Sample records for oncofetal h19-derived mir-675

  1. The long non-coding RNA H19-derived miR-675 modulates human gastric cancer cell proliferation by targeting tumor suppressor RUNX1

    SciTech Connect

    Zhuang, Ming; Gao, Wen; Xu, Jing; Wang, Ping; Shu, Yongqian


    Graphical abstract: - Highlights: • H19 regulates gastric cancer cell proliferation phenotype via miR-675. • MiR-675 modulates cell proliferation of gastric cancer cells by targeting tumor suppressor RUNX1. • The H19/miR-675/RUNX1 axis plays an important role in the tumorigenesis of gastric cancer. - Abstract: The lncRNA H19 has been recently shown to be upregulated and play important roles in gastric cancer tumorigenesis. However, the precise molecular mechanism of H19 and its mature product miR-675 in the carcinogenesis of gastric cancer remains unclear. In this study, we found that miR-675 was positively expressed with H19 and was a pivotal mediator in H19-induced gastric cancer cell growth promotion. Subsequently, the tumor suppressor Runt Domain Transcription Factor1 (RUNX1) was confirmed to be a direct target of miR-675 using a luciferase reporter assay and Western blotting analyses. A series of rescue assays indicated that RUNX1 mediated H19/miR-67-induced gastric cancer cell phenotypic changes. Moreover, the inverse relationship between the expression of RUNX1 and H19/miR-675 was also revealed in gastric cancer tissues and gastric cancer cell lines. Taken together, our study demonstrated that the novel pathway H19/miR-675/RUNX1 regulates gastric cancer development and may serve as a potential target for gastric cancer therapy.

  2. Oncofetal H19 RNA promotes tumor metastasis.


    Matouk, Imad J; Raveh, Eli; Abu-lail, Rasha; Mezan, Shaul; Gilon, Michal; Gershtain, Eitan; Birman, Tatiana; Gallula, Jennifer; Schneider, Tamar; Barkali, Moshe; Richler, Carmelit; Fellig, Yakov; Sorin, Vladimir; Hubert, Ayala; Hochberg, Abraham; Czerniak, Abraham


    The oncofetal H19 gene transcribes a long non-coding RNA(lncRNA) that is essential for tumor growth. Here we found that numerous established inducers of epithelial to mesenchymal transition(EMT) also induced H19/miR-675 expression. Both TGF-β and hypoxia concomitantly induced H19 and miR-675 with the induction of EMT markers. We identified the PI3K/AKT pathway mediating the inductions of Slug, H19 RNA and miR-675 in response to TGF-β treatment, while Slug induction depended on H19 RNA. In the EMT induced multidrug resistance model, H19 level was also induced. In a mouse breast cancer model, H19 expression was tightly correlated with metastatic potential. In patients, we detected high H19 expression in all common metastatic sites tested, regardless of tumor primary origin. H19 RNA suppressed the expression of E-cadherin protein. H19 up-regulated Slug expression concomitant with the suppression of E-cadherin protein through a mechanism that involved miR-675. Slug also up-regulated H19 expression and activated its promoter. Altogether, these results may support the existence of a positive feedback loop between Slug and H19/miR-675, that regulates E-cadherin expression. H19 RNA enhanced the invasive potential of cancer cells in vitro and enhanced tumor metastasis in vivo. Additionally, H19 knockdown attenuated the scattering and tumorigenic effects of HGF/SF. Our results present novel mechanistic insights into a critical role for H19 RNA in tumor progression and indicate a previously unknown link between H19/miR-675, Slug and E-cadherin in the regulation of cancer cell EMT programs.

  3. MiR675-5p Acts on HIF-1α to Sustain Hypoxic Responses: A New Therapeutic Strategy for Glioma

    PubMed Central

    Lo Dico, Alessia; Costa, Viviana; Martelli, Cristina; Diceglie, Cecilia; Rajata, Francesca; Rizzo, Aroldo; Mancone, Carmine; Tripodi, Marco; Ottobrini, Luisa; Alessandro, Riccardo; Conigliaro, Alice


    Hypoxia is a common feature in solid tumours. In glioma, it is considered the major driving force for tumour angiogenesis and correlates with enhanced resistance to conventional therapies, increased invasiveness and a poor prognosis for patients. Here we describe, for the first time, that miR675-5p, embedded in hypoxia-induced long non-coding RNA H19, plays a mandatory role in establishing a hypoxic response and in promoting hypoxia-mediated angiogenesis. We demonstrated, in vitro and in vivo, that miR675-5p over expression in normoxia is sufficient to induce a hypoxic moreover, miR675-5p depletion in low oxygen conditions, drastically abolishes hypoxic responses including angiogenesis. In addition, our data indicate an interaction of miR675-5p, HIF-1α mRNA and the RNA Binding Protein HuR in hypoxia-induced responses. We suggest the modulation of miR675-5p as a new therapeutic option to promote or abolish hypoxia induced angiogenesis. PMID:27279905

  4. H19 non coding RNA-derived miR-675 enhances tumorigenesis and metastasis of breast cancer cells by downregulating c-Cbl and Cbl-b

    PubMed Central

    Vennin, Constance; Spruyt, Nathalie; Dahmani, Fatima; Julien, Sylvain; Bertucci, François; Finetti, Pascal; Chassat, Thierry; Bourette, Roland P.; Le Bourhis, Xuefen; Adriaenssens, Eric


    H19 is a long non-coding RNA precursor of miR-675microRNA. H19 is increasingly described to play key roles in the progression and metastasis of cancers from different tissue origins. We have previously shown that the H19 gene is activated by growth factors and increases breast cancer cell invasion. In this study, we established H19/miR-675 ectopic expression models of MDA-MB-231 breast cancer cells to further investigate the underlying mechanisms of H19 oncogenic action. We showed that overexpression of H19/miR-675 enhanced the aggressive phenotype of breast cancer cells including increased cell proliferation and migration in vitro, and increased tumor growth and metastasis in vivo. Moreover, we identified ubiquitin ligase E3 family (c-Cbl and Cbl-b) as direct targets of miR-675 in breast cancer cells. Using a luciferase assay, we demonstrated that H19, through its microRNA, decreased both c-Cbl and Cbl-b expression in all breast cancer cell lines tested. Thus, by directly binding c-Cbl and Cbl-b mRNA, miR-675 increased the stability and the activation of EGFR and c-Met, leading to sustained activation of Akt and Erk as well as enhanced cell proliferation and migration. Our data describe a novel mechanism of protumoral action of H19 in breast cancer. PMID:26353930

  5. H19 non coding RNA-derived miR-675 enhances tumorigenesis and metastasis of breast cancer cells by downregulating c-Cbl and Cbl-b.


    Vennin, Constance; Spruyt, Nathalie; Dahmani, Fatima; Julien, Sylvain; Bertucci, François; Finetti, Pascal; Chassat, Thierry; Bourette, Roland P; Le Bourhis, Xuefen; Adriaenssens, Eric


    H19 is a long non-coding RNA precursor of miR-675 microRNA. H19 is increasingly described to play key roles in the progression and metastasis of cancers from different tissue origins. We have previously shown that the H19 gene is activated by growth factors and increases breast cancer cell invasion. In this study, we established H19/miR-675 ectopic expression models of MDA-MB-231 breast cancer cells to further investigate the underlying mechanisms of H19 oncogenic action. We showed that overexpression of H19/miR-675 enhanced the aggressive phenotype of breast cancer cells including increased cell proliferation and migration in vitro, and increased tumor growth and metastasis in vivo. Moreover, we identified ubiquitin ligase E3 family (c-Cbl and Cbl-b) as direct targets of miR-675 in breast cancer cells. Using a luciferase assay, we demonstrated that H19, through its microRNA, decreased both c-Cbl and Cbl-b expression in all breast cancer cell lines tested. Thus, by directly binding c-Cbl and Cbl-b mRNA, miR-675 increased the stability and the activation of EGFR and c-Met, leading to sustained activation of Akt and Erk as well as enhanced cell proliferation and migration. Our data describe a novel mechanism of protumoral action of H19 in breast cancer.

  6. MiR-9-5p, miR-675-5p and miR-138-5p Damages the Strontium and LRP5-Mediated Skeletal Cell Proliferation, Differentiation, and Adhesion.


    Sun, Tianhao; Leung, Frankie; Lu, William W


    This study was designed to evaluate the effects of strontium on the expression levels of microRNAs (miRNAs) and to explore their effects on skeletal cell proliferation, differentiation, adhesion, and apoptosis. The targets of these miRNAs were also studied. Molecular cloning, cell proliferation assay, cell apoptosis assay, quantitative real-time PCR, and luciferase reporter assay were used. Strontium altered the expression levels of miRNAs in vitro and in vivo. miR-9-5p, miR-675-5p, and miR-138-5p impaired skeletal cell proliferation, cell differentiation and cell adhesion. miR-9-5p and miR-675-5p induced MC3T3-E1 cell apoptosis more specifically than miR-138-5p. miR-9-5p, miR-675-5p, and miR-138-5p targeted glycogen synthase kinase 3 β (GSK3β), ATPase Aminophospholipid Transporter Class I Type 8A Member 2 (ATP8A2), and Eukaryotic Translation Initiation Factor 4E Binding Protein 1 (EIF4EBP1), respectively. Low-density lipoprotein receptor-related protein 5 (LRP5) played a positive role in skeletal development. miR-9-5p, miR-675-5p, and miR-138-5p damage strontium and LRP5-mediated skeletal cell proliferation, differentiation, and adhesion, and induce cell apoptosis by targeting GSK3β, ATP8A2, and EIF4EBP1, respectively.

