, we investigated the effect of BI 2536 on neuroblastoma cells in vitro and in vivo to explore PLK1 as a potential target in high-risk neuroblastoma therapy. PLK1 transcript levels were analyzed by microarrays in 476 primary neuroblastoma specimens, and correlation with prognostic markers and patient outcome was examined. To explore the effect of PLK1 inhibition on neuroblastoma cells, 7 cell lines were treated with BI 2536 and changes in growth properties were determined. Furthermore, nude mice with IMR-32 and SK-N-AS xenografts were treated with BI 2536. PLK1 is highly expressed in unfavorable neuroblastoma and in neuroblastoma cell lines. Expression of PLK1 is associated with unfavorable prognostic markers such as stage 4, age >18 months, MYCN amplification, unfavorable gene expression-based classification, and adverse patient outcome (P < 0.001 each). On treatment with nanomolar doses of BI 2536, all neuroblastoma cell lines analyzed showed significantly reduced proliferation, cell cycle arrest, and cell death. Moreover, BI 2536 abrogated growth of neuroblastoma xenografts in nude mice. Elevated PLK1 expression is significantly associated with high-risk neuroblastoma and unfavorable patient outcome. Inhibition of PLK1 using BI 2536 exhibits strong antitumor activity on human neuroblastoma cells in vitro and in vivo, opening encouraging new perspectives for the treatment of high-risk neuroblastoma. ©2010 AACR.

  4. PI3K/AKT and ERK regulate retinoic acid-induced neuroblastoma cellular differentiation

    SciTech Connect

    Qiao, Jingbo; Paul, Pritha; Lee, Sora; Qiao, Lan; Josifi, Erlena; Tiao, Joshua R.; Chung, Dai H.

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Retinoic acid (RA) induces neuroblastoma cells differentiation, which is accompanied by G0/G1 cell cycle arrest. Black-Right-Pointing-Pointer RA resulted in neuroblastoma cell survival and inhibition of DNA fragmentation; this is regulated by PI3K pathway. Black-Right-Pointing-Pointer RA activates PI3K and ERK1/2 pathway; PI3K pathway mediates RA-induced neuroblastoma cell differentiation. Black-Right-Pointing-Pointer Upregulation of p21 is necessary for RA-induced neuroblastoma cell differentiation. -- Abstract: Neuroblastoma, the most common extra-cranial solid tumor in infants and children, is characterized by a high rate of spontaneous remissions in infancy. Retinoic acid (RA) has been known to induce neuroblastoma differentiation; however, the molecular mechanisms and signaling pathways that are responsible for RA-mediated neuroblastoma cell differentiation remain unclear. Here, we sought to determine the cell signaling processes involved in RA-induced cellular differentiation. Upon RA administration, human neuroblastoma cell lines, SK-N-SH and BE(2)-C, demonstrated neurite extensions, which is an indicator of neuronal cell differentiation. Moreover, cell cycle arrest occurred in G1/G0 phase. The protein levels of cyclin-dependent kinase inhibitors, p21 and p27{sup Kip}, which inhibit cell proliferation by blocking cell cycle progression at G1/S phase, increased after RA treatment. Interestingly, RA promoted cell survival during the differentiation process, hence suggesting a potential mechanism for neuroblastoma resistance to RA therapy. Importantly, we found that the PI3K/AKT pathway is required for RA-induced neuroblastoma cell differentiation. Our results elucidated the molecular mechanism of RA-induced neuroblastoma cellular differentiation, which may be important for developing novel therapeutic strategy against poorly differentiated neuroblastoma.

  5. Functional interplay between MYCN, NCYM, and OCT4 promotes aggressiveness of human neuroblastomas

    PubMed Central

    Kaneko, Yoshiki; Suenaga, Yusuke; Islam, S M Rafiqul; Matsumoto, Daisuke; Nakamura, Yohko; Ohira, Miki; Yokoi, Sana; Nakagawara, Akira

    2015-01-01

    Neuroblastoma is a pediatric solid tumor that originates from embryonic neural crest cells. The MYCN gene locus is frequently amplified in unfavorable neuroblastomas, and the gene product promotes the progression of neuroblastomas. However, the molecular mechanisms by which MYCN amplification contributes to stem cell-like states of neuroblastoma remain elusive. In this study, we show that MYCN and its cis-antisense gene, NCYM, form a positive feedback loop with OCT4, a core regulatory gene maintaining a multipotent state of neural stem cells. We previously reported that NCYM is co-amplified with the MYCN gene in primary human neuroblastomas and that the gene product promotes aggressiveness of neuroblastoma by stabilization of MYCN. In 36 MYCN-amplified primary human neuroblastomas, OCT4 mRNA expression was associated with unfavorable prognosis and was correlated with that of NCYM. The OCT4 protein induced both NCYM and MYCN in human neuroblastoma cells, whereas NCYM stabilized MYCN to induce OCT4 and stem cell-related genes, including NANOG, SOX2, and LIN28. In sharp contrast to MYCN, enforced expression of c-MYC did not enhance OCT4 expression in human neuroblastoma cells. All-trans retinoic acid treatment reduced MYCN, NCYM, and OCT4 expression, accompanied by the decreased amount of OCT4 recruited onto the intron 1 region of MYCN. Knockdown of NCYM or OCT4 inhibited formation of spheres of neuroblastoma cells and promoted asymmetric cell division in MYCN-amplified human neuroblastoma cells. These results suggest that the functional interplay between MYCN, NCYM, and OCT4 contributes to aggressiveness of MYCN-amplified human neuroblastomas. PMID:25880909

  6. Aggressive cervical neuroblastoma with a rare paraneoplastic syndrome: A therapeutic dilemma.

    PubMed

    Qureshi, Sajid S; Bhagat, Monica; Anam, Jay; Vora, Tushar

    2016-01-01

    Neuroblastoma is infrequently associated with paraneoplastic syndromes. Amongst the few, opsomyoclonus (Kinsbourne syndrome) is the most common neurological paraneoplastic syndrome and diarrhea secondary to increased secretion of vasoactive intestinal peptide (Kerner-Morrison syndrome), hormonal paraneoplastic syndrome. Hypothalamic dysfunction (HD) is a rare disorder and its manifestation as a paraneoplastic syndrome of neuroblastoma is uncommonly reported. We present an interesting case of an unrelenting cervical neuroblastoma associated with HD, which posed a therapeutic challenge.

  7. Treatment of neuroblastoma with /sup 131/I-metaiodobenzylguanidine: experience of the Muenster/Kassel Group

    SciTech Connect

    Fischer, M.; Wehinger, H.; Kraus, C.; Ritter, J.; Schroeter, W.

    1987-01-01

    I-131-metaiodobenzylguanidine was used for treatment of neuroblastoma stage IV in three children after surgery and or chemotherapy had failed to be effective. In two of the children with multilocular lesions, after an impressive improvement of clinical symptoms tumor progression was observed. Because in about 25% of children with relapsing neuroblastoma complete remission may be achieved by combining surgery, chemotherapy, and I-131-MIBG treatment, this therapeutic modality should be included in the therapeutic strategy of stage III and IV neuroblastoma.

  8. Percutaneous transhepatic biliary drainage in an infant with obstructive jaundice caused by neuroblastoma.

    PubMed

    Saettini, Francesco; Agazzi, Roberto; Giraldi, Eugenia; Foglia, Carlo; Cavalleri, Laura; Morali, Laura; Fasolini, Giorgio; Spotti, Angelica; Provenzi, Massimo

    2015-04-01

    Neuroblastoma presenting with obstructive jaundice is a rare event. Management of this condition includes surgery, chemotherapy, radiotherapy, temporary cholecystostomy tube, endoscopic retrograde cholangiopancreatography (ERCP), and internal biliary drainage (IBD). We herein describe our experience with one infant affected by neuroblastoma presenting with jaundice, who successfully underwent percutaneous transhepatic biliary drainage (PTBD). This report introduces PTBD as a viable treatment option for neuroblastoma and obstructive jaundice and provides a review of the pertinent literature.

  9. TRPM7 maintains progenitor-like features of neuroblastoma cells: implications for metastasis formation.

    PubMed

    Middelbeek, Jeroen; Visser, Daan; Henneman, Linda; Kamermans, Alwin; Kuipers, Arthur J; Hoogerbrugge, Peter M; Jalink, Kees; van Leeuwen, Frank N

    2015-04-20

    Neuroblastoma is an embryonal tumor derived from poorly differentiated neural crest cells. Current research is aimed at identifying the molecular mechanisms that maintain the progenitor state of neuroblastoma cells and to develop novel therapeutic strategies that induce neuroblastoma cell differentiation. Mechanisms controlling neural crest development are typically dysregulated during neuroblastoma progression, and provide an appealing starting point for drug target discovery. Transcriptional programs involved in neural crest development act as a context dependent gene regulatory network. In addition to BMP, Wnt and Notch signaling, activation of developmental gene expression programs depends on the physical characteristics of the tissue microenvironment. TRPM7, a mechanically regulated TRP channel with kinase activity, was previously found essential for embryogenesis and the maintenance of undifferentiated neural crest progenitors. Hence, we hypothesized that TRPM7 may preserve progenitor-like, metastatic features of neuroblastoma cells. Using multiple neuroblastoma cell models, we demonstrate that TRPM7 expression closely associates with the migratory and metastatic properties of neuroblastoma cells in vitro and in vivo. Moreover, microarray-based expression profiling on control and TRPM7 shRNA transduced neuroblastoma cells indicates that TRPM7 controls a developmental transcriptional program involving the transcription factor SNAI2. Overall, our data indicate that TRPM7 contributes to neuroblastoma progression by maintaining progenitor-like features.

  10. TRPM7 maintains progenitor-like features of neuroblastoma cells: implications for metastasis formation

    PubMed Central

    Middelbeek, Jeroen; Kamermans, Alwin; Kuipers, Arthur J.; Hoogerbrugge, Peter M.; Jalink, Kees; van Leeuwen, Frank N.

    2015-01-01

    Neuroblastoma is an embryonal tumor derived from poorly differentiated neural crest cells. Current research is aimed at identifying the molecular mechanisms that maintain the progenitor state of neuroblastoma cells and to develop novel therapeutic strategies that induce neuroblastoma cell differentiation. Mechanisms controlling neural crest development are typically dysregulated during neuroblastoma progression, and provide an appealing starting point for drug target discovery. Transcriptional programs involved in neural crest development act as a context dependent gene regulatory network. In addition to BMP, Wnt and Notch signaling, activation of developmental gene expression programs depends on the physical characteristics of the tissue microenvironment. TRPM7, a mechanically regulated TRP channel with kinase activity, was previously found essential for embryogenesis and the maintenance of undifferentiated neural crest progenitors. Hence, we hypothesized that TRPM7 may preserve progenitor-like, metastatic features of neuroblastoma cells. Using multiple neuroblastoma cell models, we demonstrate that TRPM7 expression closely associates with the migratory and metastatic properties of neuroblastoma cells in vitro and in vivo. Moreover, microarray-based expression profiling on control and TRPM7 shRNA transduced neuroblastoma cells indicates that TRPM7 controls a developmental transcriptional program involving the transcription factor SNAI2. Overall, our data indicate that TRPM7 contributes to neuroblastoma progression by maintaining progenitor-like features. PMID:25797249

  11. Inhibition of FAK and VEGFR-3 Binding Decreases Tumorigenicity in Neuroblastoma

    PubMed Central

    Stewart, Jerry E.; Ma, Xiaojie; Megison, Michael; Nabers, Hugh; Cance, William G.; Kurenova, Elena V.; Beierle, Elizabeth A.

    2015-01-01

    Neuroblastoma is the most common extracranial solid tumor of childhood and is responsible for over 15% of pediatric cancer deaths. Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that is important in many facets of tumor development and progression. Vascular endothelial growth factor receptor-3 (VEGFR-3), another tyrosine kinase, has also been found to be important in the development of many human tumors including neuroblastoma. Recent reports have found that FAK and VEGFR-3 interact, and we have previously shown that both of these kinases interact in neuroblastoma. We have hypothesized that interruption of the FAK–VEGFR-3 interaction would lead to decreased neuroblastoma cell survival. In the current study, we examined the effects of a small molecule, chloropyramine hydrochloride (C4), designed to disrupt the FAK–VEGFR-3 interaction, upon cellular attachment, migration, and survival in two human neuroblastoma cell lines. We also utilized a murine xenograft model to study the impact of C4 upon tumor growth. In these studies, we showed that disruption of the FAK–VEGFR-3 interaction led to decreased cellular attachment, migration, and survival in vitro. In addition, treatment of murine xenografts with chloropyramine hydrochloride decreased neuroblastoma xenograft growth. Further, this molecule acted synergistically with standard chemotherapy to further decrease neuroblastoma xenograft growth. The findings from this current study help to further our understanding of the regulation of neuroblastoma tumorigenesis, and may provide novel therapeutic strategies and targets for neuroblastoma and other solid tumors of childhood. PMID:23868727

  12. Premature physeal closure following 13-cis-retinoic acid and prolonged fenretinide administration in neuroblastoma.

    PubMed

    Steineck, Angela; MacKenzie, John D; Twist, Clare J

    2016-11-01

    Retinoid therapy has contributed to improved outcomes in neuroblastoma. Clinical trials of fenretinide report favorable toxicity and disease stabilization in patients with high risk (HR) neuroblastoma. Skeletal effects have been described with other retinoids, but not with fenretinide to date. Two patients with HR, metastatic, refractory neuroblastoma received protracted courses of oral fenretinide for more than 5 years' duration. Both developed premature long bone physeal closure, causing limb length discrepancies; their neuroblastoma remains in remission. The radiographic and clinical findings reported suggest these skeletal abnormalities may be a consequence of treatment with 13-cis-retinoic acid (13cisRA) followed by prolonged oral fenretinide exposure. © 2016 Wiley Periodicals, Inc.

  13. Novel targeted therapy for neuroblastoma: silencing the MXD3 gene using siRNA.

    PubMed

    Duong, Connie; Yoshida, Sakiko; Chen, Cathy; Barisone, Gustavo; Diaz, Elva; Li, Yueju; Beckett, Laurel; Chung, Jong; Antony, Reuben; Nolta, Jan; Nitin, Nitin; Satake, Noriko

    2017-09-01

    BackgroundNeuroblastoma is the second most common extracranial cancer in children. Current therapies for neuroblastoma, which use a combination of chemotherapy drugs, have limitations for high-risk subtypes and can cause significant long-term adverse effects in young patients. Therefore, a new therapy is needed. In this study, we investigated the transcription factor MXD3 as a potential therapeutic target in neuroblastoma.MethodsMXD3 expression was analyzed in five neuroblastoma cell lines by immunocytochemistry and quantitative real-time reverse transcription PCR, and in 18 primary patient tumor samples by immunohistochemistry. We developed nanocomplexes using siRNA and superparamagnetic iron oxide nanoparticles to target MXD3 in neuroblastoma cell lines in vitro as a single-agent therapeutic and in combination with doxorubicin, vincristine, cisplatin, or maphosphamide-common drugs used in current neuroblastoma treatment.ResultsMXD3 was highly expressed in neuroblastoma cell lines and in patient tumors that had high-risk features. Neuroblastoma cells treated in vitro with the MXD3 siRNA nanocomplexes showed MXD3 protein knockdown and resulted in cell apoptosis. Furthermore, on combining MXD3 siRNA nanocomplexes with each of the four drugs, all showed additive efficacy.ConclusionThese results indicate that MXD3 is a potential new target and that the use of MXD3 siRNA nanocomplexes is a novel therapeutic approach for neuroblastoma.

  14. Computed tomography as a supplement to urography in the evaluation of suspected neuroblastoma

    SciTech Connect

    Siegel, M. J.; Sagel, S.S.

    1982-02-01

    Eleven children in whom a retropertioneal neuroblastoma was suspected on the basis of plain radiographic or urographic findings underwent computed tomography (CT). CT identified and localized a neurogenic tumor in eight patients. Calcifications were demonstrated by CT in six lesions, but by urography in only four. One neuroblastoma detected by CT was not seen on the urogram; in five patients greater extent of the tumor was defined by CT than by conventional radiologic procedures. In three patients CT excluded a neuroblastoma, but diagnosed other disorders (hepatic tumor, pancreatitis, and retrocaval ureter). Our results confirm that CT is a simple and accurate method for diagnosis, delineation of extent, or exclusion of neuroblastoma.

  15. Copper(II) mixed chelate compounds induce apoptosis through reactive oxygen species in neuroblastoma cell line CHP-212.

    PubMed

    Gutiérrez, Anllely Grizett; Vázquez-Aguirre, Adriana; García-Ramos, Juan Carlos; Flores-Alamo, Marcos; Hernández-Lemus, Enrique; Ruiz-Azuara, Lena; Mejía, Carmen

    2013-09-01

    In the present work we report the antiproliferative activity of Cu(II) coordination compounds, CasIIgly ([Cu(4,7-dimethyl-1,10-phenanthroline) (glycinato) (H2O)]NO3), CasIIIia ([Cu(4,4'-dimethyl-2,2'-bipyridine) (glycinato) (H2O)]NO3), and CasIIIEa ([Cu(4,7-dimethyl-1,10-phenanthroline) (acetylacetonato) (H2O)]NO3), against human tumoral cell line CHP-212 (estromal neuroblastoma). Additionally, the molecular structure of CasIIIEa was reported. The IC50 values obtained for the evaluated compounds are in the range 18 to 47 μM, representing an inhibition potency increase of 5 to 12 times compared with cisplatin (IC50=226.7 μM). After 2h of incubation with the evaluated compounds, cells showed high levels of reactive oxygen species and a considerable GSH depletion, besides an important disruption of the mitochondrial membrane with release of cytochrome C and besides the presence of caspase-3, an effector caspase that is activated in the last step of apoptosis cascade. The results confirm that cell death in neuroblastoma CHP-212 treated with Casiopeínas occurs via apoptosis. Due to the lack of expression of caspase-8, cell death is principally by the mitochondrial pathway. Thus, one of the most interesting findings of this work is the identification of a very important damage in neuroblastoma cells induced by Cu(II) coordination compounds in a very short exposition times. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Anticoagulant flavonoid oligomers from the rhizomes of Alpinia platychilus.

    PubMed

    Shen, Chuan-Pu; Luo, Jian-Guang; Yang, Ming-Hua; Kong, Ling-Yi

    2015-10-01

    Two pairs of enantiomers of flavonoid oligomers (1a and 1b, 2a and 2b) along with one known chalcone (3) were isolated from the rhizomes of Alpinia platychilus. Their structures were elucidated on the basis of spectroscopic data (MS and 1D/2D NMR). The absolute configurations of the flavonoid oligomers were established by their ECD spectra. Separation of the enantiomeric mixtures (1a and 1b, 2a and 2b) was achieved on a chiral column using hexane:isopropyl alcohol:ethanol (7:2:1) as eluents. The anticoagulant assay showed that 2a, 2b and 3 exhibited potent activities to prolong the prothrombin times (PT) and the thrombin times (TT). Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Phase behavior of a lattice hydrophobic oligomer in explicit water.

    PubMed

    Romero-Vargas Castrillón, Santiago; Matysiak, Silvina; Stillinger, Frank H; Rossky, Peter J; Debenedetti, Pablo G

    2012-08-09

    We investigate the thermodynamics of hydrophobic oligomer collapse using a water-explicit, three-dimensional lattice model. The model captures several aspects of protein thermodynamics, including the emergence of cold- and thermal-unfolding, as well as unfolding at high solvent density (a phenomenon akin to pressure-induced denaturation). We show that over a range of conditions spanning a ≈14% increase in solvent density, the oligomer transforms into a compact, strongly water-penetrated conformation at low temperature. This contrasts with thermal unfolding at high temperature, where the system "denatures" into an extended random coil conformation. We report a phase diagram for hydrophobic collapse that correctly captures qualitative aspects of cold and thermal unfolding at low to intermediate solvent densities.

  18. Synthesis of long Prebiotic Oligomers on Mineral Surfaces

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; Hill, Aubrey R., Jr.; Liu, Rihe; Orgel, Leslie E.

    1996-01-01

    Most theories of the origin of biological organization assume that polymers with lengths in the range of 30-60 monomers are needed to make a genetic system viable. But it has not proved possible to synthesize plausibly prebiotic polymers this long by condensation in aqueous solution, because hydrolysis competes with polymerization. The potential of mineral surfaces to facilitate prebiotic polymerization was pointed out long ago. Here we describe a system that models prebiotic polymerization by the oligomerization of activated monomers -both nucleotides and amino acids. We find that whereas the reactions in solution produce only short oligomers (the longest typically being a 10-mer), the presence of mineral surfaces (montmorillonite for nucleotides, illite and hydroxylapatite for amino adds) induces the formation of oligomers up to 55 monomers long. These are formed by successive "feedings" with the monomers; polymerization takes place on the mineral surfaces in a manner akin to solid-phase synthesis of biopolymers.

  19. Pigment oligomers as natural and artificial photosynthetic antennas

    SciTech Connect

    Blankenship, R.E.

    1996-12-31

    Green photosynthetic bacteria contain antenna complexes known as chlorosomes. These complexes are appressed to the cytoplasmic side of the inner cell membrane and function to absorb light and transfer the energy to the photochemical reaction center, where photochemical energy storage takes place. Chlorosomes differ from all other known photosynthetic antenna complexes in that the geometrical arrangement of pigments is determined primarily by pigment-pigment interactions instead of pigment-protein interactions. The bacteriochlorophyll c, d or e pigments found in chlorosomes form large oligomers with characteristic spectral properties significantly perturbed from those exhibited by monomeric pigments. Because of their close spatial interaction, the pigments are thought to be strongly coupled electronically, and many of the optical properties result from exciton interactions. This presentation will summarize existing knowledge on the chemical composition and properties of chlorosomes, the evidence for the oligomeric nature of chlorosome pigment organization and proposed structures for the oligomers, and the kinetics and mechanisms of energy transfer in chlorosomes.

  20. Phase transition in conjugated oligomers suspended in chloroform

    NASA Astrophysics Data System (ADS)

    Dwivedi, Shikha; Kumar, Anupam; Yadav, S. N. S.; Mishra, Pankaj

    2015-08-01

    Density functional theory (DFT) has been used to investigate the isotropic-nematic (I-N) phase transition in a system of high aspect ratio conjugated oligomers suspended in chloroform. The interaction between the oligomers is modeled using Gay-Berne potential in which effect of solvent is implicit. Percus-Yevick integral equation theory has been used to evaluate the pair correlation functions of the fluid phase at several temperatures and densities. These pair correlation function has been used in the DFT to evaluate the I-N freezing parameters. Highly oriented nematic is found to stabilize at low density. The results obtained are in qualitative agreement with the simulation and are verifiable.

  1. Synthesis of long prebiotic oligomers on mineral surfaces.

    PubMed

    Ferris, J P; Hill, A R; Liu, R; Orgel, L E

    1996-05-02

    Most theories of the origin of biological organization assume that polymers with lengths in the range of 30-60 monomers are needed to make a genetic system viable. But it has not proved possible to synthesize plausibly prebiotic polymers this long by condensation in aqueous solution, because hydrolysis competes with polymerization. The potential of mineral surfaces to facilitate prebiotic polymerization was pointed out long ago. Here we describe a system that models prebiotic polymerization by the oligomerization of activated monomers--both nucleotides and amino acids. We find that whereas the reactions in solution produce only short oligomers (the longest typically being a 10-mer), the presence of mineral surfaces (montmorillonite for nucleotides, illite and hydroxylapatite for amino acids) induces the formation of oligomers up to 55 monomers long. These are formed by successive 'feedings' with the monomers; polymerization takes place on the mineral surfaces in a manner akin to solid-phase synthesis of biopolymers.

  2. Thermodynamics and Reaction Pathways of Furfuryl Alcohol Oligomer Formation

    SciTech Connect

    Kim, Taejin; Surendran Assary, Rajeev; Pauls, Richard E.; Marshall, Christopher L.; Curtiss, Larry A.; Stair, Peter C.

    2014-01-01

    The acid-catalyzed transformation of furfuryl alcohol (FA) monomer to oligomers has been studied in the liquid phase to investigate the reaction mechanisms and intermediate species by using a combination of quantitative reaction product measurements and density functional theory calculations. FA monomer was converted into oligomers with a broad range of carbon number: C9–C10, C14–C15, C19–C29, NC29. Based on the calculations, terminal CH2OH dimer formation is both kinetically and thermodynamically favored, consistent with the experimental results. The order for dimer production in the C9–C10 range follows terminal CH2OH N ether bridged–methylene bridged dimer N OH-carbon bridge.

