NASA Astrophysics Data System (ADS)
Daneshmend, L. K.; Pak, H. A.
1984-02-01
On-line monitoring of the cutting process in CNC lathe is desirable to ensure unattended fault-free operation in an automated environment. The state of the cutting tool is one of the most important parameters which characterises the cutting process. Direct monitoring of the cutting tool or workpiece is not feasible during machining. However several variables related to the state of the tool can be measured on-line. A novel monitoring technique is presented which uses cutting torque as the variable for on-line monitoring. A classifier is designed on the basis of the empirical relationship between cutting torque and flank wear. The empirical model required by the on-line classifier is established during an automated training cycle using machine vision for off-line direct inspection of the tool.
Xu, Min; Zhang, Lei; Yue, Hong-Shui; Pang, Hong-Wei; Ye, Zheng-Liang; Ding, Li
2017-10-01
To establish an on-line monitoring method for extraction process of Schisandrae Chinensis Fructus, the formula medicinal material of Yiqi Fumai lyophilized injection by combining near infrared spectroscopy with multi-variable data analysis technology. The multivariate statistical process control (MSPC) model was established based on 5 normal batches in production and 2 test batches were monitored by PC scores, DModX and Hotelling T2 control charts. The results showed that MSPC model had a good monitoring ability for the extraction process. The application of the MSPC model to actual production process could effectively achieve on-line monitoring for extraction process of Schisandrae Chinensis Fructus, and can reflect the change of material properties in the production process in real time. This established process monitoring method could provide reference for the application of process analysis technology in the process quality control of traditional Chinese medicine injections. Copyright© by the Chinese Pharmaceutical Association.
40 CFR 60.103a - Design, equipment, work practice or operational standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Description and simple process flow diagram showing the interconnection of the following components of the... rate. (iv) Description and simple process flow diagram showing all gas lines (including flare, purge... which lines are monitored and identify on the process flow diagram the location and type of each monitor...
40 CFR 60.103a - Design, equipment, work practice or operational standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Description and simple process flow diagram showing the interconnection of the following components of the... rate. (iv) Description and simple process flow diagram showing all gas lines (including flare, purge... which lines are monitored and identify on the process flow diagram the location and type of each monitor...
Sopori, Bhushan; Rupnowski, Przemyslaw; Ulsh, Michael
2016-01-12
A monitoring system 100 comprising a material transport system 104 providing for the transportation of a substantially planar material 102, 107 through the monitoring zone 103 of the monitoring system 100. The system 100 also includes a line camera 106 positioned to obtain multiple line images across a width of the material 102, 107 as it is transported through the monitoring zone 103. The system 100 further includes an illumination source 108 providing for the illumination of the material 102, 107 transported through the monitoring zone 103 such that light reflected in a direction normal to the substantially planar surface of the material 102, 107 is detected by the line camera 106. A data processing system 110 is also provided in digital communication with the line camera 106. The data processing system 110 is configured to receive data output from the line camera 106 and further configured to calculate and provide substantially contemporaneous information relating to a quality parameter of the material 102, 107. Also disclosed are methods of monitoring a quality parameter of a material.
REMPI-TOFMS for on-line monitoring and controlling the coffee roasting process
NASA Astrophysics Data System (ADS)
Dorfner, Ralph; Ferge, Thomas; Yeretzian, Chahan; Zimmermann, Ralf; Kettrup, Antonius
2001-08-01
REMPI@266nm-TOFMS is used for on-line analysis of the coffee roasting process. Volatile and flavor active compounds of coffee were ionized by REMPI@266nm and monitored on-line and in real-time by TOFMS during the coffee roasting process. The phenol and 4-vinylguaiacol time-intensity profiles, for example, show typical behavior for different roasting temperatures and provide an indicator to the achieved degree of roasting. The impact of the moisture level of the green coffee beans on the time shift of a typical (commercial) roasting time, correlates with REMPI-TOFMS measurements and literature data.
On-Line Modal State Monitoring of Slowly Time-Varying Structures
NASA Technical Reports Server (NTRS)
Johnson, Erik A.; Bergman, Lawrence A.; Voulgaris, Petros G.
1997-01-01
Monitoring the dynamic response of structures is often performed for a variety of reasons. These reasons include condition-based maintenance, health monitoring, performance improvements, and control. In many cases the data analysis that is performed is part of a repetitive decision-making process, and in these cases the development of effective on-line monitoring schemes help to speed the decision-making process and reduce the risk of erroneous decisions. This report investigates the use of spatial modal filters for tracking the dynamics of slowly time-varying linear structures. The report includes an overview of modal filter theory followed by an overview of several structural system identification methods. Included in this discussion and comparison are H-infinity, eigensystem realization, and several time-domain least squares approaches. Finally, a two-stage adaptive on-line monitoring scheme is developed and evaluated.
NASA Astrophysics Data System (ADS)
Ouriev, Boris; Windhab, Erich; Braun, Peter; Zeng, Yuantong; Birkhofer, Beat
2003-12-01
In the present work an in-line ultrasonic method for investigation of the rheological flow behavior of concentrated suspensions was created. It is based on a nondestructive rheological measuring technique for pilot plant and industrial scale applications. Elsewhere the author discusses a tremendous need for in-line rheological characterization of highly concentrated suspensions exposed to pressure driven shear flow conditions. Most existing on-line methods are based on destructive macro actuators, which are not suitable for materials with sensitive to applied deformation structure. Since the process of our basic interest influences the structure of suspension it would be difficult to separate the effects of rheometric measurement and weakly pronounced structural changes arising from a fine adjustment of the process parameters. The magnitude of these effects is usually associated with the complex flow dynamics of structured liquids and is sensitive to density or temperature fluctuations around the moving rheometric actuator. Interpretation of the results of such measurements can be hindered by process parameter influences on liquid product structure. Therefore, the author introduces an in-line noninvasive rheometric method, which is implemented in a pre-crystallization process of chocolate suspension. Use of ultrasound velocity profile pressure difference (UVP-PD) technique enabled process monitoring of the chocolate pre-crystallization process. Influence of seeded crystals on Rheology of chocolate suspension was recorded and monitored on line. It was shown that even slight velocity pulsations in chocolate mainstream can strongly influence rheological properties besides influencing flow velocity profiles. Based on calculations of power law fit in raw velocity profiles and calculation of wall shear stress from pressure difference measurement, a viscosity function was calculated and monitored on line. On-line results were found to be in a good agreement with off-line data. The results of the industrial test of the UVP-PD system brought practical knowledge and stipulated further development of a Smart UVP-PD noninventive on-line rheometer.
Mears, Lisa; Stocks, Stuart M; Albaek, Mads O; Sin, Gürkan; Gernaey, Krist V
2017-03-01
A mechanistic model-based soft sensor is developed and validated for 550L filamentous fungus fermentations operated at Novozymes A/S. The soft sensor is comprised of a parameter estimation block based on a stoichiometric balance, coupled to a dynamic process model. The on-line parameter estimation block models the changing rates of formation of product, biomass, and water, and the rate of consumption of feed using standard, available on-line measurements. This parameter estimation block, is coupled to a mechanistic process model, which solves the current states of biomass, product, substrate, dissolved oxygen and mass, as well as other process parameters including k L a, viscosity and partial pressure of CO 2 . State estimation at this scale requires a robust mass model including evaporation, which is a factor not often considered at smaller scales of operation. The model is developed using a historical data set of 11 batches from the fermentation pilot plant (550L) at Novozymes A/S. The model is then implemented on-line in 550L fermentation processes operated at Novozymes A/S in order to validate the state estimator model on 14 new batches utilizing a new strain. The product concentration in the validation batches was predicted with an average root mean sum of squared error (RMSSE) of 16.6%. In addition, calculation of the Janus coefficient for the validation batches shows a suitably calibrated model. The robustness of the model prediction is assessed with respect to the accuracy of the input data. Parameter estimation uncertainty is also carried out. The application of this on-line state estimator allows for on-line monitoring of pilot scale batches, including real-time estimates of multiple parameters which are not able to be monitored on-line. With successful application of a soft sensor at this scale, this allows for improved process monitoring, as well as opening up further possibilities for on-line control algorithms, utilizing these on-line model outputs. Biotechnol. Bioeng. 2017;114: 589-599. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zhao, Yanlin; Yao, Jun; Wang, Mi
2016-07-01
On-line monitoring of crystal size in the crystallization process is crucial to many pharmaceutical and fine-chemical industrial applications. In this paper, a novel method is proposed for the on-line monitoring of the cooling crystallization process of L-glutamic acid (LGA) using electrical impedance spectroscopy (EIS). The EIS method can be used to monitor the growth of crystal particles relying on the presence of an electrical double layer on the charged particle surface and the polarization of double layer under the excitation of alternating electrical field. The electrical impedance spectra and crystal size were measured on-line simultaneously by an impedance analyzer and focused beam reflectance measurement (FBRM), respectively. The impedance spectra were analyzed using the equivalent circuit model and the equivalent circuit elements in the model can be obtained by fitting the experimental data. Two equivalent circuit elements, including capacitance (C 2) and resistance (R 2) from the dielectric polarization of the LGA solution and crystal particle/solution interface, are in relation with the crystal size. The mathematical relationship between the crystal size and the equivalent circuit elements can be obtained by a non-linear fitting method. The function can be used to predict the change of crystal size during the crystallization process.
Podevin, Michael; Fotidis, Ioannis A; Angelidaki, Irini
2018-08-01
Microalgae are well known for their ability to accumulate lipids intracellularly, which can be used for biofuels and mitigate CO 2 emissions. However, due to economic challenges, microalgae bioprocesses have maneuvered towards the simultaneous production of food, feed, fuel, and various high-value chemicals in a biorefinery concept. On-line and in-line monitoring of macromolecules such as lipids, proteins, carbohydrates, and high-value pigments will be more critical to maintain product quality and consistency for downstream processing in a biorefinery to maintain and valorize these markets. The main contribution of this review is to present current and prospective advances of on-line and in-line process analytical technology (PAT), with high-selectivity - the capability of monitoring several analytes simultaneously - in the interest of improving product quality, productivity, and process automation of a microalgal biorefinery. The high-selectivity PAT under consideration are mid-infrared (MIR), near-infrared (NIR), and Raman vibrational spectroscopies. The current review contains a critical assessment of these technologies in the context of recent advances in software and hardware in order to move microalgae production towards process automation through multivariate process control (MVPC) and software sensors trained on "big data". The paper will also include a comprehensive overview of off-line implementations of vibrational spectroscopy in microalgal research as it pertains to spectral interpretation and process automation to aid and motivate development.
Implementation of in-line infrared monitor in full-scale anaerobic digestion process.
Spanjers, H; Bouvier, J C; Steenweg, P; Bisschops, I; van Gils, W; Versprille, B
2006-01-01
During start up but also during normal operation, anaerobic reactor systems should be run and monitored carefully to secure trouble-free operation, because the process is vulnerable to disturbances such as temporary overloading, biomass wash out and influent toxicity. The present method of monitoring is usually by manual sampling and subsequent laboratory analysis. Data collection, processing and feedback to system operation is manual and ad hoc, and involves high-level operator skills and attention. As a result, systems tend to be designed at relatively conservative design loading rates resulting in significant over-sizing of reactors and thus increased systems cost. It is therefore desirable to have on-line and continuous access to performance data on influent and effluent quality. Relevant variables to indicate process performance include VFA, COD, alkalinity, sulphate, and, if aerobic post-treatment is considered, total nitrogen, ammonia and nitrate. Recently, mid-IR spectrometry was demonstrated on a pilot scale to be suitable for in-line simultaneous measurement of these variables. This paper describes a full-scale application of the technique to test its ability to monitor continuously and without human intervention the above variables simultaneously in two process streams. For VFA, COD, sulphate, ammonium and TKN good agreement was obtained between in-line and manual measurements. During a period of six months the in-line measurements had to be interrupted several times because of clogging. It appeared that the sample pre-treatment unit was not able to cope with high solids concentrations all the time.
Puchades, R.; Maquieira, A.; Atienza, J.; Herrero, M. A.
1990-01-01
Flow injection analysis (FIA) has emerged as an increasingly used laboratory tool in chemical analysis. Employment of the technique for on-line sample treatment and on-line measurement in chemical process control is a growing trend. This article reviews the recent applications of FlA. Most papers refer to on-line sample treatment. Although FIA is very well suited to continuous on-line process monitoring, few examples have been found in this areamost of them have been applied to water treatment or fermentation processes. PMID:18925271
OpenLMD, multimodal monitoring and control of LMD processing
NASA Astrophysics Data System (ADS)
Rodríguez-Araújo, Jorge; García-Díaz, Antón
2017-02-01
This paper presents OpenLMD, a novel open-source solution for on-line multimodal monitoring of Laser Metal Deposition (LMD). The solution is also applicable to a wider range of laser-based applications that require on-line control (e.g. laser welding). OpenLMD is a middleware that enables the orchestration and virtualization of a LMD robot cell, using several open-source frameworks (e.g. ROS, OpenCV, PCL). The solution also allows reconfiguration by easy integration of multiple sensors and processing equipment. As a result, OpenLMD delivers significant advantages over existing monitoring and control approaches, such as improved scalability, and multimodal monitoring and data sharing capabilities.
NASA Astrophysics Data System (ADS)
Saari, Markus; Rossi, Pekka; Blomberg von der Geest, Kalle; Mäkinen, Ari; Postila, Heini; Marttila, Hannu
2017-04-01
High metal concentrations in natural waters is one of the key environmental and health problems globally. Continuous in-situ analysis of metals from runoff water is technically challenging but essential for the better understanding of processes which lead to pollutant transport. Currently, typical analytical methods for monitoring elements in liquids are off-line laboratory methods such as ICP-OES (Inductively Coupled Plasma Optical Emission Spectroscopy) and ICP-MS (ICP combined with a mass spectrometer). Disadvantage of the both techniques is time consuming sample collection, preparation, and off-line analysis at laboratory conditions. Thus use of these techniques lack possibility for real-time monitoring of element transport. We combined a novel high resolution on-line metal concentration monitoring with catchment scale physical hydrological modelling in Mustijoki river in Southern Finland in order to study dynamics of processes and form a predictive warning system for leaching of metals. A novel on-line measurement technique based on micro plasma emission spectroscopy (MPES) is tested for on-line detection of selected elements (e.g. Na, Mg, Al, K, Ca, Fe, Ni, Cu, Cd and Pb) in runoff waters. The preliminary results indicate that MPES can sufficiently detect and monitor metal concentrations from river water. Water and Soil Assessment Tool (SWAT) catchment scale model was further calibrated with high resolution metal concentration data. We show that by combining high resolution monitoring and catchment scale physical based modelling, further process studies and creation of early warning systems, for example to optimization of drinking water uptake from rivers, can be achieved.
Garcia-Allende, P Beatriz; Mirapeix, Jesus; Conde, Olga M; Cobo, Adolfo; Lopez-Higuera, Jose M
2009-01-01
Plasma optical spectroscopy is widely employed in on-line welding diagnostics. The determination of the plasma electron temperature, which is typically selected as the output monitoring parameter, implies the identification of the atomic emission lines. As a consequence, additional processing stages are required with a direct impact on the real time performance of the technique. The line-to-continuum method is a feasible alternative spectroscopic approach and it is particularly interesting in terms of its computational efficiency. However, the monitoring signal highly depends on the chosen emission line. In this paper, a feature selection methodology is proposed to solve the uncertainty regarding the selection of the optimum spectral band, which allows the employment of the line-to-continuum method for on-line welding diagnostics. Field test results have been conducted to demonstrate the feasibility of the solution.
On-line IR analyzer system to monitor cephamycin C loading on ion-exchange resin
NASA Astrophysics Data System (ADS)
Shank, Sheldon; Russ, Warren; Gravatt, Douglas; Lee, Wesley; Donahue, Steven M.
1992-08-01
An on-line infrared analyzer is being developed for monitoring cephamycin C loading on ion exchange resin. Accurate measurement of product loading offers productivity improvements with direct savings from product loss avoidance, minimized raw material cost, and reduced off-line laboratory testing. Ultrafiltered fermentation broth is fed onto ion exchange columns under conditions which adsorb the product, cephamycin C, to the resin while allowing impurities to pass unretained. Product loading is stopped when the on-line analyzer determines that resin capacity for adsorbing product is nearly exhausted. Infrared spectroscopy has been shown capable of quantifying cephamycin C in the process matrix at concentrations that support process control decisions. Process-to-analyzer interface challenges have been resolved, including sample conditioning requirements. Analyzer requirements have been defined. The sample conditioning station is under design.
In-line mixing states monitoring of suspensions using ultrasonic reflection technique.
Zhan, Xiaobin; Yang, Yili; Liang, Jian; Zou, Dajun; Zhang, Jiaqi; Feng, Luyi; Shi, Tielin; Li, Xiwen
2016-02-01
Based on the measurement of echo signal changes caused by different concentration distributions in the mixing process, a simple ultrasonic reflection technique is proposed for in-line monitoring of the mixing states of suspensions in an agitated tank in this study. The relation between the echo signals and the concentration of suspensions is studied, and the mixing process of suspensions is tracked by in-line measurement of ultrasonic echo signals using two ultrasonic sensors. Through the analysis of echo signals over time, the mixing states of suspensions are obtained, and the homogeneity of suspensions is quantified. With the proposed technique, the effects of impeller diameter and agitation speed on the mixing process are studied, and the optimal agitation speed and the minimum mixing time to achieve the maximum homogeneity are acquired under different operating conditions and design parameters. The proposed technique is stable and feasible and shows great potential for in-line monitoring of mixing states of suspensions. Copyright © 2015 Elsevier B.V. All rights reserved.
Investigation Of In-Line Monitoring Options At H Canyon/HB Line For Plutonium Oxide Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sexton, L.
2015-10-14
H Canyon and HB Line have a production goal of 1 MT per year of plutonium oxide feedstock for the MOX facility by FY17 (AFS-2 mission). In order to meet this goal, steps will need to be taken to improve processing efficiency. One concept for achieving this goal is to implement in-line process monitoring at key measurement points within the facilities. In-line monitoring during operations has the potential to increase throughput and efficiency while reducing costs associated with laboratory sample analysis. In the work reported here, we mapped the plutonium oxide process, identified key measurement points, investigated alternate technologies thatmore » could be used for in-line analysis, and initiated a throughput benefit analysis.« less
A real-time spectroscopic sensor for monitoring laser welding processes.
Sibillano, Teresa; Ancona, Antonio; Berardi, Vincenzo; Lugarà, Pietro Mario
2009-01-01
In this paper we report on the development of a sensor for real time monitoring of laser welding processes based on spectroscopic techniques. The system is based on the acquisition of the optical spectra emitted from the laser generated plasma plume and their use to implement an on-line algorithm for both the calculation of the plasma electron temperature and the analysis of the correlations between selected spectral lines. The sensor has been patented and it is currently available on the market.
Genner, Andreas; Gasser, Christoph; Moser, Harald; Ofner, Johannes; Schreiber, Josef; Lendl, Bernhard
2017-01-01
On-line monitoring of key chemicals in an industrial production plant ensures economic operation, guarantees the desired product quality, and provides additional in-depth information on the involved chemical processes. For that purpose, rapid, rugged, and flexible measurement systems at reasonable cost are required. Here, we present the application of a flexible mid-IR filtometer for industrial gas sensing. The developed prototype consists of a modulated thermal infrared source, a temperature-controlled gas cell for absorption measurement and an integrated device consisting of a Fabry-Pérot interferometer and a pyroelectric mid-IR detector. The prototype was calibrated in the research laboratory at TU Wien for measuring methanol and methyl formate in the concentration ranges from 660 to 4390 and 747 to 4610 ppmV. Subsequently, the prototype was transferred and installed at the project partner Metadynea Austria GmbH and linked to their Process Control System via a dedicated micro-controller and used for on-line monitoring of the process off-gas. Up to five process streams were sequentially monitored in a fully automated manner. The obtained readings for methanol and methyl formate concentrations provided useful information on the efficiency and correct functioning of the process plant. Of special interest for industry is the now added capability to monitor the start-up phase and process irregularities with high time resolution (5 s).
Patel, Darshan C; Lyu, Yaqi Fara; Gandarilla, Jorge; Doherty, Steve
2018-04-03
In-process sampling and analysis is an important aspect of monitoring kinetic profiles and impurity formation or rejection, both in development and during commercial manufacturing. In pharmaceutical process development, the technology of choice for a substantial portion of this analysis is high-performance liquid chromatography (HPLC). Traditionally, the sample extraction and preparation for reaction characterization have been performed manually. This can be time consuming, laborious, and impractical for long processes. Depending on the complexity of the sample preparation, there can be variability introduced by different analysts, and in some cases, the integrity of the sample can be compromised during handling. While there are commercial instruments available for on-line monitoring with HPLC, they lack capabilities in many key areas. Some do not provide integration of the sampling and analysis, while others afford limited flexibility in sample preparation. The current offerings provide a limited number of unit operations available for sample processing and no option for workflow customizability. This work describes development of a microfluidic automated program (MAP) which fully automates the sample extraction, manipulation, and on-line LC analysis. The flexible system is controlled using an intuitive Microsoft Excel based user interface. The autonomous system is capable of unattended reaction monitoring that allows flexible unit operations and workflow customization to enable complex operations and on-line sample preparation. The automated system is shown to offer advantages over manual approaches in key areas while providing consistent and reproducible in-process data. Copyright © 2017 Elsevier B.V. All rights reserved.
40 CFR 63.605 - Monitoring requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) National Emission Standards for Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants § 63.605 Monitoring requirements. (a)(1) Each owner or operator of a new or existing wet-process phosphoric acid process line or superphosphoric acid process line subject to the provisions of this subpart shall install...
Multivariable Time Series Prediction for the Icing Process on Overhead Power Transmission Line
Li, Peng; Zhao, Na; Zhou, Donghua; Cao, Min; Li, Jingjie; Shi, Xinling
2014-01-01
The design of monitoring and predictive alarm systems is necessary for successful overhead power transmission line icing. Given the characteristics of complexity, nonlinearity, and fitfulness in the line icing process, a model based on a multivariable time series is presented here to predict the icing load of a transmission line. In this model, the time effects of micrometeorology parameters for the icing process have been analyzed. The phase-space reconstruction theory and machine learning method were then applied to establish the prediction model, which fully utilized the history of multivariable time series data in local monitoring systems to represent the mapping relationship between icing load and micrometeorology factors. Relevant to the characteristic of fitfulness in line icing, the simulations were carried out during the same icing process or different process to test the model's prediction precision and robustness. According to the simulation results for the Tao-Luo-Xiong Transmission Line, this model demonstrates a good accuracy of prediction in different process, if the prediction length is less than two hours, and would be helpful for power grid departments when deciding to take action in advance to address potential icing disasters. PMID:25136653
On-line condition monitoring applications in nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hastiemian, H. M.; Feltus, M. A.
2006-07-01
Existing signals from process instruments in nuclear power plants can be sampled while the plant is operating and analyzed to verify the static and dynamic performance of process sensors, identify process-to-sensor problems, detect instrument anomalies such as venturi fouling, measure the vibration of the reactor vessel and its internals, or detect thermal hydraulic anomalies within the reactor coolant system. These applications are important in nuclear plants to satisfy a variety of objectives such as: 1) meeting the plant technical specification requirements; 2) complying with regulatory regulations; 3) guarding against equipment and process degradation; 4) providing a means for incipient failuremore » detection and predictive maintenance; or 5) identifying the root cause of anomalies in equipment and plant processes. The technologies that are used to achieve these objectives are collectively referred to as 'on-line condition monitoring.' This paper presents a review of key elements of these technologies, provides examples of their use in nuclear power plants, and illustrates how they can be integrated into an on-line condition monitoring system for nuclear power plants. (authors)« less
Patel, Bhumit A; Pinto, Nuno D S; Gospodarek, Adrian; Kilgore, Bruce; Goswami, Kudrat; Napoli, William N; Desai, Jayesh; Heo, Jun H; Panzera, Dominick; Pollard, David; Richardson, Daisy; Brower, Mark; Richardson, Douglas D
2017-11-07
Combining process analytical technology (PAT) with continuous production provides a powerful tool to observe and control monoclonal antibody (mAb) fermentation and purification processes. This work demonstrates on-line liquid chromatography (on-line LC) as a PAT tool for monitoring a continuous biologics process and forced degradation studies. Specifically, this work focused on ion exchange chromatography (IEX), which is a critical separation technique to detect charge variants. Product-related impurities, including charge variants, that impact function are classified as critical quality attributes (CQAs). First, we confirmed no significant differences were observed in the charge heterogeneity profile of a mAb through both at-line and on-line sampling and that the on-line method has the ability to rapidly detect changes in protein quality over time. The robustness and versatility of the PAT methods were tested by sampling from two purification locations in a continuous mAb process. The PAT IEX methods used with on-line LC were a weak cation exchange (WCX) separation and a newly developed shorter strong cation exchange (SCX) assay. Both methods provided similar results with the distribution of percent acidic, main, and basic species remaining unchanged over a 2 week period. Second, a forced degradation study showed an increase in acidic species and a decrease in basic species when sampled on-line over 7 days. These applications further strengthen the use of on-line LC to monitor CQAs of a mAb continuously with various PAT IEX analytical methods. Implementation of on-line IEX will enable faster decision making during process development and could potentially be applied to control in biomanufacturing.
On-line identification of fermentation processes for ethanol production.
Câmara, M M; Soares, R M; Feital, T; Naomi, P; Oki, S; Thevelein, J M; Amaral, M; Pinto, J C
2017-07-01
A strategy for monitoring fermentation processes, specifically, simultaneous saccharification and fermentation (SSF) of corn mash, was developed. The strategy covered the development and use of first principles, semimechanistic and unstructured process model based on major kinetic phenomena, along with mass and energy balances. The model was then used as a reference model within an identification procedure capable of running on-line. The on-line identification procedure consists on updating the reference model through the estimation of corrective parameters for certain reaction rates using the most recent process measurements. The strategy makes use of standard laboratory measurements for sugars quantification and in situ temperature and liquid level data. The model, along with the on-line identification procedure, has been tested against real industrial data and have been able to accurately predict the main variables of operational interest, i.e., state variables and its dynamics, and key process indicators. The results demonstrate that the strategy is capable of monitoring, in real time, this complex industrial biomass fermentation. This new tool provides a great support for decision-making and opens a new range of opportunities for industrial optimization.
Wei, Ning; You, Jia; Friehs, Karl; Flaschel, Erwin; Nattkemper, Tim Wilhelm
2007-08-15
Fermentation industries would benefit from on-line monitoring of important parameters describing cell growth such as cell density and viability during fermentation processes. For this purpose, an in situ probe has been developed, which utilizes a dark field illumination unit to obtain high contrast images with an integrated CCD camera. To test the probe, brewer's yeast Saccharomyces cerevisiae is chosen as the target microorganism. Images of the yeast cells in the bioreactors are captured, processed, and analyzed automatically by means of mechatronics, image processing, and machine learning. Two support vector machine based classifiers are used for separating cells from background, and for distinguishing live from dead cells afterwards. The evaluation of the in situ experiments showed strong correlation between results obtained by the probe and those by widely accepted standard methods. Thus, the in situ probe has been proved to be a feasible device for on-line monitoring of both cell density and viability with high accuracy and stability. (c) 2007 Wiley Periodicals, Inc.
Hammes, Florian; Hille, Thomas; Kissel, Thomas
2014-02-01
A process analytical method using reflectance infrared spectrometry was developed for the in-line monitoring of the amount of the active pharmaceutical ingredient (API) nicotine during a coating process for an oral thin film (OTF). In-line measurements were made using a reflectance infrared (RI) sensor positioned after the last drying zone of the coating line. Real-time spectra from the coating process were used for modelling the nicotine content. Partial least squares (PLS1) calibration models with different data pre-treatments were generated. The calibration model with the most comparable standard error of calibration (SEC) and the standard error of cross validation (SECV) was selected for an external validation run on the production coating line with an independent laminate. Good correlations could be obtained between values estimated from the reflectance infrared data and the reference HPLC test method, respectively. With in-line measurements it was possible to allow real-time adjustments during the production process to keep product specifications within predefined limits hence avoiding loss of material and batch. Copyright © 2013 Elsevier B.V. All rights reserved.
Baradez, Marc-Olivier; Biziato, Daniela; Hassan, Enas; Marshall, Damian
2018-01-01
Cell therapies offer unquestionable promises for the treatment, and in some cases even the cure, of complex diseases. As we start to see more of these therapies gaining market authorization, attention is turning to the bioprocesses used for their manufacture, in particular the challenge of gaining higher levels of process control to help regulate cell behavior, manage process variability, and deliver product of a consistent quality. Many processes already incorporate the measurement of key markers such as nutrient consumption, metabolite production, and cell concentration, but these are often performed off-line and only at set time points in the process. Having the ability to monitor these markers in real-time using in-line sensors would offer significant advantages, allowing faster decision-making and a finer level of process control. In this study, we use Raman spectroscopy as an in-line optical sensor for bioprocess monitoring of an autologous T-cell immunotherapy model produced in a stirred tank bioreactor system. Using reference datasets generated on a standard bioanalyzer, we develop chemometric models from the Raman spectra for glucose, glutamine, lactate, and ammonia. These chemometric models can accurately monitor donor-specific increases in nutrient consumption and metabolite production as the primary T-cell transition from a recovery phase and begin proliferating. Using a univariate modeling approach, we then show how changes in peak intensity within the Raman spectra can be correlated with cell concentration and viability. These models, which act as surrogate markers, can be used to monitor cell behavior including cell proliferation rates, proliferative capacity, and transition of the cells to a quiescent phenotype. Finally, using the univariate models, we also demonstrate how Raman spectroscopy can be applied for real-time monitoring. The ability to measure these key parameters using an in-line Raman optical sensor makes it possible to have immediate feedback on process performance. This could help significantly improve cell therapy bioprocessing by allowing proactive decision-making based on real-time process data. Going forward, these types of in-line sensors also open up opportunities to improve bioprocesses further through concepts such as adaptive manufacturing. PMID:29556497
Baradez, Marc-Olivier; Biziato, Daniela; Hassan, Enas; Marshall, Damian
2018-01-01
Cell therapies offer unquestionable promises for the treatment, and in some cases even the cure, of complex diseases. As we start to see more of these therapies gaining market authorization, attention is turning to the bioprocesses used for their manufacture, in particular the challenge of gaining higher levels of process control to help regulate cell behavior, manage process variability, and deliver product of a consistent quality. Many processes already incorporate the measurement of key markers such as nutrient consumption, metabolite production, and cell concentration, but these are often performed off-line and only at set time points in the process. Having the ability to monitor these markers in real-time using in-line sensors would offer significant advantages, allowing faster decision-making and a finer level of process control. In this study, we use Raman spectroscopy as an in-line optical sensor for bioprocess monitoring of an autologous T-cell immunotherapy model produced in a stirred tank bioreactor system. Using reference datasets generated on a standard bioanalyzer, we develop chemometric models from the Raman spectra for glucose, glutamine, lactate, and ammonia. These chemometric models can accurately monitor donor-specific increases in nutrient consumption and metabolite production as the primary T-cell transition from a recovery phase and begin proliferating. Using a univariate modeling approach, we then show how changes in peak intensity within the Raman spectra can be correlated with cell concentration and viability. These models, which act as surrogate markers, can be used to monitor cell behavior including cell proliferation rates, proliferative capacity, and transition of the cells to a quiescent phenotype. Finally, using the univariate models, we also demonstrate how Raman spectroscopy can be applied for real-time monitoring. The ability to measure these key parameters using an in-line Raman optical sensor makes it possible to have immediate feedback on process performance. This could help significantly improve cell therapy bioprocessing by allowing proactive decision-making based on real-time process data. Going forward, these types of in-line sensors also open up opportunities to improve bioprocesses further through concepts such as adaptive manufacturing.
Wang, Lu; Liu, Tao; Chen, Yang; Sun, Yaqin; Xiu, Zhilong
2017-01-25
Biomass is an important parameter reflecting the fermentation dynamics. Real-time monitoring of biomass can be used to control and optimize a fermentation process. To overcome the deficiencies of measurement delay and manual errors from offline measurement, we designed an experimental platform for online monitoring the biomass during a 1,3-propanediol fermentation process, based on using the fourier-transformed near-infrared (FT-NIR) spectra analysis. By pre-processing the real-time sampled spectra and analyzing the sensitive spectra bands, a partial least-squares algorithm was proposed to establish a dynamic prediction model for the biomass change during a 1,3-propanediol fermentation process. The fermentation processes with substrate glycerol concentrations of 60 g/L and 40 g/L were used as the external validation experiments. The root mean square error of prediction (RMSEP) obtained by analyzing experimental data was 0.341 6 and 0.274 3, respectively. These results showed that the established model gave good prediction and could be effectively used for on-line monitoring the biomass during a 1,3-propanediol fermentation process.
Lee, Min-Jeong; Seo, Da-Young; Lee, Hea-Eun; Wang, In-Chun; Kim, Woo-Sik; Jeong, Myung-Yung; Choi, Guang J
2011-01-17
Along with the risk-based approach, process analytical technology (PAT) has emerged as one of the key elements to fully implement QbD (quality-by-design). Near-infrared (NIR) spectroscopy has been extensively applied as an in-line/on-line analytical tool in biomedical and chemical industries. In this study, the film thickness on pharmaceutical pellets was examined for quantification using in-line NIR spectroscopy during a fluid-bed coating process. A precise monitoring of coating thickness and its prediction with a suitable control strategy is crucial to the quality assurance of solid dosage forms including dissolution characteristics. Pellets of a test formulation were manufactured and coated in a fluid-bed by spraying a hydroxypropyl methylcellulose (HPMC) coating solution. NIR spectra were acquired via a fiber-optic probe during the coating process, followed by multivariate analysis utilizing partial least squares (PLS) calibration models. The actual coating thickness of pellets was measured by two separate methods, confocal laser scanning microscopy (CLSM) and laser diffraction particle size analysis (LD-PSA). Both characterization methods gave superb correlation results, and all determination coefficient (R(2)) values exceeded 0.995. In addition, a prediction coating experiment for 70min demonstrated that the end-point can be accurately designated via NIR in-line monitoring with appropriate calibration models. In conclusion, our approach combining in-line NIR monitoring with CLSM and LD-PSA can be applied as an effective PAT tool for fluid-bed pellet coating processes. Copyright © 2010 Elsevier B.V. All rights reserved.
SPECTROSCOPIC ONLINE MONITORING FOR PROCESS CONTROL AND SAFEGUARDING OF RADIOCHEMICAL STREAMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryan, Samuel A.; Levitskaia, Tatiana G.
2013-09-29
There is a renewed interest worldwide to promote the use of nuclear power and close the nuclear fuel cycle. The long term successful use of nuclear power is critically dependent upon adequate and safe processing and disposition of the used nuclear fuel. Liquid-liquid extraction is a separation technique commonly employed for the processing of the dissolved used nuclear fuel. The instrumentation used to monitor these processes must be robust, require little or no maintenance, and be able to withstand harsh environments such as high radiation fields and aggressive chemical matrices. This paper summarizes application of the absorption and vibrational spectroscopicmore » techniques supplemented by physicochemical measurements for radiochemical process monitoring. In this context, our team experimentally assessed the potential of Raman and spectrophotometric techniques for online real-time monitoring of the U(VI)/nitrate ion/nitric acid and Pu(IV)/Np(V)/Nd(III), respectively, in solutions relevant to spent fuel reprocessing. These techniques demonstrate robust performance in the repetitive batch measurements of each analyte in a wide concentration range using simulant and commercial dissolved spent fuel solutions. Spectroscopic measurements served as training sets for the multivariate data analysis to obtain partial least squares predictive models, which were validated using on-line centrifugal contactor extraction tests. Satisfactory prediction of the analytes concentrations in these preliminary experiments warrants further development of the spectroscopy-based methods for radiochemical process control and safeguarding. Additionally, the ability to identify material intentionally diverted from a liquid-liquid extraction contactor system was successfully tested using on-line process monitoring as a means to detect the amount of material diverted. A chemical diversion and detection from a liquid-liquid extraction scheme was demonstrated using a centrifugal contactor system operating with the simulant PUREX extraction system of Nd(NO3)3/nitric acid aqueous phase and TBP/n-dodecane organic phase. During a continuous extraction experiment, a portion of the feed from a counter-current extraction system was diverted while the spectroscopic on-line process monitoring system was simultaneously measuring the feed, raffinate and organic products streams. The amount observed to be diverted by on-line spectroscopic process monitoring was in excellent agreement with values based from the known mass of sample directly taken (diverted) from system feed solution.« less
NASA Astrophysics Data System (ADS)
Yang, Yue; Wang, Lei; Wu, Yongjiang; Liu, Xuesong; Bi, Yuan; Xiao, Wei; Chen, Yong
2017-07-01
There is a growing need for the effective on-line process monitoring during the manufacture of traditional Chinese medicine to ensure quality consistency. In this study, the potential of near infrared (NIR) spectroscopy technique to monitor the extraction process of Flos Lonicerae Japonicae was investigated. A new algorithm of synergy interval PLS with genetic algorithm (Si-GA-PLS) was proposed for modeling. Four different PLS models, namely Full-PLS, Si-PLS, GA-PLS, and Si-GA-PLS, were established, and their performances in predicting two quality parameters (viz. total acid and soluble solid contents) were compared. In conclusion, Si-GA-PLS model got the best results due to the combination of superiority of Si-PLS and GA. For Si-GA-PLS, the determination coefficient (Rp2) and root-mean-square error for the prediction set (RMSEP) were 0.9561 and 147.6544 μg/ml for total acid, 0.9062 and 0.1078% for soluble solid contents, correspondingly. The overall results demonstrated that the NIR spectroscopy technique combined with Si-GA-PLS calibration is a reliable and non-destructive alternative method for on-line monitoring of the extraction process of TCM on the production scale.
Hailey, P A; Doherty, P; Tapsell, P; Oliver, T; Aldridge, P K
1996-03-01
An automated system for the on-line monitoring of powder blending processes is described. The system employs near-infrared (NIR) spectroscopy using fibre-optics and a graphical user interface (GUI) developed in the LabVIEW environment. The complete supervisory control and data analysis (SCADA) software controls blender and spectrophotometer operation and performs statistical spectral data analysis in real time. A data analysis routine using standard deviation is described to demonstrate an approach to the real-time determination of blend homogeneity.
In-line monitoring of a pharmaceutical blending process using FT-Raman spectroscopy.
Vergote, G J; De Beer, T R M; Vervaet, C; Remon, J P; Baeyens, W R G; Diericx, N; Verpoort, F
2004-03-01
FT-Raman spectroscopy (in combination with a fibre optic probe) was evaluated as an in-line tool to monitor a blending process of diltiazem hydrochloride pellets and paraffinic wax beads. The mean square of differences (MSD) between two consecutive spectra was used to identify the time required to obtain a homogeneous mixture. A traditional end-sampling thief probe was used to collect samples, followed by HPLC analysis to verify the Raman data. Large variations were seen in the FT-Raman spectra logged during the initial minutes of the blending process using a binary mixture (ratio: 50/50, w/w) of diltiazem pellets and paraffinic wax beads (particle size: 800-1200 microm). The MSD-profiles showed that a homogeneous mixture was obtained after about 15 min blending. HPLC analysis confirmed these observations. The Raman data showed that the mixing kinetics depended on the particle size of the material and on the mixing speed. The results of this study proved that FT-Raman spectroscopy can be successfully implemented as an in-line monitoring tool for blending processes.
On-line tool breakage monitoring of vibration tapping using spindle motor current
NASA Astrophysics Data System (ADS)
Li, Guangjun; Lu, Huimin; Liu, Gang
2008-10-01
Input current of driving motor has been employed successfully as monitoring the cutting state in manufacturing processes for more than a decade. In vibration tapping, however, the method of on-line monitoring motor electric current has not been reported. In this paper, a tap failure prediction method is proposed to monitor the vibration tapping process using the electrical current signal of the spindle motor. The process of vibration tapping is firstly described. Then the relationship between the torque of vibration tapping and the electric current of motor is investigated by theoretic deducing and experimental measurement. According to those results, a monitoring method of tool's breakage is proposed through monitoring the ratio of the current amplitudes during adjacent vibration tapping periods. Finally, a low frequency vibration tapping system with motor current monitoring is built up using a servo motor B-106B and its driver CR06. The proposed method has been demonstrated with experiment data of vibration tapping in titanic alloys. The result of experiments shows that the method, which can avoid the tool breakage and giving a few error alarms when the threshold of amplitude ratio is 1.2 and there is at least 2 times overrun among 50 adjacent periods, is feasible for tool breakage monitoring in the process of vibration tapping small thread holes.
Wan, Boyong; Zordan, Christopher A; Lu, Xujin; McGeorge, Gary
2016-10-01
Complete dissolution of the active pharmaceutical ingredient (API) is critical in the manufacturing of liquid-filled soft-gelatin capsules (SGC). Attenuated total reflectance UV spectroscopy (ATR-UV) and Raman spectroscopy have been investigated for in-line monitoring of API dissolution during manufacturing of an SGC product. Calibration models have been developed with both techniques for in-line determination of API potency. Performance of both techniques was evaluated and compared. The ATR-UV methodology was found to be able to monitor the dissolution process and determine the endpoint, but was sensitive to temperature variations. The Raman technique was also capable of effectively monitoring the process and was more robust to the temperature variation and process perturbations by using an excipient peak for internal correction. Different data preprocessing methodologies were explored in an attempt to improve method performance.
Multivariate Analysis for Quantification of Plutonium(IV) in Nitric Acid Based on Absorption Spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lines, Amanda M.; Adami, Susan R.; Sinkov, Sergey I.
Development of more effective, reliable, and fast methods for monitoring process streams is a growing opportunity for analytical applications. Many fields can benefit from on-line monitoring, including the nuclear fuel cycle where improved methods for monitoring radioactive materials will facilitate maintenance of proper safeguards and ensure safe and efficient processing of materials. On-line process monitoring with a focus on optical spectroscopy can provide a fast, non-destructive method for monitoring chemical species. However, identification and quantification of species can be hindered by the complexity of the solutions if bands overlap or show condition-dependent spectral features. Plutonium (IV) is one example ofmore » a species which displays significant spectral variation with changing nitric acid concentration. Single variate analysis (i.e. Beer’s Law) is difficult to apply to the quantification of Pu(IV) unless the nitric acid concentration is known and separate calibration curves have been made for all possible acid strengths. Multivariate, or chemometric, analysis is an approach that allows for the accurate quantification of Pu(IV) without a priori knowledge of nitric acid concentration.« less
PAT-tools for process control in pharmaceutical film coating applications.
Knop, Klaus; Kleinebudde, Peter
2013-12-05
Recent development of analytical techniques to monitor the coating process of pharmaceutical solid dosage forms such as pellets and tablets are described. The progress from off- or at-line measurements to on- or in-line applications is shown for the spectroscopic methods near infrared (NIR) and Raman spectroscopy as well as for terahertz pulsed imaging (TPI) and image analysis. The common goal of all these methods is to control or at least to monitor the coating process and/or to estimate the coating end point through timely measurements. Copyright © 2013 Elsevier B.V. All rights reserved.
TOPICAL REVIEW: Monitoring of polymer melt processing
NASA Astrophysics Data System (ADS)
Alig, Ingo; Steinhoff, Bernd; Lellinger, Dirk
2010-06-01
The paper reviews the state-of-the-art of in-line and on-line monitoring during polymer melt processing by compounding, extrusion and injection moulding. Different spectroscopic and scattering techniques as well as conductivity and viscosity measurements are reviewed and compared concerning their potential for different process applications. In addition to information on chemical composition and state of the process, the in situ detection of morphology, which is of specific interest for multiphase polymer systems such as polymer composites and polymer blends, is described in detail. For these systems, the product properties strongly depend on the phase or filler morphology created during processing. Examples for optical (UV/vis, NIR) and ultrasonic attenuation spectra recorded during extrusion are given, which were found to be sensitive to the chemical composition as well as to size and degree of dispersion of micro or nanofillers in the polymer matrix. By small-angle light scattering experiments, process-induced structures were detected in blends of incompatible polymers during compounding. Using conductivity measurements during extrusion, the influence of processing conditions on the electrical conductivity of polymer melts with conductive fillers (carbon black or carbon nanotubes) was monitored.
On-line soft sensing in upstream bioprocessing.
Randek, Judit; Mandenius, Carl-Fredrik
2018-02-01
This review provides an overview and a critical discussion of novel possibilities of applying soft sensors for on-line monitoring and control of industrial bioprocesses. Focus is on bio-product formation in the upstream process but also the integration with other parts of the process is addressed. The term soft sensor is used for the combination of analytical hardware data (from sensors, analytical devices, instruments and actuators) with mathematical models that create new real-time information about the process. In particular, the review assesses these possibilities from an industrial perspective, including sensor performance, information value and production economy. The capabilities of existing analytical on-line techniques are scrutinized in view of their usefulness in soft sensor setups and in relation to typical needs in bioprocessing in general. The review concludes with specific recommendations for further development of soft sensors for the monitoring and control of upstream bioprocessing.
On-line Monitoring for Cutting Tool Wear Condition Based on the Parameters
NASA Astrophysics Data System (ADS)
Han, Fenghua; Xie, Feng
2017-07-01
In the process of cutting tools, it is very important to monitor the working state of the tools. On the basis of acceleration signal acquisition under the constant speed, time domain and frequency domain analysis of relevant indicators monitor the online of tool wear condition. The analysis results show that the method can effectively judge the tool wear condition in the process of machining. It has certain application value.
De Beer, T R M; Allesø, M; Goethals, F; Coppens, A; Heyden, Y Vander; De Diego, H Lopez; Rantanen, J; Verpoort, F; Vervaet, C; Remon, J P; Baeyens, W R G
2007-11-01
The aim of the present study was to propose a strategy for the implementation of a Process Analytical Technology system in freeze-drying processes. Mannitol solutions, some of them supplied with NaCl, were used as models to freeze-dry. Noninvasive and in-line Raman measurements were continuously performed during lyophilization of the solutions to monitor real time the mannitol solid state, the end points of the different process steps (freezing, primary drying, secondary drying), and physical phenomena occurring during the process. At-line near-infrared (NIR) and X-ray powder diffractometry (XRPD) measurements were done to confirm the Raman conclusions and to find out additional information. The collected spectra during the processes were analyzed using principal component analysis and multivariate curve resolution. A two-level full factorial design was used to study the significant influence of process (freezing rate) and formulation variables (concentration of mannitol, concentration of NaCl, volume of freeze-dried sample) upon freeze-drying. Raman spectroscopy was able to monitor (i) the mannitol solid state (amorphous, alpha, beta, delta, and hemihydrate), (ii) several process step end points (end of mannitol crystallization during freezing, primary drying), and (iii) physical phenomena occurring during freeze-drying (onset of ice nucleation, onset of mannitol crystallization during the freezing step, onset of ice sublimation). NIR proved to be a more sensitive tool to monitor sublimation than Raman spectroscopy, while XRPD helped to unravel the mannitol hemihydrate in the samples. The experimental design results showed that several process and formulation variables significantly influence different aspects of lyophilization and that both are interrelated. Raman spectroscopy (in-line) and NIR spectroscopy and XRPD (at-line) not only allowed the real-time monitoring of mannitol freeze-drying processes but also helped (in combination with experimental design) us to understand the process.
On-line carbon balance of yeast fermentations using miniaturized optical sensors.
Beuermann, Thomas; Egly, Dominik; Geoerg, Daniel; Klug, Kerris Isolde; Storhas, Winfried; Methner, Frank-Juergen
2012-03-01
Monitoring of microbiological processes using optical sensors and spectrometers has gained in importance over the past few years due to its advantage in enabling non-invasive on-line analysis. Near-infrared (NIR) and mid-infrared (MIR) spectrometer set-ups in combination with multivariate calibrations have already been successfully employed for the simultaneous determination of different metabolites in microbiological processes. Photometric sensors, in addition to their low price compared to spectrometer set-ups, have the advantage of being compact and are easy to calibrate and operate. In this work, the detection of ethanol and CO(2) in the exhaust gas during aerobic yeast fermentation was performed by two photometric gas analyzers, and dry yeast biomass was monitored using a fiber optic backscatter set-up. The optical sensors could be easily fitted to the bioreactor and exhibited high robustness during measuring. The ethanol content of the fermentation broth was monitored on-line by measuring the ethanol concentration in the fermentation exhaust and applying a conversion factor. The vapor/liquid equilibrium and the associated conversion factor strongly depend on the process parameter temperature but not on aeration and stirring rate. Dry yeast biomass was determined in-line by a backscattering signal applying a linear calibration. An on-line balance with a recovery rate of 95-97% for carbon was achieved with the use of three optical sensors (two infrared gas analyzers and one fiber optic backscatter set-up). Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Ying-jun; Ai, Chang-sheng; Men, Xiu-hua; Zhang, Cheng-liang; Zhang, Qi
2013-04-01
This paper presents a novel on-line monitoring technology to obtain forming quality in steel ball's forming process based on load signal analysis method, in order to reveal the bottom die's load characteristic in initial cold heading forging process of steel balls. A mechanical model of the cold header producing process is established and analyzed by using finite element method. The maximum cold heading force is calculated. The results prove that the monitoring on the cold heading process with upsetting force is reasonable and feasible. The forming defects are inflected on the three feature points of the bottom die signals, which are the initial point, infection point, and peak point. A novel PVDF piezoelectric force sensor which is simple on construction and convenient on installation is designed. The sensitivity of the PVDF force sensor is calculated. The characteristics of PVDF force sensor are analyzed by FEM. The PVDF piezoelectric force sensor is fabricated to acquire the actual load signals in the cold heading process, and calibrated by a special device. The measuring system of on-line monitoring is built. The characteristics of the actual signals recognized by learning and identification algorithm are in consistence with simulation results. Identification of actual signals shows that the timing difference values of all feature points for qualified products are not exceed ±6 ms, and amplitude difference values are less than ±3%. The calibration and application experiments show that PVDF force sensor has good static and dynamic performances, and is competent at dynamic measuring on upsetting force. It greatly improves automatic level and machining precision. Equipment capacity factor with damages identification method depends on grade of steel has been improved to 90%.
In-Line Monitoring of a Pharmaceutical Pan Coating Process by Optical Coherence Tomography.
Markl, Daniel; Hannesschläger, Günther; Sacher, Stephan; Leitner, Michael; Buchsbaum, Andreas; Pescod, Russel; Baele, Thomas; Khinast, Johannes G
2015-08-01
This work demonstrates a new in-line measurement technique for monitoring the coating growth of randomly moving tablets in a pan coating process. In-line quality control is performed by an optical coherence tomography (OCT) sensor allowing nondestructive and contact-free acquisition of cross-section images of film coatings in real time. The coating thickness can be determined directly from these OCT images and no chemometric calibration models are required for quantification. Coating thickness measurements are extracted from the images by a fully automated algorithm. Results of the in-line measurements are validated using off-line OCT images, thickness calculations from tablet dimension measurements, and weight gain measurements. Validation measurements are performed on sample tablets periodically removed from the process during production. Reproducibility of the results is demonstrated by three batches produced under the same process conditions. OCT enables a multiple direct measurement of the coating thickness on individual tablets rather than providing the average coating thickness of a large number of tablets. This gives substantially more information about the coating quality, that is, intra- and intertablet coating variability, than standard quality control methods. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
NASA Astrophysics Data System (ADS)
Ouriev, Boris; Windhab, Erich; Braun, Peter; Birkhofer, Beat
2004-10-01
In-line visualization and on-line characterization of nontransparent fluids becomes an important subject for process development in food and nonfood industries. In our work, a noninvasive Doppler ultrasound-based technique is introduced. Such a technique is applied for investigation of nonstationary flow in the chocolate precrystallization process. Unstable flow conditions were induced by abrupt flow interruption and were followed up by strong flow pulsations in the piping system. While relying on available process information, such as absolute pressures and temperatures, no analyses of flow conditions or characterization of suspension properties could possibly be done. It is obvious that chocolate flow properties are sensitive to flow boundary conditions. Therefore, it becomes essential to perform reliable structure state monitoring and particularly in application to nonstationary flow processes. Such flow instabilities in chocolate processing can often lead to failed product quality with interruption of the mainstream production. As will be discussed, a combination of flow velocity profiles, on-line fit into flow profiles, and pressure difference measurement are sufficient for reliable analyses of fluid properties and flow boundary conditions as well as monitoring of the flow state. Analyses of the flow state and flow properties of chocolate suspension are based on on-line measurement of one-dimensional velocity profiles across the flow channel and their on-line characterization with the power-law model. Conclusions about flow boundary conditions were drawn from a calculated velocity standard mean deviation, the parameters of power-law fit into velocity profiles, and volumetric flow rate information.
40 CFR 98.264 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-process phosphoric acid process line. You can use existing plant procedures that are used for accounting... the process line. Conduct the representative bulk sampling using the applicable standard method in the...
Corrosion probe. Innovative technology summary report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Over 253 million liters of high-level waste (HLW) generated from plutonium production is stored in mild steel tanks at the Department of Energy (DOE) Hanford Site. Corrosion monitoring of double-shell storage tanks (DSTs) is currently performed at Hanford using a combination of process knowledge and tank waste sampling and analysis. Available technologies for corrosion monitoring have progressed to a point where it is feasible to monitor and control corrosion by on-line monitoring of the corrosion process and direct addition of corrosion inhibitors. The electrochemical noise (EN) technique deploys EN-based corrosion monitoring probes into storage tanks. This system is specifically designedmore » to measure corrosion rates and detect changes in waste chemistry that trigger the onset of pitting and cracking. These on-line probes can determine whether additional corrosion inhibitor is required and, if so, provide information on an effective end point to the corrosion inhibitor addition procedure. This report describes the technology, its performance, its application, costs, regulatory and policy issues, and lessons learned.« less
NASA Astrophysics Data System (ADS)
Kang, Qian; Ru, Qingguo; Liu, Yan; Xu, Lingyan; Liu, Jia; Wang, Yifei; Zhang, Yewen; Li, Hui; Zhang, Qing; Wu, Qing
2016-01-01
An on-line near infrared (NIR) spectroscopy monitoring method with an appropriate multivariate calibration method was developed for the extraction process of Fu-fang Shuanghua oral solution (FSOS). On-line NIR spectra were collected through two fiber optic probes, which were designed to transmit NIR radiation by a 2 mm flange. Partial least squares (PLS), interval PLS (iPLS) and synergy interval PLS (siPLS) algorithms were used comparatively for building the calibration regression models. During the extraction process, the feasibility of NIR spectroscopy was employed to determine the concentrations of chlorogenic acid (CA) content, total phenolic acids contents (TPC), total flavonoids contents (TFC) and soluble solid contents (SSC). High performance liquid chromatography (HPLC), ultraviolet spectrophotometric method (UV) and loss on drying methods were employed as reference methods. Experiment results showed that the performance of siPLS model is the best compared with PLS and iPLS. The calibration models for AC, TPC, TFC and SSC had high values of determination coefficients of (R2) (0.9948, 0.9992, 0.9950 and 0.9832) and low root mean square error of cross validation (RMSECV) (0.0113, 0.0341, 0.1787 and 1.2158), which indicate a good correlation between reference values and NIR predicted values. The overall results show that the on line detection method could be feasible in real application and would be of great value for monitoring the mixed decoction process of FSOS and other Chinese patent medicines.
Möltgen, C-V; Puchert, T; Menezes, J C; Lochmann, D; Reich, G
2012-04-15
Film coating of tablets is a multivariate pharmaceutical unit operation. In this study an innovative in-line Fourier-Transform Near-Infrared Spectroscopy (FT-NIRS) application is described which enables real-time monitoring of a full industrial scale pan coating process of heart-shaped tablets. The tablets were coated with a thin hydroxypropyl methylcellulose (HPMC) film of up to approx. 28 μm on the tablet face as determined by SEM, corresponding to a weight gain of 2.26%. For a better understanding of the aqueous coating process the NIR probe was positioned inside the rotating tablet bed. Five full scale experimental runs have been performed to evaluate the impact of process variables such as pan rotation, exhaust air temperature, spray rate and pan load and elaborate robust and selective quantitative calibration models for the real-time determination of both coating growth and tablet moisture content. Principal Component (PC) score plots allowed each coating step, namely preheating, spraying and drying to be distinguished and the dominating factors and their spectral effects to be identified (e.g. temperature, moisture, coating growth, change of tablet bed density, and core/coat interactions). The distinct separation of HPMC coating growth and tablet moisture in different PCs enabled a real-time in-line monitoring of both attributes. A PLS calibration model based on Karl Fischer reference values allowed the tablet moisture trajectory to be determined throughout the entire coating process. A 1-latent variable iPLS weight gain calibration model with calibration samples from process stages dominated by the coating growth (i.e. ≥ 30% of the theoretically applied amount of coating) was sufficiently selective and accurate to predict the progress of the thin HPMC coating layer. At-line NIR Chemical Imaging (NIR-CI) in combination with PLS Discriminant Analysis (PLSDA) verified the HPMC coating growth and physical changes at the core/coat interface during the initial stages of the coating process. In addition, inter- and intra-tablet coating variability throughout the process could be assessed. These results clearly demonstrate that in-line NIRS and at-line NIR-CI can be applied as complimentary PAT tools to monitor a challenging pan coating process. Copyright © 2012 Elsevier B.V. All rights reserved.
Ehala, S; Vassiljeva, I; Kuldvee, R; Vilu, R; Kaljurand, M
2001-09-01
Capillary electrophoresis (CE) can be a valuable tool for on-line monitoring of bioprocesses. Production of organic acids by phosphorus-solubilizing bacteria and fermentation of UHT milk were monitored and controlled by use of a membrane-interfaced dialysis device and a home-made microsampler for a capillary electrophoresis unit. Use of this specially designed sampling device enabled rapid consecutive injections without interruption of the high voltage. No additional sample preparation was required. The time resolution of monitoring in this particular work was approximately 2 h, but could be reduced to 2 min. Analytes were detected at low microg mL(-1) levels with a reproducibility of approximately 10%. To demonstrate the potential of CE in processes of biotechnological interest, results from monitoring phosphate solubilization by bacteria were submitted to qualitative and quantitative analysis. Fermentation experiments on UHT milk showed that monitoring of the processes by CE can provide good resolution of complex mixtures, although for more specific, detailed characterization the identification of individual substances is needed.
Application of fluorescence spectroscopy for on-line bioprocess monitoring and control
NASA Astrophysics Data System (ADS)
Boehl, Daniela; Solle, D.; Toussaint, Hans J.; Menge, M.; Renemann, G.; Lindemann, Carsten; Hitzmann, Bernd; Scheper, Thomas-Helmut
2001-02-01
12 Modern bioprocess control requires fast data acquisition and in-time evaluation of bioprocess variables. On-line fluorescence spectroscopy for data acquisition and the use of chemometric methods accomplish these requirements. The presented investigations were performed with fluorescence spectrometers with wide ranges of excitation and emission wavelength. By detection of several biogenic fluorophors (amino acids, coenzymes and vitamins) a large amount of information about the state of the bioprocess are obtained. For the evaluation of the process variables partial least squares regression is used. This technique was applied to several bioprocesses: the production of ergotamine by Claviceps purpurea, the production of t-PA (tissue plasminogen activator) by animal cells and brewing processes. The main point of monitoring the brewing processes was to determine the process variables cell count and extract concentration.
On-line monitoring of fluid bed granulation by photometric imaging.
Soppela, Ira; Antikainen, Osmo; Sandler, Niklas; Yliruusi, Jouko
2014-11-01
This paper introduces and discusses a photometric surface imaging approach for on-line monitoring of fluid bed granulation. Five granule batches consisting of paracetamol and varying amounts of lactose and microcrystalline cellulose were manufactured with an instrumented fluid bed granulator. Photometric images and NIR spectra were continuously captured on-line and particle size information was extracted from them. Also key process parameters were recorded. The images provided direct real-time information on the growth, attrition and packing behaviour of the batches. Moreover, decreasing image brightness in the drying phase was found to indicate granule drying. The changes observed in the image data were also linked to the moisture and temperature profiles of the processes. Combined with complementary process analytical tools, photometric imaging opens up possibilities for improved real-time evaluation fluid bed granulation. Furthermore, images can give valuable insight into the behaviour of excipients or formulations during product development. Copyright © 2014 Elsevier B.V. All rights reserved.
Using the scanning electron microscope on the production line to assure quality semiconductors
NASA Technical Reports Server (NTRS)
Adolphsen, J. W.; Anstead, R. J.
1972-01-01
The use of the scanning electron microscope to detect metallization defects introduced during batch processing of semiconductor devices is discussed. A method of determining metallization integrity was developed which culminates in a procurement specification using the scanning microscope on the production line as a quality control tool. Batch process control of the metallization operation is monitored early in the manufacturing cycle.
NASA Technical Reports Server (NTRS)
Griffin, Timothy P.; Naylor, Guy R.; Haskell, William D.; Breznik, Greg S.; Mizell, Carolyn A.; Helms, William R.; Voska, N. (Technical Monitor)
2002-01-01
An on-line gas monitoring system was developed to replace the older systems used to monitor for cryogenic leaks on the Space Shuttles before launch. The system uses a mass spectrometer to monitor multiple locations in the process, which allows the system to monitor all gas constituents of interest in a nearly simultaneous manner. The system is fully redundant and meets all requirements for ground support equipment (GSE). This includes ruggedness to withstand launch on the Mobile Launcher Platform (MLP), ease of operation, and minimal operator intervention. The system can be fully automated so that an operator is notified when an unusual situation or fault is detected. User inputs are through personal computer using mouse and keyboard commands. The graphical user for detecting cryogenic leaks, many other gas constituents could be monitored using the Hazardous Gas Detection System (HGDS) 2000.
Switchable in-line monitor for multi-dimensional multiplexed photonic integrated circuit.
Chen, Guanyu; Yu, Yu; Ye, Mengyuan; Zhang, Xinliang
2016-06-27
A flexible monitor suitable for the discrimination of on-chip transmitted mode division multiplexed (MDM) and wavelength division multiplexed (WDM) signals is proposed and fabricated. By selectively extracting part of the incoming signals through the tunable wavelength and mode dependent drop filter, the in-line and switchable monitor can discriminate the wavelength, mode and power information of the transmitted signals. Being different from a conventional mode and wavelength demultiplexer, the monitor is specifically designed to ensure a flexible in-line monitoring. For demonstration, three mode and three wavelength multiplexed signals are successfully processed. Assisted by the integrated photodetectors (PDs), both the measured photo currents and eye diagrams validate the performance of the proposed device. The bit error ratio (BER) measurement results show less than 0.4 dB power penalty between different modes and ~2 dB power penalty for single wavelength and WDM cases under 10-9 BER level.
In-line monitoring of (MR) fluid properties
NASA Astrophysics Data System (ADS)
Kordonski, William; Gorodkin, Sergei; Behlok, Ray
2015-05-01
Proper functionality of devices and processes based on (MR) fluids greatly depends, along with other factors, on stability of fluid characteristics such as concentration of magnetic particles and magnetic properties of the particles. The concentration of magnetic particles may change due to evaporation or leakage of carrier fluid, as well as particle sedimentation. Magnetic properties may change due to temperature, corrosion of particles or irreversible aggregation. In-line noninvasive monitoring of particle concentration and magnetic properties allows, in one way or another, compensation for the impact of destabilizing factors and provides system stable output. Two novel methods of in-line measurement of MR fluid magnetic permeability or magnetic particle concentration are considered in this presentation. The first one is based on the principle of mutual inductance and is intended for monitoring MR fluid flowing in pipes or channels. In the second one, permeability is measured by a flash-mount sensor which reacts on changes in the reluctance of the MR fluid layer adjacent to the wall. The use of the methods for stabilization of the material removal rate in high precision finishing process employing aqueous MR fluid is discussed.
Druzinec, Damir; Weiss, Katja; Elseberg, Christiane; Salzig, Denise; Kraume, Matthias; Pörtner, Ralf; Czermak, Peter
2014-01-01
Modern bioprocesses demand for a careful definition of the critical process parameters (CPPs) already during the early stages of process development in order to ensure high-quality products and satisfactory yields. In this context, online monitoring tools can be applied to recognize unfavorable changes of CPPs during the production processes and to allow for early interventions in order to prevent losses of production batches due to quality issues. Process analytical technologies such as the dielectric spectroscopy or focused beam reflectance measurement (FBRM) are possible online monitoring tools, which can be applied to monitor cell growth as well as morphological changes. Since the dielectric spectroscopy only captures cells with intact cell membranes, even information about dead cells with ruptured or leaking cell membranes can be derived. The following chapter describes the application of dielectric spectroscopy on various virus-infected and non-infected cell lines with respect to adherent as well as suspension cultures in common stirred tank reactors. The adherent mammalian cell lines Vero (African green monkey kidney cells) and hMSC-TERT (telomerase-immortalized human mesenchymal stem cells) are thereby cultured on microcarrier, which provide the required growth surface and allow the cultivation of these cells even in dynamic culture systems. In turn, the insect-derived cell lines S2 and Sf21 are used as examples for cells typically cultured in suspension. Moreover, the FBRM technology as a further monitoring tool for cell culture applications has been included in this chapter using the example of Drosophila S2 insect cells.
NASA Astrophysics Data System (ADS)
Jules, Kenol; Lin, Paul P.
2007-06-01
With the International Space Station currently operational, a significant amount of acceleration data is being down-linked, processed and analyzed daily on the ground on a continuous basis for the space station reduced gravity environment characterization, the vehicle design requirements verification and science data collection. To help understand the impact of the unique spacecraft environment on the science data, an artificial intelligence monitoring system was developed, which detects in near real time any change in the reduced gravity environment susceptible to affect the on-going experiments. Using a dynamic graphical display, the monitoring system allows science teams, at any time and any location, to see the active vibration disturbances, such as pumps, fans, compressor, crew exercise, re-boost and extra-vehicular activities that might impact the reduced gravity environment the experiments are exposed to. The monitoring system can detect both known and unknown vibratory disturbance activities. It can also perform trend analysis and prediction by analyzing past data over many increments (an increment usually lasts 6 months) collected onboard the station for selected disturbances. This feature can be used to monitor the health of onboard mechanical systems to detect and prevent potential systems failures. The monitoring system has two operating modes: online and offline. Both near real-time on-line vibratory disturbance detection and off-line detection and trend analysis are discussed in this paper.
Generic Raman-based calibration models enabling real-time monitoring of cell culture bioreactors.
Mehdizadeh, Hamidreza; Lauri, David; Karry, Krizia M; Moshgbar, Mojgan; Procopio-Melino, Renee; Drapeau, Denis
2015-01-01
Raman-based multivariate calibration models have been developed for real-time in situ monitoring of multiple process parameters within cell culture bioreactors. Developed models are generic, in the sense that they are applicable to various products, media, and cell lines based on Chinese Hamster Ovarian (CHO) host cells, and are scalable to large pilot and manufacturing scales. Several batches using different CHO-based cell lines and corresponding proprietary media and process conditions have been used to generate calibration datasets, and models have been validated using independent datasets from separate batch runs. All models have been validated to be generic and capable of predicting process parameters with acceptable accuracy. The developed models allow monitoring multiple key bioprocess metabolic variables, and hence can be utilized as an important enabling tool for Quality by Design approaches which are strongly supported by the U.S. Food and Drug Administration. © 2015 American Institute of Chemical Engineers.
Monitoring of antisolvent crystallization of sodium scutellarein by combined FBRM-PVM-NIR.
Liu, Xuesong; Sun, Di; Wang, Feng; Wu, Yongjiang; Chen, Yong; Wang, Longhu
2011-06-01
Antisolvent crystallization can be used as an alternative to cooling or evaporation for the separation and purification of solid product in the pharmaceutical industry. To improve the process understanding of antisolvent crystallization, the use of in-line tools is vital. In this study, the process analytical technology (PAT) tools including focused beam reflectance measurement (FBRM), particle video microscope (PVM), and near-infrared spectroscopy (NIRS) were utilized to monitor antisolvent crystallization of sodium scutellarein. FBRM was used to monitor chord count and chord length distribution of sodium scutellarein particles in the crystallizer, and PVM, as an in-line video camera, provided pictures imaging particle shape and dimension. In addition, a quantitative model of PLS was established by in-line NIRS to detect the concentration of sodium scutellarein in the solvent and good calibration statistics were obtained (r(2) = 0.976) with the residual predictive deviation value of 11.3. The discussion over sensitivities, strengths, and weaknesses of the PAT tools may be helpful in selection of suitable PAT techniques. These in-line techniques eliminate the need for sample preparation and offer a time-saving approach to understand and monitor antisolvent crystallization process. Copyright © 2011 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Markl, Daniel; Ziegler, Jakob; Hannesschläger, Günther; Sacher, Stephan; Buchsbaum, Andreas; Leitner, Michael; Khinast, Johannes G.