  7. Induction of epithelial-mesenchymal transition with O-glycosylated oncofetal fibronectin

    PubMed Central

    Ding, Yao; Gelfenbeyn, Kirill; Freire-de-Lima, Leonardo; Handa, Kazuko; Hakomori, Sen-itiroh


    Epithelial-mesenchymal transition (EMT) has been shown to play a key role in embryogenesis and cancer progression. We previously found that fibronectin (FN) carrying O-GalNAc at a specific site is selectively expressed in cancer and fetal cells/tissues, and termed oncofetal FN (onfFN). Here, we show that (i) a newly-established monoclonal antibody against FN lacking the O-GalNAc, termed normalFN (norFN), is useful for isolation of onfFN, (ii) onfFN, but not norFN, can induce EMT in human lung carcinoma cells, (iii) onfFN has a synergistic effect with transforming growth factor (TGF)β1 in EMT induction. PMID:22641031

  8. The product of the imprinted H19 gene is an oncofetal RNA.

    PubMed Central

    Ariel, I.; Ayesh, S.; Perlman, E. J.; Pizov, G.; Tanos, V.; Schneider, T.; Erdmann, V. A.; Podeh, D.; Komitowski, D.; Quasem, A. S.; de Groot, N.; Hochberg, A.


    AIMS/BACKGROUND: The H19 gene is an imprinted, maternally expressed gene in humans. It is tightly linked and coregulated with the imprinted, paternally expressed gene of insulin-like growth factor 2. The H19 gene product is not translated into protein and functions as an RNA molecule. Although its role has been investigated for more than a decade, its biological function is still not understood fully. H19 is abundantly expressed in many tissues from early stages of embryogenesis through fetal life, and is down regulated postnatally. It is also expressed in certain childhood and adult tumours. This study was designed to screen the expression of H19 in human cancer and its relation to the expression of H19 in the fetus. METHODS: Using in situ hybridisation with a [35S] labelled probe, H19 mRNA was detected in paraffin wax sections of fetal tissues from the first and second trimesters of pregnancy and of a large array of human adult and childhood tumours arising from these tissues. RESULTS: The H19 gene is expressed in tumours arising from tissues which express this gene in fetal life. Its expression in the fetus and in cancer is closely linked with tissue differentiation. CONCLUSIONS: Based on these and previous data, H19 is neither a tumour suppressor gene nor an oncogene. Its product is an oncofetal RNA. The potential use of this RNA as a tumour marker should be evaluated. Images PMID:9208812

  9. The receptor tyrosine kinase ROR1--an oncofetal antigen for targeted cancer therapy.


    Hojjat-Farsangi, Mohammad; Moshfegh, Ali; Daneshmanesh, Amir Hossein; Khan, Abdul Salam; Mikaelsson, Eva; Osterborg, Anders; Mellstedt, Håkan


    Targeted cancer therapies have emerged as new treatment options for various cancer types. Among targets, receptor tyrosine kinases (RTKs) are among the most promising. ROR1 is a transmembrane RTK of importance during the normal embryogenesis for the central nervous system, heart, lung and skeletal systems, but is not expressed in normal adult tissues. However, ROR1 is overexpressed in several human malignancies and may act as a survival factor for tumor cells. Its unique expression by malignant cells may provide a target for novel therapeutics including monoclonal antibodies (mAbs) and small molecule inhibitors of tyrosine kinases (TKI) for the treatment of cancer. Promising preclinical results have been reported in e.g. chronic lymphocytic leukemia, pancreatic carcinoma, lung and breast cancer. ROR1 might also be an interesting oncofetal antigen for active immunotherapy. In this review, we provide an overview of the ROR1 structure and functions in cancer and highlight emerging therapeutic options of interest for targeting ROR1 in tumor therapy.

  10. Use of the 60 kd oncofetal protein for monitoring chemical hepatocarcinogenesis

    SciTech Connect

    Hanausek-Walaszek, M.; Walaszek, Z.; Webb, T.E.


    The 60 kd oncofetal protein (OFP-60) was earlier found in the blood plasma of tumor hosts and carcinogen-treated animals. OFP-60 was shown to be induced by all initiators of chemical carcinogenesis tested but neither by tumor promoters nor by liver regeneration. In the present study a hepatocarcinogen-mediated induction of OFP-60 and its release to circulation has been monitored by use of a sensitive biochemical assay. This assay measures, in a cell-free system, the energy-dependent release of nuclear mRNA sequences, catalyzed by OFP-60. A non-necrogenic dose by diethylnitrosamine (DENA) was administered to female Sprague Dawley rats 24 hours after partial hepatectomy. Half of the rats received phenobarbital in the diet beginning 7 weeks post-carcinogen treatment. Upon treatment with DENA, the relative activity of OFP-60 in the liver cytosol gradually increases up to 6 weeks and then remains constant. In the blood, the OFP-60 activity increases only up to 3 weeks, then decreases to basal level before a slow ascent is observed. Phenobarbital increases the activity in both liver and blood. The increase may be due to expansion of the cell population in the OFP-60 containing foci, while the decrease in the blood to immune clearance.

  11. Development and use of monoclonal antibodies against an oncofetal protein associated with carcinogenesis and tumorigenesis.


    Runge, S W; Larroya-Runge, S N; Schumm, D E; Webb, T E


    An oncofetal protein (OFP) studied in our laboratory associated with embryogenesis, carcinogenesis and tumorigenesis has as its known biological function the modification of RNA release from isolated nuclei. In the present study, we have developed and investigated the use of monoclonal antibodies against OFP. Six hybridoma cell lines (A-F) were isolated by screening the hybridoma culture media for anti-OFP antibodies (MOFP) with an indirect ELISA and by testing the ability of these antibodies complexed with anti-mouse IgG-agarose to bind to rat OFP and remove its associated RNA transport activity from solution (Immunobioassay). An inhibition ELISA developed to measure OFP gave a linear response up to 20 ng of plasma protein from a tumor-bearing rat. Western blot analysis using these monoclonals showed that OFP from a rat tumor (H7777) cytosol that shed to the blood consisted of two species exhibiting molecular weights of 50 and 55 kD respectively. In order to show the usefulness of our assays, a preliminary study showing the ability of the immunobioassay to detect the expression of OFP in the plasma of carcinogen treated rats in a dosage dependent manner has been presented. Since OFP is produced in the target organ of rats shortly after treatment with carcinogens and persists in the preneoplastic foci and subsequent tumors, these monoclonal antibodies will be valuable in studying its involvement in chemical carcinogenesis and tumorigenesis.

  12. Involvement of O-glycosylation defining oncofetal fibronectin in epithelial-mesenchymal transition process

    PubMed Central

    Freire-de-Lima, Leonardo; Gelfenbeyn, Kirill; Ding, Yao; Mandel, Ulla; Clausen, Henrik; Handa, Kazuko; Hakomori, Sen-itiroh


    The process termed “epithelial–mesenchymal transition” (EMT) was originally discovered in ontogenic development, and has been shown to be one of the key steps in tumor cell progression and metastasis. Recently, we showed that the expression of some glycosphingolipids (GSLs) is down-regulated during EMT in human and mouse cell lines. Here, we demonstrate the involvement of GalNAc-type (or mucin-type) O-glycosylation in EMT process, induced with transforming growth factor β (TGF-β) in human prostate epithelial cell lines. We found that: (i) TGF-β treatment caused up-regulation of oncofetal fibronectin (onfFN), which is defined by mAb FDC6, and expressed in cancer or fetal cells/tissues, but not in normal adult cells/tissues. The reactivity of mAb FDC6 requires the addition of an O-glycan at a specific threonine, inside the type III homology connective segment (IIICS) domain of FN. (ii) This change is associated with typical EMT characteristics; i.e., change from epithelial to fibroblastic morphology, enhanced cell motility, decreased expression of a typical epithelial cell marker, E-cadherin, and enhanced expression of mesenchymal markers. (iii) TGF-β treatment up-regulated mRNA level of FN containing the IIICS domain and GalNAc-T activity for the IIICS domain peptide substrate containing the FDC6 onfFN epitope. (iv) Knockdown of GalNAc-T6 and T3 inhibited TGF-β–induced up-regulation of onfFN and EMT process. (v) Involvement of GSLs was not detectable with the EMT process in these cell lines. These findings indicate the important functional role of expression of onfFN, defined by site-specific O-glycosylation at IIICS domain, in the EMT process. PMID:22006308

  13. The oncofetal protein IMP3: a novel biomarker for endometrial serous carcinoma.


    Zheng, Wenxin; Yi, Xiaofang; Fadare, Oluwole; Liang, Sharon X; Martel, Maritza; Schwartz, Peter E; Jiang, Zhong


    Insulin-like growth factor II mRNA-binding protein 3 (IMP3) is an oncofetal protein highly expressed in fetal tissue and malignant tumors but rarely found in adult benign tissues. The aim of this study is to determine the expression of IMP3 in benign endometrium, endometrial cancer, and its precursor lesions, trying to see whether IMP3 has any diagnostic usage. Two hundred ninety-eight endometrial samples were examined for IMP3 expression by immunohistochemistry. These included benign endometrium (n=68), atypical hyperplasia or endometrial intraepithelial neoplasia (n=35), endometrial glandular dysplasia (n=21), endometrial intraepithelial carcinoma (n=18), endometrioid carcinoma (n=70), mucinous carcinoma (n=8), serous carcinoma (n=51), clear cell carcinoma (n=12), and other malignancies (n=15). Maturational patterns in the 68 benign endometrial samples included atrophic (n=12), proliferative (n=18), secretory (n=14), menstrual (n=8), and gestational (n=16). Most of the carcinomas were histologically pure; where mixed, the second component constituted <10% of the total tumor volume. The extent and intensity of IMP3 expression was semiquantitatively determined and scored for all samples. A renal cell carcinoma with known IMP3 expression was used as positive control for each immunohistochemistry run. Among the malignant cases, IMP3 expression was predominantly found in endometrial serous carcinoma and its putative precursor lesions, with 3 (14%) of 21 endometrial glandular dysplasia, 16 (89%) of 18 serous endometrial intraepithelial carcinoma, and 48 (94%) of 51 serous carcinomas (P<0.001). In contrast, the frequency of IMP3 expression was significantly lesser in nonserous malignancies with 0 (0%) of 35, 5 (7%) of 70, 0 (0%) of 8, 3 (25%) of 12, and 5 (33%) of 15 positive expression rates in atypical hyperplasia or endometrial intraepithelial neoplasia, endometrioid, mucinous, clear cell carcinomas, and other malignancies, respectively. The IMP3 staining was