  3. Production of random DNA oligomers for scalable DNA computing.

    PubMed

    Wang, Sixue S L; Johnson, John J X; Hughes, Bradley S T; Karabay, Dundar A O; Bader, Karson D W; Austin, Allen; Austin, Alan; Habib, Aisha; Hatef, Husnia; Joshi, Megha; Nguyen, Lawrence; Mills, Allen P

    2009-01-01

    While remarkably complex networks of connected DNA molecules can form from a relatively small number of distinct oligomer strands, a large computational space created by DNA reactions would ultimately require the use of many distinct DNA strands. The automatic synthesis of this many distinct strands is economically prohibitive. We present here a new approach to producing distinct DNA oligomers based on the polymerase chain reaction (PCR) amplification of a few random template sequences. As an example, we designed a DNA template sequence consisting of a 50-mer random DNA segment flanked by two 20-mer invariant primer sequences. Amplification of a dilute sample containing about 30 different template molecules allows us to obtain around 10(11) copies of these molecules and their complements. We demonstrate the use of these amplicons to implement some of the vector operations that will be required in a DNA implementation of an analog neural network.

  4. Immunoproteomic studies on paediatric opsoclonus-myoclonus associated with neuroblastoma.

    PubMed

    Torres-Vega, Estefanía; Durán-Moreno, María; Sánchez Del Pino, Manuel; Yáñez, Yania; Cañete, Adela; Castel, Victoria; López-Cuevas, Rogelio; Vílchez, Juan Jesús; Dalmau, Josep; Graus, Francesc; García Verdugo, José Manuel; Bataller, Luis

    2016-08-15

    We aimed to identify new cell-membrane antigens implicated in opsoclonus-myoclonus with neuroblastoma. The sera of 3 out of 14 patients showed IgG electron-microscopy immunogold reactivity on SH-SY5Y neuroblastoma cells. Immunoprecipitation experiments using rat brain synaptosomes and SH-SY5Y cells led to the identification of: (1) thirty-one nuclear/cytoplasmic proteins (including antigens HuB, HuC); (2) seven neuronal membrane proteins, including the Shaw-potassium channel Kv3.3 (KCNC3), whose genetic disruption in mice causes ataxia and generalized muscle twitching. Although cell-based assays did not demonstrate direct antigenicity, our findings point to Shaw-related subfamily of the potassium voltage-gated channels complexed proteins as hypothetical antigenic targets.

  5. New functional imaging modalities for chromaffin tumors, neuroblastomas and ganglioneuromas.

    PubMed

    Ilias, Ioannis; Shulkin, Barry; Pacak, Karel

    2005-03-01

    Nuclear medicine modalities use radiolabeled ligands that either follow metabolic pathways or act on cellular receptors. Thus, they permit functional imaging of physiological processes and help to localize sites such as tumors that harbor pathological events. The application of positron emission tomography (PET) ligands to the specific pathways of synthesis, metabolism and inactivation of catecholamines found in chromaffin tumors, neuroblastomas and ganglioneuromas can be used to provide a more thorough localization of these types of tumor. Recent advances have been made in functional imaging to localize pheochromocytomas, paragangliomas, neuroblastomas and ganglioneuromas, including approaches based on PET with [(18)F]fluorodopamine, [(18)F]fluorohydroxyphenylalanine, [(11)C]epinephrine or [(11)C]hydroxyephedrine. Such functional imaging can complement computed tomography or magnetic resonance imaging and other scintigraphic techniques to localize these tumors before surgical or medical therapeutic approaches are considered.

  6. Occult neuroblastoma presenting with opsomyoclonus: utility of computed tomography

    SciTech Connect

    Farrelly, C.; Daneman, A.; Chan, H.L.S.; Martin, D.J.

    1984-04-01

    The clinical and radiographic findings in 10 children with neuroblastoma presenting with opsomyoclonus are described and the literature is reviewed. Children with opsomyoclonus are often a diagnostic dilemma, as they may not have a palpable tumor or increased urinary catecholamines. Computed tomography (CT) is the most sensitive imaging method in locating tumors (100%) compared with plain radiography of the chest and abdomen (sensitivity 40%), excretory urography (50%), and /sup 99m/Tc radionuclide bone scans (50%). Since most neuroblastomas are solitary lesions that may arise in the adrenal glands or along the sympathetic chain from the neck down into the pelvis, the policy is to use plain radiography, sonography, and /sup 99m/Tc methylene diphosphonate (MDP) bone scans for the preliminary investigations of patients with opsomyoclonus. Body CT can then be tailored to suit the needs of the individual patients.

  7. Nano-Bio-Mechanics of Neuroblastoma Cells Using AFM

    NASA Astrophysics Data System (ADS)

    Bastatas, Lyndon; Matthews, James; Kang, Min; Park, Soyeun

    2011-10-01

    We have conducted an in vitro study to determine the elastic moduli of neurobalstoma cell lines using atomic force microscopy. Using a panel of cell lines established from neuroblastoma patients at different stages of disease progress and treatment, we have investigated the differences in elastic moduli during a course of cancer progression and chemotherapy. The cells were grown on the hard substrates that are chemically functionalized to enhance adhesion. We have performed the AFM indentation experiments with different applied forces from the AFM probe. For the purpose of the comparison between cell lines, the indentations were performed only on cell centers. The obtained force-distance curves were analyzed using the Hertz model in order to extract the elastic moduli. We have found that the elastic moduli of human neuroblastoma cells significantly varied during the disease progression. We postulate that the observed difference might be affected by the treatment and chemotherapy.

  8. Changes of adiponectin oligomer composition by moderate weight reduction.

    PubMed

    Bobbert, Thomas; Rochlitz, Helmut; Wegewitz, Uta; Akpulat, Suzan; Mai, Knut; Weickert, Martin O; Möhlig, Matthias; Pfeiffer, Andreas F H; Spranger, Joachim

    2005-09-01

    Adiponectin affects lipid metabolism and insulin sensitivity. However, adiponectin circulates in three different oligomers that may also have distinct biological functions. We aimed to analyze the role of these oligomers in obesity and lipid metabolism after weight reduction. A total of 17 obese volunteers (15 women and 2 men) participated in a weight reduction program. Individuals were characterized before and after 6 months of a balanced diet. Adiponectin was determined by enzyme-linked immunosorbent assay, and oligomers were detected by nondenaturating Western blot. BMI decreased (35.1 +/- 1.2 to 32.8 +/- 1.1 kg/m(2), P < 0.001), which was associated with an improved metabolite profile. Total adiponectin increased from 5.3 +/- 0.5 to 6.1 +/- 0.6 microg/ml (P = 0.076). High (HMW) and medium molecular weight (MMW) adiponectin oligomers significantly increased during weight reduction (HMW: 0.37 +/- 0.07 to 0.4 +/- 0.08 microg/ml, P = 0.042; MMW: 2.3 +/- 0.2 to 2.9 +/- 0.3 microg/ml, P = 0.007), while low molecular weight (LMW) did not significantly change. Body weight inversely correlated with HMW (r = -0.695, P = 0.002) and positively with LMW (r = 0.579, P = 0.015). Interestingly, HDL cholesterol and HMW were strongly correlated (r = 0.665, P = 0.007). Indeed, HMW and free fatty acids before weight reduction predicted approximately 60% of HDL changes during intervention. In conclusion, weight reduction results in a relative increase of HMW/MMW adiponectin and a reduction of LMW adiponectin. Total adiponectin and especially HMW adiponectin are related to circulating HDL cholesterol.

  9. Ethynyl-terminated ester oligomers and polymers therefrom

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Havens, Stephen J. (Inventor)

    1986-01-01

    A class of ethynyl terminated oligomers and the process for preparing the same are disclosed. Upon the application of heat, with or without a catalyst, the ethynyl groups react to provide crosslinking and chain extension to increase the polymer use temperature and improve the polymer solvent resistance. These polyesters are potentially useful in packaging, magnetic tapes, capacitors, industrial belting, protective coatings, structural adhesives and composite matrices.

  10. Characterization of reducible peptide oligomers as carriers for gene delivery.

    PubMed

    Kiselev, Anton; Egorova, Anna; Laukkanen, Antti; Baranov, Vladislav; Urtti, Arto

    2013-01-30

    The stability of DNA-polyplexes and intracellular DNA release are important features of gene delivery systems. To study these features, we have evaluated reducible cysteine-flanked linear lysine and arginine-rich peptides, modified with histidine residues. The reducible disulfide bonds in cysteine flanked peptides and histidine residues should augment DNA release from the peptide-DNA complexes upon disintegration of the reducible bonds. Template polymerization and oxidative polycondensation were applied to obtain peptide oligomers used for DNA-polyplex preparation. The peptides and DNA-peptide complexes were investigated with physical, chemical and transfection measurements. Physicochemical and transfection properties of DNA-polyplexes depended on the amino acid sequence of the peptidic polymers and type of the polymerization. MALDI-TOF analysis of oxidatively polycondensed products revealed several forms of peptide oligomers corresponding to 5-8 amino acid monomers. DNA-peptide particles based on template-polymerized complexes were more resistant to relaxation by negatively charged heparan sulfate than polyplexes formed with oxidatively condensed peptides. Complexes of DNA with the polycations prepared by oxidative polycondensation exhibited a 100-1000-fold higher level of gene expression compared to DNA/template-polymerized peptide complexes. The most efficient transgene expression was shown with arginine-rich polyplexes. Transfection efficacy of the arginine-rich polyplexes was even 10-fold better than that of DNA/PEI complexes. On average, polyplexes based on cysteine-flanked peptide oligomers showed lower cytotoxicity than non-reducible high molecular weight polylysine/DNA particles. We conclude that reducible peptide oligomers provide efficient DNA transfection and have the potential as vehicles for gene delivery.

  11. Using hyperbranched oligomer functionalized glass fillers to reduce shrinkage stress

    PubMed Central

    Ye, Sheng; Azarnoush, Setareh; Smith, Ian R.; Cramer, Neil B.; Stansbury, Jeffrey W.; Bowman, Christopher N

    2012-01-01

    Objective Fillers are widely utilized to enhance the mechanical properties of polymer resins. However, polymerization stress has the potential to increase due to the higher elastic modulus achieved upon filler addition. Here, we demonstrate a hyperbranched oligomer functionalized glass filler UV curable resin composite which is able to reduce the shrinkage stress without sacrificing mechanical properties. Methods A 16-functional alkene-terminated hyperbranched oligomer is synthesized by thiol-acrylate and thiol-yne reactions and the product structure is analyzed by 1H-NMR, mass spectroscopy, and gel permeation chromatography. Surface functionalization of the glass filler is measured by thermogravimetric analysis. Reaction kinetics, mechanical properties and shrinkage stress are studied via Fourier transform infrared spectroscopy, dynamic mechanical analysis and a tensometer, respectively. Results Silica nanoparticles are functionalized with a flexible 16-functional alkene-terminated hyperbranched oligomer which is synthesized by multistage thiol-ene/yne reactions. 93% of the particle surface was covered by this oligomer and an interfacial layer ranging from 0.7 – 4.5 nm thickness is generated. A composite system with these functionalized silica nanoparticles incorporated into the thiol-yne-methacrylate resin demonstrates 30% reduction of shrinkage stress (from 0.9 MPa to 0.6 MPa) without sacrificing the modulus (3100 ± 300 MPa) or glass transition temperature (62 ± 3 °C). Moreover, the shrinkage stress of the composite system builds up at much later stages of the polymerization as compared to the control system. Significance Due to the capability of reducing shrinkage stress without sacrificing mechanical properties, this composite system will be a great candidate for dental composite applications. PMID:22717296

  12. Dihydroxybenzoic Acid Isomers Differentially Dissociate Soluble Biotinyl-Aβ(1–42) Oligomers

    PubMed Central

    LeVine, Harry; Lampe, Levi; Abdelmoti, Lina; Augelli-Szafran, Corinne E.

    2014-01-01

    Polyphenolic compounds including a number of natural products such as resveratrol, curcumin, catechin derivatives, and nordihydroguaiaretic acid have effects on the assembly of Aβ fibrils and oligomers as well as on fibril morphology. Based on a lead structure obtained from a screen of a small molecule diversity library, simple benzoic acid derivatives distinguished by the number and position of hydroxyls on the aromatic ring displayed different abilities to dissociate pre-formed biotinyl-Aβ(1–42) oligomers. The 2, 3-, 2, 5-, and 3, 4- dihydroxybenzoic acid (DHBA) isomers were active oligomer dissociators. The remaining DHBA isomers and the monohydroxy and unsubstituted benzoic acids were inactive and did not compete with the active compounds to block oligomer dissociation. None of the compounds blocked oligomer assembly, indicating that they do not interact with monomeric Aβ to shift the oligomer-monomer equilibrium. Dissociating activity was not associated with quinone redox cycling capacity of the compounds. Gallic acid (3, 4, 5-trihydroxybenzoic acid) stabilized biotinyl-Aβ(1–42) oligomers against intrinsic dissociation and blocked the effects of the active dissociators, independent of the concentration of dissociator. A model for the mechanism of action of the DHBA dissociators proposes that these compounds destabilize oligomer structure promoting progressive monomer dissociation rather than fissioning oligomers into smaller, but still macromolecular species. Gallic acid blocks dissociation by stabilizing oligomers against this process. PMID:22129351

  13. Protein kinase Cepsilon is important for migration of neuroblastoma cells

    PubMed Central

    Stensman, Helena; Larsson, Christer

    2008-01-01

    Background Migration is important for the metastatic capacity and thus for the malignancy of cancer cells. There is limited knowledge on regulatory factors that promote the migration of neuroblastoma cells. This study investigates the hypothesis that protein kinase C (PKC) isoforms regulate neuroblastoma cell motility. Methods PKC isoforms were downregulated with siRNA or modulated with activators and inhibitors. Migration was analyzed with scratch and transwell assays. Protein phosphorylation and expression levels were measured with Western blot. Results Stimulation with 12-O-tetradecanoylphorbol-13-acetate (TPA) induced migration of SK-N-BE(2)C neuroblastoma cells. Treatment with the general protein kinase C (PKC) inhibitor GF109203X and the inhibitor of classical isoforms Gö6976 inhibited migration while an inhibitor of PKCβ isoforms did not have an effect. Downregulation of PKCε, but not of PKCα or PKCδ, with siRNA led to a suppression of both basal and TPA-stimulated migration. Experiments using PD98059 and LY294002, inhibitors of the Erk and phosphatidylinositol 3-kinase (PI3K) pathways, respectively, showed that PI3K is not necessary for TPA-induced migration. The Erk pathway might be involved in TPA-induced migration but not in migration driven by PKCε. TPA induced phosphorylation of the PKC substrate myristoylated alanine-rich C kinase substrate (MARCKS) which was suppressed by the PKC inhibitors. Treatment with siRNA oligonucleotides against different PKC isoforms before stimulation with TPA did not influence the phosphorylation of MARCKS. Conclusion PKCε is important for migration of SK-N-BE(2)C neuroblastoma cells. Neither the Erk pathway nor MARCKS are critical downstream targets of PKCε but they may be involved in TPA-mediated migration. PMID:19077250

  14. Enrichment of Targetable Mutations in the Relapsed Neuroblastoma Genome

    PubMed Central

    Ostrovnaya, Irina; Rubnitz, Kaitlyn R.; Ali, Siraj M.; Miller, Vincent A.; Mossé, Yael P.; Maris, John M.

    2016-01-01

    Neuroblastoma is characterized by a relative paucity of recurrent somatic mutations at diagnosis. However, recent studies have shown that the mutational burden increases at relapse, likely as a result of clonal evolution of mutation-carrying cells during primary treatment. To inform the development of personalized therapies, we sought to further define the frequency of potentially actionable mutations in neuroblastoma, both at diagnosis and after chemotherapy. We performed a retrospective study to determine mutation frequency, the only inclusion criterion being availability of cancer gene panel sequencing data from Foundation Medicine. We analyzed 151 neuroblastoma tumor samples: 44 obtained at diagnosis, 42 at second look surgery or biopsy for stable disease after chemotherapy, and 59 at relapse (6 were obtained at unknown time points). Nine patients had multiple tumor biopsies. ALK was the most commonly mutated gene in this cohort, and we observed a higher frequency of suspected oncogenic ALK mutations in relapsed disease than at diagnosis. Patients with relapsed disease had, on average, a greater number of mutations reported to be recurrent in cancer, and a greater number of mutations in genes that are potentially targetable with available therapeutics. We also observed an enrichment of reported recurrent RAS/MAPK pathway mutations in tumors obtained after chemotherapy. Our data support recent evidence suggesting that neuroblastomas undergo substantial mutational evolution during therapy, and that relapsed disease is more likely to be driven by a targetable oncogenic pathway, highlighting that it is critical to base treatment decisions on the molecular profile of the tumor at the time of treatment. However, it will be necessary to conduct prospective clinical trials that match sequencing results to targeted therapeutic intervention to determine if cancer genomic profiling improves patient outcomes. PMID:27997549

  15. Emergence of new ALK mutations at relapse of neuroblastoma.

    PubMed

    Schleiermacher, Gudrun; Javanmardi, Niloufar; Bernard, Virginie; Leroy, Quentin; Cappo, Julie; Rio Frio, Thomas; Pierron, Gaelle; Lapouble, Eve; Combaret, Valérie; Speleman, Frank; de Wilde, Bram; Djos, Anna; Ora, Ingrid; Hedborg, Fredrik; Träger, Catarina; Holmqvist, Britt-Marie; Abrahamsson, Jonas; Peuchmaur, Michel; Michon, Jean; Janoueix-Lerosey, Isabelle; Kogner, Per; Delattre, Olivier; Martinsson, Tommy

    2014-09-01

    In neuroblastoma, the ALK receptor tyrosine kinase is activated by point mutations. We investigated the potential role of ALK mutations in neuroblastoma clonal evolution. We analyzed ALK mutations in 54 paired diagnosis-relapse neuroblastoma samples using Sanger sequencing. When an ALK mutation was observed in one paired sample, a minor mutated component in the other sample was searched for by more than 100,000× deep sequencing of the relevant hotspot, with a sensitivity of 0.17%. All nine ALK-mutated cases at diagnosis demonstrated the same mutation at relapse, in one case in only one of several relapse nodules. In five additional cases, the mutation seemed to be relapse specific, four of which were investigated by deep sequencing. In two cases, no mutation evidence was observed at diagnosis. In one case, the mutation was present at a subclonal level (0.798%) at diagnosis, whereas in another case, two different mutations resulting in identical amino acid changes were detected, one only at diagnosis and the other only at relapse. Further evidence of clonal evolution of ALK-mutated cells was provided by establishment of a fully ALK-mutated cell line from a primary sample with an ALK-mutated cell population at subclonal level (6.6%). In neuroblastoma, subclonal ALK mutations can be present at diagnosis with subsequent clonal expansion at relapse. Given the potential of ALK-targeted therapy, the significant spatiotemporal variation of ALK mutations is of utmost importance, highlighting the potential of deep sequencing for detection of subclonal mutations with a sensitivity 100-fold that of Sanger sequencing and the importance of serial samplings for therapeutic decisions. © 2014 by American Society of Clinical Oncology.

  16. Tinospora cordifolia Induces Differentiation and Senescence Pathways in Neuroblastoma Cells.

    PubMed

    Mishra, Rachana; Kaur, Gurcharan

    2015-08-01

    Children diagnosed with neuroblastomas often suffer from severe side as well as late effects of conventional treatments like chemotherapy and radiotherapy. Recent advances in understanding of molecular pathways involved in cellular differentiation and apoptosis have helped in the development of new therapeutic approach based on differentiation-based therapy of malignant tumours. Natural medicines with their holistic therapeutic approach are known to selectively eliminate cancer cells thus provide a better substitute for the conventional treatment modes. The current study was aimed to investigate the anti-cancer potential of aqueous ethanolic extract of Tinospora cordifolia (TCE) using IMR-32 human neuroblastoma cell line as a model system. TCE is highly recommended in Ayurveda for its general body and metal health-promoting properties. TCE treatment was seen to arrest the majority of cells in G0/G1 phase and modulated the expression of DNA clamp sliding protein (PCNA) and cyclin D1. Further, TCE-treated cells showed differentiation as revealed by their morphology and the expression of neuronal cell specific differentiation markers NF200, MAP-2 and NeuN in neuroblastoma cells. The differentiated phenotype was associated with induction of senescence and pro-apoptosis pathways by enhancing expression of senescence marker mortalin and Rel A subunit of nuclear factor kappa beta (NFkB) along with decreased expression of anti-apoptotic marker, Bcl-xl. TCE exhibited anti-metastatic activity and significantly reduced cell migration in the scratched area along with downregulation of neural cell adhesion molecule (NCAM) polysialylation and secretion of matrix metalloproteinases (MMPs). Our data suggest that crude extract or active phytochemicals from this plant may be a potential candidate for differentiation-based therapy of malignant neuroblastoma cells.

  17. p75NTR: an enhancer of fenretinide toxicity in neuroblastoma.

    PubMed

    Ganeshan, Veena; Ashton, John; Schor, Nina F

    2013-03-01

    Neuroblastoma is a common, frequently fatal, neural crest tumor of childhood. Chemotherapy-resistant neuroblastoma cells typically have Schwann cell-like ("S-type") morphology and express the p75 neurotrophin receptor (p75NTR). p75NTR has been previously shown to modulate the redox state of neural crest tumor cells. We, therefore, hypothesized that p75NTR expression level would influence the effects of the redox-active chemotherapeutic drug fenretinide on neuroblastoma cells. Transfection and lentiviral transduction were used to manipulate p75NTR expression in these cell lines. Sensitivity to fenretinide was determined by concentration- and time-cell survival studies. Apoptosis incidence was determined by morphological assessment and examination of cleavage of poly-ADP ribose polymerase and caspase-3. Generation and subcellular localization of reactive oxygen species were quantified using species- and site-specific stains and by examining the effects of site-selective antioxidants on cell survival after fenretinide treatment. Studies of mitochondrial electron transport employed specific inhibitors of individual proteins in the electron transport chain. Knockdown of p75NTR attenuates fenretinide-induced accumulation of mitochondrial superoxide and apoptosis. Overexpression of p75NTR has the opposite effects. Pretreatment of cells with 2-thenoyltrifluoroacetone or dehydroascorbic acid uniquely prevents mitochondrial superoxide accumulation and cell death after fenretinide treatment, indicating that mitochondrial complex II is the likely site of fenretinide-induced superoxide generation and p75NTR-induced potentiation of these phenomena. Modification of expression of p75NTR in a particular neuroblastoma cell line modifies its susceptibility to fenretinide. Enhancers of p75NTR expression or signaling could be potential drugs for use as adjuncts to chemotherapy of neural tumors.

  18. p75NTR: an enhancer of fenretinide toxicity in neuroblastoma

    PubMed Central

    Ganeshan, Veena; Ashton, John

    2013-01-01

    Objective Neuroblastoma is a common, frequently fatal, neural crest tumor of childhood. Chemotherapy-resistant neuroblastoma cells typically have Schwann cell-like (“Stype”) morphology and express the p75 neurotrophin receptor (p75NTR). p75NTR has been previously shown to modulate the redox state of neural crest tumor cells. We, therefore, hypothesized that p75NTR expression level would influence the effects of the redox-active chemotherapeutic drug fenretinide on neuroblastoma cells. Methods Transfection and lentiviral transduction were used to manipulate p75NTR expression in these cell lines. Sensitivity to fenretinide was determined by concentration-and time-cell survival studies. Apoptosis incidence was determined by morphological assessment and examination of cleavage of poly-ADP ribose polymerase and caspase-3. Generation and subcellular localization of reactive oxygen species were quantified using species- and site-specific stains and by examining the effects of site-selective antioxidants on cell survival after fenretinide treatment. Studies of mitochondrial electron transport employed specific inhibitors of individual proteins in the electron transport chain. Results Knockdown of p75NTR attenuates fenretinide-induced accumulation of mitochondrial superoxide and apoptosis. Overexpression of p75NTR has the opposite effects. Pretreatment of cells with 2-thenoyltrifluoroacetone or dehydroascorbic acid uniquely prevents mitochondrial superoxide accumulation and cell death after fenretinide treatment, indicating that mitochondrial complex II is the likely site of fenretinide-induced superoxide generation and p75NTR-induced potentiation of these phenomena. Conclusion Modification of expression of p75NTR in a particular neuroblastoma cell line modifies its susceptibility to fenretinide. Enhancers of p75NTR expression or signaling could be potential drugs for use as adjuncts to chemotherapy of neural tumors. PMID:23314735

  19. Long-Term Survival in Adult Neuroblastoma with Multiple Recurrences

    PubMed Central

    Vénat-Bouvet, L.; Le Brun-Ly, V.; Martin, J.; Gasnier, O.; Falkowsky, S.; Tubiana-Mathieu, N.

