Space shuttle onboard navigation console expert/trainer system
NASA Technical Reports Server (NTRS)
Wang, Lui; Bochsler, Dan
1987-01-01
A software system for use in enhancing operational performance as well as training ground controllers in monitoring onboard Space Shuttle navigation sensors is described. The Onboard Navigation (ONAV) development reflects a trend toward following a structured and methodical approach to development. The ONAV system must deal with integrated conventional and expert system software, complex interfaces, and implementation limitations due to the target operational environment. An overview of the onboard navigation sensor monitoring function is presented, along with a description of guidelines driving the development effort, requirements that the system must meet, current progress, and future efforts.
NASA Technical Reports Server (NTRS)
Gramling, C. J.; Long, A. C.; Lee, T.; Ottenstein, N. A.; Samii, M. V.
1991-01-01
A Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (TONS) is currently being developed by NASA to provide a high accuracy autonomous navigation capability for users of TDRSS and its successor, the Advanced TDRSS (ATDRSS). The fully autonomous user onboard navigation system will support orbit determination, time determination, and frequency determination, based on observation of a continuously available, unscheduled navigation beacon signal. A TONS experiment will be performed in conjunction with the Explorer Platform (EP) Extreme Ultraviolet Explorer (EUVE) mission to flight quality TONS Block 1. An overview is presented of TONS and a preliminary analysis of the navigation accuracy anticipated for the TONS experiment. Descriptions of the TONS experiment and the associated navigation objectives, as well as a description of the onboard navigation algorithms, are provided. The accuracy of the selected algorithms is evaluated based on the processing of realistic simulated TDRSS one way forward link Doppler measurements. The analysis process is discussed and the associated navigation accuracy results are presented.
TDRSS Onboard Navigation System (TONS) experiment for the Explorer Platform (EP)
NASA Astrophysics Data System (ADS)
Gramling, C. J.; Hornstein, R. S.; Long, A. C.; Samii, M. V.; Elrod, B. D.
A TDRSS Onboard Navigation System (TONS) is currently being developed by NASA to provide a high-accuracy autonomous spacecraft navigation capability for users of TDRSS and its successor, the Advanced TDRSS. A TONS experiment will be performed in conjunction with the Explorer Platform (EP)/EUV Explorer mission to flight-qualify TONS Block I. This paper presents an overview of TDRSS on-board navigation goals and plans and the technical objectives of the TONS experiment. The operations concept of the experiment is described, including the characteristics of the ultrastable oscillator, the Doppler extractor, the signal-acquisition process, the TONS ground-support system, and the navigation flight software. A description of the on-board navigation algorithms and the rationale for their selection is also presented.
Onboard Navigation Systems Characteristics
NASA Technical Reports Server (NTRS)
1979-01-01
The space shuttle onboard navigation systems characteristics are described. A standard source of equations and numerical data for use in error analyses and mission simulations related to space shuttle development is reported. The sensor characteristics described are used for shuttle onboard navigation performance assessment. The use of complete models in the studies depend on the analyses to be performed, the capabilities of the computer programs, and the availability of computer resources.
Multi-sensor Navigation System Design
DOT National Transportation Integrated Search
1971-03-01
This report treats the design of naviggation systems that collect data from two or more on-board measurement subsystems and precess this data in an on-board computer. Such systems are called Multi-sensor Navigation Systems. : The design begins with t...
NASA Technical Reports Server (NTRS)
1970-01-01
The guidance and navigation requirements for unmanned missions to the outer planets, assuming constant, low thrust, ion propulsion are discussed. The navigational capability of the ground based Deep Space Network is compared to the improvements in navigational capability brought about by the addition of guidance and navigation related onboard sensors. Relevant onboard sensors include: (1) the optical onboard navigation sensor, (2) the attitude reference sensors, and (3) highly sensitive accelerometers. The totally ground based, and the combination ground based and onboard sensor systems are compared by means of the estimated errors in target planet ephemeris, and the spacecraft position with respect to the planet.
Navigation Operations for the Magnetospheric Multiscale Mission
NASA Technical Reports Server (NTRS)
Long, Anne; Farahmand, Mitra; Carpenter, Russell
2015-01-01
The Magnetospheric Multiscale (MMS) mission employs four identical spinning spacecraft flying in highly elliptical Earth orbits. These spacecraft will fly in a series of tetrahedral formations with separations of less than 10 km. MMS navigation operations use onboard navigation to satisfy the mission definitive orbit and time determination requirements and in addition to minimize operations cost and complexity. The onboard navigation subsystem consists of the Navigator GPS receiver with Goddard Enhanced Onboard Navigation System (GEONS) software, and an Ultra-Stable Oscillator. The four MMS spacecraft are operated from a single Mission Operations Center, which includes a Flight Dynamics Operations Area (FDOA) that supports MMS navigation operations, as well as maneuver planning, conjunction assessment and attitude ground operations. The System Manager component of the FDOA automates routine operations processes. The GEONS Ground Support System component of the FDOA provides the tools needed to support MMS navigation operations. This paper provides an overview of the MMS mission and associated navigation requirements and constraints and discusses MMS navigation operations and the associated MMS ground system components built to support navigation-related operations.
NASA Technical Reports Server (NTRS)
Bochsler, Daniel C.
1988-01-01
A revised version of expert knowledge for the onboard navigation (ONAV) entry system is given. Included is some brief background information together with information describing the knowledge that the system does contain.
NASA Technical Reports Server (NTRS)
Winternitz, Luke B.; Bamford, William A.; Price, Samuel R.
2017-01-01
As reported in a companion work, in its first phase, NASA's 2015 highly elliptic Magnetospheric Multiscale (MMS) mission set a record for the highest altitude operational use of on-board GPS-based navigation, returning state estimates at 12 Earth radii. In early 2017 MMS transitioned to its second phase which doubled the apogee distance to 25 Earth radii, approaching halfway to the Moon. This paper will present results for GPS observability and navigation performance achieved in MMS Phase 2. Additionally, it will provide simulation results predicting the performance of the MMS navigation system applied to a pair of concept missions at Lunar distances. These studies will demonstrate how high-sensitivity GPS (or GNSS) receivers paired with onboard navigation software, as in MMS-Navigation system, can extend the envelope of autonomous onboard GPS navigation far from the Earth.
Data management of Shuttle radiofrequency navigation aids
NASA Technical Reports Server (NTRS)
Stokes, R. E.; Presser, P.
1982-01-01
It is noted that the Shuttle navigation system employs redundant tactical air navigation (tacan) and microwave scanning beam landing system (MSBLS) equipment for use in navigation during descent from altitudes of about 150,000 feet through rollout. Attention is given here to the multiple tacan and MSBLS units (three each) that were placed onboard to provide the necessary protection in the event of possible failures. The goals, features, approach, and performance of onboard software required to manage multiple tacan MSBLS units and to provide the corresponding data for navigation processing are described.
An onboard navigation system which fulfills Mars aerocapture guidance requirements
NASA Technical Reports Server (NTRS)
Brand, Timothy J.; Fuhry, Douglas P.; Shepperd, Stanley W.
1989-01-01
The development of a candidate autonomous onboard Mars approach navigation scheme capable of supporting aerocapture into Mars orbit is discussed. An aerocapture guidance and navigation system which can run independently of the preaerocapture navigation was used to define a preliminary set of accuracy requirements at entry interface. These requirements are used to evaluate the proposed preaerocapture navigation scheme. This scheme uses optical sightings on Deimos with a star tracker and an inertial measurement unit for instrumentation as a source for navigation nformation. Preliminary results suggest that the approach will adequately support aerocaputre into Mars orbit.
Expected Navigation Flight Performance for the Magnetospheric Multiscale (MMS) Mission
NASA Technical Reports Server (NTRS)
Olson, Corwin; Wright, Cinnamon; Long, Anne
2012-01-01
The Magnetospheric Multiscale (MMS) mission consists of four formation-flying spacecraft placed in highly eccentric elliptical orbits about the Earth. The primary scientific mission objective is to study magnetic reconnection within the Earth s magnetosphere. The baseline navigation concept is the independent estimation of each spacecraft state using GPS pseudorange measurements (referenced to an onboard Ultra Stable Oscillator) and accelerometer measurements during maneuvers. State estimation for the MMS spacecraft is performed onboard each vehicle using the Goddard Enhanced Onboard Navigation System, which is embedded in the Navigator GPS receiver. This paper describes the latest efforts to characterize expected navigation flight performance using upgraded simulation models derived from recent analyses.
Flight Mechanics/Estimation Theory Symposium
NASA Technical Reports Server (NTRS)
1978-01-01
Satellite attitude determination and control, orbit determination, and onboard and ground attitude determination procedures are among the topics discussed. Other topics covered include: effect of atmosphere on Venus orbiter navigation; satellite-to-satellite tracking; and satellite onboard navigation using global positioning system data.
NASA Technical Reports Server (NTRS)
Elrod, B. D.; Jacobsen, A.; Cook, R. A.; Singh, R. N. P.
1983-01-01
One-way range and Doppler methods for providing user orbit and time determination are examined. Forward link beacon tracking, with on-board processing of independent navigation signals broadcast continuously by TDAS spacecraft; forward link scheduled tracking; with on-board processing of navigation data received during scheduled TDAS forward link service intervals; and return link scheduled tracking; with ground-based processing of user generated navigation data during scheduled TDAS return link service intervals are discussed. A system level definition and requirements assessment for each alternative, an evaluation of potential navigation performance and comparison with TDAS mission model requirements is included. TDAS satellite tracking is also addressed for two alternatives: BRTS and VLBI tracking.
NASA Technical Reports Server (NTRS)
1969-01-01
The impulsive, high thrust missions portion of a study on guidance and navigation requirements for unmanned flyby and swingby missions to the outer planet is presented. The proper balance between groundbased navigational capability, using the deep space network (DSN) alone, and an onboard navigational capability with and without supplemental use of DSN tracking, for unmanned missions to the outer planets of the solar system is defined. A general guidance and navigation requirements program is used to survey parametrically the characteristics associated with three types of navigation systems: (1) totally onboard, (2) totally Earth-based, and (3) a combination of these two.
Preliminary Operational Results of the TDRSS Onboard Navigation System (TONS) for the Terra Mission
NASA Technical Reports Server (NTRS)
Gramling, Cheryl; Lorah, John; Santoro, Ernest; Work, Kevin; Chambers, Robert; Bauer, Frank H. (Technical Monitor)
2000-01-01
The Earth Observing System Terra spacecraft was launched on December 18, 1999, to provide data for the characterization of the terrestrial and oceanic surfaces, clouds, radiation, aerosols, and radiative balance. The Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (ONS) (TONS) flying on Terra provides the spacecraft with an operational real-time navigation solution. TONS is a passive system that makes judicious use of Terra's communication and computer subsystems. An objective of the ONS developed by NASA's Goddard Space Flight Center (GSFC) Guidance, Navigation and Control Center is to provide autonomous navigation with minimal power, weight, and volume impact on the user spacecraft. TONS relies on extracting tracking measurements onboard from a TDRSS forward-link communication signal and processing these measurements in an onboard extended Kalman filter to estimate Terra's current state. Terra is the first NASA low Earth orbiting mission to fly autonomous navigation which produces accurate results. The science orbital accuracy requirements for Terra are 150 meters (m) (3sigma) per axis with a goal of 5m (1 sigma) RSS which TONS is expected to meet. The TONS solutions are telemetered in real-time to the mission scientists along with their science data for immediate processing. Once set in the operational mode, TONS eliminates the need for ground orbit determination and allows for a smooth flow from the spacecraft telemetry to planning products for the mission team. This paper will present the preliminary results of the operational TONS solution available from Terra.
Apollo Onboard Navigation Techniques
NASA Technical Reports Server (NTRS)
Interbartolo, Michael
2009-01-01
This viewgraph presentation reviews basic navigation concepts, describes coordinate systems and identifies attitude determination techniques including Primary Guidance, Navigation and Control System (PGNCS) IMU management and Command and Service Module Stabilization and Control System/Lunar Module (LM) Abort Guidance System (AGS) attitude management. The presentation also identifies state vector determination techniques, including PGNCS coasting flight navigation, PGNCS powered flight navigation and LM AGS navigation.
Magnetospheric Multiscale Mission Navigation Performance During Apogee-Raising and Beyond
NASA Technical Reports Server (NTRS)
Farahmand, Mitra; Long, Anne; Hollister, Jacob; Rose, Julie; Godine, Dominic
2017-01-01
The primary objective of the Magnetospheric Multiscale (MMS) Mission is to study the magnetic reconnection phenomena in the Earths magnetosphere. The MMS mission consists of four identical spinning spacecraft with the science objectives requiring a tetrahedral formation in highly elliptical orbits. The MMS spacecraft are equipped with onboard orbit and time determination software, provided by a weak-signal Global Positioning System (GPS) Navigator receiver hosting the Goddard Enhanced Onboard Navigation System (GEONS). This paper presents the results of MMS navigation performance analysis during the Phase 2a apogee-raising campaign and Phase 2b science segment of the mission.
NASA Technical Reports Server (NTRS)
Bochsler, Daniel C.
1988-01-01
The preliminary version of expert knowledge for the Onboard Navigation (ONAV) Ground Based Expert Trainer Ascent system for the space shuttle is presented. Included is some brief background information along with the information describing the knowledge the system will contain. Information is given on rules and heuristics, telemetry status, landing sites, inertial measurement units, and a high speed trajectory determinator (HSTD) state vector.
Conceptual Design of a Communication-Based Deep Space Navigation Network
NASA Technical Reports Server (NTRS)
Anzalone, Evan J.; Chuang, C. H.
2012-01-01
As the need grows for increased autonomy and position knowledge accuracy to support missions beyond Earth orbit, engineers must push and develop more advanced navigation sensors and systems that operate independent of Earth-based analysis and processing. Several spacecraft are approaching this problem using inter-spacecraft radiometric tracking and onboard autonomous optical navigation methods. This paper proposes an alternative implementation to aid in spacecraft position fixing. The proposed method Network-Based Navigation technique takes advantage of the communication data being sent between spacecraft and between spacecraft and ground control to embed navigation information. The navigation system uses these packets to provide navigation estimates to an onboard navigation filter to augment traditional ground-based radiometric tracking techniques. As opposed to using digital signal measurements to capture inherent information of the transmitted signal itself, this method relies on the embedded navigation packet headers to calculate a navigation estimate. This method is heavily dependent on clock accuracy and the initial results show the promising performance of a notional system.
Open-Loop Performance of COBALT Precision Landing Payload on a Commercial Sub-Orbital Rocket
NASA Technical Reports Server (NTRS)
Restrepo, Carolina I.; Carson, John M., III; Amzajerdian, Farzin; Seubert, Carl R.; Lovelace, Ronney S.; McCarthy, Megan M.; Tse, Teming; Stelling, Richard; Collins, Steven M.
2018-01-01
An open-loop flight test campaign of the NASA COBALT (CoOperative Blending of Autonomous Landing Technologies) platform was conducted onboard the Masten Xodiac suborbital rocket testbed. The COBALT platform integrates NASA Guidance, Navigation and Control (GN&C) sensing technologies for autonomous, precise soft landing, including the Navigation Doppler Lidar (NDL) velocity and range sensor and the Lander Vision System (LVS) Terrain Relative Navigation (TRN) system. A specialized navigation filter running onboard COBALT fuses the NDL and LVS data in real time to produce a navigation solution that is independent of GPS and suitable for future, autonomous, planetary, landing systems. COBALT was a passive payload during the open loop tests. COBALT's sensors were actively taking data and processing it in real time, but the Xodiac rocket flew with its own GPS-navigation system as a risk reduction activity in the maturation of the technologies towards space flight. A future closed-loop test campaign is planned where the COBALT navigation solution will be used to fly its host vehicle.
On-Board Perception System For Planetary Aerobot Balloon Navigation
NASA Technical Reports Server (NTRS)
Balaram, J.; Scheid, Robert E.; T. Salomon, Phil
1996-01-01
NASA's Jet Propulsion Laboratory is implementing the Planetary Aerobot Testbed to develop the technology needed to operate a robotic balloon aero-vehicle (Aerobot). This earth-based system would be the precursor for aerobots designed to explore Venus, Mars, Titan and other gaseous planetary bodies. The on-board perception system allows the aerobot to localize itself and navigate on a planet using information derived from a variety of celestial, inertial, ground-imaging, ranging, and radiometric sensors.
Autonomous satellite navigation with the Global Positioning System
NASA Technical Reports Server (NTRS)
Fuchs, A. J.; Wooden, W. H., II; Long, A. C.
1977-01-01
This paper discusses the potential of using the Global Positioning System (GPS) to provide autonomous navigation capability to NASA satellites in the 1980 era. Some of the driving forces motivating autonomous navigation are presented. These include such factors as advances in attitude control systems, onboard science annotation, and onboard gridding of imaging data. Simulation results which demonstrate baseline orbit determination accuracies using GPS data on Seasat, Landsat-D, and the Solar Maximum Mission are presented. Emphasis is placed on identifying error sources such as GPS time, GPS ephemeris, user timing biases, and user orbit dynamics, and in a parametric sense on evaluating their contribution to the orbit determination accuracies.
Sensitivity of Magnetospheric Multi-Scale (MMS) Mission Navigation Accuracy to Major Error Sources
NASA Technical Reports Server (NTRS)
Olson, Corwin; Long, Anne; Car[emter. Russell
2011-01-01
The Magnetospheric Multiscale (MMS) mission consists of four satellites flying in formation in highly elliptical orbits about the Earth, with a primary objective of studying magnetic reconnection. The baseline navigation concept is independent estimation of each spacecraft state using GPS pseudorange measurements referenced to an Ultra Stable Oscillator (USO) with accelerometer measurements included during maneuvers. MMS state estimation is performed onboard each spacecraft using the Goddard Enhanced Onboard Navigation System (GEONS), which is embedded in the Navigator GPS receiver. This paper describes the sensitivity of MMS navigation performance to two major error sources: USO clock errors and thrust acceleration knowledge errors.
On-board landmark navigation and attitude reference parallel processor system
NASA Technical Reports Server (NTRS)
Gilbert, L. E.; Mahajan, D. T.
1978-01-01
An approach to autonomous navigation and attitude reference for earth observing spacecraft is described along with the landmark identification technique based on a sequential similarity detection algorithm (SSDA). Laboratory experiments undertaken to determine if better than one pixel accuracy in registration can be achieved consistent with onboard processor timing and capacity constraints are included. The SSDA is implemented using a multi-microprocessor system including synchronization logic and chip library. The data is processed in parallel stages, effectively reducing the time to match the small known image within a larger image as seen by the onboard image system. Shared memory is incorporated in the system to help communicate intermediate results among microprocessors. The functions include finding mean values and summation of absolute differences over the image search area. The hardware is a low power, compact unit suitable to onboard application with the flexibility to provide for different parameters depending upon the environment.
Small Body Landing Accuracy Using In-Situ Navigation
NASA Technical Reports Server (NTRS)
Bhaskaran, Shyam; Nandi, Sumita; Broschart, Stephen; Wallace, Mark; Olson, Corwin; Cangahuala, L. Alberto
2011-01-01
Spacecraft landings on small bodies (asteroids and comets) can require target accuracies too stringent to be met using ground-based navigation alone, especially if specific landing site requirements must be met for safety or to meet science goals. In-situ optical observations coupled with onboard navigation processing can meet the tighter accuracy requirements to enable such missions. Recent developments in deep space navigation capability include a self-contained autonomous navigation system (used in flight on three missions) and a landmark tracking system (used experimentally on the Japanese Hayabusa mission). The merging of these two technologies forms a methodology to perform autonomous onboard navigation around small bodies. This paper presents an overview of these systems, as well as the results from Monte Carlo studies to quantify the achievable landing accuracies by using these methods. Sensitivity of the results to variations in spacecraft maneuver execution error, attitude control accuracy and unmodeled forces are examined. Cases for two bodies, a small asteroid and on a mid-size comet, are presented.
Sensitivity of Magnetospheric Multi-Scale (MMS) Mission Naviation Accuracy to Major Error Sources
NASA Technical Reports Server (NTRS)
Olson, Corwin; Long, Anne; Carpenter, J. Russell
2011-01-01
The Magnetospheric Multiscale (MMS) mission consists of four satellites flying in formation in highly elliptical orbits about the Earth, with a primary objective of studying magnetic reconnection. The baseline navigation concept is independent estimation of each spacecraft state using GPS pseudorange measurements referenced to an Ultra Stable Oscillator (USO) with accelerometer measurements included during maneuvers. MMS state estimation is performed onboard each spacecraft using the Goddard Enhanced Onboard Navigation System (GEONS), which is embedded in the Navigator GPS receiver. This paper describes the sensitivity of MMS navigation performance to two major error sources: USO clock errors and thrust acceleration knowledge errors.
NASA Technical Reports Server (NTRS)
Winternitz, Luke
2017-01-01
This talk will describe two first-of-their-kind technology demonstrations attached to ongoing NASA science missions, both of which aim to extend the range of autonomous spacecraft navigation far from the Earth. First, we will describe the onboard GPS navigation system for the Magnetospheric Multiscale (MMS) mission which is currently operating in elliptic orbits reaching nearly halfway to the Moon. The MMS navigation system is a key outgrowth of a larger effort at NASA Goddard Space Flight Center to advance high-altitude Global Navigation Satellite System (GNSS) navigation on multiple fronts, including developing Global Positioning System receivers and onboard navigation software, running simulation studies, and leading efforts to characterize and protect signals at high-altitude in the so-called GNSS Space-Service Volume (SSV). In the second part of the talk, we will describe the Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) mission that aims to make the first in-space demonstration of X-ray pulsar navigation (XNAV). SEXTANT is attached to the NASA astrophysics mission Neutron-star Interior Composition ExploreR (NICER) whose International Space Station mounted X-ray telescope is investigating the fundamental physics of extremes in gravity, material density, and electromagnetic fields found in neutron stars, and whose instrument provides a nearly ideal navigation sensor for XNAV.
Open-Loop Flight Testing of COBALT GN&C Technologies for Precise Soft Landing
NASA Technical Reports Server (NTRS)
Carson, John M., III; Amzajerdian, Farzin; Seubert, Carl R.; Restrepo, Carolina I.
2017-01-01
A terrestrial, open-loop (OL) flight test campaign of the NASA COBALT (CoOperative Blending of Autonomous Landing Technologies) platform was conducted onboard the Masten Xodiac suborbital rocket testbed, with support through the NASA Advanced Exploration Systems (AES), Game Changing Development (GCD), and Flight Opportunities (FO) Programs. The COBALT platform integrates NASA Guidance, Navigation and Control (GN&C) sensing technologies for autonomous, precise soft landing, including the Navigation Doppler Lidar (NDL) velocity and range sensor and the Lander Vision System (LVS) Terrain Relative Navigation (TRN) system. A specialized navigation filter running onboard COBALT fuzes the NDL and LVS data in real time to produce a precise navigation solution that is independent of the Global Positioning System (GPS) and suitable for future, autonomous planetary landing systems. The OL campaign tested COBALT as a passive payload, with COBALT data collection and filter execution, but with the Xodiac vehicle Guidance and Control (G&C) loops closed on a Masten GPS-based navigation solution. The OL test was performed as a risk reduction activity in preparation for an upcoming 2017 closed-loop (CL) flight campaign in which Xodiac G&C will act on the COBALT navigation solution and the GPS-based navigation will serve only as a backup monitor.
NASA Technical Reports Server (NTRS)
Elrod, B.; Kapoor, A.; Folta, David C.; Liu, K.
1991-01-01
Use of the Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (TONS) was proposed as an alternative to the Global Positioning System (GPS) for supporting the Earth Observing System (EOS) mission. The results are presented of EOS navigation performance evaluation with respect to TONS based orbit, time, and frequency determination (OD/TD/FD). Two TONS modes are considered: one uses scheduled TDRSS forward link service to derive one way Doppler tracking data for OD/FD support (TONS-I); the other uses an unscheduled navigation beacon service (proposed for Advanced TDRSS) to obtain pseudorange and Doppler data for OD/TD/FD support (TONS-II). Key objectives of the analysis were to evaluate nominal performance and potential sensitivities, such as suboptimal tracking geometry, tracking contact scheduling, and modeling parameter selection. OD/TD/FD performance predictions are presented based on covariance and simulation analyses. EOS navigation scenarios and the contributions of principal error sources impacting performance are also described. The results indicate that a TONS mode can be configured to meet current and proposed EOS position accuracy requirements of 100 and 50 m, respectively.
Autonomous Navigation With Ground Station One-Way Forward-Link Doppler Data
NASA Technical Reports Server (NTRS)
Horstkamp, G. M.; Niklewski, D. J.; Gramling, C. J.
1996-01-01
The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) has spent several years developing operational onboard navigation systems (ONS's) to provide real time autonomous, highly accurate navigation products for spacecraft using NASA's space and ground communication systems. The highly successful Tracking and Data Relay Satellite (TDRSS) ONS (TONS) experiment on the Explorer Platform/Extreme Ultraviolet (EP/EUV) spacecraft, launched on June 7, 1992, flight demonstrated the ONS for high accuracy navigation using TDRSS forward link communication services. In late 1994, a similar ONS experiment was performed using EP/EUV flight hardware (the ultrastable oscillator and Doppler extractor card in one of the TDRSS transponders) and ground system software to demonstrate the feasibility of using an ONS with ground station forward link communication services. This paper provides a detailed evaluation of ground station-based ONS performance of data collected over a 20 day period. The ground station ONS (GONS) experiment results are used to project the expected performance of an operational system. The GONS processes Doppler data derived from scheduled ground station forward link services using a sequential estimation algorithm enhanced by a sophisticated process noise model to provide onboard orbit and frequency determination. Analysis of the GONS experiment performance indicates that real time onboard position accuracies of better than 125 meters (1 sigma) are achievable with two or more 5-minute contacts per day for the EP/EUV 525 kilometer altitude, 28.5 degree inclination orbit. GONS accuracy is shown to be a function of the fidelity of the onboard propagation model, the frequency/geometry of the tracking contacts, and the quality of the tracking measurements. GONS provides a viable option for using autonomous navigation to reduce operational costs for upcoming spacecraft missions with moderate position accuracy requirements.
Global Positioning System Navigation Above 76,000 km for NASA's Magnetospheric Multiscale Mission
NASA Technical Reports Server (NTRS)
Winternitz, Luke B.; Bamford, William A.; Price, Samuel R.; Carpenter, J. Russell; Long, Anne C.; Farahmand, Mitra
2016-01-01
NASA's Magnetospheric Multiscale (MMS) mission, launched in March of 2015, consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12 and 25 Earth radii (RE) in the first and second phases of the mission. Navigation for MMS is achieved independently on-board each spacecraft by processing Global Positioning System (GPS) observables using NASA Goddard Space Flight Center (GSFC)'s Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents a high point of over a decade of high-altitude GPS navigation research and development at GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data from the first phase. We extrapolate these results to predict performance in the second phase orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching.
Global Positioning System Navigation Above 76,000 km for NASA's Magnetospheric Multiscale Mission
NASA Technical Reports Server (NTRS)
Winternitz, Luke B.; Bamford, William A.; Price, Samuel R.; Carpenter, J. Russell; Long, Anne C.; Farahmand, Mitra
2016-01-01
NASA's Magnetospheric Multiscale (MMS) mission, launched in March of 2015, consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12 and 25 Earth radii (RE) in the first and second phases of the mission. Navigation for MMSis achieved independently on-board each spacecraft by processing Global Positioning System (GPS) observables using NASA Goddard Space Flight Center (GSFC)'s Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents a high point of over a decade of high-altitude GPS navigation research and development at GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data from the first phase. We extrapolate these results to predict performance in the second phase orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching.
Open-Loop Flight Testing of COBALT Navigation and Sensor Technologies for Precise Soft Landing
NASA Technical Reports Server (NTRS)
Carson, John M., III; Restrepo, Caroline I.; Seubert, Carl R.; Amzajerdian, Farzin; Pierrottet, Diego F.; Collins, Steven M.; O'Neal, Travis V.; Stelling, Richard
2017-01-01
An open-loop flight test campaign of the NASA COBALT (CoOperative Blending of Autonomous Landing Technologies) payload was conducted onboard the Masten Xodiac suborbital rocket testbed. The payload integrates two complementary sensor technologies that together provide a spacecraft with knowledge during planetary descent and landing to precisely navigate and softly touchdown in close proximity to targeted surface locations. The two technologies are the Navigation Doppler Lidar (NDL), for high-precision velocity and range measurements, and the Lander Vision System (LVS) for map-relative state esti- mates. A specialized navigation filter running onboard COBALT fuses the NDL and LVS data in real time to produce a very precise Terrain Relative Navigation (TRN) solution that is suitable for future, autonomous planetary landing systems that require precise and soft landing capabilities. During the open-loop flight campaign, the COBALT payload acquired measurements and generated a precise navigation solution, but the Xodiac vehicle planned and executed its maneuvers based on an independent, GPS-based navigation solution. This minimized the risk to the vehicle during the integration and testing of the new navigation sensing technologies within the COBALT payload.
STOL terminal area operating systems (aircraft and onboard avionics, ATC, navigation aids)
NASA Technical Reports Server (NTRS)
Burrous, C.; Erzberger, H.; Johnson, N.; Neuman, F.
1974-01-01
Operational procedures and systems onboard the STOL aircraft which are required to enable the aircraft to perform acceptably in restricted airspace in all types of atmospheric conditions and weather are discussed. Results of simulation and flight investigations to establish operational criteria are presented.
TDRSS Onboard Navigation System (TONS) flight qualification experiment
NASA Technical Reports Server (NTRS)
Gramling, C. J.; Hart, R. C.; Folta, D. C.; Long, A. C.
1994-01-01
The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) is currently developing an operational Tracking and Data Relay Satellite (TDRS) System (TDRSS) Onboard Navigation System (TONS) to provide realtime, autonomous, high-accuracy navigation products to users of TDRSS. A TONS experiment was implemented on the Explorer Platform/Extreme Ultraviolet Explorer (EP/EUVE) spacecraft, launched June 7, 1992, to flight qualify the TONS operational system using TDRSS forward-link communications services. This paper provides a detailed evaluation of the flight hardware, an ultrastable oscillator (USO) and Doppler extractor (DE) card in one of the TDRSS user transponders and the ground-based prototype flight software performance, based on the 1 year of TONS experiment operation. The TONS experiment results are used to project the expected performance of the TONS 1 operational system. TONS 1 processes Doppler data derived from scheduled forward-link S-band services using a sequential estimation algorithm enhanced by a sophisticated process noise model to provide onboard orbit and frequency determination and time maintenance. TONS 1 will be the prime navigation system on the Earth Observing System (EOS)-AM1 spacecraft, currently scheduled for launch in 1998. Inflight evaluation of the USO and DE short-term and long-term stability indicates that the performance is excellent. Analysis of the TONS prototype flight software performance indicates that realtime onboard position accuracies of better than 25 meters root-mean-square are achievable with one tracking contact every one to two orbits for the EP/EUVE 525-kilometer altitude, 28.5 degree inclination orbit. The success of the TONS experiment demonstrates the flight readiness of TONS to support the EOS-AM1 mission.
GPS Navigation Above 76,000 km for the MMS Mission
NASA Technical Reports Server (NTRS)
Winternitz, Luke; Bamford, Bill; Price, Samuel; Long, Anne; Farahmand, Mitra; Carpenter, Russell
2016-01-01
NASA's MMS mission, launched in March of 2015,consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12and 25 Earth radii in the first and second phases of the mission. Navigation for MMS is achieved independently onboard each spacecraft by processing GPS observables using NASA GSFC's Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents the culmination of over a decade of high-altitude GPS navigation research and development at NASA GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data. We extrapolate these results to predict performance in the Phase 2b mission orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching.
Satellite Imagery Assisted Road-Based Visual Navigation System
NASA Astrophysics Data System (ADS)
Volkova, A.; Gibbens, P. W.
2016-06-01
There is a growing demand for unmanned aerial systems as autonomous surveillance, exploration and remote sensing solutions. Among the key concerns for robust operation of these systems is the need to reliably navigate the environment without reliance on global navigation satellite system (GNSS). This is of particular concern in Defence circles, but is also a major safety issue for commercial operations. In these circumstances, the aircraft needs to navigate relying only on information from on-board passive sensors such as digital cameras. An autonomous feature-based visual system presented in this work offers a novel integral approach to the modelling and registration of visual features that responds to the specific needs of the navigation system. It detects visual features from Google Earth* build a feature database. The same algorithm then detects features in an on-board cameras video stream. On one level this serves to localise the vehicle relative to the environment using Simultaneous Localisation and Mapping (SLAM). On a second level it correlates them with the database to localise the vehicle with respect to the inertial frame. The performance of the presented visual navigation system was compared using the satellite imagery from different years. Based on comparison results, an analysis of the effects of seasonal, structural and qualitative changes of the imagery source on the performance of the navigation algorithm is presented. * The algorithm is independent of the source of satellite imagery and another provider can be used
A real-time navigation monitoring expert system for the Space Shuttle Mission Control Center
NASA Technical Reports Server (NTRS)
Wang, Lui; Fletcher, Malise
1993-01-01
The ONAV (Onboard Navigation) Expert System has been developed as a real time console assistant for use by ONAV flight controllers in the Mission Control Center at the Johnson Space Center. This expert knowledge based system is used to monitor the Space Shuttle onboard navigation system, detect faults, and advise flight operations personnel. This application is the first knowledge-based system to use both telemetry and trajectory data from the Mission Operations Computer (MOC). To arrive at this stage, from a prototype to real world application, the ONAV project has had to deal with not only AI issues but operating environment issues. The AI issues included the maturity of AI languages and the debugging tools, verification, and availability, stability and size of the expert pool. The environmental issues included real time data acquisition, hardware suitability, and how to achieve acceptance by users and management.
Autonomous Navigation for Deep Space Missions
NASA Technical Reports Server (NTRS)
Bhaskaran, Shyam
2012-01-01
Navigation (determining where the spacecraft is at any given time, controlling its path to achieve desired targets), performed using ground-in- the-loop techniques: (1) Data includes 2-way radiometric (Doppler, range), interferometric (Delta- Differential One-way Range), and optical (images of natural bodies taken by onboard camera) (2) Data received on the ground, processed to determine orbit, commands sent to execute maneuvers to control orbit. A self-contained, onboard, autonomous navigation system can: (1) Eliminate delays due to round-trip light time (2) Eliminate the human factors in ground-based processing (3) Reduce turnaround time from navigation update to minutes, down to seconds (4) React to late-breaking data. At JPL, we have developed the framework and computational elements of an autonomous navigation system, called AutoNav. It was originally developed as one of the technologies for the Deep Space 1 mission, launched in 1998; subsequently used on three other spacecraft, for four different missions. The primary use has been on comet missions to track comets during flybys, and impact one comet.
Autonomous navigation and mobility for a planetary rover
NASA Technical Reports Server (NTRS)
Miller, David P.; Mishkin, Andrew H.; Lambert, Kenneth E.; Bickler, Donald; Bernard, Douglas E.
1989-01-01
This paper presents an overview of the onboard subsystems that will be used in guiding a planetary rover. Particular emphasis is placed on the planning and sensing systems and their associated costs, particularly in computation. Issues that will be used in evaluating trades between the navigation system and mobility system are also presented.
Orbit determination and orbit control for the Earth Observing System (EOS) AM spacecraft
NASA Technical Reports Server (NTRS)
Herberg, Joseph R.; Folta, David C.
1993-01-01
Future NASA Earth Observing System (EOS) Spacecraft will make measurements of the earth's clouds, oceans, atmosphere, land and radiation balance. These EOS Spacecraft will be part of the NASA Mission to Planet Earth. This paper specifically addresses the EOS AM Spacecraft, referred to as 'AM' because it has a sun-synchronous orbit with a 10:30 AM descending node. This paper describes the EOS AM Spacecraft mission orbit requirements, orbit determination, orbit control, and navigation system impact on earth based pointing. The EOS AM Spacecraft will be the first spacecraft to use the TDRSS Onboard Navigation System (TONS) as the primary means of navigation. TONS flight software will process one-way forward Doppler measurements taken during scheduled TDRSS contacts. An extended Kalman filter will estimate spacecraft position, velocity, drag coefficient correction, and ultrastable master oscillator frequency bias and drift. The TONS baseline algorithms, software, and hardware implementation are described in this paper. TONS integration into the EOS AM Spacecraft Guidance, Navigation, and Control (GN&C) System; TONS assisted onboard time maintenance; and the TONS Ground Support System (TGSS) are also addressed.
NASA Technical Reports Server (NTRS)
Mcgee, L. A.; Smith, G. L.; Hegarty, D. M.; Merrick, R. B.; Carson, T. M.; Schmidt, S. F.
1970-01-01
A preliminary study has been made of the navigation performance which might be achieved for the high cross-range space shuttle orbiter during final approach and landing by using an optimally augmented inertial navigation system. Computed navigation accuracies are presented for an on-board inertial navigation system augmented (by means of an optimal filter algorithm) with data from two different ground navigation aids; a precision ranging system and a microwave scanning beam landing guidance system. These results show that augmentation with either type of ground navigation aid is capable of providing a navigation performance at touchdown which should be adequate for the space shuttle. In addition, adequate navigation performance for space shuttle landing is obtainable from the precision ranging system even with a complete dropout of precision range measurements as much as 100 seconds before touchdown.
NASA Technical Reports Server (NTRS)
1981-01-01
The software developed to simulate the ground control point navigation system is described. The Ground Control Point Simulation Program (GCPSIM) is designed as an analysis tool to predict the performance of the navigation system. The system consists of two star trackers, a global positioning system receiver, a gyro package, and a landmark tracker.
Autonomous navigation using lunar beacons
NASA Technical Reports Server (NTRS)
Khatib, A. R.; Ellis, J.; French, J.; Null, G.; Yunck, T.; Wu, S.
1983-01-01
The concept of using lunar beacon signal transmission for on-board navigation for earth satellites and near-earth spacecraft is described. The system would require powerful transmitters on the earth-side of the moon's surface and black box receivers with antennae and microprocessors placed on board spacecraft for autonomous navigation. Spacecraft navigation requires three position and three velocity elements to establish location coordinates. Two beacons could be soft-landed on the lunar surface at the limits of allowable separation and each would transmit a wide-beam signal with cones reaching GEO heights and be strong enough to be received by small antennae in near-earth orbit. The black box processor would perform on-board computation with one-way Doppler/range data and dynamical models. Alternatively, GEO satellites such as the GPS or TDRSS spacecraft can be used with interferometric techniques to provide decimeter-level accuracy for aircraft navigation.
A Novel Online Data-Driven Algorithm for Detecting UAV Navigation Sensor Faults.
Sun, Rui; Cheng, Qi; Wang, Guanyu; Ochieng, Washington Yotto
2017-09-29
The use of Unmanned Aerial Vehicles (UAVs) has increased significantly in recent years. On-board integrated navigation sensors are a key component of UAVs' flight control systems and are essential for flight safety. In order to ensure flight safety, timely and effective navigation sensor fault detection capability is required. In this paper, a novel data-driven Adaptive Neuron Fuzzy Inference System (ANFIS)-based approach is presented for the detection of on-board navigation sensor faults in UAVs. Contrary to the classic UAV sensor fault detection algorithms, based on predefined or modelled faults, the proposed algorithm combines an online data training mechanism with the ANFIS-based decision system. The main advantages of this algorithm are that it allows real-time model-free residual analysis from Kalman Filter (KF) estimates and the ANFIS to build a reliable fault detection system. In addition, it allows fast and accurate detection of faults, which makes it suitable for real-time applications. Experimental results have demonstrated the effectiveness of the proposed fault detection method in terms of accuracy and misdetection rate.
The Integration, Testing and Flight of the EO-1 GPS
NASA Technical Reports Server (NTRS)
Quinn, David A.; Sanneman, Paul A.; Shulman, Seth E.; Sager, Jennifer A.
2001-01-01
The Global Positioning System has long been hailed as the wave of the future for autonomous on-board navigation of low Earth orbiting spacecraft despite the fact that relatively few spacecraft have actually employed it for this purpose. While several missions operated out of the Goddard Space Flight Center have flown GPS receivers on board, the New Millenium Program (NMP) Earth Orbiting-1 (EO-1) spacecraft is the first to employ GPS for active, autonomous on-board navigation. Since EO-1 was designed to employ GPS as its primary source of the navigation ephemeris, special care had to be taken during the integration phase of spacecraft construction to assure proper performance. This paper is a discussion of that process: a brief overview of how the GPS works, how it fits into the design of the EO-1 Attitude Control System (ACS), the steps taken to integrate the system into the EO-1 spacecraft, the ultimate on-orbit performance during launch and early operations of the EO-1 mission and the performance of the on-board GPS ephemeris versus the ground based ephemeris. Conclusions will include a discussion of the lessons learned.
Flight Testing ALHAT Precision Landing Technologies Integrated Onboard the Morpheus Rocket Vehicle
NASA Technical Reports Server (NTRS)
Carson, John M. III; Robertson, Edward A.; Trawny, Nikolas; Amzajerdian, Farzin
2015-01-01
A suite of prototype sensors, software, and avionics developed within the NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project were terrestrially demonstrated onboard the NASA Morpheus rocket-propelled Vertical Testbed (VTB) in 2014. The sensors included a LIDAR-based Hazard Detection System (HDS), a Navigation Doppler LIDAR (NDL) velocimeter, and a long-range Laser Altimeter (LAlt) that enable autonomous and safe precision landing of robotic or human vehicles on solid solar system bodies under varying terrain lighting conditions. The flight test campaign with the Morpheus vehicle involved a detailed integration and functional verification process, followed by tether testing and six successful free flights, including one night flight. The ALHAT sensor measurements were integrated into a common navigation solution through a specialized ALHAT Navigation filter that was employed in closed-loop flight testing within the Morpheus Guidance, Navigation and Control (GN&C) subsystem. Flight testing on Morpheus utilized ALHAT for safe landing site identification and ranking, followed by precise surface-relative navigation to the selected landing site. The successful autonomous, closed-loop flight demonstrations of the prototype ALHAT system have laid the foundation for the infusion of safe, precision landing capabilities into future planetary exploration missions.
Multi-Spacecraft Autonomous Positioning System
NASA Technical Reports Server (NTRS)
Anzalone, Evan
2015-01-01
As the number of spacecraft in simultaneous operation continues to grow, there is an increased dependency on ground-based navigation support. The current baseline system for deep space navigation utilizes Earth-based radiometric tracking, requiring long-duration observations to perform orbit determination and generate a state update. The age, complexity, and high utilization of the ground assets pose a risk to spacecraft navigation performance. In order to perform complex operations at large distances from Earth, such as extraterrestrial landing and proximity operations, autonomous systems are required. With increasingly complex mission operations, the need for frequent and Earth-independent navigation capabilities is further reinforced. The Multi-spacecraft Autonomous Positioning System (MAPS) takes advantage of the growing interspacecraft communication network and infrastructure to allow for Earth-autonomous state measurements to enable network-based space navigation. A notional concept of operations is given in figure 1. This network is already being implemented and routinely used in Martian communications through the use of the Mars Reconnaissance Orbiter and Mars Odyssey spacecraft as relays for surface assets. The growth of this communications architecture is continued through MAVEN, and future potential commercial Mars telecom orbiters. This growing network provides an initial Marslocal capability for inter-spacecraft communication and navigation. These navigation updates are enabled by cross-communication between assets in the network, coupled with onboard navigation estimation routines to integrate packet travel time to generate ranging measurements. Inter-spacecraft communication allows for frequent state broadcasts and time updates from trusted references. The architecture is a software-based solution, enabling its implementation on a wide variety of current assets, with the operational constraints and measurement accuracy determined by onboard systems.
Tele-Operated Lunar Rover Navigation Using Lidar
NASA Technical Reports Server (NTRS)
Pedersen, Liam; Allan, Mark B.; Utz, Hans, Heinrich; Deans, Matthew C.; Bouyssounouse, Xavier; Choi, Yoonhyuk; Fluckiger, Lorenzo; Lee, Susan Y.; To, Vinh; Loh, Jonathan;
2012-01-01
Near real-time tele-operated driving on the lunar surface remains constrained by bandwidth and signal latency despite the Moon s relative proximity. As part of our work within NASA s Human-Robotic Systems Project (HRS), we have developed a stand-alone modular LIDAR based safeguarded tele-operation system of hardware, middleware, navigation software and user interface. The system has been installed and tested on two distinct NASA rovers-JSC s Centaur2 lunar rover prototype and ARC s KRex research rover- and tested over several kilometers of tele-operated driving at average sustained speeds of 0.15 - 0.25 m/s around rocks, slopes and simulated lunar craters using a deliberately constrained telemetry link. The navigation system builds onboard terrain and hazard maps, returning highest priority sections to the off-board operator as permitted by bandwidth availability. It also analyzes hazard maps onboard and can stop the vehicle prior to contacting hazards. It is robust to severe pose errors and uses a novel scan alignment algorithm to compensate for attitude and elevation errors.
A Framework for Model-Based Diagnostics and Prognostics of Switched-Mode Power Supplies
2014-10-02
system. Some highlights of the work are included but not only limited to the following aspects: first, the methodology is based on electronic ... electronic health management, with the goal of expanding the realm of electronic diagnostics and prognostics. 1. INTRODUCTION Electronic systems such...as electronic controls, onboard computers, communications, navigation and radar perform many critical functions in onboard military and commercial
NASA Technical Reports Server (NTRS)
1981-01-01
An approach to remote sensing that meets future mission requirements was investigated. The deterministic acquisition of data and the rapid correction of data for radiometric effects and image distortions are the most critical limitations of remote sensing. The following topics are discussed: onboard image correction systems, GCP navigation system simulation, GCP analysis, and image correction analysis measurement.
A guide to onboard checkout. Volume 1: Guidance, navigation and control
NASA Technical Reports Server (NTRS)
1971-01-01
The results are presented of a study of onboard checkout techniques, as they relate to space station subsystems, as a guide to those who may need to implement onboard checkout in similar subsystems. Guidance, navigation, and control subsystems, and their reliability and failure analyses are presented. Software and testing procedures are also given.
Experiment D009: Simple navigation
NASA Technical Reports Server (NTRS)
Silva, R. M.; Jorris, T. R.; Vallerie, E. M., III
1971-01-01
Space position-fixing techniques have been investigated by collecting data on the observable phenomena of space flight that could be used to solve the problem of autonomous navigation by the use of optical data and manual computations to calculate the position of a spacecraft. After completion of the developmental and test phases, the product of the experiment would be a manual-optical technique of orbital space navigation that could be used as a backup to onboard and ground-based spacecraft-navigation systems.
Error Analysis System for Spacecraft Navigation Using the Global Positioning System (GPS)
NASA Technical Reports Server (NTRS)
Truong, S. H.; Hart, R. C.; Hartman, K. R.; Tomcsik, T. L.; Searl, J. E.; Bernstein, A.
1997-01-01
The Flight Dynamics Division (FDD) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) is currently developing improved space-navigation filtering algorithms to use the Global Positioning System (GPS) for autonomous real-time onboard orbit determination. In connection with a GPS technology demonstration on the Small Satellite Technology Initiative (SSTI)/Lewis spacecraft, FDD analysts and programmers have teamed with the GSFC Guidance, Navigation, and Control Branch to develop the GPS Enhanced Orbit Determination Experiment (GEODE) system. The GEODE system consists of a Kalman filter operating as a navigation tool for estimating the position, velocity, and additional states required to accurately navigate the orbiting Lewis spacecraft by using astrodynamic modeling and GPS measurements from the receiver. A parallel effort at the FDD is the development of a GPS Error Analysis System (GEAS) that will be used to analyze and improve navigation filtering algorithms during development phases and during in-flight calibration. For GEAS, the Kalman filter theory is extended to estimate the errors in position, velocity, and other error states of interest. The estimation of errors in physical variables at regular intervals will allow the time, cause, and effect of navigation system weaknesses to be identified. In addition, by modeling a sufficient set of navigation system errors, a system failure that causes an observed error anomaly can be traced and accounted for. The GEAS software is formulated using Object Oriented Design (OOD) techniques implemented in the C++ programming language on a Sun SPARC workstation. The Phase 1 of this effort is the development of a basic system to be used to evaluate navigation algorithms implemented in the GEODE system. This paper presents the GEAS mathematical methodology, systems and operations concepts, and software design and implementation. Results from the use of the basic system to evaluate navigation algorithms implemented on GEODE are also discussed. In addition, recommendations for generalization of GEAS functions and for new techniques to optimize the accuracy and control of the GPS autonomous onboard navigation are presented.
Science Benefits of Onboard Spacecraft Navigation
NASA Technical Reports Server (NTRS)
Cangahuala, Al; Bhaskaran, Shyam; Owen, Bill
2012-01-01
Primitive bodies (asteroids and comets), which have remained relatively unaltered since their formation, are important targets for scientific missions that seek to understand the evolution of the solar system. Often the first step is to fly by these bodies with robotic spacecraft. The key to maximizing data returns from these flybys is to determine the spacecraft trajectory relative to the target body-in short, navigate the spacecraft- with sufficient accuracy so that the target is guaranteed to be in the instruments' field of view. The most powerful navigation data in these scenarios are images taken by the spacecraft of the target against a known star field (onboard astrometry). Traditionally, the relative trajectory of the spacecraft must be estimated hours to days in advance using images collected by the spacecraft. This is because of (1)!the long round-trip light times between the spacecraft and the Earth and (2)!the time needed to downlink and process navigation data on the ground, make decisions based on the result, and build and uplink instrument pointing sequences from the results. The light time and processing time compromise navigation accuracy considerably, because there is not enough time to use more accurate data collected closer to the target-such data are more accurate because the angular capability of the onboard astrometry is essentially constant as the distance to the target decreases, resulting in better "plane-of- sky" knowledge of the target. Excellent examples of these timing limitations are high-speed comet encounters. Comets are difficult to observe up close; their orbits often limit scientists to brief, rapid flybys, and their coma further restricts viewers from seeing the nucleus in any detail, unless they can view the nucleus at close range. Comet nuclei details are typically discernable for much shorter durations than the roundtrip light time to Earth, so robotic spacecraft must be able to perform onboard navigation. This onboard navigation can be accomplished through a self- contained system that by eliminating light time restrictions dramatically improves the relative trajectory knowledge and control and subsequently increases the amount of quality data collected. Flybys are one-time events, so the system's underlying algorithms and software must be extremely robust. The autonomous software must also be able to cope with the unknown size, shape, and orientation of the previously unseen comet nucleus. Furthermore, algorithms must be reliable in the presence of imperfections and/or damage to onboard cameras accrued after many years of deep-space operations. The AutoNav operational flight software packages, developed by scientists at the Jet Propulsion Laboratory (JPL) under contract with NASA, meet all these requirements. They have been directly responsible for the successful encounters on all of NASA's close-up comet-imaging missions (see Figure !1). AutoNav is the only system to date that has autonomously tracked comet nuclei during encounters and performed autonomous interplanetary navigation. AutoNav has enabled five cometary flyby missions (Table!1) residing on four NASA spacecraft provided by three different spacecraft builders. Using this software, missions were able to process a combined total of nearly 1000 images previously unseen by humans. By eliminating the need to navigate spacecraft from Earth, the accuracy gained by AutoNav during flybys compared to ground-based navigation is about 1!order of magnitude in targeting and 2!orders of magnitude in time of flight. These benefits ensure that pointing errors do not compromise data gathered during flybys. In addition, these benefits can be applied to flybys of other solar system objects, flybys at much slower relative velocities, mosaic imaging campaigns, and other proximity activities (e.g., orbiting, hovering, and descent/ascent).
Development of Navigation Doppler Lidar for Future Landing Mission
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Hines, Glenn D.; Petway, Larry B.; Barnes, Bruce W.; Pierrottet, Diego F.; Carson, John M., III
2016-01-01
A coherent Navigation Doppler Lidar (NDL) sensor has been developed under the Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project to support future NASA missions to planetary bodies. This lidar sensor provides accurate surface-relative altitude and vector velocity data during the descent phase that can be used by an autonomous Guidance, Navigation, and Control (GN&C) system to precisely navigate the vehicle from a few kilometers above the ground to a designated location and execute a controlled soft touchdown. The operation and performance of the NDL was demonstrated through closed-loop flights onboard the rocket-propelled Morpheus vehicle in 2014. In Morpheus flights, conducted at the NASA Kennedy Space Center, the NDL data was used by an autonomous GN&C system to navigate and land the vehicle precisely at the selected location surrounded by hazardous rocks and craters. Since then, development efforts for the NDL have shifted toward enhancing performance, optimizing design, and addressing spaceflight size and mass constraints and environmental and reliability requirements. The next generation NDL, with expanded operational envelope and significantly reduced size, will be demonstrated in 2017 through a new flight test campaign onboard a commercial rocketpropelled test vehicle.
Optical Navigation Preparations for New Horizons Pluto Flyby
NASA Technical Reports Server (NTRS)
Owen, William M., Jr.; Dumont, Philip J.; Jackman, Coralie D.
2012-01-01
The New Horizons spacecraft will encounter Pluto and its satellites in July 2015. As was the case for the Voyager encounters with Jupiter, Saturn, Uranus and Neptune, mission success will depend heavily on accurate spacecraft navigation, and accurate navigation will be impossible without the use of pictures of the Pluto system taken by the onboard cameras. We describe the preparations made by the New Horizons optical navigators: picture planning, image processing algorithms, software development and testing, and results from in-flight imaging.
NASA Astrophysics Data System (ADS)
Griesbach, J.; Westphal, J. J.; Roscoe, C.; Hawes, D. R.; Carrico, J. P.
2013-09-01
The Proximity Operations Nano-Satellite Flight Demonstration (PONSFD) program is to demonstrate rendezvous proximity operations (RPO), formation flying, and docking with a pair of 3U CubeSats. The program is sponsored by NASA Ames via the Office of the Chief Technologist (OCT) in support of its Small Spacecraft Technology Program (SSTP). The goal of the mission is to demonstrate complex RPO and docking operations with a pair of low-cost 3U CubeSat satellites using passive navigation sensors. The program encompasses the entire system evolution including system design, acquisition, satellite construction, launch, mission operations, and final disposal. The satellite is scheduled for launch in Fall 2015 with a 1-year mission lifetime. This paper provides a brief mission overview but will then focus on the current design and driving trade study results for the RPO mission specific processor and relevant ground software. The current design involves multiple on-board processors, each specifically tasked with providing mission critical capabilities. These capabilities range from attitude determination and control to image processing. The RPO system processor is responsible for absolute and relative navigation, maneuver planning, attitude commanding, and abort monitoring for mission safety. A low power processor running a Linux operating system has been selected for implementation. Navigation is one of the RPO processor's key tasks. This entails processing data obtained from the on-board GPS unit as well as the on-board imaging sensors. To do this, Kalman filters will be hosted on the processor to ingest and process measurements for maintenance of position and velocity estimates with associated uncertainties. While each satellite carries a GPS unit, it will be used sparsely to conserve power. As such, absolute navigation will mainly consist of propagating past known states, and relative navigation will be considered to be of greater importance. For relative observations, each spacecraft hosts 3 electro-optical sensors dedicated to imaging the companion satellite. The image processor will analyze the images to obtain estimates for range, bearing, and pose, with associated rates and uncertainties. These observations will be fed to the RPO processor's relative Kalman filter to perform relative navigation updates. This paper includes estimates for expected navigation accuracies for both absolute and relative position and velocity. Another key task for the RPO processor is maneuver planning. This includes automation to plan maneuvers to achieve a desired formation configuration or trajectory (including docking), as well as automation to safely react to potentially dangerous situations. This will allow each spacecraft to autonomously plan fuel-efficient maneuvers to achieve a desired trajectory as well as compute adjustment maneuvers to correct for thrusting errors. This paper discusses results from a trade study that has been conducted to examine maneuver targeting algorithms required on-board the spacecraft. Ground software will also work in conjunction with the on-board software to validate and approve maneuvers as necessary.
Krzysztof, Naus; Aleksander, Nowak
2016-01-01
The article presents a study of the accuracy of estimating the position coordinates of BAUV (Biomimetic Autonomous Underwater Vehicle) by the extended Kalman filter (EKF) method. The fusion of movement parameters measurements and position coordinates fixes was applied. The movement parameters measurements are carried out by on-board navigation devices, while the position coordinates fixes are done by the USBL (Ultra Short Base Line) system. The problem of underwater positioning and the conceptual design of the BAUV navigation system constructed at the Naval Academy (Polish Naval Academy—PNA) are presented in the first part of the paper. The second part consists of description of the evaluation results of positioning accuracy, the genesis of the problem of selecting method for underwater positioning, and the mathematical description of the method of estimating the position coordinates using the EKF method by the fusion of measurements with on-board navigation and measurements obtained with the USBL system. The main part contains a description of experimental research. It consists of a simulation program of navigational parameter measurements carried out during the BAUV passage along the test section. Next, the article covers the determination of position coordinates on the basis of simulated parameters, using EKF and DR methods and the USBL system, which are then subjected to a comparative analysis of accuracy. The final part contains systemic conclusions justifying the desirability of applying the proposed fusion method of navigation parameters for the BAUV positioning. PMID:27537884
Krzysztof, Naus; Aleksander, Nowak
2016-08-15
The article presents a study of the accuracy of estimating the position coordinates of BAUV (Biomimetic Autonomous Underwater Vehicle) by the extended Kalman filter (EKF) method. The fusion of movement parameters measurements and position coordinates fixes was applied. The movement parameters measurements are carried out by on-board navigation devices, while the position coordinates fixes are done by the USBL (Ultra Short Base Line) system. The problem of underwater positioning and the conceptual design of the BAUV navigation system constructed at the Naval Academy (Polish Naval Academy-PNA) are presented in the first part of the paper. The second part consists of description of the evaluation results of positioning accuracy, the genesis of the problem of selecting method for underwater positioning, and the mathematical description of the method of estimating the position coordinates using the EKF method by the fusion of measurements with on-board navigation and measurements obtained with the USBL system. The main part contains a description of experimental research. It consists of a simulation program of navigational parameter measurements carried out during the BAUV passage along the test section. Next, the article covers the determination of position coordinates on the basis of simulated parameters, using EKF and DR methods and the USBL system, which are then subjected to a comparative analysis of accuracy. The final part contains systemic conclusions justifying the desirability of applying the proposed fusion method of navigation parameters for the BAUV positioning.
SEXTANT - Station Explorer for X-Ray Timing and Navigation Technology
NASA Technical Reports Server (NTRS)
Mitchell, Jason; Hasouneh, Monther; Winternitz, Luke; Valdez, Jennifer; Price, Sam; Semper, Sean; Yu, Wayne; Gaebler, John; Ray, Paul; Wood, Kent;
2015-01-01
The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a NASA funded technology- demonstration. SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar-based Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper describes the basic design of the SEXTANT system with a focus on core models and algorithms, and the design and continued development of the GSFC X-ray Navigation Laboratory Testbed (GXLT) with its dynamic pulsar emulation capability. We also present early results from GXLT modeling of the combined NICER X-ray timing instrument hardware and SEXTANT flight software algorithms.
X-ray Pulsar Navigation Algorithms and Testbed for SEXTANT
NASA Technical Reports Server (NTRS)
Winternitz, Luke M. B.; Hasouneh, Monther A.; Mitchell, Jason W.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven;
2015-01-01
The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a NASA funded technologydemonstration. SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar-based Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper describes the basic design of the SEXTANT system with a focus on core models and algorithms, and the design and continued development of the GSFC X-ray Navigation Laboratory Testbed (GXLT) with its dynamic pulsar emulation capability. We also present early results from GXLT modeling of the combined NICER X-ray timing instrument hardware and SEXTANT flight software algorithms.
New approach for processing data provided by an INS/GPS system onboard a vehicle
NASA Astrophysics Data System (ADS)
Dumitrascu, Ana; Serbanescu, Ionut; Tamas, Razvan D.; Danisor, Alin; Caruntu, George; Ticu, Ionela
2016-12-01
Due to the technology development, navigation systems are widely used in ground vehicle applications such as position prediction, safety of life, etc. It is known that a hybrid navigation system consisting of a GPS and inertial navigation system (INS) can provide a more accurate position prediction. By applying a Method of Moments (MoM) approach on the acquired data with INS/GPS we can extract both the coordinate and important information concerning safety of life. This kind of system will be cost effective and can also be used as a black box on boats, cars, submersible ships and even on small aircrafts.
A LEO Satellite Navigation Algorithm Based on GPS and Magnetometer Data
NASA Technical Reports Server (NTRS)
Deutschmann, Julie; Bar-Itzhack, Itzhack; Harman, Rick; Bauer, Frank H. (Technical Monitor)
2000-01-01
The Global Positioning System (GPS) has become a standard method for low cost onboard satellite orbit determination. The use of a GPS receiver as an attitude and rate sensor has also been developed in the recent past. Additionally, focus has been given to attitude and orbit estimation using the magnetometer, a low cost, reliable sensor. Combining measurements from both GPS and a magnetometer can provide a robust navigation system that takes advantage of the estimation qualities of both measurements. Ultimately a low cost, accurate navigation system can result, potentially eliminating the need for more costly sensors, including gyroscopes.
Magnetospheric Multiscale Mission (MMS) Phase 2B Navigation Performance
NASA Technical Reports Server (NTRS)
Scaperoth, Paige Thomas; Long, Anne; Carpenter, Russell
2009-01-01
The Magnetospheric Multiscale (MMS) formation flying mission, which consists of four spacecraft flying in a tetrahedral formation, has challenging navigation requirements associated with determining and maintaining the relative separations required to meet the science requirements. The baseline navigation concept for MMS is for each spacecraft to independently estimate its position, velocity and clock states using GPS pseudorange data provided by the Goddard Space Flight Center-developed Navigator receiver and maneuver acceleration measurements provided by the spacecraft's attitude control subsystem. State estimation is performed onboard in real-time using the Goddard Enhanced Onboard Navigation System flight software, which is embedded in the Navigator receiver. The current concept of operations for formation maintenance consists of a sequence of two maintenance maneuvers that is performed every 2 weeks. Phase 2b of the MMS mission, in which the spacecraft are in 1.2 x 25 Earth radii orbits with nominal separations at apogee ranging from 30 km to 400 km, has the most challenging navigation requirements because, during this phase, GPS signal acquisition is restricted to less than one day of the 2.8-day orbit. This paper summarizes the results from high-fidelity simulations to determine if the MMS navigation requirements can be met between and immediately following the maintenance maneuver sequence in Phase 2b.
COBALT: Development of a Platform to Flight Test Lander GN&C Technologies on Suborbital Rockets
NASA Technical Reports Server (NTRS)
Carson, John M., III; Seubert, Carl R.; Amzajerdian, Farzin; Bergh, Chuck; Kourchians, Ara; Restrepo, Carolina I.; Villapando, Carlos Y.; O'Neal, Travis V.; Robertson, Edward A.; Pierrottet, Diego;
2017-01-01
The NASA COBALT Project (CoOperative Blending of Autonomous Landing Technologies) is developing and integrating new precision-landing Guidance, Navigation and Control (GN&C) technologies, along with developing a terrestrial fight-test platform for Technology Readiness Level (TRL) maturation. The current technologies include a third- generation Navigation Doppler Lidar (NDL) sensor for ultra-precise velocity and line- of-site (LOS) range measurements, and the Lander Vision System (LVS) that provides passive-optical Terrain Relative Navigation (TRN) estimates of map-relative position. The COBALT platform is self contained and includes the NDL and LVS sensors, blending filter, a custom compute element, power unit, and communication system. The platform incorporates a structural frame that has been designed to integrate with the payload frame onboard the new Masten Xodiac vertical take-o, vertical landing (VTVL) terrestrial rocket vehicle. Ground integration and testing is underway, and terrestrial fight testing onboard Xodiac is planned for 2017 with two flight campaigns: one open-loop and one closed-loop.
Flight Testing of Terrain-Relative Navigation and Large-Divert Guidance on a VTVL Rocket
NASA Technical Reports Server (NTRS)
Trawny, Nikolas; Benito, Joel; Tweddle, Brent; Bergh, Charles F.; Khanoyan, Garen; Vaughan, Geoffrey M.; Zheng, Jason X.; Villalpando, Carlos Y.; Cheng, Yang; Scharf, Daniel P.;
2015-01-01
Since 2011, the Autonomous Descent and Ascent Powered-Flight Testbed (ADAPT) has been used to demonstrate advanced descent and landing technologies onboard the Masten Space Systems (MSS) Xombie vertical-takeoff, vertical-landing suborbital rocket. The current instantiation of ADAPT is a stand-alone payload comprising sensing and avionics for terrain-relative navigation and fuel-optimal onboard planning of large divert trajectories, thus providing complete pin-point landing capabilities needed for planetary landers. To this end, ADAPT combines two technologies developed at JPL, the Lander Vision System (LVS), and the Guidance for Fuel Optimal Large Diverts (G-FOLD) software. This paper describes the integration and testing of LVS and G-FOLD in the ADAPT payload, culminating in two successful free flight demonstrations on the Xombie vehicle conducted in December 2014.
NASA Astrophysics Data System (ADS)
Menzione, Francesco; Renga, Alfredo; Grassi, Michele
2017-09-01
In the framework of the novel navigation scenario offered by the next generation satellite low thrust autonomous LEO-to-MEO orbit transfer, this study proposes and tests a GNSS based navigation system aimed at providing on-board precise and robust orbit determination strategy to override rising criticalities. The analysis introduces the challenging design issues to simultaneously deal with the variable orbit regime, the electric thrust control and the high orbit GNSS visibility conditions. The Consider Kalman Filtering approach is here proposed as the filtering scheme to process the GNSS raw data provided by a multi-antenna/multi-constellation receiver in presence of uncertain parameters affecting measurements, actuation and spacecraft physical properties. Filter robustness and achievable navigation accuracy are verified using a high fidelity simulation of the low-thrust rising scenario and performance are compared with the one of a standard Extended Kalman Filtering approach to highlight the advantages of the proposed solution. Performance assessment of the developed navigation solution is accomplished for different transfer phases.
Cybersecurity for aerospace autonomous systems
NASA Astrophysics Data System (ADS)
Straub, Jeremy
2015-05-01
High profile breaches have occurred across numerous information systems. One area where attacks are particularly problematic is autonomous control systems. This paper considers the aerospace information system, focusing on elements that interact with autonomous control systems (e.g., onboard UAVs). It discusses the trust placed in the autonomous systems and supporting systems (e.g., navigational aids) and how this trust can be validated. Approaches to remotely detect the UAV compromise, without relying on the onboard software (on a potentially compromised system) as part of the process are discussed. How different levels of autonomy (task-based, goal-based, mission-based) impact this remote characterization is considered.
Onboard Science Data Analysis: Opportunities, Benefits, and Effects on Mission Design
NASA Technical Reports Server (NTRS)
Stolorz, P.; Cheeseman, P.
1998-01-01
Much of the initial focus for spacecraft autonomy has been on developing new software and systems concepts to automate engineering functions of the spacecraft: guidance, navigation and control, fault protection, and resources management. However, the ultimate objectives of NASA missions are science objectives, which implies that we need a new framework for perfoming science data evaluation and observation planning autonomously onboard spacecraft.
Navigation Concepts for the James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Long, Anne; Leung, Dominic; Kelbel, David; Beckman, Mark; Grambling, Cheryl
2003-01-01
This paper evaluates the performance that can be achieved using candidate ground and onboard navigation approaches for operation of the James Webb Space Telescope, which will be in an orbit about the Sun-Earth L2 libration point. The ground navigation approach processes standard range and Doppler measurements from the Deep Space Network The onboard navigation approach processes celestial object measurements and/or ground-to- spacecraft Doppler measurements to autonomously estimate the spacecraft s position and velocity and Doppler reference frequency. Particular attention is given to assessing the absolute position and velocity accuracy that can be achieved in the presence of the frequent spacecraft reorientations and momentum unloads planned for this mission. The ground navigation approach provides stable navigation solutions using a tracking schedule of one 30-minute contact per day. The onboard navigation approach that uses only optical quality celestial object measurements provides stable autonomous navigation solutions. This study indicates that unmodeled changes in the solar radiation pressure cross-sectional area and modeled momentum unload velocity changes are the major error sources. These errors can be mitigated by modeling these changes, by estimating corrections to compensate for the changes, or by including acceleration measurements.