  14. An oncofetal antigen, IMP-3-derived long peptides induce immune responses of both helper T cells and CTLs

    PubMed Central

    Hirayama, Masatoshi; Tomita, Yusuke; Yuno, Akira; Tsukamoto, Hirotake; Senju, Satoru; Imamura, Yuya; Sayem, Mohammad Abu; Irie, Atsushi; Yoshitake, Yoshihiro; Fukuma, Daiki; Shinohara, Masanori; Hamada, Akinobu; Jono, Hirofumi; Yuba, Eiji; Kono, Kenji; Yoshida, Koji; Tsunoda, Takuya; Nakayama, Hideki; Nishimura, Yasuharu


    ABSTRACT Insulin-like growth factor II mRNA-binding protein 3 (IMP-3), an oncofetal antigen identified using genome-wide cDNA microarray analyses, is overexpressed in several malignancies. IMP-3-derived cytotoxic T lymphocyte (CTL) epitopes have been used for peptide-based immunotherapies against various cancers. In addition to CTLs, induction of tumor-associated antigen (TAA)-specific helper T (Th) cells is crucial for establishment of effective antitumor immunity. In this study, we aimed to identify IMP-3-derived long peptides (IMP-3-LPs) carrying CTL and promiscuous Th-cell epitopes for use in cancer immunotherapy. IMP-3-derived Th-cell epitopes that bind to multiple HLA-class II molecules were predicted by in silico analysis, and their immunogenicity was determined by utilizing human T cells. We identified two highly immunogenic IMP-3-LPs presented by multiple HLA-class II molecules. One of the IMP-3-LPs encompassed two CTL epitopes that have been used for peptide-vaccine immunotherapy in ongoing clinical trials. IMP-3-LPs-specific Th cells responded to autologous dendritic cells (DCs) loaded with the recombinant IMP-3 proteins, suggesting that these s (LPs) can be naturally processed and presented. The IMP-3-LPs and specific Th cells augmented the expansion of IMP-3-specific CTLs, which was further enhanced by programmed cell death-1 (PD-1) blockade. In addition, IMP-3-LP encapsulated in liposomes was efficiently cross-presented in vitro, and this LP successfully cross-primed CTLs in HLA-A2 transgenic mice (Tgm) in vivo. Furthermore, one of the IMP-3-LPs induced IMP-3-specific Th cells from peripheral blood mononuclear cells (PBMCs) of head-and-neck malignant tumor (HNMT) patients. These findings suggest the potential usefulness of IMP-3-LPs in propagating both Th cells and CTLs and may have implications for IMP-3-LPs-based cancer immunotherapy. PMID:27471607

  15. Developmental transcription factor NFIB is a putative target of oncofetal miRNAs and is associated with tumour aggressiveness in lung adenocarcinoma.


    Becker-Santos, Daiana D; Thu, Kelsie L; English, John C; Pikor, Larissa A; Martinez, Victor D; Zhang, May; Vucic, Emily A; Luk, Margaret Ty; Carraro, Anita; Korbelik, Jagoda; Piga, Daniela; Lhomme, Nicolas M; Tsay, Mike J; Yee, John; MacAulay, Calum E; Lam, Stephen; Lockwood, William W; Robinson, Wendy P; Jurisica, Igor; Lam, Wan L


    Genes involved in fetal lung development are thought to play crucial roles in the malignant transformation of adult lung cells. Consequently, the study of lung tumour biology in the context of lung development has the potential to reveal key developmentally relevant genes that play critical roles in lung cancer initiation/progression. Here, we describe for the first time a comprehensive characterization of miRNA expression in human fetal lung tissue, with subsequent identification of 37 miRNAs in non-small cell lung cancer (NSCLC) that recapitulate their fetal expression patterns. Nuclear factor I/B (NFIB), a transcription factor essential for lung development, was identified as a potential frequent target for these 'oncofetal' miRNAs. Concordantly, analysis of NFIB expression in multiple NSCLC independent cohorts revealed its recurrent underexpression (in ∼40-70% of tumours). Interrogation of NFIB copy number, methylation, and mutation status revealed that DNA level disruption of this gene is rare, and further supports the notion that oncofetal miRNAs are likely the primary mechanism responsible for NFIB underexpression in NSCLC. Reflecting its functional role in regulating lung differentiation, low expression of NFIB was significantly associated with biologically more aggressive subtypes and, ultimately, poorer survival in lung adenocarcinoma patients. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  16. Repression by sustained-release. beta. -glucuronidase inhibitors of chemical carcinogen-mediated induction of a marker oncofetal protein in rodents

    SciTech Connect

    Walaszek, Z.; Hanausek-Walaszek, M.; Webb, T.E.


    The degree of induction of an oncofetal protein marker in rodents by selected chemical carcinogens has been correlated with changes in carcinogenicity induced by dietary D-glucaro-1,4-lactone (GL) based anticarcinogens. These potent anticarcinogens may act to increase the clearance of carcinogens as glucuronides through the inhibition of ..beta..-glucuronidase. The sustained-release forms are particularly effective, 1.5 mmol/kg of GL maintaining serum ..beta..-glucuronidase activity at or below 50% for only 1 h, while an equivalent amount of calcium glucarate (CGT) maintained this level of inhibition for over 5 h. CGT or other sustained-release inhibitors, when fed to rodents during administration of carcinogens that undergo glucuronidation, caused a marked reduction in the induction of the marker protein. For those systems where other markers of carcinogenesis were also assessed, it was determined the inhibition of marker-protein induction was quantitatively similar to both the inhibition of binding of the carcinogen to DNA and the subsequent induction of tumors in target organs. The following carcinogens were administered intraperitoneally: benzo(a)pryene; 7,12-demethylbenz(a)anthracene; 3-methylcholanthrene; 2-acetylaminofluorene; 2-naphthylamine; N-nitroso-N,N-dibutylamine; aflatoxin B1; 1-nitropyrene.

  17. Cross-Presentation of the Oncofetal Tumor Antigen 5T4 from Irradiated Prostate Cancer Cells--A Key Role for Heat-Shock Protein 70 and Receptor CD91.


    Salimu, Josephine; Spary, Lisa K; Al-Taei, Saly; Clayton, Aled; Mason, Malcolm D; Staffurth, John; Tabi, Zsuzsanna


    Immune responses contribute to the success of radiotherapy of solid tumors; however, the mechanism of triggering CD8(+) T-cell responses is poorly understood. Antigen cross-presentation from tumor cells by dendritic cells (DC) is a likely dominant mechanism to achieve CD8(+) T-cell stimulation. We established a cross-presentation model in which DCs present a naturally expressed oncofetal tumor antigen (5T4) from irradiated DU145 prostate cancer cells to 5T4-specific T cells. The aim was to establish which immunogenic signals are important in radiation-induced cross-presentation. Radiation (12 Gy) caused G2-M cell-cycle arrest and cell death, increased cellular 5T4 levels, high-mobility protein group-B1 (HMGB1) release, and surface calreticulin and heat-shock protein-70 (Hsp70) expression in DU145 cells. DCs phagocytosed irradiated tumor cells efficiently, followed by upregulation of CD86 on phagocytic DCs. CD8(+) 5T4-specific T cells, stimulated with these DCs, proliferated and produced IFNγ. Inhibition of HMGB1 or the TRIF/MyD88 pathway only had a partial effect on T-cell stimulation. Unlike previous investigators, we found no evidence that DCs carrying Asp299Gly Toll-like receptor-4 (TLR4) single-nucleotide polymorphism had impaired ability to cross-present tumor antigen. However, pretreatment of tumor cells with Hsp70 inhibitors resulted in a highly statistically significant and robust prevention of antigen cross-presentation and CD86 upregulation on DCs cocultured with irradiated tumor cells. Blocking the Hsp70 receptor CD91 also abolished cross-presentation. Together, the results from our study demonstrate that irradiation induces immunologically relevant changes in tumor cells, which can trigger CD8(+) T-cell responses via a predominantly Hsp70-dependent antigen cross-presentation process.

  18. UG311, An Oncofetal Marker Lost with Prostate Cancer Progression

    DTIC Science & Technology


    i~iit,• S... -{ $. .. .. ,, . .. .. . . .... . .. . ... . >FIGURE THE IGF AXIS IN THE DEVELOPMENT AND PROGRESSION OF PROSTATE CANCER. Christopher W...19. 55. Chan, J.M., Stampfer , M.J., Giovannucci, E., Gann, P.H., et al. 1998, Science, 279, 563. 56. Wolk, A., Mantzoros, C.S., Andersson, S.O

  19. HCC-DETECT: a combination of nuclear, cytoplasmic, and oncofetal proteins as biomarkers for hepatocellular carcinoma.