    2010-01-01

    Neuroblastoma (NB) rarely occurs in adults, and less than 10% of the cases occur in patients older than 10 years. Currently, there are no standard treatment guidelines for adult NB patients. We report the case of a young man suffering from NB in adulthood with multiple recurrences. Treatment included multiple resections, chemotherapy, and radiotherapy. This patient remains free of clinical disease more than 7 years after diagnosis. PMID:20740158

  20. Limited neuropeptide Y precursor processing in unfavourable metastatic neuroblastoma tumours

    PubMed Central

    Bjellerup, P; Theodorsson, E; Jörnvall, H; Kogner, P

    2000-01-01

    Neuropeptide Y (NPY) is found at high concentrations in neural crest-derived tumours and has been implicated as a regulatory peptide in tumour growth and differentiation. Neuroblastomas, ganglioneuromas and phaeochromocytomas with significant concentrations of NPY-like immunoreactivity were investigated for different molecular forms of NPY and for significance of proNPY processing. Gel-permeation chromatography identified intact NPY (1–36) in all tumours, whereas proNPY (69 amino acids) was detected only in control adrenal tissue and malignant neuroblastomas. Purification of NPY-like immunoreactivity in tumour extracts and structural characterization revealed that both NPY (1–36) and the truncated form NPY (3–36) was present. The degree of processing of proNPY to NPY in tumour tissue was lower in advanced neuroblastomas with regional or metastatic spread (stage 3 and 4) (n = 6), (41%, 12–100%, median, range), compared to the less aggressive stage 1, 2 and 4S tumours (n = 12), (93%; 69–100%), (P = 0.012). ProNPY processing of less than 50% was correlated with poor clinical outcome (P = 0.004). MYCN oncogene amplification was also correlated to a low degree of proNPY processing (P = 0.025). In summary, a low degree of proNPY processing was correlated to clinical advanced stage and poor outcome in neuroblastomas. ProNPY/NPY processing generated molecular forms of NPY with known differences in NPY-receptor selectivity, implicating a potential for in vivo modulation of NPY-like effects in tumour tissue. © 2000 Cancer Research Campaign PMID:10901366

  1. Synthesis of soybean oil-based thiol oligomers.

    PubMed

    Wu, Jennifer F; Fernando, Shashi; Weerasinghe, Dimuthu; Chen, Zhigang; Webster, Dean C

    2011-08-22

    Industrial grade soybean oil (SBO) and thiols were reacted to generate thiol-functionalized oligomers via a thermal, free radical initiated thiol-ene reaction between the SBO double bond moieties and the thiol functional groups. The effect of the reaction conditions, including thiol concentration, catalyst loading level, reaction time, and atmosphere, on the molecular weight and the conversion to the resultant soy-thiols were examined in a combinatorial high-throughput fashion using parallel synthesis, combinatorial FTIR, and rapid gel permeation chromatography (GPC). High thiol functionality and concentration, high thermal free radical catalyst concentration, long reaction time, and the use of a nitrogen reaction atmosphere were found to favor fast consumption of the SBO, and produced high molecular weight products. The thiol conversion during the reaction was inversely affected by a high thiol concentration, but was favored by a long reaction time and an air reaction atmosphere. These experimental observations were explained by the initial low affinity of the SBO and thiol, and the improved affinity between the generated soy-thiol oligomers and unreacted SBO during the reaction. The synthesized soy-thiol oligomers can be used for renewable thiol-ene UV curable materials and high molecular solids and thiourethane thermal cure materials.

  2. Size-dependent neurotoxicity of β-amyloid oligomers

    PubMed Central

    Cizas, Paulius; Budvytyte, Rima; Morkuniene, Ramune; Moldovan, Radu; Broccio, Matteo; Lösche, Mathias; Niaura, Gediminas; Valincius, Gintaras; Borutaite, Vilmante

    2010-01-01

    The link between the size of soluble amyloid β (Aβ) oligomers and their toxicity to rat cerebellar granule cells (CGC) was investigated. Variation in conditions during in vitro oligomerization of Aβ1-42 resulted in peptide assemblies with different particle size as measured by atomic force microscopy and confirmed by the dynamic light scattering and fluorescence correlation spectroscopy. Small oligomers of Aβ1-42 with a mean particle z-height of 1-2 nm exhibited propensity to bind to the phospholipid vesicles and they were the most toxic species that induced rapid neuronal necrosis at submicromolar concentrations whereas the bigger aggregates (z-height above 4-5 nm) did not bind vesicles and did not cause detectable neuronal death. Similar neurotoxic pattern was also observed in primary cultures of cortex neurons whereas Aβ1–42 oligomers, monomers and fibrils were non-toxic to glial cells in CGC cultures or macrophage J774 cells. However, both oligomeric forms of Aβ1-42 induced reduction of neuronal cell densities in the CGC cultures. PMID:20153288

  3. Size-dependent neurotoxicity of beta-amyloid oligomers.

    PubMed

    Cizas, Paulius; Budvytyte, Rima; Morkuniene, Ramune; Moldovan, Radu; Broccio, Matteo; Lösche, Mathias; Niaura, Gediminas; Valincius, Gintaras; Borutaite, Vilmante

    2010-04-15

    The link between the size of soluble amyloid beta (Abeta) oligomers and their toxicity to rat cerebellar granule cells (CGC) was investigated. Variation in conditions during in vitro oligomerization of Abeta(1-42) resulted in peptide assemblies with different particle size as measured by atomic force microscopy and confirmed by dynamic light scattering and fluorescence correlation spectroscopy. Small oligomers of Abeta(1-42) with a mean particle z-height of 1-2 nm exhibited propensity to bind to phospholipid vesicles and they were the most toxic species that induced rapid neuronal necrosis at submicromolar concentrations whereas the bigger aggregates (z-height above 4-5 nm) did not bind vesicles and did not cause detectable neuronal death. A similar neurotoxic pattern was also observed in primary cultures of cortex neurons whereas Abeta(1-42) oligomers, monomers and fibrils were non-toxic to glial cells in CGC cultures or macrophage J774 cells. However, both oligomeric forms of Abeta(1-42) induced reduction of neuronal cell densities in the CGC cultures.

  4. The Viscoelastic Behavior of Polymer/Oligomer Blends

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; McKenna, Gregory; Simon, Sindee

    2009-03-01

    The dynamics in athermal blends of poly(α-methyl styrene) (PaMS) and its short chain oligomer are investigated using rheometry and differential scanning calorimetry (DSC). Master curves for the dynamic shear responses, G' and G", are successfully constructed for both the pure materials and the blends, indicating the validity of the time-temperature superposition principle. The temperature dependence of the shift factor follows the WLF (Williams-Landel-Ferry) behavior over the temperature range studied, and for the blends, the dependence is dominated by the high mobility oligomer. The discrete relaxation spectra of the materials are calculated and are found to be broader for the blends than for the pure materials. A similar domination of the dynamics by the oligomer is observed in DSC enthalpy recovery studies and in the broadened glass transition from DSC. The ability to predict the dynamic responses of the blends from the responses of the neat materials is examined, and whether this prediction needs to incorporate the self-concentration idea as described in Colmenero's model will be discussed.

  5. α-Synuclein oligomers and clinical implications for Parkinson disease.

    PubMed

    Kalia, Lorraine V; Kalia, Suneil K; McLean, Pamela J; Lozano, Andres M; Lang, Anthony E

    2013-02-01

    Protein aggregation within the central nervous system has been recognized as a defining feature of neurodegenerative diseases since the early 20th century. Since that time, there has been a growing list of neurodegenerative disorders, including Parkinson disease, which are characterized by inclusions of specific pathogenic proteins. This has led to the long-held dogma that these characteristic protein inclusions, which are composed of large insoluble fibrillar protein aggregates and visible by light microscopy, are responsible for cell death in these diseases. However, the correlation between protein inclusion formation and cytotoxicity is inconsistent, suggesting that another form of the pathogenic proteins may be contributing to neurodegeneration. There is emerging evidence implicating soluble oligomers, smaller protein aggregates not detectable by conventional microscopy, as potential culprits in the pathogenesis of neurodegenerative diseases. The protein α-synuclein is well recognized to contribute to the pathogenesis of Parkinson disease and is the major component of Lewy bodies and Lewy neurites. However, α-synuclein also forms oligomeric species, with certain conformations being toxic to cells. The mechanisms by which these α-synuclein oligomers cause cell death are being actively investigated, as they may provide new strategies for diagnosis and treatment of Parkinson disease and related disorders. Here we review the possible role of α-synuclein oligomers in cell death in Parkinson disease and discuss the potential clinical implications.

  6. Oligomers, organosulfates, and nitroxy organosulfates identified in rainwater

    NASA Astrophysics Data System (ADS)

    Altieri, K. E.; Turpin, B. J.; Seitzinger, S. P.

    2008-12-01

    Wet deposition is an important removal mechanism for atmospheric organic matter, and a potentially important input for receiving ecosystems, yet less than 50 percent of rainwater organic matter is considered chemically characterized. Precipitation samples collected in New Jersey, USA, were analyzed by negative ion ultra-high resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). We document the presence of 552 unique compounds in the rainwater over a mass range of 50-500 Da, in four compound classes (i.e., CHO, CHOS, CHON, and CHONS). The presence of oligomers, organosulfates, nitroxy organosulfates, organic acids, and linear alkylbenzene sulfonates is reported. Some compounds detected have distinct primary sources; however, the composition of the bulk of this material suggests it is formed in the atmosphere and composed of known contributors to secondary organic aerosol. For example, eight oligomer series known to form through aqueous photooxidation of methylglyoxal and organosulfate compounds known to form from 4 precursors in smog chamber experiments were identified in the rainwater samples. The oligomers, organosulfates, and nitroxy organosulfates detected in the rainwater could all contribute to the HULIS fraction of atmospheric organic matter.

  7. α-Synuclein oligomers and clinical implications for Parkinson disease

    PubMed Central

    Kalia, Lorraine V.; Kalia, Suneil K.; McLean, Pamela J.; Lozano, Andres M.; Lang, Anthony E.

    2012-01-01

    Protein aggregation within the central nervous system has been recognized as a defining feature of neurodegenerative diseases since the early 20th century. Since that time, there has been a growing list of neurodegenerative disorders, including Parkinson disease, which are characterized by inclusions of specific pathogenic proteins. This has led to the long-held dogma that these characteristic protein inclusions, which are composed of large insoluble fibrillar protein aggregates and visible by light microscopy, are responsible for cell death in these diseases. However, the correlation between protein inclusion formation and cytotoxicity is inconsistent suggesting another form of the pathogenic proteins may be contributing to neurodegeneration. There is emerging evidence implicating soluble oligomers, smaller protein aggregates not detectable by conventional microscopy, as potential culprits in the pathogenesis of neurodegenerative diseases. The protein α-synuclein is well recognized to contribute to the pathogenesis of Parkinson disease and is the major component of Lewy bodies and Lewy neurites. However, α-synuclein also forms oligomeric species with certain conformations being toxic to cells. The mechanisms by which these α-synuclein oligomers cause cell death are being actively investigated as they may provide new strategies for diagnosis and treatment of Parkinson disease and related disorders. Here we review the possible role of α-synuclein oligomers in cell death in Parkinson disease and discuss the potential clinical implications. PMID:23225525

  8. Molecular modeling of crystalline alkylthiophene oligomers and polymers.

    PubMed

    Moreno, Margherita; Casalegno, Mosè; Raos, Guido; Meille, Stefano V; Po, Riccardo

    2010-02-04

    We present the results of a thorough molecular modeling study of several alkylthiophene-based oligomers and polymers. In particular, we consider two polymers whose limit-ordered crystal structures have been recently reported by our group, on the basis of powder X-ray data analysis: poly(3-(S)-2-methylbutylthiophene) (P3MBT) and form I' of poly(3-butylthiophene) (P3BT). We first describe the development of a series general purpose force fields for the simulation of these and related systems. The force fields incorporate the results of ab initio calculations of the bond torsion energies of selected oligomers and differ in the set of atomic charges used to represent the electrostatic interactions. We then present the results of an extensive validation of these force fields, by means of molecular mechanics (MM) energy minimizations and molecular dynamics (MD) simulations of the crystal structures of these oligomers and polymers. While our "best" force field does not outperform the others on each of the investigated systems, it provides a balanced description of their overall structure and energetics. Finally, our MM minimizations and MD simulations confirm that the reported crystal structures of P3MBT and P3BT are stable and correspond to well-defined energetic minima. The room-temperature MD simulations reveal a certain degree of side-chain disorder, even in our virtually defect-free polymer crystal models.

  9. Deuteration-induced scission of C{sub 58} oligomers

    SciTech Connect

    Loeffler, Daniel; Jester, Stefan-S.; Weis, Patrick; Boettcher, Artur; Kappes, Manfred M.

    2006-12-14

    The reaction of solid C{sub 58} films with atomic deuterium to yield deuterofullerenes, C{sub 58}D{sub x}, has been investigated by thermal desorption spectroscopy coupled with mass spectrometric detection, ultraviolet photoionization spectroscopy (21.2 eV), and atomic force microscopy (AFM). The average composition of the deuterofullerenes created depends on deuterium dose, beam flux, and surface temperature. Low deuterium exposures at room temperature yield predominantly C{sub 58}D{sub 6-8} cages. Saturation exposures at room temperature yield mass spectra peaked at C{sub 58}D{sub 26}. After saturation exposures at elevated surface temperatures ({approx}500 K), the (subsequently) desorbed material reveals a comparatively narrow mass spectral distribution centered at C{sub 58}D{sub 30}. Deuteration is associated with cleavage of covalent cage-cage bonds in the starting C{sub 58} oligomer material, as evidenced by a considerable lowering of the sublimation energies of C{sub 58}D{sub x} compared to desorption of C{sub 58} desorbed from pure oligomer films. Correspondingly, AFM images reveal a D-induced, thermally activated transition from dendritic C{sub 58} oligomer islands into smooth-rimmed islands composed of deuterated cages. Deuterated films exhibit a significantly lower work function than bare C{sub 58} films. Progressing deuteration also gradually raises the surface ionization potential.

  10. Optimized Ultrasonic Irradiation Finds Out Ultrastable Aβ1-40 Oligomers.

    PubMed

    Nakajima, Kichitaro; So, Masatomo; Takahashi, Kazuma; Tagawa, Yoh-Ichi; Hirao, Masahiko; Goto, Yuji; Ogi, Hirotsugu

    2017-03-30

    Oligomer species of amyloid β (Aβ) peptides are intensively investigated because of their relevance to Alzheimer's disease (AD), and a stable oligomer will be a cause of AD. In this article, we investigate the structural stability of two representative Aβ1-40 oligomers, which are with and without the β-sheet structure, denoted by β and non-β oligomers, respectively, using optimized ultrasonic irradiation (OUI). Recent studies reveal that OUI significantly accelerates the fibril formation in Aβ1-40 monomers; it is capable of transforming any unstable oligomers into fibrils (the dead-end products) in a short time. First, we find that β oligomers can be produced under high-speed stirring agitation; their β-sheet structures are evaluated by the circular-dichroism spectrum measurement, by the immunoassay using the fibril-specific OC antibody, and by the seeding experiment, showing identical characteristics to those formed in previous reports. Second, we form non-β oligomers in a high-concentration NaCl solution and confirm that they include no β-sheet structure, and they are recognized by the oligomer-specific A11 antibody. Furthermore, we confirm the neurotoxicity of the two types of oligomers using the neural tissue derived from mouse embryonic stem cells. We apply the OUI agitation to the β and non-β oligomers. The non-β oligomers are transformed into the fibrils, indicating that they are intermediate species in the fibrillation pathway. However, the β oligomers are surprisingly unaffected by OUI, indicating their high thermodynamic stability. We conclude that the β oligomers should be the independent dead-end products of another pathway, different from the fibrillation pathway.

  11. Amyloid β oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis

    PubMed Central

    Viola, Kirsten L.; Klein, William L.

    2015-01-01

    Protein aggregation is common to dozens of diseases including prionoses, diabetes, Parkinson’s and Alzheimer’s. Over the past 15 years, there has been a paradigm shift in understanding the structural basis for these proteinopathies. Precedent for this shift has come from investigation of soluble Aβ oligomers (AβOs), toxins now widely regarded as instigating neuron damage leading to Alzheimer’s dementia. Toxic AβOs accumulate in AD brain and constitute long-lived alternatives to the disease-defining Aβ fibrils deposited in amyloid plaques. Key experiments using fibril-free AβO solutions demonstrated that while Aβ is essential for memory loss, the fibrillar Aβ in amyloid deposits is not the agent. The AD-like cellular pathologies induced by AβOs suggest their impact provides a unifying mechanism for AD pathogenesis, explaining why early stage disease is specific for memory and accounting for major facets of AD neuropathology. Alternative ideas for triggering mechanisms are being actively investigated. Some research favors insertion of AβOs into membrane, while other evidence supports ligand-like accumulation at particular synapses. Over a dozen candidate toxin receptors have been proposed. AβO binding triggers a redistribution of critical synaptic proteins and induces hyperactivity in metabotropic and ionotropic glutamate receptors. This leads to Ca2+ overload and instigates major facets of AD neuropathology, including tau hyperphosphorylation, insulin resistance, oxidative stress, and synapse loss. Because different species of AβOs have been identified, a remaining question is which oligomer is the major pathogenic culprit. The possibility has been raised that more than one species plays a role. Despite some key unknowns, the clinical relevance of AβOs has been established, and new studies are beginning to point to co-morbidities such as diabetes and hypercholesterolemia as etiological factors. Because pathogenic AβOs appear early in the disease

  12. Prognosis for children with neuroblastoma presenting with paralysis.

    PubMed

    Traggis, D G; Filler, R M; Druckman, H; Jaffe, N; Cassady, J R

    1977-06-01

    Since 1947, we have treated 19 children with neuroblastoma whose first symptoms were paralysis or weakness of an extremity, and/or incontinence due to tumor in the spinal canal. In 18 patients, the spine tumor was part of a dumbbell tumor which was present in the adjacent paravertebral area and in one, no extraspinal tumor was found. Aggressive treatment was employed for all. In 17 children, the intraspinal tumor was treated by laminectomy and irradiation with and without chemotherapy. Radiation and chemotherapy were used for two. The extraspinal tumor was excised totally in six and partially in six. All 12 children received postoperative radiation and chemotherapy. In 6 children, the extraspinal tumor was treated only with radiation and chemotherapy. Nine of 19 children are alive without evidence of neuroblastoma. Thirteen patients showed either partial (6) or full (7) neurologic recovery. Survival was related to the child's age at diagnosis and the extent of disease. While 8 of 9 children under 1 yr of age survived, only 1 of 10 children over 1 yr survived. None of the 5 children with Stage IV disease at diagnosis could be saved. The degree and frequency of neurologic recovery were greatest in children whose neurologic symptoms had been present the shortest times and were equal among those who survived and those who died. The outlook for children who became paralyzed by neuroblastoma is not hopeless; therapy aimed at saving life or neurologic function is both worthwhile and rewarding.

  13. Disseminated peripheral neuroblastoma in a Rhodesian Ridgeback dog.

    PubMed

    Cook, R W; Abraham, L A; McCowan, C I

    2017-04-01

    A 4-year-old neutered male Rhodesian Ridgeback dog with right-sided Horner's syndrome, bilateral laryngeal paralysis, neck pain and bilateral hindlimb ataxia was euthanased following deterioration of its neurological status. Necropsy examination revealed an off-white retropharyngeal neoplastic mass (100 × 30 × 30 mm) attached to the base of the skull on the right side and macroscopic nodular metastases in the spleen and three vertebral bodies (C6, C7 and T6), including a nodule attached to the dura at C7. Histological evidence of neuroblastic tumour was detected in these macroscopic lesions, a regional lymph node, bone marrow of a femur and all 15 vertebral bodies (C1-T8) examined, including the three with macroscopic metastases, and in the lumens of small blood vessels in the lungs and liver. Ganglion cell differentiation was detected only in the primary retropharyngeal mass, one splenic nodule and the C7 dural nodule. Neoplastic cells were immunoreactive to neurofilament protein (ganglion cells only), vimentin and synaptophysin, and were negative for S100 protein, GFAP, CD3 and Pax5. The diagnosis was disseminated peripheral neuroblastoma, differentiating subtype (International Neuroblastoma Pathology Classification), with likely primary involvement of the right cranial cervical ganglion. This appears to be the first report of neuroblastoma in a dog with widespread occult haematogenous metastasis to bone marrow. © 2017 Australian Veterinary Association.

  14. Expression of the amplified domain in human neuroblastoma cells.

    PubMed Central

    Michitsch, R W; Montgomery, K T; Melera, P W

    1984-01-01

    Screening of a partial cDNA library prepared from the human neuroblastoma cell line BE(2)-C with genomic DNA probes containing sequences representative of the amplified domain of that cell line allowed us to identify cloned transcripts from an active gene within the domain. The gene BE(2)-C-59 is amplified ca. 150-fold and encodes a 3.0- and a 1.5-kilobase RNA transcript, both of which are overproduced in BE(2)-C cells. A survey of a large variety of human tumor cell types indicated that this gene is amplified to varying degrees in all neuroblastoma cell lines and a retinoblastoma cell line that exhibit obvious cytological manifestations of DNA sequence amplification, i.e., homogeneously staining regions and double-minute chromosomes. The BE(2)-C-59 gene is not amplified, however, in other nonrelated tumor types, even those containing amplified DNA. Although the functional significance of this specific gene amplification in neuroblastoma cells remains unknown, an indication that it may relate to the malignant phenotype of these cells follows from the remainder of our data which show that the amplified BE(2)-C-59 gene shares partial homology with both the second and third exons, but not the first exon, of the human c-myc oncogene. Images PMID:6549047

  15. Diagnosis of neonatal neuroblastoma with postmortem magnetic resonance imaging.

    PubMed

    Davis, James; Novotny, Nathan; Macknis, Jacqueline; Alpay-Savasan, Zeynep; Goncalves, Luis F

    2017-03-01

    Postmortem magnetic resonance imaging (MRI) is emerging as a valuable tool to accompany traditional autopsy and has potential for use in cases when traditional autopsy is not possible. This case report will review the use of postmortem MRI with limited tissue sampling to differentiate between metastatic neuroblastoma and hepatoblastoma which could not be clearly differentiated with prenatal ultrasound, prenatal MRI, or emergent postnatal ultrasound. The mother presented to our institution at 27 weeks gestation after an obstetric ultrasound at her obstetrician's office identified a large abdominal mass. Fetal ultrasonography and MRI confirmed the mass but were unable to differentiate between neuroblastoma and multifocal hepatoblastoma. The baby was delivered by cesarean section after nonreassuring heart tones led to an emergent cesarean section. The baby underwent decompressive laparotomy to relieve an abdominal compartment syndrome; however, the family eventually decided to withdraw life support. At this time, we performed a whole body postmortem MRI which further characterized the mass as an adrenal neuroblastoma which was confirmed with limited tissue sampling. Postmortem MRI was especially helpful in this case, as the patient's family declined traditional autopsy.

  16. Clusterin Binds to Aβ1–42 Oligomers with High Affinity and Interferes with Peptide Aggregation by Inhibiting Primary and Secondary Nucleation*

    PubMed Central

    Beeg, Marten; Stravalaci, Matteo; Romeo, Margherita; Carrá, Arianna Dorotea; Cagnotto, Alfredo; Rossi, Alessandro; Diomede, Luisa; Salmona, Mario

    2016-01-01

    The aggregation of amyloid β protein (Aβ) is a fundamental pathogenic mechanism leading to the neuronal damage present in Alzheimer disease, and soluble Aβ oligomers are thought to be a major toxic culprit. Thus, better knowledge and specific targeting of the pathways that lead to these noxious species may result in valuable therapeutic strategies. We characterized some effects of the molecular chaperone clusterin, providing new and more detailed evidence of its potential neuroprotective effects. Using a classical thioflavin T assay, we observed a dose-dependent inhibition of the aggregation process. The global analysis of time courses under different conditions demonstrated that clusterin has no effect on the elongation rate but mainly interferes with the nucleation processes (both primary and secondary), reducing the number of nuclei available for further fibril growth. Then, using a recently developed immunoassay based on surface plasmon resonance, we obtained direct evidence of a high-affinity (KD = 1 nm) interaction of clusterin with biologically relevant Aβ1–42 oligomers, selectively captured on the sensor chip. Moreover, with the same technology, we observed that substoichiometric concentrations of clusterin prevent oligomer interaction with the antibody 4G8, suggesting that the chaperone shields hydrophobic residues exposed on the oligomeric assemblies. Finally, we found that preincubation with clusterin antagonizes the toxic effects of Aβ1–42 oligomers, as evaluated in a recently developed in vivo model in Caenorhabditis elegans. These data substantiate the interaction of clusterin with biologically active regions exposed on nuclei/oligomers of Aβ1–42, providing a molecular basis for the neuroprotective effects of the chaperone. PMID:26884339

  17. Soluble, Prefibrillar α-Synuclein Oligomers Promote Complex I-dependent, Ca2+-induced Mitochondrial Dysfunction*

    PubMed Central

    Luth, Eric S.; Stavrovskaya, Irina G.; Bartels, Tim; Kristal, Bruce S.; Selkoe, Dennis J.