Systems analysis for ground-based optical navigation
NASA Technical Reports Server (NTRS)
Null, G. W.; Owen, W. M., Jr.; Synnott, S. P.
1992-01-01
Deep-space telecommunications systems will eventually operate at visible or near-infrared regions to provide increased information return from interplanetary spacecraft. This would require an onboard laser transponder in place of (or in addition to) the usual microwave transponder, as well as a network of ground-based and/or space-based optical observing stations. This article examines the expected navigation systems to meet these requirements. Special emphasis is given to optical astrometric (angular) measurements of stars, solar system target bodies, and (when available) laser-bearing spacecraft, since these observations can potentially provide the locations of both spacecraft and target bodies. The role of astrometry in the navigation system and the development options for astrometric observing systems are also discussed.
NASA Technical Reports Server (NTRS)
Fuchs, A. J. (Editor)
1979-01-01
Onboard and real time image processing to enhance geometric correction of the data is discussed with application to autonomous navigation and attitude and orbit determination. Specific topics covered include: (1) LANDSAT landmark data; (2) star sensing and pattern recognition; (3) filtering algorithms for Global Positioning System; and (4) determining orbital elements for geostationary satellites.
U.S. Space Shuttle GPS navigation capability for all mission phases
NASA Technical Reports Server (NTRS)
Kachmar, Peter; Chu, William; Montez, Moises
1993-01-01
Incorporating a GPS capability on the Space Shuttle presented unique system integration design considerations and has led to an integration concept that has minimum impact on the existing Shuttle hardware and software systems. This paper presents the Space Shuttle GPS integrated design and the concepts used in implementing this GPS capability. The major focus of the paper is on the modifications that will be made to the navigation systems in the Space Shuttle General Purpose Computers (GPC) and on the Operational Requirements of the integrated GPS/GPC system. Shuttle navigation system architecture, functions and operations are discussed for the current system and with the GPS integrated navigation capability. The GPS system integration design presented in this paper has been formally submitted to the Shuttle Avionics Software Control Board for implementation in the on-board GPC software.
ALHAT COBALT: CoOperative Blending of Autonomous Landing Technology
NASA Technical Reports Server (NTRS)
Carson, John M.
2015-01-01
The COBALT project is a flight demonstration of two NASA ALHAT (Autonomous precision Landing and Hazard Avoidance Technology) capabilities that are key for future robotic or human landing GN&C (Guidance, Navigation and Control) systems. The COBALT payload integrates the Navigation Doppler Lidar (NDL) for ultraprecise velocity and range measurements with the Lander Vision System (LVS) for Terrain Relative Navigation (TRN) position estimates. Terrestrial flight tests of the COBALT payload in an open-loop and closed-loop GN&C configuration will be conducted onboard a commercial, rocket-propulsive Vertical Test Bed (VTB) at a test range in Mojave, CA.
Dual Accelerometer Usage Strategy for Onboard Space Navigation
NASA Technical Reports Server (NTRS)
Zanetti, Renato; D'Souza, Chris
2012-01-01
This work introduces a dual accelerometer usage strategy for onboard space navigation. In the proposed algorithm the accelerometer is used to propagate the state when its value exceeds a threshold and it is used to estimate its errors otherwise. Numerical examples and comparison to other accelerometer usage schemes are presented to validate the proposed approach.
BOREAS Level-0 C-130 Navigation Data
NASA Technical Reports Server (NTRS)
Strub, Richard; Newcomer, Jeffrey A.; Domingues, Roseanne; Hall, Forrest G. (Editor)
2000-01-01
The level-0 C-130 navigation data files contain aircraft attitude and position information acquired during the digital image and photographic data collection missions over the BOReal Ecosystem-Atmosphere Study (BOREAS) study areas. Various portions of the navigation data were collected at 1, 10, and 30 Hz. The level-0 C-130 navigation data collected for BOREAS in 1994 were improved over previous years in that the C-130 onboard navigation system was upgraded to output inertial navigation parameters every 1/30th of a second (i.e., 30 Hz). This upgrade was encouraged by users of the aircraft scanner data with the hope of improving the relative geometric positioning of the collected images.
Computer-aided system for detecting runway incursions
NASA Astrophysics Data System (ADS)
Sridhar, Banavar; Chatterji, Gano B.
1994-07-01
A synthetic vision system for enhancing the pilot's ability to navigate and control the aircraft on the ground is described. The system uses the onboard airport database and images acquired by external sensors. Additional navigation information needed by the system is provided by the Inertial Navigation System and the Global Positioning System. The various functions of the system, such as image enhancement, map generation, obstacle detection, collision avoidance, guidance, etc., are identified. The available technologies, some of which were developed at NASA, that are applicable to the aircraft ground navigation problem are noted. Example images of a truck crossing the runway while the aircraft flies close to the runway centerline are described. These images are from a sequence of images acquired during one of the several flight experiments conducted by NASA to acquire data to be used for the development and verification of the synthetic vision concepts. These experiments provide a realistic database including video and infrared images, motion states from the Inertial Navigation System and the Global Positioning System, and camera parameters.
Optical wireless networked-systems: applications to aircrafts
NASA Astrophysics Data System (ADS)
Kavehrad, Mohsen; Fadlullah, Jarir
2011-01-01
This paper focuses on leveraging the progress in semiconductor technologies to facilitate production of efficient light-based in-flight entertainment (IFE), distributed sensing, navigation and control systems. We demonstrate the ease of configuring "engineered pipes" using cheap lenses, etc. to achieve simple linear transmission capacity growth. Investigation of energy-efficient, miniaturized transceivers will create a wireless medium, for both inter and intra aircrafts, providing enhanced security, and improved quality-of-service for communications links in greater harmony with onboard systems. The applications will seamlessly inter-connect multiple intelligent devices in a network that is deployable for aircrafts navigation systems, onboard sensors and entertainment data delivery systems, and high-definition audio-visual broadcasting systems. Recent experimental results on a high-capacity infrared (808 nm) system are presented. The light source can be applied in a hybrid package along with a visible lighting LED for both lighting and communications. Also, we present a pragmatic combination of light communications through "Spotlighting" and existing onboard power-lines. It is demonstrated in details that a high-capacity IFE visible light system communicating over existing power-lines (VLC/PLC) may lead to savings in many areas through reduction of size, weight and energy consumption. This paper addresses the challenges of integrating optimized optical devices in the variety of environments described above, and presents mitigation and tailoring approaches for a multi-purpose optical network.
Applications of different design methodologies in navigation systems and development at JPL
NASA Technical Reports Server (NTRS)
Thurman, S. W.
1990-01-01
The NASA/JPL deep space navigation system consists of a complex array of measurement systems, data processing systems, and support facilities, with components located both on the ground and on-board interplanetary spacecraft. From its beginings nearly 30 years ago, this system has steadily evolved and grown to meet the demands for ever-increasing navigation accuracy placed on it by a succession of unmanned planetary missions. Principal characteristics of this system are its capabilities and great complexity. Three examples in the design and development of interplanetary space navigation systems are examined in order to make a brief assessment of the usefulness of three basic design theories, known as normative, rational, and heuristic. Evaluation of the examples indicates that a heuristic approach, coupled with rational-based mathematical and computational analysis methods, is used most often in problems such as orbit determination strategy development and mission navigation system design, while normative methods have seen only limited use is such applications as the development of large software systems and in the design of certain operational navigation subsystems.
NASA Technical Reports Server (NTRS)
Bennett, A.
1973-01-01
A guidance algorithm that provides precise rendezvous in the deterministic case while requiring only relative state information is developed. A navigation scheme employing only onboard relative measurements is built around a Kalman filter set in measurement coordinates. The overall guidance and navigation procedure is evaluated in the face of measurement errors by a detailed numerical simulation. Results indicate that onboard guidance and navigation for the terminal phase of rendezvous is possible with reasonable limits on measurement errors.
NASA Technical Reports Server (NTRS)
Bochsler, Daniel C.
1988-01-01
A complete listing is given of the expert system rules for the Entry phase of the Onboard Navigation (ONAV) Ground Based Expert Trainer System for aircraft/space shuttle navigation. These source listings appear in the same format as utilized and required by the C Language Integrated Production System (CLIPS) expert system shell which is the basis for the ONAV entry system. A schematic overview is given of how the rules are organized. These groups result from a partitioning of the rules according to the overall function which a given set of rules performs. This partitioning was established and maintained according to that established in the knowledge specification document. In addition, four other groups of rules are specified. The four groups (control flow, operator inputs, output management, and data tables) perform functions that affect all the other functional rule groups. As the name implies, control flow ensures that the rule groups are executed in the order required for proper operation; operator input rules control the introduction into the CLIPS fact base of various kinds of data required by the expert system; output management rules control the updating of the ONAV expert system user display screen during execution of the system; and data tables are static information utilized by many different rule sets gathered in one convenient place.
Perception system and functions for autonomous navigation in a natural environment
NASA Technical Reports Server (NTRS)
Chatila, Raja; Devy, Michel; Lacroix, Simon; Herrb, Matthieu
1994-01-01
This paper presents the approach, algorithms, and processes we developed for the perception system of a cross-country autonomous robot. After a presentation of the tele-programming context we favor for intervention robots, we introduce an adaptive navigation approach, well suited for the characteristics of complex natural environments. This approach lead us to develop a heterogeneous perception system that manages several different terrain representatives. The perception functionalities required during navigation are listed, along with the corresponding representations we consider. The main perception processes we developed are presented. They are integrated within an on-board control architecture we developed. First results of an ambitious experiment currently underway at LAAS are then presented.
Bayesian Software Health Management for Aircraft Guidance, Navigation, and Control
NASA Technical Reports Server (NTRS)
Schumann, Johann; Mbaya, Timmy; Menghoel, Ole
2011-01-01
Modern aircraft, both piloted fly-by-wire commercial aircraft as well as UAVs, more and more depend on highly complex safety critical software systems with many sensors and computer-controlled actuators. Despite careful design and V&V of the software, severe incidents have happened due to malfunctioning software. In this paper, we discuss the use of Bayesian networks (BNs) to monitor the health of the on-board software and sensor system, and to perform advanced on-board diagnostic reasoning. We will focus on the approach to develop reliable and robust health models for the combined software and sensor systems.
A Long Range Science Rover For Future Mars Missions
NASA Technical Reports Server (NTRS)
Hayati, Samad
1997-01-01
This paper describes the design and implementation currently underway at the Jet Propulsion Laboratory of a long range science rover for future missions to Mars. The small rover prototype, called Rocky 7, is capable of long traverse. autonomous navigation. and science instrument control, carries three science instruments, and can be commanded from any computer platform and any location using the World Wide Web. In this paper we describe the mobility system, the sampling system, the sensor suite, navigation and control, onboard science instruments. and the ground command and control system.
Global navigation satellite systems performance analysis and augmentation strategies in aviation
NASA Astrophysics Data System (ADS)
Sabatini, Roberto; Moore, Terry; Ramasamy, Subramanian
2017-11-01
In an era of significant air traffic expansion characterized by a rising congestion of the radiofrequency spectrum and a widespread introduction of Unmanned Aircraft Systems (UAS), Global Navigation Satellite Systems (GNSS) are being exposed to a variety of threats including signal interferences, adverse propagation effects and challenging platform-satellite relative dynamics. Thus, there is a need to characterize GNSS signal degradations and assess the effects of interfering sources on the performance of avionics GNSS receivers and augmentation systems used for an increasing number of mission-essential and safety-critical aviation tasks (e.g., experimental flight testing, flight inspection/certification of ground-based radio navigation aids, wide area navigation and precision approach). GNSS signal deteriorations typically occur due to antenna obscuration caused by natural and man-made obstructions present in the environment (e.g., elevated terrain and tall buildings when flying at low altitude) or by the aircraft itself during manoeuvring (e.g., aircraft wings and empennage masking the on-board GNSS antenna), ionospheric scintillation, Doppler shift, multipath, jamming and spurious satellite transmissions. Anyone of these phenomena can result in partial to total loss of tracking and possible tracking errors, depending on the severity of the effect and the receiver characteristics. After designing GNSS performance threats, the various augmentation strategies adopted in the Communication, Navigation, Surveillance/Air Traffic Management and Avionics (CNS + A) context are addressed in detail. GNSS augmentation can take many forms but all strategies share the same fundamental principle of providing supplementary information whose objective is improving the performance and/or trustworthiness of the system. Hence it is of paramount importance to consider the synergies offered by different augmentation strategies including Space Based Augmentation System (SBAS), Ground Based Augmentation System (GBAS), Aircraft Based Augmentation System (ABAS) and Receiver Autonomous Integrity Monitoring (RAIM). Furthermore, by employing multi-GNSS constellations and multi-sensor data fusion techniques, improvements in availability and continuity can be obtained. SBAS is designed to improve GNSS system integrity and accuracy for aircraft navigation and landing, while an alternative approach to GNSS augmentation is to transmit integrity and differential correction messages from ground-based augmentation systems (GBAS). In addition to existing space and ground based augmentation systems, GNSS augmentation may take the form of additional information being provided by other on-board avionics systems, such as in ABAS. As these on-board systems normally operate via separate principles than GNSS, they are not subject to the same sources of error or interference. Using suitable data link and data processing technologies on the ground, a certified ABAS capability could be a core element of a future GNSS Space-Ground-Aircraft Augmentation Network (SGAAN). Although current augmentation systems can provide significant improvement of GNSS navigation performance, a properly designed and flight-certified SGAAN could play a key role in trusted autonomous system and cyber-physical system applications such as UAS Sense-and-Avoid (SAA).
Fundamentals of satellite navigation
NASA Astrophysics Data System (ADS)
Stiller, A. H.
The basic operating principles and capabilities of conventional and satellite-based navigation systems for air, sea, and land vehicles are reviewed and illustrated with diagrams. Consideration is given to autonomous onboard systems; systems based on visible or radio beacons; the Transit, Cicada, Navstar-GPS, and Glonass satellite systems; the physical laws and parameters of satellite motion; the definition of time in satellite systems; and the content of the demodulated GPS data signal. The GPS and Glonass data format frames are presented graphically, and tables listing the GPS and Glonass satellites, their technical characteristics, and the (past or scheduled) launch dates are provided.
PNT Activities at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Sands, Obed
2017-01-01
This presentation provides a review of Position Navigation and Timing activities at the Glenn Research Center. Topics include 1) contributions to simulation studies for the Space Service Volume of the Global Navigation Satellite System, 2) development and integration efforts for a Software Defined Radio (SDR) waveform for the Space Communications and Navigation (SCaN) testbed, currently onboard the International Space Station and 3) a GPS L5 testbed intended to explore terrain mapping capabilities with communications signals. Future directions are included and a brief discussion of NASA, GRC and the SCAN office.
Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)
NASA Technical Reports Server (NTRS)
Folta, David C.; Hawkins, Albin; Bauer, Frank H. (Technical Monitor)
2001-01-01
NASA's first autonomous formation flying mission completed its primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Guidance, Navigation, and Control center at the Goddard Space Flight Center (GSFC) implemented a universal 3-axis formation flying algorithm in an autonomous executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm and the onboard flight design and presents the validation results of this unique system. Results from functionality assessment through fully autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(tm), its ground-based predecessor, and a standalone algorithm.
Interplanetary approach optical navigation with applications
NASA Technical Reports Server (NTRS)
Jerath, N.
1978-01-01
The use of optical data from onboard television cameras for the navigation of interplanetary spacecraft during the planet approach phase is investigated. Three optical data types were studied: the planet limb with auxiliary celestial references, the satellite-star, and the planet-star two-camera methods. Analysis and modelling issues related to the nature and information content of the optical methods were examined. Dynamic and measurement system modelling, data sequence design, measurement extraction, model estimation and orbit determination, as relating optical navigation, are discussed, and the various error sources were analyzed. The methodology developed was applied to the Mariner 9 and the Viking Mars missions. Navigation accuracies were evaluated at the control and knowledge points, with particular emphasis devoted to the combined use of radio and optical data. A parametric probability analysis technique was developed to evaluate navigation performance as a function of system reliabilities.
PRoViScout: a planetary scouting rover demonstrator
NASA Astrophysics Data System (ADS)
Paar, Gerhard; Woods, Mark; Gimkiewicz, Christiane; Labrosse, Frédéric; Medina, Alberto; Tyler, Laurence; Barnes, David P.; Fritz, Gerald; Kapellos, Konstantinos
2012-01-01
Mobile systems exploring Planetary surfaces in future will require more autonomy than today. The EU FP7-SPACE Project ProViScout (2010-2012) establishes the building blocks of such autonomous exploration systems in terms of robotics vision by a decision-based combination of navigation and scientific target selection, and integrates them into a framework ready for and exposed to field demonstration. The PRoViScout on-board system consists of mission management components such as an Executive, a Mars Mission On-Board Planner and Scheduler, a Science Assessment Module, and Navigation & Vision Processing modules. The platform hardware consists of the rover with the sensors and pointing devices. We report on the major building blocks and their functions & interfaces, emphasizing on the computer vision parts such as image acquisition (using a novel zoomed 3D-Time-of-Flight & RGB camera), mapping from 3D-TOF data, panoramic image & stereo reconstruction, hazard and slope maps, visual odometry and the recognition of potential scientifically interesting targets.
Balloon platform for extended-life astronomy research
NASA Technical Reports Server (NTRS)
Ostwald, L. T.
1974-01-01
A configuration has been developed for a long-life balloon platform to carry pointing telescopes weighing as much as 80 pounds (36 kg) to point at selected celestial targets. A platform of this configuration weighs about 375 pounds (170 kg) gross and can be suspended from a high altitude super pressure balloon for a lifetime of several months. The balloon platform contains a solar array and storage batteries for electrical power, up and down link communications equipment, and navigational and attitude control systems for orienting the scientific instrument. A biaxial controller maintains the telescope attitude in response to look-angle data stored in an on-board computer memory which is updated periodically by ground command. Gimbal angles are computed by using location data derived by an on-board navigational receiver.
ACES: Space shuttle flight software analysis expert system
NASA Technical Reports Server (NTRS)
Satterwhite, R. Scott
1990-01-01
The Analysis Criteria Evaluation System (ACES) is a knowledge based expert system that automates the final certification of the Space Shuttle onboard flight software. Guidance, navigation and control of the Space Shuttle through all its flight phases are accomplished by a complex onboard flight software system. This software is reconfigured for each flight to allow thousands of mission-specific parameters to be introduced and must therefore be thoroughly certified prior to each flight. This certification is performed in ground simulations by executing the software in the flight computers. Flight trajectories from liftoff to landing, including abort scenarios, are simulated and the results are stored for analysis. The current methodology of performing this analysis is repetitive and requires many man-hours. The ultimate goals of ACES are to capture the knowledge of the current experts and improve the quality and reduce the manpower required to certify the Space Shuttle onboard flight software.
Altair Navigation During Trans-Lunar Cruise, Lunar Orbit, Descent and Landing
NASA Technical Reports Server (NTRS)
Ely, Todd A.; Heyne, Martin; Riedel, Joseph E.
2010-01-01
The Altair lunar lander navigation system is driven by a set of requirements that not only specify a need to land within 100 m of a designated spot on the Moon, but also be capable of a safe return to an orbiting Orion capsule in the event of loss of Earth ground support. These requirements lead to the need for a robust and capable on-board navigation system that works in conjunction with an Earth ground navigation system that uses primarily ground-based radiometric tracking. The resulting system relies heavily on combining a multiplicity of data types including navigation state updates from the ground based navigation system, passive optical imaging from a gimbaled camera, a stable inertial measurement unit, and a capable radar altimeter and velocimeter. The focus of this paper is on navigation performance during the trans-lunar cruise, lunar orbit, and descent/landing mission phases with the goal of characterizing knowledge and delivery errors to key mission events, bound the statistical delta V costs for executing the mission, as well as the determine the landing dispersions due to navigation. This study examines the nominal performance that can be obtained using the current best estimate of the vehicle, sensor, and environment models. Performance of the system under a variety sensor outages and parametric trades is also examined.
NASA Technical Reports Server (NTRS)
Gay, Robert S.; Holt, Greg N.; Zanetti, Renato
2016-01-01
This paper details the post-flight navigation performance assessment of the Orion Exploration Flight Test-1 (EFT-1). Results of each flight phase are presented: Ground Align, Ascent, Orbit, and Entry Descent and Landing. This study examines the on-board Kalman Filter uncertainty along with state deviations relative to the Best Estimated Trajectory (BET). Overall the results show that the Orion Navigation System performed as well or better than expected. Specifically, the Global Positioning System (GPS) measurement availability was significantly better than anticipated at high altitudes. In addition, attitude estimation via processing GPS measurements along with Inertial Measurement Unit (IMU) data performed very well and maintained good attitude throughout the mission.
ATS-1/ATS-3 dual satellite navigation study
NASA Technical Reports Server (NTRS)
Hoover, W. M.
1971-01-01
A study which illustrated the feasibility of implementing an on-board aircraft navigation system based on using the ATS-1 and ATS-3 satellites, the modified Omega Position Location Equipment (OPLE) Control Center, and a suitable aircraft terminal was conducted. The report provides: (1) a consideration of the problems of satellite navigation and an objective definition of the optimum system under the constraints of its specified components, (2) a description of the necessary modifications to the OPLE Control Center, the design of an aircraft terminal, and the design of ground reference terminals, and (3) an outline of an experiment plan and an estimate of the cost to be expected in conducting the program.
A Design Study of Onboard Navigation and Guidance During Aerocapture at Mars. M.S. Thesis
NASA Technical Reports Server (NTRS)
Fuhry, Douglas Paul
1988-01-01
The navigation and guidance of a high lift-to-drag ratio sample return vehicle during aerocapture at Mars are investigated. Emphasis is placed on integrated systems design, with guidance algorithm synthesis and analysis based on vehicle state and atmospheric density uncertainty estimates provided by the navigation system. The latter utilizes a Kalman filter for state vector estimation, with useful update information obtained through radar altimeter measurements and density altitude measurements based on IMU-measured drag acceleration. A three-phase guidance algorithm, featuring constant bank numeric predictor/corrector atmospheric capture and exit phases and an extended constant altitude cruise phase, is developed to provide controlled capture and depletion of orbital energy, orbital plane control, and exit apoapsis control. Integrated navigation and guidance systems performance are analyzed using a four degree-of-freedom computer simulation. The simulation environment includes an atmospheric density model with spatially correlated perturbations to provide realistic variations over the vehicle trajectory. Navigation filter initial conditions for the analysis are based on planetary approach optical navigation results. Results from a selection of test cases are presented to give insight into systems performance.
Preliminary Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)
NASA Technical Reports Server (NTRS)
Folta, David; Hawkins, Albin
2001-01-01
NASA's first autonomous formation flying mission is completing a primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Guidance, Navigation, and Control center at the Goddard Space Flight Center has implemented an autonomous universal three-axis formation flying algorithm in executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm and the onboard design and presents the preliminary validation results of this unique system. Results from functionality assessment and autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(tm), its ground-based predecessor, and a stand-alone algorithm.
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Kacpura, Thomas J.; Johnson, Sandra K.; Lux, James P.
2010-01-01
NASA is developing an experimental flight payload (referred to as the Space Communication and Navigation (SCAN) Test Bed) to investigate software defined radio (SDR), networking, and navigation technologies, operationally in the space environment. The payload consists of three software defined radios each compliant to NASA s Space Telecommunications Radio System Architecture, a common software interface description standard for software defined radios. The software defined radios are new technology developments underway by NASA and industry partners. Planned for launch in early 2012, the payload will be externally mounted to the International Space Station truss and conduct experiments representative of future mission capability.
NASA Technical Reports Server (NTRS)
Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Smith, E. J.; Yerazunis, S. W.
1971-01-01
Investigation of problems related to control of a mobile planetary vehicle according to a systematic plan for the exploration of Mars has been undertaken. Problem areas receiving attention include: (1) overall systems analysis; (2) vehicle configuration and dynamics; (3) toroidal wheel design and evaluation; (4) on-board navigation systems; (5) satellite-vehicle navigation systems; (6) obstacle detection systems; (7) terrain sensing, interpretation and modeling; (8) computer simulation of terrain sensor-path selection systems; and (9) chromatographic systems design concept studies. The specific tasks which have been undertaken are defined and the progress which has been achieved during the period July 1, 1971 to December 31, 1971 is summarized.
NASA Technical Reports Server (NTRS)
1971-01-01
The guidance and navigation requirements for a set of impulsive thrust missions involving one or more outer planets or comets. Specific missions considered include two Jupiter entry missions of 800 and 1200 day duration, two multiple swingby missions with the sequences Jupiter-Uranus-Neptune and Jupiter-Saturn-Pluto, and two comets rendezvous missions involving the short period comets P/Tempel 2 and P/Tuttle-Giacobini-Kresak. Results show the relative utility of onboard and Earth-based DSN navigation. The effects of parametric variations in navigation accuracy, measurement rate, and miscellaneous constraints are determined. The utility of a TV type onboard navigation sensor - sighting on planetary satellites and comets - is examined. Velocity corrections required for the nominal and parametrically varied cases are tabulated.
Space Shuttle Navigation in the GPS Era
NASA Technical Reports Server (NTRS)
Goodman, John L.
2001-01-01
The Space Shuttle navigation architecture was originally designed in the 1970s. A variety of on-board and ground based navigation sensors and computers are used during the ascent, orbit coast, rendezvous, (including proximity operations and docking) and entry flight phases. With the advent of GPS navigation and tightly coupled GPS/INS Units employing strapdown sensors, opportunities to improve and streamline the Shuttle navigation process are being pursued. These improvements can potentially result in increased safety, reliability, and cost savings in maintenance through the replacement of older technologies and elimination of ground support systems (such as Tactical Air Control and Navigation (TACAN), Microwave Landing System (MLS) and ground radar). Selection and missionization of "off the shelf" GPS and GPS/INS units pose a unique challenge since the units in question were not originally designed for the Space Shuttle application. Various options for integrating GPS and GPS/INS units with the existing orbiter avionics system were considered in light of budget constraints, software quality concerns, and schedule limitations. An overview of Shuttle navigation methodology from 1981 to the present is given, along with how GPS and GPS/INS technology will change, or not change, the way Space Shuttle navigation is performed in the 21 5 century.
ULTRA: Underwater Localization for Transit and Reconnaissance Autonomy
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance L.
2013-01-01
This software addresses the issue of underwater localization of unmanned vehicles and the inherent drift in their onboard sensors. The software gives a 2 to 3 factor of improvement over the state-of-the-art underwater localization algorithms. The software determines the localization (position, heading) of an AUV (autonomous underwater vehicle) in environments where there is no GPS signal. It accomplishes this using only the commanded position, onboard gyros/accelerometers, and the bathymetry of the bottom provided by an onboard sonar system. The software does not rely on an onboard bathymetry dataset, but instead incrementally determines the position of the AUV while mapping the bottom. In order to enable long-distance underwater navigation by AUVs, a localization method called ULTRA uses registration of the bathymetry data products produced by the onboard forward-looking sonar system for hazard avoidance during a transit to derive the motion and pose of the AUV in order to correct the DR (dead reckoning) estimates. The registration algorithm uses iterative point matching (IPM) combined with surface interpolation of the Iterative Closest Point (ICP) algorithm. This method was used previously at JPL for onboard unmanned ground vehicle localization, and has been optimized for efficient computational and memory use.
Improving BeiDou precise orbit determination using observations of onboard MEO satellite receivers
NASA Astrophysics Data System (ADS)
Ge, Haibo; Li, Bofeng; Ge, Maorong; Shen, Yunzhong; Schuh, Harald
2017-12-01
In recent years, the precise orbit determination (POD) of the regional Chinese BeiDou Navigation Satellite System (BDS) has been a hot spot because of its special constellation consisting of five geostationary earth orbit (GEO) satellites and five inclined geosynchronous satellite orbit (IGSO) satellites besides four medium earth orbit (MEO) satellites since the end of 2012. GEO and IGSO satellites play an important role in regional BDS applications. However, this brings a great challenge to the POD, especially for the GEO satellites due to their geostationary orbiting. Though a number of studies have been carried out to improve the POD performance of GEO satellites, the result is still much worse than that of IGSO and MEO, particularly in the along-track direction. The major reason is that the geostationary characteristic of a GEO satellite results in a bad geometry with respect to the ground tracking network. In order to improve the tracking geometry of the GEO satellites, a possible strategy is to mount global navigation satellite system (GNSS) receivers on MEO satellites to collect the signals from GEO/IGSO GNSS satellites so as that these observations can be used to improve GEO/IGSO POD. We extended our POD software package to simulate all the related observations and to assimilate the MEO-onboard GNSS observations in orbit determination. Based on GPS and BDS constellations, simulated studies are undertaken for various tracking scenarios. The impact of the onboard GNSS observations is investigated carefully and presented in detail. The results show that MEO-onboard observations can significantly improve the orbit precision of GEO satellites from metres to decimetres, especially in the along-track direction. The POD results of IGSO satellites also benefit from the MEO-onboard data and the precision can be improved by more than 50% in 3D direction.
DOT National Transportation Integrated Search
2015-08-01
Connected vehicles have the potential to transform travel as we know it by combining leading edge technologies advanced wireless communications, on-board computer processing, advanced vehicle-sensors, Global Positioning System (GPS) navigation, sm...
Fully autonomous navigation for the NASA cargo transfer vehicle
NASA Technical Reports Server (NTRS)
Wertz, James R.; Skulsky, E. David
1991-01-01
A great deal of attention has been paid to navigation during the close approach (less than or equal to 1 km) phase of spacecraft rendezvous. However, most spacecraft also require a navigation system which provides the necessary accuracy for placing both satellites within the range of the docking sensors. The Microcosm Autonomous Navigation System (MANS) is an on-board system which uses Earth-referenced attitude sensing hardware to provide precision orbit and attitude determination. The system is capable of functioning from LEO to GEO and beyond. Performance depends on the number of available sensors as well as mission geometry; however, extensive simulations have shown that MANS will provide 100 m to 400 m (3(sigma)) position accuracy and 0.03 to 0.07 deg (3(sigma)) attitude accuracy in low Earth orbit. The system is independent of any external source, including GPS. MANS is expected to have a significant impact on ground operations costs, mission definition and design, survivability, and the potential development of very low-cost, fully autonomous spacecraft.
A Leo Satellite Navigation Algorithm Based on GPS and Magnetometer Data
NASA Technical Reports Server (NTRS)
Deutschmann, Julie; Harman, Rick; Bar-Itzhack, Itzhack
2001-01-01
The Global Positioning System (GPS) has become a standard method for low cost onboard satellite orbit determination. The use of a GPS receiver as an attitude and rate sensor has also been developed in the recent past. Additionally, focus has been given to attitude and orbit estimation using the magnetometer, a low cost, reliable sensor. Combining measurements from both GPS and a magnetometer can provide a robust navigation system that takes advantage of the estimation qualities of both measurements. Ultimately, a low cost, accurate navigation system can result, potentially eliminating the need for more costly sensors, including gyroscopes. This work presents the development of a technique to eliminate numerical differentiation of the GPS phase measurements and also compares the use of one versus two GPS satellites.
Structured Light-Based Hazard Detection For Planetary Surface Navigation
NASA Technical Reports Server (NTRS)
Nefian, Ara; Wong, Uland Y.; Dille, Michael; Bouyssounouse, Xavier; Edwards, Laurence; To, Vinh; Deans, Matthew; Fong, Terry
2017-01-01
This paper describes a structured light-based sensor for hazard avoidance in planetary environments. The system presented here can also be used in terrestrial applications constrained by reduced onboard power and computational complexity and low illumination conditions. The sensor is on a calibrated camera and laser dot projector system. The onboard hazard avoidance system determines the position of the projected dots in the image and through a triangulation process detects potential hazards. The paper presents the design parameters for this sensor and describes the image based solution for hazard avoidance. The system presented here was tested extensively in day and night conditions in Lunar analogue environments. The current system achieves over 97 detection rate with 1.7 false alarms over 2000 images.
A Software Defined Radio Based Airplane Communication Navigation Simulation System
NASA Astrophysics Data System (ADS)
He, L.; Zhong, H. T.; Song, D.
2018-01-01
Radio communication and navigation system plays important role in ensuring the safety of civil airplane in flight. Function and performance should be tested before these systems are installed on-board. Conventionally, a set of transmitter and receiver are needed for each system, thus all the equipment occupy a lot of space and are high cost. In this paper, software defined radio technology is applied to design a common hardware communication and navigation ground simulation system, which can host multiple airplane systems with different operating frequency, such as HF, VHF, VOR, ILS, ADF, etc. We use a broadband analog frontend hardware platform, universal software radio peripheral (USRP), to transmit/receive signal of different frequency band. Software is compiled by LabVIEW on computer, which interfaces with USRP through Ethernet, and is responsible for communication and navigation signal processing and system control. An integrated testing system is established to perform functional test and performance verification of the simulation signal, which demonstrate the feasibility of our design. The system is a low-cost and common hardware platform for multiple airplane systems, which provide helpful reference for integrated avionics design.
Operational Challenges In TDRS Post-Maneuver Orbit Determination
NASA Technical Reports Server (NTRS)
Laing, Jason; Myers, Jessica; Ward, Douglas; Lamb, Rivers
2015-01-01
The GSFC Flight Dynamics Facility (FDF) is responsible for daily and post maneuver orbit determination for the Tracking and Data Relay Satellite System (TDRSS). The most stringent requirement for this orbit determination is 75 meters total position accuracy (3-sigma) predicted over one day for Terra's onboard navigation system. To maintain an accurate solution onboard Terra, a solution is generated and provided by the FDF Four hours after a TDRS maneuver. A number of factors present challenges to this support, such as maneuver prediction uncertainty and potentially unreliable tracking from User satellities. Reliable support is provided by comparing an extended Kalman Filter (estimated using ODTK) against a Batch Least Squares system (estimated using GTDS).
Autonomous Flight Safety System
NASA Technical Reports Server (NTRS)
Simpson, James
2010-01-01
The Autonomous Flight Safety System (AFSS) is an independent self-contained subsystem mounted onboard a launch vehicle. AFSS has been developed by and is owned by the US Government. Autonomously makes flight termination/destruct decisions using configurable software-based rules implemented on redundant flight processors using data from redundant GPS/IMU navigation sensors. AFSS implements rules determined by the appropriate Range Safety officials.
46 CFR 133.60 - Communications.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Communications. 133.60 Section 133.60 Shipping COAST... Requirements for All OSVs § 133.60 Communications. (a) Emergency position indicating radiobeacons (EPIRB). (1... flares on or near the OSV's navigating bridge. (c) Onboard communications and alarm systems. Each OSV...
46 CFR 133.60 - Communications.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Communications. 133.60 Section 133.60 Shipping COAST... Requirements for All OSVs § 133.60 Communications. (a) Emergency position indicating radiobeacons (EPIRB). (1... flares on or near the OSV's navigating bridge. (c) Onboard communications and alarm systems. Each OSV...
Sanchez, Richard D.; Hothem, Larry D.
2002-01-01
High-resolution airborne and satellite image sensor systems integrated with onboard data collection based on the Global Positioning System (GPS) and inertial navigation systems (INS) may offer a quick and cost-effective way to gather accurate topographic map information without ground control or aerial triangulation. The Applanix Corporation?s Position and Orientation Solutions for Direct Georeferencing of aerial photography was used in this project to examine the positional accuracy of integrated GPS/INS for terrain mapping in Glen Canyon, Arizona. The research application in this study yielded important information on the usefulness and limits of airborne integrated GPS/INS data-capture systems for mapping.
Pulsar Timing and Its Application for Navigation and Gravitational Wave Detection
NASA Astrophysics Data System (ADS)
Becker, Werner; Kramer, Michael; Sesana, Alberto
2018-02-01
Pulsars are natural cosmic clocks. On long timescales they rival the precision of terrestrial atomic clocks. Using a technique called pulsar timing, the exact measurement of pulse arrival times allows a number of applications, ranging from testing theories of gravity to detecting gravitational waves. Also an external reference system suitable for autonomous space navigation can be defined by pulsars, using them as natural navigation beacons, not unlike the use of GPS satellites for navigation on Earth. By comparing pulse arrival times measured on-board a spacecraft with predicted pulse arrivals at a reference location (e.g. the solar system barycenter), the spacecraft position can be determined autonomously and with high accuracy everywhere in the solar system and beyond. We describe the unique properties of pulsars that suggest that such a navigation system will certainly have its application in future astronautics. We also describe the on-going experiments to use the clock-like nature of pulsars to "construct" a galactic-sized gravitational wave detector for low-frequency (f_{GW}˜ 10^{-9} - 10^{-7} Hz) gravitational waves. We present the current status and provide an outlook for the future.
Analysis of filter tuning techniques for sequential orbit determination
NASA Technical Reports Server (NTRS)
Lee, T.; Yee, C.; Oza, D.
1995-01-01
This paper examines filter tuning techniques for a sequential orbit determination (OD) covariance analysis. Recently, there has been a renewed interest in sequential OD, primarily due to the successful flight qualification of the Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (TONS) using Doppler data extracted onboard the Extreme Ultraviolet Explorer (EUVE) spacecraft. TONS computes highly accurate orbit solutions onboard the spacecraft in realtime using a sequential filter. As the result of the successful TONS-EUVE flight qualification experiment, the Earth Observing System (EOS) AM-1 Project has selected TONS as the prime navigation system. In addition, sequential OD methods can be used successfully for ground OD. Whether data are processed onboard or on the ground, a sequential OD procedure is generally favored over a batch technique when a realtime automated OD system is desired. Recently, OD covariance analyses were performed for the TONS-EUVE and TONS-EOS missions using the sequential processing options of the Orbit Determination Error Analysis System (ODEAS). ODEAS is the primary covariance analysis system used by the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD). The results of these analyses revealed a high sensitivity of the OD solutions to the state process noise filter tuning parameters. The covariance analysis results show that the state estimate error contributions from measurement-related error sources, especially those due to the random noise and satellite-to-satellite ionospheric refraction correction errors, increase rapidly as the state process noise increases. These results prompted an in-depth investigation of the role of the filter tuning parameters in sequential OD covariance analysis. This paper analyzes how the spacecraft state estimate errors due to dynamic and measurement-related error sources are affected by the process noise level used. This information is then used to establish guidelines for determining optimal filter tuning parameters in a given sequential OD scenario for both covariance analysis and actual OD. Comparisons are also made with corresponding definitive OD results available from the TONS-EUVE analysis.
Lessons Learned from OSIRIS-Rex Autonomous Navigation Using Natural Feature Tracking
NASA Technical Reports Server (NTRS)
Lorenz, David A.; Olds, Ryan; May, Alexander; Mario, Courtney; Perry, Mark E.; Palmer, Eric E.; Daly, Michael
2017-01-01
The Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (Osiris-REx) spacecraft is scheduled to launch in September, 2016 to embark on an asteroid sample return mission. It is expected to rendezvous with the asteroid, Bennu, navigate to the surface, collect a sample (July 20), and return the sample to Earth (September 23). The original mission design called for using one of two Flash Lidar units to provide autonomous navigation to the surface. Following Preliminary design and initial development of the Lidars, reliability issues with the hardware and test program prompted the project to begin development of an alternative navigation technique to be used as a backup to the Lidar. At the critical design review, Natural Feature Tracking (NFT) was added to the mission. NFT is an onboard optical navigation system that compares observed images to a set of asteroid terrain models which are rendered in real-time from a catalog stored in memory on the flight computer. Onboard knowledge of the spacecraft state is then updated by a Kalman filter using the measured residuals between the rendered reference images and the actual observed images. The asteroid terrain models used by NFT are built from a shape model generated from observations collected during earlier phases of the mission and include both terrain shape and albedo information about the asteroid surface. As a result, the success of NFT is highly dependent on selecting a set of topographic features that can be both identified during descent as well as reliably rendered using the shape model data available. During development, the OSIRIS-REx team faced significant challenges in developing a process conducive to robust operation. This was especially true for terrain models to be used as the spacecraft gets close to the asteroid and higher fidelity models are required for reliable image correlation. This paper will present some of the challenges and lessons learned from the development of the NFT system which includes not just the flight hardware and software but the development of the terrain models used to generate the onboard rendered images.
Demonstration of coherent Doppler lidar for navigation in GPS-denied environments
NASA Astrophysics Data System (ADS)
Amzajerdian, Farzin; Hines, Glenn D.; Pierrottet, Diego F.; Barnes, Bruce W.; Petway, Larry B.; Carson, John M.
2017-05-01
A coherent Doppler lidar has been developed to address NASA's need for a high-performance, compact, and cost-effective velocity and altitude sensor onboard its landing vehicles. Future robotic and manned missions to solar system bodies require precise ground-relative velocity vector and altitude data to execute complex descent maneuvers and safe, soft landing at a pre-designated site. This lidar sensor, referred to as a Navigation Doppler Lidar (NDL), meets the required performance of the landing missions while complying with vehicle size, mass, and power constraints. Operating from up to four kilometers altitude, the NDL obtains velocity and range precision measurements reaching 2 cm/sec and 2 meters, respectively, dominated by the vehicle motion. Terrestrial aerial vehicles will also benefit from NDL data products as enhancement or replacement to GPS systems when GPS is unavailable or redundancy is needed. The NDL offers a viable option to aircraft navigation in areas where the GPS signal can be blocked or jammed by intentional or unintentional interference. The NDL transmits three laser beams at different pointing angles toward the ground to measure range and velocity along each beam using a frequency modulated continuous wave (FMCW) technique. The three line-of-sight measurements are then combined in order to determine the three components of the vehicle velocity vector and its altitude relative to the ground. This paper describes the performance and capabilities that the NDL demonstrated through extensive ground tests, helicopter flight tests, and onboard an autonomous rocket-powered test vehicle while operating in closedloop with a guidance, navigation, and control (GN and C) system.
Beacons for supporting lunar landing navigation
NASA Astrophysics Data System (ADS)
Theil, Stephan; Bora, Leonardo
2017-03-01
Current and future planetary exploration missions involve a landing on the target celestial body. Almost all of these landing missions are currently relying on a combination of inertial and optical sensor measurements to determine the current flight state with respect to the target body and the desired landing site. As soon as an infrastructure at the landing site exists, the requirements as well as conditions change for vehicles landing close to this existing infrastructure. This paper investigates the options for ground-based infrastructure supporting the onboard navigation system and analyzes the impact on the achievable navigation accuracy. For that purpose, the paper starts with an existing navigation architecture based on optical navigation and extends it with measurements to support navigation with ground infrastructure. A scenario of lunar landing is simulated and the provided functions of the ground infrastructure as well as the location with respect to the landing site are evaluated. The results are analyzed and discussed.
Autonomous landing and ingress of micro-air-vehicles in urban environments based on monocular vision
NASA Astrophysics Data System (ADS)
Brockers, Roland; Bouffard, Patrick; Ma, Jeremy; Matthies, Larry; Tomlin, Claire
2011-06-01
Unmanned micro air vehicles (MAVs) will play an important role in future reconnaissance and search and rescue applications. In order to conduct persistent surveillance and to conserve energy, MAVs need the ability to land, and they need the ability to enter (ingress) buildings and other structures to conduct reconnaissance. To be safe and practical under a wide range of environmental conditions, landing and ingress maneuvers must be autonomous, using real-time, onboard sensor feedback. To address these key behaviors, we present a novel method for vision-based autonomous MAV landing and ingress using a single camera for two urban scenarios: landing on an elevated surface, representative of a rooftop, and ingress through a rectangular opening, representative of a door or window. Real-world scenarios will not include special navigation markers, so we rely on tracking arbitrary scene features; however, we do currently exploit planarity of the scene. Our vision system uses a planar homography decomposition to detect navigation targets and to produce approach waypoints as inputs to the vehicle control algorithm. Scene perception, planning, and control run onboard in real-time; at present we obtain aircraft position knowledge from an external motion capture system, but we expect to replace this in the near future with a fully self-contained, onboard, vision-aided state estimation algorithm. We demonstrate autonomous vision-based landing and ingress target detection with two different quadrotor MAV platforms. To our knowledge, this is the first demonstration of onboard, vision-based autonomous landing and ingress algorithms that do not use special purpose scene markers to identify the destination.
Autonomous Landing and Ingress of Micro-Air-Vehicles in Urban Environments Based on Monocular Vision
NASA Technical Reports Server (NTRS)
Brockers, Roland; Bouffard, Patrick; Ma, Jeremy; Matthies, Larry; Tomlin, Claire
2011-01-01
Unmanned micro air vehicles (MAVs) will play an important role in future reconnaissance and search and rescue applications. In order to conduct persistent surveillance and to conserve energy, MAVs need the ability to land, and they need the ability to enter (ingress) buildings and other structures to conduct reconnaissance. To be safe and practical under a wide range of environmental conditions, landing and ingress maneuvers must be autonomous, using real-time, onboard sensor feedback. To address these key behaviors, we present a novel method for vision-based autonomous MAV landing and ingress using a single camera for two urban scenarios: landing on an elevated surface, representative of a rooftop, and ingress through a rectangular opening, representative of a door or window. Real-world scenarios will not include special navigation markers, so we rely on tracking arbitrary scene features; however, we do currently exploit planarity of the scene. Our vision system uses a planar homography decomposition to detect navigation targets and to produce approach waypoints as inputs to the vehicle control algorithm. Scene perception, planning, and control run onboard in real-time; at present we obtain aircraft position knowledge from an external motion capture system, but we expect to replace this in the near future with a fully self-contained, onboard, vision-aided state estimation algorithm. We demonstrate autonomous vision-based landing and ingress target detection with two different quadrotor MAV platforms. To our knowledge, this is the first demonstration of onboard, vision-based autonomous landing and ingress algorithms that do not use special purpose scene markers to identify the destination.
Autonomous RPRV Navigation, Guidance and Control
NASA Technical Reports Server (NTRS)
Johnston, Donald E.; Myers, Thomas T.; Zellner, John W.
1983-01-01
Dryden Flight Research Center has the responsibility for flight testing of advanced remotely piloted research vehicles (RPRV) to explore highly maneuverable aircraft technology, and to test advanced structural concepts, and related aeronautical technologies which can yield important research results with significant cost benefits. The primary purpose is to provide the preliminary design of an upgraded automatic approach and landing control system and flight director display to improve landing performance and reduce pilot workload. A secondary purpose is to determine the feasibility of an onboard autonomous navigation, orbit, and landing capability for safe vehicle recovery in the event of loss of telemetry uplink communication with the vehicles. The current RPRV approach and landing method, the proposed automatic and manual approach and autoland system, and an autonomous navigation, orbit, and landing system concept which is based on existing operational technology are described.
Integrating Communication and Navigation: Next Generation Broadcast Service (NGBS)
NASA Technical Reports Server (NTRS)
Donaldson, Jennifer
2017-01-01
NASA Goddard has been investing in technology demonstrations of a beacon service, now called Next Generation Broadcast Services (NGBS). NGBS is a global, space-based, communications and navigation service for users of Global Navigation Satellite Systems (GNSS) and the Tracking and Data Relay Satellite System (TDRSS). NGBS will provide an S-band beacon messaging source and radio navigation available to users at orbital altitudes 1400 km and below, increasing the autonomy and resiliency of onboard communication and navigation. NGBS will deliver both one-way radiometric (Doppler and pseudorange) and fast forward data transport services to users. Portions of the overall forward data volume will be allocated for fixed message types while the remaining data volume will be left for user forward command data. The NGBS signal will reside within the 2106.43 MHz spectrum currently allocated for the Space Networks multiple access forward (MAF) service and a live service demonstration is currently being planned via the 2nd and 3rd generation TDRS satellites.
Ilyas, Muhammad; Hong, Beomjin; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok
2016-01-01
This paper provides algorithms to fuse relative and absolute microelectromechanical systems (MEMS) navigation sensors, suitable for micro planetary rovers, to provide a more accurate estimation of navigation information, specifically, attitude and position. Planetary rovers have extremely slow speed (~1 cm/s) and lack conventional navigation sensors/systems, hence the general methods of terrestrial navigation may not be applicable to these applications. While relative attitude and position can be tracked in a way similar to those for ground robots, absolute navigation information is hard to achieve on a remote celestial body, like Moon or Mars, in contrast to terrestrial applications. In this study, two absolute attitude estimation algorithms were developed and compared for accuracy and robustness. The estimated absolute attitude was fused with the relative attitude sensors in a framework of nonlinear filters. The nonlinear Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) were compared in pursuit of better accuracy and reliability in this nonlinear estimation problem, using only on-board low cost MEMS sensors. Experimental results confirmed the viability of the proposed algorithms and the sensor suite, for low cost and low weight micro planetary rovers. It is demonstrated that integrating the relative and absolute navigation MEMS sensors reduces the navigation errors to the desired level. PMID:27223293
Ilyas, Muhammad; Hong, Beomjin; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok
2016-05-23
This paper provides algorithms to fuse relative and absolute microelectromechanical systems (MEMS) navigation sensors, suitable for micro planetary rovers, to provide a more accurate estimation of navigation information, specifically, attitude and position. Planetary rovers have extremely slow speed (~1 cm/s) and lack conventional navigation sensors/systems, hence the general methods of terrestrial navigation may not be applicable to these applications. While relative attitude and position can be tracked in a way similar to those for ground robots, absolute navigation information is hard to achieve on a remote celestial body, like Moon or Mars, in contrast to terrestrial applications. In this study, two absolute attitude estimation algorithms were developed and compared for accuracy and robustness. The estimated absolute attitude was fused with the relative attitude sensors in a framework of nonlinear filters. The nonlinear Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) were compared in pursuit of better accuracy and reliability in this nonlinear estimation problem, using only on-board low cost MEMS sensors. Experimental results confirmed the viability of the proposed algorithms and the sensor suite, for low cost and low weight micro planetary rovers. It is demonstrated that integrating the relative and absolute navigation MEMS sensors reduces the navigation errors to the desired level.
NASA Astrophysics Data System (ADS)
Markelov, V.; Shukalov, A.; Zharinov, I.; Kostishin, M.; Kniga, I.
2016-04-01
The use of the correction course option before aircraft take-off after inertial navigation system (INS) inaccurate alignment based on the platform attitude-and-heading reference system in azimuth is considered in the paper. A course correction is performed based on the track angle defined by the information received from the satellite navigation system (SNS). The course correction includes a calculated track error definition during ground taxiing along straight sections before take-off with its input in the onboard digital computational system like amendment for using in the current flight. The track error calculation is performed by the statistical evaluation of the track angle comparison defined by the SNS information with the current course measured by INS for a given number of measurements on the realizable time interval. The course correction testing results and recommendation application are given in the paper. The course correction based on the information from SNS can be used for improving accuracy characteristics for determining an aircraft path after making accelerated INS preparation concerning inaccurate initial azimuth alignment.
Feasibility of Using Synthetic Aperture Radar to Aid UAV Navigation
Nitti, Davide O.; Bovenga, Fabio; Chiaradia, Maria T.; Greco, Mario; Pinelli, Gianpaolo
2015-01-01
This study explores the potential of Synthetic Aperture Radar (SAR) to aid Unmanned Aerial Vehicle (UAV) navigation when Inertial Navigation System (INS) measurements are not accurate enough to eliminate drifts from a planned trajectory. This problem can affect medium-altitude long-endurance (MALE) UAV class, which permits heavy and wide payloads (as required by SAR) and flights for thousands of kilometres accumulating large drifts. The basic idea is to infer position and attitude of an aerial platform by inspecting both amplitude and phase of SAR images acquired onboard. For the amplitude-based approach, the system navigation corrections are obtained by matching the actual coordinates of ground landmarks with those automatically extracted from the SAR image. When the use of SAR amplitude is unfeasible, the phase content can be exploited through SAR interferometry by using a reference Digital Terrain Model (DTM). A feasibility analysis was carried out to derive system requirements by exploring both radiometric and geometric parameters of the acquisition setting. We showed that MALE UAV, specific commercial navigation sensors and SAR systems, typical landmark position accuracy and classes, and available DTMs lead to estimate UAV coordinates with errors bounded within ±12 m, thus making feasible the proposed SAR-based backup system. PMID:26225977
Feasibility of Using Synthetic Aperture Radar to Aid UAV Navigation.
Nitti, Davide O; Bovenga, Fabio; Chiaradia, Maria T; Greco, Mario; Pinelli, Gianpaolo
2015-07-28
This study explores the potential of Synthetic Aperture Radar (SAR) to aid Unmanned Aerial Vehicle (UAV) navigation when Inertial Navigation System (INS) measurements are not accurate enough to eliminate drifts from a planned trajectory. This problem can affect medium-altitude long-endurance (MALE) UAV class, which permits heavy and wide payloads (as required by SAR) and flights for thousands of kilometres accumulating large drifts. The basic idea is to infer position and attitude of an aerial platform by inspecting both amplitude and phase of SAR images acquired onboard. For the amplitude-based approach, the system navigation corrections are obtained by matching the actual coordinates of ground landmarks with those automatically extracted from the SAR image. When the use of SAR amplitude is unfeasible, the phase content can be exploited through SAR interferometry by using a reference Digital Terrain Model (DTM). A feasibility analysis was carried out to derive system requirements by exploring both radiometric and geometric parameters of the acquisition setting. We showed that MALE UAV, specific commercial navigation sensors and SAR systems, typical landmark position accuracy and classes, and available DTMs lead to estimated UAV coordinates with errors bounded within ±12 m, thus making feasible the proposed SAR-based backup system.
Station Explorer for X-Ray Timing and Navigation Technology Architecture Overview
NASA Technical Reports Server (NTRS)
Hasouneh, Monther Abdel Hamid
2014-01-01
The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission. NICER is a NASA astrophysics Explorer Mission of Opportunity, scheduled for launch in mid-2016, that will be hosted on the International Space Station (ISS) via the ExPRESS Logistics Carrier (ELC). By exploiting the regular pulsations emit-ted by the ultra dense remnants of dead stars, which rotate many hundreds of times per second, SEXTANT will, for the first-time, demonstrate real-time, on-board X-ray pulsar-based navigation is a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond and include the worlds first completely functional system architecture for navigation using X-ray pulsars. In addition, NICER SEXTANT will investigate the suit-ability of these millisecond X-ray pulsars (MSPs) as a Solar System-wide timing infrastructure to rival terrestrial atomic clocks on long timescales. This paper provides a brief overview of the SEXTANT demonstration and the design of the system architecture that consists of the NICER X-ray timing instrument, the SEXTANT flight software and algorithms, supporting ground system, and the GSFC X-ray Navigation Laboratory Testbed (GXLT).
Vetrella, Amedeo Rodi; Fasano, Giancarmine; Accardo, Domenico; Moccia, Antonio
2016-12-17
Autonomous navigation of micro-UAVs is typically based on the integration of low cost Global Navigation Satellite System (GNSS) receivers and Micro-Electro-Mechanical Systems (MEMS)-based inertial and magnetic sensors to stabilize and control the flight. The resulting navigation performance in terms of position and attitude accuracy may not suffice for other mission needs, such as the ones relevant to fine sensor pointing. In this framework, this paper presents a cooperative UAV navigation algorithm that allows a chief vehicle, equipped with inertial and magnetic sensors, a Global Positioning System (GPS) receiver, and a vision system, to improve its navigation performance (in real time or in the post processing phase) exploiting formation flying deputy vehicles equipped with GPS receivers. The focus is set on outdoor environments and the key concept is to exploit differential GPS among vehicles and vision-based tracking (DGPS/Vision) to build a virtual additional navigation sensor whose information is then integrated in a sensor fusion algorithm based on an Extended Kalman Filter. The developed concept and processing architecture are described, with a focus on DGPS/Vision attitude determination algorithm. Performance assessment is carried out on the basis of both numerical simulations and flight tests. In the latter ones, navigation estimates derived from the DGPS/Vision approach are compared with those provided by the onboard autopilot system of a customized quadrotor. The analysis shows the potential of the developed approach, mainly deriving from the possibility to exploit magnetic- and inertial-independent accurate attitude information.
ONBORD (On-Board Navigation of Ballistic ORDnance): Gun-Launched Munitions Flight Controller
2004-08-01
U.S. Army Research Laboratory: Aberdeen Proving Ground, MD, in press. 3. Carden , F.; Jedlicka, R.; Henry, R. Telemetry Systems Engineering, Artech...ATTN SFAE AMO CAS R KIEBLER M MORATZ A HERRERA BLDG 162 SOUTH PICATINNY ARSENAL NJ 07806-5000 1 PROD MGR FOR JOINT LW 155-MM HOW
Fasano, Giancarmine; Accardo, Domenico; Moccia, Antonio; Rispoli, Attilio
2010-01-01
This paper presents an innovative method for estimating the attitude of airborne electro-optical cameras with respect to the onboard autonomous navigation unit. The procedure is based on the use of attitude measurements under static conditions taken by an inertial unit and carrier-phase differential Global Positioning System to obtain accurate camera position estimates in the aircraft body reference frame, while image analysis allows line-of-sight unit vectors in the camera based reference frame to be computed. The method has been applied to the alignment of the visible and infrared cameras installed onboard the experimental aircraft of the Italian Aerospace Research Center and adopted for in-flight obstacle detection and collision avoidance. Results show an angular uncertainty on the order of 0.1° (rms). PMID:22315559
An Evaluation of Mental Workload for Effective Navigation
ERIC Educational Resources Information Center
Murai, Koji; Hayashi, Yuji
2008-01-01
Purpose: This paper aims to propose that the nasal temperature is an effective index to evaluate the mental workload of a navigator for effective navigation. Design/methodology/approach: The evaluation comes from the actual on-board experiment, not simulation. The subject is real bridge teammates; captain, duty officer, and quarter master. The…
Lunar Landing Trajectory Design for Onboard Hazard Detection and Avoidance
NASA Technical Reports Server (NTRS)
Paschall, Steve; Brady, Tye; Sostaric, Ron
2009-01-01
The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project is developing the software and hardware technology needed to support a safe and precise landing for the next generation of lunar missions. ALHAT provides this capability through terrain-relative navigation measurements to enhance global-scale precision, an onboard hazard detection system to select safe landing locations, and an Autonomous Guidance, Navigation, and Control (AGNC) capability to process these measurements and safely direct the vehicle to a landing location. This paper focuses on the key trajectory design issues relevant to providing an onboard Hazard Detection and Avoidance (HDA) capability for the lander. Hazard detection can be accomplished by the crew visually scanning the terrain through a window, a sensor system imaging the terrain, or some combination of both. For ALHAT, this hazard detection activity is provided by a sensor system, which either augments the crew s perception or entirely replaces the crew in the case of a robotic landing. Detecting hazards influences the trajectory design by requiring the proper perspective, range to the landing site, and sufficient time to view the terrain. Following this, the trajectory design must provide additional time to process this information and make a decision about where to safely land. During the final part of the HDA process, the trajectory design must provide sufficient margin to enable a hazard avoidance maneuver. In order to demonstrate the effects of these constraints on the landing trajectory, a tradespace of trajectory designs was created for the initial ALHAT Design Analysis Cycle (ALDAC-1) and each case evaluated with these HDA constraints active. The ALHAT analysis process, described in this paper, narrows down this tradespace and subsequently better defines the trajectory design needed to support onboard HDA. Future ALDACs will enhance this trajectory design by balancing these issues and others in an overall system design process.
First Results from a Hardware-in-the-Loop Demonstration of Closed-Loop Autonomous Formation Flying
NASA Technical Reports Server (NTRS)
Gill, E.; Naasz, Bo; Ebinuma, T.
2003-01-01
A closed-loop system for the demonstration of autonomous satellite formation flying technologies using hardware-in-the-loop has been developed. Making use of a GPS signal simulator with a dual radio frequency outlet, the system includes two GPS space receivers as well as a powerful onboard navigation processor dedicated to the GPS-based guidance, navigation, and control of a satellite formation in real-time. The closed-loop system allows realistic simulations of autonomous formation flying scenarios, enabling research in the fields of tracking and orbit control strategies for a wide range of applications. The autonomous closed-loop formation acquisition and keeping strategy is based on Lyapunov's direct control method as applied to the standard set of Keplerian elements. This approach not only assures global and asymptotic stability of the control but also maintains valuable physical insight into the applied control vectors. Furthermore, the approach can account for system uncertainties and effectively avoids a computationally expensive solution of the two point boundary problem, which renders the concept particularly attractive for implementation in onboard processors. A guidance law has been developed which strictly separates the relative from the absolute motion, thus avoiding the numerical integration of a target trajectory in the onboard processor. Moreover, upon using precise kinematic relative GPS solutions, a dynamical modeling or filtering is avoided which provides for an efficient implementation of the process on an onboard processor. A sample formation flying scenario has been created aiming at the autonomous transition of a Low Earth Orbit satellite formation from an initial along-track separation of 800 m to a target distance of 100 m. Assuming a low-thrust actuator which may be accommodated on a small satellite, a typical control accuracy of less than 5 m has been achieved which proves the applicability of autonomous formation flying techniques to formations of satellites as close as 50 m.
NASA Technical Reports Server (NTRS)
Phatak, A. V.; Lee, M. G.
1985-01-01
The navigation and flight director guidance systems implemented in the NASA/FAA helicopter microwave landing system (MLS) curved approach flight test program is described. Flight test were conducted at the U.S. Navy's Crows Landing facility, using the NASA Ames UH-lH helicopter equipped with the V/STOLAND avionics system. The purpose of these tests was to investigate the feasibility of flying complex, curved and descending approaches to a landing using MLS flight director guidance. A description of the navigation aids used, the avionics system, cockpit instrumentation and on-board navigation equipment used for the flight test is provided. Three generic reference flight paths were developed and flown during the test. They were as follows: U-Turn, S-turn and Straight-In flight profiles. These profiles and their geometries are described in detail. A 3-cue flight director was implemented on the helicopter. A description of the formulation and implementation of the flight director laws is also presented. Performance data and analysis is presented for one pilot conducting the flight director approaches.
Improved Modeling in a Matlab-Based Navigation System
NASA Technical Reports Server (NTRS)
Deutschmann, Julie; Bar-Itzhack, Itzhack; Harman, Rick; Larimore, Wallace E.
1999-01-01
An innovative approach to autonomous navigation is available for low earth orbit satellites. The system is developed in Matlab and utilizes an Extended Kalman Filter (EKF) to estimate the attitude and trajectory based on spacecraft magnetometer and gyro data. Preliminary tests of the system with real spacecraft data from the Rossi X-Ray Timing Explorer Satellite (RXTE) indicate the existence of unmodeled errors in the magnetometer data. Incorporating into the EKF a statistical model that describes the colored component of the effective measurement of the magnetic field vector could improve the accuracy of the trajectory and attitude estimates and also improve the convergence time. This model is identified as a first order Markov process. With the addition of the model, the EKF attempts to identify the non-white components of the noise allowing for more accurate estimation of the original state vector, i.e. the orbital elements and the attitude. Working in Matlab allows for easy incorporation of new models into the EKF and the resulting navigation system is generic and can easily be applied to future missions resulting in an alternative in onboard or ground-based navigation.
Integration of passive driver-assistance systems with on-board vehicle systems
NASA Astrophysics Data System (ADS)
Savchenko, V. V.; Poddubko, S. N.
2018-02-01
Implementation in OIAS such functions as driver’s state monitoring and high-precision calculation of the current navigation coordinates of the vehicle, modularity of the OIAS construction and the possible increase in the functionality through integration with other onboard systems has a promising development future. The development of intelligent transport systems and their components allows setting and solving fundamentally new tasks for the safety of human-to-machine transport systems, and the automatic analysis of heterogeneous information flows provides a synergistic effect. The analysis of cross-modal information exchange in human-machine transport systems, from uniform methodological points of view, will allow us, with an accuracy acceptable for solving applied problems, to form in real time an integrated assessment of the state of the basic components of the human-to-machine system and the dynamics in changing situation-centered environment, including the external environment, in their interrelations.
Vetrella, Amedeo Rodi; Fasano, Giancarmine; Accardo, Domenico; Moccia, Antonio
2016-01-01
Autonomous navigation of micro-UAVs is typically based on the integration of low cost Global Navigation Satellite System (GNSS) receivers and Micro-Electro-Mechanical Systems (MEMS)-based inertial and magnetic sensors to stabilize and control the flight. The resulting navigation performance in terms of position and attitude accuracy may not suffice for other mission needs, such as the ones relevant to fine sensor pointing. In this framework, this paper presents a cooperative UAV navigation algorithm that allows a chief vehicle, equipped with inertial and magnetic sensors, a Global Positioning System (GPS) receiver, and a vision system, to improve its navigation performance (in real time or in the post processing phase) exploiting formation flying deputy vehicles equipped with GPS receivers. The focus is set on outdoor environments and the key concept is to exploit differential GPS among vehicles and vision-based tracking (DGPS/Vision) to build a virtual additional navigation sensor whose information is then integrated in a sensor fusion algorithm based on an Extended Kalman Filter. The developed concept and processing architecture are described, with a focus on DGPS/Vision attitude determination algorithm. Performance assessment is carried out on the basis of both numerical simulations and flight tests. In the latter ones, navigation estimates derived from the DGPS/Vision approach are compared with those provided by the onboard autopilot system of a customized quadrotor. The analysis shows the potential of the developed approach, mainly deriving from the possibility to exploit magnetic- and inertial-independent accurate attitude information. PMID:27999318
Optical Navigation Image of Ganymede
NASA Technical Reports Server (NTRS)
1996-01-01
NASA's Galileo spacecraft, now in orbit around Jupiter, returned this optical navigation image June 3, 1996, showing that the spacecraft is accurately targeted for its first flyby of the giant moon Ganymede on June 27. The missing data in the frame is the result of a special editing feature recently added to the spacecraft's computer to transmit navigation images more quickly. This is first in a series of optical navigation frames, highly edited onboard the spacecraft, that will be used to fine-tune the spacecraft's trajectory as Galileo approaches Ganymede. The image, used for navigation purposes only, is the product of new computer processing capabilities on the spacecraft that allow Galileo to send back only the information required to show the spacecraft is properly targeted and that Ganymede is where navigators calculate it to be. 'This navigation image is totally different from the pictures we'll be taking for scientific study of Ganymede when we get close to it later this month,' said Galileo Project Scientist Dr. Torrence Johnson. On June 27, Galileo will fly just 844 kilometers (524 miles) above Ganymede and return the most detailed, full-frame, high-resolution images and other measurements of the satellite ever obtained. Icy Ganymede is the largest moon in the solar system and three-quarters the size of Mars. It is one of the four large Jovian moons that are special targets of study for the Galileo mission. Of the more than 5 million bits contained in a single image, Galileo performed on-board editing to send back a mere 24,000 bits containing the essential information needed to assure proper targeting. Only the light-to-dark transitions of the crescent Ganymede and reference star locations were transmitted to Earth. The navigation image was taken from a distance of 9.8 million kilometers (6.1 million miles). On June 27th, the spacecraft will be 10,000 times closer to Ganymede.
Online Aerial Terrain Mapping for Ground Robot Navigation
Peterson, John; Chaudhry, Haseeb; Abdelatty, Karim; Bird, John; Kochersberger, Kevin
2018-01-01
This work presents a collaborative unmanned aerial and ground vehicle system which utilizes the aerial vehicle’s overhead view to inform the ground vehicle’s path planning in real time. The aerial vehicle acquires imagery which is assembled into a orthomosaic and then classified. These terrain classes are used to estimate relative navigation costs for the ground vehicle so energy-efficient paths may be generated and then executed. The two vehicles are registered in a common coordinate frame using a real-time kinematic global positioning system (RTK GPS) and all image processing is performed onboard the unmanned aerial vehicle, which minimizes the data exchanged between the vehicles. This paper describes the architecture of the system and quantifies the registration errors between the vehicles. PMID:29461496
Online Aerial Terrain Mapping for Ground Robot Navigation.
