Sample records for on-chip solid-phase extraction

  1. DNA extraction on bio-chip: history and preeminence over conventional and solid-phase extraction methods.

    PubMed

    Ayoib, Adilah; Hashim, Uda; Gopinath, Subash C B; Md Arshad, M K

    2017-11-01

    This review covers a developmental progression on early to modern taxonomy at cellular level following the advent of electron microscopy and the advancement in deoxyribonucleic acid (DNA) extraction for expatiation of biological classification at DNA level. Here, we discuss the fundamental values of conventional chemical methods of DNA extraction using liquid/liquid extraction (LLE) followed by development of solid-phase extraction (SPE) methods, as well as recent advances in microfluidics device-based system for DNA extraction on-chip. We also discuss the importance of DNA extraction as well as the advantages over conventional chemical methods, and how Lab-on-a-Chip (LOC) system plays a crucial role for the future achievements.

  2. A new approach for downscaling of electromembrane extraction as a lab on-a-chip device followed by sensitive Red-Green-Blue detection.

    PubMed

    Baharfar, Mahroo; Yamini, Yadollah; Seidi, Shahram; Arain, Muhammad Balal

    2018-05-30

    A new design of electromembrane extraction (EME) as a lab on-a-chip device was proposed for the extraction and determination of phenazopyridine as the model analyte. The extraction procedure was accomplished by coupling of EME and the packing of a sorbent. The analyte was extracted under the applied electrical field across a membrane sheet impregnated by nitrophenyl octylether (NPOE) into an acceptor phase. It was followed by the absorption of the analyte on strong cation exchanger as a sorbent. The designed chip contained separate spiral channels for donor and acceptor phases featuring embedded platinum electrodes to enhance extraction efficiency. The selected donor and acceptor phases were 0 mM HCl and 100 mM HCl, respectively. The on-chip electromembrane extraction was carried out under the voltage level of 70 V for 50 min. The analysis was carried out by two modes of a simple Red-Green-Blue (RGB) image analysis tool and a conventional HPLC-UV system. After the absorption of the analyte on the solid phase, its color changed and a digital picture of the sorbent was taken for the RGB analysis. The effective parameters on the performance of the chip device, comprising the EME and solid phase microextraction steps, were distinguished and optimized. The accumulation of the analyte on the solid phase showed excellent sensitivity and a limit of detection (LOD) lower than 1.0 μg L-1 achieved by an image analysis using a smartphone. This device also offered acceptable intra- and inter-assay RSD% (<10%). The calibration curves were linear within the range of 10-1000 μg L-1 and 30-1000 μg L-1 (r2 > 0.9969) for HPLC-UV and RGB analysis, respectively. To investigate the applicability of the method in complicated matrices, urine samples of patients being treated with phenazopyridine were analyzed.

  3. Liquid carry-over in an injection moulded all-polymer chip system for immiscible phase magnetic bead-based solid-phase extraction

    NASA Astrophysics Data System (ADS)

    Kistrup, Kasper; Skotte Sørensen, Karen; Wolff, Anders; Fougt Hansen, Mikkel

    2015-04-01

    We present an all-polymer, single-use microfluidic chip system produced by injection moulding and bonded by ultrasonic welding. Both techniques are compatible with low-cost industrial mass-production. The chip is produced for magnetic bead-based solid-phase extraction facilitated by immiscible phase filtration and features passive liquid filling and magnetic bead manipulation using an external magnet. In this work, we determine the system compatibility with various surfactants. Moreover, we quantify the volume of liquid co-transported with magnetic bead clusters from Milli-Q water or a lysis-binding buffer for nucleic acid extraction (0.1 (v/v)% Triton X-100 in 5 M guanidine hydrochloride). A linear relationship was found between the liquid carry-over and mass of magnetic beads used. Interestingly, similar average carry-overs of 1.74(8) nL/μg and 1.72(14) nL/μg were found for Milli-Q water and lysis-binding buffer, respectively.

  4. Automated microfluidic devices integrating solid-phase extraction, fluorescent labeling, and microchip electrophoresis for preterm birth biomarker analysis.

    PubMed

    Sahore, Vishal; Sonker, Mukul; Nielsen, Anna V; Knob, Radim; Kumar, Suresh; Woolley, Adam T

    2018-01-01

    We have developed multichannel integrated microfluidic devices for automated preconcentration, labeling, purification, and separation of preterm birth (PTB) biomarkers. We fabricated multilayer poly(dimethylsiloxane)-cyclic olefin copolymer (PDMS-COC) devices that perform solid-phase extraction (SPE) and microchip electrophoresis (μCE) for automated PTB biomarker analysis. The PDMS control layer had a peristaltic pump and pneumatic valves for flow control, while the PDMS fluidic layer had five input reservoirs connected to microchannels and a μCE system. The COC layers had a reversed-phase octyl methacrylate porous polymer monolith for SPE and fluorescent labeling of PTB biomarkers. We determined μCE conditions for two PTB biomarkers, ferritin (Fer) and corticotropin-releasing factor (CRF). We used these integrated microfluidic devices to preconcentrate and purify off-chip-labeled Fer and CRF in an automated fashion. Finally, we performed a fully automated on-chip analysis of unlabeled PTB biomarkers, involving SPE, labeling, and μCE separation with 1 h total analysis time. These integrated systems have strong potential to be combined with upstream immunoaffinity extraction, offering a compact sample-to-answer biomarker analysis platform. Graphical abstract Pressure-actuated integrated microfluidic devices have been developed for automated solid-phase extraction, fluorescent labeling, and microchip electrophoresis of preterm birth biomarkers.

  5. Nucleic acid extraction techniques and application to the microchip.

    PubMed

    Price, Carol W; Leslie, Daniel C; Landers, James P

    2009-09-07

    As recently as the early 1990s, DNA purification was time-consuming, requiring the use of toxic, hazardous reagents. The advent of solid phase extraction techniques and the availability of commercial kits for quick and reliable DNA extraction has relegated those early techniques largely to the history books. High quality DNA can now be extracted from whole blood, serum, saliva, urine, stool, cerebral spinal fluid, tissues, and cells in less time without sacrificing recovery. Having achieved such a radical change in the methodology of DNA extraction, focus has shifted to adapting these methods to a miniaturized system, or "lab-on-a-chip" (A. Manz, N. Graber and H. M. Widmer, Sens. Actuators, B, 1990, 1, 244-248). Manz et al.'s concept of a "miniaturized total chemical analysis system" (microTAS) involved a silicon chip that incorporated sample pretreatment, separation and detection. This review will focus on the first of these steps, sample pretreatment in the form of DNA purification. The intention of this review is to provide an overview of the fundamentals of nucleic acid purification and solid phase extraction (SPE) and to discuss specific microchip DNA extraction successes and challenges. In order to fully appreciate the advances in DNA purification, a brief review of the history of DNA extraction is provided so that the reader has an understanding of the impact that the development of SPE techniques have had. This review will highlight the different methods of nucleic acid extraction (Table 1), including relevant citations, but without an exhaustive summary of the literature. A recent review by Wen et al. (J. Wen, L. A. Legendre, J. M. Bienvenue and J. P. Landers, Anal. Chem., 2008, 80, 6472-6479) covers solid phase extraction methods with a greater focus on their incorporation into integrated microfluidic systems.

  6. Rapid Automated Sample Preparation for Biological Assays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shusteff, M

    Our technology utilizes acoustic, thermal, and electric fields to separate out contaminants such as debris or pollen from environmental samples, lyse open cells, and extract the DNA from the lysate. The objective of the project is to optimize the system described for a forensic sample, and demonstrate its performance for integration with downstream assay platforms (e.g. MIT-LL's ANDE). We intend to increase the quantity of DNA recovered from the sample beyond the current {approx}80% achieved using solid phase extraction methods. Task 1: Develop and test an acoustic filter for cell extraction. Task 2: Develop and test lysis chip. Task 3:more » Develop and test DNA extraction chip. All chips have been fabricated based on the designs laid out in last month's report.« less

  7. A Simple and Selective Fluorescent Sensor Chip for Indole-3-Butyric Acid in Mung Bean Sprouts Based on Molecularly Imprinted Polymer Coatings

    PubMed Central

    Chang, Jiahua; Bahethan, Bota; Muhammad, Turghun; Yakup, Burabiye; Abbas, Mamatimin

    2017-01-01

    In this paper, we report the preparation of molecularly imprinted polymer coatings on quartz chips for selective solid-phase microextraction and fluorescence sensing of the auxin, indole-3-butyric acid. The multiple copolymerization method was used to prepare polymer coatings on silylated quartz chips. The polymer preparation conditions (e.g., the solvent, monomer, and cross-linker) were investigated systemically to enhance the binding performance of the imprinted coatings. Direct solid-phase fluorescence measurements on the chips facilitated monitoring changes in coating performance. The average binding capacity of an imprinted polymer coated chip was approximately 152.9 µg, which was higher than that of a non-imprinted polymer coated chip (60.8 µg); the imprinted coatings showed the highest binding to IBA among the structural analogues, indicating that the coatings possess high selectivity toward the template molecule. The developed method was used for the determination of the auxin in mung bean extraction, and the recovery was found to be in the range of 91.5% to 97.5%, with an RSD (n = 3) of less than 7.4%. Thus, the present study provides a simple method for fabricating a fluorescent sensor chip for selective analysis. PMID:28837081

  8. Attractive design: an elution solvent optimization platform for magnetic-bead-based fractionation using digital microfluidics and design of experiments.

    PubMed

    Lafrenière, Nelson M; Mudrik, Jared M; Ng, Alphonsus H C; Seale, Brendon; Spooner, Neil; Wheeler, Aaron R

    2015-04-07

    There is great interest in the development of integrated tools allowing for miniaturized sample processing, including solid phase extraction (SPE). We introduce a new format for microfluidic SPE relying on C18-functionalized magnetic beads that can be manipulated in droplets in a digital microfluidic platform. This format provides the opportunity to tune the amount (and potentially the type) of stationary phase on-the-fly, and allows the removal of beads after the extraction (to enable other operations in same device-space), maintaining device reconfigurability. Using the new method, we employed a design of experiments (DOE) operation to enable automated on-chip optimization of elution solvent composition for reversed phase SPE of a model system. Further, conditions were selected to enable on-chip fractionation of multiple analytes. Finally, the method was demonstrated to be useful for online cleanup of extracts from dried blood spot (DBS) samples. We anticipate this combination of features will prove useful for separating a wide range of analytes, from small molecules to peptides, from complex matrices.

  9. Automated, Ultra-Sterile Solid Sample Handling and Analysis on a Chip

    NASA Technical Reports Server (NTRS)

    Mora, Maria F.; Stockton, Amanda M.; Willis, Peter A.

    2013-01-01

    There are no existing ultra-sterile lab-on-a-chip systems that can accept solid samples and perform complete chemical analyses without human intervention. The proposed solution is to demonstrate completely automated lab-on-a-chip manipulation of powdered solid samples, followed by on-chip liquid extraction and chemical analysis. This technology utilizes a newly invented glass micro-device for solid manipulation, which mates with existing lab-on-a-chip instrumentation. Devices are fabricated in a Class 10 cleanroom at the JPL MicroDevices Lab, and are plasma-cleaned before and after assembly. Solid samples enter the device through a drilled hole in the top. Existing micro-pumping technology is used to transfer milligrams of powdered sample into an extraction chamber where it is mixed with liquids to extract organic material. Subsequent chemical analysis is performed using portable microchip capillary electrophoresis systems (CE). These instruments have been used for ultra-highly sensitive (parts-per-trillion, pptr) analysis of organic compounds including amines, amino acids, aldehydes, ketones, carboxylic acids, and thiols. Fully autonomous amino acid analyses in liquids were demonstrated; however, to date there have been no reports of completely automated analysis of solid samples on chip. This approach utilizes an existing portable instrument that houses optics, high-voltage power supplies, and solenoids for fully autonomous microfluidic sample processing and CE analysis with laser-induced fluorescence (LIF) detection. Furthermore, the entire system can be sterilized and placed in a cleanroom environment for analyzing samples returned from extraterrestrial targets, if desired. This is an entirely new capability never demonstrated before. The ability to manipulate solid samples, coupled with lab-on-a-chip analysis technology, will enable ultraclean and ultrasensitive end-to-end analysis of samples that is orders of magnitude more sensitive than the ppb goal given in the Science Instruments.

  10. On-chip sample pretreatment using a porous polymer monolithic column for solid-phase microextraction and chemiluminescence determination of catechins in green tea.

    PubMed

    Lin, Ling; Chen, Hui; Wei, Huibin; Wang, Feng; Lin, Jin-Ming

    2011-10-21

    A porous polymer monolithic column for solid-phase microextraction and chemiluminescence detection was integrated into a simple microfluidic chip for the extraction and determination of catechins in green tea. The porous polymer was prepared by poly(glycidyl methacrylate-co-ethylene dimethacrylate) and modified with ethylenediamine. Catechins can be concentrated in the porous polymer monolithic column and react with potassium permanganate to give chemiluminescence. The microfluidic chip is reusable with high sensitivity and very low reagent consumption. The on-line preconcentration and detection can be realized without an elution step. The enrichment factor was calculated to be about 20 for catechins. The relative chemiluminescence intensity increased linearly with concentration of catechin from 5.0 × 10(-9) to 1.0 × 10(-6) M and the limit of detection was 1.0 × 10(-9) M. The proposed method was applied to determine catechin in green tea. The recoveries are from 90% to 110% which benefits the actual application for green tea samples.

  11. Solid-phase extraction microfluidic devices for matrix removal in trace element assay of actinide materials

    DOE PAGES

    Gao, Jun; Manard, Benjamin Thomas; Castro, Alonso; ...

    2017-02-02

    Advances in sample nebulization and injection technology have significantly reduced the volume of solution required for trace impurity analysis in plutonium and uranium materials. Correspondingly, we have designed and tested a novel chip-based microfluidic platform, containing a 100-µL or 20-µL solid-phase microextraction column, packed by centrifugation, which supports nuclear material mass and solution volume reductions of 90% or more compared to standard methods. Quantitative recovery of 28 trace elements in uranium was demonstrated using a UTEVA chromatographic resin column, and trace element recovery from thorium (a surrogate for plutonium) was similarly demonstrated using anion exchange resin AG MP-1. Of ninemore » materials tested, compatibility of polyvinyl chloride (PVC), polypropylene (PP), and polytetrafluoroethylene (PTFE) chips with the strong nitric acid media was highest. Finally, the microcolumns can be incorporated into a variety of devices and systems, and can be loaded with other solid-phase resins for trace element assay in high-purity metals.« less

  12. Solid-phase extraction microfluidic devices for matrix removal in trace element assay of actinide materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Jun; Manard, Benjamin Thomas; Castro, Alonso

    Advances in sample nebulization and injection technology have significantly reduced the volume of solution required for trace impurity analysis in plutonium and uranium materials. Correspondingly, we have designed and tested a novel chip-based microfluidic platform, containing a 100-µL or 20-µL solid-phase microextraction column, packed by centrifugation, which supports nuclear material mass and solution volume reductions of 90% or more compared to standard methods. Quantitative recovery of 28 trace elements in uranium was demonstrated using a UTEVA chromatographic resin column, and trace element recovery from thorium (a surrogate for plutonium) was similarly demonstrated using anion exchange resin AG MP-1. Of ninemore » materials tested, compatibility of polyvinyl chloride (PVC), polypropylene (PP), and polytetrafluoroethylene (PTFE) chips with the strong nitric acid media was highest. Finally, the microcolumns can be incorporated into a variety of devices and systems, and can be loaded with other solid-phase resins for trace element assay in high-purity metals.« less

  13. Improved chip design for integrated solid-phase microextraction in on-line proteomic sample preparation.

    PubMed

    Bergkvist, Jonas; Ekström, Simon; Wallman, Lars; Löfgren, Mikael; Marko-Varga, György; Nilsson, Johan; Laurell, Thomas

    2002-04-01

    A recently introduced silicon microextraction chip (SMEC), used for on-line proteomic sample preparation, has proved to facilitate the process of protein identification by sample clean up and enrichment of peptides. It is demonstrated that a novel grid-SMEC design improves the operating characteristics for solid-phase microextraction, by reducing dispersion effects and thereby improving the sample preparation conditions. The structures investigated in this paper are treated both numerically and experimentally. The numerical approach is based on finite element analysis of the microfluidic flow in the microchip. The analysis is accomplished by use of the computational fluid dynamics-module FLOTRAN in the ANSYS software package. The modeling and analysis of the previously reported weir-SMEC design indicates some severe drawbacks, that can be reduced by changing the microextraction chip geometry to the grid-SMEC design. The overall analytical performance was thereby improved and also verified by experimental work. Matrix-assisted laser desorption/ionization mass spectra of model peptides extracted from both the weir-SMEC and the new grid-SMEC support the numerical analysis results. Further use of numerical modeling and analysis of the SMEC structures is also discussed and suggested in this work.

  14. Detection of influenza A virus subtypes using a solid-phase PCR microplate chip assay.

    PubMed

    Sun, Xin-Cheng; Wang, YunLong; Yang, Liping; Zhang, HuiRu

    2015-01-01

    A rapid and sensitive microplate chip based on solid PCR was developed to identify influenza A subtypes. A simple ultraviolet cross-linking method was used to immobilize DNA probes on pretreated microplates. Solid-phase PCR was proven to be a convenient method for influenza A screening. The sensitivity of the microplate chip was 10(-3) μg/mL for the enzymatic colorimetric method and 10(-4) μg/mL for the fluorescence method. The 10 sets of primers and probes for the microplate chip were highly specific and did not interfere with each other. These results suggest that the microplate chip based on solid PCR can be used to rapidly detect universal influenza A and its subtypes. This platform can also be used to detect other pathogenic microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. A dipole-assisted solid-phase extraction microchip combined with inductively coupled plasma-mass spectrometry for online determination of trace heavy metals in natural water.

    PubMed

    Shih, Tsung-Ting; Hsu, I-Hsiang; Chen, Shun-Niang; Chen, Ping-Hung; Deng, Ming-Jay; Chen, Yu; Lin, Yang-Wei; Sun, Yuh-Chang

    2015-01-21

    We employed a polymeric material, poly(methyl methacrylate) (PMMA), for fabricating a microdevice and then implanted the chlorine (Cl)-containing solid-phase extraction (SPE) functionality into the PMMA chip to develop an innovative on-chip dipole-assisted SPE technique. Instead of the ion-ion interactions utilized in on-chip SPE techniques, the dipole-ion interactions between the highly electronegative C-Cl moieties in the channel interior and the positively charged metal ions were employed to facilitate the on-chip SPE procedures. Furthermore, to avoid labor-intensive manual manipulation, a programmable valve manifold was designed as an interface combining the dipole-assisted SPE microchip and inductively coupled plasma-mass spectrometry (ICP-MS) to achieve the fully automated operation. Under the optimized operation conditions for the established system, the detection limits for each analyte ion were obtained based on three times the standard deviation of seven measurements of the blank eluent solution. The limits ranged from 3.48 to 20.68 ng L(-1), suggesting that this technique appears uniquely suited for determining the levels of heavy metal ions in natural water. Indeed, a series of validation procedures demonstrated that the developed method could be satisfactorily applied to the determination of trace heavy metals in natural water. Remarkably, the developed device was durable enough to be reused more than 160 times without any loss in its analytical performance. To the best of our knowledge, this is the first study reporting on the combination of a dipole-assisted SPE microchip and elemental analysis instrument for the online determination of trace heavy metal ions.

  16. Total integrated slidable and valveless solid phase extraction-polymerase chain reaction-capillary electrophoresis microdevice for mini Y chromosome short tandem repeat genotyping.

    PubMed

    Kim, Yong Tae; Lee, Dohwan; Heo, Hyun Young; Sim, Jeong Eun; Woo, Kwang Man; Kim, Do Hyun; Im, Sung Gap; Seo, Tae Seok

    2016-04-15

    A fully integrated slidable and valveless microsystem, which performs solid phase DNA extraction (SPE), micro-polymerase chain reaction (μPCR) and micro-capillary electrophoresis (μCE) coupled with a portable genetic analyser, has been developed for forensic genotyping. The use of a slidable chip, in which a 1 μL-volume of the PCR chamber was patterned at the center, does not necessitate any microvalves and tubing systems for fluidic control. The functional micro-units of SPE, μPCR, and μCE were fabricated on a single glass wafer by conventional photolithography, and the integrated microdevice consists of three layers: from top to bottom, a slidable chip, a channel wafer in which a SPE chamber, a mixing microchannel, and a CE microchannel were fabricated, and a Ti/Pt resistance temperature detector (RTD) wafer. The channel glass wafer and the RTD glass wafer were thermally bonded, and the slidable chip was placed on the designated functional unit. The entire process from the DNA extraction using whole human blood sample to identification of target Y chromosomal short tandem repeat (STR) loci was serially carried out with simply sliding the slidable chamber from one to another functional unit. Monoplex and multiplex detection of amelogenin and mini Y STR loci were successfully analysed on the integrated slidable SPE-μPCR-μCE microdevice by using 1 μL whole human blood within 60 min. The proposed advanced genetic analysis microsystem is capable of point-of-care DNA testing with sample-in-answer-out capability, more importantly, without use of complicated microvalves and microtubing systems for liquid transfer. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Acrylamide: formation, occurrence in food products, detection methods, and legislation.

    PubMed

    Arvanitoyannis, Ioannis S; Dionisopoulou, Niki

    2014-01-01

    This review aims at summarizing the most recent updates in the field of acrylamide (AA) formation (mechanism, conditions) and the determination of AA in a number of foods (fried or baked potatoes, chips, coffee, bread, etc). The methods applied for AA detection [Capillary Electrophoresis-Mass Spectrometry (CE-MS), Liquid Chromatography-Mass Spectrometry (LC-MS), Non-Aqueous Capillary Electrophoresis (NACE), High Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS), Pressurized Fluid Extraction (PFE), Matrix Solid-Phase Dispersion (MSPD), Gas Chromatography-Mass Spectrometry (GC-MS), Solid-Phase MicroExtraction-Gas Chromatography (SPME-GC), Enzyme Linked Immunosorbent Assay (ELISA), and MicroEmulsion ElectroKinetic Chromatography (MEEKC) are presented and commented. Several informative figures and tables are included to show the effect of conditions (temperature, time) on the AA formation. A section is also included related to AA legislation in EU and US.

  18. Fabrication of a Dipole-assisted Solid Phase Extraction Microchip for Trace Metal Analysis in Water Samples

    PubMed Central

    Chen, Ping-Hung; Chen, Shun-Niang; Tseng, Sheng-Hao; Deng, Ming-Jay; Lin, Yang-Wei; Sun, Yuh-Chang

    2016-01-01

    This paper describes a fabrication protocol for a dipole-assisted solid phase extraction (SPE) microchip available for trace metal analysis in water samples. A brief overview of the evolution of chip-based SPE techniques is provided. This is followed by an introduction to specific polymeric materials and their role in SPE. To develop an innovative dipole-assisted SPE technique, a chlorine (Cl)-containing SPE functionality was implanted into a poly(methyl methacrylate) (PMMA) microchip. Herein, diverse analytical techniques including contact angle analysis, Raman spectroscopic analysis, and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analysis were employed to validate the utility of the implantation protocol of the C-Cl moieties on the PMMA. The analytical results of the X-ray absorption near-edge structure (XANES) analysis also demonstrated the feasibility of the Cl-containing PMMA used as an extraction medium by virtue of the dipole-ion interactions between the highly electronegative C-Cl moieties and the positively charged metal ions. PMID:27584954

  19. Optimization of multiplexed PCR on an integrated microfluidic forensic platform for rapid DNA analysis.

    PubMed

    Estes, Matthew D; Yang, Jianing; Duane, Brett; Smith, Stan; Brooks, Carla; Nordquist, Alan; Zenhausern, Frederic

    2012-12-07

    This study reports the design, prototyping, and assay development of multiplexed polymerase chain reaction (PCR) on a plastic microfluidic device. Amplification of 17 DNA loci is carried out directly on-chip as part of a system for continuous workflow processing from sample preparation (SP) to capillary electrophoresis (CE). For enhanced performance of on-chip PCR amplification, improved control systems have been developed making use of customized Peltier assemblies, valve actuators, software, and amplification chemistry protocols. Multiple enhancements to the microfluidic chip design have been enacted to improve the reliability of sample delivery through the various on-chip modules. This work has been enabled by the encapsulation of PCR reagents into a solid phase material through an optimized Solid Phase Encapsulating Assay Mix (SPEAM) bead-based hydrogel fabrication process. SPEAM bead technology is reliably coupled with precise microfluidic metering and dispensing for efficient amplification and subsequent DNA short tandem repeat (STR) fragment analysis. This provides a means of on-chip reagent storage suitable for microfluidic automation, with the long shelf-life necessary for point-of-care (POC) or field deployable applications. This paper reports the first high quality 17-plex forensic STR amplification from a reference sample in a microfluidic chip with preloaded solid phase reagents, that is designed for integration with up and downstream processing.

  20. Automatic extraction and processing of small RNAs on a multi-well/multi-channel (M&M) chip.

    PubMed

    Zhong, Runtao; Flack, Kenneth; Zhong, Wenwan

    2012-12-07

    The study of the regulatory roles in small RNAs can be accelerated by techniques that permit simple, low-cost, and rapid extraction of small RNAs from a small number of cells. In order to ensure highly specific and sensitive detection, the extracted RNAs should be free of the background nucleic acids and present stably in a small volume. To meet these criteria, we designed a multi-well/multi-channel (M&M) chip to carry out automatic and selective isolation of small RNAs via solid-phase extraction (SPE), followed by reverse-transcription (RT) to convert them to the more stable cDNAs in a final volume of 2 μL. Droplets containing buffers for RNA binding, washing, and elution were trapped in microwells, which were connected by one channel, and suspended in mineral oil. The silica magnetic particles (SMPs) for SPE were moved along the channel from well to well, i.e. in between droplets, by a fixed magnet and a translation stage, allowing the nucleic acid fragments to bind to the SMPs, be washed, and then be eluted for RT reaction within 15 minutes. RNAs shorter than 63 nt were selectively enriched from cell lysates, with recovery comparable to that of a commercial kit. Physical separation of the droplets on our M&M chip allowed the usage of multiple channels for parallel processing of multiple samples. It also permitted smooth integration with on-chip RT-PCR, which simultaneously detected the target microRNA, mir-191, expressed in fewer than 10 cancer cells. Our results have demonstrated that the M&M chip device is a valuable and cost-saving platform for studying small RNA expression patterns in a limited number of cells with reasonable sample throughput.

  1. Direct Sampling and Analysis from Solid Phase Extraction Cards using an Automated Liquid Extraction Surface Analysis Nanoelectrospray Mass Spectrometry System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walworth, Matthew J; ElNaggar, Mariam S; Stankovich, Joseph J

    Direct liquid extraction based surface sampling, a technique previously demonstrated with continuous flow and autonomous pipette liquid microjunction surface sampling probes, has recently been implemented as the Liquid Extraction Surface Analysis (LESA) mode on the commercially available Advion NanoMate chip-based infusion nanoelectrospray ionization system. In the present paper, the LESA mode was applied to the analysis of 96-well format custom solid phase extraction (SPE) cards, with each well consisting of either a 1 or 2 mm diameter monolithic hydrophobic stationary phase. These substrate wells were conditioned, loaded with either single or multi-component aqueous mixtures, and read out using the LESAmore » mode of a TriVersa NanoMate or a Nanomate 100 coupled to an ABI/Sciex 4000QTRAPTM hybrid triple quadrupole/linear ion trap mass spectrometer and a Thermo LTQ XL linear ion trap mass spectrometer. Extraction conditions, including extraction/nanoESI solvent composition, volume, and dwell times, were optimized in the analysis of targeted compounds. Limit of detection and quantitation as well as analysis reproducibility figures of merit were measured. Calibration data was obtained for propranolol using a deuterated internal standard which demonstrated linearity and reproducibility. A 10x increase in signal and cleanup of micromolar Angiotensin II from a concentrated salt solution was demonstrated. Additionally, a multicomponent herbicide mixture at ppb concentration levels was analyzed using MS3 spectra for compound identification in the presence of isobaric interferences.« less

  2. Real-time and label-free ring-resonator monitoring of solid-phase recombinase polymerase amplification.

    PubMed

    Sabaté Del Río, Jonathan; Steylaerts, Tim; Henry, Olivier Y F; Bienstman, Peter; Stakenborg, Tim; Van Roy, Wim; O'Sullivan, Ciara K

    2015-11-15

    In this work we present the use of a silicon-on-insulator (SOI) chip featuring an array of 64 optical ring resonators used as refractive index sensors for real-time and label-free DNA detection. Single ring functionalisation was achieved using a click reaction after precise nanolitre spotting of specific hexynyl-terminated DNA capture probes to link to an azido-silanised chip surface. To demonstrate detectability using the ring resonators and to optimise conditions for solid-phase amplification, hybridisation between short 25-mer single stranded DNA (ssDNA) fragments and a complementary capture probe immobilised on the surface of the ring resonators was carried out and detected through the shift in the resonant wavelength. Using the optimised conditions demonstrated via the solid-phase hybridisation, a 144-bp double stranded DNA (dsDNA) was then detected directly using recombinase and polymerase proteins through on-chip target amplification and solid-phase elongation of immobilised forward primers on specific rings, at a constant temperature of 37°C and in less than 60min, achieving a limit of detection of 7.8·10(-13)M (6·10(5) copies in 50µL). The use of an automatic liquid handler injection instrument connected to an integrated resealable chip interface (RCI) allowed programmable multiple injection protocols. Air plugs between different solutions were introduced to prevent intermixing and a proportional-integral-derivative (PID) temperature controller minimised temperature based drifts. Published by Elsevier B.V.

  3. Plasma micro-nanotextured polymeric micromixer for DNA purification with high efficiency and dynamic range.

    PubMed

    Kastania, Athina S; Tsougeni, Katerina; Papadakis, George; Gizeli, Electra; Kokkoris, George; Tserepi, Angeliki; Gogolides, Evangelos

    2016-10-26

    We present a polymeric microfluidic chip capable of purifying DNA through solid phase extraction. It is designed to be used as a module of an integrated Lab-on-chip platform for pathogen detection, but it can also be used as a stand-alone device. The microfluidic channels are oxygen plasma micro-nanotextured, i.e. randomly roughened in the micro-nano scale, a process creating high surface area as well as high density of carboxyl groups (COOH). The COOH groups together with a buffer that contains polyethylene glycol (PEG), NaCl and ethanol are able to bind DNA on the microchannel surface. The chip design incorporates a mixer so that sample and buffer can be efficiently mixed on chip under continuous flow. DNA is subsequently eluted in water. The chip is able to isolate DNA with high recovery efficiency (96± 11%) in an extremely large dynamic range of prepurified Salmonella DNA as well as from Salmonella cell lysates that correspond to a range of 5 to 1.9 × 10 8  cells (0.263 fg to 2 × 500 ng). The chip was evaluated via absorbance measurements, polymerase chain reaction (PCR), and gel electrophoresis. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Chip-based molecularly imprinted monolithic capillary array columns coated GO/SiO2 for selective extraction and sensitive determination of rhodamine B in chili powder.

    PubMed

    Zhai, Haiyun; Huang, Lu; Chen, Zuanguang; Su, Zihao; Yuan, Kaisong; Liang, Guohuan; Pan, Yufang

    2017-01-01

    A novel solid-phase extraction chip embedded with array columns of molecularly imprinted polymer-coated silanized graphene oxide (GO/SiO2-MISPE) was established to detect trace rhodamine B (RB) in chili powder. GO/SiO2-MISPE monolithic columns for RB detection were prepared by optimizing the supporting substrate, template, and polymerizing monomer under mild water bath conditions. Adsorption capacity and specificity, which are critical properties for the application of the GO/SiO2-MISPE monolithic column, were investigated. GO/SiO2-MIP was examined by scanning electron microscopy (SEM) and Fourier transform-infrared spectroscopy. The recovery and the intraday and interday relative standard deviations for RB ranged from 83.7% to 88.4% and 2.5% to 4.0% and the enrichment factors were higher than 110-fold. The chip-based array columns effectively eliminated impurities in chili powder, indicating that the chip-based GO/SiO2-MISPE method was reliable for RB detection in food samples using high-performance liquid chromatography. Accordingly, this method has direct applications for monitoring potentially harmful dyes in processed food. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Pressure-driven mesofluidic platform integrating automated on-chip renewable micro-solid-phase extraction for ultrasensitive determination of waterborne inorganic mercury.

    PubMed

    Portugal, Lindomar A; Laglera, Luis M; Anthemidis, Aristidis N; Ferreira, Sérgio L C; Miró, Manuel

    2013-06-15

    A dedicated pressure-driven mesofluidic platform incorporating on-chip sample clean-up and analyte preconcentration is herein reported for expedient determination of trace level concentrations of waterborne inorganic mercury. Capitalizing upon the Lab-on-a-Valve (LOV) concept, the mesofluidic device integrates on-chip micro-solid phase extraction (μSPE) in automatic disposable mode followed by chemical vapor generation and gas-liquid separation prior to in-line atomic fluorescence spectrometric detection. In contrast to prevailing chelating sorbents for Hg(II), bare poly(divinylbenzene-N-vinylpyrrolidone) copolymer sorptive beads were resorted to efficient uptake of Hg(II) in hydrochloric acid milieu (pH=2.3) without the need for metal derivatization nor pH adjustment of prior acidified water samples for preservation to near-neutral conditions. Experimental variables influencing the sorptive uptake and retrieval of target species and the evolvement of elemental mercury within the miniaturized integrated reaction chamber/gas-liquid separator were investigated in detail. Using merely <10 mg of sorbent, the limits of detection and quantification at the 3s(blank) and 10s(blank) levels, respectively, for a sample volume of 3 mL were 12 and 42 ng L(-1) Hg(II) with a dynamic range extending up to 5.0 μg L(-1). The proposed mesofluidic platform copes with the requirements of regulatory bodies (US-EPA, WHO, EU-Commission) for drinking water quality and surface waters that endorse maximum allowed concentrations of mercury spanning from 0.07 to 6.0 μg L(-1). Demonstrated with the analysis of aqueous samples of varying matrix complexity, the LOV approach afforded reliable results with relative recoveries of 86-107% and intermediate precision down to 9% in the renewable μSPE format. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Biomonitoring of perfluorinated compounds in a drop of blood.

    PubMed

    Mao, Pan; Wang, Daojing

    2015-06-02

    Biomonitoring of pollutants and their metabolites and derivatives using biofluids provides new opportunities for spatiotemporal assessment of human risks to environmental exposures. Perfluorinated compounds (PFCs) have been used widely in industry and pose significant environmental concerns due to their stability and bioaccumulation in humans and animals. However, current methods for extraction and measurement of PFCs require relatively large volumes (over one hundred microliters) of blood samples, and therefore, are not suitable for frequent blood sampling and longitudinal biomonitoring of PFCs. We have developed a new microassay, enabled by our silicon microfluidic chip platform, for analyzing PFCs in small volumes (less than five microliters) of blood. Our assay integrates on-chip solid-phase extraction (SPE) with online nanoflow liquid chromatography-electrospray ionization-mass spectrometry (nanoLC-ESI-MS) detection. We demonstrated high sample recovery, excellent interday and intraday accuracy and precision, and a limit of detection down to 50 femtogram of PFCs, in one microliter of human plasma. We validated our assay performance using pooled human plasma and NIST SRM 1950 samples. Our microfluidic chip-based assay may enable frequent longitudinal biomonitoring of PFCs and other environmental toxins using a finger prick of blood, thereby providing new insights into their bioaccumulation, bioavailability, and toxicity.

  7. A review on solid phase extraction of actinides and lanthanides with amide based extractants.

    PubMed

    Ansari, Seraj A; Mohapatra, Prasanta K

    2017-05-26

    Solid phase extraction is gaining attention from separation scientists due to its high chromatographic utility. Though both grafted and impregnated forms of solid phase extraction resins are popular, the later is easy to make by impregnating a given organic extractant on to an inert solid support. Solid phase extraction on an impregnated support, also known as extraction chromatography, combines the advantages of liquid-liquid extraction and the ion exchange chromatography methods. On the flip side, the impregnated extraction chromatographic resins are less stable against leaching out of the organic extractant from the pores of the support material. Grafted resins, on the other hand, have a higher stability, which allows their prolong use. The goal of this article is a brief literature review on reported actinide and lanthanide separation methods based on solid phase extractants of both the types, i.e., (i) ligand impregnation on the solid support or (ii) ligand functionalized polymers (chemically bonded resins). Though the literature survey reveals an enormous volume of studies on the extraction chromatographic separation of actinides and lanthanides using several extractants, the focus of the present article is limited to the work carried out with amide based ligands, viz. monoamides, diamides and diglycolamides. The emphasis will be on reported applied experimental results rather than on data pertaining fundamental metal complexation. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Simple Approaches to Minimally-Instrumented, Microfluidic-Based Point-of-Care Nucleic Acid Amplification Tests

    PubMed Central

    Mauk, Michael G.; Song, Jinzhao; Liu, Changchun; Bau, Haim H.

    2018-01-01

    Designs and applications of microfluidics-based devices for molecular diagnostics (Nucleic Acid Amplification Tests, NAATs) in infectious disease testing are reviewed, with emphasis on minimally instrumented, point-of-care (POC) tests for resource-limited settings. Microfluidic cartridges (‘chips’) that combine solid-phase nucleic acid extraction; isothermal enzymatic nucleic acid amplification; pre-stored, paraffin-encapsulated lyophilized reagents; and real-time or endpoint optical detection are described. These chips can be used with a companion module for separating plasma from blood through a combined sedimentation-filtration effect. Three reporter types: Fluorescence, colorimetric dyes, and bioluminescence; and a new paradigm for end-point detection based on a diffusion-reaction column are compared. Multiplexing (parallel amplification and detection of multiple targets) is demonstrated. Low-cost detection and added functionality (data analysis, control, communication) can be realized using a cellphone platform with the chip. Some related and similar-purposed approaches by others are surveyed. PMID:29495424

  9. Solid-phase based on-chip DNA purification through a valve-free stepwise injection of multiple reagents employing centrifugal force combined with a hydrophobic capillary barrier pressure.

    PubMed

    Zhang, Hainan; Tran, Hong Hanh; Chung, Bong Hyun; Lee, Nae Yoon

    2013-03-21

    In this paper, we demonstrate a simple technique for sequentially introducing multiple sample liquids into microchannels driven by centrifugal force combined with a hydrophobic barrier pressure and apply the technique for performing solid-phase based on-chip DNA purification. Three microchannels with varying widths, all equipped with independent sample reservoirs at the inlets, were fabricated on a hydrophobic elastomer, poly(dimethylsiloxane) (PDMS). First, glass beads were packed inside the reaction chamber, and a whole cell containing the DNA extract was introduced into the widest channel by applying centrifugal force for physical adsorption of the DNA onto the glass beads. Next, washing and elution solutions were sequentially introduced into the intermediate and narrowest microchannels, respectively, by gradually increasing the amount of centrifugal force. Through a precise manipulation of the centrifugal force, the DNA adsorbed onto the glass beads was successfully washed and eluted in a continuous manner without the need to introduce each solution manually. A stepwise injection of liquids was successfully demonstrated using multiple ink solutions, the results of which corresponded well with the theoretical analyses. As a practical application, the D1S80 locus of human genomic DNA, which is widely used for forensic purposes, was successfully purified using the microdevice introduced in this study, as demonstrated through successful target amplification. This will pave the way for the construction of a control-free valve system for realizing on-chip DNA purification, which is one of the most labor-intensive and hard-to-miniaturize components, on a greatly simplified and miniaturized platform employing hydrophobic PDMS.

  10. Comparison of methods and optimisation of the analysis of fumonisins B₁ and B₂ in masa flour, an alkaline cooked corn product.

    PubMed

    De Girolamo, A; Pascale, M; Visconti, A

    2011-05-01

    A comparison study of different extraction and clean-up procedures for the liquid chromatographic analysis of fumonisins B(1) (FB(1)) and B(2) (FB(2)) in corn masa flour was performed. The procedures included extraction (heat or room temperature) with acidic conditions or EDTA-containing solvents, and clean-up by immunoaffinity or C18 solid-phase extraction columns. Thereafter an analytical method was optimised using extraction with an acidic mixture of methanol-acetonitrile-citrate/phosphate buffer, clean-up through the immunoaffinity column and determination of fumonisins by liquid chromatography with automated pre-column derivatisation with o-phthaldialdehyde reagent. Recovery experiments performed on yellow, white and blue masa flours at spiking levels of 400, 800 and 1200 µg kg(-1) FB(1) and of 100, 200 and 300 µg kg(-1) FB(2) gave overall mean recoveries of 99% (±6%) for FB(1) and 88% (±6%) for FB(2). Good recoveries (higher than 90% for both FB(1) and FB(2)) were also obtained with corn tortilla chips. The limits of quantification of the method (signal-to-noise ratio of 10) were 25 µg kg(-1) for FB(1) and 17 µg kg(-1) for FB(2). The method was tested on different commercial corn masa flours as well as on white and yellow corn tortilla chips, showing fumonisin contamination levels (FB(1) + FB(2)) up to 1800 µg kg(-1) (FB(1) + FB(2)) in masa flour and 960 µg kg(-1) in tortilla chips. Over 30% of masa flours originating from Mexico exceeded the European Union maximum permitted level.

  11. A novel lab-on-chip platform with integrated solid phase PCR and Supercritical Angle Fluorescence (SAF) microlens array for highly sensitive and multiplexed pathogen detection.

    PubMed

    Hung, Tran Quang; Chin, Wai Hoe; Sun, Yi; Wolff, Anders; Bang, Dang Duong

    2017-04-15

    Solid-phase PCR (SP-PCR) has become increasingly popular for molecular diagnosis and there have been a few attempts to incorporate SP-PCR into lab-on-a-chip (LOC) devices. However, their applicability for on-line diagnosis is hindered by the lack of sensitive and portable on-chip optical detection technology. In this paper, we addressed this challenge by combining the SP-PCR with super critical angle fluorescence (SAF) microlens array embedded in a microchip. We fabricated miniaturized SAF microlens array as part of a microfluidic chamber in thermoplastic material and performed multiplexed SP-PCR directly on top of the SAF microlens array. Attribute to the high fluorescence collection efficiency of the SAF microlens array, the SP-PCR assay on the LOC platform demonstrated a high sensitivity of 1.6 copies/µL, comparable to off-chip detection using conventional laser scanner. The combination of SP-PCR and SAF microlens array allows for on-chip highly sensitive and multiplexed pathogen detection with low-cost and compact optical components. The LOC platform would be widely used as a high-throughput biosensor to analyze food, clinical and environmental samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. HPLC-DAD method development and validation for the quantification of hydroxymethylfurfural in corn chips by means of response surface optimisation.

    PubMed

    Salvatierra Virgen, Sara; Ceballos-Magaña, Silvia Guillermina; Salvatierra-Stamp, Vilma Del Carmen; Sumaya-Martínez, Maria Teresa; Martínez-Martínez, Francisco Javier; Muñiz-Valencia, Roberto

    2017-12-01

    In recent years, there has been an increased concern about the presence of toxic compounds derived from the Maillard reaction produced during food cooking at high temperatures. The main toxic compounds derived from this reaction are acrylamide and hydroxymethylfurfural (HMF). The majority of analytical methods require sample treatments using solvents which are highly polluting for the environment. The difficulty of quantifying HMF in complex fried food matrices encourages the development of new analytical methods. This paper provides a rapid, sensitive and environmentally-friendly analytical method for the quantification of HMF in corn chips using HPLC-DAD. Chromatographic separation resulted in a baseline separation for HMF in 3.7 min. Sample treatment for corn chip samples first involved a leaching process using water and afterwards a solid-phase extraction (SPE) using HLB-Oasis polymeric cartridges. Sample treatment optimisation was carried out by means of Box-Behnken fractional factorial design and Response Surface Methodolog y to examine the effects of four variables (sample weight, pH, sonication time and elution volume) on HMF extraction from corn chips. The SPE-HPLC-DAD method was validated. The limits of detection and quantification were 0.82 and 2.20 mg kg -1 , respectively. Method precision was evaluated in terms of repeatability and reproducibility as relative standard deviations (RSDs) using three concentration levels. For repeatability, RSD values were 6.9, 3.6 and 2.0%; and for reproducibility 18.8, 7.9 and 2.9%. For a ruggedness study the Yuden test was applied and the result demonstrated the method as robust. The method was successfully applied to different corn chip samples.

  13. New immobilisation protocol for the template used in solid-phase synthesis of MIP nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Lu; Muhammad, Turghun; Yakup, Burabiye; Piletsky, Sergey A.

    2017-06-01

    As a novel imprinting method, solid-phase synthesis has proven to be a promising approach to prepare polymer nanoparticles with specific recognition sites for a template molecule. In this method, imprinted polymer nanoparticles were synthesized using template immobilized on a solid support. Herein, preparation of immobilized templates on quartz chips through homogeneous route was reported as an efficient alternative strategy to heterogeneous one. The template molecule indole-3-butyric acid (IBA) was reacted with 3-aminopropyltriethoxysilane (APTES) to produce silylated template (IBA-APTES), and it was characterized by IR, 1H NMR and GC-MS. Then, the silylated template molecule was grafted onto the activated surfaces of quartz chip to prepare immobilized template (SiO2@IBA-APTES). The immobilization was confirmed by contact angle, XPS, UV and fluorescence measurement. Immobilization protocol has shown good reproducibility and stability of the immobilized template. MIP nanoparticles were prepared with high selectivity toward the molecule immobilized onto the solid surface. This provides a new approach for the development of molecularly imprinted nanoparticles.

  14. Two-dimensional solid-phase extraction strategy for the selective enrichment of aminoglycosides in milk.

    PubMed

    Shen, Aijin; Wei, Jie; Yan, Jingyu; Jin, Gaowa; Ding, Junjie; Yang, Bingcheng; Guo, Zhimou; Zhang, Feifang; Liang, Xinmiao

    2017-03-01

    An orthogonal two-dimensional solid-phase extraction strategy was established for the selective enrichment of three aminoglycosides including spectinomycin, streptomycin, and dihydrostreptomycin in milk. A reversed-phase liquid chromatography material (C 18 ) and a weak cation-exchange material (TGA) were integrated in a single solid-phase extraction cartridge. The feasibility of two-dimensional clean-up procedure that experienced two-step adsorption, two-step rinsing, and two-step elution was systematically investigated. Based on the orthogonality of reversed-phase and weak cation-exchange procedures, the two-dimensional solid-phase extraction strategy could minimize the interference from the hydrophobic matrix existing in traditional reversed-phase solid-phase extraction. In addition, high ionic strength in the extracts could be effectively removed before the second dimension of weak cation-exchange solid-phase extraction. Combined with liquid chromatography and tandem mass spectrometry, the optimized procedure was validated according to the European Union Commission directive 2002/657/EC. A good performance was achieved in terms of linearity, recovery, precision, decision limit, and detection capability in milk. Finally, the optimized two-dimensional clean-up procedure incorporated with liquid chromatography and tandem mass spectrometry was successfully applied to the rapid monitoring of aminoglycoside residues in milk. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Quantitative ionspray liquid chromatographic/tandem mass spectrometric determination of reserpine in equine plasma.

    PubMed

    Anderson, M A; Wachs, T; Henion, J D

    1997-02-01

    A method based on ionspray liquid chromatography/tandem mass spectrometry (LC/MS/MS) was developed for the determination of reserpine in equine plasma. A comparison was made of the isolation of reserpine from plasma by liquid-liquid extraction and by solid-phase extraction. A structural analog, rescinnamine, was used as the internal standard. The reconstituted extracts were analyzed by ionspray LC/MS/MS in the selected reaction monitoring (SRM) mode. The calibration graph for reserpine extracted from equine plasma obtained using liquid-liquid extraction was linear from 10 to 5000 pg ml-1 and that using solid-phase extraction from 100 to 5000 pg ml-1. The lower level of quantitation (LLQ) using liquid-liquid and solid-phase extraction was 50 and 200 pg ml-1, respectively. The lower level of detection for reserpine by LC/MS/MS was 10 pg ml-1. The intra-assay accuracy did not exceed 13% for liquid-liquid and 12% for solid-phase extraction. The recoveries for the LLQ were 68% for liquid-liquid and 58% for solid-phase extraction.

  16. Lab-on-a-Valve Mesofluidic Platform for On-Chip Handling of Carbon-Coated Titanium Dioxide Nanotubes in a Disposable Microsolid Phase-Extraction Mode.

    PubMed

    García-Valverde, María Teresa; Rosende, María; Lucena, Rafael; Cárdenas, Soledad; Miró, Manuel

    2018-04-03

    Mesofluidic lab-on-a-valve (LOV) platforms have been proven suitable to accommodate automatic micro-solid-phase extraction (μSPE) approaches with on-chip handling of micrometer-bead materials in a fully disposable mode to prevent sample cross-contamination and pressure-drop effects. The efficiency of the extraction process notably depends upon the sorptive capacity of the material because the sorbent mass is usually down to 10 mg in LOV devices. Nanomaterials, capitalizing upon their enhanced surface-to-volume ratio and diversity of potential chemical moieties, are appealing alternatives to microbead sorbents. However, the handling and confinement of nanomaterials in fluidic chip structures have been challenging to date. This is most likely a consequence of the aggregation tendency of a number of nanomaterials, including carbon-based sorbents, that leads to excessive back-pressure in flowing systems along with irreproducible bead loading. This paper addresses these challenges by ad hoc synthesis of hybrid nanomaterials, such as porous carbon-coated titanium dioxide nanotubes (TiO 2 -NT@pC). Tailoring of the surface polarity of the carbon coating is proven to foster the dispersion of TiO 2 -NT@pC in LOV settings while affording superior extraction capability of moderately nonpolar species from aqueous matrices. The determination of trace-level concentrations of butylparaben (BPB) and triclosan (TCS) in seawater samples is herein selected as a proof-of-concept of the exploitation of disposable nanomaterials in LOV. The mesofluidic platform accommodating μSPE features online hyphenation to liquid chromatography/tandem mass spectrometry (LC/MS/MS) for reliable determination of the target analytes with excellent limits of detection (0.5 and 0.6 ng/L for BPB and TCS, respectively) and intermediate precision (relative standard deviation <5.8%). For 5.0 mL of sample and 200 μL of eluent, enrichment factors of 23 and 14 with absolute extraction efficiencies of 90% ± 14% and 58 ± 8% for BPB and TCS, respectively, were obtained. The relative recovery values of 107% (BPB) and 97% (TCS) in seawater demonstrate the applicability of online LOV-LC/MS/MS using TiO 2 -NT@pC for handling troublesome environmental samples.

  17. Multifunctional Au NPs-polydopamine-polyvinylidene fluoride membrane chips as probe for enrichment and rapid detection of organic contaminants.

    PubMed

    Wang, Saihua; Niu, Hongyun; Cai, Yaqi; Cao, Dong

    2018-05-01

    High-throughput and rapid detection of hazardous compounds in complicated samples is essential for the solution of environmental problems. We have prepared a "pH-paper-like" chip which can rapidly "indicate" the occurrence of organic contaminants just through dipping the chip in water samples for short time followed by fast analysis with surface-assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI-TOF MS). The chips are composed of polyvinylidene fluoride membrane (PVDFM), polydopamine (PDA) film and Au nanoparticles (Au NPs), which are layer-by-layer assembled according to the adhesion, self-polymerization and reduction property of dopamine. In the Au NPs loaded polydopamine-polyvinylidene fluoride membrane (Au NPs-PDA-PVDFM) chips, PVDFM combined with PDA film are responsible for the enrichment of organic analyte through hydrophobic interactions and π-π stacking; Au NPs serve as effective SALDI matrix for the rapid detection of target analyte. After dipping into water solution for minutes, the Au-PDA-PVDFM chips with enriched organic analytes can be detected directly with SALDI-TOF MS. The good solid-phase extraction performance of the PDA-PVDFM components, remarkable matrix effect of the loaded AuNPs, and sensitivity of the SALDI-TOF MS technique ensure excellent sensitivity and reproducibility for the quantification of trace levels of organic contaminants in environmental water samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Parallel RNA extraction using magnetic beads and a droplet array.

    PubMed

    Shi, Xu; Chen, Chun-Hong; Gao, Weimin; Chao, Shih-Hui; Meldrum, Deirdre R

    2015-02-21

    Nucleic acid extraction is a necessary step for most genomic/transcriptomic analyses, but it often requires complicated mechanisms to be integrated into a lab-on-a-chip device. Here, we present a simple, effective configuration for rapidly obtaining purified RNA from low concentration cell medium. This Total RNA Extraction Droplet Array (TREDA) utilizes an array of surface-adhering droplets to facilitate the transportation of magnetic purification beads seamlessly through individual buffer solutions without solid structures. The fabrication of TREDA chips is rapid and does not require a microfabrication facility or expertise. The process takes less than 5 minutes. When purifying mRNA from bulk marine diatom samples, its repeatability and extraction efficiency are comparable to conventional tube-based operations. We demonstrate that TREDA can extract the total mRNA of about 10 marine diatom cells, indicating that the sensitivity of TREDA approaches single-digit cell numbers.

  19. Parallel RNA extraction using magnetic beads and a droplet array

    PubMed Central

    Shi, Xu; Chen, Chun-Hong; Gao, Weimin; Meldrum, Deirdre R.

    2015-01-01

    Nucleic acid extraction is a necessary step for most genomic/transcriptomic analyses, but it often requires complicated mechanisms to be integrated into a lab-on-a-chip device. Here, we present a simple, effective configuration for rapidly obtaining purified RNA from low concentration cell medium. This Total RNA Extraction Droplet Array (TREDA) utilizes an array of surface-adhering droplets to facilitate the transportation of magnetic purification beads seamlessly through individual buffer solutions without solid structures. The fabrication of TREDA chips is rapid and does not require a microfabrication facility or expertise. The process takes less than 5 minutes. When purifying mRNA from bulk marine diatom samples, its repeatability and extraction efficiency are comparable to conventional tube-based operations. We demonstrate that TREDA can extract the total mRNA of about 10 marine diatom cells, indicating that the sensitivity of TREDA approaches single-digit cell numbers. PMID:25519439

  20. Characterisation of chamomile volatiles by simultaneous distillation solid-phase extraction in comparison to hydrodistillation and simultaneous distillation extraction.

    PubMed

    Krüger, Hans

    2010-05-01

    A new method for complete separation of steam-volatile organic compounds is described using the example of chamomile flowers. This method is based on the direct combination of hydrodistillation and solid-phase extraction in a circulation apparatus. In contrast to hydrodistillation and simultaneous distillation extraction (SDE), an RP-18 solid phase as adsorptive material is used rather than a water-insoluble solvent. Therefore, a prompt and complete fixation of all volatiles takes place, and the circulation of water-soluble bisabololoxides as well as water-soluble and thermolabile en-yne-spiroethers is inhibited. This so-called simultaneous distillation solid-phase extraction (SD-SPE) provides extracts that better characterise the real composition of the vapour phase, as well as the composition of inhalation vapours, than do SDE extracts or essential oils obtained by hydrodistillation. The data indicate that during inhalation therapy with chamomile, the bisabololoxides and spiroethers are more strongly involved in the inhaling activity than so far assumed. Georg Thieme Verlag KG Stuttgart New York.

  1. SEQUENTIAL EXTRACTIONS FOR PARTITIONING OF ARSENIC ON HYDROUS IRON OXIDES AND IRON SULFIDES

    EPA Science Inventory

    The objective of this study was to use model solids to test solutions designed to extract arsenic from relatively labile solid phase fractions. The use of sequential extractions provides analytical constraints on the identification of mineral phases that control arsenic mobility...

  2. A generic method for the determination of acrylamide in thermally processed foods.

    PubMed

    Gökmen, Vural; Senyuva, Hamide Z

    2006-07-07

    A generic sample preparation method for the determination of acrylamide in foods was developed. The method entails extraction with methanol, purification with Carrez I and II solutions, evaporation and solvent change to water, and cleanup with Oasis HLB solid-phase extraction (SPE) cartridge. The final extract was analyzed by liquid chromatography-mass spectrometry (LC-MS) for quantitation. The chromatographic separation was performed on ODS-3 column using the isocratic mixture of 0.01 mM acetic acid in 0.2% aqueous solution of formic acid at a flow rate of 0.6 ml/min at 25 degrees C. The recoveries of acrylamide from potato chips, biscuits and coffee ranged between 92.8 and 101.5% with relative standard deviations of 4.1% or less. The limit of detection (LOD) and the limit of quantitation (LOQ) were 2 ng/g and 6 ng/g in the basis of signal to noise ratios of 3:1 and 9:1, respectively.

  3. Characterization of rhamnolipids by liquid chromatography/mass spectrometry after solid-phase extraction.

    PubMed

    Behrens, Beate; Engelen, Jeannine; Tiso, Till; Blank, Lars Mathias; Hayen, Heiko

    2016-04-01

    Rhamnolipids are surface-active agents with a broad application potential that are produced in complex mixtures by bacteria of the genus Pseudomonas. Analysis from fermentation broth is often characterized by laborious sample preparation and requires hyphenated analytical techniques like liquid chromatography coupled to mass spectrometry (LC-MS) to obtain detailed information about sample composition. In this study, an analytical procedure based on chromatographic method development and characterization of rhamnolipid sample material by LC-MS as well as a comparison of two sample preparation methods, i.e., liquid-liquid extraction and solid-phase extraction, is presented. Efficient separation was achieved under reversed-phase conditions using a mixed propylphenyl and octadecylsilyl-modified silica gel stationary phase. LC-MS/MS analysis of a supernatant from Pseudomonas putida strain KT2440 pVLT33_rhlABC grown on glucose as sole carbon source and purified by solid-phase extraction revealed a total of 20 congeners of di-rhamnolipids, mono-rhamnolipids, and their biosynthetic precursors 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) with different carbon chain lengths from C8 to C14, including three rhamnolipids with uncommon C9 and C11 fatty acid residues. LC-MS and the orcinol assay were used to evaluate the developed solid-phase extraction method in comparison with the established liquid-liquid extraction. Solid-phase extraction exhibited higher yields and reproducibility as well as lower experimental effort.

  4. Direct determination of acrylamide in potato chips by using headspace solid-phase microextraction coupled with gas chromatography-flame ionization detection.

    PubMed

    Ghiasvand, Ali Reza; Hajipour, Somayeh

    2016-01-01

    Acrylamide is a potentially toxic and carcinogenic substance present in many high-consumption foods. Recently, this matter has been placed in category of "reasonably anticipated to be a human carcinogen" by National Toxicology Program (NTP). Therefore, simple and cost-effective determination of acrylamide in food samples has attracted intense interest. The most reported techniques for this purpose are GC-MS and LC-MS, which are very expensive and available in few laboratories. In this research, for the first time, a rapid, easy and low-cost method is introduced for sensitive and precise determination of acrylamide in foodstuffs, using gas chromatography-flame ionization detection (GC-FID) system after its direct trapping in the upper atmosphere of samples by headspace solid-phase microextraction (HS-SPME). The effects of main experimental variables were studied and the optimized parameters were obtained as the type of fiber, carboxen/divinylbenzene/polydimethylsiloxane (CAR/DVB/PDMS); extraction time, 30 min; extraction temperature, 60°C; moisture content, 10 µL water per 1g of sample; desorption time, 2 min; and desorption temperature, 230°C. The linear calibration graph was obtained in the range of 0.77-50 µg g(-1), with regression coefficient of 0.998. The detection and quantification limits of the proposed method were 0.22 and 0.77 µg g(-1), respectively. The recoveries, for different food samples, were 79.6-95.7%. The repeatability of measurements, expressed as relative standard deviation (RSD), were found to be 4.1-8.0% (n=9). The proposed HS-SPME-GC-FID method was successfully carried out for quantifying of trace levels of acrylamide in some processed food products (chips and French fries), sold in open local markets. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. A versatile lab-on-chip test platform to characterize elementary deformation mechanisms and electromechanical couplings in nanoscopic objects

    NASA Astrophysics Data System (ADS)

    Pardoen, Thomas; Colla, Marie-Sthéphane; Idrissi, Hosni; Amin-Ahmadi, Behnam; Wang, Binjie; Schryvers, Dominique; Bhaskar, Umesh K.; Raskin, Jean-Pierre

    2016-03-01

    A nanomechanical on-chip test platform has recently been developed to deform under a variety of loading conditions freestanding thin films, ribbons and nanowires involving submicron dimensions. The lab-on-chip involves thousands of elementary test structures from which the elastic modulus, strength, strain hardening, fracture, creep properties can be extracted. The technique is amenable to in situ transmission electron microscopy (TEM) investigations to unravel the fundamental underlying deformation and fracture mechanisms that often lead to size-dependent effects in small-scale samples. The method allows addressing electrical and magnetic couplings as well in order to evaluate the impact of large mechanical stress levels on different solid-state physics phenomena. We had the chance to present this technique in details to Jacques Friedel in 2012 who, unsurprisingly, made a series of critical and very relevant suggestions. In the spirit of his legacy, the paper will address both mechanics of materials related phenomena and couplings with solids state physics issues.

  6. Multiplexed Colorimetric Solid-Phase Extraction

    NASA Technical Reports Server (NTRS)

    Gazda, Daniel B.; Fritz, James S.; Porter, Marc D.

    2009-01-01

    Multiplexed colorimetric solid-phase extraction (MC-SPE) is an extension of colorimetric solid-phase extraction (C-SPE) an analytical platform that combines colorimetric reagents, solid phase extraction, and diffuse reflectance spectroscopy to quantify trace analytes in water. In CSPE, analytes are extracted and complexed on the surface of an extraction membrane impregnated with a colorimetric reagent. The analytes are then quantified directly on the membrane surface using a handheld diffuse reflectance spectrophotometer. Importantly, the use of solid-phase extraction membranes as the matrix for impregnation of the colorimetric reagents creates a concentration factor that enables the detection of low concentrations of analytes in small sample volumes. In extending C-SPE to a multiplexed format, a filter holder that incorporates discrete analysis channels and a jig that facilitates the concurrent operation of multiple sample syringes have been designed, enabling the simultaneous determination of multiple analytes. Separate, single analyte membranes, placed in a readout cartridge create unique, analyte-specific addresses at the exit of each channel. Following sample exposure, the diffuse reflectance spectrum of each address is collected serially and the Kubelka-Munk function is used to quantify each water quality parameter via calibration curves. In a demonstration, MC-SPE was used to measure the pH of a sample and quantitate Ag(I) and Ni(II).

  7. [Determination of patulin in fruits and jam by solid phase extraction-ultra performance liquid chromatography].

    PubMed

    Lü, Weichao; Shen, Shuchang; Wang, Chao

    2017-11-08

    With magnesium silicate, silica gel, diatomite and calcium sulfate as raw materials, a new solid phase extraction column was prepared through a series of processes of grinding to ethanol homogenate, drying and packing into polypropylene tube. The sample was hydrolyzed by pectinase, extracted by acetonitrile and purified by solid phase extraction. The target compounds were separated on a C18 column (100 mm×2.1 mm, 1.8 μm), using 0.8% (v/v) tetrahydrofuran solution as mobile phase with a flow rate of 0.5 mL/min. The detection wavelength was 276 nm. The effect of pectinase on extraction yield and purification effect of solid-phase extraction column were investigated. The optimum chromatographic conditions were selected. There was a good linear relationship between the peak heights and the mass concentrations of patulin in the range of 0.1 to 10 mg/L with the correlation coefficient ( R 2 ) of 1. The limit of detection for this method was 10.22 μg/kg. The spiked recoveries of samples were 86.58%-94.84% with the relative standard deviations (RSDs) of 1.45%-2.28%. The results indicated that the self-made solid phase extraction column had a good purification efficiency, and the UPLC had a high separation efficiency. The method is simple, accurate and of great significance for the quality and safety control of fruit products.

  8. Quick, easy, cheap, effective, rugged, and safe sample preparation approach for pesticide residue analysis using traditional detectors in chromatography: A review.

    PubMed

    Rahman, Md Musfiqur; Abd El-Aty, A M; Kim, Sung-Woo; Shin, Sung Chul; Shin, Ho-Chul; Shim, Jae-Han

    2017-01-01

    In pesticide residue analysis, relatively low-sensitivity traditional detectors, such as UV, diode array, electron-capture, flame photometric, and nitrogen-phosphorus detectors, have been used following classical sample preparation (liquid-liquid extraction and open glass column cleanup); however, the extraction method is laborious, time-consuming, and requires large volumes of toxic organic solvents. A quick, easy, cheap, effective, rugged, and safe method was introduced in 2003 and coupled with selective and sensitive mass detectors to overcome the aforementioned drawbacks. Compared to traditional detectors, mass spectrometers are still far more expensive and not available in most modestly equipped laboratories, owing to maintenance and cost-related issues. Even available, traditional detectors are still being used for analysis of residues in agricultural commodities. It is widely known that the quick, easy, cheap, effective, rugged, and safe method is incompatible with conventional detectors owing to matrix complexity and low sensitivity. Therefore, modifications using column/cartridge-based solid-phase extraction instead of dispersive solid-phase extraction for cleanup have been applied in most cases to compensate and enable the adaptation of the extraction method to conventional detectors. In gas chromatography, the matrix enhancement effect of some analytes has been observed, which lowers the limit of detection and, therefore, enables gas chromatography to be compatible with the quick, easy, cheap, effective, rugged, and safe extraction method. For liquid chromatography with a UV detector, a combination of column/cartridge-based solid-phase extraction and dispersive solid-phase extraction was found to reduce the matrix interference and increase the sensitivity. A suitable double-layer column/cartridge-based solid-phase extraction might be the perfect solution, instead of a time-consuming combination of column/cartridge-based solid-phase extraction and dispersive solid-phase extraction. Therefore, replacing dispersive solid-phase extraction with column/cartridge-based solid-phase extraction in the cleanup step can make the quick, easy, cheap, effective, rugged, and safe extraction method compatible with traditional detectors for more sensitive, effective, and green analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Advanced functional materials in solid phase extraction for ICP-MS determination of trace elements and their species - A review.

    PubMed

    He, Man; Huang, Lijin; Zhao, Bingshan; Chen, Beibei; Hu, Bin

    2017-06-22

    For the determination of trace elements and their species in various real samples by inductively coupled plasma mass spectrometry (ICP-MS), solid phase extraction (SPE) is a commonly used sample pretreatment technique to remove complex matrix, pre-concentrate target analytes and make the samples suitable for subsequent sample introduction and measurements. The sensitivity, selectivity/anti-interference ability, sample throughput and application potential of the methodology of SPE-ICP-MS are greatly dependent on SPE adsorbents. This article presents a general overview of the use of advanced functional materials (AFMs) in SPE for ICP-MS determination of trace elements and their species in the past decade. Herein the AFMs refer to the materials featuring with high adsorption capacity, good selectivity, fast adsorption/desorption dynamics and satisfying special requirements in real sample analysis, including nanometer-sized materials, porous materials, ion imprinting polymers, restricted access materials and magnetic materials. Carbon/silica/metal/metal oxide nanometer-sized adsorbents with high surface area and plenty of adsorption sites exhibit high adsorption capacity, and porous adsorbents would provide more adsorption sites and faster adsorption dynamics. The selectivity of the materials for target elements/species can be improved by using physical/chemical modification, ion imprinting and restricted accessed technique. Magnetic adsorbents in conventional batch operation offer unique magnetic response and high surface area-volume ratio which provide a very easy phase separation, greater extraction capacity and efficiency over conventional adsorbents, and chip-based magnetic SPE provides a versatile platform for special requirement (e.g. cell analysis). The performance of these adsorbents for the determination of trace elements and their species in different matrices by ICP-MS is discussed in detail, along with perspectives and possible challenges in the future development. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Experimental and computational studies on molecularly imprinted solid-phase extraction for gonyautoxins 2,3 from dinoflagellate Alexandrium minutum.

    PubMed

    Lian, Ziru; Li, Hai-Bei; Wang, Jiangtao

    2016-08-01

    An innovative and effective extraction procedure based on molecularly imprinted solid-phase extraction (MISPE) was developed for the isolation of gonyautoxins 2,3 (GTX2,3) from Alexandrium minutum sample. Molecularly imprinted polymer microspheres were prepared by suspension polymerization and and were employed as sorbents for the solid-phase extraction of GTX2,3. An off-line MISPE protocol was optimized. Subsequently, the extract samples from A. minutum were analyzed. The results showed that the interference matrices in the extract were obviously cleaned up by MISPE procedures. This outcome enabled the direct extraction of GTX2,3 in A. minutum samples with extraction efficiency as high as 83 %, rather significantly, without any need for a cleanup step prior to the extraction. Furthermore, computational approach also provided direct evidences of the high selective isolation of GTX2,3 from the microalgal extracts.

  11. Hypercrosslinked particles for the extraction of sweeteners using dispersive solid-phase extraction from environmental samples.

    PubMed

    Lakade, Sameer S; Zhou, Qing; Li, Aimin; Borrull, Francesc; Fontanals, Núria; Marcé, Rosa M

    2018-04-01

    This work presents a new extraction material, namely, Q-100, based on hypercrosslinked magnetic particles, which was tested in dispersive solid-phase extraction for a group of sweeteners from environmental samples. The hypercrosslinked Q-100 magnetic particles had the advantage of suitable pore size distribution and high surface area, and showed good retention behavior toward sweeteners. Different dispersive solid-phase extraction parameters such as amount of magnetic particles or extraction time were optimized. Under optimum conditions, Q-100 showed suitable apparent recovery, ranging in the case of river water sample from 21 to 88% for all the sweeteners, except for alitame (12%). The validated method based on dispersive solid-phase extraction using Q-100 followed by liquid chromatography with tandem mass spectrometry provided good linearity and limits of quantification between 0.01 and 0.1 μg/L. The method was applied to analyze samples from river water and effluent wastewater, and four sweeteners (acesulfame, saccharin, cyclamate, and sucralose) were found in both types of sample. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Separation of phenolic acids from sugarcane rind by online solid-phase extraction with high-speed counter-current chromatography.

    PubMed

    Geng, Ping; Fang, Yingtong; Xie, Ronglong; Hu, Weilun; Xi, Xingjun; Chu, Qiao; Dong, Genlai; Shaheen, Nusrat; Wei, Yun

    2017-02-01

    Sugarcane rind contains some functional phenolic acids. The separation of these compounds from sugarcane rind is able to realize the integrated utilization of the crop and reduce environment pollution. In this paper, a novel protocol based on interfacing online solid-phase extraction with high-speed counter-current chromatography (HSCCC) was established, aiming at improving and simplifying the process of phenolic acids separation from sugarcane rind. The conditions of online solid-phase extraction with HSCCC involving solvent system, flow rate of mobile phase as well as saturated extent of absorption of solid-phase extraction were optimized to improve extraction efficiency and reduce separation time. The separation of phenolic acids was performed with a two-phase solvent system composed of butanol/acetic acid/water at a volume ratio of 4:1:5, and the developed online solid-phase extraction with HSCCC method was validated and successfully applied for sugarcane rind, and three phenolic acids including 6.73 mg of gallic acid, 10.85 mg of p-coumaric acid, and 2.78 mg of ferulic acid with purities of 60.2, 95.4, and 84%, respectively, were obtained from 150 mg sugarcane rind crude extracts. In addition, the three different elution methods of phenolic acids purification including HSCCC, elution-extrusion counter-current chromatography and back-extrusion counter-current chromatography were compared. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Assessing the Selectivity of Extractant Solutions for Recovering Labile Arsenic Associated with Iron (Hydr)oxides and Sulfides in Sediments

    EPA Science Inventory

    Sequential extractions can provide analytical constraints on the identification of mineral phases that control arsenic speciation in sediments. Model solids were used in this study to evaluate different solutions designed to extract arsenic from relatively labile solid phases. ...

  14. Simultaneous determination of phenolic compounds in Equisetum palustre L. by ultra high performance liquid chromatography with tandem mass spectrometry combined with matrix solid-phase dispersion extraction.

    PubMed

    Wei, Zuofu; Pan, Youzhi; Li, Lu; Huang, Yuyang; Qi, Xiaolin; Luo, Meng; Zu, Yuangang; Fu, Yujie

    2014-11-01

    A method based on matrix solid-phase dispersion extraction followed by ultra high performance liquid chromatography with tandem mass spectrometry is presented for the extraction and determination of phenolic compounds in Equisetum palustre. This method combines the high efficiency of matrix solid-phase dispersion extraction and the rapidity, sensitivity, and accuracy of ultra high performance liquid chromatography with tandem mass spectrometry. The influential parameters of the matrix solid-phase dispersion extraction were investigated and optimized. The optimized conditions were as follows: silica gel was selected as dispersing sorbent, the ratio of silica gel to sample was selected to be 2:1 (400/200 mg), and 8 mL of 80% methanol was used as elution solvent. Furthermore, a fast and sensitive ultra high performance liquid chromatography with tandem mass spectrometry method was developed for the determination of nine phenolic compounds in E. palustre. This method was carried out within <6 min, and exhibited satisfactory linearity, precision, and recovery. Compared with ultrasound-assisted extraction, the proposed matrix solid-phase dispersion procedure possessed higher extraction efficiency, and was more convenient and time saving with reduced requirements on sample and solvent amounts. All these results suggest that the developed method represents an excellent alternative for the extraction and determination of active components in plant matrices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The Solid Phase Curing Time Effect of Asbuton with Texapon Emulsifier at the Optimum Bitumen Content

    NASA Astrophysics Data System (ADS)

    Sarwono, D.; Surya D, R.; Setyawan, A.; Djumari

    2017-07-01

    Buton asphalt (asbuton) could not be utilized optimally in Indonesia. Asbuton utilization rate was still low because the processed product of asbuton still have impracticable form in the term of use and also requiring high processing costs. This research aimed to obtain asphalt products from asbuton practical for be used through the extraction process and not requiring expensive processing cost. This research was done with experimental method in laboratory. The composition of emulsify asbuton were 5/20 grain, premium, texapon, HCl, and aquades. Solid phase was the mixture asbuton 5/20 grain and premium with 3 minutes mixing time. Liquid phase consisted texapon, HCl and aquades. The aging process was done after solid phase mixing process in order to reaction and tie of solid phase mixed become more optimal for high solubility level of asphalt production. Aging variable time were 30, 60, 90, 120, and 150 minutes. Solid and liquid phase was mixed for emulsify asbuton production, then extracted for 25 minutes. Solubility level of asphalt, water level, and asphalt characteristic was tested at extraction result of emulsify asbuton with most optimum ashphal level. The result of analysis tested data asphalt solubility level at extract asbuton resulted 94.77% on 120 minutes aging variable time. Water level test resulted water content reduction on emulsify asbuton more long time on occurring of aging solid phase. Examination of asphalt characteristic at extraction result of emulsify asbuton with optimum asphalt solubility level, obtain specimen that have rigid and strong texture in order that examination result have not sufficient ductility and penetration value.

  16. Rapid determination of the volatile components in tobacco by ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction with gas chromatography-mass spectrometry.

    PubMed

    Yang, Yanqin; Chu, Guohai; Zhou, Guojun; Jiang, Jian; Yuan, Kailong; Pan, Yuanjiang; Song, Zhiyu; Li, Zuguang; Xia, Qian; Lu, Xinbo; Xiao, Weiqiang

    2016-03-01

    An ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction was first employed to determine the volatile components in tobacco samples. The method combined the advantages of ultrasound, microwave, and headspace solid-phase microextraction. The extraction, separation, and enrichment were performed in a single step, which could greatly simplify the operation and reduce the whole pretreatment time. In the developed method, several experimental parameters, such as fiber type, ultrasound power, and irradiation time, were optimized to improve sampling efficiency. Under the optimal conditions, there were 37, 36, 34, and 36 components identified in tobacco from Guizhou, Hunan, Yunnan, and Zimbabwe, respectively, including esters, heterocycles, alkanes, ketones, terpenoids, acids, phenols, and alcohols. The compound types were roughly the same while the contents were varied from different origins due to the disparity of their growing conditions, such as soil, water, and climate. In addition, the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction method was compared with the microwave-assisted extraction coupled to headspace solid-phase microextraction and headspace solid-phase microextraction methods. More types of volatile components were obtained by using the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction method, moreover, the contents were high. The results indicated that the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction technique was a simple, time-saving and highly efficient approach, which was especially suitable for analysis of the volatile components in tobacco. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Ultrasensitive microfluidic solid-phase ELISA using an actuatable microwell-patterned PDMS chip.