    Attallah, Abdelfattah M; El-Far, Mohamed; Malak, Camelia A Abdel; Omran, Mohamed M; Shiha, Gamal E; Farid, Khaled; Barakat, Lamiaa A; Albannan, Mohamed S; Attallah, Ahmed A; Abdelrazek, Mohamed A; Elbendary, Mohamed S; Sabry, Refaat; Hamoda, Gehan A; Elshemy, Mohamed M; Ragab, Abdallah A; Foda, Basma M; Abdallah, Sanaa O


    Currently, the search for suitable hepatocellular carcinoma (HCC) biomarkers is very intensive. Besides, efficacy and cost/effectiveness of screening and surveillance of cirrhotics for the diagnosis of HCC is still debated. So, the present study is concerned with the evaluation of cytokeratin-1 (CK-1) and nuclear matrix protein-52 (NMP-52) for identifying HCC. Two-hundred and eighty individuals categorized into three groups [liver fibrosis (F1-F3), cirrhosis (F4), and HCC] constituted this study. Western blot was used for identifying CK-1 and NMP-52 in serum samples. As a result, a single immunoreactive band was shown at 67 and 52 kDa corresponding to CK-1 and NMP-52, respectively. Both CK-1 and NMP-52 bands were cut and electroeluted separately. These markers were quantified in sera using ELISA. Patients with HCC were associated with higher concentrations of CK-1 and NMP-52 than those without HCC with a significant difference (P < 0.0001). CK-1 showed an area under receiver-operating characteristic curve (AUC) of 0.83 with 75 % sensitivity and 82 % specificity while NMP-52 yielded 0.72 AUC with 62 % sensitivity and 70 % specificity for identifying HCC. HCC-DETECT comprising CK-1 and NMP-52 together with AFP was then constructed yielding 0.90 AUC for identifying HCC with 80 % sensitivity and 92 % specificity. HCC-DETECT was then tested for separating HCC from F1-F3 showing 0.94 AUC with 80 % sensitivity and 93 % specificity. In conclusion, CK-1 in conjunction with NMP-52 and AFP could have a potential role for improving the detection of HCC with a high degree of accuracy.

  20. The Increasing Complexity of the Oncofetal H19 Gene Locus: Functional Dissection and Therapeutic Intervention

    PubMed Central

    Matouk, Imad; Raveh, Eli; Ohana, Patricia; Lail, Rasha Abu; Gershtain, Eitan; Gilon, Michal; De Groot, Nathan; Czerniak, Abraham; Hochberg, Abraham


    The field of the long non-coding RNA (lncRNA) is advancing rapidly. Currently, it is one of the most popular fields in the biological and medical sciences. It is becoming increasingly obvious that the majority of the human transcriptome has little or no-protein coding capacity. Historically, H19 was the first imprinted non-coding RNA (ncRNA) transcript identified, and the H19/IGF2 locus has served as a paradigm for the study of genomic imprinting since its discovery. In recent years, we have extensively investigated the expression of the H19 gene in a number of human cancers and explored the role of H19 RNA in tumor development. Here, we discuss recently published data from our group and others that provide further support for a central role of H19 RNA in the process of tumorigenesis. Furthermore, we focus on major transcriptional modulators of the H19 gene and discuss them in the context of the tumor-promoting activity of the H19 RNA. Based on the pivotal role of the H19 gene in human cancers, we have developed a DNA-based therapeutic approach for the treatment of cancers that have upregulated levels of H19 expression. This approach uses a diphtheria toxin A (DTA) protein expressed under the regulation of the H19 promoter to treat tumors with significant expression of H19 RNA. In this review, we discuss the treatment of four cancer indications in human subjects using this approach, which is currently under development. This represents perhaps one of the very few examples of an existing DNA-based therapy centered on an lncRNA system. Apart from cancer, H19 expression has been reported also in other conditions, syndromes and diseases, where deregulated imprinting at the H19 locus was obvious in some cases and will be summarized below. Moreover, the H19 locus proved to be much more complicated than initially thought. It houses a genomic sequence that can transcribe, yielding various transcriptional outputs, both in sense and antisense directions. The major transcriptional outputs of the H19 locus are presented here. PMID:23429271

  1. Urinary oncofetal ED-A fibronectin correlates with poor prognosis in patients with bladder cancer.


    Arnold, Shanna A; Loomans, Holli A; Ketova, Tatiana; Andl, Claudia D; Clark, Peter E; Zijlstra, Andries


    The extracellular matrix protein fibronectin (FN) contributes to the structural integrity of tissues as well as the adhesive and migratory functions of cells. While FN is abundantly expressed in adult tissues, the expression of several alternatively spliced FN isoforms is restricted to embryonic development, tissue remodeling and cancer. These FN isoforms, designated ED-A and ED-B, are frequently expressed by cancer cells, tumor-associated fibroblasts and newly forming blood vessels. Using a highly sensitive collagen-based indirect ELISA, we evaluated the correlation of urinary ED-A and ED-B at time of cystectomy with overall survival in patients with high-grade bladder cancer (BCa). Detectable levels of total FN as well as ED-A and ED-B were found in urine from 85, 73 and 51 % of BCa patients, respectively. The presence of urinary ED-A was a significant independent predictor of 2-year overall survival (OS) after adjusting for age, tumor stage, lymph node stage, and urinary creatinine by multivariable Logistic Regression (p = 0.029, OR = 4.26, 95 % CI 1.16-15.71) and improved accuracy by 3.6 %. Furthermore, detection of ED-A in the urine was a significant discriminator of survival specifically in BCa patients with negative lymph node status (Log-Rank, p = 0.006; HR = 5.78, 95 % CI 1.39-24.13). Lastly, multivariable Cox proportional hazards analysis revealed that urinary ED-A was an independent prognostic indicator of 5-year OS rate for patients with BCa (p = 0.04, HR = 2.20, 95 % CI 1.04-4.69). Together, these data suggest that cancer-derived, alternatively spliced FN isoforms can act as prognostic indicators and that additional studies are warranted to assess the clinical utility of ED-A in BCa.

  2. Extra-domain B in Oncofetal Fibronectin Structurally Promotes Fibrillar Head-to-tail Dimerization of Extracellular Matrix Protein*

    PubMed Central

    Schiefner, André; Gebauer, Michaela; Skerra, Arne


    The type III extra-domain B (ED-B) is specifically spliced into fibronectin (Fn) during embryogenesis and neoangiogenesis, including many cancers. The x-ray structure of the recombinant four-domain fragment FnIII7B89 reveals a tightly associated, extended head-to-tail dimer, which is stabilized via pair-wise shape and charge complementarity. A tendency toward ED-B-dependent dimer formation in solution was supported by size exclusion chromatography and analytical ultracentrifugation. When amending the model with the known three-dimensional structure of the FnIII10 domain, its RGD loop as well as the adhesion synergy region in FnIII9–10 become displayed on the same face of the dimer; this should allow simultaneous binding of at least two integrins and, thus, receptor clustering on the cell surface and intracellular signaling. Insertion of ED-B appears to stabilize overall head-to-tail dimerization of two separate Fn chains, which, together with alternating homodimer formation via disulfide bridges at the C-terminal Fn tail, should lead to the known macromolecular fibril formation. PMID:22442152

  3. H19 Long Noncoding RNA Regulates Intestinal Epithelial Barrier Function via MicroRNA 675 by Interacting with RNA-Binding Protein HuR

    PubMed Central

    Zou, Tongtong; Jaladanki, Suraj K.; Liu, Lan; Xiao, Lan; Chung, Hee Kyoung; Wang, Jun-Yao; Xu, Yan; Gorospe, Myriam


    The disruption of the intestinal epithelial barrier function occurs commonly in various pathologies, but the exact mechanisms responsible are unclear. The H19 long noncoding RNA (lncRNA) regulates the expression of different genes and has been implicated in human genetic disorders and cancer. Here, we report that H19 plays an important role in controlling the intestinal epithelial barrier function by serving as a precursor for microRNA 675 (miR-675). H19 overexpression increased the cellular abundance of miR-675, which in turn destabilized and repressed the translation of mRNAs encoding tight junction protein ZO-1 and adherens junction E-cadherin, resulting in the dysfunction of the epithelial barrier. Increasing the level of the RNA-binding protein HuR in cells overexpressing H19 prevented the stimulation of miR-675 processing from H19, promoted ZO-1 and E-cadherin expression, and restored the epithelial barrier function to a nearly normal level. In contrast, the targeted deletion of HuR in intestinal epithelial cells enhanced miR-675 production in the mucosa and delayed the recovery of the gut barrier function after exposure to mesenteric ischemia/reperfusion. These results indicate that H19 interacts with HuR and regulates the intestinal epithelial barrier function via the H19-encoded miR-675 by altering ZO-1 and E-cadherin expression posttranscriptionally. PMID:26884465

  4. Parental imprinting regulates insulin-like growth factor signaling: a Rosetta Stone for understanding the biology of pluripotent stem cells, aging and cancerogenesis.