Peterson, John; Chaudhry, Haseeb; Abdelatty, Karim; Bird, John; Kochersberger, Kevin
2018-02-20
This work presents a collaborative unmanned aerial and ground vehicle system which utilizes the aerial vehicle's overhead view to inform the ground vehicle's path planning in real time. The aerial vehicle acquires imagery which is assembled into a orthomosaic and then classified. These terrain classes are used to estimate relative navigation costs for the ground vehicle so energy-efficient paths may be generated and then executed. The two vehicles are registered in a common coordinate frame using a real-time kinematic global positioning system (RTK GPS) and all image processing is performed onboard the unmanned aerial vehicle, which minimizes the data exchanged between the vehicles. This paper describes the architecture of the system and quantifies the registration errors between the vehicles.
Forecast of the general aviation air traffic control environment for the 1980's
NASA Technical Reports Server (NTRS)
Hoffman, W. C.; Hollister, W. M.
1976-01-01
The critical information required for the design of a reliable, low cost, advanced avionics system which would enhance the safety and utility of general aviation is stipulated. Sufficient data is accumulated upon which industry can base the design of a reasonably priced system having the capability required by general aviation in and beyond the 1980's. The key features of the Air Traffic Control (ATC) system are: a discrete address beacon system, a separation assurance system, area navigation, a microwave landing system, upgraded ATC automation, airport surface traffic control, a wake vortex avoidance system, flight service stations, and aeronautical satellites. The critical parameters that are necessary for component design are identified. The four primary functions of ATC (control, surveillance, navigation, and communication) and their impact on the onboard avionics system design are assessed.
A Self Contained Method for Safe and Precise Lunar Landing
NASA Technical Reports Server (NTRS)
Paschall, Stephen C., II; Brady, Tye; Cohanim, Babak; Sostaric, Ronald
2008-01-01
The return of humans to the Moon will require increased capability beyond that of the previous Apollo missions. Longer stay times and a greater flexibility with regards to landing locations are among the many improvements planned. A descent and landing system that can land the vehicle more accurately than Apollo with a greater ability to detect and avoid hazards is essential to the development of a Lunar Outpost, and also for increasing the number of potentially reachable Lunar Sortie locations. This descent and landing system should allow landings in more challenging terrain and provide more flexibility with regards to mission timing and lighting considerations, while maintaining safety as the top priority. The lunar landing system under development by the ALHAT (Autonomous precision Landing and Hazard detection Avoidance Technology) project is addressing this by providing terrain-relative navigation measurements to enhance global-scale precision, an onboard hazard-detection system to select safe landing locations, and an Autonomous GNC (Guidance, Navigation, and Control) capability to process these measurements and safely direct the vehicle to this landing location. This ALHAT landing system will enable safe and precise lunar landings without requiring lunar infrastructure in the form of navigation aids or a priori identified hazard-free landing locations. The safe landing capability provided by ALHAT uses onboard active sensing to detect hazards that are large enough to be a danger to the vehicle but too small to be detected from orbit, given currently planned orbital terrain resolution limits. Algorithms to interpret raw active sensor terrain data and generate hazard maps as well as identify safe sites and recalculate new trajectories to those sites are included as part of the ALHAT System. These improvements to descent and landing will help contribute to repeated safe and precise landings for a wide variety of terrain on the Moon.
Chu, Tianxing; Guo, Ningyan; Backén, Staffan; Akos, Dennis
2012-01-01
Low-cost MEMS-based IMUs, video cameras and portable GNSS devices are commercially available for automotive applications and some manufacturers have already integrated such facilities into their vehicle systems. GNSS provides positioning, navigation and timing solutions to users worldwide. However, signal attenuation, reflections or blockages may give rise to positioning difficulties. As opposed to GNSS, a generic IMU, which is independent of electromagnetic wave reception, can calculate a high-bandwidth navigation solution, however the output from a self-contained IMU accumulates errors over time. In addition, video cameras also possess great potential as alternate sensors in the navigation community, particularly in challenging GNSS environments and are becoming more common as options in vehicles. Aiming at taking advantage of these existing onboard technologies for ground vehicle navigation in challenging environments, this paper develops an integrated camera/IMU/GNSS system based on the extended Kalman filter (EKF). Our proposed integration architecture is examined using a live dataset collected in an operational traffic environment. The experimental results demonstrate that the proposed integrated system provides accurate estimations and potentially outperforms the tightly coupled GNSS/IMU integration in challenging environments with sparse GNSS observations.
Monocular Camera/IMU/GNSS Integration for Ground Vehicle Navigation in Challenging GNSS Environments
Chu, Tianxing; Guo, Ningyan; Backén, Staffan; Akos, Dennis
2012-01-01
Low-cost MEMS-based IMUs, video cameras and portable GNSS devices are commercially available for automotive applications and some manufacturers have already integrated such facilities into their vehicle systems. GNSS provides positioning, navigation and timing solutions to users worldwide. However, signal attenuation, reflections or blockages may give rise to positioning difficulties. As opposed to GNSS, a generic IMU, which is independent of electromagnetic wave reception, can calculate a high-bandwidth navigation solution, however the output from a self-contained IMU accumulates errors over time. In addition, video cameras also possess great potential as alternate sensors in the navigation community, particularly in challenging GNSS environments and are becoming more common as options in vehicles. Aiming at taking advantage of these existing onboard technologies for ground vehicle navigation in challenging environments, this paper develops an integrated camera/IMU/GNSS system based on the extended Kalman filter (EKF). Our proposed integration architecture is examined using a live dataset collected in an operational traffic environment. The experimental results demonstrate that the proposed integrated system provides accurate estimations and potentially outperforms the tightly coupled GNSS/IMU integration in challenging environments with sparse GNSS observations. PMID:22736999
Multiple beacons for supporting lunar landing navigation
NASA Astrophysics Data System (ADS)
Theil, Stephan; Bora, Leonardo
2018-02-01
The exploration and potential future exploitation of solar system bodies requires technologies for precise and safe landings. Current navigation systems for landing probes are relying on a combination of inertial and optical sensor measurements to determine the current flight state with respect to the target body and the desired landing site. With a future transition from single exploration missions to more frequent first exploration and then exploitation missions, the implementation and operation of these missions changes, since it can be expected that a ground infrastructure on the target body is available in the vicinity of the landing site. In a previous paper, the impact of a single ground-based beacon on the navigation performance was investigated depending on the type of radiometric measurements and on the location of the beacon with respect to the landing site. This paper extends this investigation on options for ground-based multiple beacons supporting the on-board navigation system. It analyzes the impact on the achievable navigation accuracy. For that purpose, the paper introduces briefly the existing navigation architecture based on optical navigation and its extension with radiometric measurements. The same scenario of lunar landing as in the previous paper is simulated. The results are analyzed and discussed. They show a single beacon at a large distance along the landing trajectory and multiple beacons close to the landing site can improve the navigation performance. The results show how large the landing area can be increased where a sufficient navigation performance is achieved using the beacons.
Autonomous Flight Safety System
NASA Technical Reports Server (NTRS)
Ferrell, Bob; Santuro, Steve; Simpson, James; Zoerner, Roger; Bull, Barton; Lanzi, Jim
2004-01-01
Autonomous Flight Safety System (AFSS) is an independent flight safety system designed for small to medium sized expendable launch vehicles launching from or needing range safety protection while overlying relatively remote locations. AFSS replaces the need for a man-in-the-loop to make decisions for flight termination. AFSS could also serve as the prototype for an autonomous manned flight crew escape advisory system. AFSS utilizes onboard sensors and processors to emulate the human decision-making process using rule-based software logic and can dramatically reduce safety response time during critical launch phases. The Range Safety flight path nominal trajectory, its deviation allowances, limit zones and other flight safety rules are stored in the onboard computers. Position, velocity and attitude data obtained from onboard global positioning system (GPS) and inertial navigation system (INS) sensors are compared with these rules to determine the appropriate action to ensure that people and property are not jeopardized. The final system will be fully redundant and independent with multiple processors, sensors, and dead man switches to prevent inadvertent flight termination. AFSS is currently in Phase III which includes updated algorithms, integrated GPS/INS sensors, large scale simulation testing and initial aircraft flight testing.
NASA Astrophysics Data System (ADS)
Theil, S.; Ammann, N.; Andert, F.; Franz, T.; Krüger, H.; Lehner, H.; Lingenauber, M.; Lüdtke, D.; Maass, B.; Paproth, C.; Wohlfeil, J.
2018-03-01
Since 2010 the German Aerospace Center is working on the project Autonomous Terrain-based Optical Navigation (ATON). Its objective is the development of technologies which allow autonomous navigation of spacecraft in orbit around and during landing on celestial bodies like the Moon, planets, asteroids and comets. The project developed different image processing techniques and optical navigation methods as well as sensor data fusion. The setup—which is applicable to many exploration missions—consists of an inertial measurement unit, a laser altimeter, a star tracker and one or multiple navigation cameras. In the past years, several milestones have been achieved. It started with the setup of a simulation environment including the detailed simulation of camera images. This was continued by hardware-in-the-loop tests in the Testbed for Robotic Optical Navigation (TRON) where images were generated by real cameras in a simulated downscaled lunar landing scene. Data were recorded in helicopter flight tests and post-processed in real-time to increase maturity of the algorithms and to optimize the software. Recently, two more milestones have been achieved. In late 2016, the whole navigation system setup was flying on an unmanned helicopter while processing all sensor information onboard in real time. For the latest milestone the navigation system was tested in closed-loop on the unmanned helicopter. For that purpose the ATON navigation system provided the navigation state for the guidance and control of the unmanned helicopter replacing the GPS-based standard navigation system. The paper will give an introduction to the ATON project and its concept. The methods and algorithms of ATON are briefly described. The flight test results of the latest two milestones are presented and discussed.
On-board computational efficiency in real time UAV embedded terrain reconstruction
NASA Astrophysics Data System (ADS)
Partsinevelos, Panagiotis; Agadakos, Ioannis; Athanasiou, Vasilis; Papaefstathiou, Ioannis; Mertikas, Stylianos; Kyritsis, Sarantis; Tripolitsiotis, Achilles; Zervos, Panagiotis
2014-05-01
In the last few years, there is a surge of applications for object recognition, interpretation and mapping using unmanned aerial vehicles (UAV). Specifications in constructing those UAVs are highly diverse with contradictory characteristics including cost-efficiency, carrying weight, flight time, mapping precision, real time processing capabilities, etc. In this work, a hexacopter UAV is employed for near real time terrain mapping. The main challenge addressed is to retain a low cost flying platform with real time processing capabilities. The UAV weight limitation affecting the overall flight time, makes the selection of the on-board processing components particularly critical. On the other hand, surface reconstruction, as a computational demanding task, calls for a highly demanding processing unit on board. To merge these two contradicting aspects along with customized development, a System on a Chip (SoC) integrated circuit is proposed as a low-power, low-cost processor, which natively supports camera sensors and positioning and navigation systems. Modern SoCs, such as Omap3530 or Zynq, are classified as heterogeneous devices and provide a versatile platform, allowing access to both general purpose processors, such as the ARM11, as well as specialized processors, such as a digital signal processor and floating field-programmable gate array. A UAV equipped with the proposed embedded processors, allows on-board terrain reconstruction using stereo vision in near real time. Furthermore, according to the frame rate required, additional image processing may concurrently take place, such as image rectification andobject detection. Lastly, the onboard positioning and navigation (e.g., GNSS) chip may further improve the quality of the generated map. The resulting terrain maps are compared to ground truth geodetic measurements in order to access the accuracy limitations of the overall process. It is shown that with our proposed novel system,there is much potential in computational efficiency on board and in optimized time constraints.
ERIC Educational Resources Information Center
Murai, Koji; Wakida, Shin-Ichi; Miyado, Takashi; Fukushi, Keiichi; Hayashi, Yuji; Stone, Laurie C.
2009-01-01
Purpose: The purpose of this paper is to propose that the measurement of salivary amylase activity is an effective index to evaluate the stress of a ship navigator for safe navigation training and education. Design/methodology/approach: Evaluation comes from the simulator and actual on-board experiments. The subjects are real captains who have…
Method and system for providing autonomous control of a platform
NASA Technical Reports Server (NTRS)
Seelinger, Michael J. (Inventor); Yoder, John-David (Inventor)
2012-01-01
The present application provides a system for enabling instrument placement from distances on the order of five meters, for example, and increases accuracy of the instrument placement relative to visually-specified targets. The system provides precision control of a mobile base of a rover and onboard manipulators (e.g., robotic arms) relative to a visually-specified target using one or more sets of cameras. The system automatically compensates for wheel slippage and kinematic inaccuracy ensuring accurate placement (on the order of 2 mm, for example) of the instrument relative to the target. The system provides the ability for autonomous instrument placement by controlling both the base of the rover and the onboard manipulator using a single set of cameras. To extend the distance from which the placement can be completed to nearly five meters, target information may be transferred from navigation cameras (used for long-range) to front hazard cameras (used for positioning the manipulator).
Systematic methods for knowledge acquisition and expert system development
NASA Technical Reports Server (NTRS)
Belkin, Brenda L.; Stengel, Robert F.
1991-01-01
Nine cooperating rule-based systems, collectively called AUTOCREW, were designed to automate functions and decisions associated with a combat aircraft's subsystem. The organization of tasks within each system is described; performance metrics were developed to evaluate the workload of each rule base, and to assess the cooperation between the rule-bases. Each AUTOCREW subsystem is composed of several expert systems that perform specific tasks. AUTOCREW's NAVIGATOR was analyzed in detail to understand the difficulties involved in designing the system and to identify tools and methodologies that ease development. The NAVIGATOR determines optimal navigation strategies from a set of available sensors. A Navigation Sensor Management (NSM) expert system was systematically designed from Kalman filter covariance data; four ground-based, a satellite-based, and two on-board INS-aiding sensors were modeled and simulated to aid an INS. The NSM Expert was developed using the Analysis of Variance (ANOVA) and the ID3 algorithm. Navigation strategy selection is based on an RSS position error decision metric, which is computed from the covariance data. Results show that the NSM Expert predicts position error correctly between 45 and 100 percent of the time for a specified navaid configuration and aircraft trajectory. The NSM Expert adapts to new situations, and provides reasonable estimates of hybrid performance. The systematic nature of the ANOVA/ID3 method makes it broadly applicable to expert system design when experimental or simulation data is available.
Space Shuttle Earth Observation sensors pointing and stabilization requirements study
NASA Technical Reports Server (NTRS)
1976-01-01
The shuttle orbiter inertial measurement unit (IMU), located in the orbiter cabin, is used to supply inertial attitude reference signals; and, in conjunction with the onboard navigation system, can provide a pointing capability of the navigation base accurate to within plus or minus 0.5 deg for earth viewing missions. This pointing accuracy can degrade to approximately plus or minus 2.0 deg for payloads located in the aft bay due to structural flexure of the shuttle vehicle, payload structural and mounting misalignments, and calibration errors with respect to the navigation base. Drawbacks to obtaining pointing accuracy by using the orbiter RCS jets are discussed. Supplemental electromechanical pointing systems are developed to provide independent pointing for individual sensors, or sensor groupings. The missions considered and the sensors required for these missions and the parameters of each sensor are described. Assumptions made to derive pointing and stabilization requirements are delineated.
SEXTANT X-Ray Pulsar Navigation Demonstration: Flight System and Test Results
NASA Technical Reports Server (NTRS)
Winternitz, Luke; Mitchell, Jason W.; Hassouneh, Munther A.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven;
2016-01-01
The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission. NICER is a NASA Explorer Mission of Opportunity that will be hosted on the International Space Station (ISS). SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper gives an overview of the SEXTANT system architecture and describes progress prior to environmental testing of the NICER flight instrument. It provides descriptions and development status of the SEXTANT flight software and ground system, as well as detailed description and results from the flight software functional and performance testing within the high-fidelity Goddard Space Flight Center (GSFC) X-ray Navigation Laboratory Testbed (GXLT) software and hardware simulation environment. Hardware-in-the-loop simulation results are presented, using the engineering model of the NICER timing electronics and the GXLT pulsar simulator-the GXLT precisely controls NASA GSFC's unique Modulated X-ray Source to produce X-rays that make the NICER detector electronics appear as if they were aboard the ISS viewing a sequence of millisecond pulsars
SEXTANT X-Ray Pulsar Navigation Demonstration: Flight System and Test Results
NASA Technical Reports Server (NTRS)
Winternitz, Luke M. B.; Mitchell, Jason W.; Hassouneh, Munther A.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven;
2016-01-01
The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission. NICER is a NASA Explorer Mission of Opportunity that will be hosted on the International Space Station (ISS). SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper gives an overview of the SEXTANT system architecture and describes progress prior to environmental testing of the NICER flight instrument. It provides descriptions and development status of the SEXTANT flight software and ground system, as well as detailed description and results from the flight software functional and performance testing within the highfidelity Goddard Space Flight Center (GSFC) X-ray Navigation Laboratory Testbed (GXLT) software and hardware simulation environment. Hardware-in-the-loop simulation results are presented, using the engineering model of the NICER timing electronics and the GXLT pulsar simulator-the GXLT precisely controls NASA GSFC's unique Modulated X-ray Source to produce X-rays that make the NICER detector electronics appear as if they were aboard the ISS viewing a sequence of millisecond pulsars.
An Autonomous Flight Safety System
2008-11-01
are taken. AFSS can take vehicle navigation data from redundant onboard sensors and make flight termination decisions using software-based rules...implemented on redundant flight processors. By basing these decisions on actual Instantaneous Impact Predictions and by providing for an arbitrary...number of mission rules, it is the contention of the AFSS development team that the decision making process used by Missile Flight Control Officers
NASA Technical Reports Server (NTRS)
Jafri, Madiha J.; Ely, Jay J.; Vahala, Linda
2004-01-01
The use of Portable Electronic Devices (PEDs) onboard commercial airliners is considered to be desirable for many passengers, However, the possibility of Electromagnetic Interference (EMI) caused by these devices may affect flight safety. PEDs may act as transmitters, both intentional and unintentional, and their signals may be detected by the various navigation and communication radios onboard the aircraft. Interference Pathloss (IPL) is defined as the measurement of the radiated field coupling between passenger cabin locations and aircraft communication and navigation receivers, via their antennas. This paper first focuses on IPL measurements for GPS, taken on an out-of-service United Airlines B-737-200. IPL pattern symmetry is verified by analyzing data obtained on the windows of the Port as well as the Starboard side of the aircraft. Further graphical analysis is performed with the door and exit seams sealed with conductive tape in order to better understand the effects of shielding on IPL patterns. Shielding effects are analyzed from window data for VHF and LOC systems. In addition the shielding benefit of applying electrically conductive film to aircraft windows is evaluated for GPS and TCAS systems.
Single-Frequency GPS Relative Navigation in a High Ionosphere Orbital Environment
NASA Technical Reports Server (NTRS)
Conrad, Patrick R.; Naasz, Bo J.
2007-01-01
The Global Positioning System (GPS) provides a convenient source for space vehicle relative navigation measurements, especially for low Earth orbit formation flying and autonomous rendezvous mission concepts. For single-frequency GPS receivers, ionospheric path delay can be a significant error source if not properly mitigated. In particular, ionospheric effects are known to cause significant radial position error bias and add dramatically to relative state estimation error if the onboard navigation software does not force the use of measurements from common or shared GPS space vehicles. Results from GPS navigation simulations are presented for a pair of space vehicles flying in formation and using GPS pseudorange measurements to perform absolute and relative orbit determination. With careful measurement selection techniques relative state estimation accuracy to less than 20 cm with standard GPS pseudorange processing and less than 10 cm with single-differenced pseudorange processing is shown.
Orbit Determination and Navigation Software Testing for the Mars Reconnaissance Orbiter
NASA Technical Reports Server (NTRS)
Pini, Alex
2011-01-01
During the extended science phase of the Mars Reconnaissance Orbiter's lifecycle, the operational duties pertaining to navigation primarily involve orbit determination. The orbit determination process utilizes radiometric tracking data and is used for the prediction and reconstruction of MRO's trajectories. Predictions are done twice per week for ephemeris updates on-board the spacecraft and for planning purposes. Orbit Trim Maneuvers (OTM-s) are also designed using the predicted trajectory. Reconstructions, which incorporate a batch estimator, provide precise information about the spacecraft state to be synchronized with scientific measurements. These tasks were conducted regularly to validate the results obtained by the MRO Navigation Team. Additionally, the team is in the process of converting to newer versions of the navigation software and operating system. The capability to model multiple densities in the Martian atmosphere is also being implemented. However, testing outputs among these different configurations was necessary to ensure compliance to a satisfactory degree.
Meng, Zhijun; Yang, Jun; Guo, Xiye; Zhou, Yongbin
2017-01-01
Global Navigation Satellite System performance can be significantly enhanced by introducing inter-satellite links (ISLs) in navigation constellation. The improvement in position, velocity, and time accuracy as well as the realization of autonomous functions requires ISL distance measurement data as the original input. To build a high-performance ISL, the ranging consistency among navigation satellites is an urgent problem to be solved. In this study, we focus on the variation in the ranging delay caused by the sensitivity of the ISL payload equipment to the ambient temperature in space and propose a simple and low-power temperature-sensing ranging compensation sensor suitable for onboard equipment. The experimental results show that, after the temperature-sensing ranging compensation of the ISL payload equipment, the ranging consistency becomes less than 0.2 ns when the temperature change is 90 °C. PMID:28608809
Doppler lidar sensor for precision navigation in GPS-deprived environment
NASA Astrophysics Data System (ADS)
Amzajerdian, F.; Pierrottet, D. F.; Hines, G. D.; Petway, L. B.; Barnes, B. W.
2013-05-01
Landing mission concepts that are being developed for exploration of solar system bodies are increasingly ambitious in their implementations and objectives. Most of these missions require accurate position and velocity data during their descent phase in order to ensure safe, soft landing at the pre-designated sites. Data from the vehicle's Inertial Measurement Unit will not be sufficient due to significant drift error after extended travel time in space. Therefore, an onboard sensor is required to provide the necessary data for landing in the GPS-deprived environment of space. For this reason, NASA Langley Research Center has been developing an advanced Doppler lidar sensor capable of providing accurate and reliable data suitable for operation in the highly constrained environment of space. The Doppler lidar transmits three laser beams in different directions toward the ground. The signal from each beam provides the platform velocity and range to the ground along the laser line-of-sight (LOS). The six LOS measurements are then combined in order to determine the three components of the vehicle velocity vector, and to accurately measure altitude and attitude angles relative to the local ground. These measurements are used by an autonomous Guidance, Navigation, and Control system to accurately navigate the vehicle from a few kilometers above the ground to the designated location and to execute a gentle touchdown. A prototype version of our lidar sensor has been completed for a closed-loop demonstration onboard a rocket-powered terrestrial free-flyer vehicle.
Doppler Lidar Sensor for Precision Navigation in GPS-Deprived Environment
NASA Technical Reports Server (NTRS)
Amzajerdian, F.; Pierrottet, D. F.; Hines, G. D.; Hines, G. D.; Petway, L. B.; Barnes, B. W.
2013-01-01
Landing mission concepts that are being developed for exploration of solar system bodies are increasingly ambitious in their implementations and objectives. Most of these missions require accurate position and velocity data during their descent phase in order to ensure safe, soft landing at the pre-designated sites. Data from the vehicle's Inertial Measurement Unit will not be sufficient due to significant drift error after extended travel time in space. Therefore, an onboard sensor is required to provide the necessary data for landing in the GPS-deprived environment of space. For this reason, NASA Langley Research Center has been developing an advanced Doppler lidar sensor capable of providing accurate and reliable data suitable for operation in the highly constrained environment of space. The Doppler lidar transmits three laser beams in different directions toward the ground. The signal from each beam provides the platform velocity and range to the ground along the laser line-of-sight (LOS). The six LOS measurements are then combined in order to determine the three components of the vehicle velocity vector, and to accurately measure altitude and attitude angles relative to the local ground. These measurements are used by an autonomous Guidance, Navigation, and Control system to accurately navigate the vehicle from a few kilometers above the ground to the designated location and to execute a gentle touchdown. A prototype version of our lidar sensor has been completed for a closed-loop demonstration onboard a rocket-powered terrestrial free-flyer vehicle.
NASA Astrophysics Data System (ADS)
Shirenin, A. M.; Mazurova, E. M.; Bagrov, A. V.
2016-11-01
The paper presents a mathematical algorithm for processing an array of angular measurements of light beacons on images of the lunar surface onboard a polar artificial lunar satellite (PALS) during the Luna-Glob mission and coordinate-time referencing of the PALS for the development of reference selenocentric coordinate systems. The algorithm makes it possible to obtain angular positions of point light beacons located on the surface of the Moon in selenocentric celestial coordinates. The operation of measurement systems that determine the position and orientation of the PALS during its active existence have been numerically simulated. Recommendations have been made for the optimal use of different types of measurements, including ground radio trajectory measurements, navigational star sensors based on the onboard star catalog, gyroscopic orientation systems, and space videos of the lunar surface.
A Consistent EPIC Visible Channel Calibration Using VIIRS and MODIS as a Reference.
NASA Astrophysics Data System (ADS)
Haney, C.; Doelling, D. R.; Minnis, P.; Bhatt, R.; Scarino, B. R.; Gopalan, A.
2017-12-01
The Earth Polychromatic Imaging Camera (EPIC) aboard the Deep Space Climate Observatory (DSCOVR) satellite constantly images the sunlit disk of Earth from the Lagrange-1 (L1) point in 10 spectral channels spanning the UV, VIS, and NIR spectrums. Recently, the DSCOVR EPIC team has publicly released version 2 dataset, which has implemented improved navigation, stray-light correction, and flat-fielding of the CCD array. The EPIC 2-year data record must be well-calibrated for consistent cloud, aerosol, trace gas, land use and other retrievals. Because EPIC lacks onboard calibrators, the observations made by EPIC channels must be calibrated vicariously using the coincident measurements from radiometrically stable instruments that have onboard calibration systems. MODIS and VIIRS are best-suited instruments for this task as they contain similar spectral bands that are well-calibrated onboard using solar diffusers and lunar tracking. We have previously calibrated the EPIC version 1 dataset by using EPIC and VIIRS angularly matched radiance pairs over both all-sky ocean and deep convective clouds (DCC). We noted that the EPIC image required navigations adjustments, and that the EPIC stray-light correction provided an offset term closer to zero based on the linear regression of the EPIC and VIIRS ray-matched radiance pairs. We will evaluate the EPIC version 2 navigation and stray-light improvements using the same techniques. In addition, we will monitor the EPIC channel calibration over the two years for any temporal degradation or anomalous behavior. These two calibration methods will be further validated using desert and DCC invariant Earth targets. The radiometric characterization of the selected invariant targets is performed using multiple years of MODIS and VIIRS measurements. Results of these studies will be shown at the conference.
A Consistent EPIC Visible Channel Calibration using VIIRS and MODIS as a Reference
NASA Technical Reports Server (NTRS)
Haney, C. O.; Doelling, D. R.; Minnis, P.; Bhatt, R.; Scarino, B. R.; Gopalan, A.
2017-01-01
The Earth Polychromatic Imaging Camera (EPIC) aboard the Deep Space Climate Observatory (DSCOVR) satellite constantly images the sunlit disk of Earth from the Lagrange-1 (L1) point in 10 spectral channels spanning the UV, VIS, and NIR spectrums. Recently, the DSCOVR EPIC team has publicly released version 2 dataset, which has implemented improved navigation, stray-light correction, and flat-fielding of the CCD array. The EPIC 2-year data record must be well-calibrated for consistent cloud, aerosol, trace gas, land use and other retrievals. Because EPIC lacks onboard calibrators, the observations made by EPIC channels must be calibrated vicariously using the coincident measurements from radiometrically stable instruments that have onboard calibration systems. MODIS and VIIRS are best-suited instruments for this task as they contain similar spectral bands that are well-calibrated onboard using solar diffusers and lunar tracking. We have previously calibrated the EPIC version 1 dataset by using EPIC and VIIRS angularly matched radiance pairs over both all-sky ocean and deep convective clouds (DCC). We noted that the EPIC image required navigations adjustments, and that the EPIC stray-light correction provided an offset term closer to zero based on the linear regression of the EPIC and VIIRS ray-matched radiance pairs. We will evaluate the EPIC version 2 navigation and stray-light improvements using the same techniques. In addition, we will monitor the EPIC channel calibration over the two years for any temporal degradation or anomalous behavior. These two calibration methods will be further validated using desert and DCC invariant Earth targets. The radiometric characterization of the selected invariant targets is performed using multiple years of MODIS and VIIRS measurements. Results of these studies will be shown at the conference.
Harnessing bistability for directional propulsion of soft, untethered robots.
Chen, Tian; Bilal, Osama R; Shea, Kristina; Daraio, Chiara
2018-05-29
In most macroscale robotic systems, propulsion and controls are enabled through a physical tether or complex onboard electronics and batteries. A tether simplifies the design process but limits the range of motion of the robot, while onboard controls and power supplies are heavy and complicate the design process. Here, we present a simple design principle for an untethered, soft swimming robot with preprogrammed, directional propulsion without a battery or onboard electronics. Locomotion is achieved by using actuators that harness the large displacements of bistable elements triggered by surrounding temperature changes. Powered by shape memory polymer (SMP) muscles, the bistable elements in turn actuate the robot's fins. Our robots are fabricated using a commercially available 3D printer in a single print. As a proof of concept, we show the ability to program a vessel, which can autonomously deliver a cargo and navigate back to the deployment point.
Autonomous Vision Navigation for Spacecraft in Lunar Orbit
NASA Astrophysics Data System (ADS)
Bader, Nolan A.
NASA aims to achieve unprecedented navigational reliability for the first manned lunar mission of the Orion spacecraft in 2023. A technique for accomplishing this is to integrate autonomous feature tracking as an added means of improving position and velocity estimation. In this thesis, a template matching algorithm and optical sensor are tested onboard three simulated lunar trajectories using linear covariance techniques under various conditions. A preliminary characterization of the camera gives insight into its ability to determine azimuth and elevation angles to points on the surface of the Moon. A navigation performance analysis shows that an optical camera sensor can aid in decreasing position and velocity errors, particularly in a loss of communication scenario. Furthermore, it is found that camera quality and computational capability are driving factors affecting the performance of such a system.
A study of space shuttle energy management, approach and landing analysis
NASA Technical Reports Server (NTRS)
Morth, R.
1973-01-01
The steering system of the space shuttle vehicle is presented for the several hundred miles of flight preceding landing. The guidance scheme is characterized by a spiral turn to dissipate excess potential energy (altitude) prior to a standard straight-in final approach. In addition, the system features pilot oriented control, drag brakes, phugoid damping, and a navigational capacity founded upon an inertial measurement unit and an on-board computer. Analytic formulas are used to calculate, represent, and insure the workability of the system's specifications
Space shuttle post-entry and landing analysis. Volume 1: Candidate system evaluations
NASA Technical Reports Server (NTRS)
Crawford, B. S.; Duiven, E. M.
1973-01-01
The general purpose of this study is to aid in the evaluation and design of multi-sensor navigation schemes proposed for the orbiter. The scope of the effort is limited to the post-entry, energy management, and approach and landing mission phases. One candidate system based on conventional navigation aids is illustrated including two DME (Distance Measuring Equipment) stations and ILS (Instrument Landing System) glide slope and localizer antennas. Some key elements of the system not shown are the onboard IMUs (Inertial Measurement Units), altimeters, and a computer. The latter is programmed to mix together (filter) the IMU data and the externally-derived data. A completely automatic, all-weather landing capability is required. Since no air-breathing engines will be carried on orbital flights, there will be no chance to go around and try again following a missed approach.
Using Onboard Telemetry for MAVEN Orbit Determination
NASA Technical Reports Server (NTRS)
Lam, Try; Trawny, Nikolas; Lee, Clifford
2013-01-01
Determination of the spacecraft state has been traditional done using radiometric tracking data before and after the atmosphere drag pass. This paper describes our approach and results to include onboard telemetry measurements in addition to radiometric observables to refine the reconstructed trajectory estimate for the Mars Atmosphere and Volatile Evolution Mission (MAVEN). Uncertainties in the Mars atmosphere models, combined with non-continuous tracking degrade navigation accuracy, making MAVEN a key candidate for using onboard telemetry data to help complement its orbit determination process.
Optimizing Terminal Conditions Using Geometric Guidance for Low-Control Authority Munitions
2008-06-01
Lowest altitude allowable for maximum canard deflection per unit of acceleration constant hT δ g Canard deflection per unit of acceleration transition...target within that range window in less than five minutes from time of fire [17]. The launch platform can supply the munition with some preflight...linear 7. The information supplied by the onboard navigation system has no errors 8. The control system is always able to generate the exact amount
A low-cost test-bed for real-time landmark tracking
NASA Astrophysics Data System (ADS)
Csaszar, Ambrus; Hanan, Jay C.; Moreels, Pierre; Assad, Christopher
2007-04-01
A low-cost vehicle test-bed system was developed to iteratively test, refine and demonstrate navigation algorithms before attempting to transfer the algorithms to more advanced rover prototypes. The platform used here was a modified radio controlled (RC) car. A microcontroller board and onboard laptop computer allow for either autonomous or remote operation via a computer workstation. The sensors onboard the vehicle represent the types currently used on NASA-JPL rover prototypes. For dead-reckoning navigation, optical wheel encoders, a single axis gyroscope, and 2-axis accelerometer were used. An ultrasound ranger is available to calculate distance as a substitute for the stereo vision systems presently used on rovers. The prototype also carries a small laptop computer with a USB camera and wireless transmitter to send real time video to an off-board computer. A real-time user interface was implemented that combines an automatic image feature selector, tracking parameter controls, streaming video viewer, and user generated or autonomous driving commands. Using the test-bed, real-time landmark tracking was demonstrated by autonomously driving the vehicle through the JPL Mars yard. The algorithms tracked rocks as waypoints. This generated coordinates calculating relative motion and visually servoing to science targets. A limitation for the current system is serial computing-each additional landmark is tracked in order-but since each landmark is tracked independently, if transferred to appropriate parallel hardware, adding targets would not significantly diminish system speed.
Autonomous Navigation of Small Uavs Based on Vehicle Dynamic Model
NASA Astrophysics Data System (ADS)
Khaghani, M.; Skaloud, J.
2016-03-01
This paper presents a novel approach to autonomous navigation for small UAVs, in which the vehicle dynamic model (VDM) serves as the main process model within the navigation filter. The proposed method significantly increases the accuracy and reliability of autonomous navigation, especially for small UAVs with low-cost IMUs on-board. This is achieved with no extra sensor added to the conventional INS/GNSS setup. This improvement is of special interest in case of GNSS outages, where inertial coasting drifts very quickly. In the proposed architecture, the solution to VDM equations provides the estimate of position, velocity, and attitude, which is updated within the navigation filter based on available observations, such as IMU data or GNSS measurements. The VDM is also fed with the control input to the UAV, which is available within the control/autopilot system. The filter is capable of estimating wind velocity and dynamic model parameters, in addition to navigation states and IMU sensor errors. Monte Carlo simulations reveal major improvements in navigation accuracy compared to conventional INS/GNSS navigation system during the autonomous phase, when satellite signals are not available due to physical obstruction or electromagnetic interference for example. In case of GNSS outages of a few minutes, position and attitude accuracy experiences improvements of orders of magnitude compared to inertial coasting. It means that during such scenario, the position-velocity-attitude (PVA) determination is sufficiently accurate to navigate the UAV to a home position without any signal that depends on vehicle environment.
Relative Terrain Imaging Navigation (RETINA) Tool for the Asteroid Redirect Robotic Mission (ARRM)
NASA Technical Reports Server (NTRS)
Wright, Cinnamon A.; Van Eepoel, John; Liounis, Andrew; Shoemaker, Michael; DeWeese, Keith; Getzandanner, Kenneth
2016-01-01
As a part of the NASA initiative to collect a boulder off of an asteroid and return it to Lunar orbit, the Satellite Servicing Capabilities Office (SSCO) and NASA GSFC are developing an on-board relative terrain imaging navigation algorithm for the Asteroid Redirect Robotic Mission (ARRM). After performing several flybys and dry runs to verify and refine the shape, spin, and gravity models and obtain centimeter level imagery, the spacecraft will descend to the surface of the asteroid to capture a boulder and return it to Lunar Orbit. The algorithm implements Stereophotoclinometry methods to register landmarks with images taken onboard the spacecraft, and use these measurements to estimate the position and orientation of the spacecraft with respect to the asteroid. This paper will present an overview of the ARRM GN&C system and concept of operations as well as a description of the algorithm and its implementation. These techniques will be demonstrated for the descent to the surface of the proposed asteroid of interest, 2008 EV5, and preliminary results will be shown.
NASA Astrophysics Data System (ADS)
Müller, M. S.; Urban, S.; Jutzi, B.
2017-08-01
The number of unmanned aerial vehicles (UAVs) is increasing since low-cost airborne systems are available for a wide range of users. The outdoor navigation of such vehicles is mostly based on global navigation satellite system (GNSS) methods to gain the vehicles trajectory. The drawback of satellite-based navigation are failures caused by occlusions and multi-path interferences. Beside this, local image-based solutions like Simultaneous Localization and Mapping (SLAM) and Visual Odometry (VO) can e.g. be used to support the GNSS solution by closing trajectory gaps but are computationally expensive. However, if the trajectory estimation is interrupted or not available a re-localization is mandatory. In this paper we will provide a novel method for a GNSS-free and fast image-based pose regression in a known area by utilizing a small convolutional neural network (CNN). With on-board processing in mind, we employ a lightweight CNN called SqueezeNet and use transfer learning to adapt the network to pose regression. Our experiments show promising results for GNSS-free and fast localization.
Autonomous Navigation Using Celestial Objects
NASA Technical Reports Server (NTRS)
Folta, David; Gramling, Cheryl; Leung, Dominic; Belur, Sheela; Long, Anne
1999-01-01
In the twenty-first century, National Aeronautics and Space Administration (NASA) Enterprises envision frequent low-cost missions to explore the solar system, observe the universe, and study our planet. Satellite autonomy is a key technology required to reduce satellite operating costs. The Guidance, Navigation, and Control Center (GNCC) at the Goddard Space Flight Center (GSFC) currently sponsors several initiatives associated with the development of advanced spacecraft systems to provide autonomous navigation and control. Autonomous navigation has the potential both to increase spacecraft navigation system performance and to reduce total mission cost. By eliminating the need for routine ground-based orbit determination and special tracking services, autonomous navigation can streamline spacecraft ground systems. Autonomous navigation products can be included in the science telemetry and forwarded directly to the scientific investigators. In addition, autonomous navigation products are available onboard to enable other autonomous capabilities, such as attitude control, maneuver planning and orbit control, and communications signal acquisition. Autonomous navigation is required to support advanced mission concepts such as satellite formation flying. GNCC has successfully developed high-accuracy autonomous navigation systems for near-Earth spacecraft using NASA's space and ground communications systems and the Global Positioning System (GPS). Recently, GNCC has expanded its autonomous navigation initiative to include satellite orbits that are beyond the regime in which use of GPS is possible. Currently, GNCC is assessing the feasibility of using standard spacecraft attitude sensors and communication components to provide autonomous navigation for missions including: libration point, gravity assist, high-Earth, and interplanetary orbits. The concept being evaluated uses a combination of star, Sun, and Earth sensor measurements along with forward-link Doppler measurements from the command link carrier to autonomously estimate the spacecraft's orbit and reference oscillator's frequency. To support autonomous attitude determination and control and maneuver planning and control, the orbit determination accuracy should be on the order of kilometers in position and centimeters per second in velocity. A less accurate solution (one hundred kilometers in position) could be used for acquisition purposes for command and science downloads. This paper provides performance results for both libration point orbiting and high Earth orbiting satellites as a function of sensor measurement accuracy, measurement types, measurement frequency, initial state errors, and dynamic modeling errors.
NASA Astrophysics Data System (ADS)
Uijt de Haag, Maarten; Campbell, Jacob; van Graas, Frank
2005-05-01
Synthetic Vision Systems (SVS) provide pilots with a virtual visual depiction of the external environment. When using SVS for aircraft precision approach guidance systems accurate positioning relative to the runway with a high level of integrity is required. Precision approach guidance systems in use today require ground-based electronic navigation components with at least one installation at each airport, and in many cases multiple installations to service approaches to all qualifying runways. A terrain-referenced approach guidance system is envisioned to provide precision guidance to an aircraft without the use of ground-based electronic navigation components installed at the airport. This autonomy makes it a good candidate for integration with an SVS. At the Ohio University Avionics Engineering Center (AEC), work has been underway in the development of such a terrain referenced navigation system. When used in conjunction with an Inertial Measurement Unit (IMU) and a high accuracy/resolution terrain database, this terrain referenced navigation system can provide navigation and guidance information to the pilot on a SVS or conventional instruments. The terrain referenced navigation system, under development at AEC, operates on similar principles as other terrain navigation systems: a ground sensing sensor (in this case an airborne laser scanner) gathers range measurements to the terrain; this data is then matched in some fashion with an onboard terrain database to find the most likely position solution and used to update an inertial sensor-based navigator. AEC's system design differs from today's common terrain navigators in its use of a high resolution terrain database (~1 meter post spacing) in conjunction with an airborne laser scanner which is capable of providing tens of thousands independent terrain elevation measurements per second with centimeter-level accuracies. When combined with data from an inertial navigator the high resolution terrain database and laser scanner system is capable of providing near meter-level horizontal and vertical position estimates. Furthermore, the system under development capitalizes on 1) The position and integrity benefits provided by the Wide Area Augmentation System (WAAS) to reduce the initial search space size and; 2) The availability of high accuracy/resolution databases. This paper presents results from flight tests where the terrain reference navigator is used to provide guidance cues for a precision approach.
Executive onboarding: ensuring the success of the newly hired department chair.
Ross, Warren E; Huang, Karen H C; Jones, Greg H
2014-05-01
The success of newly recruited medical school department chairs has become increasingly important for achievement of organizational goals. An effective onboarding program for these chairs can greatly facilitate early success, as well as satisfaction of the new hire with the position and the school. Onboarding programs can include traditional orientation items such as payroll signup and parking details, but should focus heavily on sharing organizational structure, culture, and how things get done. The goals of onboarding will be well served by implementation of three roles in the process. An Orientation Navigator can assist the new chair in the orientation phase, completing new employee documents and navigating the day-to-day challenges of working at the location. A Peer Mentor, generally a sitting chair, serves as both "buddy" and mentor, providing moral support as well as ensuring that the new chair gains an understanding of the people and processes important for getting things done. A Transition Mentor serves over a longer term as a sounding board and coach outside the peer group, assisting in a variety of ways to promote the chair's growth, development, and success as a leader. Finally, any onboarding process is significantly compromised without the active participation of the dean, meeting regularly with the chair to clarify expectations, promote assimilation, and solve problems. Successful onboarding begins with a mindfulness of the needs of the newly hired chair, and a well-designed and well-implemented plan will have wide-ranging benefits for the chair and the organization.
Progress in the development of shallow-water mapping systems
Bergeron, E.; Worley, C.R.; O'Brien, T.
2007-01-01
The USGS (US Geological Survey) Coastal and Marine Geology has deployed an advance autonomous shallow-draft robotic vehicle, Iris, for shallow-water mapping in Apalachicola Bay, Florida. The vehicle incorporates a side scan sonar system, seismic-reflection profiler, single-beam echosounder, and global positioning system (GPS) navigation. It is equipped with an onboard microprocessor-based motor controller, delivering signals for speed and steering to hull-mounted brushless direct-current thrusters. An onboard motion sensor in the Sea Robotics vehicle control system enclosure has been integrated in the vehicle to measure the vehicle heave, pitch, roll, and heading. Three water-tight enclosures are mounted along the vehicle axis for the Edgetech computer and electronics system including the Sea Robotics computer, a control and wireless communications system, and a Thales ZXW real-time kinematic (RTK) GPS receiver. The vehicle has resulted in producing high-quality seismic reflection and side scan sonar data, which will help in developing the baseline oyster habitat maps.
Mobile Robot and Mobile Manipulator Research Towards ASTM Standards Development.
Bostelman, Roger; Hong, Tsai; Legowik, Steven
2016-01-01
Performance standards for industrial mobile robots and mobile manipulators (robot arms onboard mobile robots) have only recently begun development. Low cost and standardized measurement techniques are needed to characterize system performance, compare different systems, and to determine if recalibration is required. This paper discusses work at the National Institute of Standards and Technology (NIST) and within the ASTM Committee F45 on Driverless Automatic Guided Industrial Vehicles. This includes standards for both terminology, F45.91, and for navigation performance test methods, F45.02. The paper defines terms that are being considered. Additionally, the paper describes navigation test methods that are near ballot and docking test methods being designed for consideration within F45.02. This includes the use of low cost artifacts that can provide alternatives to using relatively expensive measurement systems.
Mobile Robot and Mobile Manipulator Research Towards ASTM Standards Development
Bostelman, Roger; Hong, Tsai; Legowik, Steven
2017-01-01
Performance standards for industrial mobile robots and mobile manipulators (robot arms onboard mobile robots) have only recently begun development. Low cost and standardized measurement techniques are needed to characterize system performance, compare different systems, and to determine if recalibration is required. This paper discusses work at the National Institute of Standards and Technology (NIST) and within the ASTM Committee F45 on Driverless Automatic Guided Industrial Vehicles. This includes standards for both terminology, F45.91, and for navigation performance test methods, F45.02. The paper defines terms that are being considered. Additionally, the paper describes navigation test methods that are near ballot and docking test methods being designed for consideration within F45.02. This includes the use of low cost artifacts that can provide alternatives to using relatively expensive measurement systems. PMID:28690359
Preliminary Design of the Guidance, Navigation, and Control System of the Altair Lunar Lander
NASA Technical Reports Server (NTRS)
Lee, Allan Y.; Ely, Todd; Sostaric, Ronald; Strahan, Alan; Riedel, Joseph E.; Ingham, Mitch; Wincentsen, James; Sarani, Siamak
2010-01-01
Guidance, Navigation, and Control (GN&C) is the measurement and control of spacecraft position, velocity, and attitude in support of mission objectives. This paper provides an overview of a preliminary design of the GN&C system of the Lunar Lander Altair. Key functions performed by the GN&C system in various mission phases will first be described. A set of placeholder GN&C sensors that is needed to support these functions is next described. To meet Crew safety requirements, there must be high degrees of redundancy in the selected sensor configuration. Two sets of thrusters, one on the Ascent Module (AM) and the other on the Descent Module (DM), will be used by the GN&C system. The DM thrusters will be used, among other purposes, to perform course correction burns during the Trans-lunar Coast. The AM thrusters will be used, among other purposes, to perform precise angular and translational controls of the ascent module in order to dock the ascent module with Orion. Navigation is the process of measurement and control of the spacecraft's "state" (both the position and velocity vectors of the spacecraft). Tracking data from the Earth-Based Ground System (tracking antennas) as well as data from onboard optical sensors will be used to estimate the vehicle state. A driving navigation requirement is to land Altair on the Moon with a landing accuracy that is better than 1 km (radial 95%). Preliminary performance of the Altair GN&C design, relative to this and other navigation requirements, will be given. Guidance is the onboard process that uses the estimated state vector, crew inputs, and pre-computed reference trajectories to guide both the rotational and the translational motions of the spacecraft during powered flight phases. Design objectives of reference trajectories for various mission phases vary. For example, the reference trajectory for the descent "approach" phase (the last 3-4 minutes before touchdown) will sacrifice fuel utilization efficiency in order to provide landing site visibility for both the crew and the terrain hazard detection sensor system. One output of Guidance is the steering angle commands sent to the 2 degree-of-freedom (dof) gimbal actuation system of the descent engine. The engine gimbal actuation system is controlled by a Thrust Vector Control algorithm that is designed taking into account the large quantities of sloshing liquids in tanks mounted on Altair. In this early design phase of Altair, the GN&C system is described only briefly in this paper and the emphasis is on the GN&C architecture (that is still evolving). Multiple companion papers will provide details that are related to navigation, optical navigation, guidance, fuel sloshing, rendezvous and docking, machine-pilot interactions, and others. The similarities and differences of GN&C designs for Lunar and Mars landers are briefly compared.
Synthetic vision in the cockpit: 3D systems for general aviation
NASA Astrophysics Data System (ADS)
Hansen, Andrew J.; Rybacki, Richard M.; Smith, W. Garth
2001-08-01
Synthetic vision has the potential to improve safety in aviation through better pilot situational awareness and enhanced navigational guidance. The technological advances enabling synthetic vision are GPS based navigation (position and attitude) systems and efficient graphical systems for rendering 3D displays in the cockpit. A benefit for military, commercial, and general aviation platforms alike is the relentless drive to miniaturize computer subsystems. Processors, data storage, graphical and digital signal processing chips, RF circuitry, and bus architectures are at or out-pacing Moore's Law with the transition to mobile computing and embedded systems. The tandem of fundamental GPS navigation services such as the US FAA's Wide Area and Local Area Augmentation Systems (WAAS) and commercially viable mobile rendering systems puts synthetic vision well with the the technological reach of general aviation. Given the appropriate navigational inputs, low cost and power efficient graphics solutions are capable of rendering a pilot's out-the-window view into visual databases with photo-specific imagery and geo-specific elevation and feature content. Looking beyond the single airframe, proposed aviation technologies such as ADS-B would provide a communication channel for bringing traffic information on-board and into the cockpit visually via the 3D display for additional pilot awareness. This paper gives a view of current 3D graphics system capability suitable for general aviation and presents a potential road map following the current trends.
GPS Integrity Channel RTCA Working Group recommendations
NASA Astrophysics Data System (ADS)
Kalafus, Rudolph M.
Recommendations made by a working group established by the Radio Technical Commission for Aeronautics are presented for the design of a wide-area broadcast service to provide indications on the status of GPS satellites. The integrity channel requirements and operational goals are outlined. Six integrity channel system concepts are considered and system design and time-to-alarm considerations are examined. The recommended system includes the broadcast of a coarse range measurement for each satellite which will enable the on-board GPS receiver to determine whether or not the navigation accuracy is within prescribed limits.
Kikutis, Ramūnas; Stankūnas, Jonas; Rudinskas, Darius; Masiulionis, Tadas
2017-09-28
Current research on Unmanned Aerial Vehicles (UAVs) shows a lot of interest in autonomous UAV navigation. This interest is mainly driven by the necessity to meet the rules and restrictions for small UAV flights that are issued by various international and national legal organizations. In order to lower these restrictions, new levels of automation and flight safety must be reached. In this paper, a new method for ground obstacle avoidance derived by using UAV navigation based on the Dubins paths algorithm is presented. The accuracy of the proposed method has been tested, and research results have been obtained by using Software-in-the-Loop (SITL) simulation and real UAV flights, with the measurements done with a low cost Global Navigation Satellite System (GNSS) sensor. All tests were carried out in a three-dimensional space, but the height accuracy was not assessed. The GNSS navigation data for the ground obstacle avoidance algorithm is evaluated statistically.
Kikutis, Ramūnas; Stankūnas, Jonas; Rudinskas, Darius; Masiulionis, Tadas
2017-01-01
Current research on Unmanned Aerial Vehicles (UAVs) shows a lot of interest in autonomous UAV navigation. This interest is mainly driven by the necessity to meet the rules and restrictions for small UAV flights that are issued by various international and national legal organizations. In order to lower these restrictions, new levels of automation and flight safety must be reached. In this paper, a new method for ground obstacle avoidance derived by using UAV navigation based on the Dubins paths algorithm is presented. The accuracy of the proposed method has been tested, and research results have been obtained by using Software-in-the-Loop (SITL) simulation and real UAV flights, with the measurements done with a low cost Global Navigation Satellite System (GNSS) sensor. All tests were carried out in a three-dimensional space, but the height accuracy was not assessed. The GNSS navigation data for the ground obstacle avoidance algorithm is evaluated statistically. PMID:28956839
Introduction to the Navigation Team: Johnson Space Center EG6 Internship
NASA Technical Reports Server (NTRS)
Gualdoni, Matthew
2017-01-01
The EG6 navigation team at NASA Johnson Space Center, like any team of engineers, interacts with the engineering process from beginning to end; from exploring solutions to a problem, to prototyping and studying the implementations, all the way to polishing and verifying a final flight-ready design. This summer, I was privileged enough to gain exposure to each of these processes, while also getting to truly experience working within a team of engineers. My summer can be broken up into three projects: i) Initial study and prototyping: investigating a manual navigation method that can be utilized onboard Orion in the event of catastrophic failure of navigation systems; ii) Finalizing and verifying code: altering a software routine to improve its robustness and reliability, as well as designing unit tests to verify its performance; and iii) Development of testing equipment: assisting in developing and integrating of a high-fidelity testbed to verify the performance of software and hardware.
NASA Technical Reports Server (NTRS)
Crain, Timothy P.; Bishop, Robert H.; Carson, John M., III; Trawny, Nikolas; Hanak, Chad; Sullivan, Jacob; Christian, John; DeMars, Kyle; Campbell, Tom; Getchius, Joel
2016-01-01
The Morpheus Project began in late 2009 as an ambitious e ort code-named Project M to integrate three ongoing multi-center NASA technology developments: humanoid robotics, liquid oxygen/liquid methane (LOX/LCH4) propulsion and Autonomous Precision Landing and Hazard Avoidance Technology (ALHAT) into a single engineering demonstration mission to be own to the Moon by 2013. The humanoid robot e ort was redirected to a deploy- ment of Robonaut 2 on the International Space Station in February of 2011 while Morpheus continued as a terrestrial eld test project integrating the existing ALHAT Project's tech- nologies into a sub-orbital ight system using the world's rst LOX/LCH4 main propulsion and reaction control system fed from the same blowdown tanks. A series of 33 tethered tests with the Morpheus 1.0 vehicle and Morpheus 1.5 vehicle were conducted from April 2011 - December 2013 before successful, sustained free ights with the primary Vertical Testbed (VTB) navigation con guration began with Free Flight 3 on December 10, 2013. Over the course of the following 12 free ights and 3 tethered ights, components of the ALHAT navigation system were integrated into the Morpheus vehicle, operations, and ight control loop. The ALHAT navigation system was integrated and run concurrently with the VTB navigation system as a reference and fail-safe option in ight (see touchdown position esti- mate comparisons in Fig. 1). Flight testing completed with Free Flight 15 on December 15, 2014 with a completely autonomous Hazard Detection and Avoidance (HDA), integration of surface relative and Hazard Relative Navigation (HRN) measurements into the onboard dual-state inertial estimator Kalman lter software, and landing within 2 meters of the VTB GPS-based navigation solution at the safe landing site target. This paper describes the Mor- pheus joint VTB/ALHAT navigation architecture, the sensors utilized during the terrestrial ight campaign, issues resolved during testing, and the navigation results from the ight tests.
SEXTANT - Station Explorer for X-ray Timing and Navigation Technology
NASA Technical Reports Server (NTRS)
Mitchell, Jason W.; Hasouneh, Munther Abdel Hamid; Winternitz, Luke M. B.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Arzoumanian, Zaven; Ray, Paul S.; Wood, Kent S.;
2015-01-01
The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission, which is scheduled to launch in late 2016 and will be hosted as an externally attached payload on the International Space Station (ISS) via the ExPRESS Logistics Carrier (ELC). During NICER's 18-month baseline science mission to understand ultra-dense matter though observations of neutron stars in the soft X-ray band, SEXTANT will, for the first-time, demonstrate real-time, on-board X-ray pulsar navigation, which is a significant milestone in the quest to establish a GPS-like navigation capability that will be available throughout our Solar System and beyond. Along with NICER, SEXTANT has proceeded through Phase B, Mission Definition, and received numerous refinements in concept of operation, algorithms, flight software, ground system, and ground test capability. NICER/SEXTANT's Phase B work culminated in NASA's confirmation of NICER to Phase C, Design and Development, in March 2014. Recently, NICER/SEXTANT successfully passed its Critical Design Review and SEXTANT received continuation approval in September 2014. In this paper, we describe the X-ray pulsar navigation concept and provide a brief history of previous work, and then summarize the SEXTANT technology demonstration objective, hardware and software components, and development to date.
Application of Vehicle Dynamic Modeling in Uavs for Precise Determination of Exterior Orientation
NASA Astrophysics Data System (ADS)
Khaghani, M.; Skaloud, J.
2016-06-01
Advances in unmanned aerial vehicles (UAV) and especially micro aerial vehicle (MAV) technology together with increasing quality and decreasing price of imaging devices have resulted in growing use of MAVs in photogrammetry. The practicality of MAV mapping is seriously enhanced with the ability to determine parameters of exterior orientation (EO) with sufficient accuracy, in both absolute and relative senses (change of attitude between successive images). While differential carrier phase GNSS satisfies cm-level positioning accuracy, precise attitude determination is essential for both direct sensor orientation (DiSO) and integrated sensor orientation (ISO) in corridor mapping or in block configuration imaging over surfaces with low texture. Limited cost, size, and weight of MAVs represent limitations on quality of onboard navigation sensors and puts emphasis on exploiting full capacity of available resources. Typically short flying times (10-30 minutes) also limit the possibility of estimating and/or correcting factors such as sensor misalignment and poor attitude initialization of inertial navigation system (INS). This research aims at increasing the accuracy of attitude determination in both absolute and relative senses with no extra sensors onboard. In comparison to classical INS/GNSS setup, novel approach is presented here to integrated state estimation, in which vehicle dynamic model (VDM) is used as the main process model. Such system benefits from available information from autopilot and physical properties of the platform in enhancing performance of determination of trajectory and parameters of exterior orientation consequently. The navigation system employs a differential carrier phase GNSS receiver and a micro electro-mechanical system (MEMS) grade inertial measurement unit (IMU), together with MAV control input from autopilot. Monte-Carlo simulation has been performed on trajectories for typical corridor mapping and block imaging. Results reveal considerable reduction in attitude errors with respect to conventional INS/GNSS system, in both absolute and relative senses. This eventually translates into higher redundancy and accuracy for photogrammetry applications.
Proposal Drafted for Allocating Space-to-Space Frequencies in the GPS Spectrum Bands
NASA Technical Reports Server (NTRS)
Spence, Rodney L.
2000-01-01
Radionavigation Satellite Service (RNSS) systems such as the U.S. Global Positioning System (GPS) and the Russian Global Navigation Satellite System (GLONASS) are primarily being used today in the space-to-Earth direction (i.e., from GPS satellite to Earth user) for a broad range of applications such as geological surveying; aircraft, automobile, and maritime navigation; hiking and mountain climbing; and precision farming and mining. However, these navigation systems are being used increasingly in space. Beginning with the launch of the TOPEX/Poseidon remote-sensing mission in 1992, over 90 GPS receivers have flown onboard spacecraft for such applications as real-time spacecraft navigation, three-axis attitude control, precise time synchronization, precision orbit determination, and atmospheric profiling. In addition to use onboard many science spacecraft, GPS has been used or is planned to be used onboard the shuttles, the International Space Station, the International Space Station Emergency Crew Return Vehicle, and many commercial satellite systems such as Orbcomm, Globalstar, and Teledesic. From a frequency spectrum standpoint, however, one important difference between the space and terrestrial uses of GPS is that it is being used in space with no interference protection. This is because there is no frequency allocation for the space-to-space use of GPS (i.e., from GPS satellite to user spacecraft) in the International Telecommunications Union (ITU) regulatory table of frequency allocations. If another space-based or groundbased radio system interferes with a spaceborne GPS user, the spaceborne user presently has no recourse other than to accept the interference. Consequently, for the past year and a half, the NASA Glenn Research Center at Lewis Field and other Government agencies have been working within ITU toward obtaining a GPS space-to-space allocation at the next World Radio Conference in the year 2000 (WRC 2000). Numerous interference studies have been conducted in support of a primary space-tospace allocation in the 1215- to 1260-MHz and 1559- to 1610-MHz RNSS bands. Most of these studies and analyses were performed by Glenn and submitted as U.S. input documents to the international Working Party 8D meetings in Geneva, Switzerland. In the structure of the ITU, Working Party 8D is responsible for frequency spectrum issues in the RNSS and the mobile satellite service (MSS). The full texts of the studies are available from the ITU web site under Working Party 8D contributions. Note that because spaceborne RNSS receivers operate in a receive-only mode with navigation signals already being broadcast toward the Earth, the addition of a space-tospace allocation will not result in interference with other systems. A space-based RNSS receiver, however, could experience interference from systems of other services, including intraservice interference from other RNSS systems. The interference scenarios examined in the studies can be inferred from the following frequency allocation charts. In these charts, services labeled in all capital letters (e.g., "ARNS") have primary status, whereas those labeled with sentence-style capitalization (e.g., "Amateur radio") have secondary status (i.e., a service with secondary status cannot claim interference protection from or cause harmful interference to a service with primary status). Charts showing the ITU frequency allocations in the 960 to 1350 MHZ range and the 1525-1660 MHZ range are discussed and presented.
Static and Dynamic Verification of Critical Software for Space Applications
NASA Astrophysics Data System (ADS)
Moreira, F.; Maia, R.; Costa, D.; Duro, N.; Rodríguez-Dapena, P.; Hjortnaes, K.
Space technology is no longer used only for much specialised research activities or for sophisticated manned space missions. Modern society relies more and more on space technology and applications for every day activities. Worldwide telecommunications, Earth observation, navigation and remote sensing are only a few examples of space applications on which we rely daily. The European driven global navigation system Galileo and its associated applications, e.g. air traffic management, vessel and car navigation, will significantly expand the already stringent safety requirements for space based applications Apart from their usefulness and practical applications, every single piece of onboard software deployed into the space represents an enormous investment. With a long lifetime operation and being extremely difficult to maintain and upgrade, at least when comparing with "mainstream" software development, the importance of ensuring their correctness before deployment is immense. Verification &Validation techniques and technologies have a key role in ensuring that the onboard software is correct and error free, or at least free from errors that can potentially lead to catastrophic failures. Many RAMS techniques including both static criticality analysis and dynamic verification techniques have been used as a means to verify and validate critical software and to ensure its correctness. But, traditionally, these have been isolated applied. One of the main reasons is the immaturity of this field in what concerns to its application to the increasing software product(s) within space systems. This paper presents an innovative way of combining both static and dynamic techniques exploiting their synergy and complementarity for software fault removal. The methodology proposed is based on the combination of Software FMEA and FTA with Fault-injection techniques. The case study herein described is implemented with support from two tools: The SoftCare tool for the SFMEA and SFTA, and the Xception tool for fault-injection. Keywords: Verification &Validation, RAMS, Onboard software, SFMEA, STA, Fault-injection 1 This work is being performed under the project STADY Applied Static And Dynamic Verification Of Critical Software, ESA/ESTEC Contract Nr. 15751/02/NL/LvH.
A Trajectory Generation Approach for Payload Directed Flight
NASA Technical Reports Server (NTRS)
Ippolito, Corey A.; Yeh, Yoo-Hsiu
2009-01-01
Presently, flight systems designed to perform payload-centric maneuvers require preconstructed procedures and special hand-tuned guidance modes. To enable intelligent maneuvering via strong coupling between the goals of payload-directed flight and the autopilot functions, there exists a need to rethink traditional autopilot design and function. Research into payload directed flight examines sensor and payload-centric autopilot modes, architectures, and algorithms that provide layers of intelligent guidance, navigation and control for flight vehicles to achieve mission goals related to the payload sensors, taking into account various constraints such as the performance limitations of the aircraft, target tracking and estimation, obstacle avoidance, and constraint satisfaction. Payload directed flight requires a methodology for accurate trajectory planning that lets the system anticipate expected return from a suite of onboard sensors. This paper presents an extension to the existing techniques used in the literature to quickly and accurately plan flight trajectories that predict and optimize the expected return of onboard payload sensors.
An Architecture for Cooperative Localization in Underwater Acoustic Networks
2015-10-24
range. (b) Independent navigation and control system onboard Iver AUVs . The cooperative localization process is highlighted in red. Figure 1: Block...Iver2 AUVs (Fig. 3) and a topside ship. While we make spe- cific notes about this three vehicle network, the architecture is vehicle independent. 3.1...Single vehicle subsystem Each vehicle executes several processes including sensor drivers, a pose estimator (Section 2), and, in the case of the AUVs
JPRS Report, Science & Technology, Japan, 27th Aircraft Symposium
1990-10-29
screen; the relative attitude is then determined . 2) Video Sensor System Specific patterns (grapple target, etc.) drawn on the target spacecraft , or the...entire target spacecraft , is imaged by camera . Navigation information is obtained by on-board image processing, such as extraction of contours and...standard figure called "grapple target" located in the vicinity of the grapple fixture on the target spacecraft is imaged by camera . Contour lines and
LIDAR-Aided Inertial Navigation with Extended Kalman Filtering for Pinpoint Landing
NASA Technical Reports Server (NTRS)
Busnardo, David M.; Aitken, Matthew L.; Tolson, Robert H.; Pierrottet, Diego; Amzajerdian, Farzin
2011-01-01
In support of NASA s Autonomous Landing and Hazard Avoidance Technology (ALHAT) project, an extended Kalman filter routine has been developed for estimating the position, velocity, and attitude of a spacecraft during the landing phase of a planetary mission. The proposed filter combines measurements of acceleration and angular velocity from an inertial measurement unit (IMU) with range and Doppler velocity observations from an onboard light detection and ranging (LIDAR) system. These high-precision LIDAR measurements of distance to the ground and approach velocity will enable both robotic and manned vehicles to land safely and precisely at scientifically interesting sites. The filter has been extensively tested using a lunar landing simulation and shown to improve navigation over flat surfaces or rough terrain. Experimental results from a helicopter flight test performed at NASA Dryden in August 2008 demonstrate that LIDAR can be employed to significantly improve navigation based exclusively on IMU integration.
Autonomous Flight Rules - A Concept for Self-Separation in U.S. Domestic Airspace
NASA Technical Reports Server (NTRS)
Wing, David J.; Cotton, William B.
2011-01-01
Autonomous Flight Rules (AFR) are proposed as a new set of operating regulations in which aircraft navigate on tracks of their choice while self-separating from traffic and weather. AFR would exist alongside Instrument and Visual Flight Rules (IFR and VFR) as one of three available flight options for any appropriately trained and qualified operator with the necessary certified equipment. Historically, ground-based separation services evolved by necessity as aircraft began operating in the clouds and were unable to see each other. Today, technologies for global navigation, airborne surveillance, and onboard computing enable the functions of traffic conflict management to be fully integrated with navigation procedures onboard the aircraft. By self-separating, aircraft can operate with more flexibility and fewer restrictions than are required when using ground-based separation. The AFR concept is described in detail and provides practical means by which self-separating aircraft could share the same airspace as IFR and VFR aircraft without disrupting the ongoing processes of Air Traffic Control.
Automation and robotics - Key to productivity. [in industry and space
NASA Technical Reports Server (NTRS)
Cohen, A.
1985-01-01
The automated and robotic systems requirements of the NASA Space Station are prompted by maintenance, repair, servicing and assembly requirements. Trend analyses, fault diagnoses, and subsystem status assessments for the Station's electrical power, guidance, navigation, control, data management and environmental control subsystems will be undertaken by cybernetic expert systems; this will reduce or eliminate on-board or ground facility activities that would otherwise be essential, enhancing system productivity. Additional capabilities may also be obtained through the incorporation of even a limited amount of artificial intelligence in the controllers of the various Space Station systems.
COBALT: A GN&C Payload for Testing ALHAT Capabilities in Closed-Loop Terrestrial Rocket Flights
NASA Technical Reports Server (NTRS)
Carson, John M., III; Amzajerdian, Farzin; Hines, Glenn D.; O'Neal, Travis V.; Robertson, Edward A.; Seubert, Carl; Trawny, Nikolas
2016-01-01
The COBALT (CoOperative Blending of Autonomous Landing Technology) payload is being developed within NASA as a risk reduction activity to mature, integrate and test ALHAT (Autonomous precision Landing and Hazard Avoidance Technology) systems targeted for infusion into near-term robotic and future human space flight missions. The initial COBALT payload instantiation is integrating the third-generation ALHAT Navigation Doppler Lidar (NDL) sensor, for ultra high-precision velocity plus range measurements, with the passive-optical Lander Vision System (LVS) that provides Terrain Relative Navigation (TRN) global-position estimates. The COBALT payload will be integrated onboard a rocket-propulsive terrestrial testbed and will provide precise navigation estimates and guidance planning during two flight test campaigns in 2017 (one open-loop and closed- loop). The NDL is targeting performance capabilities desired for future Mars and Moon Entry, Descent and Landing (EDL). The LVS is already baselined for TRN on the Mars 2020 robotic lander mission. The COBALT platform will provide NASA with a new risk-reduction capability to test integrated EDL Guidance, Navigation and Control (GN&C) components in closed-loop flight demonstrations prior to the actual mission EDL.