    PubMed

    Wang, Tanyu; Zhang, Mohan; Dreher, Dakota D; Zeng, Yong

    2013-11-07

    Quantitative detection of low abundance proteins is of significant interest for biological and clinical applications. Here we report an integrated microfluidic solid-phase ELISA platform for rapid and ultrasensitive detection of proteins with a wide dynamic range. Compared to the existing microfluidic devices that perform affinity capture and enzyme-based optical detection in a constant channel volume, the key novelty of our design is two-fold. First, our system integrates a microwell-patterned assay chamber that can be pneumatically actuated to significantly reduce the volume of chemifluorescent reaction, markedly improving the sensitivity and speed of ELISA. Second, monolithic integration of on-chip pumps and the actuatable assay chamber allow programmable fluid delivery and effective mixing for rapid and sensitive immunoassays. Ultrasensitive microfluidic ELISA was demonstrated for insulin-like growth factor 1 receptor (IGF-1R) across at least five orders of magnitude with an extremely low detection limit of 21.8 aM. The microwell-based solid-phase ELISA strategy provides an expandable platform for developing the next-generation microfluidic immunoassay systems that integrate and automate digital and analog measurements to further improve the sensitivity, dynamic ranges, and reproducibility of proteomic analysis.

  18. Microwave assisted solid phase extraction for separation preconcentration sulfamethoxazole in wastewater using tyre based activated carbon as solid phase material prior to spectrophotometric determination

    NASA Astrophysics Data System (ADS)

    Mogolodi Dimpe, K.; Mpupa, Anele; Nomngongo, Philiswa N.

    2018-01-01

    This work was chiefly encouraged by the continuous consumption of antibiotics which eventually pose harmful effects on animals and human beings when present in water systems. In this study, the activated carbon (AC) was used as a solid phase material for the removal of sulfamethoxazole (SMX) in wastewater samples. The microwave assisted solid phase extraction (MASPE) as a sample extraction method was employed to better extract SMX in water samples and finally the analysis of SMX was done by the UV-Vis spectrophotometer. The microwave assisted solid phase extraction method was optimized using a two-level fractional factorial design by evaluating parameters such as pH, mass of adsorbent (MA), extraction time (ET), eluent ratio (ER) and microwave power (MP). Under optimized conditions, the limit of detection (LOD) and limit of quantification (LOQ) were 0.5 μg L- 1 and 1.7 μg L- 1, respectively, and intraday and interday precision expressed in terms of relative standard deviation were > 6%.The maximum adsorption capacity was 138 mg g- 1 for SMX and the adsorbent could be reused eight times. Lastly, the MASPE method was applied for the removal of SMX in wastewater samples collected from a domestic wastewater treatment plant (WWTP) and river water.

  19. Preparation of l-phenylalanine-imprinted solid-phase extraction sorbent by Pickering emulsion polymerization and the selective enrichment of l-phenylalanine from human urine.

    PubMed

    Li, Ji; Hu, Xiaoling; Guan, Ping; Zhang, Xiaoyan; Qian, Liwei; Zhang, Nan; Du, Chunbao; Song, Renyuan

    2016-05-01

    A novel l-phenylalanine molecularly imprinted solid-phase extraction sorbent was synthesized by the combination of Pickering emulsion polymerization and ion-pair dummy template imprinting. Compared to other polymerization methods, the molecularly imprinted polymers thus prepared exhibit a high specific surface, large pore diameter, and appropriate particle size. The key parameters for solid-phase extraction were optimized, and the result indicated that the molecularly imprinted polymer thus prepared exhibits a good recovery of 98.9% for l-phenylalanine. Under the optimized conditions of the procedure, an analytical method for l-phenylalanine was well established. By comparing the performance of the molecularly imprinted polymer and a commercial reverse-phase silica gel, the obtained molecularly imprinted polymer as an solid-phase extraction sorbent is more suitable, exhibiting high precision (relative standard deviation 3.2%, n = 4) and a low limit of detection (60.0 ± 1.9 nmol·L(-1) ) for the isolation of l-phenylalanine. Based on these results, the combination of the Pickering emulsion polymerization and ion-pair dummy template imprinting is effective for preparing selective solid-phase extraction sorbents for the separation of amino acids and organic acids from complex biological samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Silica Modified with Polyaniline as a Potential Sorbent for Matrix Solid Phase Dispersion (MSPD) and Dispersive Solid Phase Extraction (d-SPE) of Plant Samples

    PubMed Central

    Sowa, Ireneusz; Wójciak-Kosior, Magdalena; Strzemski, Maciej; Sawicki, Jan; Staniak, Michał; Dresler, Sławomir; Szwerc, Wojciech; Mołdoch, Jarosław; Latalski, Michał

    2018-01-01

    Polyaniline (PANI) is one of the best known conductive polymers with multiple applications. Recently, it was also used in separation techniques, mostly as a component of composites for solid-phase microextraction (SPME). In the present paper, sorbent obtained by in situ polymerization of aniline directly on silica gel particles (Si-PANI) was used for dispersive solid phase extraction (d-SPE) and matrix solid–phase extraction (MSPD). The efficiency of both techniques was evaluated with the use of high performance liquid chromatography with diode array detection (HPLC-DAD) quantitative analysis. The quality of the sorbent was verified by Raman spectroscopy and microscopy combined with automated procedure using computer image analysis. For extraction experiments, triterpenes were chosen as model compounds. The optimal conditions were as follows: protonated Si-PANI impregnated with water, 160/1 sorbent/analyte ratio, 3 min of extraction time, 4 min of desorption time and methanolic solution of ammonia for elution of analytes. The proposed procedure was successfully used for pretreatment of plant samples. PMID:29565297

  1. Vapor-phase diethyl oxalate pretreatment of wood chips. Part 2, Release of hemicellulosic carbohydrates

    Treesearch

    William Kenealy; Eric Horn; Mark Davis; Ross Swaney; Carl Houtman

    2007-01-01

    Wood chips of pine, spruce, aspen, and maple were treated at 135–1408C with diethyl oxalate (DEO) and analyzed for extractable and residual carbohydrates. Under these conditions, DEO hydrolyzes to ethanol and oxalic acid (OA). The amount and identity of carbohydrates released from the chips were species-dependent. For all wood species, increasing the amount of chemical...

  2. In Situ Atomic-Scale Observation of Electrochemical Delithiation Induced Structure Evolution of LiCoO2 Cathode in a Working All-Solid-State Battery.

    PubMed

    Gong, Yue; Zhang, Jienan; Jiang, Liwei; Shi, Jin-An; Zhang, Qinghua; Yang, Zhenzhong; Zou, Dongli; Wang, Jiangyong; Yu, Xiqian; Xiao, Ruijuan; Hu, Yong-Sheng; Gu, Lin; Li, Hong; Chen, Liquan

    2017-03-29

    We report a method for in situ atomic-scale observation of electrochemical delithiation in a working all-solid-state battery using a state-of-the-art chip based in situ transmission electron microscopy (TEM) holder and focused ion beam milling to prepare an all-solid-state lithium-ion battery sample. A battery consisting of LiCoO 2 cathode, LLZO solid state electrolyte and gold anode was constructed, delithiated and observed in an aberration corrected scanning transmission electron microscope at atomic scale. We found that the pristine single crystal LiCoO 2 became nanosized polycrystal connected by coherent twin boundaries and antiphase domain boundaries after high voltage delithiation. This is different from liquid electrolyte batteries, where a series of phase transitions take place at LiCoO 2 cathode during delithiation. Both grain boundaries become more energy favorable along with extraction of lithium ions through theoretical calculation. We also proposed a lithium migration pathway before and after polycrystallization. This new methodology could stimulate atomic scale in situ scanning/TEM studies of battery materials and provide important mechanistic insight for designing better all-solid-state battery.

  3. AUTOMATED SOLID PHASE EXTRACTION GC/MS FOR ANALYSIS OF SEMIVOLATILES IN WATER AND SEDIMENTS

    EPA Science Inventory

    Data is presented on the development of a new automated system combining solid phase extraction (SPE) with GC/MS spectrometry for the single-run analysis of water samples containing a broad range of organic compounds. The system uses commercially available automated in-line sampl...

  4. Fuel spill identification using solid-phase extraction and solid-phase microextraction. 1. Aviation turbine fuels.

    PubMed

    Lavine, B K; Brzozowski, D M; Ritter, J; Moores, A J; Mayfield, H T

    2001-12-01

    The water-soluble fraction of aviation jet fuels is examined using solid-phase extraction and solid-phase microextraction. Gas chromatographic profiles of solid-phase extracts and solid-phase microextracts of the water-soluble fraction of kerosene- and nonkerosene-based jet fuels reveal that each jet fuel possesses a unique profile. Pattern recognition analysis reveals fingerprint patterns within the data characteristic of fuel type. By using a novel genetic algorithm (GA) that emulates human pattern recognition through machine learning, it is possible to identify features characteristic of the chromatographic profile of each fuel class. The pattern recognition GA identifies a set of features that optimize the separation of the fuel classes in a plot of the two largest principal components of the data. Because principal components maximize variance, the bulk of the information encoded by the selected features is primarily about the differences between the fuel classes.

  5. Split Flow Online Solid-Phase Extraction Coupled with Inductively Coupled Plasma Mass Spectrometry System for One-Shot Data Acquisition of Quantification and Recovery Efficiency.

    PubMed

    Furukawa, Makoto; Takagai, Yoshitaka

    2016-10-04

    Online solid-phase extraction (SPE) coupled with inductively coupled plasma mass spectrometry (ICPMS) is a useful tool in automatic sequential analysis. However, it cannot simultaneously quantify the analytical targets and their recovery percentages (R%) in one-shot samples. We propose a system that simultaneously acquires both data in a single sample injection. The main flowline of the online solid-phase extraction is divided into main and split flows. The split flow line (i.e., bypass line), which circumvents the SPE column, was placed on the main flow line. Under program-controlled switching of the automatic valve, the ICPMS sequentially measures the targets in a sample before and after column preconcentration and determines the target concentrations and the R% on the SPE column. This paper describes the system development and two demonstrations to exhibit the analytical significance, i.e., the ultratrace amounts of radioactive strontium ( 90 Sr) using commercial Sr-trap resin and multielement adsorbability on the SPE column. This system is applicable to other flow analyses and detectors in online solid phase extraction.

  6. Microwave assisted solid phase extraction for separation preconcentration sulfamethoxazole in wastewater using tyre based activated carbon as solid phase material prior to spectrophotometric determination.

    PubMed

    Mogolodi Dimpe, K; Mpupa, Anele; Nomngongo, Philiswa N

    2018-01-05

    This work was chiefly encouraged by the continuous consumption of antibiotics which eventually pose harmful effects on animals and human beings when present in water systems. In this study, the activated carbon (AC) was used as a solid phase material for the removal of sulfamethoxazole (SMX) in wastewater samples. The microwave assisted solid phase extraction (MASPE) as a sample extraction method was employed to better extract SMX in water samples and finally the analysis of SMX was done by the UV-Vis spectrophotometer. The microwave assisted solid phase extraction method was optimized using a two-level fractional factorial design by evaluating parameters such as pH, mass of adsorbent (MA), extraction time (ET), eluent ratio (ER) and microwave power (MP). Under optimized conditions, the limit of detection (LOD) and limit of quantification (LOQ) were 0.5μgL -1 and 1.7μgL -1 , respectively, and intraday and interday precision expressed in terms of relative standard deviation were >6%.The maximum adsorption capacity was 138mgg -1 for SMX and the adsorbent could be reused eight times. Lastly, the MASPE method was applied for the removal of SMX in wastewater samples collected from a domestic wastewater treatment plant (WWTP) and river water. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Comparison of the solid-phase extraction efficiency of a bounded and an included cyclodextrin-silica microporous composite for polycyclic aromatic hydrocarbons determination in water samples.

    PubMed

    Mauri-Aucejo, Adela; Amorós, Pedro; Moragues, Alaina; Guillem, Carmen; Belenguer-Sapiña, Carolina

    2016-08-15

    Solid-phase extraction is one of the most important techniques for sample purification and concentration. A wide variety of solid phases have been used for sample preparation over time. In this work, the efficiency of a new kind of solid-phase extraction adsorbent, which is a microporous material made from modified cyclodextrin bounded to a silica network, is evaluated through an analytical method which combines solid-phase extraction with high-performance liquid chromatography to determine polycyclic aromatic hydrocarbons in water samples. Several parameters that affected the analytes recovery, such as the amount of solid phase, the nature and volume of the eluent or the sample volume and concentration influence have been evaluated. The experimental results indicate that the material possesses adsorption ability to the tested polycyclic aromatic hydrocarbons. Under the optimum conditions, the quantification limits of the method were in the range of 0.09-2.4μgL(-1) and fine linear correlations between peak height and concentration were found around 1.3-70μgL(-1). The method has good repeatability and reproducibility, with coefficients of variation under 8%. Due to the concentration results, this material may represent an alternative for trace analysis of polycyclic aromatic hydrocarbons in water trough solid-phase extraction. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry.

    PubMed

    Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek

    2013-12-20

    Solid phase microextraction find increasing applications in the sample preparation step before chromatographic determination of analytes in samples with a complex composition. These techniques allow for integrating several operations, such as sample collection, extraction, analyte enrichment above the detection limit of a given measuring instrument and the isolation of analytes from sample matrix. In this work the information about novel methodological and instrumental solutions in relation to different variants of solid phase extraction techniques, solid-phase microextraction (SPME), stir bar sorptive extraction (SBSE) and magnetic solid phase extraction (MSPE) is presented, including practical applications of these techniques and a critical discussion about their advantages and disadvantages. The proposed solutions fulfill the requirements resulting from the concept of sustainable development, and specifically from the implementation of green chemistry principles in analytical laboratories. Therefore, particular attention was paid to the description of possible uses of novel, selective stationary phases in extraction techniques, inter alia, polymeric ionic liquids, carbon nanotubes, and silica- and carbon-based sorbents. The methodological solutions, together with properly matched sampling devices for collecting analytes from samples with varying matrix composition, enable us to reduce the number of errors during the sample preparation prior to chromatographic analysis as well as to limit the negative impact of this analytical step on the natural environment and the health of laboratory employees. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Immunoassay of paralytic shellfish toxins by moving magnetic particles in a stationary liquid-phase lab-on-a-chip.

    PubMed

    Kim, Myoung-Ho; Choi, Suk-Jung

    2015-04-15

    In this study, we devised a stationary liquid-phase lab-on-a-chip (SLP LOC), which was operated by moving solid-phase magnetic particles in the stationary liquid phase. The SLP LOC consisted of a sample chamber to which a sample and reactants were added, a detection chamber containing enzyme substrate solution, and a narrow channel connecting the two chambers and filled with buffer. As a model system, competitive immunoassays of saxitoxin (STX), a paralytic shellfish toxin, were conducted in the SLP LOC using protein G-coupled magnetic particles (G-MPs) as the solid phase. Anti-STX antibodies, STX-horseradish peroxidase conjugate, G-MPs, and a STX sample were added to the sample chamber and reacted by shaking. While liquids were in the stationary state, G-MPs were transported from the sample chamber to the detection chamber by moving a magnet below the LOC. After incubation to allow the enzymatic reaction to occur, the absorbance of the detection chamber solution was found to be reciprocally related to the STX concentration of the sample. Thus, the SLP LOC may represent a novel, simple format for point-of-care testing applications of enzyme-linked immunosorbent assays by eliminating complicated liquid handling steps. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Quantification of VX Nerve Agent in Various Food Matrices by Solid-Phase Extraction Ultra-Performance Liquid ChromatographyTime-of-Flight Mass Spectrometry

    DTIC Science & Technology

    2016-04-01

    QUANTIFICATION OF VX NERVE AGENT IN VARIOUS FOOD MATRICES BY SOLID-PHASE EXTRACTION ULTRA-PERFORMANCE...TITLE AND SUBTITLE Quantification of VX Nerve Agent in Various Food Matrices by Solid-Phase Extraction Ultra-Performance Liquid Chromatography... food matrices. The mixed-mode cation exchange (MCX) sorbent and Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) methods were used for

  11. SIMPLE METHOD FOR ESTIMATING POLYCHLORINATED BIPHENYL CONCENTRATIONS ON SOILS AND SEDIMENTS USING SUBCRITICAL WATER EXTRACTION COUPLED WITH SOLID-PHASE MICROEXTRACTION. (R825368)

    EPA Science Inventory

    A rapid method for estimating polychlorinated biphenyl (PCB) concentrations in contaminated soils and sediments has been developed by coupling static subcritical water extraction with solid-phase microextraction (SPME). Soil, water, and internal standards are placed in a seale...

  12. QUANTIFICATION OF 2,4-D ON SOLID-PHASE EXPOSURE SAMPLING MEDIA BY LC/MS/MS

    EPA Science Inventory

    Three types of solid phase chemical exposure sampling media: cellulose, polyurethane foam (PUF) and XAD-2, were analyzed for 2,4-D and the amine salts of 2,4-D. Individual samples were extracted into acidified methanol and the extracts were analyzed via LC/MS/MS using electrospra...

  13. Metal-organic framework based in-syringe solid-phase extraction for the on-site sampling of polycyclic aromatic hydrocarbons from environmental water samples.

    PubMed

    Zhang, Xiaoqiong; Wang, Peiyi; Han, Qiang; Li, Hengzhen; Wang, Tong; Ding, Mingyu

    2018-04-01

    In-syringe solid-phase extraction is a promising sample pretreatment method for the on-site sampling of water samples because of its outstanding advantages of portability, simple operation, short extraction time, and low cost. In this work, a novel in-syringe solid-phase extraction device using metal-organic frameworks as the adsorbent was fabricated for the on-site sampling of polycyclic aromatic hydrocarbons from environmental waters. Trace polycyclic aromatic hydrocarbons were effectively extracted through the self-made device followed by gas chromatography with mass spectrometry analysis. Owing to the excellent adsorption performance of metal-organic frameworks, the analytes could be completely adsorbed during one adsorption cycle, thus effectively shortening the extraction time. Moreover, the adsorbed analytes could remain stable on the device for at least 7 days, revealing the potential of the self-made device for on-site sampling of degradable compounds in remote regions. The limit of detection ranged from 0.20 to 1.9 ng/L under the optimum conditions. Satisfactory recoveries varying from 84.4 to 104.5% and relative standard deviations below 9.7% were obtained in real samples analysis. The results of this study promote the application of metal-organic frameworks in sample preparation and demonstrate the great potential of in-syringe solid-phase extraction for the on-site sampling of trace contaminants in environmental waters. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Single-chip source-free terahertz spectroscope across 0.04-0.99 THz: combining sub-wavelength near-field sensing and regression analysis.

    PubMed

    Wu, Xue; Sengupta, Kaushik

    2018-03-19

    This paper demonstrates a methodology to miniaturize THz spectroscopes into a single silicon chip by eliminating traditional solid-state architectural components such as complex tunable THz and optical sources, nonlinear mixing and amplifiers. The proposed method achieves this by extracting incident THz spectral signatures from the surface of an on-chip antenna itself. The information is sensed through the spectrally-sensitive 2D distribution of the impressed current surface under the THz incident field. By converting the antenna from a single-port to a massively multi-port architecture with integrated electronics and deep subwavelength sensing, THz spectral estimation is converted into a linear estimation problem. We employ rigorous regression techniques and analysis to demonstrate a single silicon chip system operating at room temperature across 0.04-0.99 THz with 10 MHz accuracy in spectrum estimation of THz tones across the entire spectrum.

  15. Aptamer-functionalized Fe3 O4 magnetic nanoparticles as a solid-phase extraction adsorbent for the selective extraction of berberine from Cortex phellodendri.

    PubMed

    Jiang, Ling-Feng; Chen, Bo-Cheng; Chen, Ben; Li, Xue-Jian; Liao, Hai-Lin; Zhang, Wen-Yan; Wu, Lin

    2017-07-01

    The extraction adsorbent was fabricated by immobilizing the highly specific recognition and binding of aptamer onto the surface of Fe 3 O 4 magnetic nanoparticles, which not only acted as recognition elements to recognize and capture the target molecule berberine from the extract of Cortex phellodendri, but also could favor the rapid separation and purification of the bound berberine by using an external magnet. The developed solid-phase extraction method in this work was useful for the selective extraction and determination of berberine in Cortex phellodendri extracts. Various conditions such as the amount of aptamer-functionalized Fe 3 O 4 magnetic nanoparticles, extraction time, temperature, pH value, Mg 2+ concentration, elution time and solvent were optimized for the solid-phase extraction of berberine. Under optimal conditions, the purity of berberine extracted from Cortex phellodendri was as high as 98.7% compared with that of 4.85% in the extract, indicating that aptamer-functionalized Fe 3 O 4 magnetic nanoparticles-based solid-phase extraction method was very effective for berberine enrichment and separation from a complex herb extract. The applicability and reliability of the developed solid-phase extraction method were demonstrated by separating berberine from nine different concentrations of one Cortex phellodendri extract. The relative recoveries of the spiked solutions of all the samples were between 95.4 and 111.3%, with relative standard deviations ranging between 0.57 and 1.85%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. 5-Gb/s 0.18-μm CMOS 2:1 multiplexer with integrated clock extraction

    NASA Astrophysics Data System (ADS)

    Changchun, Zhang; Zhigong, Wang; Si, Shi; Peng, Miao; Ling, Tian

    2009-09-01

    A 5-Gb/s 2:1 MUX (multiplexer) with an on-chip integrated clock extraction circuit which possesses the function of automatic phase alignment (APA), has been designed and fabricated in SMIC's 0.18 μm CMOS technology. The chip area is 670 × 780 μm2. At a single supply voltage of 1.8 V, the total power consumption is 112 mW with an input sensitivity of less than 50 mV and an output single-ended swing of above 300 mV. The measurement results show that the IC can work reliably at any input data rate between 1.8 and 2.6 Gb/s with no need for external components, reference clock, or phase alignment between data and clock. It can be used in a parallel optic-fiber data interconnecting system.

  17. On-chip concentration of bacteria using a 3D dielectrophoretic chip and subsequent laser-based DNA extraction in the same chip

    NASA Astrophysics Data System (ADS)

    Cho, Yoon-Kyoung; Kim, Tae-hyeong; Lee, Jeong-Gun

    2010-06-01

    We report the on-chip concentration of bacteria using a dielectrophoretic (DEP) chip with 3D electrodes and subsequent laser-based DNA extraction in the same chip. The DEP chip has a set of interdigitated Au post electrodes with 50 µm height to generate a network of non-uniform electric fields for the efficient trapping by DEP. The metal post array was fabricated by photolithography and subsequent Ni and Au electroplating. Three model bacteria samples (Escherichia coli, Staphylococcus epidermidis, Streptococcus mutans) were tested and over 80-fold concentrations were achieved within 2 min. Subsequently, on-chip DNA extraction from the concentrated bacteria in the 3D DEP chip was performed by laser irradiation using the laser-irradiated magnetic bead system (LIMBS) in the same chip. The extracted DNA was analyzed with silicon chip-based real-time polymerase chain reaction (PCR). The total process of on-chip bacteria concentration and the subsequent DNA extraction can be completed within 10 min including the manual operation time.

  18. Determination of inorganic arsenic in algae using bromine halogenation and on-line nonpolar solid phase extraction followed by hydride generation atomic flourescence spectrometry

    USDA-ARS?s Scientific Manuscript database

    Accurate, stable and fast analysis of toxic inorganic arsenic (iAs) in complicated and arsenosugar-rich algae matrix is always a challenge. Herein, a novel analytical method for iAs in algae was reported, using bromine halogenation and on-line nonpolar solid phase extraction (SPE) followed by hydrid...

  19. [Determination of lead in edible salt with solid-phase extraction and GFAAS].

    PubMed

    Zhao, Xin; Zhou, Shuang; Ma, Lan; Yang, Dajin

    2013-01-01

    Establishing a method for determination of lead in salt with solid-phase extraction and GFAAS. Salt sample was diluted to a certain volume directly with ammonium acetate, then the sample solution was filtered through the solid phase extraction column which has been pre-activated. Lead ions were retained, and the sodium chloride matrix was removed. After elution, the collected lead ions was determined by graphite furnace atomic absorption spectrometry in 257.4 nm. This method can be used effectively to wipe off the sodium chloride in matrix. The limit of detection was 0.7 microg/kg and the limit of quantification was 2 microg/kg. Solid phase extraction technique can be used effectively to reduce the interference in matrix and improves the accuracy and reproducibility of detection.

  20. Magnetic dispersive solid-phase extraction based on modified magnetic nanoparticles for the detection of cocaine and cocaine metabolites in human urine by high-performance liquid chromatography-mass spectrometry.

    PubMed

    Yang, Feiyu; Zou, Yun; Ni, Chunfang; Wang, Rong; Wu, Min; Liang, Chen; Zhang, Jiabin; Yuan, Xiaoliang; Liu, Wenbin

    2017-11-01

    An easy-to-handle magnetic dispersive solid-phase extraction procedure was developed for preconcentration and extraction of cocaine and cocaine metabolites in human urine. Divinyl benzene and vinyl pyrrolidone functionalized silanized Fe 3 O 4 nanoparticles were synthesized and used as adsorbents in this procedure. Scanning electron microscopy, vibrating sample magnetometry, and infrared spectroscopy were employed to characterize the modified adsorbents. A high-performance liquid chromatography with mass spectrometry method for determination of cocaine and its metabolites in human urine sample has been developed with pretreatment of the samples by magnetic dispersive solid-phase extraction. The obtained results demonstrated the higher extraction capacity of the prepared nanoparticles with recoveries between 75.1 to 105.7% and correlation coefficients higher than 0.9971. The limits of detection for the cocaine and cocaine metabolites were 0.09-1.10 ng/mL. The proposed magnetic dispersive solid-phase extraction method provided a rapid, environmentally friendly and magnetic stuff recyclable approach and it was confirmed that the prepared adsorbents material was a kind of highly effective extraction materials for the trace cocaine and cocaine metabolites analyses in human urine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Recent Application of Solid Phase Based Techniques for Extraction and Preconcentration of Cyanotoxins in Environmental Matrices.

    PubMed

    Mashile, Geaneth Pertunia; Nomngongo, Philiswa N

    2017-03-04

    Cyanotoxins are toxic and are found in eutrophic, municipal, and residential water supplies. For this reason, their occurrence in drinking water systems has become a global concern. Therefore, monitoring, control, risk assessment, and prevention of these contaminants in the environmental bodies are important subjects associated with public health. Thus, rapid, sensitive, selective, simple, and accurate analytical methods for the identification and determination of cyanotoxins are required. In this paper, the sampling methodologies and applications of solid phase-based sample preparation methods for the determination of cyanotoxins in environmental matrices are reviewed. The sample preparation techniques mainly include solid phase micro-extraction (SPME), solid phase extraction (SPE), and solid phase adsorption toxin tracking technology (SPATT). In addition, advantages and disadvantages and future prospects of these methods have been discussed.

  2. Development and Validation of HPLC Method for Determination of Crocetin, a constituent of Saffron, in Human Serum Samples.

    PubMed

    Mohammadpour, Amir Hooshang; Ramezani, Mohammad; Tavakoli Anaraki, Nasim; Malaekeh-Nikouei, Bizhan; Amel Farzad, Sara; Hosseinzadeh, Hossein

    2013-01-01

    The present study reports the development and validation of a sensitive and rapid extraction method beside high performance liquid chromatographic method for the determination of crocetin in human serum. The HPLC method was carried out by using a C18 reversed-phase column and a mobile phase composed of methanol/water/acetic acid (85:14.5:0.5 v/v/v) at the flow rate of 0.8 ml/min. The UV detector was set at 423 nm and 13-cis retinoic acid was used as the internal standard. Serum samples were pretreated with solid-phase extraction using Bond Elut C18 (200mg) cartridges or with direct precipitation using acetonitrile. The calibration curves were linear over the range of 0.05-1.25 µg/ml for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction. The mean recoveries of crocetin over a concentration range of 0.05-5 µg/ml serum for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction were above 70 % and 60 %, respectively. The intraday coefficients of variation were 0.37- 2.6% for direct precipitation method and 0.64 - 5.43% for solid-phase extraction. The inter day coefficients of variation were 1.69 - 6.03% for direct precipitation method and 5.13-12.74% for solid-phase extraction, respectively. The lower limit of quantification for crocetin was 0.05 µg/ml for direct precipitation method and 0.5 µg/ml for solid-phase extraction. The validated direct precipitation method for HPLC satisfied all of the criteria that were necessary for a bioanalytical method and could reliably quantitate crocetin in human serum for future clinical pharmacokinetic study.

  3. Development and Validation of HPLC Method for Determination of Crocetin, a constituent of Saffron, in Human Serum Samples

    PubMed Central

    Mohammadpour, Amir Hooshang; Ramezani, Mohammad; Tavakoli Anaraki, Nasim; Malaekeh-Nikouei, Bizhan; Amel Farzad, Sara; Hosseinzadeh, Hossein

    2013-01-01

    Objective(s): The present study reports the development and validation of a sensitive and rapid extraction method beside high performance liquid chromatographic method for the determination of crocetin in human serum. Materials and Methods: The HPLC method was carried out by using a C18 reversed-phase column and a mobile phase composed of methanol/water/acetic acid (85:14.5:0.5 v/v/v) at the flow rate of 0.8 ml/min. The UV detector was set at 423 nm and 13-cis retinoic acid was used as the internal standard. Serum samples were pretreated with solid-phase extraction using Bond Elut C18 (200mg) cartridges or with direct precipitation using acetonitrile. Results: The calibration curves were linear over the range of 0.05-1.25 µg/ml for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction. The mean recoveries of crocetin over a concentration range of 0.05-5 µg/ml serum for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction were above 70 % and 60 %, respectively. The intraday coefficients of variation were 0.37- 2.6% for direct precipitation method and 0.64 - 5.43% for solid-phase extraction. The inter day coefficients of variation were 1.69 – 6.03% for direct precipitation method and 5.13-12.74% for solid-phase extraction, respectively. The lower limit of quantification for crocetin was 0.05 µg/ml for direct precipitation method and 0.5 µg/ml for solid-phase extraction. Conclusion: The validated direct precipitation method for HPLC satisfied all of the criteria that were necessary for a bioanalytical method and could reliably quantitate crocetin in human serum for future clinical pharmacokinetic study. PMID:23638292

  4. Mycoestrogen determination in cow milk: Magnetic solid-phase extraction followed by liquid chromatography and tandem mass spectrometry analysis.

    PubMed

    Capriotti, Anna Laura; Cavaliere, Chiara; Foglia, Patrizia; La Barbera, Giorgia; Samperi, Roberto; Ventura, Salvatore; Laganà, Aldo

    2016-12-01

    Recently, magnetic solid-phase extraction has gained interest because it presents various operational advantages over classical solid-phase extraction. Furthermore, magnetic nanoparticles are easy to prepare, and various materials can be used in their synthesis. In the literature, there are only few studies on the determination of mycoestrogens in milk, although their carryover in milk has occurred. In this work, we wanted to develop the first (to the best of our knowledge) magnetic solid-phase extraction protocol for six mycoestrogens from milk, followed by liquid chromatography and tandem mass spectrometry analysis. Magnetic graphitized carbon black was chosen as the adsorbent, as this carbonaceous material, which is very different from the most diffuse graphene and carbon nanotubes, had already shown selectivity towards estrogenic compounds in milk. The graphitized carbon black was decorated with Fe 3 O 4 , which was confirmed by the characterization analyses. A milk deproteinization step was avoided, using only a suitable dilution in phosphate buffer as sample pretreatment. The overall process efficiency ranged between 52 and 102%, whereas the matrix effect considered as signal suppression was below 33% for all the analytes even at the lowest spiking level. The obtained method limits of quantification were below those of other published methods that employ classical solid-phase extraction protocols. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Use of Solid Phase Extraction in the Biochemistry Laboratory to Separate Different Lipids

    ERIC Educational Resources Information Center

    Flurkey, William H.

    2005-01-01

    Solid-phase extraction (SPE) was used to demonstrate how various lipids and lipid classes could be separated in a biochemistry laboratory setting. Three different SPE methods were chosen on their ability to separate a lipid mixture, consisting of a combination of a either a fatty acid, a triacylglycerol, a mono- or diacylglycerol, phospholipid,…

  6. Utilizing thin-film solid-phase extraction to assess the effect of organic carbon amendments on the bioavailability of DDT and dieldrin to earthworms

    USDA-ARS?s Scientific Manuscript database

    Improved approaches are needed to rapidly and accurately assess the bioavailability of persistent, hydrophobic organic compounds in soils at contaminated sites. The performance of a thin-film solid-phase extraction (TF-SPE) assay using vials coated with ethylene vinyl acetate polymer was compared to...

  7. Solid-phase extraction versus matrix solid-phase dispersion: Application to white grapes.

    PubMed

    Dopico-García, M S; Valentão, P; Jagodziñska, A; Klepczyñska, J; Guerra, L; Andrade, P B; Seabra, R M

    2007-11-15

    The use of matrix solid-phase dispersion (MSPD) was tested to, separately, extract phenolic compounds and organic acids from white grapes. This method was compared with a more conventional analytical method previously developed that combines solid liquid extraction (SL) to simultaneously extract phenolic compounds and organic acids followed by a solid-phase extraction (SPE) to separate the two types of compounds. Although the results were qualitatively similar for both techniques, the levels of extracted compounds were in general quite lower on using MSPD, especially for organic acids. Therefore, SL-SPE method was preferred to analyse white "Vinho Verde" grapes. Twenty samples of 10 different varieties (Alvarinho, Avesso, Asal-Branco, Batoca, Douradinha, Esganoso de Castelo Paiva, Loureiro, Pedernã, Rabigato and Trajadura) from four different locations in Minho (Portugal) were analysed in order to study the effects of variety and origin on the profile of the above mentioned compounds. Principal component analysis (PCA) was applied separately to establish the main sources of variability present in the data sets for phenolic compounds, organic acids and for the global data. PCA of phenolic compounds accounted for the highest variability (77.9%) with two PCs, enabling characterization of the varieties of samples according to their higher content in flavonol derivatives or epicatechin. Additionally, a strong effect of sample origin was observed. Stepwise linear discriminant analysis (SLDA) was used for differentiation of grapes according to the origin and variety, resulting in a correct classification of 100 and 70%, respectively.

  8. Flow-based analysis using microfluidics-chemiluminescence systems.

    PubMed

    Al Lawati, Haider A J

    2013-01-01

    This review will discuss various approaches and techniques in which analysis using microfluidics-chemiluminescence systems (MF-CL) has been reported. A variety of applications is examined, including environmental, pharmaceutical, biological, food and herbal analysis. Reported uses of CL reagents, sample introduction techniques, sample pretreatment methods, CL signal enhancement and detection systems are discussed. A hydrodynamic pumping system is predominately used for these applications. However, several reports are available in which electro-osmotic (EO) pumping has been implemented. Various sample pretreatment methods have been used, including liquid-liquid extraction, solid-phase extraction and molecularly imprinted polymers. A wide range of innovative techniques has been reported for CL signal enhancement. Most of these techniques are based on enhancement of the mixing process in the microfluidics channels, which leads to enhancement of the CL signal. However, other techniques are also reported, such as mirror reaction, liquid core waveguide, on-line pre-derivatization and the use of an opaque white chip with a thin transparent seal. Photodetectors are the most commonly used detectors; however, other detection systems have also been used, including integrated electrochemiluminescence (ECL) and organic photodiodes (OPDs). Copyright © 2012 John Wiley & Sons, Ltd.

  9. Shape-anchored porous polymer monoliths for integrated online solid-phase extraction-microchip electrophoresis-electrospray ionization mass spectrometry.

    PubMed

    Nordman, Nina; Barrios-Lopez, Brianda; Laurén, Susanna; Suvanto, Pia; Kotiaho, Tapio; Franssila, Sami; Kostiainen, Risto; Sikanen, Tiina

    2015-02-01

    We report a simple protocol for fabrication of shape-anchored porous polymer monoliths (PPMs) for on-chip SPE prior to online microchip electrophoresis (ME) separation and on-chip (ESI/MS). The chip design comprises a standard ME separation channel with simple cross injector and a fully integrated ESI emitter featuring coaxial sheath liquid channel. The monolith zone was prepared in situ at the injection cross by laser-initiated photopolymerization through the microchip cover layer. The use of high-power laser allowed not only maskless patterning of a precisely defined monolith zone, but also faster exposure time (here, 7 min) compared with flood exposure UV lamps. The size of the monolith pattern was defined by the diameter of the laser output (∅500 μm) and the porosity was geared toward high through-flow to allow electrokinetic actuation and thus avoid coupling to external pumps. Placing the monolith at the injection cross enabled firm anchoring based on its cross-shape so that no surface premodification with anchoring linkers was needed. In addition, sample loading and subsequent injection (elution) to the separation channel could be performed similar to standard ME setup. As a result, 15- to 23-fold enrichment factors were obtained already at loading (preconcentration) times as short as 25 s without sacrificing the throughput of ME analysis. The performance of the SPE-ME-ESI/MS chip was repeatable within 3.1% and 11.5% RSD (n = 3) in terms of migration time and peak height, respectively, and linear correlation was observed between the loading time and peak area. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Molecularly imprinted solid-phase extraction sorbent for the clean-up of chlorinated phenoxyacids from aqueous samples.

    PubMed

    Baggiani, C; Giovannoli, C; Anfossi, L; Tozzi, C

    2001-12-14

    A molecularly imprinted polymer (MIP) was synthesized using the herbicide 2,4,5-trichlorophenoxyacetic acid as a template, 4-vinylpyridine as an interacting monomer, ethylendimethacrylate as a cross-linker and a methanol-water mixture as a porogen. The binding properties and the selectivity of the polymer towards the template were investigated by frontal and zonal liquid chromatography. The polymer was used as a solid-phase extraction material for the clean-up of the template molecule and some related herbicides (2,4-dichlorophenoxyacetic acid, fenoprop, dichlorprop) from river water samples at a concentration level of ng/ml with quantitative recoveries comparable with those obtained with a traditional C18 reversed-phase column when analyzed by capillary electrophoresis. The results obtained show that the MIP-based approach to the solid-phase extraction is comparable with the more traditional solid-phase extraction with C18 reversed-phase columns in terms of recovery, but it is superior in terms of sample clean-up.

  11. Application of micro-solid-phase extraction for the on-site extraction of heterocyclic aromatic amines in seawater.

    PubMed

    Basheer, Chanbasha

    2018-04-01

    An efficient on-site extraction technique to determine carcinogenic heterocyclic aromatic amines in seawater has been reported. A micro-solid-phase extraction device placed inside a portable battery-operated pump was used for the on-site extraction of seawater samples. Before on-site applications, parameters that influence the extraction efficiency (extraction time, type of sorbent materials, suitable desorption solvent, desorption time, and sample volume) were investigated and optimized in the laboratory. The developed method was then used for the on-site sampling of heterocyclic aromatic amines determination in seawater samples close to distillation plant. Once the on-site extraction completed, the small extraction device with the analytes was brought back to the laboratory for analysis using high-performance liquid chromatography with fluorescence detection. Based on the optimized conditions, the calibration curves were linear over the concentration range of 0.05-20 μg/L with correlation coefficients up to 0.996. The limits of detection were 0.004-0.026 μg/L, and the reproducibility values were between 1.3 and 7.5%. To evaluate the extraction efficiency, a comparison was made with conventional solid-phase extraction and it was applied to various fortified real seawater samples. The average relative recoveries obtained from the spiked seawater samples varied in the range 79.9-95.2%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Simultaneous determination of azathioprine and 6-mercaptopurine by high-performance liquid chromatography.

    PubMed

    Van Os, E C; McKinney, J A; Zins, B J; Mays, D C; Schriver, Z H; Sandborn, W J; Lipsky, J J

    1996-04-26

    A specific, sensitive, single-step solid-phase extraction and reversed-phase high-performance liquid chromatographic method for the simultaneous determination of plasma 6-mercaptopurine and azathioprine concentrations is reported. Following solid-phase extraction, analytes are separated on a C18 column with mobile phase consisting of 0.8% acetonitrile in 1 mM triethylamine, pH 3.2, run on a gradient system. Quantitation limits were 5 ng/ml and 2 ng/ml for azathioprine and 6-mercaptopurine, respectively. Peak heights correlated linearly to known extracted standards for 6-mercaptopurine and azathioprine (r = 0.999) over a range of 2-200 ng/ml. No chromatographic interferences were detected.

  13. Solid phase extraction for the speciation and preconcentration of inorganic selenium in water samples: a review.

    PubMed

    Herrero Latorre, C; Barciela García, J; García Martín, S; Peña Crecente, R M

    2013-12-04

    Selenium is an essential element for the normal cellular function of living organisms. However, selenium is toxic at concentrations of only three to five times higher than the essential concentration. The inorganic forms (mainly selenite and selenate) present in environmental water generally exhibit higher toxicity (up to 40 times) than organic forms. Therefore, the determination of low levels of different inorganic selenium species in water is an analytical challenge. Solid-phase extraction has been used as a separation and/or preconcentration technique prior to the determination of selenium species due to the need for accurate measurements for Se species in water at extremely low levels. The present paper provides a critical review of the published methods for inorganic selenium speciation in water samples using solid phase extraction as a preconcentration procedure. On the basis of more than 75 references, the different speciation strategies used for this task have been highlighted and classified. The solid-phase extraction sorbents and the performance and analytical characteristics of the developed methods for Se speciation are also discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Optimization of cloud point extraction and solid phase extraction methods for speciation of arsenic in natural water using multivariate technique.

    PubMed

    Baig, Jameel A; Kazi, Tasneem G; Shah, Abdul Q; Arain, Mohammad B; Afridi, Hassan I; Kandhro, Ghulam A; Khan, Sumaira

    2009-09-28

    The simple and rapid pre-concentration techniques viz. cloud point extraction (CPE) and solid phase extraction (SPE) were applied for the determination of As(3+) and total inorganic arsenic (iAs) in surface and ground water samples. The As(3+) was formed complex with ammonium pyrrolidinedithiocarbamate (APDC) and extracted by surfactant-rich phases in the non-ionic surfactant Triton X-114, after centrifugation the surfactant-rich phase was diluted with 0.1 mol L(-1) HNO(3) in methanol. While total iAs in water samples was adsorbed on titanium dioxide (TiO(2)); after centrifugation, the solid phase was prepared to be slurry for determination. The extracted As species were determined by electrothermal atomic absorption spectrometry. The multivariate strategy was applied to estimate the optimum values of experimental factors for the recovery of As(3+) and total iAs by CPE and SPE. The standard addition method was used to validate the optimized methods. The obtained result showed sufficient recoveries for As(3+) and iAs (>98.0%). The concentration factor in both cases was found to be 40.

  15. Application of solid phase extraction procedures for rare earth elements determination in environmental samples.

    PubMed

    Pyrzynska, Krystyna; Kubiak, Anna; Wysocka, Irena

    2016-07-01

    Determination of rare earth elements in environmental samples requires often pre-concentration and separation step due to a low metal content and high concentration of the interfering matrix components. A solid phase extraction technique with different kind of solid sorbents offers a high enrichment factor, rapid phase separation and the possibility of its combination with various detection techniques used either in on-line or off-line mode. The recent developments in this area published over the last five years are presented and discussed in this paper. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Isolation and recovery of selected polybrominated diphenyl ethers from human serum and sheep serum: coupling reversed-phase solid-phase disk extraction and liquid-liquid extraction techniques with a capillary gas chromatographic electron capture negative ion mass spectrometric determinative technique.

    PubMed

    Loconto, Paul R; Isenga, David; O'Keefe, Michael; Knottnerus, Mark

    2008-01-01

    Polybrominated diphenyl ethers (PBDEs) are isolated and recovered with acceptable percent recoveries from human serum via liquid-liquid extraction and column chromatographic cleanup and fractionation with quantitation using capillary gas chromatography-mass spectrometry with electron capture negative ion and selected ion monitoring. PBDEs are found in unspiked serum. An alternative sample preparation approach is developed using sheep serum that utilizes a formic acid pre-treatment followed by reversed-phase solid-phase disk extraction and normal-phase solid-phase cleanup using acidified silica gel that yields>50% recoveries. When these percent recoveries are combined with a minimized phase ratio for human serum and very low instrument detection limits, method detection limits below 500 parts-per-trillion are realized.

  17. Solid-phase microextraction coupled with high performance liquid chromatography: a complementary technique to solid-phase microextraction-gas chromatography for the analysis of pesticide residues in strawberries.

    PubMed

    Wang, Z; Hennion, B; Urruty, L; Montury, M

    2000-11-01

    Solid-phase microextraction coupled with high performance liquid chromatography has been studied for the analysis of methiocarb, napropamide, fenoxycarb and bupirimate in strawberries. The strawberries were blended and centrifuged. Then, an aliquot of the resulting extracting solution was subjected to solid-phase microextraction (SPME) on a 60 microns polydimethylsiloxane/divinylbenzene (PDMS/DVB) fibre for 45 min at room temperature. The extracted pesticides on the SPME fibre were desorbed into SPME/high performance liquid chromatography (HPLC) interface for HPLC analysis with diode-array detection (DAD). The method is organic solvent-free for the whole extraction process and is simple and easy to manipulate. The detection limits were shown to be at low microgram kg-1 level and the linear response covered the range from 0.05 to 2 mg kg-1 of pesticides in strawberries with a regression coefficient larger than 0.99. A good repeatability with RSDs between 2.92 and 9.25% was obtained, depending on compounds.

  18. Molecularly imprinted polymer/cryogel composites for solid-phase extraction of bisphenol A from river water and wine.

    PubMed

    Baggiani, Claudio; Baravalle, Patrizia; Giovannoli, Cristina; Anfossi, Laura; Giraudi, Gianfranco

    2010-05-01

    Superporous monolithic hydrogels (cryogel monoliths) are elastic, sponge-like materials that can be prepared in an aqueous medium through a cryotropic gelation technique. These monoliths show interesting properties for the development of high-throughput solid-phase extraction supports to treat large volumes of aqueous samples. In this work, a cryogel-supported molecularly imprinted solid-phase extraction approach for the endocrine disruptor bisphenol A (BPA) from river water and wine samples is presented. An imprinted polymer with molecular recognition properties for BPA was prepared in acetonitrile by thermal polymerization of a mixture of 4,4'-dihydroxy-2,2-diphenyl-1,1,1,3,3,3-trifluoropropane as a mimic template of BPA, 4-vinylpyridine and trimethylolpropane trimethacrylate in a molar ratio of 1 + 6 + 6. Fine imprinted particles (<10 microm) were embedded in a poly-acrylamide-co-N,N'-methylenbisacrylamide cryogel obtained by ammonium persulfate-induced cryopolymerization at -18 degrees C. The resulting monolithic gel was evaluated for its use as a sorbent support in an off-line solid-phase extraction approach to recover BPA from dilute aqueous samples with minimum pre-loading work-up. The optimized extraction protocol resulted in a reliable MISPE method suitable to selectively extract and preconcentrate BPA from river water and red wine samples, demonstrating the practical feasibility of cryogel-trapped imprinted polymers as solid-phase extraction materials.

  19. Bacterial toxicity assessment of drinking water treatment residue (DWTR) and lake sediment amended with DWTR.

    PubMed

    Yuan, Nannan; Wang, Changhui; Pei, Yuansheng

    2016-11-01

    Drinking water treatment residue (DWTR) seems to be very promising for controlling lake sediment pollution. Logically, acquisition of the potential toxicity of DWTR will be beneficial for its applications. In this study, the toxicity of DWTR and sediments amended with DWTR to Aliivibrio fischeri was evaluated based on the Microtox(®) solid and leachate phase assays, in combination with flow cytometry analyses and the kinetic luminescent bacteria test. The results showed that both solid particles and aqueous/organic extracts of DWTR exhibited no toxicity to the bacterial luminescence and growth. The solid particles of DWTR even promoted bacterial luminescence, possibly because DWTR particles could act as a microbial carrier and provide nutrients for bacteria growth. Bacterial toxicity (either luminescence or growth) was observed from the solid phase and aqueous/organic extracts of sediments with or without DWTR addition. Further analysis showed that the solid phase toxicity was determined to be related mainly to the fixation of bacteria to fine particles and/or organic matter, and all of the observed inhibition resulting from aqueous/organic extracts was identified as non-significant. Moreover, DWTR addition not only had no adverse effect on the aqueous/organic extract toxicity of the sediment but also reduced the solid phase toxicity of the sediment. Overall, in practical application, the solid particles, the water-soluble substances transferred to surface water or the organic substances in DWTR had no toxicity or any delayed effect on bacteria in lakes, and DWTR can therefore be considered as a non-hazardous material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Laboratory study of the response of select insecticides to toxicity identification evaluation procedures

    USGS Publications Warehouse

    Kuivila, Kathryn; Crepeau, Kathryn L.

    1999-01-01

    A laboratory study was used to evaluate the response of select insecticides to toxicity identification evaluation procedures. Fourteen insecticides, one degradation product, and one synergist were spiked into organic-grade water and carried through toxicity identification evaluation procedures. Concentrations of each compound were analyzed by gas chromatography/mass spectrometry. During Phase I, the water sample was pumped through a C-8 solid-phase extraction cartridge and then eluted with methanol. Dimethoate was not removed by the extraction, but remained in the rinsate. In contrast, permethrin was removed by the extraction, but was not recovered by the methanol elution, and 80 percent of the permethrin remained on the cartridge, teflon tubing, and glassware. Chlorpyrifos also was not recovered completely with the methanol elution (only 62 percent was recovered). The other insecticides were extracted by C-8 solid-phase extraction cartridge and recovered by elution with methanol (80 percent or greater). During Phase II, a new spiked water sample was extracted by C-8 solid-phase extraction cartridge and then eluted with varying concentrations of methanol and water into different fractions. Each methanol:water fraction was analyzed for the added compounds. Most of the insecticides eluted in two fractions, with concentrations of 10 percent or greater. The largest number of insecticides eluted in the 75 percent methanol:water fraction.

  1. Analytical methodologies based on LC-MS/MS for monitoring selected emerging compounds in liquid and solid phases of the sewage sludge.

    PubMed

    Boix, C; Ibáñez, M; Fabregat-Safont, D; Morales, E; Pastor, L; Sancho, J V; Sánchez-Ramírez, J E; Hernández, F

    2016-01-01

    In this work, two analytical methodologies based on liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) were developed for quantification of emerging pollutants identified in sewage sludge after a previous wide-scope screening. The target list included 13 emerging contaminants (EC): thiabendazole, acesulfame, fenofibric acid, valsartan, irbesartan, salicylic acid, diclofenac, carbamazepine, 4-aminoantipyrine (4-AA), 4-acetyl aminoantipyrine (4-AAA), 4-formyl aminoantipyrine (4-FAA), venlafaxine and benzoylecgonine. The aqueous and solid phases of the sewage sludge were analyzed making use of Solid-Phase Extraction (SPE) and UltraSonic Extraction (USE) for sample treatment, respectively. The methods were validated at three concentration levels: 0.2, 2 and 20 μg L(-1) for the aqueous phase, and 50, 500 and 2000 μg kg(-1) for the solid phase of the sludge. In general, the method was satisfactorily validated, showing good recoveries (70-120%) and precision (RSD < 20%). Regarding the limit of quantification (LOQ), it was below 0.1 μg L(-1) in the aqueous phase and below 50 μg kg(-1) in the solid phase for the majority of the analytes. The method applicability was tested by analysis of samples from a wider study on degradation of emerging pollutants in sewage sludge under anaerobic digestion. The key benefits of these methodologies are: • SPE and USE are appropriate sample procedures to extract selected emerging contaminants from the aqueous phase of the sewage sludge and the solid residue. • LC-MS/MS is highly suitable for determining emerging contaminants in both sludge phases. • Up to our knowledge, the main metabolites of dipyrone had not been studied before in sewage sludge.

  2. A simplified radiometabolite analysis procedure for PET radioligands using a solid phase extraction with micellar medium.

    PubMed

    Nakao, Ryuji; Halldin, Christer

    2013-07-01

    A solid phase extraction method has been developed for simple and high-speed direct determination of PET radioligands in plasma. This methodology makes use of a micellar medium and a solid-phase extraction cartridge for displacement of plasma protein bound radioligand and separation of PET radioligands from their radiometabolites without significant preparation. The plasma samples taken from monkey or human during PET measurements were mixed with a micellar eluent containing an anionic surfactant sodium dodecyl sulphate and loaded onto SPE cartridges. The amount of radioactivity corresponding to parent radioligand (retained on the cartridge) and its radioactive metabolites (eluted with micellar eluent) was measured. Under the optimized conditions, excellent separation of target PET radioligands from their radiometabolites was achieved with a single elution and short run-time of 1 min. This method was successfully applied to study the metabolism for (11)C-labelled radioligands in human or monkey plasma. The amount of parent PET radioligands estimated by micellar solid phase extraction strongly corresponded with that determined by radio-LC. The improved throughput permitted the analysis of a large number of plasma samples (up to 13 samples per one PET study) for accurate estimation of metabolite-corrected input function during quantitative PET imaging studies. Solid phase extraction together with micellar medium is fast, sensitive and easy to use, and therefore it is an attractive alternative method to determine relative composition of PET radioligands in plasma. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Lab-on-a-Chip Sensor for Monitoring Perchlorate in Ground and Surface Water

    DTIC Science & Technology

    2012-02-01

    uses zwitterionic surfactants was immobilized on either a conventional or membrane-based stationary phase (electrostatic ion chromatography ) em...substantially higher than that of drinking water. A novel extraction method incorporat- ing the fundamentals of electrostatic ion chromatography (EIC) was...electrostatic ion chromatography (EIC), is presented as a way to overcome this challenge. Two extraction formats, employing either a packed bed or a monolith

  4. NASA satellite communications application research, phase 2 addendum. Efficient high power, solid state amplifier for EHF communications

    NASA Technical Reports Server (NTRS)

    Benet, James

    1994-01-01

    This document is an addendum to the NASA Satellite Communications Application Research (SCAR) Phase 2 Final Report, 'Efficient High Power, Solid State Amplifier for EHF Communications.' This report describes the work performed from 1 August 1993 to 11 March 1994, under contract number NASW-4513. During this reporting period an array of transistor amplifiers was repaired by replacing all MMIC amplifier chips. The amplifier array was then tested using three different feedhorn configurations. Descriptions, procedures, and results of this testing are presented in this report, and conclusions are drawn based on the test results obtained.

  5. A sol-gel based solid phase microextraction fiber for the analysis of aliphatic alcohols in apple juices.

    PubMed

    Farhadi, Khalil; Maleki, Ramin; Tahmasebi, Raheleh

    2010-01-01

    A new fiber based on titania-chitin sol-gel coated on a silver wire for the headspace solid phase microextraction of aliphatic alcohols from apple juice samples was developed. The influences of fiber coating composition and microextraction conditions (extraction temperature, extraction time, and ionic strength of the sample matrix) on the fiber performance were investigated. Also, the influence of temperature and time on desorption of analytes from fiber were studied. Under the optimized conditions, a porous fiber with a high extraction capacity and good thermal stability (up to 250 degrees C) was obtained. The proposed headspace solid-phase microextraction-GC method was successfully used for the analysis of aliphatic alcohols in apple juice and concentrate samples. The recovery values were from 92.8 to 98.6%. The RSD (n=5) for all analytes were below 7.8%.

  6. Rapid and sensitive determination of major polyphenolic components in Euphoria longana Lam. seeds using matrix solid-phase dispersion extraction and UHPLC with hybrid linear ion trap triple quadrupole mass spectrometry.

    PubMed

    Rathore, Atul S; Sathiyanarayanan, L; Deshpande, Shreekant; Mahadik, Kakasaheb R

    2016-11-01

    A rapid and sensitive method for the extraction and determination of four major polyphenolic components in Euphoria longana Lam. seeds is presented for the first time based on matrix solid-phase dispersion extraction followed by ultra high performance liquid chromatography with hybrid triple quadrupole linear ion trap mass spectrometry. Matrix solid-phase dispersion method was designed for the extraction of Euphoria longana seed constituents and compared with microwave-assisted extraction and ultrasonic-assisted extraction methods. An Ultra high performance liquid chromatography with hybrid triple quadrupole linear ion-trap mass spectrometry method was developed for quantitative analysis in multiple-reaction monitoring mode in negative electrospray ionization. The chromatographic separation was accomplished using an ACQUITY UPLC BEH C 18 (2.1 mm × 50 mm, 1.7 μm) column with gradient elution of 0.1% aqueous formic acid and 0.1% formic acid in acetonitrile. The developed method was validated with acceptable linearity (r 2 > 0.999), precision (RSD ≤ 2.22%) and recovery (RSD ≤ 2.35%). The results indicated that matrix solid-phase dispersion produced comparable extraction efficiency compared with other methods nevertheless was more convenient and time-saving with reduced requirements on sample and solvent volumes. The proposed method is rapid and sensitive in providing a promising alternative for extraction and comprehensive determination of active components for quality control of Euphoria longana products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. [Simultaneous determination of 15 industrial synthetic dyes in condiment by solid phase extraction-high performance liquid chromatography].

    PubMed

    Liu, Min; Li, Xiaolin; Bie, Wei; Wang, Minglin; Feng, Qian

    2011-02-01

    A new method was established for the determination of 15 industrial synthetic dyes in condiment by solid phase extraction-high performance liquid chromatography (SPE-HPLC). The samples were extracted by methanol-water (1:1, v/v) and purified by a solid phase extraction column. Then, the chromatographic separation was achieved on a Luna C18 column by linear gradient elution. The mobile phase was 10 mmol/L ammonium acetate-acetonitrile (containing 1% acetic acid). The results showed that the 15 industrial synthetic dyes can be separated efficiently. The recoveries of the 15 industrial synthetic dyes spiked in condiment were between 84.6% and 114.2% with the relative standard deviations of 0.9% - 10.3%. The limits of detection of this method was 0.05 - 0.18 mg/kg for the 15 industrial synthetic dyes. The method is simple, sensitive, accurate, repeatable and can be used for simultaneous determination of the 15 illegally added industrial synthetic dyes.

  8. AUTOMATED ANALYSIS OF AQUEOUS SAMPLES CONTAINING PESTICIDES, ACIDIC/BASIC/NEUTRAL SEMIVOLATILES AND VOLATILE ORGANIC COMPOUNDS BY SOLID PHASE EXTRACTION COUPLED IN-LINE TO LARGE VOLUME INJECTION GC/MS

    EPA Science Inventory

    Data is presented on the development of a new automated system combining solid phase extraction (SPE) with GC/MS spectrometry for the single-run analysis of water samples containing a broad range of organic compounds. The system uses commercially available automated in-line 10-m...

  9. Solid Phase Micro Extraction (SPME)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Internation Flavors and Fragrances Inc. proprietary research technology, Solid Phase Micro Extraction (SPME) utilizes a special fiber needle placed directly next to the bloom of the living flower to collect the fragrance molecules. SPME was used in the Space Flower experiment aboard STS-95 space shuttle mission, after which Dr. Braja Mookherjee (left) and Subha Patel of IFF will analyze the effects of gravity on the Overnight Scentsation rose plant.

  10. DEVELOPMENT OF METHOD 535 FOR THE DETERMINATION OF CHLOROACETANILIDE AND OTHER ACETAMIDE HERBICIDE DEGRADATES IN DRINKING WATER BY SOLID PHASE EXTRACTION AND LIQUID CHROMATOGRAPHY/TANDEM MASS SPECTROMETRY

    EPA Science Inventory

    EPA Method 535 has been developed in order to provide a method for the analysis of "Alachlor ESA and other acetanilide degradation products" which are listed on U.S. EPA's 1998 Drinking Water Contaminant Candidate List. Method 535 uses solid phase extraction with a nonporous gr...

  11. New Approaches in Soil Organic Matter Fluorescence; A Solid Phase Fluorescence Approach

    NASA Astrophysics Data System (ADS)

    Bowman, M. M.; Sanclements, M.; McKnight, D. M.

    2017-12-01

    Fluorescence spectroscopy is a well-established technique to investigate the composition of organic matter in aquatic systems and is increasingly applied to soil organic matter (SOM). Current methods require that SOM be extracted into a liquid prior to analysis by fluorescence spectroscopy. Soil extractions introduce an additional layer of complexity as the composition of the organic matter dissolved into solution varies based upon the selected extractant. Water is one of the most commonly used extractant, but only extracts the water-soluble fraction of the SOM with the insoluble soil organic matter fluorescence remaining in the soil matrix. We propose the use of solid phase fluorescence on whole soils as a potential tool to look at the composition of organic matter without the extraction bias and gain a more complete understand of the potential for fluorescence as a tool in terrestrial studies. To date, the limited applications of solid phase fluorescence have ranged from food and agriculture to pharmaceutical with no clearly defined methods and limitations available. We are aware of no other studies that use solid phase fluorescence and thus no clear methods to look at SOM across a diverse set of soil types and ecosystems. With this new approach to fluorescence spectroscopy there are new challenges, such as blank correction, inner filter effect corrections, and sample preparation. This work outlines a novel method for analyzing soil organic matter using solid phase fluorescence across a wide range of soils collected from the National Ecological Observatory Network (NEON) eco-domains. This method has shown that organic matter content in soils must be diluted to 2% to reduce backscattering and oversaturation of the detector in forested soils. In mineral horizons (A) there is observed quenching of the humic-like organic matter, which is likely a result of organo-mineral complexation. Finally, we present preliminary comparisons between solid and liquid phase fluorescence, which provide new insights into fluorescence studies in terrestrial systems.

  12. ImmunoCAP assays: Pros and cons in allergology.

    PubMed

    van Hage, Marianne; Hamsten, Carl; Valenta, Rudolf

    2017-10-01

    Allergen-specific IgE measurements and the clinical history are the cornerstones of allergy diagnosis. During the past decades, both characterization and standardization of allergen extracts and assay technology have improved. Here we discuss the uses, advantages, misinterpretations, and limitations of ImmunoCAP IgE assays (Thermo Fisher Scientific/Phadia, Uppsala, Sweden) in the field of allergology. They can be performed as singleplex (ImmunoCAP) and, for the last decade, as multiplex (Immuno Solid-phase Allergen Chip [ISAC]). The major benefit of ImmunoCAP is the obtained quantified allergen-specific IgE antibody level and the lack of interference from allergen-specific IgG antibodies. However, ImmunoCAP allergen extracts are limited to the composition of the extract. The introduction of allergen molecules has had a major effect on analytic specificity and allergy diagnosis. They are used in both singleplex ImmunoCAP and multiplex ImmunoCAP ISAC assays. The major advantage of ISAC is the comprehensive IgE pattern obtained with a minute amount of serum. The shortcomings are its semiquantitative measurements, lower linear range, and cost per assay. With respect to assay performance, ImmunoCAP allergen extracts are good screening tools, but allergen molecules dissect the IgE response on a molecular level and put allergy research on the map of precision medicine. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  13. Concentration of organic compounds in natural waters with solid-phase dispersion based on advesicle modified silica prior to liquid chromatography.

    PubMed

    Parisis, Nikolaos A; Giokas, Dimosthenis L; Vlessidis, Athanasios G; Evmiridis, Nicholaos P

    2005-12-02

    The ability of vesicle-coated silica to aid the extraction of organic compounds from water prior to liquid chromatographic analysis is presented for the first time. The method is based on the formation of silica supported cationic multi-lamellar vesicles of gemini surfactants inherently ensuring the presence of hydrophilic and hydrophobic sites for the partitioning of analytes bearing different properties. Method development is illustrated by studying the adsolubilization of UV absorbing chemicals from swimming pool water. Due to the requirement for external energy input (intense shearing) a method based on solid-phase dispersion (SPD) was applied producing better results than off-line solid-phase extraction (SPE). Meticulous investigation of the experimental parameters was conducted in order to elucidate the mechanisms behind the proposed extraction pattern. Analyte recoveries were quantitative under the optimum experimental conditions offering recoveries higher than 96% with RSD values below 5%.

  14. Simultaneous Solid Phase Extraction and Derivatization of Aliphatic Primary Amines Prior to Separation and UV-Absorbance Detection

    PubMed Central

    Felhofer, Jessica L.; Scida, Karen; Penick, Mark; Willis, Peter A.; Garcia, Carlos D.

    2013-01-01

    To overcome the problem of poor sensitivity of capillary electrophoresis-UV absorbance for the detection of aliphatic amines, a solid phase extraction and derivatization scheme was developed. This work demonstrates successful coupling of amines to a chromophore immobilized on a solid phase and subsequent cleavage and analysis. Although the analysis of many types of amines is relevant for myriad applications, this paper focuses on the derivatization and separation of amines with environmental relevance. This work aims to provide the foundations for future developments of an integrated sample preparation microreactor capable of performing simultaneous derivatization, preconcentration, and sample cleanup for sensitive analysis of primary amines. PMID:24054648

  15. Fluidics platform and method for sample preparation

    DOEpatents

    Benner, Henry W.; Dzenitis, John M.

    2016-06-21

    Provided herein are fluidics platforms and related methods for performing integrated sample collection and solid-phase extraction of a target component of the sample all in one tube. The fluidics platform comprises a pump, particles for solid-phase extraction and a particle-holding means. The method comprises contacting the sample with one or more reagents in a pump, coupling a particle-holding means to the pump and expelling the waste out of the pump while the particle-holding means retains the particles inside the pump. The fluidics platform and methods herein described allow solid-phase extraction without pipetting and centrifugation.

  16. Effects of a reactive barrier and aquifer geology on metal distribution and mobility in a mine drainage impacted aquifer.

    PubMed

    Doerr, Nora A; Ptacek, Carol J; Blowes, David W

    2005-06-01

    The Nickel Rim aquifer has been impacted for five decades by a metal-rich plume generated from the Nickel Rim mine tailings impoundment. Metals released by the oxidation of pyrrhotite in the unsaturated zone of the tailings migrate into the downgradient aquifer, affecting both the groundwater and the aquifer solids. A reactive barrier has been installed in the aquifer to remove sulfate and metals from the groundwater. The effect of the reactive barrier on metal concentrations in the aquifer solids has not previously been studied. In this study, a series of selective extraction procedures was applied to cores of aquifer sediment, to ascertain the distribution of metals among various solid phases present in the aquifer. Extraction results were combined with groundwater chemistry, geochemical modelling and solid-phase microanalyses, to assess the potential mobility of metals under changing geochemical conditions. Reactions within the reactive barrier caused an increase in the solid-phase carbonate content downgradient from the barrier. The concentrations of poorly crystalline, oxidized phases of Mn and Fe, as well as concentrations of Cr(III) associated with oxidized Fe, and poorly crystalline Zn, are lower downgradient from the barrier, whereas total solid-phase metal concentrations remain constant. Iron and Mn accumulate as oxidized, easily extractable forms in a peat layer overlying the aquifer. Although these oxides may buffer reducing plumes, they also have the potential to release metals to the groundwater, should a reduced condition be imposed on the aquifer by remedial actions.

  17. Micro versus macro solid phase extraction for monitoring water contaminants: a preliminary study using trihalomethanes.

    PubMed

    Alexandrou, Lydon D; Spencer, Michelle J S; Morrison, Paul D; Meehan, Barry J; Jones, Oliver A H

    2015-04-15

    Solid phase extraction is one of the most commonly used pre-concentration and cleanup steps in environmental science. However, traditional methods need electrically powered pumps, can use large volumes of solvent (if multiple samples are run), and require several hours to filter a sample. Additionally, if the cartridge is open to the air volatile compounds may be lost and sample integrity compromised. In contrast, micro cartridge based solid phase extraction can be completed in less than 2 min by hand, uses only microlitres of solvent and provides comparable concentration factors to established methods. It is also an enclosed system so volatile components are not lost. The sample can also be eluted directly into a detector (e.g. a mass spectrometer) if required. However, the technology is new and has not been much used for environmental analysis. In this study we compare traditional (macro) and the new micro solid phase extraction for the analysis of four common volatile trihalomethanes (trichloromethane, bromodichloromethane, dibromochloromethane and tribromomethane). The results demonstrate that micro solid phase extraction is faster and cheaper than traditional methods with similar recovery rates for the target compounds. This method shows potential for further development in a range of applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Efficient removal of recalcitrant deep-ocean dissolved organic matter during hydrothermal circulation

    NASA Astrophysics Data System (ADS)

    Hawkes, Jeffrey A.; Rossel, Pamela E.; Stubbins, Aron; Butterfield, David; Connelly, Douglas P.; Achterberg, Eric P.; Koschinsky, Andrea; Chavagnac, Valérie; Hansen, Christian T.; Bach, Wolfgang; Dittmar, Thorsten

    2015-11-01

    Oceanic dissolved organic carbon (DOC) is an important carbon pool, similar in magnitude to atmospheric CO2, but the fate of its oldest forms is not well understood. Hot hydrothermal circulation may facilitate the degradation of otherwise un-reactive dissolved organic matter, playing an important role in the long-term global carbon cycle. The oldest, most recalcitrant forms of DOC, which make up most of oceanic DOC, can be recovered by solid-phase extraction. Here we present measurements of solid-phase extractable DOC from samples collected between 2009 and 2013 at seven vent sites in the Atlantic, Pacific and Southern oceans, along with magnesium concentrations, a conservative tracer of water circulation through hydrothermal systems. We find that magnesium and solid-phase extractable DOC concentrations are correlated, suggesting that solid-phase extractable DOC is almost entirely lost from solution through mineralization or deposition during circulation through hydrothermal vents with fluid temperatures of 212-401 °C. In laboratory experiments, where we heated samples to 380 °C for four days, we found a similar removal efficiency. We conclude that thermal degradation alone can account for the loss of solid-phase extractable DOC in natural hydrothermal systems, and that its maximum lifetime is constrained by the timescale of hydrothermal cycling, at about 40 million years.

  19. Solid-phase extraction assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet to determine sildenafil and its analogues in dietary supplements.

    PubMed

    Li, Jing; Roh, Si Hun; Shaodong, Jia; Hong, Ji Yeon; Lee, Dong-Kyu; Shin, Byong-Kyu; Park, Jeong Hill; Lee, Jeongmi; Kwon, Sung Won

    2017-08-01

    A novel analytical method for the simultaneous determination of the concentration of sildenafil and its five analogues in dietary supplements using solid-phase extraction assisted reversed-phase dispersive liquid-liquid microextraction based on solidification of floating organic droplet combined with ion-pairing liquid chromatography with an ultraviolet detector was developed. Parameters that affect extraction efficiency were systematically investigated, including the type of solid-phase extraction cartridge, pH of the extraction environment, and the type and volume of extraction and dispersive solvent. The method linearity was in the range of 5.0-100 ng/mL for sildenafil, homosildenafil, udenafil, benzylsildenafil, and thiosildenafil and 10-100 ng/mL for acetildenafil. The coefficients of determination were ≥0.996 for all regression curves. The sensitivity values expressed as limit of detection were between 2.5 and 7.5 ng/mL. Furthermore, intraday and interday precisions expressed as relative standard deviations were less than 5.7 and 9.9%, respectively. The proposed method was successfully applied to the analysis of sildenafil and its five analogues in complex dietary supplements. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Application of pseudo-template molecularly imprinted polymers by atom transfer radical polymerization to the solid-phase extraction of pyrethroids.

    PubMed

    Zhang, Ming; He, Juan; Shen, Yanzheng; He, Weiye; Li, Yuanyuan; Zhao, Dongxin; Zhang, Shusheng

    2018-02-01

    A polymer-based adsorption medium with molecular recognition ability for homologs of pyrethroids was prepared by atom transfer radical polymer iration using a fragment imprinting technique. Phenyl ether-biphenyl eutectic was utilized as a pseudo-template molecule, and the adsorption medium prepared was evaluated by solid-phase extraction and gas chromatography. Selectivity of the medium for pyrethroids was evaluated using it as solid phase extraction packing by Gas Chromatography. The results demonstrated that the absorption amount of bifenthrin, fenpropathrin, permethrin, cypermethrin, fenvalerate, Dursban and pentachloronitrobenzene for molecularly imprinted polymers were 2.32, 2.12, 2.18, 2.20, 2.30, 1.30 and 1.40mgg -1 , respectively, while the non-imprinted polymers were 1.20, 1.13, 1.25, 1.05, 1.20, 1.23 and 1.32mgg -1 , respectively. The rebinding test based on the molecularly imprinted solid phase extraction column technique showed the recoveries of honey sample spiked with seven insecticides within 88.5-106.2%, with relative standard deviations of 2.38-5.63%. Finally, the method was successfully applied to the analysis of pyrethroids in a honey sample. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Preparative isolation of flavonoid glycosides from Sphaerophysa salsula using hydrophilic interaction solid-phase extraction coupled with two-dimensional preparative liquid chromatography.

    PubMed

    Jiao, Lijin; Tao, Yanduo; Wang, Weidong; Shao, Yun; Mei, Lijuan; Wang, Qilan; Dang, Jun

    2017-10-01

    An offline preparative two-dimensional reversed-phase liquid chromatography/hydrophilic interaction liquid chromatography coupled with hydrophilic interaction solid-phase extraction method was developed for the preparative isolation of flavonoid glycosides from a crude sample of Sphaerophysa salsula. First, the non-flavonoids were removed using an XAmide solid-phase extraction cartridge. Based on the separation results of three different chromatographic stationary phases, the first-dimensional preparation was performed on an XAqua C18 prep column, and 15 fractions were obtained from the 5.2 g target sample. Then, three representative fractions were selected for additional purification on an XAmide preparative column to further isolate the flavonoid glycosides. In all, eight flavonoid glycosides were isolated in purities over 97%. The results demonstrated that the two-dimensional liquid chromatography method used in this study was effective for the preparative separation of flavonoid glycosides from Sphaerophysa salsula. Additionally, this method showed great potential for the separation of flavonoid glycosides from other plant materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Chip-based magnetic solid phase microextraction coupled with ICP-MS for the determination of Cd and Se in HepG2 cells incubated with CdSe quantum dots.

    PubMed

    Yu, Xiaoxiao; Chen, Beibei; He, Man; Wang, Han; Hu, Bin

    2018-03-01

    The quantification of trace Cd and Se in cells incubated with CdSe quantum dots (QDs) is critical to investigate the cytotoxicity of CdSe QDs. In this work, a miniaturized platform, namely chip-based magnetic solid phase microextraction (MSPME) packing with sulfhydryl group functionalized magnetic nanoparticles, was fabricated and combined with inductively coupled plasma mass spectrometry (ICP-MS) for the determination of trace Cd and Se in cells. Under the optimized conditions, the limits of detection (LOD) of the developed chip-based MSPME-ICP-MS system are 2.2 and 21ngL -1 for Cd and Se, respectively. The proposed method is applied successfully to the analysis of total and released small molecular fraction of Cd and Se in Human hepatocellular carcinoma cells (HepG2 cells) incubated with CdSe QDs, and the recoveries for the spiked samples are in the range of 86.0-109%. This method shows great promise to analyze cell samples and the obtained results are instructive to explore the cytotoxicity mechanism of CdSe QDs in cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Electro-optic routing of photons from a single quantum dot in photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Midolo, Leonardo; Hansen, Sofie L.; Zhang, Weili; Papon, Camille; Schott, Rüdiger; Ludwig, Arne; Wieck, Andreas D.; Lodahl, Peter; Stobbe, Søren

    2017-12-01

    Recent breakthroughs in solid-state photonic quantum technologies enable generating and detecting single photons with near-unity efficiency as required for a range of photonic quantum technologies. The lack of methods to simultaneously generate and control photons within the same chip, however, has formed a main obstacle to achieving efficient multi-qubit gates and to harness the advantages of chip-scale quantum photonics. Here we propose and demonstrate an integrated voltage-controlled phase shifter based on the electro-optic effect in suspended photonic waveguides with embedded quantum emitters. The phase control allows building a compact Mach-Zehnder interferometer with two orthogonal arms, taking advantage of the anisotropic electro-optic response in gallium arsenide. Photons emitted by single self-assembled quantum dots can be actively routed into the two outputs of the interferometer. These results, together with the observed sub-microsecond response time, constitute a significant step towards chip-scale single-photon-source de-multiplexing, fiber-loop boson sampling, and linear optical quantum computing.

  4. Molecularly imprinted solid-phase extraction in the analysis of agrochemicals.

    PubMed

    Yi, Ling-Xiao; Fang, Rou; Chen, Guan-Hua

    2013-08-01

    The molecular imprinting technique is a highly predeterminative recognition technology. Molecularly imprinted polymers (MIPs) can be applied to the cleanup and preconcentration of analytes as the selective adsorbent of solid-phase extraction (SPE). In recent years, a new type of SPE has formed, molecularly imprinted polymer solid-phase extraction (MISPE), and has been widely applied to the extraction of agrochemicals. In this review, the mechanism of the molecular imprinting technique and the methodology of MIP preparations are explained. The extraction modes of MISPE, including offline and online, are discussed, and the applications of MISPE in the analysis of agrochemicals such as herbicides, fungicides and insecticides are summarized. It is concluded that MISPE is a powerful tool to selectively isolate agrochemicals from real samples with higher extraction and cleanup efficiency than commercial SPE and that it has great potential for broad applications.