2014-05-01
Coating of tablets is a widely applied unit operation in the pharmaceutical industry. Thickness and uniformity of the coating layer are crucial for efficacy as well as for compliance. Not only due to different initiatives it is thus essential to monitor and control the coating process in-line. Optical coherence tomography (OCT) was already shown in previous works to be a suitable candidate for in-line monitoring of coating processes. However, to utilize the full potential of the OCT technology an automatic evaluation of the OCT measurements is essential. The automatic evaluation is currently implemented in MATLAB and includes several steps: (1) extraction of features of each A-scan, (2) classification of Ascan measurements based on their features, (3) detection of interfaces (air/coating and coating/tablet core), (4) correction of distortions due to the curvature of the bi-convex tablets and the oblique orientation of the tablets, and (5) determining the coating thickness. The algorithm is tested on OCT data acquired by moving the sensor head of the OCT system across a static tablet bed. The coating thickness variations of single tablets (i.e., intra-tablet coating variability) can additionally be analyzed as OCT allows the measurement of the coating thickness on multiple displaced positions on one single tablet. Specifically, the information about those parameters emphasizes the high capability of the OCT technology to improve process understanding and to assure a high product quality.
Guo, Wei-Liang; Du, Yi-Ping; Zhou, Yong-Can; Yang, Shuang; Lu, Jia-Hui; Zhao, Hong-Yu; Wang, Yao; Teng, Li-Rong
2012-03-01
An analytical procedure has been developed for at-line (fast off-line) monitoring of 4 key parameters including nisin titer (NT), the concentration of reducing sugars, cell concentration and pH during a nisin fermentation process. This procedure is based on near infrared (NIR) spectroscopy and Partial Least Squares (PLS). Samples without any preprocessing were collected at intervals of 1 h during fifteen batch of fermentations. These fermentation processes were implemented in 3 different 5 l fermentors at various conditions. NIR spectra of the samples were collected in 10 min. And then, PLS was used for modeling the relationship between NIR spectra and the key parameters which were determined by reference methods. Monte Carlo Partial Least Squares (MCPLS) was applied to identify the outliers and select the most efficacious methods for preprocessing spectra, wavelengths and the suitable number of latent variables (n (LV)). Then, the optimum models for determining NT, concentration of reducing sugars, cell concentration and pH were established. The correlation coefficients of calibration set (R (c)) were 0.8255, 0.9000, 0.9883 and 0.9581, respectively. These results demonstrated that this method can be successfully applied to at-line monitor of NT, concentration of reducing sugars, cell concentration and pH during nisin fermentation processes.
De Beer, T R M; Vercruysse, P; Burggraeve, A; Quinten, T; Ouyang, J; Zhang, X; Vervaet, C; Remon, J P; Baeyens, W R G
2009-09-01
The aim of the present study was to examine the complementary properties of Raman and near infrared (NIR) spectroscopy as PAT tools for the fast, noninvasive, nondestructive and in-line process monitoring of a freeze drying process. Therefore, Raman and NIR probes were built in the freeze dryer chamber, allowing simultaneous process monitoring. A 5% (w/v) mannitol solution was used as model for freeze drying. Raman and NIR spectra were continuously collected during freeze drying (one Raman and NIR spectrum/min) and the spectra were analyzed using principal component analysis (PCA) and multivariate curve resolution (MCR). Raman spectroscopy was able to supply information about (i) the mannitol solid state throughout the entire process, (ii) the endpoint of freezing (endpoint of mannitol crystallization), and (iii) several physical and chemical phenomena occurring during the process (onset of ice nucleation, onset of mannitol crystallization). NIR spectroscopy proved to be a more sensitive tool to monitor the critical aspects during drying: (i) endpoint of ice sublimation and (ii) monitoring the release of hydrate water during storage. Furthermore, via NIR spectroscopy some Raman observations were confirmed: start of ice nucleation, end of mannitol crystallization and solid state characteristics of the end product. When Raman and NIR monitoring were performed on the same vial, the Raman signal was saturated during the freezing step caused by reflected NIR light reaching the Raman detector. Therefore, NIR and Raman measurements were done on a different vial. Also the importance of the position of the probes (Raman probe above the vial and NIR probe at the bottom of the sidewall of the vial) in order to obtain all required critical information is outlined. Combining Raman and NIR spectroscopy for the simultaneous monitoring of freeze drying allows monitoring almost all critical freeze drying process aspects. Both techniques do not only complement each other, they also provided mutual confirmation of specific conclusions.
In-line verification of linewidth uniformity for 0.18 and below: design rule reticles
NASA Astrophysics Data System (ADS)
Tan, TaiSheng; Kuo, Shen C.; Wu, Clare; Falah, Reuven; Hemar, Shirley; Sade, Amikam; Gottlib, Gidon
2000-07-01
Mask making process development and control is addressed using a reticle inspection tool equipped with the new revolutionized application called LBM-Linewidth Bias Monitoring. In order to use the LBM for mask-making process control, procedures and corresponding test plates are a developed, such that routine monitoring of the manufacturing process discloses process variation and machine variation. At the same time systematic variation are studied and either taken care of or taken into consideration to allow successful production line work. In this paper the contribution of the LBM for mask quality monitoring is studied with respect to dense layers, e.g. DRAM. Another aspect of this application - the detection of very small CD mis-uniformity areas is discussed.
Digital video system for on-line portal verification
NASA Astrophysics Data System (ADS)
Leszczynski, Konrad W.; Shalev, Shlomo; Cosby, N. Scott
1990-07-01
A digital system has been developed for on-line acquisition, processing and display of portal images during radiation therapy treatment. A metal/phosphor screen combination is the primary detector, where the conversion from high-energy photons to visible light takes place. A mirror angled at 45 degrees reflects the primary image to a low-light-level camera, which is removed from the direct radiation beam. The image registered by the camera is digitized, processed and displayed on a CRT monitor. Advanced digital techniques for processing of on-line images have been developed and implemented to enhance image contrast and suppress the noise. Some elements of automated radiotherapy treatment verification have been introduced.
NASA Astrophysics Data System (ADS)
Höbel, M.; Haffner, K.
1999-05-01
Instrumentation that allows the behaviour of a hydro-generator thrust bearing to be monitored during operation is described. The measurement system was developed at the Asea Brown Boveri corporate research centre in Switzerland and was tested under realistic operating conditions at the Harbin Electric Machinery Company bearing-testing facility in the People's Republic of China. Newly developed fibre-optical proximity probes were used for the on-line monitoring of the thin oil film between the static and rotating parts of the bearing. These sensors are based on a back-reflection technique and can be used for various target materials such as Babbitt and Teflon. The monitoring system comprises about 120 temperature sensors, four pressure sensors and five optical oil-film thickness sensors. Temperature sensors are installed at specific static locations, whereas pressure and oil-film sensors are positioned in the runner and generate data during rotation. A special feature of the monitoring equipment is its on-line processing capability. Digital signal processors operating in parallel handle pressure and oil-film thickness data. Important measurement parameters such as the maximum pressure, maximum temperature and minimum oil-film thickness are displayed on-line. Detailed three-dimensional temperature information on one of the load segments can be obtained from subsequent off-line data analysis. The system also calculates two-dimensional plots of the oil-film thickness and pressure for most of the 12 load segments.
Roßteuscher-Carl, Katrin; Fricke, Sabine; Hacker, Michael C; Schulz-Siegmund, Michaela
2015-12-30
Ethinylestradiol (EE) as a highly active and low dosed compound is prone to oxidative degradation. The stability of the drug substance is therefore a critical parameter that has to be considered during drug formulation. Beside the stability of the drug substance, granule particle size and moisture are critical quality attributes (CQA) of the fluid bed granulation process which influence the tableting ability of the resulting granules. Both CQA should therefore be monitored during the production process by process analytic technology (PAT) according to ICH Q8. This work focusses on the effects of drying conditions on the stability of EE in a fluid-bed granulation process. We quantified EE degradation products 6-alpha-hydroxy-EE, 6-beta-hydroxy-EE, 9(11)-dehydro-EE and 6-oxo-EE during long time storage and accelerated conditions. PAT-tools that monitor granule particle size (Spatial filtering technology) and granule moisture (Microwave resonance technology) were applied and compared with off-line methods. We found a relevant influence of residual granule moisture and thermic stress applied during granulation on the storage stability of EE, whereas no degradation was found immediately after processing. Hence we conclude that drying parameters have a relevant influence on long term EE stability. Copyright © 2015 Elsevier B.V. All rights reserved.
In-line monitoring of pellet coating thickness growth by means of visual imaging.
Oman Kadunc, Nika; Sibanc, Rok; Dreu, Rok; Likar, Boštjan; Tomaževič, Dejan
2014-08-15
Coating thickness is the most important attribute of coated pharmaceutical pellets as it directly affects release profiles and stability of the drug. Quality control of the coating process of pharmaceutical pellets is thus of utmost importance for assuring the desired end product characteristics. A visual imaging technique is presented and examined as a process analytic technology (PAT) tool for noninvasive continuous in-line and real time monitoring of coating thickness of pharmaceutical pellets during the coating process. Images of pellets were acquired during the coating process through an observation window of a Wurster coating apparatus. Image analysis methods were developed for fast and accurate determination of pellets' coating thickness during a coating process. The accuracy of the results for pellet coating thickness growth obtained in real time was evaluated through comparison with an off-line reference method and a good agreement was found. Information about the inter-pellet coating uniformity was gained from further statistical analysis of the measured pellet size distributions. Accuracy and performance analysis of the proposed method showed that visual imaging is feasible as a PAT tool for in-line and real time monitoring of the coating process of pharmaceutical pellets. Copyright © 2014 Elsevier B.V. All rights reserved.
Near infrared (NIR) spectroscopy for in-line monitoring of polymer extrusion processes.
Rohe, T; Becker, W; Kölle, S; Eisenreich, N; Eyerer, P
1999-09-13
In recent years, near infrared (NIR) spectroscopy has become an analytical tool frequently used in many chemical production processes. In particular, on-line measurements are of interest to increase process stability and to document constant product quality. Application to polymer processing e.g. polymer extrusion, could even increase product quality. Interesting parameters are composition of the processed polymer, moisture, or reaction status in reactive extrusion. For this issue a transmission sensor was developed for application of NIR spectroscopy to extrusion processes. This sensor includes fibre optic probes and a measuring cell to be adapted to various extruders for in-line measurements. In contrast to infrared sensors, it only uses optical quartz components. Extrusion processes at temperatures up to 300 degrees C and pressures up to 37 MPa have been investigated. Application of multivariate data analysis (e.g. partial least squares, PLS) demonstrated the performance of the system with respect to process monitoring: in the case of polymer blending, deviations between predicted and actual polymer composition were quite low (in the range of +/-0.25%). So the complete system is suitable for harsh industrial environments and could lead to improved polymer extrusion processes.
NASA Astrophysics Data System (ADS)
Tower, Joshua P.; Kamieniecki, Emil; Nguyen, M. C.; Danel, Adrien
1999-08-01
The Surface Charge Profiler (SCP) has been introduced for monitoring and development of silicon epitaxial processes. The SCP measures the near-surface doping concentration and offers advantages that lead to yield enhancement in several ways. First, non-destructive measurement technology enables in-line process monitoring, eliminating the need to sacrifice production wafers for resistivity measurements. Additionally, the full-wafer mapping capability helps in development of improved epitaxial growth processes and early detection of reactor problems. As examples, we present the use of SCP to study the effects of susceptor degradation in barrel reactors and to study autodoping for development of improved dopant uniformity.
Markl, Daniel; Hannesschläger, Günther; Sacher, Stephan; Leitner, Michael; Khinast, Johannes G
2014-05-13
Optical coherence tomography (OCT) is a contact-free non-destructive high-resolution imaging technique based on low-coherence interferometry. This study investigates the application of spectral-domain OCT as an in-line quality control tool for monitoring pharmaceutical film-coated tablets. OCT images of several commercially-available film-coated tablets of different shapes, formulations and coating thicknesses were captured off-line using two OCT systems with centre wavelengths of 830nm and 1325nm. Based on the off-line image evaluation, another OCT system operating at a shorter wavelength was selected to study the feasibility of OCT as an in-line monitoring method. Since in spectral-domain OCT motion artefacts can occur as a result of the tablet or sensor head movement, a basic understanding of the relationship between the tablet speed and the motion effects is essential for correct quantifying and qualifying of the tablet coating. Experimental data was acquired by moving the sensor head of the OCT system across a static tablet bed. Although examining the homogeneity of the coating turned more difficult with increasing transverse speed of the tablets, the determination of the coating thickness was still highly accurate at a speed up to 0.7m/s. The presented OCT setup enables the investigation of the intra- and inter-tablet coating uniformity in-line during the coating process. Copyright © 2014 Elsevier B.V. All rights reserved.
Implementation of quality by design toward processing of food products.
Rathore, Anurag S; Kapoor, Gautam
2017-05-28
Quality by design (QbD) is a systematic approach that begins with predefined objectives and emphasizes product and process understanding and process control. It is an approach based on principles of sound science and quality risk management. As the food processing industry continues to embrace the idea of in-line, online, and/or at-line sensors and real-time characterization for process monitoring and control, the existing gaps with regard to our ability to monitor multiple parameters/variables associated with the manufacturing process will be alleviated over time. Investments made for development of tools and approaches that facilitate high-throughput analytical and process development, process analytical technology, design of experiments, risk analysis, knowledge management, and enhancement of process/product understanding would pave way for operational and economic benefits later in the commercialization process and across other product pipelines. This article aims to achieve two major objectives. First, to review the progress that has been made in the recent years on the topic of QbD implementation in processing of food products and second, present a case study that illustrates benefits of such QbD implementation.
Tanaka, Ryoma; Takahashi, Naoyuki; Nakamura, Yasuaki; Hattori, Yusuke; Ashizawa, Kazuhide; Otsuka, Makoto
2017-01-01
Resonant acoustic ® mixing (RAM) technology is a system that performs high-speed mixing by vibration through the control of acceleration and frequency. In recent years, real-time process monitoring and prediction has become of increasing interest, and process analytical technology (PAT) systems will be increasingly introduced into actual manufacturing processes. This study examined the application of PAT with the combination of RAM, near-infrared spectroscopy, and chemometric technology as a set of PAT tools for introduction into actual pharmaceutical powder blending processes. Content uniformity was based on a robust partial least squares regression (PLSR) model constructed to manage the RAM configuration parameters and the changing concentration of the components. As a result, real-time monitoring may be possible and could be successfully demonstrated for in-line real-time prediction of active pharmaceutical ingredients and other additives using chemometric technology. This system is expected to be applicable to the RAM method for the risk management of quality.
Hou, Xiang-Mei; Zhang, Lei; Yue, Hong-Shui; Ju, Ai-Chun; Ye, Zheng-Liang
2016-07-01
To study and establish a monitoring method for macroporous resin column chromatography process of salvianolic acids by using near infrared spectroscopy (NIR) as a process analytical technology (PAT).The multivariate statistical process control (MSPC) model was developed based on 7 normal operation batches, and 2 test batches (including one normal operation batch and one abnormal operation batch) were used to verify the monitoring performance of this model. The results showed that MSPC model had a good monitoring ability for the column chromatography process. Meanwhile, NIR quantitative calibration model was established for three key quality indexes (rosmarinic acid, lithospermic acid and salvianolic acid B) by using partial least squares (PLS) algorithm. The verification results demonstrated that this model had satisfactory prediction performance. The combined application of the above two models could effectively achieve real-time monitoring for macroporous resin column chromatography process of salvianolic acids, and can be used to conduct on-line analysis of key quality indexes. This established process monitoring method could provide reference for the development of process analytical technology for traditional Chinese medicines manufacturing. Copyright© by the Chinese Pharmaceutical Association.
The U.S. EPA's current regulatory approach for combustion and incineration sources emphasizes the use of real-time continuous emission monitors (CEMs) for particulate, Metals, and volatile, semivolatile, and of nonvolatile organic compounds to monitor source emissions. Currently...
Cobbledick, Jeffrey; Nguyen, Alexander; Latulippe, David R
2014-07-01
The current challenges associated with the design and operation of net-energy positive wastewater treatment plants demand sophisticated approaches for the monitoring of polymer-induced flocculation. In anaerobic digestion (AD) processes, the dewaterability of the sludge is typically assessed from off-line lab-bench tests - the capillary suction time (CST) test is one of the most common. Focused beam reflectance measurement (FBRM) is a promising technique for real-time monitoring of critical performance attributes in large scale processes and is ideally suited for dewatering applications. The flocculation performance of twenty-four cationic polymers, that spanned a range of polymer size and charge properties, was measured using both the FBRM and CST tests. Analysis of the data revealed a decreasing monotonic trend; the samples that had the highest percent removal of particles less than 50 microns in size as determined by FBRM had the lowest CST values. A subset of the best performing polymers was used to evaluate the effects of dosage amount and digestate sources on dewatering performance. The results from this work show that FBRM is a powerful tool that can be used for optimization and on-line monitoring of dewatering processes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Model-Based PAT for Quality Management in Pharmaceuticals Freeze-Drying: State of the Art
Fissore, Davide
2017-01-01
Model-based process analytical technologies can be used for the in-line control and optimization of a pharmaceuticals freeze-drying process, as well as for the off-line design of the process, i.e., the identification of the optimal operating conditions. This paper aims at presenting the state of the art in this field, focusing, particularly, on three groups of systems, namely, those based on the temperature measurement (i.e., the soft sensor), on the chamber pressure measurement (i.e., the systems based on the test of pressure rise and of pressure decrease), and on the sublimation flux estimate (i.e., the tunable diode laser absorption spectroscopy and the valveless monitoring system). The application of these systems for in-line process optimization (e.g., using a model predictive control algorithm) and to get a true quality by design (e.g., through the off-line calculation of the design space of the process) is presented and discussed. PMID:28224123
Design of a Sensor System for On-Line Monitoring of Contact Pressure in Chalcographic Printing.
Jiménez, José Antonio; Meca, Francisco Javier; Santiso, Enrique; Martín, Pedro
2017-09-05
Chalcographic printer is the name given to a specific type of press which is used to transfer the printing of a metal-based engraved plate onto paper. The printing system consists of two rollers for pressing and carrying a metal plate onto which an engraved inked plate is placed. When the driving mechanism is operated, the pressure exerted by the rollers, also called contact pressure, allows the engraved image to be transferred into paper, thereby obtaining the final image. With the aim of ensuring the quality of the result, in terms of good and even transfer of ink, the contact pressure must be uniform. Nowadays, the strategies utilized to measure the pressure are implemented off-line, i.e., when the press machines are shut down for maintenance, which poses limitations. This paper proposes a novel sensor system aimed at monitoring the pressure exerted by the rollers on the engraved plate while chalcographic printer is operating, i.e., on-line. The purpose is two-fold: firstly, real-time monitoring reduces the number of breakdown repairs required, reduces machine downtime and reduces the number of low-quality engravings, which increases productivity and revenues; and secondly, the on-line monitoring and register of the process parameters allows the printing process to be reproducible even with changes in the environmental conditions or other factors such as the wear of the parts that constitute the mechanical system and a change in the dimensions of the printing materials. The proposed system consists of a strain gauge-based load cell and conditioning electronics to sense and treat the signals.
Design of a Sensor System for On-Line Monitoring of Contact Pressure in Chalcographic Printing
Jiménez, José Antonio; Meca, Francisco Javier; Santiso, Enrique; Martín, Pedro
2017-01-01
Chalcographic printer is the name given to a specific type of press which is used to transfer the printing of a metal-based engraved plate onto paper. The printing system consists of two rollers for pressing and carrying a metal plate onto which an engraved inked plate is placed. When the driving mechanism is operated, the pressure exerted by the rollers, also called contact pressure, allows the engraved image to be transferred into paper, thereby obtaining the final image. With the aim of ensuring the quality of the result, in terms of good and even transfer of ink, the contact pressure must be uniform. Nowadays, the strategies utilized to measure the pressure are implemented off-line, i.e., when the press machines are shut down for maintenance, which poses limitations. This paper proposes a novel sensor system aimed at monitoring the pressure exerted by the rollers on the engraved plate while chalcographic printer is operating, i.e., on-line. The purpose is two-fold: firstly, real-time monitoring reduces the number of breakdown repairs required, reduces machine downtime and reduces the number of low-quality engravings, which increases productivity and revenues; and secondly, the on-line monitoring and register of the process parameters allows the printing process to be reproducible even with changes in the environmental conditions or other factors such as the wear of the parts that constitute the mechanical system and a change in the dimensions of the printing materials. The proposed system consists of a strain gauge-based load cell and conditioning electronics to sense and treat the signals. PMID:28872583
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casella, Amanda J.; Hylden, Laura R.; Campbell, Emily L.
Knowledge of real-time solution properties and composition is a necessity for any spent nuclear fuel reprocessing method. Metal-ligand speciation in aqueous solutions derived from the dissolved commercial spent fuel is highly dependent upon the acid concentration/pH, which influences extraction efficiency and the resulting speciation in the organic phase. Spectroscopic process monitoring capabilities, incorporated in a counter current centrifugal contactor bank, provide a pathway for on-line real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for on-line applications, while classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical andmore » radiation environments. Our research is focused on developing a general method for on-line determination of pH of aqueous solutions through chemometric analysis of Raman spectra. Interpretive quantitative models have been developed and validated under the range of chemical composition and pH using a lactic acid/lactate buffer system. The developed model was applied to spectra obtained on-line during solvent extractions performed in a centrifugal contactor bank. The model predicted the pH within 11% for pH > 2, thus demonstrating that this technique could provide the capability of monitoring pH on-line in applications such as nuclear fuel reprocessing.« less
Fluorescence Spectroscopy and Chemometric Modeling for Bioprocess Monitoring
Faassen, Saskia M.; Hitzmann, Bernd
2015-01-01
On-line sensors for the detection of crucial process parameters are desirable for the monitoring, control and automation of processes in the biotechnology, food and pharma industry. Fluorescence spectroscopy as a highly developed and non-invasive technique that enables the on-line measurements of substrate and product concentrations or the identification of characteristic process states. During a cultivation process significant changes occur in the fluorescence spectra. By means of chemometric modeling, prediction models can be calculated and applied for process supervision and control to provide increased quality and the productivity of bioprocesses. A range of applications for different microorganisms and analytes has been proposed during the last years. This contribution provides an overview of different analysis methods for the measured fluorescence spectra and the model-building chemometric methods used for various microbial cultivations. Most of these processes are observed using the BioView® Sensor, thanks to its robustness and insensitivity to adverse process conditions. Beyond that, the PLS-method is the most frequently used chemometric method for the calculation of process models and prediction of process variables. PMID:25942644
On-line multiple component analysis for efficient quantitative bioprocess development.
Dietzsch, Christian; Spadiut, Oliver; Herwig, Christoph
2013-02-20
On-line monitoring devices for the precise determination of a multitude of components are a prerequisite for fast bioprocess quantification. On-line measured values have to be checked for quality and consistency, in order to extract quantitative information from these data. In the present study we characterized a novel on-line sampling and analysis device comprising an automatic photometric robot. We connected this on-line device to a bioreactor and concomitantly measured six components (i.e. glucose, glycerol, ethanol, acetate, phosphate and ammonium) during different batch cultivations of Pichia pastoris. The on-line measured data did not show significant deviations from off-line taken samples and were consequently used for incremental rate and yield calculations. In this respect we highlighted the importance of data quality and discussed the phenomenon of error propagation. On-line calculated rates and yields depicted the physiological responses of the P. pastoris cells in unlimited and limited cultures. A more detailed analysis of the physiological state was possible by considering the off-line determined biomass dry weight and the calculation of specific rates. Here we present a novel device for on-line monitoring of bioprocesses, which ensures high data quality in real-time and therefore refers to a valuable tool for Process Analytical Technology (PAT). Copyright © 2012 Elsevier B.V. All rights reserved.
Holland, Tanja; Blessing, Daniel; Hellwig, Stephan; Sack, Markus
2013-10-01
Radio frequency impedance spectroscopy (RFIS) is a robust method for the determination of cell biomass during fermentation. RFIS allows non-invasive in-line monitoring of the passive electrical properties of cells in suspension and can distinguish between living and dead cells based on their distinct behavior in an applied radio frequency field. We used continuous in situ RFIS to monitor batch-cultivated plant suspension cell cultures in stirred-tank bioreactors and compared the in-line data to conventional off-line measurements. RFIS-based analysis was more rapid and more accurate than conventional biomass determination, and was sensitive to changes in cell viability. The higher resolution of the in-line measurement revealed subtle changes in cell growth which were not accessible using conventional methods. Thus, RFIS is well suited for correlating such changes with intracellular states and product accumulation, providing unique opportunities for employing systems biotechnology and process analytical technology approaches to increase product yield and quality. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Artese, Serena; Achilli, Vladimiro; Zinno, Raffaele
2018-01-01
Deck inclination and vertical displacements are among the most important technical parameters to evaluate the health status of a bridge and to verify its bearing capacity. Several methods, both conventional and innovative, are used for structural rotations and displacement monitoring; however, none of these allow, at the same time, precision, automation, static and dynamic monitoring without using high cost instrumentation. The proposed system uses a common laser pointer and image processing. The elastic line inclination is measured by analyzing the single frames of an HD video of the laser beam imprint projected on a flat target. For the image processing, a code was developed in Matlab® that provides instantaneous rotation and displacement of a bridge, charged by a mobile load. An important feature is the synchronization of the load positioning, obtained by a GNSS receiver or by a video. After the calibration procedures, a test was carried out during the movements of a heavy truck maneuvering on a bridge. Data acquisition synchronization allowed us to relate the position of the truck on the deck to inclination and displacements. The inclination of the elastic line at the support was obtained with a precision of 0.01 mrad. The results demonstrate the suitability of the method for dynamic load tests, and the control and monitoring of bridges. PMID:29370082
Batch Statistical Process Monitoring Approach to a Cocrystallization Process.
Sarraguça, Mafalda C; Ribeiro, Paulo R S; Dos Santos, Adenilson O; Lopes, João A
2015-12-01
Cocrystals are defined as crystalline structures composed of two or more compounds that are solid at room temperature held together by noncovalent bonds. Their main advantages are the increase of solubility, bioavailability, permeability, stability, and at the same time retaining active pharmaceutical ingredient bioactivity. The cocrystallization between furosemide and nicotinamide by solvent evaporation was monitored on-line using near-infrared spectroscopy (NIRS) as a process analytical technology tool. The near-infrared spectra were analyzed using principal component analysis. Batch statistical process monitoring was used to create control charts to perceive the process trajectory and define control limits. Normal and non-normal operating condition batches were performed and monitored with NIRS. The use of NIRS associated with batch statistical process models allowed the detection of abnormal variations in critical process parameters, like the amount of solvent or amount of initial components present in the cocrystallization. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Monitoring biodegradation of diesel fuel in bioventing processes using in situ respiration rate.
Lee, T H; Byun, I G; Kim, Y O; Hwang, I S; Park, T J
2006-01-01
An in situ measuring system of respiration rate was applied for monitoring biodegradation of diesel fuel in a bioventing process for bioremediation of diesel contaminated soil. Two laboratory-scale soil columns were packed with 5 kg of soil that was artificially contaminated by diesel fuel as final TPH (total petroleum hydrocarbon) concentration of 8,000 mg/kg soil. Nutrient was added to make a relative concentration of C:N:P = 100:10:1. One soil column was operated with continuous venting mode, and the other one with intermittent (6 h venting/6 h rest) venting mode. On-line O2 and CO2 gas measuring system was applied to measure O2 utilisation and CO2 production during biodegradation of diesel for 5 months. Biodegradation rate of TPH was calculated from respiration rate measured by the on-line gas measuring system. There were no apparent differences between calculated biodegradation rates from two columns with different venting modes. The variation of biodegradation rates corresponded well with trend of the remaining TPH concentrations comparing other biodegradation indicators, such as C17/pristane and C18/phytane ratio, dehydrogenase activity, and the ratio of hydrocarbon utilising bacteria to total heterotrophic bacteria. These results suggested that the on-line measuring system of respiration rate would be applied to monitoring biodegradation rate and to determine the potential applicability of bioventing process for bioremediation of oil contaminated soil.
Continuous Ultrasonic Inspection of Extruded Wood-Plastic Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tucker, Brian J.; Bender, Donald A.
Nondestructive evaluation (NDE) techniques are needed for in-line monitoring of wood-plastic composite (WPC) quality during manufacturing for process control. Through-transmission ultrasonic inspection is useful in characterizing stiffness and detecting cracks and voids in a range of materials; however, little is documented about ultrasound propagation in WPC materials. The objectives of this research were to determine applicable ultrasonic transducer frequencies, coupling methods, configurations and placements for wave speed monitoring and web defect detection within an extrusion process; to quantify the effects of temperature on ultrasonic parameters; and to develop a prototype ultrasonic inspection system for a full-size extrusion line. An angledmore » beam, water-coupled ultrasonic inspection system using a pair of 50-kHz narrowband transducers was adequate for monitoring wave speed parallel to the extrusion direction. For locating internal web defects, water-coupled, 500-kHz broadband ultrasonic transducers were used in a through-thickness transmission setup. Temperature compensation factors were developed to adjust ultrasonic wave speed measurements. The prototype inspection system was demonstrated in a 55 mm conical twin-screw extrusion line.« less
Potentials for the use of tool-integrated in-line data acquisition systems in press shops
NASA Astrophysics Data System (ADS)
Maier, S.; Schmerbeck, T.; Liebig, A.; Kautz, T.; Volk, W.
2017-09-01
Robust in-line data acquisition systems are required for the realization of process monitoring and control systems in press shops. A promising approach is the integration of sensors in the following press tools. There they can be easy integrated and maintained. It also achieves the necessary robustness for the rough press environment. Such concepts were already investigated for the measurement of the geometrical accuracy as well as for the material flow of inner part areas. They enable the monitoring of each produced part’s quality. An important success factor are practical approaches to the use of this new process information in press shops. This work presents various applications of these measuring concepts, based on real car body components of the BMW Group. For example, the procedure of retroactive error analysis is explained for a side frame. It also shows how this data acquisition can be used for the optimization of drawing tools in tool shops. With the skid-line, there is a continuous value that can be monitored from planning to serial production.
Wang, Zhixiang; Jones, Gordon R.; Spencer, Joseph W.; Wang, Xiaohua; Rong, Mingzhe
2017-01-01
Contact erosion is one of the most crucial factors affecting the electrical service lifetime of high-voltage circuit breakers (HVCBs). On-line monitoring the contacts’ erosion degree is increasingly in demand for the sake of condition based maintenance to guarantee the functional operation of HVCBs. A spectroscopic monitoring system has been designed based upon a commercial 245 kV/40 kA SF6 live tank circuit breaker with copper–tungsten (28 wt % and 72 wt %) arcing contacts at atmospheric SF6 pressure. Three optical-fibre based sensors are used to capture the time-resolved spectra of arcs. A novel approach using chromatic methods to process the time-resolved spectral signal has been proposed. The processed chromatic parameters have been interpreted to show that the time variation of spectral emission from the contact material and quenching gas are closely correlated to the mass loss and surface degradation of the plug arcing contact. The feasibility of applying this method to online monitoring of contact erosion is indicated. PMID:28272295
Wang, Zhixiang; Jones, Gordon R; Spencer, Joseph W; Wang, Xiaohua; Rong, Mingzhe
2017-03-06
Contact erosion is one of the most crucial factors affecting the electrical service lifetime of high-voltage circuit breakers (HVCBs). On-line monitoring the contacts' erosion degree is increasingly in demand for the sake of condition based maintenance to guarantee the functional operation of HVCBs. A spectroscopic monitoring system has been designed based upon a commercial 245 kV/40 kA S F 6 live tank circuit breaker with copper-tungsten (28 wt % and 72 wt %) arcing contacts at atmospheric S F 6 pressure. Three optical-fibre based sensors are used to capture the time-resolved spectra of arcs. A novel approach using chromatic methods to process the time-resolved spectral signal has been proposed. The processed chromatic parameters have been interpreted to show that the time variation of spectral emission from the contact material and quenching gas are closely correlated to the mass loss and surface degradation of the plug arcing contact. The feasibility of applying this method to online monitoring of contact erosion is indicated.
Optical sensor for real-time weld defect detection
NASA Astrophysics Data System (ADS)
Ancona, Antonio; Maggipinto, Tommaso; Spagnolo, Vincenzo; Ferrara, Michele; Lugara, Pietro M.
2002-04-01
In this work we present an innovative optical sensor for on- line and non-intrusive welding process monitoring. It is based on the spectroscopic analysis of the optical VIS emission of the welding plasma plume generated in the laser- metal interaction zone. Plasma electron temperature has been measured for different chemical species composing the plume. Temperature signal evolution has been recorded and analyzed during several CO2-laser welding processes, under variable operating conditions. We have developed a suitable software able to real time detect a wide range of weld defects like crater formation, lack of fusion, excessive penetration, seam oxidation. The same spectroscopic approach has been applied for electric arc welding process monitoring. We assembled our optical sensor in a torch for manual Gas Tungsten Arc Welding procedures and tested the prototype in a manufacturing industry production line. Even in this case we found a clear correlation between the signal behavior and the welded joint quality.
21 CFR 870.4330 - Cardiopulmonary bypass on-line blood gas monitor.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cardiopulmonary bypass on-line blood gas monitor... Cardiopulmonary bypass on-line blood gas monitor. (a) Identification. A cardiopulmonary bypass on-line blood gas monitor is a device used in conjunction with a blood gas sensor to measure the level of gases in the blood...
21 CFR 870.4330 - Cardiopulmonary bypass on-line blood gas monitor.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cardiopulmonary bypass on-line blood gas monitor... Cardiopulmonary bypass on-line blood gas monitor. (a) Identification. A cardiopulmonary bypass on-line blood gas monitor is a device used in conjunction with a blood gas sensor to measure the level of gases in the blood...
21 CFR 870.4330 - Cardiopulmonary bypass on-line blood gas monitor.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cardiopulmonary bypass on-line blood gas monitor... Cardiopulmonary bypass on-line blood gas monitor. (a) Identification. A cardiopulmonary bypass on-line blood gas monitor is a device used in conjunction with a blood gas sensor to measure the level of gases in the blood...
21 CFR 870.4330 - Cardiopulmonary bypass on-line blood gas monitor.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Cardiopulmonary bypass on-line blood gas monitor. (a) Identification. A cardiopulmonary bypass on-line blood gas monitor is a device used in conjunction with a blood gas sensor to measure the level of gases in the blood... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cardiopulmonary bypass on-line blood gas monitor...
21 CFR 870.4330 - Cardiopulmonary bypass on-line blood gas monitor.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Cardiopulmonary bypass on-line blood gas monitor. (a) Identification. A cardiopulmonary bypass on-line blood gas monitor is a device used in conjunction with a blood gas sensor to measure the level of gases in the blood... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass on-line blood gas monitor...
On-line process control monitoring system
O'Rourke, Patrick E.; Van Hare, David R.; Prather, William S.
1992-01-01
An on-line, fiber-optic based apparatus for monitoring the concentration of a chemical substance at a plurality of locations in a chemical processing system comprises a plurality of probes, each of which is at a different location in the system, a light source, optic fibers for carrying light to and from the probes, a multiplexer for switching light from the source from one probe to the next in series, a diode array spectrophotometer for producing a spectrum from the light received from the probes, and a computer programmed to analyze the spectra so produced. The probes allow the light to pass through the chemical substance so that a portion of the light is absorbed before being returned to the multiplexer. A standard and a reference cell are included for data validation and error checking.
Zhang, J; Xie, Y; Dai, X; Wei, W
2001-03-01
A new method monitoring Lactobacillus fermentation process, which combines ion chromatography (IC) with a series piezoelectric quartz crystal (SPQC) technique, is presented in this paper. Monitoring of the fermentation process was realized by examining the rate of production of lactic acid. An automatic membrane dialyser was used for the pretreatment of the sample in on-line monitoring. A mixture of p-hydroxybenzoic acid and N,N-diethylethanolamine was adopted as mobile phase and its flow rate was 0.8 ml/min. The effects of some fermentation conditions were also discussed in detail. Accordingly, the optimal fermentation conditions were obtained. This method is simple and convenient while the results obtained are accurate and reliable.
Sarraguça, Mafalda C; Paulo, Ana; Alves, Madalena M; Dias, Ana M A; Lopes, João A; Ferreira, Eugénio C
2009-10-01
The performance of an activated sludge reactor can be significantly enhanced through use of continuous and real-time process-state monitoring, which avoids the need to sample for off-line analysis and to use chemicals. Despite the complexity associated with wastewater treatment systems, spectroscopic methods coupled with chemometric tools have been shown to be powerful tools for bioprocess monitoring and control. Once implemented and optimized, these methods are fast, nondestructive, user friendly, and most importantly, they can be implemented in situ, permitting rapid inference of the process state at any moment. In this work, UV-visible and NIR spectroscopy were used to monitor an activated sludge reactor using in situ immersion probes connected to the respective analyzers by optical fibers. During the monitoring period, disturbances to the biological system were induced to test the ability of each spectroscopic method to detect the changes in the system. Calibration models based on partial least squares (PLS) regression were developed for three key process parameters, namely chemical oxygen demand (COD), nitrate concentration (N-NO(3)(-)), and total suspended solids (TSS). For NIR, the best results were achieved for TSS, with a relative error of 14.1% and a correlation coefficient of 0.91. The UV-visible technique gave similar results for the three parameters: an error of approximately 25% and correlation coefficients of approximately 0.82 for COD and TSS and 0.87 for N-NO(3)(-) . The results obtained demonstrate that both techniques are suitable for consideration as alternative methods for monitoring and controlling wastewater treatment processes, presenting clear advantages when compared with the reference methods for wastewater treatment process qualification.
NASA Technical Reports Server (NTRS)
Griffin, Timothy P.; Naylor, Guy R.; Haskell, William D.; Breznik, Greg S.; Mizell, Carolyn A.; Helms, William R.; Steinrock, T. (Technical Monitor)
2001-01-01
An on-line gas monitoring system was developed to replace the older systems used to monitor for cryogenic leaks on the Space Shuttles before launch. The system uses a mass spectrometer to monitor multiple locations in the process, which allows the system to monitor all gas constituents of interest in a nearly simultaneous manner. The system is fully redundant and meets all requirements for ground support equipment (GSE). This includes ruggedness to withstand launch on the Mobile Launcher Platform (MLP), ease of operation, and minimal operator intervention. The system can be fully automated so that an operator is notified when an unusual situation or fault is detected. User inputs are through personal computer using mouse and keyboard commands. The graphical user interface is very intuitive and easy to operate. The system has successfully supported four launches to date. It is currently being permanently installed as the primary system monitoring the Space Shuttles during ground processing and launch operations. Time and cost savings will be substantial over the current systems when it is fully implemented in the field. Tests were performed to demonstrate the performance of the system. Low limits-of-detection coupled with small drift make the system a major enhancement over the current systems. Though this system is currently optimized for detecting cryogenic leaks, many other gas constituents could be monitored using the Hazardous Gas Detection System (HGDS) 2000.
Geslot, B; Vermeeren, L; Filliatre, P; Lopez, A Legrand; Barbot, L; Jammes, C; Bréaud, S; Oriol, L; Villard, J-F
2011-03-01
Flux monitoring is of great interest for experimental studies in material testing reactors. Nowadays, only the thermal neutron flux can be monitored on line, e.g., using fission chambers or self-powered neutron detectors. In the framework of the Joint Instrumentation Laboratory between SCK-CEN and CEA, we have developed a fast neutron detector system (FNDS) capable of measuring on line the local high-energy neutron flux in fission reactor core and reflector locations. FNDS is based on fission chambers measurements in Campbelling mode. The system consists of two detectors, one detector being mainly sensitive to fast neutrons and the other one to thermal neutrons. On line data processing uses the CEA depletion code DARWIN in order to disentangle fast and thermal neutrons components, taking into account the isotopic evolution of the fissile deposit. The first results of FNDS experimental test in the BR2 reactor are presented in this paper. Several fission chambers have been irradiated up to a fluence of about 7 × 10(20) n∕cm(2). A good agreement (less than 10% discrepancy) was observed between FNDS fast flux estimation and reference flux measurement.
NASA Astrophysics Data System (ADS)
Geslot, B.; Vermeeren, L.; Filliatre, P.; Lopez, A. Legrand; Barbot, L.; Jammes, C.; Bréaud, S.; Oriol, L.; Villard, J.-F.
2011-03-01
Flux monitoring is of great interest for experimental studies in material testing reactors. Nowadays, only the thermal neutron flux can be monitored on line, e.g., using fission chambers or self-powered neutron detectors. In the framework of the Joint Instrumentation Laboratory between SCK-CEN and CEA, we have developed a fast neutron detector system (FNDS) capable of measuring on line the local high-energy neutron flux in fission reactor core and reflector locations. FNDS is based on fission chambers measurements in Campbelling mode. The system consists of two detectors, one detector being mainly sensitive to fast neutrons and the other one to thermal neutrons. On line data processing uses the CEA depletion code DARWIN in order to disentangle fast and thermal neutrons components, taking into account the isotopic evolution of the fissile deposit. The first results of FNDS experimental test in the BR2 reactor are presented in this paper. Several fission chambers have been irradiated up to a fluence of about 7 × 1020 n/cm2. A good agreement (less than 10% discrepancy) was observed between FNDS fast flux estimation and reference flux measurement.
Gambi, Cecilia M C; Vannoni, Maurizio; Sordini, Andrea; Molesini, Giuseppe
2014-02-01
An interferometric method to monitor the thinning process of vertical soap films from a water solution of surfactant materials is reported. Raw data maps of optical path difference introduced by the film are obtained by conventional phase shift interferometry. Off-line re-processing of such raw data taking into account the layered structure of soap films leads to an accurate measurement of the geometrical thickness. As an example of data acquisition and processing, the measuring chain is demonstrated on perfluoropolyether surfactants; the section profile of vertical films is monitored from drawing to black film state, and quantitative data on the dynamics of the thinning process are presented. The interferometric method proves effective to the task, and lends itself to further investigate the physical properties of soap films.
Relationships between Lexical Processing Speed, Language Skills, and Autistic Traits in Children
ERIC Educational Resources Information Center
Abrigo, Erin
2012-01-01
According to current models of spoken word recognition listeners understand speech as it unfolds over time. Eye tracking provides a non-invasive, on-line method to monitor attention, providing insight into the processing of spoken language. In the current project a spoken lexical processing assessment (LPA) confirmed current theories of spoken…
Research progress of on-line automatic monitoring of chemical oxygen demand (COD) of water
NASA Astrophysics Data System (ADS)
Cai, Youfa; Fu, Xing; Gao, Xiaolu; Li, Lianyin
2018-02-01
With the increasingly stricter control of pollutant emission in China, the on-line automatic monitoring of water quality is particularly urgent. The chemical oxygen demand (COD) is a comprehensive index to measure the contamination caused by organic matters, and thus it is taken as one important index of energy-saving and emission reduction in China’s “Twelve-Five” program. So far, the COD on-line automatic monitoring instrument has played an important role in the field of sewage monitoring. This paper reviews the existing methods to achieve on-line automatic monitoring of COD, and on the basis, points out the future trend of the COD on-line automatic monitoring instruments.
NASA Astrophysics Data System (ADS)
Zhan, Jinliang; Lu, Pei
2006-11-01
Since the quality of traditional Chinese medicine products are affected by raw material, machining and many other factors, it is difficult for traditional Chinese medicine production process especially the extracting process to ensure the steady and homogeneous quality. At the same time, there exist some quality control blind spots due to lacking on-line quality detection means. But if infrared spectrum analysis technology was used in traditional Chinese medicine production process on the basis of off-line analysis to real-time detect the quality of semi-manufactured goods and to be assisted by advanced automatic control technique, the steady and homogeneous quality can be obtained. It can be seen that the on-line detection of extracting process plays an important role in the development of Chinese patent medicines industry. In this paper, the design and implement of a traditional Chinese medicine extracting process monitoring experiment system which is based on PROFIBUS-DP field bus, OPC, and Internet technology is introduced. The system integrates intelligence node which gathering data, superior sub-system which achieving figure configuration and remote supervisory, during the process of traditional Chinese medicine production, monitors the temperature parameter, pressure parameter, quality parameter etc. And it can be controlled by the remote nodes in the VPN (Visual Private Network). Experiment and application do have proved that the system can reach the anticipation effect fully, and with the merits of operational stability, real-time, reliable, convenient and simple manipulation and so on.
Hecht, Mirco; Oehen, Bernadette; Schulze, Jürg; Brodmann, Peter; Bagutti, Claudia
2014-01-01
To obtain a reference status prior to cultivation of genetically modified oilseed rape (OSR, Brassica napus L.) in Switzerland, the occurrence of feral OSR was monitored along transportation routes and at processing sites. The focus was set on the detection of (transgenic) OSR along railway lines from the Swiss borders with Italy and France to the respective oilseed processing factories in Southern and Northern Switzerland (Ticino and region of Basel). A monitoring concept was developed to identify sites of largest risk of escape of genetically modified plants into the environment in Switzerland. Transport spillage of OSR seeds from railway goods cars particularly at risk hot spots such as switch yards and (un)loading points but also incidental and continuous spillage were considered. All OSR plants, including their hybridization partners which were collected at the respective monitoring sites were analyzed for the presence of transgenes by real-time PCR. On sampling lengths each of 4.2 and 5.7 km, respectively, 461 and 1,574 plants were sampled in Ticino and the region of Basel. OSR plants were found most frequently along the routes to the oilseed facilities, and in larger amounts on risk hot spots compared to sites of random sampling. At three locations in both monitored regions, transgenic B. napus line GT73 carrying the glyphosate resistance transgenes gox and CP4 epsps were detected (Ticino, 22 plants; in the region of Basel, 159).
Development of on-line laser power monitoring system
NASA Astrophysics Data System (ADS)
Ding, Chien-Fang; Lee, Meng-Shiou; Li, Kuan-Ming
2016-03-01
Since the laser was invented, laser has been applied in many fields such as material processing, communication, measurement, biomedical engineering, defense industries and etc. Laser power is an important parameter in laser material processing, i.e. laser cutting, and laser drilling. However, the laser power is easily affected by the environment temperature, we tend to monitor the laser power status, ensuring there is an effective material processing. Besides, the response time of current laser power meters is too long, they cannot measure laser power accurately in a short time. To be more precisely, we can know the status of laser power and help us to achieve an effective material processing at the same time. To monitor the laser power, this study utilize a CMOS (Complementary metal-oxide-semiconductor) camera to develop an on-line laser power monitoring system. The CMOS camera captures images of incident laser beam after it is split and attenuated by beam splitter and neutral density filter. By comparing the average brightness of the beam spots and measurement results from laser power meter, laser power can be estimated. Under continuous measuring mode, the average measuring error is about 3%, and the response time is at least 3.6 second shorter than thermopile power meters; under trigger measuring mode which enables the CMOS camera to synchronize with intermittent laser output, the average measuring error is less than 3%, and the shortest response time is 20 millisecond.
In-situ quality monitoring during laser brazing
NASA Astrophysics Data System (ADS)
Ungers, Michael; Fecker, Daniel; Frank, Sascha; Donst, Dmitri; Märgner, Volker; Abels, Peter; Kaierle, Stefan
Laser brazing of zinc coated steel is a widely established manufacturing process in the automotive sector, where high quality requirements must be fulfilled. The strength, impermeablitiy and surface appearance of the joint are particularly important for judging its quality. The development of an on-line quality control system is highly desired by the industry. This paper presents recent works on the development of such a system, which consists of two cameras operating in different spectral ranges. For the evaluation of the system, seam imperfections are created artificially during experiments. Finally image processing algorithms for monitoring process parameters based the captured images are presented.
Korasa, Klemen; Hudovornik, Grega; Vrečer, Franc
2016-10-10
Although process analytical technology (PAT) guidance has been introduced to the pharmaceutical industry just a decade ago, this innovative approach has already become an important part of efficient pharmaceutical development, manufacturing, and quality assurance. PAT tools are especially important in technologically complex operations which require strict control of critical process parameters and have significant effect on final product quality. Manufacturing of prolonged release film coated pellets is definitely one of such processes. The aim of the present work was to study the applicability of the at-line near-infrared spectroscopy (NIR) approach in the monitoring of pellet film coating and curing steps. Film coated pellets were manufactured by coating the active ingredient containing pellets with film coating based on polymethacrylate polymers (Eudragit® RS/RL). The NIR proved as a useful tool for the monitoring of the curing process since it was able to determine the extent of the curing and hence predict drug release rate by using partial least square (PLS) model. However, such approach also showed a number of limitations, such as low reliability and high susceptibility to pellet moisture content, and was thus not able to predict drug release from pellets with high moisture content. On the other hand, the at-line NIR was capable to predict the thickness of Eudragit® RS/RL film coating in a wide range (up to 40μm) with good accuracy even in the pellets with high moisture content. To sum up, high applicability of the at-line NIR in the monitoring of the prolonged release pellets production was demonstrated in the present study. The present findings may contribute to more efficient and reliable PAT solutions in the manufacturing of prolonged release dosage forms. Copyright © 2016 Elsevier B.V. All rights reserved.
Monitoring Coating Thickness During Plasma Spraying
NASA Technical Reports Server (NTRS)
Miller, Robert A.
1990-01-01
High-resolution video measures thickness accurately without interfering with process. Camera views cylindrical part through filter during plasma spraying. Lamp blacklights part, creating high-contrast silhouette on video monitor. Width analyzer counts number of lines in image of part after each pass of spray gun. Layer-by-layer measurements ensure adequate coat built up without danger of exceeding required thickness.
Continuous monitoring of trace gas species in incineration processes can serve two purposes: (i) monitoring precursors of polychlorinated dibenzodioxin and polychlorinated dibenzofuran (PCDD/F) or other indicator species in the raw gas will enable use of their on-line signals for...
Li, Wen-Long; Qu, Hai-Bin
2016-10-01
In this paper, the principle of NIRS (near infrared spectroscopy)-based process trajectory technology was introduced.The main steps of the technique include:① in-line collection of the processes spectra of different technics; ② unfolding of the 3-D process spectra;③ determination of the process trajectories and their normal limits;④ monitoring of the new batches with the established MSPC (multivariate statistical process control) models.Applications of the technology in the chemical and biological medicines were reviewed briefly. By a comprehensive introduction of our feasibility research on the monitoring of traditional Chinese medicine technical process using NIRS-based multivariate process trajectories, several important problems of the practical applications which need urgent solutions are proposed, and also the application prospect of the NIRS-based process trajectory technology is fully discussed and put forward in the end. Copyright© by the Chinese Pharmaceutical Association.
System and method for monitoring water content or other dielectric influences in a medium
Cherry, Robert S.; Anderson, Allen A.
2001-01-01
A sensor system is provided that measures water content or other detectable properties in a medium along the entire length of the sensor at any point in time. The sensor system includes an electromagnetic signal generator and a transmission line disposed in a medium to be monitored. Alternatively, the transmission line can be configured for movement across a medium to be monitored, or the transmission line can be fixed relative to a moving medium being monitored. A signal is transmitted along the transmission line at predetermined frequencies, and the signal is returned back along the transmission line and/or into an optional receive line in proximity to the transmission line. The returned signal is processed to generate a one-dimensional data output profile that is a function of a detectable property of the medium. The data output profile can be mapped onto a physical system to generate a two-dimensional or three-dimensional profile if desired. The sensor system is useful in a variety of different applications such as agriculture, horticulture, biofiltration systems for industrial offgases, leak detection in landfills or drum storage facilities at buried waste sites, and in many other applications.
Narang, Ajit S; Sheverev, Valery; Freeman, Tim; Both, Douglas; Stepaniuk, Vadim; Delancy, Michael; Millington-Smith, Doug; Macias, Kevin; Subramanian, Ganeshkumar
2016-01-01
Drag flow force (DFF) sensor that measures the force exerted by wet mass in a granulator on a thin cylindrical probe was shown as a promising process analytical technology for real-time in-line high-resolution monitoring of wet mass consistency during high shear wet granulation. Our previous studies indicated that this process analytical technology tool could be correlated to granulation end point established independently through drug product critical quality attributes. In this study, the measurements of flow force by a DFF sensor, taken during wet granulation of 3 placebo formulations with different binder content, are compared with concurrent at line FT4 Powder Rheometer characterization of wet granules collected at different time points of the processing. The wet mass consistency measured by the DFF sensor correlated well with the granulation's resistance to flow and interparticulate interactions as measured by FT4 Powder Rheometer. This indicated that the force pulse magnitude measured by the DFF sensor was indicative of fundamental material properties (e.g., shear viscosity and granule size/density), as they were changing during the granulation process. These studies indicate that DFF sensor can be a valuable tool for wet granulation formulation and process development and scale up, as well as for routine monitoring and control during manufacturing. Copyright © 2016. Published by Elsevier Inc.
Fed-batch control based upon the measurement of intracellular NADH
NASA Technical Reports Server (NTRS)
Armiger, W. B.; Lee, J. F.; Montalvo, L. M.; Forro, J. R.
1987-01-01
A series of experiments demonstrating that on-line measurements of intracellular NADH by culture fluorescence can be used to monitor and control the fermentation process are described. A distinct advantage of intercellular NADH measurements over other monitoring techniques such as pH and dissolved oxygen is that it directly measures real time events occurring within the cell rather than changes in the environment. When coupled with other measurement parameters, it can provide a finer degree of sophistication in process control.
Children's On-Line Processing of Epistemic Modals
ERIC Educational Resources Information Center
Moscati, Vincenzo; Zhan, Likan; Zhou, Peng
2017-01-01
In this paper we investigated the real-time processing of epistemic modals in five-year-olds. In a simple reasoning scenario, we monitored children's eye-movements while processing a sentence with modal expressions of different force ("might/must"). Children were also asked to judge the truth-value of the target sentences at the end of…
Loren, Bradley P; Wleklinski, Michael; Koswara, Andy; Yammine, Kathryn; Hu, Yanyang; Nagy, Zoltan K; Thompson, David H; Cooks, R Graham
2017-06-01
A highly integrated approach to the development of a process for the continuous synthesis and purification of diphenhydramine is reported. Mass spectrometry (MS) is utilized throughout the system for on-line reaction monitoring, off-line yield quantitation, and as a reaction screening module that exploits reaction acceleration in charged microdroplets for high throughput route screening. This effort has enabled the discovery and optimization of multiple routes to diphenhydramine in glass microreactors using MS as a process analytical tool (PAT). The ability to rapidly screen conditions in charged microdroplets was used to guide optimization of the process in a microfluidic reactor. A quantitative MS method was developed and used to measure the reaction kinetics. Integration of the continuous-flow reactor/on-line MS methodology with a miniaturized crystallization platform for continuous reaction monitoring and controlled crystallization of diphenhydramine was also achieved. Our findings suggest a robust approach for the continuous manufacture of pharmaceutical drug products, exemplified in the particular case of diphenhydramine, and optimized for efficiency and crystal size, and guided by real-time analytics to produce the agent in a form that is readily adapted to continuous synthesis.
Optical Fiber On-Line Detection System for Non-Touch Monitoring Roller Shape
NASA Astrophysics Data System (ADS)
Guo, Y.; Wang, Y. T.
2006-10-01
Basing on the principle of reflective displacement fiber-optic sensor, a high accuracy non-touch on-line optical fiber measurement system for roller shape is presented. The principle and composition of the detection system and the operation process are expatiated also. By using a novel probe of three optical fibers in equal transverse space, the effects of fluctuations in the light source, reflective changing of target surface and the intensity losses in the fiber lines are automatically compensated. Meantime, an optical fiber sensor model of correcting static error based on BP artificial neural network (ANN) is set up. Also by using interpolation method and value filtering to process the signals, effectively reduce the influence of random noise and the vibration of the roller bearing. So enhance the accuracy and resolution remarkably. Experiment proves that the accuracy of the system reach to the demand of practical production process, it provides a new method for the high speed, accurate and automatic on line detection of the mill roller shape.
Flow chemistry vs. flow analysis.
Trojanowicz, Marek
2016-01-01
The flow mode of conducting chemical syntheses facilitates chemical processes through the use of on-line analytical monitoring of occurring reactions, the application of solid-supported reagents to minimize downstream processing and computerized control systems to perform multi-step sequences. They are exactly the same attributes as those of flow analysis, which has solid place in modern analytical chemistry in several last decades. The following review paper, based on 131 references to original papers as well as pre-selected reviews, presents basic aspects, selected instrumental achievements and developmental directions of a rapidly growing field of continuous flow chemical synthesis. Interestingly, many of them might be potentially employed in the development of new methods in flow analysis too. In this paper, examples of application of flow analytical measurements for on-line monitoring of flow syntheses have been indicated and perspectives for a wider application of real-time analytical measurements have been discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Application of Raman spectroscopy for on-line monitoring of low dose blend uniformity.
Hausman, Debra S; Cambron, R Thomas; Sakr, Adel
2005-07-14
On-line Raman spectroscopy was used to evaluate the effect of blending time on low dose, 1%, blend uniformity of azimilide dihydrochloride. An 8 qt blender was used for the experiments and instrumented with a Raman probe through the I-bar port. The blender was slowed to 6.75 rpm to better illustrate the blending process (normal speed is 25 rpm). Uniformity was reached after 20 min of blending at 6.75 rpm (135 revolutions or 5.4 min at 25 rpm). On-line Raman analysis of blend uniformity provided more benefits than traditional thief sampling and off-line analysis. On-line Raman spectroscopy enabled generating data rich blend profiles, due to the ability to collect a large number of samples during the blending process (sampling every 20s). In addition, the Raman blend profile was rapidly generated, compared to the lengthy time to complete a blend profile with thief sampling and off-line analysis. The on-line Raman blend uniformity results were also significantly correlated (p-value < 0.05) to the HPLC uniformity results of thief samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lines, Amanda M.; Nelson, Gilbert L.; Casella, Amanda J.
Microfluidic devices are a growing field with significant potential for application to small scale processing of solutions. Much like large scale processing, fast, reliable, and cost effective means of monitoring the streams during processing are needed. Here we apply a novel Micro-Raman probe to the on-line monitoring of streams within a microfluidic device. For either macro or micro scale process monitoring via spectroscopic response, there is the danger of interfering or confounded bands obfuscating results. By utilizing chemometric analysis, a form of multivariate analysis, species can be accurately quantified in solution despite the presence of overlapping or confounded spectroscopic bands.more » This is demonstrated on solutions of HNO 3 and NaNO 3 within micro-flow and microfluidic devices.« less
[Design of Smart Care Tele-Monitoring System for Mother and Fetus].
Xi, Haiyan; Gan, Guanghui; Zhang, Huilian; Chen, Chaomin
2015-03-01
To study and design a maternal and fetal monitoring system based on the cloud computing and internet of things, which can monitor and take smart care of the mother and fetus in 24 h. Using a new kind of wireless fetal monitoring detector and a mobile phone, thus the doctor can keep touch with hospital through internet. The mobile terminal was developed on the Android system, which accepted the data of fetal heart rate and uterine contraction transmitted from the wireless detector, exchange information with the server and display the monitoring data and the doctor's advice in real-time. The mobile phone displayed the fetal heart rate line and uterine contraction line in real-time, recorded the fetus' grow process. It implemented the real-time communication between the doctor and the user, through wireless communication technology. The system removes the constraint of traditional telephone cable for users, while the users can get remote monitoring from the medical institutions at home or in the nearest community at any time, providing health and safety guarantee for mother and fetus.
Possibilities in optical monitoring of laser welding process
NASA Astrophysics Data System (ADS)
Horník, Petr; Mrňa, Libor; Pavelka, Jan
2016-11-01
Laser welding is a modern, widely used but still not really common method of welding. With increasing demands on the quality of the welds, it is usual to apply automated machine welding and with on-line monitoring of the welding process. The resulting quality of the weld is largely affected by the behavior of keyhole. However, its direct observation during the welding process is practically impossible and it is necessary to use indirect methods. At ISI we have developed optical methods of monitoring the process. Most advanced is an analysis of radiation of laser-induced plasma plume forming in the keyhole where changes in the frequency of the plasma bursts are monitored and evaluated using Fourier and autocorrelation analysis. Another solution, robust and suitable for industry, is based on the observation of the keyhole inlet opening through a coaxial camera mounted in the welding head and the subsequent image processing by computer vision methods. A high-speed camera is used to understand the dynamics of the plasma plume. Through optical spectroscopy of the plume, we can study the excitation of elements in a material. It is also beneficial to monitor the gas flow of shielding gas using schlieren method.
Meder, Roger; Stahl, Wolfgang; Warburton, Paul; Woolley, Sam; Earnshaw, Scott; Haselhofer, Klaus; van Langenberg, Ken; Ebdon, Nick; Mulder, Roger
2017-01-01
The reactivity of melamine-urea-formaldehyde resins is of key importance in the manufacture of engineered wood products such as medium density fibreboard (MDF) and other wood composite products. Often the MDF manufacturing plant has little available information on the resin reactivity other than details of the resin specification at the time of batch manufacture, which often occurs off-site at a third-party resin plant. Often too, fresh resin on delivery at the MDF plant is mixed with variable volume of aged resin in storage tanks, thereby rendering any specification of the fresh resin batch obsolete. It is therefore highly desirable to develop a real-time, at-line or on-line, process analytical technology to monitor the quality of the resin prior to MDF panel manufacture. Near infrared (NIR) spectroscopy has been calibrated against standard quality methods and against 13 C nuclear magnetic resonance (NMR) measures of molecular composition in order to provide at-line process analytical technology (PAT), to monitor the resin quality, particularly the formaldehyde content of the resin. At-line determination of formaldehyde content in the resin was made possible using a six-factor calibration with an R 2 (cal) value of 0.973, and R 2 (CV) value of 0.929 and a root-mean-square error of cross-validation of 0.01. This calibration was then used to generate control charts of formaldehyde content at regular four-hourly periods during MDF panel manufacture in a commercial MDF manufacturing plant.
Molecular Probes: An Innovative Technology for Monitoring Membrane Processes
NASA Astrophysics Data System (ADS)
Santoro, Sergio
The ultimate objective of this study is to use molecular probes as an innovative and alternative technology contributing to the advance of membrane science by monitoring membrane processes in-situ, on-line and at sub-micron scale. An optical sensor for oxygen sensing was developed by the immobilization of tris (1,10-phenanthroline) ruthenium (II) (Ru(phen)3) in a dense polymeric membrane made of polystyrene (PS) or Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). The emission of the probe was quenched by both the temperature and by the oxygen. Moreover, the oxygen sensitivity was affected by the oxygen permeability of the membrane. The evaluation of the oxygen concentration is prone to errors since the emission of a single probe depends on several parameters (i.e. optical path, source intensity). The correction of these artefacts was obtained by the immobilization of a second luminescent molecule non-sensitive to the oxygen, Coumarin. The potential of the luminescent ratiometric sensor for the non-invasive monitoring of oxygen in food packaging using polymeric films with different oxygen permeability was evaluated. Emphasis was given to the efficiency of the optical sensor for the on-line, in-situ and non invasive monitoring of the oxygen by comparing the experimental data with a model which takes into account the oxygen permeability of the packaging materials evaluated independently. A nano-thermometer based on silica nano-particles doped with Ru(phen)3 was developed. A systematic study shows how it is possible to control the properties of the nano-particles as well as their temperature sensitivity. The nano-thermometer was immobilized on a membrane surface by dip-coating providing information about the temperature on the membrane surface. Hydrophobic porous membrane made of Poly(vinylidene fluoride) was prepared via electrospinning and employed in a direct contact membrane distillation process. Using a designed membrane module and a membrane doped with Ru(phen)3 the on-line mapping of the temperature on the membrane's surface was evaluated. None None None None
Motion-Blurred Particle Image Restoration for On-Line Wear Monitoring
Peng, Yeping; Wu, Tonghai; Wang, Shuo; Kwok, Ngaiming; Peng, Zhongxiao
2015-01-01
On-line images of wear debris contain important information for real-time condition monitoring, and a dynamic imaging technique can eliminate particle overlaps commonly found in static images, for instance, acquired using ferrography. However, dynamic wear debris images captured in a running machine are unavoidably blurred because the particles in lubricant are in motion. Hence, it is difficult to acquire reliable images of wear debris with an adequate resolution for particle feature extraction. In order to obtain sharp wear particle images, an image processing approach is proposed. Blurred particles were firstly separated from the static background by utilizing a background subtraction method. Second, the point spread function was estimated using power cepstrum to determine the blur direction and length. Then, the Wiener filter algorithm was adopted to perform image restoration to improve the image quality. Finally, experiments were conducted with a large number of dynamic particle images to validate the effectiveness of the proposed method and the performance of the approach was also evaluated. This study provides a new practical approach to acquire clear images for on-line wear monitoring. PMID:25856328
Biosensor-based real-time monitoring of paracetamol photocatalytic degradation.
Calas-Blanchard, Carole; Istamboulié, Georges; Bontoux, Margot; Plantard, Gaël; Goetz, Vincent; Noguer, Thierry
2015-07-01
This paper presents for the first time the integration of a biosensor for the on-line, real-time monitoring of a photocatalytic degradation process. Paracetamol was used as a model molecule due to its wide use and occurrence in environmental waters. The biosensor was developed based on tyrosinase immobilization in a polyvinylalcohol photocrosslinkable polymer. It was inserted in a computer-controlled flow system installed besides a photocatalytic reactor including titanium dioxide (TiO2) as photocatalyst. It was shown that the biosensor was able to accurately monitor the paracetamol degradation with time. Compared with conventional HPLC analysis, the described device provides a real-time information on the reaction advancement, allowing a better control of the photodegradation process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Marchi, A; Geerts, S; Weemaes, M; Schiettecatte, W; Wim, S; Vanhoof, C; Christine, V
2015-01-01
To date, phosphorus recovery as struvite in wastewater treatment plants has been mainly implemented on water phases resulting from dewatering processes of the sludge line. However, it is possible to recover struvite directly from sludge phases. Besides minimising the return loads of phosphorus from the sludge line to the water line, placing such a process within the sludge line is claimed to offer advantages such as a higher recovery potential, enhanced dewaterability of the treated sludge, and reduced speed of scaling in pipes and dewatering devices. In the wastewater treatment plant at Leuven (Belgium), a full-scale struvite recovery process from digested sludge has been tested for 1 year. Several monitoring campaigns and experiments provided indications of the efficiency of the process for recovery. The load of phosphorus from the sludge line returning to the water line as centrate accounted for 15% of the P-load of the plant in the reference situation. Data indicated that the process divides this phosphorus load by two. An improved dewaterability of 1.5% of dry solids content was achieved, provided a proper tuning of the installation. Quality analyses showed that the formed struvite was quite pure.
NASA Astrophysics Data System (ADS)
Lindinger, W.; Hansel, A.; Jordan, A.
1998-02-01
A proton transfer reaction mass spectrometer (PTR-MS) system has been developed which allows for on-line measurements of trace components with concentrations as low as a few pptv. The method is based on reactions of H3O+ ions, which perform non-dissociative proton transfer to most of the common volatile organic compounds (VOCs) but do not react with any of the components present in clean air. Medical applications by means of breath analysis allow for monitoring of metabolic processes in the human body, and examples of food research are discussed on the basis of VOC emissions from fruit, coffee and meat. Environmental applications include investigations of VOC emissions from decaying biomatter which have been found to be an important source for tropospheric acetone, methanol and ethanol. On-line monitoring of the diurnal variations of VOCs in the troposphere yield data demonstrating the present sensitivity of PTR-MS to be in the range of a few pptv. Finally, PTR-MS has proven to be an ideal tool to measure Henry's law constants and their dependencies on temperature as well as on the salt content of water.