Terminal navigation analysis for the 1980 comet Encke slow flyby mission
NASA Technical Reports Server (NTRS)
Jacobson, R. A.; Mcdanell, J. P.; Rinker, G. C.
1973-01-01
The initial results of a terminal navigation analysis for the proposed 1980 solar electric slow flyby mission to the comet Encke are presented. The navigation technique employs onboard optical measurements with the scientific television camera, groundbased observations of the spacecraft and comet, and groundbased orbit determination and thrust vector update computation. The knowledge and delivery accuracies of the spacecraft are evaluated as a function of the important parameters affecting the terminal navigation. These include optical measurement accuracy, thruster noise level, duration of the planned terminal coast period, comet ephemeris uncertainty, guidance initiation time, guidance update frequency, and optical data rate.
Automatic control in planetary exploration in the 1980s. [onboard spacecraft
NASA Technical Reports Server (NTRS)
Moore, J. W.
1973-01-01
Based on an examination of the planetary missions in the 1980s and their related objectives, a broad assessment of the automatic control capabilities required for these missions is presented. The ten outer-planet, terrestrial-planet, and small-body missions considered involve various operations encompassing a complex series of modes including cruise, maneuver, and powered flight control. In addition to routine navigation and attitude control, onboard control is required to point scientific instruments and antennas with respect to the vehicle and to maneuver the spacecraft in time-constrained or hazardous environments. These 1980 missions aimed at exploring new areas of the solar system will be more demanding. New design philosophies and increased performance capabilities will be required to meet the constraints imposed by science requirements and mission-cost effectiveness.
Real-time Terrain Relative Navigation Test Results from a Relevant Environment for Mars Landing
NASA Technical Reports Server (NTRS)
Johnson, Andrew E.; Cheng, Yang; Montgomery, James; Trawny, Nikolas; Tweddle, Brent; Zheng, Jason
2015-01-01
Terrain Relative Navigation (TRN) is an on-board GN&C function that generates a position estimate of a spacecraft relative to a map of a planetary surface. When coupled with a divert, the position estimate enables access to more challenging landing sites through pin-point landing or large hazard avoidance. The Lander Vision System (LVS) is a smart sensor system that performs terrain relative navigation by matching descent camera imagery to a map of the landing site and then fusing this with inertial measurements to obtain high rate map relative position, velocity and attitude estimates. A prototype of the LVS was recently tested in a helicopter field test over Mars analog terrain at altitudes representative of Mars Entry Descent and Landing conditions. TRN ran in real-time on the LVS during the flights without human intervention or tuning. The system was able to compute estimates accurate to 40m (3 sigma) in 10 seconds on a flight like processing system. This paper describes the Mars operational test space definition, how the field test was designed to cover that operational envelope, the resulting TRN performance across the envelope and an assessment of test space coverage.
Time synchronization of new-generation BDS satellites using inter-satellite link measurements
NASA Astrophysics Data System (ADS)
Pan, Junyang; Hu, Xiaogong; Zhou, Shanshi; Tang, Chengpan; Guo, Rui; Zhu, Lingfeng; Tang, Guifeng; Hu, Guangming
2018-01-01
Autonomous satellite navigation is based on the ability of a Global Navigation Satellite System (GNSS), such as Beidou, to estimate orbits and clock parameters onboard satellites using Inter-Satellite Link (ISL) measurements instead of tracking data from a ground monitoring network. This paper focuses on the time synchronization of new-generation Beidou Navigation Satellite System (BDS) satellites equipped with an ISL payload. Two modes of Ka-band ISL measurements, Time Division Multiple Access (TDMA) mode and the continuous link mode, were used onboard these BDS satellites. Using a mathematical formulation for each measurement mode along with a derivation of the satellite clock offsets, geometric ranges from the dual one-way measurements were introduced. Then, pseudoranges and clock offsets were evaluated for the new-generation BDS satellites. The evaluation shows that the ranging accuracies of TDMA ISL and the continuous link are approximately 4 cm and 1 cm (root mean square, RMS), respectively. Both lead to ISL clock offset residuals of less than 0.3 ns (RMS). For further validation, time synchronization between these satellites to a ground control station keeping the systematic time in BDT was conducted using L-band Two-way Satellite Time Frequency Transfer (TWSTFT). System errors in the ISL measurements were calibrated by comparing the derived clock offsets with the TWSTFT. The standard deviations of the estimated ISL system errors are less than 0.3 ns, and the calibrated ISL clock parameters are consistent with that of the L-band TWSTFT. For the regional BDS network, the addition of ISL measurements for medium orbit (MEO) BDS satellites increased the clock tracking coverage by more than 40% for each orbital revolution. As a result, the clock predicting error for the satellite M1S was improved from 3.59 to 0.86 ns (RMS), and the predicting error of the satellite M2S was improved from 1.94 to 0.57 ns (RMS), which is a significant improvement by a factor of 3-4.
Mars rover local navigation and hazard avoidance
NASA Technical Reports Server (NTRS)
Wilcox, B. H.; Gennery, D. B.; Mishkin, A. H.
1989-01-01
A Mars rover sample return mission has been proposed for the late 1990's. Due to the long speed-of-light delays between earth and Mars, some autonomy on the rover is highly desirable. JPL has been conducting research in two possible modes of rover operation, Computer-Aided Remote Driving and Semiautonomous Navigation. A recently-completed research program used a half-scale testbed vehicle to explore several of the concepts in semiautonomous navigation. A new, full-scale vehicle with all computational and power resources on-board will be used in the coming year to demonstrate relatively fast semiautonomous navigation. The computational and power requirements for Mars rover local navigation and hazard avoidance are discussed.
Mars Rover Local Navigation And Hazard Avoidance
NASA Astrophysics Data System (ADS)
Wilcox, B. H.; Gennery, D. B.; Mishkin, A. H.
1989-03-01
A Mars rover sample return mission has been proposed for the late 1990's. Due to the long speed-of-light delays between Earth and Mars, some autonomy on the rover is highly desirable. JPL has been conducting research in two possible modes of rover operation, Computer-Aided Remote Driving and Semiautonomous Navigation. A recently-completed research program used a half-scale testbed vehicle to explore several of the concepts in semiautonomous navigation. A new, full-scale vehicle with all computational and power resources on-board will be used in the coming year to demonstrate relatively fast semiautonomous navigation. The computational and power requirements for Mars rover local navigation and hazard avoidance are discussed.
Process Algebra Approach for Action Recognition in the Maritime Domain
NASA Technical Reports Server (NTRS)
Huntsberger, Terry
2011-01-01
The maritime environment poses a number of challenges for autonomous operation of surface boats. Among these challenges are the highly dynamic nature of the environment, the onboard sensing and reasoning requirements for obeying the navigational rules of the road, and the need for robust day/night hazard detection and avoidance. Development of full mission level autonomy entails addressing these challenges, coupled with inference of the tactical and strategic intent of possibly adversarial vehicles in the surrounding environment. This paper introduces PACIFIC (Process Algebra Capture of Intent From Information Content), an onboard system based on formal process algebras that is capable of extracting actions/activities from sensory inputs and reasoning within a mission context to ensure proper responses. PACIFIC is part of the Behavior Engine in CARACaS (Cognitive Architecture for Robotic Agent Command and Sensing), a system that is currently running on a number of U.S. Navy unmanned surface and underwater vehicles. Results from a series of experimental studies that demonstrate the effectiveness of the system are also presented.
Initial Considerations for Navigation and Flight Dynamics of a Crewed Near-Earth Object Mission
NASA Technical Reports Server (NTRS)
Holt, Greg N.; Getchius, Joel; Tracy, William H.
2011-01-01
A crewed mission to a Near-Earth Object (NEO) was recently identified as a NASA Space Policy goal and priority. In support of this goal, a study was conducted to identify the initial considerations for performing the navigation and flight dynamics tasks of this mission class. Although missions to a NEO are not new, the unique factors involved in human spaceflight present challenges that warrant special examination. During the cruise phase of the mission, one of the most challenging factors is the noisy acceleration environment associated with a crewed vehicle. Additionally, the presence of a human crew necessitates a timely return trip, which may need to be expedited in an emergency situation where the mission is aborted. Tracking, navigation, and targeting results are shown for sample human-class trajectories to NEOs. Additionally, the benefit of in-situ navigation beacons on robotic precursor missions is presented. This mission class will require a longer duration flight than Apollo and, unlike previous human missions, there will likely be limited communication and tracking availability. This will necessitate the use of more onboard navigation and targeting capabilities. Finally, the rendezvous and proximity operations near an asteroid will be unlike anything previously attempted in a crewed spaceflight. The unknown gravitational environment and physical surface properties of the NEO may cause the rendezvous to behave differently than expected. Symbiosis of the human pilot and onboard navigation/targeting are presented which give additional robustness to unforeseen perturbations.
Integrated cockpit design for the Army helicopter improvement program
NASA Technical Reports Server (NTRS)
Drennen, T.; Bowen, B.
1984-01-01
The main Army Helicopter Improvement Program (AHIP) mission is to navigate precisely, locate targets accurately, communicate their position to other battlefield elements, and to designate them for laser guided weapons. The onboard navigation and mast-mounted sight (MMS) avionics enable accurate tracking of current aircraft position and subsequent target location. The AHIP crewstation development was based on extensive mission/task analysis, function allocation, total system design, and test and verification. The avionics requirements to meet the mission was limited by the existing aircraft structural and performance characteristics and resultant space, weight, and power restrictions. These limitations and night operations requirement led to the use of night vision goggles. The combination of these requirements and limitations dictated an integrated control/display approach using multifunction displays and controls.
Interfacing and Verifying ALHAT Safe Precision Landing Systems with the Morpheus Vehicle
NASA Technical Reports Server (NTRS)
Carson, John M., III; Hirsh, Robert L.; Roback, Vincent E.; Villalpando, Carlos; Busa, Joseph L.; Pierrottet, Diego F.; Trawny, Nikolas; Martin, Keith E.; Hines, Glenn D.
2015-01-01
The NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project developed a suite of prototype sensors to enable autonomous and safe precision landing of robotic or crewed vehicles under any terrain lighting conditions. Development of the ALHAT sensor suite was a cross-NASA effort, culminating in integration and testing on-board a variety of terrestrial vehicles toward infusion into future spaceflight applications. Terrestrial tests were conducted on specialized test gantries, moving trucks, helicopter flights, and a flight test onboard the NASA Morpheus free-flying, rocket-propulsive flight-test vehicle. To accomplish these tests, a tedious integration process was developed and followed, which included both command and telemetry interfacing, as well as sensor alignment and calibration verification to ensure valid test data to analyze ALHAT and Guidance, Navigation and Control (GNC) performance. This was especially true for the flight test campaign of ALHAT onboard Morpheus. For interfacing of ALHAT sensors to the Morpheus flight system, an adaptable command and telemetry architecture was developed to allow for the evolution of per-sensor Interface Control Design/Documents (ICDs). Additionally, individual-sensor and on-vehicle verification testing was developed to ensure functional operation of the ALHAT sensors onboard the vehicle, as well as precision-measurement validity for each ALHAT sensor when integrated within the Morpheus GNC system. This paper provides some insight into the interface development and the integrated-systems verification that were a part of the build-up toward success of the ALHAT and Morpheus flight test campaigns in 2014. These campaigns provided valuable performance data that is refining the path toward spaceflight infusion of the ALHAT sensor suite.
López, Elena; García, Sergio; Barea, Rafael; Bergasa, Luis M.; Molinos, Eduardo J.; Arroyo, Roberto; Romera, Eduardo; Pardo, Samuel
2017-01-01
One of the main challenges of aerial robots navigation in indoor or GPS-denied environments is position estimation using only the available onboard sensors. This paper presents a Simultaneous Localization and Mapping (SLAM) system that remotely calculates the pose and environment map of different low-cost commercial aerial platforms, whose onboard computing capacity is usually limited. The proposed system adapts to the sensory configuration of the aerial robot, by integrating different state-of-the art SLAM methods based on vision, laser and/or inertial measurements using an Extended Kalman Filter (EKF). To do this, a minimum onboard sensory configuration is supposed, consisting of a monocular camera, an Inertial Measurement Unit (IMU) and an altimeter. It allows to improve the results of well-known monocular visual SLAM methods (LSD-SLAM and ORB-SLAM are tested and compared in this work) by solving scale ambiguity and providing additional information to the EKF. When payload and computational capabilities permit, a 2D laser sensor can be easily incorporated to the SLAM system, obtaining a local 2.5D map and a footprint estimation of the robot position that improves the 6D pose estimation through the EKF. We present some experimental results with two different commercial platforms, and validate the system by applying it to their position control. PMID:28397758
Detection of Obstacles in Monocular Image Sequences
NASA Technical Reports Server (NTRS)
Kasturi, Rangachar; Camps, Octavia
1997-01-01
The ability to detect and locate runways/taxiways and obstacles in images captured using on-board sensors is an essential first step in the automation of low-altitude flight, landing, takeoff, and taxiing phase of aircraft navigation. Automation of these functions under different weather and lighting situations, can be facilitated by using sensors of different modalities. An aircraft-based Synthetic Vision System (SVS), with sensors of different modalities mounted on-board, complements the current ground-based systems in functions such as detection and prevention of potential runway collisions, airport surface navigation, and landing and takeoff in all weather conditions. In this report, we address the problem of detection of objects in monocular image sequences obtained from two types of sensors, a Passive Millimeter Wave (PMMW) sensor and a video camera mounted on-board a landing aircraft. Since the sensors differ in their spatial resolution, and the quality of the images obtained using these sensors is not the same, different approaches are used for detecting obstacles depending on the sensor type. These approaches are described separately in two parts of this report. The goal of the first part of the report is to develop a method for detecting runways/taxiways and objects on the runway in a sequence of images obtained from a moving PMMW sensor. Since the sensor resolution is low and the image quality is very poor, we propose a model-based approach for detecting runways/taxiways. We use the approximate runway model and the position information of the camera provided by the Global Positioning System (GPS) to define regions of interest in the image plane to search for the image features corresponding to the runway markers. Once the runway region is identified, we use histogram-based thresholding to detect obstacles on the runway and regions outside the runway. This algorithm is tested using image sequences simulated from a single real PMMW image.
NASA Technical Reports Server (NTRS)
Jackson, T. J.; Shiue, J.; Oneill, P.; Wang, J.; Fuchs, J.; Owe, M.
1984-01-01
The verification of a multi-sensor aircraft system developed to study soil moisture applications is discussed. This system consisted of a three beam push broom L band microwave radiometer, a thermal infrared scanner, a multispectral scanner, video and photographic cameras and an onboard navigational instrument. Ten flights were made of agricultural sites in Maryland and Delaware with little or no vegetation cover. Comparisons of aircraft and ground measurements showed that the system was reliable and consistent. Time series analysis of microwave and evaporation data showed a strong similarity that indicates a potential direction for future research.
Brighton, Caroline H.; Thomas, Adrian L. R.
2017-01-01
The ability to intercept uncooperative targets is key to many diverse flight behaviors, from courtship to predation. Previous research has looked for simple geometric rules describing the attack trajectories of animals, but the underlying feedback laws have remained obscure. Here, we use GPS loggers and onboard video cameras to study peregrine falcons, Falco peregrinus, attacking stationary targets, maneuvering targets, and live prey. We show that the terminal attack trajectories of peregrines are not described by any simple geometric rule as previously claimed, and instead use system identification techniques to fit a phenomenological model of the dynamical system generating the observed trajectories. We find that these trajectories are best—and exceedingly well—modeled by the proportional navigation (PN) guidance law used by most guided missiles. Under this guidance law, turning is commanded at a rate proportional to the angular rate of the line-of-sight between the attacker and its target, with a constant of proportionality (i.e., feedback gain) called the navigation constant (N). Whereas most guided missiles use navigation constants falling on the interval 3 ≤ N ≤ 5, peregrine attack trajectories are best fitted by lower navigation constants (median N < 3). This lower feedback gain is appropriate at the lower flight speed of a biological system, given its presumably higher error and longer delay. This same guidance law could find use in small visually guided drones designed to remove other drones from protected airspace. PMID:29203660
Brighton, Caroline H; Thomas, Adrian L R; Taylor, Graham K
2017-12-19
The ability to intercept uncooperative targets is key to many diverse flight behaviors, from courtship to predation. Previous research has looked for simple geometric rules describing the attack trajectories of animals, but the underlying feedback laws have remained obscure. Here, we use GPS loggers and onboard video cameras to study peregrine falcons, Falco peregrinus , attacking stationary targets, maneuvering targets, and live prey. We show that the terminal attack trajectories of peregrines are not described by any simple geometric rule as previously claimed, and instead use system identification techniques to fit a phenomenological model of the dynamical system generating the observed trajectories. We find that these trajectories are best-and exceedingly well-modeled by the proportional navigation (PN) guidance law used by most guided missiles. Under this guidance law, turning is commanded at a rate proportional to the angular rate of the line-of-sight between the attacker and its target, with a constant of proportionality (i.e., feedback gain) called the navigation constant ( N ). Whereas most guided missiles use navigation constants falling on the interval 3 ≤ N ≤ 5, peregrine attack trajectories are best fitted by lower navigation constants (median N < 3). This lower feedback gain is appropriate at the lower flight speed of a biological system, given its presumably higher error and longer delay. This same guidance law could find use in small visually guided drones designed to remove other drones from protected airspace. Copyright © 2017 the Author(s). Published by PNAS.
Autonomous vision-based navigation for proximity operations around binary asteroids
NASA Astrophysics Data System (ADS)
Gil-Fernandez, Jesus; Ortega-Hernando, Guillermo
2018-02-01
Future missions to small bodies demand higher level of autonomy in the Guidance, Navigation and Control system for higher scientific return and lower operational costs. Different navigation strategies have been assessed for ESA's asteroid impact mission (AIM). The main objective of AIM is the detailed characterization of binary asteroid Didymos. The trajectories for the proximity operations shall be intrinsically safe, i.e., no collision in presence of failures (e.g., spacecraft entering safe mode), perturbations (e.g., non-spherical gravity field), and errors (e.g., maneuver execution error). Hyperbolic arcs with sufficient hyperbolic excess velocity are designed to fulfil the safety, scientific, and operational requirements. The trajectory relative to the asteroid is determined using visual camera images. The ground-based trajectory prediction error at some points is comparable to the camera Field Of View (FOV). Therefore, some images do not contain the entire asteroid. Autonomous navigation can update the state of the spacecraft relative to the asteroid at higher frequency. The objective of the autonomous navigation is to improve the on-board knowledge compared to the ground prediction. The algorithms shall fit in off-the-shelf, space-qualified avionics. This note presents suitable image processing and relative-state filter algorithms for autonomous navigation in proximity operations around binary asteroids.
Autonomous vision-based navigation for proximity operations around binary asteroids
NASA Astrophysics Data System (ADS)
Gil-Fernandez, Jesus; Ortega-Hernando, Guillermo
2018-06-01
Future missions to small bodies demand higher level of autonomy in the Guidance, Navigation and Control system for higher scientific return and lower operational costs. Different navigation strategies have been assessed for ESA's asteroid impact mission (AIM). The main objective of AIM is the detailed characterization of binary asteroid Didymos. The trajectories for the proximity operations shall be intrinsically safe, i.e., no collision in presence of failures (e.g., spacecraft entering safe mode), perturbations (e.g., non-spherical gravity field), and errors (e.g., maneuver execution error). Hyperbolic arcs with sufficient hyperbolic excess velocity are designed to fulfil the safety, scientific, and operational requirements. The trajectory relative to the asteroid is determined using visual camera images. The ground-based trajectory prediction error at some points is comparable to the camera Field Of View (FOV). Therefore, some images do not contain the entire asteroid. Autonomous navigation can update the state of the spacecraft relative to the asteroid at higher frequency. The objective of the autonomous navigation is to improve the on-board knowledge compared to the ground prediction. The algorithms shall fit in off-the-shelf, space-qualified avionics. This note presents suitable image processing and relative-state filter algorithms for autonomous navigation in proximity operations around binary asteroids.
Flight results from a study of aided inertial navigation applied to landing operations
NASA Technical Reports Server (NTRS)
Mcgee, L. A.; Smith, G. L.; Hegarty, D. M.; Carson, T. M.; Merrick, R. B.; Schmidt, S. F.; Conrad, B.
1973-01-01
An evaluation is presented of the approach and landing performance of a Kalman filter aided inertial navigation system using flight data obtained from a series of approaches and landings of the CV-340 aircraft at an instrumented test area. A description of the flight test is given, in which data recorded included: (1) accelerometer signals from the platform of an INS; (2) three ranges from the Ames-Cubic Precision Ranging System; and (3) radar and barometric altimeter signals. The method of system evaluation employed was postflight processing of the recorded data using a Kalman filter which was designed for use on the XDS920 computer onboard the CV-340 aircraft. Results shown include comparisons between the trajectories as estimated by the Kalman filter aided system and as determined from cinetheodolite data. Data start initialization of the Kalman filter, operation at a practical data rate, postflight modeling of sensor errors and operation under the adverse condition of bad data are illustrated.
Wakeshield WSF-02 GPS Experiment
NASA Technical Reports Server (NTRS)
Schutz, B. E.; Abusali, P. A. M.; Schroeder, Christine; Tapley, Byron; Exner, Michael; Mccloskey, rick; Carpenter, Russell; Cooke, Michael; Mcdonald, samantha; Combs, Nick;
1995-01-01
Shuttle mission STS-69 was launched on September 7, 1995, 10:09 CDT, carrying the Wake Shield Facility (WSF-02). The WSF-02 spacecraft included a set of payloads provided by the Texas Space Grant Consortium, known as TexasSat. One of the TexasSat payloads was a GPS TurboRogue receiver loaned by the University Corporation for Atmospheric Research. On September 11, the WSF-02 was unberthed from the Endeavour payload bay using the remote manipulator system. The GPS receiver was powered on prior to release and the WSF-02 remained in free-flight for three days before being retrieved on September 14. All WSF-02 GPS data, which includes dual frequency pseudorange and carrier phase, were stored in an on-board recorder for post-flight analysis, but "snap- shots" of data were transmitted for 2-3 minutes at intervals of several hours, when permitted by the telemetry band- widdl The GPS experiment goals were: (1) an evaluation of precision orbit determination in a low altitude environment (400 km) where perturbations due to atmospheric drag and the Earth's gravity field are more pronounced than for higher altitude satellites with high precision orbit requirements, such as TOPEX/POSEIDON; (2) an assessment of relative positioning using the WSF GPS receiver and the Endeavour Collins receiver; and (3) determination of atmospheric temperature profiles using GPS signals passing through the atmosphere. Analysis of snap-shot telemetry data indicate that 24 hours of continuous data were stored on board, which includes high rate (50 Hz) data for atmosphere temperature profiles. Examination of the limited number of real-time navigation solutions show that at least 7 GPS satellites were tracked simultaneously and the on-board clock corrections were at the microsec level, as expected. Furthermore, a dynamical consistency test provided a further validation of the on-board navigation solutions. Complete analysis will be conducted in post-flight using the data recorded on-board.
Enabling Autonomous Rover Science through Dynamic Planning and Scheduling
NASA Technical Reports Server (NTRS)
Estlin, Tara A.; Gaines, Daniel; Chouinard, Caroline; Fisher, Forest; Castano, Rebecca; Judd, Michele; Nesnas, Issa
2005-01-01
This paper describes how dynamic planning and scheduling techniques can be used onboard a rover to autonomously adjust rover activities in support of science goals. These goals could be identified by scientists on the ground or could be identified by onboard data-analysis software. Several different types of dynamic decisions are described, including the handling of opportunistic science goals identified during rover traverses, preserving high priority science targets when resources, such as power, are unexpectedly over-subscribed, and dynamically adding additional, ground-specified science targets when rover actions are executed more quickly than expected. After describing our specific system approach, we discuss some of the particular challenges we have examined to support autonomous rover decision-making. These include interaction with rover navigation and path-planning software and handling large amounts of uncertainty in state and resource estimations.
NASA Technical Reports Server (NTRS)
Bishop, Robert H.; DeMars, Kyle; Trawny, Nikolas; Crain, Tim; Hanak, Chad; Carson, John M.; Christian, John
2016-01-01
The navigation filter architecture successfully deployed on the Morpheus flight vehicle is presented. The filter was developed as a key element of the NASA Autonomous Landing and Hazard Avoidance Technology (ALHAT) project and over the course of 15 free fights was integrated into the Morpheus vehicle, operations, and flight control loop. Flight testing completed by demonstrating autonomous hazard detection and avoidance, integration of an altimeter, surface relative velocity (velocimeter) and hazard relative navigation (HRN) measurements into the onboard dual-state inertial estimator Kalman flter software, and landing within 2 meters of the vertical testbed GPS-based navigation solution at the safe landing site target. Morpheus followed a trajectory that included an ascent phase followed by a partial descent-to-landing, although the proposed filter architecture is applicable to more general planetary precision entry, descent, and landings. The main new contribution is the incorporation of a sophisticated hazard relative navigation sensor-originally intended to locate safe landing sites-into the navigation system and employed as a navigation sensor. The formulation of a dual-state inertial extended Kalman filter was designed to address the precision planetary landing problem when viewed as a rendezvous problem with an intended landing site. For the required precision navigation system that is capable of navigating along a descent-to-landing trajectory to a precise landing, the impact of attitude errors on the translational state estimation are included in a fully integrated navigation structure in which translation state estimation is combined with attitude state estimation. The map tie errors are estimated as part of the process, thereby creating a dual-state filter implementation. Also, the filter is implemented using inertial states rather than states relative to the target. External measurements include altimeter, velocimeter, star camera, terrain relative navigation sensor, and a hazard relative navigation sensor providing information regarding hazards on a map generated on-the-fly.
NASA Mars rover: a testbed for evaluating applications of covariance intersection
NASA Astrophysics Data System (ADS)
Uhlmann, Jeffrey K.; Julier, Simon J.; Kamgar-Parsi, Behzad; Lanzagorta, Marco O.; Shyu, Haw-Jye S.
1999-07-01
The Naval Research Laboratory (NRL) has spearheaded the development and application of Covariance Intersection (CI) for a variety of decentralized data fusion problems. Such problems include distributed control, onboard sensor fusion, and dynamic map building and localization. In this paper we describe NRL's development of a CI-based navigation system for the NASA Mars rover that stresses almost all aspects of decentralized data fusion. We also describe how this project relates to NRL's augmented reality, advanced visualization, and REBOT projects.
Applications of artificial intelligence to rotorcraft
NASA Technical Reports Server (NTRS)
Abbott, Kathy H.
1987-01-01
The application of AI technology may have significant potential payoff for rotorcraft. In the near term, the status of the technology will limit its applicability to decision aids rather than total automation. The specific application areas are categorized into onboard and nonflight aids. The onboard applications include: fault monitoring, diagnosis, and reconfiguration; mission and tactics planning; situation assessment; navigation aids, especially in nap-of-the-earth flight; and adaptive man-machine interfaces. The nonflight applications include training and maintenance diagnostics.
Inertial Measurements for Aero-assisted Navigation (IMAN)
NASA Technical Reports Server (NTRS)
Jah, Moriba; Lisano, Michael; Hockney, George
2007-01-01
IMAN is a Python tool that provides inertial sensor-based estimates of spacecraft trajectories within an atmospheric influence. It provides Kalman filter-derived spacecraft state estimates based upon data collected onboard, and is shown to perform at a level comparable to the conventional methods of spacecraft navigation in terms of accuracy and at a higher level with regard to the availability of results immediately after completion of an atmospheric drag pass.
Seamless positioning and navigation by using geo-referenced images and multi-sensor data.
Li, Xun; Wang, Jinling; Li, Tao
2013-07-12
Ubiquitous positioning is considered to be a highly demanding application for today's Location-Based Services (LBS). While satellite-based navigation has achieved great advances in the past few decades, positioning and navigation in indoor scenarios and deep urban areas has remained a challenging topic of substantial research interest. Various strategies have been adopted to fill this gap, within which vision-based methods have attracted growing attention due to the widespread use of cameras on mobile devices. However, current vision-based methods using image processing have yet to revealed their full potential for navigation applications and are insufficient in many aspects. Therefore in this paper, we present a hybrid image-based positioning system that is intended to provide seamless position solution in six degrees of freedom (6DoF) for location-based services in both outdoor and indoor environments. It mainly uses visual sensor input to match with geo-referenced images for image-based positioning resolution, and also takes advantage of multiple onboard sensors, including the built-in GPS receiver and digital compass to assist visual methods. Experiments demonstrate that such a system can greatly improve the position accuracy for areas where the GPS signal is negatively affected (such as in urban canyons), and it also provides excellent position accuracy for indoor environments.
Seamless Positioning and Navigation by Using Geo-Referenced Images and Multi-Sensor Data
Li, Xun; Wang, Jinling; Li, Tao
2013-01-01
Ubiquitous positioning is considered to be a highly demanding application for today's Location-Based Services (LBS). While satellite-based navigation has achieved great advances in the past few decades, positioning and navigation in indoor scenarios and deep urban areas has remained a challenging topic of substantial research interest. Various strategies have been adopted to fill this gap, within which vision-based methods have attracted growing attention due to the widespread use of cameras on mobile devices. However, current vision-based methods using image processing have yet to revealed their full potential for navigation applications and are insufficient in many aspects. Therefore in this paper, we present a hybrid image-based positioning system that is intended to provide seamless position solution in six degrees of freedom (6DoF) for location-based services in both outdoor and indoor environments. It mainly uses visual sensor input to match with geo-referenced images for image-based positioning resolution, and also takes advantage of multiple onboard sensors, including the built-in GPS receiver and digital compass to assist visual methods. Experiments demonstrate that such a system can greatly improve the position accuracy for areas where the GPS signal is negatively affected (such as in urban canyons), and it also provides excellent position accuracy for indoor environments. PMID:23857267
BeiDou Geostationary Satellite Code Bias Modeling Using Fengyun-3C Onboard Measurements.
Jiang, Kecai; Li, Min; Zhao, Qile; Li, Wenwen; Guo, Xiang
2017-10-27
This study validated and investigated elevation- and frequency-dependent systematic biases observed in ground-based code measurements of the Chinese BeiDou navigation satellite system, using the onboard BeiDou code measurement data from the Chinese meteorological satellite Fengyun-3C. Particularly for geostationary earth orbit satellites, sky-view coverage can be achieved over the entire elevation and azimuth angle ranges with the available onboard tracking data, which is more favorable to modeling code biases. Apart from the BeiDou-satellite-induced biases, the onboard BeiDou code multipath effects also indicate pronounced near-field systematic biases that depend only on signal frequency and the line-of-sight directions. To correct these biases, we developed a proposed code correction model by estimating the BeiDou-satellite-induced biases as linear piece-wise functions in different satellite groups and the near-field systematic biases in a grid approach. To validate the code bias model, we carried out orbit determination using single-frequency BeiDou data with and without code bias corrections applied. Orbit precision statistics indicate that those code biases can seriously degrade single-frequency orbit determination. After the correction model was applied, the orbit position errors, 3D root mean square, were reduced from 150.6 to 56.3 cm.
BeiDou Geostationary Satellite Code Bias Modeling Using Fengyun-3C Onboard Measurements
Jiang, Kecai; Li, Min; Zhao, Qile; Li, Wenwen; Guo, Xiang
2017-01-01
This study validated and investigated elevation- and frequency-dependent systematic biases observed in ground-based code measurements of the Chinese BeiDou navigation satellite system, using the onboard BeiDou code measurement data from the Chinese meteorological satellite Fengyun-3C. Particularly for geostationary earth orbit satellites, sky-view coverage can be achieved over the entire elevation and azimuth angle ranges with the available onboard tracking data, which is more favorable to modeling code biases. Apart from the BeiDou-satellite-induced biases, the onboard BeiDou code multipath effects also indicate pronounced near-field systematic biases that depend only on signal frequency and the line-of-sight directions. To correct these biases, we developed a proposed code correction model by estimating the BeiDou-satellite-induced biases as linear piece-wise functions in different satellite groups and the near-field systematic biases in a grid approach. To validate the code bias model, we carried out orbit determination using single-frequency BeiDou data with and without code bias corrections applied. Orbit precision statistics indicate that those code biases can seriously degrade single-frequency orbit determination. After the correction model was applied, the orbit position errors, 3D root mean square, were reduced from 150.6 to 56.3 cm. PMID:29076998
Flight Results from the HST SM4 Relative Navigation Sensor System
NASA Technical Reports Server (NTRS)
Naasz, Bo; Eepoel, John Van; Queen, Steve; Southward, C. Michael; Hannah, Joel
2010-01-01
On May 11, 2009, Space Shuttle Atlantis roared off of Launch Pad 39A enroute to the Hubble Space Telescope (HST) to undertake its final servicing of HST, Servicing Mission 4. Onboard Atlantis was a small payload called the Relative Navigation Sensor experiment, which included three cameras of varying focal ranges, avionics to record images and estimate, in real time, the relative position and attitude (aka "pose") of the telescope during rendezvous and deploy. The avionics package, known as SpaceCube and developed at the Goddard Space Flight Center, performed image processing using field programmable gate arrays to accelerate this process, and in addition executed two different pose algorithms in parallel, the Goddard Natural Feature Image Recognition and the ULTOR Passive Pose and Position Engine (P3E) algorithms
NASA Precision Landing Technologies Completes Initial Flight Tests on Vertical Testbed Rocket
2017-04-19
This 2-minute, 40-second video shows how over the past 5 weeks, NASA and Masten Space Systems teams have prepared for and conducted sub-orbital rocket flight tests of next-generation lander navigation technology through the CoOperative Blending of Autonomous Landing Technologies (COBALT) project. The COBALT payload was integrated onto Masten’s rocket, Xodiac. The Xodiac vehicle used the Global Positioning System (GPS) for navigation during this first campaign, which was intentional to verify and refine COBALT system performance. The joint teams conducted numerous ground verification tests, made modifications in the process, practiced and refined operations’ procedures, conducted three tether tests, and have now flown two successful free flights. This successful, collaborative campaign has provided the COBALT and Xodiac teams with the valuable performance data needed to refine the systems and prepare them for the second flight test campaign this summer when the COBALT system will navigate the Xodiac rocket to a precision landing. The technologies within COBALT provide a spacecraft with knowledge during entry, descent, and landing that enables it to precisely navigate and softly land close to surface locations that have been previously too risky to target with current capabilities. The technologies will enable future exploration destinations on Mars, the moon, Europa, and other planets and moons. The two primary navigation components within COBALT include the Langley Research Center’s Navigation Doppler Lidar, which provides ultra-precise velocity and line-of-sight range measurements, and Jet Propulsion Laboratory’s Lander Vision System (LVS), which provides navigation estimates relative to an existing surface map. The integrated system is being flight tested onboard a Masten suborbital rocket vehicle called Xodiac. The COBALT project is led by the Johnson Space Center, with funding provided through the Game Changing Development, Flight Opportunities program, and Advanced Exploration Systems programs. Based at NASA’s Armstrong Flight Research Center in Edwards, CA, the Flight Opportunities program funds technology development flight tests on commercial suborbital space providers of which Masten is a vendor. The program has previously tested the LVS on the Masten rocket and validated the technology for the Mars 2020 rover.
Space Software Defined Radio Characterization to Enable Reuse
NASA Technical Reports Server (NTRS)
Mortensen, Dale J.; Bishop, Daniel W.; Chelmins, David
2012-01-01
NASA's Space Communication and Navigation Testbed is beginning operations on the International Space Station this year. The objective is to promote new software defined radio technologies and associated software application reuse, enabled by this first flight of NASA's Space Telecommunications Radio System architecture standard. The Space Station payload has three software defined radios onboard that allow for a wide variety of communications applications; however, each radio was only launched with one waveform application. By design the testbed allows new waveform applications to be uploaded and tested by experimenters in and outside of NASA. During the system integration phase of the testbed special waveform test modes and stand-alone test waveforms were used to characterize the SDR platforms for the future experiments. Characterization of the Testbed's JPL SDR using test waveforms and specialized ground test modes is discussed in this paper. One of the test waveforms, a record and playback application, can be utilized in a variety of ways, including new satellite on-orbit checkout as well as independent on-board testbed experiments.
NASA Technical Reports Server (NTRS)
Cerimele, Christopher J. (Inventor); Ried, Robert C. (Inventor); Peterson, Wayne L. (Inventor); Zupp, George A., Jr. (Inventor); Stagnaro, Michael J. (Inventor); Ross, Brian P. (Inventor)
1991-01-01
A return vehicle is disclosed for use in returning a crew to Earth from low earth orbit in a safe and relatively cost effective manner. The return vehicle comprises a cylindrically-shaped crew compartment attached to the large diameter of a conical heat shield having a spherically rounded nose. On-board inertial navigation and cold gas control systems are used together with a de-orbit propulsion system to effect a landing near a preferred site on the surface of the Earth. State vectors and attitude data are loaded from the attached orbiting craft just prior to separation of the return vehicle.
Analysis of On-board Hazard Detection and Avoidance for Safe Lunar Landing
NASA Technical Reports Server (NTRS)
Johnson, Andrew E.; Huertas, Andres; Werner, Robert A.; Montgomery, James F.
2008-01-01
Landing hazard detection and avoidance technology is being pursued within NASA to improve landing safety and increase access to sites of interest on the lunar surface. The performance of a hazard detection and avoidance system depends on properties of the terrain, sensor performance, algorithm design, vehicle characteristics and the overall all guidance navigation and control architecture. This paper analyzes the size of the region that must be imaged, sensor performance parameters and the impact of trajectory angle on hazard detection performance. The analysis shows that vehicle hazard tolerance is the driving parameter for hazard detection system design.
Destination pluto: New horizons performance during the approach phase
NASA Astrophysics Data System (ADS)
Flanigan, Sarah H.; Rogers, Gabe D.; Guo, Yanping; Kirk, Madeline N.; Weaver, Harold A.; Owen, William M.; Jackman, Coralie D.; Bauman, Jeremy; Pelletier, Frederic; Nelson, Derek; Stanbridge, Dale; Dumont, Phillip J.; Williams, Bobby; Stern, S. Alan; Olkin, Cathy B.; Young, Leslie A.; Ennico, Kimberly
2016-11-01
The New Horizons spacecraft began its journey to the Pluto-Charon system on January 19, 2006 on-board an Atlas V rocket from Cape Canaveral, Florida. As the first mission in NASA's New Frontiers program, the objective of the New Horizons mission is to perform the first exploration of ice dwarfs in the Kuiper Belt, extending knowledge of the solar system to include the icy "third zone" for the first time. Arriving at the correct time and correct position relative to Pluto on July 14, 2015 depended on the successful execution of a carefully choreographed sequence of events. The Core command sequence, which was developed and optimized over multiple years and included the highest-priority science observations during the closest approach period, was contingent on precise navigation to the Pluto-Charon system and nominal performance of the guidance and control (G&C) subsystem. The flyby and gravity assist of Jupiter on February 28, 2007 was critical in placing New Horizons on the path to Pluto. Once past Jupiter, trajectory correction maneuvers (TCMs) became the sole source of trajectory control since the spacecraft did not encounter any other planetary bodies along its flight path prior to Pluto. During the Pluto approach phase, which formally began on January 15, 2015, optical navigation images were captured primarily with the Long Range Reconnaissance Imager to refine spacecraft and Pluto-Charon system trajectory knowledge, which in turn was used to design TCMs. Orbit determination solutions were also used to update the spacecraft's on-board trajectory knowledge throughout the approach phase. Nominal performance of the G&C subsystem, accurate TCM designs, and high-quality orbit determination solutions resulted in final Pluto-relative B-plane arrival conditions that facilitated a successful first reconnaissance of the Pluto-Charon system.
Evaluation of Mobile Phone Interference With Aircraft GPS Navigation Systems
NASA Technical Reports Server (NTRS)
Pace, Scott; Oria, A. J.; Guckian, Paul; Nguyen, Truong X.
2004-01-01
This report compiles and analyzes tests that were conducted to measure cell phone spurious emissions in the Global Positioning System (GPS) radio frequency band that could affect the navigation system of an aircraft. The cell phone in question had, as reported to the FAA (Federal Aviation Administration), caused interference to several GPS receivers on-board a small single engine aircraft despite being compliant with data filed at the time with the FCC by the manufacturer. NASA (National Aeronautics and Space Administration) and industry tests show that while there is an emission in the 1575 MHz GPS band due to a specific combination of amplifier output impedance and load impedance that induces instability in the power amplifier, these spurious emissions (i.e., not the intentional transmit signal) are similar to those measured on non-intentionally transmitting devices such as, for example, laptop computers. Additional testing on a wide sample of different commercial cell phones did not result in any emission in the 1575 MHz GPS Band above the noise floor of the measurement receiver.
First Results from a Hardware-in-the-Loop Demonstration of Closed-Loop Autonomous Formation Flying
NASA Technical Reports Server (NTRS)
Gill, E.; Naasz, Bo; Ebinuma, T.
2003-01-01
A closed-loop system for the demonstration of formation flying technologies has been developed at NASA s Goddard Space Flight Center. Making use of a GPS signal simulator with a dual radio frequency outlet, the system includes two GPS space receivers as well as a powerful onboard navigation processor dedicated to the GPS-based guidance, navigation, and control of a satellite formation in real-time. The closed-loop system allows realistic simulations of autonomous formation flying scenarios, enabling research in the fields of tracking and orbit control strategies for a wide range of applications. A sample scenario has been set up where the autonomous transition of a satellite formation from an initial along-track separation of 800 m to a final distance of 100 m has been demonstrated. As a result, a typical control accuracy of about 5 m has been achieved which proves the applicability of autonomous formation flying techniques to formations of satellites as close as 50 m.
2004-02-10
This is a three-dimensional stereo anaglyph of an image taken by the front navigation camera onboard NASA Mars Exploration Rover Spirit, showing an interesting patch of rippled soil. 3D glasses are necessary to view this image.
A navigation and control system for an autonomous rescue vehicle in the space station environment
NASA Technical Reports Server (NTRS)
Merkel, Lawrence
1991-01-01
A navigation and control system was designed and implemented for an orbital autonomous rescue vehicle envisioned to retrieve astronauts or equipment in the case that they become disengaged from the space station. The rescue vehicle, termed the Extra-Vehicular Activity Retriever (EVAR), has an on-board inertial measurement unit ahd GPS receivers for self state estimation, a laser range imager (LRI) and cameras for object state estimation, and a data link for reception of space station state information. The states of the retriever and objects (obstacles and the target object) are estimated by inertial state propagation which is corrected via measurements from the GPS, the LRI system, or the camera system. Kalman filters are utilized to perform sensor fusion and estimate the state propagation errors. Control actuation is performed by a Manned Maneuvering Unit (MMU). Phase plane control techniques are used to control the rotational and translational state of the retriever. The translational controller provides station-keeping or motion along either Clohessy-Wiltshire trajectories or straight line trajectories in the LVLH frame of any sufficiently observed object or of the space station. The software was used to successfully control a prototype EVAR on an air bearing floor facility, and a simulated EVAR operating in a simulated orbital environment. The design of the navigation system and the control system are presented. Also discussed are the hardware systems and the overall software architecture.
A study of autonomous satellite navigation methods using the global positioning satellite system
NASA Technical Reports Server (NTRS)
Tapley, B. D.
1980-01-01
Special orbit determination algorithms were developed to accommodate the size and speed limitations of on-board computer systems of the NAVSTAR Global Positioning System. The algorithms use square root sequential filtering methods. A new method for the time update of the square root covariance matrix was also developed. In addition, the time update method was compared with another square root convariance propagation method to determine relative performance characteristics. Comparisions were based on the results of computer simulations of the LANDSAT-D satellite processing pseudo range and pseudo range-rate measurements from the phase one GPS. A summary of the comparison results is presented.
Autonomous mobile robot for radiologic surveys
Dudar, A.M.; Wagner, D.G.; Teese, G.D.
1994-06-28
An apparatus is described for conducting radiologic surveys. The apparatus comprises in the main a robot capable of following a preprogrammed path through an area, a radiation monitor adapted to receive input from a radiation detector assembly, ultrasonic transducers for navigation and collision avoidance, and an on-board computer system including an integrator for interfacing the radiation monitor and the robot. Front and rear bumpers are attached to the robot by bumper mounts. The robot may be equipped with memory boards for the collection and storage of radiation survey information. The on-board computer system is connected to a remote host computer via a UHF radio link. The apparatus is powered by a rechargeable 24-volt DC battery, and is stored at a docking station when not in use and/or for recharging. A remote host computer contains a stored database defining paths between points in the area where the robot is to operate, including but not limited to the locations of walls, doors, stationary furniture and equipment, and sonic markers if used. When a program consisting of a series of paths is downloaded to the on-board computer system, the robot conducts a floor survey autonomously at any preselected rate. When the radiation monitor detects contamination, the robot resurveys the area at reduced speed and resumes its preprogrammed path if the contamination is not confirmed. If the contamination is confirmed, the robot stops and sounds an alarm. 5 figures.
Autonomous mobile robot for radiologic surveys
Dudar, Aed M.; Wagner, David G.; Teese, Gregory D.
1994-01-01
An apparatus for conducting radiologic surveys. The apparatus comprises in the main a robot capable of following a preprogrammed path through an area, a radiation monitor adapted to receive input from a radiation detector assembly, ultrasonic transducers for navigation and collision avoidance, and an on-board computer system including an integrator for interfacing the radiation monitor and the robot. Front and rear bumpers are attached to the robot by bumper mounts. The robot may be equipped with memory boards for the collection and storage of radiation survey information. The on-board computer system is connected to a remote host computer via a UHF radio link. The apparatus is powered by a rechargeable 24-volt DC battery, and is stored at a docking station when not in use and/or for recharging. A remote host computer contains a stored database defining paths between points in the area where the robot is to operate, including but not limited to the locations of walls, doors, stationary furniture and equipment, and sonic markers if used. When a program consisting of a series of paths is downloaded to the on-board computer system, the robot conducts a floor survey autonomously at any preselected rate. When the radiation monitor detects contamination, the robot resurveys the area at reduced speed and resumes its preprogrammed path if the contamination is not confirmed. If the contamination is confirmed, the robot stops and sounds an alarm.
NASA Technical Reports Server (NTRS)
Brockers, Roland; Susca, Sara; Zhu, David; Matthies, Larry
2012-01-01
Direct-lift micro air vehicles have important applications in reconnaissance. In order to conduct persistent surveillance in urban environments, it is essential that these systems can perform autonomous landing maneuvers on elevated surfaces that provide high vantage points without the help of any external sensor and with a fully contained on-board software solution. In this paper, we present a micro air vehicle that uses vision feedback from a single down looking camera to navigate autonomously and detect an elevated landing platform as a surrogate for a roof top. Our method requires no special preparation (labels or markers) of the landing location. Rather, leveraging the planar character of urban structure, the landing platform detection system uses a planar homography decomposition to detect landing targets and produce approach waypoints for autonomous landing. The vehicle control algorithm uses a Kalman filter based approach for pose estimation to fuse visual SLAM (PTAM) position estimates with IMU data to correct for high latency SLAM inputs and to increase the position estimate update rate in order to improve control stability. Scale recovery is achieved using inputs from a sonar altimeter. In experimental runs, we demonstrate a real-time implementation running on-board a micro aerial vehicle that is fully self-contained and independent from any external sensor information. With this method, the vehicle is able to search autonomously for a landing location and perform precision landing maneuvers on the detected targets.
Meta-image navigation augmenters for unmanned aircraft systems (MINA for UAS)
NASA Astrophysics Data System (ADS)
Òªelik, Koray; Somani, Arun K.; Schnaufer, Bernard; Hwang, Patrick Y.; McGraw, Gary A.; Nadke, Jeremy
2013-05-01
GPS is a critical sensor for Unmanned Aircraft Systems (UASs) due to its accuracy, global coverage and small hardware footprint, but is subject to denial due to signal blockage or RF interference. When GPS is unavailable, position, velocity and attitude (PVA) performance from other inertial and air data sensors is not sufficient, especially for small UASs. Recently, image-based navigation algorithms have been developed to address GPS outages for UASs, since most of these platforms already include a camera as standard equipage. Performing absolute navigation with real-time aerial images requires georeferenced data, either images or landmarks, as a reference. Georeferenced imagery is readily available today, but requires a large amount of storage, whereas collections of discrete landmarks are compact but must be generated by pre-processing. An alternative, compact source of georeferenced data having large coverage area is open source vector maps from which meta-objects can be extracted for matching against real-time acquired imagery. We have developed a novel, automated approach called MINA (Meta Image Navigation Augmenters), which is a synergy of machine-vision and machine-learning algorithms for map aided navigation. As opposed to existing image map matching algorithms, MINA utilizes publicly available open-source geo-referenced vector map data, such as OpenStreetMap, in conjunction with real-time optical imagery from an on-board, monocular camera to augment the UAS navigation computer when GPS is not available. The MINA approach has been experimentally validated with both actual flight data and flight simulation data and results are presented in the paper.
Real-time synthetic vision cockpit display for general aviation
NASA Astrophysics Data System (ADS)
Hansen, Andrew J.; Smith, W. Garth; Rybacki, Richard M.
1999-07-01
Low cost, high performance graphics solutions based on PC hardware platforms are now capable of rendering synthetic vision of a pilot's out-the-window view during all phases of flight. When coupled to a GPS navigation payload the virtual image can be fully correlated to the physical world. In particular, differential GPS services such as the Wide Area Augmentation System WAAS will provide all aviation users with highly accurate 3D navigation. As well, short baseline GPS attitude systems are becoming a viable and inexpensive solution. A glass cockpit display rendering geographically specific imagery draped terrain in real-time can be coupled with high accuracy (7m 95% positioning, sub degree pointing), high integrity (99.99999% position error bound) differential GPS navigation/attitude solutions to provide both situational awareness and 3D guidance to (auto) pilots throughout en route, terminal area, and precision approach phases of flight. This paper describes the technical issues addressed when coupling GPS and glass cockpit displays including the navigation/display interface, real-time 60 Hz rendering of terrain with multiple levels of detail under demand paging, and construction of verified terrain databases draped with geographically specific satellite imagery. Further, on-board recordings of the navigation solution and the cockpit display provide a replay facility for post-flight simulation based on live landings as well as synchronized multiple display channels with different views from the same flight. PC-based solutions which integrate GPS navigation and attitude determination with 3D visualization provide the aviation community, and general aviation in particular, with low cost high performance guidance and situational awareness in all phases of flight.
Guidance and control for unmanned ground vehicles
NASA Astrophysics Data System (ADS)
Bateman, Peter J.
1994-06-01
Techniques for the guidance, control, and navigation of unmanned ground vehicles are described in terms of the communication bandwidth requirements for driving and control of a vehicle remote from the human operator. Modes of operation are conveniently classified as conventional teleoperation, supervisory control, and fully autonomous control. The fundamental problem of maintaining a robust non-line-of-sight communications link between the human controller and the remote vehicle is discussed, as this provides the impetus for greater autonomy in the control system and the greatest scope for innovation. While supervisory control still requires the man to be providing the primary navigational intelligence, fully autonomous operation requires that mission navigation is provided solely by on-board machine intelligence. Methods directed at achieving this performance are described using various active and passive sensing of the terrain for route navigation and obstacle detection. Emphasis is given to TV imagery and signal processing techniques for image understanding. Reference is made to the limitations of current microprocessor technology and suitable computer architectures. Some of the more recent control techniques involve the use of neural networks, fuzzy logic, and data fusion and these are discussed in the context of road following and cross country navigation. Examples of autonomous vehicle testbeds operated at various laboratories around the world are given.
Precise relative navigation using augmented CDGPS
NASA Astrophysics Data System (ADS)
Park, Chan-Woo
2001-10-01
Autonomous formation flying of multiple vehicles is a revolutionary enabling technology for many future space and earth science missions that require distributed measurements, such as sparse aperture radars and stellar interferometry. The techniques developed for the space applications will also have a significant impact on many terrestrial formation flying missions. One of the key requirements of formation flying is accurate knowledge of the relative positions and velocities between the vehicles. Several researchers have shown that the GPS is a viable sensor to perform this relative navigation. However, there are several limitations in the use of GPS because it requires adequate visibility to the NAVSTAR constellation. For some mission scenarios, such as MEO, GEO and tight formation missions, the visibility/geometry of the constellation may not be sufficient to accurately estimate the relative states. One solution to these problems is to include an RF ranging device onboard the vehicles in the formation and form a local constellation that augments the existing NAVSTAR constellation. These local range measurements, combined with the GPS measurements, can provide a sufficient number of measurements and adequate geometry to solve for the relative states. Furthermore, these RF ranging devices can be designed to provide substantially more accurate measures of the vehicle relative states than the traditional GPS pseudolites. The local range measurements also allow relative vehicle motion to be used to efficiently solve for the cycle ambiguities in real-time. This dissertation presents the development of an onboard ranging sensor and the extension of several related algorithms for a formation of vehicles with both GPS and local transmitters. Key among these are a robust cycle ambiguity estimation method and a decentralized relative navigation filter. The efficient decentralized approach to the GPS-only relative navigation problem is extended to an iterative cascade extended Kalman filtering (ICEKF) algorithm when the vehicles have onboard transmitters. Several ground testbeds were developed to demonstrate the feasibility of the augmentation concept and the relative navigation algorithms. The testbed includes the Stanford Pseudolite Transceiver Crosslink (SPTC), which was developed and extensively tested with a formation of outdoor ground vehicles.
Trends in transport aircraft avionics
NASA Technical Reports Server (NTRS)
Berkstresser, B. K.
1973-01-01
A survey of avionics onboard present commercial transport aircraft was conducted to identify trends in avionics systems characteristics and to determine the impact of technology advances on equipment weight, cost, reliability, and maintainability. Transport aircraft avionics systems are described under the headings of communication, navigation, flight control, and instrumentation. The equipment included in each section is described functionally. However, since more detailed descriptions of the equipment can be found in other sources, the description is limited and emphasis is put on configuration requirements. Since airborne avionics systems must interface with ground facilities, certain ground facilities are described as they relate to the airborne systems, with special emphasis on air traffic control and all-weather landing capability.
MACS-Mar: a real-time remote sensing system for maritime security applications
NASA Astrophysics Data System (ADS)
Brauchle, Jörg; Bayer, Steven; Hein, Daniel; Berger, Ralf; Pless, Sebastian
2018-04-01
The modular aerial camera system (MACS) is a development platform for optical remote sensing concepts, algorithms and special environments. For real-time services for maritime security (EMSec joint project), a new multi-sensor configuration MACS-Mar was realized. It consists of four co-aligned sensor heads in the visible RGB, near infrared (NIR, 700-950 nm), hyperspectral (HS, 450-900 nm) and thermal infrared (TIR, 7.5-14 µm) spectral range, a mid-cost navigation system, a processing unit and two data links. On-board image projection, cropping of redundant data and compression enable the instant generation of direct-georeferenced high-resolution image mosaics, automatic object detection, vectorization and annotation of floating objects on the water surface. The results were transmitted over a distance up to 50 km in real-time via narrow and broadband data links and were visualized in a maritime situation awareness system. For the automatic onboard detection of floating objects, a segmentation and classification workflow based on RGB, IR and TIR information was developed and tested. The completeness of the object detection in the experiment resulted in 95%, the correctness in 53%. Mostly, bright backwash of ships lead to an overestimation of the number of objects, further refinement using water homogeneity in the TIR, as implemented in the workflow, couldn't be carried out due to problems with the TIR sensor, else distinctly better results could have been expected. The absolute positional accuracy of the projected real-time imagery resulted in 2 m without postprocessing of images or navigation data, the relative measurement accuracy of distances is in the range of the image resolution, which is about 12 cm for RGB imagery in the EMSec experiment.
Weak and Dynamic GNSS Signal Tracking Strategies for Flight Missions in the Space Service Volume
Jing, Shuai; Zhan, Xingqun; Liu, Baoyu; Chen, Maolin
2016-01-01
Weak-signal and high-dynamics are of two primary concerns of space navigation using GNSS (Global Navigation Satellite System) in the space service volume (SSV). The paper firstly defines a reference assumption third-order phase-locked loop (PLL) as the baseline of an onboard GNSS receiver, and proves the incompetence of this conventional architecture. Then an adaptive four-state Kalman filter (KF)-based algorithm is introduced to realize the optimization of loop noise bandwidth, which can adaptively regulate its filter gain according to the received signal power and line-of-sight (LOS) dynamics. To overcome the matter of losing lock in weak-signal and high-dynamic environments, an open loop tracking strategy aided by an inertial navigation system (INS) is recommended, and the traditional maximum likelihood estimation (MLE) method is modified in a non-coherent way by reconstructing the likelihood cost function. Furthermore, a typical mission with combined orbital maneuvering and non-maneuvering arcs is taken as a destination object to test the two proposed strategies. Finally, the experiment based on computer simulation identifies the effectiveness of an adaptive four-state KF-based strategy under non-maneuvering conditions and the virtue of INS-assisted methods under maneuvering conditions. PMID:27598164
Weak and Dynamic GNSS Signal Tracking Strategies for Flight Missions in the Space Service Volume.
Jing, Shuai; Zhan, Xingqun; Liu, Baoyu; Chen, Maolin
2016-09-02
Weak-signal and high-dynamics are of two primary concerns of space navigation using GNSS (Global Navigation Satellite System) in the space service volume (SSV). The paper firstly defines a reference assumption third-order phase-locked loop (PLL) as the baseline of an onboard GNSS receiver, and proves the incompetence of this conventional architecture. Then an adaptive four-state Kalman filter (KF)-based algorithm is introduced to realize the optimization of loop noise bandwidth, which can adaptively regulate its filter gain according to the received signal power and line-of-sight (LOS) dynamics. To overcome the matter of losing lock in weak-signal and high-dynamic environments, an open loop tracking strategy aided by an inertial navigation system (INS) is recommended, and the traditional maximum likelihood estimation (MLE) method is modified in a non-coherent way by reconstructing the likelihood cost function. Furthermore, a typical mission with combined orbital maneuvering and non-maneuvering arcs is taken as a destination object to test the two proposed strategies. Finally, the experiment based on computer simulation identifies the effectiveness of an adaptive four-state KF-based strategy under non-maneuvering conditions and the virtue of INS-assisted methods under maneuvering conditions.
NASA Astrophysics Data System (ADS)
Brauer, U.
2007-08-01
The Open Navigator Framework (ONF) was developed to provide a unified and scalable platform for user interface integration. The main objective for the framework was to raise usability of monitoring and control consoles and to provide a reuse of software components in different application areas. ONF is currently applied for the Columbus onboard crew interface, the commanding application for the Columbus Control Centre, the Columbus user facilities specialized user interfaces, the Mission Execution Crew Assistant (MECA) study and EADS Astrium internal R&D projects. ONF provides a well documented and proven middleware for GUI components (Java plugin interface, simplified concept similar to Eclipse). The overall application configuration is performed within a graphical user interface for layout and component selection. The end-user does not have to work in the underlying XML configuration files. ONF was optimized to provide harmonized user interfaces for monitoring and command consoles. It provides many convenience functions designed together with flight controllers and onboard crew: user defined workspaces, incl. support for multi screens efficient communication mechanism between the components integrated web browsing and documentation search &viewing consistent and integrated menus and shortcuts common logging and application configuration (properties) supervision interface for remote plugin GUI access (web based) A large number of operationally proven ONF components have been developed: Command Stack & History: Release of commands and follow up the command acknowledges System Message Panel: Browse, filter and search system messages/events Unified Synoptic System: Generic synoptic display system Situational Awareness : Show overall subsystem status based on monitoring of key parameters System Model Browser: Browse mission database defintions (measurements, commands, events) Flight Procedure Executor: Execute checklist and logical flow interactive procedures Web Browser : Integrated browser reference documentation and operations data Timeline Viewer: View master timeline as Gantt chart Search: Local search of operations products (e.g. documentation, procedures, displays) All GUI components access the underlying spacecraft data (commanding, reporting data, events, command history) via a common library providing adaptors for the current deployments (Columbus MCS, Columbus onboard Data Management System, Columbus Trainer raw packet protocol). New Adaptors are easy to develop. Currently an adaptor to SCOS 2000 is developed as part of a study for the ESTEC standardization section ("USS for ESTEC Reference Facility").
In-Space Networking On NASA's SCaN Testbed
NASA Technical Reports Server (NTRS)
Brooks, David; Eddy, Wesley M.; Clark, Gilbert J., III; Johnson, Sandra K.
2016-01-01
The NASA Space Communications and Navigation (SCaN) Testbed, an external payload onboard the International Space Station, is equipped with three software defined radios (SDRs) and a programmable flight computer. The purpose of the Testbed is to conduct inspace research in the areas of communication, navigation, and networking in support of NASA missions and communication infrastructure. Multiple reprogrammable elements in the end to end system, along with several communication paths and a semi-operational environment, provides a unique opportunity to explore networking concepts and protocols envisioned for the future Solar System Internet (SSI). This paper will provide a general description of the system's design and the networking protocols implemented and characterized on the testbed, including Encapsulation, IP over CCSDS, and Delay-Tolerant Networking (DTN). Due to the research nature of the implementation, flexibility and robustness are considered in the design to enable expansion for future adaptive and cognitive techniques. Following a detailed design discussion, lessons learned and suggestions for future missions and communication infrastructure elements will be provided. Plans for the evolving research on SCaN Testbed as it moves towards a more adaptive, autonomous system will be discussed.
Multiple-Agent Air/Ground Autonomous Exploration Systems
NASA Technical Reports Server (NTRS)
Fink, Wolfgang; Chao, Tien-Hsin; Tarbell, Mark; Dohm, James M.
2007-01-01
Autonomous systems of multiple-agent air/ground robotic units for exploration of the surfaces of remote planets are undergoing development. Modified versions of these systems could be used on Earth to perform tasks in environments dangerous or inaccessible to humans: examples of tasks could include scientific exploration of remote regions of Antarctica, removal of land mines, cleanup of hazardous chemicals, and military reconnaissance. A basic system according to this concept (see figure) would include a unit, suspended by a balloon or a blimp, that would be in radio communication with multiple robotic ground vehicles (rovers) equipped with video cameras and possibly other sensors for scientific exploration. The airborne unit would be free-floating, controlled by thrusters, or tethered either to one of the rovers or to a stationary object in or on the ground. Each rover would contain a semi-autonomous control system for maneuvering and would function under the supervision of a control system in the airborne unit. The rover maneuvering control system would utilize imagery from the onboard camera to navigate around obstacles. Avoidance of obstacles would also be aided by readout from an onboard (e.g., ultrasonic) sensor. Together, the rover and airborne control systems would constitute an overarching closed-loop control system to coordinate scientific exploration by the rovers.
Real-time single-frequency GPS/MEMS-IMU attitude determination of lightweight UAVs.
Eling, Christian; Klingbeil, Lasse; Kuhlmann, Heiner
2015-10-16
In this paper, a newly-developed direct georeferencing system for the guidance, navigation and control of lightweight unmanned aerial vehicles (UAVs), having a weight limit of 5 kg and a size limit of 1.5 m, and for UAV-based surveying and remote sensing applications is presented. The system is intended to provide highly accurate positions and attitudes (better than 5 cm and 0.5°) in real time, using lightweight components. The main focus of this paper is on the attitude determination with the system. This attitude determination is based on an onboard single-frequency GPS baseline, MEMS (micro-electro-mechanical systems) inertial sensor readings, magnetic field observations and a 3D position measurement. All of this information is integrated in a sixteen-state error space Kalman filter. Special attention in the algorithm development is paid to the carrier phase ambiguity resolution of the single-frequency GPS baseline observations. We aim at a reliable and instantaneous ambiguity resolution, since the system is used in urban areas, where frequent losses of the GPS signal lock occur and the GPS measurement conditions are challenging. Flight tests and a comparison to a navigation-grade inertial navigation system illustrate the performance of the developed system in dynamic situations. Evaluations show that the accuracies of the system are 0.05° for the roll and the pitch angle and 0.2° for the yaw angle. The ambiguities of the single-frequency GPS baseline can be resolved instantaneously in more than 90% of the cases.
Baumann, Martin; Keinath, Andreas; Krems, Josef F; Bengler, Klaus
2004-05-01
Despite the usefulness of new on-board information systems one has to be concerned about the potential distraction effects that they impose on the driver. Therefore, methods and procedures are necessary to assess the visual demand that is connected to the usage of an on-board system. The occlusion-method is considered a strong candidate as a procedure for evaluating display designs with regard to their visual demand. This paper reports results from two experimental studies conducted to further evaluate this method. In the first study, performance in using an in-car navigation system was measured under three conditions: static (parking lot), occlusion (shutter glasses), and driving. The results show that the occlusion-procedure can be used to simulate visual requirements of real traffic conditions. In a second study the occlusion method was compared to a global evaluation criterion based on the total task time. It can be demonstrated that the occlusion method can identify tasks which meet this criterion, but are yet irresolvable under driving conditions. It is concluded that the occlusion technique seems to be a reliable and valid method for evaluating visual and dialogue aspects of in-car information systems.
A low-cost inertial smoothing system for landing approach guidance
NASA Technical Reports Server (NTRS)
Niessen, F. R.
1973-01-01
Accurate position and velocity information with low noise content for instrument approaches and landings is required for both control and display applications. In a current VTOL automatic instrument approach and landing research program, radar-derived landing guidance position reference signals, which are noisy, have been mixed with acceleration information derived from low-cost onboard sensors to provide high-quality position and velocity information. An in-flight comparison of signal quality and accuracy has shown good agreement between the low-cost inertial smoothing system and an aided inertial navigation system. Furthermore, the low-cost inertial smoothing system has been proven to be satisfactory in control and display system applications for both automatic and pilot-in-the-loop instrument approaches and landings.
Flight Test Evaluation of Synthetic Vision Concepts at a Terrain Challenged Airport
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Prince, Lawrence J., III; Bailey, Randell E.; Arthur, Jarvis J., III; Parrish, Russell V.
2004-01-01
NASA's Synthetic Vision Systems (SVS) Project is striving to eliminate poor visibility as a causal factor in aircraft accidents as well as enhance operational capabilities of all aircraft through the display of computer generated imagery derived from an onboard database of terrain, obstacle, and airport information. To achieve these objectives, NASA 757 flight test research was conducted at the Eagle-Vail, Colorado airport to evaluate three SVS display types (Head-up Display, Head-Down Size A, Head-Down Size X) and two terrain texture methods (photo-realistic, generic) in comparison to the simulated Baseline Boeing-757 Electronic Attitude Direction Indicator and Navigation/Terrain Awareness and Warning System displays. The results of the experiment showed significantly improved situation awareness, performance, and workload for SVS concepts compared to the Baseline displays and confirmed the retrofit capability of the Head-Up Display and Size A SVS concepts. The research also demonstrated that the tunnel guidance display concept used within the SVS concepts achieved required navigation performance (RNP) criteria.
Advanced Communication Architectures and Technologies for Missions to the Outer Planets
NASA Technical Reports Server (NTRS)
Bhasin, K.; Hayden, J. L.
2001-01-01
Missions to the outer planets would be considerably enhanced by the implementation of a future space communication infrastructure that utilizes relay stations placed at strategic locations in the solar system. These relay stations would operate autonomously and handle remote mission command and data traffic on a prioritized demand access basis. Such a system would enhance communications from that of the current direct communications between the planet and Earth. The system would also provide high rate data communications to outer planet missions, clear communications paths during times when the sun occults the mission spacecraft as viewed from Earth, and navigational "lighthouses" for missions utilizing onboard autonomous operations. Additional information is contained in the original extended abstract.