    2014-01-01

    α-Synuclein (αSyn) aggregation and mitochondrial dysfunction both contribute to the pathogenesis of Parkinson disease (PD). Although recent studies have suggested that mitochondrial association of αSyn may disrupt mitochondrial function, it is unclear what aggregation state of αSyn is most damaging to mitochondria and what conditions promote or inhibit the effect of toxic αSyn species. Because the neuronal populations most vulnerable in PD are characterized by large cytosolic Ca2+ oscillations that burden mitochondria, we examined mitochondrial Ca2+ stress in an in vitro system comprising isolated mitochondria and purified recombinant human αSyn in various aggregation states. Using fluorimetry to simultaneously measure four mitochondrial parameters, we observed that soluble, prefibrillar αSyn oligomers, but not monomeric or fibrillar αSyn, decreased the retention time of exogenously added Ca2+, promoted Ca2+-induced mitochondrial swelling and depolarization, and accelerated cytochrome c release. Inhibition of the permeability transition pore rescued these αSyn-induced changes in mitochondrial parameters. Interestingly, the mitotoxic effects of αSyn were specifically dependent upon both electron flow through complex I and mitochondrial uptake of exogenous Ca2+. Our results suggest that soluble prefibrillar αSyn oligomers recapitulate several mitochondrial phenotypes previously observed in animal and cell models of PD: complex I dysfunction, altered membrane potential, disrupted Ca2+ homeostasis, and enhanced cytochrome c release. These data reveal how the association of oligomeric αSyn with mitochondria can be detrimental to the function of cells with high Ca2+-handling requirements. PMID:24942732

  18. Regulation of neuroblastoma differentiation by forkhead transcription factors FOXO1/3/4 through the receptor tyrosine kinase PDGFRA.

    PubMed

    Mei, Yang; Wang, Zhanxiang; Zhang, Lei; Zhang, Yiru; Li, Xiaoyu; Liu, Huihui; Ye, Jing; You, Han

    2012-03-27

    Neuroblastoma is a common childhood malignant tumor originated from the neural crest-derived sympathetic nervous system. A crucial early event in neuroblastoma pathogenesis is arrested differentiation of neuroblasts at various stages. Treatment of neuroblastoma with TPA and PDGF-BB leads to terminal differentiation of neuroblastoma cells. However, the signaling pathways that are involved in this process remain largely unknown. Here, we report that inhibition of endogenous FOXO proteins attenuated TPA/PDGF-BB mediated differentiation of neuroblastoma cells. Activated FOXO transcription factors acted on PDGFRA promoter to direct its basal mRNA expression as well as its induction upon serum deprivation. Depletion of endogenous PDGFRA in neuroblastoma cells significantly diminished neurite formation and extension under TPA/PDGF-BB treatment. Furthermore, ectopic expression of PDGFRA abolished the blockage of neuroblastoma differentiation by FOXOs inhibition. These findings define the FOXO-PDGFRA axis as crucial mechanistic components that govern TPA-induced neuroblastoma differentiation.

  19. Synthesis and Characterization of Unsymmetrical Perylene Derivatives and Perylene Oligomers

    NASA Astrophysics Data System (ADS)

    Sun, Runkun

    Since the discovery of high fluorescent property of perylene tetracarboxylic diimide (PDI) derivatives in 1959, more and more researchers' attention has been attracted to related fields. Ever since, many kinds of PDI derives has been synthesized and characterized. And many special properties of PDI derivatives also has been found, such as strong absorbance ability, special redox property and self assembly induced by pi-pi interaction etc. All these properties endow PDI derivatives wide applications in photovoltaic field and semi-conducting materials area. At the same time, those important applications also encourage researchers to do more exploration on the synthesis and characterization of PDI derivatives. As one of those researchers, my thesis also mainly focused on developing new synthetic methods and characterization of novel PDI derivatives. In Chapter 1, the history of perylene, PDI derivatives and PDI oligomers are introduced. Their corresponding properties and applications also are introduced. Furthermore, the synthetic methods for different kinds of PDI derivatives, both advantages and disadvantages, are discussed thoroughly. In Chapter 2, with the investigation of known reactions which were used to prepare the key intermediate, perylene monoimide monoanhydride, a new synthetic method was developed. The key intermediate could be prepared with high yield conveniently. With the key intermediate, several unsymmetric PDI derivatives were prepared with decent yield. The optical property of one unsymmetric PDI was studied. In Chapter 3, the synthesis of peryelene diester monoanhydride (PEA) and perylene monoimide monoanhydride (PIA) was discussed. We discovered a new way to prepare PEA and PEI. Several PEA and PEI with complex structure were prepared with decent yield. The first unsymmetric PEA was synthesized. In Chapter 4, the synthesis of several perylene oligomers was discussed. Base on our experience gained in the Chapter 3 and our investigation of Langhals

  20. Metaiodobenzylguanidine (mIBG) in treatment of 47 patients with neuroblastoma: Results of the German Neuroblastoma Trial

    SciTech Connect

    Klingebiel, T.; Berthold, F.; Treuner, J.; Schwabe, D.; Fischer, M.; Feine, U.; Maul, F.D.; Waters, W.; Wehinger, H.; Niethammer, D. F.R.)

    1991-01-01

    From 1984 to 1989, 47 children with relapsed, refractory, and/or metastasized neuroblastoma were treated with {sup 131}I-metaiodobenzylguanidine (mIBG) in several different treatment combinations. At initial diagnosis, 36 children had Evans stage IV and 11 stage III disease. In 16 of the 47 children, tumor recurred after complete remission prior to mIBG treatment, 26 of 47 progressed from residual or nonresponding tumor, and in 5 of 47 tumor progression during chemotherapy was observed. Altogether the children were treated with a total of 112 courses (range 1-6) with a mean dosage of 8.9 +/- 6.7 mCi/kg body weight/treatment course. Total dose was 283.2 +/- 203.7 mCi for stage III and 388.9 +/- 218.6 mCi for stage IV. Nine of 47 children reached a complete or a very good partial remission (CR and VGPR) from mIBG treatment alone, 13 of 47 achieved partial remission (PR). In an early analysis, 10 patients treated with mIBG in the neuroblastoma trial NB 85 of the German Society of Pediatric Oncology showed no significant difference in survival time compared with 30 conventionally treated children. However, the recent therapy series has been done with higher doses of mIBG, and during improved therapeutic scanning many more bone lesions could be detected than during earlier diagnostic scanning. We conclude that mIBG treatment has not yet fulfilled the expectations for it but still seems for certain indications to be a promising tool to treat neuroblastoma in the future. Moreover, the frontier of neuroblastoma detection is still advancing.

  1. Transient treatment with epigenetic modifiers yields stable neuroblastoma stem cells resembling aggressive large-cell neuroblastomas

    PubMed Central

    Ikegaki, Naohiko; Shimada, Hiroyuki; Fox, Autumn M.; Regan, Paul L.; Jacobs, Joshua R.; Hicks, Sakeenah L.; Rappaport, Eric F.; Tang, Xao X.

    2013-01-01

    Cancer stem cells (CSCs) are plastic in nature, a characteristic that hampers cancer therapeutics. Neuroblastoma (NB) is a pediatric tumor of neural crest origin, and half of the cases are highly aggressive. By treating NB cell lines [SKNAS, SKNBE(2)C, CHP134, and SY5Y] with epigenetic modifiers for a short time, followed by sphere-forming culture conditions, we have established stem cell–like NB cells that are phenotypically stable for more than a year. These cells are characterized by their high expression of stemness factors, stem cell markers, and open chromatin structure. We referred to these cells as induced CSCs (iCSCs). SKNAS iCSC and SKNBE(2)C iCSC clones (as few as 100 cells) injected s.c. into SCID/Beige mice formed tumors, and in one case, SKNBE(2)C iCSCs metastasized to the adrenal gland, suggesting their increased metastatic potential. SKNAS iCSC xenografts showed the histologic appearance of totally undifferentiated large-cell NBs (LCNs), the most aggressive and deadly form of NB in humans. Immunohistochemical analyses showed that SKNAS iCSC xenografts expressed high levels of the stem cell marker CXCR4, whereas the SKNAS monolayer cell xenografts did not. The patterns of CXCR4 and MYC expression in SKNAS iCSC xenografts resembled those in the LCNs. The xenografts established from the NB iCSCs shared two common features: the LCN phenotype and high-level MYC/MYCN expression. These observations suggest both that NB cells with large and vesicular nuclei, representing their open chromatin structure, are indicative of stem cell–like tumor cells and that epigenetic changes may have contributed to the development of these most malignant NB cells. PMID:23479628

  2. Radiative decay of excitons in model aggregates of {pi}-conjugated oligomers

    SciTech Connect

    Manas, E.S.; Spano, F.C.

    1998-07-01

    Spontaneous emission from exciton states in an aggregate of {pi}-conjugated oligomers is studied theoretically. Each oligomer is taken as a ring of N carbon atoms and is treated using a PPP Hamiltonian. Coulombic interactions between rings are treated to first order. The radiative decay rate {gamma} from an exciton state in an aggregate of M aligned oligomers is superradiant, being M times faster than the decay rate of an isolated oligomer exciton. Inter-oligomer interactions have little effect on the exciton size and energy when the oligomer size N is large compared to the interoligomer spacing. However, when N is small, both the exciton size and energy are strongly affected by these interactions, leading to a markedly different N dependence for {gamma}.

  3. Apoptosis induced by islet amyloid polypeptide soluble oligomers is neutralized by diabetes-associated specific antibodies

    PubMed Central

    Bram, Yaron; Frydman-Marom, Anat; Yanai, Inbal; Gilead, Sharon; Shaltiel-Karyo, Ronit; Amdursky, Nadav; Gazit, Ehud

    2014-01-01

    Soluble oligomeric assemblies of amyloidal proteins appear to act as major pathological agents in several degenerative disorders. Isolation and characterization of these oligomers is a pivotal step towards determination of their pathological relevance. Here we describe the isolation of Type 2 diabetes-associated islet amyloid polypeptide soluble cytotoxic oligomers; these oligomers induced apoptosis in cultured pancreatic cells, permeated model lipid vesicles and interacted with cell membranes following complete internalization. Moreover, antibodies which specifically recognized these assemblies, but not monomers or amyloid fibrils, were exclusively identified in diabetic patients and were shown to neutralize the apoptotic effect induced by these oligomers. Our findings support the notion that human IAPP peptide can form highly toxic oligomers. The presence of antibodies identified in the serum of diabetic patients confirms the pathological relevance of the oligomers. In addition, the newly identified structural epitopes may also provide new mechanistic insights and a molecular target for future therapy. PMID:24589570

  4. Apoptosis induced by islet amyloid polypeptide soluble oligomers is neutralized by diabetes-associated specific antibodies.

    PubMed

    Bram, Yaron; Frydman-Marom, Anat; Yanai, Inbal; Gilead, Sharon; Shaltiel-Karyo, Ronit; Amdursky, Nadav; Gazit, Ehud

    2014-03-04

    Soluble oligomeric assemblies of amyloidal proteins appear to act as major pathological agents in several degenerative disorders. Isolation and characterization of these oligomers is a pivotal step towards determination of their pathological relevance. Here we describe the isolation of Type 2 diabetes-associated islet amyloid polypeptide soluble cytotoxic oligomers; these oligomers induced apoptosis in cultured pancreatic cells, permeated model lipid vesicles and interacted with cell membranes following complete internalization. Moreover, antibodies which specifically recognized these assemblies, but not monomers or amyloid fibrils, were exclusively identified in diabetic patients and were shown to neutralize the apoptotic effect induced by these oligomers. Our findings support the notion that human IAPP peptide can form highly toxic oligomers. The presence of antibodies identified in the serum of diabetic patients confirms the pathological relevance of the oligomers. In addition, the newly identified structural epitopes may also provide new mechanistic insights and a molecular target for future therapy.

  5. Synthesis and Optoelectronic Characterization of Some Star-Shaped Oligomers with Benzene and Triphenylamine Cores

    PubMed Central

    Ivan, Teofilia; Vacareanu, Loredana; Grigoras, Mircea

    2012-01-01

    Six star-shaped oligomers containing triphenylamine (D1–D3) and benzene unit (D4–D6) as cores have been synthesized by Wittig condensation or Heck coupling reaction using aromatic aldehydes and triphenylphosphonium salts or aromatic halogenated compounds with vinyl triphenylamine. All oligomers have well-defined molecular structure and high purity. Characterization of the oligomers was made by FT-IR, 1H-NMR spectroscopy, UV-Vis, and fluorescence spectroscopy. The electrochemical behavior was studied by cyclic voltammetry (CV). The cyclic voltammograms have revealed that oligomers undergo quasireversible or irreversible redox processes. The irreversible process is associated with electrochemical polymerization of oligomers by dimerization of unsubstituted triphenylamine groups. Thermal characterization was accomplished by TGA and DSC methods and evidenced that all oligomers were stable materials until 250°C and have formed stable molecular glasses after first heating scan. PMID:24052859

  6. Influence of thermalization on thermal conduction through molecular junctions: Computational study of PEG oligomers

    NASA Astrophysics Data System (ADS)

    Pandey, Hari Datt; Leitner, David M.

    2017-08-01

    Thermalization in molecular junctions and the extent to which it mediates thermal transport through the junction are explored and illustrated with computational modeling of polyethylene glycol (PEG) oligomer junctions. We calculate rates of thermalization in the PEG oligomers from 100 K to 600 K and thermal conduction through PEG oligomer interfaces between gold and other materials, including water, motivated in part by photothermal applications of gold nanoparticles capped by PEG oligomers in aqueous and cellular environments. Variation of thermalization rates over a range of oligomer lengths and temperatures reveals striking effects of thermalization on thermal conduction through the junction. The calculated thermalization rates help clarify the scope of applicability of approaches that can be used to predict thermal conduction, e.g., where Fourier's law breaks down and where a Landauer approach is suitable. The rates and nature of vibrational energy transport computed for PEG oligomers are compared with available experimental results.

  7. A mimotope of Aβ oligomers may also behave as a β-sheet inhibitor.

    PubMed

    Zhang, Yang-Xin; Wang, Shao-Wei; Lu, Shuai; Zhang, Ling-Xiao; Liu, Dong-Qun; Ji, Mei; Wang, Wei-Yun; Liu, Rui-Tian

    2017-10-04

    Beta-amyloid (Aβ) oligomers are strongly associated with the cascade of harmful events leading to neurodegeneration in Alzheimer's disease (AD). Elimination of Aβ oligomers or inhibition of Aβ assembly is a valuable therapeutic approach for the treatment of AD. Here, we obtained a mimotope of Aβ oligomers, AOEP2, by screening a peptide library using oligomer-specific antibodies. The antibodies induced by AOEP2 specifically recognize Aβ oligomers rather than monomers and fibrils. Interestingly, the AOEP2 peptide binds to Aβ monomers and inhibits the formation of Aβ oligomers and β-sheet structure, reduces Aβ42-induced neurotoxicity and decreases the release of proinflammatory cytokines. Taken together, AOEP2, a novel multifunctional peptide directly or indirectly targeting Aβ, has promising therapeutic potential for AD. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Intrinsic versus imposed curvature in cyclical oligomers: the portal protein of bacteriophage SPP1.

    PubMed Central

    van Heel, M; Orlova, E V; Dube, P; Tavares, P

    1996-01-01

    Large cyclical oligomers may be formed by (curvi-) linear polymerization of monomers until the n(th) monomer locks in with the first member of the chain. The subunits in incomplete structures exhibit a natural curvature with respect to each other which can be perturbed when the oligomer closes cyclically. Using cryo-electron microscopy and multivariate statistical image processing we report herein a direct structural observation of this effect. A sub-population (approximately 15%) of incomplete oligomers was found within a sample of SPP1 bacteriophage portal proteins embedded in vitreous ice. Whereas the curvature between adjacent subunits of the closed circular 13-fold symmetric oligomer is 27.7 degrees, in these incomplete oligomers the angle is only 25.8 degrees, a value which almost allows for a 14-subunit cyclical arrangement. A simple model for the association of large cyclical oligomers is suggested by our data. Images PMID:8890151

  9. Influence of thermalization on thermal conduction through molecular junctions: Computational study of PEG oligomers.

    PubMed

    Pandey, Hari Datt; Leitner, David M

    2017-08-28

    Thermalization in molecular junctions and the extent to which it mediates thermal transport through the junction are explored and illustrated with computational modeling of polyethylene glycol (PEG) oligomer junctions. We calculate rates of thermalization in the PEG oligomers from 100 K to 600 K and thermal conduction through PEG oligomer interfaces between gold and other materials, including water, motivated in part by photothermal applications of gold nanoparticles capped by PEG oligomers in aqueous and cellular environments. Variation of thermalization rates over a range of oligomer lengths and temperatures reveals striking effects of thermalization on thermal conduction through the junction. The calculated thermalization rates help clarify the scope of applicability of approaches that can be used to predict thermal conduction, e.g., where Fourier's law breaks down and where a Landauer approach is suitable. The rates and nature of vibrational energy transport computed for PEG oligomers are compared with available experimental results.

  10. Morus alba Accumulates Reactive Oxygen Species to Initiate Apoptosis via FOXO-Caspase 3-Dependent Pathway in Neuroblastoma Cells

    PubMed Central

    Kwon, Young Hwi; Bishayee, Kausik; Rahman, Ataur; Hong, Jae Seung; Lim, Soon-Sung; Huh, Sung-Oh

    2015-01-01

    Morus alba root extract (MARE) has been used to treat hyperglycaemic conditions in oriental medicine. Here, we studied whether MARE possesses a cytotoxic effect on neuroblastoma. To check the cytotoxicity generated by MARE was whether relatively higher against the cancer cells rather than normal cells, we chose a neuroblastoma cell line (B103) and a normal cell line (Rat-2). A CCK assay revealed that MARE (10 μg/ml) reduced cell viability to approximately 60% compared to an untreated control in B103 cells. But in Rat-2 cells, MARE induced relatively lower cytotoxicity. To investigate the mechanisms underlying the cytotoxic effect of MARE, we used flow cytometry combined with immunoblot analyses. We found that MARE-treatment could accumulate ROS and depolarize mitochondria membrane potential of B103 cells. Further treatment with MARE in B103 cells also could damage DNA and induce apoptosis. An expression study of p-Akt also suggested that there was a reduction in cellular proliferation and transcription along with the process of apoptosis, which was further evidenced by an increase in Bax and cleaved-caspase 3 activity. Together, our findings suggest that MARE produces more cytotoxicity in cancer cells while having a relatively attenuated effect on normal cells. As such, MARE may be a safer option in cancer therapeutics, and it also shows potential for the patients with symptoms of hyperglycemia and cancer. PMID:25921607

  11. PGC-1α or FNDC5 Is Involved in Modulating the Effects of Aβ1−42 Oligomers on Suppressing the Expression of BDNF, a Beneficial Factor for Inhibiting Neuronal Apoptosis, Aβ Deposition and Cognitive Decline of APP/PS1 Tg Mice

    PubMed Central

    Xia, De-Yu; Huang, Xin; Bi, Chong-Feng; Mao, Lin-Ling; Peng, Li-Jun; Qian, Hai-Rong

    2017-01-01

    Alzheimer's disease (AD) is generally defined as the aberrant production of β-amyloid protein (Aβ) and hyperphosphorylated tau protein, which are deposited in β-amyloid plaques (APs) and neurofibrillary tangles (NFTs), respectively. Decreased levels of brain-derived neurotrophic factor (BDNF) have been detected in patients with AD compared to control subjects. However, the underlying molecular mechanisms driving the downregulation of the BDNF remain unknown. Therefore, we explored the mechanisms underlying the regulation of BDNF in the neurons of APP/PS1 transgenic (Tg) mice, an AD experimental model. Using the APP/PS1 Tg mice, we found that BDNF expression was markedly downregualted at the age of 3- and 9-month-old. After cerebroventricular injection (i.c.v) of Aβ1−42 oligomers into the mice, BDNF was also found to be decreased, which demonstrated the critical roles of the Aβ1−42 oligomers in regulating the expression of BDNF. In neuronal culture, peroxisome proliferators-activated receptor γ coactivator 1α (PGC-1α) and fibronectin type III domain-containing 5 (FNDC5) were found to be downregulated by treatment with the Aβ1−42 oligomers. In addition, overexpression of either PGC-1α or FNDC5 reversed the suppressive effects of the Aβ1−42 oligomers on the expression of BDNF in neuroblastoma 2a (n2a) cells. More importantly, elevating the levels of PGC-1α, FNDC5 or BDNF in the n2a cells counteracted the effects of the Aβ1−42 oligomers on neuronal apoptosis. Additionally, intranasal administration BDNF in the APP/PS1 Tg mice decreased the Aβ deposition and reduced the cognitive decline of the mice. PMID:28377712

  12. [Curative effects of the protocol of CDV combined with CiE as pre-operative chemotherapy in high-risk childhood neuroblastoma].

    PubMed

    Feng, Chen; Tang, Suo-Qin; Wang, Jian-Wen; Liu, Ying; Yang, Guang

    2009-11-01

    To evaluate the effects and the toxicity of the protocol of CDV combined with CiE as pre-operative chemotherapy in childhood stage IV neuroblastoma. The clinical data of 27 children aged from 1.2 to 8 years with neuroblastoma in stage IV was retrospectively studied. The primary sites of the diseases were abdomen (n = 21), posterior mediastinum (n = 4) and pelvic cavity (n = 2). Twenty three patients had bone marrow metastasis. Twelve patients had bone metastasis. All patients were treated with the CDV protocol (cyclophosphamide + doxorubicin + vincristine) for 3 cycles and the CiE protocol (cisplatin + etoposide) for 2 cycles. Neuroblastoma therapeutic response evaluation criterion and common terminology criteria for adverse events of National Cancer Institute were used to evaluate effects and chemotherapy related toxicity. All patients received the pre-operative chemotherapy. The overall response rate was 82%. After chemotherapy, 24 patients received operations. Total resection of primary tumor was found in 14 patients (58%) and part resection in 10 patients (42%). The most common chemotherapy related toxicity was bone marrow suppression: grade IV suppression of neutrophils (n = 27), reduction in hemoglobin (III grade, n = 7; IV grade, n = 20) and reduction in platelet (III grade, n = 2; IV grade, n = 25). Infection was found in all patients and was controlled with antibiotics. I or II grade lesions of digestive, liver and kidney were found and could be recovered after therapy. Grade I neurotoxicity occurred in 2 patients (7%). The heart function damage was not found in any of patients. The protocol of CDV combined with CiE as pre-operative chemotherapy might be effective in children with stage IV neuroblastoma.

  13. Case study on the evolution of hetero-oligomer interfaces based on the differences in paralogous proteins

    PubMed Central

    Aoto, Saki; Yura, Kei

    2015-01-01

    We addressed the evolutionary trace of hetero-oligomer interfaces by comparing the structures of paralogous proteins; one of them is a monomer or homo-oligomer and the other is a hetero-oligomer. We found different trends in amino acid conservation pattern and hydrophobicity between homo-oligomer and hetero-oligomer. The degree of amino acid conservation in the interface of homo-oligomer has no obvious difference from that in the surface, whereas the degree of conservation is much higher in the interface of hetero-oligomer. The interface of homo-oligomer has a few very conserved residue positions, whereas the residue conservation in the interface of hetero-oligomer tends to be higher. In addition, the interface of hetero-oligomer has a tendency of being more hydrophobic compared with the one in homo-oligomer. We conjecture that these differences are related to the inherent symmetry in homo-oligomers that cannot exist in hetero-oligomers. Paucity of the structural data precludes statistical tests of these tendencies, yet the trend can be applied to the prediction of the interface of hetero-oligomer. We obtained putative interfaces of the subunits in CPSF (cleavage and polyadenylation specificity factor), one of the human pre-mRNA 3′-processing complexes. The locations of predicted interface residues were consistent with the known experimental data. PMID:27493859

  14. Achaete-Scute Homolog 1 Expression Controls Cellular Differentiation of Neuroblastoma

    PubMed Central

    Kasim, Mumtaz; Heß, Vicky; Scholz, Holger; Persson, Pontus B.; Fähling, Michael

    2016-01-01

    Neuroblastoma, the major cause of infant cancer deaths, results from fast proliferation of undifferentiated neuroblasts. Treatment of high-risk neuroblastoma includes differentiation with retinoic acid (RA); however, the resistance of many of these tumors to RA-induced differentiation poses a considerable challenge. Human achaete-scute homolog 1 (hASH1) is a proneural basic helix-loop-helix transcription factor essential for neurogenesis and is often upregulated in neuroblastoma. Here, we identified a novel function for hASH1 in regulating the differentiation phenotype of neuroblastoma cells. Global analysis of 986 human neuroblastoma datasets revealed a negative correlation between hASH1 and neuron differentiation that was independent of the N-myc (MYCN) oncogene. Using RA to induce neuron differentiation in two neuroblastoma cell lines displaying high and low levels of hASH1 expression, we confirmed the link between hASH1 expression and the differentiation defective phenotype, which was reversed by silencing hASH1 or by hypoxic preconditioning. We further show that hASH1 suppresses neuronal differentiation by inhibiting transcription at the RA receptor element. Collectively, our data indicate hASH1 to be key for understanding neuroblastoma resistance to differentiation therapy and pave the way for hASH1-targeted therapies for augmenting the response of neuroblastoma to differentiation therapy. PMID:28066180

  15. Common variations within HACE1 gene and neuroblastoma susceptibility in a Southern Chinese population.

    PubMed

    Zhang, Zhuorong; Zhang, Ruizhong; Zhu, Jinhong; Wang, Fenghua; Yang, Tianyou; Zou, Yan; He, Jing; Xia, Huimin

    2017-01-01

    Neuroblastoma is a common fatal pediatric cancer of the developing sympathetic nervous system, which accounts for ~10% of all pediatric cancer deaths. To investigate genetic risk factors related to neuroblastoma, many genome-wide association studies have been performed, and single nucleotide polymorphisms (SNPs) within HACE1 gene have been identified to associate with neuroblastoma risk. However, the association of the HACE1 SNPs with neuroblastoma needs to be validated in Southern Chinese children. We genotyped five SNPs located in the HACE1 gene (rs4336470 C>T, rs9404576 T>G, rs4079063 A>G, rs2499663 T>C, and rs2499667 A>G) in 256 Southern Chinese patients in comparison with 531 ethnically matched healthy controls. Single locus analysis showed no significant association between any of HACE1 SNPs and neuroblastoma risk in Southern Chinese children. However, when all the risk genotypes were combined, we found a borderline significant trend toward an increased neuroblastoma risk with 4-5 risk genotypes (adjusted odds ratio =1.36, 95% confidence interval =0.98-1.89, P=0.065). Moreover, stratified analysis found that carriers of 4-5 risk genotypes tended to develop neuroblastoma in the retroperitoneal region and have more aggressive tumors, progressing to advanced clinical stages III/IV, when compared with those of 0-3 risk genotypes. In conclusion, HACE1 gene may have weak effect on neuroblastoma risk in Southern Chinese children. Large well-designed studies are needed to strengthen our findings.