  5. Analysis of trifluralin, methyl paraoxon, methyl parathion, fenvalerate and 2,4-D dimethylamine in pond water using solid-phase extraction

    USGS Publications Warehouse

    Swineford, D.M.; Belisle, A.A.

    1989-01-01

    A method was developed for the simultaneous extraction of trifluralin, methyl paraoxon, methyl parathion, fenvalerate, and 2,4-D dimethylamine salt in pond water using a solid-phase C18 column. After elution from the C18 column, the eluate was analyzed on a capillary gas chromatograph equipped with an electron-capture or flame photometric detector.

  6. Polypyrrole-magnetite dispersive micro-solid-phase extraction combined with ultraviolet-visible spectrophotometry for the determination of rhodamine 6G and crystal violet in textile wastewater.

    PubMed

    Kamaruddin, Amirah Farhan; Sanagi, Mohd Marsin; Wan Ibrahim, Wan Aini; Md Shukri, Dyia S; Abdul Keyon, Aemi S

    2017-11-01

    Polypyrrole-magnetite dispersive micro-solid-phase extraction method combined with ultraviolet-visible spectrophotometry was developed for the determination of selected cationic dyes in textile wastewater. Polypyrrole-magnetite was used as adsorbent due to its thermal stability, magnetic properties, and ability to adsorb Rhodamine 6G and crystal violet. Dispersive micro-solid-phase extraction parameters were optimized, including sample pH, adsorbent amount, extraction time, and desorption solvent. The optimum polypyrrole-magnetite dispersive micro-solid phase-extraction conditions were sample pH 8, 60 mg polypyrrole-magnetite adsorbent, 5 min of extraction time, and acetonitrile as the desorption solvent. Under the optimized conditions, the polypyrrole-magnetite dispersive micro-solid-phase extraction with ultraviolet-visible method showed good linearity in the range of 0.05-7 mg/L (R 2  > 0.9980). The method also showed a good limit of detection for the dyes (0.05 mg/L) and good analyte recoveries (97.4-111.3%) with relative standard deviations < 10%. The method was successfully applied to the analysis of dyes in textile wastewater samples where the concentration found was 1.03 mg (RSD ±7.9%) and 1.13 mg/L (RSD ± 4.6%) for Rhodamine 6G and crystal violet, respectively. It can be concluded that this method can be adopted for the rapid extraction and determination of dyes at trace concentration levels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Application of mercapto-silica polymerized high internal phase emulsions for the solid-phase extraction and preconcentration of trace lead(II).

    PubMed

    Su, Rihui; Ruan, Guihua; Chen, Zhengyi; Du, Fuyou; Li, Jianping

    2015-12-01

    A new class of solid-phase extraction column prepared with grafted mercapto-silica polymerized high internal phase emulsion particles was used for the preconcentration of trace lead. First, mercapto-silica polymerized high internal phase emulsion particles were synthesized by using high internal phase emulsion polymerization and carefully assembled in a polyethylene syringe column. The influences of various parameters including adsorption pH value, adsorption and desorption solvents, flow rate of the adsorption and desorption procedure were optimized, respectively, and the suitable uploading sample volumes, adsorption capacity, and reusability of solid phase extraction column were also investigated. Under the optimum conditions, Pb(2+) could be preconcentrated quantitatively over a wide pH range (2.0-5.0). In the presence of foreign ions, such as Na(+) , K(+) , Ca(2+) , Zn(2+) , Mg(2+) , Cu(2+) , Fe(2+) , Cd(2+) , Cl(-) and NO3 (-) , Pb(2+) could be recovered successfully. The prepared solid-phase extraction column performed with high stability and desirable durability, which allowed more than 100 replicate extractions without measurable changes of performance. The feasibility of the developed method was further validated by the extraction of Pb(2+) in rice samples. At three spiked levels of 40.0, 200 and 800 μg/kg, the average recoveries for Pb(2+) in rice samples ranged from 87.3 to 105.2%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Sulfonated poly(styrene-divinylbenzene) modified with amines and the application for pipette-tip solid-phase extraction of carbendazim in apples.

    PubMed

    Ma, Yuxin; Liu, Lingling; Tang, Weiyang; Zhu, Tao

    2017-10-01

    Sulfonated poly(styrene-divinylbenzene) modified with five kinds of amine functional groups was applied to the determination of carbendazim in apple samples with a pipette-tip solid-phase extraction method. The structures of the polymers were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. Five different modifications of the solid-phase extraction sorbent based on sulfonated poly(styrene-divinylbenzene) were tested under static and pipette-tip solid-phase extraction conditions. The polymer modified with p-methoxyaniline showed the best recognition capacity and adsorption amount for carbendazim. Under the optimum conditions, 3.00 mg of the adsorbent, 1.00 mL of ethyl acetate as washing solvent, and 1.00 mL of ammonia/acetonitrile (5:95, v/v) as elution solvent were used in the pretreatment procedure of apple samples. The calibration graphs of carbendazim in methanol were linear over 5.00-200.00 μg/mL, and the limits of detection and quantification were 0.01 and 0.03 μg/mL, respectively. The method recoveries of carbendazim were in the range of 91.31-98.13% with associated intraday relative standard deviations of 0.76-2.13% and interday relative standard deviations of 1.10-1.85%. Sulfonated poly(styrene-divinylbenzene) modified with p-methoxyaniline showed satisfactory results (recovery: 97.96%) and potential for the rapid purification of carbendazim in apple samples combined with the pipette-tip solid-phase extraction. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Silver flip chip interconnect technology and solid state bonding

    NASA Astrophysics Data System (ADS)

    Sha, Chu-Hsuan

    In this dissertation, fluxless transient liquid phase (TLP) bonding and solid state bonding between thermal expansion mismatch materials have been developed using Ag-In binary systems, pure Au, Ag, and Cu-Ag composite. In contrast to the conventional soldering process, fluxless bonding technique eliminates any corrosion and contamination problems caused by flux. Without flux, it is possible to fabricate high quality joints in large bonding areas where the flux is difficult to clean entirely. High quality joints are crucial to bonding thermal expansion mismatch materials since shear stress develops in the bonded pair. Stress concentration at voids in joints could increases breakage probability. In addition, intermetallic compound (IMC) formation between solder and underbump metallurgy (UBM) is essential for interconnect joint formation in conventional soldering process. However, the interface between IMC and solder is shown to be the weak interface that tends to break first during thermal cycling and drop tests. In our solid state bonding technique, there is no IMC involved in the bonding between Au to Au, Ag and Cu, and Ag and Au. All the reliability issues related to IMC or IMC growth is not our concern. To sum up, ductile bonding media, such as Ag or Au, and proper metallic layered structure are utilized in this research to produce high quality joints. The research starts with developing a low temperature fluxless bonding process using electroplated Ag/In/Ag multilayer structures between Si chip and 304 stainless steel (304SS) substrate. Because the outer thin Ag layer effectively protects inner In layer from oxidation, In layer dissolves Ag layer and joints to Ag layer on the to-be-bonded Si chip when temperature reaches the reflow temperature of 166ºC. Joints consist of mainly Ag-rich Ag-In solid solution and Ag2In. Using this fluxless bonding technique, two 304SS substrates can be bonded together as well. From the high magnification SEM images taken at cross-section, there is no void or gap observed. The new bonding technique presented should be valuable in packaging high power electronic devices for high temperature operations. It should also be useful to bond two 304SS parts together at low bonding temperature of 190ºC. Solid state bonding technique is then introduced to bond semiconductor chips, such as Si, to common substrates, such as Cu or alumina, using pure Ag and Au at a temperature matching the typical reflow temperature used in packaging industries, 260°C. In bonding, we realize the possibilities of solid state bonding of Au to Au, Au to Ag, and Ag to Cu. The idea comes from that Cu, Ag, and Au are located in the same column on periodic table, meaning that they have similar electronic configuration. They therefore have a better chance to share electrons. Also, the crystal lattice of Cu, Ag, and Au is the same, face-centered cubic. In the project, the detailed bonding mechanism is beyond the scope and here we determine the bonding by the experimental result. Ag is chosen as the joint material because of its superior physical properties. It has the highest electrical and thermal conductivities among all metals. It has low yield strength and is relatively ductile. Au is considered as well because its excellent ductility and fatigue resistance. Thus, the Ag or Au joints can deform to accommodate the shear strain caused by CTE mismatch between Si and Cu. Ag and Au have melting temperatures higher than 950°C, so the pure Ag or Au joints are expected to sustain in high operating temperature. The resulting joints do not contain any intermetallic compound. Thus, all reliability issues associated with intermetallic growth in commonly used solder joints do not exist anymore. We finally move to the applications of solid state Ag bonding in flip chip interconnects design. At present, nearly all large-scale integrated circuit (IC) chips are packaged with flip-chip technology. This means that the chip is flipped over and the active (front) side is connected to the package using a large number of tiny solder joints, which provide mechanical support, electrical connection, and heat conduction. For chip-to-package level interconnects, a challenge is the severe mismatch in coefficient of thermal expansion (CTE) between chips and package substrates. The interconnect material thus needs to be compliant to deal with the CTE mismatch. At present, nearly all flip-chip interconnects in electronic industries are made of lead-free Sn-based solders. Soft solders are chosen due to high ductility, low yield strength, relatively low melting temperature, and reasonably good electrical and thermal conductivities. In the never ending scaling down trend, more and more transistors are placed on the same Si chip size. This results in larger pin-out numbers and smaller solder joints. According to International Technology Roadmap for Semiconductors (ITRS), by 2018, the pitch in flip-chip interconnects will become smaller than 70mum for high performance applications. Two problems occur. The first is increase in shear strain. The aspect ratio of flip-chip joints is constrained to 0.7 because it goes through molten phase in the reflow process. Therefore, smaller joints become shorter as well, resulting in larger shear strain arising from CTE mismatch between Si chips and package substrates. The second is increase in stress in the joints. Since intermetallic (IMC) thickness in the joint does not scale down with joint size, ratio of IMC thickness to joint height increases. This further enlarges the shear stress because the IMC does not deform as the soft solder does to accommodate CTE mismatch. In this research, the smallest dimension we achieve for Ag flip chip interconnect joint is 15mum in diameter. The ten advantages of Ag flip chip interconnect technology can be identified as (a) High electrical conductivity, 7.7 times of that of Pb-free solders, (b) High thermal conductivity, 5.2 times of that of Pb-free solders, (c) Completely fluxless, (d) No IMCs; all reliability issues associated with IMC and IMC growth do not exist, (e) Ag is very ductile and can manage CTE mismatch between chips and packages, (f) Ag joints can sustain at very high operation temperature because Ag has high melting temperature of 961°C, (g) No molten phase involved; the bump can better keep its shape and geometry, (h) No molten phase involved; bridging of adjacent bumps is less likely to occur, i. Aspect ratio of bumps can be made greater than 1, (j) The size of the bumps is only limited by the lithographic process. Cu-Ag composite flip chip interconnect joints is developed based on three reasons. The first is lower material cost. The second is to strengthen the columns because the yield strength of Cu is 6 times of that of Ag. The third is to avoid possible Ag migration between Ag electrodes under voltage at temperatures above 250°C. This Cu-Ag composite design presents a solution in the path to the scale down roadmap.

  10. Solid-phase extraction NMR studies of chromatographic fractions of saponins from Quillaja saponaria.

    PubMed

    Nyberg, Nils T; Baumann, Herbert; Kenne, Lennart

    2003-01-15

    The saponin mixture QH-B from the tree Quillaja saponaria var. Molina was fractionated by RP-HPLC in several steps. The fractions were analyzed by solid-phase extraction NMR (SPE-NMR), a technique combining the workup by solid-phase extraction with on-line coupling to an NMR flow probe. Together with MALDI-TOF mass spectrometry and comparison with chemical shifts of similar saponins, the structures of both major and minor components in QH-B could be obtained. The procedure described is a simple method to determine the structure of components in a complex mixture. The two major fractions of the mixture were found to contain at least 28 saponins, differing in the carbohydrate substructures. Eight of these have not previously been determined. The 28 saponins formed 14 equilibrium pairs by the migration of an O-acyl group between two adjacent positions on a fucosyl residue.

  11. Application of solid-phase extraction to agar-supported fermentation.

    PubMed

    Le Goff, Géraldine; Adelin, Emilie; Cortial, Sylvie; Servy, Claudine; Ouazzani, Jamal

    2013-09-01

    Agar-supported fermentation (Ag-SF), a variant of solid-state fermentation, has recently been improved by the development of a dedicated 2 m(2) scale pilot facility, Platotex. We investigated the application of solid-phase extraction (SPE) to Ag-SF in order to increase yields and minimize the contamination of the extracts with agar constituents. The selection of the appropriate resin was conducted on liquid-state fermentation and Diaion HP-20 exhibited the highest recovery yield and selectivity for the metabolites of the model fungal strains Phomopsis sp. and Fusarium sp. SPE applied to Ag-SF resulted in a particular compartmentalization of the culture. The mycelium that requires oxygen to grow migrates to the top layer and formed a thick biofilm. The resin beads intercalate between the agar surface and the mycelium layer, and trap directly the compounds secreted by the mycelium through a "solid-solid extraction" (SSE) process. The resin/mycelium layer is easily recovered by scraping the surface and the target metabolites extracted by methanol. Ag-SF associated to SSE represents an ideal compromise for the production of bioactive secondary metabolites with limited economic and environmental impact.

  12. Systematic Assessment of Seven Solvent and Solid-Phase Extraction Methods for Metabolomics Analysis of Human Plasma by LC-MS

    NASA Astrophysics Data System (ADS)

    Sitnikov, Dmitri G.; Monnin, Cian S.; Vuckovic, Dajana

    2016-12-01

    The comparison of extraction methods for global metabolomics is usually executed in biofluids only and focuses on metabolite coverage and method repeatability. This limits our detailed understanding of extraction parameters such as recovery and matrix effects and prevents side-by-side comparison of different sample preparation strategies. To address this gap in knowledge, seven solvent-based and solid-phase extraction methods were systematically evaluated using standard analytes spiked into both buffer and human plasma. We compared recovery, coverage, repeatability, matrix effects, selectivity and orthogonality of all methods tested for non-lipid metabolome in combination with reversed-phased and mixed-mode liquid chromatography mass spectrometry analysis (LC-MS). Our results confirmed wide selectivity and excellent precision of solvent precipitations, but revealed their high susceptibility to matrix effects. The use of all seven methods showed high overlap and redundancy which resulted in metabolite coverage increases of 34-80% depending on LC-MS method employed as compared to the best single extraction protocol (methanol/ethanol precipitation) despite 7x increase in MS analysis time and sample consumption. The most orthogonal methods to methanol-based precipitation were ion-exchange solid-phase extraction and liquid-liquid extraction using methyl-tertbutyl ether. Our results help facilitate rational design and selection of sample preparation methods and internal standards for global metabolomics.

  13. Systematic Assessment of Seven Solvent and Solid-Phase Extraction Methods for Metabolomics Analysis of Human Plasma by LC-MS

    PubMed Central

    Sitnikov, Dmitri G.; Monnin, Cian S.; Vuckovic, Dajana

    2016-01-01

    The comparison of extraction methods for global metabolomics is usually executed in biofluids only and focuses on metabolite coverage and method repeatability. This limits our detailed understanding of extraction parameters such as recovery and matrix effects and prevents side-by-side comparison of different sample preparation strategies. To address this gap in knowledge, seven solvent-based and solid-phase extraction methods were systematically evaluated using standard analytes spiked into both buffer and human plasma. We compared recovery, coverage, repeatability, matrix effects, selectivity and orthogonality of all methods tested for non-lipid metabolome in combination with reversed-phased and mixed-mode liquid chromatography mass spectrometry analysis (LC-MS). Our results confirmed wide selectivity and excellent precision of solvent precipitations, but revealed their high susceptibility to matrix effects. The use of all seven methods showed high overlap and redundancy which resulted in metabolite coverage increases of 34–80% depending on LC-MS method employed as compared to the best single extraction protocol (methanol/ethanol precipitation) despite 7x increase in MS analysis time and sample consumption. The most orthogonal methods to methanol-based precipitation were ion-exchange solid-phase extraction and liquid-liquid extraction using methyl-tertbutyl ether. Our results help facilitate rational design and selection of sample preparation methods and internal standards for global metabolomics. PMID:28000704

  14. Molecularly imprinted polymer online solid-phase extraction coupled with high-performance liquid chromatography-UV for the determination of three sulfonamides in pork and chicken.

    PubMed

    He, Jinxing; Wang, Shuo; Fang, Guozhen; Zhu, Huaping; Zhang, Yan

    2008-05-14

    A selective imprinted amino-functionalized silica gel sorbent was prepared by combining a surface molecular imprinting technique with a sol-gel process for online solid-phase extraction-HPLC determination of three trace sulfonamides in pork and chicken muscle. The imprinted functionalized silica gel sorbent exhibited selectivity and fast kinetics for the adsorption and desorption of sulfonamides. With a sample loading flow rate of 4 mL min (-1) for 12.5 min, enhancement factors and detection limits for three sulfonamides ( S/ N = 3) were achieved. The precision (RSD) for nine replicate online sorbent extractions of 5 microg L (-1) sulfonamides was less than 4.5%. The sorbent also offered good linearity ( r (2) > 0.99) for online solid-phase extraction of trace levels of sulfonamides. The method was applied to the determination of sulfonamides in pork and chicken muscle samples. The prepared polymer sorbent shows promise for online solid-phase extraction for HPLC determination of trace levels of sulfonamides in pork and chicken samples.

  15. The current role of on-line extraction approaches in clinical and forensic toxicology.

    PubMed

    Mueller, Daniel M

    2014-08-01

    In today's clinical and forensic toxicological laboratories, automation is of interest because of its ability to optimize processes, to reduce manual workload and handling errors and to minimize exposition to potentially infectious samples. Extraction is usually the most time-consuming step; therefore, automation of this step is reasonable. Currently, from the field of clinical and forensic toxicology, methods using the following on-line extraction techniques have been published: on-line solid-phase extraction, turbulent flow chromatography, solid-phase microextraction, microextraction by packed sorbent, single-drop microextraction and on-line desorption of dried blood spots. Most of these published methods are either single-analyte or multicomponent procedures; methods intended for systematic toxicological analysis are relatively scarce. However, the use of on-line extraction will certainly increase in the near future.

  16. [Determination of alkylphenol and alkylphenolpolyethoxylates in brine by solid phase extraction and high performance liquid chromatography-mass spectrometry].

    PubMed

    Wang, Jincheng; Xiong, Li; Zhang, Haijun; Chen, Jiping

    2011-12-01

    A simple method based on solid phase extraction (SPE) coupled with high performance liquid chromatography-mass spectrometry (HPLC-MS) was developed for the determination of octylphenol (OP), nonylphenol (NP), octylphenol ethoxylates (OPEOs) and nonylphenol ethoxylates (NPEOs) in brine. The extraction and cleanup of brine samples were performed on C18 solid-phase extraction cartridges. The complete separation among OP, NP, OPEOs and NPEOs was achieved on a Hypersil GOLD analytical column with methanol-water as the mobile phase. The determination was achieved using HPLC-MS with electrospray ionization (ESI) in selected ion monitoring mode. The results showed that the average recoveries of target compounds were 59.6% - 104.4% and the corresponding relative standard deviations (RSDs, n = 3) were 1.0% - 13.5%. The instrumental limits of detection for the compounds were 0.08 - 3 microg/L. This method was applied to the analysis of the samples of seawater near Dalian coast. The results showed that both NP and NPEOs were detected in all samples and their concentrations in seaport and oil port were much higher than those in other sampling sites.

  17. Automated mini-column solid-phase extraction cleanup for high-throughput analysis of chemical contaminants in foods by low-pressure gas chromatography – tandem mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    This study demonstrated the application of an automated high-throughput mini-cartridge solid-phase extraction (mini-SPE) cleanup for the rapid low-pressure gas chromatography – tandem mass spectrometry (LPGC-MS/MS) analysis of pesticides and environmental contaminants in QuEChERS extracts of foods. ...

  18. Comparison of characteristic flavor and aroma volatiles in melons and standards using solid phase microextraction (SPME) and Stir Bar Sorptive Extraction (SBSE) with GC-MS.

    USDA-ARS?s Scientific Manuscript database

    Stir bar sorptive extraction (SBSE) is a technique for extraction and analysis of organic compounds in aqueous matrices, similar in theory to solid phase microextraction (SPME). SBSE has been successfully used to analyze several organic compounds, including food matrices. When compared with SPME, ...

  19. QUANTITATION OF ESTROGENS IN GROUND WATER AND SWINE LAGOON SAMPLE USING SOLID PHASE EXTRACTION, PENTAFLUROBENZYL/TRIMETHYLSILYL DERIVATIZATIONS AND GAS CHROMATOGRAPHY NEGATIVE ION CHEMICAL IONIZATION/MASS SPECTROMETRY/MASS SPECTROMETRY

    EPA Science Inventory

    A method was developed for the confirmed identification and quantitation of 17B-estradiol, estrone, 17B-ethynylestrodial and 16a-hydroxy-17B-estradiol (estriol) in ground water and swine lagoon samples. Centrifuged and filtered samples were extracted using solid phase extraction...

  20. Semiautomated solid-phase extraction manifold with a solvent-level sensor.

    PubMed

    Orlando, R M; Rath, S; Rohwedder, J J R

    2013-11-15

    A semiautomated solid-phase extraction manifold for multiple extractions is presented. The manifold utilizes commercial solid-phase syringe cartridges and automatically introduces and elutes all the solvents during the extraction, reducing the typical workload and stress of the analyst. The manifold consists of a peristaltic pump with solenoid valves in a flow circuit that contains transmissive photomicrosensors. The photomicrosensors were used to control the solvent dispenser and the solvent level inside the cartridge. As solvent-level sensors, the photomicrosensors determined the exact time the solvent reached the top frit to avoid sorbent drying and accurately perform the solvent exchange. The repeatability of the manifold to introduce a particular volume of solvent into the cartridges was measured, and the precisions were between 0.05 and 2.89% (RSD). To evaluate the manifold, the amount of two fluoroquinolones in a fortified blank milk sample was determined. The results of the intra- and inter-day precision of multiple extractions from the fortified milk samples resulted in precisions better than 9.0% (RSD) and confirmed that the arrangement of the semiautomated manifold could adequately be used in solid-phase extraction with commercial cartridges. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Solid-liquid surface tensions of critical nuclei and nucleation barriers from a phase-field-crystal study of a model binary alloy using finite system sizes.

    PubMed

    Choudhary, Muhammad Ajmal; Kundin, Julia; Emmerich, Heike; Oettel, Martin

    2014-08-01

    Phase-field-crystal (PFC) modeling has emerged as a computationally efficient tool to address crystal growth phenomena on atomistic length and diffusive time scales. We use a two-dimensional phase-field-crystal model for a binary system based on Elder et al. [Phys. Rev. B 75, 064107 (2007)] to study critical nuclei and their liquid-solid phase boundaries, in particular the nucleus size dependence of the liquid-solid interface tension as well as of the nucleation barrier. Critical nuclei are stabilized in finite systems of various sizes, however, the extracted interface tension as function of the nucleus radius r is independent of system size. We suggest a phenomenological expression to describe the dependence of the extracted interface tension on the nucleus radius r for the liquid-solid system. Moreover, the numerical PFC results show that this dependency can not be fully described by the nonclassical Tolman formula.

  2. Separation and purification of thymopentin with molecular imprinting membrane by solid phase extraction disks.

    PubMed

    Wang, Chaoli; Hu, Xiaoling; Guan, Ping; Wu, Danfeng; Qian, Liwei; Li, Ji; Song, Renyuan

    2015-01-01

    The synthesis and performance of molecularly imprinted membranes (MIMs) as a solid phase extraction packing materials for the separation and purification of thymopentin from crude samples was described. In order to increase structural selectivity and imprinting efficiency, surface-initiated ATRP and ionic liquid (1-vinyl-3-ethyl acetate imidazolium chloride) were used to prepare molecularly imprinting membranes. The results demonstrated that solid phase extraction disks stuffed by MIMs with ionic liquids as functional monomer demonstrated high isolation and purification of performance to the thymopentin. The molecular recognition of thymopentin was analyzed by using molecular modeling software. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. ViriChip: a solid phase assay for detection and identification of viruses by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Nettikadan, Saju R.; Johnson, James C.; Vengasandra, Srikanth G.; Muys, James; Henderson, Eric

    2004-03-01

    Bionanotechnology can be viewed as the integration of tools and concepts in nanotechnology with the attributes of biomolecules. We report here on an atomic force microscopy-immunosensor assay (AFMIA) that couples AFM with solid phase affinity capture of biological entities for the rapid detection and identification of group B coxsackievirus particles. Virus identification is based on type-specific immunocapture and the morphological properties of the captured viruses as obtained by the AFM. Representatives of the six group B coxsackieviruses have been specifically captured from 1 µl volumes of clarified cell lysates, body fluids and environmental samples. Concentration and kinetic profiles for capture indicate that detection is possible at 103 TCID50 µl-1 and the dynamic range of the assay spans three logs. The results demonstrate that the melding of a nanotechnological tool (AFM) with biotechnology (solid phase immunocapture of virus particles) can create a clinically relevant platform, useful for the detection and identification of enterovirus particles in a variety of samples.

  4. Determination of the Antibiotic Oxytetracycline in Commercial Milk by Solid-Phase Extraction: A High-Performance Liquid Chromatography (HPLC) Experiment for Quantitative Instrumental Analysis

    ERIC Educational Resources Information Center

    Mei-Ratliff, Yuan

    2012-01-01

    Trace levels of oxytetracylcine spiked into commercial milk samples are extracted, cleaned up, and preconcentrated using a C[subscript 18] solid-phase extraction column. The extract is then analyzed by a high-performance liquid chromatography (HPLC) instrument equipped with a UV detector and a C[subscript 18] column (150 mm x 4.6 mm x 3.5 [mu]m).…

  5. Preparation and quantification of the total phenolic products in Citrus fruit using solid-phase extraction coupled with high-performance liquid chromatography with diode array and UV detection.

    PubMed

    Zeng, Honglian; Liu, Zhenli; Zhao, Siyu; Shu, Yisong; Song, Zhiqian; Wang, Chun; Dong, Yunzhuo; Ning, Zhangchi; He, Dan; Wang, Menglei; Lu, Cheng; Liu, Yuanyan; Lu, Aiping

    2016-10-01

    Citrus fruit is an important health-promoting food that is rich in dietary phenolic metabolites. Traditional Chinese medicines, such as Zhishi and Zhiqiao, come from young and immature fruits of Citrus cultivars. The preparation of diversified bioactive phenolic products and establishment of the corresponding quality control methodology are challenging and necessary. In the current study, four types of solid-phase extraction sorbents for the enrichment and clean-up of the phenolic matrix were evaluated. A solid-phase extraction column coated with Strata-X was finally used in the procedure. Twenty phenolic compounds were selected to evaluate the extraction performances of the sorbents using high-performance liquid chromatography analysis. Under the optimized conditions, good linearities were obtained with R 2 more than 0.9996 for all analytes with LODs of 0.04-1.012 μg/g. Intra- and interday relative standard deviation values were less than 3%, and the recovery was equal to or higher than 90.02%. Compared to non-solid-phase extraction process, the content of total phenolic products was elevated 35.55-68.48% with solid-phase extraction. Finally, the developed and validated method was successfully applied to the discrimination of Zhishi samples from different species as well as Zhishi and Zhiqiao samples in different development stages. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Selective extraction and separation of oxymatrine from Sophora flavescens Ait. extract by silica-confined ionic liquid.

    PubMed

    Bi, Wentao; Tian, Minglei; Row, Kyung Ho

    2012-01-01

    This study highlighted the application of a two-stepped extraction method for extraction and separation of oxymatrine from Sophora flavescens Ait. extract by utilizing silica-confined ionic liquids as sorbent. The optimized silica-confined ionic liquid was firstly mixed with plant extract to adsorb oxymatrine. Simultaneously, some interference, such as matrine, was removed. The obtained suspension was then added to a cartridge for solid phase extraction. Through these two steps, target compound was adequately separated from interferences with 93.4% recovery. In comparison with traditional solid phase extraction, this method accelerates loading and reduces the use of organic solvents during washing. Moreover, the optimization of loading volume was simplified as optimization of solid/liquid ratio. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Platform construction and extraction mechanism study of magnetic mixed hemimicelles solid-phase extraction

    NASA Astrophysics Data System (ADS)

    Xiao, Deli; Zhang, Chan; He, Jia; Zeng, Rong; Chen, Rong; He, Hua

    2016-12-01

    Simple, accurate and high-throughput pretreatment method would facilitate large-scale studies of trace analysis in complex samples. Magnetic mixed hemimicelles solid-phase extraction has the power to become a key pretreatment method in biological, environmental and clinical research. However, lacking of experimental predictability and unsharpness of extraction mechanism limit the development of this promising method. Herein, this work tries to establish theoretical-based experimental designs for extraction of trace analytes from complex samples using magnetic mixed hemimicelles solid-phase extraction. We selected three categories and six sub-types of compounds for systematic comparative study of extraction mechanism, and comprehensively illustrated the roles of different force (hydrophobic interaction, π-π stacking interactions, hydrogen-bonding interaction, electrostatic interaction) for the first time. What’s more, the application guidelines for supporting materials, surfactants and sample matrix were also summarized. The extraction mechanism and platform established in the study render its future promising for foreseeable and efficient pretreatment under theoretical based experimental design for trace analytes from environmental, biological and clinical samples.

  8. Determination of haloacetic acids in water using layered double hydroxides as a sorbent in dispersive solid-phase extraction followed by liquid chromatography with tandem mass spectrometry.

    PubMed

    Alsharaa, Abdulnaser; Sajid, Muhammad; Basheer, Chanbasha; Alhooshani, Khalid; Lee, Hian Kee

    2016-09-01

    In the present study, highly efficient and simple dispersive solid-phase extraction procedure for the determination of haloacetic acids in water samples has been established. Three different types of layered double hydroxides were synthesized and used as a sorbent in dispersive solid-phase extraction. Due to the interesting behavior of layered double hydroxides in an acidic medium (pH˂4), the analyte elution step was not needed; the layered double hydroxides are simply dissolved in acid immediately after extraction to release the analytes which are then directly introduced into a liquid chromatography with tandem mass spectrometry system for analysis. Several dispersive solid-phase extraction parameters were optimized to increase the extraction efficiency of haloacetic acids such as temperature, extraction time and pH. Under optimum conditions, good linearity was achieved over the concentration range of 0.05-100 μg/L with detection limits in the range of 0.006-0.05 μg/L. The relative standard deviations were 0.33-3.64% (n = 6). The proposed method was applied to different water samples collected from a drinking water plant to determine the concentrations of haloacetic acids. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. PEGylation of magnetic multi-walled carbon nanotubes for enhanced selectivity of dispersive solid phase extraction.

    PubMed

    Zeng, Qiong; Liu, Yi-Ming; Jia, Yan-Wei; Wan, Li-Hong; Liao, Xun

    2017-02-01

    Carbon nanotubes (CNTs) possess large potential as extraction absorbents in solid phase extraction. They have been widely applied in biomedicine research, while very rare application in natural product chemistry has been reported. In this work, methoxypolyethylene glycol amine (mPEG-NH 2 ) is covalently coupled to CNTs-magnetic nanoparticles (CNTs-MNP) to prepare a novel magnetic nanocomposite (PEG-CNTs-MNP) for use as dispersive solid-phase extraction (DSPE) absorbent. The average particle size was 86nm, and the saturation magnetization was 52.30emu/g. This nanocomposite exhibits excellent dispersibility in aqueous systems, high selectivity and fast binding kinetics when used for extraction of Z-ligustilide, the characteristic bioactive compound from two popular Asian herbal plants, R. chuanxiong and R. ligusticum. HPLC quantification of Z-ligustilide extracted from the standard sample solution showed a high recovery of 98.9%, and the extraction rate from the extracts of the above two herbs are both around 70.0%. To our knowledge, this is the first report on using PEG-CNTs-MNP as DSPE nanosorbents for selective extraction of natural products. This nano-material has promising application in isolation and enrichment of targeted components from complex matrices. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Streamlined sample cleanup using combined dispersive solid-phase extraction and in-vial filtration for analysis of pesticides and environmental pollutants in shrimp

    USDA-ARS?s Scientific Manuscript database

    A new method of sample preparation was developed and is reported for the first time. The approach combines in-vial filtration with dispersive solid-phase extraction (d-SPE) in a fast and convenient cleanup of QuEChERS (quick, easy, cheap, effective, rugged, and safe) extracts. The method was appli...

  11. COMPARISON OF TWO DIFFERENT SOLID PHASE EXTRACTION/LARGE VOLUME INJECTION PROCEDURES FOR METHOD 8270

    EPA Science Inventory

    Two solid phase (SPE) and one traditional continuous liquid-liquid extraction method are compared for analysis of Method 8270 SVOCs. Productivity parameters include data quality, sample volume, analysis time and solvent waste.

    One SPE system, unique in the U.S., uses aut...

  12. Analysis of ecologically relevant pharmaceuticals in wastewater and surface water using selective solid phase extraction and UPLC/MS/MS

    EPA Science Inventory

    A rapid and sensitive method has been developed for the analysis of 48 human prescription active pharmaceutical ingredients (APIs) and 6 metabolites of interest, utilizing selective solid-phase extraction (SPE) and ultra performance liquid chromatography in combination with tripl...

  13. 40 CFR 141.40 - Monitoring requirements for unregulated contaminants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... monitoring to be completed Reserved i Reserved i Reserved i Reserved i Reserved i Reserved i Column headings... Pesticides and Flame Retardants in Drinking Water by Solid Phase Extraction and Capillary Column Gas... Water by Solid Phase Extraction and Capillary Column Gas Chromatography/Mass Spectrometry (GC/MS...

  14. Development of a Solid Phase Extraction Method for Agricultural Pesticides in Large-Volume Water Samples

    EPA Science Inventory

    An analytical method using solid phase extraction (SPE) and analysis by gas chromatography/mass spectrometry (GC/MS) was developed for the trace determination of a variety of agricultural pesticides and selected transformation products in large-volume high-elevation lake water sa...

  15. An Effective Method to Detect Volatile Intermediates Generated in the Bioconversion of Coal to Methane by Gas Chromatography-Mass Spectrometry after In-Situ Extraction Using Headspace Solid-Phase Micro-Extraction under Strict Anaerobic Conditions.

    PubMed

    Liu, Jianmin; Wang, Baoyu; Tai, Chao; Wu, Li; Zhao, Han; Guan, Jiadong; Chen, Linyong

    2016-01-01

    Bioconversion of coal to methane has gained increased attention in recent decades because of its economic and environmental advantages. However, the mechanism of this process is difficult to study in depth, partly because of difficulties associated with the analysis of intermediates generated in coal bioconversion. In this investigation, we report on an effective method to analyze volatile intermediates generated in the bioconversion of coal under strict anaerobic conditions. We conduct in-situ extraction of intermediates using headspace solid-phase micro-extraction followed by detection by gas chromatography-mass spectrometry. Bioconversion simulation equipment was modified and combined with a solid-phase micro-extraction device. In-situ extraction could be achieved by using the combined units, to avoid a breakdown in anaerobic conditions and to maintain the experiment continuity. More than 30 intermediates were identified qualitatively in the conversion process, and the variation in trends of some typical intermediates has been discussed. Volatile organic acids (C2-C7) were chosen for a quantitative study of the intermediates because of their importance during coal bioconversion to methane. Fiber coating, extraction time, and solution acidity were optimized in the solid-phase micro-extraction procedure. The pressure was enhanced during the bioconversion process to investigate the influence of headspace pressure on analyte extraction. The detection limits of the method ranged from 0.0006 to 0.02 mmol/L for the volatile organic acids and the relative standard deviations were between 4.6% and 11.5%. The volatile organic acids (C2-C7) generated in the bioconversion process were 0.01-1.15 mmol/L with a recovery range from 80% to 105%. The developed method is useful for further in-depth research on the bioconversion of coal to methane.

  16. An Effective Method to Detect Volatile Intermediates Generated in the Bioconversion of Coal to Methane by Gas Chromatography-Mass Spectrometry after In-Situ Extraction Using Headspace Solid-Phase Micro-Extraction under Strict Anaerobic Conditions

    PubMed Central

    Liu, Jianmin; Wang, Baoyu; Tai, Chao; Wu, Li; Zhao, Han; Guan, Jiadong; Chen, Linyong

    2016-01-01

    Bioconversion of coal to methane has gained increased attention in recent decades because of its economic and environmental advantages. However, the mechanism of this process is difficult to study in depth, partly because of difficulties associated with the analysis of intermediates generated in coal bioconversion. In this investigation, we report on an effective method to analyze volatile intermediates generated in the bioconversion of coal under strict anaerobic conditions. We conduct in-situ extraction of intermediates using headspace solid-phase micro-extraction followed by detection by gas chromatography-mass spectrometry. Bioconversion simulation equipment was modified and combined with a solid-phase micro-extraction device. In-situ extraction could be achieved by using the combined units, to avoid a breakdown in anaerobic conditions and to maintain the experiment continuity. More than 30 intermediates were identified qualitatively in the conversion process, and the variation in trends of some typical intermediates has been discussed. Volatile organic acids (C2–C7) were chosen for a quantitative study of the intermediates because of their importance during coal bioconversion to methane. Fiber coating, extraction time, and solution acidity were optimized in the solid-phase micro-extraction procedure. The pressure was enhanced during the bioconversion process to investigate the influence of headspace pressure on analyte extraction. The detection limits of the method ranged from 0.0006 to 0.02 mmol/L for the volatile organic acids and the relative standard deviations were between 4.6% and 11.5%. The volatile organic acids (C2–C7) generated in the bioconversion process were 0.01–1.15 mmol/L with a recovery range from 80% to 105%. The developed method is useful for further in-depth research on the bioconversion of coal to methane. PMID:27695055

  17. Molecular imprinting solid phase extraction for selective detection of methidathion in olive oil.

    PubMed

    Bakas, Idriss; Oujji, Najwa Ben; Moczko, Ewa; Istamboulie, Georges; Piletsky, Sergey; Piletska, Elena; Ait-Ichou, Ihya; Ait-Addi, Elhabib; Noguer, Thierry; Rouillon, Régis

    2012-07-13

    A specific adsorbent for extraction of methidathion from olive oil was developed. The design of the molecularly imprinted polymer (MIP) was based on the results of the computational screening of the library of polymerisable functional monomers. MIP was prepared by thermal polymerisation using N,N'-methylene bisacrylamide (MBAA) as a functional monomer and ethylene glycol dimethacrylate (EGDMA) as a cross-linker. The polymers based on the itaconic acid (IA), methacrylic acid (MAA) and 2-(trifluoromethyl)acryl acid (TFMAA) functional monomers and one control polymer which was made without functional monomers with cross-linker EGDMA were also synthesised and tested. The performance of each polymer was compared using corresponding imprinting factor. As it was predicted by molecular modelling the best results were obtained for the MIP prepared with MBAA. The obtained MIP was optimised in solid-phase extraction coupled with high performance liquid chromatography (MISPE-HPLC-UV) and tested for the rapid screening of methidathion in olive oil. The proposed method allowed the efficient extraction of methidathion for concentrations ranging from 0.1 to 9 mg L(-1) (r(2)=0.996). The limits of detection (LOD) and quantification (LOQ) in olive oil were 0.02 mg L(-1) and 0.1 mg L(-1), respectively. MIPs extraction was much more effective than traditional C18 reverse-phase solid phase extraction. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Enhancing Modulation of Thermal Conduction in Vanadium Dioxide Thin Film by Nanostructured Nanogaps

    DOE PAGES

    Choe, Hwan Sung; Suh, Joonki; Ko, Changhyun; ...

    2017-08-02

    Efficient thermal management at the nanoscale is important for reducing energy consumption and dissipation in electronic devices, lab-on-a-chip platforms and energy harvest/conversion systems. For many of these applications, it is much desired to have a solid-state structure that reversibly switches thermal conduction with high ON/OFF ratios and at high speed. We describe design and implementation of a novel, all-solid-state thermal switching device by nanostructured phase transformation, i.e., modulation of contact pressure an d area between two poly-silicon surfaces activated by microstructural change of a vanadium dioxide (VO 2 ) thin film. Our solid-state devices demonstrate large and reversible alteration ofmore » cross-plane thermal conductance as a function of temperature, achieving a conductance ratio of at least 2.5. This new approach using nanostructured phase transformation provides new opportunities for applications that require advanced temperature and heat regulations.« less

  19. Enhancing Modulation of Thermal Conduction in Vanadium Dioxide Thin Film by Nanostructured Nanogaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choe, Hwan Sung; Suh, Joonki; Ko, Changhyun

    Efficient thermal management at the nanoscale is important for reducing energy consumption and dissipation in electronic devices, lab-on-a-chip platforms and energy harvest/conversion systems. For many of these applications, it is much desired to have a solid-state structure that reversibly switches thermal conduction with high ON/OFF ratios and at high speed. We describe design and implementation of a novel, all-solid-state thermal switching device by nanostructured phase transformation, i.e., modulation of contact pressure an d area between two poly-silicon surfaces activated by microstructural change of a vanadium dioxide (VO 2 ) thin film. Our solid-state devices demonstrate large and reversible alteration ofmore » cross-plane thermal conductance as a function of temperature, achieving a conductance ratio of at least 2.5. This new approach using nanostructured phase transformation provides new opportunities for applications that require advanced temperature and heat regulations.« less

  20. Electro-assisted solid-phase microextraction based on poly(3,4-ethylenedioxythiophen) combined with GC for the quantification of tricyclic antidepressants.

    PubMed

    Davarani, Saied Saeed Hosseiny; Nojavan, Saeed; Asadi, Roghayeh; Banitaba, Mohammad Hossein

    2013-07-01

    In this study, a platinum wire coated with poly(3,4-ethylenedioxythiophen) was used as an electro-assisted solid-phase microextraction fiber for the quantification of tricyclic antidepressant drugs in biological samples by coupling to GC employing a flame ionization detector. In this study, an electric field increased the extraction rate and recovery. The fiber used as a solid phase was synthesized by the electropolymerization of 3,4-ethylenedioxythiophen monomers onto a platinum wire. The ability of this fiber to extract imipramine, desipramine, and clomipramine by using the electro-assisted solid-phase microextraction technique was evaluated. The effect of various parameters that influence the extraction efficiency, which include solution temperature, extraction time, stirring rate, ionic strength, time and temperature of desorption, and thickness of the fiber, was optimized. Under optimized conditions, the linear ranges and regression coefficients of calibration curves were in the range of 0.5-250 and 0.990-0.998 ng/mL, respectively. Detection limits were in the range of 0.15-0.45 ng/mL. Finally, this method was applied to the determination of drugs in urine and wastewater samples and recoveries were 4.8-108.9%. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Application of a thiourea-containing task-specific ionic liquid for the solid-phase extraction cleanup of lead ions from red lipstick, pine leaves, and water samples.

    PubMed

    Saljooqi, Asma; Shamspur, Tayebeh; Mohamadi, Maryam; Mostafavi, Ali

    2014-07-01

    Here, task-specific ionic liquid solid-phase extraction is proposed for the first time. In this approach, a thiourea-functionalized ionic liquid is immobilized on the solid sorbent, multiwalled carbon nanotubes. These modified nanotubes packed into a solid-phase extraction column are used for the selective extraction and preconcentration of ultra-trace amounts of lead(II) from aqueous samples prior to electrothermal atomic absorption spectroscopy determination. The thiourea functional groups act as chelating agents for lead ions retaining them and so, give the selectivity to the sorbent. Elution of the retained ions can be performed using an acidic thiourea solution. The effects of experimental parameters including pH of the aqueous solution, type and amount of eluent, and the flow rates of sample and eluent solutions on the separation efficiency are investigated. The linear dependence of absorbance of lead on its concentration in the initial solution is in the range of 0.5-40.0 ng/mL with the detection limit of 0.13 ng/mL (3(Sb)/m, n = 10). The proposed method is applicable to the analysis of red lipstick, pine leaves, and water samples for their lead contents. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Robotic solid phase extraction and high performance liquid chromatographic analysis of ranitidine in serum or plasma.

    PubMed

    Lloyd, T L; Perschy, T B; Gooding, A E; Tomlinson, J J

    1992-01-01

    A fully automated assay for the analysis of ranitidine in serum and plasma, with and without an internal standard, was validated. It utilizes robotic solid phase extraction with on-line high performance liquid chromatographic (HPLC) analysis. The ruggedness of the assay was demonstrated over a three-year period. A Zymark Py Technology II robotic system was used for serial processing from initial aspiration of samples from original collection containers, to final direct injection onto the on-line HPLC system. Automated serial processing with on-line analysis provided uniform sample history and increased productivity by freeing the chemist to analyse data and perform other tasks. The solid phase extraction efficiency was 94% throughout the assay range of 10-250 ng/mL. The coefficients of variation for within- and between-day quality control samples ranged from 1 to 6% and 1 to 5%, respectively. Mean accuracy for between-day standards and quality control results ranged from 97 to 102% of the respective theoretical concentrations.

  3. Chromatography, solid-phase extraction, and capillary electrochromatography with MIPs.

    PubMed

    Tóth, Blanka; Horvai, George

    2012-01-01

    Most analytical applications of molecularly imprinted polymers are based on their selective adsorption properties towards the template or its analogs. In chromatography, solid phase extraction and electrochromatography this adsorption is a dynamic process. The dynamic process combined with the nonlinear adsorption isotherm of the polymers and other factors results in complications which have limited the success of imprinted polymers. This chapter explains these problems and shows many examples of successful applications overcoming or avoiding the problems.

  4. Development and validation of a magnetic solid-phase extraction with high-performance liquid chromatography method for the simultaneous determination of amphetamine and methadone in urine.

    PubMed

    Taghvimi, Arezou; Hamishehkar, Hamed; Ebrahimi, Mahmoud

    2016-06-01

    The simultaneous determination of amphetamine and methadone was carried out by magnetic graphene oxide nanoparticles, a magnetic solid-phase extraction adsorbent, as a new sample treatment technique. The main factors (the amounts of sample volume, amount of adsorbent, type and amount of extraction organic solvent, time of extraction and desorption, pH, the ionic strength of extraction medium, and agitation rate) influencing the extraction efficiency were investigated and optimized. Under the optimized conditions, good linearity was observed in the range of 100-1500 ng/mL for amphetamine and 100-1000 ng/mL for methadone. The method was evaluated for determination of AM and methadone in positive urine samples, satisfactory results were obtained, therefore magnetic solid-phase extraction can be applied as a novel method for the determination of drugs of abuse in forensic laboratories. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Online solid-phase extraction with high-performance liquid chromatography and mass spectrometry for the determination of five tannins in traditional Chinese medicine injections.

    PubMed

    Sun, Meng; Lin, Yuanyuan; Zhang, Jie; Zheng, Shaohua; Wang, Sicen

    2016-03-01

    A rapid analytical method based on online solid-phase extraction with high-performance liquid chromatography and mass spectrometry has been established and applied to the determination of tannin compounds that may cause adverse effects in traditional Chinese medicine injections. Different solid-phase extraction sorbents have been compared and the elution buffer was optimized. The performance of the method was verified by evaluation of recovery (≥40%), repeatability (RSD ≤ 6%), linearity (r(2) ≥ 0.993), and limit of quantification (≤0.35 μg/mL). Five tannin compounds, gallic acid, cianidanol, gallocatechin gallate, ellagic acid, and penta-O-galloylglucose, were identified with concentrations ranging from 3.1-37.4 μg/mL in the analyzed traditional Chinese medicine injections. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Rate-dependent, Li-ion insertion/deinsertion behavior of LiFePO4 cathodes in commercial 18650 LiFePO4 cells.

    PubMed

    Liu, Qi; He, Hao; Li, Zhe-Fei; Liu, Yadong; Ren, Yang; Lu, Wenquan; Lu, Jun; Stach, Eric A; Xie, Jian

    2014-03-12

    We have performed operando synchrotron high-energy X-ray diffraction (XRD) to obtain nonintrusive, real-time monitoring of the dynamic chemical and structural changes in commercial 18650 LiFePO4/C cells under realistic cycling conditions. The results indicate a nonequilibrium lithium insertion and extraction in the LiFePO4 cathode, with neither the LiFePO4 phase nor the FePO4 phase maintaining a static composition during lithium insertion/extraction. On the basis of our observations, we propose that the LiFePO4 cathode simultaneously experiences both a two-phase reaction mechanism and a dual-phase solid-solution reaction mechanism over the entire range of the flat voltage plateau, with this dual-phase solid-solution behavior being strongly dependent on charge/discharge rates. The proposed dual-phase solid-solution mechanism may explain the remarkable rate capability of LiFePO4 in commercial cells.

  7. Solid phase extraction of 2,4-D from human urine.

    PubMed

    Thompson, T S; Treble, R G

    1996-10-01

    A method for determining urinary concentrations of 2,4-D in samples collected from non-occupationally, environmentally exposed individuals was developed. The 2,4-D was extracted from fortified human urine samples using octadecylsilane solid phase extraction cartridges. The average percent recovery for urine samples spiked at 2 and 20 ng/mL was 100% and 93%, respectively. The method detection limit was estimated to be 0.75 ng of 2,4-D per mL of urine based on a 10 mL sample size. The potential use of 2,4-dichlorophenylacetic acid as a surrogate standard was also investigated.

  8. Water-compatible molecularly imprinted polymers for efficient direct injection on-line solid-phase extraction of ropivacaine and bupivacaine from human plasma.

    PubMed

    Cobb, Zoe; Sellergren, Börje; Andersson, Lars I

    2007-12-01

    Two novel molecularly imprinted polymers (MIPs) selected from a combinatorial library of bupivacaine imprinted polymers were used for selective on-line solid-phase extraction of bupivacaine and ropivacaine from human plasma. The MIPs were prepared using methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linking monomer and in addition hydroxyethylmethacrylate to render the polymer surface hydrophilic. The novel MIPs showed high selectivity for the analytes and required fewer and lower concentrations of additives to suppress non-specific adsorption compared with a conventional MIP. This enabled the development of an on-line system for direct extraction of buffered plasma. Selective extraction was achieved without the use of time-consuming solvent switch steps, and transfer of the analytes from the MIP column to the analytical column was carried out under aqueous conditions fully compatible with reversed-phase LC gradient separation of analyte and internal standard. The MIPs showed excellent aqueous compatibility and yielded extractions with acceptable recovery and high selectivity.

  9. Simultaneous analysis of hydrochlorothiazide, triamterene and reserpine in rat plasma by high performance liquid chromatography and tandem solid-phase extraction.

    PubMed

    Li, Hang; He, Junting; Liu, Qin; Huo, Zhaohui; Liang, Si; Liang, Yong

    2011-03-01

    A tandem solid-phase extraction method (SPE) of connecting two different cartridges (C(18) and MCX) in series was developed as the extraction procedure in this article, which provided better extraction yields (>86%) for all analytes and more appropriate sample purification from endogenous interference materials compared with a single cartridge. Analyte separation was achieved on a C(18) reversed-phase column at the wavelength of 265 nm by high-performance liquid chromatography (HPLC). The method was validated in terms of extraction yield, precision and accuracy. These assays gave mean accuracy values higher than 89% with RSD values that were always less than 3.8%. The method has been successfully applied to plasma samples from rats after oral administration of target compounds. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. EPA Method 525.3 - Determination of Semivolatile Organic Chemicals in Drinking Water by Solid Phase Extraction and Capillary Column Gas Chromatography/Mass Spectrometry (GC/MS)

    EPA Science Inventory

    Method 525.3 is an analytical method that uses solid phase extraction (SPE) and gas chromatography/mass spectrometry (GC/MS) for the identification and quantitation of 125 selected semi-volatile organic chemicals in drinking water.

  11. Quantitative determination of a chemically modified hammerhead ribozyme in blood plasma using 96-well solid-phase extraction coupled with high-performance liquid chromatography or capillary gel electrophoresis.

    PubMed

    Bellon, L; Maloney, L; Zinnen, S P; Sandberg, J A; Johnson, K E

    2000-08-01

    Versatile bioanalytical assays to detect chemically stabilized hammerhead ribozyme and putative ribozyme metabolites from plasma are described. The extraction protocols presented are based on serial solid-phase extractions performed on a 96-well plate format and are compatible with either IEX-HPLC or CGE back-end analysis. A validation of both assays confirmed that both the HPLC and the CGE methods possess the required linearity, accuracy, and precision to accurately measure concentrations of hammerhead ribozyme extracted from plasma. These methods should be of general use to detect and quantitate ribozymes from other biological fluids such as serum and urine. Copyright 2000 Academic Press.

  12. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of pesticides in water by C-18 solid-phase extraction and capillary-column gas chromatography/mass spectrometry with selected-ion monitoring

    USGS Publications Warehouse

    Zaugg, Steven D.; Sandstrom, Mark W.; Smith, Steven G.; Fehlberg, Kevin M.

    1995-01-01

    A method for the isolation of 41 pesticides and pesticide metabolites in natural-water samples using C-18 solid-phase extraction and determination by capillary-column gas chromatography/mass spectrometry with selected-ion monitoring is described. Water samples are filtered to remove suspended particulate matter and then are pumped through disposable solid-phase extraction columns containing octadecyl-bonded porous silica to extract the pesticides. The columns are dried using carbon dioxide or nitrogen gas, and adsorbed pesticides are removed from the columns by elution with 3.0 milliliters of hexane-isopropanol (3:1). Extracted pesticides are determined by capillary- column gas chromatography/mass spectrometry with selected-ion monitoring of three characteristic ions. The upper concentration limit is 4 micrograms per liter (g/L) for most pesticides, with the exception of widely used corn herbicides--atrazine, alachlor, cyanazine, and metolachlor--which have upper concentration limits of 20 g/L. Single- operator method detection limits in reagent-water samples range from 0.001 to 0.018 g/L. Average short-term single-operator precision in reagent- water samples is 7 percent at the 0.1- and 1.0-g/L levels and 8 percent at the 0.01-g/L level. Mean recoveries in reagent-water samples are 73 percent at the 0.1- and 1.0-g/L levels and 83 percent at the 0.01-g/L level. The estimated holding time for pesticides after extraction on the solid-phase extraction columns was 7 days. An optional on-site extraction procedure allows for samples to be collected and processed at remote sites where it is difficult to ship samples to the laboratory within the recommended pre-extraction holding time.

  13. Electromembrane extraction of biogenic amines in food samples by a microfluidic-chip system followed by dabsyl derivatization prior to high performance liquid chromatography analysis.

    PubMed

    Zarghampour, Fereshteh; Yamini, Yadollah; Baharfar, Mahroo; Faraji, Mohammad

    2018-06-29

    In the present research, an on-chip electromembrane extraction coupled with high performance liquid chromatography was developed for monitoring the trace levels of biogenic amines (BAs), including histamine, tryptamine, putrescine, cadaverine and spermidine in food samples. A porous polypropylene sheet membrane impregnated with an organic solvent was placed between the two parts of the chip device to separate the channels. Two platinum electrodes were mounted at the bottom of these channels, which were connected to a power supply, providing the electrical driving force for migration of ionized analytes from the sample solution through the porous sheet membrane into the acceptor phase. BAs were extracted from 2 mL aqueous sample solutions at neutral pH into 50 μL of acidified (HCl 90 mM) acceptor solution. Supported liquid membrane including NPOE containing 10% DEHP was used to ensure efficient extraction. Low voltage of 40 V was applied over the SLMs during extraction time. The influences of fundamental parameters affecting the transport of BAs were optimized. Under the optimized conditions, the relative standard deviations based on four replicate measurements were less than 8.0% and limit of detections were in range of 3.0-8.0 μg L -1 . Finally, the method was successfully applied to determinate BAs in the food samples and satisfactory results (recovery > 95.6) were obtained. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. [Study on solid phase extraction spectrophotometric determination of zinc with 2-(2-quinolylazo)-5-dimthylaminophenol].

    PubMed

    Zhou, Shi-ping; Duan, Chang-qun; Liu, Hong-cheng; Hu, Qiu-fen

    2005-10-01

    A highly sensitive, selective and rapid method for the determination of zinc based on the rapid reaction of zinc(II) with 2-(2-quinolylazo)-5-dimthylaminophenol (QADMAP) and the solid phase extraction of zinc ion with anion exchange resin cartridge was developed. In the presence of pH 8.5 buffer solution and Triton X-100 medium, QADMAP can react with zinc(II) to form a stable 2 :1 complex (QADMAP:Zn(II)). The molar absorptivity is 1.22 x 10(5)L x moL(-1) x cm(-1) at 590 nm. Beer's law is obeyed in the range of 0-1.0 microg x mL(-1). The zinc ions in the samples can be enriched and separated by solid phase extraction with anion exchange resincartridge. Testing results show that recovery for zinc(II) was from 95% to 104%, and RSD was below 3%. This method was applied to the determination of zinc in water and food with good results.

  15. Magnetic dummy molecularly imprinted polymers based on multi-walled carbon nanotubes for rapid selective solid-phase extraction of 4-nonylphenol in aqueous samples.

    PubMed

    Rao, Wei; Cai, Rong; Yin, Yuli; Long, Fang; Zhang, Zhaohui

    2014-10-01

    In this paper, a highly selective sample clean-up procedure combining magnetic dummy molecular imprinting with solid-phase extraction was developed for rapid separation and determination of 4-nonylphenol (NP) in the environmental water samples. The magnetic dummy molecularly imprinted polymers (mag-DMIPs) based on multi-walled carbon nanotubes were successfully synthesized with a surface molecular imprinting technique using 4-tert-octylphenol as the dummy template and tetraethylorthosilicate as the cross-linker. The maximum adsorption capacity of the mag-DMIPs for NP was 52.4 mg g(-1) and it took about 20 min to achieve the adsorption equilibrium. The mag-DMIPs exhibited the specific selective adsorption toward NP. Coupled with high performance liquid chromatography analysis, the mag-DMIPs were used to extract solid-phase and detect NP in real water samples successfully with the recoveries of 88.6-98.1%. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Solid-phase supports for the in situ assembly of quantum dot-FRET hybridization assays in channel microfluidics.

    PubMed

    Tavares, Anthony J; Noor, M Omair; Uddayasankar, Uvaraj; Krull, Ulrich J; Vannoy, Charles H

    2014-01-01

    Semiconductor quantum dots (QDs) have long served as integral components in signal transduction modalities such as Förster resonance energy transfer (FRET). The majority of bioanalytical methods using QDs for FRET-based techniques simply monitor binding-induced conformational changes. In more recent work, QDs have been incorporated into solid-phase support systems, such as microfluidic chips, to serve as physical platforms in the development of functional biosensors and bioprobes. Herein, we describe a simple strategy for the transduction of nucleic acid hybridization that combines a novel design method based on FRET with an electrokinetically controlled microfluidic technology, and that offers further potential for amelioration of sample-handling issues and for simplification of dynamic stringency control.

  17. Mixed micelle cloud point-magnetic dispersive μ-solid phase extraction of doxazosin and alfuzosin

    NASA Astrophysics Data System (ADS)

    Gao, Nannan; Wu, Hao; Chang, Yafen; Guo, Xiaozhen; Zhang, Lizhen; Du, Liming; Fu, Yunlong

    2015-01-01

    Mixed micelle cloud point extraction (MM-CPE) combined with magnetic dispersive μ-solid phase extraction (MD-μ-SPE) has been developed as a new approach for the extraction of doxazosin (DOX) and alfuzosin (ALF) prior to fluorescence analysis. The mixed micelle anionic surfactant sodium dodecyl sulfate and non-ionic polyoxyethylene(7.5)nonylphenylether was used as the extraction solvent in MM-CPE, and diatomite bonding Fe3O4 magnetic nanoparticles were used as the adsorbent in MD-μ-SPE. The method was based on MM-CPE of DOX and ALF in the surfactant-rich phase. Magnetic materials were used to retrieve the surfactant-rich phase, which easily separated from the aqueous phase under magnetic field. At optimum conditions, a linear relationship between DOX and ALF was obtained in the range of 5-300 ng mL-1, and the limits of detection were 0.21 and 0.16 ng mL-1, respectively. The proposed method was successfully applied for the determination of the drugs in pharmaceutical preparations, urine samples, and plasma samples.

  18. An integrated, self-contained microfluidic cassette for isolation, amplification, and detection of nucleic acids

    PubMed Central

    Chen, Dafeng; Mauk, Michael; Qiu, Xianbo; Liu, Changchun; Kim, Jitae; Ramprasad, Sudhir; Ongagna, Serge; Abrams, William R.; Malamud, Daniel; Corstjens, Paul L. A. M.

    2010-01-01

    A self-contained, integrated, disposable, sample-to-answer, polycarbonate microfluidic cassette for nucleic acid—based detection of pathogens at the point of care was designed, constructed, and tested. The cassette comprises on-chip sample lysis, nucleic acid isolation, enzymatic amplification (polymerase chain reaction and, when needed, reverse transcription), amplicon labeling, and detection. On-chip pouches and valves facilitate fluid flow control. All the liquids and dry reagents needed for the various reactions are pre-stored in the cassette. The liquid reagents are stored in flexible pouches formed on the chip surface. Dry (RT-)PCR reagents are pre-stored in the thermal cycling, reaction chamber. The process operations include sample introduction; lysis of cells and viruses; solid-phase extraction, concentration, and purification of nucleic acids from the lysate; elution of the nucleic acids into a thermal cycling chamber and mixing with pre-stored (RT-)PCR dry reagents; thermal cycling; and detection. The PCR amplicons are labeled with digoxigenin and biotin and transmitted onto a lateral flow strip, where the target analytes bind to a test line consisting of immobilized avidin-D. The immobilized nucleic acids are labeled with up-converting phosphor (UCP) reporter particles. The operation of the cassette is automatically controlled by an analyzer that provides pouch and valve actuation with electrical motors and heating for the thermal cycling. The functionality of the device is demonstrated by detecting the presence of bacterial B.Cereus, viral armored RNA HIV, and HIV I virus in saliva samples. The cassette and actuator described here can be used to detect other diseases as well as the presence of bacterial and viral pathogens in the water supply and other fluids. PMID:20401537

  19. An integrated, self-contained microfluidic cassette for isolation, amplification, and detection of nucleic acids.

    PubMed

    Chen, Dafeng; Mauk, Michael; Qiu, Xianbo; Liu, Changchun; Kim, Jitae; Ramprasad, Sudhir; Ongagna, Serge; Abrams, William R; Malamud, Daniel; Corstjens, Paul L A M; Bau, Haim H

    2010-08-01

    A self-contained, integrated, disposable, sample-to-answer, polycarbonate microfluidic cassette for nucleic acid-based detection of pathogens at the point of care was designed, constructed, and tested. The cassette comprises on-chip sample lysis, nucleic acid isolation, enzymatic amplification (polymerase chain reaction and, when needed, reverse transcription), amplicon labeling, and detection. On-chip pouches and valves facilitate fluid flow control. All the liquids and dry reagents needed for the various reactions are pre-stored in the cassette. The liquid reagents are stored in flexible pouches formed on the chip surface. Dry (RT-)PCR reagents are pre-stored in the thermal cycling, reaction chamber. The process operations include sample introduction; lysis of cells and viruses; solid-phase extraction, concentration, and purification of nucleic acids from the lysate; elution of the nucleic acids into a thermal cycling chamber and mixing with pre-stored (RT-)PCR dry reagents; thermal cycling; and detection. The PCR amplicons are labeled with digoxigenin and biotin and transmitted onto a lateral flow strip, where the target analytes bind to a test line consisting of immobilized avidin-D. The immobilized nucleic acids are labeled with up-converting phosphor (UCP) reporter particles. The operation of the cassette is automatically controlled by an analyzer that provides pouch and valve actuation with electrical motors and heating for the thermal cycling. The functionality of the device is demonstrated by detecting the presence of bacterial B.Cereus, viral armored RNA HIV, and HIV I virus in saliva samples. The cassette and actuator described here can be used to detect other diseases as well as the presence of bacterial and viral pathogens in the water supply and other fluids.

  20. Platform construction and extraction mechanism study of magnetic mixed hemimicelles solid-phase extraction

    PubMed Central

    Xiao, Deli; Zhang, Chan; He, Jia; Zeng, Rong; Chen, Rong; He, Hua

    2016-01-01

    Simple, accurate and high-throughput pretreatment method would facilitate large-scale studies of trace analysis in complex samples. Magnetic mixed hemimicelles solid-phase extraction has the power to become a key pretreatment method in biological, environmental and clinical research. However, lacking of experimental predictability and unsharpness of extraction mechanism limit the development of this promising method. Herein, this work tries to establish theoretical-based experimental designs for extraction of trace analytes from complex samples using magnetic mixed hemimicelles solid-phase extraction. We selected three categories and six sub-types of compounds for systematic comparative study of extraction mechanism, and comprehensively illustrated the roles of different force (hydrophobic interaction, π-π stacking interactions, hydrogen-bonding interaction, electrostatic interaction) for the first time. What’s more, the application guidelines for supporting materials, surfactants and sample matrix were also summarized. The extraction mechanism and platform established in the study render its future promising for foreseeable and efficient pretreatment under theoretical based experimental design for trace analytes from environmental, biological and clinical samples. PMID:27924944

  1. Evaluation of ionic liquids supported on silica as a sorbent for fully automated online solid-phase extraction with LC-MS determination of sulfonamides in bovine milk samples.

    PubMed

    da Silva, Meire Ribeiro; Mauro Lanças, Fernando

    2018-03-10

    Sulfonamides are antibiotics widely used in the treatment of diseases in dairy cattle. However, their indiscriminate use for disease control may lead to their presence in tissues and milk and their determination requires a sample preparation step as part of an analytical approach. Among the several sample preparation techniques available, those based upon the use of sorptive materials have been widely employed. Recently, the application of ionic liquids immobilized on silica surfaces or polymeric materials has been evaluated for such an application. This manuscript addresses the evaluation of silica-based ionic liquid obtained by a sol-gel synthesis process by basic catalysis as sorbent for online solid-phase extraction with liquid chromatography and electrospray ionization time-of-flight mass spectrometry for sulfonamides determination. Infrared vibrational spectroscopy confirmed the presence of the ionic liquid on the silica surface, suggesting that the ionic liquid was anchored on to the silica surface. Other sorbents varying the ionic liquid alkyl chain were also synthesized and evaluated by off-line solid-phase extraction in the sulfonamide extraction. As the length of the alkyl chain increased, the amount of extracted sulfonamides decreased, possibly due to a decrease in the electrostatic interaction caused by the reduction in the polarity, as well as the presence of a hexafluorophosphate anion that increases the hydrophobic character of the material. The use of 1-butyl-3-methylimidazolium hexafluorophosphate as a selective ionic liquid sorbent enabled the isolation and sulfonamide preconcentration in bovine milk by online solid-phase extraction with liquid chromatography and electrospray ionization time-of-flight mass spectrometry. The limit of quantification for the method developed was 5-7, 5 μg/mL, with extraction recoveries ranging between 74 and 93% and intra- and interassay between 1.5-12.5 and 2.3-13.1, respectively. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Graphene-encapsulated silica as matrix solid-phase dispersion extraction sorbents for the analysis of poly-methoxylated flavonoids in the leaves of Murraya panaculata (L.) Jack.

    PubMed

    Sun, Ting; Li, Xuwen; Yang, Jie; Li, Lanjie; Jin, Yongri; Shi, Xiaolei

    2015-06-01

    In this study, graphene-encapsulated silica was synthesized by a hydrothermal reduction strategy. The presence of silica in graphene was identified by Fourier-transform infrared spectrometry, X-ray diffraction and scanning electron microscopy. The graphene-encapsulated silica subsequently was used as adsorbent for matrix solid-phase dispersion extraction of poly-methoxylated flavonoids from the dried leaves of Murraya panaculata (L.) Jack. Compared with the other adsorbents (graphene, silica gel, C18 silica, neutral alumina, diatomaceous earth) and without any adsorbents, better results were obtained. Then a method for analysis of poly-methoxylated flavonoids was established by coupling matrix solid-phase dispersion extraction with ultra high performance liquid chromatography and UV detection. Compared with reflux extraction and ultrasonic extraction, the proposed method is quicker, more efficient and more environmental protection. Less than 10 min is needed from extraction to detection. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Multivariate analysis of the volatile components in tobacco based on infrared-assisted extraction coupled to headspace solid-phase microextraction and gas chromatography-mass spectrometry.

    PubMed

    Yang, Yanqin; Pan, Yuanjiang; Zhou, Guojun; Chu, Guohai; Jiang, Jian; Yuan, Kailong; Xia, Qian; Cheng, Changhe

    2016-11-01

    A novel infrared-assisted extraction coupled to headspace solid-phase microextraction followed by gas chromatography with mass spectrometry method has been developed for the rapid determination of the volatile components in tobacco. The optimal extraction conditions for maximizing the extraction efficiency were as follows: 65 μm polydimethylsiloxane-divinylbenzene fiber, extraction time of 20 min, infrared power of 175 W, and distance between the infrared lamp and the headspace vial of 2 cm. Under the optimum conditions, 50 components were found to exist in all ten tobacco samples from different geographical origins. Compared with conventional water-bath heating and nonheating extraction methods, the extraction efficiency of infrared-assisted extraction was greatly improved. Furthermore, multivariate analysis including principal component analysis, hierarchical cluster analysis, and similarity analysis were performed to evaluate the chemical information of these samples and divided them into three classifications, including rich, moderate, and fresh flavors. The above-mentioned classification results were consistent with the sensory evaluation, which was pivotal and meaningful for tobacco discrimination. As a simple, fast, cost-effective, and highly efficient method, the infrared-assisted extraction coupled to headspace solid-phase microextraction technique is powerful and promising for distinguishing the geographical origins of the tobacco samples coupled to suitable chemometrics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. State of the art of environmentally friendly sample preparation approaches for determination of PBDEs and metabolites in environmental and biological samples: A critical review.

    PubMed

    Berton, Paula; Lana, Nerina B; Ríos, Juan M; García-Reyes, Juan F; Altamirano, Jorgelina C

    2016-01-28

    Green chemistry principles for developing methodologies have gained attention in analytical chemistry in recent decades. A growing number of analytical techniques have been proposed for determination of organic persistent pollutants in environmental and biological samples. In this light, the current review aims to present state-of-the-art sample preparation approaches based on green analytical principles proposed for the determination of polybrominated diphenyl ethers (PBDEs) and metabolites (OH-PBDEs and MeO-PBDEs) in environmental and biological samples. Approaches to lower the solvent consumption and accelerate the extraction, such as pressurized liquid extraction, microwave-assisted extraction, and ultrasound-assisted extraction, are discussed in this review. Special attention is paid to miniaturized sample preparation methodologies and strategies proposed to reduce organic solvent consumption. Additionally, extraction techniques based on alternative solvents (surfactants, supercritical fluids, or ionic liquids) are also commented in this work, even though these are scarcely used for determination of PBDEs. In addition to liquid-based extraction techniques, solid-based analytical techniques are also addressed. The development of greener, faster and simpler sample preparation approaches has increased in recent years (2003-2013). Among green extraction techniques, those based on the liquid phase predominate over those based on the solid phase (71% vs. 29%, respectively). For solid samples, solvent assisted extraction techniques are preferred for leaching of PBDEs, and liquid phase microextraction techniques are mostly used for liquid samples. Likewise, green characteristics of the instrumental analysis used after the extraction and clean-up steps are briefly discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. [Determination of deoxynivalenol in grain and its products by solid-phase extraction coupled with high performance liquid chromatography-tandem mass spectrometry].

    PubMed

    Huang, Juan; Chen, Guosong; Zhang, Xiaoyan; Shen, Chongyu; Lü, Chen; Wu, Bin; Liu, Yan; Chen, Huilan; Ding, Tao

    2012-11-01

    A method was established for the determination of deoxynivalenol (vomitoxin) in grain and its products based on solid-phase extraction coupled with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The sample was firstly extracted by acetonitrile-water (84:16, v/v). The extract was then cleaned-up by an HLB solid phase extraction cartridge. The separation was carried out on a Phenomenex Kinetex C18 column (100 mm x4. 6 mm, 2.6 microm) with a gradient elution using 0.3% per hundred ammonia solution-acetonitrile as mobile phases. The analysis of deoxynivalenol was performed under electrospray negative ionization mode. The limit of detection (LOD, S/N= 3) and the limit of quantification (LOQ, S/N = 10) were 20 microg/kg and 50 microg/kg, respectively. A good linearity (r > 0.99) was achieved for the target compound over the range of 20-1000 pg/L. The recoveries at the three spiked levels (50, 100, 500 microg/kg) in the blank matrices such as flour, barley, soybean, rice, cornmeal, cassava and wheat, were varied from 75.6% to 111.0% with the relative standard deviations no more than 13. 0%. The method is accurate, efficient, sensitive and practical. The cost of pretreatment is obviously reduced by replacing immunoaffinity columns and Mycosep columns with HLB columns which have the same purification effect.

  6. Solid-phase extraction using bis(indolyl)methane-modified silica reinforced with multiwalled carbon nanotubes for the simultaneous determination of flavonoids and aromatic organic acid preservatives.

    PubMed

    Wang, Na; Liao, Yuan; Wang, Jiamin; Tang, Sheng; Shao, Shijun

    2015-12-01

    A novel bis(indolyl)methane-modified silica reinforced with multiwalled carbon nanotubes sorbent for solid-phase extraction was designed and synthesized by chemical immobilization of nitro-substituted 3,3'-bis(indolyl)methane on silica modified with multiwalled carbon nanotubes. Coupled with high-performance liquid chromatography analysis, the extraction properties of the sorbent were evaluated for flavonoids and aromatic organic acid compounds. Under optimum conditions, the sorbent can simultaneously extract five flavonoids and two aromatic organic acid preservatives in aqueous solutions in a single-step solid-phase extraction procedure. Wide linear ranges were obtained with correlation coefficients (R(2) ) ranging from 0.9843 to 0.9976, and the limits of detection were in the range of 0.5-5 μg/L for the compounds tested. Compared with the silica modified with multiwalled carbon nanotubes sorbent and the nitro-substituted 3,3'-bis(indolyl)methane-modified silica sorbent, the developed sorbent exhibited higher extraction efficiency toward the selected analytes. The synergistic effect of nitro-substituted 3,3'-bis(indolyl)methane and multiwalled carbon nanotubes not only improved the surface-to-volume ratio but also enhanced multiple intermolecular interactions, such as hydrogen bonds, π-π, and hydrophobic interactions, between the new sorbent and the selected analytes. The as-established solid-phase extraction with high-performance liquid chromatography and diode array detection method was successfully applied to the simultaneous determination of flavonoids and aromatic organic acid preservatives in grape juices with recoveries ranging from 83.9 to 112% for all the selected analytes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Quantitative phase imaging characterization of tumor-associated blood vessel formation on a chip

    NASA Astrophysics Data System (ADS)

    Guo, Peng; Huang, Jing; Moses, Marsha A.

    2018-02-01

    Angiogenesis, the formation of new blood vessels from existing ones, is a biological process that has an essential role in solid tumor growth, development, and progression. Recent advances in Lab-on-a-Chip technology has created an opportunity for scientists to observe endothelial cell (EC) behaviors during the dynamic process of angiogenesis using a simple and economical in vitro platform that recapitulates in vivo blood vessel formation. Here, we use quantitative phase imaging (QPI) microscopy to continuously and non-invasively characterize the dynamic process of tumor cell-induced angiogenic sprout formation on a microfluidic chip. The live tumor cell-induced angiogenic sprouts are generated by multicellular endothelial sprouting into 3 dimensional (3D) Matrigel using human umbilical vein endothelial cells (HUVECs). By using QPI, we quantitatively measure a panel of cellular morphological and behavioral parameters of each individual EC participating in this sprouting. In this proof-of-principle study, we demonstrate that QPI is a powerful tool that can provide real-time quantitative analysis of biological processes in in vitro 3D biomimetic devices, which, in turn, can improve our understanding of the biology underlying functional tissue engineering.

  8. Separation and determination of citrinin in corn using HPLC fluorescence detection assisted by molecularly imprinted solid phase extraction clean-up

    USDA-ARS?s Scientific Manuscript database

    A liquid chromatography based method to detect citrinin in corn was developed using molecularly imprinted solid phase extraction (MISPE) sample clean-up. Molecularly imprinted polymers were synthesized using 1,4-dihydroxy-2-naphthoic acid as the template and an amine functional monomer. Density func...