Lambertus, Gordon; Shi, Zhenqi; Forbes, Robert; Kramer, Timothy T; Doherty, Steven; Hermiller, James; Scully, Norma; Wong, Sze Wing; LaPack, Mark
2014-01-01
An on-line analytical method based on transmission near-infrared spectroscopy (NIRS) for the quantitative determination of water concentrations (in parts per million) was developed and applied to the manufacture of a pharmaceutical intermediate. Calibration models for water analysis, built at the development site and applied at the manufacturing site, were successfully demonstrated during six manufacturing runs at a 250-gallon scale. The water measurements will be used as a forward-processing control point following distillation of a toluene product solution prior to use in a Grignard reaction. The most significant impact of using this NIRS-based process analytical technology (PAT) to replace off-line measurements is the significant reduction in the risk of operator exposure through the elimination of sampling of a severely lachrymatory and mutagenic compound. The work described in this report illustrates the development effort from proof-of-concept phase to manufacturing implementation.
Hudovornik, Grega; Korasa, Klemen; Vrečer, Franc
2015-07-30
Special populations including paediatric and elderly patients often need advanced approaches in treatment, such as one-a-day dosing, which is achieved with modified release formulations or alternative routes of applications such as nasogastric route. Pellets are a dosage form that is frequently used in such formulations. The aim of the present work was to study the applicability of two in-line techniques, namely, Near Infrared Spectroscopy (NIR) and Spatial Filtering Technique (SFT) in the pellet coating process. The first objective of our work was to develop a prediction model for moisture content determination with the in-line NIR and to test its robustness in terms of sensitivity to changes in composition of the pellets and performance in wide range of moisture content. Secondly, the in-line SFT measurement was correlated with different off-line particle size methods. The third objective was to evaluate the ability of both in-line techniques for the detection of undesired deviations during the process, such as pellet attrition and agglomeration. Finally, the ability to predict coating thickness with the in-line NIR probe was evaluated. Results suggested that NIR prediction model for moisture content was less robust outside the calibration range and was also sensitive to changes in composition of the film coating. Nevertheless, satisfactory prediction was achieved in the case when coating composition was partially altered and adequate calibration range was used. The SFT probe results were in good correlation with off-line particle size measurement methods and proved to be an effective tool for coating thickness determination during the coating, however, the probe failed to accurately show the actual amount of the agglomerates formed during the process. In experiment when pellet attrition was initiated, both probes successfully detected abrasion of the pellet surface in real time. Furthermore, a predictive NIR model for coating thickness was made and showed a good potential to measure coating thickness in-line, suggesting that the NIR probe can be used as a single tool to monitor water content, coating thickness, and deviations in the coating process. Copyright © 2015 Elsevier B.V. All rights reserved.
Monitor Variability of Millimeter Lines in IRC+10216
NASA Astrophysics Data System (ADS)
He, J. H.; Dinh-V-Trung; Hasegawa, T. I.
2017-08-01
A single dish monitoring of millimeter maser lines SiS J = 14-13 and HCN {ν }2={1}f J = 3-2 and several other rotational lines is reported for the archetypal carbon star IRC+10216. Relative line strength variations of 5% ∼ 30% are found for eight molecular line features with respect to selected reference lines. Definite line-shape variations are found in limited velocity intervals of the SiS and HCN line profiles. The asymmetrical line profiles of the two lines are mainly due to the varying components. The dominant varying components of the line profiles have similar periods and phases to the IR light variation, though both quantities show some degree of velocity dependence; there is also variability asymmetry between the blue and red line wings of both lines. Combining the velocities and amplitudes with a wind velocity model, we suggest that the line profile variations are due to SiS and HCN masing lines emanating from the wind acceleration zone. The possible link of the variabilities to thermal, dynamical, and/or chemical processes within or under this region is also discussed.
Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants
NASA Technical Reports Server (NTRS)
Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.
1996-01-01
Progress and results in the development of an integrated air quality modeling, monitoring, fault detection, and isolation system are presented. The focus was on development of distributed models of the air contaminants transport, the study of air quality monitoring techniques based on the model of transport process and on-line contaminant concentration measurements, and sensor placement. Different approaches to the modeling of spacecraft air contamination are discussed, and a three-dimensional distributed parameter air contaminant dispersion model applicable to both laminar and turbulent transport is proposed. A two-dimensional approximation of a full scale transport model is also proposed based on the spatial averaging of the three dimensional model over the least important space coordinate. A computer implementation of the transport model is considered and a detailed development of two- and three-dimensional models illustrated by contaminant transport simulation results is presented. The use of a well established Kalman filtering approach is suggested as a method for generating on-line contaminant concentration estimates based on both real time measurements and the model of contaminant transport process. It is shown that high computational requirements of the traditional Kalman filter can render difficult its real-time implementation for high-dimensional transport model and a novel implicit Kalman filtering algorithm is proposed which is shown to lead to an order of magnitude faster computer implementation in the case of air quality monitoring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ladd-Lively, Jennifer L
2014-01-01
The objective of this work was to determine the feasibility of using on-line multivariate statistical process control (MSPC) for safeguards applications in natural uranium conversion plants. Multivariate statistical process control is commonly used throughout industry for the detection of faults. For safeguards applications in uranium conversion plants, faults could include the diversion of intermediate products such as uranium dioxide, uranium tetrafluoride, and uranium hexafluoride. This study was limited to a 100 metric ton of uranium (MTU) per year natural uranium conversion plant (NUCP) using the wet solvent extraction method for the purification of uranium ore concentrate. A key component inmore » the multivariate statistical methodology is the Principal Component Analysis (PCA) approach for the analysis of data, development of the base case model, and evaluation of future operations. The PCA approach was implemented through the use of singular value decomposition of the data matrix where the data matrix represents normal operation of the plant. Component mole balances were used to model each of the process units in the NUCP. However, this approach could be applied to any data set. The monitoring framework developed in this research could be used to determine whether or not a diversion of material has occurred at an NUCP as part of an International Atomic Energy Agency (IAEA) safeguards system. This approach can be used to identify the key monitoring locations, as well as locations where monitoring is unimportant. Detection limits at the key monitoring locations can also be established using this technique. Several faulty scenarios were developed to test the monitoring framework after the base case or normal operating conditions of the PCA model were established. In all of the scenarios, the monitoring framework was able to detect the fault. Overall this study was successful at meeting the stated objective.« less
Arc-Welding Spectroscopic Monitoring based on Feature Selection and Neural Networks.
Garcia-Allende, P Beatriz; Mirapeix, Jesus; Conde, Olga M; Cobo, Adolfo; Lopez-Higuera, Jose M
2008-10-21
A new spectral processing technique designed for application in the on-line detection and classification of arc-welding defects is presented in this paper. A noninvasive fiber sensor embedded within a TIG torch collects the plasma radiation originated during the welding process. The spectral information is then processed in two consecutive stages. A compression algorithm is first applied to the data, allowing real-time analysis. The selected spectral bands are then used to feed a classification algorithm, which will be demonstrated to provide an efficient weld defect detection and classification. The results obtained with the proposed technique are compared to a similar processing scheme presented in previous works, giving rise to an improvement in the performance of the monitoring system.
On-line data analysis and monitoring for H1 drift chambers
NASA Astrophysics Data System (ADS)
Düllmann, Dirk
1992-05-01
The on-line monitoring, slow control and calibration of the H1 central jet chamber uses a VME multiprocessor system to perform the analysis and a connected Macintosh computer as graphical interface to the operator on shift. Task of this system are: - analysis of event data including on-line track search, - on-line calibration from normal events and testpulse events, - control of the high voltage and monitoring of settings and currents, - monitoring of temperature, pressure and mixture of the chambergas. A program package is described which controls the dataflow between data aquisition, differnt VME CPUs and Macintosh. It allows to run off-line style programs for the different tasks.
NASA Astrophysics Data System (ADS)
Bristow, Tony W. T.; Ray, Andrew D.; O'Kearney-McMullan, Anne; Lim, Louise; McCullough, Bryan; Zammataro, Alessio
2014-10-01
For on-line monitoring of chemical reactions (batch or continuous flow), mass spectrometry (MS) can provide data to (1) determine the fate of starting materials and reagents, (2) confirm the presence of the desired product, (3) identify intermediates and impurities, (4) determine steady state conditions and point of completion, and (5) speed up process optimization. Recent developments in small footprint atmospheric pressure ionization portable mass spectrometers further enable this coupling, as the mass spectrometer can be easily positioned with the reaction system to be studied. A major issue for this combination is the transfer of a sample that is representative of the reaction and also compatible with the mass spectrometer. This is particularly challenging as high concentrations of reagents and products can be encountered in organic synthesis. The application of a portable mass spectrometer for on-line characterization of flow chemical synthesis has been evaluated by coupling a Microsaic 4000 MiD to the Future Chemistry Flow Start EVO chemistry system. Specifically, the Hofmann rearrangement has been studied using the on-line mass spectrometry approach. Sample transfer from the flow reactor is achieved using a mass rate attenuator (MRA) and a sampling make-up flow from a high pressure pump. This enables the appropriate sample dilution, transfer, and preparation for electrospray ionization. The capability of this approach to provide process understanding is described using an industrial pharmaceutical process that is currently under development. The effect of a number of key experimental parameters, such as the composition of the sampling make-up flow and the dilution factor on the mass spectrometry data, is also discussed.
FT-NIR: A Tool for Process Monitoring and More.
Martoccia, Domenico; Lutz, Holger; Cohen, Yvan; Jerphagnon, Thomas; Jenelten, Urban
2018-03-30
With ever-increasing pressure to optimize product quality, to reduce cost and to safely increase production output from existing assets, all combined with regular changes in terms of feedstock and operational targets, process monitoring with traditional instruments reaches its limits. One promising answer to these challenges is in-line, real time process analysis with spectroscopic instruments, and above all Fourier-Transform Near Infrared spectroscopy (FT-NIR). Its potential to afford decreased batch cycle times, higher yields, reduced rework and minimized batch variance is presented and application examples in the field of fine chemicals are given. We demonstrate that FT-NIR can be an efficient tool for improved process monitoring and optimization, effective process design and advanced process control.
Monitoring the fracture behavior of SiCp/Al alloy composites using infrared lock-in thermography
NASA Astrophysics Data System (ADS)
Kordatos, E. Z.; Myriounis, D., P.; Hasan, S., T.; Matikas, T. E.
2009-03-01
his work deals with the study of fracture behavior of silicon carbide particle-reinforced (SiCp) A359 aluminum alloy matrix composites using an innovative nondestructive method based on lock-in thermography. The heat wave, generated by the thermo-mechanical coupling and the intrinsic energy dissipated during mechanical cyclic loading of the sample, was detected by an infrared camera. The coefficient of thermo-elasticity allows for the transformation of the temperature profiles into stresses. A new procedure was developed to determine the crack growth rate using thermographic mapping of the material undergoing fatigue: (a) The distribution of temperature and stresses at the surface of the specimen was monitored during the test. To this end, thermal images were obtained as a function of time and saved in the form of a movie. (b) The stresses were evaluated in a post-processing mode, along a series of equally spaced reference lines of the same length, set in front of the crack-starting notch. The idea was that the stress monitored at the location of a line versus time (or fatigue cycles) would exhibit an increase while the crack approaches the line, then attain a maximum when the crack tip was on the line. Due to the fact that the crack growth path could not be predicted and was not expected to follow a straight line in front of the notch, the stresses were monitored along a series of lines of a certain length, instead of a series of equally spaced points in front of the notch. The exact path of the crack could be easily determined by looking at the stress maxima along each of these reference lines. The thermographic results on the crack growth rate of the metal matrix composite (MMC) samples with three different heat treatments were correlated with measurements obtained by the conventional compliance method, and found to be in agreement.
Comparison of portable and conventional ultrasound imaging in spinal curvature measurement
NASA Astrophysics Data System (ADS)
Yan, Christina; Tabanfar, Reza; Kempston, Michael; Borschneck, Daniel; Ungi, Tamas; Fichtinger, Gabor
2016-03-01
PURPOSE: In scoliosis monitoring, tracked ultrasound has been explored as a safer imaging alternative to traditional radiography. The use of ultrasound in spinal curvature measurement requires identification of vertebral landmarks, but bones have reduced visibility in ultrasound imaging and high quality ultrasound machines are often expensive and not portable. In this work, we investigate the image quality and measurement accuracy of a low cost and portable ultrasound machine in comparison to a standard ultrasound machine in scoliosis monitoring. METHODS: Two different kinds of ultrasound machines were tested on three human subjects, using the same position tracker and software. Spinal curves were measured in the same reference coordinate system using both ultrasound machines. Lines were defined by connecting two symmetric landmarks identified on the left and right transverse process of the same vertebrae, and spinal curvature was defined as the transverse process angle between two such lines, projected on the coronal plane. RESULTS: Three healthy volunteers were scanned by both ultrasound configurations. Three experienced observers localized transverse processes as skeletal landmarks and obtained transverse process angles in images obtained from both ultrasounds. The mean difference per transverse process angle measured was 3.00 +/-2.1°. 94% of transverse processes visualized in the Sonix Touch were also visible in the Telemed. Inter-observer error in the Telemed was 4.5° and 4.3° in the Sonix Touch. CONCLUSION: Price, convenience and accessibility suggest the Telemed to be a viable alternative in scoliosis monitoring, however further improvements in measurement protocol and image noise reduction must be completed before implementing the Telemed in the clinical setting.
Qiu, Lei; Yuan, Shenfang; Mei, Hanfei; Fang, Fang
2016-02-26
Structural Health Monitoring (SHM) technology is considered to be a key technology to reduce the maintenance cost and meanwhile ensure the operational safety of aircraft structures. It has gradually developed from theoretic and fundamental research to real-world engineering applications in recent decades. The problem of reliable damage monitoring under time-varying conditions is a main issue for the aerospace engineering applications of SHM technology. Among the existing SHM methods, Guided Wave (GW) and piezoelectric sensor-based SHM technique is a promising method due to its high damage sensitivity and long monitoring range. Nevertheless the reliability problem should be addressed. Several methods including environmental parameter compensation, baseline signal dependency reduction and data normalization, have been well studied but limitations remain. This paper proposes a damage propagation monitoring method based on an improved Gaussian Mixture Model (GMM). It can be used on-line without any structural mechanical model and a priori knowledge of damage and time-varying conditions. With this method, a baseline GMM is constructed first based on the GW features obtained under time-varying conditions when the structure under monitoring is in the healthy state. When a new GW feature is obtained during the on-line damage monitoring process, the GMM can be updated by an adaptive migration mechanism including dynamic learning and Gaussian components split-merge. The mixture probability distribution structure of the GMM and the number of Gaussian components can be optimized adaptively. Then an on-line GMM can be obtained. Finally, a best match based Kullback-Leibler (KL) divergence is studied to measure the migration degree between the baseline GMM and the on-line GMM to reveal the weak cumulative changes of the damage propagation mixed in the time-varying influence. A wing spar of an aircraft is used to validate the proposed method. The results indicate that the crack propagation under changing structural boundary conditions can be monitored reliably. The method is not limited by the properties of the structure, and thus it is feasible to be applied to composite structure.
Statistically Qualified Neuro-Analytic system and Method for Process Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilim, Richard B.; Garcia, Humberto E.; Chen, Frederick W.
1998-11-04
An apparatus and method for monitoring a process involves development and application of a statistically qualified neuro-analytic (SQNA) model to accurately and reliably identify process change. The development of the SQNA model is accomplished in two steps: deterministic model adaption and stochastic model adaptation. Deterministic model adaption involves formulating an analytic model of the process representing known process characteristics,augmenting the analytic model with a neural network that captures unknown process characteristics, and training the resulting neuro-analytic model by adjusting the neural network weights according to a unique scaled equation emor minimization technique. Stochastic model adaptation involves qualifying any remaining uncertaintymore » in the trained neuro-analytic model by formulating a likelihood function, given an error propagation equation, for computing the probability that the neuro-analytic model generates measured process output. Preferably, the developed SQNA model is validated using known sequential probability ratio tests and applied to the process as an on-line monitoring system.« less
Two new advanced forms of spectrometry for space and commercial applications
NASA Technical Reports Server (NTRS)
Schlager, Kenneth J.
1991-01-01
Reagentless ultraviolet absorption spectrometry (UVAS) and Liquid Atomic Emission Spectrometry (LAES) represent new forms of spectrometry with extensive potential in both space and commercial applications. Originally developed under KSC sponsorship for monitoring nutrient solutions for the Controlled Ecological Life Support System (CELSS), both UVAS and LAES have extensive analytical capabilities for both organic and inorganic chemical compounds. Both forms of instrumentation involve the use of remote fiber optic probes and real-time measurements for on-line process monitoring. Commercial applications exist primarily in environmental analysis and for process control in the chemical, pulp and paper, food processing, metal plating, and water/wastewater treatment industries.
Flow behavior in liquid molding
NASA Technical Reports Server (NTRS)
Hunston, D.; Phelan, F.; Parnas, R.
1992-01-01
The liquid molding (LM) process for manufacturing polymer composites with structural properties has the potential to significantly lower fabrication costs and increase production rates. LM includes both resin transfer molding and structural reaction injection molding. To achieve this potential, however, the underlying science base must be improved to facilitate effective process optimization and implementation of on-line process control. The National Institute of Standards and Technology (NIST) has a major program in LM that includes materials characterization, process simulation models, on-line process monitoring and control, and the fabrication of test specimens. The results of this program are applied to real parts through cooperative projects with industry. The key feature in the effort is a comprehensive and integrated approach to the processing science aspects of LM. This paper briefly outlines the NIST program and uses several examples to illustrate the work.
Smart wireless sensor for physiological monitoring.
Tomasic, Ivan; Avbelj, Viktor; Trobec, Roman
2015-01-01
Presented is a wireless body sensor capable of measuring local potential differences on a body surface. By using on-sensor signal processing capabilities, and developed algorithms for off-line signal processing on a personal computing device, it is possible to record single channel ECG, heart rate, breathing rate, EMG, and when three sensors are applied, even the 12-lead ECG. The sensor is portable, unobtrusive, and suitable for both inpatient and outpatient monitoring. The paper presents the sensor's hardware and results of power consumption analysis. The sensor's capabilities of recording various physiological parameters are also presented and illustrated. The paper concludes with envisioned sensor's future developments and prospects.
NASA JSC water monitor system: City of Houston field demonstration
NASA Technical Reports Server (NTRS)
Taylor, R. E.; Jeffers, E. L.; Fricks, D. H.
1979-01-01
A water quality monitoring system with on-line and real time operation similar to the function in a spacecraft was investigated. A system with the capability to determine conformance to future high effluent quality standards and to increase the potential for reclamation and reuse of water was designed. Although all system capabilities were not verified in the initial field trial, fully automated operation over a sustained period with only routine manual adjustments was accomplished. Two major points were demonstrated: (1) the water monitor system has great potential in water monitoring and/or process control applications; and (2) the water monitor system represents a vast improvement over conventional (grab sample) water monitoring techniques.
Laser metrology in food-related systems
NASA Astrophysics Data System (ADS)
Mendoza-Sanchez, Patricia; Lopez, Daniel; Kongraksawech, Teepakorn; Vazquez, Pedro; Torres, J. Antonio; Ramirez, Jose A.; Huerta-Ruelas, Jorge
2005-02-01
An optical system was developed using a low-cost semiconductor laser and commercial optical and electronic components, to monitor food processes by measuring changes in optical rotation (OR) of chiral compounds. The OR signal as a function of processing time and sample temperature were collected and recorded using a computer data acquisition system. System has been tested during two different processes: sugar-protein interaction and, beer fermentation process. To study sugar-protein interaction, the following sugars were used: sorbitol, trehalose and sucrose, and in the place of Protein, Serum Albumin Bovine (BSA, A-7906 Sigma-Aldrich). In some food processes, different sugars are added to protect damage of proteins during their processing, storage and/or distribution. Different sugar/protein solutions were prepared and heated above critical temperature of protein denaturation. OR measurements were performed during heating process and effect of different sugars in protein denaturation was measured. Higher sensitivity of these measurements was found compared with Differential Scanning Calorimetry, which needs higher protein concentration to study these interactions. The brewing fermentation process was monitored in-situ using this OR system and validated by correlation with specific density measurements and gas chromatography. This instrument can be implemented to monitor fermentation on-line, thereby determining end of process and optimizing process conditions in an industrial setting. The high sensitivity of developed OR system has no mobile parts and is more flexible than commercial polarimeters providing the capability of implementation in harsh environments, signifying the potential of this method as an in-line technique for quality control in food processing and for experimentation with optically active solutions.
Current trends in molecular sensing
NASA Astrophysics Data System (ADS)
Wlodarski, Wojtek
1992-08-01
The biosphere contains a myriad of substances which can influence or stimulate various aspects of the health and behavior of living organisms. Not surprisingly, in the last decade or so researchers have appreciated the potential of developing a range of molecular sensor technologies, designed to estimate and monitor biological and chemical substances with a view to eventually controlling the biological processes themselves. This development has been accelerated recently by the realization that molecular sensors offer considerable commercial potential. At the same time, it was quickly appreciated that such sensors could revolutionize several areas, including health care, pollution and contamination monitoring, agriculture, on-line monitoring and control of industrial chemical processing, and strategic and tactical monitoring of chemical warfare. This brief review considers the changing scene in molecular sensor research by reference to a few key examples.
Application of laser-induced breakdown spectroscopy to zirconium in aqueous solution
NASA Astrophysics Data System (ADS)
Ruas, Alexandre; Matsumoto, Ayumu; Ohba, Hironori; Akaoka, Katsuaki; Wakaida, Ikuo
2017-05-01
In the context of the Fukushima Dai-ichi Nuclear Power Plant (F1-NPP) decommissioning process, laser-induced breakdown spectroscopy (LIBS) has many advantages. The purpose of the present work is to demonstrate the on-line monitoring capability of the LIBS coupled with the ultra-thin liquid jet sampling method. The study focuses on zirconium in aqueous solution, considering that it is a major element in the F1-NPP fuel debris that has been subject to only a few LIBS studies in the past. The methodology of data acquisition and processing are described. In particular, two regions of interest with many high intensity zirconium lines have been observed around 350 nm in the case of the ionic lines and 478 nm in the case of atomic lines. The best analytical conditions for zirconium are different depending on the analysis of ionic lines or atomic lines. A low LOD of about 4 mg L- 1 could be obtained, showing that LIBS coupled with the ultra-thin liquid jet sampling technique is a promising alternative for more complex solutions found in the F1-NPP, namely mixtures containing zirconium.
Emteborg, Håkan; Zeleny, Reinhard; Charoud-Got, Jean; Martos, Gustavo; Lüddeke, Jörg; Schellin, Holger; Teipel, Katharina
2014-01-01
Coupling an infrared (IR) camera to a freeze dryer for on-line monitoring of freeze-drying cycles is described for the first time. Normally, product temperature is measured using a few invasive Pt-100 probes, resulting in poor spatial resolution. To overcome this, an IR camera was placed on a process-scale freeze dryer. Imaging took place every 120 s through a Germanium window comprising 30,000 measurement points obtained contact-free from −40°C to 25°C. Results are presented for an empty system, bulk drying of cheese slurry, and drying of 1 mL human serum in 150 vials. During freezing of the empty system, differences of more than 5°C were measured on the shelf. Adding a tray to the empty system, a difference of more than 8°C was observed. These temperature differences probably cause different ice structures affecting the drying speed during sublimation. A temperature difference of maximum 13°C was observed in bulk mode during sublimation. When drying in vials, differences of more than 10°C were observed. Gradually, the large temperature differences disappeared during secondary drying and products were transformed into uniformly dry cakes. The experimental data show that the IR camera is a highly versatile on-line monitoring tool for different kinds of freeze-drying processes. © 2014 European Union 103:2088–2097, 2014 PMID:24902839
Emteborg, Håkan; Zeleny, Reinhard; Charoud-Got, Jean; Martos, Gustavo; Lüddeke, Jörg; Schellin, Holger; Teipel, Katharina
2014-07-01
Coupling an infrared (IR) camera to a freeze dryer for on-line monitoring of freeze-drying cycles is described for the first time. Normally, product temperature is measured using a few invasive Pt-100 probes, resulting in poor spatial resolution. To overcome this, an IR camera was placed on a process-scale freeze dryer. Imaging took place every 120 s through a Germanium window comprising 30,000 measurement points obtained contact-free from -40 °C to 25 °C. Results are presented for an empty system, bulk drying of cheese slurry, and drying of 1 mL human serum in 150 vials. During freezing of the empty system, differences of more than 5 °C were measured on the shelf. Adding a tray to the empty system, a difference of more than 8 °C was observed. These temperature differences probably cause different ice structures affecting the drying speed during sublimation. A temperature difference of maximum 13 °C was observed in bulk mode during sublimation. When drying in vials, differences of more than 10 °C were observed. Gradually, the large temperature differences disappeared during secondary drying and products were transformed into uniformly dry cakes. The experimental data show that the IR camera is a highly versatile on-line monitoring tool for different kinds of freeze-drying processes. © 2014 European Union.
Application of laser ultrasonic method for on-line monitoring of friction stir spot welding process.
Zhang, Kuanshuang; Zhou, Zhenggan; Zhou, Jianghua
2015-09-01
Application of a laser ultrasonic method is developed for on-line monitoring of the friction stir spot welding (FSSW) process. Based on the technology of FSSW, laser-generated ultrasonic waves in a good weld and nonweld area are simulated by a finite element method. The reflected and transmitted waves are analyzed to disclose the properties of the welded interface. The noncontact-laser ultrasonic-inspection system was established to verify the numerical results. The reflected waves in the good-weld and nonweld area can be distinguished by time-of-flight. The transmitted waves evidently attenuate in the nonweld area in contrast to signal amplitude in the good weld area because of interfacial impedance difference. Laser ultrasonic C-scan images can sufficiently evaluate the intrinsic character of the weld area in comparison with traditional water-immersion ultrasonic testing results. The research results confirm that laser ultrasonics would be an effective method to realize the characterization of FSSW defects.
NASA Astrophysics Data System (ADS)
Carstea, E.; Baker, A.; Johnson, R.; Reynolds, D. M.
2009-12-01
In-line fluorescence EEM monitoring has been performed over an eleven-day period for Bournbrook River, Birmingham, UK. River water was diverted to a portable laboratory via a continuous flow pump and filter system. Fluorescence excitation-emission matrices data was recorded every 3 minutes using a flow cell (1cm pathlength) coupled to a fiber optic probe. This real-time fluorescence EEM data (Excitation, 225-400 nm at 5 nm steps, emission, 280-500 nm at 2 nm steps) was collected 'in-line'and directly compared with the spectrophotometric properties and physical and chemical parameters of river water samples collected off-line at known time intervals. Over the monitoring period, minor pollution pulses from cross connections were detected and identified hourly along with a random diesel pollution event. This work addresses the practicalities of measuring and detecting fluorescence EEM in the field and discusses the potential of this technological approach for further understanding important hydrological and biogeochemical processes. Problems associated with fouling and system failure are also reported. Example of the data generated from the continuous fluorescence EEM monitoring.
Probing the Physics of Active Galactic Nuclei
NASA Technical Reports Server (NTRS)
Peterson, Bradley M.
2004-01-01
As a result of a number of large multiwavelength monitoring campaigns that have taken place since the late 1980s, there are now several very large data sets on bright variable active galactic nuclei (AGNs) that are well-sampled in time and can be used to probe the physics of the AGN continuum source and the broad-line emitting region. Most of these data sets have been underutilized, as the emphasis thus far has been primarily on reverberation-mapping issues alone. Broader attempts at analysis have been made on some of the earlier IUE data sets (e.g., data from the 1989 campaign on NGC5 548) , but much of this analysis needs to be revisited now that improved versions of the data are now available from final archive processing. We propose to use the multiwavelength monitoring data that have been accumulated to undertake more thorough investigations of the AGN continuum and broad emission lines, including a more detailed study of line-profile variability, making use of constraints imposed by the reverberation results.
Jiang, Bo; Huang, Yu Dong
2007-01-01
A NIR method was developed for the on-line monitoring of alkali-free cloth/phenolic resin prepreg during its manufacturing process. First, the sizing content of the alkali-free cloth was analyzed, and then the resin, soluble resin and volatiles content of the prepreg was analyzed simultaneously using the FT-NIR spectrometer. Partial least square (PLS) regression was used to develop the calibration models, which for the sizing content was preprocessed by 1stDER +MSC, for the volatile content by 1stDER +VN, for the soluble resin content by 1stDER +MSC and for the resin content by the VN spectral data preprocessing method. RMSEP of the prediction model for the sizing content was 0.732 %, for the resin content it was 0.605, for the soluble resin content it was 0.101 and for volatiles content it was 0.127. The results of the paired t-test revealed that there was no significant difference between the NIR method and the standard method. The NIR spectroscopy method could be used to predict the resin, soluble resin and the volatiles content of the prepreg simultaneously, as well as sizing content of alkali-free cloth. The processing parameters of the prepreg during manufacture could be adjusted quickly with the help of the NIR analysis results. The results indicated that the NIR spectroscopy method was sufficiently accurate and effective for the on-line monitoring of alkali-free cloth/phenolic resin prepreg.
Serial Interface through Stream Protocol on EPICS Platform for Distributed Control and Monitoring
NASA Astrophysics Data System (ADS)
Das Gupta, Arnab; Srivastava, Amit K.; Sunil, S.; Khan, Ziauddin
2017-04-01
Remote operation of any equipment or device is implemented in distributed systems in order to control and proper monitoring of process values. For such remote operations, Experimental Physics and Industrial Control System (EPICS) is used as one of the important software tool for control and monitoring of a wide range of scientific parameters. A hardware interface is developed for implementation of EPICS software so that different equipment such as data converters, power supplies, pump controllers etc. could be remotely operated through stream protocol. EPICS base was setup on windows as well as Linux operating system for control and monitoring while EPICS modules such as asyn and stream device were used to interface the equipment with standard RS-232/RS-485 protocol. Stream Device protocol communicates with the serial line with an interface to asyn drivers. Graphical user interface and alarm handling were implemented with Motif Editor and Display Manager (MEDM) and Alarm Handler (ALH) command line channel access utility tools. This paper will describe the developed application which was tested with different equipment and devices serially interfaced to the PCs on a distributed network.
Automating security monitoring and analysis for Space Station Freedom's electric power system
NASA Technical Reports Server (NTRS)
Dolce, James L.; Sobajic, Dejan J.; Pao, Yoh-Han
1990-01-01
Operating a large, space power system requires classifying the system's status and analyzing its security. Conventional algorithms are used by terrestrial electric utilities to provide such information to their dispatchers, but their application aboard Space Station Freedom will consume too much processing time. A new approach for monitoring and analysis using adaptive pattern techniques is presented. This approach yields an on-line security monitoring and analysis algorithm that is accurate and fast; and thus, it can free the Space Station Freedom's power control computers for other tasks.
Automating security monitoring and analysis for Space Station Freedom's electric power system
NASA Technical Reports Server (NTRS)
Dolce, James L.; Sobajic, Dejan J.; Pao, Yoh-Han
1990-01-01
Operating a large, space power system requires classifying the system's status and analyzing its security. Conventional algorithms are used by terrestrial electric utilities to provide such information to their dispatchers, but their application aboard Space Station Freedom will consume too much processing time. A novel approach for monitoring and analysis using adaptive pattern techniques is presented. This approach yields an on-line security monitoring and analysis algorithm that is accurate and fast; and thus, it can free the Space Station Freedom's power control computers for other tasks.
Quality by control: Towards model predictive control of mammalian cell culture bioprocesses.
Sommeregger, Wolfgang; Sissolak, Bernhard; Kandra, Kulwant; von Stosch, Moritz; Mayer, Martin; Striedner, Gerald
2017-07-01
The industrial production of complex biopharmaceuticals using recombinant mammalian cell lines is still mainly built on a quality by testing approach, which is represented by fixed process conditions and extensive testing of the end-product. In 2004 the FDA launched the process analytical technology initiative, aiming to guide the industry towards advanced process monitoring and better understanding of how critical process parameters affect the critical quality attributes. Implementation of process analytical technology into the bio-production process enables moving from the quality by testing to a more flexible quality by design approach. The application of advanced sensor systems in combination with mathematical modelling techniques offers enhanced process understanding, allows on-line prediction of critical quality attributes and subsequently real-time product quality control. In this review opportunities and unsolved issues on the road to a successful quality by design and dynamic control implementation are discussed. A major focus is directed on the preconditions for the application of model predictive control for mammalian cell culture bioprocesses. Design of experiments providing information about the process dynamics upon parameter change, dynamic process models, on-line process state predictions and powerful software environments seem to be a prerequisite for quality by control realization. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Ya-Juan; André, Silvère; Saint Cristau, Lydia; Lagresle, Sylvain; Hannas, Zahia; Calvosa, Éric; Devos, Olivier; Duponchel, Ludovic
2017-02-01
Multivariate statistical process control (MSPC) is increasingly popular as the challenge provided by large multivariate datasets from analytical instruments such as Raman spectroscopy for the monitoring of complex cell cultures in the biopharmaceutical industry. However, Raman spectroscopy for in-line monitoring often produces unsynchronized data sets, resulting in time-varying batches. Moreover, unsynchronized data sets are common for cell culture monitoring because spectroscopic measurements are generally recorded in an alternate way, with more than one optical probe parallelly connecting to the same spectrometer. Synchronized batches are prerequisite for the application of multivariate analysis such as multi-way principal component analysis (MPCA) for the MSPC monitoring. Correlation optimized warping (COW) is a popular method for data alignment with satisfactory performance; however, it has never been applied to synchronize acquisition time of spectroscopic datasets in MSPC application before. In this paper we propose, for the first time, to use the method of COW to synchronize batches with varying durations analyzed with Raman spectroscopy. In a second step, we developed MPCA models at different time intervals based on the normal operation condition (NOC) batches synchronized by COW. New batches are finally projected considering the corresponding MPCA model. We monitored the evolution of the batches using two multivariate control charts based on Hotelling's T 2 and Q. As illustrated with results, the MSPC model was able to identify abnormal operation condition including contaminated batches which is of prime importance in cell culture monitoring We proved that Raman-based MSPC monitoring can be used to diagnose batches deviating from the normal condition, with higher efficacy than traditional diagnosis, which would save time and money in the biopharmaceutical industry. Copyright © 2016 Elsevier B.V. All rights reserved.
1989-09-01
Guidelines Generation #2 b. Electronic Submission of Commerce Business Daily ( CBD ) Notices #6 c. On-line Debarred/Suspended List #5 d. On-Line Contract...a number of years. Reality of system differs from manual. One reference - easy to follow, block by block - is needed. -Imaging and CBD electronic...milestones are tracked - and those milestones should be monitored as a natural outcome of thc process - e.g. A milestone is noted when the RFP is
Kim, Byungsuk; Woo, Young-Ah
2018-05-30
In this study the authors developed a real-time Process Analytical Technology (PAT) of a coating process by applying in-line Raman spectroscopy to evaluate the coating weight gain, which is a quantitative analysis of the film coating layer. The wide area illumination (WAI) Raman probe was connected to the pan coater for real-time monitoring of changes in the weight gain of coating layers. Under the proposed in-line Raman scheme, a non-contact, non-destructive analysis was performed using WAI Raman probes with a spot size of 6 mm. The in-line Raman probe maintained a focal length of 250 mm, and a compressed air line was designed to protect the lens surface from spray droplets. The Design of Experiment (DOE) was applied to identify factors affecting the Raman spectra background of laser irradiation. The factors selected for DOE were the strength of compressed air connected to the probe, and the shielding of light by the transparent door connecting the probe to the pan coater. To develop a quantitative model, partial least squares (PLS) models as multivariate calibration were developed based on the three regions showing the specificity of TiO 2 individually or in combination. For the three single peaks (636 cm -1 , 512 cm -1 , 398 cm -1 ), least squares method (LSM) was applied to develop three univariate quantitative analysis models. One of best multivariate quantitative model having a factor of 1 gave the lowest RMSEP of 0.128, 0.129, and 0.125, respectively for prediction batches. When LSM was applied to the single peak at 636 cm -1 , the univariate quantitative model with an R 2 of 0.9863, slope of 0.5851, and y-intercept of 0.8066 had the lowest RMSEP of 0.138, 0.144, and 0.153, respectively for prediction batches. The in-line Raman spectroscopic method for the analysis of coating weight gain was verified by considering system suitability and parameters such as specificity, range, linearity, accuracy, and precision in accordance with ICH Q2 regarding method validation. The proposed in-line Raman spectroscopy can be utilized as a PAT for product quality assurance as it offers real-time monitoring of quantitative changes in coating weight gain and process end-points during the film coating process. Copyright © 2018 Elsevier B.V. All rights reserved.
Eggenreich, Britta; Rajamanickam, Vignesh; Wurm, David Johannes; Fricke, Jens; Herwig, Christoph; Spadiut, Oliver
2017-08-01
Cell disruption is a key unit operation to make valuable, intracellular target products accessible for further downstream unit operations. Independent of the applied cell disruption method, each cell disruption process must be evaluated with respect to disruption efficiency and potential product loss. Current state-of-the-art methods, like measuring the total amount of released protein and plating-out assays, are usually time-delayed and involve manual intervention making them error-prone. An automated method to monitor cell disruption efficiency at-line is not available to date. In the current study we implemented a methodology, which we had originally developed to monitor E. coli cell integrity during bioreactor cultivations, to automatically monitor and evaluate cell disruption of a recombinant E. coli strain by high-pressure homogenization. We compared our tool with a library of state-of-the-art methods, analyzed the effect of freezing the biomass before high-pressure homogenization and finally investigated this unit operation in more detail by a multivariate approach. A combination of HPLC and automated data analysis describes a valuable, novel tool to monitor and evaluate cell disruption processes. Our methodology, which can be used both in upstream (USP) and downstream processing (DSP), describes a valuable tool to evaluate cell disruption processes as it can be implemented at-line, gives results within minutes after sampling and does not need manual intervention.
Monitoring copper release in drinking water distribution systems.
d'Antonio, L; Fabbricino, M; Panico, A
2008-01-01
A new procedure, recently proposed for on-line monitoring of copper released from metal pipes in household plumbing system for drinking water distribution during the development of corrosion processes, is tested experimentally. Experiments were carried out in laboratory controlled conditions, using synthetic water and varying the water alkalinity. The possibility of using the corrosion potential as a surrogate measure of copper concentration in stagnating water is shown, verifying, in the meantime, the effect of alkalinity on the development of passivation phenomena, which tend to protect the pipe from corrosion processes. Experimental data are discussed, highlighting the potentiality of the procedure, and recognizing its limitations. Copyright IWA Publishing 2008.
Transmission Line Security Monitor
None
2017-12-09
The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.
Korasa, Klemen; Vrečer, Franc
2018-01-01
Over the last two decades, regulatory agencies have demanded better understanding of pharmaceutical products and processes by implementing new technological approaches, such as process analytical technology (PAT). Process analysers present a key PAT tool, which enables effective process monitoring, and thus improved process control of medicinal product manufacturing. Process analysers applicable in pharmaceutical coating unit operations are comprehensibly described in the present article. The review is focused on monitoring of solid oral dosage forms during film coating in two most commonly used coating systems, i.e. pan and fluid bed coaters. Brief theoretical background and critical overview of process analysers used for real-time or near real-time (in-, on-, at- line) monitoring of critical quality attributes of film coated dosage forms are presented. Besides well recognized spectroscopic methods (NIR and Raman spectroscopy), other techniques, which have made a significant breakthrough in recent years, are discussed (terahertz pulsed imaging (TPI), chord length distribution (CLD) analysis, and image analysis). Last part of the review is dedicated to novel techniques with high potential to become valuable PAT tools in the future (optical coherence tomography (OCT), acoustic emission (AE), microwave resonance (MR), and laser induced breakdown spectroscopy (LIBS)). Copyright © 2017 Elsevier B.V. All rights reserved.
A fiber optic sensor for on-line non-touch monitoring of roll shape
NASA Astrophysics Data System (ADS)
Guo, Yuan; Qu, Weijian; Yuan, Qi
2009-07-01
Basing on the principle of reflective displacement fibre-optic sensor, a high accuracy non-touch on-line optical fibre sensor for detecting roll shape is presented. The principle and composition of the detection system and the operation process are expatiated also. By using a novel probe of three optical fibres in equal transverse space, the effects of fluctuations in the light source, reflective changing of target surface and the intensity losses in the fibre lines are automatically compensated. Meantime, an optical fibre sensor model of correcting static error based on BP artificial neural network (ANN) is set up. Also by using interpolation method and value filtering to process the signals, effectively reduce the influence of random noise and the vibration of the roll bearing. So the accuracy and resolution were enhanced remarkably. Experiment proves that the resolution is 1μm and the precision can reach to 0.1%. So the system reaches to the demand of practical production process.
Rutstein, S E; Golin, C E; Wheeler, S B; Kamwendo, D; Hosseinipour, M C; Weinberger, M; Miller, W C; Biddle, A K; Soko, A; Mkandawire, M; Mwenda, R; Sarr, A; Gupta, S; Mataya, R
2016-01-01
Scale-up of viral load (VL) monitoring for HIV-infected patients on antiretroviral therapy (ART) is a priority in many resource-limited settings, and ART providers are critical to effective program implementation. We explored provider-perceived barriers and facilitators of VL monitoring. We interviewed all providers (n = 17) engaged in a public health evaluation of dried blood spots for VL monitoring at five ART clinics in Malawi. All ART clinics were housed within district hospitals. We grouped themes at patient, provider, facility, system, and policy levels. Providers emphasized their desire for improved ART monitoring strategies, and frustration in response to restrictive policies for determining which patients were eligible to receive VL monitoring. Although many providers pled for expansion of monitoring to include all persons on ART, regardless of time on ART, the most salient provider-perceived barrier to VL monitoring implementation was the pressure of work associated with monitoring activities. The work burden was exacerbated by inefficient data management systems, highlighting a critical interaction between provider-, facility-, and system-level factors. Lack of integration between laboratory and clinical systems complicated the process for alerting providers when results were available, and these communication gaps were intensified by poor facility connectivity. Centralized second-line ART distribution was also noted as a barrier: providers reported that the time and expenses required for patients to collect second-line ART frequently obstructed referral. However, provider empowerment emerged as an unexpected facilitator of VL monitoring. For many providers, this was the first time they used an objective marker of ART response to guide clinical management. Providers' knowledge of a patient's virological status increased confidence in adherence counseling and clinical decision-making. Results from our study provide unique insight into provider perceptions of VL monitoring and indicate the importance of policies responsive to individual and environmental challenges of VL monitoring program implementation. Findings may inform scale-up by helping policy-makers identify strategies to improve feasibility and sustainability of VL monitoring.
In-line monitoring of granule moisture in fluidized-bed dryers using microwave resonance technology.
Buschmüller, Caroline; Wiedey, Wolfgang; Döscher, Claas; Dressler, Jochen; Breitkreutz, Jörg
2008-05-01
This is the first report on in-line moisture measurement of pharmaceutical products by microwave resonance technology. In order to meet the FDA's PAT approach, a microwave resonance sensor appropriate for pharmaceutical use was developed and implemented into two different fluidized-bed dryers. The novel sensor enables a continuous moisture measurement independent from the product density. Hence, for the first time precise real time determination of the moisture in pharmaceutical granules becomes possible. The qualification of the newly developed sensor was performed by drying placebo granules under experimental conditions and the validation using drug loaded granules under real process conditions. The results of the investigations show good correlations between water content of the granules determined by the microwave resonance sensor and both reference methods, loss on drying by infrared light exposure and Karl Fischer titration. Furthermore, a considerable time saving in the drying process was achieved through monitoring the residual water content continuously by microwave resonance technology instead of the formerly used discontinuous methods.
On-line confidence monitoring during decision making.
Dotan, Dror; Meyniel, Florent; Dehaene, Stanislas
2018-02-01
Humans can readily assess their degree of confidence in their decisions. Two models of confidence computation have been proposed: post hoc computation using post-decision variables and heuristics, versus online computation using continuous assessment of evidence throughout the decision-making process. Here, we arbitrate between these theories by continuously monitoring finger movements during a manual sequential decision-making task. Analysis of finger kinematics indicated that subjects kept separate online records of evidence and confidence: finger deviation continuously reflected the ongoing accumulation of evidence, whereas finger speed continuously reflected the momentary degree of confidence. Furthermore, end-of-trial finger speed predicted the post-decisional subjective confidence rating. These data indicate that confidence is computed on-line, throughout the decision process. Speed-confidence correlations were previously interpreted as a post-decision heuristics, whereby slow decisions decrease subjective confidence, but our results suggest an adaptive mechanism that involves the opposite causality: by slowing down when unconfident, participants gain time to improve their decisions. Copyright © 2017 Elsevier B.V. All rights reserved.
Buja, Oana-M; Gordan, Ovidiu D; Leopold, Nicolae; Morschhauser, Andreas; Nestler, Jörg; Zahn, Dietrich R T
2017-01-01
A microfluidic setup which enables on-line monitoring of residues of malachite green (MG) using surface-enhanced Raman scattering (SERS) is reported. The SERS active substrate was prepared via laser induced synthesis of silver or gold nanoparticles spot on the bottom of a 200 μm inner dimension glass capillary, by focusing the laser beam during a continuous flow of a mixture of silver nitrate or gold chloride and sodium citrate. The described microfluidic setup enables within a few minutes the monitoring of several processes: the synthesis of the SERS active spot, MG adsorption to the metal surface, detection of the analyte when saturation of the SERS signal is reached, and finally, the desorption of MG from the spot. Moreover, after MG complete desorption, the regeneration of the SERS active spot was achieved. The detection of MG was possible down to 10 -7 M concentration with a good reproducibility when using silver or gold spots as SERS substrate.
Low-cost wireless voltage & current grid monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hines, Jacqueline
This report describes the development and demonstration of a novel low-cost wireless power distribution line monitoring system. This system measures voltage, current, and relative phase on power lines of up to 35 kV-class. The line units operate without any batteries, and without harvesting energy from the power line. Thus, data on grid condition is provided even in outage conditions, when line current is zero. This enhances worker safety by detecting the presence of voltage and current that may appear from stray sources on nominally isolated lines. Availability of low-cost power line monitoring systems will enable widespread monitoring of the distributionmore » grid. Real-time data on local grid operating conditions will enable grid operators to optimize grid operation, implement grid automation, and understand the impact of solar and other distributed sources on grid stability. The latter will enable utilities to implement eneygy storage and control systems to enable greater penetration of solar into the grid.« less
Mehle, Andraž; Kitak, Domen; Podrekar, Gregor; Likar, Boštjan; Tomaževič, Dejan
2018-05-09
Agglomeration of pellets in fluidized bed coating processes is an undesirable phenomenon that affects the yield and quality of the product. In scope of PAT guidance, we present a system that utilizes visual imaging for in-line monitoring of the agglomeration degree. Seven pilot-scale Wurster coating processes were executed under various process conditions, providing a wide spectrum of process outcomes. Images of pellets were acquired during the coating processes in a contactless manner through an observation window of the coating apparatus. Efficient image analysis methods were developed for automatic recognition of discrete pellets and agglomerates in the acquired images. In-line obtained agglomeration degree trends revealed the agglomeration dynamics in distinct phases of the coating processes. We compared the in-line estimated agglomeration degree in the end point of each process to the results obtained by the off-line sieve analysis reference method. A strong positive correlation was obtained (coefficient of determination R 2 =0.99), confirming the feasibility of the approach. The in-line estimated agglomeration degree enables early detection of agglomeration and provides means for timely interventions to retain it in an acceptable range. Copyright © 2018 Elsevier B.V. All rights reserved.
Burggraeve, A; Van den Kerkhof, T; Hellings, M; Remon, J P; Vervaet, C; De Beer, T
2011-04-18
Fluid bed granulation is a batch process, which is characterized by the processing of raw materials for a predefined period of time, consisting of a fixed spraying phase and a subsequent drying period. The present study shows the multivariate statistical modeling and control of a fluid bed granulation process based on in-line particle size distribution (PSD) measurements (using spatial filter velocimetry) combined with continuous product temperature registration using a partial least squares (PLS) approach. Via the continuous in-line monitoring of the PSD and product temperature during granulation of various reference batches, a statistical batch model was developed allowing the real-time evaluation and acceptance or rejection of future batches. Continuously monitored PSD and product temperature process data of 10 reference batches (X-data) were used to develop a reference batch PLS model, regressing the X-data versus the batch process time (Y-data). Two PLS components captured 98.8% of the variation in the X-data block. Score control charts in which the average batch trajectory and upper and lower control limits are displayed were developed. Next, these control charts were used to monitor 4 new test batches in real-time and to immediately detect any deviations from the expected batch trajectory. By real-time evaluation of new batches using the developed control charts and by computation of contribution plots of deviating process behavior at a certain time point, batch losses or reprocessing can be prevented. Immediately after batch completion, all PSD and product temperature information (i.e., a batch progress fingerprint) was used to estimate some granule properties (density and flowability) at an early stage, which can improve batch release time. Individual PLS models relating the computed scores (X) of the reference PLS model (based on the 10 reference batches) and the density, respectively, flowabililty as Y-matrix, were developed. The scores of the 4 test batches were used to examine the predictive ability of the model. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McTeer, Jennifer; Morris, Jenny; Wickham, Stephen
Interim storage is an essential component of the waste management lifecycle, providing a safe, secure environment for waste packages awaiting final disposal. In order to be able to monitor and detect change or degradation of the waste packages, storage building or equipment, it is necessary to know the original condition of these components (the 'waste storage system'). This paper presents an approach to establishing the baseline for a waste-storage system, and provides guidance on the selection and implementation of potential base-lining technologies. The approach is made up of two sections; assessment of base-lining needs and definition of base-lining approach. Duringmore » the assessment of base-lining needs a review of available monitoring data and store/package records should be undertaken (if the store is operational). Evolutionary processes (affecting safety functions), and their corresponding indicators, that can be measured to provide a baseline for the waste-storage system should then be identified in order for the most suitable indicators to be selected for base-lining. In defining the approach, identification of opportunities to collect data and constraints is undertaken before selecting the techniques for base-lining and developing a base-lining plan. Base-lining data may be used to establish that the state of the packages is consistent with the waste acceptance criteria for the storage facility and to support the interpretation of monitoring and inspection data collected during store operations. Opportunities and constraints are identified for different store and package types. Technologies that could potentially be used to measure baseline indicators are also reviewed. (authors)« less
Takahashi, Maria Beatriz; Leme, Jaci; Caricati, Celso Pereira; Tonso, Aldo; Fernández Núñez, Eutimio Gustavo; Rocha, José Celso
2015-06-01
Currently, mammalian cells are the most utilized hosts for biopharmaceutical production. The culture media for these cell lines include commonly in their composition a pH indicator. Spectroscopic techniques are used for biopharmaceutical process monitoring, among them, UV-Vis spectroscopy has found scarce applications. This work aimed to define artificial neural networks architecture and fit its parameters to predict some nutrients and metabolites, as well as viable cell concentration based on UV-Vis spectral data of mammalian cell bioprocess using phenol red in culture medium. The BHK-21 cell line was used as a mammalian cell model. Off-line spectra of supernatant samples taken from batches performed at different dissolved oxygen concentrations in two bioreactor configurations and with two pH control strategies were used to define two artificial neural networks. According to absolute errors, glutamine (0.13 ± 0.14 mM), glutamate (0.02 ± 0.02 mM), glucose (1.11 ± 1.70 mM), lactate (0.84 ± 0.68 mM) and viable cell concentrations (1.89 10(5) ± 1.90 10(5) cell/mL) were suitably predicted. The prediction error averages for monitored variables were lower than those previously reported using different spectroscopic techniques in combination with partial least squares or artificial neural network. The present work allows for UV-VIS sensor development, and decreases cost related to nutrients and metabolite quantifications.
NASA Astrophysics Data System (ADS)
Qayyum, Abdul; Saad, Naufal M.; Kamel, Nidal; Malik, Aamir Saeed
2018-01-01
The monitoring of vegetation near high-voltage transmission power lines and poles is tedious. Blackouts present a huge challenge to power distribution companies and often occur due to tree growth in hilly and rural areas. There are numerous methods of monitoring hazardous overgrowth that are expensive and time-consuming. Accurate estimation of tree and vegetation heights near power poles can prevent the disruption of power transmission in vulnerable zones. This paper presents a cost-effective approach based on a convolutional neural network (CNN) algorithm to compute the height (depth maps) of objects proximal to power poles and transmission lines. The proposed CNN extracts and classifies features by employing convolutional pooling inputs to fully connected data layers that capture prominent features from stereo image patches. Unmanned aerial vehicle or satellite stereo image datasets can thus provide a feasible and cost-effective approach that identifies threat levels based on height and distance estimations of hazardous vegetation and other objects. Results were compared with extant disparity map estimation techniques, such as graph cut, dynamic programming, belief propagation, and area-based methods. The proposed method achieved an accuracy rate of 90%.
Cost-effective fence line and process monitoring systems to support advanced leak detection and repair (LDAR) strategies can enhance protection of public health, facilitate worker safety, and help companies realize cost savings by reducing lost product. The U.S. EPA Office of Re...
A collaborative effort to monitor the upper Mississippi River watershed using On-line Toxicity Monitors (OTMs) is underway with three sites currently deployed and several more at various stages of development. Federal, State, and Local, agencies as well as utilities and Universi...
Loren, Bradley P.; Wleklinski, Michael; Koswara, Andy; Yammine, Kathryn; Hu, Yanyang
2017-01-01
A highly integrated approach to the development of a process for the continuous synthesis and purification of diphenhydramine is reported. Mass spectrometry (MS) is utilized throughout the system for on-line reaction monitoring, off-line yield quantitation, and as a reaction screening module that exploits reaction acceleration in charged microdroplets for high throughput route screening. This effort has enabled the discovery and optimization of multiple routes to diphenhydramine in glass microreactors using MS as a process analytical tool (PAT). The ability to rapidly screen conditions in charged microdroplets was used to guide optimization of the process in a microfluidic reactor. A quantitative MS method was developed and used to measure the reaction kinetics. Integration of the continuous-flow reactor/on-line MS methodology with a miniaturized crystallization platform for continuous reaction monitoring and controlled crystallization of diphenhydramine was also achieved. Our findings suggest a robust approach for the continuous manufacture of pharmaceutical drug products, exemplified in the particular case of diphenhydramine, and optimized for efficiency and crystal size, and guided by real-time analytics to produce the agent in a form that is readily adapted to continuous synthesis. PMID:28979759
Automatic process control in anaerobic digestion technology: A critical review.
Nguyen, Duc; Gadhamshetty, Venkataramana; Nitayavardhana, Saoharit; Khanal, Samir Kumar
2015-10-01
Anaerobic digestion (AD) is a mature technology that relies upon a synergistic effort of a diverse group of microbial communities for metabolizing diverse organic substrates. However, AD is highly sensitive to process disturbances, and thus it is advantageous to use online monitoring and process control techniques to efficiently operate AD process. A range of electrochemical, chromatographic and spectroscopic devices can be deployed for on-line monitoring and control of the AD process. While complexity of the control strategy ranges from a feedback control to advanced control systems, there are some debates on implementation of advanced instrumentations or advanced control strategies. Centralized AD plants could be the answer for the applications of progressive automatic control field. This article provides a critical overview of the available automatic control technologies that can be implemented in AD processes at different scales. Copyright © 2015 Elsevier Ltd. All rights reserved.
On-Line Analyzer For Monitoring Trace Amounts Of Oil In Turbid Waters
NASA Astrophysics Data System (ADS)
Niemela, P.; Jaatinen, J.
1986-05-01
This report presents an automated analyzer which continuously monitors oil content of a sample water stream that flows through the analyzer. The measuring principle is based on the absorption of infrared radiation by oil molecules contained in the sample water. The wavelength band that is used in the measurement is at 3.4 μm, where different types of oils show nearly equal absorption. Another wavelength band of 3.6 μm, where oil has no absorption, is used to compensate the effect of turbidity, which is due to solid particles and oil droplets contained in the sample water. Before entering the analyzer the sample water flow is properly homogenized. To compensate the strong absorption by water molecules in these wavelength bands the sample water is compared with reference water. This is done by directing them alternately through the same measuring cell. The reference water is obtained from the sample water by ultrafiltration and it determines the base line for the contaminated sample water. To ensure the stability of the base line, temperature and pressure differences of the two waters are kept within adequate ranges. Areas of application of the analyzer are wide ranging i.a. from ships' discharge waters to waste waters of industrial processes. The first application of the analyzer is on board oil tankers to control the discharge process of bilge and ballast waters. The analyzer is the first that fully corresponds to the stringent regulations for oil content monitors by the International Maritime Organization (IMO). Pilot installations of the analyzer are made on industrial plants.
NASA Astrophysics Data System (ADS)
Johnson, W.; Repasky, K. S.; Nehrir, A. R.; Carlsten, J.
2011-12-01
A differential absorption lidar (DIAL) for monitoring carbon dioxide (CO2) is under development at Montana State University using commercially available parts. Two distributed feedback (DFB) lasers, one at the on-line wavelength and one at the off-line wavelength are used to injection seed a fiber amplifier. The DIAL operates in the 1.57 micron carbon dioxide absorption band at an on-line wavelength of 1.5714060 microns. The laser transmitter produces 40 μJ pulses with a pulse duration of 1 μs and a pulse repetition frequency of 20 kHz. The scattered light from the laser transmitter is collected using a 28 cm diameter Schmidt-Cassegrain telescope. The light collected by the telescope is collimated and then filtered using a 0.8 nm FWHM narrowband interference filter. After the optical filter, the light is coupled into a multimode optical fiber with a 1000 μm core diameter. The output from the optical fiber is coupled into a photomultiplier tube (PMT) used to monitor the return signal. The analog output from the PMT is next incident on a discriminator producing TTL logic pulses for photon counting. The output from the PMT and discriminator is monitored using a multichannel scalar card allowing the counting of the TTL pulses as a function of range. Data from the DIAL instrument is collected in the following manner. The fiber amplifier is injection seeded first with the on-line DFB laser. The return signal as a function of range is integrated using the multichannel scalar for a user defined time, typically set at 6 s. The off-line DFB laser is then used to injection seed the fiber amplifier and the process is repeated. This process is repeated for a user defined period. The CO2 concentration as a function of range is calculated using the on-line and off-line return signals with the DIAL equation. A comparison of the CO2 concentration measured using the DIAL instrument at 1.5 km and a Li-Cor LI-820 in situ sensor located at 1.5 km from the DIAL over a 2.5 hour period indicate that the CO2 DIAL has an accuracy of ±20 parts per million (PPM).
Dynamic electrical impedance imaging with the interacting multiple model scheme.
Kim, Kyung Youn; Kim, Bong Seok; Kim, Min Chan; Kim, Sin; Isaacson, David; Newell, Jonathan C
2005-04-01
In this paper, an effective dynamical EIT imaging scheme is presented for on-line monitoring of the abruptly changing resistivity distribution inside the object, based on the interacting multiple model (IMM) algorithm. The inverse problem is treated as a stochastic nonlinear state estimation problem with the time-varying resistivity (state) being estimated on-line with the aid of the IMM algorithm. In the design of the IMM algorithm multiple models with different process noise covariance are incorporated to reduce the modeling uncertainty. Simulations and phantom experiments are provided to illustrate the proposed algorithm.
Controlling Wafer Contamination Using Automated On-Line Metrology during Wet Chemical Cleaning
NASA Astrophysics Data System (ADS)
Wang, Jason; Kingston, Skip; Han, Ye; Saini, Harmesh; McDonald, Robert; Mui, Rudy
2003-09-01
The capabilities of a trace contamination analyzer are discussed and demonstrated. This analytical tool utilizes an electrospray, time-of-flight mass spectrometer (ES-TOF-MS) for fully automated on-line monitoring of wafer cleaning solutions. The analyzer provides rich information on metallic, anionic, cationic, elemental, and organic species through its ability to provide harsh (elemental) and soft (molecular) ionization under both positive and negative modes. It is designed to meet semiconductor process control and yield management needs for the ever increasing complex new chemistries present in wafer fabrication.
Streefland, M; Van Herpen, P F G; Van de Waterbeemd, B; Van der Pol, L A; Beuvery, E C; Tramper, J; Martens, D E; Toft, M
2009-10-15
A licensed pharmaceutical process is required to be executed within the validated ranges throughout the lifetime of product manufacturing. Changes to the process, especially for processes involving biological products, usually require the manufacturer to demonstrate that the safety and efficacy of the product remains unchanged by new or additional clinical testing. Recent changes in the regulations for pharmaceutical processing allow broader ranges of process settings to be submitted for regulatory approval, the so-called process design space, which means that a manufacturer can optimize his process within the submitted ranges after the product has entered the market, which allows flexible processes. In this article, the applicability of this concept of the process design space is investigated for the cultivation process step for a vaccine against whooping cough disease. An experimental design (DoE) is applied to investigate the ranges of critical process parameters that still result in a product that meets specifications. The on-line process data, including near infrared spectroscopy, are used to build a descriptive model of the processes used in the experimental design. Finally, the data of all processes are integrated in a multivariate batch monitoring model that represents the investigated process design space. This article demonstrates how the general principles of PAT and process design space can be applied for an undefined biological product such as a whole cell vaccine. The approach chosen for model development described here, allows on line monitoring and control of cultivation batches in order to assure in real time that a process is running within the process design space.
NASA Astrophysics Data System (ADS)
Al-Jader, M. A.; Cullen, J. D.; Shaw, Andy; Al-Shamma'a, A. I.
2011-08-01
Currently there are about 4300 weld points on the average steel vehicle. Errors and problems due to tip damage and wear can cause great losses due to production line downtime. Current industrial monitoring systems check the quality of the nugget after processing 15 cars average once every two weeks. The nuggets are examined off line using a destructive process, which takes approximately 10 days to complete causing a long delay in the production process. In this paper a simulation results using software package, SORPAS, will be presented to determined the sustainability factors in spot welding process including Voltage, Current, Force, Water cooling rates, Material thicknesses and usage. The experimental results of various spot welding processes will be investigated and reported. The correlation of experimental results shows that SORPAS simulations can be used as an off line measurement to reduce factory energy usage. This paper also provides an overview of electrode current selection and its variance over the lifetime of the electrode tip, and describes the proposed analysis system for the selection of welding parameters for the spot welding process, as the electrode tip wears.
Detection of hydrogen peroxide based on long-path absorption spectroscopy using a CW EC-QCL
NASA Astrophysics Data System (ADS)
Sanchez, N. P.; Yu, Y.; Dong, L.; Griffin, R.; Tittel, F. K.
2016-02-01
A sensor system based on a CW EC-QCL (mode-hop-free range 1225-1285 cm-1) coupled with long-path absorption spectroscopy was developed for the monitoring of gas-phase hydrogen peroxide (H2O2) using an interference-free absorption line located at 1234.055 cm-1. Wavelength modulation spectroscopy (WMS) with second harmonic detection was implemented for data processing. Optimum levels of pressure and modulation amplitude of the sensor system led to a minimum detection limit (MDL) of 25 ppb using an integration time of 280 sec. The selected absorption line for H2O2, which exhibits no interference from H2O, makes this sensor system suitable for sensitive and selective monitoring of H2O2 levels in decontamination and sterilization processes based on Vapor Phase Hydrogen Peroxide (VPHP) units, in which a mixture of H2O and H2O2 is generated. Furthermore, continuous realtime monitoring of H2O2 concentrations in industrial facilities employing this species can be achieved with this sensing system in order to evaluate average permissible exposure levels (PELs) and potential exceedances of guidelines established by the US Occupational Safety and Health Administration for H2O2.
Shukla, Chinmay A
2017-01-01
The implementation of automation in the multistep flow synthesis is essential for transforming laboratory-scale chemistry into a reliable industrial process. In this review, we briefly introduce the role of automation based on its application in synthesis viz. auto sampling and inline monitoring, optimization and process control. Subsequently, we have critically reviewed a few multistep flow synthesis and suggested a possible control strategy to be implemented so that it helps to reliably transfer the laboratory-scale synthesis strategy to a pilot scale at its optimum conditions. Due to the vast literature in multistep synthesis, we have classified the literature and have identified the case studies based on few criteria viz. type of reaction, heating methods, processes involving in-line separation units, telescopic synthesis, processes involving in-line quenching and process with the smallest time scale of operation. This classification will cover the broader range in the multistep synthesis literature. PMID:28684977
Airborne particle monitoring in clean room environments for stem cell cultures.
Cobo, Fernando; Grela, David; Concha, Angel
2008-01-01
Modern high-technology industrial practices like pharmaceutical and stem cell line production demand high-quality environmental conditions to avoid particle contamination in the final product. Particles are important because their presence can affect both the output and the productivity and because they can have repercussion on human health. In this kind of production practice it is necessary to implement optimal methods for particle management and to introduce an environmental monitoring program. This should also address the regional regulatory requirements and will depend on local conditions in each processing center. Each center must evaluate its specific needs and establish appropriate monitoring procedures.
Exact Performance Analysis of Two Distributed Processes with Multiple Synchronization Points.
1987-05-01
number of processes with straight-line sequences of semaphore operations . We use the geometric model for performance analysis, in contrast to proving...distribution unlimited. 4. PERFORMING’*ORGANIZATION REPORT NUMBERS) 5. MONITORING ORGANIZATION REPORT NUMB CS-TR-1845 6a. NAME OF PERFORMING ORGANIZATION 6b...OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATIO U University of Maryland (If applicable) Office of Naval Research N/A 6c. ADDRESS (City, State, and
Van Renterghem, Jeroen; Kumar, Ashish; Vervaet, Chris; Remon, Jean Paul; Nopens, Ingmar; Vander Heyden, Yvan; De Beer, Thomas
2017-01-30
Mixing of raw materials (drug+polymer) in the investigated mini pharma melt extruder is achieved by using co-rotating conical twin screws and an internal recirculation channel. In-line Raman spectroscopy was implemented in the barrels, allowing monitoring of the melt during processing. The aim of this study was twofold: to investigate (I) the influence of key process parameters (screw speed - barrel temperature) upon the product solid-state transformation during processing of a sustained release formulation in recirculation mode; (II) the influence of process parameters (screw speed - barrel temperature - recirculation time) upon mixing of a crystalline drug (tracer) in an amorphous polymer carrier by means of residence time distribution (RTD) measurements. The results indicated a faster mixing endpoint with increasing screw speed. Processing a high drug load formulation above the drug melting temperature resulted in the production of amorphous drug whereas processing below the drug melting point produced solid dispersions with partially amorphous/crystalline drug. Furthermore, increasing the screw speed resulted in lower drug crystallinity of the solid dispersion. RTD measurements elucidated the improved mixing capacity when using the recirculation channel. In-line Raman spectroscopy has shown to be an adequate PAT-tool for product solid-state monitoring and elucidation of the mixing behavior during processing in a mini extruder. Copyright © 2016 Elsevier B.V. All rights reserved.
Holographic digital microscopy in on-line process control
NASA Astrophysics Data System (ADS)
Osanlou, Ardeshir
2011-09-01
This article investigates the feasibility of real-time three-dimensional imaging of microscopic objects within various emulsions while being produced in specialized production vessels. The study is particularly relevant to on-line process monitoring and control in chemical, pharmaceutical, food, cleaning, and personal hygiene industries. Such processes are often dynamic and the materials cannot be measured once removed from the production vessel. The technique reported here is applicable to three-dimensional characterization analyses on stirred fluids in small reaction vessels. Relatively expensive pulsed lasers have been avoided through the careful control of the speed of the moving fluid in relation to the speed of the camera exposure and the wavelength of the continuous wave laser used. The ultimate aim of the project is to introduce a fully robust and compact digital holographic microscope as a process control tool in a full size specialized production vessel.