  16. PGK1 as Predictor of CXCR4 Expression, Bone Marrow Metastases and Survival in Neuroblastoma

    PubMed Central

    von Loga, Katharina; Escherich, Gabriele; Wenke, Katharina; Izbicki, Jakob R.; Reinshagen, Konrad; Gros, Stephanie J.

    2013-01-01

    Background and Aim A close relationship between phosphoglycerate kinase 1 (PGK1) and the CXCR4/SDF1 axis (chemokine receptor 4/stromal cell derived factor 1) has been shown for several cancers. However, the role of PGK1 has not been investigated for neuroblastoma, and PGK1 might be a therapeutic target for this tumor entity. The aim of the current study was to evaluate the role of PGK1 expression in neuroblastoma patients, to determine the impact of PGK1 expression levels on survival, and to correlate PGK1 expression with CXCR4 expression and bone marrow dissemination. Materials and Methods Samples from 22 patients with neuroblastoma that were surgically treated at the University Medical Center Hamburg-Eppendorf were evaluated for expression of PGK1 and CXCR4 using immunohistochemistry. Results were correlated with clinical parameters, metastases and outcome of patients. Immunocytochemistry, proliferation and expression analysis of CXCR4 and PGK1 were performed in neuroblastoma cell lines. Results PGK1 is expressed in neuroblastoma cells. PGK1 expression is significantly positively correlated with CXCR4 expression and tumor dissemination to the bone marrow. Moreover the expression of PGK1 is significantly associated with a negative impact on survival in patients with neuroblastoma. PGK1 is downregulated by inhibition of CXCR4 in neuroblastoma cells. Conclusion PGK1 appears to play an important role for neuroblastoma, predicting survival and tumor dissemination. Further in vivo studies outstanding, it is a candidate target for novel therapeutic strategies. PMID:24376734

  17. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation.

    PubMed

    Gaviglio, Angela L; Knelson, Erik H; Blobe, Gerard C

    2017-02-07

    High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low Schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor-like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.-Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation.

  18. Prominent Pulmonary Metastases Without Concurrent Osseous Involvement in Patients With High-Risk Neuroblastoma.

    PubMed

    Bai, Xia; Zhuang, Hongming

    2017-02-13

    Metastases from high-risk neuroblastomas generally are to the bone or bone marrow. Multiple lung metastases are rare, especially when there was no concurrent osseous metastasis. We report 2 cases of high-risk neuroblastomas having prominent lung metastases without concurrent osseous lesion observed.

  19. TLR3 triggering regulates PD-L1 (CD274) expression in human neuroblastoma cells.

    PubMed

    Boes, Marianne; Meyer-Wentrup, Friederike

    2015-05-28

    Neuroblastoma is the most common extracranial solid tumor in children, causing 12% of all pediatric cancer mortality. Neuroblastoma specific T-cells have been detected in patients, but usually fail to attack and eradicate the tumors. Tumor immune evasion may thus play an important role in neuroblastoma pathogenicity. Recent research in adult cancer patients shows that targeting T-cell check-point molecules PD-1/PD-L1 (or CD279/CD274) may bolster immune reactivity against solid tumors. Also, infections can be associated with spontaneous neuroblastoma regression. In our current study, we therefore investigated if antibody targeting of PD-L1 and triggering of selective pathogen-receptor Toll-like receptors (TLRs) potentiates immunogenicity of neuroblastoma cells. We find this to be the case. TLR3 triggering induced strong upregulation of both MHC class I and PD-L1 on neuroblastoma cells. At the same time TGF-β levels decreased and IL-8 secretion was induced. The combined neuroblastoma cell treatment using PD-L1 blockade and TLR3 triggering using virus analog poly(I:C) moreover induced CD4(+) and CD8(+) T-cell activation. Thus, we propose combined treatment using PD-L1 blockade with synthetic TLR ligands as an avenue toward new immunotherapy against human neuroblastoma.

  20. Focal adhesion kinase and p53 synergistically decrease neuroblastoma cell survival.

    PubMed

    Gillory, Lauren A; Stewart, Jerry E; Megison, Michael L; Waters, Alicia M; Beierle, Elizabeth A

    2015-06-15

    Neuroblastoma is the most common extracranial solid tumor of childhood and is responsible for over 15% of pediatric cancer deaths. Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that is important in many facets of neuroblastoma tumor development and progression. The p53 oncogene, although wild type in most neuroblastomas, lacks significant function as a tumor suppressor in these tumors. Recent reports have found that FAK and p53 interact in some tumor types. We have hypothesized FAK and p53 coordinately control each other's expression and also interact in neuroblastoma. In the present study, we showed that not only do FAK and p53 interact but each one controls the expression of the other. In addition, we also examined the effects of FAK inhibition combined with p53 activation in neuroblastoma and showed that these two, in combination, had a synergistic effect on neuroblastoma cell survival. The findings from this present study help to further our understanding of the regulation of neuroblastoma tumorigenesis and may provide novel therapeutic strategies and targets for neuroblastoma and other pediatric solid tumors.

  1. Association of maternal education with the neuroblastoma susceptibility in children: a meta-analysis.

    PubMed

    Wang, Peng; Liao, Ning; Liao, Xin-Hong; Liang, Bing; Huang, Chun-Xia; Li, Wei

    2013-02-01

    Maternal education might be an important factor for the neuroblastoma risk in children, but it was conflicting. This meta-analysis was performed to evaluate the relationship between maternal education and neuroblastoma susceptibility and to explore whether maternal education was an important indicator to be associated with the neuroblastoma risk in children. The association studies were identified from the databases of PubMed, and Cochrane Library as of June 1, 2012, and eligible investigations were synthesized using meta-analysis method. Results were expressed with odds ratios (OR) for dichotomous data, and 95% confidence intervals (CI) were also calculated. Six literatures were identified for the analysis of association between maternal education and neuroblastoma susceptibility in children, consisting of 2063 patients with cancer and 13,925 controls. There was no a marked association between maternal education and neuroblastoma susceptibility when the maternal education was less than high school (OR = 0.66, 95% CI: 0.43-1.01, P = .06). We also found that maternal education was not associated with the neuroblastoma susceptibility when the maternal education was high school (OR = 0.74, 95% CI: 0.31-1.75, P = .49) and more than high school (OR = 0.78, 95% CI: 0.33-1.85, P = .58). In conclusion, maternal education is not associated with the neuroblastoma susceptibility in children. However, more investigations are required to further clarify the association of maternal education with the neuroblastoma susceptibility in children.

  2. Low-resolution structure of a vesicle disrupting α-synuclein oligomer that accumulates during fibrillation

    PubMed Central

    Giehm, Lise; Svergun, Dmitri I.; Otzen, Daniel E.; Vestergaard, Bente

    2011-01-01

    One of the major hallmarks of Parkinson disease is aggregation of the protein α-synuclein (αSN). Aggregate cytotoxicity has been linked to an oligomeric species formed at early stages in the aggregation process. Here we follow the fibrillation process of αSN in solution over time using small angle X-ray scattering and resolve four major coexisting species in the fibrillation process, namely monomer, dimer, fibril and an oligomer. By ab initio modeling to fit the data, we obtain a low-resolution structure of a symmetrical and slender αSN fibril in solution, consisting of a repeating unit with a maximal distance of 900 Å and a diameter of ∼180 Å. The same approach shows the oligomer to be shaped like a wreath, with a central channel and with dimensions corresponding to the width of the fibril. The structure, accumulation and decay of this oligomer is consistent with an on-pathway role for the oligomer in the fibrillation process. We propose an oligomer-driven αSN fibril formation mechanism, where the fibril is built from the oligomers. The wreath-shaped structure of the oligomer highlights its potential cytotoxicity by simple membrane permeabilization. This is confirmed by the ability of the purified oligomer to disrupt liposomes. Our results provide the first structural description in solution of a potentially cytotoxic oligomer, which accumulates during the fibrillation of αSN. PMID:21300904

  3. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide.

    PubMed

    Haass, Christian; Selkoe, Dennis J

    2007-02-01

    The distinct protein aggregates that are found in Alzheimer's, Parkinson's, Huntington's and prion diseases seem to cause these disorders. Small intermediates - soluble oligomers - in the aggregation process can confer synaptic dysfunction, whereas large, insoluble deposits might function as reservoirs of the bioactive oligomers. These emerging concepts are exemplified by Alzheimer's disease, in which amyloid beta-protein oligomers adversely affect synaptic structure and plasticity. Findings in other neurodegenerative diseases indicate that a broadly similar process of neuronal dysfunction is induced by diffusible oligomers of misfolded proteins.

  4. Direct Correlation Between Ligand-Induced α-Synuclein Oligomers and Amyloid-like Fibril Growth

    PubMed Central

    Nors Perdersen, Martin; Foderà, Vito; Horvath, Istvan; van Maarschalkerweerd, Andreas; Nørgaard Toft, Katrine; Weise, Christoph; Almqvist, Fredrik; Wolf-Watz, Magnus; Wittung-Stafshede, Pernilla; Vestergaard, Bente

    2015-01-01

    Aggregation of proteins into amyloid deposits is the hallmark of several neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. The suggestion that intermediate oligomeric species may be cytotoxic has led to intensified investigations of pre-fibrillar oligomers, which are complicated by their transient nature and low population. Here we investigate alpha-synuclein oligomers, enriched by a 2-pyridone molecule (FN075), and the conversion of oligomers into fibrils. As probed by leakage assays, the FN075 induced oligomers potently disrupt vesicles in vitro, suggesting a potential link to disease related degenerative activity. Fibrils formed in the presence and absence of FN075 are indistinguishable on microscopic and macroscopic levels. Using small angle X-ray scattering, we reveal that FN075 induced oligomers are similar, but not identical, to oligomers previously observed during alpha-synuclein fibrillation. Since the levels of FN075 induced oligomers correlate with the amounts of fibrils among different FN075:protein ratios, the oligomers appear to be on-pathway and modeling supports an ‘oligomer stacking model’ for alpha-synuclein fibril elongation. PMID:26020724

  5. The Role of Intracellular Calcium for the Development and Treatment of Neuroblastoma

    PubMed Central

    Satheesh, Noothan Jyothi; Büsselberg, Dietrich

    2015-01-01

    Neuroblastoma is the second most common paediatric cancer. It develops from undifferentiated simpatico-adrenal lineage cells and is mostly sporadic; however, the aetiology behind the development of neuroblastoma is still not fully understood. Intracellular calcium ([Ca2+]i) is a secondary messenger which regulates numerous cellular processes and, therefore, its concentration is tightly regulated. This review focuses on the role of [Ca2+]i in differentiation, apoptosis and proliferation in neuroblastoma. It describes the mechanisms by which [Ca2+]i is regulated and how it modulates intracellular pathways. Furthermore, the importance of [Ca2+]i for the function of anti-cancer drugs is illuminated in this review as [Ca2+]i could be a target to improve the outcome of anti-cancer treatment in neuroblastoma. Overall, modulations of [Ca2+]i could be a key target to induce apoptosis in cancer cells leading to a more efficient and effective treatment of neuroblastoma. PMID:26010602

  6. NF1 is a tumor suppressor in neuroblastoma that determines retinoic acid response and disease outcome

    PubMed Central

    Hölzel, Michael; Huang, Sidong; Koster, Jan; Øra, Ingrid; Lakeman, Arjan; Caron, Huib; Nijkamp, Wouter; Xie, Jing; Callens, Tom; Asgharzadeh, Shahab; Seeger, Robert C.; Messiaen, Ludwine; Versteeg, Rogier; Bernards, René

    2010-01-01

    Summary Retinoic acid (RA) induces differentiation of neuroblastoma cells in vitro and is used with variable success to treat aggressive forms of this disease. This variability in clinical response to RA is enigmatic, as no mutations in components of the RA signaling cascade have been found. Using a large-scale RNAi genetic screen, we identify crosstalk between the tumor suppressor NF1 and retinoic acid induced differentiation in neuroblastoma. Loss of NF1 activates RAS-MEK signaling, which in turn represses ZNF423, a critical transcriptional co-activator of the retinoic acid receptors. Neuroblastomas with low levels of both NF1 and ZNF423 have extremely poor outcome. We find NF1 mutations in neuroblastoma cell lines and in primary tumors. Inhibition of MEK signaling downstream of NF1 restores responsiveness to RA, suggesting a therapeutic strategy to overcome RA resistance in NF1 deficient neuroblastomas. PMID:20655465

  7. The colorimetric determination of selectively cleaved adenosines and guanosines in DNA oligomers using bicinchoninic acid and copper.

    PubMed

    Thomas, Elizabeth M; Testa, Stephen M

    2017-01-01

    Colorimetric methods combined with color-changing chemical probes are widely used as simple yet effective tools for identifying and quantifying a wide variety of molecules in solution. For nucleic acids (DNA and RNA), perhaps the most commonly used colorimetric probe is potassium permanganate, which can be used to identify single-stranded pyrimidines (thymine and cytosine) in polymers. Unfortunately, permanganate is not an effective probe for identifying purines (adenine and guanine), especially in the presence of the more reactive pyrimidines. Therefore, robust methods for discriminating between the purines remain elusive, thereby creating a barrier toward developing more complex colorimetric applications. In this proof-of-principle study, we demonstrate that bicinchoninic acid (BCA) and copper, when combined with purine-specific chemical cleavage reactions, can be a colorimetric probe for the identification and quantification of adenosines and/or guanosines in single-stranded DNA oligomers, even in the presence of pyrimidines. Furthermore, the reactions are stoichiometric, which allows for the quantification of the number of adenosines and/or guanosines in these oligomers. Because the BCA/copper reagent detects the reducing sugar, 2-deoxyribose, that results from the chemical cleavage of a given nucleotide's N-glycosidic bond, these colorimetric assays are effectively detecting apurinic sites in DNA oligomers, which are known to occur via DNA damage in biological systems. We demonstrate that simple digital analysis of the color-changing chromophore (BCA/copper) is all that is necessary to obtain quantifiable and reproducible data, which indicates that these assays should be broadly accessible.

  8. Molecular Determinants of S100B Oligomer Formation

    PubMed Central

    Thulin, Eva; Kesvatera, Tõnu; Linse, Sara

    2011-01-01

    Background S100B is a dimeric protein that can form tetramers, hexamers and higher order oligomers. These forms have been suggested to play a role in RAGE activation. Methodology/Principal Findings Oligomerization was found to require a low molecular weight trigger/cofactor and could not be detected for highly pure dimer, irrespective of handling. Imidazol was identified as a substance that can serve this role. Oligomerization is dependent on both the imidazol concentration and pH, with optima around 90 mM imidazol and pH 7, respectively. No oligomerization was observed above pH 8, thus the protonated form of imidazol is the active species in promoting assembly of dimers to higher species. However, disulfide bonds are not involved and the process is independent of redox potential. The process was also found to be independent of whether Ca2+ is bound to the protein or not. Tetramers that are purified from dimers and imidazol by gel filtration are kinetically stable, but dissociate into dimers upon heating. Dimers do not revert to tetramer and higher oligomer unless imidazol is again added. Both tetramers and hexamers bind the target peptide from p53 with retained stoichiometry of one peptide per S100B monomer, and with high affinity (lgK = 7.3±0.2 and 7.2±0.2, respectively in 10 mM BisTris, 5 mM CaCl2, pH 7.0), which is less than one order of magnitude reduced compared to dimer under the same buffer conditions. Conclusion/Significance S100B oligomerization requires protonated imidazol as a trigger/cofactor. Oligomers are kinetically stable after imidazol is removed but revert back to dimer if heated. The results underscore the importance of kinetic versus thermodynamic control of S100B protein aggregation. PMID:21445240

  9. Acute hyperinsulinaemia and hyperlipidaemia modify circulating adiponectin and its oligomers.

    PubMed

    Bobbert, Thomas; Weicht, Jessica; Mai, Knut; Möhlig, Matthias; Pfeiffer, Andreas F H; Spranger, Joachim

    2009-10-01

    Obesity and insulin resistance are associated with low adiponectin levels, although adiponectin is exclusively expressed in white adipose tissue. The mechanism beyond that paradox is not entirely clear, although insulin itself may reduce circulating adiponectin levels. However, obesity is also associated with hyperlipidaemia and the effects of free fatty acids (FFAs) and triglycerides (TG) on circulating adiponectin levels have not yet been investigated. We analysed the effect of an acute and euglycaemic elevation of insulin on adiponectin oligomers in 23 healthy individuals. In a subgroup including 11 healthy men, FFAs and TG were acutely elevated by infusion of heparin/lipids over 120 min. Again the effect on circulating adiponectin and its oligomers was investigated. Adiponectin was determined by ELISA, oligomers were detected by nondenaturating Western blot. Acute hyperinsulinaemia resulted in a significant reduction of total adiponectin to 7.74 +/- 0.98 microg/ml (P = 0.004). High molecular weight (HMW) adiponectin did not change (0.80 +/- 0.12 to 0.81 +/- 0.14 microg/ml; P = 0.887), whereas MMW adiponectin decreased from 4.30 +/- 0.51 to 3.78 +/- 0.48 microg/ml (P = 0.005) and LMW adiponectin from 3.63 +/- 0.42 to 3.15 +/- 0.46 microg/ml (P = 0.048). Interestingly, heparin/lipid infusion also reduced circulating adiponectin levels (P = 0.001), which was primarily the result of reduced MMW adiponectin (P = 0.004), whereas LMW and HMW were not significantly affected. The presented data suggest that both, hyperinsulinaemia and hyperlipidaemia, may contribute to low adiponectin levels in states of obesity.

  10. Expression of enzymes in yeast for lignocellulose derived oligomer CBP

    DOEpatents

    McBride, John E.; Wiswall, Erin; Shikhare, Indraneel; Xu, Haowen; Thorngren, Naomi; Hau, Heidi H.; Stonehouse, Emily

    2017-08-29

    The present invention provides a multi-component enzyme system that hydrolyzes hemicellulose oligomers from hardwood which can be expressed, for example, in yeast such as Saccharomyces cerevisiae. In some embodiments, this invention provides for the engineering of a series of biocatalysts combining the expression and secretion of components of this enzymatic system with robust, rapid xylose utilization, and ethanol fermentation under industrially relevant process conditions for consolidated bioprocessing. In some embodiments, the invention utilizes co-cultures of strains that can achieve significantly improved performance due to the incorporation of additional enzymes in the fermentation system.

  11. ESI and MALDI Mass Spectrometry of Large POSS Oligomers (Preprint)

    DTIC Science & Technology

    2010-03-10

    98%) , N,N,N`,N`,N``- pentamethyldiethyltriamine (PMDETA) (99%+), Cu (I)Cl (99.99%+), hydrazine hydrate, 3- (3,5.7,9,11,13,15-Heptaiosbutylpentacyclo...6 2.1.3 ATRP synthesis of PMA-POSS oligomers [39] To a heat-dried 10 mL Schlenk flask with a magnetic stir bar were added Cu (I)Cl (10.5 mg, 0.106...dihydroxyoctofluoroazobenzene matrix. 5 2. Experimental 2.1 Synthesis of POSS compounds. 2.1.1 Materials Phthalic anhydride (99%+) , 2-(2-aminoethoxy) ethanol

  12. Towards Vast Libraries of Scaffold-Diverse, Conformationally Constrained Oligomers

    PubMed Central

    Kodadek, Thomas; McEnaney, Patrick

    2016-01-01

    There is great interest in the development of probe molecules and drug leads that would bind tightly and selectively to protein surfaces that are difficult to target with traditional molecules, such as those involved in protein-protein interactions. The currently available evidence suggests that this will require molecules that are larger and have quite different chemical properties than typical Lipinski-compliant molecules that target enzyme active sites. We describe here efforts to develop vast libraries of conformationally constrained oligomers as a potentially rich source of these molecules. PMID:26996593

  13. Sialyl Lewis(x): a "pre-organized water oligomer"?

    PubMed

    Binder, Florian P C; Lemme, Katrin; Preston, Roland C; Ernst, Beat

    2012-07-16

    Organized and released: Sialyl Lewis(x) (sLe(x)) represents a "pre-organized water oligomer", that is, a surrogate for clustered water molecules attached to a scaffold. The impetus for sLe(x) binding to E-selectin is shown to be the high degree of pre-organization allowing an array of directed hydrogen bonds, and the entropic benefit of the release of water molecules from the large binding interface to bulk water (see picture). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Electrorheology of aniline-oligomer suspensions under oscillatory shear

    NASA Astrophysics Data System (ADS)

    Mrlik, M.; Pavlinek, V.; Almajdalawi, S.; Saha, P.; Bober, P.; Stejskal, J.

    2013-02-01

    Preparation of the aniline oligomers by the oxidation of aniline with p-benzoquinone in the solutions of methanesulfonic acid (MSA) and the rheology of their suspensions in silicone oil are presented in this study. This synthesis provides particles of flake-like morphology and various conductivities depending on the molar concentration of MSA. Further, the electrorheological (ER) performance of the particles suspended in the silicone oil was measured as well as dielectric properties of suspensions. Finally, the effect of the temperature on the ER activity was investigated.

  15. Aromatic small molecules remodel toxic soluble oligomers of amyloid beta through three independent pathways.

    PubMed

    Ladiwala, Ali Reza A; Dordick, Jonathan S; Tessier, Peter M

    2011-02-04

    In protein conformational disorders ranging from Alzheimer to Parkinson disease, proteins of unrelated sequence misfold into a similar array of aggregated conformers ranging from small oligomers to large amyloid fibrils. Substantial evidence suggests that small, prefibrillar oligomers are the most toxic species, yet to what extent they can be selectively targeted and remodeled into non-toxic conformers using small molecules is poorly understood. We have evaluated the conformational specificity and remodeling pathways of a diverse panel of aromatic small molecules against mature soluble oligomers of the Aβ42 peptide associated with Alzheimer disease. We find that small molecule antagonists can be grouped into three classes, which we herein define as Class I, II, and III molecules, based on the distinct pathways they utilize to remodel soluble oligomers into multiple conformers with reduced toxicity. Class I molecules remodel soluble oligomers into large, off-pathway aggregates that are non-toxic. Moreover, Class IA molecules also remodel amyloid fibrils into the same off-pathway structures, whereas Class IB molecules fail to remodel fibrils but accelerate aggregation of freshly disaggregated Aβ. In contrast, a Class II molecule converts soluble Aβ oligomers into fibrils, but is inactive against disaggregated and fibrillar Aβ. Class III molecules disassemble soluble oligomers (as well as fibrils) into low molecular weight species that are non-toxic. Strikingly, Aβ non-toxic oligomers (which are morphologically indistinguishable from toxic soluble oligomers) are significantly more resistant to being remodeled than Aβ soluble oligomers or amyloid fibrils. Our findings reveal that relatively subtle differences in small molecule structure encipher surprisingly large differences in the pathways they employ to remodel Aβ soluble oligomers and related aggregated conformers.