  9. Sample Preparation and Extraction in Small Sample Volumes Suitable for Pediatric Clinical Studies: Challenges, Advances, and Experiences of a Bioanalytical HPLC-MS/MS Method Validation Using Enalapril and Enalaprilat

    PubMed Central

    Burckhardt, Bjoern B.; Laeer, Stephanie

    2015-01-01

    In USA and Europe, medicines agencies force the development of child-appropriate medications and intend to increase the availability of information on the pediatric use. This asks for bioanalytical methods which are able to deal with small sample volumes as the trial-related blood lost is very restricted in children. Broadly used HPLC-MS/MS, being able to cope with small volumes, is susceptible to matrix effects. The latter restrains the precise drug quantification through, for example, causing signal suppression. Sophisticated sample preparation and purification utilizing solid-phase extraction was applied to reduce and control matrix effects. A scale-up from vacuum manifold to positive pressure manifold was conducted to meet the demands of high-throughput within a clinical setting. Faced challenges, advances, and experiences in solid-phase extraction are exemplarily presented on the basis of the bioanalytical method development and validation of low-volume samples (50 μL serum). Enalapril, enalaprilat, and benazepril served as sample drugs. The applied sample preparation and extraction successfully reduced the absolute and relative matrix effect to comply with international guidelines. Recoveries ranged from 77 to 104% for enalapril and from 93 to 118% for enalaprilat. The bioanalytical method comprising sample extraction by solid-phase extraction was fully validated according to FDA and EMA bioanalytical guidelines and was used in a Phase I study in 24 volunteers. PMID:25873972

  10. Determination of free and deconjugated testosterone and epitestosterone in urine using SPME and LC-MS/MS.

    PubMed

    Zhan, Yanwei; Musteata, Florin M; Basset, Fabien A; Pawliszyn, Janusz

    2011-01-01

    A thin sheet of polydimethylsilosane membrane was used as an extraction phase for solid-phase microextraction. Compared with fiber or rod solid-phase microextraction geometries, the thin film exhibited much higher extraction capacity without sacrificing extraction time due to its higher area-to-volume ratio. The analytical method involved direct extraction of unconjugated testosterone (T) and epitestosterone (ET) followed by separation on a C18 column and detection by selected reaction monitoring in positive ionization mode. The limit of detection was 1 ng/l for both T and ET. After method validation, free (unconjugated) T and ET were extracted and quantified in real samples. Since T and ET are extensively metabolized, the proposed method was also applied to extract the steroids after enzymatic deconjugation of urinary-excreted steroid glucuronides. The proposed method allows quantification of both conjugated and unconjugated steroids, and revealed that there was a change in the ratio of T to ET after enzymatic deconjugation, indicating different rates of metabolism.

  11. Physically incorporated extraction phase of solid-phase microextraction by sol-gel technology.

    PubMed

    Liu, Wenmin; Hu, Yuan; Zhao, Jinghong; Xu, Yuan; Guan, Yafeng

    2006-01-13

    A sol-gel method for the preparation of solid-phase microextraction (SPME) fiber was described and evaluated. The extraction phase of poly(dimethysiloxane) (PDMS) containing 3% vinyl group was physically incorporated into the sol-gel network without chemical bonding. The extraction phase itself is then partly crosslinked at 320 degrees C, forming an independent polymer network and can withstand desorption temperature of 290 degrees C. The headspace extraction of BTX by the fiber SPME was evaluated and the detection limit of o-xylene was down to 0.26 ng/l. Extraction and determination of organophosphorus pesticides (OPPs) in water, orange juice and red wine by the SPME-GC thermionic specified detector (TSD) was validated. Limits of detection of the method for OPPs were below 10 ng/l except methidathion. Relative standard deviations (RSDs) were in the range of 1-20% for pesticides being tested.

  12. Molecularly imprinted solid-phase extraction for the determination of ten macrolide drugs residues in animal muscles by liquid chromatography-tandem mass spectrometry.

    PubMed

    Song, Xuqin; Zhou, Tong; Liu, Qingying; Zhang, Meiyu; Meng, Chenying; Li, Jiufeng; He, Limin

    2016-10-01

    A simple and sensitive method based on molecularly imprinted solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry was developed for the determination of the residues of ten macrolide drugs in swine, cattle and chicken muscles samples. The molecularly imprinted polymers (MIPs) were synthesized using tylosin as a template and methacrylic acid as a functional monomer. Samples were extracted with sodium borate buffer solution and ethyl acetate, and purified by the MIP cartridge. The results showed that the cartridge exhibited good recognition performance for macrolides, and better purification effect than the traditional solid-phase extraction cartridges. Recoveries of analytes at three spiking levels 1, 5 and 20μgkg(-1) ranged from 60.7% to 100.3% with the relative standard deviations less than 14%. The limits of detection of the method were between 0.1 and 0.4μgkg(-1). The method is useful for the routine monitoring of the residues of macrolide drugs in animal muscles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Method of analysis and quality-assurance practices for determination of pesticides in water by solid-phase extraction and capillary-column gas chromatography/mass spectrometry at the U.S. Geological Survey California District Organic Chemistry Laboratory, 1996-99

    USGS Publications Warehouse

    Crepeau, Kathryn L.; Baker, Lucian M.; Kuivila, Kathryn

    2000-01-01

    A method of analysis and quality-assurance practices were developed to study the fate and transport of pesticides in the San Francisco Bay-Estuary by the U.S. Geological Survey. Water samples were filtered to remove suspended-particulate matter and pumped through C-8 solid-phase extraction cartridges to extract the pesticides. The cartridges were dried with carbon dioxide and the pesticides were eluted with three cartridge volumes of hexane:diethyl ether (1:1) solution. The eluants were analyzed using capillary-column gas chromatography/mass spectrometry in full-scan mode. Method detection limits for pesticides ranged from 0.002 to 0.025 microgram per liter for 1-liter samples. Recoveries ranged from 44 to 140 percent for 25 pesticides in samples of organic-free reagent water and Sacramento-San Joaquin Delta and Suisun Bay water fortified at 0.05 and 0.50 microgram per liter. The estimated holding time for pesticides after extraction on C-8 solid-phase extraction cartridges ranged from 10 to 257 days.

  14. Hydride Generation for Headspace Solid-Phase Extraction with CdTe Quantum Dots Immobilized on Paper for Sensitive Visual Detection of Selenium.

    PubMed

    Huang, Ke; Xu, Kailai; Zhu, Wei; Yang, Lu; Hou, Xiandeng; Zheng, Chengbin

    2016-01-05

    A low-cost, simple, and highly selective analytical method was developed for sensitive visual detection of selenium in human urine both outdoors and at home, by coupling hydride generation with headspace solid-phase extraction using quantum dots (QDs) immobilized on paper. The visible fluorescence from the CdTe QDs immobilized on paper was quenched by H2Se from hydride generation reaction and headspace solid-phase extraction. The potential mechanism was investigated by using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) as well as Density Functional Theory (DFT). Potential interferences from coexisting ions, particularly Ag(+), Cu(2+), and Zn(2+), were eliminated. The selectivity was significantly increased because the selenium hydride was effectively separated from sample matrices by hydride generation. Moreover, due to the high sampling efficiency of hydride generation and headspace solid phase extraction, the sensitivity and the limit of detection (LOD) were significantly improved compared to conventional methods. A LOD of 0.1 μg L(-1) and a relative standard deviation (RSD, n = 7) of 2.4% at a concentration of 20 μg L(-1) were obtained when using a commercial spectrofluorometer as the detector. Furthermore, a visual assay based on the proposed method was developed for the detection of Se, 5 μg L(-1) of selenium in urine can be discriminated from the blank solution with the naked eye. The proposed method was validated by analysis of certified reference materials and human urine samples with satisfactory results.

  15. [Test of thermal deformation for electronic devices of high thermal reliability].

    PubMed

    Li, Hai-yuan; Li, Bao-ming

    2002-06-01

    Thermal deformation can be caused by high partial heat flux and greatly reduce thermal reliability of electronic devices. In this paper, an attempt is made to measure the thermal deformation of high power electronic devices under working condition using laser holographic interferometry with double exposure. Laser holographic interferometry is an untouched measurement with measurement precision up to micron dimension. The electronic device chosen for measurement is a type of solid state relay which is used for ignition of rockets. The output circuit of the solid state relay is made up of a MOSFET chip and the power density of the chip can reach high value. In particular situations thermal deformation and stress may significantly influence working performance of the solid state relay. The bulk deformation of the chip and its mount is estimated by number of interferential stripes on chip surface. While thermal stress and deformation can be estimated by curvature of interferential stripes on chip surface. Experimental results indicate that there are more interferential stripes on chip surface and greater flexural degree of stripes under high power. Therefore, these results reflect large out-of-plain displacement and deformed size of the chip with the increase of load current.

  16. Dispersive solid-phase extraction followed by vortex-assisted dispersive liquid-liquid microextraction based on the solidification of a floating organic droplet for the determination of benzoylurea insecticides in soil and sewage sludge.

    PubMed

    Peng, Guilong; He, Qiang; Mmereki, Daniel; Lu, Ying; Zhong, Zhihui; Liu, Hanyang; Pan, Weiliang; Zhou, Guangming; Chen, Junhua

    2016-04-01

    A novel dispersive solid-phase extraction combined with vortex-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet was developed for the determination of eight benzoylurea insecticides in soil and sewage sludge samples before high-performance liquid chromatography with ultraviolet detection. The analytes were first extracted from the soil and sludge samples into acetone under optimized pretreatment conditions. Clean-up of the extract was conducted by dispersive solid-phase extraction using activated carbon as the sorbent. The vortex-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet procedure was performed by using 1-undecanol with lower density than water as the extraction solvent, and the acetone contained in the solution also acted as dispersive solvent. Under the optimum conditions, the linearity of the method was in the range 2-500 ng/g with correlation coefficients (r) of 0.9993-0.9999. The limits of detection were in the range of 0.08-0.56 ng/g. The relative standard deviations varied from 2.16 to 6.26% (n = 5). The enrichment factors ranged from 104 to 118. The extraction recoveries ranged from 81.05 to 97.82% for all of the analytes. The good performance has demonstrated that the proposed methodology has a strong potential for application in the multiresidue analysis of complex matrices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Electrochemical pesticide detection with AutoDip--a portable platform for automation of crude sample analyses.

    PubMed

    Drechsel, Lisa; Schulz, Martin; von Stetten, Felix; Moldovan, Carmen; Zengerle, Roland; Paust, Nils

    2015-02-07

    Lab-on-a-chip devices hold promise for automation of complex workflows from sample to answer with minimal consumption of reagents in portable devices. However, complex, inhomogeneous samples as they occur in environmental or food analysis may block microchannels and thus often cause malfunction of the system. Here we present the novel AutoDip platform which is based on the movement of a solid phase through the reagents and sample instead of transporting a sequence of reagents through a fixed solid phase. A ball-pen mechanism operated by an external actuator automates unit operations such as incubation and washing by consecutively dipping the solid phase into the corresponding liquids. The platform is applied to electrochemical detection of organophosphorus pesticides in real food samples using an acetylcholinesterase (AChE) biosensor. Minimal sample preparation and an integrated reagent pre-storage module hold promise for easy handling of the assay. Detection of the pesticide chlorpyrifos-oxon (CPO) spiked into apple samples at concentrations of 10(-7) M has been demonstrated. This concentration is below the maximum residue level for chlorpyrifos in apples defined by the European Commission.

  18. Methods of analysis by the U. S. Geological Survey National Water Quality Laboratory - determination of organonitrogen herbicides in water by solid-phase extraction and capillary-column gas chromatography/mass spectrometry with selected-ion monitoring

    USGS Publications Warehouse

    Sandstrom, Mark W.; Wydoski, Duane S.; Schroeder, Michael P.; Zamboni, Jana L.; Foreman, William T.

    1992-01-01

    A method for the isolation of organonitrogen herbicides from natural water samples using solid-phase extraction and analysis by capillary-column gas chromatography/mass spectrometry with selected-ion monitoring is described. Water samples are filtered to remove suspended particulate matter and then are pumped through disposable solid-phase extraction cartridges containing octadecyl-bonded porous silica to remove the herbicides. The cartridges are dried using carbon dioxide, and adsorbed herbicides are removed from the cartridges by elution with 1.8 milliliters of hexaneisopropanol (3:1). Extracts of the eluants are analyzed by capillary-column gas chromatography/mass spectrometry with selected-ion monitoring of at least three characteristic ions. The method detection limits are dependent on sample matrix and each particular herbicide. The method detection limits, based on a 100-milliliter sample size, range from 0.02 to 0.25 microgram per liter. Recoveries averaged 80 to 115 percent for the 23 herbicides and 2 metabolites in 1 reagent-water and 2 natural-water samples fortified at levels of 0.2 and 2.0 micrograms per liter.

  19. Optimization of matrix solid-phase dispersion for the rapid determination of salicylate and benzophenone-type UV absorbing substances in marketed fish.

    PubMed

    Tsai, Dung-Ying; Chen, Chien-Liang; Ding, Wang-Hsien

    2014-07-01

    A simple and effective method for the rapid determination of five salicylate and benzophenone-type UV absorbing substances in marketed fish is described. The method involves the use of matrix solid-phase dispersion (MSPD) prior to their determination by on-line silylation gas chromatography tandem mass spectrometry (GC-MS/MS). The parameters that affect the extraction efficiency were optimized using a Box-Behnken design method. The optimal extraction conditions involved dispersing 0.5g of freeze-dried powdered fish with 1.0g of Florisil using a mortar and pestle. This blend was then transferred to a solid-phase extraction (SPE) cartridge containing 1.0g of octadecyl bonded silica (C18), as the clean-up co-sorbent. The target analytes were then eluted with 7mL of acetonitrile. The extract was derivatized on-line in the GC injection-port by reaction with a trimethylsilylating (TMS) reagent. The TMS-derivatives were then identified and quantitated by GC-MS/MS. The limits of quantitation (LOQs) were less than 0.1ng/g. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Analysis of fusaric acid in maize using molecularly imprinted solid phase extraction (MISPE) clean-up and ion-pair LC with diode array UV detection

    USDA-ARS?s Scientific Manuscript database

    Fusaric acid is a phytotoxin and mycotoxin occasionally found in maize contaminated with Fusarium fungi. A selective sample clean-up procedure was developed to detect fusaric acid in maize using molecularly imprinted solid phase extraction (MISPE) clean-up coupled with ion-pair liquid chromatography...

  1. METHOD 544. DETERMINATION OF MICROCYSTINS AND NODULARIN IN DRINKING WATER BY SOLID PHASE EXTRACTION AND LIQUID CHROMATOGRAPHY/TANDEM MASS SPECTROMETRY (LC/MS/MS)

    EPA Science Inventory

    Method 544 is an accurate and precise analytical method to determine six microcystins (including MC-LR) and nodularin in drinking water using solid phase extraction and liquid chromatography tandem mass spectrometry (SPE-LC/MS/MS). The advantage of this SPE-LC/MS/MS is its sensi...

  2. Analysis of lignans in Magnoliae Flos by turbulent flow chromatography with online solid-phase extraction and high-performance liquid chromatography with tandem mass spectrometry.

    PubMed

    Zhou, Xuan; Chen, Cen; Ye, Xiaolan; Song, Fenyun; Fan, Guorong; Wu, Fuhai

    2016-04-01

    In this study, a method coupling turbulent flow chromatography with online solid-phase extraction and high-performance liquid chromatography with tandem mass spectrometry was developed for analyzing the lignans in Magnoliae Flos. By the online pretreatment of turbulent flow chromatography solid-phase extraction, the impurities removal and analytes concentration were automatically processed, and the lignans were separated rapidly and well. Seven lignans of Magnoliae Flos including epieudesmin, magnolin, 1-irioresinol-B-dimethyl ether, epi-magnolin, fargesin aschantin, and demethoxyaschantin were identified by comparing their retention behavior, UV spectra, and mass spectra with those of reference substances or literature data. The developed method was validated, and the good results showed that the method was not only automatic and rapid, but also accurate and reliable. The turbulent flow chromatography with online solid-phase extraction and high-performance liquid chromatography with tandem mass spectrometry method holds a high potential to become an effective method for the quality control of lignans in Magnoliae Flos and a useful tool for the analysis of other complex mixtures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Advanced analytical techniques for the extraction and characterization of plant-derived essential oils by gas chromatography with mass spectrometry.

    PubMed

    Waseem, Rabia; Low, Kah Hin

    2015-02-01

    In recent years, essential oils have received a growing interest because of the positive health effects of their novel characteristics such as antibacterial, antifungal, and antioxidant activities. For the extraction of plant-derived essential oils, there is the need of advanced analytical techniques and innovative methodologies. An exhaustive study of hydrodistillation, supercritical fluid extraction, ultrasound- and microwave-assisted extraction, solid-phase microextraction, pressurized liquid extraction, pressurized hot water extraction, liquid-liquid extraction, liquid-phase microextraction, matrix solid-phase dispersion, and gas chromatography (one- and two-dimensional) hyphenated with mass spectrometry for the extraction through various plant species and analysis of essential oils has been provided in this review. Essential oils are composed of mainly terpenes and terpenoids with low-molecular-weight aromatic and aliphatic constituents that are particularly important for public health. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. In situ analysis of dynamic laminar flow extraction using surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Wang, Hua-Lin; Qiu, Yang; Chang, Yu-Long; Long, Yi-Tao

    2015-12-01

    In this study, we performed micro-scale dynamic laminar flow extraction and site-specific in situ chloride concentration measurements. Surface-enhanced Raman spectroscopy was utilized to investigate the diffusion process of chloride ions from an oil phase to a water phase under laminar flow. In contrast to common logic, we used SERS intensity gradients of Rhodamine 6G to quantitatively calculate the concentration of chloride ions at specific positions on a microfluidic chip. By varying the fluid flow rates, we achieved different extraction times and therefore different chloride concentrations at specific positions along the microchannel. SERS spectra from the water phase were recorded at these different positions, and the spatial distribution of the SERS signals was used to map the degree of nanoparticle aggregation. The concentration of chloride ions in the channel could therefore be obtained. We conclude that this method can be used to explore the extraction behaviour and efficiency of some ions or molecules that enhance the SERS intensity in water or oil by inducing nanoparticle aggregation.

  5. Simultaneous determination of three classes of antibiotics in the suspended solids of swine wastewater by ultrasonic extraction, solid-phase extraction and liquid chromatography-mass spectrometry.

    PubMed

    Pan, Xun; Qiang, Zhimin; Ben, Weiwei; Chen, Meixue

    2011-01-01

    This work describes a systematic approach to the development of a method for simultaneous determination of three classes of veterinary antibiotics in the suspended solids (SS) of swine wastewater, including five sulfonamides, three tetracyclines and one macrolide (tiamulin). The entire procedures for sample pretreatment, ultrasonic extraction (USE), solid-phase extraction (SPE), and liquid chromatography-mass spectrometry (LC-MS) quantification were examined and optimized. The recovery efficiencies were found to be 76%-104% for sulfonamides, 81%-112% for tetracyclines, and 51%-64% for tiamulin at three spiking levels. The intra-day and inter-day precisions, as expressed by the relative standard deviation (RSD), were below 17%. The method detection limits (MDLs) were between 0.14 and 7.14 microg/kg, depending on a specific antibiotic studied. The developed method was applied to field samples collected from three concentrated swine feeding plants located in Beijing, Shanghai and Shandong province of China. All the investigated antibiotics were detected in both SS and liquid phase of swine wastewater, with partition coefficients (logK(d)) ranging from 0.49 to 2.30. This study demonstrates that the SS can not be ignored when determining the concentrations of antibiotics in swine wastewater.

  6. Microfluidic integration of parallel solid-phase liquid chromatography.

    PubMed

    Huft, Jens; Haynes, Charles A; Hansen, Carl L

    2013-03-05

    We report the development of a fully integrated microfluidic chromatography system based on a recently developed column geometry that allows for robust packing of high-performance separation columns in poly(dimethylsiloxane) microfluidic devices having integrated valves made by multilayer soft lithography (MSL). The combination of parallel high-performance separation columns and on-chip plumbing was used to achieve a fully integrated system for on-chip chromatography, including all steps of automated sample loading, programmable gradient generation, separation, fluorescent detection, and sample recovery. We demonstrate this system in the separation of fluorescently labeled DNA and parallel purification of reverse transcription polymerase chain reaction (RT-PCR) amplified variable regions of mouse immunoglobulin genes using a strong anion exchange (AEX) resin. Parallel sample recovery in an immiscible oil stream offers the advantage of low sample dilution and high recovery rates. The ability to perform nucleic acid size selection and recovery on subnanogram samples of DNA holds promise for on-chip genomics applications including sequencing library preparation, cloning, and sample fractionation for diagnostics.

  7. Electroplating of nanostructured polyaniline-polypyrrole composite coating in a stainless-steel tube for on-line in-tube solid phase microextraction.

    PubMed

    Asiabi, Hamid; Yamini, Yadollah; Seidi, Shahram; Esrafili, Ali; Rezaei, Fatemeh

    2015-06-05

    In this work, a novel and efficient on-line in-tube solid phase microextraction method followed by high performance liquid chromatography was developed for preconcentration and determination of trace amounts of parabens. A nanostructured polyaniline-polypyrrole composite was electrochemically deposited on the inner surface of a stainless steel tube and used as the extraction phase. Several important factors that influence the extraction efficiency, including type of solid-phase coating, extraction and desorption times, flow rates of the sample solution and eluent, pH, and ionic strength of the sample solution were investigated and optimized. Under the optimal conditions, the limits of detection were in the range of 0.02-0.04 μg L(-1). This method showed good linearity for parabens in the range of 0.07-50 μg L(-1), with coefficients of determination better than 0.998. The intra- and inter-assay precisions (RSD%, n=3) were in the range of 5.9-7.0% and 4.4-5.7% at three concentration levels of 2, 10, and 20 μg L(-1), respectively. The extraction recovery values for the spiked samples were in the acceptable range of 80.3-90.2%. The validated method was successfully applied for analysis of methyl-, ethyl-, and propyl parabens in some water, milk, and juice samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Design and Fabrication of a PDMS Microchip Based Immunoassay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Guocheng; Wang, Wanjun; Wang, Jun

    2010-07-01

    In this paper, we describe the design and fabrication process of a polydimethylsiloxane (PDMS) microchip for on-chip multiplex immunoassay application. The microchip consists of a PDMS microfluidic channel layer and a micro pneumatic valve control layer. By selectively pressurizing the pneumatic microvalves, immuno reagents were controlled to flow and react in certain fluidic channel sites. Cross contamination was prevented by tightly closed valves. Our design was proposed to utilize PDMS micro channel surface as the solid phase immunoassay substrate and simultaneously detect four targets antigens on chip. Experiment result shows that 20psi valve pressure is sufficient to tightly close amore » 200µm wide micro channel with flow rate up to 20µl/min.« less

  9. Rapid determination of trace nitrophenolic organics in water by combining solid-phase extraction with surface-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Chen, Y C; Shiea, J; Sunner, J

    2000-01-01

    A rapid technique for the screening of trace compounds in water by combining solid-phase extraction (SPE) with activated carbon surface-assisted laser desorption/ionization (SALDI) time-of-flight mass spectrometry is demonstrated. Activated carbon is used both as the sorbent in SPE and as the solid in the SALDI matrix system. This eliminates the need for an SPE elution process. After the analytes have been adsorbed on the surfaces of the activated carbon during SPE extraction, the activated carbon is directly mixed with the SALDI liquid and mass spectrometric analysis is performed. Trace phenolic compounds in water were used to demonstrate the effectiveness of the method. The detection limit for these compounds is in the ppb to ppt range. Copyright 2000 John Wiley & Sons, Ltd.

  10. A new carbon-based magnetic material for the dispersive solid-phase extraction of UV filters from water samples before liquid chromatography-tandem mass spectrometry analysis.

    PubMed

    Piovesana, Susy; Capriotti, Anna Laura; Cavaliere, Chiara; La Barbera, Giorgia; Samperi, Roberto; Zenezini Chiozzi, Riccardo; Laganà, Aldo

    2017-07-01

    Magnetic solid-phase extraction is one of the most promising new extraction methods for liquid samples before ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis. Several types of materials, including carbonaceous ones, have been prepared for this purpose. In this paper, for the first time, the preparation, characterization, and sorption capability of Fe 3 O 4 -graphitized carbon black (mGCB) composite toward some compounds of environmental interest were investigated. The synthesized mGCB consisted of micrometric GCB particles with 55 m 2  g -1 surface area bearing some carbonyl and hydroxyl functionalities and the surface partially decorated by Fe 3 O 4 microparticles. The prepared mGCB was firstly tested as an adsorbent for the extraction from surface water of 50 pollutants, including estrogens, perfluoroalkyl compounds, UV filters, and quinolones. The material showed good affinity to many of the tested compounds, except carboxylates and glucoronates; however, some compounds were difficult to desorb. Ten UV filters belonging to the chemical classes of benzophenones and p-aminobenzoates were selected, and parameters were optimized for the extraction of these compounds from surface water before UHPLC-MS/MS determination. Then, the method was validated in terms of linearity, trueness, intra-laboratory precision, and detection and quantification limits. In summary, the method performance (trueness, expressed as analytical recovery, 85-114%; RSD 5-15%) appears suitable for the determination of the selected compounds at the level of 10-100 ng L -1 , with detection limits in the range of 1-5 ng L -1 . Finally, the new method was compared with a published one, based on conventional solid-phase extraction with GCB, showing similar performance in real sample analysis. Graphical Abstract Workflow of the analytical method based on magnetic solid-phase extraction followed by LC-MS/MS determination.

  11. Simultaneous extraction and determination of phthalate esters in aqueous solution by yolk-shell magnetic mesoporous carbon-molecularly imprinted composites based on solid-phase extraction coupled with gas chromatography-mass spectrometry.

    PubMed

    Yang, Rui; Liu, Yuxin; Yan, Xiangyang; Liu, Shaomin

    2016-12-01

    A rapid, sensitive and accurate method for the simultaneous extraction and determination of five types of trace phthalate esters (PAEs) in environmental water and beverage samples using magnetic molecularly imprinted solid-phase extraction (MMIP-SPE) coupled with gas chromatography-mass spectrometry (GC-MS) was developed. A novel type of molecularly imprinted polymers on the surface of yolk-shell magnetic mesoporous carbon (Fe 3 O 4 @void@C-MIPs) was used as an efficient adsorbent for selective adsorption of phthalate esters based on magnetic solid-phase extraction (MSPE). The real samples were first preconcentrated by Fe 3 O 4 @void@C-MIPs, subsequently extracted by eluent and finally determined by GC-MS after magnetic separation. Several variables affecting the extraction efficiency of the analytes, including the type and volume of the elution solvent, amount of adsorbent, extraction time, desorption time and pH of the sample solution, were investigated and optimized. Validation experiments indicated that the developed method presented good linearity (R 2 >0.9961), satisfactory precision (RSD<6.7%), and high recovery (86.1-103.1%). The limits of detection ranged from 1.6ng/L to 5.2ng/L and the enrichment factor was in the range of 822-1423. The results indicated that the novel method had the advantages of convenience, good sensitivity, and high efficiency, and it could also be successfully applied to the analysis of PAEs in real samples. Copyright © 2016. Published by Elsevier B.V.

  12. Measurement of thyroxine and its glucuronide in municipal wastewater and solids using weak anion exchange solid phase extraction and ultrahigh performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Brown, Alistair K; Wong, Charles S

    2017-11-24

    A solids extraction method, using sonication in combination with weak anion exchange solid phase extraction, was created to extract thyroxine (T4) and thyroxine-O-β-d-glucuronide (T4-Glc) simultaneously from wastewaters and sludges, and to quantify these compounds via reversed-phase ultra-high performance liquid chromatography-tandem mass spectrometry. The method limits of quantification were all in the low ng/g (dry weight solids) range for both T4 and T4-Glc: 2.13 and 2.63ng/g respectively in primary wastewater, 4.3 and 28.3ng/g for primary suspended solids, for 1.1 and 3.7ng/g for return activated sludge. Precision for measurements of T4 and T4-Glc were 2.6 and 6.5% (intraday) and 9.6 and 5.7% (interday) respectively, while linearity was 0.9967 and 0.9943 respectively. Overall recoveries for T4 and T4-Glc in primary suspended solids were 94% and 95%, and 86 and 101% in primary wastewater, respectively. Extraction efficiency tests using primary sludge determined that one methanol aliquot was sufficient during the extraction process as opposed to 2 or 3 aliquots. Mass loadings at the North Main Wastewater Treatment Plant in Winnipeg, Canada showed 316%, 714%, and 714% greater T4-Glc than T4 associated with the suspended solids of the primary, secondary, and final effluent respectively, yet 765% more T4 than T4-Glc associated with the solids of the mixed liquor. Moreover, 26% of T4 and 49% of T4-Glc were associated with the suspended solids during the treatment process. This method demonstrates the need to assess accurately both metabolite conjugates of contaminants of emerging concern, as well as the sorbed levels of particle-reactive analytes such as T4 in the aquatic environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. ACCELERATED SOLVENT EXTRACTION COMBINED WITH ...

    EPA Pesticide Factsheets

    A research project was initiated to address a recurring problem of elevated detection limits above required risk-based concentrations for the determination of semivolatile organic compounds in high moisture content solid samples. This project was initiated, in cooperation with the EPA Region 1 Laboratory, under the Regional Methods Program administered through the ORD Office of Science Policy. The aim of the project was to develop an approach for the rapid removal of water in high moisture content solids (e.g., wetland sediments) in preparation for analysis via Method 8270. Alternative methods for water removal have been investigated to enhance compound solid concentrations and improve extraction efficiency, with the use of pressure filtration providing a high-throughput alternative for removal of the majority of free water in sediments and sludges. In order to eliminate problems with phase separation during extraction of solids using Accelerated Solvent Extraction, a variation of a water-isopropanol extraction method developed at the USGS National Water Quality Laboratory in Denver, CO is being employed. The concentrations of target compounds in water-isopropanol extraction fluids are subsequently analyzed using an automated Solid Phase Extraction (SPE)-GC/MS method developed in our laboratory. The coupled approaches for dewatering, extraction, and target compound identification-quantitation provide a useful alternative to enhance sample throughput for Me

  14. The use of fruit extracts for production of apple chips with enhanced antioxidant activity

    PubMed

    Tarko, Tomasz; Duda-Chodak, Aleksandra; Semik-Szczurak, Dorota

    Style and pace of life make consumers more willing to reach for snack products. This group of processed food includes, among others, fruit chips. Due to the increasing incidence of diseases associated with the excessive exposure to free radicals foods enriched with antioxidant compounds, eg. polyphenols, can be introduced into the sale. The aim of the study was to use the fruit extracts for the production of apple chips with enhanced antioxidant activity. ‘Golden Delicious’ variety of apple fruit was used to produce chips. Apple chips were prepared by slicing, soaking in a sugar solution and pre-drying in a microwave oven. Chips were enriched with extracts prepared from fruits of chokeberry, five-flavor berry, Cornelian cherry, woodland hawthorn, goji berry, Japanese quince and cranberry microcarpa. For this purpose, pre-dried apple slices were soaked (5 min) in ethanolic extract of fruits and then dried to achieve a 5% moisture content. Chips were sensory evaluated and their antioxidant activity and total polyphenols content were determined. All enriched apple chips were characterized by high antioxidant activity and a relatively high value of total polyphenols content. Chips soaked in extracts of five-flavor berry, cranberry and goji berry were characterized by the highest antioxidant potential. Samples obtained by using chokeberry and Cornelian cherry extracts showed the highest content of polyphenols. High sensory attractiveness of enriched chips was also showed. The chips with the addition of fiveflavor berry extract were exceptions. Their taste was not acceptable. Fruit extracts are a valuable material for chips enrichment. Taking into account all the analyzed differentiators, extracts of Japanese quince, goji berry and woodland hawthorn were found to be the best enriching additives. The chips soaked in extract of five-flavor berry, despite their high antioxidant activity, were disqualified due to very low score of sensory evaluation.

  15. Determination of azoxystrobin residues in grapes, musts and wines with a multicommuted flow-through optosensor implemented with photochemically induced fluorescence.

    PubMed

    Flores, Javier López; Díaz, Antonio Molina; Fernández de Córdova, María L

    2007-02-28

    In this paper, the conversion of azoxystrobin in a strongly fluorescent degradation product by UV irradiation with quantitative purposes and its fluorimetric determination are reported for the first time. A multicommuted flow injection-solid phase spectroscopy (FI-SPS) system combined with photochemically-induced fluorescence (PIF) is developed for the determination of azoxystrobin in grapes, must and wine. Grape samples were homogenized and extracted with methanol and further cleaned-up by solid-phase extraction on C(18) silica gel. Wine samples were solid-phase extracted on C(18) sorbent using dichloromethane as eluent. Recoveries of azoxystrobin from spiked grapes (0.5-2.0 mg Kg(-1)), must (0.5-2.0 microg mL(-1)) and wine (0.5-2.0 microg mL(-1)) were 84.0-87.6%, 95.5-105.9% and 88.5-111.2%, respectively. The quantification limit for grapes was 0.021 mg Kg(-1), being within European Union regulations, and 18 microg L(-1) and 8 microg L(-1) for must and wine, respectively.

  16. PARTITION INFRARED METHOD FOR TOTAL GASOLINE RANGE ORGANICS IN WATER BASED ON SOLID PHASE MICROEXTRACTION. (R825343)

    EPA Science Inventory

    A new method is described for determining total gasoline-range organics
    (TGRO) in water that combines solid-phase microextraction (SPME) and infrared
    (IR) spectroscopy. In this method, the organic compounds are extracted from
    250-mL of water into a small square (3....

  17. SCREENING METHOD FOR NITROAROMATIC COMPOUNDS IN WATER BASED ON SOLID-PHASE MICROEXTRACTION AND INFRARED SPECTROSCOPY. (R825343)

    EPA Science Inventory

    A new method is described for determining nitroaromatic compounds in water
    that combines solid-phase microextraction (SPME) and infrared (IR) spectroscopy. In this method, the compounds are extracted from a 250-mL volume of water into a small square (3.2 cm ? 3.2 cm ? 61.2...

  18. SW-846 Test Method 3200: Mercury Species Fractionation and Quantification by Microwave Assisted Extraction, Selective Solvent Extraction and/or Solid Phase Extraction

    EPA Pesticide Factsheets

    a sequential extraction and separation procedure that maybe used in conjunction with a determinative method to differentiate mercury species that arepresent in soils and sediments. provides information on both total mercury andvarious mercury species.

  19. The Combination Process for Preparative Separation and Purification of Paclitaxel and 10-Deacetylbaccatin III Using Diaion® Hp-20 Followed by Hydrophilic Interaction Based Solid Phase Extraction.

    PubMed

    Shirshekanb, Mahsa; Rezadoost, Hassan; Javanbakht, Mehran; Ghassempour, Ali Reza

    2017-01-01

    There is no other naturally occurring defense agent against cancer that has a stronger effect than paclitaxel, commonly known under the brand name of Taxol ® . The major drawback for the more widespread use of paclitaxel and its precious precursor, 10-deacetylbaccatin III (10-DAB III), is that they require large-scale extraction from different parts of yew trees ( Taxus species), cell cultures, taxane-producing endophytic fungi, and Corylus species. In our previous work, a novel online two-dimensional heart-cut liquid chromatography process using hydrophilic interaction/ reversed-phase chromatography was used to introduce a semi-preparative treatment for the separation of polar (10-deacetylbaccatin III) and non-polar (paclitaxel) taxanes from Taxus baccata L. In this work, a combination of the absorbent (Diaion ®  HP-20) and a silica based solid phase extraction is utilized as a new, efficient, and cost effective method for large-scale production of taxanes. This process avoids the technical problem of two-dimensional preparative liquid chromatography. The first stage of the process involves discarding co-extractive polar compounds including chlorophylls and pigments using a non-polar synthetic hydrophobic absorbent, Diaion ®  HP-20. Extract was then loaded on to a silica based hydrophilic interaction solid phase extraction (silica 40-60 micron). Taxanes was eluted using a mixture of water and methanol at the optimized ratio of 70:30. Finally, the fraction containing taxanes was applied to semi-preparative reversed phase HPLC. The results revealed that using this procedure, paclitaxel and 10-DAB III could be obtained at 8 and 3 times more, respectively than by the traditional method of extraction.

  20. Automated solid-phase extraction and liquid chromatography for assay of cyclosporine in whole blood.

    PubMed

    Kabra, P M; Wall, J H; Dimson, P

    1987-12-01

    In this rapid, precise, accurate, cost-effective, automated liquid-chromatographic procedure for determining cyclosporine in whole blood, the cyclosporine is extracted from 0.5 mL of whole blood together with 300 micrograms of cyclosporin D per liter, added as internal standard, by using an Advanced Automated Sample Processing unit. The on-line solid-phase extraction is performed on an octasilane sorbent cartridge, which is interfaced with a RP-8 guard column and an octyl analytical column, packed with 5-microns packing material. Both columns are eluted with a mobile phase containing acetonitrile/methanol/water (53/20/27 by vol) at a flow rate of 1.5 mL/min and column temperature of 70 degrees C. Absolute recovery of cyclosporine exceeded 85% and the standard curve was linear to 5000 micrograms/L. Within-run and day-to-day CVs were less than 8%. Correlation between automated and manual Bond-Elut extraction methods was excellent (r = 0.987). None of 18 drugs and four steroids tested interfered.

  1. Polysaccharide-derived mesoporous materials (Starbon®) for sustainable separation of complex mixtures.

    PubMed

    Zuin, Vânia G; Budarin, Vitaliy L; De Bruyn, Mario; Shuttleworth, Peter S; Hunt, Andrew J; Pluciennik, Camille; Borisova, Aleksandra; Dodson, Jennifer; Parker, Helen L; Clark, James H

    2017-09-21

    The recovery and separation of high value and low volume extractives are a considerable challenge for the commercial realisation of zero-waste biorefineries. Using solid-phase extractions (SPE) based on sustainable sorbents is a promising method to enable efficient, green and selective separation of these complex extractive mixtures. Mesoporous carbonaceous solids derived from renewable polysaccharides are ideal stationary phases due to their tuneable functionality and surface structure. In this study, the structure-separation relationships of thirteen polysaccharide-derived mesoporous materials and two modified types as sorbents for ten naturally-occurring bioactive phenolic compounds were investigated. For the first time, a comprehensive statistical analysis of the key molecular and surface properties influencing the recovery of these species was carried out. The obtained results show the possibility of developing tailored materials for purification, separation or extraction, depending on the molecular composition of the analyte. The wide versatility and application span of these polysaccharide-derived mesoporous materials offer new sustainable and inexpensive alternatives to traditional silica-based stationary phases.

  2. Effect of Binding Components in Complex Sample Matrices on Recovery in Direct Immersion Solid-Phase Microextraction: Friends or Foe?

    PubMed

    Alam, Md Nazmul; Pawliszyn, Janusz

    2018-02-20

    The development of matrix compatible coatings for solid-phase microextraction (SPME) has enabled direct extraction of analytes from complex sample matrices. The direct immersion (DI) mode of SPME when utilized in conjunction with such extraction phases facilitates extraction of a wide range of analytes from complex matrices without the incurrence of fouling or coating saturation. In this work, mathematical models and computational simulations were employed to investigate the effect of binding components present in complex samples on the recovery of small molecules varying in logP for extractions carried out using the direct immersion approach. The presented findings corroborate that the studied approach indeed enables the extraction of both polar and nonpolar analytes from complex matrices, provided a suitable sorbent is employed. Further results indicated that, in certain cases, the kinetics of extraction of a given analyte in its free form might be dependent on the desorption kinetics of their bound form from matrix components, which might lower total recoveries of analytes with high affinity for the matrix. However, the binding of analytes to matrix components also enables SPME to extract a balanced quantity of different logP analytes, facilitated by multiphase equilibria, with a single extraction device.

  3. Determination of pesticides in sewage sludge from an agro-food industry using QuEChERS extraction followed by analysis with liquid chromatography-tandem mass spectrometry.

    PubMed

    Ponce-Robles, Laura; Rivas, Gracia; Esteban, Belen; Oller, Isabel; Malato, Sixto; Agüera, Ana

    2017-10-01

    An analytical method was developed and validated for the determination of ten pesticides in sewage sludge coming from an agro-food industry. The method was based on the application of Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) extraction for solid sewage sludge and SPE extraction for sludge aqueous phase, followed by liquid chromatography (LC) coupled to hybrid quadrupole/linear ion trap mass spectrometry (QqLIT-MS). The QuEChERS method was reported 14 years ago and nowadays is mainly applied to the analysis of pesticides in food. More recent applications have been reported in other matrices as sewage sludge, but the complexity of the matrix makes necessary the optimization of the cleanup step to improve the efficiency of the analysis. With this aim, several dispersive solid-phase extraction cleanup sorbents were tested, choosing C18 + PSA as a d-SPE sorbent. The proposed method was satisfactorily validated for most compounds investigated, showing recoveries higher than 80% in most cases, with the only exception of prochloraz (71%) at low concentration level. Limits of quantification were lower than 40 ng l -1 in the aqueous phase and below 40 ng g -1 in the solid phase for the majority of the analytes. The method was applied to solid sludge and the sludge aqueous phase coming from an agro-food industry which processes fruits and vegetables. Graphical abstract Application of LC/MS/MS advanced analytical techniques for determination of pesticides contained in sewage sludge.

  4. Solid phase extraction membrane

    DOEpatents

    Carlson, Kurt C [Nashville, TN; Langer, Roger L [Hudson, WI

    2002-11-05

    A wet-laid, porous solid phase extraction sheet material that contains both active particles and binder and that possesses excellent wet strength is described. The binder is present in a relatively small amount while the particles are present in a relatively large amount. The sheet material is sufficiently strong and flexible so as to be pleatable so that, for example, it can be used in a cartridge device.

  5. Comparison of solvent extraction and solid-phase extraction for the determination of polychlorinated biphenyls in transformer oil.

    PubMed

    Mahindrakar, A N; Chandra, S; Shinde, L P

    2014-01-01

    Solid-phase extraction (SPE) of nine polychlorinated biphenyls (PCBs) from transformer oil samples was evaluated using octadecyl (CI8)-bonded porous silica. The efficiency of SPE of these PCBs was compared with those obtained by solvent extraction with DMSO and hexane. Average recoveries exceeding 95% for these PCBs were obtained via the SPE method using small cartridges containing 100mg of 40 pm CI8-bonded porous silica. The average recovery by solvent extraction with DMSO and hexane exceeded 83%. It was concluded that the recoveries and precision for the solvent extraction of PCBs were poorer than those for the SPE. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Multifunctional picoliter droplet manipulation platform and its application in single cell analysis.

    PubMed

    Gu, Shu-Qing; Zhang, Yun-Xia; Zhu, Ying; Du, Wen-Bin; Yao, Bo; Fang, Qun

    2011-10-01

    We developed an automated and multifunctional microfluidic platform based on DropLab to perform flexible generation and complex manipulations of picoliter-scale droplets. Multiple manipulations including precise droplet generation, sequential reagent merging, and multistep solid-phase extraction for picoliter-scale droplets could be achieved in the present platform. The system precision in generating picoliter-scale droplets was significantly improved by minimizing the thermo-induced fluctuation of flow rate. A novel droplet fusion technique based on the difference of droplet interfacial tensions was developed without the need of special microchannel networks or external devices. It enabled sequential addition of reagents to droplets on demand for multistep reactions. We also developed an effective picoliter-scale droplet splitting technique with magnetic actuation. The difficulty in phase separation of magnetic beads from picoliter-scale droplets due to the high interfacial tension was overcome using ferromagnetic particles to carry the magnetic beads to pass through the phase interface. With this technique, multistep solid-phase extraction was achieved among picoliter-scale droplets. The present platform had the ability to perform complex multistep manipulations to picoliter-scale droplets, which is particularly required for single cell analysis. Its utility and potentials in single cell analysis were preliminarily demonstrated in achieving high-efficiency single-cell encapsulation, enzyme activity assay at the single cell level, and especially, single cell DNA purification based on solid-phase extraction.

  7. ACCELERATED SOLVENT EXTRACTION COMBINED WITH AUTOMATED SOLID PHASE EXTRACTION-GC/MS FOR ANALYSIS OF SEMIVOLATILE COMPOUNDS IN HIGH MOISTURE CONTENT SOLID SAMPLES

    EPA Science Inventory

    A research project was initiated to address a recurring problem of elevated detection limits above required risk-based concentrations for the determination of semivolatile organic compounds in high moisture content solid samples. This project was initiated, in cooperation with t...

  8. Determination of triazine herbicides in seaweeds: development of a sample preparation method based on Matrix Solid Phase Dispersion and Solid Phase Extraction Clean-up.

    PubMed

    Rodríguez-González, N; González-Castro, M J; Beceiro-González, E; Muniategui-Lorenzo, S; Prada-Rodríguez, D

    2014-04-01

    A method using dual process columns of Matrix Solid Phase Dispersion (MSPD) and Solid Phase Extraction (SPE) has been developed for extracting and cleaning-up of nine triazine herbicides (ametryn, atrazine, cyanazine, prometryn, propazine, simazine, simetryn, terbuthylazine and terbutryn) in seaweed samples. Under optimized conditions, samples were blended with 2g of octasilyl-derivatized silica (C8) and transferred into an SPE cartridge containing ENVI-Carb II/PSA (0.5/0.5 g) as a clean up co-sorbent. Then the dispersed sample was washed with 10 mL of n-hexane and triazines were eluted with 20 mL ethyl acetate and 5 mL acetonitrile. Finally the extract was concentrated to dryness, re-constituted with 1 mL methanol:water (1:1) and injected into the HPLC-DAD system. The linearity of the calibration curves was excellent in matrix matched standards, and yielded the coefficients of determination>0.995 for all the target analytes. The recoveries ranged from 75% to 100% with relative standard deviations lower than 7%. The achieved LOQs (<10 µg kg(-1)) for all triazines under study permits to ensure proper determination at the maximum allowed residue levels set in the European Union Legislation. Samples of three seaweeds were subjected to the procedure proving the suitability of MSPD method for the analysis of triazines in different seaweeds samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Mixed-mode isolation of triazine metabolites from soil and aquifer sediments using automated solid-phase extraction

    USGS Publications Warehouse

    Mills, M.S.; Thurman, E.M.

    1992-01-01

    Reversed-phase isolation and ion-exchange purification were combined in the automated solid-phase extraction of two polar s-triazine metabolites, 2-amino-4-chloro-6-(isopropylamino)-s-triazine (deethylatrazine) and 2-amino-4-chloro-6-(ethylamino)-s-triazine (deisopropylatrazine) from clay-loam and slit-loam soils and sandy aquifer sediments. First, methanol/ water (4/1, v/v) soil extracts were transferred to an automated workstation following evaporation of the methanol phase for the rapid reversed-phase isolation of the metabolites on an octadecylresin (C18). The retention of the triazine metabolites on C18 decreased substantially when trace methanol concentrations (1%) remained. Furthermore, the retention on C18 increased with decreasing aqueous solubility and increasing alkyl-chain length of the metabolites and parent herbicides, indicating a reversed-phase interaction. The analytes were eluted with ethyl acetate, which left much of the soil organic-matter impurities on the resin. Second, the small-volume organic eluate was purified on an anion-exchange resin (0.5 mL/min) to extract the remaining soil pigments that could foul the ion source of the GC/MS system. Recoveries of the analytes were 75%, using deuterated atrazine as a surrogate, and were comparable to recoveries by soxhlet extraction. The detection limit was 0.1 ??g/kg with a coefficient of variation of 15%. The ease and efficiency of this automated method makes it viable, practical technique for studying triazine metabolites in the environment.

  10. Magnetic graphene oxide modified with choline chloride-based deep eutectic solvent for the solid-phase extraction of protein.

    PubMed

    Huang, Yanhua; Wang, Yuzhi; Pan, Qi; Wang, Ying; Ding, Xueqin; Xu, Kaijia; Li, Na; Wen, Qian

    2015-06-02

    Four kinds of green deep eutectic solvents (DESs) based on choline chloride (ChCl) have been synthesized and coated on the surface of magnetic graphene oxide (Fe3O4@GO) to form Fe3O4@GO-DES for the magnetic solid-phase extraction of protein. X-ray diffraction (XRD), vibrating sample magnetometer (VSM), Fourier transform infrared spectrometry (FTIR), field emission scanning electron microscopy (FESEM) and thermal gravimetric analysis (TGA) were employed to characterize Fe3O4@GO-DES, and the results indicated the successful preparation of Fe3O4@GO-DES. The UV-vis spectrophotometer was used to measure the concentration of protein after extraction. Single factor experiments proved that the extraction amount was influenced by the types of DESs, solution temperature, solution ionic strength, extraction time, protein concentration and the amount of Fe3O4@GO-DES. Comparison of Fe3O4@GO and Fe3O4@GO-DES was carried out by extracting bovine serum albumin, ovalbumin, bovine hemoglobin and lysozyme. The experimental results showed that the proposed Fe3O4@GO-DES performs better than Fe3O4@GO in the extraction of acidic protein. Desorption of protein was carried out by eluting the solid extractant with 0.005 mol L(-1) Na2HPO4 contained 1 mol L(-1) NaCl. The obtained elution efficiency was about 90.9%. Attributed to the convenient magnetic separation, the solid extractant could be easily recycled. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Solid-phase extraction with the metal-organic framework MIL-101(Cr) combined with direct analysis in real time mass spectrometry for the fast analysis of triazine herbicides.

    PubMed

    Li, Xianjiang; Xing, Jiawei; Chang, Cuilan; Wang, Xin; Bai, Yu; Yan, Xiuping; Liu, Huwei

    2014-06-01

    MIL-101(Cr) is an excellent metal-organic framework with high surface area and nanoscale cavities, making it promising in solid-phase extraction. Herein, we used MIL-101(Cr) as a solid-phase extraction packing material combined with fast detection of direct analysis in real time mass spectrometry (DART-MS) for the analysis of triazine herbicides. After systematic optimization of the operation parameters, including the gas temperature of DART, the moving speed of the 1D platform, solvent for desorption, amount of MIL-101(Cr) extraction time, eluent volume and salt concentration, this method can realize the simultaneous detection of five kinds of triazine herbicides. The limits of detection were 0.1∼0.2 ng/mL and the linear ranges covered more than two orders of magnitude with the quantitation limits of 0.5∼1 ng/mL. Moreover, the developed method has been applied for the analysis of lake water samples and the recoveries for spiked analytes were in the range of 85∼110%. These results showed that solid-phase extraction with metal-organic frameworks is an efficient sample preparation approach for DART-MS analysis and could find more applications in environmental analysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Effectiveness of Liquid-Liquid Extraction, Solid Phase Extraction, and Headspace Technique for Determination of Some Volatile Water-Soluble Compounds of Rose Aromatic Water

    PubMed Central

    2017-01-01

    Steam distillation is used to isolate scent of rose flowers. Rose aromatic water is commonly used in European cuisine and aromatherapy besides its use in cosmetic industry for its lovely scent. In this study, three different sampling techniques, liquid-liquid extraction (LLE), headspace technique (HS), and solid phase extraction (SPE), were compared for the analysis of volatile water-soluble compounds in commercial rose aromatic water. Some volatile water-soluble compounds of rose aromatic water were also analyzed by gas chromatography mass spectrometry (GCMS). In any case, it was concluded that one of the solid phase extraction methods led to higher recoveries for 2-phenylethyl alcohol (PEA) in the rose aromatic water than the liquid-liquid extraction and headspace technique. Liquid-liquid extraction method provided higher recovery ratios for citronellol, nerol, and geraniol than others. Ideal linear correlation coefficient values were observed by GCMS for quantitative analysis of volatile compounds (r2 ≥ 0.999). Optimized methods showed acceptable repeatability (RSDs < 5%) and excellent recovery (>95%). For compounds such as α-pinene, linalool, β-caryophyllene, α-humulene, methyl eugenol, and eugenol, the best recovery values were obtained with LLE and SPE. PMID:28791049

  13. Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory - Determination of Moderate-Use Pesticides and Selected Degradates in Water by C-18 Solid-Phase Extraction and Gas Chromatography/Mass Spectrometry

    USGS Publications Warehouse

    Sandstrom, Mark W.; Stroppel, Max E.; Foreman, William T.; Schroeder, Michael P.

    2001-01-01

    A method for the isolation and analysis of 21 parent pesticides and 20 pesticide degradates in natural-water samples is described. Water samples are filtered to remove suspended particulate matter and then are pumped through disposable solid-phase-extraction columns that contain octadecyl-bonded porous silica to extract the analytes. The columns are dried by using nitrogen gas, and adsorbed analytes are eluted with ethyl acetate. Extracted analytes are determined by capillary-column gas chromatography/mass spectrometry with selected-ion monitoring of three characteristic ions. The upper concentration limit is 2 micrograms per liter (?g/L) for most analytes. Single-operator method detection limits in reagent-water samples range from 0.00 1 to 0.057 ?g/L. Validation data also are presented for 14 parent pesticides and 20 degradates that were determined to have greater bias or variability, or shorter holding times than the other compounds. The estimated maximum holding time for analytes in pesticide-grade water before extraction was 4 days. The estimated maximum holding time for analytes after extraction on the dry solid-phase-extraction columns was 7 days. An optional on-site extraction procedure allows for samples to be collected and processed at remote sites where it is difficult to ship samples to the laboratory within the recommended pre-extraction holding time. The method complements existing U.S. Geological Survey Method O-1126-95 (NWQL Schedules 2001 and 2010) by using identical sample preparation and comparable instrument analytical conditions so that sample extracts can be analyzed by either method to expand the range of analytes determined from one water sample.

  14. Carbon nanotube-based benzyl polymethacrylate composite monolith as a solid phase extraction adsorbent and a stationary phase material for simultaneous extraction and analysis of polycyclic aromatic hydrocarbon in water.

    PubMed

    Al-Rifai, Asma'a; Aqel, Ahmad; Wahibi, Lamya Al; ALOthman, Zeid A; Badjah-Hadj-Ahmed, Ahmed-Yacine

    2018-02-02

    A composite of multi-walled carbon nanotubes incorporated into a benzyl methacrylate-co-ethylene dimethacrylate porous monolith was prepared, characterized and used as solid phase adsorbent and as stationary phase for simultaneous extraction and separation of ten polycyclic aromatic hydrocarbons, followed by nano-liquid chromatography analysis. The extraction and chromatographic parameters were optimized with regard to the extraction efficiency and the quality of chromatographic analytes separation. Under the optimized conditions, all PAHs were separated in 13 min with suitable resolution values (Rs = 1.74-3.98). Addition of a small amount of carbon nanotubes (0.1% with respect to monomers) to the polymerization mixture increased the efficiency for the separation column to over 41,700 plates m -1 for chrysene at flow rate of 0.5 μL min -1 . The method showed a wide linear range (1-500 μg L -1 with R 2 more than 0.9938), acceptable extraction repeatability (RSDs < 6.4%, n = 3) and reproducibility (RSDs < 12.6%, five parallel-made solid phase extraction cartridges) and satisfactory detection limits (0.02-0.22 μg L -1 ). Finally, the proposed method was successfully applied to the detection of polycyclic aromatic hydrocarbons in environmental water samples. After a simple extraction procedure with preconcentration factor equal to 100, the average recovery values in ultra-pure, tap and sea water samples were found to be in the range 81.3-95.4% with %RSD less than 6.4. Again, the presence of carbon nanotubes (0.3% relatively to monomers) in native polymer enhanced the extraction performance for the solid phase adsorbent up to 78.4%. The application of the monoliths modified with CNTs in extraction and nano-scale liquid chromatography for analysis of environmental samples offered several advantages; it demonstrated an acceptable precision, low detection limits, good reproducibility, satisfying recoveries and wide dynamic linear ranges. Copyright © 2018. Published by Elsevier B.V.

  15. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of pesticides in water by Carbopak-B solid-phase extraction and high-preformance liquid chromatography

    USGS Publications Warehouse

    Werner, Stephen L.; Burkhardt, Mark R.; DeRusseau, Sabrina N.

    1996-01-01

    In accordance with the needs of the National Water-Quality Assessment Program (NAWQA), the U.S. Geological Survey has developed and implemented a graphitized carbon-based solid-phase extraction and high-performance liquid chromatographic analytical method. The method is used to determine 41 pesticides and pesticide metabolites that are not readily amenable to gas chromatography or other high-temperature analytical techniques. Pesticides are extracted from filtered environmental water samples using a 0.5-gram graphitized carbon-based solid-phase cartridge, eluted from the cartridge into two analytical fractions, and analyzed using high-performance liquid chromatography with photodiode-array detection. The upper concentration limit is 1.6 micrograms per liter (=B5g/L) for most compounds. Single-operator method detection limits in organic-free water samples ranged from 0.006 to 0.032 =B5g/L= Recoveries in organic-free water samples ranged from 37 to 88 percent. Recoveries in ground- and surface-water samples ranged from 29 to 94 percent. An optional on-site extraction procedure allows for samples to be collected and processed at remote sites where it is difficult to ship samples to the laboratory within the recommended pre-extraction holding time of 7 days.

  16. Vortex assisted solid-phase extraction of lead(II) using orthorhombic nanosized Bi2WO6 as a sorbent.

    PubMed

    Baghban, Neda; Yilmaz, Erkan; Soylak, Mustafa

    2017-12-07

    Nanosized single crystal orthorhombic Bi 2 WO 6 was synthesized by a hydrothermal method and used as a sorbent for vortex assisted solid phase extraction of lead(II). The crystal and molecular structure of the sorbent was examined using XRD, Raman, SEM and SEM-EDX analysis. Various parameters affecting extraction efficiency were optimized by using multivariate design. The effect of diverse ions on the extraction also was studied. Lead was quantified by flame atomic absorption spectrometry (FAAS). The recoveries of lead(II) from spiked samples (at a typical spiking level of 200-400 ng·mL -1 ) are >95%. Other figures of merit includes (a) a detection limit of 6 ng·mL -1 , (b) a preconcentration factor of 50, (c) a relative standard deviation of 1.6%, and (d) and adsorption capacity of 6.6 mg·g -1 . The procedure was successfully applied to accurate determination of lead in (spiked) pomegranate and water samples. Graphical abstract Nanosized single crystal orthorhombic Bi 2 WO 6 was synthesized and characterized by a hydrothermal method and used as a sorbent for vortex assisted solid phase extraction of lead(II). The procedure was successfully applied to accurate determination of lead in (spiked) pomegranate and water samples.

  17. Conventional sample enrichment strategies combined with high-performance liquid chromatography-solid phase extraction-nuclear magnetic resonance analysis allows analyte identification from a single minuscule Corydalis solida plant tuber.

    PubMed

    Sturm, Sonja; Seger, Christoph; Godejohann, Markus; Spraul, Manfred; Stuppner, Hermann

    2007-09-07

    Identification of putative biomarker molecules within the genus Corydalis (Papaveraceae) was pursued by combining conventional off-line sample enrichment with high-performance liquid chromatography-solid phase extraction-nuclear magnetic resonance (HPLC-SPE-NMR) based structure elucidation. Off-line reversed phase solid phase extraction (SPE) was used to enrich the desired analytes from a methanolic extract (93 mg dry weight) of a miniscule single tuber (233 mg dry weight) of C. solida. An aliquot of the SPE fraction (2.1 mg) was subjected to separation in the HPLC-SPE-NMR hyphenation. Chromatographic peaks bearing the metabolites under investigation were trapped in the SPE device in a single experiment and transferred to a 600 MHz NMR spectrometer equipped with a 30 microl cryofit insert fed into a 3 mm cryoprobe. Recorded homo- and heteronuclear 1D and 2D NMR data allowed the identification of the three analytes under investigation as protopine, allocryptopine, and N-methyl-laudanidinium acetate. The latter is a rare alkaloid, which has been isolated only once before.

  18. Pulsatile plasma filtration and cell-free DNA amplification using a water-head-driven point-of-care testing chip.

    PubMed

    Lee, Yonghun; Kim, Dong-Min; Li, Zhenglin; Kim, Dong-Eun; Kim, Sung-Jin

    2018-03-13

    We demonstrate a microfiltration chip that separates blood plasma by using water-head-driven pulsatile pressures rather than any external equipment and use it for on-chip amplification of nucleic acids. The chip generates pulsatile pressures to significantly reduce filter clogging without hemolysis, and consists of an oscillator, a plasma-extraction pump, and filter units. The oscillator autonomously converts constant water-head pressure to pulsatile pressure, and the pump uses the pulsatile pressure to extract plasma through the filter. Because the pulsatile pressure can periodically clear blood cells from the filter surface, filter clogging can be effectively reduced. In this way, we achieve plasma extraction with 100% purity and 90% plasma recovery at 15% hematocrit. During a 10 min period, the volume of plasma extracted was 43 μL out of a 243 μL extraction volume at 15% hematocrit. We also studied the influence of the pore size and diameter of the filter, blood loading volume, oscillation period, and hematocrit level on the filtration performance. To demonstrate the utility of our chip for point-of-care testing (POCT) applications, we successfully implemented on-chip amplification of a nucleic acid (miDNA21) in plasma filtered from blood. We expect our chip to be useful not only for POCT applications but also for other bench-top analysis tools using blood plasma.

  19. Solid-phase extraction and high-performance liquid chromatographic separation of pigments of red wines.

    PubMed

    Csiktusnádi Kiss, G A; Forgács, E; Cserháti, T; Candeias, M; Vilas-Boas, L; Bronze, R; Spranger, I

    2000-08-11

    The adsorption and desorption capacities of 11 different solid-phase extraction sorbents were tested for the preconcenration of pigments of various Hungarian red wines. The concentrates were evaluated by multiwavelengh spectrophotometry combined with a spectral mapping technique (SPM) and by reversed-phase high-performance liquid chromatography. The highest (10-fold) concentration of pigments was achieved on octadecylsilica sorbent. It can be used five times without losing adsorption and desorption characteristics. SPM indicated that multiwavelength spectrophotometry can be employed for the differentiation of red wines. Comparison of the chromatograms of pigments with and without preconcentration showed that preconcentration makes possible the separation and detection of pigments present in low concentration in red wines.

  20. Molecularly imprinted solid-phase extraction coupled to liquid chromatography for determination of Sudan dyes in preserved beancurds.

    PubMed

    Yan, Hongyuan; Qiao, Jindong; Pei, Yuning; Long, Tao; Ding, Wen; Xie, Kun

    2012-05-01

    New molecularly imprinted microspheres synthesized by suspension polymerisation using phenylamine and naphthol as mimic template were successfully applied as selective sorbents for the solid-phase extraction used for the simultaneous determination of four Sudan dyes from preserved beancurd products. The obtained imprinted microspheres showed good recognition and selectivity to the four Sudan dyes in aqueous solution and the affinity could be easily controlled by adjusting the property of the solution. Under the selected experimental condition, the recoveries of the Sudan dyes in preserved beancurds at three spiked levels were ranged between 90.2-104.5% with the relative standard deviation of less than 6.8%. The limit of detection (LOD) and limit of quantification (LOQ) based on a signal-to-noise of 3 and 10 were in the range of 0.005-0.009μgg(-1) and 0.015-0.030μgg(-1), respectively. Comparing with alumina and C18-based extraction, the selectivity and repeatability of molecularly imprinted solid-phase extraction (MISPE) were obviously improved. This method could be potentially applied for the determination of Sudan dyes in complicated food samples. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Preparation of molecular imprinted microspheres based on inorganic-organic co-functional monomer for miniaturized solid-phase extraction of fluoroquinolones in milk.

    PubMed

    Wang, Hui; Wang, Ruiling; Han, Yehong

    2014-02-15

    An inorganic-organic co-functional monomer, methacrylic acid-vinyltriethoxysilan (MAA-VTES) was designed for the synthesis of molecularly imprinted microspheres (MIMs). By virtue of the aqueous suspension polymerization and dummy template (pazufloxacin), the obtained MAA-VTES based MIMs exhibited good recognition and selectivity to fluoroquinolones (FQs), and were successfully applied as selective sorbents of a miniaturized home-made solid phase extraction device for the determination of ofloxacin (OFL), lomefloxacin (LOM) and ciprofloxacin (CIP) in milk samples. Under the optimum conditions of the miniaturized molecularly imprinted solid phase extraction (mini-MISPE) coupled with liquid chromatography-ultraviolet detector (LC-UV), good linearities were obtained for three FQs in a range of 0.2-20.0μgmL(-1) and the average recoveries at three spiked levels were ranged from 87.2% to 106.1% with the relative standard deviation (RSD) less than 5.4%. The presented co-functional monomer based mini-MISPE-LC-UV protocol introduced the rigidity and flexibility of inorganic silicon materials, exhibited excellent extraction performance towards targets, and could be potentially applied to the determination of FQs in milk samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Development and Efficacy Testing of Next Generation Cyanide Antidotes

    DTIC Science & Technology

    2013-10-01

    Preparation of mDMTS A-2.2. HPLC method for DMTS determination in Micelles A-2.3. Head-space solid phase micro-extraction- gas chromatography -mass...Simultaneous determination of cyanide and thiocyanate in plasma by chemical ionization gas chromatography mass-spectrometry (CI-GC-MS). Analytical and...min. Peak integration was performed using Star Chromatography Workstation Version 6.20. A-2.3. Head-space solid phase micro-extraction- gas

  3. EVALUATION OF SOLID PHASE MICROEXTRACTION FOR THE ANALYSIS OF HYDROPHILIC COMPOUNDS

    EPA Science Inventory

    Two commercially available solid phase microextractions (SPME) fibers, polyacrylate and carboxem/polydimethylsiloxane (PDMS), were evaluated for their ability to extract hydrophilic compounds from drinking water. Conditions, such as desorption time, desorption temperature, sample...

  4. Dispersive Solid Phase Extraction for the Analysis of Veterinary Drugs Applied to Food Samples: A Review

    PubMed Central

    Islas, Gabriela; Hernandez, Prisciliano

    2017-01-01

    To achieve analytical success, it is necessary to develop thorough clean-up procedures to extract analytes from the matrix. Dispersive solid phase extraction (DSPE) has been used as a pretreatment technique for the analysis of several compounds. This technique is based on the dispersion of a solid sorbent in liquid samples in the extraction isolation and clean-up of different analytes from complex matrices. DSPE has found a wide range of applications in several fields, and it is considered to be a selective, robust, and versatile technique. The applications of dispersive techniques in the analysis of veterinary drugs in different matrices involve magnetic sorbents, molecularly imprinted polymers, carbon-based nanomaterials, and the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method. Techniques based on DSPE permit minimization of additional steps such as precipitation, centrifugation, and filtration, which decreases the manipulation of the sample. In this review, we describe the main procedures used for synthesis, characterization, and application of this pretreatment technique and how it has been applied to food analysis. PMID:29181027

  5. Development of polypyrrole based solid-state on-chip microactuators using photolithography

    NASA Astrophysics Data System (ADS)

    Zhong, Yong; Lundemo, Staffan; Jager, Edwin W. H.

    2018-07-01

    There is a need for soft microactuators, especially for biomedical applications. We have developed a microfabrication process to create such soft, on-chip polymer based microactuators that can operate in air. The on-chip microactuators were fabricated using standard photolithographic techniques and wet etching, combined with special designed process to micropattern the electroactive polymer polypyrrole that drives the microactuators. By immobilizing a UV-patternable gel containing a liquid electrolyte on top of the electroactive polypyrrole layer, actuation in air was achieved although with reduced movement. Further optimization of the processing is currently on-going. The result shows the possibility to batch fabricate complex microsystems such as microrobotics and micromanipulators based on these solid-state on-chip microactuators using microfabrication methods including standard photolithographic processes.

  6. Ultrasonic detection of solid phase mass flow ratio of pneumatic conveying fly ash

    NASA Astrophysics Data System (ADS)

    Duan, Guang Bin; Pan, Hong Li; Wang, Yong; Liu, Zong Ming

    2014-04-01

    In this paper, ultrasonic attenuation detection and weight balance are adopted to evaluate the solid mass ratio in this paper. Fly ash is transported on the up extraction fluidization pneumatic conveying workbench. In the ultrasonic test. McClements model and Bouguer-Lambert-Beer law model were applied to formulate the ultrasonic attenuation properties of gas-solid flow, which can give the solid mass ratio. While in the method of weigh balance, the averaged mass addition per second can reveal the solids mass flow ratio. By contrast these two solid phase mass ratio detection methods, we can know, the relative error is less.

  7. Characterization of three agave species by gas chromatography and solid-phase microextraction-gas chromatography-mass spectrometry.

    PubMed

    Peña-Alvarez, Araceli; Díaz, Laura; Medina, Alejandra; Labastida, Carmen; Capella, Santiago; Vera, Luz Elena

    2004-02-20

    Steam distillation (SD) extraction-solid-phase microextraction coupled to GC-MS was developed for the determination of terpenes and Bligh-Dyer extraction-derivatization coupled with GC for the determination of fatty acids such as ethyl esters were used. It was found that the three different Agave species have the same profile of fatty acids; the quantity of these compounds is different in each Agave variety. On the other hand, different terpenes were identified in the three Agave plants studied: nine in A. salmiana, eight in A. angustifolia and 32 in A. tequilana Weber var. azul.

  8. Solid-phase extraction sorbent consisting of alkyltrimethylammonium surfactants immobilized onto strong cation-exchange polystyrene resin.

    PubMed

    Reid, Kendra R; Kennedy, Lonnie J; Crick, Eric W; Conte, Eric D

    2002-10-25

    Presented is a solid-phase extraction sorbent material composed of cationic alkyltrimethylammonium surfactants attached to a strong cation-exchange resin via ion-exchange. The original hydrophilic cation-exchange resin is made hydrophobic by covering the surface with alkyl chains from the hydrophobic portion of the surfactant. The sorbent material now has a better ability to extract hydrophobic molecules from aqueous samples. The entire stationary phase (alkyltrimethylammonium surfactant) is removed along with the analyte during the elution step. The elution step requires a mild elution solvent consisting of 0.25 M Mg2+ in a 50% 2-propanol solution. The main advantage of using a removable stationary phase is that traditionally utilized toxic elution solvents such as methylene chloride, which are necessary to efficiently release strongly hydrophobic species from SPE stationary phases, may now be avoided. Also, the final extract is directly compatible with reversed-phase liquid chromatography. The performance of this procedure is presented using pyrene as a test molecule.

  9. Selective isolation of gonyautoxins 1,4 from the dinoflagellate Alexandrium minutum based on molecularly imprinted solid-phase extraction.

    PubMed

    Lian, Ziru; Wang, Jiangtao

    2017-09-15

    Gonyautoxins 1,4 (GTX1,4) from Alexandrium minutum samples were isolated selectively and recognized specifically by an innovative and effective extraction procedure based on molecular imprinting technology. Novel molecularly imprinted polymer microspheres (MIPMs) were prepared by double-templated imprinting strategy using caffeine and pentoxifylline as dummy templates. The synthesized polymers displayed good affinity to GTX1,4 and were applied as sorbents. Further, an off-line molecularly imprinted solid-phase extraction (MISPE) protocol was optimized and an effective approach based on the MISPE coupled with HPLC-FLD was developed for selective isolation of GTX1,4 from the cultured A. minutum samples. The separation method showed good extraction efficiency (73.2-81.5%) for GTX1,4 and efficient removal of interferences matrices was also achieved after the MISPE process for the microalgal samples. The outcome demonstrated the superiority and great potential of the MISPE procedure for direct separation of GTX1,4 from marine microalgal extracts. Copyright © 2017. Published by Elsevier Ltd.

  10. Potential role of gold nanoparticles for improved analytical methods: an introduction to characterizations and applications.

    PubMed

    Wu, Chung-Shu; Liu, Fu-Ken; Ko, Fu-Hsiang

    2011-01-01

    Nanoparticle-based material is a revolutionary scientific and engineering venture that will invariably impact the existing analytical separation and preconcentration for a variety of analytes. Nanoparticles can be regarded as a hybrid between small molecule and bulk material. A material on the nanoscale produces considerable changes on various properties, making them size- and shape-dependent. Gold nanoparticles (Au NPs), one of the wide variety of core materials available, coupled with tunable surface properties in the form of inorganic or inorganic-organic hybrid have been reported as an excellent platform for a broad range of analytical methods. This review aims to introduce the basic principles, examples, and descriptions of methods for the characterization of Au NPs by using chromatography, electrophoresis, and self-assembly strategies for separation science. Some of the latest important applications of using Au NPs as stationary phases toward open-tubular capillary electrochromatography, gas chromatography, and liquid chromatography as well as roles of run buffer additive to enhance separation and preconcentration in the field of chromatographic, electrophoretic and in chip-based systems are reviewed. Additionally, we review Au NPs-assisted state-of-the-art techniques involving the use of micellar electrokinetic chromatography, an online diode array detector, solid-phase extraction, and mass spectrometry for the preconcentration of some chemical compounds and biomolecules.

  11. Chembio extraction on a chip by nanoliter droplet ejection.

    PubMed

    Yu, Hongyu; Kwon, Jae Wan; Kim, Eun Sok

    2005-03-01

    This paper describes a novel liquid separation technique for chembio extraction by an ultrasonic nanoliter-liquid-droplet ejector built on a PZT sheet. This technique extracts material from an aqueous two-phase system (ATPS) in a precise amount through digital control of the number of nanoliter droplets, without any mixing between the two liquids in the ATPS. The ultrasonic droplet ejector uses an acoustic streaming effect produced by an acoustic beam focused on the liquid surface, and ejects liquid droplets only from the liquid surface without disturbing most of the liquid below the surface. This unique characteristic of the focused acoustic beam is perfect (1) for separating a top-layer liquid (from the bulk of liquid) that contains particles of interest or (2) for recovering a top-layer liquid that has different phase from a bottom-layer liquid. Three kinds of liquid extraction are demonstrated with the ultrasonic droplet ejector: (1) 16 microl of top layer in Dextran-polyethylene glycol-water ATPS (aqueous two-phase system) is recovered within 20 s; (2) micron sized particles that float on water surface are ejected out with water droplets; and (3) oil layer on top of water is separated out.

  12. Dynamic microwave assisted extraction coupled with dispersive micro-solid-phase extraction of herbicides in soybeans.

    PubMed

    Li, Na; Wu, Lijie; Nian, Li; Song, Ying; Lei, Lei; Yang, Xiao; Wang, Kun; Wang, Zhibing; Zhang, Liyuan; Zhang, Hanqi; Yu, Aimin; Zhang, Ziwei

    2015-09-01

    Non-polar solvent dynamic microwave assisted extraction was firstly applied to the treatment of high-fat soybean samples. In the dispersive micro-solid-phase extraction (D-µ-SPE), the herbicides in the high-fat extract were directly adsorbed on metal-organic frameworks MIL-101(Cr). The effects of several experimental parameters, including extraction solvent, microwave absorption medium, microwave power, volume and flow rate of extraction solvent, amount of MIL-101(Cr), and D-µ-SPE time, were investigated. At the optimal conditions, the limits of detection for the herbicides ranged from 1.56 to 2.00 μg kg(-1). The relative recoveries of the herbicides were in the range of 91.1-106.7%, and relative standard deviations were equal to or lower than 6.7%. The present method was simple, rapid and effective. A large amount of fat was also removed. This method was demonstrated to be suitable for treatment of high-fat samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Silicon carbide nanomaterial as a coating for solid-phase microextraction.

    PubMed

    Tian, Yu; Feng, Juanjuan; Wang, Xiuqin; Sun, Min; Luo, Chuannan

    2018-01-26

    Silicon carbide has excellent properties, such as corrosion resistance, high strength, oxidation resistance, high temperature, and so on. Based on these properties, silicon carbide was coated on stainless-steel wire and used as a solid-phase microextraction coating, and polycyclic aromatic hydrocarbons were employed as model analytes. Using gas chromatography, some important factors that affect the extraction efficiency were optimized one by one, and an analytical method was established. The analytical method showed wide linear ranges (0.1-30, 0.03-30, and 0.01-30 μg/L) with satisfactory correlation coefficients (0.9922-0.9966) and low detection limits (0.003-0.03 μg/L). To investigate the practical application of the method, rainwater and cigarette ash aqueous solution were collected as real samples for extraction and detection. The results indicate that silicon carbide has excellent application in the field of solid-phase microextraction. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Determination of the clean-up efficiency of the solid-phase extraction of rosemary extracts: Application of full-factorial design in hyphenation with Gaussian peak fit function.