NASA Astrophysics Data System (ADS)
Tsai, Yi-Pei; Hsieh, Ting-Huan; Lin, Chrong Jung; King, Ya-Chin
2017-09-01
A novel device for monitoring plasma-induced damage in the back-end-of-line (BEOL) process with charge splitting capability is first-time proposed and demonstrated. This novel charge splitting in situ recorder (CSIR) can independently trace the amount and polarity of plasma charging effects during the manufacturing process of advanced fin field-effect transistor (FinFET) circuits. Not only does it reveal the real-time and in situ plasma charging levels on the antennas, but it also separates positive and negative charging effect and provides two independent readings. As CMOS technologies push for finer metal lines in the future, the new charge separation scheme provides a powerful tool for BEOL process optimization and further device reliability improvements.
Nagy, Brigitta; Farkas, Attila; Gyürkés, Martin; Komaromy-Hiller, Szofia; Démuth, Balázs; Szabó, Bence; Nusser, Dávid; Borbás, Enikő; Marosi, György; Nagy, Zsombor Kristóf
2017-09-15
The integration of Process Analytical Technology (PAT) initiative into the continuous production of pharmaceuticals is indispensable for reliable production. The present paper reports the implementation of in-line Raman spectroscopy in a continuous blending and tableting process of a three-component model pharmaceutical system, containing caffeine as model active pharmaceutical ingredient (API), glucose as model excipient and magnesium stearate as lubricant. The real-time analysis of API content, blend homogeneity, and tablet content uniformity was performed using a Partial Least Squares (PLS) quantitative method. The in-line Raman spectroscopic monitoring showed that the continuous blender was capable of producing blends with high homogeneity, and technological malfunctions can be detected by the proposed PAT method. The Raman spectroscopy-based feedback control of the API feeder was also established, creating a 'Process Analytically Controlled Technology' (PACT), which guarantees the required API content in the produced blend. This is, to the best of the authors' knowledge, the first ever application of Raman-spectroscopy in continuous blending and the first Raman-based feedback control in the formulation technology of solid pharmaceuticals. Copyright © 2017 Elsevier B.V. All rights reserved.
Wireless Sensor Network for Electric Transmission Line Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alphenaar, Bruce
Generally, federal agencies tasked to oversee power grid reliability are dependent on data from grid infrastructure owners and operators in order to obtain a basic level of situational awareness. Since there are many owners and operators involved in the day-to-day functioning of the power grid, the task of accessing, aggregating and analyzing grid information from these sources is not a trivial one. Seemingly basic tasks such as synchronizing data timestamps between many different data providers and sources can be difficult as evidenced during the post-event analysis of the August 2003 blackout. In this project we investigate the efficacy and costmore » effectiveness of deploying a network of wireless power line monitoring devices as a method of independently monitoring key parts of the power grid as a complement to the data which is currently available to federal agencies from grid system operators. Such a network is modeled on proprietary power line monitoring technologies and networks invented, developed and deployed by Genscape, a Louisville, Kentucky based real-time energy information provider. Genscape measures transmission line power flow using measurements of electromagnetic fields under overhead high voltage transmission power lines in the United States and Europe. Opportunities for optimization of the commercial power line monitoring technology were investigated in this project to enable lower power consumption, lower cost and improvements to measurement methodologies. These optimizations were performed in order to better enable the use of wireless transmission line monitors in large network deployments (perhaps covering several thousand power lines) for federal situational awareness needs. Power consumption and cost reduction were addressed by developing a power line monitor using a low power, low cost wireless telemetry platform known as the ''Mote''. Motes were first developed as smart sensor nodes in wireless mesh networking applications. On such a platform, it has been demonstrated in this project that wireless monitoring units can effectively deliver real-time transmission line power flow information for less than $500 per monitor. The data delivered by such a monitor has during the course of the project been integrated with a national grid situational awareness visualization platform developed by Oak Ridge National Laboratory. Novel vibration energy scavenging methods based on piezoelectric cantilevers were also developed as a proposed method to power such monitors, with a goal of further cost reduction and large-scale deployment. Scavenging methods developed during the project resulted in 50% greater power output than conventional cantilever-based vibrational energy scavenging devices typically used to power smart sensor nodes. Lastly, enhanced and new methods for electromagnetic field sensing using multi-axis magnetometers and infrared reflectometry were investigated for potential monitoring applications in situations with a high density of power lines or high levels of background 60 Hz noise in order to isolate power lines of interest from other power lines in close proximity. The goal of this project was to investigate and demonstrate the feasibility of using small form factor, highly optimized, low cost, low power, non-contact, wireless electric transmission line monitors for delivery of real-time, independent power line monitoring for the US power grid. The project was divided into three main types of activity as follows; (1) Research into expanding the range of applications for non-contact power line monitoring to enable large scale low cost sensor network deployments (Tasks 1, 2); (2) Optimization of individual sensor hardware components to reduce size, cost and power consumption and testing in a pilot field study (Tasks 3,5); and (3) Demonstration of the feasibility of using the data from the network of power line monitors via a range of custom developed alerting and data visualization applications to deliver real-time information to federal agencies and others tasked with grid reliability (Tasks 6,8).« less
Development of monitoring and control system for a mine main fan based on frequency converter
NASA Astrophysics Data System (ADS)
Zhang, Y. C.; Zhang, R. W.; Kong, X. Z.; Y Gong, J.; Chen, Q. G.
2013-12-01
In the process of mine exploitation, the requirement of air flow rate often changes. The procedure of traditional control mode of the fan is complex and it is hard to meet the worksite requirement for air. This system is based on Principal Computer (PC) monitoring system and high performance PLC control system. In this system, the frequency converter is adapted to adjust the fan speed and the air of worksite can be regulated steplessly. The function of the monitoring and control system contains on-line monitoring and centralized control. The system can monitor the parameters of fan in real-time, control the operation of frequency converter, as well as, control the fan and its accessory equipments. At the same time, the automation level of the system is highly, the field equipments can be monitored and controlled automatically. So, the system is an important safeguard for mine production.
Serio, Livia Maria; Palumbo, Davide; De Filippis, Luigi Alberto Ciro; Galietti, Umberto; Ludovico, Antonio Domenico
2016-02-23
A study of the Friction Stir Welding (FSW) process was carried out in order to evaluate the influence of process parameters on the mechanical properties of aluminum plates (AA5754-H111). The process was monitored during each test by means of infrared cameras in order to correlate temperature information with eventual changes of the mechanical properties of joints. In particular, two process parameters were considered for tests: the welding tool rotation speed and the welding tool traverse speed. The quality of joints was evaluated by means of destructive and non-destructive tests. In this regard, the presence of defects and the ultimate tensile strength (UTS) were investigated for each combination of the process parameters. A statistical analysis was carried out to assess the correlation between the thermal behavior of joints and the process parameters, also proving the capability of Infrared Thermography for on-line monitoring of the quality of joints.
Serio, Livia Maria; Palumbo, Davide; De Filippis, Luigi Alberto Ciro; Galietti, Umberto; Ludovico, Antonio Domenico
2016-01-01
A study of the Friction Stir Welding (FSW) process was carried out in order to evaluate the influence of process parameters on the mechanical properties of aluminum plates (AA5754-H111). The process was monitored during each test by means of infrared cameras in order to correlate temperature information with eventual changes of the mechanical properties of joints. In particular, two process parameters were considered for tests: the welding tool rotation speed and the welding tool traverse speed. The quality of joints was evaluated by means of destructive and non-destructive tests. In this regard, the presence of defects and the ultimate tensile strength (UTS) were investigated for each combination of the process parameters. A statistical analysis was carried out to assess the correlation between the thermal behavior of joints and the process parameters, also proving the capability of Infrared Thermography for on-line monitoring of the quality of joints. PMID:28773246
NASA Astrophysics Data System (ADS)
Y Tao, S.; Zhang, X. Z.; Cai, H. W.; Li, P.; Feng, Y.; Zhang, T. C.; Li, J.; Wang, W. S.; Zhang, X. K.
2017-12-01
The pulse current method for partial discharge detection is generally applied in type testing and other off-line tests of electrical equipment at delivery. After intensive analysis of the present situation and existing problems of partial discharge detection in switch cabinets, this paper designed the circuit principle and signal extraction method for partial discharge on-line detection based on a high-voltage presence indicating systems (VPIS), established a high voltage switch cabinet partial discharge on-line detection circuit based on the pulse current method, developed background software integrated with real-time monitoring, judging and analyzing functions, carried out a real discharge simulation test on a real-type partial discharge defect simulation platform of a 10KV switch cabinet, and verified the sensitivity and validity of the high-voltage switch cabinet partial discharge on-line monitoring device based on the pulse current method. The study presented in this paper is of great significance for switch cabinet maintenance and theoretical study on pulse current method on-line detection, and has provided a good implementation method for partial discharge on-line monitoring devices for 10KV distribution network equipment.
INTERNATIONAL SOURCE WATER TOXICITY MONITORING CONSORTIUM
Many researchers in the field of time-relevant, on-line toxicity monitors for source water protection believe that some mechanism to guide and prioritize research in this emerging field would be beneficial. On-line toxicity monitors are tools designed to screen water quality and ...
Monitoring of the secondary drying in freeze-drying of pharmaceuticals.
Fissore, Davide; Pisano, Roberto; Barresi, Antonello A
2011-02-01
This paper is focused on the in-line monitoring of the secondary drying phase of a lyophilization process. An innovative software sensor is presented to estimate reliably the residual moisture in the product and the time required to complete secondary drying, that is, to reach the target value of the residual moisture or of the desorption rate. Such results are obtained by coupling a mathematical model of the process and the in-line measurement of the solvent desorption rate and by means of the pressure rise test or another sensors (e.g., windmills, laser sensors) that can measure the vapor flux in the drying chamber. The proposed method does not require extracting any vial during the operation or using expensive sensors to measure off-line the residual moisture. Moreover, it does not require any preliminary experiment to determine the relationship between the desorption rate and residual moisture in the product. The effectiveness of the proposed approach is demonstrated by means of experiments carried out in a pilot-scale apparatus: in this case, some vials were extracted from the drying chamber and the moisture content was measured to validate the estimations provided by the soft-sensor. Copyright © 2010 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Zhang, Zhu; Li, Hongbin; Tang, Dengping; Hu, Chen; Jiao, Yang
2017-10-01
Metering performance is the key parameter of an electronic voltage transformer (EVT), and it requires high accuracy. The conventional off-line calibration method using a standard voltage transformer is not suitable for the key equipment in a smart substation, which needs on-line monitoring. In this article, we propose a method for monitoring the metering performance of an EVT on-line based on cyber-physics correlation analysis. By the electrical and physical properties of a substation running in three-phase symmetry, the principal component analysis method is used to separate the metering deviation caused by the primary fluctuation and the EVT anomaly. The characteristic statistics of the measured data during operation are extracted, and the metering performance of the EVT is evaluated by analyzing the change in statistics. The experimental results show that the method successfully monitors the metering deviation of a Class 0.2 EVT accurately. The method demonstrates the accurate evaluation of on-line monitoring of the metering performance on an EVT without a standard voltage transformer.
NASA Astrophysics Data System (ADS)
E. Romero, Carlos; De Saro, Robert
Coal is a non-uniform material with large inherent variability in composition, and other important properties, such as calorific value and ash fusion temperature. This quality variability is very important when coal is used as fuel in steam generators, since it affects boiler operation and control, maintenance and availability, and the extent and treatment of environmental pollution associated with coal combustion. On-line/in situ monitoring of coal before is fed into a boiler is a necessity. A very few analytical techniques like X-ray fluorescence and prompt gamma neutron activation analysis are available commercially with enough speed and sophistication of data collection for continuous coal monitoring. However, there is still a need for a better on-line/in situ technique that has higher selectivity, sensitivity, accuracy and precision, and that is safer and has a lower installation and operating costs than the other options. Laser induced breakdown spectroscopy (LIBS) is ideal for coal monitoring in boiler applications as it need no sample preparation, it is accurate and precise it is fast, and it can detect all of the elements of concern to the coal-fired boiler industry. LIBS data can also be adapted with advanced data processing techniques to provide real-time information required by boiler operators nowadays. This chapter summarizes development of LIBS for on-line/in situ coal applications in utility boilers.
Khorasani, Milad; Amigo, José M; Sun, Changquan Calvin; Bertelsen, Poul; Rantanen, Jukka
2015-06-01
In the present study the application of near-infrared chemical imaging (NIR-CI) supported by chemometric modeling as non-destructive tool for monitoring and assessing the roller compaction and tableting processes was investigated. Based on preliminary risk-assessment, discussion with experts and current work from the literature the critical process parameter (roll pressure and roll speed) and critical quality attributes (ribbon porosity, granule size, amount of fines, tablet tensile strength) were identified and a design space was established. Five experimental runs with different process settings were carried out which revealed intermediates (ribbons, granules) and final products (tablets) with different properties. Principal component analysis (PCA) based model of NIR images was applied to map the ribbon porosity distribution. The ribbon porosity distribution gained from the PCA based NIR-CI was used to develop predictive models for granule size fractions. Predictive methods with acceptable R(2) values could be used to predict the granule particle size. Partial least squares regression (PLS-R) based model of the NIR-CI was used to map and predict the chemical distribution and content of active compound for both roller compacted ribbons and corresponding tablets. In order to select the optimal process, setting the standard deviation of tablet tensile strength and tablet weight for each tablet batch was considered. Strong linear correlation between tablet tensile strength and amount of fines and granule size was established, respectively. These approaches are considered to have a potentially large impact on quality monitoring and control of continuously operating manufacturing lines, such as roller compaction and tableting processes. Copyright © 2015 Elsevier B.V. All rights reserved.
Chemical sensors for space applications
NASA Technical Reports Server (NTRS)
Bonting, Sjoerd L.
1992-01-01
The payload of the Space Station Freedom will include sensors for frequent monitoring of the water recycling process and for measuring the many biochemical parameters related to onboard experiments. This paper describes the sensor technologies and the types of transducers and selectors considered for these sensors. Particular attention is given to such aspects of monitoring of the water recycling process as the types of water use, the sources of water and their hazards, the sensor systems for monitoring, microbial monitoring, and monitoring toxic metals and organics. An approach for monitoring water recycling is suggested, which includes microbial testing with a potentiometric device (which should be in first line of tests), the use of an ion-selective electrode for inorganic ion determinations, and the use of optic fiber techniques for the determination of total organic carbon.
Vibration Sensor Monitoring of Nickel-Titanium Alloy Turning for Machinability Evaluation.
Segreto, Tiziana; Caggiano, Alessandra; Karam, Sara; Teti, Roberto
2017-12-12
Nickel-Titanium (Ni-Ti) alloys are very difficult-to-machine materials causing notable manufacturing problems due to their unique mechanical properties, including superelasticity, high ductility, and severe strain-hardening. In this framework, the aim of this paper is to assess the machinability of Ni-Ti alloys with reference to turning processes in order to realize a reliable and robust in-process identification of machinability conditions. An on-line sensor monitoring procedure based on the acquisition of vibration signals was implemented during the experimental turning tests. The detected vibration sensorial data were processed through an advanced signal processing method in time-frequency domain based on wavelet packet transform (WPT). The extracted sensorial features were used to construct WPT pattern feature vectors to send as input to suitably configured neural networks (NNs) for cognitive pattern recognition in order to evaluate the correlation between input sensorial information and output machinability conditions.
Vibration Sensor Monitoring of Nickel-Titanium Alloy Turning for Machinability Evaluation
Segreto, Tiziana; Karam, Sara; Teti, Roberto
2017-01-01
Nickel-Titanium (Ni-Ti) alloys are very difficult-to-machine materials causing notable manufacturing problems due to their unique mechanical properties, including superelasticity, high ductility, and severe strain-hardening. In this framework, the aim of this paper is to assess the machinability of Ni-Ti alloys with reference to turning processes in order to realize a reliable and robust in-process identification of machinability conditions. An on-line sensor monitoring procedure based on the acquisition of vibration signals was implemented during the experimental turning tests. The detected vibration sensorial data were processed through an advanced signal processing method in time-frequency domain based on wavelet packet transform (WPT). The extracted sensorial features were used to construct WPT pattern feature vectors to send as input to suitably configured neural networks (NNs) for cognitive pattern recognition in order to evaluate the correlation between input sensorial information and output machinability conditions. PMID:29231864
Nakano, Yoshio; Katakuse, Yoshimitsu; Azechi, Yasutaka
2018-06-01
An attempt to apply X-Ray Fluorescence (XRF) analysis to evaluate small particle coating process as a Process Analytical Technologies (PAT) was made. The XRF analysis was used to monitor coating level in small particle coating process with at-line manner. The small particle coating process usually consists of multiple coating processes. This study was conducted by a simple coating particles prepared by first coating of a model compound (DL-methionine) and second coating by talc on spherical microcrystalline cellulose cores. The particles with two layered coating are enough to demonstrate the small particle coating process. From the result by the small particle coating process, it was found that the XRF signal played different roles, resulting that XRF signals by first coating (layering) and second coating (mask coating) could demonstrate the extent with different mechanisms for the coating process. Furthermore, the particle coating of the different particle size has also been investigated to evaluate size effect of these coating processes. From these results, it was concluded that the XRF could be used as a PAT in monitoring particle coating processes and become powerful tool in pharmaceutical manufacturing.
Study of Gallium Arsenide Etching in a DC Discharge in Low-Pressure HCl-Containing Mixtures
NASA Astrophysics Data System (ADS)
Dunaev, A. V.; Murin, D. B.
2018-04-01
Halogen-containing plasmas are often used to form topological structures on semiconductor surfaces; therefore, spectral monitoring of the etching process is an important diagnostic tool in modern electronics. In this work, the emission spectra of gas discharges in mixtures of hydrogen chloride with argon, chlorine, and hydrogen in the presence of a semiconducting gallium arsenide plate were studied. Spectral lines and bands of the GaAs etching products appropriate for monitoring the etching rate were determined. It is shown that the emission intensity of the etching products is proportional to the GaAs etching rate in plasmas of HCl mixtures with Ar and Cl2, which makes it possible to monitor the etching process in real time by means of spectral methods.
On line instrument systems for monitoring steam turbogenerators
NASA Astrophysics Data System (ADS)
Clapis, A.; Giorgetti, G.; Lapini, G. L.; Benanti, A.; Frigeri, C.; Gadda, E.; Mantino, E.
A computerized real time data acquisition and data processing for the diagnosis of malfunctioning of steam turbogenerator systems is described. Pressure, vibration and temperature measurements are continuously collected from standard or special sensors including startup or stop events. The architecture of the monitoring system is detailed. Examples of the graphics output are presented. It is shown that such a system allows accurate diagnosis and the possibility of creating a data bank to describe the dynamic characteristics of the machine park.
[Assessment of SUSARs. Clinical evaluation of single cases in terms of regulatory requirements].
Wroblewski, H; Schmickler, M
2005-04-01
In the course of implementing the European directives on pharmaceutical law, focus is set on suspected unexpected serious adverse reactions (SUSARs). SUSARs are essential for expedited reporting to authorities and ethics committees. During on-line monitoring of the study, the investigator documents all adverse events. Serious adverse events are forwarded to the sponsor in due time. The sponsor identifies SUSARs for expedited reporting. Clinical causality assessment between the investigational product and the adverse event is substantial in this process. This requires a balanced clinical assessment of all case relevant aspects and information available reflecting the complexity of the specific case, which cannot be covered by algorithms in general. In the setting of on-line monitoring, SUSARs ensure the safety of the patient and the study. In addition, SUSARs are relevant for generation of the safety profile of the substance.
NASA Astrophysics Data System (ADS)
Su, Huaizhi; Li, Hao; Kang, Yeyuan; Wen, Zhiping
2018-02-01
Seepage is one of key factors which affect the levee engineering safety. The seepage danger without timely detection and rapid response may likely lead to severe accidents such as seepage failure, slope instability, and even levee break. More than 90 percent of levee break events are caused by the seepage. It is very important for seepage behavior identification to determine accurately saturation line in levee engineering. Furthermore, the location of saturation line has a major impact on slope stability in levee engineering. Considering the structure characteristics and service condition of levee engineering, the distributed optical fiber sensing technology is introduced to implement the real-time observation of saturation line in levee engineering. The distributed optical fiber temperature sensor system (DTS)-based monitoring principle of saturation line in levee engineering is investigated. An experimental platform, which consists of DTS, heating system, water-supply system, auxiliary analysis system and levee model, is designed and constructed. The monitoring experiment of saturation line in levee model is implemented on this platform. According to the experimental results, the numerical relationship between moisture content and thermal conductivity in porous medium is identified. A line heat source-based distributed optical fiber method obtaining the thermal conductivity in porous medium is developed. A DTS-based approach is proposed to monitor the saturation line in levee engineering. The embedment pattern of optical fiber for monitoring saturation line is presented.
Section 7 reactor incident file general information from 1945
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1969-01-10
At 0308 on January 10, 1966, both B and C Reactors ``scrammed`` due to an electrical fault on Line C2-L8 caused by a raccoon coming in contact with the 13-8 KV line on top of transformer No. 2 at 182-B Building. Line C2-L8 relayed out at the 151-B Building. Details of the occurrence at 151-B are covered in the attachment. C-Reactor scrammed due to reduced voltage on the pressure monitor system. The reduction in voltage caused the auxiliary relays of the pressure monitor ground detector to open, de-energizing the end result relays PSR and PSRA. The safety circuit trip identificationmore » system displayed ``Pressure Monitor`` and ``Ground Detector.`` B-Reactor scrammed by a power failure signal from 190-B Building. The power failure relays for pump numbers 1 and 3 opened due to these pumps contributing power to the fault. The power failure relays at 190-B remained open long enough for the end result relays PF and PFA to open. Since these relays are timed delayed, 0.26 seconds, the power failure relays must have remained open at least that long. At the 190-B Building the steam turbines started due to the power failure relays for pump numbers 1 and 3 opening. The main process pumps remained stable and continued to supply normal flow to the reactor. Pumps were tripped from the line at 182-B and 183-B Buildings. The surge suppressors cycled normally and the turbine export pumps started as a result of low export line pressure. No power equipment was affected in C Area.« less
Peters, Johanna; Bartscher, Kathrin; Döscher, Claas; Taute, Wolfgang; Höft, Michael; Knöchel, Reinhard; Breitkreutz, Jörg
2017-08-01
Microwave resonance technology (MRT) is known as a process analytical technology (PAT) tool for moisture measurements in fluid-bed granulation. It offers a great potential for wet granulation processes even where the suitability of near-infrared (NIR) spectroscopy is limited, e.g. colored granules, large variations in bulk density. However, previous sensor systems operating around a single resonance frequency showed limitations above approx. 7.5% granule moisture. This paper describes the application of a novel sensor working with four resonance frequencies. In-line data of all four resonance frequencies were collected and further processed. Based on calculation of density-independent microwave moisture values multiple linear regression (MLR) models using Karl-Fischer titration (KF) as well as loss on drying (LOD) as reference methods were build. Rapid, reliable in-process moisture control (RMSEP≤0.5%) even at higher moisture contents was achieved. Copyright © 2017 Elsevier B.V. All rights reserved.
Transgenic mouse lines for non-invasive ratiometric monitoring of intracellular chloride
Batti, Laura; Mukhtarov, Marat; Audero, Enrica; Ivanov, Anton; Paolicelli, Rosa Chiara; Zurborg, Sandra; Gross, Cornelius; Bregestovski, Piotr; Heppenstall, Paul A.
2013-01-01
Chloride is the most abundant physiological anion and participates in a variety of cellular processes including trans-epithelial transport, cell volume regulation, and regulation of electrical excitability. The development of tools to monitor intracellular chloride concentration ([Cli]) is therefore important for the evaluation of cellular function in normal and pathological conditions. Recently, several Cl-sensitive genetically encoded probes have been described which allow for non-invasive monitoring of [Cli]. Here we describe two mouse lines expressing a CFP-YFP-based Cl probe called Cl-Sensor. First, we generated transgenic mice expressing Cl-Sensor under the control of the mouse Thy1 mini promoter. Cl-Sensor exhibited good expression from postnatal day two (P2) in neurons of the hippocampus and cortex, and its level increased strongly during development. Using simultaneous whole-cell monitoring of ionic currents and Cl-dependent fluorescence, we determined that the apparent EC50 for Cli was 46 mM, indicating that this line is appropriate for measuring neuronal [Cli] in postnatal mice. We also describe a transgenic mouse reporter line for Cre-dependent conditional expression of Cl-Sensor, which was targeted to the Rosa26 locus and by incorporating a strong exogenous promoter induced robust expression upon Cre-mediated recombination. We demonstrate high levels of tissue-specific expression in two different Cre-driver lines targeting cells of the myeloid lineage and peripheral sensory neurons. Using these mice the apparent EC50 for Cli was estimated to be 61 and 54 mM in macrophages and DRG, respectively. Our data suggest that these mouse lines will be useful models for ratiometric monitoring of Cli in specific cell types in vivo. PMID:23734096
Spectroscopy for Industrial Applications: High-Temperature Processes
NASA Astrophysics Data System (ADS)
Fateev, Alexander; Grosch, Helge; Clausen, Sonnik; Barton, Emma J.; Yurchenko, Sergei N.; Tennyson, Jonathan
2014-06-01
The continuous development of the spectroscopic databases brings new perspectives in the environmental and industrial on-line process control, monitoring and stimulates further optical sensor developments. This is because no calibration gases are needed and, in general, temperature-dependent spectral absorption features gases of interest for a specific instrument can in principle be calculated by knowing only the gas temperature and pressure in the process under investigation/monitoring. The latest HITRAN-2012 database contains IR/UV spectral data for 47 molecules and it is still growing. However use of HITRAN is limited to low-temperature processes (< 400 K) and therefor can be used for absorption spectra calculations at limited temperature/pressure ranges. For higher temperatures, the HITEMP-2010 database is available. Only a few molecules CO2, H2O, CO and NO are those of interest for e.g. various combustion and astronomical applications are included. In the recent few years, several efforts towards a development of hot line lists have been made; those have been implemented in the latest HITRAN2012 database1. High-resolution absorption measurements of NH3 (IR, 0.1 cm-1) and phenol (UV, 0.019 nm) on a flow gas cell2 up to 800 K are presented. Molecules are of great interest in various high-temperature environments including exoplanets, combustion and gasification. Measured NH3 hot lines have been assigned and spectra have been compared with that obtained by calculations based on the BYTe hot line list1. High-temperature NH3 absorption spectra have been used in the analysis of in situ high-resolution IR absorption measurements on the producer gas in low-temperature gasification process on a large scale. High-resolution UV temperature-dependent absorption cross-sections of phenol are reported for the first time. All UV data have been calibrated by relevant GC/MS measurements. Use of the data is demonstrated by the analysis of in situ UV absorption measurements on a small-scale low-temperature gasifier. A comparison between in situ, gas extraction and conventional gas sampling measurements is presented. Overall the presentation shows an example of successful industrial and academic partnerships within the framework of national and international ongoing projects.
In-line quality control of moving objects by means of spectral-domain OCT
NASA Astrophysics Data System (ADS)
Markl, Daniel; Hannesschläger, Günther; Buchsbaum, Andreas; Sacher, Stephan; Khinast, Johannes G.; Leitner, Michael
2014-08-01
In-line quality control of intermediate and final products is essential in various industries. This may imply determining the thickness of a foil or evaluating the homogeneity of coating applied to a pharmaceutical tablet. Such a qualitative and quantitative monitoring in a depth-resolved manner can be accomplished using optical coherence tomography (OCT). In-line quality control based on OCT requires additional consideration of motion effects for the system design as well as for data interpretation. This study focuses on transverse motion effects that can arise in spectral-domain (SD-) OCT systems. The impact of a transverse movement is analyzed for a constant relative speed difference up to 0.7 m/s between sample and sensor head. In particular, transverse motion is affecting OCT system properties such as the beam displacement (distance between adjacent A-scans) and transverse resolution. These properties were evaluated theoretically and experimentally for OCT images of a resolution target and pharmaceutical film-coated tablets. Both theoretical and experimental analyses highlight the shift of the transverse resolution limiting factor from the optics to the beam displacement above a relative speed difference between sensor head and sample of 0.42 m/s (for the presented SD-OCT setup). Speeds above 0.4 m/s are often demanded when monitoring industrial processes, such as a coating process when producing film-coated tablets. This emphasizes the importance of a fast data acquisition when using OCT as in-line quality control tool.
Yu, Zhou; Reid, Jennifer C; Yang, Yan-Ping
2013-12-01
Protein aggregation is a common challenge in the manufacturing of biological products. It is possible to minimize the extent of aggregation through timely measurement and in-depth characterization of aggregation. In this study, we demonstrated the use of dynamic light scattering (DLS) to monitor inclusion body (IB) solubilization, protein refolding, and aggregation near the production line of a recombinant protein-based vaccine candidate. Our results were in good agreement with those measured by size-exclusion chromatography. DLS was also used to characterize the mechanism of aggregation. As DLS is a quick, nonperturbing technology, it can potentially be used as an at-line process analytical technology to ensure complete IB solubilization and aggregate-free refolding. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
High throughput wafer defect monitor for integrated metrology applications in photolithography
NASA Astrophysics Data System (ADS)
Rao, Nagaraja; Kinney, Patrick; Gupta, Anand
2008-03-01
The traditional approach to semiconductor wafer inspection is based on the use of stand-alone metrology tools, which while highly sensitive, are large, expensive and slow, requiring inspection to be performed off-line and on a lot sampling basis. Due to the long cycle times and sparse sampling, the current wafer inspection approach is not suited to rapid detection of process excursions that affect yield. The semiconductor industry is gradually moving towards deploying integrated metrology tools for real-time "monitoring" of product wafers during the manufacturing process. Integrated metrology aims to provide end-users with rapid feedback of problems during the manufacturing process, and the benefit of increased yield, and reduced rework and scrap. The approach of monitoring 100% of the wafers being processed requires some trade-off in sensitivity compared to traditional standalone metrology tools, but not by much. This paper describes a compact, low-cost wafer defect monitor suitable for integrated metrology applications and capable of detecting submicron defects on semiconductor wafers at an inspection rate of about 10 seconds per wafer (or 360 wafers per hour). The wafer monitor uses a whole wafer imaging approach to detect defects on both un-patterned and patterned wafers. Laboratory tests with a prototype system have demonstrated sensitivity down to 0.3 µm on un-patterned wafers and down to 1 µm on patterned wafers, at inspection rates of 10 seconds per wafer. An ideal application for this technology is preventing photolithography defects such as "hot spots" by implementing a wafer backside monitoring step prior to exposing wafers in the lithography step.
Software design of a remote real-time ECG monitoring system
NASA Astrophysics Data System (ADS)
Yu, Chengbo; Tao, Hongyan
2005-12-01
Heart disease is one of the main diseases that threaten the health and lives of human beings. At present, the normal remote ECG monitoring system has the disadvantages of a short testing distance and limitation of monitoring lines. Because of accident and paroxysmal disease, ECG monitoring has extended from the hospital to the family. Therefore, remote ECG monitoring through the Internet has the actual value and significance. The principle and design method of software of the remote dynamic ECG monitor was presented and discussed. The monitoring software is programmed with Delphi software based on client-sever interactive mode. The application program of the system, which makes use of multithreading technology, is shown to perform in an excellent manner. The program includes remote link users and ECG processing, i.e. ECG data's receiving, real-time displaying, recording and replaying. The system can connect many clients simultaneously and perform real-time monitoring to patients.
Low cost composite manufacturing utilizing intelligent pultrusion and resin transfer molding (IPRTM)
NASA Astrophysics Data System (ADS)
Bradley, James E.; Wysocki, Tadeusz S., Jr.
1993-02-01
This article describes an innovative method for the economical manufacturing of large, intricately-shaped tubular composite parts. Proprietary intelligent process control techniques are combined with standard pultrusion and RTM methodologies to provide high part throughput, performance, and quality while substantially reducing scrap, rework costs, and labor requirements. On-line process monitoring and control is achieved through a smart tooling interface consisting of modular zone tiles installed on part-specific die assemblies. Real-time archiving of process run parameters provides enhanced SPC and SQC capabilities.
Lin, Hungyen; May, Robert K; Evans, Michael J; Zhong, Shuncong; Gladden, Lynn F; Shen, Yaochun; Zeitler, J Axel
2015-01-01
A novel in-line technique utilising pulsed terahertz radiation for direct measurement of the film coating thickness of individual tablets during the coating process was previously developed and demonstrated on a production-scale coater. Here, we use this technique to monitor the evolution of tablet film coating thickness and its inter-tablet variability during the coating process under a number of different process conditions that have been purposefully induced in the production-scale coating process. The changes that were introduced to the coating process include removing the baffles from the coater, adding uncoated tablets to the running process, halting the drum, blockage of spray guns and changes to the spray rate. The terahertz sensor was able to pick up the resulting changes in average coating thickness in the coating drum and we report the impact of these process changes on the resulting coating quality. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:2513–2522, 2015 PMID:26037660
Using PAT to accelerate the transition to continuous API manufacturing.
Gouveia, Francisca F; Rahbek, Jesper P; Mortensen, Asmus R; Pedersen, Mette T; Felizardo, Pedro M; Bro, Rasmus; Mealy, Michael J
2017-01-01
Significant improvements can be realized by converting conventional batch processes into continuous ones. The main drivers include reduction of cost and waste, increased safety, and simpler scale-up and tech transfer activities. Re-designing the process layout offers the opportunity to incorporate a set of process analytical technologies (PAT) embraced in the Quality-by-Design (QbD) framework. These tools are used for process state estimation, providing enhanced understanding of the underlying variability in the process impacting quality and yield. This work describes a road map for identifying the best technology to speed-up the development of continuous processes while providing the basis for developing analytical methods for monitoring and controlling the continuous full-scale reaction. The suitability of in-line Raman, FT-infrared (FT-IR), and near-infrared (NIR) spectroscopy for real-time process monitoring was investigated in the production of 1-bromo-2-iodobenzene. The synthesis consists of three consecutive reaction steps including the formation of an unstable diazonium salt intermediate, which is critical to secure high yield and avoid formation of by-products. All spectroscopic methods were able to capture critical information related to the accumulation of the intermediate with very similar accuracy. NIR spectroscopy proved to be satisfactory in terms of performance, ease of installation, full-scale transferability, and stability to very adverse process conditions. As such, in-line NIR was selected to monitor the continuous full-scale production. The quantitative method was developed against theoretical concentration values of the intermediate since representative sampling for off-line reference analysis cannot be achieved. The rapid and reliable analytical system allowed the following: speeding up the design of the continuous process and a better understanding of the manufacturing requirements to ensure optimal yield and avoid unreacted raw materials and by-products in the continuous reactor effluent. Graphical Abstract Using PAT to accelerate the transition to continuous API manufacturing.
Direct Monitoring of Trace Atmospheric Species via Ion Trap Mass Spectrometry
NASA Technical Reports Server (NTRS)
Palmer, P. T.; Pearson, Richard; Saimonson, Jay D.; Wong, Carla M.; Lawless, James G. (Technical Monitor)
1994-01-01
There is an ever-increasing emphasis on the part of government agencies, academia, and industry on enhancing our understanding of atmospheric processes and assessing the impact of human activities on these processes. While issues such as the ozone hole and rising levels of greenhouse gases have received major attention. relatively little is known about the types, concentrations, sources, and sinks of hydrocarbons in the troposphere and stratosphere. Such information would be of tremendous utility in assessing the roles of various anthropogenic and biogenic processes on global carbon cycles. An ion trap mass spectrometer has been developed for monitoring trace levels of hydrocarbons in the atmosphere on NASA's DC-8 "flying laboratory". This aircraft is used to provide measurements in support of a number of "Mission to Planet Earth" activities and tropospheric chemistry experiments. In past missions, specific compounds have been monitored via highly specialized instrumentation, fast GO, or collection of whole air samples for subsequent ground-based analysis. The ion trap has several features. including small size. excellent sensitivity, and broad applicability, which make it highly atttrat:ive for atmospheric monitoring. The design of this instrument, its air sampling interface. and the various complications associated with aircraft-deployment will be described. Data showing the sensitivity of the instrument for detecting hydrocarbons at mixing ratios below one part-per-billion, and the use of MS/MS for direct, on-line, real-time monitoring will be presented.
NASA Technical Reports Server (NTRS)
Sauer, Richard L. (Inventor); Akse, James R. (Inventor); Thompson, John O. (Inventor); Atwater, James E. (Inventor)
1999-01-01
Ammonia monitor and method of use are disclosed. A continuous, real-time determination of the concentration of ammonia in an aqueous process stream is possible over a wide dynamic range of concentrations. No reagents are required because pH is controlled by an in-line solid-phase base. Ammonia is selectively transported across a membrane from the process stream to an analytical stream to an analytical stream under pH control. The specific electrical conductance of the analytical stream is measured and used to determine the concentration of ammonia.
Clinical skills: cardiac rhythm recognition and monitoring.
Sharman, Joanna
With technological advances, changes in provision of healthcare services and increasing pressure on critical care services, ward patients' severity of illness is ever increasing. As such, nurses need to develop their skills and knowledge to care for their client group. Competency in cardiac rhythm monitoring is beneficial to identify changes in cardiac status, assess response to treatment, diagnosis and post-surgical monitoring. This paper describes the basic anatomy and physiology of the heart and its conduction system, and explains a simple and easy to remember process of analysing cardiac rhythms (Resuscitation Council UK, 2000) that can be used in first-line assessment to assist healthcare practitioners in providing care to their patients.
Recent progress in online ultrasonic process monitoring
NASA Astrophysics Data System (ADS)
Wen, Szu-Sheng L.; Chen, Tzu-Fang; Ramos-Franca, Demartonne; Nguyen, Ky T.; Jen, Cheng-Kuei; Ihara, Ikuo; Derdouri, A.; Garcia-Rejon, Andres
1998-03-01
On-line ultrasonic monitoring of polymer co-extrusion and gas-assisted injection molding are presented. During the co- extrusion of high density polyethylene and Santoprene ultrasonic sensors consisting of piezoelectric transducers and clad ultrasonic buffer rods are used to detect the interface between these two polymers and the stability of the extrusion. The same ultrasonic sensor also measures the surface temperature of the extruded polymer. The results indicate that temperature measurements using ultrasound have a faster response time than those obtained by conventional thermocouple. In gas-assisted injection molding the polymer and gas flow front positions are monitored simultaneously. This information may be used to control the plunger movement.
Fast neutron-gamma discrimination on neutron emission profile measurement on JT-60U.
Ishii, K; Shinohara, K; Ishikawa, M; Baba, M; Isobe, M; Okamoto, A; Kitajima, S; Sasao, M
2010-10-01
A digital signal processing (DSP) system is applied to stilbene scintillation detectors of the multichannel neutron emission profile monitor in JT-60U. Automatic analysis of the neutron-γ pulse shape discrimination is a key issue to diminish the processing time in the DSP system, and it has been applied using the two-dimensional (2D) map. Linear discriminant function is used to determine the dividing line between neutron events and γ-ray events on a 2D map. In order to verify the validity of the dividing line determination, the pulse shape discrimination quality is evaluated. As a result, the γ-ray contamination in most of the beam heating phase was negligible compared with the statistical error with 10 ms time resolution.
Fast neutron-gamma discrimination on neutron emission profile measurement on JT-60U
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishii, K.; Okamoto, A.; Kitajima, S.
2010-10-15
A digital signal processing (DSP) system is applied to stilbene scintillation detectors of the multichannel neutron emission profile monitor in JT-60U. Automatic analysis of the neutron-{gamma} pulse shape discrimination is a key issue to diminish the processing time in the DSP system, and it has been applied using the two-dimensional (2D) map. Linear discriminant function is used to determine the dividing line between neutron events and {gamma}-ray events on a 2D map. In order to verify the validity of the dividing line determination, the pulse shape discrimination quality is evaluated. As a result, the {gamma}-ray contamination in most of themore » beam heating phase was negligible compared with the statistical error with 10 ms time resolution.« less
Final cook temperature monitoring
NASA Astrophysics Data System (ADS)
Stewart, John; Matthews, Michael; Glasco, Marc
2006-04-01
Fully cooked, ready-to-eat products represent one of the fastest growing markets in the meat and poultry industries. Modern meat cooking facilities typically cook chicken strips and nuggets at rates of 6000 lbs per hour, and it is a critical food safety issue to ensure the products on these lines are indeed fully cooked. Common practice now employs oven technicians to constantly measure final cook temperature with insertion-type thermocouple probes. Prior research has demonstrated that thermal imagery of chicken breasts and other products can be used to predict core temperature of products leaving an oven. In practice, implementation of a system to monitor core temperature can be difficult for several reasons. First, a wide variety of products are typically produced on the same production line and the system must adapt to all products. Second, the products can be often hard to find because they often leave the process in random order and may be touching or even overlapping. Another issue is finite measurement time which is typically only a few seconds. Finally, the system is subjected to a rigorous sanitation cycle and must hold up under wash down conditions. To address these problems, a calibrated 320x240 micro-bolometer camera was used to monitor the temperature of formed, breaded poultry products on a fully cooked production line for a period of one year. The study addressed the installation and operation of the system as well as the development of algorithms used to identify the product on a cluttered conveyor belt. It also compared the oven tech insertion probe measurements to the non-contact monitoring system performance.
Development of GUI Type On-Line Condition Monitoring Program for a Turboprop Engine Using Labview
NASA Astrophysics Data System (ADS)
Kong, Changduk; Kim, Keonwoo
2011-12-01
Recently, an aero gas turbine health monitoring system has been developed for precaution and maintenance action against faults or performance degradations of the advanced propulsion system which occurs in severe environments such as high altitude, foreign object damage particles, hot and heavy rain and snowy atmospheric conditions. However to establish this health monitoring system, the online condition monitoring program is firstly required, and the program must monitor the engine performance trend through comparison between measured engine performance data and base performance results calculated by base engine performance model. This work aims to develop a GUI type on-line condition monitoring program for the PT6A-67 turboprop engine of a high altitude and long endurance operation UAV using LabVIEW. The base engine performance of the on-line condition monitoring program is simulated using component maps inversely generated from the limited performance deck data provided by engine manufacturer. The base engine performance simulation program is evaluated because analysis results by this program agree well with the performance deck data. The proposed on-line condition program can monitor the real engine performance as well as the trend through precise comparison between clean engine performance results calculated by the base performance simulation program and measured engine performance signals. In the development phase of this monitoring system, a signal generation module is proposed to evaluate the proposed online monitoring system. For user friendly purpose, all monitoring program are coded by LabVIEW, and monitoring examples are demonstrated using the proposed GUI type on-condition monitoring program.
Großhans, Steffen; Rüdt, Matthias; Sanden, Adrian; Brestrich, Nina; Morgenstern, Josefine; Heissler, Stefan; Hubbuch, Jürgen
2018-04-27
Fourier-transform infrared spectroscopy (FTIR) is a well-established spectroscopic method in the analysis of small molecules and protein secondary structure. However, FTIR is not commonly applied for in-line monitoring of protein chromatography. Here, the potential of in-line FTIR as a process analytical technology (PAT) in downstream processing was investigated in three case studies addressing the limits of currently applied spectroscopic PAT methods. A first case study exploited the secondary structural differences of monoclonal antibodies (mAbs) and lysozyme to selectively quantify the two proteins with partial least squares regression (PLS) giving root mean square errors of cross validation (RMSECV) of 2.42 g/l and 1.67 g/l, respectively. The corresponding Q 2 values are 0.92 and, respectively, 0.99, indicating robust models in the calibration range. Second, a process separating lysozyme and PEGylated lysozyme species was monitored giving an estimate of the PEGylation degree of currently eluting species with RMSECV of 2.35 g/l for lysozyme and 1.24 g/l for PEG with Q 2 of 0.96 and 0.94, respectively. Finally, Triton X-100 was added to a feed of lysozyme as a typical process-related impurity. It was shown that the species could be selectively quantified from the FTIR 3D field without PLS calibration. In summary, the proposed PAT tool has the potential to be used as a versatile option for monitoring protein chromatography. It may help to achieve a more complete implementation of the PAT initiative by mitigating limitations of currently used techniques. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fleischer, Christian; Waag, Wladislaw; Heyn, Hans-Martin; Sauer, Dirk Uwe
2014-08-01
Lithium-ion battery systems employed in high power demanding systems such as electric vehicles require a sophisticated monitoring system to ensure safe and reliable operation. Three major states of the battery are of special interest and need to be constantly monitored, these include: battery state of charge (SoC), battery state of health (capcity fade determination, SoH), and state of function (power fade determination, SoF). In a series of two papers, we propose a system of algorithms based on a weighted recursive least quadratic squares parameter estimator, that is able to determine the battery impedance and diffusion parameters for accurate state estimation. The functionality was proven on different battery chemistries with different aging conditions. The first paper investigates the general requirements on BMS for HEV/EV applications. In parallel, the commonly used methods for battery monitoring are reviewed to elaborate their strength and weaknesses in terms of the identified requirements for on-line applications. Special emphasis will be placed on real-time capability and memory optimized code for cost-sensitive industrial or automotive applications in which low-cost microcontrollers must be used. Therefore, a battery model is presented which includes the influence of the Butler-Volmer kinetics on the charge-transfer process. Lastly, the mass transport process inside the battery is modeled in a novel state-space representation.
Pasion, Editha; Good, Levell; Tizon, Jisebelle; Krieger, Staci; O'Kier, Catherine; Taylor, Nicole; Johnson, Jennifer; Horton, Carrie M; Peterson, Mary
2010-11-01
To determine if the monitor cursor-line feature on bedside monitors is accurate for measuring central venous and pulmonary artery pressures in cardiac surgery patients. Central venous and pulmonary artery pressures were measured via 3 methods (end-expiratory graphic recording, monitor cursor-line display, and monitor digital display) in a convenience sample of postoperative cardiac surgery patients. Pressures were measured twice during both mechanical ventilation and spontaneous breathing. Analysis of variance was used to determine differences between measurement methods and the percentage of monitor pressures that differed by 4 mm Hg or more from the measurement obtained from the graphic recording. Significance level was set at P less than .05. Twenty-five patients were studied during mechanical ventilation (50 measurements) and 21 patients during spontaneous breathing (42 measurements). Measurements obtained via the 3 methods did not differ significantly for either type of pressure (P > .05). Graphically recorded pressures and measurements obtained via the monitor cursor-line or digital display methods differed by 4 mm Hg or more in 4% and 6% of measurements, respectively, during mechanical ventilation and 4% and 11%, respectively, during spontaneous breathing. The monitor cursor-line method for measuring central venous and pulmonary artery pressures may be a reasonable alternative to the end-expiratory graphic recording method in hemodynamically stable, postoperative cardiac surgery patients. Use of the digital display on the bedside monitor may result in larger discrepancies from the graphically recorded pressures than when the cursor-line method is used, particularly in spontaneously breathing patients.
NASA Astrophysics Data System (ADS)
Prasetyo, Hoedi; Sugiarto, Yohanes; Nur Rosyidi, Cucuk
2018-03-01
Conveyor is a very useful equipment to replace manpower in transporting the goods. It highly influences the productivity, production capacity utilization and eventually the production cost. This paper proposes a system to monitor the utilization of conveyor at a low cost through a case study at powder coating process line in a sheet metal fabrication. Preliminary observation was conducted to identify the problems. The monitoring system was then built and executed. The system consists of two sub systems. First is sub system for collecting and transmitting the required data and the second is sub system for displaying the data. The system utilizes sensors, wireless data transfer and windows-based application. The test results showed that the whole system works properly. By this system, the productivity and status of the conveyor can be monitored in real time. This research enriches the development of conveyor monitoring system especially for implementation in small and medium enterprises.
Monitoring system and methods for a distributed and recoverable digital control system
NASA Technical Reports Server (NTRS)
Stange, Kent (Inventor); Hess, Richard (Inventor); Kelley, Gerald B (Inventor); Rogers, Randy (Inventor)
2010-01-01
A monitoring system and methods are provided for a distributed and recoverable digital control system. The monitoring system generally comprises two independent monitoring planes within the control system. The first monitoring plane is internal to the computing units in the control system, and the second monitoring plane is external to the computing units. The internal first monitoring plane includes two in-line monitors. The first internal monitor is a self-checking, lock-step-processing monitor with integrated rapid recovery capability. The second internal monitor includes one or more reasonableness monitors, which compare actual effector position with commanded effector position. The external second monitor plane includes two monitors. The first external monitor includes a pre-recovery computing monitor, and the second external monitor includes a post recovery computing monitor. Various methods for implementing the monitoring functions are also disclosed.
NASA Astrophysics Data System (ADS)
Shauly, Eitan N.; Levi, Shimon; Schwarzband, Ishai; Adan, Ofer; Latinsky, Sergey
2015-04-01
A fully automated silicon-based methodology for systematic analysis of electrical features is shown. The system was developed for process monitoring and electrical variability reduction. A mapping step was created by dedicated structures such as static-random-access-memory (SRAM) array or standard cell library, or by using a simple design rule checking run-set. The resulting database was then used as an input for choosing locations for critical dimension scanning electron microscope images and for specific layout parameter extraction then was input to SPICE compact modeling simulation. Based on the experimental data, we identified two items that must be checked and monitored using the method described here: transistor's sensitivity to the distance between the poly end cap and edge of active area (AA) due to AA rounding, and SRAM leakage due to a too close N-well to P-well. Based on this example, for process monitoring and variability analyses, we extensively used this method to analyze transistor gates having different shapes. In addition, analysis for a large area of high density standard cell library was done. Another set of monitoring focused on a high density SRAM array is also presented. These examples provided information on the poly and AA layers, using transistor parameters such as leakage current and drive current. We successfully define "robust" and "less-robust" transistor configurations included in the library and identified unsymmetrical transistors in the SRAM bit-cells. These data were compared to data extracted from the same devices at the end of the line. Another set of analyses was done to samples after Cu M1 etch. Process monitoring information on M1 enclosed contact was extracted based on contact resistance as a feedback. Guidelines for the optimal M1 space for different layout configurations were also extracted. All these data showed the successful in-field implementation of our methodology as a useful process monitoring method.
Monitoring techniques for the manufacture of tapered optical fibers.
Mullaney, Kevin; Correia, Ricardo; Staines, Stephen E; James, Stephen W; Tatam, Ralph P
2015-10-01
The use of a range of optical techniques to monitor the process of fabricating optical fiber tapers is investigated. Thermal imaging was used to optimize the alignment of the optical system; the transmission spectrum of the fiber was monitored to confirm that the tapers had the required optical properties and the strain induced in the fiber during tapering was monitored using in-line optical fiber Bragg gratings. Tapers were fabricated with diameters down to 5 μm and with waist lengths of 20 mm using single-mode SMF-28 fiber.
Neural manufacturing: a novel concept for processing modeling, monitoring, and control
NASA Astrophysics Data System (ADS)
Fu, Chi Y.; Petrich, Loren; Law, Benjamin
1995-09-01
Semiconductor fabrication lines have become extremely costly, and achieving a good return from such a high capital investment requires efficient utilization of these expensive facilities. It is highly desirable to shorten processing development time, increase fabrication yield, enhance flexibility, improve quality, and minimize downtime. We propose that these ends can be achieved by applying recent advances in the areas of artificial neural networks, fuzzy logic, machine learning, and genetic algorithms. We use the term neural manufacturing to describe such applications. This paper describes our use of artificial neural networks to improve the monitoring and control of semiconductor process.
Liu, Xuesong; Wu, Chunyan; Geng, Shu; Jin, Ye; Luan, Lianjun; Chen, Yong; Wu, Yongjiang
2015-01-01
This paper used near-infrared (NIR) spectroscopy for the on-line quantitative monitoring of water precipitation during Danhong injection. For these NIR measurements, two fiber optic probes designed to transmit NIR radiation through a 2 mm flow cell were used to collect spectra in real-time. Partial least squares regression (PLSR) was developed as the preferred chemometrics quantitative analysis of the critical intermediate qualities: the danshensu (DSS, (R)-3, 4-dihydroxyphenyllactic acid), protocatechuic aldehyde (PA), rosmarinic acid (RA), and salvianolic acid B (SAB) concentrations. Optimized PLSR models were successfully built and used for on-line detecting of the concentrations of DSS, PA, RA, and SAB of water precipitation during Danhong injection. Besides, the information of DSS, PA, RA, and SAB concentrations would be instantly fed back to site technical personnel for control and adjustment timely. The verification experiments determined that the predicted values agreed with the actual homologic value.
NASA Astrophysics Data System (ADS)
Gordienko, Vyacheslav M.; Kurochkin, Nikolay N.; Markov, V. N.; Panchenko, Vladislav Ya; Pogosov, G. A.; Chastukhin, E. M.
1995-02-01
A method is proposed for on-line monitoring of laser industrial processing. The method is based on optical heterodyne measurements of the Doppler backscattering signal generated in the interaction zone. Qualitative and quantitative information on hydrodynamic flows in the interaction zone can be obtained. A report is given of measurements, carried out at cw CO2 laser radiation intensities up to 1 kW cm-2, on the surfaces of a number of condensed materials irradiated in the monostatic interaction configuration.
Research on a Lamb Wave and Particle Filter-Based On-Line Crack Propagation Prognosis Method.
Chen, Jian; Yuan, Shenfang; Qiu, Lei; Cai, Jian; Yang, Weibo
2016-03-03
Prognostics and health management techniques have drawn widespread attention due to their ability to facilitate maintenance activities based on need. On-line prognosis of fatigue crack propagation can offer information for optimizing operation and maintenance strategies in real-time. This paper proposes a Lamb wave-particle filter (LW-PF)-based method for on-line prognosis of fatigue crack propagation which takes advantages of the possibility of on-line monitoring to evaluate the actual crack length and uses a particle filter to deal with the crack evolution and monitoring uncertainties. The piezoelectric transducers (PZTs)-based active Lamb wave method is adopted for on-line crack monitoring. The state space model relating to crack propagation is established by the data-driven and finite element methods. Fatigue experiments performed on hole-edge crack specimens have validated the advantages of the proposed method.
NASA Astrophysics Data System (ADS)
Janzhura, Alexander
A real-time information on geophysical processes in polar regions is very important for goals of Space Weather monitoring by the ground-based means. The modern communication systems and computer technology makes it possible to collect and process the data from remote sites without significant delays. A new acquisition equipment based on microprocessor modules and reliable in hush climatic conditions was deployed at the Roshydromet networks of geophysical observations in Arctic and is deployed at observatories in Antarctic. A contemporary system for on-line collecting and transmitting the geophysical data from the Arctic and Antarctic stations to AARI has been realized and the Polar Geophysical Center (PGC) arranged at AARI ensures the near-real time processing and analyzing the geophysical information from 11 stations in Arctic and 5 stations in Antarctic. The space weather monitoring by the ground based means is one of the main tasks standing before the Polar Geophysical Center. As studies by Troshichev and Janzhura, [2012] showed, the PC index characterizing the polar cap magnetic activity appeared to be an adequate indicator of the solar wind energy that entered into the magnetosphere and the energy that is accumulating in the magnetosphere. A great advantage of the PC index application over other methods based on satellite data is a permanent on-line availability of information about magnetic activity in both northern and southern polar caps. A special procedure agreed between Arctic and Antarctic Research Institute (AARI) and Space Institute of the Danish Technical University (DTUSpace) ensures calculation of the unified PC index in quasi-real time by magnetic data from the Thule and Vostok stations (see public site: http://pc-index.org). The method for estimation of AL and Dst indices (as indicators of state of the disturbed magnetosphere) based on data on foregoing PC indices has been elaborated and testified in the Polar Geophysical Center. It is demonstrated that the PC index can be successfully used to monitor the state of the magnetosphere (space weather monitoring) and the readiness of the magnetosphere to producing substorm or storm (space weather nowcasting).
Silva, A F; Sarraguça, M C; Fonteyne, M; Vercruysse, J; De Leersnyder, F; Vanhoorne, V; Bostijn, N; Verstraeten, M; Vervaet, C; Remon, J P; De Beer, T; Lopes, J A
2017-08-07
A multivariate statistical process control (MSPC) strategy was developed for the monitoring of the ConsiGma™-25 continuous tablet manufacturing line. Thirty-five logged variables encompassing three major units, being a twin screw high shear granulator, a fluid bed dryer and a product control unit, were used to monitor the process. The MSPC strategy was based on principal component analysis of data acquired under normal operating conditions using a series of four process runs. Runs with imposed disturbances in the dryer air flow and temperature, in the granulator barrel temperature, speed and liquid mass flow and in the powder dosing unit mass flow were utilized to evaluate the model's monitoring performance. The impact of the imposed deviations to the process continuity was also evaluated using Hotelling's T 2 and Q residuals statistics control charts. The influence of the individual process variables was assessed by analyzing contribution plots at specific time points. Results show that the imposed disturbances were all detected in both control charts. Overall, the MSPC strategy was successfully developed and applied. Additionally, deviations not associated with the imposed changes were detected, mainly in the granulator barrel temperature control. Copyright © 2017 Elsevier B.V. All rights reserved.
Apportionment of urban aerosol sources in Chongqing (China) using synergistic on-line techniques
NASA Astrophysics Data System (ADS)
Chen, Yang; Yang, Fumo
2016-04-01
The sources of ambient fine particulate matter (PM2.5) during wintertime at a background urban location in Chongqing (southwestern China) have been determined. Aerosol chemical composition analyses were performed using multiple on-line techniques, such as single particle aerosol mass spectrometer (SPAMS) for single particle chemical composition, on-line elemental carbon-organic carbon analyzer (on-line OC-EC), on-line X-ray fluorescence (XRF) for elements, and in-situ Gas and Aerosol Compositions monitor (IGAC) for water-soluble ions in PM2.5. All the datasets from these techniques have been adjusted to a 1-h time resolution for receptor model input. Positive matrix factorization (PMF) has been used for resolving aerosol sources. At least six sources, including domestic coal burning, biomass burning, dust, traffic, industrial and secondary/aged factors have been resolved and interpreted. The synergistic on-line techniques were helpful for identifying aerosol sources more clearly than when only employing the results from the individual techniques. This results are useful for better understanding of aerosol sources and atmospheric processes.
Long-Term Forest Hydrologic Monitoring in Coastal Carolinas
Devendra M. Amatya; Ge Sun; Carl C. Trettin; R. Wayne Skaggs
2003-01-01
Long-term hydrologic data are essential for understanding the hydrologic processes, as base line data for assessment of impacts and conservation of regional ecosystems, and for developing and testing eco-hydrological models. This study presents 6-year (1996-2001) of rainfall, water table and outflow data from a USDA Forest Service coastal experimental watershed on a...
Real-time monitoring of the laser hot-wire welding process
NASA Astrophysics Data System (ADS)
Liu, Wei; Liu, Shuang; Ma, Junjie; Kovacevic, Radovan
2014-04-01
The laser hot-wire welding process was investigated in this work. The dynamics of the molten pool during welding was visualized by using a high-speed charge-coupled device (CCD) camera assisted by a green laser as an illumination source. It was found that the molten pool is formed by the irradiation of the laser beam on the filler wire. The effect of the hot-wire voltage on the stability of the welding process was monitored by using a spectrometer that captured the emission spectrum of the laser-induced plasma plume. The spectroscopic study showed that when the hot-wire voltage is above 9 V a great deal of spatters occur, resulting in the instability of the plasma plume and the welding process. The effect of spatters on the plasma plume was shown by the identified spectral lines of the element Mn I. The correlation between the Fe I electron temperature and the weld-bead shape was studied. It was noted that the electron temperature of the plasma plume can be used to real-time monitor the variation of the weld-bead features and the formation of the weld defects.
Study on Remote Monitoring System of Crossing and Spanning Tangent Tower
NASA Astrophysics Data System (ADS)
Chen, Da-bing; Zhang, Nai-long; Zhang, Meng-ge; Wang, Ze-hua; Zhang, Yan
2017-05-01
In order to grasp the vibration state of overhead transmission line and ensure the operational security of transmission line, the remote monitoring system of crossing and spanning tangent tower was studied. By use of this system, the displacement, velocity and acceleration of the tower, and the local weather data are collected automatically, displayed on computer of remote monitoring centre through wireless network, real-time collection and transmission of vibration signals are realized. The applying results show that the system is excellent in reliability and accuracy and so on. The system can be used to remote monitoring of transmission tower of UHV power transmission lines and in large spanning areas.
Wu, Yongjiang; Jin, Ye; Ding, Haiying; Luan, Lianjun; Chen, Yong; Liu, Xuesong
2011-09-01
The application of near-infrared (NIR) spectroscopy for in-line monitoring of extraction process of scutellarein from Erigeron breviscapus (vant.) Hand-Mazz was investigated. For NIR measurements, two fiber optic probes designed to transmit NIR radiation through a 2 mm pathlength flow cell were utilized to collect spectra in real-time. High performance liquid chromatography (HPLC) was used as a reference method to determine scutellarein in extract solution. Partial least squares regression (PLSR) calibration model of Savitzky-Golay smoothing NIR spectra in the 5450-10,000 cm(-1) region gave satisfactory predictive results for scutellarein. The results showed that the correlation coefficients of calibration and cross validation were 0.9967 and 0.9811, respectively, and the root mean square error of calibration and cross validation were 0.044 and 0.105, respectively. Furthermore, both the moving block standard deviation (MBSD) method and conformity test were used to identify the end point of extraction process, providing real-time data and instant feedback about the extraction course. The results obtained in this study indicated that the NIR spectroscopy technique provides an efficient and environmentally friendly approach for fast determination of scutellarein and end point control of extraction process. Copyright © 2011 Elsevier B.V. All rights reserved.
Grounding explanations in evolving, diagnostic situations
NASA Technical Reports Server (NTRS)
Johannesen, Leila J.; Cook, Richard I.; Woods, David D.
1994-01-01
Certain fields of practice involve the management and control of complex dynamic systems. These include flight deck operations in commercial aviation, control of space systems, anesthetic management during surgery or chemical or nuclear process control. Fault diagnosis of these dynamic systems generally must occur with the monitored process on-line and in conjunction with maintaining system integrity.This research seeks to understand in more detail what it means for an intelligent system to function cooperatively, or as a 'team player' in complex, dynamic environments. The approach taken was to study human practitioners engaged in the management of a complex, dynamic process: anesthesiologists during neurosurgical operations. The investigation focused on understanding how team members cooperate in management and fault diagnosis and comparing this interaction to the situation with an Artificial Intelligence(AI) system that provides diagnoses and explanations. Of particular concern was to study the ways in which practitioners support one another in keeping aware of relevant information concerning the state of the monitored process and of the problem solving process.
Corporate ergonomics programme at BCM Airdrie. Boots Contract Manufacturing.
Smyth, Joanne
2003-01-01
The production processes at the BCM Airdrie site range from manual loading tasks in the manufacturing areas to high frequency packaging assembly tasks on the production lines. Both are jobs that are known to carry risk to musculoskeletal health, so an ergonomist was appointed to design and co-ordinate an ergonomics programme for the site to control these risks. This paper details the programme that has evolved to proactively manage musculoskeletal risks in the design of both new and existing equipment and processes. The ergonomics procedures described primarily involve the engineers from all areas of the factory, and the process for ergonomics involvement with engineering design projects is described. Shop-floor personnel involvement is considered to be an essential part of the programme and 'Ergonomics Champions' are being trained on the packing lines to monitor the risks that are sometimes introduced with the different designs of product packaging.
Estill, Janne; Salazar-Vizcaya, Luisa; Blaser, Nello; Egger, Matthias; Keiser, Olivia
2015-01-01
The cost-effectiveness of routine viral load (VL) monitoring of HIV-infected patients on antiretroviral therapy (ART) depends on various factors that differ between settings and across time. Low-cost point-of-care (POC) tests for VL are in development and may make routine VL monitoring affordable in resource-limited settings. We developed a software tool to study the cost-effectiveness of switching to second-line ART with different monitoring strategies, and focused on POC-VL monitoring. We used a mathematical model to simulate cohorts of patients from start of ART until death. We modeled 13 strategies (no 2nd-line, clinical, CD4 (with or without targeted VL), POC-VL, and laboratory-based VL monitoring, with different frequencies). We included a scenario with identical failure rates across strategies, and one in which routine VL monitoring reduces the risk of failure. We compared lifetime costs and averted disability-adjusted life-years (DALYs). We calculated incremental cost-effectiveness ratios (ICER). We developed an Excel tool to update the results of the model for varying unit costs and cohort characteristics, and conducted several sensitivity analyses varying the input costs. Introducing 2nd-line ART had an ICER of US$1651-1766/DALY averted. Compared with clinical monitoring, the ICER of CD4 monitoring was US$1896-US$5488/DALY averted and VL monitoring US$951-US$5813/DALY averted. We found no difference between POC- and laboratory-based VL monitoring, except for the highest measurement frequency (every 6 months), where laboratory-based testing was more effective. Targeted VL monitoring was on the cost-effectiveness frontier only if the difference between 1st- and 2nd-line costs remained large, and if we assumed that routine VL monitoring does not prevent failure. Compared with the less expensive strategies, the cost-effectiveness of routine VL monitoring essentially depends on the cost of 2nd-line ART. Our Excel tool is useful for determining optimal monitoring strategies for specific settings, with specific sex-and age-distributions and unit costs.
Estill, Janne; Salazar-Vizcaya, Luisa; Blaser, Nello; Egger, Matthias; Keiser, Olivia
2015-01-01
Background The cost-effectiveness of routine viral load (VL) monitoring of HIV-infected patients on antiretroviral therapy (ART) depends on various factors that differ between settings and across time. Low-cost point-of-care (POC) tests for VL are in development and may make routine VL monitoring affordable in resource-limited settings. We developed a software tool to study the cost-effectiveness of switching to second-line ART with different monitoring strategies, and focused on POC-VL monitoring. Methods We used a mathematical model to simulate cohorts of patients from start of ART until death. We modeled 13 strategies (no 2nd-line, clinical, CD4 (with or without targeted VL), POC-VL, and laboratory-based VL monitoring, with different frequencies). We included a scenario with identical failure rates across strategies, and one in which routine VL monitoring reduces the risk of failure. We compared lifetime costs and averted disability-adjusted life-years (DALYs). We calculated incremental cost-effectiveness ratios (ICER). We developed an Excel tool to update the results of the model for varying unit costs and cohort characteristics, and conducted several sensitivity analyses varying the input costs. Results Introducing 2nd-line ART had an ICER of US$1651-1766/DALY averted. Compared with clinical monitoring, the ICER of CD4 monitoring was US$1896-US$5488/DALY averted and VL monitoring US$951-US$5813/DALY averted. We found no difference between POC- and laboratory-based VL monitoring, except for the highest measurement frequency (every 6 months), where laboratory-based testing was more effective. Targeted VL monitoring was on the cost-effectiveness frontier only if the difference between 1st- and 2nd-line costs remained large, and if we assumed that routine VL monitoring does not prevent failure. Conclusion Compared with the less expensive strategies, the cost-effectiveness of routine VL monitoring essentially depends on the cost of 2nd-line ART. Our Excel tool is useful for determining optimal monitoring strategies for specific settings, with specific sex-and age-distributions and unit costs. PMID:25793531
Semi-automated Digital Imaging and Processing System for Measuring Lake Ice Thickness
NASA Astrophysics Data System (ADS)
Singh, Preetpal
Canada is home to thousands of freshwater lakes and rivers. Apart from being sources of infinite natural beauty, rivers and lakes are an important source of water, food and transportation. The northern hemisphere of Canada experiences extreme cold temperatures in the winter resulting in a freeze up of regional lakes and rivers. Frozen lakes and rivers tend to offer unique opportunities in terms of wildlife harvesting and winter transportation. Ice roads built on frozen rivers and lakes are vital supply lines for industrial operations in the remote north. Monitoring the ice freeze-up and break-up dates annually can help predict regional climatic changes. Lake ice impacts a variety of physical, ecological and economic processes. The construction and maintenance of a winter road can cost millions of dollars annually. A good understanding of ice mechanics is required to build and deem an ice road safe. A crucial factor in calculating load bearing capacity of ice sheets is the thickness of ice. Construction costs are mainly attributed to producing and maintaining a specific thickness and density of ice that can support different loads. Climate change is leading to warmer temperatures causing the ice to thin faster. At a certain point, a winter road may not be thick enough to support travel and transportation. There is considerable interest in monitoring winter road conditions given the high construction and maintenance costs involved. Remote sensing technologies such as Synthetic Aperture Radar have been successfully utilized to study the extent of ice covers and record freeze-up and break-up dates of ice on lakes and rivers across the north. Ice road builders often used Ultrasound equipment to measure ice thickness. However, an automated monitoring system, based on machine vision and image processing technology, which can measure ice thickness on lakes has not been thought of. Machine vision and image processing techniques have successfully been used in manufacturing to detect equipment failure and identify defective products at the assembly line. The research work in this thesis combines machine vision and image processing technology to build a digital imaging and processing system for monitoring and measuring lake ice thickness in real time. An ultra-compact USB camera is programmed to acquire and transmit high resolution imagery for processing with MATLAB Image Processing toolbox. The image acquisition and transmission process is fully automated; image analysis is semi-automated and requires limited user input. Potential design changes to the prototype and ideas on fully automating the imaging and processing procedure are presented to conclude this research work.