    Ratajczak, M Z; Shin, D-M; Schneider, G; Ratajczak, J; Kucia, M


    In recent years, solid evidence has accumulated that insulin-like growth factor-1 (IGF-1) and 2 (IGF-2) regulate many biological processes in normal and malignant cells. Recently, more light has been shed on the epigenetic mechanisms regulating expression of genes involved in IGF signaling (IFS) and it has become evident that these mechanisms are crucial for initiation of embryogenesis, maintaining the quiescence of pluripotent stem cells deposited in adult tissues (for example, very-small embryonic-like stem cells), the aging process, and the malignant transformation of cells. The expression of several genes involved in IFS is regulated at the epigenetic level by imprinting/methylation within differentially methylated regions (DMRs), which regulate their expression from paternal or maternal chromosomes. The most important role in the regulation of IFS gene expression is played by the Igf-2-H19 locus, which encodes the autocrine/paracrine mitogen IGF-2 and the H19 gene, which gives rise to a non-coding RNA precursor of several microRNAs that negatively affect cell proliferation. Among these, miR-675 has recently been demonstrated to downregulate expression of the IGF-1 receptor. The proper imprinting of DMRs at the Igf-2-H19 locus, with methylation of the paternal chromosome and a lack of methylation on the maternal chromosome, regulates expression of these genes so that Igf-2 is transcribed only from the paternal chromosome and H19 (including miR-675) only from the maternal chromosome. In this review, we will discuss the relevance of (i) proper somatic imprinting, (ii) erasure of imprinting and (iii) loss of imprinting within the DMRs at the Igf-2-H19 locus to the expression of genes involved in IFS, and the consequences of these alternative patterns of imprinting for stem cell biology.

  5. Investigative approaches to the problem of pancreatic cancer.

    PubMed Central

    Moossa, A. R.


    A prospective study of 134 patients suspected of having pancreatic cancer is reported. Ultrasonography and duodenal drainage studies are the best initial investigations. Endoscopic retrograde cholangiopancreatography with cytological examination is the test most likely to provide a definitive diagnosis. Arteriography is essential before laparotomy to delineate anomalies in the foregut vasculature. Pancreatic oncofetal antigen is the only tumour marker that is useful in diagnosis and in monitoring therapy. Images FIG. 5 FIG. 7 PMID:434747

  6. Regulation of human chondrocyte function through direct inhibition of cartilage master regulator SOX9 by microRNA-145 (miRNA-145).


    Martinez-Sanchez, Aida; Dudek, Katarzyna A; Murphy, Chris L


    Articular cartilage enables weight bearing and near friction-free movement in the joints. Critical to its function is the production of a specialized, mechanocompetent extracellular matrix controlled by master regulator transcription factor SOX9. Mutations in SOX9 cause campomelic dysplasia, a haploinsufficiency disorder resulting in severe skeletal defects and dwarfism. Although much is understood about how SOX9 regulates cartilage matrix synthesis and hence joint function, how this master regulator is itself regulated remains largely unknown. Here we identify a specific microRNA, miR-145, as a direct regulator of SOX9 in normal healthy human articular chondrocytes. We show that miR-145 directly represses SOX9 expression in human cells through a unique binding site in its 3'-UTR not conserved in mice. Modulation of miR-145 induced profound changes in the human chondrocyte phenotype. Specifically, increased miR-145 levels cause greatly reduced expression of critical cartilage extracellular matrix genes (COL2A1 and aggrecan) and tissue-specific microRNAs (miR-675 and miR-140) and increased levels of the hypertrophic markers RUNX2 and MMP13, characteristic of changes occurring in osteoarthritis. We propose miR-145 as an important regulator of human chondrocyte function and a new target for cartilage repair.

  7. O-GlcNAc inhibits interaction between Sp1 and Elf-1 transcription factors

    SciTech Connect

    Lim, Kihong; Chang, Hyo-Ihl


    The novel protein modification, O-linked N-acetylglucosamine (O-GlcNAc), plays an important role in various aspects of cell regulation. Although most of nuclear transcription regulatory factors are modified by O-GlcNAc, O-GlcNAc effects on transcription remain largely undefined yet. In this study, we show that O-GlcNAc inhibits a physical interaction between Sp1 and Elf-1 transcription factors, and negatively regulates transcription of placenta and embryonic expression oncofetal protein gene (Pem). These findings suggest that O-GlcNAc inhibits Sp1-mediated gene transcription possibly by interrupting Sp1 interaction with its cooperative factor.


    PubMed Central

    Tapocik, Jenica D.; Luu, Truong V.; Mayo, Cheryl L.; Wang, Bi-Dar; Doyle, Erin; Lee, Alec D.; Lee, Norman H.; Elmer, Greg I.


    Neuroadaptations in the ventral striatum (VS) and ventral midbrain (VMB) following chronic opioid administration are thought to contribute to the pathogenesis and persistence of opiate addiction. In order to identify candidate genes involved in these neuroadaptations we utilized a behavior genetics strategy designed to associate contingent intravenous drug self-administration with specific patterns of gene expression in inbred mice differentially predisposed to the rewarding effects of morphine. In a yoked-control paradigm, C57BL/6J mice showed clear morphine-reinforced behavior whereas DBA/2J mice did not. Moreover, the yoked-control paradigm revealed the powerful consequences of self-administration versus passive administration at the level of gene expression. Morphine self-administration in the C57BL/6J mice uniquely up- or down-regulated 237 genes in the VS and 131 genes in the VMB. Interestingly, only a handful of the C57BL/6J self-administration genes (<3%) exhibited a similar expression pattern in the DBA/2J mice. Hence, specific sets of genes could be confidently assigned to regional effects of morphine in a contingent- and genotype-dependent manner. Bioinformatics analysis revealed that neuroplasticity, axonal guidance and microRNAs (miRNAs) were among the key themes associated with drug self-administration. Noteworthy were the primary miRNA genes H19 and microRNA containing gene (Mirg), processed respectively to mature miRNAs miR-675 and miR-154, since they are prime candidates to mediate network-like changes in responses to chronic drug administration. These miRNAs have postulated roles in dopaminergic neuron differentiation and mu-opioid receptor regulation. The strategic approach designed to focus on reinforcement-associated genes provides new insight into the role of neuroplasticity pathways and miRNAs in drug addiction. PMID:22804800

  9. Autoimmune damage to spermatogenesis in rodents immunized with mouse F9 embryonic carcinoma cells.

    PubMed Central

    Vojtiskova, M; Pokorna, Z; Draber, P


    Significant inhibition of spermatogenesis and appearance of antibodies against spermatogenic cells identified by cytotoxicity and immunofluorescence reactions were observed in mice of inbred strains 129/Sv and BALB/c and in albino guinea pigs after syngeneic, allogeneic, and xenogeneic immunization with mouse F9 embryonic carcinoma cells and Freund's complete adjuvant. A similar syngeneic immunization with PYS-2 cells was ineffective. Appropriate absorption experiments confirmed the similarity between the antigens of F9 and spermatogenic cells and the absence of such a similarity with antigens of PYS-2 cells. These results support the hypothesis that the oncofetal F9 antigens represent spermatogenic differentiation antigens and thus play an essential role in spermatogenic cell differentiation. PMID:6340100

  10. Suppression of hamster lymphocyte reactivity to simian virus 40 tumor surface antigens by spleen cells from pregnant hamsters

    SciTech Connect

    Weppner, W.A.; Adkinson, L.R.; Coggin, J.H.Jr


    SV40-transformed tumor cells in hamsters have been found to have cell surface antigens cross-reactive with antigens temporally expressed on fetal tissues. Using a lymphocyte transformation assay, spleen cells from pregnant hamsters were found to be incapable of responding to preparations of either hamster fetal tissue or SV40-transformed cells. However, a suppressor component can be demonstrated in spleen cell populations of both primi-and multiparous hamsters during pregnancy that is capable of reducing the response of lymphocytes sensitized against SV40 tumor-associated antigens. The degree of suppression is proportional to the ratio of responder cells to spleen cells from pregnant animals. These results suggest there is a subpopulation of spleen cells involved in immunoregulation during pregnancy that has the ability to suppress the reactivity of lymphocytes sensitized against SV40-associated oncofetal antigens.

  11. Genomic analysis of hepatoblastoma identifies distinct molecular and prognostic subgroups.


    Sumazin, Pavel; Chen, Yidong; Treviño, Lisa R; Sarabia, Stephen F; Hampton, Oliver A; Patel, Kayuri; Mistretta, Toni-Ann; Zorman, Barry; Thompson, Patrick; Heczey, Andras; Comerford, Sarah; Wheeler, David A; Chintagumpala, Murali; Meyers, Rebecka; Rakheja, Dinesh; Finegold, Milton J; Tomlinson, Gail; Parsons, D Williams; López-Terrada, Dolores


    Despite being the most common liver cancer in children, hepatoblastoma (HB) is a rare neoplasm. Consequently, few pretreatment tumors have been molecularly profiled, and there are no validated prognostic or therapeutic biomarkers for HB patients. We report on the first large-scale effort to profile pretreatment HBs at diagnosis. Our analysis of 88 clinically annotated HBs revealed three risk-stratifying molecular subtypes that are characterized by differential activation of hepatic progenitor cell markers and metabolic pathways: high-risk tumors were characterized by up-regulated nuclear factor, erythroid 2-like 2 activity; high lin-28 homolog B, high mobility group AT-hook 2, spalt-like transcription factor 4, and alpha-fetoprotein expression; and high coordinated expression of oncofetal proteins and stem-cell markers, while low-risk tumors had low lin-28 homolog B and lethal-7 expression and high hepatic nuclear factor 1 alpha activity.