  16. A Mechanism of Subunit Recruitment in Human Small Heat Shock Protein Oligomers.

    PubMed

    Delbecq, Scott P; Rosenbaum, Joel C; Klevit, Rachel E

    2015-07-21

    Small heat shock proteins (sHSPs) make up a class of molecular chaperones broadly observed across organisms. Many sHSPs form large oligomers that undergo dynamic subunit exchange that is thought to play a role in chaperone function. Though remarkably heterogeneous, sHSP oligomers share three types of intermolecular interactions that involve all three defined regions of a sHSP: the N-terminal region (NTR), the conserved α-crystallin domain (ACD), and a C-terminal region (CTR). Here we define the structural interactions involved in incorporation of a subunit into a sHSP oligomer. We demonstrate that a minimal ACD dimer of the human sHSP, HSPB5, interacts with an HSPB5 oligomer through two types of interactions: (1) interactions with CTRs in the oligomer and (2) via exchange into and out of the dimer interface composed of two ACDs. Unexpectedly, although dimers are thought to be the fundamental building block for sHSP oligomers, our results clearly indicate that subunit exchange into and out of oligomers occurs via monomers. Using structure-based mutants, we show that incorporation of a subunit into an oligomer is predicated on recruitment of the subunit via its interaction with CTRs on an oligomer. Both the rate and extent of subunit incorporation depend on the accessibility of CTRs within an HSPB5 oligomer. We show that this mechanism also applies to formation of heterooligomeric sHSP species composed of HSPB5 and HSPB6 and is likely general among sHSPs. Finally, our observations highlight the importance of NTRs in the thermodynamic stability of sHSP oligomers.

  17. MicroRNAs in neuroblastoma: Biomarkers with Therapeutic potential.

    PubMed

    Galardi, Angela; Colletti, Marta; Businaro, Pietro; Quintarelli, Concetta; Locatelli, Franco; Di Giannatale, Angela

    2017-10-03

    Neuroblastoma is the most common extracranial solid tumor in infancy. The majority of children have a disseminated disease at diagnosis with bone marrow as the most common site of metastasis. Although several prognostic factors have been defined (i.e. age, stage, histology, recurrent genetic anomalies), the identification of non-invasive biomarkers for disease follow-up and therapy monitoring is indeed still a clinical need. Aberrant regulation of microRNAs (miRNAs) expression has been implicated in several malignancies. In this mini-review, we describe the recent findings about miRNAs in neuroblastoma, both in the tumor and circulation, with particular focus on those involved in tumor progression and drug resistance. Furthermore, we will discuss the use of specific miRNAs as potential therapeutic tools in this tumor. Several miRNAs have been identified to be down- or up-regulated in primary tumors and have been associated with MYCN amplification, differentiation, dissemination and chemoresistance. Little evidence is available in the literature about circulating miRNAs which are of particular interest due to them being potential biomarkers for liquid biopsy. Identification of body-fluid markers for non-invasive diagnosis, risk stratification, treatment monitoring and tumor follow-up, is gaining growing interest, especially in the pediatric field. miRNAs are suitable candidates as biomarkers in neuroblastoma but further investigations are needed to expand knowledge regarding their role in this malignancy to design specific approaches of miRNAs-mediated therapies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Revealed: The spy who regulates neuroblastoma stem cells.

    PubMed

    Vora, Parvez; Venugopal, Chitra; Singh, Sheila K

    2014-11-30

    Neuroblastoma (NB), an embryonal tumour of the sympathetic nervous system, is thought to originate from undifferentiated neural crest cells and is known to exhibit extremely heterogeneous biological and clinical behaviors. Occurring in very young children, the median age at diagnosis is 17 months and it accounts for 10% of all pediatric cancer mortalities. The standard treatment regimen for patients with high-risk NB includes induction and surgery followed by isotretinoin or Accutane (13-cis retinoic acid) treatment, which is shown to induce terminal differentiation of NB cells. However, molecular regulators that maintain an undifferentiated phenotype in NB cells are still poorly understood.

  19. Bevacizumab-associated Bowel Microperforation in a Patient With Neuroblastoma.

    PubMed

    Glincher, Rachel; Price, Anita P; LaQuaglia, Michael P; Kushner, Brian H; Modak, Shakeel

    2017-08-14

    The antivascular endothelial growth factor antibody, bevacizumab, is effective against several malignancies in adults but unproven in pediatric oncology. In early phase pediatric studies toxicities were similar to those in adults. Bowel perforation in adults is a rare but serious toxicity, but has not been hitherto reported in children. A 5-year-old boy with chemoresistant neuroblastoma treated with bevacizumab plus radioimmunotherapy developed acute abdominal pain. Computed tomography scan showed free abdominal air and pneumatosis coli. Emergency laparotomy and bowel diversion were performed leading to complete recovery and timely continuation of antineuroblastoma therapy. Early recognition and rapid intervention can prevent a catastrophic outcome in bevacizumab-related bowel perforation.

  20. A case of opsoclonus-myoclonus-ataxia with neuroblastoma.

    PubMed

    Mukherjee, Asha; Mukherjee, Arabinda; Chakrabarty, Suparna

    2004-11-01

    A 2 year old boy presented with features of opsoclonus, myoclonus and ataxia. Routine investigations of blood, urine, x-ray chest, bone scan, EEG and MRI of brain, were normal. Urine for VMA was negative. A right suprarenal mass was detected at MRI of abdomen. The mass was resected completely and was found histologically to be of differentiating type of neuroblastoma. The child was treated initially with prednisolone for 6 weeks along with sodium valproate. He is still on sodium valproate for his neurological symptoms. His symptoms still persist though they have decreased in intensity.

  1. Novel multi-targeted ErbB family inhibitor afatinib blocks EGF-induced signaling and induces apoptosis in neuroblastoma

    PubMed Central

    Mao, Xinfang; Chen, Zhenghu; Zhao, Yanling; Yu, Yang; Guan, Shan; Woodfield, Sarah E.; Vasudevan, Sanjeev A.; Tao, Ling; Pang, Jonathan C.; Lu, Jiaxiong; Zhang, Huiyuan; Zhang, Fuchun; Yang, Jianhua

    2017-01-01

    Neuroblastoma is the most common extracranial solid tumor in children. The ErbB family of proteins is a group of receptor tyrosine kinases that promote the progression of various malignant cancers including neuroblastoma. Thus, targeting them with small molecule inhibitors is a promising strategy for neuroblastoma therapy. In this study, we investigated the anti-tumor effect of afatinib, an irreversible inhibitor of members of the ErbB family, on neuroblastoma. We found that afatinib suppressed the proliferation and colony formation ability of neuroblastoma cell lines in a dose-dependent manner. Afatinib also induced apoptosis and blocked EGF-induced activation of PI3K/AKT/mTOR signaling in all neuroblastoma cell lines tested. In addition, afatinib enhanced doxorubicin-induced cytotoxicity in neuroblastoma cells, including the chemoresistant LA-N-6 cell line. Finally, afatinib exhibited antitumor efficacy in vivo by inducing apoptosis in an orthotopic xenograft neuroblastoma mouse model. Taken together, these results show that afatinib inhibits neuroblastoma growth both in vitro and in vivo by suppressing EGFR-mediated PI3K/AKT/mTOR signaling. Our study supports the idea that EGFR is a potential therapeutic target in neuroblastoma. And targeting ErbB family protein kinases with small molecule inhibitors like afatinib alone or in combination with doxorubicin is a viable option for treating neuroblastoma. PMID:27902463

  2. Amyloid-β-induced Synapse Damage Is Mediated via Cross-linkage of Cellular Prion Proteins

    PubMed Central

    Bate, Clive; Williams, Alun

    2011-01-01

    The cellular prion protein (PrPC), which is highly expressed at synapses, was identified as a receptor for the amyloid-β (Aβ) oligomers that are associated with dementia in Alzheimer disease. Here, we report that Aβ oligomers secreted by 7PA2 cells caused synapse damage in cultured neurons via a PrPC-dependent process. Exogenous PrPC added to Prnp knock-out(0/0) neurons was targeted to synapses and significantly increased Aβ-induced synapse damage. In contrast, the synapse damage induced by a phospholipase A2-activating peptide was independent of PrPC. In Prnp wild-type(+/+) neurons Aβ oligomers activated synaptic cytoplasmic phospholipase A2 (cPLA2). In these cells, the addition of Aβ oligomers triggered the translocation of cPLA2 in synapses to cholesterol dense membranes (lipid rafts) where it formed a complex also containing Aβ and PrPC. In contrast, the addition of Aβ to Prnp(0/0) neurons did not activate synaptic cPLA2, which remained in the cytoplasm and was not associated with Aβ. Filtration assays and non-denaturing gels demonstrated that Aβ oligomers cross-link PrPC. We propose that it is the cross-linkage of PrPC by Aβ oligomers that triggers abnormal activation of cPLA2 and synapse damage. This hypothesis was supported by our observation that monoclonal antibody mediated cross-linkage of PrPC also activated synaptic cPLA2 and caused synapse damage. PMID:21900234

  3. Acute effects of vanadate oligomers on heart, kidney, and liver histology in the Lusitanian toadfish (Halobatrachus didactylus).

    PubMed

    Borges, G; Mendonça, P; Joaquim, N; Coucelo, J; Aureliano, M

    2003-10-01

    The contribution of vanadate oligomers to the acute histological effects of vanadium was analyzed in the heart, kidney, and liver of Halobatrachus didactylus (Schneider, 1801). A sublethal vanadium dose (5 mM, 1 mL/kg) in the form of metavanadate (containing ortho and metameric species) or in the form of decavanadate (containing only decameric species) was intraperitoneally administered by injection, and specimens of H. didactylus were sacrificed at one and seven days postinjection. Sections of heart ventricle and renal and hepatic tissue were stained with hematoxylin-eosin and examined by light microscopy to identify vanadium-induced tissue injury. In addition, PicroSirius-stained ventricular sections were analyzed by bipolarized light microscopy to determine the fraction of myocardium occupied by the ventricular wall structural elements (collagen I, collagen III, and cardiac muscle). Both vanadate solutions produced similar effects in the renal tissue. Morphological alterations included damaged renal tubules showing disorganized epithelial cells in different states of necrosis. Reabsorbed renal tubules and hyperchromatic interstitial tissue were also observed. The hepatic tissue presented hyperchromatic and hypertrophied nuclei, along with necrotic and hypertrophied hepatocytes, and more severe changes were observed in the liver with exposure to decavanadate. Vanadate oligomers promoted evident tissue lesions in the kidney and liver, but not in the cardiac tissue. However, cardiac tissue structural changes were produced. For example, decavanadate induced a hypertrophy of the ventricle due to a decrease in the percentage of myocardium occupied by collagen fibers. In general, decavanadate was shown to be more toxic than metavanadate.

  4. Lithium and memantine improve spatial memory impairment and neuroinflammation induced by β-amyloid 1-42 oligomers in rats.

    PubMed

    Budni, J; Feijó, D P; Batista-Silva, H; Garcez, M L; Mina, F; Belletini-Santos, T; Krasilchik, L R; Luz, A P; Schiavo, G L; Quevedo, J

    2017-05-01

    Alzheimer's disease (AD) is the most common cause of dementia in the elderly. The main hallmarks of this disease include progressive cognitive dysfunction and an accumulation of soluble oligomers of β-amyloid (Aβ) 1-42 peptide. In this research, we show the effects of lithium and memantine on spatial memory and neuroinflammation in an Aβ1-42 oligomers-induced animal model of dementia in rats. Aβ 1-42 oligomers were administered intrahippocampally to male wistar rats to induce dementia. Oral treatments with memantine (5mg/kg), lithium (5mg/kg), or both drugs in combination were performed over a period of 17days. 14days after the administration of the Aβ1-42 oligomers, the radial arm-maze task was performed. At the end of the test period, the animals were euthanized, and the frontal cortex and hippocampus were removed for use in our analysis. Our results showed that alone treatments with lithium or memantine ameliorate the spatial memory damage caused by Aβ1-42. The animals that received combined doses of lithium and memantine showed better cognitive performance in their latency time and total errors to find food when compared to the results from alone treatments. Moreover, in our study, lithium and/or memantine were able to reverse the decreases observed in the levels of interleukin (IL)-4 that were induced by Aβ1-42 in the frontal cortex. In the hippocampus, only memantine and the association of memantine and lithium were able to reverse this effect. Alone doses of lithium and memantine or the association of lithium and memantine caused reductions in the levels of IL-1β in the frontal cortex and hippocampus, and decreased the levels of TNF-α in the hippocampus. Taken together, these data suggest that lithium and memantine might be a potential therapy against cognitive impairment and neuroinflammation induced by Aβ1-42, and their association may be a promising alternative to be investigated in the treatment of AD-like dementia. Copyright © 2017 Elsevier

  5. Bax Forms an Oligomer via Separate, Yet Interdependent, Surfaces*

    PubMed Central

    Zhang, Zhi; Zhu, Weijia; Lapolla, Suzanne M.; Miao, Yiwei; Shao, Yuanlong; Falcone, Mina; Boreham, Doug; McFarlane, Nicole; Ding, Jingzhen; Johnson, Arthur E.; Zhang, Xuejun C.; Andrews, David W.; Lin, Jialing

    2010-01-01

    Interactions of Bcl-2 family proteins regulate permeability of the mitochondrial outer membrane and apoptosis. In particular, Bax forms an oligomer that permeabilizes the membrane. To map the interface of the Bax oligomer we used Triton X-100 as a membrane surrogate and performed site-specific photocross-linking. Bax-specific adducts were formed through photo-reactive probes at multiple sites that can be grouped into two surfaces. The first surface overlaps with the BH1–3 groove formed by Bcl-2 Homology motif 1, 2, and 3; the second surface is a rear pocket located on the opposite side of the protein from the BH1–3 groove. Further cross-linking experiments using Bax BH3 peptides and mutants demonstrated that the two surfaces interact with their counterparts in neighboring proteins to form two separated interfaces and that interaction at the BH1–3 groove primes the rear pocket for further interaction. Therefore, Bax oligomerization proceeds through a series of interactions that occur at separate, yet allosterically, coupled interfaces. PMID:20382739

  6. Amyloid oligomer structure characterization from simulations: A general method

    NASA Astrophysics Data System (ADS)

    Nguyen, Phuong H.; Li, Mai Suan; Derreumaux, Philippe

    2014-03-01

    Amyloid oligomers and plaques are composed of multiple chemically identical proteins. Therefore, one of the first fundamental problems in the characterization of structures from simulations is the treatment of the degeneracy, i.e., the permutation of the molecules. Second, the intramolecular and intermolecular degrees of freedom of the various molecules must be taken into account. Currently, the well-known dihedral principal component analysis method only considers the intramolecular degrees of freedom, and other methods employing collective variables can only describe intermolecular degrees of freedom at the global level. With this in mind, we propose a general method that identifies all the structures accurately. The basis idea is that the intramolecular and intermolecular states are described in terms of combinations of single-molecule and double-molecule states, respectively, and the overall structures of oligomers are the product basis of the intramolecular and intermolecular states. This way, the degeneracy is automatically avoided. The method is illustrated on the conformational ensemble of the tetramer of the Alzheimer's peptide Aβ9-40, resulting from two atomistic molecular dynamics simulations in explicit solvent, each of 200 ns, starting from two distinct structures.

  7. Amyloid oligomer structure characterization from simulations: a general method.

    PubMed

    Nguyen, Phuong H; Li, Mai Suan; Derreumaux, Philippe

    2014-03-07

    Amyloid oligomers and plaques are composed of multiple chemically identical proteins. Therefore, one of the first fundamental problems in the characterization of structures from simulations is the treatment of the degeneracy, i.e., the permutation of the molecules. Second, the intramolecular and intermolecular degrees of freedom of the various molecules must be taken into account. Currently, the well-known dihedral principal component analysis method only considers the intramolecular degrees of freedom, and other methods employing collective variables can only describe intermolecular degrees of freedom at the global level. With this in mind, we propose a general method that identifies all the structures accurately. The basis idea is that the intramolecular and intermolecular states are described in terms of combinations of single-molecule and double-molecule states, respectively, and the overall structures of oligomers are the product basis of the intramolecular and intermolecular states. This way, the degeneracy is automatically avoided. The method is illustrated on the conformational ensemble of the tetramer of the Alzheimer's peptide Aβ9-40, resulting from two atomistic molecular dynamics simulations in explicit solvent, each of 200 ns, starting from two distinct structures.

  8. Broadband terahertz dynamics of propylene glycol monomer and oligomers

    NASA Astrophysics Data System (ADS)

    Koda, Shota; Mori, Tatsuya; Kojima, Seiji

    2016-12-01

    We investigated the broadband terahertz spectra (0.1-5.0 THz) of glass-forming liquids, propylene glycol (PG), its oligomers poly (propylene glycol)s (PPGs), and poly (propylene glycol) diglycidyl ether (PPG-de) using broadband terahertz time-domain spectroscopy and low-frequency Raman scattering. The numerical value of the dielectric loss at around 1.5 THz, which is the peak position of broad peaks in all samples, decreased as the molecular weight increased. Furthermore, the peak at around 1.5 THz is insensitive to the molecular weight. For PPGs, the side chain effect of the oligomer was observed in the terahertz region. Based on the experimental and calculation results for the PPGs and PPG-de, whose end groups are epoxy groups, the beginnings of the increases in the observed dielectric loss above 3.5 THz of the PPGs are assigned to the OH bending vibration. The higher value of the dielectric loss in the terahertz region for the PPG-de can be the tail of a broad peak located in the MHz region. The difference between the Raman susceptibility and dielectric loss reflects the difference in the observable molecular dynamics between the infrared and Raman spectroscopies.

  9. Charge and Spin Delocalization in Novel Porphyrin Oligomers

    NASA Astrophysics Data System (ADS)

    Frail, P.; Angiolillo, P. J.; Kikkawa, J. M.

    2005-03-01

    We discuss a new class of meso-to-meso ethyne-bridged (porphinato)zinc(II) oligomers with potential for TFT, FET, photovoltaic, magnetic, and spintronic applications on both a single molecule and bulk level. As the series progresses from dimer through heptamer, intramolecular electronic delocalization results in red-shifted optical transitions (2.0 eV-1.4 eV) and motional narrowing of the EPR signal. The former is consistent with potentiometrically determined HOMO-LUMO gaps, while the latter indicates spin delocalization lengths that span the molecular length scales of these structures (20 - 75 Angstroms). Generally, solubilizing appendages impose steric restrictions which can largely prevent such properties from transferring to the bulk phase. Through systematic modification of these appendages, the intermolecular resistance can be lowered dramatically. Resistivities measured for undoped oligomers can vary over 2-5 orders of magnitude for a given conjugation length. These large changes in resistivity correlate with the nature of the π-π interactions made possible in the bulk phase. The doped species of these systems will also be discussed along with photoconductive properties. This work partially supported by DARPA/ONR N00015-01-0831.

  10. Amyloid oligomer structure characterization from simulations: A general method

    SciTech Connect

    Nguyen, Phuong H.; Li, Mai Suan

    2014-03-07

    Amyloid oligomers and plaques are composed of multiple chemically identical proteins. Therefore, one of the first fundamental problems in the characterization of structures from simulations is the treatment of the degeneracy, i.e., the permutation of the molecules. Second, the intramolecular and intermolecular degrees of freedom of the various molecules must be taken into account. Currently, the well-known dihedral principal component analysis method only considers the intramolecular degrees of freedom, and other methods employing collective variables can only describe intermolecular degrees of freedom at the global level. With this in mind, we propose a general method that identifies all the structures accurately. The basis idea is that the intramolecular and intermolecular states are described in terms of combinations of single-molecule and double-molecule states, respectively, and the overall structures of oligomers are the product basis of the intramolecular and intermolecular states. This way, the degeneracy is automatically avoided. The method is illustrated on the conformational ensemble of the tetramer of the Alzheimer's peptide Aβ{sub 9−40}, resulting from two atomistic molecular dynamics simulations in explicit solvent, each of 200 ns, starting from two distinct structures.

  11. Charge transfer interactions in oligomer coated gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Newmai, M. Boazbou; Kumar, Pandian Senthil

    2016-05-01

    Gold nanoclusters were synthesized by a bottom-up synergistic approach of in-situ oligomerization of the monomer, N-vinyl pyrrolidone (NVP) and simultaneous weak reduction of Au-NVP complexes in the absence of any other external energy sources, thereby making these tiny gold clusters as the most elemental building blocks to construct further novel nano/microstructures with application potentials. It is well-known that metal clusters with less than 2 nm size do not show the usual surface plasmon band, because of the presence of a band-gap at the fermi level. Nevertheless, our present oligomer coated gold clusters show a discrete intense band at around 630 nm, which could very well be attributed to the charge transfer between the oligomer chain and the surface Au atoms. Such kind of sacrificial plasmon induced charge transfer interaction, observed for the very first time to the best of our knowledge, were also strongly corroborated through the enhancement / shifting of specific vibrational / rotational peaks as observed from the FTIR and Raman measurements as a function of the metal oxidation states, thus representing a new prototype for an efficient solar energy conversion probe.

  12. Radial distribution function of semiflexible oligomers with stretching flexibility

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Bao, Lei; Wu, Yuan-Yan; Zhu, Xiao-Long; Tan, Zhi-Jie

    2017-08-01

    The radial distribution of the end-to-end distance Ree is crucial for quantifying the global size and flexibility of a linear polymer. For semiflexible polymers, several analytical formulas have been derived for the radial distribution of Ree ignoring the stretching flexibility. However, for semiflexible oligomers, such as DNA or RNA, the stretching flexibility can be rather pronounced and can significantly affect the radial distribution of Ree. In this study, we obtained an extended formula that includes the stretch modulus to describe the distribution of Ree for semiflexible oligomers on the basis of previous formulas for semiflexible polymers without stretching flexibility. The extended formula was validated by extensive Monte Carlo simulations over wide ranges of the stretch modulus and persistence length, as well as all-atom molecular dynamics simulations of short DNAs and RNAs. Additionally, our analyses showed that the effect of stretching flexibility on the distribution of Ree becomes negligible for DNAs longer than ˜130 base pairs and RNAs longer than ˜240 base pairs.

  13. Charge transfer interactions in oligomer coated gold nanoclusters

    SciTech Connect

    Newmai, M. Boazbou; Kumar, Pandian Senthil

    2016-05-23

    Gold nanoclusters were synthesized by a bottom-up synergistic approach of in-situ oligomerization of the monomer, N-vinyl pyrrolidone (NVP) and simultaneous weak reduction of Au-NVP complexes in the absence of any other external energy sources, thereby making these tiny gold clusters as the most elemental building blocks to construct further novel nano/microstructures with application potentials. It is well-known that metal clusters with less than 2 nm size do not show the usual surface plasmon band, because of the presence of a band-gap at the fermi level. Nevertheless, our present oligomer coated gold clusters show a discrete intense band at around 630 nm, which could very well be attributed to the charge transfer between the oligomer chain and the surface Au atoms. Such kind of sacrificial plasmon induced charge transfer interaction, observed for the very first time to the best of our knowledge, were also strongly corroborated through the enhancement / shifting of specific vibrational / rotational peaks as observed from the FTIR and Raman measurements as a function of the metal oxidation states, thus representing a new prototype for an efficient solar energy conversion probe.

  14. Heat Resistant Characteristics of Major Royal Jelly Protein 1 (MRJP1) Oligomer.

    PubMed

    Moriyama, Takanori; Ito, Aimi; Omote, Sumire; Miura, Yuri; Tsumoto, Hiroki

    2015-01-01

    Soluble royal jelly protein is a candidate factor responsible for mammiferous cell proliferation. Major royal jelly protein 1 (MRJP1), which consists of oligomeric and monomeric forms, is an abundant proliferative protein in royal jelly. We previously reported that MRJP1 oligomer has biochemical heat resistance. Therefore, in the present study, we investigated the effects of several heat treatments (56, 65 and 96°C) on the proliferative activity of MRJP1 oligomer. Heat resistance studies showed that the oligomer molecular forms were slightly maintained until 56℃, but the molecular forms were converted to macromolecular heat-aggregated MRJP1 oligomer at 65℃ and 96℃. But, the growth activity of MRJP1 oligomer treated with 96°C was slightly attenuated when compared to unheated MRJP1 oligomer. On the other hand, the cell proliferation activity was preserved until 96℃ by the cell culture analysis of Jurkat cells. In contrast, those of IEC-6 cells were not preserved even at 56°C. The present observations suggest that the bioactive heat-resistance properties were different by the origin of the cells. The cell proliferation analysis showed that MRJP1 oligomer, but not MRJP2 and MRJP3, significantly increased cell numbers, suggesting that MRJP1 oligomer is the predominant proliferation factor for mammiferous cells.

  15. Sedimentation studies on human amylin fail to detect low-molecular-weight oligomers.

    PubMed

    Vaiana, Sara M; Ghirlando, Rodolfo; Yau, Wai-Ming; Eaton, William A; Hofrichter, James

    2008-04-01

    Sedimentation velocity experiments show that only monomers coexist with amyloid fibrils of human islet amyloid-polypeptide. No oligomers containing <100 monomers could be detected, suggesting that the putative toxic oligomers are much larger than those found for the Alzheimer's peptide, Abeta(1-42).