NASA Astrophysics Data System (ADS)
Gärtner, Claudia; Becker, Holger; Hlawatsch, Nadine; Klemm, Richard; Moche, Christian; Schattschneider, Sebastian; Frank, Rainer; Willems, Andreas
2015-05-01
The diverse human HLA (human leukocyte antigen) system is responsible for antigen presentation and recognition. It is essential for the immune system to maintain a stable defense line, but also is also involved in autoimmunity as well as metabolic disease. HLA-haplotype (HLA-B27), for instance, is associated with inflammatory diseases such as Bechterew's disease. The administration of the HIV drug Abacavir in combination with another HLA-haplotype (HLAB57) is associated with severe hypersensitivity reactions. Accordingly, the HLA status has to be monitored for diagnosis or prior to start of therapy. Along this line, a miniaturized microfluidic platform has been developed allowing performing the complete analytical process from "sample-in" to "answer-out" in a point-of-care environment. The main steps of the analytical cascade inside the integrated system are blood cell lysis and DNA isolation, DNA purification, real-time PCR and quantitative monitoring of the rise of a fluorescent signal appearing during the PCR based sequence amplification. All bio-analytical steps were intended to be performed inside one chip and will be actuated, controlled and monitored by a matching device. This report will show that all required processes are established and tested and all device components work well and interact with the functional modules on the chips in a harmonized fashion.
Warth, Benedikt; Rajkai, György; Mandenius, Carl-Fredrik
2010-05-03
Software sensors for monitoring and on-line estimation of critical bioprocess variables have mainly been used with standard bioreactor sensors, such as electrodes and gas analyzers, where algorithms in the software model have generated the desired state variables. In this article we propose that other on-line instruments, such as NIR probes and on-line HPLC, should be used to make more reliable and flexible software sensors. Five software sensor architectures were compared and evaluated: (1) biomass concentration from an on-line NIR probe, (2) biomass concentration from titrant addition, (3) specific growth rate from titrant addition, (4) specific growth rate from the NIR probe, and (5) specific substrate uptake rate and by-product rate from on-line HPLC and NIR probe signals. The software sensors were demonstrated on an Escherichia coli cultivation expressing a recombinant protein, green fluorescent protein (GFP), but the results could be extrapolated to other production organisms and product proteins. We conclude that well-maintained on-line instrumentation (hardware sensors) can increase the potential of software sensors. This would also strongly support the intentions with process analytical technology and quality-by-design concepts. 2010 Elsevier B.V. All rights reserved.
TCMS operations and maintenance philosophy
NASA Technical Reports Server (NTRS)
Buehler, David P.; Griffin, Rock E.
1992-01-01
The purpose is to describe the basic philosophies of operating and maintaining the Test, Control, and Monitor System (TCMS) equipment. TCMS is a complex and sophisticated checkout system. Operations and maintenance processes developed to support it will be based upon current experience, but will be focused on the specific needs of TCMS in support of Space Station Freedom Program (SSFP) and related activities. An overview of the operations and maintenance goals and philosophies are presented. The assumptions, roles and responsibilities, concepts and interfaces for operation, on-line maintenance, off-line support, and Operations and Maintenance (O&M) personnel training on all TCMS equipment located at KSC are described.
A review of microdialysis coupled to microchip electrophoresis for monitoring biological events
Saylor, Rachel A.; Lunte, Susan M.
2015-01-01
Microdialysis is a powerful sampling technique that enables monitoring of dynamic processes in vitro and in vivo. The combination of microdialysis with chromatographic or electrophoretic methods yields along with selective detection methods yields a “separation-based sensor” capable of monitoring multiple analytes in near real time. Analysis of microdialysis samples requires techniques that are fast (<1 min), have low volume requirements (nL–pL), and, ideally, can be employed on-line. Microchip electrophoresis fulfills these requirements and also permits the possibility of integrating sample preparation and manipulation with detection strategies directly on-chip. Microdialysis coupled to microchip electrophoresis has been employed for monitoring biological events in vivo and in vitro. This review discusses technical considerations for coupling microdialysis sampling and microchip electrophoresis, including various interface designs, and current applications in the field. PMID:25637011
NASA Technical Reports Server (NTRS)
Jules, Kenol; Lin, Paul P.
2006-01-01
One of the responsibilities of the NASA Glenn Principal Investigator Microgravity Services is to support NASA sponsored investigators in the area of reduced-gravity acceleration data analysis, interpretation and the monitoring of the reduced-gravity environment on-board various carriers. With the International Space Station currently operational, a significant amount of acceleration data is being down-linked and processed on ground for both the space station onboard environment characterization (and verification) and scientific experiments. Therefore, to help principal investigator teams monitor the acceleration level on-board the International Space Station to avoid undesirable impact on their experiment, when possible, the NASA Glenn Principal Investigator Microgravity Services developed an artificial intelligence monitoring system, which detects in near real time any change in the environment susceptible to affect onboard experiments. The main objective of the monitoring system is to help research teams identify the vibratory disturbances that are active at any instant of time onboard the International Space Station that might impact the environment in which their experiment is being conducted. The monitoring system allows any space research scientist, at any location and at any time, to see the current acceleration level on-board the Space Station via the World Wide Web. From the NASA Glenn s Exploration Systems Division web site, research scientists can see in near real time the active disturbances, such as pumps, fans, compressor, crew exercise, re-boost, extra-vehicular activity, etc., and decide whether or not to continue operating or stopping (or making note of such activity for later correlation with science results) their experiments based on the g-level associated with that specific event. A dynamic graphical display accessible via the World Wide Web shows the status of all the vibratory disturbance activities with their degree of confidence as well as their g-level contribution to the environment. The system can detect both known and unknown vibratory disturbance activities. It can also perform trend analysis and prediction by analyzing past data over many Increments of the space station for selected disturbance activities. This feature can be used to monitor the health of onboard mechanical systems to detect and prevent potential system failure as well as for use by research scientists during their science results analysis. Examples of both real time on-line vibratory disturbance detection and off-line trend analysis are presented in this paper. Several soft computing techniques such as Kohonen s Self-Organizing Feature Map, Learning Vector Quantization, Back-Propagation Neural Networks, and Fuzzy Logic were used to design the system.
Schaefer, C; Lecomte, C; Clicq, D; Merschaert, A; Norrant, E; Fotiadu, F
2013-09-01
The final step of an active pharmaceutical ingredient (API) manufacturing synthesis process consists of a crystallization during which the API and residual solvent contents have to be quantified precisely in order to reach a predefined seeding point. A feasibility study was conducted to demonstrate the suitability of on-line NIR spectroscopy to control this step in line with new version of the European Medicines Agency (EMA) guideline [1]. A quantitative method was developed at laboratory scale using statistical design of experiments (DOE) and multivariate data analysis such as principal component analysis (PCA) and partial least squares (PLS) regression. NIR models were built to quantify the API in the range of 9-12% (w/w) and to quantify the residual methanol in the range of 0-3% (w/w). To improve the predictive ability of the models, the development procedure encompassed: outliers elimination, optimum model rank definition, spectral range and spectral pre-treatment selection. Conventional criteria such as, number of PLS factors, R(2), root mean square errors of calibration, cross-validation and prediction (RMSEC, RMSECV, RMSEP) enabled the selection of three model candidates. These models were tested in the industrial pilot plant during three technical campaigns. Results of the most suitable models were evaluated against to the chromatographic reference methods. Maximum relative bias of 2.88% was obtained about API target content. Absolute bias of 0.01 and 0.02% (w/w) respectively were achieved at methanol content levels of 0.10 and 0.13% (w/w). The repeatability was assessed as sufficient for the on-line monitoring of the 2 analytes. The present feasibility study confirmed the possibility to use on-line NIR spectroscopy as a PAT tool to monitor in real-time both the API and the residual methanol contents, in order to control the seeding of an API crystallization at industrial scale. Furthermore, the successful scale-up of the method proved its capability to be implemented in the manufacturing plant with the launch of the new API process. Copyright © 2013 Elsevier B.V. All rights reserved.
Status and Needs Research for On-line Monitoring of VOCs Emissions from Stationary Sources
NASA Astrophysics Data System (ADS)
Zhou, Gang; Wang, Qiang; Zhong, Qi; Zhao, Jinbao; Yang, Kai
2018-01-01
Based on atmospheric volatile organic compounds (VOCs) pollution control requirements during the twelfth-five year plan and the current status of monitoring and management at home and abroad, instrumental architecture and technical characteristics of continuous emission monitoring systems (CEMS) for VOCs emission from stationary sources are investigated and researched. Technological development needs of VOCs emission on-line monitoring techniques for stationary sources in china are proposed from the system sampling pretreatment technology and analytical measurement techniques.
Single transmission line data acquisition system
Fasching, George E.
1984-01-01
A single transmission line interrogated multiple channel data acquisition system is provided in which a plurality of remote station/sensors monitor specific process variables and transmit measurement values over the single transmission line to a master station when addressed by the master station. Power for all remote stations (up to 980) is provided by driving the line with constant voltage supplied from the master station and automatically maintained independent of the number of remote stations directly connected to the line. The transmission line can be an RG-62 coaxial cable with lengths up to about 10,000 feet with branches up to 500 feet. The remote stations can be attached randomly along the line. The remote stations can be scanned at rates up to 980 channels/second.
On the value of information for Industry 4.0
NASA Astrophysics Data System (ADS)
Omenzetter, Piotr
2018-03-01
Industry 4.0, or the fourth industrial revolution, that blurs the boundaries between the physical and the digital, is underpinned by vast amounts of data collected by sensors that monitor processes and components of smart factories that continuously communicate amongst one another and with the network hubs via the internet of things. Yet, collection of those vast amounts of data, which are inherently imperfect and burdened with uncertainties and noise, entails costs including hardware and software, data storage, processing, interpretation and integration into the decision-making process to name just the few main expenditures. This paper discusses a framework for rationalizing the adoption of (big) data collection for Industry 4.0. The pre-posterior Bayesian decision analysis is used to that end and industrial process evolution with time is conceptualized as a stochastic observable and controllable dynamical system. The chief underlying motivation is to be able to use the collected data in such a way as to derive the most benefit from them by trading off successfully the management of risks pertinent to failure of the monitored processes and/or its components against the cost of data collection, processing and interpretation. This enables formulation of optimization problems for data collection, e.g. for selecting the monitoring system type, topology and/or time of deployment. An illustrative example utilizing monitoring of the operation of an assembly line and optimizing the topology of a monitoring system is provided to illustrate the theoretical concepts.
Intelligent composting assisted by a wireless sensing network.
López, Marga; Martinez-Farre, Xavier; Casas, Oscar; Quilez, Marcos; Polo, Jose; Lopez, Oscar; Hornero, Gemma; Pinilla, Mirta R; Rovira, Carlos; Ramos, Pedro M; Borges, Beatriz; Marques, Hugo; Girão, Pedro Silva
2014-04-01
Monitoring of the moisture and temperature of composting process is a key factor to obtain a quality product beyond the quality of raw materials. Current methodologies for monitoring these two parameters are time consuming for workers, sometimes not sufficiently reliable to help decision-making and thus are ignored in some cases. This article describes an advance on monitoring of composting process through a Wireless Sensor Network (WSN) that allows measurement of temperature and moisture in real time in multiple points of the composting material, the Compo-ball system. To implement such measurement capabilities on-line, a WSN composed of multiple sensor nodes was designed and implemented to provide the staff with an efficient monitoring composting management tool. After framing the problem, the objectives and characteristics of the WSN are briefly discussed and a short description of the hardware and software of the network's components are presented. Presentation and discussion of practical issues and results obtained with the WSN during a demonstration stage that took place in several composting sites concludes the paper. Copyright © 2014 Elsevier Ltd. All rights reserved.
Development of Field Information Monitoring System Based on the Internet of Things
NASA Astrophysics Data System (ADS)
Cai, Ken; Liang, Xiaoying; Wang, Keqiang
With the rapid development and wide application of electronics, communication and embedded system technologies, the global agriculture is changing from traditional agriculture that is to improve the production relying on the increase of labor, agricultural inputs to the new stage of modern agriculture with low yields, high efficiency, real-time and accuracy. On the other hand the research and development of the Internet of Things, which is an information network to connect objects, with the full capacity to perceive objects, and having the capabilities of reliable transmission and intelligence processing for information, allows us to obtain real-time information of anything. The application of the Internet of Things in field information online monitoring is an effective solution for present wired sensor monitoring system, which has much more disadvantages, such as high cost, the problems of laying lines and so on. In this paper, a novel field information monitoring system based on the Internet of Things is proposed. It can satisfy the requirements of multi-point measurement, mobility, convenience in the field information monitoring process. The whole structure of system is given and the key designs of system design are described in the hardware and software aspect. The studies have expanded current field information measurement methods and strengthen the application of the Internet of Things.
Qin, Qi-Zhong; Chen, Yu; Fu, Ting-Ting; Ding, Li; Han, Ling-Li; Li, Jian-Chao
2012-03-01
To understand electromagnetic radiation field strength and its influencing factors of certain 110-kV high-voltage lines in one urban area of Chongqing by measuring 110-kV high-voltage line's electromagnetic radiation level. According to the methodology as determined by the National Hygienic Standards, we selected certain adjacent residential buildings, high-voltage lines along a specific street and selected different distances around its vertical projection point as monitoring points. The levels of electromagnetic radiations were measured respectively. In this investigation within the frequency of 5-1,000 Hz both the electric field strength and magnetic field strength of each monitoring sites were lower than the public exposure standards as determined by the International Commission on Non-Ionizing Radiation Protection. However, the electrical field strength on the roof adjacent to the high-voltage lines was significantly higher than that as measured on the other floors in the same buildings (p < 0.05). The electromagnetic radiation measurements of different monitoring points, under the same high-voltage lines, showed the location which is nearer the high-voltage line maintain a consistently higher level of radiation than the more distant locations (p < 0.05). Electromagnetic radiation generated by high-voltage lines decreases proportionally to the distance from the lines. The buildings can to some extent shield (or absorb) the electric fields generated by high-voltage lines nearby. The electromagnetic radiation intensity near high-voltage lines may be mitigated or intensified by the manner in which the high-voltage lines are set up, and it merits attention for the potential impact on human health.
RTM Production Monitoring of the A380 Hinge Arm Droop Nose Mechanism: A Multi-Sensor Approach.
Chiesura, Gabriele; Lamberti, Alfredo; Yang, Yang; Luyckx, Geert; Van Paepegem, Wim; Vanlanduit, Steve; Vanfleteren, Jan; Degrieck, Joris
2016-06-14
This research presents a case study of production monitoring on an aerospace composite component: the hinge arm of the droop nose mechanism on the Airbus A380 wing leading edge. A sensor network composed of Fibre Bragg Gratings, capacitive sensors for cure monitoring and thermocouples was embedded in its fibre reinforced lay-up and measurements were acquired throughout its Resin Transfer Moulding production process. Two main challenges had to be overcome: first, the integration of the sensor lines in the existing Resin Transfer Moulding mould without modifying it; second, the demoulding of the component without damaging the sensor lines. The proposed embedding solution has proved successful. The wavelength shifts of the Fibre Bragg Gratings were observed from the initial production stages, over the resin injection, the complete curing of the resin and the cooling-down prior to demoulding. The sensors proved to be sensitive to detecting the resin flow front, vacuum and pressure increase into the mould and the temperature increase caused by the resin curing. Measurements were also acquired during the post-curing cycle. Residual strains during all steps of the process were derived from the sensors' wavelength shift, showing values up to 0.2% in compression. Moreover, the capacitive sensors were able to follow-up the curing degree during the production process. The sensors proved able to detect the resin flow front, whereas thermocouples could not measure an appreciable increase of temperature due to the fact that the resin had the same temperature as the mould.
RTM Production Monitoring of the A380 Hinge Arm Droop Nose Mechanism: A Multi-Sensor Approach
Chiesura, Gabriele; Lamberti, Alfredo; Yang, Yang; Luyckx, Geert; Van Paepegem, Wim; Vanlanduit, Steve; Vanfleteren, Jan; Degrieck, Joris
2016-01-01
This research presents a case study of production monitoring on an aerospace composite component: the hinge arm of the droop nose mechanism on the Airbus A380 wing leading edge. A sensor network composed of Fibre Bragg Gratings, capacitive sensors for cure monitoring and thermocouples was embedded in its fibre reinforced lay-up and measurements were acquired throughout its Resin Transfer Moulding production process. Two main challenges had to be overcome: first, the integration of the sensor lines in the existing Resin Transfer Moulding mould without modifying it; second, the demoulding of the component without damaging the sensor lines. The proposed embedding solution has proved successful. The wavelength shifts of the Fibre Bragg Gratings were observed from the initial production stages, over the resin injection, the complete curing of the resin and the cooling-down prior to demoulding. The sensors proved to be sensitive to detecting the resin flow front, vacuum and pressure increase into the mould and the temperature increase caused by the resin curing. Measurements were also acquired during the post-curing cycle. Residual strains during all steps of the process were derived from the sensors’ wavelength shift, showing values up to 0.2% in compression. Moreover, the capacitive sensors were able to follow-up the curing degree during the production process. The sensors proved able to detect the resin flow front, whereas thermocouples could not measure an appreciable increase of temperature due to the fact that the resin had the same temperature as the mould. PMID:27314347
An experimental system for spectral line ratio measurements in the TJ-II stellarator.
Zurro, B; Baciero, A; Fontdecaba, J M; Peláez, R; Jiménez-Rey, D
2008-10-01
The chord-integrated emissions of spectral lines have been monitored in the TJ-II stellarator by using a spectral system with time and space scanning capabilities and relative calibration over the entire UV-visible spectral range. This system has been used to study the line ratio of lines of different ionization stages of carbon (C(5+) 5290 A and C(4+) 2271 A) for plasma diagnostic purposes. The local emissivity of these ions has been reconstructed, for quasistationary profiles, by means of the inversion Fisher method described previously. The experimental line ratio is being empirically studied and in parallel a simple spectroscopic model has been developed to account for that ratio. We are investigating whether the role played by charge exchange processes with neutrals and the existence of non-Maxwellian electrons, intrinsic to Electron Cyclotron Resonance Heating (ECRH) heating, leave any distinguishable mark on this diagnostic method.
Farré, Maria José; Insa, Sara; Mamo, Julian; Barceló, Damià
2016-08-05
A new methodology based on on-line solid-phase extraction (SPE) ultra-high-performance-liquid chromatography coupled to a triple quadrupole mass spectrometer (UHPLC-MS-MS) for the determination of 15 individual anthropogenic N-nitrosodimethylamine (NDMA) precursors was developed. On-line SPE was performed by passing 2mL of the water sample through a Hypersil GOLD aQ column and chromatographic separation was done using a Kinetex Biphenyl column using methanol and 0.1% formic acid aqueous solution as a mobile phase. For unequivocal identification and confirmation, two selected reaction monitoring (SRM) transitions were monitored per compound. Quantification was performed by internal standard approach and matrix match calibration. The main advantages of the developed method are high sensitivity (limits of detection in the sub ng/L range), selectivity due to the use of tandem mass spectrometry, precision and minimum sample manipulation as well as fast analytical response. Process efficiency and recovery were also evaluated for all the target compounds. As part of the validation procedure, the method was applied in a sampling campaign for the analysis of influent and secondary effluent of a wastewater treatment plant (WWTP) in Girona, Spain. Additionally, the effluent from a nanofiltration (NF) membrane system used for water recycling was monitored. The percentage of NDMA formation explained by the measured precursors was also quantified. Copyright © 2016 Elsevier B.V. All rights reserved.
Mobile-based text recognition from water quality devices
NASA Astrophysics Data System (ADS)
Dhakal, Shanti; Rahnemoonfar, Maryam
2015-03-01
Measuring water quality of bays, estuaries, and gulfs is a complicated and time-consuming process. YSI Sonde is an instrument used to measure water quality parameters such as pH, temperature, salinity, and dissolved oxygen. This instrument is taken to water bodies in a boat trip and researchers note down different parameters displayed by the instrument's display monitor. In this project, a mobile application is developed for Android platform that allows a user to take a picture of the YSI Sonde monitor, extract text from the image and store it in a file on the phone. The image captured by the application is first processed to remove perspective distortion. Probabilistic Hough line transform is used to identify lines in the image and the corner of the image is then obtained by determining the intersection of the detected horizontal and vertical lines. The image is warped using the perspective transformation matrix, obtained from the corner points of the source image and the destination image, hence, removing the perspective distortion. Mathematical morphology operation, black-hat is used to correct the shading of the image. The image is binarized using Otsu's binarization technique and is then passed to the Optical Character Recognition (OCR) software for character recognition. The extracted information is stored in a file on the phone and can be retrieved later for analysis. The algorithm was tested on 60 different images of YSI Sonde with different perspective features and shading. Experimental results, in comparison to ground-truth results, demonstrate the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Jumaeri; Sulistyaningsih, T.; Alighiri, D.
2018-03-01
Salt is one of the primary ingredients that humans always need for various purposes, both for consumption and industry. The need for high-quality salt continues to increase, as long as industry growth. It must improve product quality through the development of salt production process technology. In this research, the quality monitoring of salt produced in Indonesia by evaporation of seawater on ponds lined using high-density polyethylene (HDPE) geomembrane has been studied. The manufacturing of salt carried out through the gradual precipitation principle on prepared ponds. HDPE geomembrane is used to coat evaporation ponds with viscosity 12-22°Be and crystallization ponds with a viscosity of 23°Be. The monitoring of the product is carried out in the particular periods during the salt production period. The result of control shows that the quality of salt produced in HDPE geomembrane coated salt ponds has an average NaCl content of 95.75%, so it has fulfilled with Indonesia National Standard (SNI), that is NaCl> 94.70%. The production of salt with HDPE geomembrane can improve the quality of salt product from NaCl 85.4% (conventional system) to 95.75%.
Bakri, Barbara; Weimer, Marco; Hauck, Gerrit; Reich, Gabriele
2015-11-01
Scope of the study was (1) to develop a lean quantitative calibration for real-time near-infrared (NIR) blend monitoring, which meets the requirements in early development of pharmaceutical products and (2) to compare the prediction performance of this approach with the results obtained from stratified sampling using a sample thief in combination with off-line high pressure liquid chromatography (HPLC) and at-line near-infrared chemical imaging (NIRCI). Tablets were manufactured from powder blends and analyzed with NIRCI and HPLC to verify the real-time results. The model formulation contained 25% w/w naproxen as a cohesive active pharmaceutical ingredient (API), microcrystalline cellulose and croscarmellose sodium as cohesive excipients and free-flowing mannitol. Five in-line NIR calibration approaches, all using the spectra from the end of the blending process as reference for PLS modeling, were compared in terms of selectivity, precision, prediction accuracy and robustness. High selectivity could be achieved with a "reduced" approach i.e. API and time saving approach (35% reduction of API amount) based on six concentration levels of the API with three levels realized by three independent powder blends and the additional levels obtained by simply increasing the API concentration in these blends. Accuracy and robustness were further improved by combining this calibration set with a second independent data set comprising different excipient concentrations and reflecting different environmental conditions. The combined calibration model was used to monitor the blending process of independent batches. For this model formulation the target concentration of the API could be achieved within 3 min indicating a short blending time. The in-line NIR approach was verified by stratified sampling HPLC and NIRCI results. All three methods revealed comparable results regarding blend end point determination. Differences in both mean API concentration and RSD values could be attributed to differences in effective sample size and thief sampling errors. This conclusion was supported by HPLC and NIRCI analysis of tablets manufactured from powder blends after different blending times. In summary, the study clearly demonstrates the ability to develop efficient and robust quantitative calibrations for real-time NIR powder blend monitoring with a reduced set of powder blends while avoiding any bias caused by physical sampling. Copyright © 2015 Elsevier B.V. All rights reserved.
Real Time, On Line Crop Monitoring and Analysis with Near Global Landsat-class Mosaics
NASA Astrophysics Data System (ADS)
Varlyguin, D.; Hulina, S.; Crutchfield, J.; Reynolds, C. A.; Frantz, R.
2015-12-01
The presentation will discuss the current status of GDA technology for operational, automated generation of 10-30 meter near global mosaics of Landsat-class data for visualization, monitoring, and analysis. Current version of the mosaic combines Landsat 8 and Landsat 7. Sentinel-2A imagery will be added once it is operationally available. The mosaics are surface reflectance calibrated and are analysis ready. They offer full spatial resolution and all multi-spectral bands of the source imagery. Each mosaic covers all major agricultural regions of the world and 16 day time window. 2014-most current dates are supported. The mosaics are updated in real-time, as soon as GDA downloads Landsat imagery, calibrates it to the surface reflectances, and generates data gap masks (all typically under 10 minutes for a Landsat scene). The technology eliminates the complex, multi-step, hands-on process of data preparation and provides imagery ready for repetitive, field-to-country analysis of crop conditions, progress, acreages, yield, and production. The mosaics can be used for real-time, on-line interactive mapping and time series drilling via GeoSynergy webGIS platform. The imagery is of great value for improved, persistent monitoring of global croplands and for the operational in-season analysis and mapping of crops across the globe in USDA FAS purview as mandated by the US government. The presentation will overview operational processing of Landsat-class mosaics in support of USDA FAS efforts and will look into 2015 and beyond.
Zhang, Li-fang; Wang, Fei; Yu, Li-bin; Yan, Jian-hua; Cen, Ke-fa
2015-06-01
In order to on-line measure the trace ammonia slip of the commercial power plant in the future, this research seeks to measure the trace ammonia by using tunable diode laser absorption spectroscopy under ambient temperature and pressure, and at different temperatures, and the measuring temperature is about 650 K in the power plant. In recent years lasers have become commercially available in the near-infrared where the transitions are much stronger, and ammonia's spectroscopy is pretty complicated and the overlapping lines are difficult to resolve. A group of ammonia transitions near 4 433.5 cm(-1) in the v2 +v3 combination band have been thoroughly selected for detecting lower concentration by analyzing its absorption characteristic and considering other absorption interference in combustion gases where H2O and CO2 mole fraction are very large. To illustrate the potential for NH3 concentration measurements, predictions for NH3, H2O and CO2 are simultaneously simulated, NH3 absorption lines near 4 433.5 cm(-1) wavelength meet weaker H2O absorption than the commercial NH3 lines, and there is almost no CO2 absorption, all the parameters are based on the HITRAN database, and an improved detection limit was obtained for interference-free NH3 monitoring, this 2.25 μm band has line strengths several times larger than absorption lines in the 1.53 μm band which was often used by NH3 sensors for emission monitoring and analyzing. The measurement system was developed with a new Herriott cell and a heated gas cell realizing fast absorption measurements of high resolution, and combined with direct absorption and wavelenguh modulation based on tunable diode laser absorption spectroscopy at different temperatures. The lorentzian line shape is dominant at ambient temperature and pressure, and the estimated detectivity is approximately 0.225 x 10(-6) (SNR = 1) for the directed absorption spectroscopy, assuming a noise-equivalent absorbance of 1 x 10(-4). The heated cell experiments with controlled the temperature were performed to validate the sensing strategy. Here the Wavelength Modulation Spectroscopy (WMS) strategy was usually used to measure lower gas concentration for high noise immunity to the non-absorption transmission losses. The great agreement 2f signal with the calibrated concentration is within the uncertainty at different temperatures by using simple digital signal processing such as multiple averages, wavelet analysis and so on. The denoise processing has a great advantage in application and implementation over other noise suppression techniques. The result provided a good basis for trace ammonia escape detection based on tunable diode laser absorption spectroscopy.
Maintaining the Health of Software Monitors
NASA Technical Reports Server (NTRS)
Person, Suzette; Rungta, Neha
2013-01-01
Software health management (SWHM) techniques complement the rigorous verification and validation processes that are applied to safety-critical systems prior to their deployment. These techniques are used to monitor deployed software in its execution environment, serving as the last line of defense against the effects of a critical fault. SWHM monitors use information from the specification and implementation of the monitored software to detect violations, predict possible failures, and help the system recover from faults. Changes to the monitored software, such as adding new functionality or fixing defects, therefore, have the potential to impact the correctness of both the monitored software and the SWHM monitor. In this work, we describe how the results of a software change impact analysis technique, Directed Incremental Symbolic Execution (DiSE), can be applied to monitored software to identify the potential impact of the changes on the SWHM monitor software. The results of DiSE can then be used by other analysis techniques, e.g., testing, debugging, to help preserve and improve the integrity of the SWHM monitor as the monitored software evolves.
On-line detection of key radionuclides for fuel-rod failure in a pressurized water reactor.
Qin, Guoxiu; Chen, Xilin; Guo, Xiaoqing; Ni, Ning
2016-08-01
For early on-line detection of fuel rod failure, the key radionuclides useful in monitoring must leak easily from failing rods. Yield, half-life, and mass share of fission products that enter the primary coolant also need to be considered in on-line analyses. From all the nuclides that enter the primary coolant during fuel-rod failure, (135)Xe and (88)Kr were ultimately chosen as crucial for on-line monitoring of fuel-rod failure. A monitoring system for fuel-rod failure detection for pressurized water reactor (PWR) based on the LaBr3(Ce) detector was assembled and tested. The samples of coolant from the PWR were measured using the system as well as a HPGe γ-ray spectrometer. A comparison showed the method was feasible. Finally, the γ-ray spectra of primary coolant were measured under normal operations and during fuel-rod failure. The two peaks of (135)Xe (249.8keV) and (88)Kr (2392.1keV) were visible, confirming that the method is capable of monitoring fuel-rod failure on-line. Copyright © 2016 Elsevier Ltd. All rights reserved.
Efficient implementation of neural network deinterlacing
NASA Astrophysics Data System (ADS)
Seo, Guiwon; Choi, Hyunsoo; Lee, Chulhee
2009-02-01
Interlaced scanning has been widely used in most broadcasting systems. However, there are some undesirable artifacts such as jagged patterns, flickering, and line twitters. Moreover, most recent TV monitors utilize flat panel display technologies such as LCD or PDP monitors and these monitors require progressive formats. Consequently, the conversion of interlaced video into progressive video is required in many applications and a number of deinterlacing methods have been proposed. Recently deinterlacing methods based on neural network have been proposed with good results. On the other hand, with high resolution video contents such as HDTV, the amount of video data to be processed is very large. As a result, the processing time and hardware complexity become an important issue. In this paper, we propose an efficient implementation of neural network deinterlacing using polynomial approximation of the sigmoid function. Experimental results show that these approximations provide equivalent performance with a considerable reduction of complexity. This implementation of neural network deinterlacing can be efficiently incorporated in HW implementation.
NASA Astrophysics Data System (ADS)
García Plaza, E.; Núñez López, P. J.
2018-01-01
On-line monitoring of surface finish in machining processes has proven to be a substantial advancement over traditional post-process quality control techniques by reducing inspection times and costs and by avoiding the manufacture of defective products. This study applied techniques for processing cutting force signals based on the wavelet packet transform (WPT) method for the monitoring of surface finish in computer numerical control (CNC) turning operations. The behaviour of 40 mother wavelets was analysed using three techniques: global packet analysis (G-WPT), and the application of two packet reduction criteria: maximum energy (E-WPT) and maximum entropy (SE-WPT). The optimum signal decomposition level (Lj) was determined to eliminate noise and to obtain information correlated to surface finish. The results obtained with the G-WPT method provided an in-depth analysis of cutting force signals, and frequency ranges and signal characteristics were correlated to surface finish with excellent results in the accuracy and reliability of the predictive models. The radial and tangential cutting force components at low frequency provided most of the information for the monitoring of surface finish. The E-WPT and SE-WPT packet reduction criteria substantially reduced signal processing time, but at the expense of discarding packets with relevant information, which impoverished the results. The G-WPT method was observed to be an ideal procedure for processing cutting force signals applied to the real-time monitoring of surface finish, and was estimated to be highly accurate and reliable at a low analytical-computational cost.
ON-LINE TOXICITY MONITORS AND WATERSHED EARLY WARNING SYSTEMS
A Water Quality Early Warning System using On-line Toxicity Monitors (OTMs) has been deployed in the East Fork of the Little Miami River, Clermont County, OH. Living organisms have long been used to determine the toxicity of environmental samples. With advancements in electronic ...
Optical Metrology for CIGS Solar Cell Manufacturing and its Cost Implications
NASA Astrophysics Data System (ADS)
Sunkoju, Sravan Kumar
Solar energy is a promising source of renewable energy which can meet the demand for clean energy in near future with advances in research in the field of photovoltaics and cost reduction by commercialization. Availability of a non-contact, in-line, real time robust process control strategies can greatly aid in reducing the gap between cell and module efficiencies, thereby leading to cost-effective large-scale manufacturing of high efficiency CIGS solar cells. In order to achieve proper process monitoring and control for the deposition of the functional layers of CuIn1-xGaxSe 2 (CIGS) based thin film solar cell, optical techniques such as spectroscopic reflectometry and polarimetry are advantageous because they can be set up in an unobtrusive manner in the manufacturing line, and collect data in-line and in-situ. The use of these techniques requires accurate optical models that correctly represent the properties of the layers being deposited. In this study, Spectroscopic ellipsometry (SE) has been applied for the characterization of each individual stage of CIGS layers deposited using the 3-stage co-evaporation process along with the other functional layers. Dielectric functions have been determined for the energy range from 0.7 eV to 5.1 eV. Critical-point line-shape analysis was used in this study to determine the critical point energies of the CIGS based layers. To control the compositional and thickness uniformity of all the functional layers during the fabrication of CIGS solar cells over large areas, multilayer photovoltaics (PV) stack optical models were developed with the help of extracted dielectric functions. In this study, mapping capability of RC2 spectroscopic ellipsometer was used to map all the functional layer thicknesses of a CIGS solar cell in order to probe the spatial non-uniformities that can affect the performance of a cell. The optical functions for each of the stages of CIGS 3-stage deposition process along with buffer layer and transparent conducting oxide (TCO) bi-layer, thus derived were used in a fiber optic-based spectroscopic reflectometry optical monitoring system installed in the pilot line at the PVMC's Halfmoon facility. Results obtained from this study show that the use of regular fiber optics, instead of polarization-maintaining fiber optics, is sufficient for the purpose of process monitoring. Also, the technique does not need to be used "in-situ", but the measurements can be taken in-line, and are applicable to a variety of deposition techniques used for different functional layers deposited on rigid or flexible substrates. In addition, effect of Cu concentration on the CIGS optical properties has been studied. Mixed CIGS/Cu2-xSe phase was observed at the surface at the end of the second stage of 3-stage deposition process, under Cu-rich conditions. A significant change in optical behavior of CIGS due to Cu2-xSe at the surface was observed under Cu-rich conditions, which can be used as end-point detection method to move from 2nd stage to 3rd stage in the deposition process. Developed optical functions were applied to in-line reflectance measurements not only to identify the Cu2-xSe phase at the surface but also to measure the thickness of the mixed CIGS/Cu2-xSe layer. This spectroscopic reflectometry based in-line process control technique can be used for end-point detection as well as to control thickness during the preparation of large area CIGS films. These results can assist in the development of optical process-control tools for the manufacturing of high quality CIGS based photovoltaic cells, increasing the uptime and yield of the production line. Finally, to understand the cost implications, low cost potential of two different deposition technologies has been studied on both rigid and flexible substrates with the help of cost analysis. Cost advantages of employing a contactless optics based process control technique have been investigated in order to achieve a low cost of < 0.5 $/W for CIGS module production. Based on cost analysis, one of the best strategies for achieving the low cost targets would be increasing manufacturing throughput, using roll-to-roll thin-film module manufacturing, with co-evaporation and chemical bath deposition processes for absorber and buffer layer respectively, while applying a low-cost process control technique such as spectroscopic reflectometry to improve module efficiencies and maintain high yield.
Baghbaderani, Behnam Ahmadian; Syama, Adhikarla; Sivapatham, Renuka; Pei, Ying; Mukherjee, Odity; Fellner, Thomas; Zeng, Xianmin; Rao, Mahendra S
2016-08-01
We have recently described manufacturing of human induced pluripotent stem cells (iPSC) master cell banks (MCB) generated by a clinically compliant process using cord blood as a starting material (Baghbaderani et al. in Stem Cell Reports, 5(4), 647-659, 2015). In this manuscript, we describe the detailed characterization of the two iPSC clones generated using this process, including whole genome sequencing (WGS), microarray, and comparative genomic hybridization (aCGH) single nucleotide polymorphism (SNP) analysis. We compare their profiles with a proposed calibration material and with a reporter subclone and lines made by a similar process from different donors. We believe that iPSCs are likely to be used to make multiple clinical products. We further believe that the lines used as input material will be used at different sites and, given their immortal status, will be used for many years or even decades. Therefore, it will be important to develop assays to monitor the state of the cells and their drift in culture. We suggest that a detailed characterization of the initial status of the cells, a comparison with some calibration material and the development of reporter sublcones will help determine which set of tests will be most useful in monitoring the cells and establishing criteria for discarding a line.
Islam, Muhammad T; Scoutaris, Nikolaos; Maniruzzaman, Mohammed; Moradiya, Hiren G; Halsey, Sheelagh A; Bradley, Michael S A; Chowdhry, Babur Z; Snowden, Martin J; Douroumis, Dennis
2015-10-01
The aim of the work reported herein was to implement process analytical technology (PAT) tools during hot melt extrusion (HME) in order to obtain a better understanding of the relationship between HME processing parameters and the extruded formulations. For the first time two in-line NIR probes (transmission and reflectance) have been coupled with HME to monitor the extrusion of the water insoluble drug indomethacin (IND) in the presence of Soluplus (SOL) or Kollidon VA64 hydrophilic polymers. In-line extrusion monitoring of sheets, produced via a specially designed die, was conducted at various drug/polymer ratios and processing parameters. Characterisation of the extruded transparent sheets was also undertaken by using DSC, XRPD and Raman mapping. Analysis of the experimental findings revealed the production of molecular solutions where IND is homogeneously blended (ascertained by Raman mapping) in the polymer matrices, as it acts as a plasticizer for both hydrophilic polymers. PCA analysis of the recorded NIR signals showed that the screw speed used in HME affects the recorded spectra but not the homogeneity of the embedded drug in the polymer sheets. The IND/VA64 and IND/SOL extruded sheets displayed rapid dissolution rates with 80% and 30% of the IND being released, respectively within the first 20min. Copyright © 2015 Elsevier B.V. All rights reserved.
CNC machine tool's wear diagnostic and prognostic by using dynamic Bayesian networks
NASA Astrophysics Data System (ADS)
Tobon-Mejia, D. A.; Medjaher, K.; Zerhouni, N.
2012-04-01
The failure of critical components in industrial systems may have negative consequences on the availability, the productivity, the security and the environment. To avoid such situations, the health condition of the physical system, and particularly of its critical components, can be constantly assessed by using the monitoring data to perform on-line system diagnostics and prognostics. The present paper is a contribution on the assessment of the health condition of a computer numerical control (CNC) tool machine and the estimation of its remaining useful life (RUL). The proposed method relies on two main phases: an off-line phase and an on-line phase. During the first phase, the raw data provided by the sensors are processed to extract reliable features. These latter are used as inputs of learning algorithms in order to generate the models that represent the wear's behavior of the cutting tool. Then, in the second phase, which is an assessment one, the constructed models are exploited to identify the tool's current health state, predict its RUL and the associated confidence bounds. The proposed method is applied on a benchmark of condition monitoring data gathered during several cuts of a CNC tool. Simulation results are obtained and discussed at the end of the paper.
21 CFR 870.2620 - Line isolation monitor.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Line isolation monitor. 870.2620 Section 870.2620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2620 Line isolation monitor...
21 CFR 870.2620 - Line isolation monitor.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Line isolation monitor. 870.2620 Section 870.2620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2620 Line isolation monitor...
Collell, Carles; Gou, Pere; Arnau, Jacint; Muñoz, Israel; Comaposada, Josep
2012-12-01
Three different NIR equipment were evaluated based on their ability to predict superficial water activity (a(w)) and moisture content in two types of fermented sausages (with and without moulds on surface), using partial least squares (PLS) regression models. The instruments differed mainly in wavelength range, resolution and measurement configuration. The most accurate equipment was used in a new experiment to achieve robust models in sausages with different salt contents and submitted to different drying conditions. The models developed showed determination coefficients (R(2)(P)) values of 0.990, 0.910 and 0.984, and RMSEP values of 1.560%, 0.220% and 0.007% for moisture, salt and a(w) respectively. It was demonstrated that NIR spectroscopy could be a suitable non-destructive method for on-line monitoring and control of the drying process in fermented sausages. Copyright © 2012 Elsevier Ltd. All rights reserved.
Tunable diode-laser absorption measurements of methane at elevated temperatures
NASA Astrophysics Data System (ADS)
Nagali, V.; Chou, S. I.; Baer, D. S.; Hanson, R. K.; Segall, J.
1996-07-01
A diode-laser sensor system based on absorption spectroscopy techniques has been developed to monitor CH4 nonintrusively in high-temperature environments. Fundamental spectroscopic parameters, including the line strengths of the transitions in the R(6) manifold of the 2 nu 3 band near 1.646 mu m, have been determined from high-resolution absorption measurements in a heated static cell. In addition, a corrected expression for the CH 4 partition function has been validated experimentally over the temperature range from 400 to 915 K. Potential applications of the diode-laser sensor system include process control, combustion measurements, and atmospheric monitoring.
NASA Astrophysics Data System (ADS)
Bocz, Péter; Vinkó, Ákos; Posgay, Zoltán
2018-03-01
This paper presents an automatic method for detecting vertical track irregularities on tramway operation using acceleration measurements on trams. For monitoring of tramway tracks, an unconventional measurement setup is developed, which records the data of 3-axes wireless accelerometers mounted on wheel discs. Accelerations are processed to obtain the vertical track irregularities to determine whether the track needs to be repaired. The automatic detection algorithm is based on time-frequency distribution analysis and determines the defect locations. Admissible limits (thresholds) are given for detecting moderate and severe defects using statistical analysis. The method was validated on frequented tram lines in Budapest and accurately detected severe defects with a hit rate of 100%, with no false alarms. The methodology is also sensitive to moderate and small rail surface defects at the low operational speed.
NASA Technical Reports Server (NTRS)
Griffin, T. P.; Naylor, G. R.; Haskell, W. D.; Breznik, G. S.; Mizell, C. A.; Steinrock, Todd (Technical Monitor)
2001-01-01
This paper presents an on-line mass spectrometer designed to monitor for cryogenic leaks on the Space Shuttle. The topics include: 1) Hazardous Gas Detection Lab; 2) LASRE Test Support; 3) Background; 4) Location of Systems; 5) Sample Lines for Gas Detection; 6) Problems with Current Systems; 7) Requirements for New System (Nitrogen and Helium Background); and 8) HGDS 2000. This paper is in viewgraph form.
Christien, F; Telling, M T F; Knight, K S; Le Gall, R
2015-05-01
A method is proposed for the monitoring of metal recrystallization using neutron diffraction that is based on the measurement of stored energy. Experiments were performed using deformed metal specimens heated in-situ while mounted at the sample position of the High Resolution Powder Diffractometer, HRPD (ISIS Facility), UK. Monitoring the breadth of the resulting Bragg lines during heating not only allows the time-dependence (or temperature-dependence) of the stored energy to be determined but also the recrystallized fraction. The analysis method presented here was developed using pure nickel (Ni270) specimens with different deformation levels from 0.29 to 0.94. In situ temperature ramping as well as isothermal annealing was undertaken. The method developed in this work allows accurate and quantitative monitoring of the recrystallization process. The results from neutron diffraction are satisfactorily compared to data obtained from calorimetry and hardness measurements.
The Transmission Channel Tower Identification and Landslide Disaster Monitoring Based on Insar
NASA Astrophysics Data System (ADS)
Li, G.; Tan, Q.; Xie, C.; Fei, X.; Ma, X.; Zhao, B.; Ou, W.; Yang, Z.; Wang, J.; Fang, H.
2018-04-01
The transmission distance of transmission lines is long, the line affected by the diversity of climate and topography of the corridors of transmission lines, differences in regional geological structure conditions, variability of rock and soil types, and the complexity of groundwater. Under the influence of extreme weather conditions (ice-covered, strong wind, etc.) and sudden geological disasters (such as mudslides, flash floods, earthquakes, etc.), catastrophic damage and basic deformation problems of the tower foundations are prone, and even tower collapse accidents occur in severe cases, which affect the safe operation of transmission lines. Monitoring the deformation of power transmission towers and surrounding grounds, it is critical to ensuring the normal operation of transmission lines by assessing and controlling potential risks in advance. In this paper, using ALOS-2 PALSAR radar satellite data, differential interferometry was used to monitor surface deformation near the Sichuan Jinsu line transmission channel. The analysis found that a significant landslide hazard was found near the transmission channel tower in Yibin-Zhaotong section of Jinsu, Sichuan Province, the cumulative deformation reaches 9cm. The results of this paper can provide new monitoring means for safety monitoring of transmission towers.
Sensory-based expert monitoring and control
NASA Astrophysics Data System (ADS)
Yen, Gary G.
1999-03-01
Field operators use their eyes, ears, and nose to detect process behavior and to trigger corrective control actions. For instance: in daily practice, the experienced operator in sulfuric acid treatment of phosphate rock may observe froth color or bubble character to control process material in-flow. Or, similarly, (s)he may use acoustic sound of cavitation or boiling/flashing to increase or decrease material flow rates in tank levels. By contrast, process control computers continue to be limited to taking action on P, T, F, and A signals. Yet, there is sufficient evidence from the fields that visual and acoustic information can be used for control and identification. Smart in-situ sensors have facilitated potential mechanism for factory automation with promising industry applicability. In respond to these critical needs, a generic, structured health monitoring approach is proposed. The system assumes a given sensor suite will act as an on-line health usage monitor and at best provide the real-time control autonomy. The sensor suite can incorporate various types of sensory devices, from vibration accelerometers, directional microphones, machine vision CCDs, pressure gauges to temperature indicators. The decision can be shown in a visual on-board display or fed to the control block to invoke controller reconfigurration.
Phillips, Andrew; Cambiano, Valentina; Nakagawa, Fumiyo; Mabugu, Travor; Magubu, Travor; Miners, Alec; Ford, Debbie; Pillay, Deenan; De Luca, Andrea; Lundgren, Jens; Revill, Paul
2014-01-01
To guide future need for cheap resistance tests for use in low income settings, we assessed cost-effectiveness of drug resistance testing as part of monitoring of people on first line ART - with switching from first to second line ART being conditional on NNRTI drug resistance mutations being identified. An individual level simulation model of HIV transmission, progression and the effect of ART which accounts for adherence and resistance development was used to compare outcomes of various potential monitoring strategies in a typical low income setting in sub-Saharan Africa. Underlying monitoring strategies considered were based on clinical disease, CD4 count or viral load. Within each we considered a strategy in which no further measures are performed, one with a viral load measure to confirm failure, and one with both a viral load measure and a resistance test. Predicted outcomes were assessed over 2015-2025 in terms of viral suppression, first line failure, switching to second line regimen, death, HIV incidence, disability-adjusted-life-years averted and costs. Potential future low costs of resistance tests ($30) were used. The most effective strategy, in terms of DALYs averted, was one using viral load monitoring without confirmation. The incremental cost-effectiveness ratio for this strategy was $2113 (the same as that for viral load monitoring with confirmation). ART monitoring strategies which involved resistance testing did not emerge as being more effective or cost effective than strategies not using it. The slightly reduced ART costs resulting from use of resistance testing, due to less use of second line regimens, was of similar magnitude to the costs of resistance tests. Use of resistance testing at the time of first line failure as part of the decision whether to switch to second line therapy was not cost-effective, even though the test was assumed to be very inexpensive.
Off-line real-time FTIR analysis of a process step in imipenem production
NASA Astrophysics Data System (ADS)
Boaz, Jhansi R.; Thomas, Scott M.; Meyerhoffer, Steven M.; Staskiewicz, Steven J.; Lynch, Joseph E.; Egan, Richard S.; Ellison, Dean K.
1992-08-01
We have developed an FT-IR method, using a Spectra-Tech Monit-IR 400 systems, to monitor off-line the completion of a reaction in real-time. The reaction is moisture-sensitive and analysis by more conventional methods (normal-phase HPLC) is difficult to reproduce. The FT-IR method is based on the shift of a diazo band when a conjugated beta-diketone is transformed into a silyl enol ether during the reaction. The reaction mixture is examined directly by IR and does not require sample workup. Data acquisition time is less than one minute. The method has been validated for specificity, precision and accuracy. The results obtained by the FT-IR method for known mixtures and in-process samples compare favorably with those from a normal-phase HPLC method.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-20
... DoD published a proposed rule in the Federal Register at 76 FR 21847 on April 19, 2011, to add DFARS..., the contract line item may be for a desktop computer, but the actual items delivered, invoiced, and..., Desktop with 20 EA CPU, Monitor, Keyboard and Mouse. Alternative line-item structure offer where monitors...
Online quality monitoring of welding processes by means of plasma optical spectroscopy
NASA Astrophysics Data System (ADS)
Ferrara, Michele; Ancona, Antonio; Lugara, Pietro M.; Sibilano, Michele
2000-02-01
An optical monitoring system for the welding process has been developed; it is based on the study of the optical emission of the welding plasma plume, created during the welding of stainless steels and other iron-based materials. In the first approach a continuous wave CO2 laser of 2500-Watt maximum power, available at the INFM Research Unit labs in Bari University, has been used as welding source. A detailed spectroscopic study of the visible and UV welding plasma emission has been carried out; many transition lines corresponding to the elements composing the material to be welded have been found. By means of an appropriate selection of these lines and suitable algorithms, the electronic temperature of the plasma plume has been calculated and its evolution recorded as a function of several welding parameters. The behavior of the registered signal has resulted to be correlated to the welded joint quality. These findings have allowed to design and assemble a portable, non-intrusive and real-time welding quality optical sensor which has been successfully tested for laser welding of metals in different geometrical configurations; it has been capable of detecting a wide range of weld defects normally occurring during industrial laser metal-working. This sensor has also been tested in arc welding industrial processes (TIG) with promising results.
Pérez-Cebrián, M; Font-Noguera, I; Doménech-Moral, L; Bosó-Ribelles, V; Romero-Boyero, P; Poveda-Andrés, J L
2011-01-01
To assess the efficacy of a new quality control strategy based on daily randomised sampling and monitoring a Sentinel Surveillance System (SSS) medication cart, in order to identify medication errors and their origin at different levels of the process. Prospective quality control study with one year follow-up. A SSS medication cart was randomly selected once a week and double-checked before dispensing medication. Medication errors were recorded before it was taken to the relevant hospital ward. Information concerning complaints after receiving medication and 24-hour monitoring were also noted. Type and origin error data were assessed by a Unit Dose Quality Control Group, which proposed relevant improvement measures. Thirty-four SSS carts were assessed, including 5130 medication lines and 9952 dispensed doses, corresponding to 753 patients. Ninety erroneous lines (1.8%) and 142 mistaken doses (1.4%) were identified at the Pharmacy Department. The most frequent error was dose duplication (38%) and its main cause inappropriate management and forgetfulness (69%). Fifty medication complaints (6.6% of patients) were mainly due to new treatment at admission (52%), and 41 (0.8% of all medication lines), did not completely match the prescription (0.6% lines) as recorded by the Pharmacy Department. Thirty-seven (4.9% of patients) medication complaints due to changes at admission and 32 matching errors (0.6% medication lines) were recorded. The main cause also was inappropriate management and forgetfulness (24%). The simultaneous recording of incidences due to complaints and new medication coincided in 33.3%. In addition, 433 (4.3%) of dispensed doses were returned to the Pharmacy Department. After the Unit Dose Quality Control Group conducted their feedback analysis, 64 improvement measures for Pharmacy Department nurses, 37 for pharmacists, and 24 for the hospital ward were introduced. The SSS programme has proven to be useful as a quality control strategy to identify Unit Dose Distribution System errors at initial, intermediate and final stages of the process, improving the involvement of the Pharmacy Department and ward nurses. Copyright © 2009 SEFH. Published by Elsevier Espana. All rights reserved.
Kelly, A L; Gough, T; Dhumal, R S; Halsey, S A; Paradkar, A
2012-04-15
The purpose of this work was to explore NIR spectroscopy as a PAT tool to monitor the formation of ibuprofen and nicotinamide cocrystals during extrusion based solvent free continuous cocrystallization (SFCC). Drug and co-former were gravimetrically fed into a heated co-rotating twin screw extruder to form cocrystals. Real-time process monitoring was performed using a high temperature NIR probe in the extruder die to assess cocrystal content and subsequently compared to off-line powder X-ray diffraction measurements. The effect of processing variables, such as temperature and mixing intensity, on the extent of cocrystal formation was investigated. NIR spectroscopy was sensitive to cocrystal formation with the appearance of new peaks and peak shifts, particularly in the 4800-5200 cm(-1) wave-number region. PXRD confirmed an increased conversion of the mixture into cocrystal with increase in barrel temperature and screw mixing intensity. A decrease in screw rotation speed also provided improved cocrystal yield due to the material experiencing longer residence times within the process. A partial least squares analysis in this region of NIR spectrum correlated well with PXRD data, providing a best fit with cocrystal conversion when a limited range of process conditions were considered, for example a single set temperature. The study suggests that NIR spectroscopy could be used to monitor cocrystal purity on an industrial scale using this continuous, solvent-free process. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
AlperEker; Mark Giammattia; Paul Houpt
''Intelligent Extruder'' described in this report is a software system and associated support services for monitoring and control of compounding extruders to improve material quality, reduce waste and energy use, with minimal addition of new sensors or changes to the factory floor system components. Emphasis is on process improvements to the mixing, melting and de-volatilization of base resins, fillers, pigments, fire retardants and other additives in the :finishing'' stage of high value added engineering polymer materials. While GE Plastics materials were used for experimental studies throughout the program, the concepts and principles are broadly applicable to other manufacturers materials. Themore » project involved a joint collaboration among GE Global Research, GE Industrial Systems and Coperion Werner & Pleiderer, USA, a major manufacturer of compounding equipment. Scope of the program included development of a algorithms for monitoring process material viscosity without rheological sensors or generating waste streams, a novel detection scheme for rapid detection of process upsets and an adaptive feedback control system to compensate for process upsets where at line adjustments are feasible. Software algorithms were implemented and tested on a laboratory scale extruder (50 lb/hr) at GE Global Research and data from a production scale system (2000 lb/hr) at GE Plastics was used to validate the monitoring and detection software. Although not evaluated experimentally, a new concept for extruder process monitoring through estimation of high frequency drive torque without strain gauges is developed and demonstrated in simulation. A plan to commercialize the software system is outlined, but commercialization has not been completed.« less
Kok, Gertjan; Persijn, Stefan; Sauerwald, Tilman
2017-01-01
This article presents a literature review of sensors for the monitoring of benzene in ambient air and other volatile organic compounds. Combined with information provided by stakeholders, manufacturers and literature, the review considers commercially available sensors, including PID-based sensors, semiconductor (resistive gas sensors) and portable on-line measuring devices as for example sensor arrays. The bibliographic collection includes the following topics: sensor description, field of application at fixed sites, indoor and ambient air monitoring, range of concentration levels and limit of detection in air, model descriptions of the phenomena involved in the sensor detection process, gaseous interference selectivity of sensors in complex VOC matrix, validation data in lab experiments and under field conditions. PMID:28657595
Spinelle, Laurent; Gerboles, Michel; Kok, Gertjan; Persijn, Stefan; Sauerwald, Tilman
2017-06-28
This article presents a literature review of sensors for the monitoring of benzene in ambient air and other volatile organic compounds. Combined with information provided by stakeholders, manufacturers and literature, the review considers commercially available sensors, including PID-based sensors, semiconductor (resistive gas sensors) and portable on-line measuring devices as for example sensor arrays. The bibliographic collection includes the following topics: sensor description, field of application at fixed sites, indoor and ambient air monitoring, range of concentration levels and limit of detection in air, model descriptions of the phenomena involved in the sensor detection process, gaseous interference selectivity of sensors in complex VOC matrix, validation data in lab experiments and under field conditions.
Beer, Sebastian; Dobler, Dorota; Gross, Alexander; Ost, Martin; Elseberg, Christiane; Maeder, Ulf; Schmidts, Thomas Michael; Keusgen, Michael; Fiebich, Martin; Runkel, Frank
2013-01-30
Multiple emulsions offer various applications in a wide range of fields such as pharmaceutical, cosmetics and food technology. Two features are known to yield a great influence on multiple emulsion quality and utility as encapsulation efficiency and prolonged stability. To achieve a prolonged stability, the production of the emulsions has to be observed and controlled, preferably in line. In line measurements provide available parameters in a short time frame without the need for the sample to be removed from the process stream, thereby enabling continuous process control. In this study, information about the physical state of multiple emulsions obtained from dielectric spectroscopy (DS) is evaluated for this purpose. Results from dielectric measurements performed in line during the production cycle are compared to theoretically expected results and to well established off line measurements. Thus, a first step to include the production of multiple emulsions into the process analytical technology (PAT) guidelines of the Food and Drug Administration (FDA) is achieved. DS proved to be beneficial in determining the crucial stopping criterion, which is essential in the production of multiple emulsions. The stopping of the process at a less-than-ideal point can severely lower the encapsulation efficiency and the stability, thereby lowering the quality of the emulsion. DS is also expected to provide further information about the multiple emulsion like encapsulation efficiency. Copyright © 2012 Elsevier B.V. All rights reserved.
Investigation into the use of microwave sensors to monitor particulate manufacturing processes
NASA Astrophysics Data System (ADS)
Austin, John Samuel, III
Knowledge of a material's properties in-line during manufacture is of critical importance to many industries, including the pharmaceutical industry, and can be used for either process or quality control. Different microwave sensor configurations were tested to determine both the moisture content and the bulk density in pharmaceutical powders during processing on-line. Although these parameters can significantly affect a material's flowability, compressibility, and cohesivity, in the presence of blends, the picture is incomplete. Due to the ease with which particulate blends tend to segregate, blend uniformity and chemical composition are two critical parameters in nearly all solids manufacturing industries. The prevailing wisdom has been that microwave sensors are not capable of or sensitive enough to measure the relative concentrations of components in a blend. Consequently, it is common to turn to near infrared sensing to determine material composition on-line. In this study, a novel microwave sensor was designed and utilized to determine, separately, the concentrations of different components in a blend of pharmaceutical powders. This custom microwave sensor was shown to have comparable accuracy to the state-of-the-art for both chemical composition and moisture content determination.
Optimum ArFi laser bandwidth for 10nm node logic imaging performance
NASA Astrophysics Data System (ADS)
Alagna, Paolo; Zurita, Omar; Timoshkov, Vadim; Wong, Patrick; Rechtsteiner, Gregory; Baselmans, Jan; Mailfert, Julien
2015-03-01
Lithography process window (PW) and CD uniformity (CDU) requirements are being challenged with scaling across all device types. Aggressive PW and yield specifications put tight requirements on scanner performance, especially on focus budgets resulting in complicated systems for focus control. In this study, an imec N10 Logic-type test vehicle was used to investigate the E95 bandwidth impact on six different Metal 1 Logic features. The imaging metrics that track the impact of light source E95 bandwidth on performance of hot spots are: process window (PW), line width roughness (LWR), and local critical dimension uniformity (LCDU). In the first section of this study, the impact of increasing E95 bandwidth was investigated to observe the lithographic process control response of the specified logic features. In the second section, a preliminary assessment of the impact of lower E95 bandwidth was performed. The impact of lower E95 bandwidth on local intensity variability was monitored through the CDU of line end features and the LWR power spectral density (PSD) of line/space patterns. The investigation found that the imec N10 test vehicle (with OPC optimized for standard E95 bandwidth of300fm) features exposed at 200fm showed pattern specific responses, suggesting areas of potential interest for further investigation.
Optimizing process and equipment efficiency using integrated methods
NASA Astrophysics Data System (ADS)
D'Elia, Michael J.; Alfonso, Ted F.
1996-09-01
The semiconductor manufacturing industry is continually riding the edge of technology as it tries to push toward higher design limits. Mature fabs must cut operating costs while increasing productivity to remain profitable and cannot justify large capital expenditures to improve productivity. Thus, they must push current tool production capabilities to cut manufacturing costs and remain viable. Working to continuously improve mature production methods requires innovation. Furthermore, testing and successful implementation of these ideas into modern production environments require both supporting technical data and commitment from those working with the process daily. At AMD, natural work groups (NWGs) composed of operators, technicians, engineers, and supervisors collaborate to foster innovative thinking and secure commitment. Recently, an AMD NWG improved equipment cycle time on the Genus tungsten silicide (WSi) deposition system. The team used total productive manufacturing (TPM) to identify areas for process improvement. Improved in-line equipment monitoring was achieved by constructing a real time overall equipment effectiveness (OEE) calculator which tracked equipment down, idle, qualification, and production times. In-line monitoring results indicated that qualification time associated with slow Inspex turn-around time and machine downtime associated with manual cleans contributed greatly to reduced availability. Qualification time was reduced by 75% by implementing a new Inspex monitor pre-staging technique. Downtime associated with manual cleans was reduced by implementing an in-situ plasma etch back to extend the time between manual cleans. A designed experiment was used to optimize the process. Time between 18 hour manual cleans has been improved from every 250 to every 1500 cycles. Moreover defect density realized a 3X improvement. Overall, the team achieved a 35% increase in tool availability. This paper details the above strategies and accomplishments.
Józwa, Wojciech; Czaczyk, Katarzyna
2012-04-02
Flow cytometry constitutes an alternative for traditional methods of microorganisms identification and analysis, including methods requiring cultivation step. It enables the detection of pathogens and other microorganisms contaminants without the need to culture microbial cells meaning that the sample (water, waste or food e.g. milk, wine, beer) may be analysed directly. This leads to a significant reduction of time required for analysis allowing monitoring of production processes and immediate reaction in case of contamination or any disruption occurs. Apart from the analysis of raw materials or products on different stages of manufacturing process, the flow cytometry seems to constitute an ideal tool for the assessment of microbial contamination on the surface of technological lines. In the present work samples comprising smears from 3 different surfaces of technological lines from fruit and vegetable processing company from Greater Poland were analysed directly with flow cytometer. The measured parameters were forward and side scatter of laser light signals allowing the estimation of microbial cell contents in each sample. Flow cytometric analysis of the surface of food industry production lines enable the preliminary evaluation of microbial contamination within few minutes from the moment of sample arrival without the need of sample pretreatment. The presented method of fl ow cytometric initial evaluation of microbial state of food industry technological lines demonstrated its potential for developing a robust, routine method for the rapid and labor-saving detection of microbial contamination in food industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hübner, M.; Lang, N.; Röpcke, J.
2015-01-19
Dielectric etching plasma processes for modern interlevel dielectrics become more and more complex by the introduction of new ultra low-k dielectrics. One challenge is the minimization of sidewall damage, while etching ultra low-k porous SiCOH by fluorocarbon plasmas. The optimization of this process requires a deeper understanding of the concentration of the CF{sub 2} radical, which acts as precursor in the polymerization of the etch sample surfaces. In an industrial dielectric etching plasma reactor, the CF{sub 2} radical was measured in situ using a continuous wave quantum cascade laser (cw-QCL) around 1106.2 cm{sup −1}. We measured Doppler-resolved ro-vibrational absorption lines andmore » determined absolute densities using transitions in the ν{sub 3} fundamental band of CF{sub 2} with the aid of an improved simulation of the line strengths. We found that the CF{sub 2} radical concentration during the etching plasma process directly correlates to the layer structure of the etched wafer. Hence, this correlation can serve as a diagnostic tool of dielectric etching plasma processes. Applying QCL based absorption spectroscopy opens up the way for advanced process monitoring and etching controlling in semiconductor manufacturing.« less
Laboratory and field based evaluation of chromatography ...
The Monitor for AeRosols and GAses in ambient air (MARGA) is an on-line ion-chromatography-based instrument designed for speciation of the inorganic gas and aerosol ammonium-nitrate-sulfate system. Previous work to characterize the performance of the MARGA has been primarily based on field comparison to other measurement methods to evaluate accuracy. While such studies are useful, the underlying reasons for disagreement among methods are not always clear. This study examines aspects of MARGA accuracy and precision specifically related to automated chromatography analysis. Using laboratory standards, analytical accuracy, precision, and method detection limits derived from the MARGA chromatography software are compared to an alternative software package (Chromeleon, Thermo Scientific Dionex). Field measurements are used to further evaluate instrument performance, including the MARGA’s use of an internal LiBr standard to control accuracy. Using gas/aerosol ratios and aerosol neutralization state as a case study, the impact of chromatography on measurement error is assessed. The new generation of on-line chromatography-based gas and particle measurement systems have many advantages, including simultaneous analysis of multiple pollutants. The Monitor for Aerosols and Gases in Ambient Air (MARGA) is such an instrument that is used in North America, Europe, and Asia for atmospheric process studies as well as routine monitoring. While the instrument has been evaluat
Kremr, Daniel; Cocovi-Solberg, David J; Bajerová, Petra; Ventura, Karel; Miró, Manuel
2017-05-01
A novel fully automated in-vitro oral dissolution test assay as a front-end to liquid chromatography has been developed and validated for on-line chemical profiling and monitoring of temporal release profiles of three caffeoylquinic acid (CQA) isomers, namely, 3-CQA,4-CQA and 5-CQA, known as chlorogenic acids, in dietary supplements. Tangential-flow filtration is harnessed as a sample processing approach for on-line handling of CQA containing extracts of hard gelatin capsules and introduction of protein-free samples into the liquid chromatograph. Oral bioaccessibility/dissolution test assays were performed at 37.0±0.5°C as per US Pharmacopeia recommendations using pepsin with activity of ca. 749,000 USP units/L in 0.1mol/L HCl as the extraction medium and a paddle apparatus stirred at 50rpm. CQA release rates and steady-state dissolution conditions were determined accurately by fitting the chromatographic datasets, namely, the average cumulative concentrations of bioaccessible pools of every individual isomer monitored during 200min, with temporal resolutions of ≥10min, to a first-order dissolution kinetic model. Distinct solid-to-liquid phase ratios in the mimicry of physiological extraction conditions were assessed. Relative standard deviations for intra-day repeatability and inter-day intermediate precision of 5-CQA within the 5-40µg/mL concentration range were <3.4% and <5.5%, respectively. Trueness of the automatic flow method for determination of 5-CQA released from dietary supplements in gastric fluid surrogate was demonstrated by spike recoveries, spanning from 91.5-104.0%, upon completion of the dissolution process. The proposed hyphenated setup was resorted for evaluating potential differences in dissolution profiles and content of the three most abundant chlorogenic acid isomers in dietary supplements from varied manufacturers. Copyright © 2016 Elsevier B.V. All rights reserved.
Virtual sensors for on-line wheel wear and part roughness measurement in the grinding process.
Arriandiaga, Ander; Portillo, Eva; Sánchez, Jose A; Cabanes, Itziar; Pombo, Iñigo
2014-05-19
Grinding is an advanced machining process for the manufacturing of valuable complex and accurate parts for high added value sectors such as aerospace, wind generation, etc. Due to the extremely severe conditions inside grinding machines, critical process variables such as part surface finish or grinding wheel wear cannot be easily and cheaply measured on-line. In this paper a virtual sensor for on-line monitoring of those variables is presented. The sensor is based on the modelling ability of Artificial Neural Networks (ANNs) for stochastic and non-linear processes such as grinding; the selected architecture is the Layer-Recurrent neural network. The sensor makes use of the relation between the variables to be measured and power consumption in the wheel spindle, which can be easily measured. A sensor calibration methodology is presented, and the levels of error that can be expected are discussed. Validation of the new sensor is carried out by comparing the sensor's results with actual measurements carried out in an industrial grinding machine. Results show excellent estimation performance for both wheel wear and surface roughness. In the case of wheel wear, the absolute error is within the range of microns (average value 32 μm). In the case of surface finish, the absolute error is well below Ra 1 μm (average value 0.32 μm). The present approach can be easily generalized to other grinding operations.