  12. Molecular Mechanisms Regulating the Dendritic Development of Newborn Olfactory Bulb Interneurons in a Sensory Experience-Dependent Manner

    PubMed Central

    Yoshihara, Sei-ichi; Takahashi, Hiroo; Tsuboi, Akio


    Inhibitory interneurons in the olfactory bulb are generated continuously throughout life in the subventricular zone and differentiate into periglomerular and granule cells. Neural circuits that undergo reorganization by newborn olfactory bulb interneurons are necessary for odor detection, odor discrimination, olfactory memory, and innate olfactory responses. Although sensory experience has been shown to regulate development in a variety of species and in various structures, including the retina, cortex, and hippocampus, little is known about how sensory experience regulates the dendritic development of newborn olfactory bulb interneurons. Recent studies revealed that the 5T4 oncofetal trophoblast glycoprotein and the neuronal Per/Arnt/Sim domain protein 4 (Npas4) transcription factor regulate dendritic branching and dendritic spine formation, respectively, in olfactory bulb interneurons. Here, we summarize the molecular mechanisms that underlie the sensory input-dependent development of newborn interneurons and the formation of functional neural circuitry in the olfactory bulb. PMID:26793053

  13. Targeting SALL4 by entinostat in lung cancer

    PubMed Central

    Hong, Clarice Kit Yee; Zhao, Wenxiu; Wang, Fei; Tatetsu, Hiro; Yan, Benedict; Qi, Lihua; Fletcher, Jonathan A.; Yang, Henry; Soo, Ross


    The overall survival of lung cancer patients remains dismal despite the availability of targeted therapies. Oncofetal protein SALL4 is a novel cancer target. We herein report that SALL4 was aberrantly expressed in a subset of lung cancer patients with poor survival. SALL4 silencing by RNA interference or SALL4 peptide inhibitor treatment led to impaired lung cancer cell growth. Expression profiling of SALL4-knockdown cells demonstrated that both the EGFR and IGF1R signaling pathways were affected. Connectivity Map analysis revealed the HDAC inhibitor entinostat as a potential drug in treating SALL4-expressing cancers, and this was confirmed in 17 lung cancer cell lines. In summary, we report for the first time that entinostat can target SALL4-positive lung cancer. This lays the foundation for future clinical studies evaluating the therapeutic efficacy of entinostat in SALL4-positive lung cancer patients. PMID:27705911

  14. miRNA and mRNA expression profiling identifies members of the miR-200 family as potential regulators of epithelial-mesenchymal transition in pterygium

    PubMed Central

    Engelsvold, David H.; Utheim, Tor P.; Olstad, Ole K.; Gonzalez, Pedro; Eidet, Jon R.; Lyberg, Torstein; Trøseid, Anne-Marie S.; Dartt, Darlene A.; Raeder, Sten


    The current study investigates whether microRNA (miRNA) regulators of epithelial-mesenchymal transition (EMT), tissue fibrosis, and angiogenesis are differentially expressed in human primary pterygium. Genome-wide miRNA and mRNA expression profiling of paired pterygium and normal conjunctiva was performed in the context of conventional excision of pterygium with autotransplantation of conjunctiva (n=8). Quantitative real time polymerase chain reaction (qRT-PCR) was used to validate the expression of key molecules previously detected by microarray. In pterygium, 25 miRNAs and 31 mRNAs were significantly differentially expressed by more than two-fold compared to normal conjunctiva. 14 miRNAs were up-regulated (miR-1246, −486, −451, −3172, −3175, −1308, −1972, −143, −211, −665, −1973, −18a, 143, and −663b), whereas 11 were down-regulated (miR-675, −200b-star, −200a-star, −29b, −200b, −210, −141, −31, −200a, −934, and −375). Unsupervised hierarchical cluster analysis demonstrated that members of the miR-200 family were coexpressed and down-regulated in pterygium. The molecular and cellular functions that were most significant to the miRNA data sets were cellular development, cellular growth and proliferation, and cellular movement. qRT-PCR confirmed the expression of 15 of the 16 genes tested and revealed that miR-429 was down-regulated by more than two-fold in pterygium. The concerted down-regulation of four members from both clusters of the miR-200 family (miR-200a/−200b/−429 and miR-200c/−141), which are known to regulate EMT, and up-regulation of the predicted target and mesenchymal marker fibronectin (FN1), suggest that EMT could potentially play a role in the pathogenesis of pterygium and might constitute promising new targets for therapeutic intervention in pterygium. PMID:23872359

  15. Alpha fetoprotein DNA prime and adenovirus boost immunization of two hepatocellular cancer patients

    PubMed Central


    Background Alpha fetoprotein (AFP) is an oncofetal antigen over-expressed by many hepatocellular cancers (HCC). We previously demonstrated that HLA-A2-restricted epitopes derived from AFP are immunogenic in vitro and in vivo despite high circulating levels of this oncofetal antigen. In order to test a more broadly applicable, HLA-unrestricted, inexpensive, cell-free vaccine platform capable of activating tumor antigen-specific CD8+ and CD4+ T cells, we tested full length AFP in a plasmid DNA construct in combination with an AFP-expressing replication-deficient adenovirus (AdV) in a prime-boost vaccine strategy. Methods HCC patients who had an AFP+ tumor and previous treatment for HCC were screened and two patients received vaccination with three plasmid DNA injections followed by a single AdV injection, all delivered intramuscularly (i.m.). Results The vaccine was well tolerated and safe. Both patients showed immunologic evidence of immunization. The first patient had a weak AFP-specific T cell response, a strong AdV-specific cellular response and recurred with an AFP-expressing HCC at nine months. The second patient developed a strong AFP-specific CD8+ and CD4+ cellular response and an AdV neutralizing antibody response, and recurred at 18 months without an increase in serum AFP. Conclusions The AFP DNA prime-AdV boost vaccine was safe and immunogenic. Circulating anti-AdV neutralizing antibodies at baseline did not prohibit the development of AFP-specific cellular immunity. The patient who developed CD8+ and CD4+ AFP-specific T cell immunity had more favorable progression-free survival. The observations with these two patients support development of this vaccine strategy in a larger clinical trial. Trial registration NCT00093548 PMID:24708667

  16. Genetic Differences Between Humans and Great Apes -- Implications for the Evolution of Humans

    NASA Astrophysics Data System (ADS)

    Varki, Ajit


    At the level of individual protein sequences, humans are 97-100% identical to the great apes, our closest evolutionary relatives. The evolution of humans (and of human intelligence) from a common ancestor with the chimpanzee and bonobo involved many steps, influenced by interactions amongst factors of genetic, developmental, ecological, microbial, climatic, behavioral, cultural and social origin. The genetic factors can be approached by direct comparisons of human and great ape genomes, genes and gene products, and by elucidating biochemical and biological consequences of any differences found. We have discovered multiple genetic and biochemical differences between humans and great apes, particularly with respect to a family of cell surface molecules called sialic acids, as well as in the metabolism of thyroid hormones. The hormone differences have potential consequences for human brain development. The differences in sialic acid biology have multiple implications for the human condition, ranging from susceptibility or resistance to microbial pathogens, effects on endogenous receptors in the immune system, and potential effects on placental signaling, expression of oncofetal antigens in cancers, consequences of dietary intake of animal foods, and development of the mammalian brain.

  17. [Alphafetoprotein in hepatic tumours and benign liver diseases].


    Forones, N M; Queiroz, L A; Ferraz, M L; Parise, E R


    AFP is an oncofetal protein found in increased levels in hepatocellular carcinoma, liver metastasis and other benign liver diseases. PURPOSE--To know the behaviour of this protein in each of these clinical situations would undoubtedly help us to discriminate between hepatocellular carcinoma and benign diseases. PATIENTS--A hundred forty nine patients were divided into 4 groups: 1. acute hepatitis (AH) n = 24, 2. chronic liver disease, viral or alcoholic (CLD) n = 81, 3. hepatic metastasis (HM) n = 29, 4. hepatocellular carcinoma (HCC) n = 15. AFP assays were done by ELISA (Abbott Diagnostica, ref. value: 15ng/mL). RESULTS--The results observed were as follows: AFP < 15ng/mL: AH 75%, CLD 86.4%, HM 79.3%, HCC 6.6%, AFP > 15 e < 100ng/mL: AH 25%, CLD 8.6%, HM 20.6%, HCC 20%, AFP > 100ng/mL: AH zero, CLD 4.9%, HM zero, HCC 49%. It is clear that depending on the cut off level, there is a decrease of sensibility which is paralleled by an increase in specificity. CONCLUSIONS--AFP levels are increased in benign liver diseases (AH, CLD) and HM, how ever levels above 100ng/mL occur much more frequently in HCC. In our sample, 93.3% of the HCC showed high levels of AFP, probably because most of the patients had advanced clinical stages of the disease.

  18. Aberrant glycosylation promotes lung cancer metastasis through adhesion to galectins in the metastatic niche

    PubMed Central

    Reticker-Flynn, Nathan E.; Bhatia, Sangeeta N.