    PubMed

    Meischl, Florian; Kirchler, Christian Günter; Jäger, Michael Andreas; Huck, Christian Wolfgang; Rainer, Matthias

    2018-02-01

    We present a novel method for the quantitative determination of the clean-up efficiency to provide a calculated parameter for peak purity through iterative fitting in conjunction with design of experiments. Rosemary extracts were used and analyzed before and after solid-phase extraction using a self-fabricated mixed-mode sorbent based on poly(N-vinylimidazole/ethylene glycol dimethacrylate). Optimization was performed by variation of washing steps using a full three-level factorial design and response surface methodology. Separation efficiency of rosmarinic acid from interfering compounds was calculated using an iterative fit of Gaussian-like signals and quantifications were performed by the separate integration of the two interfering peak areas. Results and recoveries were analyzed using Design-Expert® software and revealed significant differences between the washing steps. Optimized parameters were considered and used for all further experiments. Furthermore, the solid-phase extraction procedure was tested and compared with commercial available sorbents. In contrast to generic protocols of the manufacturers, the optimized procedure showed excellent recoveries and clean-up rates for the polymer with ion exchange properties. Finally, rosemary extracts from different manufacturing areas and application types were studied to verify the developed method for its applicability. The cleaned-up extracts were analyzed by liquid chromatography with tandem mass spectrometry for detailed compound evaluation to exclude any interference from coeluting molecules. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Control and measurement of the phase behavior of aqueous solutions using microfluidics

    PubMed Central

    Shim, Jung-uk; Cristobal, Galder; Link, Darren R.; Thorsen, Todd; Jia, Yanwei; Piattelli, Katie; Fraden, Seth

    2008-01-01

    A microfluidic device denoted the Phase Chip has been designed to measure and manipulate the phase diagram of multi-component fluid mixtures. The Phase Chip exploits the permeation of water through poly(dimethylsiloxane) (PDMS) in order to controllably vary the concentration of solutes in aqueous nanoliter volume microdrops stored in wells. The permeation of water in the Phase Chip is modeled using the diffusion equation and good agreement between experiment and theory is obtained. The Phase Chip operates by first creating drops of the water/solute mixture whose composition varies sequentially. Next, drops are transported down channels and guided into storage wells using surface tension forces. Finally, the solute concentration of each stored drop is simultaneously varied and measured. Two applications of the Phase Chip are presented. First, the phase diagram of a polymer/salt mixture is measured on-chip and validated off-chip and second, protein crystallization rates are enhanced through the manipulation of the kinetics of nucleation and growth. PMID:17580868

  16. Simple method for the determination of personal care product ingredients in lettuce by ultrasound-assisted extraction combined with solid-phase microextraction followed by GC-MS.

    PubMed

    Cabrera-Peralta, Jerónimo; Peña-Alvarez, Araceli

    2018-05-01

    A simple method for the simultaneous determination of personal care product ingredients: galaxolide, tonalide, oxybenzone, 4-methylbenzyliden camphor, padimate-o, 2-ethylhexyl methoxycinnamate, octocrylene, triclosan, and methyl triclosan in lettuce by ultrasound-assisted extraction combined with solid-phase microextraction followed by gas chromatography with mass spectrometry was developed. Lettuce was directly extracted by ultrasound-assisted extraction with methanol, this extract was combined with water, extracted by solid-phase microextraction in immersion mode, and analyzed by gas chromatography with mass spectrometry. Good linear relationships (25-250 ng/g, R 2  > 0.9702) and low detection limits (1.0-25 ng/g) were obtained for analytes along with acceptable precision for almost all analytes (RSDs < 20%). The validated method was applied for the determination of personal care product ingredients in commercial lettuce and lettuces grown in soil and irrigated with the analytes, identifying the target analytes in leaves and roots of the latter. This procedure is a miniaturized and environmentally friendly proposal which can be a useful tool for quality analysis in lettuce. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Ionic Liquid-Bonded Fused Silica as a New Solid-Phase Microextraction Fiber for the Liquid Chromatographic Determination of Bisphenol A as an Endocrine Disruptor.

    PubMed

    Mohammadnezhad, Nasim; Matin, Amir Abbas; Samadi, Naser; Shomali, Ashkan; Valizadeh, Hassan

    2017-01-01

    Linear ionic liquid bonded to fused silica and its application as a solid-phase microextraction fiber for the extraction of bisphenol A (BPA) from water samples were studied. After optimization of microextraction conditions (15 mL sample volume, extraction time of 40 min, extraction temperature of 30 ± 1°C, 300 μL acetonitrile as the desorption solvent, and desorption time of 7 min), the fiber was used to extract BPA from packed mineral water, followed by HPLC-UV on an XDB-C18 column (150 × 4.6 mm id, 3.5 μm particle) with a mobile phase of acetonitrile-water (45 + 55%, v/v) and flow rate of 1 mL . min-1). A low LOD (0.20 μg . L-1) and good linearity (0.9977) in the calibration graph indicated that the proposed method was suitable for the determination of BPA.

  18. One-pot synthesized functionalized mesoporous silica as a reversed-phase sorbent for solid-phase extraction of endocrine disrupting compounds in milks.

    PubMed

    Gañán, Judith; Morante-Zarcero, Sonia; Pérez-Quintanilla, Damián; Marina, María Luisa; Sierra, Isabel

    2016-01-08

    A new procedure for the determination of 12 naturally occurring hormones and some related synthetic chemicals in milk, commonly used as growth promoters in cattle, is reported. The method is based on liquid-liquid extraction followed by solid-phase extraction (SPE) using a new one-pot synthesized ordered mesoporous silica (of the SBA-15 type) functionalized with octadecyl groups (denoted as SBA-15-C18-CO) as reversed-phase sorbent. The analytes were eluted with methanol and then submitted to HPLC with diode array detection. Under optimal conditions, the method quantification limit for the analytes ranged from 0.023 to 1.36μg/mL. The sorbent affored the extraction of estrone, 17β-estradiol, estriol, progesterone, hexestrol, diethylstilbestrol, 4-androstene-3,17-dione, ethinylestradiol, 17α-methyltestosterone, nandrolone, prednisolone and testosterone with mean recoveries ranging from 72% to 105% (except for diethylstilbestrol) with RSD<11%. These results were comparable and, in some cases, even better than those obtained with other extraction methods, therefore SBA-15-C18-CO mesoporous silica possess a high potential as a reversed-phase sorbent for SPE of the 12 mentioned endocrine disrupting compounds in milk samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. A METHOD FOR AUTOMATED ANALYSIS OF 10 ML WATER SAMPLES CONTAINING ACIDIC, BASIC, AND NEUTRAL SEMIVOLATILE COMPOUNDS LISTED IN USEPA METHOD 8270 BY SOLID PHASE EXTRACTION COUPLED IN-LINE TO LARGE VOLUME INJECTION GAS CHROMATOGRAPHY/MASS SPECTROMETRY

    EPA Science Inventory

    Data is presented showing the progress made towards the development of a new automated system combining solid phase extraction (SPE) with gas chromatography/mass spectrometry for the single run analysis of water samples containing a broad range of acid, base and neutral compounds...

  20. Analysis of Explosives in Soil Using Solid Phase Microextraction and Gas Chromatography: Environmental Analysis

    DTIC Science & Technology

    2006-01-01

    ENVIRONMENTAL ANALYSIS Analysis of Explosives in Soil Using Solid Phase Microextraction and Gas Chromatography Howard T. Mayfield Air Force Research...Abstract: Current methods for the analysis of explosives in soils utilize time consuming sample preparation workups and extractions. The method detection...chromatography/mass spectrometry to provide a con- venient and sensitive analysis method for explosives in soil. Keywords: Explosives, TNT, solid phase

  1. Molecularly imprinted solid-phase extraction for the selective determination of bromhexine in human serum and urine with high performance liquid chromatography.

    PubMed

    Javanbakht, Mehran; Namjumanesh, Mohammad Hadi; Akbari-Adergani, Behrouz

    2009-11-15

    In this work, a novel method is described for the determination of bromhexine in biological fluids using molecularly imprinted solid-phase extraction as the sample cleanup technique combined with high performance liquid chromatography (HPLC). The water-compatible molecularly imprinted polymers (MIPs) were prepared using methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross-linker, chloroform as porogen and bromhexine as the template molecule. The novel imprinted polymer was used as a solid-phase extraction sorbent for the extraction of bromhexine from human serum and urine. Various parameters affecting the extraction efficiency of the polymer have been evaluated. The optimal conditions for molecularly imprinted solid-phase extraction (MISPE) consisted of conditioning 1 mL methanol and 1 mL of deionized water at neutral pH, loading of 5 mL of the water sample (25 microg L(-1)) at pH 6.0, washing using 2 mL acetonitrile/acetone (1/4, v/v) and elution with 3x 1 mL methanol/acetic acid (10/1, v/v). The MIP selectivity was evaluated by checking several substances with similar molecular structures to that of bromhexine. Results from the HPLC analyses showed that the calibration curve of bromhexine using MIP from human serum and urine is linear in the ranges of 0.5-100 and 1.5-100 microg L(-1) with good precisions (3.3% and 2.8% for 5.0 microg L(-1)), respectively. The recoveries for serum and urine samples were higher than 92%.

  2. Determination of organophosphate flame retardants in soil and fish using ultrasound-assisted extraction, solid-phase clean-up, and liquid chromatography with tandem mass spectrometry.

    PubMed

    Lorenzo, María; Campo, Julián; Picó, Yolanda

    2018-03-22

    A solid-liquid extraction method in combination with high-performance liquid chromatography and tandem mass spectrometry was developed and optimized for extraction and analysis of organophosphorus flame retardants in soil and fish. Methanol was chosen as the optimum extraction solvent, not only in terms of extraction efficiency, but also for its broader analyte coverage. The subsequent clean-up by solid-phase extraction is required to eliminate matrix coextractives and reduce matrix effects. Recoveries of the optimized method were 50-121% for soil and 47-123% for biota, both with high precision (RSDs <12% in soil and <23% in biota). The method limits of detection ranged from 0.06 to 0.20 ng/g dry weight and between 0.02 and 0.30 ng/g wet weight for soil and biota samples, respectively. However, samples with a high lipid content produce several problems as solid-phase extraction cartridge clogging that increase variability and analysis time. The method was successfully applied for the determination of organophosphorus flame retardants in soil and fish from L'Albufera Natural Park (Valencia, Spain). Target compounds were detected in all soil and fish samples with values varying from 13.8 to 89.7 ng/g dry weight and from 3.3 to 53.0 ng/g wet weight, respectively. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Ionic-liquid-based dispersive liquid-liquid microextraction combined with magnetic solid-phase extraction for the determination of aflatoxins B1 , B2 , G1 , and G2 in animal feeds by high-performance liquid chromatography with fluorescence detection.

    PubMed

    Zhao, Jiao; Zhu, Yan; Jiao, Yang; Ning, Jinyan; Yang, Yaling

    2016-10-01

    A novel two-step extraction technique combining ionic-liquid-based dispersive liquid-liquid microextraction with magnetic solid-phase extraction was developed for the preconcentration and separation of aflatoxins in animal feedstuffs before high-performance liquid chromatography coupled with fluorescence detection. In this work, ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate was used as the extractant in dispersive liquid-liquid microextraction, and hydrophobic pelargonic acid modified Fe 3 O 4 magnetic nanoparticles as an efficient adsorbent were applied to retrieve the aflatoxins-containing ionic liquid. Notably, the target of magnetic nanoparticles was the ionic liquid rather than the aflatoxins. Because of the rapid mass transfer associated with the dispersive liquid-liquid microextraction and magnetic solid phase steps, fast extraction could be achieved. The main parameters affecting the extraction recoveries of aflatoxins were investigated and optimized. Under the optimum conditions, vortexing at 2500 rpm for 1 min in the dispersive liquid-liquid microextraction and magnetic solid-phase extraction and then desorption by sonication for 2 min with acetonitrile as eluent. The recoveries were 90.3-103.7% with relative standard deviations of 3.2-6.4%. Good linearity was observed with correlation coefficients ranged from 0.9986 to 0.9995. The detection limits were 0.632, 0.087, 0.422 and 0.146 ng/mL for aflatoxins B 1 , B2, G1, and G2, respectively. The results were also compared with the pretreatment method carried out by conventional immunoaffinity columns. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Determination of nitrate esters in water samples Comparison of efficiency of solid-phase extraction and solid-phase microextraction.

    PubMed

    Jezová, Vera; Skládal, Jan; Eisner, Ales; Bajerová, Petra; Ventura, Karel

    2007-12-07

    This paper deals with comparison of efficiency of extraction techniques (solid-phase extraction, SPE and solid-phase microextraction, SPME) used for extraction of nitrate esters (ethyleneglycoldinitrate, EGDN and nitroglycerin, NG), representing the first step of the method of quantitative determination of trace concentrations of nitrate esters in water samples. EGDN and NG are subsequently determined by means of high-performance liquid chromatography with ultraviolet detection (HPLC-UV). Optimization of SPE and SPME conditions was carried out using model water samples. Seven SPE cartridges were tested and the conditions were optimized (type of sorbent, type and volume of solvent to be used as eluent). For both nitrate esters the limit of detection (LOD) and the limit of quantification (LOQ) obtained using SPE/HPLC-UV were 0.23 microg mL(-1) and 0.70 microg mL(-1), respectively. Optimization of SPME conditions: type of SPME fibre (four fibres were tested), type and time of sorption/desorption, temperature of sorption. PDMS/DVB (polydimethylsiloxane/divinylbenzene) fibre coating proved to be suitable for extraction of EGDN and NG. For this fibre the LOD and the LOQ for both nitrate esters were 0.16 microg mL(-1) and 0.50 microg mL(-1), respectively. Optimized methods SPE/HPLC-UV and SPME/HPLC-UV were then used for quantitative determination of nitrate esters content in real water samples from the production of EGDN and NG.

  5. Rapid determination of 54 pharmaceutical and personal care products in fish samples using microwave-assisted extraction-Hollow fiber-Liquid/solid phase microextraction.

    PubMed

    Zhang, Yi; Guo, Wen; Yue, Zhenfeng; Lin, Li; Zhao, Fengjuan; Chen, Peijin; Wu, Weidong; Zhu, Hong; Yang, Bo; Kuang, Yanyun; Wang, Jiong

    2017-04-15

    In this paper, a simple, rapid, solvent-less and environmental friendliness microextraction method, microwave-assisted extraction-hollow fiber-liquid/solid phase microextraction (MAE-HF-L/SME), was developed for simultaneous extraction and enrichment of 54 trace hydrophilic/lipophilic pharmaceutical and personal care products (PPCPs) from fish samples. A solid-phase extraction material, solid-phase microextraction (SPME) fiber, was synthesized. The SPME fiber had a homogeneous, loose structure and good mechanical properties, and they exhibited a good adsorption capacity for most PPCPs selected. The material formed the basis for the method of MAE-HF-L/SME. A method of liquid chromatography-high resolution mass spectroscopy (LC-HRMS) for analysis of 54 PPCPs. Under optimal synthesis and extraction conditions, the limits of detection (LODs, n=3) and the limits of quantitation (LOQs, n=10) for the 54 PPCPs were between 0.01-0.50μg·kg -1 and 0.052.00μg·kg -1 , respectively. Percent recoveries and the relative standard deviations (RSDs) in spiked fish samples (n=6) were between 56.3%-119.9% and 0.3%-17.1%, respectively. The microextraction process of 54 PPCPs in MAE-HF-L/SME took approximately 12min. The method has a low matrix interference and high enrichment factor and may be applicable for determination of 54 different PPCPs in fish samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Promising Technologies of Mining and Processing of Solid Minerals

    NASA Astrophysics Data System (ADS)

    Shabaev, Sergey; Ivanov, Seregey; Vakhianov, Evgeniy

    2017-11-01

    The continuing growth in mineral extraction entails an increase in industrial waste, which in turn has a negative impact on the environment. Rubber-tired vehicles, in which the tires wear colossally, is mainly used as a transport for loading, unloading, transportation and other types of work in the extraction of solid minerals. The used tires are not disposed in any way, but are stored in special areas where harmful toxic substances are emitted under the influence of ultraviolet rays. Therefore, a decision was made to find a method for utilization and rational use of industrial waste in the road construction sector. The operating temperature of composite rubber-bituminous binders based on rubber crumb from the used automobile tires is estimated in this paper, which is necessary for assigning technological parameters of production and laying of asphalt-concrete mixtures produced on their basis. It is established that composite rubber-bituminous binders based on rubber chips from the used automobile tires, produced according to the two-stage technology, have the same viscosity as the original petroleum bitumen, at a temperature increased by 20°C.

  7. Automated solid-phase extraction of phenolic acids using layered double hydroxide-alumina-polymer disks.

    PubMed

    Ghani, Milad; Palomino Cabello, Carlos; Saraji, Mohammad; Manuel Estela, Jose; Cerdà, Víctor; Turnes Palomino, Gemma; Maya, Fernando

    2018-01-26

    The application of layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disks for solid-phase extraction is reported for the first time. Al 2 O 3 is embedded in a polymer matrix followed by an in situ metal-exchange process to obtain a layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disk with excellent flow-through properties. The extraction performance of the prepared disks is evaluated as a proof of concept for the automated extraction using sequential injection analysis of organic acids (p-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid, gallic acid) following an anion-exchange mechanism. After the solid-phase extraction, phenolic acids were quantified by reversed-phase high-performance liquid chromatography with diode-array detection using a core-shell silica-C18 stationary phase and isocratic elution (acetonitrile/0.5% acetic acid in pure water, 5:95, v/v). High sensitivity and reproducibility were obtained with limits of detection in the range of 0.12-0.25 μg/L (sample volume, 4 mL), and relative standard deviations between 2.9 and 3.4% (10 μg/L, n = 6). Enrichment factors of 34-39 were obtained. Layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disks had an average lifetime of 50 extractions. Analyte recoveries ranged from 93 to 96% for grape juice and nonalcoholic beer samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Fungal pretreatment of albizia chips for enhanced biogas production by solid-state anaerobic digestion

    USDA-ARS?s Scientific Manuscript database

    Albizia biomass is a forestry waste, and holds a great potential in biogas production by solid-state anaerobic digestion (SS-AD). However, low methane yields from albizia chips were observed due to their recalcitrant structure. In this study, albizia chips were pretreated by Ceriporiopsis subvermisp...

  9. In situ analysis of dynamic laminar flow extraction using surface-enhanced Raman spectroscopy

    PubMed Central

    Wang, Fei; Wang, Hua-Lin; Qiu, Yang; Chang, Yu-Long; Long, Yi-Tao

    2015-01-01

    In this study, we performed micro-scale dynamic laminar flow extraction and site-specific in situ chloride concentration measurements. Surface-enhanced Raman spectroscopy was utilized to investigate the diffusion process of chloride ions from an oil phase to a water phase under laminar flow. In contrast to common logic, we used SERS intensity gradients of Rhodamine 6G to quantitatively calculate the concentration of chloride ions at specific positions on a microfluidic chip. By varying the fluid flow rates, we achieved different extraction times and therefore different chloride concentrations at specific positions along the microchannel. SERS spectra from the water phase were recorded at these different positions, and the spatial distribution of the SERS signals was used to map the degree of nanoparticle aggregation. The concentration of chloride ions in the channel could therefore be obtained. We conclude that this method can be used to explore the extraction behaviour and efficiency of some ions or molecules that enhance the SERS intensity in water or oil by inducing nanoparticle aggregation. PMID:26687436

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Valin, R.; Morse, J.W.

    The operation of an OTEC plant will result in the mixing of large volumes of seawater from different depths within the ocean. Because suspended particulate material is intimately involved in marine food webs and transition metals, such as copper, can have toxic effects, it is important to develop a sound methodology for characterizing and quantifying transition metal behavior associated with the solid material. The characterization of solid-phase-associated transition metals in the marine environment has largely been directed at marine sediments. These studies have generally indicated that it is not possible to uniquely identify the solid phases or chemical speciation ofmore » a given metal. There are many reasons for this difficulty, but the probable major analytical problems arise from the fact that many of the transition metals of interest are present only in trace concentrations as adsorbed species on amorphous oxides or as coprecipitates. In one approach transition metals are classified according to how easily they are solubilized when exposed to different types of chemical attack, as defined in chemical extraction schemes. In this study, several of the most widely accepted extraction techniques were compared for many of the most commonly measured transition metals to a variety of marine sediments. Based on the results of this study, the sequential extraction scheme of Tessler et al. (1979) is the recommended method for the characterization of solid-phase associated transition metals. An increase of the reducing agent concentration in the intermediate step and temperature decrease with an additional HCl digestion in the residual step are recommended as improvements, based on the results of the individual extraction method studies.« less

  11. Double-disk solid-phase extraction--Simultaneous cleanup and trace enrichment of herbicides and metabolites from environmental samples

    USGS Publications Warehouse

    Ferrar, Imma; Barceló, Damià; Thurman, E.M.

    1999-01-01

    Phenylurea and triazine herbicides, including some metabolites, were isolated from water and soil extracts by solid-phase extraction using a layered system of two extraction disks, a method called double-disk solid-phase extraction. The first disk consisted of strong anion exchange (SAX) of 10-μm styrene divinylbenzene (SDB) particles embedded in Teflon, and the second disk was a C18 disk of 10-μm particles also embedded in Teflon. A volume of 500 mL of water or aqueous soil extract is passed through the layered system with the SAX disk first. The purpose of the SAX disk is to remove the humic and fulvic acids from the water or aqueous soil extract by ion exchange through their carboxyl groups. Even during methanol elution of herbicides, the humic substances remain bound to the SAX disk with >85% retention. Elution with methanol results in more than 90% recovery of the herbicides from the layered extraction disks. Removal of the humic and fulvic acids results in greater sensitivity for diode array detection quantitation (0.05 μg/L for herbicides) by substantially reducing the absorbance of the humic peak on the LC chromatogram. The herbicides adsorb to the SAX disk either through hydrogen bonding to the anion-exchange sites or by hydrophobic interaction with the SDB surface of the anion-exchange disk. The method was tested for the analysis of natural water samples from the Mississippi Embayment, a cotton-growing area of the southeastern United States.

  12. Distribution of phthalates, pesticides and drug residues in the dissolved, particulate and sedimentary phases from transboundary rivers (France-Belgium).

    PubMed

    Net, Sopheak; Rabodonirina, Suzanah; Sghaier, Rafika Ben; Dumoulin, David; Chbib, Chaza; Tlili, Ines; Ouddane, Baghdad

    2015-07-15

    Various drug residues, pesticides and phthalates are ubiquitous in the environment. Their presence in the environment has attracted considerable attention due to their potential impacts on ecosystem functioning and on public health. In this work, 14 drug residues, 24 pesticides and 6 phthalates have been quantified in three matrices (in the dissolved phase, associated to suspended solid matter (SSM), and in sediment) collected from fifteen watercourses and rivers located in a highly industrialized zone at the cross-border area of Northern France and Belgium. The extractions have been carried out using accelerated solvent extraction (ASE) for solid matrices (SSM and sediment) and using solid phase extraction (SPE) for liquid matrix. The final extract was analyzed using GC-MS technique. Among the three classes of compounds, phthalates have been found at highest level compared to pesticides and drug residues. The Σ6PAE concentrations were ranging from 17.2±2.58 to 179.1±26.9μgL(-1) in dissolved phase, from 2.9±0.4 to 21.1±3.2μgL(-1) in SSM and from 1.1±0.2 to 11.9±1.8μgg(-1)dw in sediment. The Σ14drug residue concentrations were lower than 1.3μgL(-1) in the dissolved phases, lower than 30ngL(-1) associated to SSM and from nondetectable levels to 60.7±9.1ngg(-1)dw in sediment. For pesticides, all compounds were below the LOQ values in dissolved phase and in sediment, and only EPTC could be quantified in SSM. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Fabrication of a novel hydrophobic/ion-exchange mixed-mode adsorbent for the dispersive solid-phase extraction of chlorophenols from environmental water samples.

    PubMed

    Gao, Li; Wei, Yinmao

    2016-08-01

    A novel mixed-mode adsorbent was prepared by functionalizing silica with tris(2-aminoethyl)amine and 3-phenoxybenzaldehyde as the main mixed-mode scaffold due to the presence of the plentiful amino groups and benzene rings in their molecules. The adsorption mechanism was probed with acidic, natural and basic compounds, and the mixed hydrophobic and ion-exchange interactions were found to be responsible for the adsorption of analytes. The suitability of dispersive solid-phase extraction was demonstrated in the determination of chlorophenols in environmental water. Several parameters, including sample pH, desorption solvent, ionic strength, adsorbent dose, and extraction time were optimized. Under the optimal extraction conditions, the proposed dispersive solid-phase extraction coupled with high-performance liquid chromatography showed good linearity range and acceptable limits of detection (0.22∽0.54 ng/mL) for five chlorophenols. Notably, the higher extraction recoveries (88.7∽109.7%) for five chlorophenols were obtained with smaller adsorbent dose (10 mg) and shorter extraction time (15 min) compared with the reported methods. The proposed method might be potentially applied in the determination of trace chlorophenols in real water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Solid phase microextraction of diclofenac using molecularly imprinted polymer sorbent in hollow fiber combined with fiber optic-linear array spectrophotometry.

    PubMed

    Pebdani, Arezou Amiri; Shabani, Ali Mohammad Haji; Dadfarnia, Shayessteh; Khodadoust, Saeid

    2015-08-05

    A simple solid phase microextraction method based on molecularly imprinted polymer sorbent in the hollow fiber (MIP-HF-SPME) combined with fiber optic-linear array spectrophotometer has been applied for the extraction and determination of diclofenac in environmental and biological samples. The effects of different parameters such as pH, times of extraction, type and volume of the organic solvent, stirring rate and donor phase volume on the extraction efficiency of the diclofenac were investigated and optimized. Under the optimal conditions, the calibration graph was linear (r(2)=0.998) in the range of 3.0-85.0 μg L(-1) with a detection limit of 0.7 μg L(-1) for preconcentration of 25.0 mL of the sample and the relative standard deviation (n=6) less than 5%. This method was applied successfully for the extraction and determination of diclofenac in different matrices (water, urine and plasma) and accuracy was examined through the recovery experiments. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Euler force actuation mechanism for siphon valving in compact disk-like microfluidic chips.

    PubMed

    Deng, Yongbo; Fan, Jianhua; Zhou, Song; Zhou, Teng; Wu, Junfeng; Li, Yin; Liu, Zhenyu; Xuan, Ming; Wu, Yihui

    2014-03-01

    Based on the Euler force induced by the acceleration of compact disk (CD)-like microfluidic chip, this paper presents a novel actuation mechanism for siphon valving. At the preliminary stage of acceleration, the Euler force in the tangential direction of CD-like chip takes the primary place compared with the centrifugal force to function as the actuation of the flow, which fills the siphon and actuates the siphon valving. The Euler force actuation mechanism is demonstrated by the numerical solution of the phase-field based mathematical model for the flow in siphon valve. In addition, experimental validation is implemented in the polymethylmethacrylate-based CD-like microfluidic chip manufactured using CO2 laser engraving technique. To prove the application of the proposed Euler force actuation mechanism, whole blood separation and plasma extraction has been conducted using the Euler force actuated siphon valving. The newly introduced actuation mechanism overcomes the dependence on hydrophilic capillary filling of siphon by avoiding external manipulation or surface treatments of polymeric material. The sacrifice for highly integrated processing in pneumatic pumping technique is also prevented by excluding the volume-occupied compressed air chamber.

  16. Microscope-on-Chip Using Micro-Channel and Solid State Image Sensors

    NASA Technical Reports Server (NTRS)

    Wang, Yu

    2000-01-01

    Recently, Jet Propulsion Laboratory has invented and developed a miniature optical microscope, microscope-on-chip using micro-channel and solid state image sensors. It is lightweight, low-power, fast speed instrument, it has no image lens, does not need focus adjustment, and the total mass is less than 100g. A prototype has been built and demonstrated at JPL.

  17. Sol-gel titania-coated needles for solid phase dynamic extraction-GC/MS analysis of desomorphine and desocodeine.

    PubMed

    Su, Chi-Ju; Srimurugan, Sankarewaran; Chen, Chinpiao; Shu, Hun-Chi

    2011-01-01

    Novel sol-gel titania film coated needles for solid-phase dynamic extraction (SPDE)-GC/MS analysis of desomorphine and desocodeine are described. The high thermal stability of titania film permits efficient extraction and analysis of poorly volatile opiate drugs. The influences of sol-gel reaction time, coating layer, extraction and desorption time and temperature on the SPDE needle performance were investigated. The deuterium labeled internal standard was introduced either during the extraction of analyte or directly injected to GC after the extraction process. The latter method was shown to be more sensitive for the analysis of water and urine samples containing opiate drugs. The proposed conditions provided a wide linear range (from 5-5000 ppb), and satisfactory linearity, with R(2) values from 0.9958 to 0.9999, and prominent sensitivity, LOQs (1.0-5.0 ng/g). The sol-gel titania film coated needle with SPDE-GC/MS will be a promising technique for desomorphine and desocodeine analysis in urine.

  18. Simultaneous determination of four trace estrogens in feces, leachate, tap and groundwater using solid-liquid extraction/auto solid-phase extraction and high-performance liquid chromatography with fluorescence detection.

    PubMed

    Liu, Na; Shi, Yue-e; Li, Mengyan; Zhang, Ting-di; Gao, Song

    2015-10-01

    A simple and selective high-performance liquid chromatography method coupled with fluorescence detection was developed for the simultaneous measurement of trace levels of four estrogens (estrone, estradiol, estriol and 17α-ethynyl estradiol) in environmental matrices. For feces samples, solid-liquid extraction was applied with a 1:1 v/v mixture of acetonitrile and ethyl acetate as the extraction solvent. For liquid samples (e.g., leachate and groundwater), hydrophobic/lipophilic balanced automated solid-phase extraction disks were selected due to their high recoveries compared to conventional C18 disks. Chromatographic separations were performed on a reversed-phase C18 column gradient-eluted with a 45:55 v/v mixture of acetonitrile and water. The detection limits were down to 1.1 × 10(-2) (estrone), 4.11 × 10(-4) (estradiol), 5.2 × 10(-3) (estriol) and 7.18 × 10(-3) μg/L (17α-ethynyl estradiol) at excitation/emission wavelengths of 288/310 nm, with recoveries in the range of 96.9 ± 3.2-105.4 ± 3.2% (n = 3). The method was successfully applied to determine estrogens in feces and water samples collected at livestock farms and a major river in Northeast China. We observed relatively high abundance and widespread distribution of all four estrogens in our sample collections, implying the urgency for a comprehensive and intricate investigation of estrogenic fate and contamination in our researched area. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Long-term batch study of sorption, transformation and extractability to characterize the fate of the veterinary antibiotic sulfadiazine

    NASA Astrophysics Data System (ADS)

    Sittig, Stephan; Kasteel, Roy; Groeneweg, Joost; Vereecken, Harry

    2010-05-01

    The occurrence of veterinary antibiotic substances in various environmental compartments is of growing concern. Once released into the environment (e.g. via manure), these organic substances can cause changes in the composition of microbial populations, provoke the development and spreading of resistance genes and finally reach the food chain. The substance under study is the veterinary antibiotic sulfadiazine (SDZ), which belongs to the chemical group of the sulfonamides. These compounds are widely applied in animal husbandry. There are hardly any studies on the macroscopic sorption and desorption behaviour in combination with transformation processes, particularly investigating the sorbed fraction. We are conducting long-term batch sorption experiments to characterize the partitioning between the liquid and the solid phases as well as formation of transformation products. A sequential extraction procedure enables us to analyse the composition of the various sorbed fractions. We applied 14C-labelled SDZ in aqueous solution to fresh soil, originating from an agricultural field (silty loam). Adsorption and desorption studies are conducted for the duration of 60 d and 80 d, respectively. Unique setups for single time-steps allow us to trace the development of the partition process between the liquid and the solid phase and also partitioning within the solid phase. The composition of these liquid phases concerning the parent substance and the transformation products is analyzed. Using Radio-HPLC we find at least five transformation products: 4-hydroxy-sulfadiazine (4-OH-SDZ), 4-(2-iminopyrimidin-1(2H)-yl)-aniline (An-SDZ) and additionally three yet unknown products. By means of a sequential extraction, differently strong bound fractions of the compound can be distinguished. Extractions consist of a mild method (0.01 M CaCl2-solution; 24 h) followed by a methanol extraction (4 h). Finally, a residual fraction is gained by microwave extraction at an elevated temperature (150°C) and pressure (mixture of water and acetonitril, 4:1). Bound residues are determined by combustion. The course of the kinetic adsorption/desorption processes as well as the partitioning of the compound over the various solid phase fractions is observed. Sorption is time-dependent and strongly non-linear. The topsoil shows a significantly higher sorption affinity than the subsoil. While the amount of radioactivity sorbed to the soil matrix increases with time, the extractability decreases significantly, i. e. at the end of the experimental time there is no yield with mild extraction methods. On the contrary, after 60 d, there is still a considerably mass gained with the microwave extraction. Desorption is very slow due to hysteresis. In the topsoil transformation occurs with higher rates, leading to more detectable transformation products as in the subsoil. With our experimental setup it will be possible to set up a kinetic modell for the partitioning of the solute between the liquid and the solid phase. This description will also include an estimation of the transformation parameters.

  20. DETERMINATION OF CHLOROETHENES IN ENVIRONMENTAL BIOLOGICAL SAMPLES USING GAS CHROMATOGRAPHY COUPLED WITH SOLID PHASE MICRO EXTRACTION

    EPA Science Inventory

    An analytical method has been developed to determine the chloroethene series, tetrachloroethene (PCE), trichloroethene (TCE),cisdichloroethene (cis-DCE) andtransdichloroethene (trans-DCE) in environmental biotreatment studies using gas chromatography coupled with a solid phase mi...

  1. EVALUATION OF ANALYTICAL METHODS FOR DETERMINING PESTICIDES IN BABY FOOD

    EPA Science Inventory

    Three extraction methods and two detection techniques for determining pesticides in baby food were evaluated. The extraction techniques examined were supercritical fluid extraction (SFE), enhanced solvent extraction (ESE), and solid phase extraction (SPE). The detection techni...

  2. Fluorous tagging strategy for solution-phase synthesis of small molecules, peptides and oligosaccharides

    PubMed Central

    Zhang, Wei

    2005-01-01

    The purification of reaction mixtures is a slow process in organic synthesis, especially during the production of large numbers of analogs and compound libraries. Phase-tag methods such as solid-phase synthesis and fluorous synthesis, provide efficient ways of addressing the separation issue. Fluorous synthesis employs functionalized perfluoroalkyl groups attached to substrates or reagents. The separation of the resulting fluorous molecules can be achieved using strong and selective fluorous liquid-liquid extraction, fluorous silica gel-based solid-phase extraction or high-performance liquid chromatography. Fluorous technology is a novel solution-phase method, which has the advantages of fast reaction times in homogeneous environments, being readily adaptable to literature conditions, having easy intermediate analysis, and having flexibility in reaction scale and scope. In principle, any synthetic methods that use a solid-support could be conducted in solution-phase by replacing the polymer linker with a corresponding fluorous tag. This review summarizes the progress of fluorous tags in solution-phase synthesis of small molecules, peptides and oligosaccharides. PMID:15595439

  3. Influencing of various phosphor parameters on the LED performance

    NASA Astrophysics Data System (ADS)

    Wu, Yi Ping; Zhang, Shu Qin; Jin, Shang-zhong; Shi, Chang Shou; Li, Liang; Yu, RenYong

    2012-10-01

    In this paper ,the advantages and disadvantages of the methods to achieve White LED are reviewed, and phosphor-converted white LEDs are discussed in detail. In the case of blue chip exciting YAG phosphor to get white LED, use Mie scattering theory to construct physical model, then analyze how the package, concentration, thickness and particle size of phosphor work on extraction efficiency, spatial Chroma uniformity and color temperature of white LED. The conclusion of this paper advances the application of LED solid-state light source. In the end, the paper puts forward the direction and focus of phosphor research.

  4. ZnO nanorod array polydimethylsiloxane composite solid phase micro-extraction fiber coating: fabrication and extraction capability.

    PubMed

    Wang, Dan; Wang, Qingtang; Zhang, Zhuomin; Chen, Guonan

    2012-01-21

    ZnO nanorod array coating is a novel kind of solid-phase microextraction (SPME) fiber coating which shows good extraction capability due to the nanostructure. To prepare the composite coating is a good way to improve the extraction capability. In this paper, the ZnO nanorod array polydimethylsiloxane (PDMS) composite SPME fiber coating has been prepared and its extraction capability for volatile organic compounds (VOCs) has been studied by headspace sampling the typical volatile mixed standard solution of benzene, toluene, ethylbenzene and xylene (BTEX). Improved detection limit and good linear ranges have been achieved for this composite SPME fiber coating. Also, it is found that the composite SPME fiber coating shows good extraction selectivity to the VOCs with alkane radicals.

  5. Phenylboronic acid modified solid-phase extraction column: Preparation, characterization, and application to the analysis of amino acids in sepia capsule by removing the maltose.

    PubMed

    Guo, Mengzhe; Yin, Dengyang; Han, Jie; Zhang, Liyan; Li, Xiao; He, Dandan; Du, Yan; Tang, Daoquan

    2016-09-01

    Maltose, a common auxiliary material of pharmaceutical preparation, may disturb the analysis of total amino acids in sepia capsule by aldolization. Therefore, it is necessary to remove the maltose through a convenient method. In this work, a phenylboronic acid modified solid-phase extraction column has been synthesized and used to remove the maltose. The materials were synthesized by one step "thiol-ene" reaction and the parameters of the column such as absorption capacity, recovery, and absorption specificity have been investigated. The results showed the column (0.5 cm of length × 0.5 cm of inner diameter) can absorb 4.6 mg maltose with a linear absorption and absorption specificity. Then this technique was applied in the quantification of amino acids in sepia capsule. After the optimization of the method, four kinds of amino acids, which were the most abundant, were quantified by high-performance liquid chromatography with diode array detection. The amounts of the four kinds of amino acids are 1.5∼2 times more than that without the treatment of solid-phase extraction column, which almost overcomes the influence of the maltose. All the results indicate that the phenylboronic acid modified solid-phase extraction column can successfully help to accurately quantify the total amino acids in sepia capsule. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. An absorbing microwave micro-solid-phase extraction device used in non-polar solvent microwave-assisted extraction for the determination of organophosphorus pesticides.

    PubMed

    Wang, Ziming; Zhao, Xin; Xu, Xu; Wu, Lijie; Su, Rui; Zhao, Yajing; Jiang, Chengfei; Zhang, Hanqi; Ma, Qiang; Lu, Chunmei; Dong, Deming

    2013-01-14

    A single-step extraction-cleanup method, including microwave-assisted extraction (MAE) and micro-solid-phase extraction (μ-SPE), was developed for the extraction of ten organophosphorus pesticides in vegetable and fruit samples. Without adding any polar solvent, only one kind of non-polar solvent (hexane) was used as extraction solvent in the whole extraction step. Absorbing microwave μ-SPE device, was prepared by packing activated carbon with microporous polypropylene membrane envelope, and used as not only the sorbent in μ-SPE, but also the microwave absorption medium. Some experimental parameters effecting on extraction efficiency was investigated and optimized. 1.0 g of sample, 8 mL of hexane and three absorbing microwave μ-SPE devices were added in the microwave extraction vessel, the extraction was carried out under 400 W irradiation power at 60°C for 10 min. The extracts obtained by MAE-μ-SPE were directly analyzed by GC-MS without any clean-up process. The recoveries were in the range of 93.5-104.6%, and the relative standard deviations were lower than 8.7%. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Design of barrier bucket kicker control system

    NASA Astrophysics Data System (ADS)

    Ni, Fa-Fu; Wang, Yan-Yu; Yin, Jun; Zhou, De-Tai; Shen, Guo-Dong; Zheng, Yang-De.; Zhang, Jian-Chuan; Yin, Jia; Bai, Xiao; Ma, Xiao-Li

    2018-05-01

    The Heavy-Ion Research Facility in Lanzhou (HIRFL) contains two synchrotrons: the main cooler storage ring (CSRm) and the experimental cooler storage ring (CSRe). Beams are extracted from CSRm, and injected into CSRe. To apply the Barrier Bucket (BB) method on the CSRe beam accumulation, a new BB technology based kicker control system was designed and implemented. The controller of the system is implemented using an Advanced Reduced Instruction Set Computer (RISC) Machine (ARM) chip and a field-programmable gate array (FPGA) chip. Within the architecture, ARM is responsible for data presetting and floating number arithmetic processing. The FPGA computes the RF phase point of the two rings and offers more accurate control of the time delay. An online preliminary experiment on HIRFL was also designed to verify the functionalities of the control system. The result shows that the reference trigger point of two different sinusoidal RF signals for an arbitrary phase point was acquired with a matched phase error below 1° (approximately 2.1 ns), and the step delay time better than 2 ns were realized.

  8. Method optimization for non-equilibrium solid phase microextraction sampling of HAPs for GC/MS analysis

    NASA Astrophysics Data System (ADS)

    Zawadowicz, M. A.; Del Negro, L. A.

    2010-12-01

    Hazardous air pollutants (HAPs) are usually present in the atmosphere at pptv-level, requiring measurements with high sensitivity and minimal contamination. Commonly used evacuated canister methods require an overhead in space, money and time that often is prohibitive to primarily-undergraduate institutions. This study optimized an analytical method based on solid-phase microextraction (SPME) of ambient gaseous matrix, which is a cost-effective technique of selective VOC extraction, accessible to an unskilled undergraduate. Several approaches to SPME extraction and sample analysis were characterized and several extraction parameters optimized. Extraction time, temperature and laminar air flow velocity around the fiber were optimized to give highest signal and efficiency. Direct, dynamic extraction of benzene from a moving air stream produced better precision (±10%) than sampling of stagnant air collected in a polymeric bag (±24%). Using a low-polarity chromatographic column in place of a standard (5%-Phenyl)-methylpolysiloxane phase decreased the benzene detection limit from 2 ppbv to 100 pptv. The developed method is simple and fast, requiring 15-20 minutes per extraction and analysis. It will be field-validated and used as a field laboratory component of various undergraduate Chemistry and Environmental Studies courses.

  9. Development of a solid-phase extraction method for determination of pheophorbide a and pyropheophorbide a in health foods by liquid chromatography.

    PubMed

    Oshima, Harumi; Ueno, Eiji; Saito, Isao; Matsumoto, Hiroshi

    2004-01-01

    A simple solid-phase extraction (SPE) method was developed for the liquid chromatography (LC) determination of pheophorbide (Phor) a and pyropheophorbide (Pyro) a in health foods such as chlorella, spirulina, etc. The food sample was extracted with 85% (v/v) acetone. The extract was acidified with hydrochloric acid and loaded on a C18 cartridge. After washing with water, Phor a and Pyro a were eluted with the LC mobile phase. Phor a and Pyro a were separated by isocratic reversed-phase LC and quantitated by fluorescence detection. The recoveries for spiked samples of chlorella and the extract were 87.1-102.0%. Commercial health foods (chlorella, spirulina, aloe, kale, Jews mallow, and green tea leaves) were analyzed using the SPE method. The values found for Phor a and Pyro a ranged from 2 to 788 microg/g and from <1 to 24 microg/g, respectively. There was no significant difference between the SPE method and the official method in Japan (spectrophotometry after liquid-liquid extraction). The advantages of the SPE method are the short extraction times, lack of emulsions, and reduced consumption of organic solvents compared with the official method in Japan. The SPE method is considered to be useful for the screening of Phor a and Pyro a in health foods.

  10. Determination of six pesticides in the medicinal herb Cordia salicifolia by matrix solid-phase dispersion and gas chromatography/mass spectrometry.

    PubMed

    de Carvalho, Pedro Henrique Viana; Prata, Vanessa de Menezes; Alves, Péricles Barreto; Navickiene, Sandro

    2009-01-01

    A simple and effective extraction method based on matrix solid-phase dispersion was developed for acephate, chlorpropham, pyrimicarb, bifenthrin, tetradifon, and phosalone in leaves of the medicinal plant Cordia salicifolia, whose extracts are commercialized in Brazil as diuretic, appetite suppressant, and weight loss products. The determination method was GC/MS with selected-ion monitoring. Different parameters of the method were evaluated, such as type of solid phase (C18, alumina, silica gel, and Florisil) and the amount of solid phase and eluent (dichloromethane, ethyl acetate, chloroform, and cyclohexane). The best results were obtained using 0.5 g herb sample, 0.5 g neutral alumina as the dispersant sorbent, 0.5 g C18 as the cleanup sorbent, and cyclohexane-dichloromethane (3 + 1, v/v) as the eluting solvent. The method was validated using herb samples fortified with pesticides at different concentration levels (0.3, 0.5, and 1.0 mg/kg). Average recoveries (seven replicates) ranged from 67.7 to 129.9%, with relative standard deviations between 6.3 and 26%. Detection and quantitation limits for the herb ranged from 0.10 to 0.15 and 0.15 to 0.25 mg/kg, respectively.

  11. Immobilization of lambda exonuclease onto polymer micropillar arrays for the solid-phase digestion of dsDNAs.

    PubMed

    Oliver-Calixte, Nyoté J; Uba, Franklin I; Battle, Katrina N; Weerakoon-Ratnayake, Kumuditha M; Soper, Steven A

    2014-05-06

    The process of immobilizing enzymes onto solid supports for bioreactions has some compelling advantages compared to their solution-based counterpart including the facile separation of enzyme from products, elimination of enzyme autodigestion, and increased enzyme stability and activity. We report the immobilization of λ-exonuclease onto poly(methylmethacrylate) (PMMA) micropillars populated within a microfluidic device for the on-chip digestion of double-stranded DNA. Enzyme immobilization was successfully accomplished using 3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling to carboxylic acid functionalized PMMA micropillars. Our results suggest that the efficiency for the catalysis of dsDNA digestion using λ-exonuclease, including its processivity and reaction rate, were higher when the enzyme was attached to a solid support compared to the free solution digestion. We obtained a clipping rate of 1.0 × 10(3) nucleotides s(-1) for the digestion of λ-DNA (48.5 kbp) by λ-exonuclease. The kinetic behavior of the solid-phase reactor could be described by a fractal Michaelis-Menten model with a catalytic efficiency nearly 17% better than the homogeneous solution-phase reaction. The results from this work will have important ramifications in new single-molecule DNA sequencing strategies that employ free mononucleotide identification.

  12. An On-Line Solid Phase Extraction-Liquid Chromatography-Tandem Mass Spectrometry Method for the Determination of Perfluoroalkyl Acids in Drinking and Surface Waters

    PubMed Central

    Mazzoni, Michela; Rusconi, Marianna; Valsecchi, Sara; Martins, Claudia P. B.; Polesello, Stefano

    2015-01-01

    An UHPLC-MS/MS multiresidue method based on an on-line solid phase extraction (SPE) procedure was developed for the simultaneous determination of 9 perfluorinated carboxylates (from 4 to 12 carbon atoms) and 3 perfluorinated sulphonates (from 4 to 8 carbon atoms). This work proposes using an on-line solid phase extraction before chromatographic separation and analysis to replace traditional methods of off-line SPE before direct injection to LC-MS/MS. Manual sample preparation was reduced to sample centrifugation and acidification, thus eliminating several procedural errors and significantly reducing time-consuming and costs. Ionization suppression between target perfluorinated analytes and their coeluting SIL-IS were detected for homologues with a number of carbon atoms less than 9, but the quantitation was not affected. Total matrix effect corrected by SIL-IS, inclusive of extraction efficacy, and of ionization efficiency, ranged between −34 and +39%. The percentage of recoveries, between 76 and 134%, calculated in different matrices (tap water and rivers impacted by different pollutions) was generally satisfactory. LODs and LOQs of this on-line SPE method, which also incorporate recovery losses, ranged from 0.2 to 5.0 ng/L and from 1 to 20 ng/L, respectively. Validated on-line SPE-LC/MS/MS method has been applied in a wide survey for the determination of perfluoroalkyl acids in Italian surface and ground waters. PMID:25834752

  13. Nanometer-sized materials for solid-phase extraction of trace elements.

    PubMed

    Hu, Bin; He, Man; Chen, Beibei

    2015-04-01

    This review presents a comprehensive update on the state-of-the-art of nanometer-sized materials in solid-phase extraction (SPE) of trace elements followed by atomic-spectrometry detection. Zero-dimensional nanomaterials (fullerene), one-dimensional nanomaterials (carbon nanotubes, inorganic nanotubes, and nanowires), two-dimensional nanomaterials (nanofibers), and three-dimensional nanomaterials (nanoparticles, mesoporous nanoparticles, magnetic nanoparticles, and dendrimers) for SPE are discussed, with their application for trace-element analysis and their speciation in different matrices. A variety of other novel SPE sorbents, including restricted-access sorbents, ion-imprinted polymers, and metal-organic frameworks, are also discussed, although their applications in trace-element analysis are relatively scarce so far.

  14. Speciation analysis of Mn(II)/Mn(VII) using Fe3O4@ionic liquids-β-cyclodextrin polymer magnetic solid phase extraction coupled with ICP-OES.

    PubMed

    Chen, Songqing; Qin, Xingxiu; Gu, Weixi; Zhu, Xiashi

    2016-12-01

    Ionic liquids-β-cyclodextrin polymer (ILs-β-CDCP) was attached on Fe 3 O 4 nanoparticles to prepare magnetic solid phase extraction agent (Fe 3 O 4 @ILs-β-CDCP). The properties and morphology of Fe 3 O 4 @ILs-β-CDCP were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction(XRD), size distribution and magnetic analysis. A new method of magnetic solid phase extraction (MSPE) coupled to ICP-OES for the speciation of Mn(II)/Mn(VII) in water samples was established. The results showed that Mn(VII) and total manganese [Mn(II)+Mn(VII)] were quantitatively extracted after adjusting aqueous sample solution to pH 6.0 and 10.0, respectively. Mn(II) was calculated by subtraction of Mn(VII) from total manganese. Fe 3 O 4 @ILs-β-CDCP showed a higher adsorption capacity toward Mn(II) and Mn(VII). Several factors, such as the pH value, extraction temperature and sample volume, were optimized to achieve the best extraction efficiency. Moreover, the adsorption ability of Fe 3 O 4 @ILs-β-CDCP would not be significantly lower after reusing of 10 times. The accuracy of the developed method was confirmed by analyzing certified reference materials (GSB 07-1189-2000), and by spiking spring water, city water and lake water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. An accessible protocol for solid-phase extraction of N-linked glycopeptides through reductive amination by amine-functionalized magnetic nanoparticles.

    PubMed

    Zhang, Ying; Kuang, Min; Zhang, Lijuan; Yang, Pengyuan; Lu, Haojie

    2013-06-04

    In light of the significance of glycosylation for wealthy biological events, it is important to prefractionate glycoproteins/glycopeptides from complex biological samples. Herein, we reported a novel protocol of solid-phase extraction of glycopeptides through a reductive amination reaction by employing the easily accessible 3-aminopropyltriethoxysilane (APTES)-functionalized magnetic nanoparticles. The amino groups from APTES, which were assembled onto the surface of the nanoparticles through a one-step silanization reaction, could conjugate with the aldehydes from oxidized glycopeptides and, therefore, completed the extraction. To the best of our knowledge, this is the first example of applying the reductive amination reaction into the isolation of glycopeptides. Due to the elimination of the desalting step, the detection limit of glycopeptides was improved by 2 orders of magnitude, compared to the traditional hydrazide chemistry-based solid phase extraction, while the extraction time was shortened to 4 h, suggesting the high sensitivity, specificity, and efficiency for the extraction of N-linked glycopeptides by this method. In the meantime, high selectivity toward glycoproteins was also observed in the separation of Ribonuclease B from the mixtures contaminated with bovine serum albumin. What's more, this technique required significantly less sample volume, as demonstrated in the successful mapping of glycosylation of human colorectal cancer serum with the sample volume as little as 5 μL. Because of all these attractive features, we believe that the innovative protocol proposed here will shed new light on the research of glycosylation profiling.

  16. Selective solid-phase extraction based on molecularly imprinted technology for the simultaneous determination of 20 triazole pesticides in cucumber samples using high-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhao, Fengnian; She, Yongxin; Zhang, Chao; Cao, Xiaolin; Wang, Shanshan; Zheng, Lufei; Jin, Maojun; Shao, Hua; Jin, Fen; Wang, Jing

    2017-10-01

    A selective analytical method for the simultaneous determination of 20 triazole fungicides and plant growth regulators in cucumber samples was developed using solid-phase extraction with specific molecularly imprinted polymers (MIPs) as adsorbents. The MIPs were successfully prepared by precipitation polymerization using triadimefon as the template molecule, methacrylic acid as the functional monomer, trimethylolpropane trimethacrylate as the crosslinker, and acetonitrile as the porogen. The performance and recognition mechanism for both the MIPs and non-molecularly imprinted polymers were evaluated using adsorption isotherms and adsorption kinetics. Liquid chromatography-tandem quadrupole mass spectrometry was used to identify and quantify the target analytes. The solid-phase extraction using the MIPs was rapid, convenient, and efficient for extraction and enrichment of the 20 triazole pesticides from cucumber samples. The recoveries obtained at three concentration levels (1, 2, and 10μgL -1 ) ranged from 82.3% to 117.6% with relative standard deviations of less than 11.8% (n=5) for all analytes. The limits of detection for the 20 triazole pesticides were all less than 0.4μgL -1 , and were sufficient to meet international standards. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Silica aerogel coated on metallic wire by phase separation of polystyrene for in-tube solid phase microextraction.

    PubMed

    Baktash, Mohammad Yahya; Bagheri, Habib

    2017-06-02

    In this research, an attempt was made toward synthesizing a sol-gel-based silica aerogel and its subsequent coating on a copper wire by phase separation of polystyrene. Adaption of this new approach enabled us to coat the metallic wire with powder materials. The use of this method for coating, led to the formation of a porous and thick structure of silica aerogel. The coated wire was placed in a needle and used as the sorbent for in-tube solid phase microextraction of chlorobenzenes (CBs). The superhydrophobicity of sorbent on extraction efficiency was investigated by using different ratios of tetraethylorthosilicate/methyltrimethoxysilane. The surface coated with the prepared silica aerogel by the phase separation of polystyrene showed high contact angle, approving the desired superhydrophobic properties. Effects of major parameters influencing the extraction efficiency including the extraction temperature, extraction time, ionic strength, desorption time were investigated and optimized. The limits of detection and quantification of the method under the optimized condition were 0.1-1.2 and 0.4-4.1ngL -1 , respectively. The relative standard deviations (RSD%) at a concentration level of 10ngL -1 were between 4 and 10% (n=3). The calibration curves of CBs showed linearity from 1 to100ngL -1 . Eventually, the method was successfully applied to the extraction of model compounds from real water samples and relative recoveries varied from 88 to 115%. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Isolation and characterization of antimicrobial food components.

    PubMed

    Papetti, Adele

    2012-04-01

    Nowadays there is an evident growing interest in natural antimicrobial compounds isolated from food matrices. According to the type of matrix, different isolation and purification steps are needed and as these active compounds belong to different chemical classes, also different chromatographic and electrophoretic methods coupled with various detectors (the most used diode array detector and mass spectrometer) have to be performed. This review covers recent steps made in the fundamental understanding of sample preparation methods as well as of analytical tools useful for the complete characterization of bioactive food compounds. The most commonly used methods for extraction of natural antimicrobial compounds are the conventional liquid-liquid or solid-liquid extraction and the modern techniques such as pressurized liquid extraction, microwave-assisted extraction, ultrasound-assisted extraction, solid-phase micro-extraction, supercritical fluid extraction, and matrix solid phase dispersion. The complete characterization of the compounds is achieved using both monodimensional chromatographic processes (LC, nano-LC, GC, and CE coupled with different type of detectors) and, recently, using comprehensive two-dimensional systems (LC×LC and GC×GC). Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. A broadband chip-scale optical frequency synthesizer at 2.7 × 10−16 relative uncertainty

    PubMed Central

    Huang, Shu-Wei; Yang, Jinghui; Yu, Mingbin; McGuyer, Bart H.; Kwong, Dim-Lee; Zelevinsky, Tanya; Wong, Chee Wei

    2016-01-01

    Optical frequency combs—coherent light sources that connect optical frequencies with microwave oscillations—have become the enabling tool for precision spectroscopy, optical clockwork, and attosecond physics over the past decades. Current benchmark systems are self-referenced femtosecond mode-locked lasers, but Kerr nonlinear dynamics in high-Q solid-state microresonators has recently demonstrated promising features as alternative platforms. The advance not only fosters studies of chip-scale frequency metrology but also extends the realm of optical frequency combs. We report the full stabilization of chip-scale optical frequency combs. The microcomb’s two degrees of freedom, one of the comb lines and the native 18-GHz comb spacing, are simultaneously phase-locked to known optical and microwave references. Active comb spacing stabilization improves long-term stability by six orders of magnitude, reaching a record instrument-limited residual instability of 3.6mHz/τ. Comparing 46 nitride frequency comb lines with a fiber laser frequency comb, we demonstrate the unprecedented microcomb tooth-to-tooth relative frequency uncertainty down to 50 mHz and 2.7 × 10−16, heralding novel solid-state applications in precision spectroscopy, coherent communications, and astronomical spectrography. PMID:27152341

  20. Low Cost Extraction and Isothermal Amplification of DNA for Infectious Diarrhea Diagnosis

    PubMed Central

    Huang, Shichu; Do, Jaephil; Mahalanabis, Madhumita; Fan, Andy; Zhao, Lei; Jepeal, Lisa; Singh, Satish K.; Klapperich, Catherine M.

    2013-01-01

    In order to counter the common perception that molecular diagnostics are too complicated to work in low resource settings, we have performed a difficult sample preparation and DNA amplification protocol using instrumentation designed to be operated without wall or battery power. In this work we have combined a nearly electricity-free nucleic acid extraction process with an electricity-free isothermal amplification assay to detect the presence of Clostridium difficile (C. difficile) DNA in the stool of infected patients. We used helicase-dependent isothermal amplification (HDA) to amplify the DNA in a low-cost, thermoplastic reaction chip heated with a pair of commercially available toe warmers, while using a simple Styrofoam insulator. DNA was extracted from known positive and negative stool samples. The DNA extraction protocol utilized an air pressure driven solid phase extraction device run using a standard bicycle pump. The simple heater setup required no electricity or battery and was capable of maintaining the temperature at 65°C±2°C for 55 min, suitable for repeatable HDA amplification. Experiments were performed to explore the adaptability of the system for use in a range of ambient conditions. When compared to a traditional centrifuge extraction protocol and a laboratory thermocycler, this disposable, no power platform achieved approximately the same lower limit of detection (1.25×10−2 pg of C. difficile DNA) while requiring much less raw material and a fraction of the lab infrastructure and cost. This proof of concept study could greatly impact the accessibility of molecular assays for applications in global health. PMID:23555883

  1. Oxalic acid pretreatment of rice straw particles and loblolly pine chips : release of hemicellulosic carbohydrates

    Treesearch

    Xianjun Li; Zhiyong Cai; Eric Horn; Jerrold E. Winandy

    2011-01-01

    This study was conducted to evaluate the effect of oxalic acid (OA) pretreatment on carbohydrates released from rice straw particles and wood chips. The results showed that OA treatment accelerated carbohydrates extraction from rice straw particles and wood chips. OA pretreatment dramatically increased the amount of carbohydrates extracted, up to 24 times for wood...

  2. Determination of the cyanobacterial toxin cylindrospermopsin in algal food supplements.

    PubMed

    Liu, H; Scott, P M

    2011-06-01

    For the analysis of blue-green algal food supplements for cylindrospermopsin (CYN), a C18 solid-phase extraction column and a polygraphitized carbon solid-phase extraction column in series was an effective procedure for the clean-up of extracts. Determination of CYN was by liquid chromatography with ultraviolet light detection. At extract spiking levels of CYN equivalent to 25-500 µg g(-1), blue-green algal supplement recoveries were in the range 70-90%. CYN was not detected in ten samples of food supplements and one chocolate product, all containing blue-green algae. The limit of detection for the method was 16 µg g(-1), and the limit of quantification was 52 µg g(-1).

  3. Liquid-liquid and solid-phase extractions of phenols from virgin olive oil and their separation by chromatographic and electrophoretic methods.

    PubMed

    Bendini, Alessandra; Bonoli, Matteo; Cerretani, Lorenzo; Biguzzi, Barbara; Lercker, Giovanni; Toschi, Tullia Gallina

    2003-01-24

    The high oxidative stability of virgin olive oil is related to its high monounsaturated/polyunsaturated ratio and to the presence of antioxidant compounds, such as tocopherols and phenols. In this paper, the isolation of phenolic compounds from virgin olive oil, by different methods, was tested and discussed. Particularly liquid-liquid and solid-phase extraction methods were compared, assaying, for the latter, three stationary phases (C8, C18 and Diol) and several elution mixtures. Quantification of phenolic and o-diphenolic substances in the extracts was performed by the traditional Folin-Ciocalteau method and the sodium molybdate reaction, respectively. Furthermore, the quantification of phenolic compounds in the extracts and in a standard mixture was carried out both with diode array and mass spectrometric detection and capillary zone electrophoresis.

  4. Quantitation of acrylamide in food products by liquid chromatography/mass spectrometry.

    PubMed

    Eberhart, B Loye; Ewald, Deborah K; Sanders, Robert A; Tallmadge, Daniel H; Zyzak, David V; Strothers, Melissa A

    2005-01-01

    A simple and inexpensive liquid chromatography/mass spectrometry (LC/MS) method was developed for the quantitation of acrylamide in various food products. The method involved spiking the isotope-substituted internal standard (1-C13 acrylamide) onto 6.00 g of the food product, adding 40 mL distilled/deionized water, and heating at 65 degrees C for 30 min. Afterwards, 10 mL ethylene dichloride was added and the mixture was homogenized for 30 s and centrifuged at 2700 x g for 30 min, and then 8 g supernatant was extracted with 10, 5, and 5 mL portions of ethyl acetate. The extracts were combined, dried with sodium sulfate, and concentrated to 100-200 microL. Acrylamide was determined by analysis of the final extract on a single quadrupole, bench-top mass spectrometer with electrospray ionization, using a 2 mm id C18 column and monitoring m/z = 72 (acrylamide) and m/z = 73 (internal standard). For difficult food matrixes, such as coffee and cocoa, a solid-phase extraction cleanup step was incorporated to improve both chromatography and column lifetime. The method had a limit of quantitation of 10 ppb, and coefficients of determination (r2) for calibration curves were typically better than 0.998. Acceptable spike recovery results were achieved in 11 different food matrixes. Precision in potato chip analyses was 5-8% (relative standard deviation). This method provides an LC/MS alternative to the current LC/MS/MS methods and derivatization gas chromatography/mass spectrometry methods, and is applicable to difficult food products such as coffee, cocoa, and high-salt foods.

  5. Graphene oxide-based dispersive solid-phase extraction combined with in situ derivatization and gas chromatography-mass spectrometry for the determination of acidic pharmaceuticals in water.

    PubMed

    Naing, Nyi Nyi; Li, Sam Fong Yau; Lee, Hian Kee

    2015-12-24

    A fast and low-cost sample preparation method of graphene based dispersive solid-phase extraction combined with gas chromatography-mass spectrometric (GC-MS) analysis, was developed. The procedure involves an initial extraction with water-immiscible organic solvent, followed by a rapid clean-up using amine functionalized reduced graphene oxide as sorbent. Simple and fast one-step in situ derivatization using trimethylphenylammonium hydroxide was subsequently applied on acidic pharmaceuticals serving as model analytes, ibuprofen, gemfibrozil, naproxen, ketoprofen and diclofenac, before GC-MS analysis. Extraction parameters affecting the derivatization and extraction efficiency such as volume of derivatization agent, effect of desorption solvent, effect of pH and effect of ionic strength were investigated. Under the optimum conditions, the method demonstrated good limits of detection ranging from 1 to 16ngL(-1), linearity (from 0.01 to 50 and 0.05 to 50μgL(-1), depending on the analytes) and satisfactory repeatability of extractions (relative standard deviations, below 13%, n=3). Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Quad-Chip Double-Balanced Frequency Tripler

    NASA Technical Reports Server (NTRS)

    Lin, Robert H.; Ward, John S.; Bruneau, Peter J.; Mehdi, Imran; Thomas, Bertrand C.; Maestrini, Alain

    2010-01-01

    Solid-state frequency multipliers are used to produce tunable broadband sources at millimeter and submillimeter wavelengths. The maximum power produced by a single chip is limited by the electrical breakdown of the semiconductor and by the thermal management properties of the chip. The solution is to split the drive power to a frequency tripler using waveguides to divide the power among four chips, then recombine the output power from the four chips back into a single waveguide. To achieve this, a waveguide branchline quadrature hybrid coupler splits a 100-GHz input signal into two paths with a 90 relative phase shift. These two paths are split again by a pair of waveguide Y-junctions. The signals from the four outputs of the Y-junctions are tripled in frequency using balanced Schottky diode frequency triplers before being recombined with another pair of Y-junctions. A final waveguide branchline quadrature hybrid coupler completes the combination. Using four chips instead of one enables using four-times higher power input, and produces a nearly four-fold power output as compared to using a single chip. The phase shifts introduced by the quadrature hybrid couplers provide isolation for the input and output waveguides, effectively eliminating standing waves between it and surrounding components. This is accomplished without introducing the high losses and expense of ferrite isolators. A practical use of this technology is to drive local oscillators as was demonstrated around 300 GHz for a heterodyne spectrometer operating in the 2-3-THz band. Heterodyne spectroscopy in this frequency band is especially valuable for astrophysics due to the presence of a very large number of molecular spectral lines. Besides high-resolution radar and spectrographic screening applications, this technology could also be useful for laboratory spectroscopy.

  7. Magnetic graphene oxide modified by imidazole-based ionic liquids for the magnetic-based solid-phase extraction of polysaccharides from brown alga.

    PubMed

    Wang, Xiaoqin; Li, Guizhen; Row, Kyung Ho

    2017-08-01

    Magnetic graphene oxide was modified by four imidazole-based ionic liquids to synthesize materials for the extraction of polysaccharides by magnetic solid-phase extraction. Fucoidan and laminarin were chosen as the representative polysaccharides owing to their excellent pharmaceutical value and availability. Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, and thermogravimetric analysis were applied to characterize the synthesized materials. Single-factor experiments showed that the extraction efficiency of polysaccharides was affected by the amount of ionic liquids for modification, solid-liquid ratio of brown alga and ethanol, the stirring time of brown alga and ionic liquid-modified magnetic graphene oxide materials, and amount of 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide materials added to the brown alga sample solution. The results indicated that 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide possessed better extraction ability than graphene oxide, magnetic graphene oxide, and other three ionic-liquid-modified magnetic graphene oxide materials. The highest extraction recoveries of fucoidan and laminarin extracted by 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide were 93.3 and 87.2%, respectively. In addition, solid materials could be separated and reused easily owing to their magnetic properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Quantitative determination of risperidone, paliperidone and olanzapine in human serum by liquid chromatography-tandem mass spectrometry coupled with on-line solid-phase extraction.

    PubMed

    Ruan, Can-Jun; Guo, Wei; Zhou, Miao; Guo, Gui-Xin; Wang, Chuan-Yue; Li, Wen-Biao; de Leon, Jose

    2018-07-01

    A recent guideline recommends therapeutic drug monitoring for risperidone, paliperidone and olanzapine, which are frequently used second-generation antipsychotics. We developed a simple high-performance liquid chromatography-tandem mass spectrometry coupled with an online solid-phase extraction method that can be used to measure risperidone, paliperidone and olanzapine using small (40 μL) samples. The analytes were extracted from serum samples automatically pre-concentrated and purified by C 8 (5 μm, 2.1 × 30 mm) solid-phase extraction cartridges, then chromatographed on an Xbidge™ C 18 column (3.5 μm, 100 × 2.1 mm) thermostatted at 30°C with a mobile phase consisting of 70% acetonitrile and 30% ammonium hydroxide 1% solution at an isocratic flow rate of 0.3 mL/min, and detected with tandem mass spectrometry. The assay was validated in the concentration range from 2.5 to 160 ng/mL. Intra- and inter-day precision for all analytes was between 1.1 and 8.2%; method accuracy was between 6.6 and 7.6%. The risperidone and paliperidone assay was compared with a high-performance liquid chromatography-ultraviolet assay currently used in our hospital for risperidone and paliperidone therapeutic drug monitoring, and the results of weighted Deming regression analysis showed good agreement. For the olanzapine assay, we compared 20 samples in separate re-assays on different days; all the relative errors were within the 20% recommended limit. Copyright © 2018 John Wiley & Sons, Ltd.

  9. COMPARING THE SOLID PHASE AND SALINE EXTRACT MICROTOX(R) ASSAYS FOR TWO PAH CONTAMINATED SOILS

    EPA Science Inventory

    The performance of remedial treatments is typically evaluated by measuring the concentration of specific chemicals. By adding toxicity bioassays to treatment evaluations, a fuller understanding of treatment performance is obtained. The solid phase Microtox assay is one potenti...

  10. Liquid chromatography tandem mass spectrometry method using solid-phase extraction and bead-beating-assisted matrix solid-phase dispersion to quantify the fungicide tebuconazole in controlled frog exposure study: analysis of water and animal tissue.

    PubMed

    Hansen, Martin; Poulsen, Rikke; Luong, Xuan; Sedlak, David L; Hayes, Tyrone

    2014-11-01

    This paper presents the development, optimization, and validation of a LC-MS/MS methodology to determine the concentration of the antifungal drug and fungicide tebuconazole in a controlled exposure study of African clawed frogs (Xenopus laevis). The method is validated on animal tank water and on tissue from exposed and non-exposed adult X. laevis. Using solid-phase extraction (SPE), the analytical method allows for quantification of tebuconazole at concentrations as low as 3.89 pg mL(-1) in 10 mL water samples. Using bead-beating-assisted matrix solid-phase dispersion (MSPD), it was possible to quantify tebuconazole down to 0.63 pg mg(-1) wet weight liver using 150 mg tissue. The deuterated analogue of tebuconazole was used as internal standard, and ensured method accuracy in the range 80.6-99.7% for water and 68.1-109% for tissue samples. The developed method was successfully applied in a 4-week X. laevis repeated-exposure study, revealing high levels of tebuconazole residues in adipose and liver tissue, and with experimental bioconcentration factors up to 18,244 L kg(-1).

  11. Investigation of fragrance stability used in the formulation of cosmetic and hygienic products using headspace solid-phase microextraction by nanostructured materials followed by gas chromatography with mass spectrometry.

    PubMed

    Masoum, Saeed; Gholami, Ali; Ghaheri, Salehe; Bouveresse, Delphine Jouan-Rimbaud; Cordella, Christophe B Y; Rutledge, Douglas N

    2016-07-01

    A new composite coating of polypyrrole and sodium lauryl ether sulfate was electrochemically prepared on a stainless-steel wire using cyclic voltammetry. The application and performance of the fiber was evaluated for the headspace solid-phase microextraction of a fragrance in aqueous bleach samples followed by gas chromatography combined with mass spectrometry to assess the fragrance stability in this kind of household cleaning product. To obtain a stable and efficient composite coating, parameters related to the coating process such as scan rate and numbers of cycles were optimized using a central composite design. In addition, the effects of various parameters on the extraction efficiency of the headspace solid-phase microextraction process such as extraction temperature and time, ionic strength, sample volume, and stirring rate were investigated by experimental design methods using Plackett-Burman and Doehlert designs. The optimum values of 53°C and 28 min for sample temperature and time, respectively, were found through response surface methodology. Results show that the combination of polypyrrole and sodium lauryl ether sulfate in a composite form presents desirable opportunities to produce new materials to study fragrance stability by headspace solid-phase microextraction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A matrix solid-phase dispersion method for the extraction of seven pesticides from mango and papaya.

    PubMed

    Navickiene, Sandro; Aquino, Adriano; Bezerra, Débora Santos Silva

    2010-10-01

    A simple and effective extraction method based on matrix solid-phase dispersion was developed to determine trichlorfon, pyrimethanil, methyl parathion, tetraconazole, thiabendazole, imazalil, and tebuconazole in papaya and mango using gas chromatography-mass spectrometry with selected ion monitoring. Different parameters of the method were evaluated, such as type of solid-phase (silica-gel, neutral alumina, and Florisil), the amount of solid-phase, and eluent [dichloromethane, ethyl acetate-dichloromethane (4:1, 1:4, 1:1, 2:3, v/v)]. The best results were obtained using 2.0 g of mango or papaya, 3.0 g of silica as dispersant sorbent, and ethyl acetate-dichloromethane (1:1, v/v) as eluting solvent. The method was validated using mango and papaya samples fortified with pesticides at different concentration levels (0.05, 0.10, and 1.0 mg/kg). Average recoveries (4 replicates) ranged from 80% to 146%, with relative standard deviations between 1.0% and 28%. Detection and quantification limits for mango and papaya ranged from 0.01 to 0.03 mg/kg and 0.05 to 0.10 mg/kg, respectively. The proposed method was applied to the analysis of these compounds in commercial fruit samples from a local market (Aracaju/SE, Brazil), and residues of the pesticides were not detected on the samples.

  13. Some Fundamental Experiments on Apparent Dissolution Rate of Gas Phase in the Groundwater Recovery Processes of the Geological Disposal System - 12146

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshii, Taiki; Niibori, Yuichi; Mimura, Hitoshi

    The apparent dissolution rates of gas phase in the co-presence of solid phase were examined by in-room experiments in this study. The apparent dissolution rate of gas phase q (mol/m{sup 3}.s) was generally defined by q=aK{sub L}(γP{sub g}-c), where a (1/m) is specific surface area of the interface between gas and liquid phases, K{sub L} (m/s) is overall mass transfer coefficient, γ (mol/(Pa.m{sup 3})) is reciprocal number of Henry constant, P{sub g} (Pa) is partial pressure of gas phase, and c (mol/m{sup 3}) is the concentration of gas component in liquid phase. As a model gas, CO{sub 2} gas wasmore » used. For evaluating the values of K{sub L}, this study monitored pH or the migration rate of the interface between water/gas phases, using some experiments such as the packed beds and the micro channel consisting of granite chip and rubber sheet including a slit. In the results, the values of K{sub L} were distributed in the range from 5.0x10{sup -6} m/s to 5.0x10{sup -7} m/s. These values were small, in comparison with that (7.8x10{sup -4} m/s) obtained from the bubbling test where gas phase was continually injected into deionized water without solid phase. This means that the solid phase limits the local mixing of water phase near gas-liquid interfaces. (authors)« less

  14. Rapid determination of ions by combined solid-phase extraction--diffuse reflectance spectroscopy

    NASA Technical Reports Server (NTRS)

    Fritz, James S.; Arena, Matteo P.; Steiner, Steven A.; Porter, Marc D.

    2003-01-01

    We introduce colorimetric solid-phase extraction (C-SPE) for the rapid determination of selected ions. This new technique links the exhaustive concentration of an analyte by SPE onto a membrane disk surface for quantitative measurement with a hand-held diffuse reflectance spectrometer. The concentration/measurement procedure is complete in approximately 1 min and can be performed almost anywhere. This method has been used to monitor iodine and iodide in spacecraft water in the 0.1-5.0 ppm range and silver(I) in the range of 5.0-1000 microg/l. Applications to the trace analysis of copper(II), nickel(II), iron(III) and chromium(VI) are described. Studies on the mechanism of extraction showed that impregnation of the disk with a surfactant as well as a complexing reagent results in uptake of additional water, which markedly improves the extraction efficiency.

  15. Determination of azoxystrobin and chlorothalonil using a methacrylate-based polymer modified with gold nanoparticles as solid-phase extraction sorbent.

    PubMed

    Catalá-Icardo, Mónica; Gómez-Benito, Carmen; Simó-Alfonso, Ernesto Francisco; Herrero-Martínez, José Manuel

    2017-01-01

    This paper describes a novel and sensitive method for extraction, preconcentration, and determination of two important widely used fungicides, azoxystrobin, and chlorothalonil. The developed methodology is based on solid-phase extraction (SPE) using a polymeric material functionalized with gold nanoparticles (AuNPs) as sorbent followed by high-performance liquid chromatography (HPLC) with diode array detector (DAD). Several experimental variables that affect the extraction efficiency such as the eluent volume, sample flow rate, and salt addition were optimized. Under the optimal conditions, the sorbent provided satisfactory enrichment efficiency for both fungicides, high selectivity and excellent reusability (>120 re-uses). The proposed method allowed the detection of 0.05 μg L -1 of the fungicides and gave satisfactory recoveries (75-95 %) when it was applied to drinking and environmental water samples (river, well, tap, irrigation, spring, and sea waters).

  16. Ultrasound-assisted analyte extraction for the determination of sulfate and elemental sulfur in zinc sulfide by different liquid chromatography techniques.

    PubMed

    Dash, K; Thangavel, S; Krishnamurthy, N V; Rao, S V; Karunasagar, D; Arunachalam, J

    2005-04-01

    The speciation and determination of sulfate (SO4(2-)) and elemental sulfur (S degree) in zinc sulfide (ZnS) using ion-chromatography (IC) and reversed-phase liquid chromatography (RPLC) respectively is described. Three sample pretreatment approaches were employed with the aim of determining sulfate: (i) conventional water extraction of the analyte; (ii) solid-liquid aqueous extraction with an ultrasonic probe; and (iii) elimination of the zinc sulfide matrix via ion-exchange dissolution (IED). The separation of sulfate was carried out by an anion-exchange column (IonPac AS17), followed by suppressed conductivity detection. Elemental sulfur was extracted ultrasonically from the acid treated sample solution into chloroform and separated on a reversed phase HPLC column equipped with a diode array detector (DAD) at 264 nm. The achievable solid detection limits for sulfate and sulfur were 35 and 10 microg g(-1) respectively.