Design and Development of the WVU Advanced Technology Satellite for Optical Navigation
NASA Astrophysics Data System (ADS)
Straub, Miranda
In order to meet the demands of future space missions, it is beneficial for spacecraft to have the capability to support autonomous navigation. This is true for both crewed and uncrewed vehicles. For crewed vehicles, autonomous navigation would allow the crew to safely navigate home in the event of a communication system failure. For uncrewed missions, autonomous navigation reduces the demand on ground-based infrastructure and could allow for more flexible operation. One promising technique for achieving these goals is through optical navigation. To this end, the present work considers how camera images of the Earth's surface could enable autonomous navigation of a satellite in low Earth orbit. Specifically, this study will investigate the use of coastlines and other natural land-water boundaries for navigation. Observed coastlines can be matched to a pre-existing coastline database in order to determine the location of the spacecraft. This paper examines how such measurements may be processed in an on-board extended Kalman filter (EKF) to provide completely autonomous estimates of the spacecraft state throughout the duration of the mission. In addition, future work includes implementing this work on a CubeSat mission within the WVU Applied Space Exploration Lab (ASEL). The mission titled WVU Advanced Technology Satellite for Optical Navigation (WATSON) will provide students with an opportunity to experience the life cycle of a spacecraft from design through operation while hopefully meeting the primary and secondary goals defined for mission success. The spacecraft design process, although simplified by CubeSat standards, will be discussed in this thesis as well as the current results of laboratory testing with the CubeSat model in the ASEL.
Integrity Analysis of Real-Time Ppp Technique with Igs-Rts Service for Maritime Navigation
NASA Astrophysics Data System (ADS)
El-Diasty, M.
2017-10-01
Open sea and inland waterways are the most widely used mode for transporting goods worldwide. It is the International Maritime Organization (IMO) that defines the requirements for position fixing equipment for a worldwide radio-navigation system, in terms of accuracy, integrity, continuity, availability and coverage for the various phases of navigation. Satellite positioning systems can contribute to meet these requirements, as well as optimize marine transportation. Marine navigation usually consists of three major phases identified as Ocean/Coastal/Port approach/Inland waterway, in port navigation and automatic docking with alert limit ranges from 25 m to 0.25 m. GPS positioning is widely used for many applications and is currently recognized by IMO for a future maritime navigation. With the advancement in autonomous GPS positioning techniques such as Precise Point Positioning (PPP) and with the advent of new real-time GNSS correction services such as IGS-Real-Time-Service (RTS), it is necessary to investigate the integrity of the PPP-based positioning technique along with IGS-RTS service in terms of availability and reliability for safe navigation in maritime application. This paper monitors the integrity of an autonomous real-time PPP-based GPS positioning system using the IGS real-time service (RTS) for maritime applications that require minimum availability of integrity of 99.8 % to fulfil the IMO integrity standards. To examine the integrity of the real-time IGS-RTS PPP-based technique for maritime applications, kinematic data from a dual frequency GPS receiver is collected onboard a vessel and investigated with the real-time IGS-RTS PPP-based GPS positioning technique. It is shown that the availability of integrity of the real-time IGS-RTS PPP-based GPS solution is 100 % for all navigation phases and therefore fulfil the IMO integrity standards (99.8 % availability) immediately (after 1 second), after 2 minutes and after 42 minutes of convergence time for Ocean/Coastal/Port approach/Inland waterway, in port navigation and automatic docking, respectively. Moreover, the misleading information is about 2 % for all navigation phases that is considered less safe is not in immediate danger because the horizontal position error is less than the navigation alert limits.
NASA Technical Reports Server (NTRS)
Schutte, P. C.; Abbott, K. H.
1986-01-01
Real-time onboard fault monitoring and diagnosis for aircraft applications, whether performed by the human pilot or by automation, presents many difficult problems. Quick response to failures may be critical, the pilot often must compensate for the failure while diagnosing it, his information about the state of the aircraft is often incomplete, and the behavior of the aircraft changes as the effect of the failure propagates through the system. A research effort was initiated to identify guidelines for automation of onboard fault monitoring and diagnosis and associated crew interfaces. The effort began by determining the flight crew's information requirements for fault monitoring and diagnosis and the various reasoning strategies they use. Based on this information, a conceptual architecture was developed for the fault monitoring and diagnosis process. This architecture represents an approach and a framework which, once incorporated with the necessary detail and knowledge, can be a fully operational fault monitoring and diagnosis system, as well as providing the basis for comparison of this approach to other fault monitoring and diagnosis concepts. The architecture encompasses all aspects of the aircraft's operation, including navigation, guidance and controls, and subsystem status. The portion of the architecture that encompasses subsystem monitoring and diagnosis was implemented for an aircraft turbofan engine to explore and demonstrate the AI concepts involved. This paper describes the architecture and the implementation for the engine subsystem.
Precision Landing and Hazard Avoidance Doman
NASA Technical Reports Server (NTRS)
Robertson, Edward A.; Carson, John M., III
2016-01-01
The Precision Landing and Hazard Avoidance (PL&HA) domain addresses the development, integration, testing, and spaceflight infusion of sensing, processing, and GN&C functions critical to the success and safety of future human and robotic exploration missions. PL&HA sensors also have applications to other mission events, such as rendezvous and docking. Autonomous PL&HA builds upon the core GN&C capabilities developed to enable soft, controlled landings on the Moon, Mars, and other solar system bodies. Through the addition of a Terrain Relative Navigation (TRN) function, precision landing within tens of meters of a map-based target is possible. The addition of a 3-D terrain mapping lidar sensor improves the probability of a safe landing via autonomous, real-time Hazard Detection and Avoidance (HDA). PL&HA significantly improves the probability of mission success and enhances access to sites of scientific interest located in challenging terrain. PL&HA can also utilize external navigation aids, such as navigation satellites and surface beacons. Advanced Lidar Sensors High precision ranging, velocimetry, and 3-D terrain mapping Terrain Relative Navigation (TRN) TRN compares onboard reconnaissance data with real-time terrain imaging data to update the S/C position estimate Hazard Detection and Avoidance (HDA) Generates a high-resolution, 3-D terrain map in real-time during the approach trajectory to identify safe landing targets Inertial Navigation During Terminal Descent High precision surface relative sensors enable accurate inertial navigation during terminal descent and a tightly controlled touchdown within meters of the selected safe landing target.
The Deep Space Atomic Clock: Ushering in a New Paradigm for Radio Navigation and Science
NASA Technical Reports Server (NTRS)
Ely, Todd; Seubert, Jill; Prestage, John; Tjoelker, Robert
2013-01-01
The Deep Space Atomic Clock (DSAC) mission will demonstrate the on-orbit performance of a high-accuracy, high-stability miniaturized mercury ion atomic clock during a year-long experiment in Low Earth Orbit. DSAC's timing error requirement provides the frequency stability necessary to perform deep space navigation based solely on one-way radiometric tracking data. Compared to a two-way tracking paradigm, DSAC-enabled one-way tracking will benefit navigation and radio science by increasing the quantity and quality of tracking data. Additionally, DSAC also enables fully-autonomous onboard navigation useful for time-sensitive situations. The technology behind the mercury ion atomic clock and a DSAC mission overview are presented. Example deep space applications of DSAC, including navigation of a Mars orbiter and Europa flyby gravity science, highlight the benefits of DSAC-enabled one-way Doppler tracking.
Deep-space navigation applications of improved ground-based optical astrometry
NASA Technical Reports Server (NTRS)
Null, G. W.; Owen, W. M., Jr.; Synnott, S. P.
1992-01-01
Improvements in ground-based optical astrometry will eventually be required for navigation of interplanetary spacecraft when these spacecraft communicate at optical wavelengths. Although such spacecraft may be some years off, preliminary versions of the astrometric technology can also be used to obtain navigational improvements for the Galileo and Cassini missions. This article describes a technology-development and observational program to accomplish this, including a cooperative effort with U.S. Naval Observatory Flagstaff Station. For Galileo, Earth-based astrometry of Jupiter's Galilean satellites may improve their ephemeris accuracy by a factor of 3 to 6. This would reduce the requirements for onboard optical navigation pictures, so that more of the data transmission capability (currently limited by high-gain antenna deployment problems) can be used for science data. Also, observations of European Space Agency (ESA) Hipparcos stars with asteroid 243 Ida may provide significantly improved navigation accuracy for a planned August 1993 Galileo spacecraft encounter.
Advancing Lidar Sensors Technologies for Next Generation Landing Missions
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Hines, Glenn D.; Roback, Vincent E.; Petway, Larry B.; Barnes, Bruce W.; Brewster, Paul F.; Pierrottet, Diego F.; Bulyshev, Alexander
2015-01-01
Missions to solar systems bodies must meet increasingly ambitious objectives requiring highly reliable "precision landing", and "hazard avoidance" capabilities. Robotic missions to the Moon and Mars demand landing at pre-designated sites of high scientific value near hazardous terrain features, such as escarpments, craters, slopes, and rocks. Missions aimed at paving the path for colonization of the Moon and human landing on Mars need to execute onboard hazard detection and precision maneuvering to ensure safe landing near previously deployed assets. Asteroid missions require precision rendezvous, identification of the landing or sampling site location, and navigation to the highly dynamic object that may be tumbling at a fast rate. To meet these needs, NASA Langley Research Center (LaRC) has developed a set of advanced lidar sensors under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. These lidar sensors can provide precision measurement of vehicle relative proximity, velocity, and orientation, and high resolution elevation maps of the surface during the descent to the targeted body. Recent flights onboard Morpheus free-flyer vehicle have demonstrated the viability of ALHAT lidar sensors for future landing missions to solar system bodies.
An Overview of Flight Test Results for a Formation Flight Autopilot
NASA Technical Reports Server (NTRS)
Hanson, Curtis E.; Ryan, Jack; Allen, Michael J.; Jacobson, Steven R.
2002-01-01
The first flight test phase of the NASA Dryden Flight Research Center Autonomous Formation Flight project has successfully demonstrated precision autonomous station-keeping of an F/A-18 research airplane with a second F/A-18 airplane. Blended inertial navigation system (INS) and global positioning system (GPS) measurements have been communicated across an air-to-air telemetry link and used to compute relative-position estimates. A precision research formation autopilot onboard the trailing airplane controls lateral and vertical spacing while the leading airplane operates under production autopilot control. Four research autopilot gain sets have been designed and flight-tested, and each exceeds the project design requirement of steady-state tracking accuracy within 1 standard deviation of 10 ft. Performance also has been demonstrated using single- and multiple-axis inputs such as step commands and frequency sweeps. This report briefly describes the experimental formation flight systems employed and discusses the navigation, guidance, and control algorithms that have been flight-tested. An overview of the flight test results of the formation autopilot during steady-state tracking and maneuvering flight is presented.
Adaptive remote sensing technology for feature recognition and tracking
NASA Technical Reports Server (NTRS)
Wilson, R. G.; Sivertson, W. E., Jr.; Bullock, G. F.
1979-01-01
A technology development plan designed to reduce the data load and data-management problems associated with global study and monitoring missions is described with a heavy emphasis placed on developing mission capabilities to eliminate the collection of unnecessary data. Improved data selectivity can be achieved through sensor automation correlated with the real-time needs of data users. The first phase of the plan includes the Feature Identification and Location Experiment (FILE) which is scheduled for the 1980 Shuttle flight. The FILE experiment is described with attention given to technology needs, development plan, feature recognition and classification, and cloud-snow detection/discrimination. Pointing, tracking and navigation received particular consideration, and it is concluded that this technology plan is viewed as an alternative to approaches to real-time acquisition that are based on extensive onboard format and inventory processing and reliance upon global-satellite-system navigation data.
Comparison of NAVSTAR satellite L band ionospheric calibrations with Faraday rotation measurements
NASA Technical Reports Server (NTRS)
Royden, H. N.; Miller, R. B.; Buennagel, L. A.
1984-01-01
It is pointed out that interplanetary navigation at the Jet Propulsion Laboratory (JPL) is performed by analyzing measurements derived from the radio link between spacecraft and earth and, near the target, onboard optical measurements. For precise navigation, corrections for ionospheric effects must be applied, because the earth's ionosphere degrades the accuracy of the radiometric data. These corrections are based on ionospheric total electron content (TEC) determinations. The determinations are based on the measurement of the Faraday rotation of linearly polarized VHF signals from geostationary satellites. Problems arise in connection with the steadily declining number of satellites which are suitable for Faraday rotation measurements. For this reason, alternate methods of determining ionospheric electron content are being explored. One promising method involves the use of satellites of the NAVSTAR Global Positioning System (GPS). The results of a comparative study regarding this method are encouraging.
Celestial Navigation in the 21st Century
NASA Astrophysics Data System (ADS)
Kaplan, George H.
2014-05-01
Despite the ubiquity of GPS receivers in modern life for both timekeeping and geolocation, other forms of navigation remain important because of the weakness of the GPS signals (and those from similar sat-nav systems) and the ease with which they can be jammed. GPS jammers are available for sale on the Internet. The defense and civil aviation communities are particularly concerned about “GPS denial”, whether intentional or accidental, during critical operations.Automated star trackers for navigation have been available since the 1950s. Modern compact observing systems, operating in the far-red and near-IR bands, can detect useful numbers of stars even in the daytime at sea level. A capability to measure the directions of stars relative to some local set of coordinate axes is advantageous for many types of vehicles, whether on the ground, at sea, in the air, or in space, because it provides a direct connection to the inertial reference system represented by current star catalogs. Such a capability can yield precise absolute orientation information not available in any other way. Automated celestial observing systems can be effectively coupled to inertial navigation systems (INS), providing “truth” data for constraining the drift in the INS navigation solution, even if stellar observations are not continuously available due to weather. However, obtaining precise latitude and longitude from stellar observations alone, on a moving platform, remains a challenge, because it requires a determination of the direction to the center of the Earth, i.e., the gravity vertical. General relativity tells us that on-board (“lab”) measurements cannot separate the acceleration of gravity from the acceleration of the platform. Various schemes for overcoming this fundamental problem have been used in the past, at low accuracy, and better ones have been proposed for modern applications. This paper will review some recent developments in this rapidly advancing field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
EISLER, G. RICHARD
This report summarizes the analytical and experimental efforts for the Laboratory Directed Research and Development (LDRD) project entitled ''Robust Planning for Autonomous Navigation of Mobile Robots In Unstructured, Dynamic Environments (AutoNav)''. The project goal was to develop an algorithmic-driven, multi-spectral approach to point-to-point navigation characterized by: segmented on-board trajectory planning, self-contained operation without human support for mission duration, and the development of appropriate sensors and algorithms to navigate unattended. The project was partially successful in achieving gains in sensing, path planning, navigation, and guidance. One of three experimental platforms, the Minimalist Autonomous Testbed, used a repetitive sense-and-re-plan combination to demonstratemore » the majority of elements necessary for autonomous navigation. However, a critical goal for overall success in arbitrary terrain, that of developing a sensor that is able to distinguish true obstacles that need to be avoided as a function of vehicle scale, still needs substantial research to bring to fruition.« less
Flight-determined benefits of integrated flight-propulsion control systems
NASA Technical Reports Server (NTRS)
Stewart, James F.; Burcham, Frank W., Jr.; Gatlin, Donald H.
1992-01-01
The fundamentals of control integration for propulsion are reviewed giving practical illustrations of its use to demonstrate the advantages of integration. Attention is given to the first integration propulsion-control systems (IPCSs) which was developed for the F-111E, and the integrated controller design is described that NASA developed for the YF-12C aircraft. The integrated control systems incorporate a range of aircraft components including the engine, inlet controls, autopilot, autothrottle, airdata, navigation, and/or stability-augmentation systems. Also described are emergency-control systems, onboard engine optimization, and thrust-vectoring control technologies developed for the F-18A and the F-15. Integrated flight-propulsion control systems are shown to enhance the thrust, range, and survivability of the aircraft while reducing fuel consumption and maintenance.
Sanchez, Richard D.
2004-01-01
High-resolution airborne digital cameras with onboard data collection based on the Global Positioning System (GPS) and inertial navigation systems (INS) technology may offer a real-time means to gather accurate topographic map information by reducing ground control and eliminating aerial triangulation. Past evaluations of this integrated system over relatively flat terrain have proven successful. The author uses Emerge Digital Sensor System (DSS) combined with Applanix Corporation?s Position and Orientation Solutions for Direct Georeferencing to examine the positional mapping accuracy in rough terrain. The positional accuracy documented in this study did not meet large-scale mapping requirements owing to an apparent system mechanical failure. Nonetheless, the findings yield important information on a new approach for mapping in Antarctica and other remote or inaccessible areas of the world.
Support of Helicopter 'Free Flight' Operations in the 1996 Olympics
NASA Technical Reports Server (NTRS)
Branstetter, James R.; Cooper, Eric G.
1996-01-01
The microcosm of activity surrounding the 1996 Olympic Games provided researchers an opportunity for demonstrating state-of-the art technology in the first large-scale deployment of a prototype digital communication/navigation/surveillance system in a confined environment. At the same time it provided an ideal opportunity for transportation officials to showcase the merits of an integrated transportation system in meeting the operational needs to transport time sensitive goods and provide public safety services under real-world conditions. Five aeronautical CNS functions using a digital datalink system were chosen for operational flight testing onboard 91 aircraft, most of them helicopters, participating in the Atlanta Short-Haul Transportation System. These included: GPS-based Automatic Dependent Surveillance, Cockpit Display of Traffic Information, Controller-Pilot Communications, Graphical Weather Information (uplink), and Automated Electronic Pilot Reporting (downlink). Atlanta provided the first opportunity to demonstrate, in an actual operating environment, key datalink functions which would enhance flight safety and situational awareness for the pilot and supplement conventional air traffic control. The knowledge gained from such a large-scale deployment will help system designers in development of a national infrastructure where aircraft would have the ability to navigate autonomously.
An Application of UAV Attitude Estimation Using a Low-Cost Inertial Navigation System
NASA Technical Reports Server (NTRS)
Eure, Kenneth W.; Quach, Cuong Chi; Vazquez, Sixto L.; Hogge, Edward F.; Hill, Boyd L.
2013-01-01
Unmanned Aerial Vehicles (UAV) are playing an increasing role in aviation. Various methods exist for the computation of UAV attitude based on low cost microelectromechanical systems (MEMS) and Global Positioning System (GPS) receivers. There has been a recent increase in UAV autonomy as sensors are becoming more compact and onboard processing power has increased significantly. Correct UAV attitude estimation will play a critical role in navigation and separation assurance as UAVs share airspace with civil air traffic. This paper describes attitude estimation derived by post-processing data from a small low cost Inertial Navigation System (INS) recorded during the flight of a subscale commercial off the shelf (COTS) UAV. Two discrete time attitude estimation schemes are presented here in detail. The first is an adaptation of the Kalman Filter to accommodate nonlinear systems, the Extended Kalman Filter (EKF). The EKF returns quaternion estimates of the UAV attitude based on MEMS gyro, magnetometer, accelerometer, and pitot tube inputs. The second scheme is the complementary filter which is a simpler algorithm that splits the sensor frequency spectrum based on noise characteristics. The necessity to correct both filters for gravity measurement errors during turning maneuvers is demonstrated. It is shown that the proposed algorithms may be used to estimate UAV attitude. The effects of vibration on sensor measurements are discussed. Heuristic tuning comments pertaining to sensor filtering and gain selection to achieve acceptable performance during flight are given. Comparisons of attitude estimation performance are made between the EKF and the complementary filter.
For Spacious Skies: Self-Separation with "Autonomous Flight Rules" in US Domestic Airspace
NASA Technical Reports Server (NTRS)
Wing, David J.; Cotton, William B.
2011-01-01
Autonomous Flight Rules (AFR) are proposed as a new set of operating regulations in which aircraft navigate on tracks of their choice while self-separating from traffic and weather. AFR would exist alongside Instrument and Visual Flight Rules (IFR and VFR) as one of three available flight options for any appropriately trained and qualified operator with the necessary certified equipment. Historically, ground-based separation services evolved by necessity as aircraft began operating in the clouds and were unable to see each other. Today, technologies for global precision navigation, emerging airborne surveillance, and onboard computing enable traffic conflict management to be fully integrated with navigation procedures onboard the aircraft. By self-separating, aircraft can operate with more flexibility and fewer flight restrictions than are required when using ground-based separation. The AFR concept proposes a practical means in which self-separating aircraft could share the same airspace as IFR and VFR aircraft without disrupting the ongoing processes of Air Traffic Control. The paper discusses the context and motivation for implementing self-separation in US domestic airspace. It presents a historical perspective on separation, the proposed way forward in AFR, the rationale behind mixed operations, and the expected benefits of AFR for the airspace user community.
Real-Time Single-Frequency GPS/MEMS-IMU Attitude Determination of Lightweight UAVs
Eling, Christian; Klingbeil, Lasse; Kuhlmann, Heiner
2015-01-01
In this paper, a newly-developed direct georeferencing system for the guidance, navigation and control of lightweight unmanned aerial vehicles (UAVs), having a weight limit of 5 kg and a size limit of 1.5 m, and for UAV-based surveying and remote sensing applications is presented. The system is intended to provide highly accurate positions and attitudes (better than 5 cm and 0.5∘) in real time, using lightweight components. The main focus of this paper is on the attitude determination with the system. This attitude determination is based on an onboard single-frequency GPS baseline, MEMS (micro-electro-mechanical systems) inertial sensor readings, magnetic field observations and a 3D position measurement. All of this information is integrated in a sixteen-state error space Kalman filter. Special attention in the algorithm development is paid to the carrier phase ambiguity resolution of the single-frequency GPS baseline observations. We aim at a reliable and instantaneous ambiguity resolution, since the system is used in urban areas, where frequent losses of the GPS signal lock occur and the GPS measurement conditions are challenging. Flight tests and a comparison to a navigation-grade inertial navigation system illustrate the performance of the developed system in dynamic situations. Evaluations show that the accuracies of the system are 0.05∘ for the roll and the pitch angle and 0.2∘ for the yaw angle. The ambiguities of the single-frequency GPS baseline can be resolved instantaneously in more than 90% of the cases. PMID:26501281
Performance Characterization of Obstacle Detection Algorithms for Aircraft Navigation
NASA Technical Reports Server (NTRS)
Kasturi, Rangachar; Camps, Octavia; Coraor, Lee; Gandhi, Tarak; Hartman, Kerry; Yang, Mau-Tsuen
2000-01-01
The research reported here is a part of NASA's Synthetic Vision System (SVS) project for the development of a High Speed Civil Transport Aircraft (HSCT). One of the components of the SVS is a module for detection of potential obstacles in the aircraft's flight path by analyzing the images captured by an on-board camera in real-time. Design of such a module includes the selection and characterization of robust, reliable, and fast techniques and their implementation for execution in real-time. This report describes the results of our research in realizing such a design.
The Dynamics of the Atmospheric Radiation Environment at Aviation Altitudes
NASA Technical Reports Server (NTRS)
Stassinopoulos, Epaminondas G.
2004-01-01
Single Event Effects vulnerability of on-board computers that regulate the: navigational, flight control, communication, and life support systems has become an issue in advanced modern aircraft, especially those that may be equipped with new technology devices in terabit memory banks (low voltage, nanometer feature size, gigabit integration). To address this concern, radiation spectrometers need to fly continually on a multitude of carriers over long periods of time so as to accumulate sufficient information that will broaden our understanding of the very dynamic and complex nature of the atmospheric radiation environment regarding: composition, spectral distribution, intensity, temporal variation, and spatial variation.
Space shuttle post-entry and landing analysis. Volume 2: Appendices
NASA Technical Reports Server (NTRS)
Crawford, B. S.; Duiven, E. M.
1973-01-01
Four candidate navigation systems for the space shuttle orbiter approach and landing phase are evaluated in detail. These include three conventional navaid systems and a single-station one-way Doppler system. In each case, a Kalman filter is assumed to be mechanized in the onboard computer, blending the navaid data with IMU and altimeter data. Filter state dimensions ranging from 6 to 24 are involved in the candidate systems. Comprehensive truth models with state dimensions ranging from 63 to 82 are formulated and used to generate detailed error budgets and sensitivity curves illustrating the effect of variations in the size of individual error sources on touchdown accuracy. The projected overall performance of each system is shown in the form of time histories of position and velocity error components.
Automated site characterization for robotic sample acquisition systems
NASA Astrophysics Data System (ADS)
Scholl, Marija S.; Eberlein, Susan J.
1993-04-01
A mobile, semiautonomous vehicle with multiple sensors and on-board intelligence is proposed for performing preliminary scientific investigations on extraterrestrial bodies prior to human exploration. Two technologies, a hybrid optical-digital computer system based on optical correlator technology and an image and instrument data analysis system, provide complementary capabilities that might be part of an instrument package for an intelligent robotic vehicle. The hybrid digital-optical vision system could perform real-time image classification tasks using an optical correlator with programmable matched filters under control of a digital microcomputer. The data analysis system would analyze visible and multiband imagery to extract mineral composition and textural information for geologic characterization. Together these technologies would support the site characterization needs of a robotic vehicle for both navigational and scientific purposes.
NASA Astrophysics Data System (ADS)
Tom, Michael; Trujillo, Edward
1994-06-01
Integrated infrared (IR) sensors which exploit modular avionics concepts can provide features such as operational flexibility, enhanced stealthiness, and ease of maintenance to meet the demands of tactical, airborne sensor systems. On-board, tactical airborne sensor systems perform target acquisition, tracking, identification, threat warning, missile launch detection, and ground mapping in support of situation awareness, self-defense, navigation, target attack, weapon support, and reconnaissance activities. The use of sensor suites for future tactical aircraft such as US Air Force's multirole fighter require a blend of sensor inputs and outputs that may vary over time. It is expected that special-role units of these tactical aircraft will be formed to conduct tasks and missions such as anti-shipping, reconnaissance, or suppression of enemy air defenses.
Advancing Navigation, Timing, and Science with the Deep Space Atomic Clock
NASA Technical Reports Server (NTRS)
Ely, Todd A.; Seubert, Jill; Bell, Julia
2014-01-01
NASA's Deep Space Atomic Clock mission is developing a small, highly stable mercury ion atomic clock with an Allan deviation of at most 1e-14 at one day, and with current estimates near 3e-15. This stability enables one-way radiometric tracking data with accuracy equivalent to and, in certain conditions, better than current two-way deep space tracking data; allowing a shift to a more efficient and flexible one-way deep space navigation architecture. DSAC-enabled one-way tracking will benefit navigation and radio science by increasing the quantity and quality of tracking data. Additionally, DSAC would be a key component to fully-autonomous onboard radio navigation useful for time-sensitive situations. Potential deep space applications of DSAC are presented, including orbit determination of a Mars orbiter and gravity science on a Europa flyby mission.
Sanford, Jordan M.; Harrison, Arnell S.; Wiese, Dana S.; Flocks, James G.
2009-01-01
In June of 1990 and July of 1991, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the shallow geologic framework of the Mississippi-Alabama-Florida shelf in the northern Gulf of Mexico, from Mississippi Sound to the Florida Panhandle. Work was done onboard the Mississippi Mineral Resources Institute R/V Kit Jones as part of a project to study coastal erosion and offshore sand resources. This report is part of a series to digitally archive the legacy analog data collected from the Mississippi-Alabama SHelf (MASH). The MASH data rescue project is a cooperative effort by the USGS and the Minerals Management Service (MMS). This report serves as an archive of high-resolution scanned Tagged Image File Format (TIFF) and Graphics Interchange Format (GIF) images of the original boomer paper records, navigation files, trackline maps, Geographic Information System (GIS) files, cruise logs, and formal Federal Geographic Data Committee (FGDC) metadata.
NASA Technical Reports Server (NTRS)
Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Smith, E. J.; Yerazunis, S. W.
1972-01-01
The problems related to the design and control of a mobile planetary vehicle to implement a systematic plan for the exploration of Mars were investigated. Problem areas receiving attention include: vehicle configuration, control, dynamics, systems and propulsion; systems analysis; navigation, terrain modeling and path selection; and chemical analysis of specimens. The following specific tasks were studied: vehicle model design, mathematical modeling of dynamic vehicle, experimental vehicle dynamics, obstacle negotiation, electromechanical controls, collapsibility and deployment, construction of a wheel tester, wheel analysis, payload design, system design optimization, effect of design assumptions, accessory optimal design, on-board computer subsystem, laser range measurement, discrete obstacle detection, obstacle detection systems, terrain modeling, path selection system simulation and evaluation, gas chromatograph/mass spectrometer system concepts, chromatograph model evaluation and improvement and transport parameter evaluation.
NASA Astrophysics Data System (ADS)
Roscoe, C.; Griesbach, J.; Westphal, J.; Hawes, D.; Carrico, J.
2013-09-01
The state propagation accuracy resulting from different choices of gravitational force models and orbital perturbations is investigated for a pair of CubeSats flying in formation in low Earth orbit (LEO). Accurate on-board state propagation is necessary to autonomously plan maneuvers and perform proximity operations and docking safely. The ability to perform high-precision navigation is made especially challenging by the limited computer processing power available on-board the spacecraft. Propagation accuracy is investigated both in terms of the absolute (chief) state and the relative (deputy relative to chief) state. Different perturbing effects are quantified and related directly to important mission factors such as maneuver accuracy, fuel use (mission lifetime), and collision prediction/avoidance (mission safety). The Proximity Operations Nano-Satellite Flight Demonstration (PONSFD) program is to demonstrate rendezvous proximity operations (RPO), formation flying, and docking with a pair of 3U CubeSats. The program is sponsored by NASA Ames via the Office of the Chief Technologist (OCT) in support of its Small Spacecraft Technology Program (SSTP). The goal of the mission is to demonstrate complex RPO and docking operations with a pair of low-cost 3U CubeSat satellites using passive navigation sensors. The primary orbital perturbation affecting spacecraft in low Earth orbit (LEO) is the Earth oblateness, or J2, perturbation. Provided that a spacecraft does not have an extremely high area-to-mass ratio or is not flying at a very low altitude, the effect of J2 will usually be greater than that of atmospheric drag, which will typically be the next largest perturbing force in LEO. After these perturbations, factors such as higher-order Earth gravitational parameters, third-body perturbations, and solar radiation pressure will follow in magnitude but will have much less noticeable effects than J2 and drag. For spacecraft formations, where relative dynamics and not absolute dynamics are of primary importance, J2 will still be significant but drag effects become highly dependent on differences in the ballistic coefficients of the spacecraft in the formation. The PONSFD program uses a pair of 3U CubeSats with protruding solar panels, which means that inertial attitude differences between the two spacecraft will result in large differences in presented cross-sectional area. However, on-board prediction of drag effects may not be practical in all circumstances because it requires accurate knowledge of the Earth's atmospheric density as well as of the attitude of both spacecraft. This paper investigates the accuracy of performing long-term state propagation using different choices of gravitational force models and orbital perturbations for a wide range of orbit altitude and inclination possibilities. Propagation accuracy is affected by a number of orbit parameters and force model parameters which makes performing such a study with uncertain orbit knowledge a challenging prospect. However, much intuition can be gained by breaking the study down in terms of each of these parameters to see the effect of each one individually. The results of this study will be used to select a propagation method for the on-board navigation system for the mission.
Left Panorama of Spirit's Landing Site
NASA Technical Reports Server (NTRS)
2004-01-01
Left Panorama of Spirit's Landing Site
This is a version of the first 3-D stereo image from the rover's navigation camera, showing only the view from the left stereo camera onboard the Mars Exploration Rover Spirit. The left and right camera images are combined to produce a 3-D image.NASA Technical Reports Server (NTRS)
Haney, Conor; Doeling, David; Minnis, Patrick; Bhatt, Rajendra; Scarino, Benjamin; Gopalan, Arun
2016-01-01
The Deep Space Climate Observatory (DSCOVR), launched on 11 February 2015, is a satellite positioned near the Lagrange-1 (L1) point, carrying several instruments that monitor space weather, and Earth-view sensors designed for climate studies. The Earth Polychromatic Imaging Camera (EPIC) onboard DSCOVR continuously views the sun-illuminated portion of the Earth with spectral coverage in the UV, VIS, and NIR bands. Although the EPIC instrument does not have any onboard calibration abilities, its constant view of the sunlit Earth disk provides a unique opportunity for simultaneous viewing with several other satellite instruments. This arrangement allows the EPIC sensor to be inter-calibrated using other well-characterized satellite instrument reference standards. Two such instruments with onboard calibration are MODIS, flown on Aqua and Terra, and VIIRS, onboard Suomi-NPP. The MODIS and VIIRS reference calibrations will be transferred to the EPIC instrument using both all-sky ocean and deep convective clouds (DCC) ray-matched EPIC and MODIS/VIIRS radiance pairs. An automated navigation correction routine was developed to more accurately align the EPIC and MODIS/VIIRS granules. The automated navigation correction routine dramatically reduced the uncertainty of the resulting calibration gain based on the EPIC and MODIS/VIIRS radiance pairs. The SCIAMACHY-based spectral band adjustment factors (SBAF) applied to the MODIS/ VIIRS radiances were found to successfully adjust the reference radiances to the spectral response of the specific EPIC channel for over-lapping spectral channels. The SBAF was also found to be effective for the non-overlapping EPIC channel 10. Lastly, both ray-matching techniques found no discernable trends for EPIC channel 7 over the year of publically released EPIC data.
Autonomous GN and C for Spacecraft Exploration of Comets and Asteroids
NASA Technical Reports Server (NTRS)
Carson, John M.; Mastrodemos, Nickolaos; Myers, David M.; Acikmese, Behcet; Blackmore, James C.; Moussalis, Dhemetrio; Riedel, Joseph E.; Nolet, Simon; Chang, Johnny T.; Mandic, Milan;
2010-01-01
A spacecraft guidance, navigation, and control (GN&C) system is needed to enable a spacecraft to descend to a surface, take a sample using a touch-and-go (TAG) sampling approach, and then safely ascend. At the time of this reporting, a flyable GN&C system that can accomplish these goals is beyond state of the art. This article describes AutoGNC, which is a GN&C system capable of addressing these goals, which has recently been developed and demonstrated to a maturity TRL-5-plus. The AutoGNC solution matures and integrates two previously existing JPL capabilities into a single unified GN&C system. The two capabilities are AutoNAV and GREX. AutoNAV is JPL s current flight navigation system, and is fairly mature with respect to flybys and rendezvous with small bodies, but is lacking capability for close surface proximity operations, sampling, and contact. G-REX is a suite of low-TRL algorithms and capabilities that enables spacecraft operations in close surface proximity and for performing sampling/contact. The development and integration of AutoNAV and G-REX components into AutoGNC provides a single, unified GN&C capability for addressing the autonomy, close-proximity, and sampling/contact aspects of small-body sample return missions. AutoGNC is an integrated capability comprising elements that were developed separately. The main algorithms and component capabilities that have been matured and integrated are autonomy for near-surface operations, terrain-relative navigation (TRN), real-time image-based feedback guidance and control, and six degrees of freedom (6DOF) control of the TAG sampling event. Autonomy is achieved based on an AutoGNC Executive written in Virtual Machine Language (VML) incorporating high-level control, data management, and fault protection. In descending to the surface, the AutoGNC system uses camera images to determine its position and velocity relative to the terrain. This capability for TRN leverages native capabilities of the original AutoNAV system, but required advancements that integrate the separate capabilities for shape modeling, state estimation, image rendering, defining a database of onboard maps, and performing real-time landmark recognition against the stored maps. The ability to use images to guide the spacecraft requires the capability for image-based feedback control. In Auto- GNC, navigation estimates are fed into an onboard guidance and control system that keeps the spacecraft guided along a desired path, as it descends towards its targeted landing or sampling site. Once near the site, AutoGNC achieves a prescribed guidance condition for TAG sampling (position/orientation, velocity), and a prescribed force profile on the sampling end-effector. A dedicated 6DOF TAG control then implements the ascent burn while recovering from sampling disturbances and induced attitude rates. The control also minimizes structural interactions with flexible solar panels and disallows any part of the spacecraft from making contact with the ground (other than the intended end-effector).
Detecting GNSS spoofing attacks using INS coupling
NASA Astrophysics Data System (ADS)
Tanil, Cagatay
Vulnerability of Global Navigation Satellite Systems (GNSS) users to signal spoofing is a critical threat to positioning integrity, especially in aviation applications, where the consequences are potentially catastrophic. In response, this research describes and evaluates a new approach to directly detect spoofing using integrated Inertial Navigation Systems (INS) and fault detection concepts based on integrity monitoring. The monitors developed here can be implemented into positioning systems using INS/GNSS integration via 1) tightly-coupled, 2) loosely-coupled, and 3) uncoupled schemes. New evaluation methods enable the statistical computation of integrity risk resulting from a worst-case spoofing attack - without needing to simulate an unmanageably large number of individual aircraft approaches. Integrity risk is an absolute measure of safety and a well-established metric in aircraft navigation. A novel closed-form solution to the worst-case time sequence of GNSS signals is derived to maximize the integrity risk for each monitor and used in the covariance analyses. This methodology tests the performance of the monitors against the most sophisticated spoofers, capable of tracking the aircraft position - for example, by means of remote tracking or onboard sensing. Another contribution is a comprehensive closed-loop model that encapsulates the vehicle and compensator (estimator and controller) dynamics. A sensitivity analysis uses this model to quantify the leveraging impact of the vehicle's dynamic responses (e.g., to wind gusts, or to autopilot's acceleration commands) on the monitor's detection capability. The performance of the monitors is evaluated for two safety-critical terminal area navigation applications: 1) autonomous shipboard landing and 2) Boeing 747 (B747) landing assisted with Ground Based Augmentation Systems (GBAS). It is demonstrated that for both systems, the monitors are capable of meeting the most stringent precision approach and landing integrity requirements of the International Civil Aviation Organization (ICAO). The statistical evaluation methods developed here can be used as a baseline procedure in the Federal Aviation Administration's (FAA) certification of spoof-free navigation systems. The final contribution is an investigation of INS sensor quality on detection performance. This determines the minimum sensor requirements to perform standalone GNSS positioning in general en route applications with guaranteed spoofing detection integrity.
Angles-only relative orbit determination in low earth orbit
NASA Astrophysics Data System (ADS)
Ardaens, Jean-Sébastien; Gaias, Gabriella
2018-06-01
The paper provides an overview of the angles-only relative orbit determination activities conducted to support the Autonomous Vision Approach Navigation and Target Identification (AVANTI) experiment. This in-orbit endeavor was carried out by the German Space Operations Center (DLR/GSOC) in autumn 2016 to demonstrate the capability to perform spaceborne autonomous close-proximity operations using solely line-of-sight measurements. The images collected onboard have been reprocessed by an independent on-ground facility for precise relative orbit determination, which served as ultimate instance to monitor the formation safety and to characterize the onboard navigation and control performances. During two months, several rendezvous have been executed, generating a valuable collection of images taken at distances ranging from 50 km to only 50 m. Despite challenging experimental conditions characterized by a poor visibility and strong orbit perturbations, angles-only relative positioning products could be continuously derived throughout the whole experiment timeline, promising accuracy at the meter level during the close approaches. The results presented in the paper are complemented with former angles-only experience gained with the PRISMA satellites to better highlight the specificities induced by different orbits and satellite designs.
Relative optical navigation around small bodies via Extreme Learning Machine
NASA Astrophysics Data System (ADS)
Law, Andrew M.
To perform close proximity operations under a low-gravity environment, relative and absolute positions are vital information to the maneuver. Hence navigation is inseparably integrated in space travel. Extreme Learning Machine (ELM) is presented as an optical navigation method around small celestial bodies. Optical Navigation uses visual observation instruments such as a camera to acquire useful data and determine spacecraft position. The required input data for operation is merely a single image strip and a nadir image. ELM is a machine learning Single Layer feed-Forward Network (SLFN), a type of neural network (NN). The algorithm is developed on the predicate that input weights and biases can be randomly assigned and does not require back-propagation. The learned model is the output layer weights which are used to calculate a prediction. Together, Extreme Learning Machine Optical Navigation (ELM OpNav) utilizes optical images and ELM algorithm to train the machine to navigate around a target body. In this thesis the asteroid, Vesta, is the designated celestial body. The trained ELMs estimate the position of the spacecraft during operation with a single data set. The results show the approach is promising and potentially suitable for on-board navigation.
NASA Astrophysics Data System (ADS)
Akim, E. L.; Ruzskiy, E. G.; Shishov, V. A.; Stepaniants, V. A.; Tuchin, A. G.
The main purpose of the Federal space program «Phobos-grunt» project is to deliver samples of a ground of Mars's natural satellite Phobos on Earth. Mission is planned to begin at the start window of 2009 year and to finish at 2011 year. The work is devoted to problems connected with development of the Phobos landing scheme. The major factors, the landing strategy is formed on, are the tasks connected with orbital mechanics, restrictions obliged by the space craft (SC) onboard systems, inexact knowledge of the Phobos's kinematics parameters, its hypsometry and gravity field.
Lunar Entry Downmode Options for Orion
NASA Technical Reports Server (NTRS)
Smith, Kelly M.; Rea, Jeremy
2016-01-01
For Exploration Missions 1 and 2, the Orion capsules will be entering the Earth's atmosphere with speeds in excess of 11 km/s. In the event of a degraded Guidance, Navigation, and Control system, attempting the nominal guided entry may be inadvisable due to the potential for failures that result in a loss of vehicle (or crew, when crew are aboard). In such a case, a method of assuring Earth capture, water landing, and observence of trajectory constraints (heating, loads) is desired. Such a method should also be robust to large state uncertainty and variations in entry interface states. This document will explore four approaches evaluated and their performance in ensuring a safe return of the Orion capsule in the event of onboard system degradation.
Metamorphoses of ONAV console operations: From prototype to real time application
NASA Technical Reports Server (NTRS)
Millis, Malise; Wang, Lui
1991-01-01
The ONAV (Onboard Navigation) Expert System is being developed as a real time console assistant to the ONAV flight controller for use in the Mission Control Center at the Johnson Space Center. Currently the entry and rendezvous systems are in verification, and the ascent is being prototyped. To arrive at this stage, from a prototype to real world application, the ONAV project has had to deal with not only AI issues but operating environment issues. The AI issues included the maturity of AI languages and the debugging tools, what is verification, and availability, stability, and the size of the expert pool. The environmental issues included real time data acquisition, hardware stability, and how to achieve acceptance by users and management.
Space Shuttle Ascent Flight Design Process: Evolution and Lessons Learned
NASA Technical Reports Server (NTRS)
Picka, Bret A.; Glenn, Christopher B.
2011-01-01
The Space Shuttle Ascent Flight Design team is responsible for defining a launch to orbit trajectory profile that satisfies all programmatic mission objectives and defines the ground and onboard reconfiguration requirements for this high-speed and demanding flight phase. This design, verification and reconfiguration process ensures that all applicable mission scenarios are enveloped within integrated vehicle and spacecraft certification constraints and criteria, and includes the design of the nominal ascent profile and trajectory profiles for both uphill and ground-to-ground aborts. The team also develops a wide array of associated training, avionics flight software verification, onboard crew and operations facility products. These key ground and onboard products provide the ultimate users and operators the necessary insight and situational awareness for trajectory dynamics, performance and event sequences, abort mode boundaries and moding, flight performance and impact predictions for launch vehicle stages for use in range safety, and flight software performance. These products also provide the necessary insight to or reconfiguration of communications and tracking systems, launch collision avoidance requirements, and day of launch crew targeting and onboard guidance, navigation and flight control updates that incorporate the final vehicle configuration and environment conditions for the mission. Over the course of the Space Shuttle Program, ascent trajectory design and mission planning has evolved in order to improve program flexibility and reduce cost, while maintaining outstanding data quality. Along the way, the team has implemented innovative solutions and technologies in order to overcome significant challenges. A number of these solutions may have applicability to future human spaceflight programs.
Crew-Aided Autonomous Navigation
NASA Technical Reports Server (NTRS)
Holt, Greg N.
2015-01-01
A sextant provides manual capability to perform star/planet-limb sightings and offers a cheap, simple, robust backup navigation source for exploration missions independent from the ground. Sextant sightings from spacecraft were first exercised in Gemini and flew as the lost-communication backup for all Apollo missions. This study characterized error sources of navigation-grade sextants for feasibility of taking star and planetary limb sightings from inside a spacecraft. A series of similar studies was performed in the early/mid-1960s in preparation for Apollo missions. This study modernized and updated those findings in addition to showing feasibility using Linear Covariance analysis techniques. The human eyeball is a remarkable piece of optical equipment and provides many advantages over camera-based systems, including dynamic range and detail resolution. This technique utilizes those advantages and provides important autonomy to the crew in the event of lost communication with the ground. It can also provide confidence and verification of low-TRL automated onboard systems. The technique is extremely flexible and is not dependent on any particular vehicle type. The investigation involved procuring navigation-grade sextants and characterizing their performance under a variety of conditions encountered in exploration missions. The JSC optical sensor lab and Orion mockup were the primary testing locations. For the accuracy assessment, a group of test subjects took sextant readings on calibrated targets while instrument/operator precision was measured. The study demonstrated repeatability of star/planet-limb sightings with bias and standard deviation around 10 arcseconds, then used high-fidelity simulations to verify those accuracy levels met the needs for targeting mid-course maneuvers in preparation for Earth reen.
The GNC Measurement System for the Automated Transfer Vehicle
NASA Astrophysics Data System (ADS)
Roux, Y.; da Cunha, P.
The Automated Transfer Vehicle (ATV) is a European Space Agency (ESA) funded spacecraft developed by EADS Space Transportation as prime contractor for the space segment together with major European industrial partners, in the frame of the International Space Station (ISS). Its mission objective is threefold : to supply the station with fret and propellant, to reboost ISS to a higher orbit and to dispose of waste from the station. The ATV first flight, called Jules Verne and planned on 2005, will be the first European Vehicle to perform an orbital rendezvous. The GNC Measurement System (GMS) is the ATV on board function in charge of the measurement data collection and preconditioning for the navigation, guidance and control (GNC) algorithms. The GMS is made up of hardware which are the navigation sensors (with a certain level of hardware redundancy for each of them), and of an on-board software that manages, monitors and performs consistency checks to detect and isolate potential sensor failures. The GMS relies on six kinds of navigation sensors, used during various phases of the mission : the gyrometers assembly (GYRA), the accelerometers assembly (ACCA), the star trackers (STR), the GPS receivers, the telegoniometers (TGM) and the videometers (VDM), the last two being used for the final rendezvous phase. The GMS function is developed by EADS Space Transportation together with other industrial partners: EADS Astrium, EADS Sodern, Laben and Dasa Jena Optronik.
NASA Technical Reports Server (NTRS)
Kasturi, Rangachar; Camps, Octavia; Coraor, Lee
2000-01-01
The research reported here is a part of NASA's Synthetic Vision System (SVS) project for the development of a High Speed Civil Transport Aircraft (HSCT). One of the components of the SVS is a module for detection of potential obstacles in the aircraft's flight path by analyzing the images captured by an on-board camera in real-time. Design of such a module includes the selection and characterization of robust, reliable, and fast techniques and their implementation for execution in real-time. This report describes the results of our research in realizing such a design. It is organized into three parts. Part I. Data modeling and camera characterization; Part II. Algorithms for detecting airborne obstacles; and Part III. Real time implementation of obstacle detection algorithms on the Datacube MaxPCI architecture. A list of publications resulting from this grant as well as a list of relevant publications resulting from prior NASA grants on this topic are presented.
Fault Mitigation Schemes for Future Spaceflight Multicore Processors
NASA Technical Reports Server (NTRS)
Alexander, James W.; Clement, Bradley J.; Gostelow, Kim P.; Lai, John Y.
2012-01-01
Future planetary exploration missions demand significant advances in on-board computing capabilities over current avionics architectures based on a single-core processing element. The state-of-the-art multi-core processor provides much promise in meeting such challenges while introducing new fault tolerance problems when applied to space missions. Software-based schemes are being presented in this paper that can achieve system-level fault mitigation beyond that provided by radiation-hard-by-design (RHBD). For mission and time critical applications such as the Terrain Relative Navigation (TRN) for planetary or small body navigation, and landing, a range of fault tolerance methods can be adapted by the application. The software methods being investigated include Error Correction Code (ECC) for data packet routing between cores, virtual network routing, Triple Modular Redundancy (TMR), and Algorithm-Based Fault Tolerance (ABFT). A robust fault tolerance framework that provides fail-operational behavior under hard real-time constraints and graceful degradation will be demonstrated using TRN executing on a commercial Tilera(R) processor with simulated fault injections.
Towards high-speed autonomous navigation of unknown environments
NASA Astrophysics Data System (ADS)
Richter, Charles; Roy, Nicholas
2015-05-01
In this paper, we summarize recent research enabling high-speed navigation in unknown environments for dynamic robots that perceive the world through onboard sensors. Many existing solutions to this problem guarantee safety by making the conservative assumption that any unknown portion of the map may contain an obstacle, and therefore constrain planned motions to lie entirely within known free space. In this work, we observe that safety constraints may significantly limit performance and that faster navigation is possible if the planner reasons about collision with unobserved obstacles probabilistically. Our overall approach is to use machine learning to approximate the expected costs of collision using the current state of the map and the planned trajectory. Our contribution is to demonstrate fast but safe planning using a learned function to predict future collision probabilities.
Coherent Doppler Lidar for Precision Navigation of Spacecrafts
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Pierrottet, Diego; Petway, Larry; Hines, Glenn; Lockhard, George; Barnes, Bruce
2011-01-01
A fiber-based coherent Doppler lidar, utilizing an FMCW technique, has been developed and its capabilities demonstrated through two successful helicopter flight test campaigns. This Doppler lidar is expected to play a critical role in future planetary exploration missions because of its ability in providing the necessary data for soft landing on the planetary bodies and for landing missions requiring precision navigation to the designated location on the ground. Compared with radars, the Doppler lidar can provide significantly higher precision velocity and altitude data at a much higher rate without concerns for measurement ambiguity or target clutter. Future work calls for testing the Doppler lidar onboard a rocket-powered free-flyer platform operating in a closed-loop with the vehicle s guidance, navigation, and control (GN&C) unit.
NASA Astrophysics Data System (ADS)
Trigo, Guilherme F.; Maass, Bolko; Krüger, Hans; Theil, Stephan
2018-01-01
Accurate autonomous navigation capabilities are essential for future lunar robotic landing missions with a pin-point landing requirement, since in the absence of direct line of sight to ground control during critical approach and landing phases, or when facing long signal delays the herein before mentioned capability is needed to establish a guidance solution to reach the landing site reliably. This paper focuses on the processing and evaluation of data collected from flight tests that consisted of scaled descent scenarios where the unmanned helicopter of approximately 85 kg approached a landing site from altitudes of 50 m down to 1 m for a downrange distance of 200 m. Printed crater targets were distributed along the ground track and their detection provided earth-fixed measurements. The Crater Navigation (CNav) algorithm used to detect and match the crater targets is an unmodified method used for real lunar imagery. We analyze the absolute position and attitude solutions of CNav obtained and recorded during these flight tests, and investigate the attainable quality of vehicle pose estimation using both CNav and measurements from a tactical-grade inertial measurement unit. The navigation filter proposed for this end corrects and calibrates the high-rate inertial propagation with the less frequent crater navigation fixes through a closed-loop, loosely coupled hybrid setup. Finally, the attainable accuracy of the fused solution is evaluated by comparison with the on-board ground-truth solution of a dual-antenna high-grade GNSS receiver. It is shown that the CNav is an enabler for building autonomous navigation systems with high quality and suitability for exploration mission scenarios.
Using neuromorphic optical sensors for spacecraft absolute and relative navigation
NASA Astrophysics Data System (ADS)
Shake, Christopher M.
We develop a novel attitude determination system (ADS) for use on nano spacecraft using neuromorphic optical sensors. The ADS intends to support nano-satellite operations by providing low-cost, low-mass, low-volume, low-power, and redundant attitude determination capabilities with quick and straightforward onboard programmability for real time spacecraft operations. The ADS is experimentally validated with commercial-off-the-shelf optical devices that perform sensing and image processing on the same circuit board and are biologically inspired by insects' vision systems, which measure optical flow while navigating in the environment. The firmware on the devices is modified to both perform the additional biologically inspired task of tracking objects and communicate with a PC/104 form-factor embedded computer running Real Time Application Interface Linux used on a spacecraft simulator. Algorithms are developed for operations using optical flow, point tracking, and hybrid modes with the sensors, and the performance of the system in all three modes is assessed using a spacecraft simulator in the Advanced Autonomous Multiple Spacecraft (ADAMUS) laboratory at Rensselaer. An existing relative state determination method is identified to be combined with the novel ADS to create a self-contained navigation system for nano spacecraft. The performance of the method is assessed in simulation and found not to match the results from its authors using only conditions and equations already published. An improved target inertia tensor method is proposed as an update to the existing relative state method, but found not to perform as expected, but is presented for others to build upon.
GPS Navigation for the Magnetospheric Multi-Scale Mission
NASA Technical Reports Server (NTRS)
Bamford, William; Mitchell, Jason; Southward, Michael; Baldwin, Philip; Winternitz, Luke; Heckler, Gregory; Kurichh, Rishi; Sirotzky, Steve
2009-01-01
In 2014. NASA is scheduled to launch the Magnetospheric Multiscale Mission (MMS), a four-satellite formation designed to monitor fluctuations in the Earth's magnetosphere. This mission has two planned phases with different orbits (1? x 12Re and 1.2 x 25Re) to allow for varying science regions of interest. To minimize ground resources and to mitigate the probability of collisions between formation members, an on-board orbit determination system consisting of a Global Positioning System (GPS) receiver and crosslink transceiver was desired. Candidate sensors would be required to acquire GPS signals both below and above the constellation while spinning at three revolutions-per-minute (RPM) and exchanging state and science information among the constellation. The Intersatellite Ranging and Alarm System (IRAS), developed by Goddard Space Flight Center (GSFC) was selected to meet this challenge. IRAS leverages the eight years of development GSFC has invested in the Navigator GPS receiver and its spacecraft communication expertise, culminating in a sensor capable of absolute and relative navigation as well as intersatellite communication. The Navigator is a state-of-the-art receiver designed to acquire and track weak GPS signals down to -147dBm. This innovation allows the receiver to track both the main lobe and the much weaker side lobe signals. The Navigator's four antenna inputs and 24 tracking channels, together with customized hardware and software, allow it to seamlessly maintain visibility while rotating. Additionally, an extended Kalman filter provides autonomous, near real-time, absolute state and time estimates. The Navigator made its maiden voyage on the Space Shuttle during the Hubble Servicing Mission, and is scheduled to fly on MMS as well as the Global Precipitation Measurement Mission (GPM). Additionally, Navigator's acquisition engine will be featured in the receiver being developed for the Orion vehicle. The crosslink transceiver is a 1/4 Watt transmitter utilizing a TDMA schedule to distribute a science quality message to all constellation members every ten seconds. Additionally the system generates one-way range measurements between formation members which is used as input to the Kalman filter. In preparation for the MMS Preliminary Design Review (PDR), the Navigator was required to pass a series of Technology Readiness Level (TRL) tests to earn the necessary TRL-6 classification. The TRL-6 level is achieved by demonstrating a prototype unit in a relevant end-to-end environment. The IRAS unit was able to meet all requirements during the testing phase, and has thus been TRL-6 qualified
Dynamic Modeling and Soil Mechanics for Path Planning of the Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Trease, Brian
2011-01-01
To help minimize risk of high sinkage and slippage during drives and to better understand soil properties and rover terramechanics from drive data, a multidisciplinary team was formed under the Mars Exploration Rover project to develop and utilize dynamic computer-based models for rover drives over realistic terrains. The resulting system, named ARTEMIS (Adams-based Rover Terramechanics and Mobility Interaction System), consists of the dynamic model, a library of terramechanics subroutines, and the high-resolution digital elevation maps of the Mars surface. A 200-element model of the rovers was developed and validated for drop tests before launch, using Adams dynamic modeling software. The external library was built in Fortran and called by Adams to model the wheel-soil interactions include the rut-formation effect of deformable soils, lateral and longitudinal forces, bull-dozing effects, and applied wheel torque. The paper presents the details and implementation of the system. To validate the developed system, one study case is presented from a realistic drive on Mars of the Opportunity rover. The simulation results match well from the measurement of on-board telemetry data. In its final form, ARTEMIS will be used in a predictive manner to assess terrain navigability and will become part of the overall effort in path planning and navigation for both Martian and lunar rovers.
Recent Activities in Spaceborne GPS
NASA Technical Reports Server (NTRS)
Yunck, T. P.
1995-01-01
After years of patient advocacy and paper studies by a diverse corps of enthusiasts, spaceborne GPS has at last become a presence in the world of flight projects. Owing to rapidly declining hardware costs, and the high value of autonomous onboard positioning, timing, and attitude determination, basic navigation receivers are coming to be seen as almost indispensable to future low earth orbiters.
Exomars VisLoc- The Visual Localisation System for the Exomars Rover
NASA Astrophysics Data System (ADS)
Ward, R.; Hamilton, W.; Silva, N.; Pereira, V.
2016-08-01
Maintaining accurate knowledge of the current position of vehicles on the surface of Mars is a considerable problem. The lack of an orbital GPS means that the absolute position of a rover at any instant is very difficult to determine, and with that it is difficult to accurately and safely plan hazard avoidance manoeuvres.Some on-board methods of determining the evolving POSE of a rover are well known, such as using wheel odometry to keep a log of the distance travelled. However there are associated problems - wheels can slip in the martial soil providing odometry readings which can mislead navigation algorithms. One solution to this is to use a visual localisation system, which uses cameras to determine the actual rover motion from images of the terrain. By measuring movement from the terrain an independent measure of the actual movement can be obtained to a high degree of accuracy.This paper presents the progress of the project to develop a the Visual Localisation system for the ExoMars rover (VisLoc). The core algorithmm used in the system is known as OVO (Oxford Visual Odometry), developed at the Mobile Robotics Group at the University of Oxford. Over a number of projects this system has been adapted from its original purpose (navigation systems for autonomous vehicles) to be a viable system for the unique challenges associated with extra-terrestrial use.
Prospective Architectures for Onboard vs Cloud-Based Decision Making for Unmanned Aerial Systems
NASA Technical Reports Server (NTRS)
Sankararaman, Shankar; Teubert, Christopher
2017-01-01
This paper investigates propsective architectures for decision-making in unmanned aerial systems. When these unmanned vehicles operate in urban environments, there are several sources of uncertainty that affect their behavior, and decision-making algorithms need to be robust to account for these different sources of uncertainty. It is important to account for several risk-factors that affect the flight of these unmanned systems, and facilitate decision-making by taking into consideration these various risk-factors. In addition, there are several technical challenges related to autonomous flight of unmanned aerial systems; these challenges include sensing, obstacle detection, path planning and navigation, trajectory generation and selection, etc. Many of these activities require significant computational power and in many situations, all of these activities need to be performed in real-time. In order to efficiently integrate these activities, it is important to develop a systematic architecture that can facilitate real-time decision-making. Four prospective architectures are discussed in this paper; on one end of the spectrum, the first architecture considers all activities/computations being performed onboard the vehicle whereas on the other end of the spectrum, the fourth and final architecture considers all activities/computations being performed in the cloud, using a new service known as Prognostics as a Service that is being developed at NASA Ames Research Center. The four different architectures are compared, their advantages and disadvantages are explained and conclusions are presented.
ONAV - An Expert System for the Space Shuttle Mission Control Center
NASA Technical Reports Server (NTRS)
Mills, Malise; Wang, Lui
1992-01-01
The ONAV (Onboard Navigation) Expert System is being developed as a real-time console assistant to the ONAV flight controller for use in the Mission Control Center at the Johnson Space Center. Currently, Oct. 1991, the entry and ascent systems have been certified for use on console as support tools, and were used for STS-48. The rendezvous system is in verification with the goal to have the system certified for STS-49, Intelsat retrieval. To arrive at this stage, from a prototype to real-world application, the ONAV project has had to deal with not only Al issues but operating environment issues. The Al issues included the maturity of Al languages and the debugging tools, verification, and availability, stability and size of the expert pool. The environmental issues included real time data acquisition, hardware suitability, and how to achieve acceptance by users and management.
Maneuver Recovery Analysis for the Magnetospheric Multiscale Mission
NASA Technical Reports Server (NTRS)
Gramling, Cheryl; Carpenter, Russell; Volle, Michael; Lee, Taesul; Long, Anne
2007-01-01
The use of spacecraft formations creates new and more demanding requirements for orbit determination accuracy. In addition to absolute navigation requirements, there are typically relative navigation requirements that are based on the size or shape of the formation. The difficulty in meeting these requirements is related to the relative dynamics of the spacecraft orbits and the frequency of the formation maintenance maneuvers. This paper examines the effects of bi-weekly formation maintenance maneuvers on the absolute and relative orbit determination accuracy for the four-spacecraft Magnetospheric Multiscale (MMS) formation. Results are presented from high fidelity simulations that include the effects of realistic orbit determination errors in the maneuver planning process. Solutions are determined using a high accuracy extended Kalman filter designed for onboard navigation. Three different solutions are examined, considering the effects of process noise and measurement rate on the solutions.
Experimental and simulation study results of an Adaptive Video Guidance System /AVGS/
NASA Technical Reports Server (NTRS)
Schappell, R. T.; Knickerbocker, R. L.
1975-01-01
Studies relating to stellar-body exploration programs have pointed out the need for an adaptive guidance scheme capable of providing automatic real-time guidance and site selection capability. For the case of a planetary lander, without such guidance, targeting is limited to what are believed to be generally benign areas in order to ensure a reasonable landing-success probability. Typically, the Mars Viking Lander will be jeopardized by obstacles exceeding 22 centimers in diameter. The benefits of on-board navigation and real-time selection of a landing site and obstacle avoidance have been demonstrated by the Apollo lunar landings, in which man performed the surface sensing and steering functions. Therefore, an Adaptive Video Guidance System (AVGS) has been developed, bread-boarded, and flown on a six-degree-of-freedom simulator.
Robotic Inspection System for Non-Destructive Evaluation (nde) of Pipes
NASA Astrophysics Data System (ADS)
Mackenzie, L. D.; Pierce, S. G.; Hayward, G.
2009-03-01
The demand for remote inspection of pipework in the processing cells of nuclear plant provides significant challenges of access, navigation, inspection technique and data communication. Such processing cells typically contain several kilometres of densely packed pipework whose actual physical layout may be poorly documented. Access to these pipes is typically afforded through the radiation shield via a small removable concrete plug which may be several meters from the actual inspection site, thus considerably complicating practical inspection. The current research focuses on the robotic deployment of multiple NDE payloads for weld inspection along non-ferritic steel pipework (thus precluding use of magnetic traction options). A fully wireless robotic inspection platform has been developed that is capable of travelling along the outside of a pipe at any orientation, while avoiding obstacles such as pipe hangers and delivering a variety of NDE payloads. An eddy current array system provides rapid imaging capabilities for surface breaking defects while an on-board camera, in addition to assisting with navigation tasks, also allows real time image processing to identify potential defects. All sensor data can be processed by the embedded microcontroller or transmitted wirelessly back to the point of access for post-processing analysis.
Synthetic Vision Enhances Situation Awareness and RNP Capabilities for Terrain-Challenged Approaches
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Prinzel, Lawrence J., III; Bailey, Randall E.; Arthur, Jarvis J., III
2003-01-01
The Synthetic Vision Systems (SVS) Project of Aviation Safety Program is striving to eliminate poor visibility as a causal factor in aircraft accidents as well as enhance operational capabilities of all aircraft through the display of computer generated imagery derived from an onboard database of terrain, obstacle, and airport information. To achieve these objectives, NASA 757 flight test research was conducted at the Eagle-Vail, Colorado airport to evaluate three SVS display types (Head-Up Display, Head-Down Size A, Head-Down Size X) and two terrain texture methods (photo-realistic, generic) in comparison to the simulated Baseline Boeing-757 Electronic Attitude Direction Indicator and Navigation / Terrain Awareness and Warning System displays. These independent variables were evaluated for situation awareness, path error, and workload while making approaches to Runway 25 and 07 and during simulated engine-out Cottonwood 2 and KREMM departures. The results of the experiment showed significantly improved situation awareness, performance, and workload for SVS concepts compared to the Baseline displays and confirmed the retrofit capability of the Head-Up Display and Size A SVS concepts. The research also demonstrated that the pathway and pursuit guidance used within the SVS concepts achieved required navigation performance (RNP) criteria.
Chang’E-5T Orbit Determination Using Onboard GPS Observations
Su, Xing; Geng, Tao; Li, Wenwen; Zhao, Qile; Xie, Xin
2017-01-01
In recent years, Global Navigation Satellite System (GNSS) has played an important role in Space Service Volume, the region enclosing the altitudes above 3000 km up to 36,000 km. As an in-flight test for the feasibility as well as for the performance of GNSS-based satellite orbit determination (OD), the Chinese experimental lunar mission Chang’E-5T had been equipped with an onboard high-sensitivity GNSS receiver with GPS and GLONASS tracking capability. In this contribution, the 2-h onboard GPS data are evaluated in terms of tracking performance as well as observation quality. It is indicated that the onboard receiver can track 7–8 GPS satellites per epoch on average and the ratio of carrier to noise spectral density (C/N0) values are higher than 28 dB-Hz for 90% of all the observables. The C1 code errors are generally about 4.15 m but can be better than 2 m with C/N0 values over 36 dB-Hz. GPS-based Chang’E-5T OD is performed and the Helmert variance component estimation method is investigated to determine the weights of code and carrier phase observations. The results reveal that the orbit consistency is about 20 m. OD is furthermore analyzed with GPS data screened out according to different C/N0 thresholds. It is indicated that for the Chang’E-5T, the precision of OD is dominated by the number of observed satellite. Although increased C/N0 thresholds can improve the overall data quality, the available number of GPS observations is greatly reduced and the resulting orbit solution is poor. PMID:28587174
Chang'E-5T Orbit Determination Using Onboard GPS Observations.
Su, Xing; Geng, Tao; Li, Wenwen; Zhao, Qile; Xie, Xin
2017-06-01
In recent years, Global Navigation Satellite System (GNSS) has played an important role in Space Service Volume, the region enclosing the altitudes above 3000 km up to 36,000 km. As an in-flight test for the feasibility as well as for the performance of GNSS-based satellite orbit determination (OD), the Chinese experimental lunar mission Chang'E-5T had been equipped with an onboard high-sensitivity GNSS receiver with GPS and GLONASS tracking capability. In this contribution, the 2-h onboard GPS data are evaluated in terms of tracking performance as well as observation quality. It is indicated that the onboard receiver can track 7-8 GPS satellites per epoch on average and the ratio of carrier to noise spectral density (C/N0) values are higher than 28 dB-Hz for 90% of all the observables. The C1 code errors are generally about 4.15 m but can be better than 2 m with C/N0 values over 36 dB-Hz. GPS-based Chang'E-5T OD is performed and the Helmert variance component estimation method is investigated to determine the weights of code and carrier phase observations. The results reveal that the orbit consistency is about 20 m. OD is furthermore analyzed with GPS data screened out according to different C/N0 thresholds. It is indicated that for the Chang'E-5T, the precision of OD is dominated by the number of observed satellite. Although increased C/N0 thresholds can improve the overall data quality, the available number of GPS observations is greatly reduced and the resulting orbit solution is poor.
Doppler Data and Density Profile from Cassini Saturn Atmospheric Entry
NASA Astrophysics Data System (ADS)
Wong, M.; Boone, D.; Roth, D. C.
2017-12-01
After thirteen years of surveying the Saturnian system and providing a multitude of ground-breaking science data, the Cassini spacecraft will perform its final act on September 15, 2017 when it plunges into Saturn's upper atmosphere. This `close contact' with uncharted territory will deliver sets of data about Saturn that were not previously obtainable. In addition to new information obtained from various science instruments onboard, the doppler signal, primarily used for navigation purposes throughout the tour, will in this circumstance furnish a glimpse of the atmospheric density along Cassini's path through the upper atmosphere. In this talk we will discuss preliminary results from our analysis of the doppler data and its implication on the atmospheric density.
Combinations of 148 navigation stars and the star tracker
NASA Technical Reports Server (NTRS)
Duncan, R.