Real-Time Telemetry System for Monitoring Motion of Ships Based on Inertial Sensors.
Núñez, José M; Araújo, Marta G; García-Tuñón, I
2017-04-25
A telemetry system for real-time monitoring of the motions, position, speed and course of a ship at sea is presented in this work. The system, conceived as a subsystem of a radar cross-section measurement unit, could also be used in other applications as ships dynamics characterization, on-board cranes, antenna stabilizers, etc. This system was designed to be stand-alone, reliable, easy to deploy, low-cost and free of requirements related to stabilization procedures. In order to achieve such a unique combination of functionalities, we have developed a telemetry system based on redundant inertial and magnetic sensors and GPS (Global Positioning System) measurements. It provides a proper data storage and also has real-time radio data transmission capabilities to an on-shore station. The output of the system can be used either for on-line or off-line processing. Additionally, the system uses dual technologies and COTS (Commercial Off-The-Shelf) components. Motion-positioning measurements and radio data link tests were successfully carried out in several ships of the Spanish Navy, proving the compliance with the design targets and validating our telemetry system.
Statistically qualified neuro-analytic failure detection method and system
Vilim, Richard B.; Garcia, Humberto E.; Chen, Frederick W.
2002-03-02
An apparatus and method for monitoring a process involve development and application of a statistically qualified neuro-analytic (SQNA) model to accurately and reliably identify process change. The development of the SQNA model is accomplished in two stages: deterministic model adaption and stochastic model modification of the deterministic model adaptation. Deterministic model adaption involves formulating an analytic model of the process representing known process characteristics, augmenting the analytic model with a neural network that captures unknown process characteristics, and training the resulting neuro-analytic model by adjusting the neural network weights according to a unique scaled equation error minimization technique. Stochastic model modification involves qualifying any remaining uncertainty in the trained neuro-analytic model by formulating a likelihood function, given an error propagation equation, for computing the probability that the neuro-analytic model generates measured process output. Preferably, the developed SQNA model is validated using known sequential probability ratio tests and applied to the process as an on-line monitoring system. Illustrative of the method and apparatus, the method is applied to a peristaltic pump system.
Inverse Source Data-Processing Strategies for Radio-Frequency Localization in Indoor Environments.
Gennarelli, Gianluca; Al Khatib, Obada; Soldovieri, Francesco
2017-10-27
Indoor positioning of mobile devices plays a key role in many aspects of our daily life. These include real-time people tracking and monitoring, activity recognition, emergency detection, navigation, and numerous location based services. Despite many wireless technologies and data-processing algorithms have been developed in recent years, indoor positioning is still a problem subject of intensive research. This paper deals with the active radio-frequency (RF) source localization in indoor scenarios. The localization task is carried out at the physical layer thanks to receiving sensor arrays which are deployed on the border of the surveillance region to record the signal emitted by the source. The localization problem is formulated as an imaging one by taking advantage of the inverse source approach. Different measurement configurations and data-processing/fusion strategies are examined to investigate their effectiveness in terms of localization accuracy under both line-of-sight (LOS) and non-line of sight (NLOS) conditions. Numerical results based on full-wave synthetic data are reported to support the analysis.
Inverse Source Data-Processing Strategies for Radio-Frequency Localization in Indoor Environments
Gennarelli, Gianluca; Al Khatib, Obada; Soldovieri, Francesco
2017-01-01
Indoor positioning of mobile devices plays a key role in many aspects of our daily life. These include real-time people tracking and monitoring, activity recognition, emergency detection, navigation, and numerous location based services. Despite many wireless technologies and data-processing algorithms have been developed in recent years, indoor positioning is still a problem subject of intensive research. This paper deals with the active radio-frequency (RF) source localization in indoor scenarios. The localization task is carried out at the physical layer thanks to receiving sensor arrays which are deployed on the border of the surveillance region to record the signal emitted by the source. The localization problem is formulated as an imaging one by taking advantage of the inverse source approach. Different measurement configurations and data-processing/fusion strategies are examined to investigate their effectiveness in terms of localization accuracy under both line-of-sight (LOS) and non-line of sight (NLOS) conditions. Numerical results based on full-wave synthetic data are reported to support the analysis. PMID:29077071
NASA Astrophysics Data System (ADS)
Lim, Sungsoo; Lee, Seohyung; Kim, Jun-geon; Lee, Daeho
2018-01-01
The around-view monitoring (AVM) system is one of the major applications of advanced driver assistance systems and intelligent transportation systems. We propose an on-line calibration method, which can compensate misalignments for AVM systems. Most AVM systems use fisheye undistortion, inverse perspective transformation, and geometrical registration methods. To perform these procedures, the parameters for each process must be known; the procedure by which the parameters are estimated is referred to as the initial calibration. However, when only using the initial calibration data, we cannot compensate misalignments, caused by changing equilibria of cars. Moreover, even small changes such as tire pressure levels, passenger weight, or road conditions can affect a car's equilibrium. Therefore, to compensate for this misalignment, additional techniques are necessary, specifically an on-line calibration method. On-line calibration can recalculate homographies, which can correct any degree of misalignment using the unique features of ordinary parking lanes. To extract features from the parking lanes, this method uses corner detection and a pattern matching algorithm. From the extracted features, homographies are estimated using random sample consensus and parameter estimation. Finally, the misaligned epipolar geographies are compensated via the estimated homographies. Thus, the proposed method can render image planes parallel to the ground. This method does not require any designated patterns and can be used whenever cars are placed in a parking lot. The experimental results show the robustness and efficiency of the method.
Management of the water balance and quality in mining areas
NASA Astrophysics Data System (ADS)
Pasanen, Antti; Krogerus, Kirsti; Mroueh, Ulla-Maija; Turunen, Kaisa; Backnäs, Soile; Vento, Tiia; Veijalainen, Noora; Hentinen, Kimmo; Korkealaakso, Juhani
2015-04-01
Although mining companies have long been conscious of water related risks they still face environmental management problems. These problems mainly emerge because mine sites' water balances have not been adequately assessed in the stage of the planning of mines. More consistent approach is required to help mining companies identify risks and opportunities related to the management of water resources in all stages of mining. This approach requires that the water cycle of a mine site is interconnected with the general hydrologic water cycle. In addition to knowledge on hydrological conditions, the control of the water balance in the mining processes require knowledge of mining processes, the ability to adjust process parameters to variable hydrological conditions, adaptation of suitable water management tools and systems, systematic monitoring of amounts and quality of water, adequate capacity in water management infrastructure to handle the variable water flows, best practices to assess the dispersion, mixing and dilution of mine water and pollutant loading to receiving water bodies, and dewatering and separation of water from tailing and precipitates. WaterSmart project aims to improve the awareness of actual quantities of water, and water balances in mine areas to improve the forecasting and the management of the water volumes. The study is executed through hydrogeological and hydrological surveys and online monitoring procedures. One of the aims is to exploit on-line water quantity and quality monitoring for the better management of the water balances. The target is to develop a practical and end-user-specific on-line input and output procedures. The second objective is to develop mathematical models to calculate combined water balances including the surface, ground and process waters. WSFS, the Hydrological Modeling and Forecasting System of SYKE is being modified for mining areas. New modelling tools are developed on spreadsheet and system dynamics platforms to systematically integrate all water balance components (groundwater, surface water, infiltration, precipitation, mine water facilities and operations etc.) into overall dynamic mine site considerations. After coupling the surface and ground water models (e.g. Feflow and WSFS) with each other, they are compared with Goldsim. The third objective is to integrate the monitoring and modelling tools into the mine management system and process control. The modelling and predictive process control can prevent flood situations, ensure water adequacy, and enable the controlled mine water treatment. The project will develop a constantly updated management system for water balance including both natural waters and process waters.
NASA Astrophysics Data System (ADS)
Nugroho, W. H.; Purnomo, N. J. H.; Soedarto, T.
2016-11-01
This paper presents an experimental work to monitor the health of submarine hull structures using strain sensors and wireless communication technology. The monitored - submarine hull was built in a hydro elastic model scale 1: 30 with a steel bar backbone and tested on water tank of Indonesian Hydrodynamic Laboratory (IHL). Specifically, this health monitoring system for the submarine model was developed using wireless modems, data communication software and conventional strain sensors. This system was used to monitor the loads on a steel bar backbone of the running submarine model from the edge of the water tank. Commands were issued from a notebook to instruct the health monitoring system to acquire data from sensors mounted externally to the steel bar. Data from measurements made on the structure are then transmitted wirelessly back to a notebook computer for processing and analysis. The results of the tank test have been validated and showed no loss of communication signal over an area of the tank. This work also presents a potential use of involving complete automation of this system with an in-service structure coupled with an on-line warning/damage detection capability.
Pattern centric design based sensitive patterns and process monitor in manufacturing
NASA Astrophysics Data System (ADS)
Hsiang, Chingyun; Cheng, Guojie; Wu, Kechih
2017-03-01
When design rule is mitigating to smaller dimension, process variation requirement is tighter than ever and challenges the limits of device yield. Masks, lithography, etching and other processes have to meet very tight specifications in order to keep defect and CD within the margins of the process window. Conventionally, Inspection and metrology equipments are utilized to monitor and control wafer quality in-line. In high throughput optical inspection, nuisance and review-classification become a tedious labor intensive job in manufacturing. Certain high-resolution SEM images are taken to validate defects after optical inspection. These high resolution SEM images catch not only optical inspection highlighted point, also its surrounding patterns. However, this pattern information is not well utilized in conventional quality control method. Using this complementary design based pattern monitor not only monitors and analyzes the variation of patterns sensitivity but also reduce nuisance and highlight defective patterns or killer defects. After grouping in either single or multiple layers, systematic defects can be identified quickly in this flow. In this paper, we applied design based pattern monitor in different layers to monitor process variation impacts on all kinds of patterns. First, the contour of high resolutions SEM image is extracted and aligned to design with offset adjustment and fine alignment [1]. Second, specified pattern rules can be applied on design clip area, the same size as SEM image, and form POI (pattern of interest) areas. Third, the discrepancy of contour and design measurement at different pattern types in measurement blocks. Fourth, defective patterns are reported by discrepancy detection criteria and pattern grouping [4]. Meanwhile, reported pattern defects are ranked by number and severity by discrepancy. In this step, process sensitive high repeatable systematic defects can be identified quickly Through this design based process pattern monitor method, most of optical inspection nuisances can be filtered out at contour to design discrepancy measurement. Daily analysis results are stored at database as reference to compare with incoming data. Defective pattern library contains existing and known systematic defect patterns which help to catch and identify new pattern defects or process impacts. On the other hand, this defect pattern library provides extra valuable information for mask, pattern and defects verification, inspection care area generation, further OPC fix and process enhancement and investigation.
Influence of detergents on water drift in cooling towers
NASA Astrophysics Data System (ADS)
Vitkovicova, Rut
An influence of detergents on the water drift from the cooling tower was experimentally investigated. For this experimental measurements was used a model cooling tower, especially an experimental aerodynamic line, which is specially designed for the measurement and monitoring of processes taking place around the eliminators of the liquid phase. The effect of different concentrations of detergent in the cooling water on the drift of water droplets from a commonly used type eliminator was observed with visualization methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Susan J. Foulk
Project Objective: The objectives of this study are to develop an accurate and stable on-line sensor system to monitor color and composition on-line in polymer melts, to develop a scheme for using the output to control extruders to eliminate the energy, material and operational costs of off-specification product, and to combine or eliminate some extrusion processes. Background: Polymer extrusion processes are difficult to control because the quality achieved in the final product is complexly affected by the properties of the extruder screw, speed of extrusion, temperature, polymer composition, strength and dispersion properties of additives, and feeder system properties. Extruder systemsmore » are engineered to be highly reproducible so that when the correct settings to produce a particular product are found, that product can be reliably produced time after time. However market conditions often require changes in the final product, different products or grades may be processed in the same equipment, and feed materials vary from lot to lot. All of these changes require empirical adjustment of extruder settings to produce a product meeting specifications. Optical sensor systems that can continuously monitor the composition and color of the extruded polymer could detect process upsets, drift, blending oscillations, and changes in dispersion of additives. Development of an effective control algorithm using the output of the monitor would enable rapid corrections for changes in materials and operating conditions, thereby eliminating most of the scrap and recycle of current processing. This information could be used to identify extruder systems issues, diagnose problem sources, and suggest corrective actions in real-time to help keep extruder system settings within the optimum control region. Using these advanced optical sensor systems would give extruder operators real-time feedback from their process. They could reduce the amount of off-spec product produced and significantly reduce energy consumption. Also, because blending and dispersion of additives and components in the final product could be continuously verified, we believe that, in many cases, intermediate compounding steps could be eliminated (saving even more time and energy).« less
Lucena, Rafael; Cárdenas, Soledad; Gallego, Mercedes; Valcárcel, Miguel
2006-03-01
Monitoring the exhaustion of alkaline degreasing baths is one of the main aspects in metal mechanizing industrial process control. The global level of surfactant, and mainly grease, can be used as ageing indicators. In this paper, an attenuated total reflection-Fourier transform infrared (ATR-FTIR) membrane-based sensor is presented for the determination of these parameters. The system is based on a micro-liquid-liquid extraction of the analytes through a polymeric membrane from the aqueous to the organic solvent layer which is in close contact with the internal reflection element and continuously monitored. Samples are automatically processed using a simple, robust sequential injection analysis (SIA) configuration, on-line coupled to the instrument. The global signal obtained for both families of compounds are processed via a multivariate calibration technique (partial least squares, PLS). Excellent correlation was obtained for the values given by the proposed method compared to those of the gravimetric reference one with very low error values for both calibration and validation.
Li, Hongkun; He, Changbo; Malekian, Reza; Li, Zhixiong
2018-04-19
The Centrifugal compressor is a piece of key equipment for petrochemical factories. As the core component of a compressor, the blades suffer periodic vibration and flow induced excitation mechanism, which will lead to the occurrence of crack defect. Moreover, the induced blade defect usually has a serious impact on the normal operation of compressors and the safety of operators. Therefore, an effective blade crack identification method is particularly important for the reliable operation of compressors. Conventional non-destructive testing and evaluation (NDT&E) methods can detect the blade defect effectively, however, the compressors should shut down during the testing process which is time-consuming and costly. In addition, it can be known these methods are not suitable for the long-term on-line condition monitoring and cannot identify the blade defect in time. Therefore, the effective on-line condition monitoring and weak defect identification method should be further studied and proposed. Considering the blade vibration information is difficult to measure directly, pressure sensors mounted on the casing are used to sample airflow pressure pulsation signal on-line near the rotating impeller for the purpose of monitoring the blade condition indirectly in this paper. A big problem is that the blade abnormal vibration amplitude induced by the crack is always small and this feature information will be much weaker in the pressure signal. Therefore, it is usually difficult to identify blade defect characteristic frequency embedded in pressure pulsation signal by general signal processing methods due to the weakness of the feature information and the interference of strong noise. In this paper, continuous wavelet transform (CWT) is used to pre-process the sampled signal first. Then, the method of bistable stochastic resonance (SR) based on Woods-Saxon and Gaussian (WSG) potential is applied to enhance the weak characteristic frequency contained in the pressure pulsation signal. Genetic algorithm (GA) is used to obtain optimal parameters for this SR system to improve its feature enhancement performance. The analysis result of experimental signal shows the validity of the proposed method for the enhancement and identification of weak defect characteristic. In the end, strain test is carried out to further verify the accuracy and reliability of the analysis result obtained by pressure pulsation signal.
Li, Hongkun; He, Changbo
2018-01-01
The Centrifugal compressor is a piece of key equipment for petrochemical factories. As the core component of a compressor, the blades suffer periodic vibration and flow induced excitation mechanism, which will lead to the occurrence of crack defect. Moreover, the induced blade defect usually has a serious impact on the normal operation of compressors and the safety of operators. Therefore, an effective blade crack identification method is particularly important for the reliable operation of compressors. Conventional non-destructive testing and evaluation (NDT&E) methods can detect the blade defect effectively, however, the compressors should shut down during the testing process which is time-consuming and costly. In addition, it can be known these methods are not suitable for the long-term on-line condition monitoring and cannot identify the blade defect in time. Therefore, the effective on-line condition monitoring and weak defect identification method should be further studied and proposed. Considering the blade vibration information is difficult to measure directly, pressure sensors mounted on the casing are used to sample airflow pressure pulsation signal on-line near the rotating impeller for the purpose of monitoring the blade condition indirectly in this paper. A big problem is that the blade abnormal vibration amplitude induced by the crack is always small and this feature information will be much weaker in the pressure signal. Therefore, it is usually difficult to identify blade defect characteristic frequency embedded in pressure pulsation signal by general signal processing methods due to the weakness of the feature information and the interference of strong noise. In this paper, continuous wavelet transform (CWT) is used to pre-process the sampled signal first. Then, the method of bistable stochastic resonance (SR) based on Woods-Saxon and Gaussian (WSG) potential is applied to enhance the weak characteristic frequency contained in the pressure pulsation signal. Genetic algorithm (GA) is used to obtain optimal parameters for this SR system to improve its feature enhancement performance. The analysis result of experimental signal shows the validity of the proposed method for the enhancement and identification of weak defect characteristic. In the end, strain test is carried out to further verify the accuracy and reliability of the analysis result obtained by pressure pulsation signal. PMID:29671821
NASA Technical Reports Server (NTRS)
Burlage, Robert S.; Heitzer, Armin; Digrazia, Philip M.
1991-01-01
An effective on-line monitoring technique for toxic waste bioremediation using bioluminescent microorganisms has shown great potential for the description and optimization of biological processes. The lux genes of the bacterium Vibrio fischeri are used by this species to produce visible light. The lux genes can be genetically fused to the control region of a catabolic gene, with the result that bioluminescence is produced whenever the catabolic gene is induced. Thus the detection of light from a sample indicates that genetic expression from a specific gene is occurring. This technique was used to monitor biodegradation of specific contaminants from waste sites. For these studies, fusions between the lux genes and the operons for naphthalene and toluene/xylene degradation were constructed. Strains carrying one of these fusions respond sensitively and specifically to target substrates. Bioluminescence from these cultures can be rapidly measured in a nondestructive and noninvasive manner. The potential for this technique in this and other biological systems is discussed.
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Litt, Jonathan S.
2010-01-01
This paper presents an algorithm that automatically identifies and extracts steady-state engine operating points from engine flight data. It calculates the mean and standard deviation of select parameters contained in the incoming flight data stream. If the standard deviation of the data falls below defined constraints, the engine is assumed to be at a steady-state operating point, and the mean measurement data at that point are archived for subsequent condition monitoring purposes. The fundamental design of the steady-state data filter is completely generic and applicable for any dynamic system. Additional domain-specific logic constraints are applied to reduce data outliers and variance within the collected steady-state data. The filter is designed for on-line real-time processing of streaming data as opposed to post-processing of the data in batch mode. Results of applying the steady-state data filter to recorded helicopter engine flight data are shown, demonstrating its utility for engine condition monitoring applications.
Wave Phase-Sensitive Transformation of 3d-Straining of Mechanical Fields
NASA Astrophysics Data System (ADS)
Smirnov, I. N.; Speranskiy, A. A.
2015-11-01
It is the area of research of oscillatory processes in elastic mechanical systems. Technical result of innovation is creation of spectral set of multidimensional images which reflect time-correlated three-dimensional vector parameters of metrological, and\\or estimated, and\\or design parameters of oscillations in mechanical systems. Reconstructed images of different dimensionality integrated in various combinations depending on their objective function can be used as homeostatic profile or cybernetic image of oscillatory processes in mechanical systems for an objective estimation of current operational conditions in real time. The innovation can be widely used to enhance the efficiency of monitoring and research of oscillation processes in mechanical systems (objects) in construction, mechanical engineering, acoustics, etc. Concept method of vector vibrometry based on application of vector 3D phase- sensitive vibro-transducers permits unique evaluation of real stressed-strained states of power aggregates and loaded constructions and opens fundamental innovation opportunities: conduct of continuous (on-line regime) reliable monitoring of turboagregates of electrical machines, compressor installations, bases, supports, pipe-lines and other objects subjected to damaging effect of vibrations; control of operational safety of technical systems at all the stages of life cycle including design, test production, tuning, testing, operational use, repairs and resource enlargement; creation of vibro-diagnostic systems of authentic non-destructive control of anisotropic characteristics of materials resistance of power aggregates and loaded constructions under outer effects and operational flaws. The described technology is revolutionary, universal and common for all branches of engineering industry and construction building objects.
Experimental application of OMA solutions on the model of industrial structure
NASA Astrophysics Data System (ADS)
Mironov, A.; Mironovs, D.
2017-10-01
It is very important and sometimes even vital to maintain reliability of industrial structures. High quality control during production and structural health monitoring (SHM) in exploitation provides reliable functioning of large, massive and remote structures, like wind generators, pipelines, power line posts, etc. This paper introduces a complex of technological and methodical solutions for SHM and diagnostics of industrial structures, including those that are actuated by periodic forces. Solutions were verified on a wind generator scaled model with integrated system of piezo-film deformation sensors. Simultaneous and multi-patch Operational Modal Analysis (OMA) approaches were implemented as methodical means for structural diagnostics and monitoring. Specially designed data processing algorithms provide objective evaluation of structural state modification.
Millimeter wave sensor for monitoring effluents
Gopalsami, Nachappa; Bakhtiari, Sasan; Raptis, Apostolos C.; Dieckman, Stephen L.
1995-01-01
A millimeter-wave sensor for detecting and measuring effluents from processing plants either remotely or on-site includes a high frequency signal source for transmitting frequency-modulated continuous waves in the millimeter or submillimeter range with a wide sweep capability and a computer-controlled detector for detecting a plurality of species of effluents on a real time basis. A high resolution spectrum of an effluent, or effluents, is generated by a deconvolution of the measured spectra resulting in a narrowing of the line widths by 2 or 3 orders of magnitude as compared with the pressure broadened spectra detected at atmospheric pressure for improved spectral specificity and measurement sensitivity. The sensor is particularly adapted for remote monitoring such as where access is limited or sensor cost restricts multiple sensors as well as for large area monitoring under nearly all weather conditions.
Fast algorithm for spectral processing with application to on-line welding quality assurance
NASA Astrophysics Data System (ADS)
Mirapeix, J.; Cobo, A.; Jaúregui, C.; López-Higuera, J. M.
2006-10-01
A new technique is presented in this paper for the analysis of welding process emission spectra to accurately estimate in real-time the plasma electronic temperature. The estimation of the electronic temperature of the plasma, through the analysis of the emission lines from multiple atomic species, may be used to monitor possible perturbations during the welding process. Unlike traditional techniques, which usually involve peak fitting to Voigt functions using the Levenberg-Marquardt recursive method, sub-pixel algorithms are used to more accurately estimate the central wavelength of the peaks. Three different sub-pixel algorithms will be analysed and compared, and it will be shown that the LPO (linear phase operator) sub-pixel algorithm is a better solution within the proposed system. Experimental tests during TIG-welding using a fibre optic to capture the arc light, together with a low cost CCD-based spectrometer, show that some typical defects associated with perturbations in the electron temperature can be easily detected and identified with this technique. A typical processing time for multiple peak analysis is less than 20 ms running on a conventional PC.
Perspectives for on-line analysis of bauxite by neutron irradiation
NASA Astrophysics Data System (ADS)
Beurton, Gabriel; Ledru, Bertrand; Letourneur, Philippe
1995-03-01
The interest in bauxite as a major source of alumina results in a strong demand for on-line instrumentation suitable for sorting, blending, and processing operations at the bauxite mine and for monitoring instrumentation in the Bayer process. The results of laboratory experiments based on neutron interactions with bauxite are described. The technique was chosen in order to overcome the problem of spatial heterogeneity in bulk mineral analysis. The evaluated elements contributed to approximately 99.5% of the sample weight. In addition, the measurements provide valuable information on physical parameters such as density, hygrometry, and material flow. Using a pulsed generator, the analysis system offers potential for on-line measurements (borehole logging or conveyor belt). An overall description of the experimental set-up is given. The experimental data include measurements of natural radioactivity, delayed radioactivity induced by activation, and prompt gamma rays following neutron reaction. In situ applications of neutron interactions provide continuous analysis and produce results which are more statistically significant. The key factors contributing to advances in industrial applications are the development of high count rate gamma spectroscopy and computational tools to design measurement systems and interpret their results.
Xiao, Xia; Hu, Haoliang; Xu, Yan; Lei, Min; Xiong, Qianzhu
2016-01-01
Optical voltage transformers (OVTs) have been applied in power systems. When performing accuracy performance tests of OVTs large differences exist between the electromagnetic environment and the temperature variation in the laboratory and on-site. Therefore, OVTs may display different error characteristics under different conditions. In this paper, OVT prototypes with typical structures were selected to be tested for the error characteristics with the same testing equipment and testing method. The basic accuracy, the additional error caused by temperature and the adjacent phase in the laboratory, the accuracy in the field off-line, and the real-time monitoring error during on-line operation were tested. The error characteristics under the three conditions—laboratory, in the field off-line and during on-site operation—were compared and analyzed. The results showed that the effect of the transportation process, electromagnetic environment and the adjacent phase on the accuracy of OVTs could be ignored for level 0.2, but the error characteristics of OVTs are dependent on the environmental temperature and are sensitive to the temperature gradient. The temperature characteristics during on-line operation were significantly superior to those observed in the laboratory. PMID:27537895
Xiao, Xia; Hu, Haoliang; Xu, Yan; Lei, Min; Xiong, Qianzhu
2016-08-16
Optical voltage transformers (OVTs) have been applied in power systems. When performing accuracy performance tests of OVTs large differences exist between the electromagnetic environment and the temperature variation in the laboratory and on-site. Therefore, OVTs may display different error characteristics under different conditions. In this paper, OVT prototypes with typical structures were selected to be tested for the error characteristics with the same testing equipment and testing method. The basic accuracy, the additional error caused by temperature and the adjacent phase in the laboratory, the accuracy in the field off-line, and the real-time monitoring error during on-line operation were tested. The error characteristics under the three conditions-laboratory, in the field off-line and during on-site operation-were compared and analyzed. The results showed that the effect of the transportation process, electromagnetic environment and the adjacent phase on the accuracy of OVTs could be ignored for level 0.2, but the error characteristics of OVTs are dependent on the environmental temperature and are sensitive to the temperature gradient. The temperature characteristics during on-line operation were significantly superior to those observed in the laboratory.
THE ROLE OF RAMAN SPECTROSCOPY IN THE ANALYTICAL CHEMISTRY OF POTABLE WATER
Advances in instrumentation are making Raman spectroscopy the tool of choice for an increasing number of chemical applications. For example, many recalcitrant industrial-process monitoring problems have been solved in recent years with in-line Raman spectrometers. Raman is attr...
40 CFR 98.314 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... accounting purposes including direct measurement weighing the petroleum coke fed into your process (by belt... line dioxide using plant instruments used for accounting purposes including direct measurement weighing... used to ensure the accuracy of monthly calcined petroleum coke consumption measurements. (c) You must...
THE ROLE OF RAMAN SPECTROSCOPY IN THE ANALYTICAL CHEMISTRY OF POTABLE WATER
Advances in instrumentation are making Raman spectroscopy the tool of choice for an increasing number of chemical applications. For example, many recalcitrant industrial process monitoring problems have been solved in recent years with in-line Raman spectrometers. Raman is attr...
Development and Application of On-line Monitor for the ZLW-1 Axis Cracks
NASA Astrophysics Data System (ADS)
Shi-jun, Yang; Qian-hui, Yang; Jian-guo, Jin
2018-03-01
This article mainly introduces a method that uses acoustic emission techniques to achieve on-line monitor for the shaft cracks and crack growth. According to this method, axis crack monitor is produced by acoustic emission techniques. This instrument can apply to all the pressure vessels, pipelines and rotor machines that can bear buckling load. It has the online real-time monitoring, automatic recording, printing, sound and light alarm, collecting crack information function. After a series of tests in both laboratory and field, it shows that this instrument is very versatile and possesses broad prospects of development and application.
Nondestructive Testing of Overhead Transmission LINES—NUMERICAL and Experimental Investigation
NASA Astrophysics Data System (ADS)
Kulkarni, S.; Hurlebaus, S.
2009-03-01
Overhead transmission lines are periodically inspected using both on-ground and helicopter-aided visual inspection. Factors including sun glare, cloud cover, close proximity to power lines and the rapidly changing visual circumstances make airborne inspection of power lines a particularly hazardous task. In this study, a finite element model is developed that can be used to create the theoretical dispersion curves of an overhead transmission line. The numerical results are then verified with experimental test using a non-contact and broadband laser detection technique. The methodology developed in this study can be further extended to a continuous monitoring system and be applied to other cable monitoring applications, such as bridge cable monitoring, which would otherwise put human inspectors at risk.
Condenser microbiofouling control handbook. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, J.K.; Garey, J.; Mussalli, Y.G.
1993-10-01
This handbook is a unified source of information to support the decisions that must be made to control microbiofouling. It is organized to help power plant engineers and operators (1) understand the causes of biofouling and how this knowledge can be used to develop an effective cleaning process, (2) move through the regulatory maze to find the regulations applicable to their own plant, (3) monitor biofouling, including on-line, off-line, direct, and indirect methods, (4) calculate the economic penalties for biofouling, (5) evaluate various chemical control methods in terms of system design and operation, biocontrol agents, specific restrictive environmental regulations, chemicalmore » application methods, and safety and exposure for workers, (6) evaluate mechanical cleaning methods, both on-line and off-line. Worksheets and examples are provided in many sections to guide operators to a more solid understanding of their problems and possible solutions. The handbook contains 46 figures, 28 tables, several case studies, and a complete index to aid the user in selecting appropriate sections of the handbook to read or review.« less
Chen, Qing; Xu, Pengfei; Liu, Wenzhong
2016-01-01
Computer vision as a fast, low-cost, noncontact, and online monitoring technology has been an important tool to inspect product quality, particularly on a large-scale assembly production line. However, the current industrial vision system is far from satisfactory in the intelligent perception of complex grain images, comprising a large number of local homogeneous fragmentations or patches without distinct foreground and background. We attempt to solve this problem based on the statistical modeling of spatial structures of grain images. We present a physical explanation in advance to indicate that the spatial structures of the complex grain images are subject to a representative Weibull distribution according to the theory of sequential fragmentation, which is well known in the continued comminution of ore grinding. To delineate the spatial structure of the grain image, we present a method of multiscale and omnidirectional Gaussian derivative filtering. Then, a product quality classifier based on sparse multikernel–least squares support vector machine is proposed to solve the low-confidence classification problem of imbalanced data distribution. The proposed method is applied on the assembly line of a food-processing enterprise to classify (or identify) automatically the production quality of rice. The experiments on the real application case, compared with the commonly used methods, illustrate the validity of our method. PMID:26986726
Technology and application of 3D tunnel information monitoring
NASA Astrophysics Data System (ADS)
Li, Changqing; Deng, Hongliang; Chen, Ge; Wang, Simiao; Guo, Yang; Wu, Shenglin
2015-12-01
It is very necessary that Implement information monitoring and dynamic construction because of Complex geological environment and lack of basic information in the process of tunnel construction. The monitoring results show that 3 d laser scanning technology and information management system has important theoretical significance and application value to ensure the safety of tunnel construction, rich construction theory and technology. It can be known in real time the deformation information and the construction information in near tunnel workplace and the whole tunnel section in real time. In the meantime, it can be known the deformation regularity in the tunnel excavation process and the early warning and forecasting in the form of graphic and data. In order to determine the reasonable time and provide basis for supporting parameters and lining.
NASA Astrophysics Data System (ADS)
Guenther, Hans; Brickhouse, N. S.; Dupree, A. K.; Luna, G.; Schneider, P. C.; Wolk, S. J.
2014-01-01
Classical T Tauri stars (CTTS) show strong, broad and asymmetric FUV emission lines. Neither the width, nor the line profile is understood. Likely, different mechanisms influence the line profile; the best candidates are accretion, winds and stellar activity. We monitored the C IV 1548/1550 Å doublet in the nearby, bright CTTS TW Hya to correlate it with i) the cool wind, as seen in COS NUV Mg II line profiles, ii) the photometric period from joint ground-based monitoring, iii) the accretion rate as determined from the UV continuum and iv) the Ha line profile from independent ground-based observations. The observations span 10 orbits distributed over a few weeks to cover the typical time scales of stellar rotation, accretion and winds. On short time scales (seconds) the variability in the data is compatible with counting statistics when we take certain instrumental effects (the detector dead-time fraction increases when the wavelength calibration lamps are switched on). This rules out any type of coherent accretion shock fluctuation as predicted in some simulations. On longer time scales (days) variability of a factor of 3 in the continuum and similarly massive changes in the line shape are seen. The ratio of the two lines of the doublet indicates that the lines are optically thick, calling into question the idea that the blue-shifted components of the C IV lines are formed in the pre-shock region.
Optical Sensor for real-time Monitoring of CO(2) Laser Welding Process.
Ancona, A; Spagnolo, V; Lugarà, P M; Ferrara, M
2001-11-20
An optical sensor for real-time monitoring of laser welding based on a spectroscopic study of the optical emission of plasma plumes has been developed. The welding plasma's electron temperature was contemporarily monitored for three of the chemical species that constitute the plasma plume by use of related emission lines. The evolution of electron temperature was recorded and analyzed during several welding procedures carried out under various operating conditions. A clear correlation between the mean value and the standard deviation of the plasma's electron temperature and the quality of the welded joint has been found. We used this information to find optimal welding parameters and for real-time detection of weld defects such as crater formation, lack of penetration, weld disruptions, and seam oxidation.
DEPLOYMENT OF A WATER QUALITY EARLY WARNING SYSTEM USING ON-LINE TOXICITY MONITORS
Contaminants are of concern when they are found in concentrations that are toxic to plants and/or animals. On–line Toxicity Monitors (OTMs) integrate all factors resulting in stress including physical and chemical qualities. This is important because of the limitations of c...
Pacis, Efren; Yu, Marcella; Autsen, Jennifer; Bayer, Robert; Li, Feng
2011-10-01
The glycosylation profile of therapeutic antibodies is routinely analyzed throughout development to monitor the impact of process parameters and to ensure consistency, efficacy, and safety for clinical and commercial batches of therapeutic products. In this study, unusually high levels of the mannose-5 (Man5) glycoform were observed during the early development of a therapeutic antibody produced from a Chinese hamster ovary (CHO) cell line, model cell line A. Follow up studies indicated that the antibody Man5 level was increased throughout the course of cell culture production as a result of increasing cell culture medium osmolality levels and extending culture duration. With model cell line A, Man5 glycosylation increased more than twofold from 12% to 28% in the fed-batch process through a combination of high basal and feed media osmolality and increased run duration. The osmolality and culture duration effects were also observed for four other CHO antibody producing cell lines by adding NaCl in both basal and feed media and extending the culture duration of the cell culture process. Moreover, reduction of Man5 level from model cell line A was achieved by supplementing MnCl2 at appropriate concentrations. To further understand the role of glycosyltransferases in Man5 level, N-acetylglucosaminyltransferase I GnT-I mRNA levels at different osmolality conditions were measured. It has been hypothesized that specific enzyme activity in the glycosylation pathway could have been altered in this fed-batch process. Copyright © 2011 Wiley Periodicals, Inc.
Machine vision process monitoring on a poultry processing kill line: results from an implementation
NASA Astrophysics Data System (ADS)
Usher, Colin; Britton, Dougl; Daley, Wayne; Stewart, John
2005-11-01
Researchers at the Georgia Tech Research Institute designed a vision inspection system for poultry kill line sorting with the potential for process control at various points throughout a processing facility. This system has been successfully operating in a plant for over two and a half years and has been shown to provide multiple benefits. With the introduction of HACCP-Based Inspection Models (HIMP), the opportunity for automated inspection systems to emerge as viable alternatives to human screening is promising. As more plants move to HIMP, these systems have the great potential for augmenting a processing facilities visual inspection process. This will help to maintain a more consistent and potentially higher throughput while helping the plant remain within the HIMP performance standards. In recent years, several vision systems have been designed to analyze the exterior of a chicken and are capable of identifying Food Safety 1 (FS1) type defects under HIMP regulatory specifications. This means that a reliable vision system can be used in a processing facility as a carcass sorter to automatically detect and divert product that is not suitable for further processing. This improves the evisceration line efficiency by creating a smaller set of features that human screeners are required to identify. This can reduce the required number of screeners or allow for faster processing line speeds. In addition to identifying FS1 category defects, the Georgia Tech vision system can also identify multiple "Other Consumer Protection" (OCP) category defects such as skin tears, bruises, broken wings, and cadavers. Monitoring this data in an almost real-time system allows the processing facility to address anomalies as soon as they occur. The Georgia Tech vision system can record minute-by-minute averages of the following defects: Septicemia Toxemia, cadaver, over-scald, bruises, skin tears, and broken wings. In addition to these defects, the system also records the length and width information of the entire chicken and different parts such as the breast, the legs, the wings, and the neck. The system also records average color and miss- hung birds, which can cause problems in further processing. Other relevant production information is also recorded including truck arrival and offloading times, catching crew and flock serviceman data, the grower, the breed of chicken, and the number of dead-on- arrival (DOA) birds per truck. Several interesting observations from the Georgia Tech vision system, which has been installed in a poultry processing plant for several years, are presented. Trend analysis has been performed on the performance of the catching crews and flock serviceman, and the results of the processed chicken as they relate to the bird dimensions and equipment settings in the plant. The results have allowed researchers and plant personnel to identify potential areas for improvement in the processing operation, which should result in improved efficiency and yield.
Bunch, Richard H.
1986-01-01
A fault finder for locating faults along a high voltage electrical transmission line. Real time monitoring of background noise and improved filtering of input signals is used to identify the occurrence of a fault. A fault is detected at both a master and remote unit spaced along the line. A master clock synchronizes operation of a similar clock at the remote unit. Both units include modulator and demodulator circuits for transmission of clock signals and data. All data is received at the master unit for processing to determine an accurate fault distance calculation.
Xu, Lijun; Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen
2016-01-01
To monitor two-dimensional (2D) distributions of temperature and H2O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors' knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H2O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm(-1) (1343.3 nm) and 7185.6 cm(-1) (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H2O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H2O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.
NASA Astrophysics Data System (ADS)
Xu, Lijun; Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen
2016-01-01
To monitor two-dimensional (2D) distributions of temperature and H2O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors' knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H2O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm-1 (1343.3 nm) and 7185.6 cm-1 (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H2O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H2O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Lijun, E-mail: lijunxu@buaa.edu.cn; Liu, Chang; Jing, Wenyang
2016-01-15
To monitor two-dimensional (2D) distributions of temperature and H{sub 2}O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors’ knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H{sub 2}O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm{sup −1} (1343.3 nm) and 7185.6 cm{sup −1} (1391.67 nm), respectively. The tomographicmore » sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H{sub 2}O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H{sub 2}O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.« less
Calculus removal on a root cement surface by ultrashort laser pulses
NASA Astrophysics Data System (ADS)
Kraft, Johan F.; Vestentoft, Kasper; Christensen, Bjarke H.; Løvschall, Henrik; Balling, Peter
2008-01-01
Ultrashort-pulse-laser ablation of dental calculus (tartar) and cement is performed on root surfaces. The investigation shows that the threshold fluence for ablation of calculus is a factor of two to three times smaller than that of a healthy root cement surface. This indicates that ultrashort laser pulses may provide an appropriate tool for selective removal of calculus with minimal damage to the underlying root cement. Future application of an in situ profiling technique allows convenient on-line monitoring of the ablation process.
Proactive detection of bones in poultry processing
NASA Astrophysics Data System (ADS)
Daley, W. D. R.; Stewart, John
2009-05-01
Bones continue to be a problem of concern for the poultry industry. Most further processed products begin with the requirement for raw material with minimal bones. The current process for generating deboned product requires systems for monitoring and inspecting the output product. The current detection systems are either people palpitating the product or X-ray systems. The current performance of these inspection techniques are below the desired levels of accuracies and are costly. We propose a technique for monitoring bones that conduct the inspection operation in the deboning the process so as to have enough time to take action to reduce the probability that bones will end up in the final product. This is accomplished by developing active cones with built in illumination to backlight the cage (skeleton) on the deboning line. If the bones of interest are still on the cage then the bones are not in the associated meat. This approach also allows for the ability to practice process control on the deboning operation to keep the process under control as opposed to the current system where the detection is done post production and does not easily present the opportunity to adjust the process. The proposed approach shows overall accuracies of about 94% for the detection of the clavicle bones.
Koch, Cosima; Posch, Andreas E; Herwig, Christoph; Lendl, Bernhard
2016-12-01
The performance of a fiber optic and an optical conduit in-line attenuated total reflection mid-infrared (IR) probe during in situ monitoring of Penicillium chrysogenum fermentation were compared. The fiber optic probe was connected to a sealed, portable, Fourier transform infrared (FT-IR) process spectrometer via a plug-and-play interface. The optical conduit, on the other hand, was connected to a FT-IR process spectrometer via a knuckled probe with mirrors that had to be adjusted prior to each fermentation, which were purged with dry air. Penicillin V (PenV) and its precursor phenoxyacetic acid (POX) concentrations were determined by online high-performance liquid chromatography and the obtained concentrations were used as reference to build partial least squares regression models. Cross-validated root-mean-square errors of prediction were found to be 0.2 g L -1 (POX) and 0.19 g L -1 (PenV) for the fiber optic setup and 0.17 g L -1 (both POX and PenV) for the conduit setup. Higher noise-levels and spectrum-to-spectrum variations of the fiber optic setup lead to higher noise of estimated (i.e., unknown) POX and PenV concentrations than was found for the conduit setup. It seems that trade-off has to be made between ease of handling (fiber optic setup) and measurement accuracy (optical conduit setup) when choosing one of these systems for bioprocess monitoring. © The Author(s) 2016.
Brouckaert, Davinia; De Meyer, Laurens; Vanbillemont, Brecht; Van Bockstal, Pieter-Jan; Lammens, Joris; Mortier, Séverine; Corver, Jos; Vervaet, Chris; Nopens, Ingmar; De Beer, Thomas
2018-04-03
Near-infrared chemical imaging (NIR-CI) is an emerging tool for process monitoring because it combines the chemical selectivity of vibrational spectroscopy with spatial information. Whereas traditional near-infrared spectroscopy is an attractive technique for water content determination and solid-state investigation of lyophilized products, chemical imaging opens up possibilities for assessing the homogeneity of these critical quality attributes (CQAs) throughout the entire product. In this contribution, we aim to evaluate NIR-CI as a process analytical technology (PAT) tool for at-line inspection of continuously freeze-dried pharmaceutical unit doses based on spin freezing. The chemical images of freeze-dried mannitol samples were resolved via multivariate curve resolution, allowing us to visualize the distribution of mannitol solid forms throughout the entire cake. Second, a mannitol-sucrose formulation was lyophilized with variable drying times for inducing changes in water content. Analyzing the corresponding chemical images via principal component analysis, vial-to-vial variations as well as within-vial inhomogeneity in water content could be detected. Furthermore, a partial least-squares regression model was constructed for quantifying the water content in each pixel of the chemical images. It was hence concluded that NIR-CI is inherently a most promising PAT tool for continuously monitoring freeze-dried samples. Although some practicalities are still to be solved, this analytical technique could be applied in-line for CQA evaluation and for detecting the drying end point.
NASA Astrophysics Data System (ADS)
Favalli, A.; Lombardi, M.; MacArthur, D. W.; McCluskey, C.; Moss, C. E.; Paffett, M. T.; Ianakiev, K. D.
2018-01-01
Improving the quality of safeguards measurements at Gas Centrifuge Enrichment Plants while reducing the inspection effort is an important objective given the number of existing and new plants that need to be safeguarded. A useful tool in many safeguards approaches is the on-line monitoring of enrichment in process pipes. One requirement of such a monitor is a simple, reliable and precise passive measurement of the 186-keV line from 235U. The other information required is the amount of gas in the pipe, which can be obtained by a transmission or pressure measurement. We describe our research to develop such a passive measurement system. Unfortunately, a complication arises in the interpretation of the gamma measurements, from the contribution of uranium deposits on the wall of the pipe to the 186-keV peak. A multi-detector approach to address this complication is presented where two measurements, one with signal primarily from gas and one with signal primarily from deposits, are performed simultaneously with different detectors and geometries. This allows a correction to be made to the 186-keV peak for the contribution from the deposit. We present the design of the multi-detector system and the results of the experimental calibration of the proof-of-principle prototype built at LANL.
Monitoring ground subsidence in Shanghai maglev area using two kinds of SAR data
NASA Astrophysics Data System (ADS)
Wu, Jicang; Zhang, Lina; Chen, Jie; Li, Tao
2012-11-01
Shanghai maglev is a very fast traffic tool, so it is very strict with the stability of the roadbed. However, the ground subsidence is a problem in Shanghai because of the poor geological condition and human-induced factors. So it is necessary to monitor ground subsidence in the area along the Shanghai maglev precisely and frequently. Traditionally, a precise levelling method is used to survey along the track. It is expensive and time consuming, and can only get the ground subsidence information on sparse benchmarks. Recently, the small baseline differential SAR technique plays a valuable part in monitoring ground subsidence, which can extract ground subsidence information with high spatial resolution in a wide area. In this paper, L-band ALOS PALSAR data and C-band Envisat ASAR data are used to extract ground subsidence information using the SBAS method in the Shanghai maglev area. The results show that the general pattern of ground subsidence from InSAR processing of two differential bands of SAR images is similar. Both results show that there is no significant ground subsidence on the maglev line. Near the railway line, there are a few places with subsidence rates at about -20 mm/y or even more, such as Chuansha town, the junction of the maglev and Waihuan road.
Equipment for linking the AutoAnalyzer on-line to a computer
Simpson, D.; Sims, G. E.; Harrison, M. I.; Whitby, L. G.
1971-01-01
An Elliott 903 computer with 8K central core store and magnetic tape backing store has been operated for approximately 20 months in a clinical chemistry laboratory. Details of the equipment designed for linking AutoAnalyzers on-line to the computer are described, and data presented concerning the time required by the computer for different processes. The reliability of the various components in daily operation is discussed. Limitations in the system's capabilities have been defined, and ways of overcoming these are delineated. At present, routine operations include the preparation of worksheets for a limited range of tests (five channels), monitoring of up to 11 AutoAnalyzer channels at a time on a seven-day week basis (with process control and automatic calculation of results), and the provision of quality control data. Cumulative reports can be printed out on those analyses for which computer-prepared worksheets are provided but the system will require extension before these can be issued sufficiently rapidly for routine use. PMID:5551384
Real-time radionuclide identification in γ-emitter mixtures based on spiking neural network.
Bobin, C; Bichler, O; Lourenço, V; Thiam, C; Thévenin, M
2016-03-01
Portal radiation monitors dedicated to the prevention of illegal traffic of nuclear materials at international borders need to deliver as fast as possible a radionuclide identification of a potential radiological threat. Spectrometry techniques applied to identify the radionuclides contributing to γ-emitter mixtures are usually performed using off-line spectrum analysis. As an alternative to these usual methods, a real-time processing based on an artificial neural network and Bayes' rule is proposed for fast radionuclide identification. The validation of this real-time approach was carried out using γ-emitter spectra ((241)Am, (133)Ba, (207)Bi, (60)Co, (137)Cs) obtained with a high-efficiency well-type NaI(Tl). The first tests showed that the proposed algorithm enables a fast identification of each γ-emitting radionuclide using the information given by the whole spectrum. Based on an iterative process, the on-line analysis only needs low-statistics spectra without energy calibration to identify the nature of a radiological threat. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
1988-01-01
The charters of Freedom Monitoring System will periodically assess the physical condition of the U.S. Constitution, Declaration of Independence and Bill of Rights. Although protected in helium filled glass cases, the documents are subject to damage from light vibration and humidity. The photometer is a CCD detector used as the electronic film for the camera system's scanning camera which mechanically scans the document line by line and acquires a series of images, each representing a one square inch portion of the document. Perkin-Elmer Corporation's photometer is capable of detecting changes in contrast, shape or other indicators of degradation with 5 to 10 times the sensitivity of the human eye. A Vicom image processing computer receives the data from the photometer stores it and manipulates it, allowing comparison of electronic images over time to detect changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christien, F., E-mail: frederic.christien@univ-nantes.fr; Le Gall, R.; Telling, M. T. F.
2015-05-15
A method is proposed for the monitoring of metal recrystallization using neutron diffraction that is based on the measurement of stored energy. Experiments were performed using deformed metal specimens heated in-situ while mounted at the sample position of the High Resolution Powder Diffractometer, HRPD (ISIS Facility), UK. Monitoring the breadth of the resulting Bragg lines during heating not only allows the time-dependence (or temperature-dependence) of the stored energy to be determined but also the recrystallized fraction. The analysis method presented here was developed using pure nickel (Ni270) specimens with different deformation levels from 0.29 to 0.94. In situ temperature rampingmore » as well as isothermal annealing was undertaken. The method developed in this work allows accurate and quantitative monitoring of the recrystallization process. The results from neutron diffraction are satisfactorily compared to data obtained from calorimetry and hardness measurements.« less
Rowland-Jones, Ruth C; van den Berg, Frans; Racher, Andrew J; Martin, Elaine B; Jaques, Colin
2017-03-01
Cell culture process development requires the screening of large numbers of cell lines and process conditions. The development of miniature bioreactor systems has increased the throughput of such studies; however, there are limitations with their use. One important constraint is the limited number of offline samples that can be taken compared to those taken for monitoring cultures in large-scale bioreactors. The small volume of miniature bioreactor cultures (15 mL) is incompatible with the large sample volume (600 µL) required for bioanalysers routinely used. Spectroscopy technologies may be used to resolve this limitation. The purpose of this study was to compare the use of NIR, Raman, and 2D-fluorescence to measure multiple analytes simultaneously in volumes suitable for daily monitoring of a miniature bioreactor system. A novel design-of-experiment approach is described that utilizes previously analyzed cell culture supernatant to assess metabolite concentrations under various conditions while providing optimal coverage of the desired design space. Multivariate data analysis techniques were used to develop predictive models. Model performance was compared to determine which technology is more suitable for this application. 2D-fluorescence could more accurately measure ammonium concentration (RMSE CV 0.031 g L -1 ) than Raman and NIR. Raman spectroscopy, however, was more robust at measuring lactate and glucose concentrations (RMSE CV 1.11 and 0.92 g L -1 , respectively) than the other two techniques. The findings suggest that Raman spectroscopy is more suited for this application than NIR and 2D-fluorescence. The implementation of Raman spectroscopy increases at-line measuring capabilities, enabling daily monitoring of key cell culture components within miniature bioreactor cultures. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:337-346, 2017. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.
Tri-linear color multi-linescan sensor with 200 kHz line rate
NASA Astrophysics Data System (ADS)
Schrey, Olaf; Brockherde, Werner; Nitta, Christian; Bechen, Benjamin; Bodenstorfer, Ernst; Brodersen, Jörg; Mayer, Konrad J.
2016-11-01
In this paper we present a newly developed linear CMOS high-speed line-scanning sensor realized in a 0.35 μm CMOS OPTO process for line-scan with 200 kHz true RGB and 600 kHz monochrome line rate, respectively. In total, 60 lines are integrated in the sensor allowing for electronic position adjustment. The lines are read out in rolling shutter manner. The high readout speed is achieved by a column-wise organization of the readout chain. At full speed, the sensor provides RGB color images with a spatial resolution down to 50 μm. This feature enables a variety of applications like quality assurance in print inspection, real-time surveillance of railroad tracks, in-line monitoring in flat panel fabrication lines and many more. The sensor has a fill-factor close to 100%, preventing aliasing and color artefacts. Hence the tri-linear technology is robust against aliasing ensuring better inspection quality and thus less waste in production lines.
Lourenço, Vera; Herdling, Thorsten; Reich, Gabriele; Menezes, José C; Lochmann, Dirk
2011-08-01
A set of 192 fluid bed granulation batches at industrial scale were in-line monitored using microwave resonance technology (MRT) to determine moisture, temperature and density of the granules. Multivariate data analysis techniques such as multiway partial least squares (PLS), multiway principal component analysis (PCA) and multivariate batch control charts were applied onto collected batch data sets. The combination of all these techniques, along with off-line particle size measurements, led to significantly increased process understanding. A seasonality effect could be put into evidence that impacted further processing through its influence on the final granule size. Moreover, it was demonstrated by means of a PLS that a relation between the particle size and the MRT measurements can be quantitatively defined, highlighting a potential ability of the MRT sensor to predict information about the final granule size. This study has contributed to improve a fluid bed granulation process, and the process knowledge obtained shows that the product quality can be built in process design, following Quality by Design (QbD) and Process Analytical Technology (PAT) principles. Copyright © 2011. Published by Elsevier B.V.
Chu, Chien; Li, Hong-Ping; Tsai, Huai-Jen
2014-01-01
Reliable animal models are invaluable for monitoring the extent of pollution in the aquatic environment. In this study, we demonstrated the potential of huORFZ, a novel transgenic zebrafish line that harbors a human upstream open reading frame of the chop gene fused with GFP reporter, as an animal model for monitoring environmental pollutants and stress-related cellular processes. When huORFZ embryos were kept under normal condition, no leaked GFP signal could be detected. When treated with hazardous chemicals, including heavy metals and endocrine-disrupting chemicals near their sublethal concentrations (LC50), huORFZ embryos exhibited different tissue-specific GFP expression patterns. For further analysis, copper (Cu2+), cadmium (Cd2+) and Chlorpyrifos were applied. Cu2+ triggered GFP responses in skin and muscle, whereas Cd2+ treatment triggered GFP responses in skin, olfactory epithelium and pronephric ducts. Moreover, fluorescence intensity, as exhibited by huORFZ embryos, was dose-dependent. After surviving treated embryos were returned to normal condition, survival rates, as well as TUNEL signals, returned to pretreatment levels with no significant morphological defects observed. Such results indicated the reversibility of treatment conditions used in this study, as long as embryos survived such conditions. Notably, GFP signals decreased along with recovery, suggesting that GFP signaling of huORFZ embryos likely reflected the overall physiological condition of the individual. To examine the performance of the huORFZ line under real-world conditions, we placed huORFZ embryos in different river water samples. We found that the huORFZ embryos correctly detected the presence of various kinds of pollutants. Based on these findings, we concluded that such uORFchop-based system can be integrated into a first-line water alarm system monitoring the discharge of hazardous pollutants. PMID:24594581
Using process monitor wafers to understand directed self-assembly defects
NASA Astrophysics Data System (ADS)
Cao, Yi; Her, YoungJun; Delgadillo, Paulina R.; Vandenbroeck, Nadia; Gronheid, Roel; Chan, Boon Teik; Hashimoto, Yukio; Romo, Ainhoa; Somervell, Mark; Nafus, Kathleen; Nealey, Paul F.
2013-03-01
As directed self-assembly (DSA) has gained momentum over the past few years, questions about its application to high volume manufacturing have arisen. One of the major concerns is about the fundamental limits of defectivity that can be attained with the technology. If DSA applications demonstrate defectivity that rivals of traditional lithographic technologies, the pathway to the cost benefits of the technology creates a very compelling case for its large scale implementation. To address this critical question, our team at IMEC has established a process monitor flow to track the defectivity behaviors of an exemplary chemo-epitaxy application for printing line/space patterns. Through establishing this baseline, we have been able to understand both traditional lithographic defect sources in new materials as well as new classes of assembly defects associated with DSA technology. Moreover, we have explored new materials and processing to lower the level of the defectivity baseline. The robustness of the material sets and process is investigated as well. In this paper, we will report the understandings learned from the IMEC DSA process monitor flow.
Virtual Sensors for On-line Wheel Wear and Part Roughness Measurement in the Grinding Process
Arriandiaga, Ander; Portillo, Eva; Sánchez, Jose A.; Cabanes, Itziar; Pombo, Iñigo
2014-01-01
Grinding is an advanced machining process for the manufacturing of valuable complex and accurate parts for high added value sectors such as aerospace, wind generation, etc. Due to the extremely severe conditions inside grinding machines, critical process variables such as part surface finish or grinding wheel wear cannot be easily and cheaply measured on-line. In this paper a virtual sensor for on-line monitoring of those variables is presented. The sensor is based on the modelling ability of Artificial Neural Networks (ANNs) for stochastic and non-linear processes such as grinding; the selected architecture is the Layer-Recurrent neural network. The sensor makes use of the relation between the variables to be measured and power consumption in the wheel spindle, which can be easily measured. A sensor calibration methodology is presented, and the levels of error that can be expected are discussed. Validation of the new sensor is carried out by comparing the sensor's results with actual measurements carried out in an industrial grinding machine. Results show excellent estimation performance for both wheel wear and surface roughness. In the case of wheel wear, the absolute error is within the range of microns (average value 32 μm). In the case of surface finish, the absolute error is well below Ra 1 μm (average value 0.32 μm). The present approach can be easily generalized to other grinding operations. PMID:24854055
NASA Astrophysics Data System (ADS)
Linares, Rodrigo; Vergara, German; Gutiérrez, Raúl; Fernández, Carlos; Villamayor, Víctor; Gómez, Luis; González-Camino, Maria; Baldasano, Arturo; Castro, G.; Arias, R.; Lapido, Y.; Rodríguez, J.; Romero, Pablo
2015-05-01
The combination of flexibility, productivity, precision and zero-defect manufacturing in future laser-based equipment are a major challenge that faces this enabling technology. New sensors for online monitoring and real-time control of laserbased processes are necessary for improving products quality and increasing manufacture yields. New approaches to fully automate processes towards zero-defect manufacturing demand smarter heads where lasers, optics, actuators, sensors and electronics will be integrated in a unique compact and affordable device. Many defects arising in laser-based manufacturing processes come from instabilities in the dynamics of the laser process. Temperature and heat dynamics are key parameters to be monitored. Low cost infrared imagers with high-speed of response will constitute the next generation of sensors to be implemented in future monitoring and control systems for laser-based processes, capable to provide simultaneous information about heat dynamics and spatial distribution. This work describes the result of using an innovative low-cost high-speed infrared imager based on the first quantum infrared imager monolithically integrated with Si-CMOS ROIC of the market. The sensor is able to provide low resolution images at frame rates up to 10 KHz in uncooled operation at the same cost as traditional infrared spot detectors. In order to demonstrate the capabilities of the new sensor technology, a low-cost camera was assembled on a standard production laser welding head, allowing to register melting pool images at frame rates of 10 kHz. In addition, a specific software was developed for defect detection and classification. Multiple laser welding processes were recorded with the aim to study the performance of the system and its application to the real-time monitoring of laser welding processes. During the experiments, different types of defects were produced and monitored. The classifier was fed with the experimental images obtained. Self-learning strategies were implemented with very promising results, demonstrating the feasibility of using low-cost high-speed infrared imagers in advancing towards a real-time / in-line zero-defect production systems.
Kauppinen, Ari; Toiviainen, Maunu; Korhonen, Ossi; Aaltonen, Jaakko; Järvinen, Kristiina; Paaso, Janne; Juuti, Mikko; Ketolainen, Jarkko
2013-02-19
During the past decade, near-infrared (NIR) spectroscopy has been applied for in-line moisture content quantification during a freeze-drying process. However, NIR has been used as a single-vial technique and thus is not representative of the entire batch. This has been considered as one of the main barriers for NIR spectroscopy becoming widely used in process analytical technology (PAT) for freeze-drying. Clearly it would be essential to monitor samples that reliably represent the whole batch. The present study evaluated multipoint NIR spectroscopy for in-line moisture content quantification during a freeze-drying process. Aqueous sucrose solutions were used as model formulations. NIR data was calibrated to predict the moisture content using partial least-squares (PLS) regression with Karl Fischer titration being used as a reference method. PLS calibrations resulted in root-mean-square error of prediction (RMSEP) values lower than 0.13%. Three noncontact, diffuse reflectance NIR probe heads were positioned on the freeze-dryer shelf to measure the moisture content in a noninvasive manner, through the side of the glass vials. The results showed that the detection of unequal sublimation rates within a freeze-dryer shelf was possible with the multipoint NIR system in use. Furthermore, in-line moisture content quantification was reliable especially toward the end of the process. These findings indicate that the use of multipoint NIR spectroscopy can achieve representative quantification of moisture content and hence a drying end point determination to a desired residual moisture level.
Fiber-Optic Surface Temperature Sensor Based on Modal Interference.
Musin, Frédéric; Mégret, Patrice; Wuilpart, Marc
2016-07-28
Spatially-integrated surface temperature sensing is highly useful when it comes to controlling processes, detecting hazardous conditions or monitoring the health and safety of equipment and people. Fiber-optic sensing based on modal interference has shown great sensitivity to temperature variation, by means of cost-effective image-processing of few-mode interference patterns. New developments in the field of sensor configuration, as described in this paper, include an innovative cooling and heating phase discrimination functionality and more precise measurements, based entirely on the image processing of interference patterns. The proposed technique was applied to the measurement of the integrated surface temperature of a hollow cylinder and compared with a conventional measurement system, consisting of an infrared camera and precision temperature probe. As a result, the optical technique is in line with the reference system. Compared with conventional surface temperature probes, the optical technique has the following advantages: low heat capacity temperature measurement errors, easier spatial deployment, and replacement of multiple angle infrared camera shooting and the continuous monitoring of surfaces that are not visually accessible.
New methodology for dynamic lot dispatching
NASA Astrophysics Data System (ADS)
Tai, Wei-Herng; Wang, Jiann-Kwang; Lin, Kuo-Cheng; Hsu, Yi-Chin
1994-09-01
This paper presents a new dynamic dispatching rule to improve delivery. The dynamic dispatching rule named `SLACK and OTD (on time delivery)' is developed for focusing on due date and target cycle time under the environment of IC manufacturing. This idea uses traditional SLACK policy to control long term due date and new OTD policy to reflect the short term stage queue time. Through the fuzzy theory, these two policies are combined as the dispatching controller to define the lot priority in the entire production line. Besides, the system would automatically update the lot priority according to the current line situation. Since the wafer dispatching used to be controlled by critical ratio that indicates the low customer satisfaction. And the overall slack time in the front end of the process is greater compared to that in the rear end of the process which reveals that the machines in the rear end are overloaded by rush orders. When SLACK and OTD are used the due date control has been gradually improved. The wafer with either a long stage queue time or urgent due date will be pushed through the overall production line instead of jammed in the front end. A demand pull system is also developed to satisfy not only due date but also the quantity of monthly demand. The SLACK and OTD rule has been implemented in Taiwan Semiconductor Manufacturing Company for eight months with beneficial results. In order to clearly monitor the SLACK and OTD policy, a method called box chart is generated to simulate the entire production system. From the box chart, we can not only monitor the result of decision policy but display the production situation on the density figure. The production cycle time and delivery situation can also be investigated.
Friction Stir Welding of Metal Matrix Composites for use in aerospace structures
NASA Astrophysics Data System (ADS)
Prater, Tracie
2014-01-01
Friction Stir Welding (FSW) is a relatively nascent solid state joining technique developed at The Welding Institute (TWI) in 1991. The process was first used at NASA to weld the super lightweight external tank for the Space Shuttle. Today FSW is used to join structural components of the Delta IV, Atlas V, and Falcon IX rockets as well as the Orion Crew Exploration Vehicle. A current focus of FSW research is to extend the process to new materials which are difficult to weld using conventional fusion techniques. Metal Matrix Composites (MMCs) consist of a metal alloy reinforced with ceramics and have a very high strength to weight ratio, a property which makes them attractive for use in aerospace and defense applications. MMCs have found use in the space shuttle orbiter's structural tubing, the Hubble Space Telescope's antenna mast, control surfaces and propulsion systems for aircraft, and tank armors. The size of MMC components is severely limited by difficulties encountered in joining these materials using fusion welding. Melting of the material results in formation of an undesirable phase (formed when molten Aluminum reacts with the reinforcement) which leaves a strength depleted region along the joint line. Since FSW occurs below the melting point of the workpiece material, this deleterious phase is absent in FSW-ed MMC joints. FSW of MMCs is, however, plagued by rapid wear of the welding tool, a consequence of the large discrepancy in hardness between the steel tool and the reinforcement material. This work characterizes the effect of process parameters (spindle speed, traverse rate, and length of joint) on the wear process. Based on the results of these experiments, a phenomenological model of the wear process was constructed based on the rotating plug model for FSW. The effectiveness of harder tool materials (such as Tungsten Carbide, high speed steel, and tools with diamond coatings) to combat abrasive wear is explored. In-process force, torque, and vibration signals are analyzed to assess the feasibility of on-line monitoring of tool shape changes as a result of wear (an advancement which would eliminate the need for off-line evaluation of tool condition during joining). Monitoring, controlling, and reducing tool wear in FSW of MMCs is essential to the implementation of these materials in structures (such as launch vehicles) where they would be of maximum benefit.
Pyrolysis process for the treatment of scrap tyres: preliminary experimental results.
Galvagno, S; Casu, S; Casabianca, T; Calabrese, A; Cornacchia, G
2002-01-01
The aim of this work is the evaluation, on a pilot scale, of scrap tyre pyrolysis process performance and the characteristics of the products under different process parameters, such as temperature, residence time, pressure, etc. In this frame, a series of tests were carried out at varying process temperatures between 550 and 680 degrees C, other parameters being equal. Pyrolysis plant process data are collected by an acquisition system; scrap tyre samples used for the treatment, solid and liquid by-products and produced syngas were analysed through both on-line monitoring (for gas) and laboratory analyses. Results show that process temperature, in the explored range, does not seem to seriously influence the volatilisation reaction yield, at least from a quantitative point of view, while it observably influences the distribution of the volatile fraction (liquid and gas) and by-products characteristics.
Lee, Sang Tak; Yang, Boram; Kim, Jin-Yong; Park, Ji-Hyung; Moon, Myeong Hee
2015-08-28
This study demonstrated that asymmetrical flow field-flow fractionation (AF4) coupled with on-line UV and fluorescence detection (FLD) and off-line excitation-emission matrix (EEM) fluorescence spectroscopy can be employed to analyze the influence of microbial metabolic activity on the consumption and production of freshwater organic matter. With the AF4 system, organic matter is on-line enriched during a focusing/relaxation period, which is an essential process prior to separation. Size-fractionated chromophoric and fluorophoric organic materials were simultaneously monitored during the 30-min AF4 separation process. Two fractions of different sizes (dissolved organic matter (DOM) and particulate organic matter (POM)) of freshwater samples from three locations (up-, mid-, and downstream) along the Han River basin of Korea were incubated with the same inoculum for 14 days to analyze fraction-specific alterations in optical properties using AF4-UV-FLD. A comparison of AF4 fractograms obtained from pre- and post-incubation samples revealed that POM-derived DOM were more susceptible to microbial metabolic activity than was DOM. Preferential microbial consumption of protein-like DOM components concurred with enhanced peaks of chromophoric and humic-like fluorescent components, presumably formed as by-products of microbial processing. AF4-UV-FLD combined with off-line identification of microbially processed components using EEM fluorescence spectroscopy provides a powerful tool to study the relationship between microbial activity and composition as well as biodegradability of DOM and POM-derived DOM from different origins, especially for the analysis of chromophoric and fluorophoric organic matter that are consumed and produced by microbial metabolic activity. The proposed AF4 system can be applied to organic matter in freshwater samples having low concentration range (0.3-2.5ppm of total organic carbon) without a pre-concentration procedure. Copyright © 2015 Elsevier B.V. All rights reserved.
Understanding fetal physiology and second line monitoring during labor.