    Metastasis is the leading cause of cancer-associated deaths. While dissemination of tumor cells likely occurs early in tumorigenesis, the constituents of the microenvironment play essential rate-limiting roles in determining whether these cells will form clinically-relevant tumors. Recent studies have uncovered many molecular factors that contribute to establishment of a pro-tumorigenic metastatic niche. Here, we demonstrate that galectin-3, whose expression has clinical associations with advanced malignancy and poor outcome, contributes to metastatic niche formation by binding to carbohydrates on metastatic cells. We show that galectin-3 is expressed early during tumorigenesis by both CD11b+Gr-1+ and CD11b+Ly-6Chi leukocytes. Tumors mobilize these myeloid populations through secretion of soluble factors including IL-6. We find that metastatic cancer cells exhibit elevated presentation of the oncofetal galectin-3 carbohydrate ligand, the Thomsen-Friedenreich Antigen, on their surfaces as a result of altered C2GnT2 and St6GalNAcIV glycosyltransferase activity that inhibits further glycosylation of this carbohydrate motif and promotes metastasis. PMID:25421439

  19. Acetylation directs survivin nuclear localization to repress STAT3 oncogenic activity.


    Wang, Haijuan; Holloway, Michael P; Ma, Li; Cooper, Zachary A; Riolo, Matthew; Samkari, Ayman; Elenitoba-Johnson, Kojo S J; Chin, Y Eugene; Altura, Rachel A


    The multiple functions of the oncofetal protein survivin are dependent on its selective expression patterns within immunochemically distinct subcellular pools. The mechanism by which survivin localizes to these compartments, however, is only partly understood. Here we show that nuclear accumulation of survivin is promoted by CREB-binding protein (CBP)-dependent acetylation on lysine 129 (129K, Lys-129). We demonstrate a mechanism by which survivin acetylation at this position results in its homodimerization, while deacetylation promotes the formation of survivin monomers that heterodimerize with CRM1 and facilitate its nuclear export. Using proteomic analysis, we identified the oncogenic transcription factor STAT3 as a binding partner of nuclear survivin. We show that acetylated survivin binds to the N-terminal transcriptional activation domain of the STAT3 dimer and represses STAT3 transactivation of target gene promoters. Using multiplex PCR and DNA sequencing, we identified a single-nucleotide polymorphism (A → G) at Lys-129 that exists as a homozygous mutation in a neuroblastoma cell line and corresponds with a defect in survivin nuclear localization. Our results demonstrate that the dynamic equilibrium between survivin acetylation and deacetylation at amino acid 129 determines its interaction with CRM1, its subsequent subcellular localization, and its ability to inhibit STAT3 transactivation, providing a potential route for therapeutic intervention in STAT3-dependent tumors.

  20. Use of H19 Gene Regulatory Sequences in DNA-Based Therapy for Pancreatic Cancer

    PubMed Central

    Scaiewicz, V.; Sorin, V.; Fellig, Y.; Birman, T.; Mizrahi, A.; Galula, J.; Abu-lail, R.; Shneider, T.; Ohana, P.; Buscail, L.; Hochberg, A.; Czerniak, A.


    Pancreatic cancer is the eighth most common cause of death from cancer in the world, for which palliative treatments are not effective and frequently accompanied by severe side effects. We propose a DNA-based therapy for pancreatic cancer using a nonviral vector, expressing the diphtheria toxin A chain under the control of the H19 gene regulatory sequences. The H19 gene is an oncofetal RNA expressed during embryo development and in several types of cancer. We tested the expression of H19 gene in patients, and found that 65% of human pancreatic tumors analyzed showed moderated to strong expression of the gene. In vitro experiments showed that the vector was effective in reducing Luciferase protein activity on pancreatic carcinoma cell lines. In vivo experiment results revealed tumor growth arrest in different animal models for pancreatic cancer. Differences in tumor size between control and treated groups reached a 75% in the heterotopic model (P = .037) and 50% in the orthotopic model (P = .007). In addition, no visible metastases were found in the treated group of the orthotopic model. These results indicate that the treatment with the vector DTA-H19 might be a viable new therapeutic option for patients with unresectable pancreatic cancer. PMID:21052499

  1. Nature of immobilization surface affects antibody specificity to placental alkaline phosphatase.


    Kumar, Mukesh; Khan, Imran; Sinha, Subrata


    Retention of native conformation of immobilized protein is essential for various applications including selection and detection of specific recombinant antibodies (scFvs). Placental alkaline phosphatase (PAP), an onco-fetal antigen expressed on the surface of several tumors, was immobilized on supermagnetic particles for selection of recombinant antibodies from a human phage display antibody library. The isolated antibodies were found to be cross-reactive to either of the isozymes of alkaline phosphatase, i.e., bone alkaline phosphatase (BAP) or intestinal alkaline phosphatase (IAP) and could not be used for tumor targeting. A specific anti-PAP monoclonal antibody H17E2 was tested for retention of specificity under these conditions. Binding of the antibody to magnetic beads conjugated IAP and BAP along with PAP and the ability of the two isozymes to inhibit its binding to PAP depicted the loss of isozyme specificity of the antibody. However, the antibody retained its specificity to PAP immobilized on polyvinyl chloride (PVC) surface. Enzyme activity was observed on both surfaces. This demonstrates that nature of immobilization may affect antigen-antibody binding in subtle ways, resulting in alteration of conformation of the epitopes. This may have consequences for determining the specificity of antibody binding for proteins that share a high degree of homology.

  2. Dysregulated serum response factor triggers formation of hepatocellular carcinoma

    PubMed Central

    Ohrnberger, Stefan; Thavamani, Abhishek; Braeuning, Albert; Lipka, Daniel B; Kirilov, Milen; Geffers, Robert; Authenrieth, Stella E; Römer, Michael; Zell, Andreas; Bonin, Michael; Schwarz, Michael; Schütz, Günther; Schirmacher, Peter; Plass, Christoph; Longerich, Thomas; Nordheim, Alfred


    The ubiquitously expressed transcriptional regulator serum response factor (SRF) is controlled by both Ras/MAPK (mitogen-activated protein kinase) and Rho/actin signaling pathways, which are frequently activated in hepatocellular carcinoma (HCC). We generated SRF-VP16iHep mice, which conditionally express constitutively active SRF-VP16 in hepatocytes, thereby controlling subsets of both Ras/MAPK- and Rho/actin-stimulated target genes. All SRF-VP16iHep mice develop hyperproliferative liver nodules that progresses to lethal HCC. Some murine (m)HCCs acquire Ctnnb1 mutations equivalent to those in human (h)HCC. The resulting transcript signatures mirror those of a distinct subgroup of hHCCs, with shared activation of oncofetal genes including Igf2, correlating with CpG hypomethylation at the imprinted Igf2/H19 locus. Conclusion: SRF-VP16iHep mHCC reveal convergent Ras/MAPK and Rho/actin signaling as a highly oncogenic driver mechanism for hepatocarcinogenesis. This suggests simultaneous inhibition of Ras/MAPK and Rho/actin signaling as a treatment strategy in hHCC therapy. (Hepatology 2015;61:979–989) PMID:25266280

  3. Carcinoembryonic antigen (CEA)-based cancer vaccines: recent patents and antitumor effects from experimental models to clinical trials.


    Turriziani, Mario; Fantini, Massimo; Benvenuto, Monica; Izzi, Valerio; Masuelli, Laura; Sacchetti, Pamela; Modesti, Andrea; Bei, Roberto


    Carcinoembryonic antigen (CEA), a glycosylated protein of MW 180 kDa, is overexpressed in a wide range of human carcinomas, including colorectal, gastric, pancreatic, non-small cell lung and breast carcinomas. Accordingly, CEA is one of several oncofetal antigens that may serve as a target for active anti-cancer specific immunotherapy. Experimental results obtained by employing animal models have supported the design of clinical trials using a CEA-based vaccine for the treatment of different types of human cancers. This review reports findings from experimental models and clinical evidence on the use of a CEA-based vaccine for the treatment of cancer patients. Among the diverse CEA-based cancer vaccines, DCs- and recombinant viruses-based vaccines seem the most valid. However, although vaccination was shown to induce a strong immune response to CEA, resulting in a delay in tumor progression and prolonged survival in some cancer patients, it failed to eradicate the tumor in most cases, owing partly to the negative effect exerted by the tumor microenvironment on immune response. Thus, in order to develop more efficient and effective cancer vaccines, it is necessary to design new clinical trials combining cancer vaccines with chemotherapy, radiotherapy and drugs which target those factors responsible for immunosuppression of immune cells. This review also discusses relevant patents relating to the use of CEA as a cancer vaccine.

  4. Enzyme-linked PNA lectin binding assay compared with CA19-9 and CEA radioimmunoassay as a diagnostic blood test for pancreatic cancer.

    PubMed Central

    Ching, C. K.; Rhodes, J. M.


    Previous studies have shown that sera from patients with pancreatic cancer often contain a mucus glycoprotein that expresses the oncofetal antigen galactose 1-3, N-acetyl galactosamine, which is the T blood group antigen and the binding site for the lectin peanut agglutinin (PNA). An enzyme-linked lectin assay has been developed to quantify PNA-binding glycoproteins in serum and has been evaluated as a serological test for pancreatic cancer. Sera were studied from 53 patients with pancreatic cancer and 154 controls, including benign obstructive jaundice, acute and chronic pancreatitis, chronic liver disease and inflammatory bowel disease. The enzyme-linked peanut lectin assay proved highly reproducible and has 77% sensitivity and 83% specificity for pancreatic cancer, results that are very similar to those achieved in the same sera by CA19-9 radioimmunoassay (75% sensitivity, 82% specificity with the upper limit of normal set at 37 u ml-1). CEA assay proved less useful (60% sensitivity, 47% specificity). In this study better results were obtained if an upper limit of normal of 50 u ml-1 was used for CA19-9 (75% sensitivity, 92% specificity). Combination of CA19-9 assay with the upper limit set at 50 u ml-1 and the peanut lectin assay improved the sensitivity to 85% with only a slight fall in specificity (85%). These results compare well with published results for ultrasound and CT scanning. PMID:2736232

  5. Two Isoforms of the RNA Binding Protein, Coding Region Determinant-binding Protein (CRD-BP/IGF2BP1), Are Expressed in Breast Epithelium and Support Clonogenic Growth of Breast Tumor Cells.