1980-01-01
The angular separation of all star combinations for 148 nav star on the onboard software for space transportation system-3 flight and following missions is presented as well as the separation of each pair that satisfies the viewing constraints of using both star trackers simultaneously. Tables show (1) shuttle star catalog 1980 star position in M 1950 coordinates; (2) two star combination of 148 nav stars; and (3) summary of two star-combinations of the star tracker 5 deg filter. These 148 stars present 10,875 combinations. For the star tracker filters of plus or minus 5 deg, there are 875 combinations. Formalhaut (nav star 26) has the best number of combinations, which is 33.
General purpose simulation system of the data management system for Space Shuttle mission 18
NASA Technical Reports Server (NTRS)
Bengtson, N. M.; Mellichamp, J. M.; Smith, O. C.
1976-01-01
A simulation program for the flow of data through the Data Management System of Spacelab and Space Shuttle was presented. The science, engineering, command and guidance, navigation and control data were included. The programming language used was General Purpose Simulation System V (OS). The science and engineering data flow was modeled from its origin at the experiments and subsystems to transmission from Space Shuttle. Command data flow was modeled from the point of reception onboard and from the CDMS Control Panel to the experiments and subsystems. The GN&C data flow model handled data between the General Purpose Computer and the experiments and subsystems. Mission 18 was the particular flight chosen for simulation. The general structure of the program is presented, followed by a user's manual. Input data required to make runs are discussed followed by identification of the output statistics. The appendices contain a detailed model configuration, program listing and results.
Applications of Payload Directed Flight
NASA Technical Reports Server (NTRS)
Ippolito, Corey; Fladeland, Matthew M.; Yeh, Yoo Hsiu
2009-01-01
Next generation aviation flight control concepts require autonomous and intelligent control system architectures that close control loops directly around payload sensors in manner more integrated and cohesive that in traditional autopilot designs. Research into payload directed flight control at NASA Ames Research Center is investigating new and novel architectures that can satisfy the requirements for next generation control and automation concepts for aviation. Tighter integration between sensor and machine requires definition of specific sensor-directed control modes to tie the sensor data directly into a vehicle control structures throughout the entire control architecture, from low-level stability- and control loops, to higher level mission planning and scheduling reasoning systems. Payload directed flight systems can thus provide guidance, navigation, and control for vehicle platforms hosting a suite of onboard payload sensors. This paper outlines related research into the field of payload directed flight; and outlines requirements and operating concepts for payload directed flight systems based on identified needs from the scientific literature.'
Roadrunner: a novel radar guidance concept
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelsey, J.R.
1979-01-01
Soviet breakthrough tactics require the movement of a large number of vehicles from assembly areas to the forward edge of the battle area. The time requirements of this tactic indicate that the road network must be used extensively, if not exclusively. This paper describes an exploratory development (technology demonstration) program aimed at demonstrating a novel radar navigation/guidance scheme which enables a small unmanned aircraft (drone) to follow roads. Since vehicles on the road can be easily detected, this aircraft could be used as either a strike vehicle itself or as a reconnaissance adjunct to another strike system. The guidance schememore » involves on-board radar measurements of the backscatter response of the terrain beneath the aircraft. The differences in reflectivity between road and roadside surfaces are processed by a small on-board computer to generate guidance commands to keep the vehicle over the road. Preliminary system definition includes a 17-GHz radar aboard a subsonic, propeller-driven unmanned aircraft. Estimated operational altitude and speed are 30 m and 100 km/h, respectively. The drone could be either ground or air launched, and would be expendable. Payload capabilities of 50 to 100 kg are envisioned, with an operational range of 50 to 100 km. 5 figures, 1 table.« less
A study of the Ionospheric electron density profile with FORMOSAT-3/COSMIC observation data
NASA Astrophysics Data System (ADS)
Chou, Min-Yang; Tsai, Ho-Fang; Lin, Chi-Yen; Lee, I.-Te; Lin, Charles; Liu, Jann-Yenq
2015-04-01
The GPS Occultation Experiment payload onboard FORMOSAT-3/COSMIC microsatellite constellation is capable of scanning the ionospheric structure by the radio occultation (RO) technique to retrieve precise electron density profiles since 2006. Due to the success of FORMOSAT-3/COSMIC, the follow-on mission, FORMOSAT-7/COSMIC-2, is to launch 12 microsatellites in 2016 and 2018, respectively, with the Global Navigation Satellite Systems (GNSS) RO instrument onboard for tracking GPS, Galileo and/or GLONASS satellite signals and to provide more than 8,000 RO soundings per day globally. An overview of the validation of the FORMOSAT-3/COSMIC ionospheric profiling is given by means of the traditional Abel transform through bending angle and total electron content (TEC), while the ionospheric data assimilation is also applied, based on the Gauss-Markov Kalman filter with the International Reference Ionosphere model (IRI-2007) and global ionosphere map (GIM) as background model, to assimilate TEC observations from FORMOSAT-3/COSMIC. The results shows comparison of electron density profiles from Abel inversion and data assimilation. Furthermore, an observing system simulation experiment is also applied to determine the impact of FORMOSAT-7/COSMIC-2 on ionospheric weather monitoring, which reveals an opportunity on advanced study of small spatial and temporal variations in the ionosphere.
A Multi-Function Guidance, Navigation and Control System for Future Earth and Space Missions
NASA Technical Reports Server (NTRS)
Gambino, Joel; Dennehy, Neil; Bauer, Frank H. (Technical Monitor)
2002-01-01
Over the past several years the Guidance, Navigation and Control Center (GNCC) at NASA's Goddard Space Flight Center (GSFC) has actively engaged in the development of advanced GN&C technology to enable future Earth and Space science missions. The Multi-Function GN&C System (MFGS) design presented in this paper represents the successful coalescence of several discrete GNCC hardware and software technology innovations into one single highly integrated, compact, low power and low cost unit that simultaneously provides autonomous real time on-board attitude determination solutions and navigation solutions with accuracies that satisfy many future GSFC mission requirements. The MFGS is intended to operate as a single self-contained multifunction unit combining the functions now typically performed by a number of hardware units on a spacecraft. However, recognizing the need to satisfy a variety of future mission requirements, design provisions have been included to permit the unit to interface with a number of external remotely mounted sensors and actuators such as magnetometers, sun sensors, star cameras, reaction wheels and thrusters. The result is a highly versatile MFGS that can be configured in multiple ways to suit a realm of mission-specific GN&C requirements. It is envisioned that the MFGS will perform a mission enabling role by filling the microsat GN&C technology gap. In addition, GSFC believes that the MFGS could be employed to significantly reduce volume, power and mass requirements on conventional satellites.
The Deep Space Atomic Clock Mission
NASA Technical Reports Server (NTRS)
Ely, Todd A.; Koch, Timothy; Kuang, Da; Lee, Karen; Murphy, David; Prestage, John; Tjoelker, Robert; Seubert, Jill
2012-01-01
The Deep Space Atomic Clock (DSAC) mission will demonstrate the space flight performance of a small, low-mass, high-stability mercury-ion atomic clock with long term stability and accuracy on par with that of the Deep Space Network. The timing stability introduced by DSAC allows for a 1-Way radiometric tracking paradigm for deep space navigation, with benefits including increased tracking via utilization of the DSN's Multiple Spacecraft Per Aperture (MSPA) capability and full ground station-spacecraft view periods, more accurate radio occultation signals, decreased single-frequency measurement noise, and the possibility for fully autonomous on-board navigation. Specific examples of navigation and radio science benefits to deep space missions are highlighted through simulations of Mars orbiter and Europa flyby missions. Additionally, this paper provides an overview of the mercury-ion trap technology behind DSAC, details of and options for the upcoming 2015/2016 space demonstration, and expected on-orbit clock performance.
NASA Technical Reports Server (NTRS)
Smith, Jason T.; Welsh, Sam J.; Farinetti, Antonio L.; Wegner, Tim; Blakeslee, James; Deboeck, Toni F.; Dyer, Daniel; Corley, Bryan M.; Ollivierre, Jarmaine; Kramer, Leonard;
2010-01-01
A Spacecraft Position Optimal Tracking (SPOT) program was developed to process Global Positioning System (GPS) data, sent via telemetry from a spacecraft, to generate accurate navigation estimates of the vehicle position and velocity (state vector) using a Kalman filter. This program uses the GPS onboard receiver measurements to sequentially calculate the vehicle state vectors and provide this information to ground flight controllers. It is the first real-time ground-based shuttle navigation application using onboard sensors. The program is compact, portable, self-contained, and can run on a variety of UNIX or Linux computers. The program has a modular objec-toriented design that supports application-specific plugins such as data corruption remediation pre-processing and remote graphics display. The Kalman filter is extensible to additional sensor types or force models. The Kalman filter design is also strong against data dropouts because it uses physical models from state and covariance propagation in the absence of data. The design of this program separates the functionalities of SPOT into six different executable processes. This allows for the individual processes to be connected in an a la carte manner, making the feature set and executable complexity of SPOT adaptable to the needs of the user. Also, these processes need not be executed on the same workstation. This allows for communications between SPOT processes executing on the same Local Area Network (LAN). Thus, SPOT can be executed in a distributed sense with the capability for a team of flight controllers to efficiently share the same trajectory information currently being computed by the program. SPOT is used in the Mission Control Center (MCC) for Space Shuttle Program (SSP) and International Space Station Program (ISSP) operations, and can also be used as a post -flight analysis tool. It is primarily used for situational awareness, and for contingency situations.
High-efficient Unmanned Aircraft System Operations for Ecosystem Assessment
NASA Astrophysics Data System (ADS)
Xu, H.; Zhang, H.
2016-02-01
Diverse national and international agencies support the idea that incorporating Unmanned Aircraft Systems (UAS) into ecosystem assessment will improve the operations efficiency and accuracy. In this paper, a UAS will be designed to monitor the Gulf of Mexico's coastal area ecosystems intelligently and routinely. UAS onboard sensors will capture information that can be utilized to detect and geo-locate areas affected by invasive grasses. Moreover, practical ecosystem will be better assessed by analyzing the collected information. Compared with human-based/satellite-based surveillance, the proposed strategy is more efficient and accurate, and eliminates limitations and risks associated with human factors. State of the art UAS onboard sensors (e.g. high-resolution electro optical camera, night vision camera, thermal sensor etc.) will be used for monitoring coastal ecosystems. Once detected the potential risk in ecosystem, the onboard GPS data will be used to geo-locate and to store the exact coordinates of the affected area. Moreover, the UAS sensors will be used to observe and to record the daily evolution of coastal ecosystems. Further, benefitting from the data collected by the UAS, an intelligent big data processing scheme will be created to assess the ecosystem evolution effectively. Meanwhile, a cost-efficient intelligent autonomous navigation strategy will be implemented into the UAS, in order to guarantee that the UAS can fly over designated areas, and collect significant data in a safe and effective way. Furthermore, the proposed UAS-based ecosystem surveillance and assessment methodologies can be utilized for natural resources conservation. Flying UAS with multiple state of the art sensors will monitor and report the actual state of high importance natural resources frequently. Using the collected data, the ecosystem conservation strategy can be performed effectively and intelligently.
State estimation for autonomous flight in cluttered environments
NASA Astrophysics Data System (ADS)
Langelaan, Jacob Willem
Safe, autonomous operation in complex, cluttered environments is a critical challenge facing autonomous mobile systems. The research described in this dissertation was motivated by a particularly difficult example of autonomous mobility: flight of a small Unmanned Aerial Vehicle (UAV) through a forest. In cluttered environments (such as forests or natural and urban canyons) signals from navigation beacons such as GPS may frequently be occluded. Direct measurements of vehicle position are therefore unavailable, and information required for flight control, obstacle avoidance, and navigation must be obtained using only on-board sensors. However, payload limitations of small UAVs restrict both the mass and physical dimensions of sensors that can be carried. This dissertation describes the development and proof-of-concept demonstration of a navigation system that uses only a low-cost inertial measurement unit and a monocular camera. Micro electromechanical inertial measurements units are well suited to small UAV applications and provide measurements of acceleration and angular rate. However, they do not provide information about nearby obstacles (needed for collision avoidance) and their noise and bias characteristics lead to unbounded growth in computed position. A monocular camera can provide bearings to nearby obstacles and landmarks. These bearings can be used both to enable obstacle avoidance and to aid navigation. Presented here is a solution to the problem of estimating vehicle state (position, orientation and velocity) as well as positions of obstacles in the environment using only inertial measurements and bearings to obstacles. This is a highly nonlinear estimation problem, and standard estimation techniques such as the Extended Kalman Filter are prone to divergence in this application. In this dissertation a Sigma Point Kalman Filter is implemented, resulting in an estimator which is able to cope with the significant nonlinearities in the system equations and uncertainty in state estimates while remaining tractable for real-time operation. In addition, the issues of data association and landmark initialization are addressed. Estimator performance is examined through Monte Carlo simulations in both two and three dimensions for scenarios involving UAV flight in cluttered environments. Hardware tests and simulations demonstrate navigation through an obstacle-strewn environment by a small Unmanned Ground Vehicle.
Vision Sensor-Based Road Detection for Field Robot Navigation
Lu, Keyu; Li, Jian; An, Xiangjing; He, Hangen
2015-01-01
Road detection is an essential component of field robot navigation systems. Vision sensors play an important role in road detection for their great potential in environmental perception. In this paper, we propose a hierarchical vision sensor-based method for robust road detection in challenging road scenes. More specifically, for a given road image captured by an on-board vision sensor, we introduce a multiple population genetic algorithm (MPGA)-based approach for efficient road vanishing point detection. Superpixel-level seeds are then selected in an unsupervised way using a clustering strategy. Then, according to the GrowCut framework, the seeds proliferate and iteratively try to occupy their neighbors. After convergence, the initial road segment is obtained. Finally, in order to achieve a globally-consistent road segment, the initial road segment is refined using the conditional random field (CRF) framework, which integrates high-level information into road detection. We perform several experiments to evaluate the common performance, scale sensitivity and noise sensitivity of the proposed method. The experimental results demonstrate that the proposed method exhibits high robustness compared to the state of the art. PMID:26610514
Calibration of NASA Turbulent Air Motion Measurement System
NASA Technical Reports Server (NTRS)
Barrick, John D. W.; Ritter, John A.; Watson, Catherine E.; Wynkoop, Mark W.; Quinn, John K.; Norfolk, Daniel R.
1996-01-01
A turbulent air motion measurement system (TAMMS) was integrated onboard the Lockheed 188 Electra airplane (designated NASA 429) based at the Wallops Flight Facility in support of the NASA role in global tropospheric research. The system provides air motion and turbulence measurements from an airborne platform which is capable of sampling tropospheric and planetary boundary-layer conditions. TAMMS consists of a gust probe with free-rotating vanes mounted on a 3.7-m epoxy-graphite composite nose boom, a high-resolution inertial navigation system (INS), and data acquisition system. A variation of the tower flyby method augmented with radar tracking was implemented for the calibration of static pressure position error and air temperature probe. Additional flight calibration maneuvers were performed remote from the tower in homogeneous atmospheric conditions. System hardware and instrumentation are described and the calibration procedures discussed. Calibration and flight results are presented to illustrate the overall ability of the system to determine the three-component ambient wind fields during straight and level flight conditions.
Flight-determined benefits of integrated flight-propulsion control systems
NASA Technical Reports Server (NTRS)
Stewart, James F.; Burcham, Frank W., Jr.; Gatlin, Donald H.
1992-01-01
Over the last two decades, NASA has conducted several experiments in integrated flight-propulsion control. Benefits have included improved maneuverability; increased thrust, range, and survivability; reduced fuel consumption; and reduced maintenance. This paper presents the basic concepts for control integration, examples of implementation, and benefits. The F-111E experiment integrated the engine and inlet control systems. The YF-12C incorporated an integral control system involving the inlet, autopilot, autothrottle, airdata, navigation, and stability augmentation systems. The F-15 research involved integration of the engine, flight, and inlet control systems. Further extension of the integration included real-time, onboard optimization of engine, inlet, and flight control variables; a self-repairing flight control system; and an engines-only control concept for emergency control. The F-18A aircraft incorporated thrust vectoring integrated with the flight control system to provide enhanced maneuvering at high angles of attack. The flight research programs and the resulting benefits of each program are described.
Navigating a Mobile Robot Across Terrain Using Fuzzy Logic
NASA Technical Reports Server (NTRS)
Seraji, Homayoun; Howard, Ayanna; Bon, Bruce
2003-01-01
A strategy for autonomous navigation of a robotic vehicle across hazardous terrain involves the use of a measure of traversability of terrain within a fuzzy-logic conceptual framework. This navigation strategy requires no a priori information about the environment. Fuzzy logic was selected as a basic element of this strategy because it provides a formal methodology for representing and implementing a human driver s heuristic knowledge and operational experience. Within a fuzzy-logic framework, the attributes of human reasoning and decision- making can be formulated by simple IF (antecedent), THEN (consequent) rules coupled with easily understandable and natural linguistic representations. The linguistic values in the rule antecedents convey the imprecision associated with measurements taken by sensors onboard a mobile robot, while the linguistic values in the rule consequents represent the vagueness inherent in the reasoning processes to generate the control actions. The operational strategies of the human expert driver can be transferred, via fuzzy logic, to a robot-navigation strategy in the form of a set of simple conditional statements composed of linguistic variables. These linguistic variables are defined by fuzzy sets in accordance with user-defined membership functions. The main advantages of a fuzzy navigation strategy lie in the ability to extract heuristic rules from human experience and to obviate the need for an analytical model of the robot navigation process.
Further development and flight test of an autonomous precision landing system using a parafoil
NASA Technical Reports Server (NTRS)
Murray, James E.; Sim, Alex G.; Neufeld, David C.; Rennich, Patrick K.; Norris, Stephen R.; Hughes, Wesley S.
1994-01-01
NASA Dryden Flight Research Center and NASA Johnson Space Center are jointly conducting a phased program to determine the feasibility of the autonomous recovery of a spacecraft using a ram-air parafoil system for the final stages of entry from space to a precision landing. The feasibility is being studied using a flight model of a spacecraft in the generic shape of a flattened biconic that weighs approximately 120 lb and is flown under a commercially available ram-air parafoil. Key components of the vehicle include the global positioning system (GPS) guidance for navigation, a flight control computer, an electronic compass, a yaw rate gyro, and an onboard data recorder. A flight test program is being used to develop and refine the vehicle. The primary flight goal is to demonstrate autonomous flight from an altitude of 3,000 m (10,000 ft) with a lateral offset of 1.6 km (1.0 mi) to a precision soft landing. This paper summarizes the progress to date. Much of the navigation system has been tested, including a heading tracker that was developed using parameter estimation techniques and a complementary filter. The autoland portion of the autopilot is still in development. The feasibility of conducting the flare maneuver without servoactuators was investigated as a means of significantly reducing the servoactuator rate and load requirements.
2009-03-04
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the GOES-O satellite will undergo final testing of the imaging system, instrumentation, communications and power systems. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. GOES-O carries an advanced attitude control system using star trackers with spacecraft optical bench Imager and Sounder mountings that provide enhanced instrument pointing performance for improved image navigation and registration to better locate severe storms and other events important to the NOAA National Weather Service. Photo credit: NASA/Kim Shiflett
Towards a new modality-independent interface for a robotic wheelchair.
Bastos-Filho, Teodiano Freire; Cheein, Fernando Auat; Müller, Sandra Mara Torres; Celeste, Wanderley Cardoso; de la Cruz, Celso; Cavalieri, Daniel Cruz; Sarcinelli-Filho, Mário; Amaral, Paulo Faria Santos; Perez, Elisa; Soria, Carlos Miguel; Carelli, Ricardo
2014-05-01
This work presents the development of a robotic wheelchair that can be commanded by users in a supervised way or by a fully automatic unsupervised navigation system. It provides flexibility to choose different modalities to command the wheelchair, in addition to be suitable for people with different levels of disabilities. Users can command the wheelchair based on their eye blinks, eye movements, head movements, by sip-and-puff and through brain signals. The wheelchair can also operate like an auto-guided vehicle, following metallic tapes, or in an autonomous way. The system is provided with an easy to use and flexible graphical user interface onboard a personal digital assistant, which is used to allow users to choose commands to be sent to the robotic wheelchair. Several experiments were carried out with people with disabilities, and the results validate the developed system as an assistive tool for people with distinct levels of disability.
A Camera-Based Target Detection and Positioning UAV System for Search and Rescue (SAR) Purposes
Sun, Jingxuan; Li, Boyang; Jiang, Yifan; Wen, Chih-yung
2016-01-01
Wilderness search and rescue entails performing a wide-range of work in complex environments and large regions. Given the concerns inherent in large regions due to limited rescue distribution, unmanned aerial vehicle (UAV)-based frameworks are a promising platform for providing aerial imaging. In recent years, technological advances in areas such as micro-technology, sensors and navigation have influenced the various applications of UAVs. In this study, an all-in-one camera-based target detection and positioning system is developed and integrated into a fully autonomous fixed-wing UAV. The system presented in this paper is capable of on-board, real-time target identification, post-target identification and location and aerial image collection for further mapping applications. Its performance is examined using several simulated search and rescue missions, and the test results demonstrate its reliability and efficiency. PMID:27792156
Radiometric and geometric analysis of hyperspectral imagery acquired from an unmanned aerial vehicle
Hruska, Ryan; Mitchell, Jessica; Anderson, Matthew; ...
2012-09-17
During the summer of 2010, an Unmanned Aerial Vehicle (UAV) hyperspectral in-flight calibration and characterization experiment of the Resonon PIKA II imaging spectrometer was conducted at the U.S. Department of Energy’s Idaho National Laboratory (INL) UAV Research Park. The purpose of the experiment was to validate the radiometric calibration of the spectrometer and determine the georegistration accuracy achievable from the on-board global positioning system (GPS) and inertial navigation sensors (INS) under operational conditions. In order for low-cost hyperspectral systems to compete with larger systems flown on manned aircraft, they must be able to collect data suitable for quantitative scientific analysis.more » The results of the in-flight calibration experiment indicate an absolute average agreement of 96.3%, 93.7% and 85.7% for calibration tarps of 56%, 24%, and 2.5% reflectivity, respectively. The achieved planimetric accuracy was 4.6 meters (based on RMSE).« less
A Camera-Based Target Detection and Positioning UAV System for Search and Rescue (SAR) Purposes.
Sun, Jingxuan; Li, Boyang; Jiang, Yifan; Wen, Chih-Yung
2016-10-25
Wilderness search and rescue entails performing a wide-range of work in complex environments and large regions. Given the concerns inherent in large regions due to limited rescue distribution, unmanned aerial vehicle (UAV)-based frameworks are a promising platform for providing aerial imaging. In recent years, technological advances in areas such as micro-technology, sensors and navigation have influenced the various applications of UAVs. In this study, an all-in-one camera-based target detection and positioning system is developed and integrated into a fully autonomous fixed-wing UAV. The system presented in this paper is capable of on-board, real-time target identification, post-target identification and location and aerial image collection for further mapping applications. Its performance is examined using several simulated search and rescue missions, and the test results demonstrate its reliability and efficiency.
Adaptive pattern for autonomous UAV guidance
NASA Astrophysics Data System (ADS)
Sung, Chen-Ko; Segor, Florian
2013-09-01
The research done at the Fraunhofer IOSB in Karlsruhe within the AMFIS project is focusing on a mobile system to support rescue forces in accidents or disasters. The system consists of a ground control station which has the capability to communicate with a large number of heterogeneous sensors and sensor carriers and provides several open interfaces to allow easy integration of additional sensors into the system. Within this research we focus mainly on UAV such as VTOL (Vertical takeoff and Landing) systems because of their ease of use and their high maneuverability. To increase the positioning capability of the UAV, different onboard processing chains of image exploitation for real time detection of patterns on the ground and the interfacing technology for controlling the UAV from the payload during flight were examined. The earlier proposed static ground pattern was extended by an adaptive component which admits an additional visual communication channel to the aircraft. For this purpose different components were conceived to transfer additive information using changeable patterns on the ground. The adaptive ground pattern and their application suitability had to be tested under external influence. Beside the adaptive ground pattern, the onboard process chains and the adaptations to the demands of changing patterns are introduced in this paper. The tracking of the guiding points, the UAV navigation and the conversion of the guiding point positions from the images to real world co-ordinates in video sequences, as well as use limits and the possibilities of an adaptable pattern are examined.
Lightweight, Miniature Inertial Measurement System
NASA Technical Reports Server (NTRS)
Tang, Liang; Crassidis, Agamemnon
2012-01-01
A miniature, lighter-weight, and highly accurate inertial navigation system (INS) is coupled with GPS receivers to provide stable and highly accurate positioning, attitude, and inertial measurements while being subjected to highly dynamic maneuvers. In contrast to conventional methods that use extensive, groundbased, real-time tracking and control units that are expensive, large, and require excessive amounts of power to operate, this method focuses on the development of an estimator that makes use of a low-cost, miniature accelerometer array fused with traditional measurement systems and GPS. Through the use of a position tracking estimation algorithm, onboard accelerometers are numerically integrated and transformed using attitude information to obtain an estimate of position in the inertial frame. Position and velocity estimates are subject to drift due to accelerometer sensor bias and high vibration over time, and so require the integration with GPS information using a Kalman filter to provide highly accurate and reliable inertial tracking estimations. The method implemented here uses the local gravitational field vector. Upon determining the location of the local gravitational field vector relative to two consecutive sensors, the orientation of the device may then be estimated, and the attitude determined. Improved attitude estimates further enhance the inertial position estimates. The device can be powered either by batteries, or by the power source onboard its target platforms. A DB9 port provides the I/O to external systems, and the device is designed to be mounted in a waterproof case for all-weather conditions.
Human Flight to Lunar and Beyond - Re-Learning Operations Paradigms
NASA Technical Reports Server (NTRS)
Kenny, Ted; Statman, Joseph
2016-01-01
For the first time since the Apollo era, NASA is planning on sending astronauts on flights beyond Low-Earth Orbit (LEO). The Human Space Flight (HSF) program started with a successful initial flight in Earth orbit, in December 2014. The program will continue with two Exploration Missions (EM) to Lunar orbit: EM-1 will be unmanned and EM-2, carrying astronauts, will follow. NASA established a multi-center team to address the communications, and related navigation, needs. This paper will focus on the lessons learned in the team, planning for the missions' parts that are beyond Earth orbit. Many of these lessons had to be re-learned, as the HSF program after operated for many years in Earth orbit. Fortunately, the experience base from tracking robotic missions in deep space by the Deep Space Network (DSN) and close interaction with the HSF community to understand the unique needs (e.g. 2-way voice) resulted in a ConOps that leverages of both the deep space robotic and the Human LEO experiences. Several examples will be used to highlight the unique operational needs for HSF missions beyond Earth Orbit, including: - Navigation. At LEO, HSF missions can rely on Global Positioning System (GPS) devices for orbit determination. For Lunar-and-beyond HSF missions, techniques such as precision 2-way and 3-way Doppler and ranging, Delta-Difference-of-range, and eventually on-board navigation will be used. - Impact of latency - the delay associated with Round-Trip-Light-Time (RTLT). Imagine trying to have a 2-way discussion (audio or video) with an astronaut, with a 2-3 sec delay inserted (for Lunar distances) or 20 minutes delay (for Mars distances). - Balanced communications link. For robotic missions, there has been a heavy emphasis on the downlink data rates, bringing back science data from the instruments on-board the spacecraft. Uplink data rates were of secondary importance, used to send commands to the spacecraft. The ratio of downlink-to-uplink data rates was often 10:1 or more. For HSF, rates for uplink and downlink, at least for high-quality video, need to be similar.
Localization Framework for Real-Time UAV Autonomous Landing: An On-Ground Deployed Visual Approach
Kong, Weiwei; Hu, Tianjiang; Zhang, Daibing; Shen, Lincheng; Zhang, Jianwei
2017-01-01
One of the greatest challenges for fixed-wing unmanned aircraft vehicles (UAVs) is safe landing. Hereafter, an on-ground deployed visual approach is developed in this paper. This approach is definitely suitable for landing within the global navigation satellite system (GNSS)-denied environments. As for applications, the deployed guidance system makes full use of the ground computing resource and feedbacks the aircraft’s real-time localization to its on-board autopilot. Under such circumstances, a separate long baseline stereo architecture is proposed to possess an extendable baseline and wide-angle field of view (FOV) against the traditional fixed baseline schemes. Furthermore, accuracy evaluation of the new type of architecture is conducted by theoretical modeling and computational analysis. Dataset-driven experimental results demonstrate the feasibility and effectiveness of the developed approach. PMID:28629189
Localization Framework for Real-Time UAV Autonomous Landing: An On-Ground Deployed Visual Approach.
Kong, Weiwei; Hu, Tianjiang; Zhang, Daibing; Shen, Lincheng; Zhang, Jianwei
2017-06-19
[-5]One of the greatest challenges for fixed-wing unmanned aircraft vehicles (UAVs) is safe landing. Hereafter, an on-ground deployed visual approach is developed in this paper. This approach is definitely suitable for landing within the global navigation satellite system (GNSS)-denied environments. As for applications, the deployed guidance system makes full use of the ground computing resource and feedbacks the aircraft's real-time localization to its on-board autopilot. Under such circumstances, a separate long baseline stereo architecture is proposed to possess an extendable baseline and wide-angle field of view (FOV) against the traditional fixed baseline schemes. Furthermore, accuracy evaluation of the new type of architecture is conducted by theoretical modeling and computational analysis. Dataset-driven experimental results demonstrate the feasibility and effectiveness of the developed approach.
NASA Technical Reports Server (NTRS)
Park, Young W.; Montez, Moises N.
1994-01-01
A candidate onboard space navigation filter demonstrated excellent performance (less than 8 meter level RMS semi-major axis accuracy) in performing orbit determination of a low-Earth orbit Explorer satellite using single-frequency real GPS data. This performance is significantly better than predicted by other simulation studies using dual-frequency GPS data. The study results revealed the significance of two new modeling approaches evaluated in the work. One approach introduces a single-frequency ionospheric correction through pseudo-range and phase range averaging implementation. The other approach demonstrates a precise axis-dependent characterization of dynamic sample space uncertainty to compute a more accurate Kalman filter gain. Additionally, this navigation filter demonstrates a flexibility to accommodate both perturbational dynamic and observational biases required for multi-flight phase and inhomogeneous application environments. This paper reviews the potential application of these methods and the filter structure to terrestrial vehicle and positioning applications. Both the single-frequency ionospheric correction method and the axis-dependent state noise modeling approach offer valuable contributions in cost and accuracy improvements for terrestrial GPS receivers. With a modular design approach to either 'plug-in' or 'unplug' various force models, this multi-flight phase navigation filter design structure also provides a versatile GPS navigation software engine for both atmospheric and exo-atmospheric navigation or positioning use, thereby streamlining the flight phase or application-dependent software requirements. Thus, a standardized GPS navigation software engine that can reduce the development and maintenance cost of commercial GPS receivers is now possible.
A Fault Tolerant System for an Integrated Avionics Sensor Configuration
NASA Technical Reports Server (NTRS)
Caglayan, A. K.; Lancraft, R. E.
1984-01-01
An aircraft sensor fault tolerant system methodology for the Transport Systems Research Vehicle in a Microwave Landing System (MLS) environment is described. The fault tolerant system provides reliable estimates in the presence of possible failures both in ground-based navigation aids, and in on-board flight control and inertial sensors. Sensor failures are identified by utilizing the analytic relationships between the various sensors arising from the aircraft point mass equations of motion. The estimation and failure detection performance of the software implementation (called FINDS) of the developed system was analyzed on a nonlinear digital simulation of the research aircraft. Simulation results showing the detection performance of FINDS, using a dual redundant sensor compliment, are presented for bias, hardover, null, ramp, increased noise and scale factor failures. In general, the results show that FINDS can distinguish between normal operating sensor errors and failures while providing an excellent detection speed for bias failures in the MLS, indicated airspeed, attitude and radar altimeter sensors.
NASA Technical Reports Server (NTRS)
1974-01-01
Geostationary maritime satellites, one over the Pacific and one over the Atlantic Ocean, are planned to make available high-speed communications and navigation (position determination) services to ships at sea. A shipboard satellite terminal, operating within the authorized maritime L-band, 1636.5 to 1645.0 MHz, will allow ships to pass voice, teletype, facsimile, and data messages to shore communication facilities with a high degree of reliability. The shore-to-ship link will also operate in the maritime L-band from 1535.0 to 1543.5 MHz. A significant number or maritime/commercial ships are expected to be equipped with an L-band satellite terminal by the year 1980, and so consequently, there is an interest in determining electromagnetic compatibility between the proposed L-band shipboard terminal and existing, on-board, shipboard communications/electronics and electrical systems, as well as determining the influence of shore-based interference sources. The shipboard electromagnetic interference survey described was conducted on-board the United States Line's American Leader class (15,690 tons) commercial container ship, the "American Alliance" from June 16 to 20, 1974. Details of the test plan and measurements are given.
Habib, Ayman; Han, Youkyung; Xiong, Weifeng; ...
2016-09-24
Low-cost Unmanned Airborne Vehicles (UAVs) equipped with consumer-grade imaging systems have emerged as a potential remote sensing platform that could satisfy the needs of a wide range of civilian applications. Among these applications, UAV-based agricultural mapping and monitoring have attracted significant attention from both the research and professional communities. The interest in UAV-based remote sensing for agricultural management is motivated by the need to maximize crop yield. Remote sensing-based crop yield prediction and estimation are primarily based on imaging systems with different spectral coverage and resolution (e.g., RGB and hyperspectral imaging systems). Due to the data volume, RGB imaging ismore » based on frame cameras, while hyperspectral sensors are primarily push-broom scanners. To cope with the limited endurance and payload constraints of low-cost UAVs, the agricultural research and professional communities have to rely on consumer-grade and light-weight sensors. However, the geometric fidelity of derived information from push-broom hyperspectral scanners is quite sensitive to the available position and orientation established through a direct geo-referencing unit onboard the imaging platform (i.e., an integrated Global Navigation Satellite System (GNSS) and Inertial Navigation System (INS). This paper presents an automated framework for the integration of frame RGB images, push-broom hyperspectral scanner data and consumer-grade GNSS/INS navigation data for accurate geometric rectification of the hyperspectral scenes. The approach relies on utilizing the navigation data, together with a modified Speeded-Up Robust Feature (SURF) detector and descriptor, for automating the identification of conjugate features in the RGB and hyperspectral imagery. The SURF modification takes into consideration the available direct geo-referencing information to improve the reliability of the matching procedure in the presence of repetitive texture within a mechanized agricultural field. Identified features are then used to improve the geometric fidelity of the previously ortho-rectified hyperspectral data. Lastly, experimental results from two real datasets show that the geometric rectification of the hyperspectral data was improved by almost one order of magnitude.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habib, Ayman; Han, Youkyung; Xiong, Weifeng
Low-cost Unmanned Airborne Vehicles (UAVs) equipped with consumer-grade imaging systems have emerged as a potential remote sensing platform that could satisfy the needs of a wide range of civilian applications. Among these applications, UAV-based agricultural mapping and monitoring have attracted significant attention from both the research and professional communities. The interest in UAV-based remote sensing for agricultural management is motivated by the need to maximize crop yield. Remote sensing-based crop yield prediction and estimation are primarily based on imaging systems with different spectral coverage and resolution (e.g., RGB and hyperspectral imaging systems). Due to the data volume, RGB imaging ismore » based on frame cameras, while hyperspectral sensors are primarily push-broom scanners. To cope with the limited endurance and payload constraints of low-cost UAVs, the agricultural research and professional communities have to rely on consumer-grade and light-weight sensors. However, the geometric fidelity of derived information from push-broom hyperspectral scanners is quite sensitive to the available position and orientation established through a direct geo-referencing unit onboard the imaging platform (i.e., an integrated Global Navigation Satellite System (GNSS) and Inertial Navigation System (INS). This paper presents an automated framework for the integration of frame RGB images, push-broom hyperspectral scanner data and consumer-grade GNSS/INS navigation data for accurate geometric rectification of the hyperspectral scenes. The approach relies on utilizing the navigation data, together with a modified Speeded-Up Robust Feature (SURF) detector and descriptor, for automating the identification of conjugate features in the RGB and hyperspectral imagery. The SURF modification takes into consideration the available direct geo-referencing information to improve the reliability of the matching procedure in the presence of repetitive texture within a mechanized agricultural field. Identified features are then used to improve the geometric fidelity of the previously ortho-rectified hyperspectral data. Lastly, experimental results from two real datasets show that the geometric rectification of the hyperspectral data was improved by almost one order of magnitude.« less
NASA Astrophysics Data System (ADS)
Schulte, Peter Z.; Spencer, David A.
2016-01-01
This paper describes the development and validation process of a highly automated Guidance, Navigation, & Control subsystem for a small satellite on-orbit inspection application, enabling proximity operations without human-in-the-loop interaction. The paper focuses on the integration and testing of Guidance, Navigation, & Control software and the development of decision logic to address the question of how such a system can be effectively implemented for full automation. This process is unique because a multitude of operational scenarios must be considered and a set of complex interactions between subsystem algorithms must be defined to achieve the automation goal. The Prox-1 mission is currently under development within the Space Systems Design Laboratory at the Georgia Institute of Technology. The mission involves the characterization of new small satellite component technologies, deployment of the LightSail 3U CubeSat, entering into a trailing orbit relative to LightSail using ground-in-the-loop commands, and demonstration of automated proximity operations through formation flight and natural motion circumnavigation maneuvers. Operations such as these may be utilized for many scenarios including on-orbit inspection, refueling, repair, construction, reconnaissance, docking, and debris mitigation activities. Prox-1 uses onboard sensors and imaging instruments to perform Guidance, Navigation, & Control operations during on-orbit inspection of LightSail. Navigation filters perform relative orbit determination based on images of the target spacecraft, and guidance algorithms conduct automated maneuver planning. A slew and tracking controller sends attitude actuation commands to a set of control moment gyroscopes, and other controllers manage desaturation, detumble, thruster firing, and target acquisition/recovery. All Guidance, Navigation, & Control algorithms are developed in a MATLAB/Simulink six degree-of-freedom simulation environment and are integrated using decision logic to autonomously determine when actions should be performed. The complexity of this decision logic is the primary challenge of the automated process, and the Stateflow tool in Simulink is used to establish logical relationships and manage data flow between each of the individual hardware and software components. Once the integrated simulation is fully developed in MATLAB/Simulink, the algorithms are autocoded to C/C++ and integrated into flight software. Hardware-in-the-loop testing provides validation of the Guidance, Navigation, & Control subsystem performance.
Launch Vehicle Abort Analysis for Failures Leading to Loss of Control
NASA Technical Reports Server (NTRS)
Hanson, John M.; Hill, Ashley D.; Beard, Bernard B.
2013-01-01
Launch vehicle ascent is a time of high risk for an onboard crew. There is a large fraction of possible failures for which time is of the essence and a successful abort is possible if the detection and action happens quickly enough. This paper focuses on abort determination based on data already available from the Guidance, Navigation, and Control system. This work is the result of failure analysis efforts performed during the Ares I launch vehicle development program. The two primary areas of focus are the derivation of abort triggers to ensure that abort occurs as quickly as possible when needed, but that false aborts are avoided, and evaluation of success in aborting off the failing launch vehicle.
Autonomous satellite navigation using starlight refraction angle measurements
NASA Astrophysics Data System (ADS)
Ning, Xiaolin; Wang, Longhua; Bai, Xinbei; Fang, Jiancheng
2013-05-01
An on-board autonomous navigation capability is required to reduce the operation costs and enhance the navigation performance of future satellites. Autonomous navigation by stellar refraction is a type of autonomous celestial navigation method that uses high-accuracy star sensors instead of Earth sensors to provide information regarding Earth's horizon. In previous studies, the refraction apparent height has typically been used for such navigation. However, the apparent height cannot be measured directly by a star sensor and can only be calculated by the refraction angle and an atmospheric refraction model. Therefore, additional errors are introduced by the uncertainty and nonlinearity of atmospheric refraction models, which result in reduced navigation accuracy and reliability. A new navigation method based on the direct measurement of the refraction angle is proposed to solve this problem. Techniques for the determination of the refraction angle are introduced, and a measurement model for the refraction angle is established. The method is tested and validated by simulations. When the starlight refraction height ranges from 20 to 50 km, a positioning accuracy of better than 100 m can be achieved for a low-Earth-orbit (LEO) satellite using the refraction angle, while the positioning accuracy of the traditional method using the apparent height is worse than 500 m under the same conditions. Furthermore, an analysis of the factors that affect navigation accuracy, including the measurement accuracy of the refraction angle, the number of visible refracted stars per orbit and the installation azimuth of star sensor, is presented. This method is highly recommended for small satellites in particular, as no additional hardware besides two star sensors is required.
X-Ray Detection and Processing Models for Spacecraft Navigation and Timing
NASA Technical Reports Server (NTRS)
Sheikh, Suneel; Hanson, John
2013-01-01
The current primary method of deepspace navigation is the NASA Deep Space Network (DSN). High-performance navigation is achieved using Delta Differential One-Way Range techniques that utilize simultaneous observations from multiple DSN sites, and incorporate observations of quasars near the line-of-sight to a spacecraft in order to improve the range and angle measurement accuracies. Over the past four decades, x-ray astronomers have identified a number of xray pulsars with pulsed emissions having stabilities comparable to atomic clocks. The x-ray pulsar-based navigation and time determination (XNAV) system uses phase measurements from these sources to establish autonomously the position of the detector, and thus the spacecraft, relative to a known reference frame, much as the Global Positioning System (GPS) uses phase measurements from radio signals from several satellites to establish the position of the user relative to an Earth-centered fixed frame of reference. While a GPS receiver uses an antenna to detect the radio signals, XNAV uses a detector array to capture the individual xray photons from the x-ray pulsars. The navigation solution relies on detailed xray source models, signal processing, navigation and timing algorithms, and analytical tools that form the basis of an autonomous XNAV system. Through previous XNAV development efforts, some techniques have been established to utilize a pulsar pulse time-of-arrival (TOA) measurement to correct a position estimate. One well-studied approach, based upon Kalman filter methods, optimally adjusts a dynamic orbit propagation solution based upon the offset in measured and predicted pulse TOA. In this delta position estimator scheme, previously estimated values of spacecraft position and velocity are utilized from an onboard orbit propagator. Using these estimated values, the detected arrival times at the spacecraft of pulses from a pulsar are compared to the predicted arrival times defined by the pulsar s pulse timing model. A discrepancy provides an estimate of the spacecraft position offset, since an error in position will relate to the measured time offset of a pulse along the line of sight to the pulsar. XNAV researchers have been developing additional enhanced approaches to process the photon TOAs to arrive at an estimate of spacecraft position, including those using maximum-likelihood estimation, digital phase locked loops, and "single photon processing" schemes that utilize all available time data associated with each photon. Using pulsars from separate, non-coplanar locations provides range and range-rate measurements in each pulsar s direction. Combining these different pulsar measurements solves for offsets in position and velocity in three dimensions, and provides accurate overall navigation for deep space vehicles.
Adaptability of solar energy conversion systems on ships
NASA Astrophysics Data System (ADS)
Visa, I.; Cotorcea, A.; Neagoe, M.; Moldovan, M.
2016-08-01
International trade of goods largely uses maritime/transoceanic ships driven by engines using fossil fuels. This two centuries tradition is technologically mature but significantly adds to the CO2 emissions; therefore, recent trends focus on on-board implementation of systems converting the solar energy into power (photovoltaic systems) or heat (solar-thermal systems). These systems are carbon-emissions free but are still under research and plenty of effort is devoted to fast reach maturity and feasibility. Unlike the systems implemented in a specific continental location, the design of solar energy conversion systems installed on shipboard has to face the problem generated by the system base motion along with the ship travelling on routes at different latitudes: the navigation direction and sense and roll-pitch combined motion with reduced amplitude, but with relatively high frequency. These raise highly interesting challenges in the design and development of mechanical systems that support the maximal output in terms of electricity or heat. The paper addresses the modelling of the relative position of a solar energy conversion surface installed on a ship according to the current position of the sun; the model is based on the navigation trajectory/route, ship motion generated by waves and the relative sun-earth motion. The model describes the incidence angle of the sunray on the conversion surface through five characteristic angles: three used to define the ship orientation and two for the solar angles; based on, their influence on the efficiency in solar energy collection is analyzed by numerical simulations and appropriate recommendations are formulated for increasing the solar energy conversion systems adaptability on ships.
Validation of early GOES-16 ABI on-orbit geometrical calibration accuracy using SNO method
NASA Astrophysics Data System (ADS)
Yu, Fangfang; Shao, Xi; Wu, Xiangqian; Kondratovich, Vladimir; Li, Zhengping
2017-09-01
The Advanced Baseline Imager (ABI) onboard the GOES-16 satellite, which was launched on 19 November 2016, is the first next-generation geostationary weather instrument in the west hemisphere. It has 16 spectral solar reflective and emissive bands located in three focal plane modules (FPM): one visible and near infrared (VNIR) FPM, one midwave infrared (MWIR), and one longwave infrared (LWIR) FPM. All the ABI bands are geometeorically calibrated with new techniques of Kalman filtering and Global Positioning System (GPS) to determine the accurate spacecraft attitude and orbit configuration to meet the challenging image navigation and registration (INR) requirements of ABI data. This study is to validate the ABI navigation and band-to-band registration (BBR) accuracies using the spectrally matched pixels of the Suomi National Polar-orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) M-band data and the ABI images from the Simultaneous Nadir Observation (SNO) images. The preliminary results showed that during the ABI post-launch product test (PLPT) period, the ABI BBR errors at the y-direction (along the VIIRS track direction) is smaller than at the x-direction (along the VIIRS scan direction). Variations in the ABI BBR calibration residuals and navigation difference to VIIRS can be observed. Note that ABI is not operational yet and the data is experimental and still under testing. Effort is still ongoing to improve the ABI data quality.
Achieving reliability - The evolution of redundancy in American manned spacecraft computers
NASA Technical Reports Server (NTRS)
Tomayko, J. E.
1985-01-01
The Shuttle is the first launch system deployed by NASA with full redundancy in the on-board computer systems. Fault-tolerance, i.e., restoring to a backup with less capabilities, was the method selected for Apollo. The Gemini capsule was the first to carry a computer, which also served as backup for Titan launch vehicle guidance. Failure of the Gemini computer resulted in manual control of the spacecraft. The Apollo system served vehicle flight control and navigation functions. The redundant computer on Skylab provided attitude control only in support of solar telescope pointing. The STS digital, fly-by-wire avionics system requires 100 percent reliability. The Orbiter carries five general purpose computers, four being fully-redundant and the fifth being soley an ascent-descent tool. The computers are synchronized at input and output points at a rate of about six times a second. The system is projected to cause a loss of an Orbiter only four times in a billion flights.
Outdoor flocking of quadcopter drones with decentralized model predictive control.
Yuan, Quan; Zhan, Jingyuan; Li, Xiang
2017-11-01
In this paper, we present a multi-drone system featured with a decentralized model predictive control (DMPC) flocking algorithm. The drones gather localized information from neighbors and update their velocities using the DMPC flocking algorithm. In the multi-drone system, data packages are transmitted through XBee ® wireless modules in broadcast mode, yielding such an anonymous and decentralized system where all the calculations and controls are completed on an onboard minicomputer of each drone. Each drone is a double-layered agent system with the coordination layer running multi-drone flocking algorithms and the flight control layer navigating the drone, and the final formation of the flock relies on both the communication range and the desired inter-drone distance. We give both numerical simulations and field tests with a flock of five drones, showing that the DMPC flocking algorithm performs well on the presented multi-drone system in both the convergence rate and the ability of tracking a desired path. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Extensibility of Human Asteroid Mission to Mars and Other Destinations
NASA Technical Reports Server (NTRS)
McDonald, Mark A.; Caram, Jose M.; Lopez, Pedro; Hinkel, Heather D.; Bowie, Jonathan T.; Abell, Paul A.; Drake, Bret G.; Martinez, Roland M.; Chodas, Paul W.; Hack, Kurt;
2014-01-01
This paper will describe the benefits of execution of the Asteroid Redirect Mission as an early mission in deep space, demonstrating solar electric propulsion, deep space robotics, ground and on-board navigation, docking, and EVA. The paper will also discuss how staging in trans-lunar space and the elements associated with this mission are excellent building blocks for subsequent deep space missions to Mars or other destinations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, S; Touch, M; Bowsher, J
Purpose: To construct a robotic SPECT system and demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch. The system has potential for on-board functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was developed utilizing a Digirad 2020tc detector and a KUKA KR150-L110 robot. An imaging study was performed with the PET CT Phantom, which includes 5 spheres: 10, 13, 17, 22 and 28 mm in diameter. Sphere-tobackground concentration ratio was 6:1 of Tc99m. The phantom was placed on a flat-top couch. SPECT projections were acquired with a parallel-hole collimator andmore » a single pinhole collimator. The robotic system navigated the detector tracing the flat-top table to maintain the closest possible proximity to the phantom. For image reconstruction, detector trajectories were described by six parameters: radius-of-rotation, x and z detector shifts, and detector rotation θ, tilt ϕ and twist γ. These six parameters were obtained from the robotic system by calibrating the robot base and tool coordinates. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector-to-COR (center-ofrotation) distance. In acquisitions with background at 1/6th sphere activity concentration, photopeak contamination was heavy, yet the 17, 22, and 28 mm diameter spheres were readily observed with the parallel hole imaging, and the single, targeted sphere (28 mm diameter) was readily observed in the pinhole region-of-interest (ROI) imaging. Conclusion: Onboard SPECT could be achieved by a robot maneuvering a SPECT detector about patients in position for radiation therapy on a flat-top couch. The robot inherent coordinate frame could be an effective means to estimate detector pose for use in SPECT image reconstruction. PHS/NIH/NCI grant R21-CA156390-01A1.« less
Troglia Gamba, Micaela; Marucco, Gianluca; Pini, Marco; Ugazio, Sabrina; Falletti, Emanuela; Lo Presti, Letizia
2015-01-01
Global Navigation Satellite Systems (GNSS) broadcast signals for positioning and navigation, which can be also employed for remote sensing applications. Indeed, the satellites of any GNSS can be seen as synchronized sources of electromagnetic radiation, and specific processing of the signals reflected back from the ground can be used to estimate the geophysical properties of the Earth’s surface. Several experiments have successfully demonstrated GNSS-reflectometry (GNSS-R), whereas new applications are continuously emerging and are presently under development, either from static or dynamic platforms. GNSS-R can be implemented at a low cost, primarily if small devices are mounted on-board unmanned aerial vehicles (UAVs), which today can be equipped with several types of sensors for environmental monitoring. So far, many instruments for GNSS-R have followed the GNSS bistatic radar architecture and consisted of custom GNSS receivers, often requiring a personal computer and bulky systems to store large amounts of data. This paper presents the development of a GNSS-based sensor for UAVs and small manned aircraft, used to classify lands according to their soil water content. The paper provides details on the design of the major hardware and software components, as well as the description of the results obtained through field tests. PMID:26569242
Biologically inspired collision avoidance system for unmanned vehicles
NASA Astrophysics Data System (ADS)
Ortiz, Fernando E.; Graham, Brett; Spagnoli, Kyle; Kelmelis, Eric J.
2009-05-01
In this project, we collaborate with researchers in the neuroscience department at the University of Delaware to develop an Field Programmable Gate Array (FPGA)-based embedded computer, inspired by the brains of small vertebrates (fish). The mechanisms of object detection and avoidance in fish have been extensively studied by our Delaware collaborators. The midbrain optic tectum is a biological multimodal navigation controller capable of processing input from all senses that convey spatial information, including vision, audition, touch, and lateral-line (water current sensing in fish). Unfortunately, computational complexity makes these models too slow for use in real-time applications. These simulations are run offline on state-of-the-art desktop computers, presenting a gap between the application and the target platform: a low-power embedded device. EM Photonics has expertise in developing of high-performance computers based on commodity platforms such as graphic cards (GPUs) and FPGAs. FPGAs offer (1) high computational power, low power consumption and small footprint (in line with typical autonomous vehicle constraints), and (2) the ability to implement massively-parallel computational architectures, which can be leveraged to closely emulate biological systems. Combining UD's brain modeling algorithms and the power of FPGAs, this computer enables autonomous navigation in complex environments, and further types of onboard neural processing in future applications.
Gamba, Micaela Troglia; Marucco, Gianluca; Pini, Marco; Ugazio, Sabrina; Falletti, Emanuela; Lo Presti, Letizia
2015-11-10
Global Navigation Satellite Systems (GNSS) broadcast signals for positioning and navigation, which can be also employed for remote sensing applications. Indeed, the satellites of any GNSS can be seen as synchronized sources of electromagnetic radiation, and specific processing of the signals reflected back from the ground can be used to estimate the geophysical properties of the Earth's surface. Several experiments have successfully demonstrated GNSS-reflectometry (GNSS-R), whereas new applications are continuously emerging and are presently under development, either from static or dynamic platforms. GNSS-R can be implemented at a low cost, primarily if small devices are mounted on-board unmanned aerial vehicles (UAVs), which today can be equipped with several types of sensors for environmental monitoring. So far, many instruments for GNSS-R have followed the GNSS bistatic radar architecture and consisted of custom GNSS receivers, often requiring a personal computer and bulky systems to store large amounts of data. This paper presents the development of a GNSS-based sensor for UAVs and small manned aircraft, used to classify lands according to their soil water content. The paper provides details on the design of the major hardware and software components, as well as the description of the results obtained through field tests.
Investigations of equatorial ionosphere nighttime mode conversion at VLF
NASA Astrophysics Data System (ADS)
Hildebrand, Verne
1993-05-01
VLF Radiowave propagation provides one of the few viable tools for exploring the properties of the lower D-region ionosphere. Conversely, VLF communications coverage analysis and prediction is directly dependent on the quality of models for the D-region ionosphere. The VLF Omega navigation signals are an excellent and under-utilized resource for conducting D-region research in direct support of VLF communications. Stations are well placed for investigating polar, mid latitude, and equatorial phenomena. Much can be learned by fully utilizing the very stable signals radiated at five frequencies, available from each of the eight transmitters, and taking full advantage of modal structure. While the Omega signals, 10.2 to 13.6 kHz, are well below the VLF communications band, we contend that much of the knowledge gained on D-region characteristics can be directly applied at the higher frequencies. The opportunity offered by Omega needs to be exploited. With the Global Positioning System (GPS) coming onboard as the prime means for global navigation, pressure is mounting to phase out Omega. In this paper we describe how we are using Omega along with computer codes of full wave VLF propagation, provided to us by the U.S. Naval Ocean Systems Center (NOSC), for ionosphere research and by example illustrate the potential for other investigations.
Assimilation of Radio Occultation Data From the Chinese Fengyun Meterological Satellite at GRAPES
NASA Astrophysics Data System (ADS)
LIU, Y.
2016-12-01
GNOS (GNSS Occultation Sounder) is a new radio occultation payload onboard the Chinese FY-3 series satellites, which probes the Earth's neutral atmosphere and the ionosphere. GNOS is capable of tracking the signals of both the Beidou (the Chinese navigation satellite system) and the GPS navigation satellite systems. The first FY-3C satellite with GNOS launch on 23 September 2013 successfully, and has more than 500 RO events daily, including approximately 400 GPS and 100 Beidou RO events. In this paper the data quality from FY3C GNOS, including GPS and Beidou radio accultation data, will be presented. The impact experiments of assimilating GNOS radio accultation refractivity profiles in GRAPES (Global and Regional Assimilation Prediction System) a new generation numerical model system of China Meteorological Administration, are also presented. Results show that the lowest probing height of 90% GNOS profile can reach 4KM away from the surface. The bias of GNOS refractivity profiles compared to reanalysis and radiosonde data is greater than those of COSMIC and GRAS, but after data quality control the standard deviation of GNOS refractivity is approximately 2%. The results of the GNOS assimilation experiments show that GNOS data can improve the analysis in the upper troposphere and lower stratosphere, particularly in the southern hemisphere and the ocean, which produce the neutral and positive impacts in GRAPES assimilation system. The combined impact of assimilating both GPS and Beidou GNOS radio occultation is greater than assimilating either instrument individually.
NASA Astrophysics Data System (ADS)
Namie, Hiromune; Morishita, Hisashi
The authors focused on the development of an indoor positioning system which is easy to use, portable and available for everyone. This system is capable of providing the correct position anywhere indoors, including onboard ships, and was invented in order to evaluate the availability of GPS indoors. Although the performance of GPS is superior outdoors, there has been considerable research regarding indoor GPS involving sensitive GPS, pseudolites (GPS pseudo satellite), RFID (Radio Frequency IDentification) tags, and wireless LAN .However, the positioning rate and the precision are not high enough for general use, which is the reason why these technologies have not yet spread to personal navigation systems. In this regard, the authors attempted to implement an indoor positioning system using cellular phones with built-in GPS and infrared light data communication functionality, which are widely used in Japan. GPS is becoming increasingly popular, where GPGGS sentences of the NMEA outputted from the GPS receiver provide spatiotemporal information including latitude, longitude, altitude, and time or ECEF xyz coordinates. As GPS applications grow rapidly, spatiotemporal data becomes key to the ubiquitous outdoor and indoor seamless positioning services at least for the entire area of Japan, as well as to becoming familiar with satellite positioning systems (e.g. GPS). Furthermore, the authors are also working on the idea of using PDAs (Personal Digital Assistants), as cellular phones with built-in GPS and PDA functionality are also becoming increasingly popular.
Evaluation of GPS Coverage for the X-33 Michael-6 Trajectory
NASA Technical Reports Server (NTRS)
Lundberg, John B.
1998-01-01
The onboard navigational system for the X-33 test flights will be based on the use of measurements collected from the Embedded Global Positioning System (GPS)/INS system. Some of the factors which will affect the quality of the GPS contribution to the navigational solution will be the number of pseudorange measurements collected at any instant in time, the distribution of the GPS satellites within the field of view, and the inherent noise level of the GPS receiver. The distribution of GPS satellites within the field of view of the receiver's antenna will depend on the receiver's position, the time of day, pointing direction of the antenna, and the effective cone angle of the antenna. The number of pseudorange measurements collected will depend upon these factors as well as the time required to lock onto a GPS satellite signal once the GPS satellite comes into the field of view of the antenna and the number of available receiver channels. The objective of this study is to evaluate the GPS coverage resulting from the proposed antenna pointing directions, the proposed antenna cone angles, and the effects due to the time of day for the X-33 Michael-6 trajectory from launch at Edwards AFB, California, to the start of the Terminal Area Energy Management (TAEM) phase on approach to Michael AAF, Utah.
Estimation of total electron content (TEC) using spaceborne GPS measurements
NASA Astrophysics Data System (ADS)
Choi, Key-Rok; Lightsey, E. Glenn
2008-09-01
TerraSAR-X (TSX), a high-resolution interferometric Synthetic Aperture Radar (SAR) mission from DLR (German Aerospace Center, Deutsches Zentrum für Luft-und Raumfahrt), was successfully launched into orbit on June 15, 2007. It includes a dual-frequency GPS receiver called IGOR (Integrated GPS Occultation Receiver), which is a heritage NASA/JPL BlackJack receiver. The software for the TSX IGOR receiver was specially-modified software developed at UT/CSR. This software was upgraded to provide enhanced occultation capabilities. This paper describes total electron content (TEC) estimation using simulation data and onboard GPS data of TerraSAR-X. The simulated GPS data were collected using the IGOR Engineering Model (EM) in the laboratory and the onboard GPS data were collected from the IGOR Flight Model (FM) on TSX. To estimate vertical total electron content (vTEC) for the simulation data, inter-frequency biases (IFB) were estimated using the "carrier to code leveling process." For the onboard GPS data, IFBs of GPS satellites were retrieved from the navigation message and applied to the measurements.
(abstract) Application of Non-coherent Data Types for Deep Space Navigation
NASA Technical Reports Server (NTRS)
Bhaskaran, Shyam
1995-01-01
Several options are being examined to reduce the costs of spacecraft and deep space missions. One such option is to fly spacecraft in a non-coherent mode, that is, the spacecraft does not carry a transponder and cannot coherently return a Doppler signal. Historically, such one-way data has not been used as the sole data type due to the instability of the onboard oscillator, the use of S-band frequencies, and the corresponding larger error sources which could not be modeled. However, with the advent of high-speed work stations and more sophisticated modeling ability, the possibility of using one-way data is being re-examined. This paper addresses the navigation performance of various one-way data types for use in interplanetary missions.
An algorithm for enhanced formation flying of satellites in low earth orbit
NASA Astrophysics Data System (ADS)
Folta, David C.; Quinn, David A.
1998-01-01
With scientific objectives for Earth observation programs becoming more ambitious and spacecraft becoming more autonomous, the need for innovative technical approaches on the feasibility of achieving and maintaining formations of spacecraft has come to the forefront. The trend to develop small low-cost spacecraft has led many scientists to recognize the advantage of flying several spacecraft in formation to achieve the correlated instrument measurements formerly possible only by flying many instruments on a single large platform. Yet, formation flying imposes additional complications on orbit maintenance, especially when each spacecraft has its own orbit requirements. However, advances in automation and technology proposed by the Goddard Space Flight Center (GSFC) allow more of the burden in maneuver planning and execution to be placed onboard the spacecraft, mitigating some of the associated operational concerns. The purpose of this paper is to present GSFC's Guidance, Navigation, and Control Center's (GNCC) algorithm for Formation Flying of the low earth orbiting spacecraft that is part of the New Millennium Program (NMP). This system will be implemented as a close-loop flight code onboard the NMP Earth Orbiter-1 (EO-1) spacecraft. Results of this development can be used to determine the appropriateness of formation flying for a particular case as well as operational impacts. Simulation results using this algorithm integrated in an autonomous `fuzzy logic' control system called AutoCon™ are presented.
NASA Technical Reports Server (NTRS)
Lisano, Michael E.
2007-01-01
Recent literature in applied estimation theory reflects growing interest in the sigma-point (also called unscented ) formulation for optimal sequential state estimation, often describing performance comparisons with extended Kalman filters as applied to specific dynamical problems [c.f. 1, 2, 3]. Favorable attributes of sigma-point filters are described as including a lower expected error for nonlinear even non-differentiable dynamical systems, and a straightforward formulation not requiring derivation or implementation of any partial derivative Jacobian matrices. These attributes are particularly attractive, e.g. in terms of enabling simplified code architecture and streamlined testing, in the formulation of estimators for nonlinear spaceflight mechanics systems, such as filter software onboard deep-space robotic spacecraft. As presented in [4], the Sigma-Point Consider Filter (SPCF) algorithm extends the sigma-point filter algorithm to the problem of consider covariance analysis. Considering parameters in a dynamical system, while estimating its state, provides an upper bound on the estimated state covariance, which is viewed as a conservative approach to designing estimators for problems of general guidance, navigation and control. This is because, whether a parameter in the system model is observable or not, error in the knowledge of the value of a non-estimated parameter will increase the actual uncertainty of the estimated state of the system beyond the level formally indicated by the covariance of an estimator that neglects errors or uncertainty in that parameter. The equations for SPCF covariance evolution are obtained in a fashion similar to the derivation approach taken with standard (i.e. linearized or extended) consider parameterized Kalman filters (c.f. [5]). While in [4] the SPCF and linear-theory consider filter (LTCF) were applied to an illustrative linear dynamics/linear measurement problem, in the present work examines the SPCF as applied to nonlinear sequential consider covariance analysis, i.e. in the presence of nonlinear dynamics and nonlinear measurements. A simple SPCF for orbit determination, exemplifying an algorithm hosted in the guidance, navigation and control (GN&C) computer processor of a hypothetical robotic spacecraft, was implemented, and compared with an identically-parameterized (standard) extended, consider-parameterized Kalman filter. The onboard filtering scenario examined is a hypothetical spacecraft orbit about a small natural body with imperfectly-known mass. The formulations, relative complexities, and performances of the filters are compared and discussed.
United States planetary rover status: 1989
NASA Technical Reports Server (NTRS)
Pivirotto, Donna L. S.; Dias, William C.
1990-01-01
A spectrum of concepts for planetary rovers and rover missions, is covered. Rovers studied range from tiny micro rovers to large and highly automated vehicles capable of traveling hundreds of kilometers and performing complex tasks. Rover concepts are addressed both for the Moon and Mars, including a Lunar/Mars common rover capable of supporting either program with relatively small modifications. Mission requirements considered include both Science and Human Exploration. Studies include a range of autonomy in rovers, from interactive teleoperated systems to those requiring and onboard System Executive making very high level decisions. Both high and low technology rover options are addressed. Subsystems are described for a representative selection of these rovers, including: Mobility, Sample Acquisition, Science, Vehicle Control, Thermal Control, Local Navigation, Computation and Communications. System descriptions of rover concepts include diagrams, technology levels, system characteristics, and performance measurement in terms of distance covered, samples collected, and area surveyed for specific representative missions. Rover development schedules and costs are addressed for Lunar and Mars exploration initiatives.
NASA Astrophysics Data System (ADS)
Kolbasov, A.; Karpukhin, K.; Terenchenko, A.; Kavalchuk, I.
2018-02-01
Electric vehicles have become the most common solution to improve sustainability of the transportation systems all around the world. Despite all benefits, wide adaptation of electric vehicles requires major changes in the infrastructure, including grid adaptation to the rapidly increased power demand and development of the Connected Car concept. This paper discusses the approaches to improve usability of electric vehicles, by creating suitable web-services, with possible connections vehicle-to-vehicle, vehicle-to-infrastructure, and vehicle-to-grid. Developed concept combines information about electrical loads on the grid in specific direction, navigation information from the on-board system, existing and empty charging slots and power availability. In addition, this paper presents the universal concept of the photovoltaic integrated charging stations, which are connected to the developed information systems. It helps to achieve rapid adaptation of the overall infrastructure to the needs of the electric vehicles users with minor changes in the existing grid and loads.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, R.C.; Weisbin, C.R.; Pin, F.G.
1989-01-01
This paper reviews ongoing and planned research with mobile autonomous robots at the Oak Ridge National Laboratory (ORNL), Center for Engineering Systems Advanced Research (CESAR). Specifically we report on results obtained with the robot HERMIES-IIB in navigation, intelligent sensing, learning, and on-board parallel computing in support of these functions. We briefly summarize an experiment with HERMIES-IIB that demonstrates the capability of smooth transitions between robot autonomy and tele-operation. This experiment results from collaboration among teams at the Universities of Florida, Michigan, Tennessee, and Texas; and ORNL in a program targeted at robotics for advanced nuclear power stations. We conclude bymore » summarizing ongoing R D with our new mobile robot HERMIES-III which is equipped with a seven degree-of-freedom research manipulator arm. 12 refs., 4 figs.« less
An Autonomous Control System for an Intra-Vehicular Spacecraft Mobile Monitor Prototype
NASA Technical Reports Server (NTRS)
Dorais, Gregory A.; Desiano, Salvatore D.; Gawdiak, Yuri; Nicewarner, Keith
2003-01-01
This paper presents an overview of an ongoing research and development effort at the NASA Ames Research Center to create an autonomous control system for an internal spacecraft autonomous mobile monitor. It primary functions are to provide crew support and perform intra- vehicular sensing activities by autonomously navigating onboard the International Space Station. We describe the mission roles and high-level functional requirements for an autonomous mobile monitor. The mobile monitor prototypes, of which two are operational and one is actively being designed, physical test facilities used to perform ground testing, including a 3D micro-gravity test facility, and simulators are briefly described. We provide an overview of the autonomy framework and describe each of its components, including those used for automated planning, goal-oriented task execution, diagnosis, and fault recovery. A sample mission test scenario is also described.