Garabedian, C; De Jonckheere, J; Butruille, L; Deruelle, P; Storme, L; Houfflin-Debarge, V
2017-02-01
Cardiotocography (CTG) is a technique used to monitor intrapartum fetal condition and is one of the most common obstetric procedures. Second line methods of fetal monitoring have been developed in an attempt to reduce unnecessary interventions due to continuous cardiotocography and to better identify fetuses at risk of intrapartum asphyxia. The acid-base balance of the fetus is evaluated by fetal blood scalp samples, the modification of the myocardial oxygenation by the fetal ECG ST-segment analysis (STAN) and the autonomic nervous system by the power spectral analysis of the fetal heart variability. To correctly interpret the features observed on CTG traces or second line methods, it seems important to understand normal physiology during labor and the compensatory mechanisms of the fetus in case of hypoxemia. Therefore, the aim of this review is first to describe fetal physiology during labor and then to explain the modification of the second line monitoring during labor. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Duan, Yixiang; Su, Yongxuan; Jin, Zhe; Abeln, Stephen P.
2000-03-01
The development of a highly sensitive, field portable, low-powered instrument for on-site, real-time liquid waste stream monitoring is described in this article. A series of factors such as system sensitivity and portability, plasma source, sample introduction, desolvation system, power supply, and the instrument configuration, were carefully considered in the design of the portable instrument. A newly designed, miniature, modified microwave plasma source was selected as the emission source for spectroscopy measurement, and an integrated small spectrometer with a charge-coupled device detector was installed for signal processing and detection. An innovative beam collection system with optical fibers was designed and used for emission signal collection. Microwave plasma can be sustained with various gases at relatively low power, and it possesses high detection capabilities for both metal and nonmetal pollutants, making it desirable to use for on-site, real-time, liquid waste stream monitoring. An effective in situ sampling system was coupled with a high efficiency desolvation device for direct-sampling liquid samples into the plasma. A portable computer control system is used for data processing. The new, integrated instrument can be easily used for on-site, real-time monitoring in the field. The system possesses a series of advantages, including high sensitivity for metal and nonmetal elements; in situ sampling; compact structure; low cost; and ease of operation and handling. These advantages will significantly overcome the limitations of previous monitoring techniques and make great contributions to environmental restoration and monitoring.
NASA Astrophysics Data System (ADS)
García Plaza, E.; Núñez López, P. J.
2018-01-01
The wavelet packet transform method decomposes a time signal into several independent time-frequency signals called packets. This enables the temporary location of transient events occurring during the monitoring of the cutting processes, which is advantageous in monitoring condition and fault diagnosis. This paper proposes the monitoring of surface roughness using a single low cost sensor that is easily implemented in numerical control machine tools in order to make on-line decisions on workpiece surface finish quality. Packet feature extraction in vibration signals was applied to correlate the sensor signals to measured surface roughness. For the successful application of the WPT method, mother wavelets, packet decomposition level, and appropriate packet selection methods should be considered, but are poorly understood aspects in the literature. In this novel contribution, forty mother wavelets, optimal decomposition level, and packet reduction methods were analysed, as well as identifying the effective frequency range providing the best packet feature extraction for monitoring surface finish. The results show that mother wavelet biorthogonal 4.4 in decomposition level L3 with the fusion of the orthogonal vibration components (ax + ay + az) were the best option in the vibration signal and surface roughness correlation. The best packets were found in the medium-high frequency DDA (6250-9375 Hz) and high frequency ADA (9375-12500 Hz) ranges, and the feed acceleration component ay was the primary source of information. The packet reduction methods forfeited packets with relevant features to the signal, leading to poor results for the prediction of surface roughness. WPT is a robust vibration signal processing method for the monitoring of surface roughness using a single sensor without other information sources, satisfactory results were obtained in comparison to other processing methods with a low computational cost.
RadWorks Project. ISS REM - to - BIRD - to - HERA: The Evolution of a Technology
NASA Technical Reports Server (NTRS)
McLeod, Catherine D.
2015-01-01
The advancement of particle detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. One such device, the TimePix, is being developed at CERN, and is providing the technology basis for the most recent line of radiation detection devices being developed by the NASA AES RadWorks project. The most fundamental of these devices, an ISS-Radiation Environment Monitor (REM), is installed as a USB device on ISS where it is monitoring the radiation environment on a perpetual basis. The second generation of this TimePix technology, the BIRD (Battery-operated Independent Radiation Detector), was flown on the NASA EFT-1 flight in December 2014. Data collected by BIRD was the first data made available from the Trapped Belt region of the Earth's atmosphere in over 40 years. The 3rdgeneration of this technology, the HERA (Hybrid Electronic Radiation Assessor), is planned to be integrated into the Orion EM-1, and EM-2 vehicles where it will monitor the radiation environment. For the EM-2 flight, HERA will provide Caution and Warning notification for SPEs as well as real time dose measurements for crew members. The development of this line of radiation detectors provide much greater information and characterization of charged particles in the space radiation environment than has been collected in the past, and in the process provide greater information to inform crew members of radiation related risks, while being very power and mass efficient.
High-speed measurements of steel-plate deformations during laser surface processing.
Jezersek, Matija; Gruden, Valter; Mozina, Janez
2004-10-04
In this paper we present a novel approach to monitoring the deformations of a steel plate's surface during various types of laser processing, e.g., engraving, marking, cutting, bending, and welding. The measuring system is based on a laser triangulation principle, where the laser projector generates multiple lines simultaneously. This enables us to measure the shape of the surface with a high sampling rate (80 Hz with our camera) and high accuracy (+/-7 microm). The measurements of steel-plate deformations for plates of different thickness and with different illumination patterns are presented graphically and in an animation.
Wiedey, Raphael; Šibanc, Rok; Kleinebudde, Peter
2018-06-06
Ribbon solid fraction is one of the most important quality attributes during roll compaction/dry granulation. Accurate and precise determination is challenging and no in-line measurement tool has been generally accepted, yet. In this study, a new analytical tool with potential off-line as well as in-line applicability is described. It is based on the thermo-conductivity of the compacted material, which is known to depend on the solid fraction. A laser diode was used to punctually heat the ribbon and the heat propagation monitored by infrared thermography. After performing a Gaussian fit of the transverse ribbon profile, the scale parameter σ showed correlation to ribbon solid fraction in off-line as well as in-line studies. Accurate predictions of the solid fraction were possible for a relevant range of process settings. Drug stability was not affected, as could be demonstrated for the model drug nifedipine. The application of this technique was limited when using certain fillers and working at higher roll speeds. This study showed the potentials of this new technique and is a starting point for additional work that has to be done to overcome these challenges. Copyright © 2018 Elsevier B.V. All rights reserved.
Satellite Data Processing System (SDPS) users manual V1.0
NASA Technical Reports Server (NTRS)
Caruso, Michael; Dunn, Chris
1989-01-01
SDPS is a menu driven interactive program designed to facilitate the display and output of image and line-based data sets common to telemetry, modeling and remote sensing. This program can be used to display up to four separate raster images and overlay line-based data such as coastlines, ship tracks and velocity vectors. The program uses multiple windows to communicate information with the user. At any given time, the program may have up to four image display windows as well as auxiliary windows containing information about each image displayed. SDPS is not a commercial program. It does not contain complete type checking or error diagnostics which may allow the program to crash. Known anomalies will be mentioned in the appropriate section as notes or cautions. SDPS was designed to be used on Sun Microsystems Workstations running SunView1 (Sun Visual/Integrated Environment for Workstations). It was primarily designed to be used on workstations equipped with color monitors, but most of the line-based functions and several of the raster-based functions can be used with monochrome monitors. The program currently runs on Sun 3 series workstations running Sun OS 4.0 and should port easily to Sun 4 and Sun 386 series workstations with SunView1. Users should also be familiar with UNIX, Sun workstations and the SunView window system.
Final report on fiscal year 1992 activities for the environmental monitors line-loss study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenoyer, J.L.
The work performed on this Environmental Monitors Line-Loss Study has been performed under Contract Numbers MLW-SVV-073750 and MFH-SVV-207554. Work on the task was initiated mid-December 1991, and this report documents and summarizes the work performed through January 18, 1993. The sections included in this report summarize the work performed on the Environmental Monitors Line-Loss Study. The sections included in this report are arranged to reflect individual sub-tasks and include: descriptions of measurement systems and procedures used to obtain cascade impactor samples and laser spectrometer measurements from multiple stacks and locations; information on data acquisition, analyses, assessment, and software; discussion ofmore » the analyses and measurement results from the cascade impactor and laser spectrometer systems and software used; discussion on the development of general test methods and procedures for line-loss determinations; an overall summary and specific conclusions that can be made with regard to efforts performed on this task during FY 1992 and FY 1993. Supporting information for these sections is included in this report as appendices.« less
Real-Time Telemetry System for Monitoring Motion of Ships Based on Inertial Sensors
Núñez, José M.; Araújo, Marta G.; García-Tuñón, I.
2017-01-01
A telemetry system for real-time monitoring of the motions, position, speed and course of a ship at sea is presented in this work. The system, conceived as a subsystem of a radar cross-section measurement unit, could also be used in other applications as ships dynamics characterization, on-board cranes, antenna stabilizers, etc. This system was designed to be stand-alone, reliable, easy to deploy, low-cost and free of requirements related to stabilization procedures. In order to achieve such a unique combination of functionalities, we have developed a telemetry system based on redundant inertial and magnetic sensors and GPS (Global Positioning System) measurements. It provides a proper data storage and also has real-time radio data transmission capabilities to an on-shore station. The output of the system can be used either for on-line or off-line processing. Additionally, the system uses dual technologies and COTS (Commercial Off-The-Shelf) components. Motion-positioning measurements and radio data link tests were successfully carried out in several ships of the Spanish Navy, proving the compliance with the design targets and validating our telemetry system. PMID:28441330
System and process for detecting and monitoring surface defects
NASA Technical Reports Server (NTRS)
Mueller, Mark K. (Inventor)
1994-01-01
A system and process for detecting and monitoring defects in large surfaces such as the field joints of the container segments of a space shuttle booster motor. Beams of semi-collimated light from three non-parallel fiber optic light panels are directed at a region of the surface at non-normal angles of expected incidence. A video camera gathers some portion of the light that is reflected at an angle other than the angle of expected reflectance, and generates signals which are analyzed to discern defects in the surface. The analysis may be performed by visual inspection of an image on a video monitor, or by inspection of filtered or otherwise processed images. In one alternative embodiment, successive predetermined regions of the surface are aligned with the light source before illumination, thereby permitting efficient detection of defects in a large surface. Such alignment is performed by using a line scan gauge to sense the light which passes through an aperture in the surface. In another embodiment a digital map of the surface is created, thereby permitting the maintenance of records detailing changes in the location or size of defects as the container segment is refurbished and re-used. The defect detection apparatus may also be advantageously mounted on a fixture which engages the edge of a container segment.
A New On-Line Detecting Apparatus of the Residual Chlorine in Disinfectant for Fresh-Cut Vegetables
NASA Astrophysics Data System (ADS)
Hu, Chao; Su, Shu-Qiang; Li, Bao-Guo; Liu, Meng-Fang
With the fast development of modern food and beverage industry, fresh-cut vegetables have wider application than before. During the process of sterilization in fresh-cut vegetables, the concentration of chloric disinfectant is usually so high that the common sensor can't be used directly on the product line. In order to solve this problem, we have invented a new detecting apparatus which could detect high concentration of chloric disinfectant directly. In this paper, the working principle, main monitor indicators, application and technical creations of the on-line apparatus have been discussed, and we also carried on the experimental analysis for its performance. The actual demands in factory could be met when the detecting flux is 2L/min, the dilution ratio is 15 and input amount of the disinfectant is 200ml per time, the max of the detecting deviation achieves ±4.8ppm(mg/L). The main detecting range of residual chlorine is 0~300ppm.
Current and future management of treatment failure in low- and middle-income countries.
Boyd, Mark A
2010-01-01
Access to second-line therapy in low- and middle-income countries has been limited to date. The WHO predicts that between 500 000 and 800 000 HIV-infected people on first-line combination antiretroviral therapy will require switch to second-line therapy by 2010. This paper aims to describe and review access to second-line therapy in low- and middle-income countries at present and examine future possibilities. The majority of HIV-infected patients failing first-line combination antiretroviral therapy is identified by way of routine monitoring of clinical and immunological status as a surrogate for virological monitoring. Evidence suggests that immunological and clinical monitoring lack both sensitivity and specificity for virological failure. Consequently, at treatment failure, patients have often selected a degree of resistance within the nucleoside/nucleotide reverse transcriptase inhibitor class that questions the efficacy of using nucleoside/nucleotide reverse transcriptase inhibitors in a second-line regimen. There is a paucity of good-quality evidence on which to base guidelines and policy. Optimally, a second-line regimen would be simple, potent, tolerable and lend itself to provision according to the successful 'public health' approach. Provision of second-line therapy to HIV-infected individuals failing first-line therapy is a major challenge to the ongoing success of access to HIV care programmes in low- and middle-income countries. The optimal second-line combination antiretroviral therapies are unknown. Research trials to help define best practice are in advanced stages of development and implementation.
Mining manufacturing data for discovery of high productivity process characteristics.
Charaniya, Salim; Le, Huong; Rangwala, Huzefa; Mills, Keri; Johnson, Kevin; Karypis, George; Hu, Wei-Shou
2010-06-01
Modern manufacturing facilities for bioproducts are highly automated with advanced process monitoring and data archiving systems. The time dynamics of hundreds of process parameters and outcome variables over a large number of production runs are archived in the data warehouse. This vast amount of data is a vital resource to comprehend the complex characteristics of bioprocesses and enhance production robustness. Cell culture process data from 108 'trains' comprising production as well as inoculum bioreactors from Genentech's manufacturing facility were investigated. Each run constitutes over one-hundred on-line and off-line temporal parameters. A kernel-based approach combined with a maximum margin-based support vector regression algorithm was used to integrate all the process parameters and develop predictive models for a key cell culture performance parameter. The model was also used to identify and rank process parameters according to their relevance in predicting process outcome. Evaluation of cell culture stage-specific models indicates that production performance can be reliably predicted days prior to harvest. Strong associations between several temporal parameters at various manufacturing stages and final process outcome were uncovered. This model-based data mining represents an important step forward in establishing a process data-driven knowledge discovery in bioprocesses. Implementation of this methodology on the manufacturing floor can facilitate a real-time decision making process and thereby improve the robustness of large scale bioprocesses. 2010 Elsevier B.V. All rights reserved.
Riparian Vegetation Base-line Analysis and Monitoring Along Bishop Creek, California
Janet L. Nachlinger; Carl A. Fox; Patricia A. Moen
1989-01-01
A base-line analysis and long-term monitoring study of the riparian system along California's Bishop Creek is being conducted to measure the effects that planned increases in streamflow may have on riparian vegetation and associated wildlife. Six sites located in different major physiographic valley types have been selected for study. Biotic, climatologic,...
A review of electrostatic monitoring technology: The state of the art and future research directions
NASA Astrophysics Data System (ADS)
Wen, Zhenhua; Hou, Junxing; Atkin, Jason
2017-10-01
Electrostatic monitoring technology is a useful tool for monitoring and detecting component faults and degradation, which is necessary for system health management. It encompasses three key research areas: sensor technology; signal detection, processing and feature extraction; and verification experimentation. It has received considerable recent attention for condition monitoring due to its ability to provide warning information and non-obstructive measurements on-line. A number of papers in recent years have covered specific aspects of the technology, including sensor design optimization, sensor characteristic analysis, signal de-noising and practical applications of the technology. This paper provides a review of the recent research and of the development of electrostatic monitoring technology, with a primary emphasis on its application for the aero-engine gas path. The paper also presents a summary of some of the current applications of electrostatic monitoring technology in other industries, before concluding with a brief discussion of the current research situation and possible future challenges and research gaps in this field. The aim of this paper is to promote further research into this promising technology by increasing awareness of both the potential benefits of the technology and the current research gaps.
Hess, S.C.; Jeffrey, J.J.; Pratt, L.W.; Ball, D.L.
2010-01-01
We compiled and analysed data from 1987-2004 on vegetation monitoring during feral ungulate management at Hakalau Forest National Wildlife Refuge, a tropical montane rainforest on the island of Hawai'i All areas in the study had previously been used by ungulates, but cattle (Bos taurus) were removed and feral pig (Sus scrofa) populations were reduced during the study period. We monitored six line-intercept transects, three in previously high ungulate use areas and three in previously low ungulate use areas. We measured nine cover categories with the line-intercept method: native ferns; native woody plants; bryophytes; lichens; alien grasses; alien herbs; litter; exposed soil; and coarse woody debris. Vegetation surveys were repeated four times over a 16-year period. Vegetation monitoring revealed a strong increase in native fern cover and slight decreases in cover of bryophytes and exposed soil. Mean cover of native plants was generally higher in locations that were formerly lightly grazed, while alien grass and herb cover was generally higher in areas that were heavily grazed, although these effects were not statistically significant. These responses may represent early serai processes in forest regeneration following the reduction of feral ungulate populations. In contrast to many other Hawaiian forests which have become invaded by alien grasses and herbs after ungulate removal, HFNWR has not experienced this effect.
Vogiatzis, Konstantinos; Zafiropoulou, Vassiliki; Mouzakis, Haralampos
2018-10-15
The Line 3 Extension from Aghia Marina to Piraeus constitutes one of the most significant construction projects in full development in Athens Greater area. For the management and abatement of the air borne noise generated from surface, and/or underground construction activities, relevant machinery operation, and trucks movements at open worksites and the tunnel, a continuous monthly noise and vibration monitoring program is enforced in order to assess any potential intrusion of the acoustic environment. On basis of measured 24 hour L eq noise levels, both L den and L night EU indices were assessed along with vibration velocity for every worksite and tunnel construction activity. The existing environmental noise background generated mainly from road traffic was assessed in order to evaluate potential effects on both air borne noise from construction activities. This comprehensive monitoring program aims to protect the inhabitants in the vicinity of worksites and the tunnel surrounding from construction noise and vibration processing and evaluating all necessary mitigation measures. Especially, for the protection of sensitive receptors, this program may serve as a tool ensuring a successful management of both noise and vibration levels emitted from open air construction activities and (Tunnel Boring Machine) TBM or hammer/pilling operation by implementing mitigation measures where necessary. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Solano Rojas, D. E.; Wdowinski, S.; Cabral, E.; Zhang, Y.; Torres, Y.
2015-12-01
Mexico City is one of the most populated metropolitans in the world, with more than 20 millions inhabitants. It is located above a sequence of deformable unconsolidated lacustrine sediments interlayered with strong volcanic rocks. These natural conditions combined with massive groundwater extraction, caused the city to subside unevenly, at rates from 0 to ~370 mm/yr, which we term differential subsidence. Our study focuses on the Collective Transport System (Metro), the massive, widely used transportation system in the city. It has been in operation since 1969. The Metro system carries an average of more than four million passengers per day along its 218 km of railways. This system has been occasionally damaged by ground deformation, in particular Line 12, in which 50% of its stations where shut down just 2.5 years after the beginning of its operation due to faults, "waves" and "bumps" along the line. In this study we used Interferometric Synthetic Aperture Radar (InSAR) observations to monitor land subsidence throughout the city and infer differential subsidence along the main Metro lines. Our analysis is based on 34 TerraSAR-X and 36 COSMO-SkyMed high-resolution scenes acquired from mid 2011 to mid 2013. The data were processed using the StaMPS InSAR time series technique, which calculates ground displacement time series for more than 2.5 million selected measurement points, typically separated 3-15 meters apart. The differential subsidence along the Metro lines was calculated by averaging subsidence rate within a 30 m radius circles, every 60 m along the lines. We found that the segments with the most differential deformation are in lines 4, 5, 9, A, B and 12. Our easy-to-implement method can be applied to permanent monitor deformation along the railways, as well as serve as a guide for the development of new lines of the Metro system prospected by Mexico's City government.
Development of Process Analytical Technology (PAT) methods for controlled release pellet coating.
Avalle, P; Pollitt, M J; Bradley, K; Cooper, B; Pearce, G; Djemai, A; Fitzpatrick, S
2014-07-01
This work focused on the control of the manufacturing process for a controlled release (CR) pellet product, within a Quality by Design (QbD) framework. The manufacturing process was Wurster coating: firstly layering active pharmaceutical ingredient (API) onto sugar pellet cores and secondly a controlled release (CR) coating. For each of these two steps, development of a Process Analytical Technology (PAT) method is discussed and also a novel application of automated microscopy as the reference method. Ultimately, PAT methods should link to product performance and the two key Critical Quality Attributes (CQAs) for this CR product are assay and release rate, linked to the API and CR coating steps respectively. In this work, the link between near infra-red (NIR) spectra and those attributes was explored by chemometrics over the course of the coating process in a pilot scale industrial environment. Correlations were built between the NIR spectra and coating weight (for API amount), CR coating thickness and dissolution performance. These correlations allow the coating process to be monitored at-line and so better control of the product performance in line with QbD requirements. Copyright © 2014 Elsevier B.V. All rights reserved.
Coolant monitoring apparatus for nuclear reactors
Tokarz, Richard D.
1983-01-01
A system for monitoring coolant conditions within a pressurized vessel. A length of tubing extends outward from the vessel from an open end containing a first line restriction at the location to be monitored. The flowing fluid is cooled and condensed before passing through a second line restriction. Measurement of pressure drop at the second line restriction gives an indication of fluid condition at the first line restriction. Multiple lengths of tubing with open ends at incremental elevations can measure coolant level within the vessel.
van den Berg, Frans; Racher, Andrew J.; Martin, Elaine B.; Jaques, Colin
2017-01-01
Cell culture process development requires the screening of large numbers of cell lines and process conditions. The development of miniature bioreactor systems has increased the throughput of such studies; however, there are limitations with their use. One important constraint is the limited number of offline samples that can be taken compared to those taken for monitoring cultures in large‐scale bioreactors. The small volume of miniature bioreactor cultures (15 mL) is incompatible with the large sample volume (600 µL) required for bioanalysers routinely used. Spectroscopy technologies may be used to resolve this limitation. The purpose of this study was to compare the use of NIR, Raman, and 2D‐fluorescence to measure multiple analytes simultaneously in volumes suitable for daily monitoring of a miniature bioreactor system. A novel design‐of‐experiment approach is described that utilizes previously analyzed cell culture supernatant to assess metabolite concentrations under various conditions while providing optimal coverage of the desired design space. Multivariate data analysis techniques were used to develop predictive models. Model performance was compared to determine which technology is more suitable for this application. 2D‐fluorescence could more accurately measure ammonium concentration (RMSECV 0.031 g L−1) than Raman and NIR. Raman spectroscopy, however, was more robust at measuring lactate and glucose concentrations (RMSECV 1.11 and 0.92 g L−1, respectively) than the other two techniques. The findings suggest that Raman spectroscopy is more suited for this application than NIR and 2D‐fluorescence. The implementation of Raman spectroscopy increases at‐line measuring capabilities, enabling daily monitoring of key cell culture components within miniature bioreactor cultures. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:337–346, 2017 PMID:28271638
Microwave sensing for meat and fish structure evaluation
NASA Astrophysics Data System (ADS)
Clerjon, S.; Damez, J. L.
2007-04-01
Monitoring changes in muscle structure during the ageing of bovine meat and quality loss due to fish freezing are major industrial challenges. During ageing, bovine muscle becomes tender through muscle fibre deterioration, and full control of this process is essential. Conversely, degradation of fish muscle, often due to long storage or a freezing cycle, lowers quality. To improve competitiveness, and to respond to consumer quality demand, muscle structure needs to be evaluated in-line. We present here a polarimetric microwave method (10-24 GHz) consisting in free space and contact reflection coefficient measurements using a horn antenna and rectangular probes, respectively. This method is based on the measurement of dielectric properties of tissues parallel and perpendicular to muscle fibre directions. The dielectric properties of structured tissues such as muscles are anisotropic, but during processing structural disorganization reduces this anisotropy. The method is illustrated by the discrimination of fresh and frozen-thawed fish fillets and by monitoring of meat ageing.
Superville, Pierre-Jean; Pižeta, Ivanka; Omanović, Dario; Billon, Gabriel
2013-08-15
Based on automatic on-line measurements on the Deûle River that showed daily variation of a peak around -0.56V (vs Ag|AgCl 3M), identification of Reduced Sulphur Species (RSS) in oxic waters was performed applying cathodic stripping voltammetry (CSV) with the hanging mercury drop electrode (HMDE). Pseudopolarographic studies accompanied with increasing concentrations of copper revealed the presence of elemental sulphur S(0), thioacetamide (TA) and reduced glutathione (GSH) as the main sulphur compounds in the Deûle River. In order to resolve these three species, a simple procedure was developed and integrated in an automatic on-line monitoring system. During one week monitoring with hourly measurements, GSH and S(0) exhibited daily cycles whereas no consequential pattern was observed for TA. Copyright © 2013 Elsevier B.V. All rights reserved.
A new hyperspectral imaging based device for quality control in plastic recycling
NASA Astrophysics Data System (ADS)
Bonifazi, G.; D'Agostini, M.; Dall'Ava, A.; Serranti, S.; Turioni, F.
2013-05-01
The quality control of contamination level in the recycled plastics stream has been identified as an important key factor for increasing the value of the recycled material by both plastic recycling and compounder industries. Existing quality control methods for the detection of both plastics and non-plastics contaminants in the plastic waste streams at different stages of the industrial process (e.g. feed, intermediate and final products) are currently based on the manual collection from the stream of a sample and on the subsequent off-line laboratory analyses. The results of such analyses are usually available after some hours, or sometimes even some days, after the material has been processed. The laboratory analyses are time-consuming and expensive (both in terms of equipment cost and their maintenance and of labour cost).Therefore, a fast on-line assessment to monitor the plastic waste feed streams and to characterize the composition of the different plastic products, is fundamental to increase the value of secondary plastics. The paper is finalized to describe and evaluate the development of an HSI-based device and of the related software architectures and processing algorithms for quality assessment of plastics in recycling plants, with particular reference to polyolefins (PO). NIR-HSI sensing devices coupled with multivariate data analysis methods was demonstrated as an objective, rapid and non-destructive technique that can be used for on-line quality and process control in the recycling process of POs. In particular, the adoption of the previous mentioned HD&SW integrated architectures can provide a solution to one of the major problems of the recycling industry, which is the lack of an accurate quality certification of materials obtained by recycling processes. These results could therefore assist in developing strategies to certify the composition of recycled PO products.
Knoeferle, Pia; Crocker, Matthew W; Scheepers, Christoph; Pickering, Martin J
2005-02-01
Studies monitoring eye-movements in scenes containing entities have provided robust evidence for incremental reference resolution processes. This paper addresses the less studied question of whether depicted event scenes can affect processes of incremental thematic role-assignment. In Experiments 1 and 2, participants inspected agent-action-patient events while listening to German verb-second sentences with initial structural and role ambiguity. The experiments investigated the time course with which listeners could resolve this ambiguity by relating the verb to the depicted events. Such verb-mediated visual event information allowed early disambiguation on-line, as evidenced by anticipatory eye-movements to the appropriate agent/patient role filler. We replicated this finding while investigating the effects of intonation. Experiment 3 demonstrated that when the verb was sentence-final and thus did not establish early reference to the depicted events, linguistic cues alone enabled disambiguation before people encountered the verb. Our results reveal the on-line influence of depicted events on incremental thematic role-assignment and disambiguation of local structural and role ambiguity. In consequence, our findings require a notion of reference that includes actions and events in addition to entities (e.g. Semantics and Cognition, 1983), and argue for a theory of on-line sentence comprehension that exploits a rich inventory of semantic categories.
Method for laser spot welding monitoring
NASA Astrophysics Data System (ADS)
Manassero, Giorgio
1994-09-01
As more powerful solid state laser sources appear on the market, new applications become technically possible and important from the economical point of view. For every process a preliminary optimization phase is necessary. The main parameters, used for a welding application by a high power Nd-YAG laser, are: pulse energy, pulse width, repetition rate and process duration or speed. In this paper an experimental methodology, for the development of an electrooptical laser spot welding monitoring system, is presented. The electromagnetic emission from the molten pool was observed and measured with appropriate sensors. The statistical method `Parameter Design' was used to obtain an accurate analysis of the process parameter that influence process results. A laser station with a solid state laser coupled to an optical fiber (1 mm in diameter) was utilized for the welding tests. The main material used for the experimental plan was zinc coated steel sheet 0.8 mm thick. This material and the related spot welding technique are extensively used in the automotive industry, therefore, the introduction of laser technology in production line will improve the quality of the final product. A correlation, between sensor signals and `through or not through' welds, was assessed. The investigation has furthermore shown the necessity, for the modern laser production systems, to use multisensor heads for process monitoring or control with more advanced signal elaboration procedures.
Bioreactor expansion of human mesenchymal stem cells according to GMP requirements.
Elseberg, Christiane L; Salzig, Denise; Czermak, Peter
2015-01-01
In cell therapy, the use of autologous and allogenic human mesenchymal stem cells is rising. Accordingly, the supply of cells for clinical applications in highest quality is required. As hMSCs are considered as an advanced therapy medicinal products (ATMP), they underlie the requirements of GMP and PAT according to the authorities (FDA and EMA). The production process of these cells must therefore be documented according to GMP, which is usually performed via a GMP protocol based on standard operating procedures. This chapter provides an example of such a GMP protocol for hMSC, here a genetically modified allogenic cell line, based on a production process in a microcarrier-based stirred tank reactor including process monitoring according to PAT and final product quality assurance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whelan, B; Keall, P; Holloway, L
Purpose: MRI guided radiation therapy (MRIgRT) is a rapidly growing field; however, Linac operation in MRI fringe fields represents an ongoing challenge. We have previously shown in-silico that Linacs could be redesigned to function in the in-line orientation with no magnetic shielding by adopting an RF-gun configuration. Other authors have also published insilico studies of Linac operation in magnetic fields; however to date no experimental validation data is published. This work details the design, construction, and installation of an experimental beam line to validate our in-silico results. Methods: An RF-gun comprising 1.5 accelerating cells and capable of generating electron energiesmore » up to 3.2MeV is used. The experimental apparatus was designed to monitor both beam current (toroid current monitor), spot size (two phosphor screens with viewports), and generate peak magnetic fields of at least 1000G (three variable current electromagnetic coils). Thermal FEM simulations were developed to ensure coil temperature remained within 100degC. Other design considerations included beam disposal, vacuum maintenance, radiation shielding, earthquake safety, and machine protection interlocks. Results: The beam line has been designed, built, and installed in a radiation shielded bunker. Water cooling, power supplies, thermo-couples, cameras, and radiation shielding have been successfully connected and tested. Interlock testing, vacuum processing, and RF processing have been successfully completed. The first beam on is expected within weeks. The coil heating simulations show that with care, peak fields of up to 1200G (320G at cathode) can be produced using 40A current, which is well within the fields expected for MRI-Linac systems. The maximum coil temperature at this current was 84degC after 6 minutes. Conclusion: An experimental beam line has been constructed and installed at SLAC in order to experimentally characterise RF gun performance in in-line magnetic fields, validate in-silico design work, and provide the first published experimental data relating to accelerator functionality for MRIgRT.« less
Automatic crack detection and classification method for subway tunnel safety monitoring.
Zhang, Wenyu; Zhang, Zhenjiang; Qi, Dapeng; Liu, Yun
2014-10-16
Cracks are an important indicator reflecting the safety status of infrastructures. This paper presents an automatic crack detection and classification methodology for subway tunnel safety monitoring. With the application of high-speed complementary metal-oxide-semiconductor (CMOS) industrial cameras, the tunnel surface can be captured and stored in digital images. In a next step, the local dark regions with potential crack defects are segmented from the original gray-scale images by utilizing morphological image processing techniques and thresholding operations. In the feature extraction process, we present a distance histogram based shape descriptor that effectively describes the spatial shape difference between cracks and other irrelevant objects. Along with other features, the classification results successfully remove over 90% misidentified objects. Also, compared with the original gray-scale images, over 90% of the crack length is preserved in the last output binary images. The proposed approach was tested on the safety monitoring for Beijing Subway Line 1. The experimental results revealed the rules of parameter settings and also proved that the proposed approach is effective and efficient for automatic crack detection and classification.
FPGA-based firmware model for extended measurement systems with data quality monitoring
NASA Astrophysics Data System (ADS)
Wojenski, A.; Pozniak, K. T.; Mazon, D.; Chernyshova, M.
2017-08-01
Modern physics experiments requires construction of advanced, modular measurement systems for data processing and registration purposes. Components are often designed in one of the common mechanical and electrical standards, e.g. VME or uTCA. The paper is focused on measurement systems using FPGAs as data processing blocks, especially for plasma diagnostics using GEM detectors with data quality monitoring aspects. In the article is proposed standardized model of HDL FPGA firmware implementation, for use in a wide range of different measurement system. The effort was made in term of flexible implementation of data quality monitoring along with source data dynamic selection. In the paper is discussed standard measurement system model followed by detailed model of FPGA firmware for modular measurement systems. Considered are both: functional blocks and data buses. In the summary, necessary blocks and signal lines are described. Implementation of firmware following the presented rules should provide modular design, with ease of change different parts of it. The key benefit is construction of universal, modular HDL design, that can be applied in different measurement system with simple adjustments.
Automatic Crack Detection and Classification Method for Subway Tunnel Safety Monitoring
Zhang, Wenyu; Zhang, Zhenjiang; Qi, Dapeng; Liu, Yun
2014-01-01
Cracks are an important indicator reflecting the safety status of infrastructures. This paper presents an automatic crack detection and classification methodology for subway tunnel safety monitoring. With the application of high-speed complementary metal-oxide-semiconductor (CMOS) industrial cameras, the tunnel surface can be captured and stored in digital images. In a next step, the local dark regions with potential crack defects are segmented from the original gray-scale images by utilizing morphological image processing techniques and thresholding operations. In the feature extraction process, we present a distance histogram based shape descriptor that effectively describes the spatial shape difference between cracks and other irrelevant objects. Along with other features, the classification results successfully remove over 90% misidentified objects. Also, compared with the original gray-scale images, over 90% of the crack length is preserved in the last output binary images. The proposed approach was tested on the safety monitoring for Beijing Subway Line 1. The experimental results revealed the rules of parameter settings and also proved that the proposed approach is effective and efficient for automatic crack detection and classification. PMID:25325337
NASA Technical Reports Server (NTRS)
1994-01-01
The ChemScan UV-6100 is a spectrometry system originally developed by Biotronics Technologies, Inc. under a Small Business Innovation Research (SBIR) contract. It is marketed to the water and wastewater treatment industries, replacing "grab sampling" with on-line data collection. It analyzes the light absorbance characteristics of a water sample, simultaneously detects hundreds of individual wavelengths absorbed by chemical substances in a process solution, and quantifies the information. Spectral data is then processed by ChemScan analyzer and compared with calibration files in the system's memory in order to calculate concentrations of chemical substances that cause UV light absorbance in specific patterns. Monitored substances can be analyzed for quality and quantity. Applications include detection of a variety of substances, and the information provided enables an operator to control a process more efficiently.
Environmental microbial contamination in a stem cell bank.
Cobo, F; Concha, A
2007-04-01
The aim of this study was to evaluate the main environmental microbial contaminants of the clean rooms in our stem cell bank. We have measured the microbial air contamination by both passive and active air sampling and the microbial monitoring of surfaces by means of Rodac plates. The environmental monitoring tests were carried out in accordance with the guidelines of European Pharmacopeia and US Pharmacopeia. The micro-organisms were identified by means of an automated system (VITEK 2). During the monitoring, the clean rooms are continually under good manufacturing practices specifications. The most frequent contaminants were Gram-positive cocci. The main contaminants in our stem cell bank were coagulase-negative staphylococci and other opportunistic human pathogens. In order to assure the levels of potential contamination in both embryonic and adult stem cell lines, a continuous sampling of air particles and testing for viable microbiological contamination is necessary. This study is the first evaluation of the environmental contaminants in stem cell banks and can serve as initial evaluation for these establishments. The introduction of environmental monitoring programmes in the processing of stem cell lines could diminish the risk of contamination in stem cell cultures.
A novel, optical, on-line bacteria sensor for monitoring drinking water quality
Højris, Bo; Christensen, Sarah Christine Boesgaard; Albrechtsen, Hans-Jørgen; Smith, Christian; Dahlqvist, Mathis
2016-01-01
Today, microbial drinking water quality is monitored through either time-consuming laboratory methods or indirect on-line measurements. Results are thus either delayed or insufficient to support proactive action. A novel, optical, on-line bacteria sensor with a 10-minute time resolution has been developed. The sensor is based on 3D image recognition, and the obtained pictures are analyzed with algorithms considering 59 quantified image parameters. The sensor counts individual suspended particles and classifies them as either bacteria or abiotic particles. The technology is capable of distinguishing and quantifying bacteria and particles in pure and mixed suspensions, and the quantification correlates with total bacterial counts. Several field applications have demonstrated that the technology can monitor changes in the concentration of bacteria, and is thus well suited for rapid detection of critical conditions such as pollution events in drinking water. PMID:27040142
A novel, optical, on-line bacteria sensor for monitoring drinking water quality.
Højris, Bo; Christensen, Sarah Christine Boesgaard; Albrechtsen, Hans-Jørgen; Smith, Christian; Dahlqvist, Mathis
2016-04-04
Today, microbial drinking water quality is monitored through either time-consuming laboratory methods or indirect on-line measurements. Results are thus either delayed or insufficient to support proactive action. A novel, optical, on-line bacteria sensor with a 10-minute time resolution has been developed. The sensor is based on 3D image recognition, and the obtained pictures are analyzed with algorithms considering 59 quantified image parameters. The sensor counts individual suspended particles and classifies them as either bacteria or abiotic particles. The technology is capable of distinguishing and quantifying bacteria and particles in pure and mixed suspensions, and the quantification correlates with total bacterial counts. Several field applications have demonstrated that the technology can monitor changes in the concentration of bacteria, and is thus well suited for rapid detection of critical conditions such as pollution events in drinking water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jia; Halpern, Jules P.; Eracleous, Michael
2016-01-20
One of the proposed explanations for the broad, double-peaked Balmer emission lines observed in the spectra of some active galactic nuclei (AGNs) is that they are associated with sub-parsec supermassive black hole (SMBH) binaries. Here, we test the binary broad-line region hypothesis through several decades of monitoring of the velocity structure of double-peaked Hα emission lines in 13 low-redshift, mostly radio-loud AGNs. This is a much larger set of objects compared to an earlier test by Eracleous et al. and we use much longer time series for the three objects studied in that paper. Although systematic changes in radial velocitymore » can be traced in many of their lines, they are demonstrably not like those of a spectroscopic binary in a circular orbit. Any spectroscopic binary period must therefore be much longer than the span of the monitoring (assuming a circular orbit), which in turn would require black hole masses that exceed by 1–2 orders of magnitude the values obtained for these objects using techniques such as reverberation mapping and stellar velocity dispersion. Moreover, the response of the double-peaked Balmer line profiles to fluctuations of the ionizing continuum and the shape of the Lyα profiles are incompatible with an SMBH binary. The binary broad-line region hypothesis is therefore disfavored. Other processes evidently shape these line profiles and cause the long-term velocity variations of the double peaks.« less
Is the Environmental Literacy of University Students Measurable?
ERIC Educational Resources Information Center
Shephard, Kerry; Harraway, John; Lovelock, Brent; Skeaff, Sheila; Slooten, Liz; Strack, Mick; Furnari, Mary; Jowett, Tim
2014-01-01
We report the development and piloting of an evaluative instrument and process for monitoring the environmental literacy (EL) of undergraduate students in one large research-led university in New Zealand. The instrument addresses knowledge, affect and competencies in the general area of EL in line with this institution's adoption of EL as a…
Differential subsidence in Mexico City and implications to its Collective Transport System (Metro).
NASA Astrophysics Data System (ADS)
Solano Rojas, D. E.; Wdowinski, S.; Cabral-Cano, E.; Osmanoglu, B.
2017-12-01
Mexico City is one of the fastest subsiding metropolis in the world. At displacement rates ranging from 0 to -380 [mm/yr], the complex geological setting is subjected to differential subsidence, which has led to damage, operation interruptions, and accidents to the Collective Transport System, or Metro. The Metro plays a critical role in Mexico City, carrying more than four million passengers per day. However, no previous study has focused on the deformation monitoring along the 93 km of the Metro surface railways, mainly because of the limitations of the traditional geodetic techniques. In this study, we use high-resolution Interferometric Synthetic Aperture Radar (InSAR) observations to monitor land subsidence throughout the city and quantify differential subsidence along surface Metro lines. Our analysis is based on 34 TerraSAR-X StripMap scenes acquired from May 2011 to June 2013 and 36 COSMO-SkyMed Stripmap scenes acquired from June 2011 to June 2012. The data were processed using the StaMPS InSAR time series technique, obtaining point densities of up to 4827 points/km2. Our post-processing methodologies include the following two components: (1) Detection of differential subsidence along the metro lines by calculating subsidence gradients, and (2) Detection of apparent uplift—areas subsiding slower than their surroundings—by using spatial frequency filtering. The two analyses allow us to recognize four main consequences of differential subsidence in the Metro system: 1. Deflection in elevated railways, 2. Deflection in street-level railways, 3. Columns with decreased loading capacity, and 4. Apparent uplift affecting surrounding infrastructure. Our results aim at shortening the large gap between scientific geodetic studies and applicable engineering parameters that can be used by local authorities in the city for maintenance and new lines development.
Sliedrecht, Tale; Zhang, Chao; Shokat, Kevan M; Kops, Geert J P L
2010-04-22
Proper execution of chromosome segregation relies on tight control of attachment of chromosomes to spindle microtubules. This is monitored by the mitotic checkpoint that allows chromosome segregation only when all chromosomes are stably attached. Proper functioning of the attachment and checkpoint processes is thus important to prevent chromosomal instability. Both processes rely on the mitotic kinase Mps1. We present here two cell lines in which endogenous Mps1 has been stably replaced with a mutant kinase (Mps1-as) that is specifically inhibited by bulky PP1 analogs. Mps1 inhibition in these cell lines is highly penetrant and reversible. Timed inhibition during bipolar spindle assembly shows that Mps1 is critical for attachment error-correction and confirms its role in Aurora B regulation. We furthermore show that Mps1 has multiple controls over mitotic checkpoint activity. Mps1 inhibition precludes Mad1 localization to unattached kinetochores but also accelerates mitosis. This acceleration correlates with absence of detectable mitotic checkpoint complex after Mps1 inhibition. Finally, we show that short-term inhibition of Mps1 catalytic activity is sufficient to kill cells. Mps1 is involved in the regulation of multiple key processes that ensure correct chromosome segregation and is a promising target for inhibition in anti-cancer strategies. We report here two cell lines that allow specific and highly penetrant inhibition of Mps1 in a reproducible manner through the use of chemical genetics. Using these cell lines we confirm previously suggested roles for Mps1 activity in mitosis, present evidence for novel functions and examine cell viability after short and prolonged Mps1 inhibition. These cell lines present the best cellular model system to date for investigations into Mps1 biology and the effects of penetrance and duration of Mps1 inhibition on cell viability.
Ii, T; Kubo, S; Shimozuma, T; Kobayashi, S; Okada, K; Yoshimura, Y; Igami, H; Takahashi, H; Ito, S; Mizuno, Y; Okada, K; Makino, R; Kobayashi, K; Goto, Y; Mutoh, T
2015-02-01
The polarizer is one of the critical components in a high-power millimeter-wave transmission line. It requires full and highly efficient coverage of any polarization states, high-power tolerance, and low-loss feature. Polarizers with rounded shape at the edge of the periodic groove surface are designed and fabricated by the machining process for a mega-watt long-pulse millimeter-wave transmission line of the electron cyclotron resonance heating system in the large helical device. The groove shape of λ/8- and λ/4-type polarizers for an 82.7 GHz transmission line is optimally designed in an integral method developed in the vector theories of diffraction gratings so that the efficiency to realize any polarization state can be maximized. The dependence of the polarization states on the combination of the two polarizer rotation angles (Φλ/8, Φλ/4) is examined experimentally in a low-power test with the newly developed polarization monitor. The results show that the measured polarization characteristics are in good agreement with the calculated ones.
Bernstrøm, Vilde Hoff; Kjekshus, Lars Erik
2012-09-17
Organizational change often leads to negative employee outcomes such as increased absence. Because change is also often inevitable, it is important to know how these negative outcomes could be reduced. This study investigates how the line manager's behavior relates to sickness absence in a Norwegian health trust during major restructuring. Leader behavior was measured by questionnaire, where employees assessed their line manager's behavior (N = 1008; response rate 40%). Data on sickness absence were provided at department level (N = 35) and were measured at two times. Analyses were primarily conducted using linear regression; leader behavior was aggregated and weighted by department size. The results show a relationship between several leader behaviors and sickness absence. The line managers' display of loyalty to their superiors was related to higher sickness absence; whereas task monitoring was related to lower absence. Social support was related to higher sickness absence. However, the effect of social support was no longer significant when the line manager also displayed high levels of problem confrontation. The findings clearly support the line manager's importance for employee sickness absence during organizational change. We conclude that more awareness concerning the manager's role in change processes is needed.
Spectroscopic methods of process monitoring for safeguards of used nuclear fuel separations
NASA Astrophysics Data System (ADS)
Warburton, Jamie Lee
To support the demonstration of a more proliferation-resistant nuclear fuel processing plant, techniques and instrumentation to allow the real-time, online determination of special nuclear material concentrations in-process must be developed. An ideal materials accountability technique for proliferation resistance should provide nondestructive, realtime, on-line information of metal and ligand concentrations in separations streams without perturbing the process. UV-Visible spectroscopy can be adapted for this precise purpose in solvent extraction-based separations. The primary goal of this project is to understand fundamental URanium EXtraction (UREX) and Plutonium-URanium EXtraction (PUREX) reprocessing chemistry and corresponding UV-Visible spectroscopy for application in process monitoring for safeguards. By evaluating the impact of process conditions, such as acid concentration, metal concentration and flow rate, on the sensitivity of the UV-Visible detection system, the process-monitoring concept is developed from an advanced application of fundamental spectroscopy. Systematic benchtop-scale studies investigated the system relevant to UREX or PUREX type reprocessing systems, encompassing 0.01-1.26 M U and 0.01-8 M HNO3. A laboratory-scale TRansUranic Extraction (TRUEX) demonstration was performed and used both to analyze for potential online monitoring opportunities in the TRUEX process, and to provide the foundation for building and demonstrating a laboratory-scale UREX demonstration. The secondary goal of the project is to simulate a diversion scenario in UREX and successfully detect changes in metal concentration and solution chemistry in a counter current contactor system with a UV-Visible spectroscopic process monitor. UREX uses the same basic solvent extraction flowsheet as PUREX, but has a lower acid concentration throughout and adds acetohydroxamic acid (AHA) as a complexant/reductant to the feed solution to prevent the extraction of Pu. By examining UV-Visible spectra gathered in real time, the objective is to detect the conversion from the UREX process, which does not separate Pu, to the PUREX process, which yields a purified Pu product. The change in process chemistry can be detected in the feed solution, aqueous product or in the raffinate stream by identifying the acid concentration, metal distribution and the presence or absence of AHA. A fiber optic dip probe for UV-Visible spectroscopy was integrated into a bank of three counter-current centrifugal contactors to demonstrate the online process monitoring concept. Nd, Fe and Zr were added to the uranyl nitrate system to explore spectroscopic interferences and identify additional species as candidates for online monitoring. This milestone is a demonstration of the potential of this technique, which lies in the ability to simultaneously and directly monitor the chemical process conditions in a reprocessing plant, providing inspectors with another tool to detect nuclear material diversion attempts. Lastly, dry processing of used nuclear fuel is often used as a head-end step before solvent extraction-based separations such as UREX or TRUEX. A non-aqueous process, used fuel treatment by dry processing generally includes chopping of used fuel rods followed by repeated oxidation-reduction cycles and physical separation of the used fuel from the cladding. Thus, dry processing techniques are investigated and opportunities for online monitoring are proposed for continuation of this work in future studies.
Mjollnir Rotational Line Scan Diagnostics.
1981-05-19
using long cavity. M8 Removable Pellicle Beam Splitter for He-Ne Lineup Beam. Removed before HF or DF laser is turned on. 27 A 27 * A r of the chopper...three probe laser lines, however three lines were sequentially measured to verify the diagnostic equipment. Two of the three lines have been monitored
A new debris sensor based on dual excitation sources for online debris monitoring
NASA Astrophysics Data System (ADS)
Hong, Wei; Wang, Shaoping; Tomovic, Mileta M.; Liu, Haokuo; Wang, Xingjian
2015-09-01
Mechanical systems could be severely damaged by loose debris generated through wear processes between contact surfaces. Hence, debris detection is necessary for effective fault diagnosis, life prediction, and prevention of catastrophic failures. This paper presents a new in-line debris sensor for hydraulic systems based on dual excitation sources. The proposed sensor makes magnetic lines more concentrated while at the same time improving magnetic field uniformity. As a result the sensor has higher sensitivity and improved precision. This paper develops the sensor model, discusses sensor structural features, and introduces a measurement method for debris size identification. Finally, experimental verification is presented indicating that that the sensor can effectively detect 81 μm (cube) or larger particles in 12 mm outside diameter (OD) organic glass pipe.
Watson, Douglas S; Kerchner, Kristi R; Gant, Sean S; Pedersen, Joseph W; Hamburger, James B; Ortigosa, Allison D; Potgieter, Thomas I
2016-01-01
Tangential flow microfiltration (MF) is a cost-effective and robust bioprocess separation technique, but successful full scale implementation is hindered by the empirical, trial-and-error nature of scale-up. We present an integrated approach leveraging at-line process analytical technology (PAT) and mass balance based modeling to de-risk MF scale-up. Chromatography-based PAT was employed to improve the consistency of an MF step that had been a bottleneck in the process used to manufacture a therapeutic protein. A 10-min reverse phase ultra high performance liquid chromatography (RP-UPLC) assay was developed to provide at-line monitoring of protein concentration. The method was successfully validated and method performance was comparable to previously validated methods. The PAT tool revealed areas of divergence from a mass balance-based model, highlighting specific opportunities for process improvement. Adjustment of appropriate process controls led to improved operability and significantly increased yield, providing a successful example of PAT deployment in the downstream purification of a therapeutic protein. The general approach presented here should be broadly applicable to reduce risk during scale-up of filtration processes and should be suitable for feed-forward and feed-back process control. © 2015 American Institute of Chemical Engineers.
NASA Astrophysics Data System (ADS)
Soukup, B.; Johnson, W.; Repasky, K. S.; Carlsten, J. L.
2013-12-01
A scanning differential absorption lidar (DIAL) instrument for carbon sequestration site monitoring is under development and testing at Montana State University. The laser transmitter uses two tunable discrete mode laser diodes (DMLD) operating in the continuous wave (cw) mode with one locked to the on-line absorption wavelength at 1571.4067 nm and the second operating at the off-line wavelength at 1571.2585 nm. Two in-line fiber optic switches are used to switch between on-line and off-line operation. After the fiber optic switches, an acousto-optic modulator (AOM) is used to generate a pulse train used to injection seed an erbium doped fiber amplifier (EDFA) to produce eye-safe laser pulses with maximum pulse energies of 66 J and a pulse repetition frequency of 15 kHz. The DIAL receiver uses a 28 cm diameter Schmidt-Cassegrain telescope to collect that backscattered light, which is then monitored using a fiber coupled photo-multiplier tube (PMT) module operating in the photon counting mode. The PMT has a 3% quantum efficiency, a dark count rate of 90 kHz, and a maximum count rate of 1 MHz. Recently, a fiber coupled avalanche photodiode (APD) operating in the geiger mode has been incorporated into the DIAL receiver. The APD has a quantum efficiency of 10%, a dark count rate of 10 kHz, and a maximum count rate of 1 MHz and provides a much larger dynamic range than the PMT. Both the PMT and APD provide TTL logic pulses that are monitored using a multichannel scaler card used to count the return photons as a function of time of flight and are thus interchangeable. The DIAL instrument was developed at the 1.571 m wavelength to take advantage of commercial-off-the-shelf components. The instrument is operated using a custom Labview program that switches to the DMLD operating at the on-line wavelength, locks this laser to a user defined wavelength setting, and collects return signals for a user defined time. The control program switches to the DMLD operating at the off-line wavelength where data is again collected for a user defined time. The control program repeats this process until stopped by the operator. The DIAL instrument has been operated at the Zero Emission Research Technology (ZERT) field site located on the Montana State University campus and at the Big Sky Carbon Sequestration Partnership site located in north-central Montana. Data collected by the DIAL instrument at both field sites demonstrate that the DIAL is capable of retrieving night time CO2 number density profiles out to a range of 2.5 km with a 150 m range resolution. The DIAL retrievals are validated using a co-located Li-COR 820 gas analyzer placed along the DIAL optical path allowing comparison at a single range as a function of time.
Cespi, Marco; Perinelli, Diego R; Casettari, Luca; Bonacucina, Giulia; Caporicci, Giuseppe; Rendina, Filippo; Palmieri, Giovanni F
2014-12-30
The use of process analytical technologies (PAT) to ensure final product quality is by now a well established practice in pharmaceutical industry. To date, most of the efforts in this field have focused on development of analytical methods using spectroscopic techniques (i.e., NIR, Raman, etc.). This work evaluated the possibility of using the parameters derived from the processing of in-line raw compaction data (the forces and displacement of the punches) as a PAT tool for controlling the tableting process. To reach this goal, two commercially available formulations were used, changing the quantitative composition and compressing them on a fully instrumented rotary pressing machine. The Heckel yield pressure and the compaction energies, together with the tablets hardness and compaction pressure, were selected and evaluated as discriminating parameters in all the prepared formulations. The apparent yield pressure, as shown in the obtained results, has the necessary sensitivity to be effectively included in a PAT strategy to monitor the tableting process. Additional investigations were performed to understand the criticalities and the mechanisms beyond this performing parameter and the associated implications. Specifically, it was discovered that the efficiency of the apparent yield pressure depends on the nominal drug title, the drug densification mechanism and the error in pycnometric density. In this study, the potential of using some parameters derived from the compaction raw data has been demonstrated to be an attractive alternative and complementary method to the well established spectroscopic techniques to monitor and control the tableting process. The compaction data monitoring method is also easy to set up and very cost effective. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Scholtz, P.; Smyth, P.
1992-01-01
This article describes an investigation of a statistical hypothesis testing method for detecting changes in the characteristics of an observed time series. The work is motivated by the need for practical automated methods for on-line monitoring of Deep Space Network (DSN) equipment to detect failures and changes in behavior. In particular, on-line monitoring of the motor current in a DSN 34-m beam waveguide (BWG) antenna is used as an example. The algorithm is based on a measure of the information theoretic distance between two autoregressive models: one estimated with data from a dynamic reference window and one estimated with data from a sliding reference window. The Hinkley cumulative sum stopping rule is utilized to detect a change in the mean of this distance measure, corresponding to the detection of a change in the underlying process. The basic theory behind this two-model test is presented, and the problem of practical implementation is addressed, examining windowing methods, model estimation, and detection parameter assignment. Results from the five fault-transition simulations are presented to show the possible limitations of the detection method, and suggestions for future implementation are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solis, R.P.; Chavez, F.C.; Garcia, S.E.
1997-12-31
In any operating geothermal power plant, steam quality is one of the most important parameters being monitored. In the Bacon-Manito Geothermal Production Field (BGPF), an online steam quality monitoring system have been installed in two operating power plants which provides an accurate, efficient and continuous real-time data which is more responsive to the various requirements of the field operation. The system utilizes sodium as an indicator of steam purity. Sodium concentration is read by the flame photometer located at the interface after aspirating a sample of the condensed steam through a continuous condensate sampler. The condensate has been degassed throughmore » a condensate-NCG separator. The flame photometer analog signal is then converted by a voltage-to-current converter/transmitter and relayed to the processor which is located at the control center through electrical cable to give a digital sodium concentration read-out at the control panel. The system features a high and high-high sodium level alarm, a continuous strip-chart recorder and a central computer for data capture, retrieval, and processing for further interpretation. Safety devices, such as the flame-off indicator at the control center and the automatic fuel cut-off device along the fuel line, are incorporated in the system.« less
Off-line and real-time monitoring of acetaminophen photodegradation by an electrochemical sensor.
Berto, Silvia; Carena, Luca; Chiavazza, Enrico; Marletti, Matteo; Fin, Andrea; Giacomino, Agnese; Malandrino, Mery; Barolo, Claudia; Prenesti, Enrico; Vione, Davide
2018-08-01
The photochemistry of N-acetyl-para-aminophenol (acetaminophen, APAP) is here investigated by using differential pulse voltammetry (DPV) analysis to monitor APAP photodegradation upon steady-state irradiation. The purpose of this work is to assess the applicability of DPV to monitor the photochemical behaviour of xenobiotics, along with the development of an electrochemical set-up for the real-time monitoring of APAP photodegradation. We here investigated the APAP photoreactivity towards the main photogenerated reactive transients species occurring in sunlit surface waters (hydroxyl radical HO, carbonate radical CO 3 - , excited triplet state of anthraquinone-2-sulfonate used as proxy of the chromophoric DOM, and singlet oxygen 1 O 2 ), and determined relevant kinetic parameters. A standard procedure based on UV detection coupled with liquid chromatography (HPLC-UV) was used under identical experimental conditions to compare and verify the DPV-based results. The latter were in agreement with HPLC data, with the exception of the triplet-sensitized processes. In the other cases, DPV could be used as an alternative to the well-tested but more costly and time-consuming HPLC-UV technique. We have also assessed the reaction rate constant between APAP and HO by real-time DPV, which allowed for the monitoring of APAP photodegradation inside the irradiation chamber. Unfortunately, real-time DPV measurements are likely to be affected by temperature variations of the irradiated samples. Overall, DPV appeared as a fast, cheap and reasonably reliable technique when used for the off-line monitoring of APAP photodegradation. When a suitable real-time procedure is developed, it could become a very straightforward method to study the photochemical behaviour of electroactive xenobiotics. Copyright © 2018 Elsevier Ltd. All rights reserved.
General-Purpose Monitoring during Speech Production
ERIC Educational Resources Information Center
Ries, Stephanie; Janssen, Niels; Dufau, Stephane; Alario, F.-Xavier; Burle, Boris
2011-01-01
The concept of "monitoring" refers to our ability to control our actions on-line. Monitoring involved in speech production is often described in psycholinguistic models as an inherent part of the language system. We probed the specificity of speech monitoring in two psycholinguistic experiments where electroencephalographic activities were…
Influence of the geomembrane on time-lapse ERT measurements for leachate injection monitoring.
Audebert, M; Clément, R; Grossin-Debattista, J; Günther, T; Touze-Foltz, N; Moreau, S
2014-04-01
Leachate recirculation is a key process in the operation of municipal waste landfills as bioreactors. To quantify the water content and to evaluate the leachate injection system, in situ methods are required to obtain spatially distributed information, usually electrical resistivity tomography (ERT). However, this method can present false variations in the observations due to several parameters. This study investigates the impact of the geomembrane on ERT measurements. Indeed, the geomembrane tends to be ignored in the inversion process in most previously conducted studies. The presence of the geomembrane can change the boundary conditions of the inversion models, which have classically infinite boundary conditions. Using a numerical modelling approach, the authors demonstrate that a minimum distance is required between the electrode line and the geomembrane to satisfy the good conditions of use of the classical inversion tools. This distance is a function of the electrode line length (i.e. of the unit electrode spacing) used, the array type and the orientation of the electrode line. Moreover, this study shows that if this criterion on the minimum distance is not satisfied, it is possible to significantly improve the inversion process by introducing the complex geometry and the geomembrane location into the inversion tools. These results are finally validated on a field data set gathered on a small municipal solid waste landfill cell where this minimum distance criterion cannot be satisfied. Copyright © 2014 Elsevier Ltd. All rights reserved.
Shoulder Arthroplasty Imaging: What’s New
Gregory, T.M
2017-01-01
Background: Shoulder arthroplasty, in its different forms (hemiarthroplasty, total shoulder arthroplasty and reverse total shoulder arthroplasty) has transformed the clinical outcomes of shoulder disorders. Improvement of general clinical outcome is the result of stronger adequacy of the treatment to the diagnosis, enhanced surgical techniques, specific implanted materials, and more accurate follow up. Imaging is an important tool in each step of these processes. Method: This article is a review article declining recent imaging processes for shoulder arthroplasty. Results: Shoulder imaging is important for shoulder arthroplasty pre-operative planning but also for post-operative monitoring of the prosthesis and this article has a focus on the validity of plain radiographs for detecting radiolucent line and on new Computed Tomography scan method established to eliminate the prosthesis metallic artefacts that obscure the component fixation visualisation. Conclusion: Number of shoulder arthroplasties implanted have grown up rapidly for the past decade, leading to an increase in the number of complications. In parallel, new imaging system have been established to monitor these complications, especially component loosening PMID:29152007
Grantham, Steven; Lane, Brandon; Neira, Jorge; Mekhontsev, Sergey; Vlasea, Mihaela; Hanssen, Leonard
2017-01-01
The National Institute of Standards and Technology’s (NIST) Physical Measurement and Engineering Laboratories are jointly developing the Additive Manufacturing Measurement Testbed (AMMT)/ Temperature and Emittance of Melts, Powders and Solids (TEMPS) facilities. These facilities will be co-located on an open architecture laser-based powder bed fusion system allowing users full access to the system’s operation parameters. This will provide users with access to machine-independent monitoring and control of the powder bed fusion process. In this paper there will be emphasis on the AMMT, which incorporates in-line visible light collection optics for monitoring and feedback control of the powder bed fusion process. We shall present an overview of the AMMT/TEMPS program and its goals. The optical and mechanical design of the open architecture powder-bed fusion system and the AMMT will also be described. In addition, preliminary measurement results from the system along with the current status of the system will be described. PMID:28579666
Real-time assessment of critical quality attributes of a continuous granulation process.
Fonteyne, Margot; Vercruysse, Jurgen; Díaz, Damián Córdoba; Gildemyn, Delphine; Vervaet, Chris; Remon, Jean Paul; De Beer, Thomas
2013-02-01
There exists the intention to shift pharmaceutical manufacturing of solid dosage forms from traditional batch production towards continuous production. The currently applied conventional quality control systems, based on sampling and time-consuming off-line analyses in analytical laboratories, would annul the advantages of continuous processing. It is clear that real-time quality assessment and control is indispensable for continuous production. This manuscript evaluates strengths and weaknesses of several complementary Process Analytical Technology (PAT) tools implemented in a continuous wet granulation process, which is part of a fully continuous from powder-to-tablet production line. The use of Raman and NIR-spectroscopy and a particle size distribution analyzer is evaluated for the real-time monitoring of critical parameters during the continuous wet agglomeration of an anhydrous theophylline- lactose blend. The solid state characteristics and particle size of the granules were analyzed in real-time and the critical process parameters influencing these granule characteristics were identified. The temperature of the granulator barrel, the amount of granulation liquid added and, to a lesser extent, the powder feed rate were the parameters influencing the solid state of the active pharmaceutical ingredient (API). A higher barrel temperature and a higher powder feed rate, resulted in larger granules.
Global, Frequent Landsat-class Mosaics for Real Time Crop Monitoring and Analysis
NASA Astrophysics Data System (ADS)
Varlyguin, D.; Crutchfield, J.; Hulina, S.; Reynolds, C. A.; Frantz, R.; Tetrault, R. L.
2016-12-01
The presentation will discuss the current status of GDA technology for operational, automated generation of near global mosaics of Landsat-class data for visualization, monitoring, and analysis. Current version of the mosaic combines Landsat 8 and Landsat 7. Sentinel-2A and ASTER imagery are to be added shortly. The mosaics are surface reflectance calibrated and are analysis ready. They offer full spatial resolution and all multi-spectral bands of the source imagery. Each mosaic covers all major agricultural regions of the world for the last 18 months with a 16 day frequency. The mosaics are updated in real-time, as soon as GDA downloads the imagery, calibrates it to the surface reflectances, and generates data gap masks (all typically under 10 minutes for a Landsat scene). Best pixel value from available opportunities is selected during the mosaic update. The technology eliminates the complex, multi-step, hands-on process of data preparation and provides imagery ready for repetitive, field-to-country analysis of crop conditions, progress, acreages, yield, and production. The mosaics are used for real-time, on-line interactive mapping and time series drilling via GeoSynergy webGIS platform and for off line in-season crop mapping. USDA FAS uses this product for persistent monitoring of selected countries and their croplands and for in-season crop analysis. The presentation will overview Landsat-class mosaics and their use in support of USDA FAS efforts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Favalli, A.; Lombardi, M.; MacArthur, D. W.
Improving the quality of safeguards measurements at Gas Centrifuge Enrichment Plants while reducing the inspection effort is an important objective given the number of existing and new plants that need to be safeguarded. A useful tool in many safeguards approaches is the on-line monitoring of enrichment in process pipes. One requirement of such a monitor is a simple, reliable and precise passive measurement of the 186-keV line from 235U. The other information required is the amount of gas in the pipe, which can be obtained by a transmission or pressure measurement. Here, we describe our research to develop such amore » passive measurement system. Unfortunately, a complication arises in the interpretation of the gamma measurements, from the contribution of uranium deposits on the wall of the pipe to the 186-keV peak. A multi-detector approach to address this complication is presented where two measurements, one with signal primarily from gas and one with signal primarily from deposits, are performed simultaneously with different detectors and geometries. This allows a correction to be made to the 186-keV peak for the contribution from the deposit. Finally, we present the design of the multi-detector system and the results of the experimental calibration of the proof-of-principle prototype built at LANL.« less
Favalli, A.; Lombardi, M.; MacArthur, D. W.; ...
2017-09-14
Improving the quality of safeguards measurements at Gas Centrifuge Enrichment Plants while reducing the inspection effort is an important objective given the number of existing and new plants that need to be safeguarded. A useful tool in many safeguards approaches is the on-line monitoring of enrichment in process pipes. One requirement of such a monitor is a simple, reliable and precise passive measurement of the 186-keV line from 235U. The other information required is the amount of gas in the pipe, which can be obtained by a transmission or pressure measurement. Here, we describe our research to develop such amore » passive measurement system. Unfortunately, a complication arises in the interpretation of the gamma measurements, from the contribution of uranium deposits on the wall of the pipe to the 186-keV peak. A multi-detector approach to address this complication is presented where two measurements, one with signal primarily from gas and one with signal primarily from deposits, are performed simultaneously with different detectors and geometries. This allows a correction to be made to the 186-keV peak for the contribution from the deposit. Finally, we present the design of the multi-detector system and the results of the experimental calibration of the proof-of-principle prototype built at LANL.« less
NASA Astrophysics Data System (ADS)
Murphy, Elizabeth Drummond
As advances in technology are applied in complex, semi-automated domains, human controllers are distanced from the controlled process. This physical and psychological distance may both facilitate and degrade human performance. To investigate cognitive issues in spacecraft ground-control operations, the present experimental research was undertaken. The primary issue concerned the ability of operations analysts who do not monitor operations to make timely, accurate decisions when autonomous software calls for human help. Another key issue involved the potential effects of spatial-visualization ability (SVA) in environments that present data in graphical formats. Hypotheses were derived largely from previous findings and predictions in the literature. Undergraduate psychology students were assigned at random to a monitoring condition or an on-call condition in a scaled environment. The experimental task required subjects to decide on the veracity of a problem diagnosis delivered by a software process on-board a simulated spacecraft. To support decision-making, tabular and graphical data displays presented information on system status. A level of software confidence in the problem diagnosis was displayed, and subjects reported their own level of confidence in their decisions. Contrary to expectations, the performance of on-call subjects did not differ significantly from that of continuous monitors. Analysis yielded a significant interaction of sex and condition: Females in the on-call condition had the lowest mean accuracy. Results included a preference for bar charts over line graphs and faster performance with tables than with line graphs. A significant correlation was found between subjective confidence and decision accuracy. SVA was found to be predictive of accuracy but not speed; and SVA was found to be a stronger predictor of performance for males than for females. Low-SVA subjects reported that they relied more on software confidence than did medium- or high-SVA subjects. These and other findings have implications for the design of user interfaces to support human decision-making in on-call situations and to accommodate low-SVA users.
An X-ray beam position monitor based on the photoluminescence of helium gas
NASA Astrophysics Data System (ADS)
Revesz, Peter; White, Jeffrey A.