  16. Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice

    PubMed Central

    2011-01-01

    Background The correlation between neurofibrillary tangles of tau and disease progression in the brains of Alzheimer's disease (AD) patients remains an area of contention. Innovative data are emerging from biochemical, cell-based and transgenic mouse studies that suggest that tau oligomers, a pre-filament form of tau, may be the most toxic and pathologically significant tau aggregate. Results Here we report that oligomers of recombinant full-length human tau protein are neurotoxic in vivo after subcortical stereotaxic injection into mice. Tau oligomers impaired memory consolidation, whereas tau fibrils and monomers did not. Additionally, tau oligomers induced synaptic dysfunction by reducing the levels of synaptic vesicle-associated proteins synaptophysin and septin-11. Tau oligomers produced mitochondrial dysfunction by decreasing the levels of NADH-ubiquinone oxidoreductase (electron transport chain complex I), and activated caspase-9, which is related to the apoptotic mitochondrial pathway. Conclusions This study identifies tau oligomers as an acutely toxic tau species in vivo, and suggests that tau oligomers induce neurodegeneration by affecting mitochondrial and synaptic function, both of which are early hallmarks in AD and other tauopathies. These results open new avenues for neuroprotective intervention strategies of tauopathies by targeting tau oligomers. PMID:21645391

  17. Extracellular low-n oligomers of tau cause selective synaptotoxicity without affecting cell viability.

    PubMed

    Kaniyappan, Senthilvelrajan; Chandupatla, Ram Reddy; Mandelkow, Eva-Maria; Mandelkow, Eckhard

    2017-05-18

    Tau-mediated toxicity in Alzheimer's disease is thought to operate through low-n oligomers, rather than filamentous aggregates. However, the nature of oligomers and pathways of toxicity are poorly understood. Therefore, we investigated structural and functional aspects of highly purified oligomers of a pro-aggregant tau species. Purified oligomers of the tau repeat domain were characterized by biophysical and structural methods. Functional aspects were investigated by cellular assays ((3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay of cell viability, lactate dehydrogenase release assay [for cell toxicity], reactive oxygen species production, and calcium assay), combined with analysis of neuronal dendritic spines exposed to oligomers. Purified low-n oligomers are roughly globular, with sizes around 1.6 to 5.4 nm, exhibit an altered conformation, but do not have substantial β-structure. Treatment of primary neurons with oligomers impairs spine morphology and density, accompanied by increased reactive oxygen species and intracellular calcium, but without affecting cell viability (by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay of cell viability and lactate dehydrogenase release assay [for cell toxicity]). Tau oligomers are toxic to synapses but not lethal to cells. Copyright © 2017 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  18. Seeding induced by alpha-synuclein oligomers provides evidence for spreading of alpha-synuclein pathology.

    PubMed

    Danzer, Karin M; Krebs, Simon K; Wolff, Michael; Birk, Gerald; Hengerer, Bastian

    2009-10-01

    Lewy bodies, alpha-synuclein (alpha-syn) immunopositive intracellular deposits, are the pathological hallmark of Parkinson's disease (PD). Interestingly, Lewybody-like structures have been identified in fetal tissue grafts about one decade after transplantation into the striatum of PD patients. One possible explanation for the accelerated deposition of alpha-syn in the graft is that the aggregation of alpha-syn from the host tissue to the graft is spread by a prion disease-like mechanism. We discuss here an in vitro model which might recapitulate some aspects of disease propagation in PD. We found here that in vitro-generated alpha-syn oligomers induce transmembrane seeding of alpha-syn aggregation in a dose- and time-dependent manner. This effect was observed in primary neuronal cultures as well as in neuronal cell lines. The seeding oligomers were characterized by a distinctive lithium dodecyl sulfate-stable oligomer pattern and could be generated in a dynamic process out of pore-forming oligomers. We propose that alpha-syn oligomers form as a dynamic mixture of oligomer types with different properties and that alpha-syn oligomers can be converted into different types depending on the brain milieu conditions. Our data indicate that extracellular alpha-syn oligomers can induce intracellular alpha-syn aggregation, therefore we hypothesize that a similar mechanism might lead to alpha-syn pathology propagation.

  19. Amyloid-beta oligomers increase the localization of prion protein at the cell surface.

    PubMed

    Caetano, Fabiana A; Beraldo, Flavio H; Hajj, Glaucia N M; Guimaraes, Andre L; Jürgensen, Sofia; Wasilewska-Sampaio, Ana Paula; Hirata, Pedro H F; Souza, Ivana; Machado, Cleiton F; Wong, Daisy Y-L; De Felice, Fernanda G; Ferreira, Sergio T; Prado, Vania F; Rylett, R Jane; Martins, Vilma R; Prado, Marco A M

    2011-05-01

    In Alzheimer's disease, the amyloid-β peptide (Aβ) interacts with distinct proteins at the cell surface to interfere with synaptic communication. Recent data have implicated the prion protein (PrP(C)) as a putative receptor for Aβ. We show here that Aβ oligomers signal in cells in a PrP(C)-dependent manner, as might be expected if Aβ oligomers use PrP(C) as a receptor. Immunofluorescence, flow cytometry and cell surface protein biotinylation experiments indicated that treatment with Aβ oligomers, but not monomers, increased the localization of PrP(C) at the cell surface in cell lines. These results were reproduced in hippocampal neuronal cultures by labeling cell surface PrP(C). In order to understand possible mechanisms involved with this effect of Aβ oligomers, we used live cell confocal and total internal reflection microscopy in cell lines. Aβ oligomers inhibited the constitutive endocytosis of PrP(C), but we also found that after Aβ oligomer-treatment PrP(C) formed more clusters at the cell surface, suggesting the possibility of multiple effects of Aβ oligomers. Our experiments show for the first time that Aβ oligomers signal in a PrP(C)-dependent way and that they can affect PrP(C) trafficking, increasing its localization at the cell surface.

  20. Heat Resistant Characteristics of Major Royal Jelly Protein 1 (MRJP1) Oligomer

    PubMed Central

    Moriyama, Takanori; Ito, Aimi; Omote, Sumire; Miura, Yuri; Tsumoto, Hiroki

    2015-01-01

    Soluble royal jelly protein is a candidate factor responsible for mammiferous cell proliferation. Major royal jelly protein 1 (MRJP1), which consists of oligomeric and monomeric forms, is an abundant proliferative protein in royal jelly. We previously reported that MRJP1 oligomer has biochemical heat resistance. Therefore, in the present study, we investigated the effects of several heat treatments (56, 65 and 96°C) on the proliferative activity of MRJP1 oligomer. Heat resistance studies showed that the oligomer molecular forms were slightly maintained until 56℃, but the molecular forms were converted to macromolecular heat-aggregated MRJP1 oligomer at 65℃ and 96℃. But, the growth activity of MRJP1 oligomer treated with 96°C was slightly attenuated when compared to unheated MRJP1 oligomer. On the other hand, the cell proliferation activity was preserved until 96℃ by the cell culture analysis of Jurkat cells. In contrast, those of IEC-6 cells were not preserved even at 56°C. The present observations suggest that the bioactive heat-resistance properties were different by the origin of the cells. The cell proliferation analysis showed that MRJP1 oligomer, but not MRJP2 and MRJP3, significantly increased cell numbers, suggesting that MRJP1 oligomer is the predominant proliferation factor for mammiferous cells. PMID:26020775

  1. Linking gold nanoparticles with conductive 1,4-phenylene diisocyanide-gold oligomers.

    PubMed

    Kestell, John; Abuflaha, Rasha; Boscoboinik, J Anibal; Bai, Yun; Bennett, Dennis W; Tysoe, Wilfred T

    2013-02-18

    It is demonstrated that 1,4-phenylene diisocyanide (PDI)-gold oligomers can spontaneously bridge between gold nanoparticles on mica, thereby providing a strategy for electrically interconnecting nanoelectrodes. The barrier height of the bridging oligomer is 0.10 ± 0.02 eV, within the range of previous single-molecule measurements of PDI.

  2. Clinical and Biologic Features Predictive of Survival After Relapse of Neuroblastoma: A Report From the International Neuroblastoma Risk Group Project

    PubMed Central

    London, Wendy B.; Castel, Victoria; Monclair, Tom; Ambros, Peter F.; Pearson, Andrew D.J.; Cohn, Susan L.; Berthold, Frank; Nakagawara, Akira; Ladenstein, Ruth L.; Iehara, Tomoko; Matthay, Katherine K.

    2011-01-01

    Purpose Survival after neuroblastoma relapse is poor. Understanding the relationship between clinical and biologic features and outcome after relapse may help in selection of optimal therapy. Our aim was to determine which factors were significantly predictive of postrelapse overall survival (OS) in patients with recurrent neuroblastoma—particularly whether time from diagnosis to first relapse (TTFR) was a significant predictor of OS. Patients and Methods Patients with first relapse/progression were identified in the International Neuroblastoma Risk Group (INRG) database. Time from study enrollment until first event and OS time starting from first event were calculated. Cox regression models were used to calculate the hazard ratio of increased death risk and perform survival tree regression. TTFR was tested in a multivariable Cox model with other factors. Results In the INRG database (N = 8,800), 2,266 patients experienced first progression/relapse. Median time to relapse was 13.2 months (range, 1 day to 11.4 years). Five-year OS from time of first event was 20% (SE, ± 1%). TTFR was statistically significantly associated with OS time in a nonlinear relationship; patients with TTFR of 36 months or longer had the lowest risk of death, followed by patients who relapsed in the period of 0 to less than 6 months or 18 to 36 months. Patients who relapsed between 6 and 18 months after diagnosis had the highest risk of death. TTFR, age, International Neuroblastoma Staging System stage, and MYCN copy number status were independently predictive of postrelapse OS in multivariable analysis. Conclusion Age, stage, MYCN status, and TTFR are significant prognostic factors for postrelapse survival and may help in the design of clinical trials evaluating novel agents. PMID:21768459

  3. Theory of microphase separation in homopolymer oligomer mixtures

    NASA Astrophysics Data System (ADS)

    Olemskoi, Alexander; Savelyev, Alexey

    2005-11-01

    This work starts with the review of theoretical methods proposed, during past decades, for description of phase behavior in different polymer systems, involving variety of linear polymers (regular and polydisperse block (co)polymers, random polymers) and the polymer systems with non-covalent bonds of different strength. Microphase separation (MS) into different ordered mesophases is known to be the principal property of such systems. It is shown that most of the theoretical approaches proposed for description of the MS are based on the simple random phase approximation (RPA). It turns out, however, that mean field RPA method applied to description of the systems with non-covalent bonds does not provide the whole picture of MS. We show that the problem here arises when one treats both Flory-Huggins non-associated interactions and non-covalent bonds (hydrogen, ionic) within the unified RPA scheme, which is obviously rough for description of the latter type of interactions. Such a theory was developed in a few recent papers for the systems involving weak hydrogen bonds between homopolymer chains and the low molecular weight oligomers (surfactants). However, it leaves some experimental data unaccounted. The purpose of this review is to consider more detailed theory which is able to explain not only all the experimental data for the above systems but also to take into account the strength variation of non-bonding interactions. In particular, we consider the strong ionic interactions, weak hydrogen bonding, and the interactions of intermediate strength between polymer chain and short oligomers within our unifying theory. To develop such a description in a self-consistent way we propose to use a general field theory of stochastic systems. The mesoscopic (lamellar) structure of the periodically alternating layers of stretched homopolymer chains surrounded by perpendicularly oriented oligomeric tails is studied for the systems with both strong (ionic) and weak (hydrogen

  4. Alzheimer's Therapeutics Targeting Amyloid Beta 1–42 Oligomers I: Abeta 42 Oligomer Binding to Specific Neuronal Receptors Is Displaced by Drug Candidates That Improve Cognitive Deficits

    PubMed Central

    Izzo, Nicholas J.; Staniszewski, Agnes; To, Lillian; Fa, Mauro; Teich, Andrew F.; Saeed, Faisal; Wostein, Harrison; Walko, Thomas; Vaswani, Anisha; Wardius, Meghan; Syed, Zanobia; Ravenscroft, Jessica; Mozzoni, Kelsie; Silky, Colleen; Rehak, Courtney; Yurko, Raymond; Finn, Patricia; Look, Gary; Rishton, Gilbert; Safferstein, Hank; Miller, Miles; Johanson, Conrad; Stopa, Edward; Windisch, Manfred; Hutter-Paier, Birgit; Shamloo, Mehrdad; Arancio, Ottavio; LeVine, Harry; Catalano, Susan M.

    2014-01-01

    Synaptic dysfunction and loss caused by age-dependent accumulation of synaptotoxic beta amyloid (Abeta) 1–42 oligomers is proposed to underlie cognitive decline in Alzheimer's disease (AD). Alterations in membrane trafficking induced by Abeta oligomers mediates reduction in neuronal surface receptor expression that is the basis for inhibition of electrophysiological measures of synaptic plasticity and thus learning and memory. We have utilized phenotypic screens in mature, in vitro cultures of rat brain cells to identify small molecules which block or prevent the binding and effects of Abeta oligomers. Synthetic Abeta oligomers bind saturably to a single site on neuronal synapses and induce deficits in membrane trafficking in neuronal cultures with an EC50 that corresponds to its binding affinity. The therapeutic lead compounds we have found are pharmacological antagonists of Abeta oligomers, reducing the binding of Abeta oligomers to neurons in vitro, preventing spine loss in neurons and preventing and treating oligomer-induced deficits in membrane trafficking. These molecules are highly brain penetrant and prevent and restore cognitive deficits in mouse models of Alzheimer's disease. Counter-screening these compounds against a broad panel of potential CNS targets revealed they are highly potent and specific ligands of the sigma-2/PGRMC1 receptor. Brain concentrations of the compounds corresponding to greater than 80% receptor occupancy at the sigma-2/PGRMC1 receptor restore cognitive function in transgenic hAPP Swe/Ldn mice. These studies demonstrate that synthetic and human-derived Abeta oligomers act as pharmacologically-behaved ligands at neuronal receptors - i.e. they exhibit saturable binding to a target, they exert a functional effect related to their binding and their displacement by small molecule antagonists blocks their functional effect. The first-in-class small molecule receptor antagonists described here restore memory to normal in multiple AD

  5. Alzheimer's therapeutics targeting amyloid beta 1-42 oligomers I: Abeta 42 oligomer binding to specific neuronal receptors is displaced by drug candidates that improve cognitive deficits.

    PubMed

    Izzo, Nicholas J; Staniszewski, Agnes; To, Lillian; Fa, Mauro; Teich, Andrew F; Saeed, Faisal; Wostein, Harrison; Walko, Thomas; Vaswani, Anisha; Wardius, Meghan; Syed, Zanobia; Ravenscroft, Jessica; Mozzoni, Kelsie; Silky, Colleen; Rehak, Courtney; Yurko, Raymond; Finn, Patricia; Look, Gary; Rishton, Gilbert; Safferstein, Hank; Miller, Miles; Johanson, Conrad; Stopa, Edward; Windisch, Manfred; Hutter-Paier, Birgit; Shamloo, Mehrdad; Arancio, Ottavio; LeVine, Harry; Catalano, Susan M

    2014-01-01

    Synaptic dysfunction and loss caused by age-dependent accumulation of synaptotoxic beta amyloid (Abeta) 1-42 oligomers is proposed to underlie cognitive decline in Alzheimer's disease (AD). Alterations in membrane trafficking induced by Abeta oligomers mediates reduction in neuronal surface receptor expression that is the basis for inhibition of electrophysiological measures of synaptic plasticity and thus learning and memory. We have utilized phenotypic screens in mature, in vitro cultures of rat brain cells to identify small molecules which block or prevent the binding and effects of Abeta oligomers. Synthetic Abeta oligomers bind saturably to a single site on neuronal synapses and induce deficits in membrane trafficking in neuronal cultures with an EC50 that corresponds to its binding affinity. The therapeutic lead compounds we have found are pharmacological antagonists of Abeta oligomers, reducing the binding of Abeta oligomers to neurons in vitro, preventing spine loss in neurons and preventing and treating oligomer-induced deficits in membrane trafficking. These molecules are highly brain penetrant and prevent and restore cognitive deficits in mouse models of Alzheimer's disease. Counter-screening these compounds against a broad panel of potential CNS targets revealed they are highly potent and specific ligands of the sigma-2/PGRMC1 receptor. Brain concentrations of the compounds corresponding to greater than 80% receptor occupancy at the sigma-2/PGRMC1 receptor restore cognitive function in transgenic hAPP Swe/Ldn mice. These studies demonstrate that synthetic and human-derived Abeta oligomers act as pharmacologically-behaved ligands at neuronal receptors--i.e. they exhibit saturable binding to a target, they exert a functional effect related to their binding and their displacement by small molecule antagonists blocks their functional effect. The first-in-class small molecule receptor antagonists described here restore memory to normal in multiple AD models

  6. Neuroprotective Effects of Castanea sativa Mill. Bark Extract in Human Neuroblastoma Cells Subjected to Oxidative Stress.

    PubMed

    Brizi, Claudia; Santulli, Chiara; Micucci, Matteo; Budriesi, Roberta; Chiarini, Alberto; Aldinucci, Carlo; Frosini, Maria

    2016-02-01

    One of the major features of neurodegenerative disease is the selective vulnerability of different neuronal populations that are affected in a progressive and often stereotyped manner. Despite the susceptible neuronal population varies between diseases, oxidative stress is implicated as the major pathogenic process in all of them. Natural Extract of Castanea sativa Mill. bark (ENC), recently characterized in its phenolic composition, acts as antioxidant and cardioprotective agent. Its neuroprotettive properties, however, have never been investigated. The aim of this study was to assess neuroprotection of ENC in in vitro models of oxidative-stress-mediate injury. Human neuroblastoma SH-SY5Y cells treated with glutamate (50 mM for 24 h) or hydrogen peroxide (25 μM for 1 h followed by 24 with medium) were used. The results showed that the addition of ENC (1-50 μg/ml) to cell medium before the neuronal damage provided neuroprotection in both experimental models used, while its addition after the injury was ineffective. In conclusion, the present results suggest that ENC could be a valuable support as dietary supplement, combining beneficial preventive neuroprotettive effects with a high antioxidant activity. © 2015 Wiley Periodicals, Inc.

  7. Scanning electron microscopic study of human neuroblastoma cells affected with Naegleria fowleri Thai strains.

    PubMed

    Tiewcharoen, Supathra; Rabablert, Jundee; Chetanachan, Pruksawan; Junnu, Virach; Worawirounwong, Dusit; Malainual, Nat

    2008-10-01

    In order to understand the pathogenesis of Naegleria fowleri in primary amoebic meningoencephalitis, the human neuroblastoma (SK-N-MC) and African green monkey kidney (Vero) cells were studied in vitro. Amoeba suspension in cell-culture medium was added to the confluent monolayer of SK-N-MC and Vero cells. The cytopathic activity of N. fowleri trophozoites in co-culture system was elucidated by scanning electron microscope at 3, 6, 9, 12, and 24 h. Two strains of N. fowleri displayed well-organized vigorous pseudopods in Nelson's medium at 37 degrees C. In co-culture, the target monolayer cells were damaged by two mechanisms, phagocytosis by vigorous pseudopods and engulfment by sucker-like apparatus. N. fowleri trophozoites produced amoebostomes only in co-culture with SK-N-MC cells. In contrast, we could not find such apparatus in the co-culture with Vero cells. The complete destruction time (100%) at 1:1 amoeba/cells ratio of SK-N-MC cells (1 day) was shorter than the Vero cells (12 days). In conclusion, SK-N-MC cells were confirmed to be a target model for studying neuropathogenesis of primary amoebic meningoencephalitis.

  8. Enhanced anti-neuroblastoma activity of a fenretinide complexed form after intravenous administration.

    PubMed

    Carosio, Roberta; Pistoia, Vito; Orienti, Isabella; Formelli, Franca; Cavadini, Elena; Mangraviti, Salvatore; Montaldo, Paolo G; Ognio, Emanuela; Emionite, Laura; Zuccari, Guendalina

    2012-02-01

    The major limitation to successful chemotherapy of neuroblastoma (NB) is the toxicity and the poor bioavailability of traditional drugs. We synthesised an amphiphilic dextrin derivative (DX-OL) able to host fenretinide (4-HPR) by complexation. In this study, we have investigated the effects of 4-HPR-loaded amphipilic dextrin (DX-OL/4-HPR) in comparison with 4-HPR alone both in vitro on human NB cells and in vivo in pseudometastatic NB models. The haemolysis assay was used as a measure of the potential damage caused by the pharmaceutical formulation in vivo. Pharmacokinetic experiments were performed to assess drug plasma levels in mice treated with free or complexed 4-HPR. DX-OL/4-HPR exerted a more potent cytotoxic activity on NB cells. Complexed 4-HPR significantly increased the proportion of sub-G1 cells with respect to free 4-HPR. Dextrin derivatives showed no haemolytic activity, indicating their suitability for parenteral administration. DX-OL/4-HPR increased the lifespan and the long-term survival of treated mice over controls. The analysis of drug plasma levels indicates that the complexed drug has a higher AUC due to a reduced clearance from the blood. Our data suggest that DX-OL/4-HPR is an injectable formulation that is able to improve drug aqueous solubility and bioavailability. © 2011 The Authors. JPP © 2011 Royal Pharmaceutical Society.

  9. Protective effect of geranylgeranylacetone against hydrogen peroxide-induced oxidative stress in human neuroblastoma cells.

    PubMed

    Kim, Yun Ji; Kim, Joo Youn; Kang, Sang Wook; Chun, Gae Sig; Ban, Ju Yeon

    2015-06-15

    Heat shock protein 70 (HSP70), one of the major HSPs, has been reported to suppress apoptosis and formation of pathogenic proteins in neurodegenerative disorders. Geranylgeranylacetone (GGA), an anti-ulcer drug, induces HSP70 and thereby protects against cellular damage in various diseases. We investigated the effect of GGA on hydrogen peroxide (H2O2)-induced neurotoxicity in human neuroblastoma SH-SY5Y cells. H2O2-induced neuronal toxicity was measured by a CCK-8 assay and Hoechst 33342 staining. We also assessed oxidative stress and apoptosis by measuring reactive oxygen species (ROS) generation with 2′,7′-dichlorofluorescein diacetate (DCFH-DA), caspase-3 activity, and mitogen-activated protein kinase (MAPK) pathway. GGA showed a concentration-dependent inhibition on H2O2-induced apoptotic cell death. H2O2-induced induction of HSP70 was enhanced by GGA pretreatment. GGA effectively suppressed the up-regulation of Bax and down-regulation of Bcl-2. GGA also blocked the H2O2-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). In addition, GGA attenuated H2O2-induced ROS generation and caspase-3 activity. These results demonstrate that GGA protects SH-SY5Y cells from H2O2-induced apoptosis, at least in part by enhancing HSP70 production. Neuroprotective properties of GGA indicate that this compound may be a potential therapeutic agent for the treatment and prevention of neurodegenerative diseases.

  10. Androgen Receptor Regulates the Growth of Neuroblastoma Cells in vitro and in vivo

    PubMed Central

    Sun, Junyan; Wang, Dongmei; Guo, Lianying; Fang, Shengyun; Wang, Yang; Xing, Rong

    2017-01-01

    Background: Neuroblastoma is the most common extracranial tumors in children. At present about the true etiology of neuroblastoma is unclear and many studies have tried to find effective treatments for these primary malignant tumors. Although it has been illustrated that androgen receptor (AR) was expressed in neuroblastoma cells in some former reports, the biological role of androgen receptor in the development of neuroblastoma is not fully understood. Methods: Androgen (R1881) and the antagonists of androgen receptor (MDV3100 and ARN509) were used to study the role of the androgen receptor signaling pathway in vitro and in vivo on SH-SY5Y and Neuro-2a (N2a) cell lines. Results: We found that AR expression showed an R1881 dose-dependent manner in neuroblastoma cells in vitro and R1881was able to increase, while both antagonists of androgen receptor (MDV3100 and ARN509) significantly decrease, the proliferation, migration, invasion and sphere formation of SH-SY5Y and N2a cells. Moreover, androgen promoted the growth of N2a tumor in vivo. However, when androgen receptor (AR) was effectively knocked down in the two cell lines by siRNA, either promoting or inhibiting effect of the androgen or androgen receptor antagonists, respectively, was attenuated. Conclusion: Our results suggested that androgen receptor may involve in the progression of neuroblastoma as well as provided insight into a new target for the diagnosis and treatment of neuroblastoma patients. PMID:28326012

  11. Clinical experiences in the treatment of neuroblastoma with sup 131 I-metaiodobenzylguanidine

    SciTech Connect

    Treuner, J.; Klingebiel, T.; Feine, U.; Buck, J.; Bruchelt, G.; Dopfer, R.; Girgert, R.; Mueller-Schauenburg, W.M.; Meinke, J.; Kaiser, W. )

    1986-01-01

    Treatment of neuroblastoma is an unsolved problem of pediatric oncology. In spite of highly intensified chemotherapy, the long-term survival rate of children with a metastatic neuroblastoma is below 10%. We therefore used {sup 131}I-metaiodobenzylguanidine (MIBG) for the first time to treat children with a neuroblastoma in relapse or primary unresponsiveness to chemotherapy. We had previously demonstrated that MIBG is useful for the scintigraphic imaging of neuroblastoma lesions and had investigated the cytotoxicity and uptake of MIBG in various neuroblastoma cell lines. We treated 6 children with neuroblastoma in a total of 19 courses. Three of the children suffered from a relapse of neuroblastoma; 3 had never gained a remission. Four of the 6 children lost their bone pain and fever during the first 3 days. In 5 of the 6 children the solid tumor as well as the bone marrow infiltration responded to MIBG treatment, with responses ranging from transitory decrease of the tumor mass to complete disappearance of abdominal tumors. We also witnessed a stabilization of osteolytic lesions, a decrease in elevated serum catecholamines, and a decrease in bone marrow infiltration. Five of the 6 children died of tumor progression 55-249 days after the first MIBG treatment.