Precise Ionosphere Monitoring via a DSFH Satellite TT&C Link
NASA Astrophysics Data System (ADS)
Chen, Xiao; Li, Guangxia; Li, Zhiqiang; Yue, Chao
2014-11-01
A phase-coherent and frequency-hopped PN ranging system was developed, originally for the purpose of anti-jamming TT&C (tracking, telemetry and telecommand) of military satellites of China, including the Beidou-2 navigation satellites. The key innovation in the synchronization of this system is the unambiguous phase recovery of direct sequence and frequency hopping (DSFH) spread spectrum signal and the correction of frequency-dependent phase rotation caused by ionosphere. With synchronization achieved, a TEC monitoring algorithm based on maximum likelihood (ML) principle is proposed and its measuring precision is analyzed through ground simulation, onboard confirmation tests will be performed when transionosphere DSFH links are established in 2014. The measuring precision of TEC exceeds that obtained from GPS receiver data because the measurement is derived from unambiguous carrier phase estimates, not pseudorange estimates. The observation results from TT&C stations can provide real time regional ionosphere TEC estimation.
SPARTAN: A High-Fidelity Simulation for Automated Rendezvous and Docking Applications
NASA Technical Reports Server (NTRS)
Turbe, Michael A.; McDuffie, James H.; DeKock, Brandon K.; Betts, Kevin M.; Carrington, Connie K.
2007-01-01
bd Systems (a subsidiary of SAIC) has developed the Simulation Package for Autonomous Rendezvous Test and ANalysis (SPARTAN), a high-fidelity on-orbit simulation featuring multiple six-degree-of-freedom (6DOF) vehicles. SPARTAN has been developed in a modular fashion in Matlab/Simulink to test next-generation automated rendezvous and docking guidance, navigation,and control algorithms for NASA's new Vision for Space Exploration. SPARTAN includes autonomous state-based mission manager algorithms responsible for sequencing the vehicle through various flight phases based on on-board sensor inputs and closed-loop guidance algorithms, including Lambert transfers, Clohessy-Wiltshire maneuvers, and glideslope approaches The guidance commands are implemented using an integrated translation and attitude control system to provide 6DOF control of each vehicle in the simulation. SPARTAN also includes high-fidelity representations of a variety of absolute and relative navigation sensors that maybe used for NASA missions, including radio frequency, lidar, and video-based rendezvous sensors. Proprietary navigation sensor fusion algorithms have been developed that allow the integration of these sensor measurements through an extended Kalman filter framework to create a single optimal estimate of the relative state of the vehicles. SPARTAN provides capability for Monte Carlo dispersion analysis, allowing for rigorous evaluation of the performance of the complete proposed AR&D system, including software, sensors, and mechanisms. SPARTAN also supports hardware-in-the-loop testing through conversion of the algorithms to C code using Real-Time Workshop in order to be hosted in a mission computer engineering development unit running an embedded real-time operating system. SPARTAN also contains both runtime TCP/IP socket interface and post-processing compatibility with bdStudio, a visualization tool developed by bd Systems, allowing for intuitive evaluation of simulation results. A description of the SPARTAN architecture and capabilities is provided, along with details on the models and algorithms utilized and results from representative missions.
Design considerations for a suboptimal Kalman filter
NASA Astrophysics Data System (ADS)
Difilippo, D. J.
1995-06-01
In designing a suboptimal Kalman filter, the designer must decide how to simplify the system error model without causing the filter estimation errors to increase to unacceptable levels. Deletion of certain error states and decoupling of error state dynamics are the two principal model simplifications that are commonly used in suboptimal filter design. For the most part, the decisions as to which error states can be deleted or decoupled are based on the designer's understanding of the physics of the particular system. Consequently, the details of a suboptimal design are usually unique to the specific application. In this paper, the process of designing a suboptimal Kalman filter is illustrated for the case of an airborne transfer-of-alignment (TOA) system used for synthetic aperture radar (SAR) motion compensation. In this application, the filter must continuously transfer the alignment of an onboard Doppler-damped master inertial navigation system (INS) to a strapdown navigator that processes information from a less accurate inertial measurement unit (IMU) mounted on the radar antenna. The IMU is used to measure spurious antenna motion during the SAR imaging interval, so that compensating phase corrections can be computed and applied to the radar returns, thereby presenting image degradation that would otherwise result from such motions. The principles of SAR are described in many references, for instance. The primary function of the TOA Kalman filter in a SAR motion compensation system is to control strapdown navigator attitude errors, and to a less degree, velocity and heading errors. Unlike a classical navigation application, absolute positional accuracy is not important. The motion compensation requirements for SAR imaging are discussed in some detail. This TOA application is particularly appropriate as a vehicle for discussing suboptimal filter design, because the system contains features that can be exploited to allow both deletion and decoupling of error states. In Section 2, a high-level background description of a SAR motion compensation system that incorporates a TOA Kalman filter is given. The optimal TOA filter design is presented in Section 3 with some simulation results to indicate potential filter performance. In Section 4, the suboptimal Kalman filter configuration is derived. Simulation results are also shown in this section to allow comparision between suboptimal and optimal filter performances. Conclusions are contained in Section 5.
Design and Control of Omnidirectional Unmanned Ground Vehicles for Rough Terrain
2012-08-29
company, Quantum Signal. This rigid body dynamics simulation, housed within the Autonomous Navigation and Virtual Environment Laboratory (ANVEL) software...72 Figure 22: PIC main code. Page 24 of 72 Figure 23: PIC interrupt code. 3.3 Central Body Embedded Electronics As described above...located on the main body of the vehicle. This section describes how the on-board electronics works. The outline of the code is presented as is how
The In-Flight Frequency Behavior of Two Ultra-Stable Oscillators Onboard the New Horizons Spacecraft
2007-11-01
the other is maintained in a “warm-boot” backup mode. The implementation of the transceiver for noncoherent navigation provides the opportunity for...frequency reference for the REX (Radio science Experiment) instrument and the master oscillator for the communications transceiver and the noncoherent ...byproduct of noncoherent Doppler based 79 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information
Miniaturized Autonomous Extravehicular Robotic Camera (Mini AERCam)
NASA Technical Reports Server (NTRS)
Fredrickson, Steven E.
2001-01-01
The NASA Johnson Space Center (JSC) Engineering Directorate is developing the Autonomous Extravehicular Robotic Camera (AERCam), a low-volume, low-mass free-flying camera system . AERCam project team personnel recently initiated development of a miniaturized version of AERCam known as Mini AERCam. The Mini AERCam target design is a spherical "nanosatellite" free-flyer 7.5 inches in diameter and weighing 1 0 pounds. Mini AERCam is building on the success of the AERCam Sprint STS-87 flight experiment by adding new on-board sensing and processing capabilities while simultaneously reducing volume by 80%. Achieving enhanced capability in a smaller package depends on applying miniaturization technology across virtually all subsystems. Technology innovations being incorporated include micro electromechanical system (MEMS) gyros, "camera-on-a-chip" CMOS imagers, rechargeable xenon gas propulsion system , rechargeable lithium ion battery, custom avionics based on the PowerPC 740 microprocessor, GPS relative navigation, digital radio frequency communications and tracking, micropatch antennas, digital instrumentation, and dense mechanical packaging. The Mini AERCam free-flyer will initially be integrated into an approximate flight-like configuration for demonstration on an airbearing table. A pilot-in-the-loop and hardware-in-the-loop simulation to simulate on-orbit navigation and dynamics will complement the airbearing table demonstration. The Mini AERCam lab demonstration is intended to form the basis for future development of an AERCam flight system that provides beneficial on-orbit views unobtainable from fixed cameras, cameras on robotic manipulators, or cameras carried by EVA crewmembers.
NASA Technical Reports Server (NTRS)
1976-01-01
The six themes identified by the Workshop have many common navigation guidance and control needs. All the earth orbit themes have a strong requirement for attitude, figure and stabilization control of large space structures, a requirement not currently being supported. All but the space transportation theme have need for precision pointing of spacecraft and instruments. In addition all the themes have requirements for increasing autonomous operations for such activities as spacecraft and experiment operations, onboard mission modification, rendezvous and docking, spacecraft assembly and maintenance, navigation and guidance, and self-checkout, test and repair. Major new efforts are required to conceptualize new approaches to large space antennas and arrays that are lightweight, readily deployable, and capable of precise attitude and figure control. Conventional approaches offer little hope of meeting these requirements. Functions that can benefit from increasing automation or autonomous operations are listed.
Future Standardization of Space Telecommunications Radio System with Core Flight System
NASA Technical Reports Server (NTRS)
Hickey, Joseph P.; Briones, Janette C.; Roche, Rigoberto; Handler, Louis M.; Hall, Steven
2016-01-01
NASA Glenn Research Center (GRC) is integrating the NASA Space Telecommunications Radio System (STRS) Standard with the Core Flight System (cFS). The STRS standard provides a common, consistent framework to develop, qualify, operate and maintain complex, reconfigurable and reprogrammable radio systems. The cFS is a flexible, open architecture that features a plug-and-play software executive called the Core Flight Executive (cFE), a reusable library of software components for flight and space missions and an integrated tool suite. Together, STRS and cFS create a development environment that allows for STRS compliant applications to reference the STRS APIs through the cFS infrastructure. These APis are used to standardize the communication protocols on NASAs space SDRs. The cFE-STRS Operating Environment (OE) is a portable cFS library, which adds the ability to run STRS applications on existing cFS platforms. The purpose of this paper is to discuss the cFE-STRS OE prototype, preliminary experimental results performed using the Advanced Space Radio Platform (ASRP), the GRC Sband Ground Station and the SCaN (Space Communication and Navigation) Testbed currently flying onboard the International Space Station. Additionally, this paper presents a demonstration of the Consultative Committee for Space Data Systems (CCSDS) Spacecraft Onboard Interface Services (SOIS) using electronic data sheets inside cFE. This configuration allows for the data sheets to specify binary formats for data exchange between STRS applications. The integration of STRS with cFS leverages mission-proven platform functions and mitigates barriers to integration with future missions. This reduces flight software development time and the costs of software-defined radio (SDR) platforms. Furthermore, the combined benefits of STRS standardization with the flexibility of cFS provide an effective, reliable and modular framework to minimize software development efforts for spaceflight missions.
Deep Space 1: Testing New Technologies for Future Small Bodies Missions
NASA Technical Reports Server (NTRS)
Rayman, Marc D.
2001-01-01
Launched on October 24, 1998, Deep Space 1 (DS1) was the first mission of NASA's New Millennium Program, chartered to validate in space high-risk, new technologies important for future space science programs. The advanced technology payload that was tested on DS1 comprises solar electric propulsion, solar concentrator arrays, autonomous on-board navigation and other autonomous systems, several telecommunications and microelectronics devices, and two low-mass integrated science instrument packages. The mission met or exceeded all of its success criteria. The 12 technologies were rigorously exercised so that subsequent flight projects would not have to incur the cost and risk of being the fist users of these new capabilities. Examples of the benefits to future small body missions from DS1's technologies will be described.
Meta-image navigation augmenters for GPS denied mountain navigation of small UAS
NASA Astrophysics Data System (ADS)
Wang, Teng; ćelik, Koray; Somani, Arun K.
2014-06-01
We present a novel approach to use mountain drainage patterns for GPS-Denied navigation of small unmanned aerial systems (UAS) such as the ScanEagle, utilizing a down-looking fixed focus monocular imager. Our proposal allows extension of missions to GPS-denied mountain areas, with no assumption of human-made geographic objects. We leverage the analogy between mountain drainage patterns, human arteriograms, and human fingerprints, to match local drainage patterns to Graphics Processing Unit (GPU) rendered parallax occlusion maps of geo-registered radar returns (GRRR). Details of our actual GPU algorithm is beyond the subject of this paper, and is planned as a future paper. The matching occurs in real-time, while GRRR data is loaded on-board the aircraft pre-mission, so as not to require a scanning aperture radar during the mission. For recognition purposes, we represent a given mountain area with a set of spatially distributed mountain minutiae, i.e., details found in the drainage patterns, so that conventional minutiae-based fingerprint matching approaches can be used to match real-time camera image against template images in the training set. We use medical arteriography processing techniques to extract the patterns. The minutiae-based representation of mountains is achieved by first exposing mountain ridges and valleys with a series of filters and then extracting mountain minutiae from these ridges/valleys. Our results are experimentally validated on actual terrain data and show the effectiveness of minutiae-based mountain representation method. Furthermore, we study how to select landmarks for UAS navigation based on the proposed mountain representation and give a set of examples to show its feasibility. This research was in part funded by Rockwell Collins Inc.
AUV SLAM and Experiments Using a Mechanical Scanning Forward-Looking Sonar
He, Bo; Liang, Yan; Feng, Xiao; Nian, Rui; Yan, Tianhong; Li, Minghui; Zhang, Shujing
2012-01-01
Navigation technology is one of the most important challenges in the applications of autonomous underwater vehicles (AUVs) which navigate in the complex undersea environment. The ability of localizing a robot and accurately mapping its surroundings simultaneously, namely the simultaneous localization and mapping (SLAM) problem, is a key prerequisite of truly autonomous robots. In this paper, a modified-FastSLAM algorithm is proposed and used in the navigation for our C-Ranger research platform, an open-frame AUV. A mechanical scanning imaging sonar is chosen as the active sensor for the AUV. The modified-FastSLAM implements the update relying on the on-board sensors of C-Ranger. On the other hand, the algorithm employs the data association which combines the single particle maximum likelihood method with modified negative evidence method, and uses the rank-based resampling to overcome the particle depletion problem. In order to verify the feasibility of the proposed methods, both simulation experiments and sea trials for C-Ranger are conducted. The experimental results show the modified-FastSLAM employed for the navigation of the C-Ranger AUV is much more effective and accurate compared with the traditional methods. PMID:23012549
AUV SLAM and experiments using a mechanical scanning forward-looking sonar.
He, Bo; Liang, Yan; Feng, Xiao; Nian, Rui; Yan, Tianhong; Li, Minghui; Zhang, Shujing
2012-01-01
Navigation technology is one of the most important challenges in the applications of autonomous underwater vehicles (AUVs) which navigate in the complex undersea environment. The ability of localizing a robot and accurately mapping its surroundings simultaneously, namely the simultaneous localization and mapping (SLAM) problem, is a key prerequisite of truly autonomous robots. In this paper, a modified-FastSLAM algorithm is proposed and used in the navigation for our C-Ranger research platform, an open-frame AUV. A mechanical scanning imaging sonar is chosen as the active sensor for the AUV. The modified-FastSLAM implements the update relying on the on-board sensors of C-Ranger. On the other hand, the algorithm employs the data association which combines the single particle maximum likelihood method with modified negative evidence method, and uses the rank-based resampling to overcome the particle depletion problem. In order to verify the feasibility of the proposed methods, both simulation experiments and sea trials for C-Ranger are conducted. The experimental results show the modified-FastSLAM employed for the navigation of the C-Ranger AUV is much more effective and accurate compared with the traditional methods.
Navigation with noncoherent data - A demonstration for VEGA Venus flyby phase
NASA Technical Reports Server (NTRS)
Bhat, Ramachandra S.; Ellis, Jordan; Mcelrath, Timothy P.
1988-01-01
Deep Space navigation with noncoherent (one-way) data types is demonstrated for the VEGA Venus flyby phase under extreme conditions. Estimates and statistics are computed using one-way Doppler and wideband Very Long Baseline Interferometry (VLBI) data. The behavior of the onboard oscillator is modeled for both spacecraft to obtain useful orbit determination results. Even with this limitation, it is demonstrated that one-way data solutions are comparable with the solutions using both Soviet sparse coherent (two-way) and wideband VLBI data. During the useful life time of VEGA balloons, the two solutions differ by a maximum of 4.7 km in position and 7.6 cm/sec in velocity for VEGA 1 and by a maximum of 8 km and 42 cm/sec for VEGA 2.
DORIS system and integrity survey
NASA Astrophysics Data System (ADS)
Jayles, C.; Chauveau, J. P.; Didelot, F.; Auriol, A.; Tourain, C.
2016-12-01
DORIS, as other techniques for space geodesy (SLR, VLBI, GPS) has regularly progressed to meet the ever increasing needs of the scientific community in oceanography, geodesy or geophysics. Over the past 10 years, a particular emphasis has been placed on integrity monitoring of the system, which has contributed to the enhancement of the overall availability and quality of DORIS data products. A high level of monitoring is now provided by a centralized control of the whole system, including the global network of beacons and the onboard instruments, which perform a constant end-to-end survey. At first signs of any unusual behavior, a dedicated team is activated with well-established tools to investigate, to anticipate and to contain the impact of any potential failures. The procedure has increased the availability of DORIS beacons to 90%. The core topic of this article is to demonstrate that DORIS has implemented a high-level integrity control of its data. Embedded in the DORIS receiver, DIODE (DORIS Immediate Orbit Determination) is a Real-Time On-Board Orbit Determination software. Its accuracy has also been dramatically improved when compared to Precise Orbit Ephemeris (P.O.E.), down to 2.7 cm RMS on Jason-2, 3.0 cm on Saral and 3.3 cm on CryoSat-2. Specific quality indices were derived from the DIODE-based Kalman filters and are used to monitor network and system performance. This paper covers the definition of these indices and how the reliability and the reactiveness to incidents or anomalies of the system are improved. From these indices, we have provided detailed diagnostic information about the DORIS system, which is available in real-time, on-board each DORIS satellite. Using these capabilities, we have developed real-time functions that give an immediate diagnosis of the status of key components in the DORIS system. The Near-Real Time navigation system was improved and can distinguish and handle both satellite events and beacon anomalies. The next missions to use DORIS will be Jason-3 and Sentinel-3, and then Jason-CS and SWOT (Surface Water and Ocean Topography). The real-time information on satellite positions should be better than 2.5 cm RMS on the radial component. Science products will benefit from this improvement in DORIS's performance and data integrity.
2009-03-04
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., technicians remove the protective cover wrapped around the GOES-O satellite. The satellite will undergo final testing of the imaging system, instrumentation, communications and power systems. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. GOES-O carries an advanced attitude control system using star trackers with spacecraft optical bench Imager and Sounder mountings that provide enhanced instrument pointing performance for improved image navigation and registration to better locate severe storms and other events important to the NOAA National Weather Service. Photo credit: NASA/Kim Shiflett
2009-03-04
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., technicians move the test stand with the GOES-O satellite. The satellite will undergo final testing of the imaging system, instrumentation, communications and power systems. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. GOES-O carries an advanced attitude control system using star trackers with spacecraft optical bench Imager and Sounder mountings that provide enhanced instrument pointing performance for improved image navigation and registration to better locate severe storms and other events important to the NOAA National Weather Service. Photo credit: NASA/Kim Shiflett
2009-03-04
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., technicians remove the protective cover wrapped around the GOES-O satellite. The satellite will undergo final testing of the imaging system, instrumentation, communications and power systems. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. GOES-O carries an advanced attitude control system using star trackers with spacecraft optical bench Imager and Sounder mountings that provide enhanced instrument pointing performance for improved image navigation and registration to better locate severe storms and other events important to the NOAA National Weather Service. Photo credit: NASA/Kim Shiflett
2009-03-04
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the solar arrays on the GOES-O satellite are revealed. GOES-O will undergo final testing of the imaging system, instrumentation, communications and power systems. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. GOES-O carries an advanced attitude control system using star trackers with spacecraft optical bench Imager and Sounder mountings that provide enhanced instrument pointing performance for improved image navigation and registration to better locate severe storms and other events important to the NOAA National Weather Service. Photo credit: NASA/Kim Shiflett
2009-03-04
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the GOES-O satellite is lifted out of its shipping container to a vertical position. It will be placed on a stand for final testing of the imaging system, instrumentation, communications and power systems. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. GOES-O carries an advanced attitude control system using star trackers with spacecraft optical bench Imager and Sounder mountings that provide enhanced instrument pointing performance for improved image navigation and registration to better locate severe storms and other events important to the NOAA National Weather Service. Photo credit: NASA/Kim Shiflett
2009-03-04
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the GOES-O satellite is lifted out of its shipping container. It will be placed on a stand for final testing of the imaging system, instrumentation, communications and power systems. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. GOES-O carries an advanced attitude control system using star trackers with spacecraft optical bench Imager and Sounder mountings that provide enhanced instrument pointing performance for improved image navigation and registration to better locate severe storms and other events important to the NOAA National Weather Service. Photo credit: NASA/Kim Shiflett
2009-03-04
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., technicians help guide the cables lifting the GOES-O satellite toward the stand at right. The satellite will undergo final testing of the imaging system, instrumentation, communications and power systems. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. GOES-O carries an advanced attitude control system using star trackers with spacecraft optical bench Imager and Sounder mountings that provide enhanced instrument pointing performance for improved image navigation and registration to better locate severe storms and other events important to the NOAA National Weather Service. Photo credit: NASA/Kim Shiflett
2009-03-04
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the GOES-O satellite is lowered toward a test stand. The satellite will undergo final testing of the imaging system, instrumentation, communications and power systems. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. GOES-O carries an advanced attitude control system using star trackers with spacecraft optical bench Imager and Sounder mountings that provide enhanced instrument pointing performance for improved image navigation and registration to better locate severe storms and other events important to the NOAA National Weather Service. Photo credit: NASA/Kim Shiflett
2009-03-04
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the protective shipping cover has been removed from the GOES-O satellite. GOES-O will undergo final testing of the imaging system, instrumentation, communications and power systems. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. GOES-O carries an advanced attitude control system using star trackers with spacecraft optical bench Imager and Sounder mountings that provide enhanced instrument pointing performance for improved image navigation and registration to better locate severe storms and other events important to the NOAA National Weather Service. Photo credit: NASA/Kim Shiflett
2009-03-04
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the GOES-O satellite is lowered toward a stand. The satellite will undergo final testing of the imaging system, instrumentation, communications and power systems. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. GOES-O carries an advanced attitude control system using star trackers with spacecraft optical bench Imager and Sounder mountings that provide enhanced instrument pointing performance for improved image navigation and registration to better locate severe storms and other events important to the NOAA National Weather Service. Photo credit: NASA/Kim Shiflett
Precise Orbit Determination Of Low Earth Satellites At AIUB Using GPS And SLR Data
NASA Astrophysics Data System (ADS)
Jaggi, A.; Bock, H.; Thaller, D.; Sosnica, K.; Meyer, U.; Baumann, C.; Dach, R.
2013-12-01
An ever increasing number of low Earth orbiting (LEO) satellites is, or will be, equipped with retro-reflectors for Satellite Laser Ranging (SLR) and on-board receivers to collect observations from Global Navigation Satellite Systems (GNSS) such as the Global Positioning System (GPS) and the Russian GLONASS and the European Galileo systems in the future. At the Astronomical Institute of the University of Bern (AIUB) LEO precise orbit determination (POD) using either GPS or SLR data is performed for a wide range of applications for satellites at different altitudes. For this purpose the classical numerical integration techniques, as also used for dynamic orbit determination of satellites at high altitudes, are extended by pseudo-stochastic orbit modeling techniques to efficiently cope with potential force model deficiencies for satellites at low altitudes. Accuracies of better than 2 cm may be achieved by pseudo-stochastic orbit modeling for satellites at very low altitudes such as for the GPS-based POD of the Gravity field and steady-state Ocean Circulation Explorer (GOCE).
NASA Technical Reports Server (NTRS)
2004-01-01
This is a three-dimensional stereo anaglyph of an image taken by the front navigation camera onboard the Mars Exploration Rover Spirit, showing an interesting patch of rippled soil. Spirit took this image on sol 37 (Feb. 9, 2004) after completing the longest drive ever made by a rover on another planet - 21.2 meters (69.6 feet). On sol 38 scientists plan to investigate this interesting location with the microscopic imager and Moessbauer spectrometer on Spirit's instrument deployment device.
NASA Technical Reports Server (NTRS)
Brown, S. C.; Hardy, G. H.; Hindson, W. S.
1983-01-01
As part of a comprehensive flight-test program of STOL operating systems for the terminal area, an automatic landing system was developed and evaluated for a light wing loading turboprop aircraft. The aircraft utilized an onboard advanced digital avionics system. Flight tests were conducted at a facility that included a STOL runway site with a microwave landing system. Longitudinal flight-test results were presented and compared with available (basically CTOL) criteria. These comparisons were augmented by results from a comprehensive simulation of the controlled aircraft which included representations of navigation errors that were encountered in flight and atmospheric disturbances. Acceptable performance on final approach and at touchdown was achieved by the autoland (automatic landing) system for the moderate winds and turbulence conditions encountered in flight. However, some touchdown performance goals were marginally achieved, and simulation results suggested that difficulties could be encountered in the presence of more extreme atmospheric conditions. Suggestions were made for improving performance under those more extreme conditions.
Guidance simulation and test support for differential GPS flight experiment
NASA Technical Reports Server (NTRS)
Geier, G. J.; Loomis, P. V. W.; Cabak, A.
1987-01-01
Three separate tasks which supported the test preparation, test operations, and post test analysis of the NASA Ames flight test evaluation of the differential Global Positioning System (GPS) are presented. Task 1 consisted of a navigation filter design, coding, and testing to optimally make use of GPS in a differential mode. The filter can be configured to accept inputs from external censors such as an accelerometer and a barometric or radar altimeter. The filter runs in real time onboard a NASA helicopter. It processes raw pseudo and delta range measurements from a single channel sequential GPS receiver. The Kalman filter software interfaces are described in detail, followed by a description of the filter algorithm, including the basic propagation and measurement update equations. The performance during flight tests is reviewed and discussed. Task 2 describes a refinement performed on the lateral and vertical steering algorithms developed on a previous contract. The refinements include modification of the internal logic to allow more diverse inflight initialization procedures, further data smoothing and compensation for system induced time delays. Task 3 describes the TAU Corp participation in the analysis of the real time Kalman navigation filter. The performance was compared to that of the Z-set filter in flight and to the laser tracker position data during post test analysis. This analysis allowed a more optimum selection of the parameters of the filter.
Sensor Architecture and Task Classification for Agricultural Vehicles and Environments
Rovira-Más, Francisco
2010-01-01
The long time wish of endowing agricultural vehicles with an increasing degree of autonomy is becoming a reality thanks to two crucial facts: the broad diffusion of global positioning satellite systems and the inexorable progress of computers and electronics. Agricultural vehicles are currently the only self-propelled ground machines commonly integrating commercial automatic navigation systems. Farm equipment manufacturers and satellite-based navigation system providers, in a joint effort, have pushed this technology to unprecedented heights; yet there are many unresolved issues and an unlimited potential still to uncover. The complexity inherent to intelligent vehicles is rooted in the selection and coordination of the optimum sensors, the computer reasoning techniques to process the acquired data, and the resulting control strategies for automatic actuators. The advantageous design of the network of onboard sensors is necessary for the future deployment of advanced agricultural vehicles. This article analyzes a variety of typical environments and situations encountered in agricultural fields, and proposes a sensor architecture especially adapted to cope with them. The strategy proposed groups sensors into four specific subsystems: global localization, feedback control and vehicle pose, non-visual monitoring, and local perception. The designed architecture responds to vital vehicle tasks classified within three layers devoted to safety, operative information, and automatic actuation. The success of this architecture, implemented and tested in various agricultural vehicles over the last decade, rests on its capacity to integrate redundancy and incorporate new technologies in a practical way. PMID:22163522
Sensor architecture and task classification for agricultural vehicles and environments.
Rovira-Más, Francisco
2010-01-01
The long time wish of endowing agricultural vehicles with an increasing degree of autonomy is becoming a reality thanks to two crucial facts: the broad diffusion of global positioning satellite systems and the inexorable progress of computers and electronics. Agricultural vehicles are currently the only self-propelled ground machines commonly integrating commercial automatic navigation systems. Farm equipment manufacturers and satellite-based navigation system providers, in a joint effort, have pushed this technology to unprecedented heights; yet there are many unresolved issues and an unlimited potential still to uncover. The complexity inherent to intelligent vehicles is rooted in the selection and coordination of the optimum sensors, the computer reasoning techniques to process the acquired data, and the resulting control strategies for automatic actuators. The advantageous design of the network of onboard sensors is necessary for the future deployment of advanced agricultural vehicles. This article analyzes a variety of typical environments and situations encountered in agricultural fields, and proposes a sensor architecture especially adapted to cope with them. The strategy proposed groups sensors into four specific subsystems: global localization, feedback control and vehicle pose, non-visual monitoring, and local perception. The designed architecture responds to vital vehicle tasks classified within three layers devoted to safety, operative information, and automatic actuation. The success of this architecture, implemented and tested in various agricultural vehicles over the last decade, rests on its capacity to integrate redundancy and incorporate new technologies in a practical way.
Mini AERCam: A Free-Flying Robot for Space Inspection
NASA Technical Reports Server (NTRS)
Fredrickson, Steven
2001-01-01
The NASA Johnson Space Center Engineering Directorate is developing the Autonomous Extravehicular Robotic Camera (AERCam), a free-flying camera system for remote viewing and inspection of human spacecraft. The AERCam project team is currently developing a miniaturized version of AERCam known as Mini AERCam, a spherical nanosatellite 7.5 inches in diameter. Mini AERCam development builds on the success of AERCam Sprint, a 1997 Space Shuttle flight experiment, by integrating new on-board sensing and processing capabilities while simultaneously reducing volume by 80%. Achieving these productivity-enhancing capabilities in a smaller package depends on aggressive component miniaturization. Technology innovations being incorporated include micro electromechanical system (MEMS) gyros, "camera-on-a-chip" CMOS imagers, rechargeable xenon gas propulsion, rechargeable lithium ion battery, custom avionics based on the PowerPC 740 microprocessor, GPS relative navigation, digital radio frequency communications and tracking, micropatch antennas, digital instrumentation, and dense mechanical packaging. The Mini AERCam free-flyer will initially be integrated into an approximate flight-like configuration for laboratory demonstration on an airbearing table. A pilot-in-the-loop and hardware-in-the-loop simulation to simulate on-orbit navigation and dynamics will complement the airbearing table demonstration. The Mini AERCam lab demonstration is intended to form the basis for future development of an AERCam flight system that provides on-orbit views of the Space Shuttle and International Space Station unobtainable from fixed cameras, cameras on robotic manipulators, or cameras carried by space-walking crewmembers.
On-board computer progress in development of A 310 flight testing program
NASA Technical Reports Server (NTRS)
Reau, P.
1981-01-01
Onboard computer progress in development of an Airbus A 310 flight testing program is described. Minicomputers were installed onboard three A 310 airplanes in 1979 in order to: (1) assure the flight safety by exercising a limit check of a given set of parameters; (2) improve the efficiency of flight tests and allow cost reduction; and (3) perform test analysis on an external basis by utilizing onboard flight types. The following program considerations are discussed: (1) conclusions based on simulation of an onboard computer system; (2) brief descriptions of A 310 airborne computer equipment, specifically the onboard universal calculator (CUB) consisting of a ROLM 1666 system and visualization system using an AFIGRAF CRT; (3) the ground system and flight information inputs; and (4) specifications and execution priorities for temporary and permanent programs.
Absolute marine gravimetry with matter-wave interferometry.
Bidel, Y; Zahzam, N; Blanchard, C; Bonnin, A; Cadoret, M; Bresson, A; Rouxel, D; Lequentrec-Lalancette, M F
2018-02-12
Measuring gravity from an aircraft or a ship is essential in geodesy, geophysics, mineral and hydrocarbon exploration, and navigation. Today, only relative sensors are available for onboard gravimetry. This is a major drawback because of the calibration and drift estimation procedures which lead to important operational constraints. Atom interferometry is a promising technology to obtain onboard absolute gravimeter. But, despite high performances obtained in static condition, no precise measurements were reported in dynamic. Here, we present absolute gravity measurements from a ship with a sensor based on atom interferometry. Despite rough sea conditions, we obtained precision below 10 -5 m s -2 . The atom gravimeter was also compared with a commercial spring gravimeter and showed better performances. This demonstration opens the way to the next generation of inertial sensors (accelerometer, gyroscope) based on atom interferometry which should provide high-precision absolute measurements from a moving platform.
EMI survey for maritime satellite, L-band, shipboard terminal
NASA Technical Reports Server (NTRS)
Taylor, R. E.; Brandel, D. L.; Hill, J. S.
1975-01-01
The paper presents results of an onboard EMI survey of an L-band shipboard terminal for operation with two geostationary maritime satellites. Significant EMC results include: (1) antenna noise temperature measurements indicate a maximum of 70 K steady background component at 1.6 GHz at sea for elevation angles of 5 degrees and higher; (2) field intensity measurements from 1-10 GHz show that a L-band terminal can operate simultaneously with onboard S-band and X-band navigation radar; (3) radar transmitter case emissions, below deck, in-band from 1535-1660 MHz, at 1 m distance from the cabinet, are equivalent, or greater than above-deck emissions in the same frequency range; and (4) conducted-emission tests of a ship's power lines to both radars show both narrow band and broad band emissions are 15 dB to 50 dB higher than equivalent U.S. commercial power lines from 150 kHz to 32 MHz.
On-board multispectral classification study
NASA Technical Reports Server (NTRS)
Ewalt, D.
1979-01-01
The factors relating to onboard multispectral classification were investigated. The functions implemented in ground-based processing systems for current Earth observation sensors were reviewed. The Multispectral Scanner, Thematic Mapper, Return Beam Vidicon, and Heat Capacity Mapper were studied. The concept of classification was reviewed and extended from the ground-based image processing functions to an onboard system capable of multispectral classification. Eight different onboard configurations, each with varying amounts of ground-spacecraft interaction, were evaluated. Each configuration was evaluated in terms of turnaround time, onboard processing and storage requirements, geometric and classification accuracy, onboard complexity, and ancillary data required from the ground.
Development of a Micro-UAV Hyperspectral Imaging Platform for Assessing Hydrogeological Hazards
NASA Astrophysics Data System (ADS)
Chen, Z.; Alabsi, M.
2015-12-01
The exacerbating global weather changes have cast significant impacts upon the proportion of water supplied to agriculture. Therefore, one of the 21stCentury Grant Challenges faced by global population is securing water for food. However, the soil-water behavior in an agricultural environment is complex; among others, one of the key properties we recognize is water repellence or hydrophobicity, which affects many hydrogeological and hazardous conditions such as excessive water infiltration, runoff, and soil erosion. Under a US-Israel research program funded by USDA and BARD at Israel, we have proposed the development of a novel micro-unmanned aerial vehicle (micro-UAV or drone) based hyperspectral imaging platform for identifying and assessing soil repellence at low altitudes with enhanced flexibility, much reduced cost, and ultimately easy use. This aerial imaging system consists of a generic micro-UAV, hyperspectral sensor aided by GPS/IMU, on-board computing units, and a ground station. The target benefits of this system include: (1) programmable waypoint navigation and robotic control for multi-view imaging; (2) ability of two- or three-dimensional scene reconstruction for complex terrains; and (3) fusion with other sensors to realize real-time diagnosis (e.g., humidity and solar irradiation that may affect soil-water sensing). In this talk we present our methodology and processes in integration of hyperspectral imaging, on-board sensing and computing, hyperspectral data modeling, and preliminary field demonstration and verification of the developed prototype.
DOT National Transportation Integrated Search
2016-11-01
The onboard monitoring system (OBMS) field operational test (FOT) was conducted to determine whether onboard monitoring systems that provide real-time performance feedback to commercial truck and motorcoach drivers could reduce the number of safety-c...
NASA Technical Reports Server (NTRS)
Rush, John; Israel, David; Harlacher, Marc; Haas, Lin
2003-01-01
The Low Power Transceiver (LPT) is an advanced signal processing platform that offers a configurable and reprogrammable capability for supporting communications, navigation and sensor functions for mission applications ranging from spacecraft TT&C and autonomous orbit determination to sophisticated networks that use crosslinks to support communications and real-time relative navigation for formation flying. The LPT is the result of extensive collaborative research under NASNGSFC s Advanced Technology Program and ITT Industries internal research and development efforts. Its modular, multi-channel design currently enables transmitting and receiving communication signals on L- or S-band frequencies and processing GPS L-band signals for precision navigation. The LPT flew as a part of the GSFC Hitchhiker payload named Fast Reaction Experiments Enabling Science Technology And Research (FREESTAR) on-board Space Shuttle Columbia s final mission. The experiment demonstrated functionality in GPS-based navigation and orbit determination, NASA STDN Ground Network communications, space relay communications via the NASA TDRSS, on-orbit reconfiguration of the software radio, the use of the Internet Protocol (IP) for TT&C, and communication concepts for space based range safety. All data from the experiment was recovered and, as a result, all primary and secondary objectives of the experiment were successful. This paper presents the results of the LPTs maiden space flight as a part of STS- 107.
A New Blondin System for Surveying and Photogrammetry
Cuesta, Federico; Lopez-Rodriguez, Francisco M.; Esteban, Antonio
2013-01-01
The main objective of the system presented in this paper is to provide surveyors and engineers with a new photogrammetry device that can be easily integrated with surveying total stations and a global navigation satellite system (GNSS) infrastructure at a construction site, taking advantage of their accuracy and overcoming limitations of aerial vehicles with respect to weight, autonomy and skilled operator requirements in aerial photogrammetry. The system moves between two mounting points, in a blondin ropeway configuration, at the construction site, taking pictures and recording the data of the position and the orientation along the cable path. A cascaded extended Kalman filter is used to integrate measurements from the on-board inertial measurement unit (IMU), a GPS and a GNSS. Experimental results taken in a construction site show the system performance, including the validation of the position estimation, with a robotic surveying total station, or the creation of a digital surface model (DSM), using the emergent structure from motion (SfM) techniques and open software. The georeferencing of the DSM is performed based on estimated camera position or using ground control points (GCPs).
Passive Sensor Integration for Vehicle Self-Localization in Urban Traffic Environment †
Gu, Yanlei; Hsu, Li-Ta; Kamijo, Shunsuke
2015-01-01
This research proposes an accurate vehicular positioning system which can achieve lane-level performance in urban canyons. Multiple passive sensors, which include Global Navigation Satellite System (GNSS) receivers, onboard cameras and inertial sensors, are integrated in the proposed system. As the main source for the localization, the GNSS technique suffers from Non-Line-Of-Sight (NLOS) propagation and multipath effects in urban canyons. This paper proposes to employ a novel GNSS positioning technique in the integration. The employed GNSS technique reduces the multipath and NLOS effects by using the 3D building map. In addition, the inertial sensor can describe the vehicle motion, but has a drift problem as time increases. This paper develops vision-based lane detection, which is firstly used for controlling the drift of the inertial sensor. Moreover, the lane keeping and changing behaviors are extracted from the lane detection function, and further reduce the lateral positioning error in the proposed localization system. We evaluate the integrated localization system in the challenging city urban scenario. The experiments demonstrate the proposed method has sub-meter accuracy with respect to mean positioning error. PMID:26633420
NASA Astrophysics Data System (ADS)
Tang, Jingshi; Wang, Haihong; Chen, Qiuli; Chen, Zhonggui; Zheng, Jinjun; Cheng, Haowen; Liu, Lin
2018-07-01
Onboard orbit determination (OD) is often used in space missions, with which mission support can be partially accomplished autonomously, with less dependency on ground stations. In major Global Navigation Satellite Systems (GNSS), inter-satellite link is also an essential upgrade in the future generations. To serve for autonomous operation, sequential OD method is crucial to provide real-time or near real-time solutions. The Extended Kalman Filter (EKF) is an effective and convenient sequential estimator that is widely used in onboard application. The filter requires the solutions of state transition matrix (STM) and the process noise transition matrix, which are always obtained by numerical integration. However, numerically integrating the differential equations is a CPU intensive process and consumes a large portion of the time in EKF procedures. In this paper, we present an implementation that uses the analytical solutions of these transition matrices to replace the numerical calculations. This analytical implementation is demonstrated and verified using a fictitious constellation based on selected medium Earth orbit (MEO) and inclined Geosynchronous orbit (IGSO) satellites. We show that this implementation performs effectively and converges quickly, steadily and accurately in the presence of considerable errors in the initial values, measurements and force models. The filter is able to converge within 2-4 h of flight time in our simulation. The observation residual is consistent with simulated measurement error, which is about a few centimeters in our scenarios. Compared to results implemented with numerically integrated STM, the analytical implementation shows results with consistent accuracy, while it takes only about half the CPU time to filter a 10-day measurement series. The future possible extensions are also discussed to fit in various missions.
Preliminary Planning for NEAR's Low-Altitude Operations at 433 Eros
NASA Technical Reports Server (NTRS)
Antreasian, P. G.; Helfrich, C. L.; Miller, J. K.; Owen, W. M.; Williams, B. G.; Yeomans, D. K.; Scheeres, D. J.; Dunham, D. W.; Farquhar, R. W.; McAdams, J. V.
1999-01-01
On February 14, 2000, an orbit insertion burn will place NASA's Near Earth Asteroid Rendezvous (NEAR) spacecraft (S/C) into orbit around asteroid 433 Eros. NEAR will initially orbit Eros with distances ranging from 500 to 100 km in order to characterize the shape, gravity and spin of Eros. Once the physical parameters of Eros are determined reasonably well, the plan is to establish an orbit of the NEAR S/C with increasingly lower altitudes as the one year orbital mission progresses while further characterizing the gravity and shape of Eros. Towards the end of the NEAR mission, after the shape, gravity and spin of Eros have been well characterized, the scientific interest of obtaining very close observations (< 5 km) can be realized. The navigation during this phase relies on a combination of NASA's Deep Space Network (DSN) radio metric tracking, laser ranging (LIDAR) data from the S/C to the surface of Eros, and onboard optical imaging of landmarks on Eros. This paper will provide preliminary plans for mission design and navigation during the last two months of the orbit phase, where several close passes to the surface will be incorporated to enhance the science return. The culmination of these close passes will result in the eventual landing of the S/C on the surface of Eros. Several considerations for these plans are given by Antreasian, et at. [1998]. The objective for the end of the mission will be to land the S/C autonomously using the surface relative information obtained from the onboard LIDAR instrument. The goal will be to soft land the S/C in such a way as to keep it operational. With the use of an onboard LIDAR landing algorithm as discussed by Antreasian et at. [1998], it is believed that the S/C impact velocity can be kept well under 7 m/s which is a requirement for allowing the S/C to remain operational.
Objective measure of pilot workload
NASA Technical Reports Server (NTRS)
Kantowitz, B. H.
1984-01-01
Timesharing behavior in a data-entry task, similar to a pilot entering navigation data into an on-board computer is investigated. Auditory reaction time as a function of stimulus information and dimensionality is examined. This study has direct implications for stimulus selection for secondary tasks used in the GAT flight simulator at Ames Research Center. Attenuation effects of heat and cold stress in a psychological refractory period task were studied. The focus of interest is the general effects of stress on attention rather than upon specific temperature related phenomena.
2014-03-01
brake_group > NONE </ brake_group > <retractable>0</retractable> </contact> <contact type="BOGEY" name="RIGHT_MLG...damping_coeff> <max_steer unit="DEG"> 0.0 </max_steer> < brake_group > NONE </ brake_group > <retractable>0</retractable...damping_coeff unit="LBS/FT/SEC"> 100 </damping_coeff> <max_steer unit="DEG"> 360.0 </max_steer> < brake_group > NONE
Recursive Implementations of the Consider Filter
NASA Technical Reports Server (NTRS)
Zanetti, Renato; DSouza, Chris
2012-01-01
One method to account for parameters errors in the Kalman filter is to consider their effect in the so-called Schmidt-Kalman filter. This work addresses issues that arise when implementing a consider Kalman filter as a real-time, recursive algorithm. A favorite implementation of the Kalman filter as an onboard navigation subsystem is the UDU formulation. A new way to implement a UDU consider filter is proposed. The non-optimality of the recursive consider filter is also analyzed, and a modified algorithm is proposed to overcome this limitation.
Spacecraft Trajectory Analysis and Mission Planning Simulation (STAMPS) Software
NASA Technical Reports Server (NTRS)
Puckett, Nancy; Pettinger, Kris; Hallstrom,John; Brownfield, Dana; Blinn, Eric; Williams, Frank; Wiuff, Kelli; McCarty, Steve; Ramirez, Daniel; Lamotte, Nicole;
2014-01-01
STAMPS simulates either three- or six-degree-of-freedom cases for all spacecraft flight phases using translated HAL flight software or generic GN&C models. Single or multiple trajectories can be simulated for use in optimization and dispersion analysis. It includes math models for the vehicle and environment, and currently features a "C" version of shuttle onboard flight software. The STAMPS software is used for mission planning and analysis within ascent/descent, rendezvous, proximity operations, and navigation flight design areas.
Yan, Susu; Bowsher, James; Tough, MengHeng; Cheng, Lin; Yin, Fang-Fang
2014-01-01
Purpose: To construct a robotic SPECT system and to demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch, as a step toward onboard functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150 L110 robot). An imaging study was performed with a phantom (PET CT PhantomTM), which includes five spheres of 10, 13, 17, 22, and 28 mm diameters. The phantom was placed on a flat-top couch. SPECT projections were acquired either with a parallel-hole collimator or a single-pinhole collimator, both without background in the phantom and with background at 1/10th the sphere activity concentration. The imaging trajectories of parallel-hole and pinhole collimated detectors spanned 180° and 228°, respectively. The pinhole detector viewed an off-centered spherical common volume which encompassed the 28 and 22 mm spheres. The common volume for parallel-hole system was centered at the phantom which encompassed all five spheres in the phantom. The maneuverability of the robotic system was tested by navigating the detector to trace the phantom and flat-top table while avoiding collision and maintaining the closest possible proximity to the common volume. The robot base and tool coordinates were used for image reconstruction. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector radius of rotation. Without background, all five spheres were visible in the reconstructed parallel-hole image, while four spheres, all except the smallest one, were visible in the reconstructed pinhole image. With background, three spheres of 17, 22, and 28 mm diameters were readily observed with the parallel-hole imaging, and the targeted spheres (22 and 28 mm diameters) were readily observed in the pinhole region-of-interest imaging. Conclusions: Onboard SPECT could be achieved by a robot maneuvering a SPECT detector about patients in position for radiation therapy on a flat-top couch. The robot inherent coordinate frames could be an effective means to estimate detector pose for use in SPECT image reconstruction. PMID:25370663
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Susu, E-mail: susu.yan@duke.edu; Tough, MengHeng; Bowsher, James
Purpose: To construct a robotic SPECT system and to demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch, as a step toward onboard functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150 L110 robot). An imaging study was performed with a phantom (PET CT Phantom{sup TM}), which includes five spheres of 10, 13, 17, 22, and 28 mm diameters. The phantom was placed on a flat-top couch. SPECT projections were acquired either with a parallel-hole collimator ormore » a single-pinhole collimator, both without background in the phantom and with background at 1/10th the sphere activity concentration. The imaging trajectories of parallel-hole and pinhole collimated detectors spanned 180° and 228°, respectively. The pinhole detector viewed an off-centered spherical common volume which encompassed the 28 and 22 mm spheres. The common volume for parallel-hole system was centered at the phantom which encompassed all five spheres in the phantom. The maneuverability of the robotic system was tested by navigating the detector to trace the phantom and flat-top table while avoiding collision and maintaining the closest possible proximity to the common volume. The robot base and tool coordinates were used for image reconstruction. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector radius of rotation. Without background, all five spheres were visible in the reconstructed parallel-hole image, while four spheres, all except the smallest one, were visible in the reconstructed pinhole image. With background, three spheres of 17, 22, and 28 mm diameters were readily observed with the parallel-hole imaging, and the targeted spheres (22 and 28 mm diameters) were readily observed in the pinhole region-of-interest imaging. Conclusions: Onboard SPECT could be achieved by a robot maneuvering a SPECT detector about patients in position for radiation therapy on a flat-top couch. The robot inherent coordinate frames could be an effective means to estimate detector pose for use in SPECT image reconstruction.« less
NASA Technical Reports Server (NTRS)
Anderson, W. W.; Will, R. W.; Grantham, C.
1972-01-01
A concept for automating the control of air traffic in the terminal area in which the primary man-machine interface is the cockpit is described. The ground and airborne inputs required for implementing this concept are discussed. Digital data link requirements of 10,000 bits per second are explained. A particular implementation of this concept including a sequencing and separation algorithm which generates flight paths and implements a natural order landing sequence is presented. Onboard computer/display avionics utilizing a traffic situation display is described. A preliminary simulation of this concept has been developed which includes a simple, efficient sequencing algorithm and a complete aircraft dynamics model. This simulated jet transport was flown through automated terminal-area traffic situations by pilots using relatively sophisticated displays, and pilot performance and observations are discussed.
49 CFR 395.15 - Automatic on-board recording devices.
Code of Federal Regulations, 2010 CFR
2010-10-01
... information concerning on-board system sensor failures and identification of edited data. Such support systems... driving today; (iv) Total hours on duty for the 7 consecutive day period, including today; (v) Total hours...-driver operation; (7) The on-board recording device/system identifies sensor failures and edited data...
Application of advanced on-board processing concepts to future satellite communications systems
NASA Technical Reports Server (NTRS)
Katz, J. L.; Hoffman, M.; Kota, S. L.; Ruddy, J. M.; White, B. F.
1979-01-01
An initial definition of on-board processing requirements for an advanced satellite communications system to service domestic markets in the 1990's is presented. An exemplar system architecture with both RF on-board switching and demodulation/remodulation baseband processing was used to identify important issues related to system implementation, cost, and technology development.
UWB Two-Cluster AOA Tracking Prototype System Design
NASA Technical Reports Server (NTRS)
Ngo, Phong H.; Arndt, D.; Phan, C.; Gross, J.; Jianjun; Rafford, Melinda
2006-01-01
This presentation discusses a design effort for a prototype ultra-wideband (UWB) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being studied for use in tracking of lunar/Mars rovers during early exploration missions when satellite navigation systems are not available. The UWB technology is exploited to implement the tracking system due to its properties such as fine time resolution, low power spectral density and multipath immunity. A two cluster prototype design using commercially available UWB radios is employed to implement the Angle of Arrival (AOA) tracking methodology in this design effort. In order to increase the tracking range, low noise amplifiers (LNA) and high gain horns are used at the receiving sides. Field tests were conducted jointly with the Science and Crew Operation Utility Testbed (SCOUT) vehicle near the Meteor Crater in Arizona to test the tracking capability for a moving target in an operational environment. These tests demonstrate that the UWB tracking system can co-exist with other on-board radio frequency (RF) communication systems (such as Global Positioning System (GPS), video, voice and telemetry systems), and that a tracking resolution less than 1% of the range can be achieved.
Development and flight test of a deployable precision landing system
NASA Technical Reports Server (NTRS)
Sim, Alex G.; Murray, James E.; Neufeld, David C.; Reed, R. Dale
1994-01-01
A joint NASA Dryden Flight Research Facility and Johnson Space Center program was conducted to determine the feasibility of the autonomous recovery of a spacecraft using a ram-air parafoil system for the final stages of entry from space that included a precision landing. The feasibility of this system was studied using a flight model of a spacecraft in the generic shape of a flattened biconic that weighed approximately 150 lb and was flown under a commercially available, ram-air parachute. Key elements of the vehicle included the Global Positioning System guidance for navigation, flight control computer, ultrasonic sensing for terminal altitude, electronic compass, and onboard data recording. A flight test program was used to develop and refine the vehicle. This vehicle completed an autonomous flight from an altitude of 10,000 ft and a lateral offset of 1.7 miles that resulted in a precision flare and landing into the wind at a predetermined location. At times, the autonomous flight was conducted in the presence of winds approximately equal to vehicle airspeed. Several novel techniques for computing the winds postflight were evaluated. Future program objectives are also presented.
Uchida, Masafumi
2014-04-01
A few years ago it could take several hours to complete a 3D image using a 3D workstation. Thanks to advances in computer science, obtaining results of interest now requires only a few minutes. Many recent 3D workstations or multimedia computers are equipped with onboard 3D virtual patient modeling software, which enables patient-specific preoperative assessment and virtual planning, navigation, and tool positioning. Although medical 3D imaging can now be conducted using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography (US) among others, the highest quality images are obtained using CT data, and CT images are now the most commonly used source of data for 3D simulation and navigation image. If the 2D source image is bad, no amount of 3D image manipulation in software will provide a quality 3D image. In this exhibition, the recent advances in CT imaging technique and 3D visualization of the hepatobiliary and pancreatic abnormalities are featured, including scan and image reconstruction technique, contrast-enhanced techniques, new application of advanced CT scan techniques, and new virtual reality simulation and navigation imaging. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.
On-board Attitude Determination System (OADS). [for advanced spacecraft missions
NASA Technical Reports Server (NTRS)
Carney, P.; Milillo, M.; Tate, V.; Wilson, J.; Yong, K.
1978-01-01
The requirements, capabilities and system design for an on-board attitude determination system (OADS) to be flown on advanced spacecraft missions were determined. Based upon the OADS requirements and system performance evaluation, a preliminary on-board attitude determination system is proposed. The proposed OADS system consists of one NASA Standard IRU (DRIRU-2) as the primary attitude determination sensor, two improved NASA Standard star tracker (SST) for periodic update of attitude information, a GPS receiver to provide on-board space vehicle position and velocity vector information, and a multiple microcomputer system for data processing and attitude determination functions. The functional block diagram of the proposed OADS system is shown. The computational requirements are evaluated based upon this proposed OADS system.
Electric Propulsion Applications and Impacts
NASA Technical Reports Server (NTRS)
Curran, Frank M.; Wickenheiser, Timothy J.
1996-01-01
Most space missions require on-board propulsion systems and these systems are often dominant spacecraft mass drivers. Presently, on-board systems account for more than half the injected mass for commercial communications systems and even greater mass fractions for ambitious planetary missions. Anticipated trends toward the use of both smaller spacecraft and launch vehicles will likely increase pressure on the performance of on-board propulsion systems. The acceptance of arcjet thrusters for operational use on commercial communications satellites ushered in a new era in on-board propulsion and exponential growth of electric propulsion across a broad spectrum of missions is anticipated. NASA recognizes the benefits of advanced propulsion and NASA's Office of Space Access and Technology supports an aggressive On-Board Propulsion program, including a strong electric propulsion element, to assure the availability of high performance propulsion systems to meet the goals of the ambitious missions envisioned in the next two decades. The program scope ranges from fundamental research for future generation systems through specific insertion efforts aimed at near term technology transfer. The On-Board propulsion program is committed to carrying technologies to levels required for customer acceptance and emphasizes direct interactions with the user community and the development of commercial sources. This paper provides a discussion of anticipated missions, propulsion functions, and electric propulsion impacts followed by an overview of the electric propulsion element of the NASA On-Board Propulsion program.
Korean Air Lines Flight 007: Lessons from the Past and Insights for the Future
NASA Technical Reports Server (NTRS)
Degani, Asaf; Shafto, M. (Technical Monitor)
2001-01-01
The majority of the problems pilot encounter when using automated systems center around two factors: (1) the pilot has an incomplete and inadequate model of how the autopilot works; and (2) the displays and flight manuals, provided to the pilot, are inadequate for the task. The tragic accident of Korean Air Lines Flight 007, a Boeing 747 that deviated from its intended flight path, provides a compelling case-study of problems related to pilots' use of automated systems. This paper describes what had happened and exposes two types of human-automation interaction problems: (1) The pilots of KAL were not provided with adequate information about the actual behavior of the autopilot and its mode transition logic; and (2) The autopilot onboard KAL 007 did not provide adequate information to the flight crew about its active and armed modes. Both factors, according to the International Civil Aviation Organization (1993) report on the accident, contributed to the aircraft's lethal navigation error.
Development of the HERMIES III mobile robot research testbed at Oak Ridge National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manges, W.W.; Hamel, W.R.; Weisbin, C.R.
1988-01-01
The latest robot in the Hostile Environment Robotic Machine Intelligence Experiment Series (HERMIES) is now under development at the Center for Engineering Systems Advanced Research (CESAR) in the Oak Ridge National Laboratory. The HERMIES III robot incorporates a larger than human size 7-degree-of-freedom manipulator mounted on a 2-degree-of-freedom mobile platform including a variety of sensors and computers. The deployment of this robot represents a significant increase in research capabilities for the CESAR laboratory. The initial on-board computer capacity of the robot exceeds that of 20 Vax 11/780s. The navigation and vision algorithms under development make extensive use of the on-boardmore » NCUBE hypercube computer while the sensors are interfaced through five VME computers running the OS-9 real-time, multitasking operating system. This paper describes the motivation, key issues, and detailed design trade-offs of implementing the first phase (basic functionality) of the HERMIES III robot. 10 refs., 7 figs.« less
Orion Exploration Flight Test 1 (EFT-1) Best Estimated Trajectory Development
NASA Technical Reports Server (NTRS)
Holt, Greg N.; Brown, Aaron
2016-01-01
The Orion Exploration Flight Test 1 (EFT-1) mission successfully flew on Dec 5, 2014 atop a Delta IV Heavy launch vehicle. The goal of Orions maiden flight was to stress the system by placing an uncrewed vehicle on a high-energy trajectory replicating conditions similar to those that would be experienced when returning from an asteroid or a lunar mission. The Orion navigation team combined all trajectory data from the mission into a Best Estimated Trajectory (BET) product. There were significant challenges in data reconstruction and many lessons were learned for future missions. The team used an estimation filter incorporating radar tracking, onboard sensors (Global Positioning System and Inertial Measurement Unit), and day-of-flight weather balloons to evaluate the true trajectory flown by Orion. Data was published for the entire Orion EFT-1 flight, plus objects jettisoned during entry such as the Forward Bay Cover. The BET customers include approximately 20 disciplines within Orion who will use the information for evaluating vehicle performance and influencing future design decisions.
Mass Determination of Pluto and Charon from New Horizon REX Radio Science Observations
NASA Astrophysics Data System (ADS)
Paetzold, Martin; Andert, T. P.; Tyler, G.; Bird, M. K.; Hinson, D. P.; Linscott, I. R.
2013-10-01
The anticipated 14 July 2015 New Horizons fly-through of the Pluto system provides the first opportunity to determine both the total system mass and the individual masses of Pluto and Charon by direct observation. This will be accomplished by use of: i) two-way Doppler radio frequency tracking data during intervals along the fly-in and -out trajectory, and ii) one-way uplink Doppler frequency recorded by the on-board radio science instrument, REX, during the day of closest approaches to Pluto and Charon. Continuous tracking is not feasible as a result of pointing sharing with the instruments during the encounter phase. Needed radio tracking will be obtained during time slots shared with i) two-way Doppler tracking for navigation, ii) 'plasma rolls' with the spacecraft antenna pointing to Earth, and iii) during the ingress and egress phases of the occultations. Simulations of the NH encounter indicate the potential accuracies of the combined and individual mass determinations of Pluto and Charon in the order of 0.1%.
Mass Determination of Pluto and Charon from New Horizon REX Radio Science Observations
NASA Astrophysics Data System (ADS)
Pätzold, M.; Andert, T. P.; Tyler, G. L.; Bird, M. K.; Hinson, D. H.; Linscott, I. R.
2013-09-01
The anticipated 14 July 2015 New Horizons flythrough of the Pluto system provides the first opportunity to determine both the total system mass and the individual masses of Pluto and Charon by direct observation. This will be accomplished by use of: i) two-way Doppler radio frequency tracking data during intervals along the fly-in and -out trajectory, and ii) one-way uplink Doppler frequency recorded by the on-board radio science instrument, REX, during the day of closest approaches to Pluto and Charon. Continuous tracking is not feasible as a result of pointing sharing with the instruments during the encounter phase. Needed radio tracking will be obtained during time slots shared with i) two-way Doppler tracking for navigation, ii) 'plasma rolls' with the spacecraft antenna pointing to Earth, and iii) during the ingress and egress phases of the occultations. Simulations of the NH encounter indicate the potential accuracies of the combined and individual mass determinations of Pluto and Charon in the order of 0.1%.
NASA Astrophysics Data System (ADS)
Palagi, Stefano; Fischer, Peer
2018-06-01
Microorganisms can move in complex media, respond to the environment and self-organize. The field of microrobotics strives to achieve these functions in mobile robotic systems of sub-millimetre size. However, miniaturization of traditional robots and their control systems to the microscale is not a viable approach. A promising alternative strategy in developing microrobots is to implement sensing, actuation and control directly in the materials, thereby mimicking biological matter. In this Review, we discuss design principles and materials for the implementation of robotic functionalities in microrobots. We examine different biological locomotion strategies, and we discuss how they can be artificially recreated in magnetic microrobots and how soft materials improve control and performance. We show that smart, stimuli-responsive materials can act as on-board sensors and actuators and that `active matter' enables autonomous motion, navigation and collective behaviours. Finally, we provide a critical outlook for the field of microrobotics and highlight the challenges that need to be overcome to realize sophisticated microrobots, which one day might rival biological machines.
NASA Technical Reports Server (NTRS)
Jafri, Madiha; Ely, Jay; Vahala, Linda
2003-01-01
The use of portable wireless technology has increased dramatically over the past few years. Over the years however, numerous reports have cited portable electronic devices (PEDs) as a possible cause of electromagnetic interference (EMI) to aircraft navigation and communication radio systems. PEDs may act as transmitters and their signals may be detected by the various radio receiver antennas installed on the aircraft. Measurement of the radiated field coupling between passenger cabin locations and aircraft communication and navigation receivers, via their antennas is defined herein as interference path loss (IPL). Personnel from NASA Langley Research Center, Eagles Wings Inc., and United Airlines performed extensive IPL measurements on several Boeing 737 airplanes. In previous work, the IPL data collected was graphically plotted and presented using MATLAB. This paper provides an introductory result of modeling EMI patterns using Fuzzy Logic, using the graphical analysis of the IPL data summarized. The application of fuzzy logic seeks to provide a means of estimating IPL at various locations within an airplane passenger cabin using simple modeling parameters. Fuzzy logic methods may provide a means to assess IPL characteristics of aircraft that have not been subject to expensive measurement or modeling processes and may also be useful for estimating the merit of aircraft design changes intended to minimize the potential for EMI.
NASA Technical Reports Server (NTRS)
Halyo, N.
1983-01-01
The design and development of a 3-D Digital Integrated Automatic Landing System (DIALS) for the Terminal Configured Vehicle (TCV) Research Aircraft, a B-737-100 is described. The system was designed using sampled data Linear Quadratic Gaussian (LOG) methods, resulting in a direct digital design with a modern control structure which consists of a Kalman filter followed by a control gain matrix, all operating at 10 Hz. DIALS uses Microwave Landing System (MLS) position, body-mounted accelerometers, as well as on-board sensors usually available on commercial aircraft, but does not use inertial platforms. The phases of the final approach considered are the localizer and glideslope capture which may be performed simultaneously, localizer and steep glideslope track or hold, crab/decrab and flare to touchdown. DIALS captures, tracks and flares from steep glideslopes ranging from 2.5 deg to 5.5 deg, selected prior to glideslope capture. Digital Integrated Automatic Landing System is the first modern control design automatic landing system successfully flight tested. The results of an initial nonlinear simulation are presented here.
NASA Astrophysics Data System (ADS)
Park, Jaeheung; Lühr, Hermann; Kervalishvili, Guram; Rauberg, Jan; Stolle, Claudia; Kwak, Young-Sil; Lee, Woo Kyoung
2017-01-01
In this study, we investigate the climatology of high-latitude total electron content (TEC) variations as observed by the dual-frequency Global Navigation Satellite Systems (GNSS) receivers onboard the Swarm satellite constellation. The distribution of TEC perturbations as a function of geographic/magnetic coordinates and seasons reasonably agrees with that of the Challenging Minisatellite Payload observations published earlier. Categorizing the high-latitude TEC perturbations according to line-of-sight directions between Swarm and GNSS satellites, we can deduce their morphology with respect to the geomagnetic field lines. In the Northern Hemisphere, the perturbation shapes are mostly aligned with the L shell surface, and this anisotropy is strongest in the nightside auroral (substorm) and subauroral regions and weakest in the central polar cap. The results are consistent with the well-known two-cell plasma convection pattern of the high-latitude ionosphere, which is approximately aligned with L shells at auroral regions and crossing different L shells for a significant part of the polar cap. In the Southern Hemisphere, the perturbation structures exhibit noticeable misalignment to the local L shells. Here the direction toward the Sun has an additional influence on the plasma structure, which we attribute to photoionization effects. The larger offset between geographic and geomagnetic poles in the south than in the north is responsible for the hemispheric difference.
Sanford, Jordan M.; Harrison, Arnell S.; Wiese, Dana S.; Flocks, James G.
2009-01-01
In April and July of 1981, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the shallow geologic framework of the Alabama-Mississippi-Louisiana Shelf in the northern Gulf of Mexico. Work was conducted onboard the Texas A&M University R/V Carancahua and the R/V Gyre to develop a geologic understanding of the study area and to locate potential hazards related to offshore oil and gas production. While the R/V Carancahua only collected boomer data, the R/V Gyre used a 400-Joule minisparker, 3.5-kilohertz (kHz) subbottom profiler, 12-kHz precision depth recorder, and two air guns. The authors selected the minisparker data set because, unlike with the boomer data, it provided the most complete record. This report is part of a series to digitally archive the legacy analog data collected from the Mississippi-Alabama SHelf (MASH). The MASH data rescue project is a cooperative effort by the USGS and the Minerals Management Service (MMS). This report serves as an archive of high-resolution scanned Tagged Image File Format (TIFF) and Graphics Interchange Format (GIF) images of the original boomer and minisparker paper records, navigation files, trackline maps, Geographic Information System (GIS) files, cruise logs, and formal Federal Geographic Data Committee (FGDC) metadata.
Autonomous agricultural remote sensing systems with high spatial and temporal resolutions
NASA Astrophysics Data System (ADS)
Xiang, Haitao
In this research, two novel agricultural remote sensing (RS) systems, a Stand-alone Infield Crop Monitor RS System (SICMRS) and an autonomous Unmanned Aerial Vehicles (UAV) based RS system have been studied. A high-resolution digital color and multi-spectral camera was used as the image sensor for the SICMRS system. An artificially intelligent (AI) controller based on artificial neural network (ANN) and an adaptive neuro-fuzzy inference system (ANFIS) was developed. Morrow Plots corn field RS images in the 2004 and 2006 growing seasons were collected by the SICMRS system. The field site contained 8 subplots (9.14 m x 9.14 m) that were planted with corn and three different fertilizer treatments were used among those subplots. The raw RS images were geometrically corrected, resampled to 10cm resolution, removed soil background and calibrated to real reflectance. The RS images from two growing seasons were studied and 10 different vegetation indices were derived from each day's image. The result from the image processing demonstrated that the vegetation indices have temporal effects. To achieve high quality RS data, one has to utilize the right indices and capture the images at the right time in the growing season. Maximum variations among the image data set are within the V6-V10 stages, which indicated that these stages are the best period to identify the spatial variability caused by the nutrient stress in the corn field. The derived vegetation indices were also used to build yield prediction models via the linear regression method. At that point, all of the yield prediction models were evaluated by comparing the R2-value and the best index model from each day's image was picked based on the highest R 2-value. It was shown that the green normalized difference vegetation (GNDVI) based model is more sensitive to yield prediction than other indices-based models. During the VT-R4 stages, the GNDVI based models were able to explain more than 95% potential corn yield consistently for both seasons. The VT-R4 stages are the best period of time to estimate the corn yield. The SICMS system is only suitable for the RS research at a fixed location. In order to provide more flexibility of the RS image collection, a novel UAV based system has been studied. The UAV based agricultural RS system used a light helicopter platform equipped with a multi-spectral camera. The UAV control system consisted of an on-board and a ground station subsystem. For the on-board subsystem, an Extended Kalman Filter (EKF) based UAV navigation system was designed and implemented. The navigation system, using low cost inertial sensors, magnetometer, GPS and a single board computer, was capable of providing continuous estimates of UAV position and attitude at 50 Hz using sensor fusion techniques. The ground station subsystem was designed to be an interface between a human operator and the UAV to implement mission planning, flight command activation, and real-time flight monitoring. The navigation system is controlled by the ground station, and able to navigate the UAV in the air to reach the predefined waypoints and trigger the multi-spectral camera. By so doing, the aerial images at each point could be captured automatically. The developed UAV RS system can provide a maximum flexibility in crop field RS image collection. It is essential to perform the geometric correction and the geocoding before an aerial image can be used for precision farming. An automatic (no Ground Control Point (GCP) needed) UAV image georeferencing algorithm was developed. This algorithm can do the automatic image correction and georeferencing based on the real-time navigation data and a camera lens distortion model. The accuracy of the georeferencing algorithm was better than 90 cm according to a series test. The accuracy that has been achieved indicates that, not only is the position solution good, but the attitude error is extremely small. The waypoints planning for UAV flight was investigated. It suggested that a 16.5% forward overlap and a 15% lateral overlap were required to avoiding missing desired mapping area when the UAV flies above 45 m high with 4.5 mm lens. A whole field mosaic image can be generated according to the individual image georeferencing information. A 0.569 m mosaic error has been achieved and this accuracy is sufficient for many of the intended precision agricultural applications. With careful interpretation, the UAV images are an excellent source of high spatial and temporal resolution data for precision agricultural applications. (Abstract shortened by UMI.)