  17. Antifouling booster biocide extraction from marine sediments: a fast and simple method based on vortex-assisted matrix solid-phase extraction.

    PubMed

    Caldas, Sergiane Souza; Soares, Bruno Meira; Abreu, Fiamma; Castro, Ítalo Braga; Fillmann, Gilberto; Primel, Ednei Gilberto

    2018-03-01

    This paper reports the development of an analytical method employing vortex-assisted matrix solid-phase dispersion (MSPD) for the extraction of diuron, Irgarol 1051, TCMTB (2-thiocyanomethylthiobenzothiazole), DCOIT (4,5-dichloro-2-n-octyl-3-(2H)-isothiazolin-3-one), and dichlofluanid from sediment samples. Separation and determination were performed by liquid chromatography tandem-mass spectrometry. Important MSPD parameters, such as sample mass, mass of C18, and type and volume of extraction solvent, were investigated by response surface methodology. Quantitative recoveries were obtained with 2.0 g of sediment sample, 0.25 g of C18 as the solid support, and 10 mL of methanol as the extraction solvent. The MSPD method was suitable for the extraction and determination of antifouling biocides in sediment samples, with recoveries between 61 and 103% and a relative standard deviation lower than 19%. Limits of quantification between 0.5 and 5 ng g -1 were obtained. Vortex-assisted MPSD was shown to be fast and easy to use, with the advantages of low cost and reduced solvent consumption compared to the commonly employed techniques for the extraction of booster biocides from sediment samples. Finally, the developed method was applied to real samples. Results revealed that the developed extraction method is effective and simple, thus allowing the determination of biocides in sediment samples.

  18. Development and Industrialization of InGaN/GaN LEDs on Patterned Sapphire Substrates for Low Cost Emitter Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flemish, Joseph; Soer, Wouter

    2015-11-30

    Patterned sapphire substrate (PSS) technology has proven to be an effective approach to improve efficacy and reduce cost of light-emitting diodes (LEDs). The volume emission from the transparent substrate leads to high package efficiency, while the simple and robust architecture of PSS-based LEDs enables low cost. PSS substrates have gained wide use in mid-power LEDs over the past years. In this project, Lumileds has developed and industrialized PSS and epitaxy technology for high- power flip-chip LEDs to bring these benefits to a broader range of applications and accelerate the adoption of energy-efficient solid-state lighting (SSL). PSS geometries were designed formore » highly efficient light extraction in a flip-chip architecture and high-volume manufacturability, and corresponding sapphire patterning and epitaxy manufacturing processes were integrally developed. Concurrently, device and package architectures were developed to take advantage of the PSS flip-chip die in different types of products that meet application needs. The developed PSS and epitaxy technology has been fully implemented in manufacturing at Lumileds’ San Jose, CA location, and incorporated in illumination-grade LED products that have been successfully introduced to the market, including LUXEON Q and LUXEON FlipChip White.« less

  19. Aptamer entrapment in microfluidic channel using one-step sol-gel process, in view of the integration of a new selective extraction phase for lab-on-a-chip.

    PubMed

    Perréard, Camille; d'Orlyé, Fanny; Griveau, Sophie; Liu, Baohong; Bedioui, Fethi; Varenne, Anne

    2017-10-01

    There is a great demand for integrating sample treatment into μTASs. In this context, we developed a new sol-gel phase for extraction of trace compounds in complex matrices. For this purpose, the incorporation of aptamers in silica-based gel within PDMS/glass microfluidic channels was performed for the first time by a one-step sol-gel process. The effective gel attachment onto microchannel walls and aptamer incorporation in the polymerized gel were evaluated using fluorescence microscopy. A good gel stability and aptamer incorporation inside the microchannel was demonstrated upon rinsing and over storage time. The ability of gel-encapsulated aptamers to interact with its specific target (either sulforhodamine B as model fluorescent target, or diclofenac, a pain killer drug) was assessed too. The binding capacity of entrapped aptamers was quantified (in the micromolar range) and the selectivity of the interaction was evidenced. Preservation of aptamers binding affinity to target molecules was therefore demonstrated. Dissociation constant of the aptamer-target complex and interaction selectivity were evaluated similar to those in bulk solution. This opens the way to new selective on-chip SPE techniques for sample pretreatment. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Eco-friendly ionic liquid based ultrasonic assisted selective extraction coupled with a simple liquid chromatography for the reliable determination of acrylamide in food samples.

    PubMed

    Albishri, Hassan M; El-Hady, Deia Abd

    2014-01-01

    Acrylamide in food has drawn worldwide attention since 2002 due to its neurotoxic and carcinogenic effects. These influences brought out the dual polar and non-polar characters of acrylamide as they enabled it to dissolve in aqueous blood medium or penetrate the non-polar plasma membrane. In the current work, a simple HPLC/UV system was used to reveal that the penetration of acrylamide in non-polar phase was stronger than its dissolution in polar phase. The presence of phosphate salts in the polar phase reduced the acrylamide interaction with the non-polar phase. Furthermore, an eco-friendly and costless coupling of the HPLC/UV with ionic liquid based ultrasonic assisted extraction (ILUAE) was developed to determine the acrylamide content in food samples. ILUAE was proposed for the efficient extraction of acrylamide from bread and potato chips samples. The extracts were obtained by soaking of potato chips and bread samples in 1.5 mol L(-1) 1-butyl-3-methylimmidazolium bromide (BMIMBr) for 30.0 and 60.0 min, respectively and subsequent chromatographic separation within 12.0 min using Luna C18 column and 100% water mobile phase with 0.5 mL min(-1) under 25 °C column temperature at 250 nm. The extraction and analysis of acrylamide could be achieved within 2h. The mean extraction efficiency of acrylamide showed adequate repeatability with relative standard deviation (RSD) of 4.5%. The limit of detection and limit of quantitation were 25.0 and 80.0 ng mL(-1), respectively. The accuracy of the proposed method was tested by recovery in seven food samples giving values ranged between 90.6% and 109.8%. Therefore, the methodology was successfully validated by official guidelines, indicating its reliability to be applied to analysis of real samples, proven to be useful for its intended purpose. Moreover, it served as a simple, eco-friendly and costless alternative method over hitherto reported ones. © 2013 Elsevier B.V. All rights reserved.

  1. Immobilized humic substances and immobilized aggregates of humic substances as sorbent for solid phase extraction.

    PubMed

    Erny, Guillaume L; Gonçalves, Bruna M; Esteves, Valdemar I

    2013-09-06

    In this work, humic substances (HS) immobilized, as a thin layer or as aggregates, on silica gel were tested as material for solid phase extraction. Some triazines (simazine, atrazine, therbutylazine, atrazine-desethyl-desisopropyl-2-hydroxy, ametryn and terbutryn), have been selected as test analytes due to their environmental importance and to span a large range of solubility and octanol/water partition coefficient (logP). The sorbent was obtained immobilizing a thin layer of HS via physisorption on a pre-coated silica gel with a cationic polymer (polybrene). While the sorbent could be used as it is, it was demonstrated that additional HS could be immobilized, via weak interactions, to form stable humic aggregates. However, while a higher quantity of HS could be immobilized, no significant differences were observed in the sorption parameters. This sorbent have been tested for solid phase extraction to concentrate triazines from aqueous matrixes. The sorbent demonstrated performances equivalent to commercial alternatives as a concentration factor between 50 and 200, depending on the type of triazines, was obtained. Moreover the low cost and the high flow rate of sample through the column allowed using high quantity of sorbent. The analytical procedure was tested with different matrixes including tap water, river water and estuarine water. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Comprehensive automation of the solid phase extraction gas chromatographic mass spectrometric analysis (SPE-GC/MS) of opioids, cocaine, and metabolites from serum and other matrices.

    PubMed

    Lerch, Oliver; Temme, Oliver; Daldrup, Thomas

    2014-07-01

    The analysis of opioids, cocaine, and metabolites from blood serum is a routine task in forensic laboratories. Commonly, the employed methods include many manual or partly automated steps like protein precipitation, dilution, solid phase extraction, evaporation, and derivatization preceding a gas chromatography (GC)/mass spectrometry (MS) or liquid chromatography (LC)/MS analysis. In this study, a comprehensively automated method was developed from a validated, partly automated routine method. This was possible by replicating method parameters on the automated system. Only marginal optimization of parameters was necessary. The automation relying on an x-y-z robot after manual protein precipitation includes the solid phase extraction, evaporation of the eluate, derivatization (silylation with N-methyl-N-trimethylsilyltrifluoroacetamide, MSTFA), and injection into a GC/MS. A quantitative analysis of almost 170 authentic serum samples and more than 50 authentic samples of other matrices like urine, different tissues, and heart blood on cocaine, benzoylecgonine, methadone, morphine, codeine, 6-monoacetylmorphine, dihydrocodeine, and 7-aminoflunitrazepam was conducted with both methods proving that the analytical results are equivalent even near the limits of quantification (low ng/ml range). To our best knowledge, this application is the first one reported in the literature employing this sample preparation system.

  3. Graphene oxide decorated with silver nanoparticles as a coating on a stainless-steel fiber for solid-phase microextraction.

    PubMed

    Wang, Licheng; Hou, Xiudan; Li, Jubai; Liu, Shujuan; Guo, Yong

    2015-07-01

    A novel graphene oxide decorated with silver nanoparticles coating on a stainless-steel fiber for solid-phase microextraction was prepared. Scanning electron microscopy and X-ray photoelectron spectroscopy were used to characterize the coating surface and showed that silver nanoparticles were dispersed on the wrinkled graphene oxide surface. Coupled to gas chromatography with flame ionization detection, the extraction abilities of the fiber for polycyclic aromatic hydrocarbons were examined in the headspace solid-phase microextraction mode. The extraction parameters including adsorption time, adsorption temperature, salt concentration, desorption time and desorption temperature were investigated. Under the optimized condition, wide linearity with low limits of detection from 2 to 10 ng/L was obtained. The relative standard deviations for single-fiber repeatability and fiber-to-fiber reproducibility were less than 10.6 and 17.5%, respectively. The enrichment factors were from 1712.5 to 4503.7, showing the fiber has good extraction abilities. Moreover, the fiber exhibited a good stability and could be reused for more than 120 times. The established method was also applied for determination of polycyclic aromatic hydrocarbons in two real water samples and the recoveries of analytes ranged from 84.4-116.3% with relative standard deviations less than 16.2%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Portable Solid Phase Micro-Extraction Coupled with Ion Mobility Spectrometry System for On-Site Analysis of Chemical Warfare Agents and Simulants in Water Samples

    PubMed Central

    Yang, Liu; Han, Qiang; Cao, Shuya; Yang, Jie; Yang, Junchao; Ding, Mingyu

    2014-01-01

    On-site analysis is an efficient approach to facilitate analysis at the location of the system under investigation as it can result in more accurate, more precise and quickly available analytical data. In our work, a novel self-made thermal desorption based interface was fabricated to couple solid-phase microextraction with ion mobility spectrometry for on-site water analysis. The portable interface can be connected with the front-end of an ion mobility spectrometer directly without other modifications. The analytical performance was evaluated via the extraction of chemical warfare agents and simulants in water samples. Several parameters including ionic strength and extraction time have been investigated in detail. The application of the developed method afforded satisfactory recoveries ranging from 72.9% to 114.4% when applied to the analysis of real water samples. PMID:25384006

  5. Dynamic and label-free high-throughput detection of biomolecular interactions based on phase-shift interferometry

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Huang, Guoliang; Gan, Wupeng; Chen, Shengyi

    2009-08-01

    Biomolecular interactions can be detected by many established technologies such as fluorescence imaging, surface plasmon resonance (SPR)[1-4], interferometry and radioactive labeling of the analyte. In this study, we have designed and constructed a label-free, real-time sensing platform and its operating imaging instrument that detects interactions using optical phase differences from the accumulation of biological material on solid substrates. This system allows us to monitor biomolecular interactions in real time and quantify concentration changes during micro-mixing processes by measuring the changes of the optical path length (OPD). This simple interferometric technology monitors the optical phase difference resulting from accumulated biomolecular mass. A label-free protein chip that forms a 4×4 probe array was designed and fabricated using a commercial microarray robot spotter on solid substrates. Two positive control probe lines of BSA (Bovine Serum Albumin) and two experimental human IgG and goat IgG was used. The binding of multiple protein targets was performed and continuously detected by using this label-free and real-time sensing platform.

  6. Polydopamine-coated magnetic molecularly imprinted polymer for the selective solid-phase extraction of cinnamic acid, ferulic acid and caffeic acid from radix scrophulariae sample.

    PubMed

    Yin, Yuli; Yan, Liang; Zhang, Zhaohui; Wang, Jing; Luo, Ningjing

    2016-04-01

    We describe novel cinnamic acid polydopamine-coated magnetic imprinted polymers for the simultaneous selective extraction of cinnamic acid, ferulic acid and caffeic acid from radix scrophulariae sample. The novel magnetic imprinted polymers were synthesized by surface imprinting polymerization using magnetic multi-walled carbon nanotubes as the support material, cinnamic acid as the template and dopamine as the functional monomer. The magnetic imprinted polymers were characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and vibrating sample magnetometry. The results revealed that the magnetic imprinted polymers had outstanding magnetic properties, high adsorption capacity, selectivity and fast kinetic binding toward cinnamic acid, ferulic acid and caffeic acid. Coupled with high-performance liquid chromatography, the extraction conditions of the magnetic imprinted polymers as a magnetic solid-phase extraction sorbent were investigated in detail. The proposed imprinted magnetic solid phase extraction procedure has been used for the purification and enrichment of cinnamic acid, ferulic acid and caffeic acid successfully from radix scrophulariae extraction sample with recoveries of 92.4-115.0% for cinnamic acid, 89.4-103.0% for ferulic acid and 86.6-96.0% for caffeic acid. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Solid-phase Extraction Using Hierarchical Organosilicates for Enhanced Detection of Nitroenergetic Targets

    DTIC Science & Technology

    2011-01-01

    THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 liquid or gas chromatography and do not Icnd themselves well...typically compatible with gas or liquid chromatography , and equilibration times can be lengthy. Other solid-phase extraction pTOtoools have utilized a...aniH M"X vr sat,~rat io~ of> an ~quifer o.r. soi ~. Surface water often contains from sea water was similar to recovery from deionized waier for ,:’ a

  8. Imprinted magnetic graphene oxide for the mini-solid phase extraction of Eu (III) from coal mine area

    NASA Astrophysics Data System (ADS)

    Patra, Santanu; Roy, Ekta; Madhuri, Rashmi; Sharma, Prashant K.

    2017-05-01

    The present work represents the preparation of imprinted magnetic reduced graphene oxide and applied it for the selective removal of Eu (III) from local coal mines area. A simple solid phase extraction method was used for this purpose. The material shows a very high adsorption as well as removal efficiency towards Eu (III), which suggest that the material have potential to be used in future for their real time applications in removal of Eu (III) from complex matrices.

  9. Integrated sample-to-detection chip for nucleic acid test assays.

    PubMed

    Prakash, R; Pabbaraju, K; Wong, S; Tellier, R; Kaler, K V I S

    2016-06-01

    Nucleic acid based diagnostic techniques are routinely used for the detection of infectious agents. Most of these assays rely on nucleic acid extraction platforms for the extraction and purification of nucleic acids and a separate real-time PCR platform for quantitative nucleic acid amplification tests (NATs). Several microfluidic lab on chip (LOC) technologies have been developed, where mechanical and chemical methods are used for the extraction and purification of nucleic acids. Microfluidic technologies have also been effectively utilized for chip based real-time PCR assays. However, there are few examples of microfluidic systems which have successfully integrated these two key processes. In this study, we have implemented an electro-actuation based LOC micro-device that leverages multi-frequency actuation of samples and reagents droplets for chip based nucleic acid extraction and real-time, reverse transcription (RT) PCR (qRT-PCR) amplification from clinical samples. Our prototype micro-device combines chemical lysis with electric field assisted isolation of nucleic acid in a four channel parallel processing scheme. Furthermore, a four channel parallel qRT-PCR amplification and detection assay is integrated to deliver the sample-to-detection NAT chip. The NAT chip combines dielectrophoresis and electrostatic/electrowetting actuation methods with resistive micro-heaters and temperature sensors to perform chip based integrated NATs. The two chip modules have been validated using different panels of clinical samples and their performance compared with standard platforms. This study has established that our integrated NAT chip system has a sensitivity and specificity comparable to that of the standard platforms while providing up to 10 fold reduction in sample/reagent volumes.

  10. Quantification of the xenoestrogens 4-tert.-octylphenol and bisphenol A in water and in fish tissue based on microwave assisted extraction, solid-phase extraction and liquid chromatography-mass spectrometry.

    PubMed

    Pedersen, S N; Lindholst, C

    1999-12-09

    Extraction methods were developed for quantification of the xenoestrogens 4-tert.-octylphenol (tOP) and bisphenol A (BPA) in water and in liver and muscle tissue from the rainbow trout (Oncorhynchus mykiss). The extraction of tOP and BPA from tissue samples was carried out using microwave-assisted solvent extraction (MASE) followed by solid-phase extraction (SPE). Water samples were extracted using only SPE. For the quantification of tOP and BPA, liquid chromatography mass spectrometry (LC-MS) equipped with an atmospheric pressure chemical ionisation interface (APCI) was applied. The combined methods for tissue extraction allow the use of small sample amounts of liver or muscle (typically 1 g), low volumes of solvent (20 ml), and short extraction times (25 min). Limits of quantification of tOP in tissue samples were found to be approximately 10 ng/g in muscle and 50 ng/g in liver (both based on 1 g of fresh tissue). The corresponding values for BPA were approximately 50 ng/g in both muscle and liver tissue. In water, the limit of quantification for tOP and BPA was approximately 0.1 microg/l (based on 100 ml sample size).

  11. [Determination of wilforine in honey using solid phase extraction purification and ultra performance liquid chromatography-tanden mas spectrometry].

    PubMed

    Lei, Meikang; Peng, Fang; Ding, Tao; Zhu, Zitong; Xu, Jiawen; Wu, Xiaoqin

    2015-01-01

    A method based on solid phase extraction and ultra performance liquid chromatography coupled with tandem mass spectrometry (SPE-UPLC-MS/MS) has been proposed for the determination of wilforine residue in honey. After the sample was dissolved with water, concentrated and purified by an HLB solid phase extraction cartridge, the UPLC separation was performed on a Hypersil GOLD C18 column (50 mm x 2.1 mm, 1.9 microm) utilizing a gradient elution program of methanol (containing 0.15% formic acid) and water as mobile phases at a flow rate of 0. 25 mL/min. The determination was carried out with electrospray ion source in the positive mode (ESI) and multiple reaction monitoring (MRM) mode. The mass concentration of wilforine in the range of 0.01-2 microg/L was linearly correlated with the peak area, and the correlation coefficients was greater than 0.998. The limit of quantification (S/N>10) for wilforine was 0.01 microg/kg. The recoveries were 76.1% to 96.2% in the spiked levels of 0.01, 0.05 and 0.5 microg/kg with the relative standard deviations (RSD, n=6) lower than 10%. The results indicate that the method is rapid, sensitive and accurate, and can be applied for the qualitative and quantitative analysis of wilforine in honey.

  12. Solid phase extraction and spectrophotometric determination of Au(III) with 5-(2-hydroxy-5-nitrophenylazo)thiorhodanine.

    PubMed

    Hu, Qiufen; Chen, Xiubin; Yang, Xiangjun; Huang, Zhangjie; Chen, Jing; Yang, Guangyu

    2006-04-01

    A new chromogenic reagent, 5-(2-hydroxy-5-nitrophenylazo)thiorhodanine (HNATR) was synthesized. A highly sensitive, selective and rapid method for the determination microg l(-1) level of Au(III) based on the rapid reaction of Au(III) with HNATR and the solid phase extraction of the colored complex with a reversed phase polymer-based C(18) cartridge have been developed. The HNATR reacted with Au(III) to form a red complex of a molar ratio 1:2 (Au(III) to HNATR) in the presence of 0.05 - 0.5 mol l(-1) of phosphoric acid solution and emulsifier-OP medium. This complex was enriched by the solid phase extraction with a polymer-based C(18) cartridge. The enrichment factor of 100 was achieved. The molar absorptivity of the complex is 1.37 x 10(5) l mol(-1) cm(-1) at 520 nm in the measured solution. The system obeys Beer's law in the range of 0.01 - 3 microg ml(-1). The relative standard deviation for eleven replicates sample of 0.5 microg l(-1) level is 2.18%. The detection limit, based on the three times of standard deviation is 0.02 microg l(-1) in the original sample. This method was applied to the determination of gold in water and ore with good results.

  13. Efficient sample preparation method based on solvent-assisted dispersive solid-phase extraction for the trace detection of butachlor in urine and waste water samples.

    PubMed

    Aladaghlo, Zolfaghar; Fakhari, Alireza; Behbahani, Mohammad

    2016-10-01

    In this work, an efficient sample preparation method termed solvent-assisted dispersive solid-phase extraction was applied. The used sample preparation method was based on the dispersion of the sorbent (benzophenone) into the aqueous sample to maximize the interaction surface. In this approach, the dispersion of the sorbent at a very low milligram level was achieved by inserting a solution of the sorbent and disperser solvent into the aqueous sample. The cloudy solution created from the dispersion of the sorbent in the bulk aqueous sample. After pre-concentration of the butachlor, the cloudy solution was centrifuged and butachlor in the sediment phase dissolved in ethanol and determined by gas chromatography with flame ionization detection. Under the optimized conditions (solution pH = 7.0, sorbent: benzophenone, 2%, disperser solvent: ethanol, 500 μL, centrifuged at 4000 rpm for 3 min), the method detection limit for butachlor was 2, 3 and 3 μg/L for distilled water, waste water, and urine sample, respectively. Furthermore, the preconcentration factor was 198.8, 175.0, and 174.2 in distilled water, waste water, and urine sample, respectively. Solvent-assisted dispersive solid-phase extraction was successfully used for the trace monitoring of butachlor in urine and waste water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Solid phase extraction of copper(II) by fixed bed procedure on cation exchange complexing resins.

    PubMed

    Pesavento, Maria; Sturini, Michela; D'Agostino, Girolamo; Biesuz, Raffaela

    2010-02-19

    The efficiency of the metal ion recovery by solid phase extraction (SPE) in complexing resins columns is predicted by a simple model based on two parameters reflecting the sorption equilibria and kinetics of the metal ion on the considered resin. The parameter related to the adsorption equilibria was evaluated by the Gibbs-Donnan model, and that related to the kinetics by assuming that the ion exchange is the adsorption rate determining step. The predicted parameters make it possible to evaluate the breakthrough volume of the considered metal ion, Cu(II), from different kinds of complexing resins, and at different conditions, such as acidity and ionic composition. Copyright 2009. Published by Elsevier B.V.

  15. Separation and structural analysis of saponins in a bark extract from Quillaja saponaria Molina.

    PubMed

    Nord, L I; Kenne, L

    1999-07-20

    Six major saponins were isolated from a bark extract from Quillaja saponaria Molina. Solid-phase extraction, followed by a two-step reversed-phase HPLC separation procedure with phosphate and ammonium acetate buffers of different pH values, was used. The compounds were characterised using NMR spectroscopy, mass spectrometry and chemical methods.

  16. Application of the base catalyzed decomposition process to treatment of PCB-contaminated insulation and other materials associated with US Navy vessels. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, A.J.; Zacher, A.H.; Gano, S.R.

    1996-09-01

    The BCD process was applied to dechlorination of two types of PCB-contaminated materials generated from Navy vessel decommissioning activities at Puget Sound Naval Shipyard: insulation of wool felt impregnated with PCB, and PCB-containing paint chips/debris from removal of paint from metal surfaces. The BCD process is a two-stage, low-temperature chemical dehalogenation process. In Stage 1, the materials are mixed with sodium bicarbonate and heated to 350 C. The volatilized halogenated contaminants (eg, PCBs, dioxins, furans), which are collected in a small volume of particulates and granular activated carbon, are decomposed by the liquid-phase reaction (Stage 2) in a stirred-tank reactor,more » using a high-boiling-point hydrocarbon oil as the reaction medium, with addition of a hydrogen donor, a base (NaOH), and a catalyst. The tests showed that treating wool felt insulation and paint chip wastes with Stage 2 on a large scale is feasible, but compared with current disposal costs for PCB-contaminated materials, using Stage 2 would not be economical at this time. For paint chips generated from shot/sand blasting, the solid-phase BCD process (Stage 1) should be considered, if paint removal activities are accelerated in the future.« less

  17. On-line solid phase selective separation and preconcentration of Cd(II) by solid-phase extraction using carbon active modified with methyl thymol blue.

    PubMed

    Ensafi, Ali A; Ghaderi, Ali R

    2007-09-05

    An on-line flow system was used to develop a selective and efficient on-line sorbent extraction preconcentration system for cadmium. The method is based on adsorption of cadmium ions onto the activated carbon modified with methyl thymol blue. Then the adsorbed ions were washed using 0.5M HNO(3) and the eluent was used to determine the Cd(II) ions using flame atomic absorption spectrometry. The results obtained show that the modified activated carbon has the greatest adsorption capacity of 80 microg of Cd(II) per 1.0 g of the solid phase. The optimal pH value for the quantitative preconcentration was 9.0 and full desorption is achieved by using 0.5M HNO(3) solution. It is established that the solid phase can be used repeatedly without a considerable adsorption capacity loss. The detection limit was less than 1 ngmL(-1) Cd(II), with an enrichment factor of 1000. The calibration graph was linear in the range of 1-2000 ngmL(-1) Cd(II). The developed method has been applied to the determination of trace cadmium (II) in water samples and in the following reference materials: sewage sludge (CRM144R), and sea water (CASS.4) with satisfactory results. The accuracy was assessed through recovery experiments.

  18. Determination of cobalt species in nutritional supplements using ICP-OES after microwave-assisted extraction and solid-phase extraction.

    PubMed

    Bartosiak, Magdalena; Jankowski, Krzysztof; Giersz, Jacek

    2018-06-05

    Cobalt content (as vitamin B 12 and inorganic cobalt) in two nutritional supplements, namely Spirulina platensis and Saccharomyces cerevisiae known as a "superfood", has been determined using inductively coupled plasma optical emission spectrometry (ICP-OES). Several sample pre-treatment protocols have been applied and compared. Microwave-assisted acid digestion efficiently decomposed all cobalt-containing compounds, thus allowed obtaining total cobalt content in supplements examined. Vitamin B 12 was extracted from the samples with acetate buffer and potassium cyanide solution exposed to mild microwave radiation for 30 min, and cyanocobalamin was separated from the extract by on-column solid phase extraction using C-18 modified silica bed. About 100% of cobalt species was extracted using the triple microwave-assisted extraction procedure. Total cobalt content was 20-fold greater in Spirulina tablets than the declared cobalamin content (as Co). The ICP-OES method precision was about 3% and detection limit was 1.9 and 2.7 ng Co mL -1 for inorganic cobalt or cyanocobalamin, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Micro-matrix solid-phase dispersion coupled with MEEKC for quantitative analysis of lignans in Schisandrae Chinensis Fructus using molecular sieve TS-1 as a sorbent.

    PubMed

    Chu, Chu; Wei, Mengmeng; Wang, Shan; Zheng, Liqiong; He, Zheng; Cao, Jun; Yan, Jizhong

    2017-09-15

    A simple and effective method was developed for determining lignans in Schisandrae Chinensis Fructus by using a micro-matrix solid phase dispersion (MSPD) technique coupled with microemulsion electrokinetic chromatography (MEEKC). Molecular sieve, TS-1, was applied as a solid supporting material in micro MSPD extraction for the first time. Parameters that affect extraction efficiency, such as type of dispersant, mass ratio of the sample to the dispersant, grinding time, elution solvent and volume were optimized. The optimal extraction conditions involve dispersing 25mg of powdered Schisandrae samples with 50mg of TS-1 by a mortar and pestle. A grinding time of 150s was adopted. The blend was then transferred to a solid-phase extraction cartridge and the target analytes were eluted with 500μL of methanol. Moreover, several parameters affecting MEEKC separation were studied, including the type of oil, SDS concentration, type and concentration of cosurfactant, and concentration of organic modifier. A satisfactory linearity (R>0.9998) was obtained, and the calculated limits of quantitation were less than 2.77μg/mL. Finally, the micro MSPD-MEEKC method was successfully applied to the analysis of lignans in complex Schisandrae fructus samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Evaluation of alternative environmentally friendly matrix solid phase dispersion solid supports for the simultaneous extraction of 15 pesticides of different chemical classes from drinking water treatment sludge.

    PubMed

    Soares, Karina Lotz; Cerqueira, Maristela Barnes Rodrigues; Caldas, Sergiane Souza; Primel, Ednei Gilberto

    2017-09-01

    This study describes the development, optimization and validation of a method for the extraction of 15 pesticides of different chemical classes in drinking water treatment sludge (DWTS) by vortex-assisted Matrix Solid Phase Dispersion (MSPD) with determination by gas chromatography coupled to mass spectrometry. It focused on the application of alternative and different solid supports to the extraction step of the MSPD. The main parameters that influenced the extraction were studied in order to obtain better recovery responses. Recoveries ranged from 70 to 120% with RSD below 20% for all analytes. Limits of quantification (LOQ) of the method ranged from 5 to 500 μg kg -1 whereas the analytical curves showed correlation coefficients above 0.997. The method under investigation used low volume of solvent (5 mL), low sample mass (1.5 g) and low mass of chitin (0.5 g), an environmentally friendly support. It has advantages, such as speed, simplicity and low cost material, over other methods. When the method was applied, 4 out of 15 pesticides were detected in the DWTS samples in concentrations below the LOQ. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Polycyclic aromatic hydrocarbons in frying oils and snacks.

    PubMed

    Purcaro, Giorgia; Navas, José A; Guardiola, Francesc; Conte, Lanfranco S; Moret, Sabrina

    2006-01-01

    The high incidence of lung cancer observed among Chinese women has been associated with exposure to fumes from cooking oil. Polycyclic aromatic hydrocarbons (PAHs) are a class of potentially mutagenic substances emitted from cooking oils heated at high temperatures. The objective of this study was to investigate whether deep frying with different oils under different conditions leads to the development of PAHs either in the oil or in the fried product (snacks). PAH analysis was carried out with solid-phase extraction followed by reverse-phase high-performance liquid chromatography and spectrofluorometric detection. Different oils were used to fry chips and extruded snacks in different industrial plants (continuous frying) at temperatures between 170 and 205 degrees C, and peanut oil was used to fry French fries and fish (discontinuous frying) at temperatures between 160 and 185 degrees C. No appreciable differences in PAH load was observed in the same oil before and after frying. Both before and after frying, the benzo[a]pyrene concentration in oils ranged from trace to 0.7 ppb. All the analyzed samples, including oils from fried snacks, had benzo[a]pyrene concentrations well below the 2 ppb limit recently proposed by the European Community.

  2. Rapid determination of six carcinogenic primary aromatic amines in mainstream cigarette smoke by two-dimensional online solid phase extraction combined with liquid chromatography tandem mass spectrometry.

    PubMed

    Bie, Zhenying; Lu, Wei; Zhu, You; Chen, Yusong; Ren, Hubo; Ji, Lishun

    2017-01-27

    A fully automated, rapid, and reliable method for simultaneous determination of six carcinogenic primary aromatic amines (AAs), including o-toluidine (o-TOL), 2, 6-dimethylaniline (2, 6-DMA), o-anisidine (o-ASD), 1-naphthylamine (1-ANP), 2-naphthylamine (2-ANP), and 4-aminobiphenyl (4-ABP), in mainstream cigarette smoke was established. The proposed method was based on two-dimensional online solid phase extraction combined with liquid chromatography tandem mass spectrometry (SPE/LC-MS/MS). The particulate phase of the mainstream cigarette smoke was collected on a Cambridge filter pad and pretreated via ultrasonic extraction with 2% formic acid (FA), while the gas phase was trapped by 2% FA without pretreatment for determination. The two-dimensional online SPE comprised of two cartridges with different absorption characteristics was applied for sample pretreatment. Analysis was performed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) under multiple reaction monitoring mode. Each sample required about 0.5h for solid phase extraction and analysis. The limit of detections (LODs) for six AAs ranged from 0.04 to 0.58ng/cig and recoveries were within 84.5%-122.9%. The relative standard deviations of intra- and inter-day tests for 3R4F reference cigarette were less than 6% and 7%, respectively, while no more than 7% and 8% separately for a type of Virginia cigarette. The proposed method enabled minimum sample pretreatment, full automation, and high throughput with high selectivity, sensitivity, and accuracy. As a part of the validation procedure, fifteen brands of cigarettes were tested by the designed method. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. On-chip optical phase locking of single growth monolithically integrated Slotted Fabry Perot lasers.

    PubMed

    Morrissey, P E; Cotter, W; Goulding, D; Kelleher, B; Osborne, S; Yang, H; O'Callaghan, J; Roycroft, B; Corbett, B; Peters, F H

    2013-07-15

    This work investigates the optical phase locking performance of Slotted Fabry Perot (SFP) lasers and develops an integrated variable phase locked system on chip for the first time to our knowledge using these lasers. Stable phase locking is demonstrated between two SFP lasers coupled on chip via a variable gain waveguide section. The two lasers are biased differently, one just above the threshold current of the device with the other at three times this value. The coupling between the lasers can be controlled using the variable gain section which can act as a variable optical attenuator or amplifier depending on bias. Using this, the width of the stable phase locking region on chip is shown to be variable.

  4. Simultaneous determination of four plant hormones in bananas by molecularly imprinted solid-phase extraction coupled with high performance liquid chromatography.

    PubMed

    Yan, Hongyuan; Wang, Fang; Han, Dandan; Yang, Gengliang

    2012-06-21

    A highly selective molecularly imprinted solid-phase extraction (MISPE) combined with liquid chromatography-ultraviolet detection was developed for the simultaneous isolation and determination of four plant hormones including indole-3-acetic acid (IAA), indole-3-propionic acid (IPA), indole-3-butyric acid (IBA) and 1-naphthaleneacetic acid (NAA) in banana samples. The new molecularly imprinted microspheres (MIMs) prepared by aqueous suspension polymerization using 3-hydroxy-2-naphthoic acid and 1-methylpiperazine as mimic templates performed with high selectivity and affinity for the four plant hormones, and applied as selective sorbents of solid-phase extraction could effectively eliminate the interferences of the banana matrix. Good linearity was obtained in a range of 0.04-4.00 μg g(-1) and the recoveries of the four plant hormones at three spiked levels ranged from 78.5 to 107.7% with the relative standard deviations (RSD) of less than 4.6%. The developed MISPE-HPLC protocol obviously improved the selectivity and eliminated the effect of template leakage on quantitative analysis, and could be applied for the determination of plant hormones in complicated biological samples.

  5. Matrix solid-phase dispersion as a tool for phytochemical and bioactivities characterisation: Crataegus oxyacantha L._A case study.

    PubMed

    Benabderrahmane, Wassila; Lores, Marta; Lamas, Juan Pablo; Benayache, Samir

    2018-05-01

    The use of a matrix solid-phase dispersion (MSPD) process to extract polyphenols from hawthorn (Crataegus oxyacantha L.) a deciduous shrub with an expected rich phytochemical profile, has been evaluated. MSPD extracts of fruits and leaves have an outstanding content of polyphenols, although the particular phenolic profile is solvent dependent. The extracts were analysed by HPLC-DAD for the accurate identification of the major bioactive polyphenols, some of which have never been described for this species. MSPD has proven to be a good alternative to the classic methods of obtaining natural extracts, fast and with low consumption of organic solvents, therefore, environmentally friendly. The bioactivities can be considered also very remarkable, revealing extracts with high levels of antioxidant activity.

  6. Emerging Environmental Contaminants and Soled Phase Microextraction: Janusz Pawliszyn's Legacy in the Environmental Arena

    EPA Science Inventory

    Solid phase microextraction (SPME) has revolutionized the way samples are extracted, enabling rapid, automated, and solventless extraction of many different sample types, including air, water, soil, and biological samples. As such, SPME is widely used for environmental, food, fo...

  7. Flip-chip light emitting diode with resonant optical microcavity

    DOEpatents

    Gee, James M.; Bogart, Katherine H.A.; Fischer, Arthur J.

    2005-11-29

    A flip-chip light emitting diode with enhanced efficiency. The device structure employs a microcavity structure in a flip-chip configuration. The microcavity enhances the light emission in vertical modes, which are readily extracted from the device. Most of the rest of the light is emitted into waveguided lateral modes. Flip-chip configuration is advantageous for light emitting diodes (LEDs) grown on dielectric substrates (e.g., gallium nitride LEDs grown on sapphire substrates) in general due to better thermal dissipation and lower series resistance. Flip-chip configuration is advantageous for microcavity LEDs in particular because (a) one of the reflectors is a high-reflectivity metal ohmic contact that is already part of the flip-chip configuration, and (b) current conduction is only required through a single distributed Bragg reflector. Some of the waveguided lateral modes can also be extracted with angled sidewalls used for the interdigitated contacts in the flip-chip configuration.

  8. Solid-Phase Extraction (SPE): Principles and Applications in Food Samples.

    PubMed

    Ötles, Semih; Kartal, Canan

    2016-01-01

    Solid-Phase Extraction (SPE) is a sample preparation method that is practised on numerous application fields due to its many advantages compared to other traditional methods. SPE was invented as an alternative to liquid/liquid extraction and eliminated multiple disadvantages, such as usage of large amount of solvent, extended operation time/procedure steps, potential sources of error, and high cost. Moreover, SPE can be plied to the samples combined with other analytical methods and sample preparation techniques optionally. SPE technique is a useful tool for many purposes through its versatility. Isolation, concentration, purification and clean-up are the main approaches in the practices of this method. Food structures represent a complicated matrix and can be formed into different physical stages, such as solid, viscous or liquid. Therefore, sample preparation step particularly has an important role for the determination of specific compounds in foods. SPE offers many opportunities not only for analysis of a large diversity of food samples but also for optimization and advances. This review aims to provide a comprehensive overview on basic principles of SPE and its applications for many analytes in food matrix.

  9. A novel superparamagnetic surface molecularly imprinted nanoparticle adopting dummy template: an efficient solid-phase extraction adsorbent for bisphenol A.

    PubMed

    Lin, Zhenkun; Cheng, Wenjing; Li, Yanyan; Liu, Zhiren; Chen, Xiangping; Huang, Changjiang

    2012-03-30

    Leakage of the residual template molecules is one of the biggest challenges for application of molecularly imprinted polymer (MIP) in solid-phase extraction (SPE). In this study, bisphenol F (BPF) was adopted as a dummy template to prepare MIP of bisphenol A (BPA) with a superparamagnetic core-shell nanoparticle as the supporter, aiming to avoid residual template leakage and to increase the efficiency of SPE. Characterization and test of the obtained products (called mag-DMIP beads) revealed that these novel nanoparticles not only had excellent magnetic property but also displayed high selectivity to the target molecule BPA. As mag-DMIP beads were adopted as the adsorbents of solid-phase extraction for detecting BPA in real water samples, the recoveries of spiked samples ranged from 84.7% to 93.8% with the limit of detection of 2.50 pg mL(-1), revealing that mag-DMIP beads were efficient SPE adsorbents. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Strategy for signaling molecule detection by using an integrated microfluidic device coupled with mass spectrometry to study cell-to-cell communication.

    PubMed

    Mao, Sifeng; Zhang, Jie; Li, Haifang; Lin, Jin-Ming

    2013-01-15

    Cell-to-cell communication is a very important physiological behavior in life entity, and most of human behaviors are related to it. Although cell-to-cell communications are attracting much attention and financial support, rare methods have been successfully developed for in vitro cell-to-cell communication study. In this work, we developed a novel method for cell-to-cell communication study on an integrated microdevice, and signaling molecule and metabolites were online-detected by an electrospray ionization-quadrupole-time-of-flight-mass spectrometer (ESI-Q-TOF-MS) after on-chip solid-phase extraction. Moreover, we presented a "Surface Tension Plug" on a microchip to control cell-to-cell communication. The microdevice consists of three functional sections: cell coculture channel, targets pretreatment, and targets detection sections. To verify the feasibility of cell-to-cell communications on the integrated microdevice, we studied the communication between the 293 and the L-02 cells. Epinephrine and glucose were successfully detected using an ESI-Q-TOF-MS with short analysis time (<10 min). The results demonstrated that the developed microfluidic device is a potentially useful tool for high throughput cell-to-cell communication study.

  11. Printing Peptide arrays with a complementary metal oxide semiconductor chip.

    PubMed

    Loeffler, Felix F; Cheng, Yun-Chien; Muenster, Bastian; Striffler, Jakob; Liu, Fanny C; Ralf Bischoff, F; Doersam, Edgar; Breitling, Frank; Nesterov-Mueller, Alexander

    2013-01-01

    : In this chapter, we discuss the state-of-the-art peptide array technologies, comparing the spot technique, lithographical methods, and microelectronic chip-based approaches. Based on this analysis, we describe a novel peptide array synthesis method with a microelectronic chip printer. By means of a complementary metal oxide semiconductor chip, charged bioparticles can be patterned on its surface. The bioparticles serve as vehicles to transfer molecule monomers to specific synthesis spots. Our chip offers 16,384 pixel electrodes on its surface with a spot-to-spot pitch of 100 μm. By switching the voltage of each pixel between 0 and 100 V separately, it is possible to generate arbitrary particle patterns for combinatorial molecule synthesis. Afterwards, the patterned chip surface serves as a printing head to transfer the particle pattern from its surface to a synthesis substrate. We conducted a series of proof-of-principle experiments to synthesize high-density peptide arrays. Our solid phase synthesis approach is based on the 9-fluorenylmethoxycarbonyl protection group strategy. After melting the particles, embedded monomers diffuse to the surface and participate in the coupling reaction to the surface. The method demonstrated herein can be easily extended to the synthesis of more complicated artificial molecules by using bioparticles with artificial molecular building blocks. The possibility of synthesizing artificial peptides was also shown in an experiment in which we patterned biotin particles in a high-density array format. These results open the road to the development of peptide-based functional modules for diverse applications in biotechnology.

  12. Identification of volatile organic compounds emitted by a naturally aged book using solid-phase microextraction/gas chromatography/mass spectrometry.

    PubMed

    Lattuati-Derieux, Agnès; Bonnassies-Termes, Sylvette; Lavédrine, Bertrand

    2004-02-13

    Solid-phase microextraction (SPME) coupled to gas chromatography/mass spectrometry (GC/MS) has been applied to the analysis of volatile organic compounds emitted from a naturally aged groundwood pulp paper originating from an old book in order to access the products produced through the decomposition reactions occurring in paper upon ageing. Two different extraction methods were developed and compared: headspace SPME and contact SPME. The influence of few extraction parameters were tested in order to define the best extraction conditions. An optimised non-destructive contact SPME method was elaborated and allowed the characterisation of more than 50 individual constituents.

  13. Matrix solid-phase dispersion extraction of sulfonamides from blood.

    PubMed

    Zhang, Yupu; Xu, Xu; Liu, He; Zhai, Yujuan; Sun, Ye; Sun, Shuo; Zhang, Hanqi; Yu, Aimin; Wang, Yinghua

    2012-02-01

    Matrix solid-phase dispersion extraction was applied to the extraction of sulfadiazine, sulfamerazine, and sulfamethazine from human and animal bloods. The separation and determination of the analytes were carried out by high-performance liquid chromatography. The effects of the types of the dispersion adsorbents and elution solvents were investigated, and the highest recovery was obtained when diatomaceous earth was used as the dispersion adsorbent, while acetone was used as the elution solvent. Under the optimal conditions, the linear range for determining the sulfonamides in blood samples was 0.020-10.0 µg/mL, and the average recoveries of the three sulfonamides were higher than 87.5%.

  14. Evaluation of a molecularly imprinted polymer for determination of steroids in goat milk by matrix solid phase dispersion.

    PubMed

    Gañán, Judith; Morante-Zarcero, Sonia; Gallego-Picó, Alejandrina; Garcinuño, Rosa María; Fernández-Hernando, Pilar; Sierra, Isabel

    2014-08-01

    A molecularly imprinted polymer-matrix solid-phase dispersion methodology for simultaneous determination of five steroids in goat milk samples was proposed. Factors affecting the extraction recovery such as sample/dispersant ratio and washing and elution solvents were investigated. The molecularly imprinted polymer used as dispersant in the matrix solid-phase dispersion procedure showed high affinity to steroids, and the obtained extracts were sufficiently cleaned to be directly analyzed. Analytical separation was performed by micellar electrokinetic chromatography using a capillary electrophoresis system equipped with a diode array detector. A background electrolyte composed of borate buffer (25mM, pH 9.3), sodium dodecyl sulfate (10mM) and acetonitrile (20%) was used. The developed MIP-MSPD methodology was applied for direct determination of testosterone (T), estrone (E1), 17β-estradiol (17β-E2), 17α-ethinylestradiol (EE2) and progesterone (P) in different goat milk samples. Mean recoveries obtained ranged from 81% to 110%, with relative standard deviations (RSD)≤12%. The molecularly imprinted polymer-matrix solid-phase dispersion method is fast, selective, cost-effective and environment-friendly compared with other pretreatment methods used for extraction of steroids in milk. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. THE DISTRIBUTION, SOLID-PHASE SPECIATION, AND DESORPTION/DISSOLUTION OF AS IN IRON-BASED DRINKING WATER TREATMENT MEDIA 1

    EPA Science Inventory

    Arsenic concentrations (Total Recoverable As by EPA Method 3051, soluble, Toxicity Characteristic Leaching Procedure extractable) and solid-phase speciation (by X-ray Absorption Near-Edge Spectroscopy-XANES) were assessed as a function of depth through Fe-media beds for two comme...

  16. THE DISTRIBUTION, SOLID-PHASE SPECIATION, AND DESORPTION/DISSOLUTION OF AS IN IRON-BASED DRINKING WATER TREATMENT MEDIA - JOURNAL

    EPA Science Inventory

    Arsenic concentrations (Total Recoverable As by EPA Method 3051, soluble, Toxicity Characteristic Leaching Procedure extractable) and solid-phase speciation (by X-ray Absorption Near-Edge Spectroscopy-XANES) were assessed as a function of depth through Fe-media beds for two comme...

  17. [Mechanism of gold solid extraction from aurocyanide solution using D3520 resin impregnated with TRPO].

    PubMed

    Yang, Xiang-Jun; Wang, Shi-Xiong; Zou, An-Qin; Chen, Jing; Guo, Hong

    2014-02-01

    Trialkyphosphine oxides (TRPO) was successfully used for the impregnation of D3520 resin to prepare an extractant-impregnated resin (EIR). Solid extraction of Au(I) from alkaline cyanide solution was studied using this extractant-impregnated resin (EIR), with addition of cetyltrimethylammonium bromide (CTMAB), directly into the aurous aqueous phase in advance. The mechanism of solid extraction was further investigated by means of FTIR, XPS and SEM. The column separation studies have shown that cationic surfactant CTMAB played a key role in the solid phase extraction, and the resin containing TRPO were effective for the extraction of gold when the molar ratio of CTMAB: Au( I ) reached 1:1. FTIR spectroscopy of gold loaded EIR showed that the frequency of C[triple bond]N stretching vibration was at 2144 cm(-1), and the frequency of P=O stretching vibration shifted to lower frequency from 1153 to 1150 cm(-1). The XPS spectrum of N(1s), Au(4f7/2) and Au(4f5/2) sugges- ted that the coordination environment of gold did not change before and after extraction, and gold was still as the form of Au (CN)2(-) anion exiting in the loaded resin; O(1s) spectrum showed that the chemically combined water significantly increased after solid extraction from 30.74% to 42.34%; Comparing to the P(2p) spectrum before and after extraction, the binding energy increased from 132. 15 to 132. 45 eV, indicating there maybe existing hydrogen-bond interaction between P=O and water molecule, such as P=O...H-O-H. The above results obtained established that in the solid extraction process, the hydrophobic ion association [CTMA+ x Au(CN)] diffused from the bulk solution into the pores of the EIR, and then be solvated by TRPO adsorbed in the pores through hydrogen bonding bridged by the water molecules.

  18. Determination of 13 endocrine disrupting chemicals in environmental solid samples using microwave-assisted solvent extraction and continuous solid-phase extraction followed by gas chromatography-mass spectrometry.

    PubMed

    Azzouz, Abdelmonaim; Ballesteros, Evaristo

    2016-01-01

    Soil can contain large numbers of endocrine disrupting chemicals (EDCs). The varied physicochemical properties of EDCs constitute a great challenge to their determination in this type of environmental matrix. In this work, an analytical method was developed for the simultaneous determination of various classes of EDCs, including parabens, alkylphenols, phenylphenols, bisphenol A, and triclosan, in soils, sediments, and sewage sludge. The method uses microwave-assisted extraction (MAE) in combination with continuous solid-phase extraction for determination by gas chromatography-mass spectrometry. A systematic comparison of the MAE results with those of ultrasound-assisted and Soxhlet extraction showed MAE to provide the highest extraction efficiency (close to 100%) in the shortest extraction time (3 min). The proposed method provides a linear response over the range 2.0 - 5000 ng kg(-1) and features limits of detection from 0.5 to 4.5 ng kg(-1) depending on the properties of the EDC. The method was successfully applied to the determination of target compounds in agricultural soils, pond and river sediments, and sewage sludge. The sewage sludge samples were found to contain all target compounds except benzylparaben at concentration levels from 36 to 164 ng kg(-1). By contrast, the other types of samples contained fewer EDCs and at lower concentrations (5.6 - 84 ng kg(-1)).

  19. Direct synthesis of nitrogen-doped graphene on platinum wire as a new fiber coating method for the solid-phase microextraction of BXes in water samples: Comparison of headspace and cold-fiber headspace modes.

    PubMed

    Memarian, Elham; Hosseiny Davarani, Saied Saeed; Nojavan, Saeed; Movahed, Siyavash Kazemi

    2016-09-07

    In this work, a new solid-phase microextraction fiber was prepared based on nitrogen-doped graphene (N-doped G). Moreover, a new strategy was proposed to solve problems dealt in direct coating of N-doped G. For this purpose, first, Graphene oxide (GO) was coated on Pt wire by electrophoretic deposition method. Then, chemical reduction of coated GO to N-doped G was accomplished by hydrazine and NH3. The prepared fiber showed good mechanical and thermal stabilities. The obtained fiber was used in two different modes (conventional headspace solid-phase microextraction and cold-fiber headspace solid-phase microextraction (CF-HS-SPME)). Both modes were optimized and applied for the extraction of benzene and xylenes from different aqueous samples. All effective parameters including extraction time, salt content, stirring rate, and desorption time were optimized. The optimized CF-HS-SPME combined with GC-FID showed good limit of detections (LODs) (0.3-2.3 μg/L), limit of quantifications (LOQs) (1.0-7.0 μg/L) and linear ranges (1.0-5000 μg/L). The developed method was applied for the analysis of benzene and xylenes in rainwater and some wastewater samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Antioxidative properties of defatted dabai pulp and peel prepared by solid phase extraction.

    PubMed

    Khoo, Hock Eng; Azlan, Azrina; Ismail, Amin; Abas, Faridah

    2012-08-14

    Solid phase extraction (SPE) using Sep-Pak® cartridges is one of the techniques used for fractionation of antioxidant compounds in waste of dabai oil extraction (defatted dabai parts). The aim of this study was to determine the phenolic compounds and antioxidant capacity in crude extracts and several SPE fractions from methanolic extract of defatted dabai pulp and peel. Based on SPE, Sep-Pak® cyanopropyl and C₁₈ cartridges were used to fractionate the antioxidant-rich crude extracts into water and methanolic fractions. Analyzed using LC-MS, flavonoids, anthocyanins, saponin derivatives and other unknown antioxidative compounds were detected in the defatted dabai crude extracts and their SPE fractions. Anthocyanins were the major phenolic compounds identified in the defatted dabai peel and detected in most of the SPE fractions. Methanolic fractions of defatted dabai parts embraced higher total phenolics and antioxidant capacity than water fractions. This finding also revealed the crude extracts of defatted dabai peel have the most significant antioxidant properties compared to the methanolic and water fractions studied. The crude extract of defatted dabai parts remain as the most potent antioxidant as it contains mixture of flavonoids, anthocyanins and other potential antioxidants.

  1. Chip-based generation of carbon nanodots via electrochemical oxidation of screen printed carbon electrodes and the applications for efficient cell imaging and electrochemiluminescence enhancement

    NASA Astrophysics Data System (ADS)

    Xu, Yuanhong; Liu, Jingquan; Zhang, Jizhen; Zong, Xidan; Jia, Xiaofang; Li, Dan; Wang, Erkang

    2015-05-01

    A portable lab-on-a-chip methodology to generate ionic liquid-functionalized carbon nanodots (CNDs) was developed via electrochemical oxidation of screen printed carbon electrodes. The CNDs can be successfully applied for efficient cell imaging and solid-state electrochemiluminescence sensor fabrication on the paper-based chips.A portable lab-on-a-chip methodology to generate ionic liquid-functionalized carbon nanodots (CNDs) was developed via electrochemical oxidation of screen printed carbon electrodes. The CNDs can be successfully applied for efficient cell imaging and solid-state electrochemiluminescence sensor fabrication on the paper-based chips. Electronic supplementary information (ESI) available: Experimental section; Fig. S1. XPS spectra of the as-prepared CNDs after being dialyzed for 72 hours; Fig. S2. LSCM images showing time-dependent fluorescence signals of HeLa cells treated by the as-prepared CNDs; Tripropylamine analysis using the Nafion/CNDs modified ECL sensor. See DOI: 10.1039/c5nr01765c

  2. Quaternary ammonium-functionalized silica sorbents for the solid-phase extraction of aromatic amines under normal phase conditions.

    PubMed

    Vidal, Lorena; Robin, Orlane; Parshintsev, Jevgeni; Mikkola, Jyri-Pekka; Riekkola, Marja-Liisa

    2013-04-12

    Quaternary ammonium-functionalized silica materials were synthesized and applied for solid-phase extraction (SPE) of aromatic amines, which are classified as priority pollutants by US Environmental Protection Agency. Hexamethylenetetramine used for silica surface modification for the first time was employed as SPE sorbent under normal phase conditions. Hexaminium-functionalized silica demonstrated excellent extraction efficiencies for o-toluidine, 4-ethylaniline and quinoline (recoveries 101-107%), while for N,N-dimethylaniline and N-isopropylaniline recoveries were from low to moderate (14-46%). In addition, the suitability of 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica as SPE sorbent was tested under normal phase conditions. The recoveries achieved for the five aromatic amines ranged from 89 to 99%. The stability of the sorbent was evaluated during and after 150 extractions. Coefficients of variation between 4.5 and 10.2% proved a high stability of the synthesized sorbent. Elution was carried out using acetonitrile in the case of hexaminium-functionalized silica and water for 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent. After the extraction the analytes were separated and detected by liquid chromatography ultraviolet detection (LC-UV). The retention mechanism of the materials was primarily based on polar hydrogen bonding and π-π interactions. Comparison made with activated silica proved the quaternary ammonium-functionalized materials to offer different selectivity and better extraction efficiencies for aromatic amines. Finally, 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent was successfully tested for the extraction of wastewater and soil samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Determination of Three Organochlorine Pesticides in Aqueous Samples by Solid-Phase Extraction Based on Natural Nano Diatomite in Packed Syringe Coupled to Gas Chromatography-Mass Spectrometry.

    PubMed

    Taghani, Abdollah; Goudarzi, Nasser; Bagherian, Ghadamali; Chamjangali, Mansour Arab

    2017-01-01

    A rapid, simple, and sensitive technique is proposed based on a miniaturized solid-phase extraction method named mictroextraction in a packed syringe coupled with gas chromatography-mass spectrometry for the preconcentration and determination of three organochlorine pesticides. These include hexachlorobenzene, heptachlor and aldrine in aqueous samples. For the first time, the natural nano diatomite is used a sorbent. Based on this technique, 6.0 mg of the nano sorbent is inserted in a syringe between two polypropylene frits. The analytes would be adsorbed on the solid phase, and would subsequently be eluted using organic solvents. The influence of some important parameters, such as the solution pH, type and volume of the organic desorption solvent, and amount of sorbent on the extraction efficiency of the selected pesticides, is investigated. The proposed method shows good linearity in the range of 0.1 - 40.0 μg L -1 , and at low limits of detection in the range of 0.02 - 0.13 μg L -1 using the selected ion-monitoring mode. The reproducibility of this method was found to be in the range of 3.5 - 11.1% for the understudied pesticides. In order to evaluate the matrix effect, the developed method is also applied to the preconcentration and determination of the selected pesticides in different water samples.

  4. Flip chip bumping technology—Status and update

    NASA Astrophysics Data System (ADS)

    Juergen Wolf, M.; Engelmann, Gunter; Dietrich, Lothar; Reichl, Herbert

    2006-09-01

    Flip chip technology is a key driver for new complex system architectures and high-density packaging, e.g. sensor or pixel devices. Bumped wafers/dice as key elements become very important in terms of general availability at low cost, high yield and quality level. Today, different materials, e.g. Au, Ni, AuSn, SnAg, SnAgCu, SnCu, etc., are used for flip chip interconnects and different bumping approaches are available. Electroplating is the technology of choice for high-yield wafer bumping for small bump sizes and pitches. Lead-free solder bumps require an increase in knowledge in the field of under bump metallization (UBM) and the interaction of bump and substrate metallization, the formation and growth of intermetallic compounds (IMCs) during liquid- and solid-phase reactions. Results of a new bi-layer UBM of Ni-Cu which is especially designed for small-sized lead-free solder bumps will be discussed.

  5. A review on development of solid phase microextraction fibers by sol-gel methods and their applications.

    PubMed

    Kumar, Ashwini; Gaurav; Malik, Ashok Kumar; Tewary, Dhananjay Kumar; Singh, Baldev

    2008-03-03

    Solid phase microextraction (SPME) is an innovative, solvent free technology that is fast, economical and versatile. SPME is a fiber coated with a liquid (polymer), a solid (sorbent) or a combination of both. The fiber coating takes up the compounds from the sample by absorption in the case of liquid coatings or adsorption in the case of solid coatings. The SPME fiber is then transferred with the help of a syringe like device into the analytical instrument for desorption and analysis of the target analytes. The sol-gel process provides a versatile method to prepare size, shape and charge selective materials of high purity and homogeneity by means of preparation techniques different from the traditional ones, for the chemical analysis. This review is on the current state of the art and future trends in the developments of solid phase microextraction (SPME) fibers using sol-gel method. To achieve more selective determination of different compound classes, the variety of different coating material for SPME fibers has increased. Further developments in SPME as a highly efficient extraction technique, will greatly depend on new breakthroughs in the area of new coating material developments for the SPME fibers. In sol-gel approach, appropriate sol-gel precursors and other building blocks can be selected to create a stationary phase with desired structural and surface properties. This approach is efficient in integrating the advantageous properties of organic and inorganic material systems and thereby increasing and improving the extraction selectivity of the produced amalgam organic-inorganic stationary phases. This review is mainly focused on recent advanced developments in the design, synthesis, characterisation, properties and application of sol-gel in preparation of coatings for the SPME fibers.

  6. Measurement of phenols dearomatization via electrolysis: the UV-Vis solid phase extraction method.

    PubMed

    Vargas, Ronald; Borrás, Carlos; Mostany, Jorge; Scharifker, Benjamin R

    2010-02-01

    Dearomatization levels during electrochemical oxidation of p-methoxyphenol (PMP) and p-nitrophenol (PNP) have been determined through UV-Vis spectroscopy using solid phase extraction (UV-Vis/SPE). The results show that the method is satisfactory to determine the ratio between aromatic compounds and aliphatic acids and reaction kinetics parameters during treatment of wastewater, in agreement with results obtained from numerical deconvolution of UV-Vis spectra. Analysis of solutions obtained from electrolysis of substituted phenols on antimony-doped tin oxide (SnO(2)--Sb) showed that an electron acceptor substituting group favored the aromatic ring opening reaction, preventing formation of intermediate quinone during oxidation. (c) 2009 Elsevier Ltd. All rights reserved.

  7. Novel strategies for sample preparation in forensic toxicology.

    PubMed

    Samanidou, Victoria; Kovatsi, Leda; Fragou, Domniki; Rentifis, Konstantinos

    2011-09-01

    This paper provides a review of novel strategies for sample preparation in forensic toxicology. The review initially outlines the principle of each technique, followed by sections addressing each class of abused drugs separately. The novel strategies currently reviewed focus on the preparation of various biological samples for the subsequent determination of opiates, benzodiazepines, amphetamines, cocaine, hallucinogens, tricyclic antidepressants, antipsychotics and cannabinoids. According to our experience, these analytes are the most frequently responsible for intoxications in Greece. The applications of techniques such as disposable pipette extraction, microextraction by packed sorbent, matrix solid-phase dispersion, solid-phase microextraction, polymer monolith microextraction, stir bar sorptive extraction and others, which are rapidly gaining acceptance in the field of toxicology, are currently reviewed.

  8. Current trends in sample preparation for cosmetic analysis.

    PubMed

    Zhong, Zhixiong; Li, Gongke

    2017-01-01

    The widespread applications of cosmetics in modern life make their analysis particularly important from a safety point of view. There is a wide variety of restricted ingredients and prohibited substances that primarily influence the safety of cosmetics. Sample preparation for cosmetic analysis is a crucial step as the complex matrices may seriously interfere with the determination of target analytes. In this review, some new developments (2010-2016) in sample preparation techniques for cosmetic analysis, including liquid-phase microextraction, solid-phase microextraction, matrix solid-phase dispersion, pressurized liquid extraction, cloud point extraction, ultrasound-assisted extraction, and microwave digestion, are presented. Furthermore, the research and progress in sample preparation techniques and their applications in the separation and purification of allowed ingredients and prohibited substances are reviewed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Comparison between solid phase microextraction (SPME) and hollow fiber liquid phase microextraction (HFLPME) for determination of extractables from post-consumer recycled PET into food simulants.

    PubMed

    Oliveira, Éder Costa; Echegoyen, Yolanda; Cruz, Sandra Andrea; Nerin, Cristina

    2014-09-01

    Hollow fiber liquid phase microextraction (HFLPME) and solid phase microextraction (SPME) methods for pre-concentration of contaminants (toluene, benzophenone, tetracosane and chloroform) in food simulants were investigated. For HFLPME 1-heptanol, 2-octanone and dibutyl-ether were studied as extracting solvents. Analysis by gas chromatography coupled to mass spectrometry (GC-MS), flame ionization (GC-FID) and electron capture detectors (GC-ECD) were carried out. In addition, the methods were employed to evaluate the safety in use of a PET material after the recycling process (comprising washing, extrusion and solid state polymerization (SSP)) through extractability studies of the contaminants using 10% (v/v) ethanol in deionized water and 3% (w/v) acetic acid in deionized water as food simulants in different conditions: 10 days at 40°C and 2h at 70°C. The HFLPME preconcentration method provided increased sensitivity when compared to the SPME method and allowed to analyze concentration levels below 10 µg surrogate per kg food simulant. The results of the extractability studies showed considerable reductions after the extrusion and SSP processes and indicated the compliance with regulations for using recycled PET in contact with food. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Design and development of molecularly imprinted polymers for the selective extraction of deltamethrin in olive oil: An integrated computational-assisted approach.

    PubMed

    Martins, Nuno; Carreiro, Elisabete P; Locati, Abel; Ramalho, João P Prates; Cabrita, Maria João; Burke, Anthony J; Garcia, Raquel

    2015-08-28

    This work firstly addresses the design and development of molecularly imprinted systems selective for deltamethrin aiming to provide a suitable sorbent for solid phase (SPE) extraction that will be further used for the implementation of an analytical methodology for the trace analysis of the target pesticide in spiked olive oil samples. To achieve this goal, a preliminary evaluation of the molecular recognition and selectivity of the molecularly imprinted polymers has been performed. In order to investigate the complexity of the mechanistic basis for template selective recognition in these polymeric matrices, the use of a quantum chemical approach has been attempted providing new insights about the mechanisms underlying template recognition, and in particular the crucial role of the crosslinker agent and the solvent used. Thus, DFT calculations corroborate the results obtained by experimental molecular recognition assays enabling one to select the most suitable imprinting system for MISPE extraction technique which encompasses acrylamide as functional monomer and ethylene glycol dimethacrylate as crosslinker. Furthermore, an analytical methodology comprising a sample preparation step based on solid phase extraction has been implemented using this "tailor made" imprinting system as sorbent, for the selective isolation/pre-concentration of deltamethrin from olive oil samples. Molecularly imprinted solid phase extraction (MISPE) methodology was successfully applied for the clean-up of spiked olive oil samples, with recovery rates up to 94%. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. A sensitive analytical procedure for monitoring acrylamide in environmental water samples by offline SPE-UPLC/MS/MS.

    PubMed

    Togola, Anne; Coureau, Charlotte; Guezennec, Anne-Gwenaëlle; Touzé, Solène

    2015-05-01

    The presence of acrylamide in natural systems is of concern from both environmental and health points of view. We developed an accurate and robust analytical procedure (offline solid phase extraction combined with UPLC/MS/MS) with a limit of quantification (20 ng L(-1)) compatible with toxicity threshold values. The optimized (considering the nature of extraction phases, sampling volumes, and solvent of elution) solid phase extraction (SPE) was validated according to ISO Standard ISO/IEC 17025 on groundwater, surface water, and industrial process water samples. Acrylamide is highly polar, which induces a high variability during the SPE step, therefore requiring the use of C(13)-labeled acrylamide as an internal standard to guarantee the accuracy and robustness of the method (uncertainty about 25 % (k = 2) at limit of quantification level). The specificity of the method and the stability of acrylamide were studied for these environmental media, and it was shown that the method is suitable for measuring acrylamide in environmental studies.

  12. Solid phase extraction of magnetic carbon doped Fe3O4 nanoparticles.

    PubMed

    Yang, Jing; Li, Jia-yuan; Qiao, Jun-qin; Lian, Hong-zhen; Chen, Hong-yuan

    2014-01-17

    Carbon decorated Fe3O4 nanoparticles (Fe3O4/C) are promising magnetic solid-phase extraction (MSPE) sorbents in environmental and biological analysis. Fe3O4/C based MSPE method shows advantages of easy operation, rapidness, high sensitivity, and environmental friendliness. In this paper, the MSPE mechanism of Fe3O4/C nanoparticles has been comprehensively investigated, for the first time, through the following three efforts: (1) the comparison of extraction efficiency for polycyclic aromatic hydrocarbons (PAHs) between the Fe3O4/C sorbents and activated carbon; (2) the chromatographic retention behaviors of hydrophobic and hydrophilic compounds on Fe3O4/C nanoparticles as stationary phase; (3) related MSPE experiments for several typical compounds such as pyrene, naphthalene, benzene, phenol, resorcinol, anisole and thioanisole. It can be concluded that there are hybrid hydrophobic interaction and hydrogen bonding interaction or dipole-dipole attraction between Fe3O4/C sorbents and analytes. It is the existence of carbon and oxygen-containing functional groups coated on the surface of Fe3O4/C nanoparticles that is responsible for the effective extraction process. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Quantum random number generation for loophole-free Bell tests

    NASA Astrophysics Data System (ADS)

    Mitchell, Morgan; Abellan, Carlos; Amaya, Waldimar

    2015-05-01

    We describe the generation of quantum random numbers at multi-Gbps rates, combined with real-time randomness extraction, to give very high purity random numbers based on quantum events at most tens of ns in the past. The system satisfies the stringent requirements of quantum non-locality tests that aim to close the timing loophole. We describe the generation mechanism using spontaneous-emission-driven phase diffusion in a semiconductor laser, digitization, and extraction by parity calculation using multi-GHz logic chips. We pay special attention to experimental proof of the quality of the random numbers and analysis of the randomness extraction. In contrast to widely-used models of randomness generators in the computer science literature, we argue that randomness generation by spontaneous emission can be extracted from a single source.

  14. Selective trace enrichment of acidic pharmaceuticals in real water and sediment samples based on solid-phase extraction using multi-templates molecularly imprinted polymers.

    PubMed

    Duan, Yan-Ping; Dai, Chao-Meng; Zhang, Ya-Lei; Ling-Chen

    2013-01-03

    A novel multi-templates molecularly imprinted polymer (MIP), using acidic pharmaceuticals mixture (ibuprofen (IBP), naproxen (NPX), ketoprofen (KEP), diclofenac (DFC), and clofibric acid (CA)) as the template, was prepared as solid-phase extraction (SPE) material for the quantitative enrichment of acidic pharmaceuticals in environmental samples and off-line coupled with liquid chromatography-mass spectrometry (LC/MS/MS). Washing solvent was optimized in terms of kind and volume for removing the matrix constituents nonspecifically adsorbed on the MIP. When 1L of water sample spiked at 1μg/L was loaded onto the cartridge, the binding capacity of the MIP cartridge were 48.7μg/g for KEP, 60.7μg/g for NPX, 52μg/g for CA, 61.3μg/g for DFC and 60.7μg/g for IBP, respectively, which are higher than those of the commercial single template MIP in organic medium (e.g. toluene) reported in the literature. Recoveries of the five acidic pharmaceuticals extracted from 1L of real water samples such as lake water and wastewater spiked at 1μg/L were more than 95%. The recoveries of acidic pharmaceuticals extracted from 10-g sediment sample spiked at the 10ng/g level were in the range of 77.4-90.6%. To demonstrate the potential of the MIP obtained, a comparison with commercial C18 SPE cartridge was performed. Molecularly imprinted solid-phase extraction (MISPE) cartridge showed higher recoveries than commercial C18 SPE cartridge for acidic pharmaceuticals. These results showed the suitability of the MISPE method for the selective extraction of a group of structurally related compounds such as acidic pharmaceuticals. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Liquid chromatographic determination of the cyanobacterial toxin beta-n-methylamino-L-alanine in algae food supplements, freshwater fish, and bottled water.

    PubMed

    Scott, Peter M; Niedzwiadek, Barbara; Rawn, Dorothea F K; Lau, Ben P-Y

    2009-08-01

    Beta-N-Methylamino-L-alanine (BMAA) is a neurotoxin originally found in cycad seeds and now known to be produced by many species of freshwater and marine cyanobacteria. We developed a method for its determination in blue-green algae (BGA) food supplements, freshwater fish, and bottled water by using a strong cation-exchange, solid-phase extraction column for cleanup after 0.3 M trichloroacetic acid extraction of BGA supplements and fish. Bottled water was applied directly onto the solid-phase extraction column. For analysis of carbonated water, sonication and pH adjustment to 1.5 were needed. To determine protein-bound BMAA, the protein pellet left after extraction of the BGA supplement and fish was hydrolyzed by boiling with 6 M hydrochloric acid; BMAA was cleaned up on a C18 column and a strong cation-exchange, solid-phase extraction column. Determination of BMAA was by liquid chromatography of the fluorescent derivative formed with 9-fluorenylmethyl chloroformate. The method was validated by recovery experiments using spiking levels of 1.0 to 10 microg/g for BGA supplements, 0.5 to 5.0 microg/g for fish, and 0.002 microg/g for bottled water; mean recoveries were in the range of 67 to 89% for BGA supplements and fish, and 59 to 92% for bottled water. Recoveries of BMAA from spiked extracts of hydrolyzed protein from BGA supplements and fish ranged from 66 to 83%. The cleanup developed provides a useful method for surveying foods and supplements for BMAA and protein-bound BMAA.

  16. Statistical Analysis of the Random Telegraph Noise in a 1.1 μm Pixel, 8.3 MP CMOS Image Sensor Using On-Chip Time Constant Extraction Method.

    PubMed

    Chao, Calvin Yi-Ping; Tu, Honyih; Wu, Thomas Meng-Hsiu; Chou, Kuo-Yu; Yeh, Shang-Fu; Yin, Chin; Lee, Chih-Lin

    2017-11-23

    A study of the random telegraph noise (RTN) of a 1.1 μm pitch, 8.3 Mpixel CMOS image sensor (CIS) fabricated in a 45 nm backside-illumination (BSI) technology is presented in this paper. A noise decomposition scheme is used to pinpoint the noise source. The long tail of the random noise (RN) distribution is directly linked to the RTN from the pixel source follower (SF). The full 8.3 Mpixels are classified into four categories according to the observed RTN histogram peaks. A theoretical formula describing the RTN as a function of the time difference between the two phases of the correlated double sampling (CDS) is derived and validated by measured data. An on-chip time constant extraction method is developed and applied to the RTN analysis. The effects of readout circuit bandwidth on the settling ratios of the RTN histograms are investigated and successfully accounted for in a simulation using a RTN behavior model.

  17. Solid state lighting component

    DOEpatents

    Yuan, Thomas; Keller, Bernd; Ibbetson, James; Tarsa, Eric; Negley, Gerald

    2010-10-26

    An LED component comprising an array of LED chips mounted on a planar surface of a submount with the LED chips capable of emitting light in response to an electrical signal. The LED chips comprise respective groups emitting at different colors of light, with each of the groups interconnected in a series circuit. A lens is included over the LED chips. Other embodiments can comprise thermal spreading structures included integral to the submount and arranged to dissipate heat from the LED chips.

  18. Solid state lighting component

    DOEpatents

    Yuan, Thomas; Keller, Bernd; Ibbetson, James; Tarsa, Eric; Negley, Gerald

    2015-07-07

    An LED component comprising an array of LED chips mounted on a planar surface of a submount with the LED chips capable of emitting light in response to an electrical signal. The LED chips comprise respective groups emitting at different colors of light, with each of the groups interconnected in a series circuit. A lens is included over the LED chips. Other embodiments can comprise thermal spreading structures included integral to the submount and arranged to dissipate heat from the LED chips.

  19. Solid state lighting component

    DOEpatents

    Keller, Bernd; Ibbetson, James; Tarsa, Eric; Negley, Gerald; Yuan, Thomas

    2012-07-10

    An LED component comprising an array of LED chips mounted on a planar surface of a submount with the LED chips capable of emitting light in response to an electrical signal. The LED chips comprise respective groups emitting at different colors of light, with each of the groups interconnected in a series circuit. A lens is included over the LED chips. Other embodiments can comprise thermal spreading structures included integral to the submount and arranged to dissipate heat from the LED chips.

  20. [Rapid identification of micro-constituents in monoammonium glycyrrhizinate raw materials by high-pressure solid phase extraction-high performance liquid chromatography-mass spectrometry].

    PubMed

    Yang, Xue-Dong; Tang, Xu-Yan; Sang, Lin

    2012-11-01

    To establish a method for rapid identification of micro-constituents in monoammonium glycyrrhizinate by high-pressure solid phase extraction-high performance liquid chromatography-mass spectrometry. HPLC preparative chromatograph was adopted for determining the optimal method for high-pressure solid phase extraction under optimal conditions. 5C18-MS-II column (20.0 mm x 20.0 mm) was used as the extraction column, with 35% acetonitrile-acetic acid solution (pH 2. 20) as eluent at the speed of 16 mL x min(-1). The sample size was 0.5 mL, and the extraction cycle was 4.5 min. Then, extract liquid was analyzed by high performance liquid chromatography-mass spectrometry (HPLC-MS) after being concentrated by 100 times. Under the optimal condition of high-pressure solid phase extraction-high performance liquid chromatography-mass spectrometry, 10 components were rapidly identified from monoammonium glycyrrhizinate raw materials. Among them, the chemical structures of six micro-constituents were identified as 3-O-[beta-D-glucuronopyranosyl-beta-D-glucuronopyranosyl]-30-0-beta-D-apiopyranosylglycyrrhetic/3-O- [P-D-glucuronopyranosyl-beta-D-glucuronopyranosyl]-30-O-beta-D-arabinopyranosylglycyrrhetic, glycyrrhizic saponin F3, 22-hydroxyglycyrrhizin/18alpha-glycyrrhizic saponin G2, 3-O-[beta-D-rhamnopyranosyl]-24-hydroxyglycyrrhizin, glycyrrhizic saponin J2, and glycyrrhizic saponin B2 by MS(n) spectra analysis and reference to literatures. Four main chemical components were identified as glycyrrhizic saponin G2, 18beta-glycyrrhizic acid, uralglycyrrhizic saponin B and 18alpha-glycyrrhizic acid by liquid chromatography, MS(n) and ultraviolet spectra information and comparison with reference substances. The method can be used to identify chemical constituents in monoammonium glycyrrhizinate quickly and effectively, without any reference substance, which provides basis for quality control and safe application of monoammonium glycyrrhizinate-related products.