2005-03-01
A new method for white beam position monitoring for both bend magnet and wiggler synchrotron X-ray radiation has been developed. This method utilizes visible light luminescence generated as a result of ionization by the intense X-ray flux. In video beam position monitors (VBPMs), the luminescence of helium gas at atmospheric pressure is observed through a view port using a CCD camera next to the beam line. The beam position, profile, integrated intensity and FWHM are calculated from the distribution of luminescence intensity in each captured image by custom software. Misalignment of upstream apertures changes the image profile making VBPMs helpful for initial alignment of upstream beam line components. VBPMs can thus provide more information about the X-ray beam than most beam position monitors (BPMs). A beam position calibration procedure, employing a tilted plane-parallel glass plate placed in front of the camera lens, has also been developed. The accuracy of the VBPM system was measured during a bench-top experiment to be better than 1 μm. The He-luminescence-based VBPM system has been operative on three CHESS beam lines (F hard-bend and wiggler, A-line wiggler and G-line wiggler) for about a year. The beam positions are converted to analog voltages and used as feedback signals for beam stabilization. In our paper we discuss details of VBPM construction and describe further results of its performance.
Research on a Banknote Printing Wastewater Monitoring System based on Wireless Sensor Network
NASA Astrophysics Data System (ADS)
Li, B. B.; Yuan, Z. F.
2006-10-01
In this paper, a banknote printing wastewater monitoring system based on WSN is presented in line with the system demands and actual condition of the worksite for a banknote printing factory. In Physical Layer, the network node is a nRF9e5-centric embedded instrument, which can realize the multi-function such as data collecting, status monitoring, wireless data transmission and so on. Limited by the computing capability, memory capability, communicating energy and others factors, it is impossible for the node to get every detail information of the network, so the communication protocol on WSN couldn't be very complicated. The competitive-based MACA (Multiple Access with Collision Avoidance) Protocol is introduced in MAC, which can decide the communication process and working mode of the nodes, avoid the collision of data transmission, hidden and exposed station problem of nodes. On networks layer, the routing protocol in charge of the transmitting path of the data, the networks topology structure is arranged based on address assignation. Accompanied with some redundant nodes, the network performances stabile and expandable. The wastewater monitoring system is a tentative practice of WSN theory in engineering. Now, the system has passed test and proved efficiently.
Real-time alkali monitoring system
Goff, David R.; Romanosky, Robert R.; Hensel, Peter
1990-01-01
A fiber optics based optical emission line monitoring system is provided in which selected spectral emission lines, such as the sodium emission line, may be detected in the presence of interfering background radiation. A combustion flame is fed by a diverted portion of a process stream and the common end of a bifurcated or quadfurcated fiber optic light guide is adapted to collect light from the flame. The light is guided through the branches of the fiber optic cable to bandpass filters, one of which is adapted to each of the branches of the fiber optic light guide. The bandpass filters are centered at wavelengths corresponding to the emission lines to be detected and two separate filters are required for each species being detected. The first filter has a bandwidth of about 3 nms and the second filter has a bandwidth of about 10 nms. Light detectors are located to view the light passing through the bandpass filters and amplifiers are connected to receive signals from the light detectors. The amplifier corresponding to the bandpass filter having the narrower bandwidth is preset to scale the signal by a factor equal to the ratio of the wide and narrow bandwidths of the bandpass filters. This scaling produces a scaled signal from which the difference between the scaled signal on the other signal can be calculated to produce a signal having an amplitude directly proportional to the concentration of the species of interest and independent of background radiation.
NASA Astrophysics Data System (ADS)
Ledesma, Rodolfo; Palmieri, Frank; Connell, John; Yost, William; Fitz-Gerald, James
2018-02-01
Adhesive bonding of composite materials requires reliable monitoring and detection of surface contaminants as part of a vigorous quality control process to assure robust and durable bonded structures. Surface treatment and effective monitoring prior to bonding are essential in order to obtain a surface which is free from contaminants that may lead to inferior bond quality. In this study, the focus is to advance the laser induced breakdown spectroscopy (LIBS) technique by using pulse energies below 100 μJ (μLIBS) for the detection of low levels of silicone contaminants in carbon fiber reinforced polymer (CFRP) composites. Various CFRP surface conditions were investigated by LIBS using ∼10 ps, 355 nm laser pulses with pulse energies below 30 μJ. Time-resolved analysis was conducted to optimize the gate delay and gate width for the detection of the C I emission line at 247.9 nm to monitor the epoxy resin matrix of CFRP composites and the Si I emission line at 288.2 nm for detection of silicone contaminants in CFRP. To study the surface sensitivity to silicone contamination, CFRP surfaces were coated with polydimethylsiloxane (PDMS), the active ingredient in many mold release agents. The presence of PDMS was studied by inspecting the Si I emission lines at 251.6 nm and 288.2 nm. The measured PDMS areal densities ranged from 0.15 to 2 μg/cm2. LIBS measurements were performed before and after laser surface ablation. The results demonstrate the successful detection of PDMS thin layers on CFRP using picosecond μLIBS.
In-Line Monitoring of Fab Processing Using X-Ray Diffraction
NASA Astrophysics Data System (ADS)
Gittleman, Bruce; Kozaczek, Kris
2005-09-01
As the materials shift that started with Cu continues to advance in the semiconductor industry, new issues related to materials microstructure have arisen. While x-ray diffraction (XRD) has long been used in development applications, in this paper we show that results generated in real time by a unique, high throughput, fully automated XRD metrology tool can be used to develop metrics for qualification and monitoring of critical processes in current and future manufacturing. It will be shown that these metrics provide a unique set of data that correlate to manufacturing issues. For example, ionized-sputtering is the current deposition method of choice for both the Cu seed and TaNx/Ta barrier layers. The alpha phase of Ta is widely used in production for the upper layer of the barrier stack, but complete elimination of the beta phase requires a TaNx layer with sufficient N content, but not so much as to start poisoning the target and generating particle issues. This is a well documented issue, but traditional monitoring by sheet resistance methods cannot guarantee the absence of the beta phase, whereas XRD can determine the presence of even small amounts of beta. Nickel silicide for gate metallization is another example where monitoring of phase is critical. As well being able to qualify an anneal process that gives only the desired NiSi phase everywhere across the wafer, XRD can be used to determine if full silicidation of the Ni has occurred and characterize the crystallographic microstructure of the Ni to determine any effect of that microstructure on the anneal process. The post-anneal nickel silicide phase and uniformity of the silicide microstructure can all be monitored in production. Other examples of the application of XRD to process qualification and production monitoring are derived from the dependence of certain processes, some types of defect generation, and device performance on crystallographic texture. The data presented will show that CMP dishing problems could be traced to texture of the barrier layer and mitigated by adjusting the barrier process. The density of pits developed during CMP of electrochemically deposited (ECD) Cu depends on the fraction of (111) oriented grains. It must be emphasized that the crystallographic texture is not only a key parameter for qualification of high yielding and reliable processes, but also serves as a critical parameter for monitoring tool health. The texture of Cu and W are sensitive not only to deviations in performance of the tool depositing or annealing a particular film, but also highly sensitive to the texture of the barrier underlayers and thus any performance deviations in those tools. The XRD metrology tool has been designed with production monitoring in mind and has been fully integrated into both 200 mm and 300 mm fabs. Rapid analysis is achieved by using a high intensity fixed x-ray source, coupled with a large area 2D detector. The output metrics from one point are generated while the tool is measuring a subsequent point, giving true on-the-fly analysis; no post-processing of data is necessary. Spatial resolution on the wafer surface ranging from 35 μm to 1 mm is available, making the tool suitable for monitoring of product wafers. Typical analysis times range from 10 seconds to 2 minutes per point, depending on the film thickness and spot size. Current metrics used for process qualification and production monitoring are phase, FWHM of the primary phase peaks (for mean grain size tracking), and crystallographic texture.
Single transmission line interrogated multiple channel data acquisition system
Fasching, George E.; Keech, Jr., Thomas W.
1980-01-01
A single transmission line interrogated multiple channel data acquisition system is provided in which a plurality of remote station/sensor circuits each monitors a specific process variable and each transmits measurement values over a single transmission line to a master interrogating station when addressed by said master interrogating station. Typically, as many as 330 remote stations may be parallel connected to the transmission line which may exceed 7,000 feet. The interrogation rate is typically 330 stations/second. The master interrogating station samples each station according to a shared, charging transmit-receive cycle. All remote station address signals, all data signals from the remote stations/sensors and all power for all of the remote station/sensors are transmitted via a single continuous terminated coaxial cable. A means is provided for periodically and remotely calibrating all remote sensors for zero and span. A provision is available to remotely disconnect any selected sensor station from the main transmission line.
The design of an intelligent human-computer interface for the test, control and monitor system
NASA Technical Reports Server (NTRS)
Shoaff, William D.
1988-01-01
The graphical intelligence and assistance capabilities of a human-computer interface for the Test, Control, and Monitor System at Kennedy Space Center are explored. The report focuses on how a particular commercial off-the-shelf graphical software package, Data Views, can be used to produce tools that build widgets such as menus, text panels, graphs, icons, windows, and ultimately complete interfaces for monitoring data from an application; controlling an application by providing input data to it; and testing an application by both monitoring and controlling it. A complete set of tools for building interfaces is described in a manual for the TCMS toolkit. Simple tools create primitive widgets such as lines, rectangles and text strings. Intermediate level tools create pictographs from primitive widgets, and connect processes to either text strings or pictographs. Other tools create input objects; Data Views supports output objects directly, thus output objects are not considered. Finally, a set of utilities for executing, monitoring use, editing, and displaying the content of interfaces is included in the toolkit.
Conceptual design of a monitoring system for the Charters of Freedom
NASA Technical Reports Server (NTRS)
Cutts, J. A.
1984-01-01
A conceptual design of a monitoring system for the Charters of Freedom was developed for the National Archives and Records Service. The monitoring system would be installed at the National Archives and used to document the condition of the Charters as part of a regular inspection program. The results of an experimental measurements program that led to the definition of analysis system requirements are presented, a conceptual design of the monitoring system is described and the alternative approaches to implementing this design were discussed. The monitoring system is required to optically detect and measure deterioration in documents that are permanently encapsulated in glass cases. An electronic imaging system with the capability for precise photometric measurements of the contrast of the script on the documents can perform this task. Two general types of imaging systems are considered (line and area array), and their suitability for performing these required measurements are compared. A digital processing capability for analyzing the electronic imaging data is also required, and several optional levels of complexity for this digital analysis system are evaluated.
Monitoring Biological Activity at Geothermal Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter Pryfogle
2005-09-01
The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has beenmore » evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.« less
More About The Video Event Trigger
NASA Technical Reports Server (NTRS)
Williams, Glenn L.
1996-01-01
Report presents additional information about system described in "Video Event Trigger" (LEW-15076). Digital electronic system processes video-image data to generate trigger signal when image shows significant change, such as motion, or appearance, disappearance, change in color, brightness, or dilation of object. Potential uses include monitoring of hallways, parking lots, and other areas during hours when supposed unoccupied, looking for fires, tracking airplanes or other moving objects, identification of missing or defective parts on production lines, and video recording of automobile crash tests.
Strategies of performance self-monitoring in automotive production.
Faye, Hélène; Falzon, Pierre
2009-09-01
Production in the automotive industry, based on assembly line work, is now characterized by lean manufacturing and customization. This results in greater flexibility and increased quality demands, including worker performance self-monitoring. The objectives of this study are to refine the concept of performance self-monitoring and to characterize the strategies developed by operators to achieve it. Data were collected based on the method of individual auto-confrontation, consisting of two steps: eleven assembly-line operators of a French automotive company were individually observed and video-taped while they were working; an interview then allowed each operator to discuss his/her activity based on the video-tape. This study expands the concept of performance self-monitoring by highlighting three types of strategies directly oriented toward quality: prevention, feedback control and control action strategies.
Research on the full life cycle management system of smart electric energy meter
NASA Astrophysics Data System (ADS)
Chen, Xiangqun; Huang, Rui; Shen, Liman; Guo, Dingying; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Renheng, Xu
2018-02-01
At present, China’s smart electric energy meter life management is started from the procurement and acceptance. The related monitoring and management of the manufacturing sector has not yet been carried out. This article applies RFID technology and network cloud platform to full life cycle management system of smart electric energy meters, builds this full life cycle management system including design and manufacturing, process control, measurement and calibration testing, storage management, user acceptance, site operation, maintenance scrap and other aspects. Exploring smart electric energy meters on-line and off-line communication by the application of active RFID communication functions, and the actual functional application such as local data exchange and instrument calibration. This system provides technical supports on power demand side management and the improvement of smart electric energy meter reliability evaluation system.
NASA Astrophysics Data System (ADS)
Tseng, Tung-Tse
In this research the interferences with the on -line detection of radioiodines, under nuclear accident conditions, were studied. The special tool employed for this research is the developed on-line radioiodine monitor (the Penn State Radioiodine Monitor), which is capable of detecting low levels of radioiodine on-line in air containing orders of magnitude higher levels of radioactive noble gases. Most of the data reported in this thesis were collected during a series of experiments called "Source -Term Experiment Program (STEP)." The experiments were conducted at the Argonne National Laboratory's TREAT reactor located at the Idaho National Engineering Laboratory (INEL). In these tests, fission products were released from the Light Water Reactor (LWR) test fuels as a result of simulating a reactor accident. The Penn State Monitor was then used to sample the fission products accumulated in a large container which simulated the reactor containment building. The test results proved that the Penn State Monitor was not affected significantly by the passage of large amounts of noble gases through the system. Also, it confirmed the predicted results that the operation of conventional on-line radioiodine detectors would, under nuclear accident conditions, be seriously impaired by the passage of high concentrations of radioactive noble gases through such systems. This work also demonstrated that under conditions of high noble gas concentrations and low radioiodine concentrations, the formation of noble-gas-decayed alkali metals can seriously interfere with the on-line detection of radioiodine, especially during the 24 hours immediately after the accident. The decayed alkali metal particulates were also found to be much more penetrating than the ordinary type of particulates, since a large fraction (15%) of the particulates were found to penetrate through the commonly used High Efficiency Particulate Air (HEPA) filter (rated >99.97% for 0.3 (mu)m particulate). Also, a significant fraction ((TURN)40%) of these particles became deposited on silver zeolite iodine filters inside the counting chamber. Finally, the Penn State Monitor proved itself to be a powerful research tool for the on-line source term studies since it can easily produce near noble-gas-free spectra during the real time studies occurring under simulated nuclear accident conditions.
Distributed On-line Monitoring System Based on Modem and Public Phone Net
NASA Astrophysics Data System (ADS)
Chen, Dandan; Zhang, Qiushi; Li, Guiru
In order to solve the monitoring problem of urban sewage disposal, a distributed on-line monitoring system is proposed. By introducing dial-up communication technology based on Modem, the serial communication program can rationally solve the information transmission problem between master station and slave station. The realization of serial communication program is based on the MSComm control of C++ Builder 6.0.The software includes real-time data operation part and history data handling part, which using Microsoft SQL Server 2000 for database, and C++ Builder6.0 for user interface. The monitoring center displays a user interface with alarm information of over-standard data and real-time curve. Practical application shows that the system has successfully accomplished the real-time data acquisition from data gather station, and stored them in the terminal database.
NASA Astrophysics Data System (ADS)
Hussmann, Stephan; Lau, Wing Y.; Chu, Terry; Grothof, Markus
2003-07-01
Traditionally, the measuring or monitoring system of manufacturing industries uses sensors, computers and screens for their quality control (Q.C.). The acquired information is fed back to the control room by wires, which - for obvious reason - are not suitable in many environments. This paper describes a method to solve this problem by employing the new Bluetooth technology to set up a complete new system, where a total wireless solution is made feasible. This new Q.C. system allows several line scan cameras to be connected at once to a graphical user interface (GUI) that can monitor the production process. There are many Bluetooth devices available on the market such as cell-phones, headsets, printers, PDA etc. However, the detailed application is a novel implementation in the industrial Q.C. area. This paper will contain more details about the Bluetooth standard and why it is used (nework topologies, host controller interface, data rates, etc.), the Bluetooth implemetation in the microcontroller of the line scan camera, and the GUI and its features.
Developing global regression models for metabolite concentration prediction regardless of cell line.
André, Silvère; Lagresle, Sylvain; Da Sliva, Anthony; Heimendinger, Pierre; Hannas, Zahia; Calvosa, Éric; Duponchel, Ludovic
2017-11-01
Following the Process Analytical Technology (PAT) of the Food and Drug Administration (FDA), drug manufacturers are encouraged to develop innovative techniques in order to monitor and understand their processes in a better way. Within this framework, it has been demonstrated that Raman spectroscopy coupled with chemometric tools allow to predict critical parameters of mammalian cell cultures in-line and in real time. However, the development of robust and predictive regression models clearly requires many batches in order to take into account inter-batch variability and enhance models accuracy. Nevertheless, this heavy procedure has to be repeated for every new line of cell culture involving many resources. This is why we propose in this paper to develop global regression models taking into account different cell lines. Such models are finally transferred to any culture of the cells involved. This article first demonstrates the feasibility of developing regression models, not only for mammalian cell lines (CHO and HeLa cell cultures), but also for insect cell lines (Sf9 cell cultures). Then global regression models are generated, based on CHO cells, HeLa cells, and Sf9 cells. Finally, these models are evaluated considering a fourth cell line(HEK cells). In addition to suitable predictions of glucose and lactate concentration of HEK cell cultures, we expose that by adding a single HEK-cell culture to the calibration set, the predictive ability of the regression models are substantially increased. In this way, we demonstrate that using global models, it is not necessary to consider many cultures of a new cell line in order to obtain accurate models. Biotechnol. Bioeng. 2017;114: 2550-2559. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Ruiz, Eva D; Almada, Mario; Burboa, María G; Taboada, Pablo; Mosquera, Víctor; Valdez, Miguel A; Juárez, Josué
2015-02-01
Amyloid-associated diseases, such Alzheimer's, Huntington's, Parkinson's, and type II diabetes, are related to protein misfolding and aggregation. Herein, the time evolution of scattered light intensity, hydrophobic properties, and conformational changes during fibrillation processes of rHL solutions at 55 °C and pH 2.0 were used to monitor the aggregation process of recombinant human lysozyme (rHL). Dynamic light scattering (DLS), thioflavin T (ThT) fluorescence, and surface tension (ST) at the air-water interface were used to analyze the hydrophobic properties of pre-amyloid aggregates involved in the fibrillation process of rHL to find a correlation between the hydrophobic character of oligomers, protofibrils and amyloid aggregates with the gain in cross-β-sheet structure, depending on the increase in the incubation periods. The ability of the different aggregates of rHL isolated during the fibrillation process to be adsorbed at the air-water interface can provide important information about the hydrophobic properties of the protein, which can be related to changes in the secondary structure of rHL, resulting in cytotoxic or non-cytotoxic species. Thus, we evaluated the cytotoxic effect of oligomers, protofibrils and amyloid fibrils on the cell line ARPE-19 using the MTT reduction test. The more cytotoxic protein species arose after a 600-min incubation time, suggesting that the hydrophobic character of pre-amyloid fibrils, in addition to the high prevalence of the cross-β-sheet conformation, can become toxic for the cell line ARPE-19. Copyright © 2014 Elsevier B.V. All rights reserved.
Design of power cable grounding wire anti-theft monitoring system
NASA Astrophysics Data System (ADS)
An, Xisheng; Lu, Peng; Wei, Niansheng; Hong, Gang
2018-01-01
In order to prevent the serious consequences of the power grid failure caused by the power cable grounding wire theft, this paper presents a GPRS based power cable grounding wire anti-theft monitoring device system, which includes a camera module, a sensor module, a micro processing system module, and a data monitoring center module, a mobile terminal module. Our design utilize two kinds of methods for detecting and reporting comprehensive image, it can effectively solve the problem of power and cable grounding wire box theft problem, timely follow-up grounded cable theft events, prevent the occurrence of electric field of high voltage transmission line fault, improve the reliability of the safe operation of power grid.
Kanawade, Rajesh; Mahari, Fanuel; Klämpfl, Florian; Rohde, Maximilian; Knipfer, Christian; Tangermann-Gerk, Katja; Adler, Werner; Schmidt, Michael; Stelzle, Florian
2015-01-01
The research work presented in this paper focuses on qualitative tissue differentiation by monitoring the intensity ratios of atomic emissions using 'Laser Induced Breakdown Spectroscopy' (LIBS) on the plasma plume created during laser tissue ablation. The background of this study is to establish a real time feedback control mechanism for clinical laser surgery systems during the laser ablation process. Ex-vivo domestic pig tissue samples (muscle, fat, nerve and skin) were used in this experiment. Atomic emission intensity ratios were analyzed to find a characteristic spectral line for each tissue. The results showed characteristic elemental emission intensity ratios for the respective tissues. The spectral lines and intensity ratios of these specific elements varied among the different tissue types. The main goal of this study is to qualitatively and precisely identify different tissue types for tissue specific laser surgery. © 2015 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag.
Becker, Wolfgang; Guschin, Viktor; Mikonsaari, Irma; Teipel, Ulrich; Kölle, Sabine; Weiss, Patrick
2017-01-01
Nanocomposites with polypropylene as matrix material and nanoclay as filler were produced in a double twin screw extruder. The extrusion was monitored with a spectrometer in the visible and near-infrared spectral region with a diode array spectrometer. Two probes were installed at the end at the extruder die and the transmission spectra were measured during the extrusion. After measuring the transmission spectra and converting into turbidity units, the particle distribution density was calculated via numerical linear equation system. The distribution density function shows either a bimodal or mono modal shape in dependence of the processing parameters like screw speed, dosage, and concentration of the nanoclays. The method was verified with SEM measurements which yield comparable results. The method is suitable for industrial in-line processing monitoring of particle radii and dispersion process, respectively.
Engle, Martha; Ferguson, Allison; Fields, Willa
2016-01-01
The purpose of this quality improvement project was to redesign a hospital meal delivery process in order to shorten the time between blood glucose monitoring and corresponding insulin administration and improve glycemic control. This process change redesigned the workflow of the dietary and nursing departments. Modifications included nursing, rather than dietary, delivering meal trays to patients receiving insulin. Dietary marked the appropriate meal trays and phoned each unit prior to arrival on the unit. The process change was trialed on 2 acute care units prior to implementation hospital wide. Elapsed time between blood glucose monitoring and insulin administration was analyzed before and after process change as well as evaluation of glucometrics: percentage of patients with blood glucose between 70 and 180 mg/dL (percent perfect), blood glucose greater than 300 mg/dL (extreme hyperglycemia), and blood glucose less than 70 mg/dL (hypoglycemia). Percent perfect glucose results improved from 45% to 53%, extreme hyperglycemia (blood glucose >300 mg/dL) fell from 11.7% to 5%. Hypoglycemia demonstrated a downward trend line, demonstrating that with improving glycemic control hypoglycemia rates did not increase. Percentage of patients receiving meal insulin within 30 minutes of blood glucose check increased from 35% to 73%. In the hospital, numerous obstacles were present that interfered with on-time meal insulin delivery. Establishing a meal delivery process with the nurse performing the premeal blood glucose check, delivering the meal, and administering the insulin improves overall blood glucose control. Nurse-led process improvement of blood glucose monitoring, meal tray delivery, and insulin administration does lead to improved glycemic control for the inpatient population.
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Alfonsi; C. Rabiti; D. Mandelli
The Reactor Analysis and Virtual control ENviroment (RAVEN) code is a software tool that acts as the control logic driver and post-processing engine for the newly developed Thermal-Hydraulic code RELAP-7. RAVEN is now a multi-purpose Probabilistic Risk Assessment (PRA) software framework that allows dispatching different functionalities: Derive and actuate the control logic required to simulate the plant control system and operator actions (guided procedures), allowing on-line monitoring/controlling in the Phase Space Perform both Monte-Carlo sampling of random distributed events and Dynamic Event Tree based analysis Facilitate the input/output handling through a Graphical User Interface (GUI) and a post-processing data miningmore » module« less
NASA Astrophysics Data System (ADS)
Cutshall, N. H.; Gilmore, T.; Looney, B. B.; Vangelas, K. M.; Adams, K. M.; Sink, C. H.
2006-05-01
Like many US industries and businesses, the Department of Energy (DOE) is responsible for remediation and restoration of soils and ground water contaminated with chlorinated ethenes. Monitored Natural Attenuation (MNA) is an attractive remediation approach and is probably the universal end-stage technology for removing such contamination. Since 2003 we have carried out a multifaceted program at the Savannah River Site designed to advance the state of the art for MNA of chlorinated ethenes in soils and groundwater. Three lines of effort were originally planned: 1) Improving the fundamental science for MNA, 2) Promoting better characterization and monitoring (CM) techniques, and 3) Advancing the regulatory aspects of MNA management. A fourth line, developing enhanced attenuation methods based on sustainable natural processes, was added in order to deal with sites where the initial natural attenuation capacity cannot offset contaminant loading rates. These four lines have been pursued in an integrated and mutually supportive fashion. Many DOE site-cleanup program managers view CM as major expenses, especially for natural attenuation where measuring attenuation is complex and the most critical attenuation mechanisms cannot be determined directly. We have reviewed new and developing approaches to CM for potential application in support of natural attenuation of chlorinated hydrocarbons in ground water at DOE sites (Gilmore, Tyler, et al., 2006 WSRC-TR- 2005-00199). Although our project is focused on chlorinated ethenes, many of the concepts and strategies are also applicable to a wider range of contaminants including radionuclides and metals. The greatest savings in CM are likely to come from new management approaches. New approaches can be based, for example, on conceptual models of attenuation capacity, the ability of a formation to reduce risks caused by contaminants. Using the mass balance concept as a guide, the integrated mass flux of contaminant is compared to the attenuation capacity. The mass balance approach is controlled by a combination of boundary conditions (e.g., water inputs and outputs), flow dynamics, and contaminant concentrations. As a result, long term monitoring might be improved while reducing costs by measuring fewer point concentrations and simultaneously adding large-scale measurements of boundary conditions, using weather data, remote sensing of evapotranspiration, stream-flow monitoring, etc. Because there are no specific regulatory drivers for performance-monitoring, regulators are not accustomed to participating in monitoring system design. A partnership with the Interstate Technology Regulatory Council (ITRC) has been formed to promote communication and develop advanced guidance for MNA. Early and continued communication among technology developers, end users, regulators and the public has been essential to this progress.
Largoni, Martina; Facco, Pierantonio; Bernini, Donatella; Bezzo, Fabrizio; Barolo, Massimiliano
2015-10-10
Monitoring batch bioreactors is a complex task, due to the fact that several sources of variability can affect a running batch and impact on the final product quality. Additionally, the product quality itself may not be measurable on line, but requires sampling and lab analysis taking several days to be completed. In this study we show that, by using appropriate process analytical technology tools, the operation of an industrial batch bioreactor used in avian vaccine manufacturing can be effectively monitored as the batch progresses. Multivariate statistical models are built from historical databases of batches already completed, and they are used to enable the real time identification of the variability sources, to reliably predict the final product quality, and to improve process understanding, paving the way to a reduction of final product rejections, as well as to a reduction of the product cycle time. It is also shown that the product quality "builds up" mainly during the first half of a batch, suggesting on the one side that reducing the variability during this period is crucial, and on the other side that the batch length can possibly be shortened. Overall, the study demonstrates that, by using a Quality-by-Design approach centered on the appropriate use of mathematical modeling, quality can indeed be built "by design" into the final product, whereas the role of end-point product testing can progressively reduce its importance in product manufacturing. Copyright © 2015 Elsevier B.V. All rights reserved.
Shu, Tongxin; Xia, Min; Chen, Jiahong; Silva, Clarence de
2017-11-05
Power management is crucial in the monitoring of a remote environment, especially when long-term monitoring is needed. Renewable energy sources such as solar and wind may be harvested to sustain a monitoring system. However, without proper power management, equipment within the monitoring system may become nonfunctional and, as a consequence, the data or events captured during the monitoring process will become inaccurate as well. This paper develops and applies a novel adaptive sampling algorithm for power management in the automated monitoring of the quality of water in an extensive and remote aquatic environment. Based on the data collected on line using sensor nodes, a data-driven adaptive sampling algorithm (DDASA) is developed for improving the power efficiency while ensuring the accuracy of sampled data. The developed algorithm is evaluated using two distinct key parameters, which are dissolved oxygen (DO) and turbidity. It is found that by dynamically changing the sampling frequency, the battery lifetime can be effectively prolonged while maintaining a required level of sampling accuracy. According to the simulation results, compared to a fixed sampling rate, approximately 30.66% of the battery energy can be saved for three months of continuous water quality monitoring. Using the same dataset to compare with a traditional adaptive sampling algorithm (ASA), while achieving around the same Normalized Mean Error (NME), DDASA is superior in saving 5.31% more battery energy.
Shu, Tongxin; Xia, Min; Chen, Jiahong; de Silva, Clarence
2017-01-01
Power management is crucial in the monitoring of a remote environment, especially when long-term monitoring is needed. Renewable energy sources such as solar and wind may be harvested to sustain a monitoring system. However, without proper power management, equipment within the monitoring system may become nonfunctional and, as a consequence, the data or events captured during the monitoring process will become inaccurate as well. This paper develops and applies a novel adaptive sampling algorithm for power management in the automated monitoring of the quality of water in an extensive and remote aquatic environment. Based on the data collected on line using sensor nodes, a data-driven adaptive sampling algorithm (DDASA) is developed for improving the power efficiency while ensuring the accuracy of sampled data. The developed algorithm is evaluated using two distinct key parameters, which are dissolved oxygen (DO) and turbidity. It is found that by dynamically changing the sampling frequency, the battery lifetime can be effectively prolonged while maintaining a required level of sampling accuracy. According to the simulation results, compared to a fixed sampling rate, approximately 30.66% of the battery energy can be saved for three months of continuous water quality monitoring. Using the same dataset to compare with a traditional adaptive sampling algorithm (ASA), while achieving around the same Normalized Mean Error (NME), DDASA is superior in saving 5.31% more battery energy. PMID:29113087
Marbà-Ardébol, Anna-Maria; Emmerich, Jörn; Muthig, Michael; Neubauer, Peter; Junne, Stefan
2018-05-15
The morphology of yeast cells changes during budding, depending on the growth rate and cultivation conditions. A photo-optical microscope was adapted and used to observe such morphological changes of individual cells directly in the cell suspension. In order to obtain statistically representative samples of the population without the influence of sampling, in situ microscopy (ISM) was applied in the different phases of a Saccharomyces cerevisiae batch cultivation. The real-time measurement was performed by coupling a photo-optical probe to an automated image analysis based on a neural network approach. Automatic cell recognition and classification of budding and non-budding cells was conducted successfully. Deviations between automated and manual counting were considerably low. A differentiation of growth activity across all process stages of a batch cultivation in complex media became feasible. An increased homogeneity among the population during the growth phase was well observable. At growth retardation, the portion of smaller cells increased due to a reduced bud formation. The maturation state of the cells was monitored by determining the budding index as a ratio between the number of cells, which were detected with buds and the total number of cells. A linear correlation between the budding index as monitored with ISM and the growth rate was found. It is shown that ISM is a meaningful analytical tool, as the budding index can provide valuable information about the growth activity of a yeast cell, e.g. in seed breeding or during any other cultivation process. The determination of the single-cell size and shape distributions provided information on the morphological heterogeneity among the populations. The ability to track changes in cell morphology directly on line enables new perspectives for monitoring and control, both in process development and on a production scale.
Design and performance of a high resolution, low latency stripline beam position monitor system
NASA Astrophysics Data System (ADS)
Apsimon, R. J.; Bett, D. R.; Blaskovic Kraljevic, N.; Burrows, P. N.; Christian, G. B.; Clarke, C. I.; Constance, B. D.; Dabiri Khah, H.; Davis, M. R.; Perry, C.; Resta López, J.; Swinson, C. J.
2015-03-01
A high-resolution, low-latency beam position monitor (BPM) system has been developed for use in particle accelerators and beam lines that operate with trains of particle bunches with bunch separations as low as several tens of nanoseconds, such as future linear electron-positron colliders and free-electron lasers. The system was tested with electron beams in the extraction line of the Accelerator Test Facility at the High Energy Accelerator Research Organization (KEK) in Japan. It consists of three stripline BPMs instrumented with analogue signal-processing electronics and a custom digitizer for logging the data. The design of the analogue processor units is presented in detail, along with measurements of the system performance. The processor latency is 15.6 ±0.1 ns . A single-pass beam position resolution of 291 ±10 nm has been achieved, using a beam with a bunch charge of approximately 1 nC.
Engineering considerations for corrosion monitoring of gas gathering pipeline systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braga, T.G.; Asperger, R.G.
1987-01-01
Proper corrosion monitoring of gas gathering pipelines requires a system review to determine the appropriate monitor locations and types of monitoring techniques. This paper develops and discusses a classification of conditions such as flow regime and gas composition. Also discussed are junction categories which, for corrosion monitoring, need to be considered from two points of view. The first is related to fluid flow in the line and the second is related corrosion inhibitor movement along the pipeline. The appropriate application of the various monitoring techniques such as coupons, hydrogen detectors, electrical resistance probe and linear polarization probes are discussed inmore » relation to flow regime and gas composition. Problems caused by semi-conduction from iron sulfide are considered. Advantages and disadvantages of fluid gathering methods such as pots and flow-through drips are discussed in relation to their reliability as on-line monitoring locations.« less
NASA Astrophysics Data System (ADS)
Sudhakar, P.; Sheela, K. Anitha; Ramakrishna Rao, D.; Malladi, Satyanarayana
2016-05-01
In recent years weather modification activities are being pursued in many countries through cloud seeding techniques to facilitate the increased and timely precipitation from the clouds. In order to induce and accelerate the precipitation process clouds are artificially seeded with suitable materials like silver iodide, sodium chloride or other hygroscopic materials. The success of cloud seeding can be predicted with confidence if the precipitation process involving aerosol, the ice water balance, water vapor content and size of the seeding material in relation to aerosol in the cloud is monitored in real time and optimized. A project on the enhancement of rain fall through cloud seeding is being implemented jointly with Kerala State Electricity Board Ltd. Trivandrum, Kerala, India at the catchment areas of the reservoir of one of the Hydro electric projects. The dual polarization lidar is being used to monitor and measure the microphysical properties, the extinction coefficient, size distribution and related parameters of the clouds. The lidar makes use of the Mie, Rayleigh and Raman scattering techniques for the various measurement proposed. The measurements with the dual polarization lidar as above are being carried out in real time to obtain the various parameters during cloud seeding operations. In this paper we present the details of the multi-wavelength dual polarization lidar being used and the methodology to monitor the various cloud parameters involved in the precipitation process. The necessary retrieval algorithms for deriving the microphysical properties of clouds, aerosols characteristics and water vapor profiles are incorporated as a software package working under Lab-view for online and off line analysis. Details on the simulation studies and the theoretical model developed in this regard for the optimization of various parameters are discussed.
Molina-García, Angel; Campelo, José Carlos; Blanc, Sara; Serrano, Juan José; García-Sánchez, Tania; Bueso, María C.
2015-01-01
This paper proposes and assesses an integrated solution to monitor and diagnose photovoltaic (PV) solar modules based on a decentralized wireless sensor acquisition system. Both DC electrical variables and environmental data are collected at PV module level using low-cost and high-energy efficiency node sensors. Data is real-time processed locally and compared with expected PV module performances obtained by a PV module model based on symmetrized-shifted Gompertz functions (as previously developed and assessed by the authors). Sensor nodes send data to a centralized sink-computing module using a multi-hop wireless sensor network architecture. Such integration thus provides extensive analysis of PV installations, and avoids off-line tests or post-processing processes. In comparison with previous approaches, this solution is enhanced with a low-cost system and non-critical performance constraints, and it is suitable for extensive deployment in PV power plants. Moreover, it is easily implemented in existing PV installations, since no additional wiring is required. The system has been implemented and assessed in a Spanish PV power plant connected to the grid. Results and estimations of PV module performances are also included in the paper. PMID:26230694
Molina-García, Angel; Campelo, José Carlos; Blanc, Sara; Serrano, Juan José; García-Sánchez, Tania; Bueso, María C
2015-07-29
This paper proposes and assesses an integrated solution to monitor and diagnose photovoltaic (PV) solar modules based on a decentralized wireless sensor acquisition system. Both DC electrical variables and environmental data are collected at PV module level using low-cost and high-energy efficiency node sensors. Data is real-time processed locally and compared with expected PV module performances obtained by a PV module model based on symmetrized-shifted Gompertz functions (as previously developed and assessed by the authors). Sensor nodes send data to a centralized sink-computing module using a multi-hop wireless sensor network architecture. Such integration thus provides extensive analysis of PV installations, and avoids off-line tests or post-processing processes. In comparison with previous approaches, this solution is enhanced with a low-cost system and non-critical performance constraints, and it is suitable for extensive deployment in PV power plants. Moreover, it is easily implemented in existing PV installations, since no additional wiring is required. The system has been implemented and assessed in a Spanish PV power plant connected to the grid. Results and estimations of PV module performances are also included in the paper.
Mou, D G; Cooney, C L
1983-01-01
To broaden the practicality of on-line growth monitoring and control, its application in fedbatch penicillin fermentation using high corn steep liquor (CSL) concentration (53 g/L) is demonstrated. By employing a calculation method that considers the vagaries of CSL consumption, overall and instantaneous carbon-balancing equations are successfully used to calculate, on-line, the cell concentration and instantaneous specific growth rate in the penicillin production phase. As a consequence, these equations, together with a feedback control strategy, enable the computer control of glucose feed and maintenance of the preselected production-phase growth rate with error less than 0.002 h(-1).
The design and implementation of on-line monitoring system for UHV compact shunt capacitors
NASA Astrophysics Data System (ADS)
Tao, Weiliang; Ni, Xuefeng; Lin, Hao; Jiang, Shengbao
2017-08-01
Because of the large capacity and compact structure of the UHV compact shunt capacitor, it is difficult to take effective measures to detect and prevent the faults. If the fault capacitor fails to take timely maintenance, it will pose a threat to the safe operation of the system and the life safety of the maintenance personnel. The development of UHV compact shunt capacitor on-line monitoring system can detect and record the on-line operation information of UHV compact shunt capacitors, analyze and evaluate the early fault warning signs, find out the fault capacitor or the capacitor with fault symptom, to ensure safe and reliable operation of the system.
On-line detection of Escherichia coli intrusion in a pilot-scale drinking water distribution system.
Ikonen, Jenni; Pitkänen, Tarja; Kosse, Pascal; Ciszek, Robert; Kolehmainen, Mikko; Miettinen, Ilkka T
2017-08-01
Improvements in microbial drinking water quality monitoring are needed for the better control of drinking water distribution systems and for public health protection. Conventional water quality monitoring programmes are not always able to detect a microbial contamination of drinking water. In the drinking water production chain, in addition to the vulnerability of source waters, the distribution networks are prone to contamination. In this study, a pilot-scale drinking-water distribution network with an on-line monitoring system was utilized for detecting bacterial intrusion. During the experimental Escherichia coli intrusions, the contaminant was measured by applying a set of on-line sensors for electric conductivity (EC), pH, temperature (T), turbidity, UV-absorbance at 254 nm (UVAS SC) and with a device for particle counting. Monitored parameters were compared with the measured E. coli counts using the integral calculations of the detected peaks. EC measurement gave the strongest signal compared with the measured baseline during the E. coli intrusion. Integral calculations showed that the peaks in the EC, pH, T, turbidity and UVAS SC data were detected corresponding to the time predicted. However, the pH and temperature peaks detected were barely above the measured baseline and could easily be mixed with the background noise. The results indicate that on-line monitoring can be utilized for the rapid detection of microbial contaminants in the drinking water distribution system although the peak interpretation has to be performed carefully to avoid being mixed up with normal variations in the measurement data. Copyright © 2017 Elsevier Ltd. All rights reserved.
An on-line monitoring system for navigation equipment
NASA Astrophysics Data System (ADS)
Wang, Bo; Yang, Ping; Liu, Jing; Yang, Zhengbo; Liang, Fei
2017-10-01
Civil air navigation equipment is the most important infrastructure of Civil Aviation, which is closely related to flight safety. In addition to regular flight inspection, navigation equipment's patrol measuring, maintenance measuring, running measuring under special weather conditions are the important means of ensuring aviation flight safety. According to the safety maintenance requirements of Civil Aviation Air Traffic Control navigation equipment, this paper developed one on-line monitoring system with independent intellectual property rights for navigation equipment, the system breakthroughs the key technologies of measuring navigation equipment on-line including Instrument Landing System (ILS) and VHF Omni-directional Range (VOR), which also meets the requirements of navigation equipment ground measurement set by the ICAO DOC 8071, it provides technical means of the ground on-line measurement for navigation equipment, improves the safety of navigation equipment operation, and reduces the impact of measuring navigation equipment on airport operation.
NASA Astrophysics Data System (ADS)
Qiu, Lei; Yuan, Shenfang; Bao, Qiao; Mei, Hanfei; Ren, Yuanqiang
2016-05-01
For aerospace application of structural health monitoring (SHM) technology, the problem of reliable damage monitoring under time-varying conditions must be addressed and the SHM technology has to be fully validated on real aircraft structures under realistic load conditions on ground before it can reach the status of flight test. In this paper, the guided wave (GW) based SHM method is applied to a full-scale aircraft fatigue test which is one of the most similar test status to the flight test. To deal with the time-varying problem, a GW-Gaussian mixture model (GW-GMM) is proposed. The probability characteristic of GW features, which is introduced by time-varying conditions is modeled by GW-GMM. The weak cumulative variation trend of the crack propagation, which is mixed in time-varying influence can be tracked by the GW-GMM migration during on-line damage monitoring process. A best match based Kullback-Leibler divergence is proposed to measure the GW-GMM migration degree to reveal the crack propagation. The method is validated in the full-scale aircraft fatigue test. The validation results indicate that the reliable crack propagation monitoring of the left landing gear spar and the right wing panel under realistic load conditions are achieved.
Advanced in-line metrology strategy for self-aligned quadruple patterning
NASA Astrophysics Data System (ADS)
Chao, Robin; Breton, Mary; L'herron, Benoit; Mendoza, Brock; Muthinti, Raja; Nelson, Florence; De La Pena, Abraham; Le, Fee li; Miller, Eric; Sieg, Stuart; Demarest, James; Gin, Peter; Wormington, Matthew; Cepler, Aron; Bozdog, Cornel; Sendelbach, Matthew; Wolfling, Shay; Cardinal, Tom; Kanakasabapathy, Sivananda; Gaudiello, John; Felix, Nelson
2016-03-01
Self-Aligned Quadruple Patterning (SAQP) is a promising technique extending the 193-nm lithography to manufacture structures that are 20nm half pitch or smaller. This process adopts multiple sidewall spacer image transfers to split a rather relaxed design into a quarter of its original pitch. Due to the number of multiple process steps required for the pitch splitting in SAQP, the process error propagates through each deposition and etch, and accumulates at the final step into structure variations, such as pitch walk and poor critical dimension uniformity (CDU). They can further affect the downstream processes and lower the yield. The impact of this error propagation becomes significant for advanced technology nodes when the process specifications of device design CD requirements are at nanometer scale. Therefore, semiconductor manufacturing demands strict in-line process control to ensure a high process yield and improved performance, which must rely on precise measurements to enable corrective actions and quick decision making for process development. This work aims to provide a comprehensive metrology solution for SAQP. During SAQP process development, the challenges in conventional in-line metrology techniques start to surface. For instance, critical-dimension scanning electron microscopy (CDSEM) is commonly the first choice for CD and pitch variation control. However, it is found that the high aspect ratio at mandrel level processes and the trench variations after etch prevent the tool from extracting the true bottom edges of the structure in order to report the position shift. On the other hand, while the complex shape and variations can be captured with scatterometry, or optical CD (OCD), the asymmetric features, such as pitch walk, show low sensitivity with strong correlations in scatterometry. X-ray diffraction (XRD) is known to provide useful direct measurements of the pitch walk in crystalline arrays, yet the data analysis is influenced by the incoming geometry and must be used carefully. A successful implementation of SAQP process control for yield improvement requires the metrology issues to be addressed. By optimizing the measurement parameters and beam configurations, CDSEM measurements distinguish each of the spaces corresponding to the upstream mandrel processes and report their CDs separately to feed back to the process team for the next development cycle. We also utilize the unique capability in scatterometry to measure the structure details in-line and implement a "predictive" process control, which shows a good correlation between the "predictive" measurement and the cross-sections from our design of experiments (DOE). The ability to measure the pitch walk in scatterometry was also demonstrated. This work also explored the frontier of in-line XRD capability by enabling an automatic RSM fitting on tool to output pitch walk values. With these advances in metrology development, we are able to demonstrate the impacts of in-line monitoring in the SAQP process, to shorten the patterning development learning cycle to improve the yield.
NASA Astrophysics Data System (ADS)
Delvecchio, S.; Bonfiglio, P.; Pompoli, F.
2018-01-01
This paper deals with the state-of-the-art strategies and techniques based on vibro-acoustic signals that can monitor and diagnose malfunctions in Internal Combustion Engines (ICEs) under both test bench and vehicle operating conditions. Over recent years, several authors have summarized what is known in critical reviews mainly focused on reciprocating machines in general or on specific signal processing techniques: no attempts to deal with IC engine condition monitoring have been made. This paper first gives a brief summary of the generation of sound and vibration in ICEs in order to place further discussion on fault vibro-acoustic diagnosis in context. An overview of the monitoring and diagnostic techniques described in literature using both vibration and acoustic signals is also provided. Different faulty conditions are described which affect combustion, mechanics and the aerodynamics of ICEs. The importance of measuring acoustic signals, as opposed to vibration signals, is due since the former seem to be more suitable for implementation on on-board monitoring systems in view of their non-intrusive behaviour, capability in simultaneously capturing signatures from several mechanical components and because of the possibility of detecting faults affecting airborne transmission paths. In view of the recent needs of the industry to (-) optimize component structural durability adopting long-life cycles, (-) verify the engine final status at the end of the assembly line and (-) reduce the maintenance costs monitoring the ICE life during vehicle operations, monitoring and diagnosing system requests are continuously growing up. The present review can be considered a useful guideline for test engineers in understanding which types of fault can be diagnosed by using vibro-acoustic signals in sufficient time in both test bench and operating conditions and which transducer and signal processing technique (of which the essential background theory is here reported) could be considered the most reliable and informative to be implemented for the fault in question.
Monitoring tumor motion by real time 2D/3D registration during radiotherapy.
Gendrin, Christelle; Furtado, Hugo; Weber, Christoph; Bloch, Christoph; Figl, Michael; Pawiro, Supriyanto Ardjo; Bergmann, Helmar; Stock, Markus; Fichtinger, Gabor; Georg, Dietmar; Birkfellner, Wolfgang
2012-02-01
In this paper, we investigate the possibility to use X-ray based real time 2D/3D registration for non-invasive tumor motion monitoring during radiotherapy. The 2D/3D registration scheme is implemented using general purpose computation on graphics hardware (GPGPU) programming techniques and several algorithmic refinements in the registration process. Validation is conducted off-line using a phantom and five clinical patient data sets. The registration is performed on a region of interest (ROI) centered around the planned target volume (PTV). The phantom motion is measured with an rms error of 2.56 mm. For the patient data sets, a sinusoidal movement that clearly correlates to the breathing cycle is shown. Videos show a good match between X-ray and digitally reconstructed radiographs (DRR) displacement. Mean registration time is 0.5 s. We have demonstrated that real-time organ motion monitoring using image based markerless registration is feasible. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Wise, Marcus B.; Thompson, Cyril V.
1998-01-01
An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds.
Naidu, Venkata Ramana; Deshpande, Rucha S; Syed, Moinuddin R; Deoghare, Piyush; Singh, Dharamvir; Wakte, Pravin S
2017-08-01
Current endeavor was aimed towards monitoring percent weight build-up during functional coating process on drug-layered pellets. Near-infrared (NIR) spectroscopy is an emerging process analytical technology (PAT) tool which was employed here within quality by design (QbD) framework. Samples were withdrawn after spraying every 15-Kg cellulosic coating material during Wurster coating process of drug-loaded pellets. NIR spectra of these samples were acquired using cup spinner assembly of Thermoscientific Antaris II, followed by multivariate analysis using partial least squares (PLS) calibration model. PLS model was built by selecting various absorption regions of NIR spectra for Ethyl cellulose, drug and correlating the absorption values with actual percent weight build up determined by HPLC. The spectral regions of 8971.04 to 8250.77 cm -1 , 7515.24 to 7108.33 cm -1 , and 5257.00 to 5098.87 cm -1 were found to be specific to cellulose, where as the spectral region of 6004.45 to 5844.14 cm -1 was found to be specific to drug. The final model gave superb correlation co-efficient value of 0.9994 for calibration and 0.9984 for validation with low root mean square of error (RMSE) values of 0.147 for calibration and 0.371 for validation using 6 factors. The developed correlation between the NIR spectra and cellulose content is useful in precise at-line prediction of functional coat value and can be used for monitoring the Wurster coating process.
NASA Astrophysics Data System (ADS)
Malago`, M.; Mucchi, E.; Dalpiaz, G.
2016-03-01
Heavy duty wheels are used in applications such as automatic vehicles and are mainly composed of a polyurethane tread glued to a cast iron hub. In the manufacturing process, the adhesive application between tread and hub is a critical assembly phase, since it is completely made by an operator and a contamination of the bond area may happen. Furthermore, the presence of rust on the hub surface can contribute to worsen the adherence interface, reducing the operating life. In this scenario, a quality control procedure for fault detection to be used at the end of the manufacturing process has been developed. This procedure is based on vibration processing techniques and takes advantages of the results of a lumped parameter model. Indicators based on cyclostationarity can be considered as key parameters to be adopted in a monitoring test station at the end of the production line due to their not deterministic characteristics.
NASA Astrophysics Data System (ADS)
Korshunov, G. I.; Afanasev, P. I.; Bulbasheva, I. A.
2017-10-01
The monitoring and survey results of drilling and blasting operations are specified during the development of Afanasyevsky deposit of cement raw materials for a 110 kV electricity power lines structure. Seismic explosion waves and air shock waves were registered in the course of monitoring. The dependency of peak particle velocities on the scaled distance and explosive weight by the delay time was obtained.
Automated pharmaceutical tablet coating layer evaluation of optical coherence tomography images
NASA Astrophysics Data System (ADS)
Markl, Daniel; Hannesschläger, Günther; Sacher, Stephan; Leitner, Michael; Khinast, Johannes G.; Buchsbaum, Andreas
2015-03-01
Film coating of pharmaceutical tablets is often applied to influence the drug release behaviour. The coating characteristics such as thickness and uniformity are critical quality parameters, which need to be precisely controlled. Optical coherence tomography (OCT) shows not only high potential for off-line quality control of film-coated tablets but also for in-line monitoring of coating processes. However, an in-line quality control tool must be able to determine coating thickness measurements automatically and in real-time. This study proposes an automatic thickness evaluation algorithm for bi-convex tables, which provides about 1000 thickness measurements within 1 s. Beside the segmentation of the coating layer, optical distortions due to refraction of the beam by the air/coating interface are corrected. Moreover, during in-line monitoring the tablets might be in oblique orientation, which needs to be considered in the algorithm design. Experiments were conducted where the tablet was rotated to specified angles. Manual and automatic thickness measurements were compared for varying coating thicknesses, angles of rotations, and beam displacements (i.e. lateral displacement between successive depth scans). The automatic thickness determination algorithm provides highly accurate results up to an angle of rotation of 30°. The computation time was reduced to 0.53 s for 700 thickness measurements by introducing feasibility constraints in the algorithm.
Audio distribution and Monitoring Circuit
NASA Technical Reports Server (NTRS)
Kirkland, J. M.
1983-01-01
Versatile circuit accepts and distributes TV audio signals. Three-meter audio distribution and monitoring circuit provides flexibility in monitoring, mixing, and distributing audio inputs and outputs at various signal and impedance levels. Program material is simultaneously monitored on three channels, or single-channel version built to monitor transmitted or received signal levels, drive speakers, interface to building communications, and drive long-line circuits.
Comparison of optical and electrical measurements of the pantograph-catenary contact force
NASA Astrophysics Data System (ADS)
Bocciolone, Marco; Bucca, Giuseppe; Collina, Andrea; Comolli, Lorenzo
2010-09-01
In railway engineering the monitoring of contact force between pantograph and catenary gives information about the interaction between the two systems and it is useful to check the status of the overhead line. Indeed the failure of the catenary is one of the main causes of out of order problems. This study was conducted in a test campaign on an underground train instrumented with sensors able to monitor the line status. One of the more important measured quantities is the pantograph contact force, and two measurement systems were implemented: one optical and another electrical. The optical one was based on FBG sensors applied on the pantograph collector strip; the electrical one was based on two load cells positioned at the sides of the collector strip. The in-line measurements show that the optical solution is very promising, providing very reliable results that can be successfully used in the monitoring application, allowing the determination of the critical point in the line. The thermal compensation of any FBG sensors is a known problem and here is no exception: a thermal compensator was used to get also mean value measurements and the results are discussed.
NASA Astrophysics Data System (ADS)
Mirapeix, J.; García-Allende, P. B.; Cobo, A.; Conde, O.; López-Higuera, J. M.
2007-07-01
A new spectral processing technique designed for its application in the on-line detection and classification of arc-welding defects is presented in this paper. A non-invasive fiber sensor embedded within a TIG torch collects the plasma radiation originated during the welding process. The spectral information is then processed by means of two consecutive stages. A compression algorithm is first applied to the data allowing real-time analysis. The selected spectral bands are then used to feed a classification algorithm, which will be demonstrated to provide an efficient weld defect detection and classification. The results obtained with the proposed technique are compared to a similar processing scheme presented in a previous paper, giving rise to an improvement in the performance of the monitoring system.
Evaluation of a newly developed mid-infrared sensor for real-time monitoring of yeast fermentations.
Schalk, Robert; Geoerg, Daniel; Staubach, Jens; Raedle, Matthias; Methner, Frank-Juergen; Beuermann, Thomas
2017-05-01
A mid-infrared (MIR) sensor using the attenuated total reflection (ATR) technique has been developed for real-time monitoring in biotechnology. The MIR-ATR sensor consists of an IR emitter as light source, a zinc selenide ATR prism as boundary to the process, and four thermopile detectors, each equipped with an optical bandpass filter. The suitability of the sensor for practical application was tested during aerobic batch-fermentations of Saccharomyces cerevisiae by simultaneous monitoring of glucose and ethanol. The performance of the sensor was compared to a commercial Fourier transform mid-infrared (FT-MIR) spectrometer by on-line measurements in a bypass loop. Sensor and spectrometer were calibrated by multiple linear regression (MLR) in order to link the measured absorbance in the transmission ranges of the four optical sensor channels to the analyte concentrations. For reference analysis, high-performance liquid chromatography (HPLC) was applied. Process monitoring using the sensor yielded in standard errors of prediction (SEP) of 6.15 g/L and 1.36 g/L for glucose and ethanol. In the case of the FT-MIR spectrometer the corresponding SEP values were 4.34 g/L and 0.61 g/L, respectively. The advantages of optical multi-channel mid-infrared sensors in comparison to FT-MIR spectrometer setups are the compactness, easy process implementation and lower price. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Collaborative Monitoring and Hazard Mitigation at Fuego Volcano, Guatemala
NASA Astrophysics Data System (ADS)
Lyons, J. J.; Bluth, G. J.; Rose, W. I.; Patrick, M.; Johnson, J. B.; Stix, J.
2007-05-01
A portable, digital sensor network has been installed to closely monitor changing activity at Fuego volcano, which takes advantage of an international collaborative effort among Guatemala, U.S. and Canadian universities, and the Peace Corps. The goal of this effort is to improve the understanding shallow internal processes, and consequently to more effectively mitigate volcanic hazards. Fuego volcano has had more than 60 historical eruptions and nearly-continuous activity make it an ideal laboratory to study volcanic processes. Close monitoring is needed to identify base-line activity, and rapidly identify and disseminate changes in the activity which might threaten nearby communities. The sensor network is comprised of a miniature DOAS ultraviolet spectrometer fitted with a system for automated plume scans, a digital video camera, and two seismo-acoustic stations and portable dataloggers. These sensors are on loan from scientists who visited Fuego during short field seasons and donated use of their sensors to a resident Peace Corps Masters International student from Michigan Technological University for extended data collection. The sensor network is based around the local volcano observatory maintained by Instituto National de Sismologia, Vulcanologia, Metrologia e Hidrologia (INSIVUMEH). INSIVUMEH provides local support and historical knowledge of Fuego activity as well as a secure location for storage of scientific equipment, data processing, and charging of the batteries that power the sensors. The complete sensor network came online in mid-February 2007 and here we present preliminary results from concurrent gas, seismic, and acoustic monitoring of activity from Fuego volcano.
NASA Astrophysics Data System (ADS)
Chen, Wen; Tang, Ming
2017-04-01
The abnormal temperature rise is the precursor of the defective composite insulator in power transmission line. However no consolidated techniques or methodologies can on line monitor its internal temperature now. Thus a new method using embedding fiber Bragg grating (FBG) in fiber reinforced polymer (FRP) rod is adopted to monitor its internal temperature. To correctly demodulate the internal temperature of FRP rod from the Bragg wavelength shift of FBG, the conversion coefficient between them is deduced theoretically based on comprehensive investigation on the thermal stresses of the metal-composite joint, as well as its material and structural properties. Theoretical model shows that the conversion coefficients of FBG embedded in different positions will be different because of non-uniform thermal stress distribution, which is verified by an experiment. This work lays the theoretical foundation of monitoring the internal temperature of composite insulator with embedding FBG, which is of great importance to its health structural monitoring, especially early diagnosis.
NMR reaction monitoring in flow synthesis
Gomez, M Victoria
2017-01-01
Recent advances in the use of flow chemistry with in-line and on-line analysis by NMR are presented. The use of macro- and microreactors, coupled with standard and custom made NMR probes involving microcoils, incorporated into high resolution and benchtop NMR instruments is reviewed. Some recent selected applications have been collected, including synthetic applications, the determination of the kinetic and thermodynamic parameters and reaction optimization, even in single experiments and on the μL scale. Finally, software that allows automatic reaction monitoring and optimization is discussed. PMID:28326137
NMR reaction monitoring in flow synthesis.
Gomez, M Victoria; de la Hoz, Antonio
2017-01-01
Recent advances in the use of flow chemistry with in-line and on-line analysis by NMR are presented. The use of macro- and microreactors, coupled with standard and custom made NMR probes involving microcoils, incorporated into high resolution and benchtop NMR instruments is reviewed. Some recent selected applications have been collected, including synthetic applications, the determination of the kinetic and thermodynamic parameters and reaction optimization, even in single experiments and on the μL scale. Finally, software that allows automatic reaction monitoring and optimization is discussed.
Shie, Ruei-Hao; Chan, Chang-Chuan
2013-10-15
The air monitors used by most regulatory authorities are designed to track the daily emissions of conventional pollutants and are not well suited for measuring hazardous air pollutants that are released from accidents such as refinery fires. By applying a wide variety of air-monitoring systems, including on-line Fourier transform infrared spectroscopy, gas chromatography with a flame ionization detector, and off-line gas chromatography-mass spectrometry for measuring hazardous air pollutants during and after a fire at a petrochemical complex in central Taiwan on May 12, 2011, we were able to detect significantly higher levels of combustion-related gaseous and particulate pollutants, refinery-related hydrocarbons, and chlorinated hydrocarbons, such as 1,2-dichloroethane, vinyl chloride monomer, and dichloromethane, inside the complex and 10 km downwind from the fire than those measured during the normal operation periods. Both back trajectories and dispersion models further confirmed that high levels of hazardous air pollutants in the neighboring communities were carried by air mass flown from the 22 plants that were shut down by the fire. This study demonstrates that hazardous air pollutants from industrial accidents can successfully be identified and traced back to their emission sources by applying a timely and comprehensive air-monitoring campaign and back trajectory air flow models. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Briggs, Ryan M.; Frez, Clifford; Borgentun, Carl E.; Bagheri, Mahmood; Forouhar, Siamak; May, Randy D.
2014-01-01
Continuous combustion product monitoring aboard manned spacecraft can prevent chronic exposure to hazardous compounds and also provides early detection of combustion events. As future missions extend beyond low-Earth orbit, analysis of returned environmental samples becomes impractical and safety monitoring should be performed in situ. Here, we describe initial designs of a five-channel tunable laser absorption spectrometer to continuously monitor combustion products with the goal of minimal maintenance and calibration over long-duration missions. The instrument incorporates dedicated laser channels to simultaneously target strong mid-infrared absorption lines of CO, HCl, HCN, HF, and CO2. The availability of low-power-consumption semiconductor lasers operating in the 2 to 5 micron wavelength range affords the flexibility to select absorption lines for each gas with maximum interaction strength and minimal interference from other gases, which enables the design of a compact and mechanically robust spectrometer with low-level sensitivity. In this paper, we focus primarily on absorption line selection based on the availability of low-power single-mode semiconductor laser sources designed specifically for the target wavelength range.
Pliego, Jorge; Mateos, Juan Carlos; Rodriguez, Jorge; Valero, Francisco; Baeza, Mireia; Femat, Ricardo; Camacho, Rosa; Sandoval, Georgina; Herrera-López, Enrique J
2015-01-27
Lipases and esterases are biocatalysts used at the laboratory and industrial level. To obtain the maximum yield in a bioprocess, it is important to measure key variables, such as enzymatic activity. The conventional method for monitoring hydrolytic activity is to take out a sample from the bioreactor to be analyzed off-line at the laboratory. The disadvantage of this approach is the long time required to recover the information from the process, hindering the possibility to develop control systems. New strategies to monitor lipase/esterase activity are necessary. In this context and in the first approach, we proposed a lab-made sequential injection analysis system to analyze off-line samples from shake flasks. Lipase/esterase activity was determined using p-nitrophenyl butyrate as the substrate. The sequential injection analysis allowed us to measure the hydrolytic activity from a sample without dilution in a linear range from 0.05-1.60 U/mL, with the capability to reach sample dilutions up to 1000 times, a sampling frequency of five samples/h, with a kinetic reaction of 5 min and a relative standard deviation of 8.75%. The results are promising to monitor lipase/esterase activity in real time, in which optimization and control strategies can be designed.
Pliego, Jorge; Mateos, Juan Carlos; Rodriguez, Jorge; Valero, Francisco; Baeza, Mireia; Femat, Ricardo; Camacho, Rosa; Sandoval, Georgina; Herrera-López, Enrique J.
2015-01-01
Lipases and esterases are biocatalysts used at the laboratory and industrial level. To obtain the maximum yield in a bioprocess, it is important to measure key variables, such as enzymatic activity. The conventional method for monitoring hydrolytic activity is to take out a sample from the bioreactor to be analyzed off-line at the laboratory. The disadvantage of this approach is the long time required to recover the information from the process, hindering the possibility to develop control systems. New strategies to monitor lipase/esterase activity are necessary. In this context and in the first approach, we proposed a lab-made sequential injection analysis system to analyze off-line samples from shake flasks. Lipase/esterase activity was determined using p-nitrophenyl butyrate as the substrate. The sequential injection analysis allowed us to measure the hydrolytic activity from a sample without dilution in a linear range from 0.05–1.60 U/mL, with the capability to reach sample dilutions up to 1000 times, a sampling frequency of five samples/h, with a kinetic reaction of 5 min and a relative standard deviation of 8.75%. The results are promising to monitor lipase/esterase activity in real time, in which optimization and control strategies can be designed. PMID:25633600
Real-Time Mapping alert system; user's manual
Torres, L.A.
1996-01-01
The U.S. Geological Survey has an extensive hydrologic network that records and transmits precipitation, stage, discharge, and other water- related data on a real-time basis to an automated data processing system. Data values are recorded on electronic data collection platforms at field monitoring sites. These values are transmitted by means of orbiting satellites to receiving ground stations, and by way of telecommunication lines to a U.S. Geological Survey office where they are processed on a computer system. Data that exceed predefined thresholds are identified as alert values. These alert values can help keep water- resource specialists informed of current hydrologic conditions. The current alert status at monitoring sites is of critical importance during floods, hurricanes, and other extreme hydrologic events where quick analysis of the situation is needed. This manual provides instructions for using the Real-Time Mapping software, a series of computer programs developed by the U.S. Geological Survey for quick analysis of hydrologic conditions, and guides users through a basic interactive session. The software provides interactive graphics display and query of real-time information in a map-based, menu-driven environment.
Monitoring method and apparatus using high-frequency carrier
Haynes, Howard D.
1996-01-01
A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiuguo; Ma, Zhichao; Xu, Zhimou
Mueller matrix ellipsometry (MME) is applied to detect foot-like asymmetry encountered in nanoimprint lithography (NIL) processes. We present both theoretical and experimental results which show that MME has good sensitivity to both the magnitude and direction of asymmetric profiles. The physics behind the use of MME for asymmetry detection is the breaking of electromagnetic reciprocity theorem for the zeroth-order diffraction of asymmetric gratings. We demonstrate that accurate characterization of asymmetric nanoimprinted gratings can be achieved by performing MME measurements in a conical mounting with the plane of incidence parallel to grating lines and meanwhile incorporating depolarization effects into the opticalmore » model. The comparison of MME-extracted asymmetric profile with the measurement by cross-sectional scanning electron microscopy also reveals the strong potential of this technique for in-line monitoring NIL processes, where symmetric structures are desired.« less
Processing Control Information in a Nominal Control Construction: An Eye-Tracking Study.
Kwon, Nayoung; Sturt, Patrick
2016-08-01
In an eye-tracking experiment, we examined the processing of the nominal control construction. Participants' eye-movements were monitored while they read sentences that included either giver control nominals (e.g. promise in Luke's promise to Sophia to photograph himself) or recipient control nominals (e.g. plea in Luke's plea to Sophia to photograph herself). In order to examine both the initial access of control information, and its later use in on-line processing, we combined a manipulation of nominal control with a gender match/mismatch paradigm. Results showed that there was evidence of processing difficulty for giver control sentences (relative to recipient control sentences) at the point where the control dependency was initially created, suggesting that control information was accessed during the early parsing stages. This effect is attributed to a recency preference in the formation of control dependencies; the parser prefers to assign a recent antecedent to PRO. In addition, readers slowed down after reading a reflexive pronoun that mismatched with the gender of the antecedent indicated by the control nominal (e.g. Luke's promise to Sophia to photograph herself). The mismatch cost suggests that control information of the nominal control construction was used to constrain dependency formation involving a controller, PRO and a reflexive, confirming the use of control information in on-line interpretation.
Liu, Jiao; Yao, Changhong; Meng, Yingying; Cao, Xupeng; Wu, Peichun; Xue, Song
2018-01-01
Triacylglycerol (TAG) from photosynthetic microalgae is a sustainable feedstock for biodiesel production. Physiological stress triggers microalgal TAG accumulation. However excessive physiological stress will impair the photosynthesis system seriously thus decreasing TAG productivity because of the low biomass production. Hence, it is critical to quantitatively and timely monitor the degree of the stress while the microalgal cells growing so that the optimal TAG productivity can be obtained. The lack of an on-line monitored indicator has limited our ability to gain knowledge of cellular "health status" information regarding high TAG productivity. Therefore, to monitor the degree of nitrogen stress of the cells, we investigated the correlation between the photosynthetic system II (PS II) quantum yield and the degree of stress based on the high relevancy between photosynthetic reduction and nitrogen stress-induced TAG accumulation in microalgal cells. Δ F/F m ', which is the chlorophyll fluorescence parameter that reflects the effective capability of PS II, was identified to be a critical factor to indicate the degree of stress of the cells. In addition, the concept of a nitrogen stress index has been defined to quantify the degree of stress. Based on this index and by monitoring Δ F/F m ' and guiding the supply of nitrogen in culture medium to maintain a stable degree of stress, a stable and efficient semi-continuous process for TAG production has been established. The results indicate that the semi-continuous cultivation process with a controlled degree of stress by monitoring the Δ F/F m ' indicator will have a significant impact on microalgal TAG production, especially for the outdoor controllable cultivation of microalgae on a large scale.