  12. Identification of flubendazole as potential anti-neuroblastoma compound in a large cell line screen

    PubMed Central

    Michaelis, Martin; Agha, Bishr; Rothweiler, Florian; Löschmann, Nadine; Voges, Yvonne; Mittelbronn, Michel; Starzetz, Tatjana; Harter, Patrick N.; Abhari, Behnaz A.; Fulda, Simone; Westermann, Frank; Riecken, Kristoffer; Spek, Silvia; Langer, Klaus; Wiese, Michael; Dirks, Wilhelm G.; Zehner, Richard; Cinatl, Jaroslav; Wass, Mark N.; Cinatl, Jindrich

    2015-01-01

    Flubendazole was shown to exert anti-leukaemia and anti-myeloma activity through inhibition of microtubule function. Here, flubendazole was tested for its effects on the viability of in total 461 cancer cell lines. Neuroblastoma was identified as highly flubendazole-sensitive cancer entity in a screen of 321 cell lines from 26 cancer entities. Flubendazole also reduced the viability of five primary neuroblastoma samples in nanomolar concentrations thought to be achievable in humans and inhibited vessel formation and neuroblastoma tumour growth in the chick chorioallantoic membrane assay. Resistance acquisition is a major problem in high-risk neuroblastoma. 119 cell lines from a panel of 140 neuroblastoma cell lines with acquired resistance to various anti-cancer drugs were sensitive to flubendazole in nanomolar concentrations. Tubulin-binding agent-resistant cell lines displayed the highest flubendazole IC50 and IC90 values but differences between drug classes did not reach statistical significance. Flubendazole induced p53-mediated apoptosis. The siRNA-mediated depletion of the p53 targets p21, BAX, or PUMA reduced the neuroblastoma cell sensitivity to flubendazole with PUMA depletion resulting in the most pronounced effects. The MDM2 inhibitor and p53 activator nutlin-3 increased flubendazole efficacy while RNAi-mediated p53-depletion reduced its activity. In conclusion, flubendazole represents a potential treatment option for neuroblastoma including therapy-refractory cells. PMID:25644037

  13. RUNX3 interacts with MYCN and facilitates protein degradation in neuroblastoma.

    PubMed

    Yu, F; Gao, W; Yokochi, T; Suenaga, Y; Ando, K; Ohira, M; Nakamura, Y; Nakagawara, A

    2014-05-15

    RUNX3, a runt-related transcription factor, has a crucial role in dorsal root ganglion neurogenesis. Recent studies have suggested that RUNX3 acts as a tumor suppressor in stomach, colon and breast cancer. However, the biological role of RUNX3 in neuroblastoma remains elusive. Here we report that high levels of RUNX3 expression contribute to the favorable outcome in patients with neuroblastoma, whereas low levels of RUNX3 expression result in poor outcome. Array-based analysis suggested that the allelic loss at chromosome 1p36 is one of the reasons why expression of RUNX3 is downregulated in advanced neuroblastomas. Interestingly, the several patients survived from neuroblastoma with both high mRNA expressions of MYCN and RUNX3, suggesting that RUNX3 high expression might overcome the aggressive behavior of MYCN. Exogenous expression of RUNX3 strongly inhibits cell proliferation and migration in neuroblastoma cell lines. Furthermore, RUNX3 reduces the stability of MYCN protein in MYCN-amplified neuroblastoma cell lines, and this RUNX3-mediated MYCN degradation may depend on the physical interaction between RUNX3 and MYCN. Thus, our findings provide a tumor-suppressing mechanism by which RUNX3 inhibits the MYCN activity in neuroblastoma.

  14. Neuroblastoma patient-derived orthotopic xenografts reflect the microenvironmental hallmarks of aggressive patient tumours.

    PubMed

    Braekeveldt, Noémie; Wigerup, Caroline; Tadeo, Irene; Beckman, Siv; Sandén, Caroline; Jönsson, Jimmie; Erjefält, Jonas S; Berbegall, Ana P; Börjesson, Anna; Backman, Torbjörn; Øra, Ingrid; Navarro, Samuel; Noguera, Rosa; Gisselsson, David; Påhlman, Sven; Bexell, Daniel

    2016-06-01

    Treatment of high-risk childhood neuroblastoma is a clinical challenge which has been hampered by a lack of reliable neuroblastoma mouse models for preclinical drug testing. We have previously established invasive and metastasising patient-derived orthotopic xenografts (PDXs) from high-risk neuroblastomas that retained the genotypes and phenotypes of patient tumours. Given the important role of the tumour microenvironment in tumour progression, metastasis, and treatment responses, here we analysed the tumour microenvironment of five neuroblastoma PDXs in detail. The PDXs resembled their parent tumours and retained important stromal hallmarks of aggressive lesions including rich blood and lymphatic vascularisation, pericyte coverage, high numbers of cancer-associated fibroblasts, tumour-associated macrophages, and extracellular matrix components. Patient-derived tumour endothelial cells occasionally formed blood vessels in PDXs; however, tumour stroma was, overall, of murine origin. Lymphoid cells and lymphatic endothelial cells were found in athymic nude mice but not in NSG mice; thus, the choice of mouse strain dictates tumour microenvironmental components. The murine tumour microenvironment of orthotopic neuroblastoma PDXs reflects important hallmarks of aggressive and metastatic clinical neuroblastomas. Neuroblastoma PDXs are clinically relevant models for preclinical drug testing. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  15. Androgen Receptor Regulates the Growth of Neuroblastoma Cells in vitro and in vivo.

    PubMed

    Sun, Junyan; Wang, Dongmei; Guo, Lianying; Fang, Shengyun; Wang, Yang; Xing, Rong

    2017-01-01

    Background: Neuroblastoma is the most common extracranial tumors in children. At present about the true etiology of neuroblastoma is unclear and many studies have tried to find effective treatments for these primary malignant tumors. Although it has been illustrated that androgen receptor (AR) was expressed in neuroblastoma cells in some former reports, the biological role of androgen receptor in the development of neuroblastoma is not fully understood. Methods: Androgen (R1881) and the antagonists of androgen receptor (MDV3100 and ARN509) were used to study the role of the androgen receptor signaling pathway in vitro and in vivo on SH-SY5Y and Neuro-2a (N2a) cell lines. Results: We found that AR expression showed an R1881 dose-dependent manner in neuroblastoma cells in vitro and R1881was able to increase, while both antagonists of androgen receptor (MDV3100 and ARN509) significantly decrease, the proliferation, migration, invasion and sphere formation of SH-SY5Y and N2a cells. Moreover, androgen promoted the growth of N2a tumor in vivo. However, when androgen receptor (AR) was effectively knocked down in the two cell lines by siRNA, either promoting or inhibiting effect of the androgen or androgen receptor antagonists, respectively, was attenuated. Conclusion: Our results suggested that androgen receptor may involve in the progression of neuroblastoma as well as provided insight into a new target for the diagnosis and treatment of neuroblastoma patients.

  16. Targeting Notch pathway induces growth inhibition and differentiation of neuroblastoma cells.

    PubMed

    Ferrari-Toninelli, Giulia; Bonini, Sara Anna; Uberti, Daniela; Buizza, Laura; Bettinsoli, Paola; Poliani, Pietro Luigi; Facchetti, Fabio; Memo, Maurizio

    2010-12-01

    High-risk neuroblastoma is a severe pediatric tumor characterized by poor prognosis. Understanding the molecular mechanisms involved in tumor development and progression is strategic for the improvement of pharmacological therapies. Notch was recently proposed as a pharmacological target for the therapy of several cancers and is emerging as a new neuroblastoma-related molecular pathway. However, the precise role played by Notch in this cancer remains to be studied extensively. Here, we show that Notch activation by the Jagged1 ligand enhances the proliferation of neuroblastoma cells, and we propose the possible use of Notch-blocking γ-secretase inhibitors (GSIs) in neuroblastoma therapy. Two different GSIs, Compound E and DAPT, were tested alone or in combination with 13-cis retinoic acid (RA) on neuroblastoma cell lines. SH-SY5Y and IMR-32 cells were chosen as paradigms of lower and higher malignancy, respectively. Used alone, GSIs induced complete cell growth arrest, promoted neuronal differentiation, and significantly reduced cell motility. The combination of GSIs and 13-cis RA resulted in the enhanced growth inhibition, differentiation, and migration of neuroblastoma cells. In summary, our data suggest that a combination of GSIs with 13-cis RA offers a therapeutic advantage over a single agent, indicating a potential novel therapy for neuroblastoma.

  17. Survival of high-risk pediatric neuroblastoma patients in a developing country.

    PubMed

    Easton, Joseph C; Gomez, Sergio; Asdahl, Peter H; Conner, J Michael; Fynn, Alcira B; Ruiz, Claudia; Ojha, Rohit P

    2016-09-01

    Little information is available about survival of high-risk pediatric neuroblastoma patients in developing countries. We aimed to assess survival among high-risk pediatric neuroblastoma patients in La Plata, Argentina. Individuals eligible for our cohort were aged <20 yr when diagnosed with high-risk neuroblastoma and received cancer-directed therapy including stem cell transplantation at Hospital de Niños Sor Maria Ludovica between February 1999 and February 2015. We estimated overall survival probabilities using an extended Kaplan-Meier approach. Our study population comprised 39 high-risk neuroblastoma patients, of whom 39% were aged >4 yr at diagnosis, 54% were male, and 62% had adrenal neuroblastoma. We observed 18 deaths, and the median survival time of our study population was 1.7 yr. The five-yr overall survival probability was 24% (95% CL: 10%, 41%). In contrast, five-yr survival of high-risk neuroblastoma patients ranges between 23% and 76% in developed countries. Survival among high-risk neuroblastoma patients is generally poor regardless of geographic location, but our results illustrate dramatically worse survival for patients in a developing country. We speculate that the observed survival differences could be attenuated or eliminated with improvements in treatment and supportive care, but addressing these issues will require creative solutions because of resource limitations.

  18. Gene expression profiling in response to the histone deacetylase inhibitor BL1521 in neuroblastoma

    SciTech Connect

    Ruijter, Annemieke J.M. de; Kemp, Stephan . E-mail: a.b.vankuilenburg@amc.uva.nl

    2005-10-01

    Neuroblastoma is a childhood tumor with a poor survival in advanced stage disease despite intensive chemotherapeutic regimes. The new histone deacetylase (HDAC) inhibitor BL1521 has shown promising results in neuroblastoma. Inhibition of HDAC resulted in a decrease in proliferation and metabolic activity, induction of apoptosis and differentiation of neuroblastoma cells. In order to elucidate the mechanism mediating the effects of BL1521 on neuroblastoma cells, we investigated the gene expression profile of an MYCN single copy (SKNAS) and an MYCN amplified (IMR32) neuroblastoma cell line after treatment with BL1521 using the Affymetrix oligonucleotide array U133A. An altered expression of 255 genes was observed in both neuroblastoma cell lines. The majority of these genes were involved in gene expression, cellular metabolism, and cell signaling. We observed changes in the expression of vital genes belonging to the cell cycle (cyclin D1 and CDK4) and apoptosis (BNIP3, BID, and BCL2) pathway in response to BL1521. The expression of 37 genes was altered by both BL1521 and Trichostatin A, which could indicate a common gene set regulated by different HDAC inhibitors. BL1521 treatment changed the expression of a number of MYCN-associated genes. Several genes in the Wnt and the Delta/Notch pathways were changed in response to BL1521 treatment, suggesting that BL1521 is able to induce the differentiation of neuroblastoma cells into a more mature phenotype.

  19. Tumor-infiltrating T lymphocytes improve clinical outcome of therapy-resistant neuroblastoma

    PubMed Central

    Mina, Marco; Boldrini, Renata; Citti, Arianna; Romania, Paolo; D'Alicandro, Valerio; De Ioris, Maretta; Castellano, Aurora; Furlanello, Cesare; Locatelli, Franco; Fruci, Doriana

    2015-01-01

    Neuroblastoma grows within an intricate network of different cell types including epithelial, stromal and immune cells. The presence of tumor-infiltrating T cells is considered an important prognostic indicator in many cancers, but the role of these cells in neuroblastoma remains to be elucidated. Herein, we examined the relationship between the type, density and organization of infiltrating T cells and clinical outcome within a large collection of neuroblastoma samples by quantitative analysis of immunohistochemical staining. We found that infiltrating T cells have a prognostic value greater than, and independent of, the criteria currently used to stage neuroblastoma. A variable in situ structural organization and different concurrent infiltration of T-cell subsets were detected in tumors with various outcomes. Low-risk neuroblastomas were characterized by a higher number of proliferating T cells and a more structured T-cell organization, which was gradually lost in tumors with poor prognosis. We defined an immunoscore based on the presence of CD3+, CD4+ and CD8+ infiltrating T cells that associates with favorable clinical outcome in MYCN-amplified tumors, improving patient survival when combined with the v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog (MYCN) status. These findings support the hypothesis that infiltrating T cells influence the behavior of neuroblastoma and might be of clinical importance for the treatment of patients. PMID:26405592

  20. Neuroblastoma Arginase Activity Creates an Immunosuppressive Microenvironment That Impairs Autologous and Engineered Immunity.

    PubMed

    Mussai, Francis; Egan, Sharon; Hunter, Stuart; Webber, Hannah; Fisher, Jonathan; Wheat, Rachel; McConville, Carmel; Sbirkov, Yordan; Wheeler, Kate; Bendle, Gavin; Petrie, Kevin; Anderson, John; Chesler, Louis; De Santo, Carmela

    2015-08-01

    Neuroblastoma is the most common extracranial solid tumor of childhood, and survival remains poor for patients with advanced disease. Novel immune therapies are currently in development, but clinical outcomes have not matched preclinical results. Here, we describe key mechanisms in which neuroblastoma inhibits the immune response. We show that murine and human neuroblastoma tumor cells suppress T-cell proliferation through increased arginase activity. Arginase II is the predominant isoform expressed and creates an arginine-deplete local and systemic microenvironment. Neuroblastoma arginase activity results in inhibition of myeloid cell activation and suppression of bone marrow CD34(+) progenitor proliferation. Finally, we demonstrate that the arginase activity of neuroblastoma impairs NY-ESO-1-specific T-cell receptor and GD2-specific chimeric antigen receptor-engineered T-cell proliferation and cytotoxicity. High arginase II expression correlates with poor survival for patients with neuroblastoma. The results support the hypothesis that neuroblastoma creates an arginase-dependent immunosuppressive microenvironment in both the tumor and blood that leads to impaired immunosurveillance and suboptimal efficacy of immunotherapeutic approaches.

  1. X-ray Crystallographic Structure of Oligomers Formed by a Toxic β-Hairpin Derived from α-Synuclein: Trimers and Higher-Order Oligomers.

    PubMed

    Salveson, Patrick J; Spencer, Ryan K; Nowick, James S

    2016-04-06

    Oligomeric assemblies of the protein α-synuclein are thought to cause neurodegeneration in Parkinson's disease and related synucleinopathies. Characterization of α-synuclein oligomers at high resolution is an outstanding challenge in the field of structural biology. The absence of high-resolution structures of oligomers formed by α-synuclein impedes understanding the synucleinopathies at the molecular level. This paper reports the X-ray crystallographic structure of oligomers formed by a peptide derived from residues 36-55 of α-synuclein. The peptide 1a adopts a β-hairpin structure, which assembles in a hierarchical fashion. Three β-hairpins assemble to form a triangular trimer. Three copies of the triangular trimer assemble to form a basket-shaped nonamer. Two nonamers pack to form an octadecamer. Molecular modeling suggests that full-length α-synuclein may also be able to assemble in this fashion. Circular dichroism spectroscopy demonstrates that peptide 1a interacts with anionic lipid bilayer membranes, like oligomers of full-length α-synuclein. LDH and MTT assays demonstrate that peptide 1a is toxic toward SH-SY5Y cells. Comparison of peptide 1a to homologues suggests that this toxicity results from nonspecific interactions with the cell membrane. The oligomers formed by peptide 1a are fundamentally different than the proposed models of the fibrils formed by α-synuclein and suggest that α-Syn36-55, rather than the NAC, may nucleate oligomer formation.

  2. An investigation into the effect of amphiphilic siloxane oligomers on dermal fibroblasts.

    PubMed

    Farrugia, Brooke L; Keddie, Daniel J; George, Graeme A; Lynam, Emily C; Brook, Michael A; Upton, Zee; Dargaville, Tim R

    2012-07-01

    This study investigates the effect of well-defined poly(dimethylsiloxane)-poly(ethylene glycol) (PDMS-PEG) ABA linear block co-oligomers on the proliferation of human dermal fibroblasts. The co-oligomers assessed ranged in molecular weight (MW) from 1335 to 5208 Da and hydrophilic-lipophilic balance (HLB) from 5.9 to 16.6 by varying the number of both PDMS and PEG units. In general, it was found that co-oligomers of low MW or intermediate hydrophilicity significantly reduced fibroblast proliferation. A linear relationship between down-regulation of fibroblast proliferation, and the ratio HLB/MW was observed at concentrations of 0.1 and 1.0 wt % of the oligomers. This enabled the structures with highest efficiency to be determined. These results suggest the possible use of the PEG-PDMS-PEG block co-oligomers as an alternative to silicone gels for hypertrophic scar remediation.

  3. Gnetin-C and other resveratrol oligomers with cancer chemopreventive potential.

    PubMed

    Espinoza, J Luis; Inaoka, Pleiades T

    2017-08-30

    Resveratrol has been extensively studied to investigate its biological effects, including its chemopreventive potential against cancer. Over the past decade, various resveratrol oligomers, both naturally occurring and synthetic, have been described. These resveratrol oligomers result from the polymerization of two or more resveratrol units to form dimers, trimers, tetramers, or even more complex derivatives. Some oligomers appear to have antitumor activities that are similar or superior to monomeric resveratrol. In this review, we discuss resveratrol oligomers with anticancer potential, with emphasis on well-characterized compounds, such as the dimer gnetin-C and other oligomers from Gnetum gnemon, whose safety, pharmacokinetic, and biological activities have been studied in humans. © 2017 New York Academy of Sciences.

  4. Preparation of Chito-Oligomers by Hydrolysis of Chitosan in the Presence of Zeolite as Adsorbent.

    PubMed

    Ibrahim, Khalid A; El-Eswed, Bassam I; Abu-Sbeih, Khaleel A; Arafat, Tawfeeq A; Al Omari, Mahmoud M H; Darras, Fouad H; Badwan, Adnan A

    2016-07-23

    An increasing interest has recently been shown to use chitin/chitosan oligomers (chito-oligomers) in medicine and food fields because they are not only water-soluble, nontoxic, and biocompatible materials, but they also exhibit numerous biological properties, including antibacterial, antifungal, and antitumor activities, as well as immuno-enhancing effects on animals. Conventional depolymerization methods of chitosan to chito-oligomers are either chemical by acid-hydrolysis under harsh conditions or by enzymatic degradation. In this work, hydrolysis of chitosan to chito-oligomers has been achieved by applying adsorption-separation technique using diluted HCl in the presence of different types of zeolite as adsorbents. The chito-oligomers were retrieved from adsorbents and characterized by differential scanning calorimetry (DSC), liquid chromatography/mass spectroscopy (LC/MS), and ninhydrin test.

  5. Preparation of Chito-Oligomers by Hydrolysis of Chitosan in the Presence of Zeolite as Adsorbent

    PubMed Central

    Ibrahim, Khalid A.; El-Eswed, Bassam I.; Abu-Sbeih, Khaleel A.; Arafat, Tawfeeq A.; Al Omari, Mahmoud M. H.; Darras, Fouad H.; Badwan, Adnan A.

    2016-01-01

    An increasing interest has recently been shown to use chitin/chitosan oligomers (chito-oligomers) in medicine and food fields because they are not only water-soluble, nontoxic, and biocompatible materials, but they also exhibit numerous biological properties, including antibacterial, antifungal, and antitumor activities, as well as immuno-enhancing effects on animals. Conventional depolymerization methods of chitosan to chito-oligomers are either chemical by acid-hydrolysis under harsh conditions or by enzymatic degradation. In this work, hydrolysis of chitosan to chito-oligomers has been achieved by applying adsorption-separation technique using diluted HCl in the presence of different types of zeolite as adsorbents. The chito-oligomers were retrieved from adsorbents and characterized by differential scanning calorimetry (DSC), liquid chromatography/mass spectroscopy (LC/MS), and ninhydrin test. PMID:27455287

  6. Alginate gels with a combination of calcium and chitosan oligomer mixtures as crosslinkers.

    PubMed

    Feng, Yiming; Kopplin, Georg; Sato, Kimihiko; Draget, Kurt I; Vårum, Kjell M

    2017-01-20

    Alginates are polysaccharides that are widely used in relation to their ability to form gels. Recently we reported that alginates may also form gels with chitosan oligomers as crosslinkers (Khong, Aarstad, Skjåk-Bræk, Draget, & Vårum, 2013). The purpose of the present study was to characterize alginate gels crosslinked with calcium and chitosan oligomers. Using two different alginates of similar molecular weights but different chemical composition, i.e. guluronic acid content of 46 and 68%, we found that both alginates could form homogeneous gels with calcium and chitosan oligomers separately and without syneresis. Systematic combinations of calcium and chitosan oligomers as crosslinkers were tested, showing that up to 50% of the calcium could be substituted with chitosan oligomers without reduction in gel strength or increased syneresis for the alginate with the lowest guluronic acid content. Furthermore, the kinetics of the combined gels were different from pure calcium alginate gels.

  7. Star-shaped tetrathiafulvalene oligomers towards the construction of conducting supramolecular assembly

    PubMed Central

    Hasegawa, Masashi

    2015-01-01

    Summary The construction of redox-active supramolecular assemblies based on star-shaped and radially expanded tetrathiafulvalene (TTF) oligomers with divergent and extended conjugation is summarized. Star-shaped TTF oligomers easily self-aggregate with a nanophase separation to produce supramolecular structures, and their TTF units stack face-to-face to form columnar structures using the fastener effect. Based on redox-active self-organizing supramolecular structures, conducting nanoobjects are constructed by doping of TTF oligomers with oxidants after the formation of such nanostructures. Although radical cations derived from TTF oligomers strongly interact in solution to produce a mixed-valence dimer and π-dimer, it seems to be difficult to produce nanoobjects of radical cations different from those of neutral TTF oligomers. In some cases, however, radical cations form nanostructured fibers and rods by controlling the supramolecular assembly, oxidation states, and counter anions employed. PMID:26664579

  8. The Role of Amyloid-β Oligomers in Toxicity, Propagation, and Immunotherapy

    PubMed Central

    Sengupta, Urmi; Nilson, Ashley N.; Kayed, Rakez

    2016-01-01

    The incidence of Alzheimer's disease (AD) is growing every day and finding an effective treatment is becoming more vital. Amyloid-β (Aβ) has been the focus of research for several decades. The recent shift in the Aβ cascade hypothesis from all Aβ to small soluble oligomeric intermediates is directing the search for therapeutics towards the toxic mediators of the disease. Targeting the most toxic oligomers may prove to be an effective treatment by preventing their spread. Specific targeting of oligomers has been shown to protect cognition in rodent models. Additionally, the heterogeneity of research on Aβ oligomers may seem contradictory until size and conformation are taken into account. In this review, we will discuss Aβ oligomers and their toxicity in relation to size and conformation as well as their influence on inflammation and the potential of Aβ oligomer immunotherapy. PMID:27211547

  9. Direct PIP2 binding mediates stable oligomer formation of the serotonin transporter

    PubMed Central

    Anderluh, Andreas; Hofmaier, Tina; Klotzsch, Enrico; Kudlacek, Oliver; Stockner, Thomas; Sitte, Harald H.; Schütz, Gerhard J.

    2017-01-01

    The human serotonin transporter (hSERT) mediates uptake of serotonin from the synaptic cleft and thereby terminates serotonergic signalling. We have previously found by single-molecule microscopy that S