  1. Fabrication of polyaniline-coated halloysite nanotubes by in situ chemical polymerization as a solid-phase microextraction coating for the analysis of volatile organic compounds in aqueous solutions.

    PubMed

    Abolghasemi, Mir Mahdi; Arsalani, Naser; Yousefi, Vahid; Arsalani, Mahmood; Piryaei, Marzieh

    2016-03-01

    We have synthesized an organic-inorganic polyaniline-halloysite nanotube composite by an in situ polymerization method. This nanocomposite is immobilized on a stainless-steel wire and can be used as a fiber coating for solid-phase microextraction. It was found that our new solid-phase microextraction fiber is an excellent adsorbent for the extraction of some volatile organic compounds in aqueous samples in combination with gas chromatography and mass spectrometry. The coating can be prepared easily, is mechanically stable, and exhibits relatively high thermal stability. It is capable of extracting phenolic compounds from water samples. Following thermal desorption, the phenols were quantified by gas chromatography with mass spectrometry. The effects of extraction temperature, extraction time, sample ionic strength, stirring rate, pH, desorption temperature and desorption time were studied. Under optimal conditions, the repeatability for one fiber (n = 5), expressed as the relative standard deviation, is between 6.2 and 9.1%. The detection limits range from 0.005 to 4 ng/mL. The method offers the advantage of being simple to use, with a shorter analysis time, lower cost of equipment and higher thermal stability of the fiber in comparison to conventional methods of analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Methylxanthines: properties and determination in various objects

    NASA Astrophysics Data System (ADS)

    Andreeva, Elena Yu; Dmitrienko, Stanislava G.; Zolotov, Yurii A.

    2012-05-01

    Published data on the properties and determination of caffeine, theophylline, theobromine and some other methylxanthines in various objects are surveyed and described systematically. Different sample preparation procedures such as liquid extraction from solid matrices and liquid-liquid, supercritical fluid and solid-phase extraction are compared. The key methods of analysis including chromatography, electrophoresis, spectrometry and electrochemical methods are discussed. Examples of methylxanthine determination in plants, food products, energy beverages, pharmaceuticals, biological fluids and natural and waste waters are given. The bibliography includes 393 references.

  3. High-throughput multipesticides residue analysis in earthworms by the improvement of purification method: Development and application of magnetic Fe3 O4 -SiO2 nanoparticles based dispersive solid-phase extraction.

    PubMed

    Sun, Yuhan; Qi, Peipei; Cang, Tao; Wang, Zhiwei; Wang, Xiangyun; Yang, Xuewei; Wang, Lidong; Xu, Xiahong; Wang, Qiang; Wang, Xinquan; Zhao, Changshan

    2018-06-01

    As a key representative organism, earthworms can directly illustrate the influence of pesticides on environmental organisms in soil ecosystems. The present work aimed to develop a high-throughput multipesticides residue analytical method for earthworms using solid-liquid extraction with acetonitrile as the solvent and magnetic material-based dispersive solid-phase extraction for purification. Magnetic Fe 3 O 4 nanoparticles were modified with a thin silica layer to form Fe 3 O 4 -SiO 2 nanoparticles, which were fully characterized by field-emission scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffractometry, and vibrating sample magnetometry. The Fe 3 O 4 -SiO 2 nanoparticles were used as the separation media in dispersive solid-phase extraction with primary secondary amine and ZrO 2 as the cleanup adsorbents to eliminate matrix interferences. The amounts of nanoparticles and adsorbents were optimized for the simultaneous determination of 44 pesticides and six metabolites in earthworms by liquid chromatography with tandem mass spectrometry. The method performance was systematically validated with satisfactory results. The limits of quantification were 20 μg/kg for all analytes studied, while the recoveries of the target analytes ranged from 65.1 to 127% with relative standard deviation values lower than 15.0%. The developed method was subsequently utilized to explore the bioaccumulation of bitertanol in earthworms exposed to contaminated soil, verifying its feasibility for real sample analysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Phosphorus forms and extractability in dairy manure: a case study for Wisconsin on-farm anaerobic digesters.

    PubMed

    Güngör, Kerem; Karthikeyan, K G

    2008-01-01

    The effect of anaerobic digestion on phosphorus (P) forms and water P extractability was investigated using dairy manure samples from six full-scale on-farm anaerobic digesters in Wisconsin, USA. On an average, total dissolved P (TDP) constituted 12 +/- 4% of total P (TP) in the influent to the anaerobic digesters. Only 7 +/- 2% of the effluent was in a dissolved form. Dissolved unreactive P (DUP), comprising polyphosphates and organic P, dominated the dissolved P component in both the influent and effluent. In most cases, it appeared that the fraction of DUP mineralized during anaerobic digestion became subsequently associated with particulate-bound solids. Geochemical equilibrium modeling with Mineql+ indicated that dicalcium phosphate dihydrate, dicalcium phosphate anhydrous, octacalcium phosphate, newberyite, and struvite were the probable solid phases in both the digester influent and effluent samples. The water-extractable P (WEP) fraction in undigested manure ranged from 45% to 70% of TP, which reduced substantially after anaerobic digestion to 25% to 45% of TP. Anaerobic digestion of dairy manure appears capable of reducing the fraction of P that is immediately available by increasing the stability of the solid phases controlling P solubility.

  5. Magnetic micro-solid-phase extraction based on magnetite-MCM-41 with gas chromatography-mass spectrometry for the determination of antidepressant drugs in biological fluids.

    PubMed

    Kamaruzaman, Sazlinda; Sanagi, Mohd Marsin; Yahaya, Noorfatimah; Wan Ibrahim, Wan Aini; Endud, Salasiah; Wan Ibrahim, Wan Nazihah

    2017-11-01

    A new facile magnetic micro-solid-phase extraction coupled to gas chromatography and mass spectrometry detection was developed for the extraction and determination of selected antidepressant drugs in biological fluids using magnetite-MCM-41 as adsorbent. The synthesized sorbent was characterized by several spectroscopic techniques. The maximum extraction efficiency for extraction of 500 μg/L antidepressant drugs from aqueous solution was obtained with 15 mg of magnetite-MCM-41 at pH 12. The analyte was desorbed using 100 μL of acetonitrile prior to gas chromatography determination. This method was rapid in which the adsorption procedure was completed in 60 s. Under the optimized conditions using 15 mL of antidepressant drugs sample, the calibration curve showed good linearity in the range of 0.05-500 μg/L (r 2  = 0.996-0.999). Good limits of detection (0.008-0.010 μg/L) were obtained for the analytes with good relative standard deviations of <8.0% (n = 5) for the determination of 0.1, 5.0, and 500.0 μg/L of antidepressant drugs. This method was successfully applied to the determination of amitriptyline and chlorpromazine in plasma and urine samples. The recoveries of spiked plasma and urine samples were in the range of 86.1-115.4%. Results indicate that magnetite micro-solid-phase extraction with gas chromatography and mass spectrometry is a convenient, fast, and economical method for the extraction and determination of amitriptyline and chlorpromazine in biological samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Optimization of headspace solid phase micro-extraction of volatile compounds from papaya fruit assisted by GC-olfactometry.

    PubMed

    da Rocha, Renier Felinto Julião; da Silva Araújo, Ídila Maria; de Freitas, Sílvia Maria; Dos Santos Garruti, Deborah

    2017-11-01

    Optimization of the extraction conditions to investigate the volatile composition of papaya fruit involving headspace solid phase micro-extraction was carried out using multivariate strategies such as factorial design and response surface methodology. The performance of different combinations of time for reaching the equilibrium in the headspace and time for maximum extraction of volatiles was evaluated by GC-olfactometry of the extract (intensity of papaya characteristic aroma), number of peaks and total area in the chromatogram. Thirty-two compounds were identified by GC-MS under the optimized extraction conditions, the majority of which were aldehydes, both in number of compounds and area. Major compounds were δ-octalactone, β-citral, benzaldehyde, heptanal, benzyl isothiocyanate, isoamyl acetate, γ-octalactone, (E)-linalool oxide and benzyl alcohol. Seven aldehydes and two other compounds are reported for the first time in papaya's volatile profile.

  7. Solid-phase microextraction of benzimidazole fungicides in environmental liquid samples and HPLC-fluorescence determination.

    PubMed

    López Monzón, A; Vega Moreno, D; Torres Padrón, M E; Sosa Ferrera, Z; Santana Rodríguez, J J

    2007-03-01

    Solid-phase microextraction (SPME) coupled with high-performance liquid chromatography (HPLC) with fluorescence detection was optimized for extraction and determination of four benzimidazole fungicides (benomyl, carbendazim, thiabendazole, and fuberidazole) in water. We studied extraction and desorption conditions, for example fiber type, extraction time, ionic strength, extraction temperature, and desorption time to achieve the maximum efficiency in the extraction. Results indicate that SPME using a Carboxen-polydimethylsiloxane 75 microm (CAR-PDMS) fiber is suitable for extraction of these types of compound. Final analysis of benzimidazole fungicides was performed by HPLC with fluorescence detection. Recoveries ranged from 80.6 to 119.6 with RSDs below 9% and limits of detection between 0.03 and 1.30 ng mL-1 for the different analytes. The optimized procedure was applied successfully to the determination of benzimidazole fungicides mixtures in environmental water samples (sea, sewage, and ground water).

  8. Simultaneous Enrichment of Polycyclic Aromatic Hydrocarbons and Cu(2+) in Water Using Tetraazacalix[2]arene[2]triazine as a Solid-Phase Extraction Selector.

    PubMed

    Zhao, Wenjie; Yang, Liu; He, Lijun; Zhang, Shusheng

    2016-08-10

    On the basis of the definite retention mechanism proven by the stationary phase for high-performance liquid chromatography, tetraazacalix[2]arene[2]triazine featuring multiple recognition sites was assessed as a solid-phase extraction (SPE) selector. The applicability of its silica support was used for the extraction of trace amounts of polycyclic aromatic hydrocarbons (PAHs) and Cu(2+) in aqueous samples, followed by high-performance liquid chromatography fluorometric and graphite furnace atomic absorption spectrometric determination. On the basis of the π-π interaction with PAHs and the chelating interaction with Cu(2+), the simultaneous extraction of PAHs and Cu(2+) and stepwise elution through tuning the eluent were successfully achieved, respectively. The SPE conditions affecting the extraction efficiency were optimized, including type and concentration of organic modifier, sample solution pH, flow rate, and volume. As a result of the special adsorption and desorption mechanism, high extraction efficiency was achieved with relative recoveries of 94.3-102.4% and relative standard deviations of less than 10.5%. The limits of detection were obtained with 0.4-3.1 ng L(-1) for PAHs and 15 ng L(-1) for Cu(2+), respectively. The method was applied to the analyses of PAHs and Cu(2+) in Xiliu Lake water samples collected in Zhengzhou, China.

  9. Solid phase extraction and metabolic profiling of exudates from living copepods

    PubMed Central

    Heuschele, Jan; Nylund, Göran M.; Pohnert, Georg; Pavia, Henrik; Bjærke, Oda; Pender-Healy, Larisa A.; Tiselius, Peter; Kiørboe, Thomas

    2016-01-01

    Copepods are ubiquitous in aquatic habitats. They exude bioactive compounds that mediate mate finding or induce defensive traits in prey organisms. However, little is known about the chemical nature of the copepod exometabolome that contributes to the chemical landscape in pelagic habitats. Here we describe the development of a closed loop solid phase extraction setup that allows for extraction of exuded metabolites from live copepods. We captured exudates from male and female Temora longicornis and analyzed the content with high resolution LC-MS. Chemometric methods revealed 87 compounds that constitute a specific chemical pattern either qualitatively or quantitatively indicating copepod presence. The majority of the compounds were present in both female and male exudates, but nine compounds were mainly or exclusively present in female exudates and hence potential pheromone candidates. Copepodamide G, known to induce defensive responses in phytoplankton, was among the ten compounds of highest relative abundance in both male and female extracts. The presence of copepodamide G shows that the method can be used to capture and analyze chemical signals from living source organisms. We conclude that solid phase extraction in combination with metabolic profiling of exudates is a useful tool to develop our understanding of the chemical interplay between pelagic organisms. PMID:26788422

  10. Recovery of Picloram and 2,4-Dichlorophenoxyacetic Acid from Aqueous Samples by Reversed-Phase Solid-Phase Extraction

    Treesearch

    Martha J.M. Wells; Jerry L. Michael

    1987-01-01

    Extensive preparation of samples before chromatographic analysis is usually the most time-consuming process in the determination of many organic compounds in environmental matrices. In the past, removal of some organic from aqueous solution was commonly done by liquid/liquid extraction. However, the introduction of stable, covalently bonded reversed-phase sorbents now...

  11. Euler force actuation mechanism for siphon valving in compact disk-like microfluidic chips

    PubMed Central

    Deng, Yongbo; Fan, Jianhua; Zhou, Song; Zhou, Teng; Wu, Junfeng; Li, Yin; Liu, Zhenyu; Xuan, Ming; Wu, Yihui

    2014-01-01

    Based on the Euler force induced by the acceleration of compact disk (CD)-like microfluidic chip, this paper presents a novel actuation mechanism for siphon valving. At the preliminary stage of acceleration, the Euler force in the tangential direction of CD-like chip takes the primary place compared with the centrifugal force to function as the actuation of the flow, which fills the siphon and actuates the siphon valving. The Euler force actuation mechanism is demonstrated by the numerical solution of the phase-field based mathematical model for the flow in siphon valve. In addition, experimental validation is implemented in the polymethylmethacrylate-based CD-like microfluidic chip manufactured using CO2 laser engraving technique. To prove the application of the proposed Euler force actuation mechanism, whole blood separation and plasma extraction has been conducted using the Euler force actuated siphon valving. The newly introduced actuation mechanism overcomes the dependence on hydrophilic capillary filling of siphon by avoiding external manipulation or surface treatments of polymeric material. The sacrifice for highly integrated processing in pneumatic pumping technique is also prevented by excluding the volume-occupied compressed air chamber. PMID:24753736

  12. Simultaneous determination of 3-monochloropropane-1,2-diol and acrylamide in food by gas chromatography-triple quadrupole mass spectrometry with coupled column separation.

    PubMed

    Xu, Xiao-min; He, Hua-li; Zhu, Yan; Feng, Liang; Ying, Ying; Huang, Bai-fen; Shen, Hai-tao; Han, Jian-long; Ren, Yi-ping

    2013-01-14

    Both 3-monochloropropane-1,2-diol (3-MCPD) and acrylamide are contaminants found in heat-processed foods and their related products. A quantitative method was developed for the simultaneous determination of both contaminants in food by gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS). The analytes were purified and extracted by the matrix solid-phase dispersion extraction (MSPDE) technique with Extrelut NT. A coupled column (a 3 m Innowax combined with a 30 m DB-5 ms) was developed to separate both compounds efficiently without derivatization. Triple quadrupole mass spectrometry in multiple reaction monitoring mode (MRM) was applied to suppress matrix interference and obtain good sensitivity in the determination of both analytes. The limit of detection (LOD) in the sample matrix was 5 μg kg(-1) for 3-MCPD or acrylamide. The average recoveries for 3-MCPD and acrylamide in different food matrices were 90.5-107% and 81.9-95.7%, respectively, with the intraday relative standard deviations (RSDs) of 5.6-13.5% and 5.3-13.4%, respectively. The interday RSDs were 6.1-12.6% for 3-MCPD and were 5.0-12.8% for acrylamide. Both contaminants were found in samples of bread, fried chips, fried instant noodles, soy sauce, and instant noodle flavoring. Neither 3-MCPD nor acrylamide was detected in the samples of dairy products (solid or liquid samples) and non-fried instant noodles. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Facile purification and click labeling with 2-[ 18F]fluoroethyl azide using solid phase extraction cartridges

    DOE PAGES

    Zhou, Dong; Chu, Wenhua; Peng, Xin; ...

    2014-11-04

    In this paper, a facile method was developed to purify 2-[ 18F]fluoroethyl azide ([ 18F]FEA) using a C18 cartridge and an Oasis® HLB cartridge in series, in which [18F]FEA was exclusively trapped on the HLB cartridge. [ 18F]FEA can be eluted for reactions in solution; alternatively click labeling can be carried out on the HLB cartridge itself by loading an alkyne substrate and copper (I) catalyst dissolved in DMF onto the cartridge. Finally, this solid phase extraction methodology for purification and click labeling with [ 18F]FEA, either in solution or on the cartridge, is safe, simple, reproducible in high yield,more » and compatible with automated synthesis of 18F-labeled PET tracers.« less

  14. Recovery of gold from computer circuit board scrap using aqua regia.

    PubMed

    Sheng, Peter P; Etsell, Thomas H

    2007-08-01

    Computer circuit board scrap was first treated with one part concentrated nitric acid and two parts water at 70 degrees C for 1 h. This step dissolved the base metals, thereby liberating the chips from the boards. After solid-liquid separation, the chips, intermixed with some metallic flakes and tin oxide precipitate, were mechanically crushed to liberate the base and precious metals contained within the protective plastic or ceramic chip cases. The base metals in this crushed product were dissolved by leaching again with the same type of nitric acid-water solution. The remaining solid constituents, crushed chips and resin, plus solid particles of gold, were leached with aqua regia at various times and temperatures. Gold was precipitated from the leachate with ferrous sulphate.

  15. Novel nanoporous sorbent for solid-phase extraction in petroleum fingerprinting

    NASA Astrophysics Data System (ADS)

    Alayande, S. Oluwagbemiga; Hlengilizwe, Nyoni; Dare, E. Olugbenga; Msagati, Titus A. M.; Akinlabi, A. Kehinde; Aiyedun, P. O.

    2016-04-01

    Sample preparation is crucial in the analysis of petroleum and its derivatives. In this study, developing affordable sorbent for petroleum fingerprinting analysis using polymer waste such expanded polystyrene was explored. The potential of electrospun expanded polystyrene (EPS) as a sorbent for the solid-phase extraction (SPE) technique was investigated, and its efficiency was compared with commercial cartridges such as alumina, silica and alumina/silica hybrid commercial for petroleum fingerprinting analysis. The chromatograms showed that the packed electrospun EPS fibre demonstrated excellent properties for SPE applications relative to the hybrid cartridges.

  16. Solid phase microextraction for active or passive sampling of methyl bromide during fumigations

    USDA-ARS?s Scientific Manuscript database

    The high diffusivity and volatility of methyl bromide make it an ideal compound for Solid Phase Micro Extraction (SPME)-based sampling of air prior to gas-chromatographic quantifications. SPME fibers can be used as active methyl bromide samplers, with high capacities and an equilibrium time of 1-2 m...

  17. Investigating the Retention Mechanisms of Liquid Chromatography Using Solid-Phase Extraction Cartridges

    ERIC Educational Resources Information Center

    O'Donnell, Mary E.; Musial, Beata A.; Bretz, Stacey Lowery; Danielson, Neil D.; Ca, Diep

    2009-01-01

    Liquid chromatography (LC) experiments for the undergraduate analytical laboratory course often illustrate the application of reversed-phase LC to solve a separation problem, but rarely compare LC retention mechanisms. In addition, a high-performance liquid chromatography instrument may be beyond what some small colleges can purchase. Solid-phase…

  18. Highly selective solid-phase extraction and large volume injection for the robust gas chromatography-mass spectrometric analysis of TCA and TBA in wines.

    PubMed

    Insa, S; Anticó, E; Ferreira, V

    2005-09-30

    A reliable solid-phase extraction (SPE) method for the simultaneous determination of 2,4,6-trichloroanisole (TCA) and 2,4,6-tribromoanisole (TBA) in wines has been developed. In the proposed procedure 50 mL of wine are extracted in a 1 mL cartridge filled with 50 mg of LiChrolut EN resins. Most wine volatiles are washed up with 12.5 mL of a water:methanol solution (70%, v/v) containing 1% of NaHCO3. Analytes are further eluted with 0.6 mL of dichloromethane. A 40 microL aliquot of this extract is directly injected into a PTV injector operated in the solvent split mode, and analysed by gas chromatography (GC)-ion trap mass spectrometry using the selected ion storage mode. The solid-phase extraction, including sample volume and rinsing and elution solvents, and the large volume GC injection have been carefully evaluated and optimized. The resulting method is precise (RSD (%) < 6% at 100 ng L(-1)), sensitive (LOD were 0.2 and 0.4 ng/L for TCA and TBA, respectively), robust (the absolute recoveries of both analytes are higher than 80% and consistent wine to wine) and friendly to the GC-MS system (the extract is clean, simple and free from non-volatiles).

  19. Zinc oxide crystal whiskers as a novel sorbent for solid-phase extraction of flavonoids.

    PubMed

    Wang, Licheng; Shangguan, Yangnan; Hou, Xiudan; Jia, Yong; Liu, Shujuan; Sun, Yingxin; Guo, Yong

    2017-08-15

    As a novel solid-phase extraction material, zinc oxide crystal whiskers were used to extract flavonoid compounds and showed good extraction abilities. X-ray diffraction, scanning electron microscopy with energy dispersive X-ray spectroscopy and surface area/pore volume characterized the sorbent. The zinc oxide was packed into a solid-phase extraction micro-column and its extraction ability was evaluated by four model flavonoid compounds. The sample loading and elution parameters were optimized and the zinc oxide based analytical method for flavonoids was established. It showed that the method has wide linearities from 1 to 150μg/L and low limits of detection at 0.25μg/L. The relative standard deviations of a single column repeatability and column to column reproducibility were less than 6.8% and 10.6%. Several real samples were analyzed by the established method and satisfactory results were obtained. The interactions between flavonoids and zinc oxide were calculated and proved to be from the Van der Waals' forces between the 4p and 5d orbitals from zinc atom and the neighboring π orbitals from flavonoid phenyl groups. Moreover, the zinc oxide crystal whiskers showed good stability and could be reused more than 50 times under the operation conditions. This work proves that the zinc oxide crystal whiskers are a good candidate for flavonoids enrichment. Copyright © 2017. Published by Elsevier B.V.

  20. Direct preparation of a graphene oxide modified monolith in a glass syringe as a solid-phase extraction cartridge for the extraction of quaternary ammonium alkaloids from Chinese patent medicine.

    PubMed

    Liang, Xiaojing; Wang, Licheng; Wang, Shuai; Li, Yijing; Guo, Yong

    2017-11-01

    Packed cartridges have been widely used in solid-phase extraction. However, there are still some drawbacks, such as they are blocked easily and the method is time-consuming. In view of the advantages of monoliths, a monolithic extraction material has been directly synthesized in a glass syringe without any gap between the monolith and syringe inner wall. The monolithic syringe was modified with graphene oxide by loading graphene oxide dispersion onto it. The content of graphene oxide and the surface topography of the monolith have been evaluated by elemental analysis and scanning electron microscopy, respectively, which confirmed the successful modification. This prepared graphene oxide-modified monolithic syringe was directly used as a traditional solid-phase extraction cartridge. As expected, it shows good permeability and excellent capability for the extraction of quaternary ammonium alkaloids. The sample loading velocity (1-6 mL/min) does not affect the recovery. Under the optimal conditions, good linearities (R = 0.9992-0.9998) were obtained for five quaternary ammonium alkaloids, and the limits of detection and quantification were 0.5-1 and 1-2 μg/L, respectively. The proposed method was successfully applied for the analysis of quaternary ammonium alkaloids in Chinese patent medicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Solid-phase microextraction for qualitative and quantitative determination of migrated degradation products of antioxidants in an organic aqueous solution.

    PubMed

    Burman, Lina; Albertsson, Ann-Christine; Höglund, Anders

    2005-07-08

    Low molecular weight aromatic substances may migrate out from plastic packaging to their contents, especially if they consist of organic aqueous solutions or oils. It is, therefore, extremely important to be able to identify and quantify any migrated substances in such solutions, even at very low concentrations. We have in this work investigated and evaluated the use of solid-phase microextraction for the specific task of extraction from an organic aqueous solution such as a simulated pharmaceutical solution consisting of 10 vol.% ethanol in water. The goal was furthermore to investigate the possibility of simultaneously identifying and quantifying the substances in spite of differences in their chemical structures. Methods were developed and evaluated for extraction both with direct sampling and with headspace sampling. Difficulties appeared due to the ethanol in the solution and the minute amounts of substances present. We have shown that a simultaneous quantification of migrated low molecular weight degradation products of antioxidants using only one fibre is possible if the extraction method and temperature are adjusted in relation to the concentration levels of the analytes. Comparions were made with solid-phase extraction.

  2. Development of andrographolide molecularly imprinted polymer for solid-phase extraction

    NASA Astrophysics Data System (ADS)

    Yin, Xiaoying; Liu, Qingshan; Jiang, Yifan; Luo, Yongming

    2011-06-01

    A method employing molecularly imprinted polymer (MIP) as selective sorbent for solid-phase extraction (SPE) to pretreat samples was developed. The polymers were prepared by precipitation polymerization with andrographolide as template molecule. The structure of MIP was characterized and its static adsorption capacity was measured by the Scatchard equation. In comparison with C 18-SPE and non-imprinted polymer (NIP) SPE column, MIP-SPE column displays high selectivity and good affinity for andrographolide and dehydroandrographolide for extract of herb Andrographis paniculata ( Burm.f.) Nees (APN). MIP-SPE column capacity was 11.9 ± 0.6 μmol/g and 12.1 ± 0.5 μmol/g for andrographolide and dehydroandrographolide, respectively and was 2-3 times higher than that of other two columns. The precision and accuracy of the method developed were satisfactory with recoveries between 96.4% and 103.8% (RSD 3.1-4.3%, n = 5) and 96.0% and 104.2% (RSD 2.9-3.7%, n = 5) for andrographolide and dehydroandrographolide, respectively. Various real samples were employed to confirm the feasibility of method. This developed method demonstrates the potential of molecularly imprinted solid phase extraction for rapid, selective, and effective sample pretreatment.

  3. Quick and selective extraction of Z-ligustilide from Angelica sinensis using magnetic multiwalled carbon nanotubes.

    PubMed

    Zeng, Qiong; Jia, Yan-Wei; Xu, Pei-Li; Xiao, Meng-Wei; Liu, Yi-Ming; Peng, Shu-Lin; Liao, Xun

    2015-12-01

    A facile and highly efficient magnetic solid-phase extraction method has been developed for Z-ligustilide, the major therapeutic agent in Angelica sinensis. The solid-phase adsorbent material used was prepared by conjugating carbon nanotubes with magnetic Fe3 O4 nanoparticles via a hydrothermal reaction. The magnetic material showed a high affinity toward Z-ligustilide due to the π-π stacking interaction between the carbon nanotubes and Z-ligustilide, allowing a quick and selective exaction of Z-ligustilide from complex sample matrices. Factors influencing the magnetic solid-phase extraction such as the amount of the added adsorbent, adsorption and desorption time, and desorption solvent, were investigated. Due to its high extraction efficiency, this method was proved highly useful for sample cleanup/enrichment in quantitative high-performance liquid chromatography analysis. The proposed method had a linear calibration curve (R(2) = 0.9983) over the concentration between 4 ng/mL and 200 μg/mL Z-ligustilide. The accuracy of the method was determined by the recovery, which was from 92.07 to 104.02%, with the relative standard deviations >4.51%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Stable isotope labeling-solid phase extraction-mass spectrometry analysis for profiling of thiols and aldehydes in beer.

    PubMed

    Zheng, Shu-Jian; Wang, Ya-Lan; Liu, Ping; Zhang, Zheng; Yu, Lei; Yuan, Bi-Feng; Feng, Yu-Qi

    2017-12-15

    In this study, we developed a strategy for profiling of thiols and aldehydes in beer samples by stable isotope labeling-solid phase extraction-liquid chromatography-double precursor ion scan/double neutral loss scan-mass spectrometry analysis (SIL-SPE-LC-DPIS/DNLS-MS). A pair of isotope reagents (ω-bromoacetonylquinolinium bromide, BQB; ω-bromoacetonylquinolinium-d 7 bromide, BQB-d 7 ) were used to label thiols; while for the aldehydes, a pair of isotope reagents (4-(2-(trimethylammonio) ethoxy) benzenaminium halide, 4-APC; 4-(2-(trimethylammonio) ethoxy) benzenaminium halide-d 4 , 4-APC-d 4 ) were used. The labeled thiols and aldehydes were extracted and purified with solid-phase extraction, respectively, followed by LC-MS analysis. Using the proposed SIL-SPE-LC-DPIS/DNLS-MS methods, 76 thiol and 25 aldehyde candidates were found in beer. Furthermore, we established SIL-SPE-LC-MRM-MS methods for the relative quantitation of thiols and aldehydes in different beer samples. The results showed that the contents of thiols and aldehydes are closely related to the brands and origins of beers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. [Corrected Title: Solid-Phase Extraction of Polar Compounds from Water] Automated Electrostatics Environmental Chamber

    NASA Technical Reports Server (NTRS)

    Sauer, Richard; Rutz, Jeffrey; Schultz, John

    2005-01-01

    A solid-phase extraction (SPE) process has been developed for removing alcohols, carboxylic acids, aldehydes, ketones, amines, and other polar organic compounds from water. This process can be either a subprocess of a water-reclamation process or a means of extracting organic compounds from water samples for gas-chromatographic analysis. This SPE process is an attractive alternative to an Environmental Protection Administration liquid-liquid extraction process that generates some pollution and does not work in a microgravitational environment. In this SPE process, one forces a water sample through a resin bed by use of positive pressure on the upstream side and/or suction on the downstream side, thereby causing organic compounds from the water to be adsorbed onto the resin. If gas-chromatographic analysis is to be done, the resin is dried by use of a suitable gas, then the adsorbed compounds are extracted from the resin by use of a solvent. Unlike the liquid-liquid process, the SPE process works in both microgravity and Earth gravity. In comparison with the liquid-liquid process, the SPE process is more efficient, extracts a wider range of organic compounds, generates less pollution, and costs less.

  6. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, PCB DETECTION TECHNOLOGY, HYBRIZYME DELFIA TM ASSAY

    EPA Science Inventory

    The DELFIA PCB Assay is a solid-phase time-resolved fluoroimmunoassay based on the sequential addition of sample extract and europium-labeled PCB tracer to a monoclonal antibody reagent specific for PCBs. In this assay, the antibody reagent and sample extract are added to a strip...

  7. Packed in-tube solid phase microextraction with graphene oxide supported on aminopropyl silica: Determination of target triazines in water samples.

    PubMed

    De Toffoli, Ana L; Fumes, Bruno H; Lanças, Fernando M

    2018-02-22

    On-line in-tube solid phase microextraction (in-tube SPME) coupled to high performance liquid chromatography and tandem mass spectrometry (HPLC-MS/MS) was successfully applied to the determination of selected triazines in water samples. The method based on the employment of a packed column containing graphene oxide (GO) supported on aminopropyl silica (Si) showed that the extraction phase has a high potential for triazines extraction aiming to its physical-chemical properties including ultrahigh specific surface area, good mechanical and thermal stability and high fracture strength. Injection volume and loading time were both investigated and optimized. The method validation using Si-GO to extract and concentrate the analytes showed satisfactory results, good sensitivity, good linearity (0.2-4.0 µg L -1 ) and low detection limits (1.1-2.9 ng L -1 ). The high extraction efficiency was determined with enrichment factors ranging from 1.2-2.9 for the lowest level, 1.3-4.9 intermediate level and 1.2-3.0 highest level (n = 3). Although the analytes were not detected in the real samples evaluated, the method has demonstrated to be efficient through its application in the analysis of spiked triazines in ground and mineral water samples.

  8. New environmentally friendly MSPD solid support based on golden mussel shell: characterization and application for extraction of organic contaminants from mussel tissue.

    PubMed

    Rombaldi, Caroline; de Oliveira Arias, Jean Lucas; Hertzog, Gabriel Ianzer; Caldas, Sergiane Souza; Vieira, João P; Primel, Ednei Gilberto

    2015-06-01

    The use of golden mussel shells as a solid support in vortex-assisted matrix solid-phase dispersion (MSPD) was evaluated for the first time for extraction of residues of 11 pesticides and nine pharmaceutical and personal care products from mussel tissue samples. After they had been washed, dried, and milled, the mussel shells were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, infrared spectroscopy, and Brunauer-Emmett-Teller analysis. The MSPD procedure with analysis by liquid chromatography-tandem mass spectrometry allowed the determination of target analytes at trace concentrations (nanograms per gram), with mean recoveries ranging from 61 to 107 % and relative standard deviations lower than 18 %. The optimized method consisted of dispersion of 0.5 g of mussel tissue, 0.5 g of NaSO4, and 0.5 g of golden mussel shell for 5 min, and subsequent extraction with 5 mL of ethyl acetate. The matrix effect was evaluated, and a low effect was found for all compounds. The results showed that mussel shell is an effective material and a less expensive material than materials that have traditionally been used, i.e., it may be used in the MSPD dispersion step during the extraction of pesticides and pharmaceutical and personal care products from golden mussel tissues. Graphical Abstract Vortex-assited matrix solid-phase dispersion for extraction of 11 pesticides and 9 PPCPs care products from mussel tissue samples.

  9. [Simultaneous determination of sixteen perfluorinated organic compounds in surface water by solid phase extraction and ultra performance liquid chromatography with electrospray ionization tandem mass spectrometry].

    PubMed

    Zhang, Ming; Tang, Fangliang; Yu, Yayun; Chen, Feng; Xu, Jianfen; Ye, Yonggen

    2014-05-01

    A high-throughput detection method has been developed for the determination of sixteen perfluorinated organic compounds (PFCs) in surface water by solid phase extraction-ultra performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (SPE-UPLC-ESI-MS/MS). The water samples were concentrated and purified through WAX solid phase extraction cartridges. The UPLC separation was performed on an ACQUITY UPLC BEH C18 column utilizing a gradient elution program of methanol (containing 2 mmol/L ammonium acetate) and water (containing 2 mmol/L ammonium acetate) as the mobile phases at a flow rate of 0.4 mL/min. The MS/MS detection was performed under negative electrospray ionization ( ESI ) in multiple reaction monitoring (MRM) mode. Good linearities were observed in the range of 0.5-100 gg/L or 1.0 - 100 microg/L with correlation coefficients from 0.998 7 to 0.999 9. The limits of detection (LODs) for the sixteen perfluorinated organic compounds were in the range of 0.06-0.46 ng/L. The recoveries ranged from 67.6% to 103% with the relative standard deviations between 2.94% and 12.0%. This method was characterized by high sensitivity and precision, extensive range and high speed, and can be applied for the analysis of PFC contaminants in surface water.

  10. [Simultaneous determination of nine perfluorinated compound precursors in atmospheric precipitation by solid phase extraction and ultra performance liquid chromatography with tandem mass spectrometry].

    PubMed

    Zhang, Ming; Tang, Fangliang; Xu, Jianfen; Yu, Bo; Zhang, Wei; Yao, Jianliang; Hu, Minhua

    2017-10-08

    A high-throughput detection method has been developed for the determination of nine perfluorinated compound precursors (PFCPs) in atmospheric precipitation by solid phase extraction-ultra performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (SPE-UPLC-ESI-MS/MS). The atmospheric precipitation samples were concentrated and purified with HLB solid phase extraction cartridges. The UPLC separation was performed on an HSS T 3 column (100 mm×2.1 mm, 1.7 μm) utilizing a gradient elution program of methanol and water as the mobile phases at a flow rate of 0.2 mL/min. The MS/MS detection was performed under negative electrospray ionization (ESI - ) in multiple reaction monitoring (MRM) mode. Good linearity was observed in the range of 0.05-5.00 μg/L, 0.50-50.0 μg/L or 5.00-500 μg/L with correlation coefficients from 0.9921 to 0.9995. The limits of detection (LODs) for the nine perfluorinated compound precursors were in the ranges of 0.05-7.9 ng/L. The recoveries ranged from 76.0% to 106% with the relative standard deviations between 0.72% and 13.7%. This method is characterized by high sensitivity and precision, extensive analytical range and quick analytical rate, and can be applied for the analysis of perfluorinated compound precursors in atmospheric precipitation.

  11. Validated high-performance liquid chromatographic method utilizing solid-phase extraction for the simultaneous determination of naringenin and hesperetin in human plasma.

    PubMed

    Kanaze, Feras Imad; Kokkalou, Eugene; Georgarakis, Manolis; Niopas, Ioannis

    2004-03-05

    Naringenin and hesperetin, the aglycones of the flavanone glucosides naringin and hesperidin occur naturally in citrus fruits. They exert a variety of pharmacological effects such as antioxidant, blood lipid-lowering, anticarcinogenic and inhibit selected cytochrome P-450 enzymes resulting in drug interactions. A specific, sensitive, precise, and accurate solid-phase extraction high-performance liquid chromatographic (HPLC) assay for the simultaneous determination of naringenin and hesperetin in human plasma was developed and validated. After addition of 7-ethoxycoumarin as internal standard, plasma samples were incubated with beta-glucuronidase/sulphatase, and the analytes were isolated from plasma by solid-phase extraction using C(18) cartridges and separated on a C(8) reversed phase column with methanol/water/acetic acid (40:58:2, v/v/v) as the eluent at 45 degrees C. The method was linear in the 10-300 ng/ml concentration range for both naringenin and hesperetin (r>0.999). Recovery for naringenin, hesperetin and internal standard was greater than 76.7%. Intra- and inter-day precision for naringenin ranged from 1.4 to 4.2% and from 1.9 to 5.2%, respectively, and for hesperetin ranged from 1.3 to 4.1% and from 1.7 to 5.1%, respectively. Accuracy was better than 91.5 and 91.3% for naringenin and hesperetin, respectively.

  12. Isolation, Separation, and Preconcentration of Biologically Active Compounds from Plant Matrices by Extraction Techniques.

    PubMed

    Raks, Victoria; Al-Suod, Hossam; Buszewski, Bogusław

    2018-01-01

    Development of efficient methods for isolation and separation of biologically active compounds remains an important challenge for researchers. Designing systems such as organomineral composite materials that allow extraction of a wide range of biologically active compounds, acting as broad-utility solid-phase extraction agents, remains an important and necessary task. Selective sorbents can be easily used for highly selective and reliable extraction of specific components present in complex matrices. Herein, state-of-the-art approaches for selective isolation, preconcentration, and separation of biologically active compounds from a range of matrices are discussed. Primary focus is given to novel extraction methods for some biologically active compounds including cyclic polyols, flavonoids, and oligosaccharides from plants. In addition, application of silica-, carbon-, and polymer-based solid-phase extraction adsorbents and membrane extraction for selective separation of these compounds is discussed. Potential separation process interactions are recommended; their understanding is of utmost importance for the creation of optimal conditions to extract biologically active compounds including those with estrogenic properties.

  13. Trace determination of five triazole fungicide residues in traditional Chinese medicine samples by dispersive solid-phase extraction combined with ultrasound-assisted dispersive liquid-liquid microextraction and UHPLC-MS/MS.

    PubMed

    Ma, Shuping; Yuan, Xucan; Zhao, Pengfei; Sun, Hong; Ye, Xiu; Liang, Ning; Zhao, Longshan

    2017-08-01

    A novel and reliable method for determination of five triazole fungicide residues (triadimenol, tebuconazole, diniconazole, flutriafol, and hexaconazol) in traditional Chinese medicine samples was developed using dispersive solid-phase extraction combined with ultrasound-assisted dispersive liquid-liquid microextraction before ultra-high performance liquid chromatography with tandem mass spectrometry. The clean up of the extract was conducted using dispersive solid-phase extraction by directly adding sorbents into the extraction solution, followed by shaking and centrifugation. After that, a mixture of 400 μL trichloromethane (extraction solvent) and 0.5 mL of the above supernatant was injected rapidly into water for the dispersive liquid-liquid microextraction procedure. The factors affecting the extraction efficiency were optimized. Under the optimum conditions, the calibration curves showed good linearity in the range of 2.0-400 (tebuconazole, diniconazole, and hexaconazole) and 4.0-800 ng/g (triadimenol and flutriafol) with the regression coefficients higher than 0.9958. The limit of detection and limit of quantification for the present method were 0.5-1.1 and 1.8-4.0 ng/g, respectively. The recoveries of the target analytes ranged from 80.2 to 103.2%. The proposed method has been successfully applied to the analysis of five triazole fungicides in traditional Chinese medicine samples, and satisfactory results were obtained. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Flexible packaging of solid-state integrated circuit chips with elastomeric microfluidics

    PubMed Central

    Zhang, Bowei; Dong, Quan; Korman, Can E.; Li, Zhenyu; Zaghloul, Mona E.

    2013-01-01

    A flexible technology is proposed to integrate smart electronics and microfluidics all embedded in an elastomer package. The microfluidic channels are used to deliver both liquid samples and liquid metals to the integrated circuits (ICs). The liquid metals are used to realize electrical interconnects to the IC chip. This avoids the traditional IC packaging challenges, such as wire-bonding and flip-chip bonding, which are not compatible with current microfluidic technologies. As a demonstration we integrated a CMOS magnetic sensor chip and associate microfluidic channels on a polydimethylsiloxane (PDMS) substrate that allows precise delivery of small liquid samples to the sensor. Furthermore, the packaged system is fully functional under bending curvature radius of one centimetre and uniaxial strain of 15%. The flexible integration of solid-state ICs with microfluidics enables compact flexible electronic and lab-on-a-chip systems, which hold great potential for wearable health monitoring, point-of-care diagnostics and environmental sensing among many other applications.

  15. Capillary electrophoresis for analyzing pesticides in fruits and vegetables using solid-phase extraction and stir-bar sorptive extraction.

    PubMed

    Juan-García, Ana; Picó, Yolanda; Font, Guillermina

    2005-05-06

    Two procedures based on solid-phase extraction (SPE) and stir-bar sorptive extraction (SBSE) in combination with micellar electrokinetic chromatography (MEKC)--diode array detection (DAD) were compared for the simultaneous extraction of acrinathrin, bitertanol, cyproconazole, fludioxonil, flutriafol, myclobutanil, pyriproxyfen, and tebuconazole in lettuce, tomato, grape, and strawberry. Selectivity and resolution of the MEKC procedure were studied changing the pH and the molarity of the buffer, the type and the concentration of surfactant, and the methanol content in the mobile phase. A buffer consisting of 6 mM sodium tetraborate decahydrate with 75 mM of cholic acid sodium solution (pH 9.2) gave the best results. Linearity, extraction efficiencies and limits of quantitation (LOQs) of both extraction methods were compared. The recoveries obtained by SPE ranged from 40 to 106% with relative standard deviations (R.S.D.s) from 10 to 19% whereas by the SBSE method, the recoveries were 12-47% and the R.S.D.s 3-17%. The LOQs were much better by SPE (0.2-0.5 mg kg(-1) depending on the processed sample amount) than those obtained by SBSE (1 mg kg(-1) for each compound). Advantages and disadvantages of both procedures are also discussed. As SPE is more robust, rapid, and sensitive than SBSE, its application in combination with MEKC is recommended because provided LOQs below the MRLs established, which is not always attained by SBSE.

  16. Simultaneous determination of the endocrine disrupting compounds nonylphenol, nonylphenol ethoxylates, triclosan and bisphenol A in wastewater and sewage sludge by gas chromatography-mass spectrometry.

    PubMed

    Gatidou, Georgia; Thomaidis, Nikolaos S; Stasinakis, Athanasios S; Lekkas, Themistokles D

    2007-01-05

    An integrated analytical method for the simultaneous determination of 4-n-nonylphenol (4-n-NP), nonylphenol monoethoxylate (NP1EO), nonylphenol diethoxylate (NP2EO), bisphenol A (BPA) and triclosan (TCS) in wastewater (dissolved and particulate phase) and sewage sludge was developed based on gas chromatography-mass spectrometry. Chromatographic analysis was achieved after derivatization with bis(trimethylsilyl)trifluoroacetamide (BSTFA). Extraction from water samples was performed by solid-phase extraction (SPE). The optimization of SPE procedure included the type of sorbent and the type of the organic solvent used for the elution. Referred to solid samples, the target compounds were extracted by sonication. In this case the optimization of the extraction procedure included the variation of the amount of the extracted biomass, the duration and the temperature of sonication and the type of the extraction organic solvent. The developed extraction procedures resulted in good repeatability and reproducibility with relative standard deviations (RSDs) less than 13% for all the tested compounds for both types of samples. Satisfactory recoveries were obtained (>60%) for all the compounds in both liquid and solid samples, except for 4-n-NP, which gave recoveries up to 35% in wastewater samples and up to 63% in sludge samples. The limits of detection (LODs) of the target compounds varied from 0.03 (4-n-NP) to 0.41 microg l(-1) (NP2EO) and from 0.04 (4-n-NP) to 0.96 microg kg(-1) (NP2EO) for liquid and solid samples, respectively. The developed methods were successfully applied to the analysis of the target compounds in real samples.

  17. Matrix solid-phase dispersion extraction of organophosphorus pesticide using SiO2-poly(N-vinylimidazole)

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Solís, M. C.; Muñoz-Rodríguez, D.; Medina-Peralta, S.; Carrera-Figueiras, C.; Ávila-Ortega, A.

    2013-06-01

    A sorbent material based on silica particles modified with poly(N-vinylimidazole) (SiO2-PVI) has been evaluated for the treatment of samples by matrix solid-phase dispersion (MSPD). The extraction of four organophosphorus pesticides was done from a spiked tomato and the extracts were analyzed by gas chromatography coupled to mass spectrometry. Six elution solvents were evaluated and acetone was selected due to better recovery of the four pesticides and low background signal in the chromatograms. A factorial design 24 was used for selection of extraction conditions. The factors were contact time, acetone volume, treatment (with or without freeze-drying) and adsorbent (SiO2 or SiO2-PVI). The best recoveries were obtained using 15 minutes of contact, 2 mL of solvent and sorbent without freeze-drying. The recoveries were between 60 and 83% for SiO2-PVI in spiked tomato with 0.2 and 0.8μg/g.

  18. [Determination of azoxystrobin residues in fruits and vegetables by gas chromatography/mass spectrometry with solid-phase extraction].

    PubMed

    Bo, Haibo

    2007-11-01

    A method was developed for the determination of azoxystrobin residues in fruits and vegetables by gas chromatography/mass spectrometry (GC/MS). Azoxystrobin residues were extracted with ethyl acetate-cyclohexane (1 : 1, v/v) by ultrasonication and then they were cleaned up on a silica solid-phase extraction (SPE) column to obtain an extract suitable for analysis by GC/MS in the selective ion monitoring (SIM) mode (the selected ion: m/z 344, 372, 388 and 403). The calibration curves were linear between area and concentration of azoxystrobin from 0.01 to 1.0 mg/kg with the correlation coefficient greater than 0.99. The average recoveries from spiked fruit and vegetable matrixes at three concentrations of 0.01, 0.1, 1.0 mg/kg ranged from 85.2% to 98.2% with relative standard deviation less than 21.5%. The limit of detection was 0.01 mg/kg and the limit of quantity was 0.05 mg/kg in fruit and vegetable matrixes, respectively.

  19. Determination of bentazone, dichlorprop, and MCPA in different soils by sodium hydroxide extraction in combination with solid-phase preconcentration.

    PubMed

    Thorstensen, C W; Christiansen, A

    2001-09-01

    A method for the extraction of bentazone, dichlorprop, and MCPA in three selected Norwegian soils of different textures is described. Initially three different extraction methods were tested on one soil type. All methods gave recoveries >80% for the pesticide mixture, but extraction with sodium hydroxide in combination with solid-phase preconcentration was used for further recovery tests with soils of different properties spiked at four herbicide concentration levels (0.001-10 microg/g of wet soil). The method was rapid and easy and required a minimum of organic solvents. The recoveries were in the range of 82-109, 80-123, and 45-91% for the soils containing 1.4 (Hole), 2.5 (Kroer), and 37.8% (Froland) organic carbon, respectively. Limits of quantification using GC-MS were 0.0003 microg/g of wet soil for bentazone and 0.0001 microg/g of wet soil for both dichlorprop and MCPA.

  20. Porous extraction paddle: a solid phase extraction technique for studying the urine metabolome

    PubMed Central

    Shao, Gang; MacNeil, Michael; Yao, Yuanyuan; Giese, Roger W.

    2016-01-01

    RATIONALE A method was needed to accomplish solid phase extraction of a large urine volume in a convenient way where resources are limited, towards a goal of metabolome and xenobiotic exposome analysis at another, distant location. METHODS A porous extraction paddle (PEP) was set up, comprising a porous nylon bag containing extraction particles that is flattened and immobilized between two stainless steel meshes. Stirring the PEP after attachment to a shaft of a motor mounted on the lid of the jar containing the urine accomplishes extraction. The bag contained a mixture of nonpolar and partly nonpolar particles to extract a diversity of corresponding compounds. RESULTS Elution of a urine-exposed, water-washed PEP with aqueous methanol containing triethylammonium acetate (conditions intended to give a complete elution), followed by MALDI-TOF/TOF-MS, demonstrated that a diversity of compounds had been extracted ranging from uric acid to peptides. CONCLUSION The PEP allows the user to extract a large liquid sample in a jar simply by turning on a motor. The technique will be helpful in conducting metabolomics and xenobiotic exposome studies of urine, encouraging the extraction of large volumes to set up a convenient repository sample (e.g. 2 g of exposed adsorbent in a cryovial) for shipment and re-analysis in various ways in the future, including scaled-up isolation of unknown chemicals for identification. PMID:27624170

  1. Chloride leaching and solvent extraction of cadmium, cobalt and nickel from spent nickel-cadmium, batteries using Cyanex 923 and 272

    NASA Astrophysics Data System (ADS)

    Reddy, B. Ramachandra; Priya, D. Neela

    Studies are conducted on the leaching and solvent extraction separation of metals from chloride leach liquor of spent nickel-cadmium batteries with Cyanex 923 and 272 diluted in kerosene as the extractants. Dissolution of the metals increases with increase in acid concentration and time but decreases with the solids-to-liquid ratio. Complete dissolution of Cd, Co and Ni can be achieved with 1.5 M HCl at 85 °C for 8 h and a solids-to-liquid ratio of 4. Treatment of leach liquor for the separation of metals with Cyanex 923 shows that increase of extractant and chloride ion concentration increases the percentage extraction of cadmium. The plot of log[distribution coefficient] versus log[extractant]/[Cl -] is linear with a slope of 2, which indicates that the extraction follows a solvation mechanism with the extracted species as CdCl 2·2S (S, Cyanex 923). Moreover, Cyanex 923 enables a clear separation of Cd from Co and Ni. Extraction of cobalt with Cyanex 272 involves a cation-exchange mechanism with the formation of a 1:2 metal-to-ligand complex in the organic phase. Based on the distribution data, extractant concentration and equilibrium pH of the aqueous phase, a possible separation process is proposed for the recovery of cadmium, cobalt and nickel with >99% efficiency.

  2. Porous extraction paddle: a solid phase extraction technique for studying the urine metabolome.

    PubMed

    Shao, Gang; MacNeil, Michael; Yao, Yuanyuan; Giese, Roger W

    2016-09-14

    A method was needed to accomplish solid phase extraction of a large urine volume in a convenient way where resources are limited, towards a goal of metabolome and xenobiotic exposome analysis at another, distant location. A porous extraction paddle (PEP) was set up, comprising a porous nylon bag containing extraction particles that is flattened and immobilized between two stainless steel meshes. Stirring the PEP after attachment to a shaft of a motor mounted on the lid of the jar containing the urine accomplishes extraction. The bag contained a mixture of nonpolar and partly nonpolar particles to extract a diversity of corresponding compounds. Elution of a urine-exposed, water-washed PEP with aqueous methanol containing triethylammonium acetate (conditions intended to give a complete elution), followed by MALDI-TOF/TOF-MS, demonstrated that a diversity of compounds had been extracted ranging from uric acid to peptides. The PEP allows the user to extract a large liquid sample in a jar simply by turning on a motor. The technique will be helpful in conducting metabolomics and xenobiotic exposome studies of urine, encouraging the extraction of large volumes to set up a convenient repository sample (e.g. 2 g of exposed adsorbent in a cryovial) for shipment and re-analysis in various ways in the future, including scaled-up isolation of unknown chemicals for identification. This article is protected by copyright. All rights reserved.

  3. Broadband Light Collection Efficiency Enhancement of Carbon Nanotube Excitons Coupled to Metallo-Dielectric Antenna Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shayan, Kamran; Rabut, Claire; Kong, Xiaoqing

    The realization of on-chip quantum networks ideally requires lossless interfaces between photons and solid-state quantum emitters. We propose and demonstrate on-chip arrays of metallo-dielectric antennas (MDA) that are tailored toward efficient and broadband light collection from individual embedded carbon nanotube quantum emitters by trapping air gaps on chip that form cavity modes. Scalable implementation is realized by employing polymer layer dry-transfer techniques that avoid solvent incompatibility issues, as well as a planar design that avoids solid-immersion lenses. Cryogenic measurements demonstrate 7-fold enhanced exciton intensity when compared to emitters located on bare wafers, corresponding to a light collection efficiency (LCE) upmore » to 92% in the best case (average LCE of 69%) into a narrow output cone of +/-15 degrees that enables a priori fiber-to-chip butt coupling. The demonstrated MDA arrays are directly compatible with other quantum systems, particularly 2D materials, toward enabling efficient on-chip quantum light sources or spin-photon interfaces requiring unity light collection, both at cryogenic or room temperature.« less

  4. [Simultaneous determination of nine estrogens in eel by ultrafast liquid chromatography-tandem mass spectrometry with isotope dilution technique and solid-phase extraction].

    PubMed

    Chen, Xiaohong; Yao, Shanshan; Li, Xiaoping; Zhao, Yonggang; Jin, Micong

    2012-11-01

    Developing a rapid and sensitive analytical method based on ultrafast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS) with solid-phase extraction (SPE) for the simultaneous determination of nine estrogens (dienestrol, diethylstilbestrol, estrone, hexestrol, 17-alpha-estradiol, 17-beta-estradiol, estriol, 17alpha-ethinylestradiol and estradiol valerate) in eel. After the sample was extracted by acetonitrile and cleaned by Waters Oasis HLB solid-phase extraction cartridge, the UFLC separation was performed on a Shim-pack XR-ODS II column (100 mm x 2.0 mm, 2.2 microm) with a linear gradient elution program of methanol solution containing 0.04% ammonia (v/v) and 0.04% ammonia aqueous solution (v/v) as the mobile phase. Electrospray ionization was applied and operated in the negative multiple reaction monitoring (MRM) mode. The quantitation was used by isotope internal standard dilution technique. The results showed that the limits of quantitation (LOQs, S/N(10) were in the range of 0.07-0.4 microg/kg, the calibration curves were in good linearities for the nine analytes in the range of 0.5-50.0 microg/L with the correlative coefficients (r2) more than 0.998, the recoveries were between 81.0% and 110.0% with the relative standard deviations (RSDs) of 1.92%-8.24%. Additional, the mass spectra characterization of the nine estrogens was discussed and the fragmentation pathways were speculated. The developed method is rapid, sensitive, specific and reproducible, and adapts not only to the simultaneous determination of the nine trace estrogens including the epimer of 17-alpha-estradiol and 17-beta-estradiol but also to the identified detection in other fish tissues.

  5. Evaluation of Superparamagnetic Silica Nanoparticles for Extraction of Triazines in Magnetic in-Tube Solid Phase Microextraction Coupled to Capillary Liquid Chromatography

    PubMed Central

    González-Fuenzalida, R. A.; Moliner-Martínez, Y.; Prima-Garcia, Helena; Ribera, Antonio; Campins-Falcó, P.; Zaragozá, Ramon J.

    2014-01-01

    The use of magnetic nanomaterials for analytical applications has increased in the recent years. In particular, magnetic nanomaterials have shown great potential as adsorbent phase in several extraction procedures due to the significant advantages over the conventional methods. In the present work, the influence of magnetic forces over the extraction efficiency of triazines using superparamagnetic silica nanoparticles (NPs) in magnetic in tube solid phase microextraction (Magnetic-IT-SPME) coupled to CapLC has been evaluated. Atrazine, terbutylazine and simazine has been selected as target analytes. The superparamagnetic silica nanomaterial (SiO2-Fe3O4) deposited onto the surface of a capillary column gave rise to a magnetic extraction phase for IT-SPME that provided a enhancemment of the extraction efficiency for triazines. This improvement is based on two phenomena, the superparamegnetic behavior of Fe3O4 NPs and the diamagnetic repulsions that take place in a microfluidic device such a capillary column. A systematic study of analytes adsorption and desorption was conducted as function of the magnetic field and the relationship with triazines magnetic susceptibility. The positive influence of magnetism on the extraction procedure was demonstrated. The analytical characteristics of the optimized procedure were established and the method was applied to the determination of the target analytes in water samples with satisfactory results. When coupling Magnetic-IT-SPME with CapLC, improved adsorption efficiencies (60%–63%) were achieved compared with conventional adsorption materials (0.8%–3%). PMID:28344221

  6. Method development for the analysis of N-nitrosodimethylamine and other N-nitrosamines in drinking water at low nanogram/liter concentrations using solid-phase extraction and gas chromatography with chemical ionization tandem mass spectrometry.

    PubMed

    Munch, Jean W; Bassett, Margarita V

    2006-01-01

    N-nitrosodimethylamine (NDMA) is a probable human carcinogen of concern that has been identified as a drinking water contaminant. U.S. Environmental Protection Agency Method 521 has been developed for the analysis of NDMA and 6 additional N-nitrosamines in drinking water at low ng/L concentrations. The method uses solid-phase extraction with coconut charcoal as the sorbent and dichloromethane as the eluent to concentrate 0.50 L water samples to 1 mL. The extracts are analyzed by gas chromatography-chemical ionization tandem mass spectrometry using large-volume injection. Method performance was evaluated in 2 laboratories. Typical analyte recoveries of 87-104% were demonstrated for fortified reagent water samples, and recoveries of 77-106% were demonstrated for fortified drinking water samples. All relative standard deviations on replicate analyses were < 11%.

  7. Molecularly imprinted covalent organic polymers for the selective extraction of benzoxazole fluorescent whitening agents from food samples.

    PubMed

    Ding, Hui; Wang, Rongyu; Wang, Xiao; Ji, Wenhua

    2018-06-21

    Molecularly imprinted covalent organic polymers were constructed by an imine-linking reaction between 1,3,5-triformylphloroglucinol and 2,6-diaminopyridine and used for the selective solid-phase extraction of benzoxazole fluorescent whitening agents from food samples. Binding experiments showed that imprinting sites on molecularly imprinted polymers had higher selectivity for targets compared with those of the corresponding non-imprinted polymers. Parameters affecting the solid-phase extraction procedure were examined. Under optimal conditions, actual samples were treated and the eluent was analyzed with high-performance liquid chromatography with diode-array detection. The results showed that the established method owned the wide linearity, satisfactory detection limits and quantification limits, and acceptable recoveries. Thus, this developed method possesses the practical potential to the selectively determine benzoxazole fluorescent whitening agents in complex food samples. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Extraction of domoic acid from seawater and urine using a resin based on 2-(trifluoromethyl)acrylic acid.

    PubMed

    Piletska, Elena V; Villoslada, Fernando Navarro; Chianella, Iva; Bossi, Alessandra; Karim, Kal; Whitcombe, Michael J; Piletsky, Sergey A; Doucette, Gregory J; Ramsdell, John S

    2008-03-03

    A new solid-phase extraction (SPE) matrix with high affinity for the neurotoxin domoic acid (DA) was designed and tested. A computational modelling study led to the selection of 2-(trifluoromethyl)acrylic acid (TFMAA) as a functional monomer capable of imparting affinity towards domoic acid. Polymeric adsorbents containing TFMAA were synthesised and tested in high ionic strength solutions such as urine and seawater. The TFMAA-based polymers demonstrated excellent performance in solid-phase extraction of domoic acid, retaining the toxin while salts and other interfering compounds such as aspartic and glutamic acids were removed by washing and selective elution. It was shown that the TFMAA-based polymer provided the level of purification of domoic acid from urine and seawater acceptable for its quantification by high performance liquid chromatography-mass spectrometry (HPLC-MS) and enzyme-linked immunosorbent assay (ELISA) without any additional pre-concentration and purification steps.

  9. Halloysite Nanotubes as a New Adsorbent for Solid Phase Extraction and Spectrophotometric Determination of Iron in Water and Food Samples

    NASA Astrophysics Data System (ADS)

    Samadi, A.; Amjadi, M.

    2016-07-01

    Halloysite nanotubes (HNTs) have been introduced as a new solid phase extraction adsorbent for preconcentration of iron(II) as a complex with 2,2-bipyridine. The cationic complex is effectively adsorbed on the sorbent in the pH range of 3.5-6.0 and efficiently desorbed by trichloroacetic acid. The eluted complex has a strong absorption around 520 nm, which was used for determination of Fe(II). After optimizing extraction conditions, the linear range of the calibration graph was 5.0-500 μg/L with a detection limit of 1.3 μg/L. The proposed method was successfully applied for the determination of trace iron in various water and food samples, and the accuracy was assessed through the recovery experiments and analysis of a certified reference material (NIST 1643e).

  10. Synthesis of g-C3N4/Fe3O4 nanocomposites and application as a new sorbent for solid phase extraction of polycyclic aromatic hydrocarbons in water samples.

    PubMed

    Wang, Man; Cui, Shihai; Yang, Xiaodi; Bi, Wentao

    2015-01-01

    An easy preparation of g-C3N4/Fe3O4 nanocomposites by chemical co-precipitation has been demonstrated. The as-prepared materials were characterized by X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. The high affinity of g-C3N4 toward polycyclic aromatic hydrocarbons and the magnetic behavior of Fe3O4 were combined to provide an efficient and simple magnetic solid phase extraction (MSPE). The adsorption and desorption of polycyclic aromatic hydrocarbons on g-C3N4/Fe3O4 were examined. Different factors affecting the magnetic solid phase extraction of polycyclic aromatic hydrocarbons were assessed in terms of adsorption, desorption, and recovery. Under the optimized conditions, the proposed method showed good limits of detection (LOD, S/N=3) in the range of 0.05-0.1 ng mL(-1) and precision in the range of 1.8-5.3% (RSDs, n=3). This method was also successfully applied to the analysis of real water samples; good spiked recoveries over the range of 80.0-99.8% were obtained. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Simultaneous determination of five minor coumarins and flavonoids in Glycyrrhiza uralensis by solid-phase extraction and high-performance liquid chromatography/electrospray ionization tandem mass spectrometry.

    PubMed

    Qiao, Xue; Liu, Chun-Fang; Ji, Shuai; Lin, Xiong-Hao; Guo, De-An; Ye, Min

    2014-02-01

    Minor phenolic compounds in licorice (Glycyrrhiza uralensis) have recently been proved for diverse bioactivities and favorable bioavailability, indicating that they may play an important role in the therapeutic effects or herb-drug interactions of licorice. However, so far, their abundance in licorice remains unknown. In this study, a reliable solid-phase extraction coupled with a high-performance liquid chromatography and diode array detection method was established to determine the minor phenolic compounds in licorice. The analytes were enriched by a three-step solid-phase extraction method, and then separated on a YMC ODS-A column by gradient elution. Five coumarins and flavonoids were identified by electrospray ionization tandem mass spectrometry, and then quantified using high-performance liquid chromatography and diode array detection. The amounts of glycycoumarin, dehydroglyasperin C, glycyrol, licoflavonol, and glycyrin in G. uralensis were 0.81 ± 0.28, 1.25 ± 0.59, 0.20 ± 0.08, 0.12 ± 0.04, and 0.17 ± 0.08 mg/g, respectively. Abundances of these compounds in other Glycyrrhiza species (G. glabra, G. inflata, and G. yunnanesis) were remarkably lower than G. uralensis. Georg Thieme Verlag KG Stuttgart · New York.

  12. Determination of Ten Macrolide Drugs in Environmental Water Using Molecularly Imprinted Solid-Phase Extraction Coupled with Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Song, Xuqin; Zhou, Tong; Li, Jiufeng; Zhang, Meiyu; Xie, Jingmeng; He, Limin

    2018-05-14

    With the extensive application of antibiotics in livestock, their contamination of the aquatic environment has received more attention. Molecularly imprinted polymer (MIP), as an eco-friendly and durable solid-phase extraction material, has shown great potential for the separation and enrichment of antibiotics in water. This study aims at developing a practical and economical method based on molecularly imprinted solid phase extraction (MISPE) combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) for simultaneously detecting ten macrolide drugs in different sources of water samples. The MIP was synthesized by bulk polymerization using tylosin as the template and methacrylic acid as the functional monomer. The MIP exhibited a favorable load-bearing capacity for water (>90 mL), which is more than triple that of non-molecularly imprinted polymers (NIP). The mean recoveries of macrolides at four spiked concentration levels (limit of quantification, 40, 100, and 400 ng/L) were 62.6⁻100.9%, with intra-day and inter-day relative standard deviations below 12.6%. The limit of detection and limit of quantification were 1.0⁻15.0 ng/L and 3.0⁻40.0 ng/L, respectively. Finally, the proposed method was successfully applied to the analysis of real water samples.

  13. Applicability of solid-phase microextraction combined with gas chromatography atomic emission detection (GC-MIP AED) for the determination of butyltin compounds in sediment samples.

    PubMed

    Carpinteiro, J; Rodríguez, I; Cela, R

    2004-11-01

    The performance of solid-phase microextraction (SPME) applied to the determination of butyltin compounds in sediment samples is systematically evaluated. Matrix effects and influence of blank signals on the detection limits of the method are studied in detail. The interval of linear response is also evaluated in order to assess the applicability of the method to sediments polluted with butyltin compounds over a large range of concentrations. Advantages and drawbacks of including an SPME step, instead of the classic liquid-liquid extraction of the derivatized analytes, in the determination of butyltin compounds in sediment samples are considered in terms of achieved detection limits and experimental effort. Analytes were extracted from the samples by sonication using glacial acetic acid. An aliquot of the centrifuged extract was placed on a vial where compounds were ethylated and concentrated on a PDMS fiber using the headspace mode. Determinations were carried out using GC-MIP AED.

  14. Hot-water and solid-phase extraction of fluorescent whitening agents in paper materials and infant clothes followed by unequivocal determination with ion-pair chromatography-tandem mass spectrometry.

    PubMed

    Chen, Hsin-Chang; Ding, Wang-Hsien

    2006-03-10

    A comprehensive method for the determination of four stilbene-type disulfonate and one distyrylbiphenyl-type fluorescent whitening agents (FWAs) in paper materials (napkin and paper tissue) and infant clothes was developed. FWAs were extracted from paper material and cloth samples using a hot-water extraction, and the aqueous extracts were then preconcentrated with the newly developed Oasis WAX (mixed-mode of weak anion exchange and reversed-phase sorbent) solid-phase extraction cartridge. The analytes were unequivocal determined by ion pair chromatography coupled with negative electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS-MS), applying a di-n-hexyl-ammonium acetate (DHAA) as the ion-pairing reagent in mobile phase. Limits of quantitation (LOQ) were established between 0.2 and 0.9 ng/g in 2 g of samples. Recovery of five FWAs in spiked commercial samples was between 42 and 95% and RSD (n = 3) ranging from 2 to 11%. The method was finally applied to commercial samples, showing that two stilbene-type disulfonates were predominant FWAs detected in napkin and infant cloth samples.

  15. In-line micro-matrix solid-phase dispersion extraction for simultaneous separation and extraction of Sudan dyes in different spices.

    PubMed

    Rajabi, Maryam; Sabzalian, Sedigheh; Barfi, Behruz; Arghavani-Beydokhti, Somayeh; Asghari, Alireza

    2015-12-18

    A novel, simple, fast, and miniaturized method, termed in-line micro-matrix solid-phase dispersion (in-line MMSPD), coupled with high performance liquid chromatography (HPLC) was developed for the simultaneous extraction and determination of Sudan dyes (i.e. Sudan I-IV, Sudan orange G, Sudan black B, and Sudan red G) with the aid of an experimental design strategy. In this method, a matrix solid-phase dispersion (MSPD) column including a suitable mixture of polar sorbents was inserted in the mobile phase pathway, and while the interfering compounds were retained, the analytes were eluted and entered into the analytical column. In this way, the extraction, elution, and separation of the analytes were performed sequentially. Under the optimal experimental conditions (including the amount of sample, 0.0426g; amount of dispersant phase, 0.0216g of florisil, 0.0227g of silica, 0.0141g of alumina; and blending time, 112s), the limits of detection (LODs), limits of quantification, linear dynamic ranges, and recoveries were obtained to be 0.3-15.3μgkg(-1), 1-50μgkg(-1), 50-28,000μgkg(-1), and 94.5-99.1%, respectively. The results obtained showed that determination of the selected Sudan dyes in food samples using an enough sensitive and a simple analytically validated method like in-line MMSPD may offer a suitable screening method, which could be useful for food analysis and adulteration. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Subcritical water extraction of lipids from wet algal biomass

    DOEpatents

    Deng, Shuguang; Reddy, Harvind K.; Schaub, Tanner; Holguin, Francisco Omar

    2016-05-03

    Methods of lipid extraction from biomass, in particular wet algae, through conventionally heated subcritical water, and microwave-assisted subcritical water. In one embodiment, fatty acid methyl esters from solids in a polar phase are further extracted to increase biofuel production.

  17. Development and application of a multi-residue method for the determination of 53 pharmaceuticals in water, sediment, and suspended solids using liquid chromatography-tandem mass spectrometry.

    PubMed

    Aminot, Yann; Litrico, Xavier; Chambolle, Mélodie; Arnaud, Christine; Pardon, Patrick; Budzindki, Hélène

    2015-11-01

    Comprehensive source and fate studies of pharmaceuticals in the environment require analytical methods able to quantify a wide range of molecules over various therapeutic classes, in aqueous and solid matrices. Considering this need, the development of an analytical method to determine 53 pharmaceuticals in aqueous phase and in solid matrices using a combination of microwave-assisted extraction, solid phase extraction, and liquid chromatography coupled with tandem mass spectrometry is reported. Method was successfully validated regarding linearity, repeatability, and overall protocol recovery. Method detection limits (MDLs) do not exceed 1 ng L(-1) for 40 molecules in aqueous matrices (6 ng L(-1) for the 13 remaining), while subnanogram per gram MDLs were reached for 38 molecules in solid phase (29 ng g(-1) for the 15 remaining). Losses due to preparative steps were assessed for the 32 analytes associated to their labeled homologue, revealing an average loss of 40 % during reconcentration, the most altering step. Presence of analytes in wastewater treatment plant (WWTP) effluent aqueous phase and suspended solids (SS) as well as in river water, SS, and sediments was then investigated on a periurban river located in the suburbs of Bordeaux, France, revealing a major contribution of WWTP effluent to the river contamination. Sorption on river SS exceeded 5 % of total concentration for amitriptyline, fluoxetine, imipramine, ritonavir, sildenafil, and propranolol and appeared to be submitted to a seasonal influence. Sediment contamination was lower than the one of SS, organic carbon content, and sediment fine element proportion was accountable for the highest measured concentrations.

  18. Chromatographic Separations Using Solid-Phase Extraction Cartridges: Separation of Wine Phenolics

    NASA Astrophysics Data System (ADS)

    Brenneman, Charles A.; Ebeler, Susan E.

    1999-12-01

    We describe a simple laboratory experiment that demonstrates the principles of chromatographic separation using solid-phase extraction columns and red wine. By adjusting pH and mobile phase composition, the wine is separated into three fractions of differing polarity. The content of each fraction can be monitored by UV-vis spectroscopy. When the experiment is combined with experiments involving HPLC or GC separations, students gain a greater appreciation for and understanding of the highly automated instrumental systems currently available. In addition, they learn about the chemistry of polyphenolic compounds, which are present in many foods and beverages and which are receiving much attention for their potentially beneficial health effects.

  19. In Situ Miniaturised Solid Phase Extraction (m-SPE) for Organic Pollutants in Seawater Samples

    PubMed Central

    Abaroa-Pérez, B.; Sánchez-Almeida, G.; Hernández-Brito, J. J.

    2018-01-01

    Solid phase extraction (SPE) is a consolidated technique for determining pollutants in seawater samples. The current tendency is to miniaturise systems that extract and determine pollutants in the environment, reducing the use of organic solvents, while maintaining the quality in the extraction and preconcentration. On the other hand, there is a need to develop new extraction systems that can be fitted to in situ continual monitoring buoys, especially for the marine environment. This work has developed a first model of a low-pressure micro-SPE (m-SPE) for persistent organic pollutants (POPs) that can be simply applied to in situ monitoring in the marine environment. This system reduces the volumes of sample and solvents required in the laboratory in comparison with conventional SPE. In the future, it could be used in automated or robotic systems in marine technologies such as marine gliders and oceanographic buoys. This system has been optimised and validated to determine polycyclic aromatic hydrocarbons (PAH) in seawater samples, but it could also be applied to other kinds of persistent organic pollutants (POPs) and emerging pollutants. PMID:29805837

  20. Dicationic polymeric ionic-liquid-based magnetic material as an adsorbent for the magnetic solid-phase extraction of organophosphate pesticides and polycyclic aromatic hydrocarbons.

    PubMed

    Jiang, Qiong; Liu, Qin; Chen, Qiliang; Zhao, Wenjie; Xiang, Guoqiang; He, Lijun; Jiang, Xiuming; Zhang, Shusheng

    2016-08-01

    Magnetic particles modified with a dicationic polymeric ionic liquid are described as a new adsorbent in magnetic solid-phase extraction. They were obtained through the copolymerization of a 1,8-di(3-vinylimidazolium)octane-based ionic liquid with vinyl-modified SiO2 @Fe3 O4 , and were characterized by FTIR spectroscopy, X-ray diffraction, and vibrating sample magnetometry. The modified magnetic particles are effective in the extraction of organophosphate pesticides and polycyclic aromatic hydrocarbons. Also, they can provide different extraction performance for the selected analytes including fenitrothion, parathion, fenthion, phoxim, phenanthrene, and fluoranthene, where the extraction efficiency is found to be in agreement with the hydrophobicity of analytes. Various factors influencing the extraction efficiency, such as, the amount of adsorbent, extraction, and desorption time, and type and volume of the desorption solvent, were optimized. Under the optimized conditions, a good linearity ranging from 1-100 μg/L is obtained for all analytes, except for parathion (2-200 μg/L), where the correlation coefficients varied from 0.9960 to 0.9998. The limits of detection are 0.2-0.8 μg/L, and intraday and interday relative standard deviations are 1.7-7.4% (n = 5) and 3.8-8.0% (n = 3), respectively. The magnetic solid-phase extraction combined with high-performance liquid chromatography can be applied for the detection of trace targets in real water samples with satisfactory relative recoveries and relative standard deviations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Comparison of two extraction techniques, solid-phase microextraction versus continuous liquid-liquid extraction/solvent-assisted flavor evaporation, for the analysis of flavor compounds in gueuze lambic beer.

    PubMed

    Thompson-Witrick, Katherine A; Rouseff, Russell L; Cadawallader, Keith R; Duncan, Susan E; Eigel, William N; Tanko, James M; O'Keefe, Sean F

    2015-03-01

    Lambic is a beer style that undergoes spontaneous fermentation and is traditionally produced in the Payottenland region of Belgium, a valley on the Senne River west of Brussels. This region appears to have the perfect combination of airborne microorganisms required for lambic's spontaneous fermentation. Gueuze lambic is a substyle of lambic that is made by mixing young (approximately 1 year) and old (approximately 2 to 3 years) lambics with subsequent bottle conditioning. We compared 2 extraction techniques, solid-phase microextraction (SPME) and continuous liquid-liquid extraction/solvent-assisted flavor evaporation (CCLE/SAFE), for the isolation of volatile compounds in commercially produced gueuze lambic beer. Fifty-four volatile compounds were identified and could be divided into acids (14), alcohols (12), aldehydes (3), esters (20), phenols (3), and miscellaneous (2). SPME extracted a total of 40 volatile compounds, whereas CLLE/SAFE extracted 36 volatile compounds. CLLE/SAFE extracted a greater number of acids than SPME, whereas SPME was able to isolate a greater number of esters. Neither extraction technique proved to be clearly superior and both extraction methods can be utilized for the isolation of volatile compounds found in gueuze lambic beer. © 2015 Institute of Food Technologists®

  2. Development and Multi-laboratory Verification of U.S. EPA Method 540 for the Analysis of Drinking Water Contaminants by Solid Phase Extraction-LC/MS/MS

    EPA Science Inventory

    A drinking water method for 12 chemicals, predominately pesticides, is presented that addresses the occurrence monitoring needs of the U.S. Environmental Protection Agency (EPA) for a future Unregulated Contaminant Monitoring Regulation (UCMR). The method employs solid phase ext...