The Rendezvous Monitoring Display Capabilities of the Rendezvous and Proximity Operations Program
NASA Technical Reports Server (NTRS)
Brazzel, Jack; Spehar, Pete; Clark, Fred; Foster, Chris; Eldridge, Erin
2013-01-01
The Rendezvous and Proximity Operations Program (RPOP) is a laptop computer- based relative navigation tool and piloting aid that was developed during the Space Shuttle program. RPOP displays a graphical representation of the relative motion between the target and chaser vehicles in a rendezvous, proximity operations and capture scenario. After being used in over 60 Shuttle rendezvous missions, some of the RPOP display concepts have become recognized as a minimum standard for cockpit displays for monitoring the rendezvous task. To support International Space Station (ISS) based crews in monitoring incoming visiting vehicles, RPOP has been modified to allow crews to compare the Cygnus visiting vehicle s onboard navigated state to processed range measurements from an ISS-based, crew-operated Hand Held Lidar sensor. This paper will discuss the display concepts of RPOP that have proven useful in performing and monitoring rendezvous and proximity operations.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-15
... Devices, Navigation and Display Systems, Radar Systems, Navigational Aids, Mapping Systems and Related... navigation products, including GPS devices, navigation and display systems, radar systems, navigational aids..., radar systems, navigational aids, mapping systems and related software by reason of infringement of one...
SCL: An off-the-shelf system for spacecraft control
NASA Astrophysics Data System (ADS)
Buckley, Brian; Vangaasbeck, James
1994-11-01
In this age of shrinking military, civil, and commercial space budgets, an off-the-shelf solution is needed to provide a multimission approach to spacecraft control. A standard operational interface which can be applied to multiple spacecraft allows a common approach to ground and space operations. A trend for many space programs has been to reduce operational staff by applying autonomy to the spacecraft and to the ground stations. The Spacecraft Command Language (SCL) system developed by Interface and Control Systems, Inc. (ICS) provides an off-the-shelf solution for spacecraft operations. The SCL system is designed to provide a hyper-scripting interface which remains standard from program to program. The spacecraft and ground station hardware specifics are isolated to provide the maximum amount of portability from system to system. Uplink and downlink interfaces are also isolated to allow the system to perform independent of the communications protocols chosen. The SCL system can be used for both the ground stations and the spacecraft, or as a value added package for existing ground station environments. The SCL system provides an expanded stored commanding capability as well as a rule-based expert system on-board. The expert system allows reactive control on-board the spacecraft for functions such as electrical power systems (EPS), thermal control, etc. which have traditionally been performed on the ground. The SCL rule and scripting capability share a common syntax allowing control of scripts from rules and rules from scripts. Rather than telemeter over sampled data to the ground, the SCL system maintains a database on-board which is available for interrogation by the scripts and rules. The SCL knowledge base is constructed on the ground and uploaded to the spacecraft. The SCL system follows an open-systems approach allowing other tasks to communicate with SCL on the ground and in space. The SCL system was used on the Clementine program (launched January 25, 1994) and is required to have bidirectional communications with the guidance, navigation, and control (GNC) algorithms which were written as another task. Sequencing of the spacecraft maneuvers are handled by SCL, but the low-level thruster pulse commands are handled by the GNC software. Attitude information is reported back as telemetry, allowing the SCL expert system to inference on the changing data. The Clementine SCL flight software was largely reused from another Naval Center for Space Technology (NCST) satellite program.
SCL: An off-the-shelf system for spacecraft control
NASA Technical Reports Server (NTRS)
Buckley, Brian; Vangaasbeck, James
1994-01-01
In this age of shrinking military, civil, and commercial space budgets, an off-the-shelf solution is needed to provide a multimission approach to spacecraft control. A standard operational interface which can be applied to multiple spacecraft allows a common approach to ground and space operations. A trend for many space programs has been to reduce operational staff by applying autonomy to the spacecraft and to the ground stations. The Spacecraft Command Language (SCL) system developed by Interface and Control Systems, Inc. (ICS) provides an off-the-shelf solution for spacecraft operations. The SCL system is designed to provide a hyper-scripting interface which remains standard from program to program. The spacecraft and ground station hardware specifics are isolated to provide the maximum amount of portability from system to system. Uplink and downlink interfaces are also isolated to allow the system to perform independent of the communications protocols chosen. The SCL system can be used for both the ground stations and the spacecraft, or as a value added package for existing ground station environments. The SCL system provides an expanded stored commanding capability as well as a rule-based expert system on-board. The expert system allows reactive control on-board the spacecraft for functions such as electrical power systems (EPS), thermal control, etc. which have traditionally been performed on the ground. The SCL rule and scripting capability share a common syntax allowing control of scripts from rules and rules from scripts. Rather than telemeter over sampled data to the ground, the SCL system maintains a database on-board which is available for interrogation by the scripts and rules. The SCL knowledge base is constructed on the ground and uploaded to the spacecraft. The SCL system follows an open-systems approach allowing other tasks to communicate with SCL on the ground and in space. The SCL system was used on the Clementine program (launched January 25, 1994) and is required to have bidirectional communications with the guidance, navigation, and control (GNC) algorithms which were written as another task. Sequencing of the spacecraft maneuvers are handled by SCL, but the low-level thruster pulse commands are handled by the GNC software. Attitude information is reported back as telemetry, allowing the SCL expert system to inference on the changing data. The Clementine SCL flight software was largely reused from another Naval Center for Space Technology (NCST) satellite program. This paper details the SCL architecture and how an off-the-shelf solution makes sense for multimission spacecraft programs. The Clementine mission will be used as a case study in the application of the SCL to a 'fast track' program. The benefits of such a system in a 'better, cheaper, faster' climate will be discussed.
Two degrees of freedom parallel linkageto track solarthermal platforms installed on ships
NASA Astrophysics Data System (ADS)
Visa, I.; Cotorcea, A.; Moldovan, M.; Neagoe, M.
2016-08-01
Transportation is responsible at global level for one third of the total energy consumption. Solutions to reduce conventional fuel consumption are under research, to improve the systems’ efficiency and to replace the current fossil fuels. There already are several applications, usually onsmall maritime vehicles, using photovoltaic systems to cover the electric energy demand on-board andto support the owners’ commitment towards sustainability. In most cases, these systems are fixed, parallely aligned with the deck; thus, the amount of solar energy received is heavily reduced (down to 50%) as compared to the available irradiance. Large scale, feasible applications require to maximize the energy output of the solar convertors implemented on ships; using solar tracking systems is an obvious path, allowing a gain up to 35...40% in the output energy, as compared to fixed systems. Spatial limitations, continuous movement of the ship and harsh navigation condition are the main barriers in implementation. This paper proposes a solar tracking system with two degrees of freedom, for a solar thermal platform, based on a parallel linkage with sphericaljoints, considered as Multibody System. The analytical model for mobile platform position, pressure angles and a numerical example are given in the paper.
StressHacker: Towards Practical Stress Monitoring in the Wild with Smartwatches.
Hao, Tian; Walter, Kimberly N; Ball, Marion J; Chang, Hung-Yang; Sun, Si; Zhu, Xinxin
2017-01-01
In modern life, the nonstop and pervasive stress tends to keep us on long-lasting high alert, which over time, could lead to a broad range of health problems from depression, metabolic disorders to heart diseases. However, there is a stunning lack of practical tools for effective stress management that can help people navigate through their daily stress. This paper presents the feasibility evaluation of StressHacker, a smartwatch-based system designed to continuously and passively monitor one's stress level using bio-signals obtained from the on-board sensors. With the proliferation of smartwatches, StressHacker is highly accessible and suited for daily use. Our preliminary evaluation is based on 300 hours of data collected in a real-life setting (12 subjects, 29 days). The result suggests that StressHacker is capable of reliably capturing daily stress dynamics (precision = 86.1%, recall = 91.2%), thus with great potential to enable seamless and personalized stress management.
NASA Technical Reports Server (NTRS)
Clement, Warren F.; Gorder, Pater J.; Jewell, Wayne F.; Coppenbarger, Richard
1990-01-01
Developing a single-pilot all-weather NOE capability requires fully automatic NOE navigation and flight control. Innovative guidance and control concepts are being investigated to (1) organize the onboard computer-based storage and real-time updating of NOE terrain profiles and obstacles; (2) define a class of automatic anticipative pursuit guidance algorithms to follow the vertical, lateral, and longitudinal guidance commands; (3) automate a decision-making process for unexpected obstacle avoidance; and (4) provide several rapid response maneuvers. Acquired knowledge from the sensed environment is correlated with the recorded environment which is then used to determine an appropriate evasive maneuver if a nonconformity is observed. This research effort has been evaluated in both fixed-base and moving-base real-time piloted simulations thereby evaluating pilot acceptance of the automated concepts, supervisory override, manual operation, and reengagement of the automatic system.
The ACES mission: scientific objectives and present status
NASA Astrophysics Data System (ADS)
Cacciapuoti, L.; Dimarcq, N.; Salomon, C.
2017-11-01
"Atomic Clock Ensemble in Space" (ACES) is a mission in fundamental physics that will operate a new generation of atomic clocks in the microgravity environment of the International Space Station (ISS). The ACES clock signal will combine the medium term frequency stability of a space hydrogen maser (SHM) and the long term stability and accuracy of a frequency standard based on cold cesium atoms (PHARAO). Fractional frequency stability and accuracy of few parts in 1016 will be achieved. The on-board time base distributed on Earth via a microwave link (MWL) will be used to test fundamental laws of physics (Einstein's theories of Special and General Relativity, Standard Model Extension, string theories…) and to develop applications in time and frequency metrology, universal time scales, global positioning and navigation, geodesy and gravimetry. After a general overview on the mission concept and its scientific objectives, the present status of ACES instruments and sub-systems will be discussed.
2009-03-04
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., technicians help guide the cables lifting the GOES-O satellite away from its shipping container. The satellite will be placed on a stand for final testing of the imaging system, instrumentation, communications and power systems. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. GOES-O carries an advanced attitude control system using star trackers with spacecraft optical bench Imager and Sounder mountings that provide enhanced instrument pointing performance for improved image navigation and registration to better locate severe storms and other events important to the NOAA National Weather Service. Photo credit: NASA/Kim Shiflett
Distributed communications and control network for robotic mining
NASA Technical Reports Server (NTRS)
Schiffbauer, William H.
1989-01-01
The application of robotics to coal mining machines is one approach pursued to increase productivity while providing enhanced safety for the coal miner. Toward that end, a network composed of microcontrollers, computers, expert systems, real time operating systems, and a variety of program languages are being integrated that will act as the backbone for intelligent machine operation. Actual mining machines, including a few customized ones, have been given telerobotic semiautonomous capabilities by applying the described network. Control devices, intelligent sensors and computers onboard these machines are showing promise of achieving improved mining productivity and safety benefits. Current research using these machines involves navigation, multiple machine interaction, machine diagnostics, mineral detection, and graphical machine representation. Guidance sensors and systems employed include: sonar, laser rangers, gyroscopes, magnetometers, clinometers, and accelerometers. Information on the network of hardware/software and its implementation on mining machines are presented. Anticipated coal production operations using the network are discussed. A parallelism is also drawn between the direction of present day underground coal mining research to how the lunar soil (regolith) may be mined. A conceptual lunar mining operation that employs a distributed communication and control network is detailed.
Assimilation of GNSS radio occultation observations in GRAPES
NASA Astrophysics Data System (ADS)
Liu, Y.; Xue, J.
2014-07-01
This paper reviews the development of the global navigation satellite system (GNSS) radio occultation (RO) observations assimilation in the Global/Regional Assimilation and PrEdiction System (GRAPES) of China Meteorological Administration, including the choice of data to assimilate, the data quality control, the observation operator, the tuning of observation error, and the results of the observation impact experiments. The results indicate that RO data have a significantly positive effect on analysis and forecast at all ranges in GRAPES not only in the Southern Hemisphere where conventional observations are lacking but also in the Northern Hemisphere where data are rich. It is noted that a relatively simple assimilation and forecast system in which only the conventional and RO observation are assimilated still has analysis and forecast skill even after nine months integration, and the analysis difference between both hemispheres is gradually reduced with height when compared with NCEP (National Centers for Enviromental Prediction) analysis. Finally, as a result of the new onboard payload of the Chinese FengYun-3 (FY-3) satellites, the research status of the RO of FY-3 satellites is also presented.
IVHM Framework for Intelligent Integration for Vehicle Health Management
NASA Technical Reports Server (NTRS)
Paris, Deidre; Trevino, Luis C.; Watson, Michael D.
2005-01-01
Integrated Vehicle Health Management (IVHM) systems for aerospace vehicles, is the process of assessing, preserving, and restoring system functionality across flight and techniques with sensor and communication technologies for spacecraft that can generate responses through detection, diagnosis, reasoning, and adapt to system faults in support of Integrated Intelligent Vehicle Management (IIVM). These real-time responses allow the IIVM to modify the affected vehicle subsystem(s) prior to a catastrophic event. Furthermore, this framework integrates technologies which can provide a continuous, intelligent, and adaptive health state of a vehicle and use this information to improve safety and reduce costs of operations. Recent investments in avionics, health management, and controls have been directed towards IIVM. As this concept has matured, it has become clear that IIVM requires the same sensors and processing capabilities as the real-time avionics functions to support diagnosis of subsystem problems. New sensors have been proposed, in addition to augment the avionics sensors to support better system monitoring and diagnostics. As the designs have been considered, a synergy has been realized where the real-time avionics can utilize sensors proposed for diagnostics and prognostics to make better real-time decisions in response to detected failures. IIVM provides for a single system allowing modularity of functions and hardware across the vehicle. The framework that supports IIVM consists of 11 major on-board functions necessary to fully manage a space vehicle maintaining crew safety and mission objectives. These systems include the following: Guidance and Navigation; Communications and Tracking; Vehicle Monitoring; Information Transport and Integration; Vehicle Diagnostics; Vehicle Prognostics; Vehicle Mission Planning, Automated Repair and Replacement; Vehicle Control; Human Computer Interface; and Onboard Verification and Validation. Furthermore, the presented framework provides complete vehicle management which not only allows for increased crew safety and mission success through new intelligence capabilities, but also yields a mechanism for more efficient vehicle operations.
Future Standardization of Space Telecommunications Radio System with Core Flight System
NASA Technical Reports Server (NTRS)
Briones, Janette C.; Hickey, Joseph P.; Roche, Rigoberto; Handler, Louis M.; Hall, Charles S.
2016-01-01
NASA Glenn Research Center (GRC) is integrating the NASA Space Telecommunications Radio System (STRS) Standard with the Core Flight System (cFS), an avionics software operating environment. The STRS standard provides a common, consistent framework to develop, qualify, operate and maintain complex, reconfigurable and reprogrammable radio systems. The cFS is a flexible, open architecture that features a plugand- play software executive called the Core Flight Executive (cFE), a reusable library of software components for flight and space missions and an integrated tool suite. Together, STRS and cFS create a development environment that allows for STRS compliant applications to reference the STRS application programmer interfaces (APIs) that use the cFS infrastructure. These APIs are used to standardize the communication protocols on NASAs space SDRs. The cFS-STRS Operating Environment (OE) is a portable cFS library, which adds the ability to run STRS applications on existing cFS platforms. The purpose of this paper is to discuss the cFS-STRS OE prototype, preliminary experimental results performed using the Advanced Space Radio Platform (ASRP), the GRC S- band Ground Station and the SCaN (Space Communication and Navigation) Testbed currently flying onboard the International Space Station (ISS). Additionally, this paper presents a demonstration of the Consultative Committee for Space Data Systems (CCSDS) Spacecraft Onboard Interface Services (SOIS) using electronic data sheets (EDS) inside cFE. This configuration allows for the data sheets to specify binary formats for data exchange between STRS applications. The integration of STRS with cFS leverages mission-proven platform functions and mitigates barriers to integration with future missions. This reduces flight software development time and the costs of software-defined radio (SDR) platforms. Furthermore, the combined benefits of STRS standardization with the flexibility of cFS provide an effective, reliable and modular framework to minimize software development efforts for spaceflight missions.
Fiber-Optic Network Architectures for Onboard Avionics Applications Investigated
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Ngo, Duc H.
2003-01-01
This project is part of a study within the Advanced Air Transportation Technologies program undertaken at the NASA Glenn Research Center. The main focus of the program is the improvement of air transportation, with particular emphasis on air transportation safety. Current and future advances in digital data communications between an aircraft and the outside world will require high-bandwidth onboard communication networks. Radiofrequency (RF) systems, with their interconnection network based on coaxial cables and waveguides, increase the complexity of communication systems onboard modern civil and military aircraft with respect to weight, power consumption, and safety. In addition, safety and reliability concerns from electromagnetic interference between the RF components embedded in these communication systems exist. A simple, reliable, and lightweight network that is free from the effects of electromagnetic interference and capable of supporting the broadband communications needs of future onboard digital avionics systems cannot be easily implemented using existing coaxial cable-based systems. Fiber-optical communication systems can meet all these challenges of modern avionics applications in an efficient, cost-effective manner. The objective of this project is to present a number of optical network architectures for onboard RF signal distribution. Because of the emergence of a number of digital avionics devices requiring high-bandwidth connectivity, fiber-optic RF networks onboard modern aircraft will play a vital role in ensuring a low-noise, highly reliable RF communication system. Two approaches are being used for network architectures for aircraft onboard fiber-optic distribution systems: a hybrid RF-optical network and an all-optical wavelength division multiplexing (WDM) network.
NASA Astrophysics Data System (ADS)
Lebedev, M. A.; Stepaniants, D. G.; Komarov, D. V.; Vygolov, O. V.; Vizilter, Yu. V.; Zheltov, S. Yu.
2014-08-01
The paper addresses a promising visualization concept related to combination of sensor and synthetic images in order to enhance situation awareness of a pilot during an aircraft landing. A real-time algorithm for a fusion of a sensor image, acquired by an onboard camera, and a synthetic 3D image of the external view, generated in an onboard computer, is proposed. The pixel correspondence between the sensor and the synthetic images is obtained by an exterior orientation of a "virtual" camera using runway points as a geospatial reference. The runway points are detected by the Projective Hough Transform, which idea is to project the edge map onto a horizontal plane in the object space (the runway plane) and then to calculate intensity projections of edge pixels on different directions of intensity gradient. The performed experiments on simulated images show that on a base glide path the algorithm provides image fusion with pixel accuracy, even in the case of significant navigation errors.
Method and system for environmentally adaptive fault tolerant computing
NASA Technical Reports Server (NTRS)
Copenhaver, Jason L. (Inventor); Jeremy, Ramos (Inventor); Wolfe, Jeffrey M. (Inventor); Brenner, Dean (Inventor)
2010-01-01
A method and system for adapting fault tolerant computing. The method includes the steps of measuring an environmental condition representative of an environment. An on-board processing system's sensitivity to the measured environmental condition is measured. It is determined whether to reconfigure a fault tolerance of the on-board processing system based in part on the measured environmental condition. The fault tolerance of the on-board processing system may be reconfigured based in part on the measured environmental condition.
NASA Astrophysics Data System (ADS)
Everson, Jeffrey H.; Kopala, Edward W.; Lazofson, Laurence E.; Choe, Howard C.; Pomerleau, Dean A.
1995-01-01
Optical sensors are used for several ITS applications, including lateral control of vehicles, traffic sign recognition, car following, autonomous vehicle navigation, and obstacle detection. This paper treats the performance assessment of a sensor/image processor used as part of an on-board countermeasure system to prevent single vehicle roadway departure crashes. Sufficient image contrast between objects of interest and backgrounds is an essential factor influencing overall system performance. Contrast is determined by material properties affecting reflected/radiated intensities, as well as weather and visibility conditions. This paper discusses the modeling of these parameters and characterizes the contrast performance effects due to reduced visibility. The analysis process first involves generation of inherent road/off- road contrasts, followed by weather effects as a contrast modification. The sensor is modeled as a charge coupled device (CCD), with variable parameters. The results of the sensor/weather modeling are used to predict the performance on an in-vehicle warning system under various levels of adverse weather. Software employed in this effort was previously developed for the U.S. Air Force Wright Laboratory to determine target/background detection and recognition ranges for different sensor systems operating under various mission scenarios.
Global Precipitation Measurement (GPM) Orbit Design and Autonomous Maneuvers
NASA Technical Reports Server (NTRS)
Folta, David; Mendelsohn, Chad
2003-01-01
The NASA Goddard Space Flight Center's Global Precipitation Measurement (GPM) mission will meet a challenge of measuring worldwide precipitation every three hours. The GPM spacecraft, part of a constellation, will be required to maintain a circular orbit in a high drag environment to accomplish this challenge. Analysis by the Flight Dynamics Analysis Branch has shown that the prime orbit altitude of 40% is necessary to prevent ground track repeating. Combined with goals to minimize maneuver impacts to science data collection and enabling reasonable long-term orbit predictions, the GPM project has decided to fly an autonomous maneuver system. This system is a derivative of the successful New Millennium Program technology flown onboard the Earth Observing-1 mission. This paper presents the driving science requirements and goals of the mission and shows how they will be met. Analysis of the orbit optimization and the AV requirements for several ballistic properties are presented. The architecture of the autonomous maneuvering system to meet the goals and requirements is presented along with simulations using a GPM prototype. Additionally, the use of the GPM autonomous system to mitigate possible collision avoidance and to aid other spacecraft systems during navigation outages is explored.
40 CFR 85.2222 - On-board diagnostic test procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 19 2013-07-01 2013-07-01 false On-board diagnostic test procedures... Warranty Short Tests § 85.2222 On-board diagnostic test procedures. The test sequence for the inspection of on-board diagnostic systems on 1996 and newer light-duty vehicles and light-duty trucks shall consist...
40 CFR 85.2222 - On-board diagnostic test procedures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 19 2012-07-01 2012-07-01 false On-board diagnostic test procedures... Warranty Short Tests § 85.2222 On-board diagnostic test procedures. The test sequence for the inspection of on-board diagnostic systems on 1996 and newer light-duty vehicles and light-duty trucks shall consist...
40 CFR 85.2222 - On-board diagnostic test procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false On-board diagnostic test procedures... Warranty Short Tests § 85.2222 On-board diagnostic test procedures. The test sequence for the inspection of on-board diagnostic systems on 1996 and newer light-duty vehicles and light-duty trucks shall consist...
Infection burden among medical events onboard cargo ships: a four-year study.
Marimoutou, Cyril; Tufo, Davide; Chaudet, Hervé; Abdul Samad, Marc; Gentile, Gaëtan; Drancourt, Michel
2017-05-01
. Cargo ships are medically isolated, yet neglected environments. We aimed to know about medical events onboard cargo ships. We reviewed all the medical events onboard a large commercial 471-cargo ship company for 4 years. Medical events were recorded within 20 categories as routinely used by Medical Maritime Consulting Centers, using a 4-level medical gravity score. The χ 2 test and logistic regression and correspondence analyses were used for the analysis of qualitative variables. Excluding wounds and burns, a total of 322 illness events were notified by onboard health officers for 471 ships totalizing 46 navigation/months. 250 non-infectious events and 72 cases of infection yielded an incidence of 7.75 medical events for 1000 person-years. Infections comprised 25 digestive tract infections, 17 skin infections, 8 urinary tract infections, 5 dental infections, 4 isolated fevers, 3 Ear-Nose-Throat and respiratory tract infections, 2 ocular infections, myalgia and orchitis and 1 case of mediastinal infection. The mean age for sailors diagnosed with infection (37.7 ± 10.5 years) was significantly younger than the mean age of sailors diagnosed with non-infectious disease (40.8 ± 11.2 years) ( P = 0.04). In affected sailors, the proportion of death and hospitalization among infectious disease cases (26/69, 37.7%) was significantly higher than the proportion of death and hospitalization for non-infectious disease cases (48/242, 19.8%) ( P = 0.02). The correspondence analysis showed that the routes may be classified according to two main independent risks, digestive infections and skin infections. We observed a statistically significant correlation between the severity of medical events and the maritime route "North Europe-OI-Australia-India-North Europe". These data illustrate a previously underreported variability of the medical risks in various maritime routes; and help promoting targeted medical interventions including the implementation of onboard point-of-care laboratories, to further increase the rapidity of the diagnosis and the medical management onboard cargo ships. © International Society of Travel Medicine, 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Development and Evaluation of a UAV-Photogrammetry System for Precise 3D Environmental Modeling.
Shahbazi, Mozhdeh; Sohn, Gunho; Théau, Jérôme; Menard, Patrick
2015-10-30
The specific requirements of UAV-photogrammetry necessitate particular solutions for system development, which have mostly been ignored or not assessed adequately in recent studies. Accordingly, this paper presents the methodological and experimental aspects of correctly implementing a UAV-photogrammetry system. The hardware of the system consists of an electric-powered helicopter, a high-resolution digital camera and an inertial navigation system. The software of the system includes the in-house programs specifically designed for camera calibration, platform calibration, system integration, on-board data acquisition, flight planning and on-the-job self-calibration. The detailed features of the system are discussed, and solutions are proposed in order to enhance the system and its photogrammetric outputs. The developed system is extensively tested for precise modeling of the challenging environment of an open-pit gravel mine. The accuracy of the results is evaluated under various mapping conditions, including direct georeferencing and indirect georeferencing with different numbers, distributions and types of ground control points. Additionally, the effects of imaging configuration and network stability on modeling accuracy are assessed. The experiments demonstrated that 1.55 m horizontal and 3.16 m vertical absolute modeling accuracy could be achieved via direct geo-referencing, which was improved to 0.4 cm and 1.7 cm after indirect geo-referencing.
Development and Evaluation of a UAV-Photogrammetry System for Precise 3D Environmental Modeling
Shahbazi, Mozhdeh; Sohn, Gunho; Théau, Jérôme; Menard, Patrick
2015-01-01
The specific requirements of UAV-photogrammetry necessitate particular solutions for system development, which have mostly been ignored or not assessed adequately in recent studies. Accordingly, this paper presents the methodological and experimental aspects of correctly implementing a UAV-photogrammetry system. The hardware of the system consists of an electric-powered helicopter, a high-resolution digital camera and an inertial navigation system. The software of the system includes the in-house programs specifically designed for camera calibration, platform calibration, system integration, on-board data acquisition, flight planning and on-the-job self-calibration. The detailed features of the system are discussed, and solutions are proposed in order to enhance the system and its photogrammetric outputs. The developed system is extensively tested for precise modeling of the challenging environment of an open-pit gravel mine. The accuracy of the results is evaluated under various mapping conditions, including direct georeferencing and indirect georeferencing with different numbers, distributions and types of ground control points. Additionally, the effects of imaging configuration and network stability on modeling accuracy are assessed. The experiments demonstrated that 1.55 m horizontal and 3.16 m vertical absolute modeling accuracy could be achieved via direct geo-referencing, which was improved to 0.4 cm and 1.7 cm after indirect geo-referencing. PMID:26528976
NASA Technical Reports Server (NTRS)
Park, Nohpill; Reagan, Shawn; Franks, Greg; Jones, William G.
1999-01-01
This paper discusses analytical approaches to evaluating performance of Spacecraft On-Board Computing systems, thereby ultimately achieving a reliable spacecraft data communications systems. The sensitivity analysis approach of memory system on the ProSEDS (Propulsive Small Expendable Deployer System) as a part of its data communication system will be investigated. Also, general issues and possible approaches to reliable Spacecraft On-Board Interconnection Network and Processor Array will be shown. The performance issues of a spacecraft on-board computing systems such as sensitivity, throughput, delay and reliability will be introduced and discussed.
Development of Tools and Techniques for Processing STORRM Flight Data
NASA Technical Reports Server (NTRS)
Robinson, Shane; D'Souza, Christopher
2011-01-01
While at JSC for the summer of 2011, I was assigned to work on the sensor test for Orion relative-navigation risk mitigation (STORRM) development test objective (DTO). The STORRM DTO was flown on-board Endeavor during STS-134. The objective of the STORRM DTO is to test the visual navigation system (VNS), which will be used as the primary relative navigation sensor for the Orion spacecraft. The VNS is a flash lidar system intended to provide both line of sight and range information during rendezvous and proximity operations. The STORRM DTO also serves as a testbed for the high-resolution docking camera. This docking camera will be used to provide piloting cues for the crew during proximity operations. These instruments were mounted next to the trajectory control sensor (TCS) in Endeavour s payload bay. My principle objective for the summer was to generate a best estimated trajectory (BET) for Endeavor using the flight data collected by the VNS during rendezvous and the unprecedented re-rendezvous with the ISS. I processed the raw images from the VNS to produce range and bearing measurements. I then aggregated these measurements and extracted the measurements corresponding to individual reflectors. I combined the information contained in these measurements with data from the Endeavour's inertial sensors using Kalman smoothing techniques to ultimately produce a BET. This work culminated with a final presentation of the result to division management. Development of this tool required that traditional linear smoothing techniques be modified in a novel fashion to permit for the inclusion of non-linear measurements. This internship has greatly helped me further my career by providing exposure to real engineering projects. I also have benefited immensely from the mentorship of the engineers working on these projects. Many of the lessons I learned and experiences I had are of particular value because then can only be found in a place like JSC.
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) onboard calibration system
NASA Technical Reports Server (NTRS)
Chrien, Thomas G.; Eastwood, Mike; Green, Robert O.; Sarture, Charles; Johnson, Howell; Chovit, Chris; Hajek, Pavel
1995-01-01
The AVIRIS instrument uses an onboard calibration system to provide auxiliary calibration data. The system consist of a tungsten halogen cycle lamp imaged onto a fiber bundle through an eight position filter wheel. The fiber bundle illuminates the back side of the foreoptics shutter during a pre-run and post-run calibration sequence. The filter wheel contains two neutral density filters, five spectral filters and one blocked position. This paper reviews the general workings of the onboard calibrator system and discusses recent modifications.
NASA Astrophysics Data System (ADS)
Efremov, Denis; Khaykin, Sergey; Lykov, Alexey; Berezhko, Yaroslav; Lunin, Aleksey
High-resolution measurements of climate-relevant trace gases and aerosols in the upper troposphere and stratosphere (UTS) have been and remain technically challenging. The high cost of measurements onboard airborne platforms or heavy stratospheric balloons results in a lack of accurate information on vertical distribution of atmospheric constituents. Whereas light-weight instruments carried by meteorological balloons are becoming progressively available, their usage is constrained by the cost of the equipment or the recovery operations. The evolving need in cost-efficient observations for UTS process studies has led to development of small airborne platforms - unmanned aerial vehicles (UAV), capable of carrying small sensors for in-situ measurements. We present a new UAV-based stratospheric sounding platform capable of carrying scientific payload of up to 2 kg. The airborne platform comprises of a latex meteorological balloon and detachable flying wing type UAV with internal measurement controller. The UAV is launched on a balloon to stratospheric altitudes up to 20 km, where it can be automatically released by autopilot or by a remote command sent from the ground control. Having been released from the balloon the UAV glides down and returns to the launch position. Autopilot using 3-axis gyro, accelerometer, barometer, compas and GPS navigation provides flight stabilization and optimal way back trajectory. Backup manual control is provided for emergencies. During the flight the onboard measurement controller stores the data into internal memory and transmits current flight parameters to the ground station via telemetry. Precise operation of the flight control systems ensures safe landing at the launch point. A series of field tests of the detachable stratospheric UAV has been conducted. The scientific payload included the following instruments involved in different flights: a) stratospheric Lyman-alpha hygrometer (FLASH); b) backscatter sonde; c) electrochemical ozone sonde; d) optical CO2 sensor; e) radioactivity sensor; f) solar radiation sensor. In addition, each payload included temperature sensor, barometric sensor and a GPS receiver. Design features of measurement systems onboard UAV and flight results are presented. Possible applications for atmospheric studies and validation of remote ground-based and space-borne observations is discussed.
[STS-31 Onboard 16mm Photography Quick Release]. [Onboard Activities
NASA Technical Reports Server (NTRS)
1990-01-01
This video features scenes shot by the crew of onboard activities including Hubble Space Telescope deploy, remote manipulator system (RMS) checkout, flight deck and middeck experiments, and Earth and payload bay views.
Orion MPCV GN and C End-to-End Phasing Tests
NASA Technical Reports Server (NTRS)
Neumann, Brian C.
2013-01-01
End-to-end integration tests are critical risk reduction efforts for any complex vehicle. Phasing tests are an end-to-end integrated test that validates system directional phasing (polarity) from sensor measurement through software algorithms to end effector response. Phasing tests are typically performed on a fully integrated and assembled flight vehicle where sensors are stimulated by moving the vehicle and the effectors are observed for proper polarity. Orion Multi-Purpose Crew Vehicle (MPCV) Pad Abort 1 (PA-1) Phasing Test was conducted from inertial measurement to Launch Abort System (LAS). Orion Exploration Flight Test 1 (EFT-1) has two end-to-end phasing tests planned. The first test from inertial measurement to Crew Module (CM) reaction control system thrusters uses navigation and flight control system software algorithms to process commands. The second test from inertial measurement to CM S-Band Phased Array Antenna (PAA) uses navigation and communication system software algorithms to process commands. Future Orion flights include Ascent Abort Flight Test 2 (AA-2) and Exploration Mission 1 (EM-1). These flights will include additional or updated sensors, software algorithms and effectors. This paper will explore the implementation of end-to-end phasing tests on a flight vehicle which has many constraints, trade-offs and compromises. Orion PA-1 Phasing Test was conducted at White Sands Missile Range (WSMR) from March 4-6, 2010. This test decreased the risk of mission failure by demonstrating proper flight control system polarity. Demonstration was achieved by stimulating the primary navigation sensor, processing sensor data to commands and viewing propulsion response. PA-1 primary navigation sensor was a Space Integrated Inertial Navigation System (INS) and Global Positioning System (GPS) (SIGI) which has onboard processing, INS (3 accelerometers and 3 rate gyros) and no GPS receiver. SIGI data was processed by GN&C software into thrust magnitude and direction commands. The processing changes through three phases of powered flight: pitchover, downrange and reorientation. The primary inputs to GN&C are attitude position, attitude rates, angle of attack (AOA) and angle of sideslip (AOS). Pitch and yaw attitude and attitude rate responses were verified by using a flight spare SIGI mounted to a 2-axis rate table. AOA and AOS responses were verified by using a data recorded from SIGI movements on a robotic arm located at NASA Johnson Space Center. The data was consolidated and used in an open-loop data input to the SIGI. Propulsion was the Launch Abort System (LAS) Attitude Control Motor (ACM) which consisted of a solid motor with 8 nozzles. Each nozzle has active thrust control by varying throat area with a pintle. LAS ACM pintles are observable through optically transparent nozzle covers. SIGI movements on robot arm, SIGI rate table movements and LAS ACM pintle responses were video recorded as test artifacts for analysis and evaluation. The PA-1 Phasing Test design was determined based on test performance requirements, operational restrictions and EGSE capabilities. This development progressed during different stages. For convenience these development stages are initial, working group, tiger team, Engineering Review Team (ERT) and final.
2007 Beyond SBIR Phase II: Bringing Technology Edge to the Warfighter
2007-08-23
Systems Trade-Off Analysis and Optimization Verification and Validation On-Board Diagnostics and Self - healing Security and Anti-Tampering Rapid...verification; Safety and reliability analysis of flight and mission critical systems On-Board Diagnostics and Self - Healing Model-based monitoring and... self - healing On-board diagnostics and self - healing ; Autonomic computing; Network intrusion detection and prevention Anti-Tampering and Trust
Orion Absolute Navigation System Progress and Challenge
NASA Technical Reports Server (NTRS)
Holt, Greg N.; D'Souza, Christopher
2012-01-01
The absolute navigation design of NASA's Orion vehicle is described. It has undergone several iterations and modifications since its inception, and continues as a work-in-progress. This paper seeks to benchmark the current state of the design and some of the rationale and analysis behind it. There are specific challenges to address when preparing a timely and effective design for the Exploration Flight Test (EFT-1), while still looking ahead and providing software extensibility for future exploration missions. The primary onboard measurements in a Near-Earth or Mid-Earth environment consist of GPS pseudo-range and delta-range, but for future explorations missions the use of star-tracker and optical navigation sources need to be considered. Discussions are presented for state size and composition, processing techniques, and consider states. A presentation is given for the processing technique using the computationally stable and robust UDU formulation with an Agee-Turner Rank-One update. This allows for computational savings when dealing with many parameters which are modeled as slowly varying Gauss-Markov processes. Preliminary analysis shows up to a 50% reduction in computation versus a more traditional formulation. Several state elements are discussed and evaluated, including position, velocity, attitude, clock bias/drift, and GPS measurement biases in addition to bias, scale factor, misalignment, and non-orthogonalities of the accelerometers and gyroscopes. Another consideration is the initialization of the EKF in various scenarios. Scenarios such as single-event upset, ground command, and cold start are discussed as are strategies for whole and partial state updates as well as covariance considerations. Strategies are given for dealing with latent measurements and high-rate propagation using multi-rate architecture. The details of the rate groups and the data ow between the elements is discussed and evaluated.
A study on the real-time reliability of on-board equipment of train control system
NASA Astrophysics Data System (ADS)
Zhang, Yong; Li, Shiwei
2018-05-01
Real-time reliability evaluation is conducive to establishing a condition based maintenance system for the purpose of guaranteeing continuous train operation. According to the inherent characteristics of the on-board equipment, the connotation of reliability evaluation of on-board equipment is defined and the evaluation index of real-time reliability is provided in this paper. From the perspective of methodology and practical application, the real-time reliability of the on-board equipment is discussed in detail, and the method of evaluating the realtime reliability of on-board equipment at component level based on Hidden Markov Model (HMM) is proposed. In this method the performance degradation data is used directly to realize the accurate perception of the hidden state transition process of on-board equipment, which can achieve a better description of the real-time reliability of the equipment.
Assurance Technology Challenges of Advanced Space Systems
NASA Technical Reports Server (NTRS)
Chern, E. James
2004-01-01
The initiative to explore space and extend a human presence across our solar system to revisit the moon and Mars post enormous technological challenges to the nation's space agency and aerospace industry. Key areas of technology development needs to enable the endeavor include advanced materials, structures and mechanisms; micro/nano sensors and detectors; power generation, storage and management; advanced thermal and cryogenic control; guidance, navigation and control; command and data handling; advanced propulsion; advanced communication; on-board processing; advanced information technology systems; modular and reconfigurable systems; precision formation flying; solar sails; distributed observing systems; space robotics; and etc. Quality assurance concerns such as functional performance, structural integrity, radiation tolerance, health monitoring, diagnosis, maintenance, calibration, and initialization can affect the performance of systems and subsystems. It is thus imperative to employ innovative nondestructive evaluation methodologies to ensure quality and integrity of advanced space systems. Advancements in integrated multi-functional sensor systems, autonomous inspection approaches, distributed embedded sensors, roaming inspectors, and shape adaptive sensors are sought. Concepts in computational models for signal processing and data interpretation to establish quantitative characterization and event determination are also of interest. Prospective evaluation technologies include ultrasonics, laser ultrasonics, optics and fiber optics, shearography, video optics and metrology, thermography, electromagnetics, acoustic emission, x-ray, data management, biomimetics, and nano-scale sensing approaches for structural health monitoring.
The development and flight test of a deployable precision landing system for spacecraft recovery
NASA Technical Reports Server (NTRS)
Sim, Alex G.; Murray, James E.; Neufeld, David C.; Reed, R. Dale
1993-01-01
A joint NASA Dryden Flight Research Facility and Johnson Space Center program was conducted to determine the feasibility of the autonomous recovery of a spacecraft using a ram-air parafoil system for the final stages of entry from space that included a precision landing. The feasibility of this system was studied using a flight model of a spacecraft in the generic shape of a flattened biconic which weighed approximately 150 lb and was flown under a commercially available, ram-air parachute. Key elements of the vehicle included the Global Positioning System guidance for navigation, flight control computer, ultrasonic sensing for terminal altitude, electronic compass, and onboard data recording. A flight test program was used to develop and refine the vehicle. This vehicle completed an autonomous flight from an altitude of 10,000 ft and a lateral offset of 1.7 miles which resulted in a precision flare and landing into the wind at a predetermined location. At times, the autonomous flight was conducted in the presence of winds approximately equal to vehicle airspeed. Several techniques for computing the winds postflight were evaluated. Future program objectives are also presented.
NASA Technical Reports Server (NTRS)
Reynolds, Thomas L.; Bailey, Delbert B.; Lewinski, Daniel F.; Roseburg, Conrad M.; Palaszewski, Bryan (Technical Monitor)
2001-01-01
The purpose of this technology assessment is to define a multiphase research study program investigating Onboard Inert Gas Generation Systems (OBIGGS) and Onboard Oxygen Generation Systems (OBOGS) that would identify current airplane systems design and certification requirements (Subtask 1); explore state-of-the-art technology (Subtask 2); develop systems specifications (Subtask 3); and develop an initial system design (Subtask 4). If feasible, consideration may be given to the development of a prototype laboratory test system that could potentially be used in commercial transport aircraft (Subtask 5). These systems should be capable of providing inert nitrogen gas for improved fire cargo compartment fire suppression and fuel tank inerting and emergency oxygen for crew and passenger use. Subtask I of this research study, presented herein, defines current production aircraft certification requirements and design objectives necessary to meet mandatory FAA certification requirements and Boeing design and performance specifications. These requirements will be utilized for baseline comparisons for subsequent OBIGGS/OBOGS application evaluations and assessments.
Cardiomed System for Medical Monitoring Onboard ISS
NASA Astrophysics Data System (ADS)
Lloret, J. C.; Aubry, P.; Nguyen, L.; Kozharinov, V.; Grachev, V.; Temnova, E.
2008-06-01
Cardiomed system was developed with two main objectives: (1) cardiovascular medical monitoring of cosmonauts onboard ISS together with LBNP countermeasure; (2) scientific study of the cardio-vascular system in micro-gravity. Cardiomed is an integrated end-to-end system, from the onboard segment operating different medical instruments, to the ground segment which provides real-time telemetry of on-board experiments and off-line analysis of physiological measurements. In the first part of the paper, Cardiomed is described from an architecture point of view together with some typical uses. In the second part, the most constraining requirements with respect to system design are introduced. Some requirements are generic; some are specific to medical follow-up, others to scientific objectives. In the last part, the main technical challenges which were addressed during the development and the qualification of Cardiomed and the lessons learnt are presented.
On-board processing architectures for satellite B-ISDN services
NASA Technical Reports Server (NTRS)
Inukai, Thomas; Shyy, Dong-Jye; Faris, Faris
1991-01-01
Onboard baseband processing architectures for future satellite broadband integrated services digital networks (B-ISDN's) are addressed. To assess the feasibility of implementing satellite B-ISDN services, critical design issues, such as B-ISDN traffic characteristics, transmission link design, and a trade-off between onboard circuit and fast packet switching, are analyzed. Examples of the two types of switching mechanisms and potential onboard network control functions are presented. A sample network architecture is also included to illustrate a potential onboard processing system.
On-board processing satellite network architectures for broadband ISDN
NASA Technical Reports Server (NTRS)
Inukai, Thomas; Faris, Faris; Shyy, Dong-Jye
1992-01-01
Onboard baseband processing architectures for future satellite broadband integrated services digital networks (B-ISDN's) are addressed. To assess the feasibility of implementing satellite B-ISDN services, critical design issues, such as B-ISDN traffic characteristics, transmission link design, and a trade-off between onboard circuit and fast packet switching, are analyzed. Examples of the two types of switching mechanisms and potential onboard network control functions are presented. A sample network architecture is also included to illustrate a potential onboard processing system.
Mapped Landmark Algorithm for Precision Landing
NASA Technical Reports Server (NTRS)
Johnson, Andrew; Ansar, Adnan; Matthies, Larry
2007-01-01
A report discusses a computer vision algorithm for position estimation to enable precision landing during planetary descent. The Descent Image Motion Estimation System for the Mars Exploration Rovers has been used as a starting point for creating code for precision, terrain-relative navigation during planetary landing. The algorithm is designed to be general because it handles images taken at different scales and resolutions relative to the map, and can produce mapped landmark matches for any planetary terrain of sufficient texture. These matches provide a measurement of horizontal position relative to a known landing site specified on the surface map. Multiple mapped landmarks generated per image allow for automatic detection and elimination of bad matches. Attitude and position can be generated from each image; this image-based attitude measurement can be used by the onboard navigation filter to improve the attitude estimate, which will improve the position estimates. The algorithm uses normalized correlation of grayscale images, producing precise, sub-pixel images. The algorithm has been broken into two sub-algorithms: (1) FFT Map Matching (see figure), which matches a single large template by correlation in the frequency domain, and (2) Mapped Landmark Refinement, which matches many small templates by correlation in the spatial domain. Each relies on feature selection, the homography transform, and 3D image correlation. The algorithm is implemented in C++ and is rated at Technology Readiness Level (TRL) 4.
NASA Astrophysics Data System (ADS)
Yu, Xiaozhou; Zhou, Jun; Zhu, Peijie; Guo, Jian
2018-06-01
Most of the CubeSats have a volume range from 1U to 3U, which limits their applications due to the difficulty of miniaturizing payloads. To facilitate the needs on a larger but low-cost satellite platform, the AOXiang (AOX) project has been developed by Northwestern Polytechnical University (NPU). The primary objectives of AOX project are four-folds: 1) To demonstrate the world first 12U CubeSat Star of AOXiang and 12U orbit deployer which uses an innovative electromagnetic unlocking technology. 2) To investigate the feasibility of using polarized sunlight for spacecraft attitude determination and navigation, and perform microgravity research using a miniaturized gravimeter. 3) To test a fault tolerant on-board computer using the System On the Programmable Chip (SOPC) technology, and 4) To gain the experience from developing the CubeSat and the subsystems. The CubeSat was launched in June 2016. Now, the mission has achieved all the goals. This paper provides the detail information of the AOX project, with a focus on the introduction of the subsystems of the 12U CubeSat, the orbit deployer and the payloads. The recent in-orbit results of the first NPU are also presented. In addition to the educational objective that has been reached with more than 50 young scholars and students participated in the project.
Management of the Space Station Freedom onboard local area network
NASA Technical Reports Server (NTRS)
Miller, Frank W.; Mitchell, Randy C.
1991-01-01
An operational approach is proposed to managing the Data Management System Local Area Network (LAN) on Space Station Freedom. An overview of the onboard LAN elements is presented first, followed by a proposal of the operational guidelines by which management of the onboard network may be effected. To implement the guidelines, a recommendation is then presented on a set of network management parameters which should be made available in the onboard Network Operating System Computer Software Configuration Item and Fiber Distributed Data Interface firmware. Finally, some implications for the implementation of the various network management elements are discussed.
FLEXnav: a fuzzy logic expert dead-reckoning system for the Segway RMP
NASA Astrophysics Data System (ADS)
Ojeda, Lauro; Raju, Mukunda; Borenstein, Johann
2004-09-01
Most mobile robots use a combination of absolute and relative sensing techniques for position estimation. Relative positioning techniques are generally known as dead-reckoning. Many systems use odometry as their only dead-reckoning means. However, in recent years fiber optic gyroscopes have become more affordable and are being used on many platforms to supplement odometry, especially in indoor applications. Still, if the terrain is not level (i.e., rugged or rolling terrain), the tilt of the vehicle introduces errors into the conversion of gyro readings to vehicle heading. In order to overcome this problem vehicle tilt must be measured and factored into the heading computation. A unique new mobile robot is the Segway Robotics Mobility Platform (RMP). This functionally close relative of the innovative Segway Human Transporter (HT) stabilizes a statically unstable single-axle robot dynamically, based on the principle of the inverted pendulum. While this approach works very well for human transportation, it introduces as unique set of challenges to navigation equipment using an onboard gyro. This is due to the fact that in operation the Segway RMP constantly changes its forward tilt, to prevent dynamically falling over. This paper introduces our new Fuzzy Logic Expert rule-based navigation (FLEXnav) method for fusing data from multiple gyroscopes and accelerometers in order to estimate accurately the attitude (i.e., heading and tilt) of a mobile robot. The attitude information is then further fused with wheel encoder data to estimate the three-dimensional position of the mobile robot. We have further extended this approach to include the special conditions of operation on the Segway RMP. The paper presents experimental results of a Segway RMP equipped with our system and running over moderately rugged terrain.
1998-09-17
KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Hazardous Servicing Facility prepare Deep Space 1 for launch aboard a Boeing Delta 7326 rocket in October. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Most of its mission objectives will be completed within the first two months. A near-Earth asteroid, 1992 KD, has also been selected for a possible flyby
Deep Space 1 is prepared for launch
NASA Technical Reports Server (NTRS)
1998-01-01
Workers in the Payload Hazardous Servicing Facility prepare Deep Space 1 for launch aboard a Boeing Delta 7326 rocket in October. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Most of its mission objectives will be completed within the first two months. A near- Earth asteroid, 1992 KD, has also been selected for a possible flyby.
NASA Astrophysics Data System (ADS)
Wells, Jeffrey S.; Wurth, Timothy J.; Manning, Mark C.
2004-09-01
The Homeland Defense community is increasing its focus on port security and harbor protection. Rising to the challenge, the U.S. Coast Guard is tasked with monitoring and protecting our harbors where commercial container ships enter. Tracking of the onboard containers is of great concern to the protectors of the waterfront. A system capable of identifying the number of containers onboard the vessel, when the containers are added or removed, contents of the containers, etc., will significantly reduce the potential for a security problem by providing essential information to the Coast Guard or other port security so that they can decide whether or not pre-boarding is necessary. That is, boarding the ship and inspecting the cargo while still at a safe distance from the harbor. A conceptual pictorial of this concept is shown in Figure 1. This paper presents a system that utilizes transmitters embedded on the containers which incorporate unique ID codes identifying the container, its history, and other information. A Communication/Navigation Aid (C/NA) type vehicle/buoy concept, presently being developed by Sippican (under contract to the Office of Naval Research (ONR) as part of the Autonomous Operations -- Future Naval Capabilities (AO-FNC) program, positioned at sea, would include a payload of NuWaves" communication transceivers able to receive the cargo container"s transmitted ID and forward this information by RF link to a ground station. The Port Authority and/or the Coast Guard would then utilize the information to make an assessment of the vessel prior to port entry. Although, this paper illustrates a scenario applicable to the cargo shipping industry, it is also applicable to other homeland defense areas such as unattended open ocean force protection, drug and law enforcement, and environmental monitoring.
Detecting Volcanic Ash Plumes with GNSS Signals
NASA Astrophysics Data System (ADS)
Rainville, N.; Larson, K. M.; Palo, S. E.; Mattia, M.; Rossi, M.; Coltelli, M.; Roesler, C.; Fee, D.
2016-12-01
Global Navigation Satellite Systems (GNSS) receivers are commonly placed near volcanic sites to measure ground deformation. In addition to the carrier phase data used to measure ground position, these receivers also record Signal to Noise ratio (SNR) data. Larson (2013) showed that attenuations in SNR data strongly correlate with ash emissions at a series of eruptions of Redoubt Volcano. This finding has been confirmed at eruptions for Tongariro, Mt Etna, Mt Shindake, and Sakurajima. In each of these detections, very expensive geodetic quality GNSS receivers were used. If low-cost GNSS instruments could be used instead, a networked array could be deployed and optimized for plume detection and tomography. The outputs of this sensor array could then be used by both local volcanic observatories and Volcano Ash Advisory Centers. Here we will describe progress in developing such an array. The sensors we are working with are intended for navigation use, and thus lack the supporting power and communications equipment necessary for a networked system. Reliably providing those features is major challenge for the overall sensor design. We have built prototypes of our Volcano Ash Plume Receiver (VAPR), with solar panels, lithium-ion batteries and onboard data storage for preliminary testing. We will present results of our field tests of both receivers and antennas. A second critical need for our array is a reliable detection algorithm. We have tested our algorithm on data from recent eruptions and have incorporated the noise characteristics of the low-cost GNSS receiver. We have also developed a simulation capability so that the receivers can be deployed to optimize vent crossing GNSS signals.
Wireless avionics for space applications of fundamental physics
NASA Astrophysics Data System (ADS)
Wang, Linna; Zeng, Guiming
2016-07-01
Fundamental physics (FP) research in space relies on a strong support of spacecraft. New types of spacecraft including reusable launch vehicles, reentry space vehicles, long-term on-orbit spacecraft or other new type of spacecraft will pave the way for FP missions. In order to test FP theories in space, flight conditions have to be controlled to a very high precision, data collection and handling abilities have to be improved, real-time and reliable communications in critical environments are needed. These challenge the existing avionics of spacecraft. Avionics consists of guidance, navigation & control, TT&C, the vehicle management, etc. Wireless avionics is one of the enabling technologies to address the challenges. Reasons are expatiated of why it is of great advantage. This paper analyses the demands for wireless avionics by reviewing the FP missions and on-board wireless systems worldwide. Main types of wireless communication are presented. Preliminary system structure of wireless avionics are given. The characteristics of wireless network protocols and wireless sensors are introduced. Key technologies and design considerations for wireless avionics in space applications are discussed.
A storm-time plasmasphere evolution study using data assimilation
NASA Astrophysics Data System (ADS)
Nikoukar, R.; Bust, G. S.; Bishop, R. L.; Coster, A. J.; Lemon, C.; Turner, D. L.; Roeder, J. L.
2017-12-01
In this work, we study the evolution of the Earth's plasmasphere during geomagnetic active periods using the Plasmasphere Data Assimilation (PDA) model. The total electron content (TEC) measurements from an extensive network of global ground-based GPS receivers as well as GPS receivers on-board Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) satellites and Communications/Navigation Outage Forecasting System (C/NOFS) satellite are ingested into the model. Global Core Plasma model, which is an empirical plasmasphere model, is utilized as the background model. Based on the 3D-VAR optimization, the PDA assimilative model benefits from incorporation of regularization techniques to prevent non-physical altitudinal variation in density estimates due to the limited-angle observational geometry. This work focuses on the plasmapause location, plasmasphere erosion time scales and refilling rates during the main and recovery phases of geomagnetic storms as estimated from the PDA 3-dimensional global maps of electron density in the ionosphere/plasmasphere. The comparison between the PDA results with in-situ density measurements from THEMIS and Van Allen Probes, and the RCM-E first-principle model will be also presented.
NASA Astrophysics Data System (ADS)
Zhu, Zhen; Vana, Sudha; Bhattacharya, Sumit; Uijt de Haag, Maarten
2009-05-01
This paper discusses the integration of Forward-looking Infrared (FLIR) and traffic information from, for example, the Automatic Dependent Surveillance - Broadcast (ADS-B) or the Traffic Information Service-Broadcast (TIS-B). The goal of this integration method is to obtain an improved state estimate of a moving obstacle within the Field-of-View of the FLIR with added integrity. The focus of the paper will be on the approach phase of the flight. The paper will address methods to extract moving objects from the FLIR imagery and geo-reference these objects using outputs of both the onboard Global Positioning System (GPS) and the Inertial Navigation System (INS). The proposed extraction method uses a priori airport information and terrain databases. Furthermore, state information from the traffic information sources will be extracted and integrated with the state estimates from the FLIR. Finally, a method will be addressed that performs a consistency check between both sources of traffic information. The methods discussed in this paper will be evaluated using flight test data collected with a Gulfstream V in Reno, NV (GVSITE) and simulated ADS-B.
NASA Technical Reports Server (NTRS)
Flanders, J. H.; Helmers, C. T.; Stanten, S. F.
1973-01-01
The relationship is examined between the space shuttle onboard avionics and the ground test computer language GOAL when used in the onboard computers. The study is aimed at providing system analysis support to the feasibility analysis of a GOAL to HAL translator, where HAL is the language used to program the onboard computers for flight. The subject is dealt with in three aspects. First, the system configuration at checkout, the general checkout and launch sequences, and the inventory of subsystems are described. Secondly, the hierarchic organization of onboard software and different ways of introducing GOAL-derived software onboard are described. Also the flow of commands and test data during checkout is diagrammed. Finally, possible impact of error detection and redundancy management on the GOAL language is discussed.
On-board multispectral classification study. Volume 2: Supplementary tasks. [adaptive control
NASA Technical Reports Server (NTRS)
Ewalt, D.
1979-01-01
The operational tasks of the onboard multispectral classification study were defined. These tasks include: sensing characteristics for future space applications; information adaptive systems architectural approaches; data set selection criteria; and onboard functional requirements for interfacing with global positioning satellites.
NASA Technical Reports Server (NTRS)
Moore, Andrew J.; Schubert, Matthew; Rymer, Nicholas; Balachandran, Swee; Consiglio, Maria; Munoz, Cesar; Smith, Joshua; Lewis, Dexter; Schneider, Paul
2017-01-01
Flights at low altitudes in close proximity to electrical transmission infrastructure present serious navigational challenges: GPS and radio communication quality is variable and yet tight position control is needed to measure defects while avoiding collisions with ground structures. To advance unmanned aerial vehicle (UAV) navigation technology while accomplishing a task with economic and societal benefit, a high voltage electrical infrastructure inspection reference mission was designed. An integrated air-ground platform was developed for this mission and tested in two days of experimental flights to determine whether navigational augmentation was needed to successfully conduct a controlled inspection experiment. The airborne component of the platform was a multirotor UAV built from commercial off-the-shelf hardware and software, and the ground component was a commercial laptop running open source software. A compact ultraviolet sensor mounted on the UAV can locate 'hot spots' (potential failure points in the electric grid), so long as the UAV flight path adequately samples the airspace near the power grid structures. To improve navigation, the platform was supplemented with two navigation technologies: lidar-to-polyhedron preflight processing for obstacle demarcation and inspection distance planning, and trajectory management software to enforce inspection standoff distance. Both navigation technologies were essential to obtaining useful results from the hot spot sensor in this obstacle-rich, low-altitude airspace. Because the electrical grid extends into crowded airspaces, the UAV position was tracked with NASA unmanned aerial system traffic management (UTM) technology. The following results were obtained: (1) Inspection of high-voltage electrical transmission infrastructure to locate 'hot spots' of ultraviolet emission requires navigation methods that are not broadly available and are not needed at higher altitude flights above ground structures. (2) The sensing capability of a novel airborne UV detector was verified with a standard ground-based instrument. Flights with this sensor showed that UAV measurement operations and recording methods are viable. With improved sensor range, UAVs equipped with compact UV sensors could serve as the detection elements in a self-diagnosing power grid. (3) Simplification of rich lidar maps to polyhedral obstacle maps reduces data volume by orders of magnitude, so that computation with the resultant maps in real time is possible. This enables real-time obstacle avoidance autonomy. Stable navigation may be feasible in the GPS-deprived environment near transmission lines by a UAV that senses ground structures and compares them to these simplified maps. (4) A new, formally verified path conformance software system that runs onboard a UAV was demonstrated in flight for the first time. It successfully maneuvered the aircraft after a sudden lateral perturbation that models a gust of wind, and processed lidar-derived polyhedral obstacle maps in real time. (5) Tracking of the UAV in the national airspace using the NASA UTM technology was a key safety component of this reference mission, since the flights were conducted beneath the landing approach to a heavily used runway. Comparison to autopilot tracking showed that UTM tracking accurately records the UAV position throughout the flight path.
The calibration and flight test performance of the space shuttle orbiter air data system
NASA Technical Reports Server (NTRS)
Dean, A. S.; Mena, A. L.
1983-01-01
The Space Shuttle air data system (ADS) is used by the guidance, navigation and control system (GN&C) to guide the vehicle to a safe landing. In addition, postflight aerodynamic analysis requires a precise knowledge of flight conditions. Since the orbiter is essentially an unpowered vehicle, the conventional methods of obtaining the ADS calibration were not available; therefore, the calibration was derived using a unique and extensive wind tunnel test program. This test program included subsonic tests with a 0.36-scale orbiter model, transonic and supersonic tests with a smaller 0.2-scale model, and numerous ADS probe-alone tests. The wind tunnel calibration was further refined with subsonic results from the approach and landing test (ALT) program, thus producing the ADS calibration for the orbital flight test (OFT) program. The calibration of the Space Shuttle ADS and its performance during flight are discussed in this paper. A brief description of the system is followed by a discussion of the calibration methodology, and then by a review of the wind tunnel and flight test programs. Finally, the flight results are presented, including an evaluation of the system performance for on-board systems use and a description of the calibration refinements developed to provide the best possible air data for postflight analysis work.
a Light-Weight Laser Scanner for Uav Applications
NASA Astrophysics Data System (ADS)
Tommaselli, A. M. G.; Torres, F. M.
2016-06-01
Unmanned Aerial Vehicles (UAV) have been recognized as a tool for geospatial data acquisition due to their flexibility and favourable cost benefit ratio. The practical use of laser scanning devices on-board UAVs is also developing with new experimental and commercial systems. This paper describes a light-weight laser scanning system composed of an IbeoLux scanner, an Inertial Navigation System Span-IGM-S1, from Novatel, a Raspberry PI portable computer, which records data from both systems and an octopter UAV. The performance of this light-weight system was assessed both for accuracy and with respect to point density, using Ground Control Points (GCP) as reference. Two flights were performed with the UAV octopter carrying the equipment. In the first trial, the flight height was 100 m with six strips over a parking area. The second trial was carried out over an urban park with some buildings and artificial targets serving as reference Ground Control Points. In this experiment a flight height of 70 m was chosen to improve target response. Accuracy was assessed based on control points the coordinates of which were measured in the field. Results showed that vertical accuracy with this prototype is around 30 cm, which is acceptable for forest applications but this accuracy can be improved using further refinements in direct georeferencing and in the system calibration.
The SpaceCube Family of Hybrid On-Board Science Data Processors: An Update
NASA Astrophysics Data System (ADS)
Flatley, T.
2012-12-01
SpaceCube is an FPGA based on-board hybrid science data processing system developed at the NASA Goddard Space Flight Center (GSFC). The goal of the SpaceCube program is to provide 10x to 100x improvements in on-board computing power while lowering relative power consumption and cost. The SpaceCube design strategy incorporates commercial rad-tolerant FPGA technology and couples it with an upset mitigation software architecture to provide "order of magnitude" improvements in computing power over traditional rad-hard flight systems. Many of the missions proposed in the Earth Science Decadal Survey (ESDS) will require "next generation" on-board processing capabilities to meet their specified mission goals. Advanced laser altimeter, radar, lidar and hyper-spectral instruments are proposed for at least ten of the ESDS missions, and all of these instrument systems will require advanced on-board processing capabilities to facilitate the timely conversion of Earth Science data into Earth Science information. Both an "order of magnitude" increase in processing power and the ability to "reconfigure on the fly" are required to implement algorithms that detect and react to events, to produce data products on-board for applications such as direct downlink, quick look, and "first responder" real-time awareness, to enable "sensor web" multi-platform collaboration, and to perform on-board "lossless" data reduction by migrating typical ground-based processing functions on-board, thus reducing on-board storage and downlink requirements. This presentation will highlight a number of SpaceCube technology developments to date and describe current and future efforts, including the collaboration with the U.S. Department of Defense - Space Test Program (DoD/STP) on the STP-H4 ISS experiment pallet (launch June 2013) that will demonstrate SpaceCube 2.0 technology on-orbit.; ;
Drop Tower tests in preparation of a Tethered Electromagnetic Docking space demonstration
NASA Astrophysics Data System (ADS)
Olivieri, Lorenzo; Francesconi, Alessandro; Antonello, Andrea; Bettiol, Laura; Branz, Francesco; Duzzi, Matteo; Mantellato, Riccardo; Sansone, Francesco; Savioli, Livia
2016-07-01
A group of students of the University of Padova is recently developing some technologies to implement a Tethered Electromagnetic Docking (TED) experiment, a novel system for close rendezvous and mating manoeuvres between two spacecraft, consisting in a small tethered probe ejected by the chaser and magnetically guided by a receiving electromagnet mounted on the target. Because of the generated magnetic field, automatic self-alignment and mating are possible; then, as the tether is rewinded, the chaser is able to dock with the target. This concept allows to simplify standard docking procedures, thanks to the reduction of proximity navigation and guidance requirements, as well as consequent fuel reduction. Other interesting applications are expected, from active debris removal to space tugging; in particular, the utilization of the tethered connection for detumbling operations is considered. The realization of a space demonstrator requires a preliminary verification of the critical technologies employed in TED, in particular the magnetic guidance and the probe deploy and retrieve; in the framework of ESA "Drop your Thesis!" 2014 and 2016 campaigns the experiments FELDs (Flexible Electromagnetic Leash Docking system) and STAR (System for Tether Automatic Retrieval) have been focused on the test of such critical elements in the relevant microgravity environment of ZARM Drop Tower in Bremen. In particular, FELDs consisted in a simplified model of TED with a magnetic target interface, a passive tethered probe and its launch system: the experiment allowed to assess the passive self-alignment of the probe with respect to the target and to study the effect of friction between the tether and the release system. Similarly, STAR is investigating the tether actively controlled deployment and retrieval, with the experiment campaign planned on November 2016. In addition, another microgravity experiment is in preparation for the investigation of active magnetic navigation: PACMAN (Position and Attitude Control with MAgnetic Navigation) will consist in a CubeSat-sized spacecraft mock-up using on-board actively-controlled electromagnetic coils for guidance This paper describes the TED concept and presents the evaluation its performances with respect to standard docking procedure. The roadmap in TED development is then introduced, focusing on the importance of microgravity tests in the assessment of its critical technologies and discussing the influence of the collected data on the design drivers of the proposed space demonstrator.
33 CFR 62.51 - Western Rivers Marking System.
Code of Federal Regulations, 2012 CFR
2012-07-01
....51 Section 62.51 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.51 Western Rivers Marking System. (a) A variation of the standard U.S. aids to navigation system described above is employed...
33 CFR 62.51 - Western Rivers Marking System.
Code of Federal Regulations, 2013 CFR
2013-07-01
....51 Section 62.51 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.51 Western Rivers Marking System. (a) A variation of the standard U.S. aids to navigation system described above is employed...
33 CFR 62.51 - Western Rivers Marking System.
Code of Federal Regulations, 2014 CFR
2014-07-01
....51 Section 62.51 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.51 Western Rivers Marking System. (a) A variation of the standard U.S. aids to navigation system described above is employed...
Landmark-aided localization for air vehicles using learned object detectors
NASA Astrophysics Data System (ADS)
DeAngelo, Mark Patrick
This research presents two methods to localize an aircraft without GPS using fixed landmarks observed from an optical sensor. Onboard absolute localization is useful for vehicle navigation free from an external network. The objective is to achieve practical navigation performance using available autopilot hardware and a downward pointing camera. The first method uses computer vision cascade object detectors, which are trained to detect predetermined, distinct landmarks prior to a flight. The first method also concurrently explores aircraft localization using roads between landmark updates. During a flight, the aircraft navigates with attitude, heading, airspeed, and altitude measurements and obtains measurement updates when landmarks are detected. The sensor measurements and landmark coordinates extracted from the aircraft's camera images are combined into an unscented Kalman filter to obtain an estimate of the aircraft's position and wind velocities. The second method uses computer vision object detectors to detect abundant generic landmarks referred as buildings, fields, trees, and road intersections from aerial perspectives. Various landmark attributes and spatial relationships to other landmarks are used to help associate observed landmarks with reference landmarks. The computer vision algorithms automatically extract reference landmarks from maps, which are processed offline before a flight. During a flight, the aircraft navigates with attitude, heading, airspeed, and altitude measurements and obtains measurement corrections by processing aerial photos with similar generic landmark detection techniques. The method also combines sensor measurements and landmark coordinates into an unscented Kalman filter to obtain an estimate of the aircraft's position and wind velocities.