  3. Regional water-quality analysis of 2,4-D and dicamba in river water using gas chromatography-isotope dilution mass spectrometry

    USGS Publications Warehouse

    Thurman, E.M.; Zimmerman, L.R.; Aga, D.S.; Gilliom, R.J.

    2001-01-01

    Gas chromatography with isotope dilution mass spectrometry (GC-MS) and enzyme-linked immunosorbent assay (ELISA) were used in regional National Water Quality Assessment studies of the herbicides, 2,4-D and dicamba, in river water across the United States. The GC-MS method involved solid-phase extraction, derivatized with deutemted 2,4-D, and analysis by selected ion monitoring. The ELISA method was applied after preconcentration with solid-phase extraction. The ELISA method was unreliable because of interference from humic substances that were also isolated by solid-phase extraction. Therefore, GC-MS was used to analyzed 80 samples from river water from 14 basins. The frequency of detection of dicamba (28%) was higher than that for 2,4-D (16%). Concentrations were higher for dicamba than for 2,4-D, ranging from less than the detection limit (<0.05 ??g/L) to 3.77 ??g/L, in spite of 5 times more annual use of 2,4-D as compared to dicamba. These results suggest that 2,4-D degrades more rapidly in the environment than dicamba.

  4. Solid-phase extraction-gas chromatography and solid-phase extraction-gas chromatography-mass spectrometry determination of corrosion inhibiting long-chain primary alkyl amines in chemical treatment of boiler water in water-steam systems of power plants.

    PubMed

    Kusch, Peter; Knupp, Gerd; Hergarten, Marcus; Kozupa, Marian; Majchrzak, Maria

    2006-04-28

    Gas chromatography with simultaneous flame-ionization detection (FID) and a nitrogen-phosphorus detection (NPD) as well as gas chromatography-mass spectrometry (GC/MS) has been used to characterize long-chain primary alkyl amines after derivatization with trifluoroacetic anhydride (TFAA). Electron impact ionization- (EI) and negative chemical ionization (NCI) mass spectra of trifluoroacetylated derivatives of the identified tert-octadecylamines are presented for the first time. The corrosion inhibiting alkyl amines were applied in a water-steam circuit of energy systems in the power industry. Solid-phase extraction (SPE) with octadecyl bonded silica (C18) sorbents followed by gas chromatography were used for quantification of the investigated tert-octadecylamines in boiler water, superheated steam and condensate samples from the power plant. The estimated values were: 89 microg l(-1)(n = 5, RSD = 7.8%), 45 microg l(-1) (n = 5, RSD = 5.4%) and 37 microg l(-1)(n = 5, RSD = 2.3%), respectively.

  5. Testing of nylon 6 nanofibers with different surface densities as sorbents for solid phase extraction and their selectivity comparison with commercial sorbent.

    PubMed

    Háková, Martina; Raabová, Hedvika; Havlíková, Lucie Chocholoušová; Chocholouš, Petr; Chvojka, Jiří; Šatínský, Dalibor

    2018-05-01

    Nylon 6 nanofibers were tested for their ability to serve as a sorbent for solid phase extraction (SPE). The regular nanostructure providing a great sorption area and amidic functionality should lead to the assumption that nylon 6 nanofibers could be used as a novel sorbent with great potential for sample pre-treatment. However, due to the substantial differences between classical particle sorbents used for solid phase extraction and nanofibers, it is necessary to evaluate this novel approach. This article describes three types of laboratory fabricated nylon 6 nanofibers with different surface density (5.04gm -2 , 3.90gm -2 and 0.75gm -2 ) and corresponding surface areas for solid phase extraction of several groups of compounds with different structural and physicochemical properties (parabens, steroids, flavonoids and pesticides). The nanofibers were created by needleless electrospinning. Extraction columns were manually packed in classic 1- or 3-mL plastic syringe cartridges with 26-30mg of nanofibers and the column bed was sealed with polypropylene frits. The SPE procedure followed a typical five-step protocol and the collected eluates were analyzed by HPLC with UV detection. Extraction recovery was used as a parameter to evaluate the behavior of the analytes within the SPE process. Under this set condition, the recovery of the SPE process ranged from 23.1% to 125.8%. SPE showed good repeatability (0.58-11.87% RSD) and inter-day reproducibility (3.86-9.79% RSD). The achieved results were compared with SPE using a classic particle sorbent column. Good mechanical and chemical stability of nanofibers was proved. Scanning electron microscope was used for the evaluation of morphological changes in nanostructure. Nylon 6 nanofibers proved being a cost-effective sorbent for repeated use in SPE. Nylon 6 nanofibers have great potential in miniaturized SPE enabling users to overcome troubles with high back-pressure. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Matrix solid-phase dispersion coupled with homogeneous ionic liquid microextraction for the determination of sulfonamides in animal tissues using high-performance liquid chromatography.

    PubMed

    Wang, Zhibing; He, Mengyu; Jiang, Chunzhu; Zhang, Fengqing; Du, Shanshan; Feng, Wennan; Zhang, Hanqi

    2015-12-01

    Matrix solid-phase dispersion coupled with homogeneous ionic liquid microextraction was developed and applied to the extraction of some sulfonamides, including sulfamerazine, sulfamethazine, sulfathiazole, sulfachloropyridazine, sulfadoxine, sulfisoxazole, and sulfaphenazole, in animal tissues. High-performance liquid chromatography was applied to the separation and determination of the target analytes. The solid sample was directly treated by matrix solid-phase dispersion and the eluate obtained was treated by homogeneous ionic liquid microextraction. The ionic liquid was used as the extraction solvent in this method, which may result in the improvement of the recoveries of the target analytes. To avoid using organic solvent and reduce environmental pollution, water was used as the elution solvent of matrix solid-phase dispersion. The effects of the experimental parameters on recoveries, including the type and volume of ionic liquid, type of dispersant, ratio of sample to dispersant, pH value of elution solvent, volume of elution solvent, amount of salt in eluate, amount of ion-pairing agent (NH4 PF6 ), and centrifuging time, were evaluated. When the present method was applied to the analysis of animal tissues, the recoveries of the analytes ranged from 85.4 to 118.0%, and the relative standard deviations were lower than 9.30%. The detection limits for the analytes were 4.3-13.4 μg/kg. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Long-term TNT sorption and bound residue formation in soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hundal, L.S.; Shea, P.J.; Comfort, S.D.

    1997-05-01

    Soils surrounding former munitions production facilities are highly contaminated with 2,4,6-trinitrotoluene (TNT). Long-term availability and fate of TNT and its transformation products must be understood to predict environmental impact and develop appropriate remediation strategies. Sorption and transport in surface soil containing solid-phase TNT are particularly critical, since nonlinear sorption isotherms indicate greater TNT availability for transport at high concentrations. Our objectives were to determine long-term sorption and bound residue formation in surface and subsurface Sharpsburg soil (Typic Argiudoll). Prolonged equilibration of {sup 14}C-TNT with the soil revealed a gradual increase in amount sorbed and formation of unextractable (bound) {sup 14}Cmore » residues. The presence of solid-phase TNT did not initially affect the amount of {sup 14}C sorbed during a 168-d equilibration. After 168d, 93% of the added {sup 14}C was sorbed by uncontaminated soil, while 79% was sorbed by soil containing solid-phase TNT. In the absence of solid phase, pools of readily available (extractable with 3 mM CaCl{sub 2}) and potentially available (CH{sub 3}CN-extractable) sorbed TNT decreased rapidly with time and coincided with increased {sup 14}C in soil organic matter. More {sup 14}C was found in fulvic acid than in the humic acid fraction when no solid-phase TNT was present. After sequential extractions, including strong alkali and acid, 32 to 40% of the sorbed {sup 14}C was irreversibly bound (unextractable) in Sharpsburg surface and subsurface soil. Results provide strong evidence for humification of TNT in soil. This process may represent a significant route for detoxification in the soil-water environment. 58 refs., 6 figs., 3 tabs.« less

  8. Liquid Metering Centrifuge Sticks (LMCS): A Centrifugal Approach to Metering Known Sample Volumes for Colorimetric Solid Phase Extraction (C-SPE)

    NASA Technical Reports Server (NTRS)

    Gazda, Daniel B.; Schultz, John R.; Clarke, Mark S.

    2007-01-01

    Phase separation is one of the most significant obstacles encountered during the development of analytical methods for water quality monitoring in spacecraft environments. Removing air bubbles from water samples prior to analysis is a routine task on earth; however, in the absence of gravity, this routine task becomes extremely difficult. This paper details the development and initial ground testing of liquid metering centrifuge sticks (LMCS), devices designed to collect and meter a known volume of bubble-free water in microgravity. The LMCS uses centrifugal force to eliminate entrapped air and reproducibly meter liquid sample volumes for analysis with Colorimetric Solid Phase Extraction (C-SPE). C-SPE is a sorption-spectrophotometric platform that is being developed as a potential spacecraft water quality monitoring system. C-SPE utilizes solid phase extraction membranes impregnated with analyte-specific colorimetric reagents to concentrate and complex target analytes in spacecraft water samples. The mass of analyte extracted from the water sample is determined using diffuse reflectance (DR) data collected from the membrane surface and an analyte-specific calibration curve. The analyte concentration can then be calculated from the mass of extracted analyte and the volume of the sample analyzed. Previous flight experiments conducted in microgravity conditions aboard the NASA KC-135 aircraft demonstrated that the inability to collect and meter a known volume of water using a syringe was a limiting factor in the accuracy of C-SPE measurements. Herein, results obtained from ground based C-SPE experiments using ionic silver as a test analyte and either the LMCS or syringes for sample metering are compared to evaluate the performance of the LMCS. These results indicate very good agreement between the two sample metering methods and clearly illustrate the potential of utilizing centrifugal forces to achieve phase separation and metering of water samples in microgravity.

  9. Methods of analysis by the U.S. Geological Survey Organic Geochemistry Research Group : determination of selected herbicides and their degradation products in water using solid-phase extraction and gas chromatography/mass spectrometry

    USGS Publications Warehouse

    Kish, J.L.; Thurman, E.M.; Scribner, E.A.; Zimmerman, L.R.

    2000-01-01

    A method for the extraction and analysis of eight herbicides and five degradation products using solid-phase extraction from natural water samples followed by gas chromatography/mass spectrometry is presented in this report. This method was developed for dimethenamid; flufenacet; fluometuron and its degradation products, demethylfluometuron (DMFM), 3-(trifluromethyl)phenylurea (TFMPU), 3-(trifluromethyl)-aniline (TFMA); molinate; norflurazon and its degradation product, demethylnorflurazon; pendamethalin; the degradation product of prometryn, deisopropylprometryn; propanil; and trifluralin. The eight herbicides are used primarily in the southern United States where cotton, rice, and soybeans are produced. The exceptions are dimethenamid and flufenacet, which are used on corn in the Midwest. Water samples received by the U.S. Geological Survey's Organic Geochemistry Research Group in Lawrence, Kansas, are filtered to remove suspended particulate matter and then passed through disposable solid-phase extraction columns containing octadecyl-bonded porous silica (C-18) to extract the compounds. The herbicides and their degradation products are removed from the column by ethyl acetate elution. The eluate is evaporated under nitrogen, and components then are separated, identified, and quantified by injecting an aliquot of the concentrated extract into a high-resolution, fused-silica capillary column of a gas chromatograph/mass spectrometer under selected-ion mode. Method detection limits ranged from 0.02 to 0.05 ?g/L for all compounds with the exception of TFMPU, which has a method detection limit of 0.32 ?g/L. The mean absolute recovery is 107 percent. This method for the determination of herbicides and their degradation products is valuable for acquiring information about water quality and compound fate and transport in water.

  10. Determination of Five Major 8-Prenylflavones in Leaves of Epimedium by Solid-Phase Extraction Coupled with Capillary Electrophoresis

    PubMed Central

    Xie, Juan-ping; Xiang, Ji-ming; Zhu, Zhong-liang

    2016-01-01

    A simple, accurate and reproducible method which is based on the capillary electrophoresis, coupled with solid-phase extraction, has been developed for simultaneous determination of multiple 8-prenylflavones from Chinese Herba Epimedii. In this study, the author has mainly illustrated the experimental process and research results of five major components including epimedin C, icariin, diphylloside A, epimedoside A and icarisoside A that have been extracted and identified from Herba Epimedii for the first time. Experimental conditions have been optimized to achieve the best separation efficiency for the following factors: the buffer pH, buffer concentration and applied voltage. The experiment can be conducted through two separable stages: the first stage is to obtain the crude extracts through the solid-phase extraction; and the second stage is to further separate five major components by using the capillary electrophoresis. The separation of the five components and the analysis of the experiment are relatively fast and can be completed within 20 min. The concentration ranges of the construction of standard curves of five major 8-prenylflavones are 32.0–395.0, 23.4–292.0, 42.1–526.0, 18.8–233.5 and 29.7–371.0 µg mL−1 respectively, which have showed acceptable linearity with a correlation coefficient, r ≥ 0.999. The coefficient varies within 2.0% for both intra- and inter-days tests. The recoveries of five components range from 92.3 to 104.1%. The relative standard deviations of recoveries of five components range from 1.2 and 2.8%. This new method will facilitate the extraction and expedite the determination of medical components from Herba Epimedii. PMID:26865656

  11. Fifty years of solid-phase extraction in water analysis--historical development and overview.

    PubMed

    Liska, I

    2000-07-14

    The use of an appropriate sample handling technique is a must in an analysis of organic micropollutants in water. The efforts to use a solid phase for the recovery of analytes from a water matrix prior to their detection have a long history. Since the first experimental trials using activated carbon filters that were performed 50 years ago, solid-phase extraction (SPE) has become an established sample preparation technique. The initial experimental applications of SPE resulted in widespread use of this technique in current water analysis and also to adoption of SPE into standardized analytical methods. During the decades of its evolution, chromatographers became aware of the advantages of SPE and, despite many innovations that appeared in the last decade, new SPE developments are still expected in the future. A brief overview of 50 years of the history of the use of SPE in organic trace analysis of water is given in presented paper.

  12. Explorative solid-phase extraction (E-SPE) for accelerated microbial natural product discovery, dereplication, and purification.

    PubMed

    Månsson, Maria; Phipps, Richard K; Gram, Lone; Munro, Murray H G; Larsen, Thomas O; Nielsen, Kristian F

    2010-06-25

    Microbial natural products (NP) cover a high chemical diversity, and in consequence extracts from microorganisms are often complex to analyze and purify. A distribution analysis of calculated pK(a) values from the 34390 records in Antibase2008 revealed that within pH 2-11, 44% of all included compounds had an acidic functionality, 17% a basic functionality, and 9% both. This showed a great potential for using ion-exchange chromatography as an integral part of the separation procedure, orthogonal to the classic reversed-phase strategy. Thus, we investigated the use of an "explorative solid-phase extraction" (E-SPE) protocol using SAX, Oasis MAX, SCX, and LH-20 columns for targeted exploitation of chemical functionalities. E-SPE provides a minimum of fractions (15) for chemical and biological analyses and implicates development into a preparative scale methodology. Overall, this allows fast extract prioritization, easier dereplication, mapping of biological activities, and formulation of a purification strategy.

  13. EVALUATION OF ANDROSTENEDIONE AS AN ANDROGENIC COMPONENT OF RIVER WATER DOWNSTREAM OF A PULP AND PAPER MILL EFFLUENT

    EPA Science Inventory

    This study evaluates a recent report indicating that androstenedione contributes to the androgenicity of water downstream of a pulp and paper mill discharge on the Fenholloway River, Florida, USA. Extraction and concentration of Fenholloway water with C18 solid phase extraction c...

  14. An accessible micro-capillary electrophoresis device using surface-tension-driven flow

    PubMed Central

    Mohanty, Swomitra K.; Warrick, Jay; Gorski, Jack; Beebe, David J.

    2010-01-01

    We present a rapidly fabricated micro-capillary electrophoresis chip that utilizes surface-tension-driven flow for sample injection and extraction of DNA. Surface-tension-driven flow (i.e. passive pumping) injects a fixed volume of sample that can be predicted mathematically. Passive pumping eliminates the need for tubing, valves, syringe pumps, and other equipment typically needed for interfacing with microelectrophoresis chips. This method requires a standard micropipette to load samples before separation, and remove the resulting bands after analysis. The device was made using liquid phase photopolymerization to rapidly fabricate the chip without the need of special equipment typically associated with the construction of microelectrophoresis chips (e.g. cleanroom). Batch fabrication time for the device presented here was 1.5 h including channel coating time to suppress electroosmotic flow. Devices were constructed out of poly-isobornyl acrylate and glass. A standard microscope with a UV source was used for sample detection. Separations were demonstrated using Promega BenchTop 100 bp ladder in hydroxyl ethyl cellulose (HEC) and oligonucleotides of 91 and 118 bp were used to characterize sample injection and extraction of DNA bands. The end result was an inexpensive micro-capillary electrophoresis device that uses tools (e.g. micropipette, electrophoretic power supplies, and microscopes) already present in most labs for sample manipulation and detection, making it more accessible for potential end users. PMID:19425002

  15. Separating DDTs in edible animal fats using matrix solid-phase dispersion extraction with activated carbon filter, Toyobo-KF.

    PubMed

    Furusawa, Naoto

    2006-09-01

    A technique is presented for the economical, routine, and quantitative analysis of contamination by dichloro-diphenyl-trichloroethanes (DDTs) [pp'-DDT, pp'-dichlorodiphenyl dichloroethylene, and pp'-dichlorodiphenyl dichloreothane in beef tallow and chicken fat samples, based on their separation using matrix solid-phase dispersion (MSPD) extraction with Toyobo-KF, an activated carbon fiber. Toyobo-KF is a newly applied MSPD sorbent, and it is followed by reversed-phase high-performance liquid chromatography (HPLC) with a photodiode array detector. The resulting analytical performance parameters [recoveries of spiked DDTs (0.1, 0.2, and 0.4 microg/g) > or = 81%, with relative standard deviations of < or = 8% (n = 5), and quantitation limits < or = 0.03 microg/g], with minimal handling and cost-efficiency, indicate that the present MSPD-HPLC method may be a useful tool for routine monitoring of DDT contamination in meat.

  16. Stiffness-independent highly efficient on-chip extraction of cell-laden hydrogel microcapsules from oil emulsion into aqueous solution by dielectrophoresis

    PubMed Central

    Huang, Haishui; Sun, Mingrui; Heisler-Taylor, Tyler; Kiourti, Asimina; Volakis, John; Lafyatis, Gregory

    2015-01-01

    A dielectrophoresis (DEP)-based method is reported to achieve highly efficient on-chip extraction of cell-laden microcapsules of any stiffness from oil into aqueous solution. The hydrogel microcapsules can be extracted into the aqueous solution by DEP and interfacial tension (IFT) forces with no trapped oil while the encapsulated cells are free from the electrical damages due to the Faraday cage effect. PMID:26297051

  17. Separation and quantitation of three acidic herbicide residues in tobacco and soil by dispersive solid-phase extraction and UPLC-MS/MS.

    PubMed

    Xiong, Wei; Tao, Xiaoqiu; Pang, Su; Yang, Xue; Tang, GangLing; Bian, Zhaoyang

    2014-01-01

    A method for the determination of three acidic herbicides, dicamba, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) in tobacco and soil has been developed based on the use of liquid-liquid extraction and dispersive solid-phase extraction (dispersive-SPE) followed by UPLC-MS/MS. Two percentage of (v/v) formic acid in acetonitrile as the extraction helped partitioning of analytes into the acetonitrile phase. The extract was then cleaned up by dispersive-SPE using primary secondary amine as selective sorbents. Quantitative analysis was done in the multiple-reaction monitoring mode using stable isotope-labeled internal standards for each compound. A separate internal standard for each analyte is required to minimize sample matrix effects on each analyte, which can lead to poor analyte recoveries and decreases in method accuracy and precision. The total analysis time was <4 min. The linear range of the method was from 1 to 100 ng mL(-1) with a limit of detection of each herbicide varied from 0.012 to 0.126 ng g(-1). The proposed method is faster, more sensitive and selective than the traditional methods and more accurate and robust than the published LC-MS/MS methods. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Simultaneous determination of gaseous and particulate carbonyls in air by coupling micellar electrokinetic capillary chromatography with molecular imprinting solid-phase extraction.

    PubMed

    Sun, Hui; Lai, Jia-Ping; Fung, Ying Sing

    2014-09-05

    A novel method coupling molecular imprinting solid-phase extraction (MISPE) and micellar electrokinetic capillary chromatography (MEKC) was developed to enable the hourly determination of low level of ambient carbonyls, and study their partition between gaseous phase and particulate phase. With 2,4-dinitroaniline (DNAN) as dummy imprinting template, the unreacted 2,4-Dinitrophenylhydrazine (DNPH) in sampling solution could be removed effectively using MISPE, and an average recovery of 97±5.3% (n=5) for the carbonyl-DNPH derivatives was achieved. Owing to the high enrichment due to sample clean-up, and the improvement of MEKC separation efficiency, many low abundant carbonyls could be detected by hourly in the field study. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Determination of perfluorinated chemicals in food and drinking water using high-flow solid-phase extraction and ultra-high performance liquid chromatography/tandem mass spectrometry.

    PubMed

    Chang, Ying-Chia; Chen, Wen-Ling; Bai, Fang-Yu; Chen, Pau-Chung; Wang, Gen-Shuh; Chen, Chia-Yang

    2012-01-01

    For this study, we developed methods of determining ten perfluorinated chemicals in drinking water, milk, fish, beef, and pig liver using high-flow automated solid-phase extraction (SPE) and ultra-high performance liquid chromatography/tandem mass spectrometry. The analytes were separated on a core-shell Kinetex C18 column. The mobile phase was composed of methanol and 10-mM N-methylmorpholine. Milk was digested with 0.5 N potassium hydroxide in Milli-Q water, and was extracted with an Atlantic HLB disk to perform automated SPE at a flow rate ranged from 70 to 86 mL/min. Drinking water was directly extracted by the SPE. Solid food samples were digested in alkaline methanol and their supernatants were diluted and also processed by SPE. The disks were washed with 40% methanol/60% water and then eluted with 0.1% ammonium hydroxide in methanol. Suppression of signal intensity of most analytes by matrixes was lower than 50%; it was generally lower in fish and drinking water but higher in liver. Most quantitative biases and relative standard deviations were lower than 15%. The limits of detection for most analytes were sub-nanograms per liter for drinking water and sub-nanograms per gram for solid food samples. This method greatly shortened the time and labor needed for digestion, SPE, and liquid chromatography. This method has been applied to analyze 14 types of food samples. Perfluorooctanoic acid was found to be the highest among the analytes (median at 3.2-64 ng/g wet weight), followed by perfluorodecanoic acid (0.7-25 ng/g) and perfluorododecanoic acid (0.6-15 ng/g).

  20. Sample preparation techniques for the determination of trace residues and contaminants in foods.

    PubMed

    Ridgway, Kathy; Lalljie, Sam P D; Smith, Roger M

    2007-06-15

    The determination of trace residues and contaminants in complex matrices, such as food, often requires extensive sample extraction and preparation prior to instrumental analysis. Sample preparation is often the bottleneck in analysis and there is a need to minimise the number of steps to reduce both time and sources of error. There is also a move towards more environmentally friendly techniques, which use less solvent and smaller sample sizes. Smaller sample size becomes important when dealing with real life problems, such as consumer complaints and alleged chemical contamination. Optimal sample preparation can reduce analysis time, sources of error, enhance sensitivity and enable unequivocal identification, confirmation and quantification. This review considers all aspects of sample preparation, covering general extraction techniques, such as Soxhlet and pressurised liquid extraction, microextraction techniques such as liquid phase microextraction (LPME) and more selective techniques, such as solid phase extraction (SPE), solid phase microextraction (SPME) and stir bar sorptive extraction (SBSE). The applicability of each technique in food analysis, particularly for the determination of trace organic contaminants in foods is discussed.

  1. A phase-based stereo vision system-on-a-chip.

    PubMed

    Díaz, Javier; Ros, Eduardo; Sabatini, Silvio P; Solari, Fabio; Mota, Sonia

    2007-02-01

    A simple and fast technique for depth estimation based on phase measurement has been adopted for the implementation of a real-time stereo system with sub-pixel resolution on an FPGA device. The technique avoids the attendant problem of phase warping. The designed system takes full advantage of the inherent processing parallelism and segmentation capabilities of FPGA devices to achieve a computation speed of 65megapixels/s, which can be arranged with a customized frame-grabber module to process 211frames/s at a size of 640x480 pixels. The processing speed achieved is higher than conventional camera frame rates, thus allowing the system to extract multiple estimations and be used as a platform to evaluate integration schemes of a population of neurons without increasing hardware resource demands.

  2. Extraction of toxic compounds from saliva by magnetic-stirring-assisted micro-solid-phase extraction step followed by headspace-gas chromatography-ion mobility spectrometry.

    PubMed

    Criado-García, Laura; Arce, Lourdes

    2016-09-01

    A new sample extraction procedure based on micro-solid-phase extraction (μSPE) using a mixture of sorbents of different polarities (polymeric reversed-phase sorbent HLB, silica-based sorbent C18, and multiwalled carbon nanotubes) was applied to extract benzene, toluene, butyraldehyde, benzaldehyde, and tolualdehyde present in saliva to avoid interference from moisture and matrix components and enhance sensitivity and selectivity of the ion mobility spectrometry (IMS) methodology proposed. The extraction of target analytes from saliva samples by using μSPE were followed by the desorption step carried out in the headspace vials placed in the autosampler of the IMS device. Then, 200 μL of headspace was injected into the GC column coupled to the IMS for its analysis. The method was fully validated in terms of sensitivity, precision, and recovery. The LODs and LOQs obtained, when analytes were dissolved in saliva samples to consider the matrix effect, were within the range of 0.38-0.49 and 1.26-1.66 μg mL(-1), respectively. The relative standard deviations were <3.5 % for retention time and drift time values, which indicate that the method proposed can be applied to determine toxic compounds in saliva samples. Graphical abstract Summary of steps followed in the experimental set up of this work.

  3. In situ continuous derivatization/pre-concentration of carbonyl compounds with 2,4-dinitrophenylhydrazine in aqueous samples by solid-phase extraction Application to liquid chromatography determination of aldehydes.

    PubMed

    Baños, Clara-Eugenia; Silva, Manuel

    2009-03-15

    A rapid and straightforward continuous solid-phase extraction system has been developed for in situ derivatization and pre-concentration of carbonyl compounds in aqueous samples. Initially 2,4-dinitrophenylhydrazine, the derivatizing agent, was adsorbed on a C(18) mini-column and then 15-ml of sample were continuously aspirated into the flow system, where the derivatization and pre-concentration of the analytes (low-molecular mass aldehydes) were performed simultaneously. Following elution, 20 microl of the extract were injected into a LC-DAD system, in which hydrazones were successfully separated in 12 min on a RP-C(18) column using a linear gradient mobile phase of acetonitrile-water of 60-100% acetonitrile for 8 min, flowing at 0.5 ml/min. The whole analytical process can be accomplished within ca. 35 min. Under optimum conditions, limits of detection were obtained between 0.3 and 1.0 microg/l and RSDs (inter-day precision) from 1.2 to 4.6%. Finally, some applications on water samples are presented with recoveries ranged from 95.8 to 99.4%.

  4. Solid-phase extraction element based on epoxy polymer monolith for determination of polar organic compounds in aqueous media.

    PubMed

    Takahashi, Tadashi; Odagiri, Kayo; Watanabe, Atsushi; Watanabe, Chuichi; Kubo, Takuya; Hosoya, Ken

    2011-10-01

    A solid-phase extraction element based on epoxy polymer monolith was fabricated for sorptive enrichment of polar compounds from liquid and gaseous samples. After ultrasonication of the element in an aqueous solution for a given period of time, the thermal desorption (TD) using a pyrolyzer with gas chromatography/mass spectrometry (GC/MS), in which TD temperature was programmed from 50 to 250 °C for the analytes absorbed in the element, was used to evaluate the element for basic extraction performance using the aqueous standard mixtures consisting of compounds having varied polarities such as hexanol, isoamyl acetate, linalool, furfural and decanoic acid, in concentrations ranging from 10 μg/L to 1 mg/L. Excellent linear relationships were observed for all compounds in the standard mixture, except decanoic acid. In the extraction of beverages such as red wine, the extraction element showed stronger adsorption characteristics for polar compounds such as alcohols and acids than a non-polar polydimethylsiloxane-based element. This feature is derived from the main polymer structure along with hydroxyl and amino groups present in the epoxy-based monolith polymer matrix. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Improved sample extraction and clean-up for the GC-MS determination of BADGE and BFDGE in vegetable oil.

    PubMed

    Brede, C; Skjevrak, I; Herikstad, H; Anensen, E; Austvoll, R; Hemmingsen, T

    2002-05-01

    A straightforward method was established for the determination of migration contaminants in olive oil with a special focus on the two can-coating migration compounds bisphenol A diglycidyl ether (BADGE) and bisphenol F diglycidyl ether (BFDGE). The preferred sample preparation was a single liquid-liquid extraction of compounds from the oil into 20% (v/v) methanol in acetonitrile, followed by clean-up with solid-phase extraction on aminopropyl bonded to silica. This purification procedure selectively removed all free fatty acids from the extracts without removing phenolic compounds of interest. The solid-phase extraction columns were used many times by implementing a procedure of washing out the strongly retained fatty acids with 2% acetic acid in methanol. Gas chromatography coupled with full scan (m/z 33-700) electron ionization mass spectrometry was used for the determination of several model compounds in olive oil samples. BADGE and BFDGE could be determined in the 0.05-2 mg kg(-1) range in oil samples with a relative SD of <6% (six replicates). The method was used in an enforcement campaign for the Norwegian Food Control Authority to analyse vegetable oil samples from canned fish-in-oil.

  6. Determination of trace metals in drinking water using solid-phase extraction disks and X-ray fluorescence spectrometry.

    PubMed

    Hou, Xiandeng; Peters, Heather L; Yang, Zheng; Wagner, Karl A; Batchelor, James D; Daniel, Meredith M; Jones, Bradley T

    2003-03-01

    A convenient method is described for monitoring Cd, Ni, Cu, and Pb at trace levels in drinking water samples. These metals are preconcentrated on a chelating solid-phase extraction disk and then determined by X-ray fluorescence spectrometry. The method tolerates a wide pH range (pH 6-14) and a large amount of alkaline and alkaline earth elements. The preconcentration factor is well over 1600, assuming a 1 L water sample volume. The limits of detection for Cd, Ni, Cu, and Pb are 3.8, 0.6, 0.4, and 0.3 ng/mL, respectively. These are well below the federal maximum contaminant level values, which are 5, 100, 1300, and 15 ng/mL, respectively. The proposed method has many advantages including ease of operation, multielement capability, nondestructiveness, high sensitivity, and relative cost efficiency. The solid-phase extraction step can be conducted in the field and then the disks can be mailed to a laboratory for the analysis, eliminating the cost of transporting large volumes of water samples. Furthermore, the color of the used extraction disk provides an initial estimate of the degree of contamination for some transition metals (for example, Ni and Cu). Thus, the overall cost for analysis of metals in drinking water can be minimized by implementing the method, and small water supply companies with limited budgets will be better able to comply with the Safe Drinking Water Act.

  7. Multiresidue determination of 114 multiclass pesticides in flue-cured tobacco by solid-phase extraction coupled with gas chromatography and tandem mass spectrometry.

    PubMed

    Cao, Jianmin; Sun, Na; Yu, Weisong; Pang, Xueli; Lin, Yingnan; Kong, Fanyu; Qiu, Jun

    2016-12-01

    A sensitive and robust multiresidue method for the simultaneous analysis of 114 pesticides in tobacco was developed based on solid-phase extraction coupled with gas chromatography and tandem mass spectrometry. In this strategy, tobacco samples were extracted with acetonitrile and cleaned up with a multilayer solid-phase extraction cartridge Cleanert TPT using acetonitrile/toluene (3:1) as the elution solvent. Two internal standards of different polarity were used to meet simultaneous pesticides quantification demands in the tobacco matrix. Satisfactory linearity in the range of 10-500 ng/mL was obtained for all 114 pesticides with linear regression coefficients higher than 0.994. The limit of detection and limit of quantification values were 0.02-5.27 and 0.06-17.6 ng/g, respectively. For most of the pesticides, acceptable recoveries in the range of 70-120% and repeatabilities (relative standard deviation) of <11% were achieved at spiking levels of 20, 100, and 400 ng/g. Compared with the reported multiresidue analytical method, the proposed method provided a cleaner test solution with smaller amounts of pigments, fatty acids as well as other undesirable interferences. The development and validation of the high sensitivity, high selectivity, easy automation, and high-throughput analytical method meant that it could be successfully used for the determination of pesticides in tobacco samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Determination of chlorinated polycyclic aromatic hydrocarbons in water by solid-phase extraction coupled with gas chromatography and mass spectrometry.

    PubMed

    Wang, Xianli; Kang, Haiyan; Wu, Junfeng

    2016-05-01

    Given the potential risks of chlorinated polycyclic aromatic hydrocarbons, the analysis of their presence in water is very urgent. We have developed a novel procedure for determining chlorinated polycyclic aromatic hydrocarbons in water based on solid-phase extraction coupled with gas chromatography and mass spectrometry. The extraction parameters of solid-phase extraction were optimized in detail. Under the optimal conditions, the proposed method showed wide linear ranges (1.0-1000 ng/L) with correlation coefficients ranging from 0.9952 to 0.9998. The limits of detection and the limits of quantification were in the range of 0.015-0.591 and 0.045-1.502 ng/L, respectively. Recoveries ranged from 82.5 to 102.6% with relative standard deviations below 9.2%. The obtained method was applied successfully to the determination of chlorinated polycyclic aromatic hydrocarbons in real water samples. Most of the chlorinated polycyclic aromatic hydrocarbons were detected and 1-monochloropyrene was predominant in the studied water samples. This is the first report of chlorinated polycyclic aromatic hydrocarbons in water samples in China. The toxic equivalency quotients of chlorinated polycyclic aromatic hydrocarbons in the studied tap water were 9.95 ng the toxic equivalency quotient m(-3) . 9,10-Dichloroanthracene and 1-monochloropyrene accounted for the majority of the total toxic equivalency quotients of chlorinated polycyclic aromatic hydrocarbons in tap water. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Determination of type A trichothecenes in coix seed by magnetic solid-phase extraction based on magnetic multi-walled carbon nanotubes coupled with ultra-high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Dong, Maofeng; Si, Wenshuai; Wang, Weimin; Bai, Bing; Nie, Dongxia; Song, Weiguo; Zhao, Zhihui; Guo, Yirong; Han, Zheng

    2016-09-01

    Magnetic solid-phase extraction (m-SPE) is a promising sample preparation approach due to its convenience, speed, and simplicity. For the first time, a rapid and reliable m-SPE approach using magnetic multi-walled carbon nanotubes (m-MWCNTs) as the adsorbent was proposed for purification of type A trichothecenes including T-2 toxins (T2), HT-2 toxins (HT-2), diacetoxyscirpenol (DAS), and neosolaniol (NEO) in coix seed. The m-MWCNTs were synthesized by assembling the magnetic nanoparticles (Fe3O4) with MWCNTs by sonication through an aggregation wrap mechanism, and characterized by transmission electron microscope. Several key parameters affecting the performance of the procedure were extensively investigated including extraction solutions, desorption solvents, and m-MWCNT amounts. Under the optimal sample preparation conditions followed by analysis with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), high sensitivity (limit of quantification in the range of 0.3-1.5 μg kg(-1)), good linearity (R (2) > 0.99), satisfactory recovery (73.6-90.6 %), and acceptable precision (≤2.5 %) were obtained. The analytical performance of the developed method has also been successfully evaluated in real coix seed samples. Graphical Abstract Flow chart of determination of type A trichothecenes in coix seed by magnetic solid-phase extraction coupled with ultra-high performance liquid chromatography-tandem mass spectrometry.

  10. A microfluidic sub-critical water extraction instrument

    NASA Astrophysics Data System (ADS)

    Sherrit, Stewart; Noell, Aaron C.; Fisher, Anita; Lee, Mike C.; Takano, Nobuyuki; Bao, Xiaoqi; Kutzer, Thomas C.; Grunthaner, Frank

    2017-11-01

    This article discusses a microfluidic subcritical water extraction (SCWE) chip for autonomous extraction of amino acids from astrobiologically interesting samples. The microfluidic instrument is composed of three major components. These include a mixing chamber where the soil sample is mixed and agitated with the solvent (water), a subcritical water extraction chamber where the sample is sealed with a freeze valve at the chip inlet after a vapor bubble is injected into the inlet channels to ensure the pressure in the chip is in equilibrium with the vapor pressure and the slurry is then heated to ≤200 °C in the SCWE chamber, and a filter or settling chamber where the slurry is pumped to after extraction. The extraction yield of the microfluidic SCWE chip process ranged from 50% compared to acid hydrolysis and 80%-100% compared to a benchtop microwave SCWE for low biomass samples.

  11. Simultaneous detection of seventeen drugs of abuse and metabolites in hair using solid phase micro extraction (SPME) with GC/MS.

    PubMed

    Aleksa, Katarina; Walasek, Paula; Fulga, Netta; Kapur, Bhushan; Gareri, Joey; Koren, Gideon

    2012-05-10

    The analysis of pediatric and adult hair is a useful non-invasive biomarker to effectively detect long term exposure to various xenobiotics, specifically drugs of abuse such as cocaine, opiates and amphetamines. Very often individuals are using, or are exposed to multiple drugs simultaneously and therefore it is important to be able to detect them in the same analysis. We have developed a sensitive and specific solid phase micro extraction (SPME) coupled with gas chromatography mass spectrometry (GC/MS) to detect 17 different analytes in hair using a single extraction method. Five milligrams of hair is extracted overnight, subjected to solid phase extraction (SPE) and then to SPME-GC/MS. The aimed analytes include amphetamine, methamphetamine, MDA, MDMA, cocaine, benzoylecognine, norcocaine, cocaethylene, methadone, codeine, morphine, 6-AM, oxycodone, oxymorphone, hydrocodone, hydromorphone and meperidone. The following are the LOD of the various drugs: 0.2ng/mg hair for amphetamine, methamphetamine, MDA, MDMA, morphine, codeine, 6-AM, oxycodone, oxymorphone, hydromorphone, hydrocodone, meperidine and 0.13ng/mg hair for cocaine, benzoylecognine, cocaethylene, norcocaine and methadone. This GC/MS method is sensitive and specific to detect the presence of these 17 analytes in as little as 5mg of hair and is especially useful for newborn and child hair analysis where the amount of hair is often very limited. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Simultaneous determination of all-trans and 13-cis retinoic acids and their 4-oxo metabolites by adsorption liquid chromatography after solid-phase extraction.

    PubMed

    Lefebvre, P; Agadir, A; Cornic, M; Gourmel, B; Hue, B; Dreux, C; Degos, L; Chomienne, C

    1995-04-07

    All-trans retinoic acid (all-trans RA), the active metabolite of vitamin A, has been demonstrated to be an efficient alternative to chemotherapy in the treatment of acute promyelocytic leukemia (APL), the AML3 subtype of the FAB cytological classification. Complete remission is obtained by inducing terminal granulocytic differentiation of the leukemic cells. To study all-trans RA pharmacokinetics in patients with APL, a rapid, precise and selective high-performance liquid chromatographic (HPLC) assay was developed. This method is easy and shows good repeatability (C.V. = 8.41-12.44%), reproducibility (C.V. = 9.19-14.73%), accuracy (C.V. = 3.5-11%) and sensitivity with a detection limit of 5 pmol/ml. The analysis is performed using normal-phase HPLC in an isocratic mode with UV detection after solid-phase extraction on octadecyl (C18) columns. The mobile phase is hexane-dichloromethane-dioxane (78:18:4, v/v) containing 1% acetic acid.

  13. Microfluidic LC Device with Orthogonal Sample Extraction for On-Chip MALDI-MS Detection

    PubMed Central

    Lazar, Iulia M.; Kabulski, Jarod L.

    2013-01-01

    A microfluidic device that enables on-chip matrix assisted laser desorption ionization-mass spectrometry (MALDI-MS) detection for liquid chromatography (LC) separations is described. The device comprises an array of functional elements to carry out LC separations, integrates a novel microchip-MS interface to facilitate the orthogonal transposition of the microfluidic LC channel into an array of reservoirs, and enables sensitive MALDI-MS detection directly from the chip. Essentially, the device provides a snapshot MALDI-MS map of the content of the separation channel present on the chip. The detection of proteins with biomarker potential from MCF10A breast epithelial cell extracts, and detection limits in the low fmol range, are demonstrated. In addition, the design of the novel LC-MALDI-MS chip entices the promotion of a new concept for performing sample separations within the limited time-frame that accompanies the dead-volume of a separation channel. PMID:23592150

  14. Determination of Low Concentrations of Acetochlor in Water by Automated Solid-Phase Extraction and Gas Chromatography with Mass-Selective Detection

    USGS Publications Warehouse

    Lindley, C.E.; Stewart, J.T.; Sandstrom, M.W.

    1996-01-01

    A sensitive and reliable gas chromatographic/mass spectrometric (GC/MS) method for determining acetochlor in environmental water samples was developed. The method involves automated extraction of the herbicide from a filtered 1 L water sample through a C18 solid-phase extraction column, elution from the column with hexane-isopropyl alcohol (3 + 1), and concentration of the extract with nitrogen gas. The herbicide is quantitated by capillary/column GC/MS with selected-ion monitoring of 3 characteristic ions. The single-operator method detection limit for reagent water samples is 0.0015 ??g/L. Mean recoveries ranged from about 92 to 115% for 3 water matrixes fortified at 0.05 and 0.5 ??g/L. Average single-operator precision, over the course of 1 week, was better than 5%.

  15. Preparation and characterization of magnetic carboxylated nanodiamonds for vortex-assisted magnetic solid-phase extraction of ziram in food and water samples.

    PubMed

    Yılmaz, Erkan; Soylak, Mustafa

    2016-09-01

    A simple and rapid vortex-assisted magnetic solid phase extraction (VA-MSPE) method for the separation and preconcentration of ziram (zinc dimethyldithiocarbamate), subsequent detection of the zinc in complex structure of ziram by flame atomic absorption spectrometry (AAS) has been developed. The ziram content was calculated by using stoichiometric relationship between the zinc and ziram. Magnetic carboxylated nanodiamonds (MCNDs) as solid-phase extraction adsorbent was prepared and characterized by Fourier transform infrared (FT-IR) spectra, X-ray diffraction (XRD) spectrometry and scanning electron microscopy (SEM). These magnetic carboxylated nanodiamonds carrying the ziram could be easily separated from the aqueous solution by applying an external magnetic field; no filtration or centrifugation was necessary. Some important factors influencing the extraction efficiency of ziram such as pH of sample solution, amount of adsorbent, type and volume of eluent, extraction and desorption time and sample volume were studied and optimized. The total extraction and detection time was lower than 10min The preconcentration factor (PF), the precision (RSD, n=7), the limit of detection (LOD) and limit of quantification (LOQ) were 160, 7.0%, 5.3µgL(-1) and 17.5µgL(-1), respectively. The interference of various ions has been examined and the method has been applied for the determination of ziram in various waters, foodstuffs samples and synthetic mixtures. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Analytical methods for the assessment of endocrine disrupting chemical exposure during human fetal and lactation stages: a review.

    PubMed

    Jiménez-Díaz, I; Vela-Soria, F; Rodríguez-Gómez, R; Zafra-Gómez, A; Ballesteros, O; Navalón, A

    2015-09-10

    In the present work, a review of the analytical methods developed in the last 15 years for the determination of endocrine disrupting chemicals (EDCs) in human samples related with children, including placenta, cord blood, amniotic fluid, maternal blood, maternal urine and breast milk, is proposed. Children are highly vulnerable to toxic chemicals in the environment. Among these environmental contaminants to which children are at risk of exposure are EDCs -substances able to alter the normal hormone function of wildlife and humans-. The work focuses mainly on sample preparation and instrumental techniques used for the detection and quantification of the analytes. The sample preparation techniques include, not only liquid-liquid extraction (LLE) and solid-phase extraction (SPE), but also modern microextraction techniques such as extraction with molecular imprinted polymers (MIPs), stir-bar sorptive extraction (SBSE), hollow-fiber liquid-phase microextraction (HF-LPME), dispersive liquid-liquid microextraction (DLLME), matrix solid phase dispersion (MSPD) or ultrasound-assisted extraction (UAE), which are becoming alternatives in the analysis of human samples. Most studies focus on minimizing the number of steps and using the lowest solvent amounts in the sample treatment. The usual instrumental techniques employed include liquid chromatography (LC), gas chromatography (GC) mainly coupled to tandem mass spectrometry. Multiresidue methods are being developed for the determination of several families of EDCs with one extraction step and limited sample preparation. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Determination of trace level thorium and uranium in high purity gadolinium sulfate using ICP-MS with solid-phase chromatographic extraction resins

    NASA Astrophysics Data System (ADS)

    Ito, S.; Takaku, Y.; Ikeda, M.; Kishimoto, Y.

    2018-01-01

    The Super Kamiokand-Gadolinium (SK-Gd) project is the upgrade of the Super-Kamiokande (SK) detector in order to discover Supernova Relic Neutrinos (SRNs) by loading 0.2% of Gd2(SO4)3 into a 50 kton of the SK water tank. In order to continue solar neutrino measurement with low energy threshold at ˜3.5 MeV, main radioactive contamination, U and Th in Gd2(SO4)3, should be purified before loading. We developed solid-phase extraction technique to measure low concentration of U and Th in Gd2(SO4)3 by ICP-MS. The extraction technique and current status will be presented.

  18. Determination of quaternary ammonium compounds in seawater samples by solid-phase extraction and liquid chromatography-mass spectrometry.

    PubMed

    Bassarab, P; Williams, D; Dean, J R; Ludkin, E; Perry, J J

    2011-02-04

    A method for the simultaneous determination of two biocidal quaternary ammonium compounds; didecyldimethylammonium chloride (didecyldimethyl quat) and dodecylbenzyldimethylammonium chloride (benzyl quat), in seawater by solid phase extraction (SPE) followed by liquid chromatography-mass spectrometry (LC-MS) was developed. The optimised procedure utilised off-line extraction of the analytes from seawater using polymeric (Strata-X) SPE cartridges. Recoveries ranged from 80 to 105%, with detection limits at the low parts-per-trillion (ng/l) level for both analytes. To demonstrate sensitivity, environmental concentrations were measured at three different locations along the North East coast of England with measured values in the range 120-270ng/l. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Investigation of Tank 241-AN-101 Floating Solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraft, Douglas P.; Meznarich, H. K.

    Tank 241-AN-101 is the receiver tank for retrieval of several C-Farms waste tanks, including Tanks 241-C-102 and 241-C-111. Tank 241 C 111 received first-cycle decontamination waste from the bismuth phosphate process and Plutonium and Uranium Extraction cladding waste, as well as hydraulic fluid. Three grab samples, 1AN-16-01, 1AN-16-01A, and 1AN-16-01B, were collected at the surface of Tank 241-AN-101 on April 25, 2016, after Tank 241-C-111 retrieval was completed. Floating solids were observed in the three grab samples in the 11A hot cell after the samples were received at the 222-S Laboratory. Routine chemical analyses, solid phase characterization on the floatingmore » and settled solids, semivolatile organic analysis mainly on the aqueous phase for identification of degradation products of hydraulic fluids were performed. Investigation of the floating solids is reported.« less

  20. Application of headspace solid-phase microextraction followed by gas chromatography coupled with mass spectrometry to determine esters of carboxylic acids and other volatile compounds in Dermestes maculatus and Dermestes ater lipids.

    PubMed

    Cerkowniak, Magdalena; Boguś, Mieczysława I; Włóka, Emilia; Stepnowski, Piotr; Gołębiowski, Marek

    2018-02-01

    A constant problem in veterinary medicine, human healthcare, agriculture, forestry and horticulture is the large number of pests, and the lack of effective methods to combat them which cause no harm to the rest of the environment. It is recommended and desired to reduce the use of chemicals and increase the use of agents based on knowledge acquired in the fields of biology, chemistry and agrochemicals. To learn the defense mechanisms of insects we should consider not only the site of their physiological ability to protect against external factors (cuticle), but also the possibility of chemical protection, formed by all compounds on the surface and in the body of insects. In this study, a procedure was developed to determine the esters of carboxylic acids in insect lipids. Headspace solid-phase microextraction was followed by gas chromatography coupled with gas spectrometry. First, the best conditions were selected for the analysis to obtain the best chromatographic separation. An RTx-5 column was used for this purpose. Polydimethylsiloxane/divinylbenzene (PDMS/DVB) and polyacrylate fibers were used to isolate acid esters. PDMS/DVB fiber achieved the best conditions for the extraction; the extraction time was 50 min, the extraction temperature was 105°C and the desorption time was 10 min at 230°C. These solid-phase microextraction conditions were used to analyze volatile compounds extracted from insects belonging to the Dermestidae family. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Carbon nanotubes as adsorbent of solid-phase extraction and matrix for laser desorption/ionization mass spectrometry.

    PubMed

    Pan, Chensong; Xu, Songyun; Zou, Hanfa; Guo, Zhong; Zhang, Yu; Guo, Baochuan

    2005-02-01

    A method with carbon nanotubes functioning both as the adsorbent of solid-phase extraction (SPE) and the matrix for matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) to analyze small molecules in solution has been developed. In this method, 10 microL suspensions of carbon nanotubes in 50% (vol/vol) methanol were added to the sample solution to extract analytes onto surface of carbon nanotubes because of their dramatic hydrophobicity. Carbon nanotubes in solution are deposited onto the bottom of tube with centrifugation. After removing the supernatant fluid, carbon nanotubes are suspended again with dispersant and pipetted directly onto the sample target of the MALDI-MS to perform a mass spectrometric analysis. It was demonstrated by analysis of a variety of small molecules that the resolution of peaks and the efficiency of desorption/ionization on the carbon nanotubes are better than those on the activated carbon. It is found that with the addition of glycerol and sucrose to the dispersant, the intensity, the ratio of signal to noise (S/N), and the resolution of peaks for analytes by mass spectrometry increased greatly. Compared with the previously reported method by depositing sample solution onto thin layer of carbon nanotubes, it is observed that the detection limit for analytes can be enhanced about 10 to 100 times due to solid-phase extraction of analytes in solution by carbon nanotubes. An acceptable result of simultaneously quantitative analysis of three analytes in solution has been achieved. The application in determining drugs spiked into urine has also been realized.

  2. Solid-phase extraction of heavy metal ions on bucky tubes disc in natural water and herbal plant samples.

    PubMed

    Soylak, Mustafa; Unsal, Yunus Emre

    2011-10-01

    A preconcentration-separation procedure has been established based on solid-phase extraction of Fe(III) and Pb(II) on bucky tubes (BTs) disc. Fe(III) and Pb(II) ions were quantitatively recovered at pH 6. The influences of the analytical parameters like sample volume, flow rates on the recoveries of analytes on BT disc were investigated. The effects of co-existing ions on the recoveries were also studied. The detection limits for iron and lead were found 1.6 and 4.9 μg L⁻¹, respectively. The validation of the presented method was checked by the analysis of TMDA-51.3 fortified water certified reference material. The presented procedure was successfully applied to the separation-preconcentration and determination of iron and lead content of some natural water and herbal plant samples from Kayseri, Turkey.

  3. A novel hybrid metal-organic framework-polymeric monolith for solid-phase microextraction.

    PubMed

    Lin, Chen-Lan; Lirio, Stephen; Chen, Ya-Ting; Lin, Chia-Her; Huang, Hsi-Ya

    2014-03-17

    This study describes the fabrication of a novel hybrid metal-organic framework- organic polymer (MOF-polymer) for use as a stationary phase in fritless solid-phase microextraction (SPME) for validating analytical methods. The MOF-polymer was prepared by using ethylene dimethacrylate (EDMA), butyl methacrylate (BMA), and an imidazolium-based ionic liquid as porogenic solvent followed by microwave-assisted polymerization with the addition of 25 % MOF. This novel hybrid MOF-polymer was used to extract penicillin (penicillin G, penicillin V, oxacillin, cloxacillin, nafcillin, dicloxacillin) under different conditions. Quantitative analysis of the extracted penicillin samples using the MOF-organic polymer for SPME was conducted by using capillary electrochromatography (CEC) coupled with UV analysis. The penicillin recovery was 63-96.2 % with high reproducibility, sensitivity, and reusability. The extraction time with the proposed fabricated SPME was only 34 min. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Carboxylated graphene oxide/polyvinyl chloride as solid-phase extraction sorbent combined with ion chromatography for the determination of sulfonamides in cosmetics.

    PubMed

    Zhong, Zhixiong; Li, Gongke; Luo, Zhibin; Liu, Zhe; Shao, Yijuan; He, Wanwen; Deng, Jianchao; Luo, Xingling

    2015-08-12

    A carboxylated graphene oxide/polyvinyl chloride (CGO/PVC) material was prepared as a sorbent for the selective extraction of sulphonamides from complex sample. After being dispersed in buffer solution, sample was transferred into the prefabricated solid-phase extraction (SPE) column, which integrated extraction and cleanup into one single-step. A multi-response optimization based on the Box-Behnken design was used to optimize factors affecting extraction efficiency. Compared with the commonly commercial sorbents including MCX, WCX and C18, CGO/PVC hybrid material had higher extraction selectivity and capacity to sulphonamides. The limits of detection and quantification for seven target compounds were in the range of 3.4-7.1 μg/L and 11.4-23.7 μg/L, respectively. The self-assembly SPE cartridge was successfully used to enrich seven analytes in anti-acne cosmetics prior to ion chromatography detection with good recoveries of 87.8-102.0% and relative standard deviations of 1.2-6.4%, implying that this method was suitable for routine analysis of cosmetics. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Optimisation of solid-phase microextraction coupled to HPLC-UV for the determination of organochlorine pesticides and their metabolites in environmental liquid samples.

    PubMed

    Torres Padrón, M E; Sosa Ferrera, Z; Santana Rodríguez, J J

    2006-09-01

    A solid-phase microextraction (SPME) procedure using two commercial fibers coupled with high-performance liquid chromatography (HPLC) is presented for the extraction and determination of organochlorine pesticides in water samples. We have evaluated the extraction efficiency of this kind of compound using two different fibers: 60-mum polydimethylsiloxane-divinylbenzene (PDMS-DVB) and Carbowax/TPR-100 (CW/TPR). Parameters involved in the extraction and desorption procedures (e.g. extraction time, ionic strength, extraction temperature, desorption and soaking time) were studied and optimized to achieve the maximum efficiency. Results indicate that both PDMS-DVB and CW/TPR fibers are suitable for the extraction of this type of compound, and a simple calibration curve method based on simple aqueous standards can be used. All the correlation coefficients were better than 0.9950, and the RSDs ranged from 7% to 13% for 60-mum PDMS-DVB fiber and from 3% to 10% for CW/TPR fiber. Optimized procedures were applied to the determination of a mixture of six organochlorine pesticides in environmental liquid samples (sea, sewage and ground waters), employing HPLC with UV-diode array detector.

  6. Aging Wire Insulation Assessment by Phase Spectrum Examination of Ultrasonic Guided Waves

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.

    2003-01-01

    Wire integrity has become an area of concern to the aerospace community including DoD, NASA, FAA, and Industry. Over time and changing environmental conditions, wire insulation can become brittle and crack. The cracks expose the wire conductor and can be a source of equipment failure, short circuits, smoke, and fire. The technique of using the ultrasonic phase spectrum to extract material properties of the insulation is being examined. Ultrasonic guided waves will propagate in both the wire conductor and insulation. Assuming the condition of the conductor remains constant then the stiffness of the insulator can be determined by measuring the ultrasonic guided wave velocity. In the phase spectrum method the guided wave velocity is obtained by transforming the time base waveform to the frequency domain and taking the phase difference between two waveforms. The result can then be correlated with a database, derived by numerical model calculations, to extract material properties of the wire insulator. Initial laboratory tests were performed on a simple model consisting of a solid cylinder and then a solid cylinder with a polymer coating. For each sample the flexural mode waveform was identified. That waveform was then transformed to the frequency domain and a phase spectrum was calculated from a pair of waveforms. Experimental results on the simple model compared well to numerical calculations. Further tests were conducted on aircraft or mil-spec wire samples, to see if changes in wire insulation stiffness can be extracted using the phase spectrum technique.

  7. Pipette tip solid-phase extraction and high-performance liquid chromatography for the determination of flavonoids from Epimedii herba in rat serum and application of the technique to pharmacokinetic studies.

    PubMed

    Wang, Nani; Huang, Xiaowen; Wang, Xuping; Zhang, Yang; Wu, Renjie; Shou, Dan

    2015-05-15

    Epimedii herba is a traditional Chinese medicine for the treatment of osteoporosis. Epimedin A, B and C and icariin are the primary effective ingredients of this medicine. In this study, a simple and low-cost method based on pipette tip solid-phase extraction, high-performance liquid chromatography separation, and diode array detection has been developed for the simultaneous analysis of four flavonoids (epimedin A, B and C and icariin) from Epimedii herba in rat serum samples. In this novel extraction configuration, the sorbents were placed between a filter (hollow fiber) and the pipette tip. Pipette tip solid-phase extraction has several advantages compared to conventional extraction methods: faster extraction time (6.0min); lower sample volume (100μL); lower solvent volume (100μL); and less solvent waste. Under the optimum extraction conditions, the method showed good linearity (0.05-10.0μgmL(-1)), acceptable intra- and inter precision (RSD<6%), low limits of quantification (0.027-0.045μgmL(-1)) and satisfactory relative recoveries (98.63-103.18%). This method was successfully applied to investigate the pharmacokinetics of the major flavonoids in Epimedii herba extract after oral administration to rats (10gkg(-1) body weight). The primary pharmacokinetic parameters for rats were determined as follows: Cmax, 0.45-4.11μgmL(-1); Tmax, 0.21-0.26h; t1/2α, 0.06-0.12h; t1/2β, 2.02-3.48h; AUC0-∞: 0.50-2.58μghmL(-1); CL, 19.53-44.72Lkg(-1)h(-1); and MRT0-∞, 2.25-3.77h. The developed method has the potential to promulgate the pharmacokinetics and provide more information for clinical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Novel approach to microwave-assisted extraction and micro-solid-phase extraction from soil using graphite fibers as sorbent.

    PubMed

    Xu, Li; Lee, Hian Kee

    2008-05-30

    A single-step extraction-cleanup procedure involving microwave-assisted extraction (MAE) and micro-solid-phase extraction (micro-SPE) has been developed for the analysis of polycyclic aromatic hydrocarbons (PAHs) from soil samples. Micro-SPE is a relatively new extraction procedure that makes use of a sorbent enclosed within a sealed polypropylene membrane envelope. In the present work, for the first time, graphite fiber was used as a sorbent material for extraction. MAE-micro-SPE was used to cleanup sediment samples and to extract and preconcentrate five PAHs in sediment samples prepared as slurries with addition of water. The best extraction conditions comprised of microwave heating at 50 degrees C for a duration of 20 min, and an elution (desorption) time of 5 min using acetonitrile with sonication. Using gas chromatography (GC)-flame ionization detection (FID), the limits of detection (LODs) of the PAHs ranged between 2.2 and 3.6 ng/g. With GC-mass spectrometry (MS), LODs were between 0.0017 and 0.0057 ng/g. The linear ranges were between 0.1 and 50 or 100 microg/g for GC-FID analysis, and 1 and 500 or 1000 ng/g for GC-MS analysis. Granular activated carbon was also used for the micro-SPE device but was found to be not as efficient in the PAH extraction. The MAE-micro-SPE method was successfully used for the extraction of PAHs in river and marine sediments, demonstrating its applicability to real environmental solid matrixes.

  9. Enhanced production of raw starch degrading enzyme using agro-industrial waste mixtures by thermotolerant Rhizopus microsporus for raw cassava chip saccharification in ethanol production.

    PubMed

    Trakarnpaiboon, Srisakul; Srisuk, Nantana; Piyachomkwan, Kuakoon; Sakai, Kenji; Kitpreechavanich, Vichien

    2017-09-14

    In the present study, solid-state fermentation for the production of raw starch degrading enzyme was investigated by thermotolerant Rhizopus microsporus TISTR 3531 using a combination of agro-industrial wastes as substrates. The obtained crude enzyme was applied for hydrolysis of raw cassava starch and chips at low temperature and subjected to nonsterile ethanol production using raw cassava chips. The agro-industrial waste ratio was optimized using a simplex axial mixture design. The results showed that the substrate mixture consisting of rice bran:corncob:cassava bagasse at 8 g:10 g:2 g yielded the highest enzyme production of 201.6 U/g dry solid. The optimized condition for solid-state fermentation was found as 65% initial moisture content, 35°C, initial pH of 6.0, and 5 × 10 6 spores/mL inoculum, which gave the highest enzyme activity of 389.5 U/g dry solid. The enzyme showed high efficiency on saccharification of raw cassava starch and chips with synergistic activities of commercial α-amylase at 50°C, which promotes low-temperature bioethanol production. A high ethanol concentration of 102.2 g/L with 78% fermentation efficiency was achieved from modified simultaneous saccharification and fermentation using cofermentation of the enzymatic hydrolysate of 300 g raw cassava chips/L with cane molasses.

  10. Determination of 1,3-dichloro-2-propanol and 3-chloro-1,2-propandiol in soy sauce by headspace derivatization solid-phase microextraction combined with gas chromatography-mass spectrometry.

    PubMed

    Lee, Maw-Rong; Chiu, Tzu-Chun; Dou, Jianpeng

    2007-05-22

    This study proposes a method for identifying 1,3-dichloro-2-propanol and 3-chloro-1,2-propandiol in aqueous matrices by using headspace on-fiber derivatization following solid-phase microextraction combined with gas chromatography-mass spectrometry. The optimized SPME experimental procedures for extracting 1,3-dichloro-2-propanol and 3-chloro-1,2-propandiol in aqueous solutions involved a 85 microm polyacrylate-coated fiber at pH 6, a sodium chloride concentration of 0.36 g mL(-1), extraction at 50 degrees C for 15 min and desorption of analytes at 260 degrees C for 3 min. Headspace derivatization was conducted in a laboratory-made design with N-methyl-N-(trimethylsilyl)-trifluoroacetamide vapor following solid-phase microextraction by using 3 microL N-methyl-N-(trimethylsilyl)-trifluoroacetamide at an oil bath temperature of 230 degrees C for 40 s. This method had good repeatability (R.S.D.s < or = 19%, n = 8) and good linearity (r2 > or = 0.9972) for ultrapure water and soy sauce samples that were spiked with two analytes. Detection limits were obtained at the ng mL(-1). The result demonstrated that headspace on-fiber derivatization following solid-phase microextraction was a simple, fast and accurate technique for identifying trace 1,3-dichloro-2-propanol and 3-chloro-1,2-propandiol in soy sauce.

  11. Integrated chemical/biochemical sample collection, pre-concentration, and analysis on a digital microfluidic lab-on-a-chip platform

    NASA Astrophysics Data System (ADS)

    Fair, Richard B.; Khlystov, A.; Srinivasan, Vijay; Pamula, Vamsee K.; Weaver, Kathryn N.

    2004-12-01

    An ideal on-site chemical/biochemical analysis system must be inexpensive, sensitive, fully automated and integrated, reliable, and compatible with a broad range of samples. The advent of digital microfluidic lab-on-a-chip (LoC) technology offers such a detection system due to the advantages in portability, reduction of the volumes of the sample and reagents, faster analysis times, increased automation, low power consumption, compatibility with mass manufacturing, and high throughput. We describe progress towards integrating sample collection onto a digital microfluidic LoC that is a component of a cascade impactor device. The sample collection is performed by impacting airborne particles directly onto the surface of the chip. After the collection phase, the surface of the chip is washed with a micro-droplet of solvent. The droplet will be digitally directed across the impaction surface, dissolving sample constituents. Because of the very small droplet volume used for extraction of the sample from a wide colection area, the resulting solution is realatively concentrated and the analytes can be detected after a very short sampling time (1 min) due to such pre-concentration. After the washing phase, the droplet is mixed with specific reagents that produce colored reaction products. The concentration of the analyte is quantitatively determined by measuring absorption at target wavelengths using a simple light emitting diode and photodiode setup. Specific applications include automatic measurements of major inorganic ions in aerosols, such as sulfate, nitrate and ammonium, with a time resolution of 1 min and a detection limit of 30 nm/m3. We have already demonstrated the detection and quantification of nitroaromatic explosives without integrating the sample collection. Other applications being developed include airborne bioagent detection.

  12. Microfluidic droplet-based liquid-liquid extraction.

    PubMed

    Mary, Pascaline; Studer, Vincent; Tabeling, Patrick

    2008-04-15

    We study microfluidic systems in which mass exchanges take place between moving water droplets, formed on-chip, and an external phase (octanol). Here, no chemical reaction takes place, and the mass exchanges are driven by a contrast in chemical potential between the dispersed and continuous phases. We analyze the case where the microfluidic droplets, occupying the entire width of the channel, extract a solute-fluorescein-from the external phase (extraction) and the opposite case, where droplets reject a solute-rhodamine-into the external phase (purification). Four flow configurations are investigated, based on straight or zigzag microchannels. Additionally to the experimental work, we performed two-dimensional numerical simulations. In the experiments, we analyze the influence of different parameters on the process (channel dimensions, fluid viscosities, flow rates, drop size, droplet spacing, ...). Several regimes are singled out. In agreement with the mass transfer theory of Young et al. (Young, W.; Pumir, A.; Pomeau, Y. Phys. Fluids A 1989, 1, 462), we find that, after a short transient, the amount of matter transferred across the droplet interface grows as the square root of time and the time it takes for the transfer process to be completed decreases as Pe-2/3, where Pe is the Peclet number based on droplet velocity and radius. The numerical simulation is found in excellent consistency with the experiment. In practice, the transfer time ranges between a fraction and a few seconds, which is much faster than conventional systems.

  13. Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip.

    PubMed

    Kim, Je-Hyung; Aghaeimeibodi, Shahriar; Richardson, Christopher J K; Leavitt, Richard P; Englund, Dirk; Waks, Edo

    2017-12-13

    Scalable quantum photonic systems require efficient single photon sources coupled to integrated photonic devices. Solid-state quantum emitters can generate single photons with high efficiency, while silicon photonic circuits can manipulate them in an integrated device structure. Combining these two material platforms could, therefore, significantly increase the complexity of integrated quantum photonic devices. Here, we demonstrate hybrid integration of solid-state quantum emitters to a silicon photonic device. We develop a pick-and-place technique that can position epitaxially grown InAs/InP quantum dots emitting at telecom wavelengths on a silicon photonic chip deterministically with nanoscale precision. We employ an adiabatic tapering approach to transfer the emission from the quantum dots to the waveguide with high efficiency. We also incorporate an on-chip silicon-photonic beamsplitter to perform a Hanbury-Brown and Twiss measurement. Our approach could enable integration of precharacterized III-V quantum photonic devices into large-scale photonic structures to enable complex devices composed of many emitters and photons.

  14. Pyrolytic in situ magnetization of metal-organic framework MIL-100 for magnetic solid-phase extraction.

    PubMed

    Huo, Shu-Hui; An, Hai-Yan; Yu, Jing; Mao, Xue-Feng; Zhang, Zhe; Bai, Lei; Huang, Yan-Feng; Zhou, Peng-Xin

    2017-09-29

    In this study, we report a facile, environmental friendly fabrication of a type of magnetic metal-organic framework (MOF) MIL-100 that can be used for magnetic solid-phase extraction (MSPE). The magnetic MOF composites were fabricated using in situ calcination method. The as-synthesized materials exhibited both high porosity and magnetic characteristics. They used for the MSPE of polycyclic aromatic hydrocarbons (PAHs) from water samples. Such MOF-based magnetic solid-phase extraction in combination with gas chromatography equipped with a flame ionization detector (GC-FID), exhibited wide linearity (0.02-250μgL -1 ), low detection limits (4.6-8.9ngL -1 ), and high enrichment factors (452-907) for PAHs. The relative standard deviations (RSDs) for intra- and inter-day extractions of PAHs were ranging from 1.7% to 9.8% and 3.8% to 9.2%, respectively. The recoveries for spiked PAHs (1μgL -1 ) in water samples were in the range of 88.5% to 106.6%. The results showed that the special anion-π orbital (electron donor-acceptor) interaction and π-π stacking between magnetic MIL-100 and PAHs play an important role in the adsorption of PAHs. Copyright © 2017. Published by Elsevier B.V.

  15. Application of the powder of porous titanium carbide ceramics to a reusable adsorbent for environmental pollutants.

    PubMed

    Moriwaki, Hiroshi; Kitajima, Shiori; Shirai, Koji; Kiguchi, Kenji; Yamada, Osamu

    2011-01-30

    The aim of this study is to investigate the utilization of the powder of porous titanium carbide (TiC) ceramics as a novel adsorbent or a material for solid-phase extraction (SPE). The adsorption and elution of inorganic and organic pollutants, Pb(II), 2,4,6-trichlorophenol (TCP), perfluorooctane sulfonate (PFOS), and perfluorooctanoic acid (PFOA), to the material were evaluated. The cartridge packed with TiC ceramics powder was used for the extraction test of pollutants. The solution containing pollutants at 1.0 μg mL(-1) was passed through the TiC cartridge, and the substances were almost quantitatively removed. Furthermore, the pollutants retained in the cartridge were eluted with 3N HCl for Pb(II) and with methanol for organic pollutants. The recoveries of pollutants were over 80%. In addition, we used the TiC cartridge for the solid-phase extraction of water samples (500 mL each of the distilled water and the river water) by adding pollutants at determined concentrations. Every pollutant was adsorbed almost quantitatively, and eluted by 3N HCl or methanol. From these results, we concluded that the powder of porous TiC ceramics is a useful reusable adsorbent for the water cleanup and solid-phase extraction. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Molecularly imprinted-solid phase extraction combined with simultaneous derivatization and dispersive liquid-liquid microextraction for selective extraction and preconcentration of methamphetamine and ecstasy from urine samples followed by gas chromatography.

    PubMed

    Djozan, Djavanshir; Farajzadeh, Mir Ali; Sorouraddin, Saeed Mohammad; Baheri, Tahmineh

    2012-07-27

    In this study, a developed technique was reported for extraction and pre-concentration of methamphetamine (MAMP) and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) from urine samples using molecularly imprinted-solid phase extraction (MISPE) along with simultaneous derivatization and dispersive liquid-liquid microextraction (DLLME). Molecularly imprinted microspheres as sorbent in solid phase extraction (SPE) procedure were synthesized using precipitation polymerization with MAMP as the template. Aqueous solution of the target analytes was passed through MAMP-MIP cartridge and the adsorbed analytes were then eluted with methanol. The collected eluate was mixed with butylchloroformate which served as the derivatization reagent as well as the extraction solvent. The mixture was immediately injected into deionized water. After centrifugation, 1 μL of the settled organic phase was injected into gas chromatography-flame ionization detection (GC-FID) or gas chromatography-mass spectrometry (GC-MS). Various experimental parameters affecting the performance of both of the steps (MISPE and DLLME) were thoroughly investigated. The calibration graphs were linear in the ranges of 10-1500 ng mL(-1) (MAMP) and 50-1500 ng mL(-1) (MDMA), and the detection limits (LODs) were 2 and 18 ng mL(-1), respectively. The relative standard deviations (%RSDs) obtained for six repeated experiments (100 ng mL(-1) of each drug) were 5.1% and 6.8% for MAMP and MDMA, respectively. The relative recoveries obtained for the analytes in human urine samples, spiked with different levels of each drug, were within the range of 80-88%. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Long-chain ionic liquid based mixed hemimicelles and magnetic dispersed solid-phase extraction for the extraction of fluorescent whitening agents in paper materials.

    PubMed

    Wang, Qing; Qiu, Bin; Chen, Xianbo; Wang, Bin; Zhang, Hui; Zhang, Xiaoyuan

    2017-06-01

    A novel mixed hemimicelles and magnetic dispersive solid-phase extraction method based on long-chain ionic liquids for the extraction of five fluorescent whitening agents was established. The factors influenced on extraction efficiency were investigated. Under the optimal conditions, namely, the pH of sample solution at 8.0, the concentration of long chain ionic liquid at 0.5 mmol/L, the amount of Fe 3 O 4 nanoparticle at 12 mg, extraction time at 10 min, pH 6.0 of methanol as eluent, and the desorption time at 1 min, satisfactory results were obtained. Wide linear ranges (0.02-10 ng/mL) and good linearity were attained (0.9997-0.9999). The intraday and interday RSDs were 2.1-8.3%. Limits of detection were 0.004-0.01 ng/mL, which were decreased by almost an order of magnitude compared to direct detection without extraction. The present method was applied to extract the fluorescent whitening agents in two kinds of paper samples, obtaining satisfactory results. All showed results illustrated that the detection sensitivity was improved and the proposed method was a good choice for the enriching and monitoring of trace fluorescent whitening agents. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Magnetic nano graphene oxide as solid phase extraction adsorbent coupled with liquid chromatography to determine pseudoephedrine in urine samples.

    PubMed

    Taghvimi, Arezou; Hamishehkar, Hamed; Ebrahimi, Mahmoud

    2016-01-15

    This paper reports on a method based on magnetic solid phase extraction (MSPE) for the determination of pseudoephedrine. Magnetic nanographene oxide (MNGO) was applied as a new adsorbent for the extraction of pseudoephedrine from urine samples. Synthesis of MNGO was characterized by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), powder X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). The main factors influencing extraction efficiency, including the amounts of sample volume, amount of adsorbent, type and amount of extraction organic solvent, time of extraction and desorption, pH, ionic strength of extraction medium, and agitation rate, were investigated and optimized. Under optimized extraction conditions, a good linearity was observed in the range of 100-2000ng/mL with a correlation coefficient of 0.9908 (r(2)). Limit of detection (LOD) and limit of quantification (LOQ) were 25 and 82.7ng/mL, respectively. Inter-day and intra-day precision and accuracy were 6.01 and 0.34 (%), and 8.70 and 0.29 (%), respectively. The method was applied for the determination of pseudoephedrine in urine samples of volunteers receiving pseudoephedrine with the recovery of 96.42. It was concluded that the proposed method can be applied in diagnostic clinics. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Solid state lighting component

    DOEpatents

    Yuan, Thomas; Keller, Bernd; Tarsa, Eric; Ibbetson, James; Morgan, Frederick; Dowling, Kevin; Lys, Ihor

    2017-10-17

    An LED component according to the present invention comprising an array of LED chips mounted on a submount with the LED chips capable of emitting light in response to an electrical signal. The array can comprise LED chips emitting at two colors of light wherein the LED component emits light comprising the combination of the two colors of light. A single lens is included over the array of LED chips. The LED chip array can emit light of greater than 800 lumens with a drive current of less than 150 milli-Amps. The LED chip component can also operate at temperatures less than 3000 degrees K. In one embodiment, the LED array is in a substantially circular pattern on the submount.

  20. Towards a “Sample-In, Answer-Out” Point-of-Care Platform for Nucleic Acid Extraction and Amplification: Using an HPV E6/E7 mRNA Model System

    PubMed Central

    Gulliksen, Anja; Keegan, Helen; Martin, Cara; O'Leary, John; Solli, Lars A.; Falang, Inger Marie; Grønn, Petter; Karlgård, Aina; Mielnik, Michal M.; Johansen, Ib-Rune; Tofteberg, Terje R.; Baier, Tobias; Gransee, Rainer; Drese, Klaus; Hansen-Hagge, Thomas; Riegger, Lutz; Koltay, Peter; Zengerle, Roland; Karlsen, Frank; Ausen, Dag; Furuberg, Liv

    2012-01-01

    The paper presents the development of a “proof-of-principle” hands-free and self-contained diagnostic platform for detection of human papillomavirus (HPV) E6/E7 mRNA in clinical specimens. The automated platform performs chip-based sample preconcentration, nucleic acid extraction, amplification, and real-time fluorescent detection with minimal user interfacing. It consists of two modular prototypes, one for sample preparation and one for amplification and detection; however, a common interface is available to facilitate later integration into one single module. Nucleic acid extracts (n = 28) from cervical cytology specimens extracted on the sample preparation chip were tested using the PreTect HPV-Proofer and achieved an overall detection rate for HPV across all dilutions of 50%–85.7%. A subset of 6 clinical samples extracted on the sample preparation chip module was chosen for complete validation on the NASBA chip module. For 4 of the samples, a 100% amplification for HPV 16 or 33 was obtained at the 1 : 10 dilution for microfluidic channels that filled correctly. The modules of a “sample-in, answer-out” diagnostic platform have been demonstrated from clinical sample input through sample preparation, amplification and final detection. PMID:22235204

Top