    Fakhraldeen, Saja A; Clark, Rod J; Roopra, Avtar; Chin, Emily N; Huang, Wei; Castorino, John; Wisinski, Kari B; Kim, TaeWon; Spiegelman, Vladimir S; Alexander, Caroline M


    CRD-BP/IGF2BP1 has been characterized as an "oncofetal" RNA binding protein typically highly expressed in embryonic tissues, suppressed in normal adult tissues, but induced in many tumor types. In this study, we show that adult breast tissues express ubiquitous but low levels of CRD-BP protein and mRNA. Although CRD-BP mRNA expression is induced in breast tumor cells, levels remain ∼1000-fold lower than in embryonic tissues. Despite low expression levels, CRD-BP is required for clonogenic growth of breast cancer cells. We reveal that because the most common protein isoform in normal adult breast and breast tumors has an N-terminal deletion (lacking two RNA recognition motif (RRM) domains) and is therefore missing antibody epitopes, CRD-BP expression has been under-reported by previous studies. We show that a CRD-BP mutant mouse strain retains expression of the shorter transcript (ΔN-CRD-BP), which originates in intron 2, suggesting that the impact of complete ablation of this gene in mice is not yet known. Either the full-length CRD-BP or the N-terminally truncated version can rescue the clonogenicity of CRD-BP knockdown breast cancer cells, suggesting that clonogenic function is served by either CRD-BP isoform. In summary, although CRD-BP expression levels are low in breast cancer cells, this protein is necessary for clonogenic activity.

  6. WT1 expression is increased in primary fibroblasts derived from Dupuytren's disease tissues.


    Crawford, Justin; Raykha, Christina; Charles, Daevina; Gan, Bing Siang; O'Gorman, David B


    Dupuytren's disease (DD) is a fibroproliferative and contractile fibrosis of the palmar fascia that, like all other heritable fibroses, is currently incurable. While DD is invariably benign, it exhibits some molecular similarities to malignant tumours, including increased levels of ß-catenin, onco-fetal fibronectin, periostin and insulin-like growth factor (IGF)-II. To gain additional insights into the pathogenesis of DD, we have assessed the expression of WT1, encoding Wilm's tumour 1, an established tumour biomarker that is syntenic with IGF2, the gene encoding IGF-II in humans. We found that WT1 expression is robustly and consistently up regulated in primary fibroblasts derived from the fibrotic palmar fascia of patients with DD (DD cells), whereas syngeneic fibroblasts derived from the macroscopically unaffected palmar fascia in these patients and allogeneic fibroblasts derived from normal palmar fascia exhibited very low or undetectable WT1 transcript levels. WT1 immunoreactivity was evident in a subset of cells in the fibrotic palmar fascia of patients with DD, but not in macroscopically unaffected palmar fascia. These findings identify WT1 expression as a novel biomarker of fibrotic palmar fascia and are consistent with the hypothesis that the pathogeneses of DD and malignant tumours have molecular similarities.

  7. The Interplay of LncRNA-H19 and Its Binding Partners in Physiological Process and Gastric Carcinogenesis

    PubMed Central

    Zhang, Li; Zhou, Yuhang; Huang, Tingting; Cheng, Alfred S. L.; Yu, Jun; Kang, Wei; To, Ka Fai


    Long non-coding RNA (lncRNA), a novel and effective modulator in carcinogenesis, has become a study hotspot in recent years. The imprinted oncofetal lncRNA H19 is one of the first identified imprinted lncRNAs with a high expression level in embryogenesis but is barely detectable in most tissues after birth. Aberrant alterations of H19 expression have been demonstrated in various tumors, including gastric cancer (GC), implicating a crucial role of H19 in cancer progression. As one of the top malignancies in the world, GC has already become a serious concern to public health with poor prognosis. The regulatory roles of H19 in gastric carcinogenesis have been explored by various research groups, which leads to the development of GC therapy. This review comprehensively summarizes the current knowledge of H19 in tumorigenesis, especially in GC pathogenesis, with emphasis on the underneath molecular mechanisms depicted from its functional partners. Furthermore, the accumulated knowledge of H19 will provide better understanding on targeted therapy of GC. PMID:28230721

  8. Immunohistochemical study of pancreatoblastoma.


    Ohaki, Y; Misugi, K; Fukuda, J; Okudaira, M; Hirose, M


    Three cases of pancreatoblastoma in children were examined immunohistochemically and the results were compared with those of pancreatic duct carcinoma in adults. The pancreatoblastoma demonstrated positive reactions to alpha-fetoprotein (AFP) (67%: 2/3), alpha-1-antitrypsin (AAT) (100%: 3/3), carcinoembryonic antigen (CEA) (67%: 2/3) and keratin (33%: 1/3), although CEA was only weakly positive in both cases. On the other hand, adult pancreatic duct carcinoma showed positive reactions as follows; AFP: 3% (1/29), AAT: 21% (6/29), CEA: 97% (28/29) and keratin: 93% (27/29). Also, endocrine substances including insulin, glucagon and somatostatin were all negative in the pancreatoblastomas. Two cases of pancreatoblastoma which were immunohistochemically positive for AFP also showed elevation of the serum AFP level clinically. The different expressive pattern of oncofetal antigens in pancreatoblastoma as compared with pancreatic duct carcinoma in adults may provide further supporting evidence for the embryonic nature of pancreatoblastoma, and suggests that such a pattern might be used as a tumor marker for pancreatoblastoma.

  9. An unusual primary malignant tumor of the stomach: Fetal gut-like Gastric adenocarcinoma with "blastoma"-like component.


    Taher, Altaf; Denic, Nebojsa; Kalimuthu, Sangeetha N; Chetty, Runjan


    An unusual case of a polypoid, malignant gastric tumor in a 62-year man is presented. Endoscopy and subsequent polypectomy revealed an 8.5 x 6.5 x 4.5cm lesion in the body of the stomach. Microscopy showed surface dysplasia with an invasive adenocarcinoma displaying prominent tubulopapillary areas composed of large vacuolated cells, pleomorphic nuclei and occasional cytoplasmic hyaline globules. This component then blended with tubular structures lined by more primitive appearing vacuolated cells embedded within a stroma made up of cellular primitive, high-grade blastema-like areas and, less cellular more pleomorphic foci with spindle and several bizarre, large cells. Immunohistochemistry showed the adenocarcinoma and primitive tubules to be strongly SALL4 and epithelial marker positive, but only focal expression of α-fetoprotein and glypican-3. The stromal component made up of blastema-like areas displayed strong immunoreactivity for glypican-3. The pleomorphic stromal areas were negative for all markers, including epithelial and muscle markers. The overall morphology and expression of primitive oncofetal proteins, especially SALL4 and glypican-3, are in keeping with this being a primitive adenocarcinoma showing fetal gut-like differentiation with an accompanying blastoma-like component, a combination not previously described in a primary gastric cancer.

  10. Expression and structural characterization of anti-T-antigen single-chain antibodies (scFvs) and analysis of their binding to T-antigen by surface plasmon resonance and NMR spectroscopy.


    Yuasa, Noriyuki; Koyama, Tsubasa; Subedi, Ganesh P; Yamaguchi, Yoshiki; Matsushita, Misao; Fujita-Yamaguchi, Yoko


    T-antigen (Galβ1-3GalNAcα-1-Ser/Thr), also known as Thomsen-Friedenreich antigen (TF antigen), is an oncofetal antigen commonly found in cancerous tissues. Availability of anti-T-antigen human antibodies could lead to the development of cancer diagnostics and therapeutics. Four groups of single-chain variable fragment (scFv) genes were previously isolated from a phage library (Matsumoto-Takasaki et al. (2009) Isolation and characterization of anti-T-antigen single chain antibodies from a phage library. BioSci Trends 3:87-95.). Here, four anti-T-antigen scFv genes belonging to Group 1-4 were expressed and produced in a Drosophila S2 cell expression system. ELISA and surface plasmon resonance (SPR) analyses confirmed the binding activity of 1E8 scFv protein to various T-antigen presenting conjugates. NMR experiments provided evidence of the folded nature of the 1E8 scFv protein. ScFv-ligand contact was identified by STD NMR, indicating that the galactose unit of T-antigen at the non-reducing end was primarily recognized by 1E8 scFv. This thus provides direct evidence of T-antigen specificity.

  11. Spontaneous development of hepatocellular carcinoma with cancer stem cell properties in PR-SET7-deficient livers

    PubMed Central

    Nikolaou, Kostas C; Moulos, Panagiotis; Chalepakis, George; Hatzis, Pantelis; Oda, Hisanobu; Reinberg, Danny; Talianidis, Iannis


    PR-SET7-mediated histone 4 lysine 20 methylation has been implicated in mitotic condensation, DNA damage response and replication licensing. Here, we show that PR-SET7 function in the liver is pivotal for maintaining genome integrity. Hepatocyte-specific deletion of PR-SET7 in mouse embryos resulted in G2 phase arrest followed by massive cell death and defect in liver organogenesis. Inactivation at postnatal stages caused cell duplication-dependent hepatocyte necrosis, accompanied by inflammation, fibrosis and compensatory growth induction of neighboring hepatocytes and resident ductal progenitor cells. Prolonged necrotic regenerative cycles coupled with oncogenic STAT3 activation led to the spontaneous development of hepatic tumors composed of cells with cancer stem cell characteristics. These include a capacity to self-renew in culture or in xenografts and the ability to differentiate to phenotypically distinct hepatic cells. Hepatocellular carcinoma in PR-SET7-deficient mice displays a cancer stem cell gene signature specified by the co-expression of ductal progenitor markers and oncofetal genes. PMID:25515659

  12. Genetic Differences Between Great Apes and Humans: Implications for Human Evolution

    SciTech Connect

    Varki, Ajit


    When considering protein sequences, humans are 99-100% identical to chimpanzees and bonobos, our closest evolutionary relatives. The evolution of humans (and the unique features of our species) from a common ancestor with these great apes involved many steps, influenced by interactions amongst factors of genetic, developmental, ecological, microbial, climatic, behavioral, cultural and social origin. The genetic factors can be approached by direct comparisons of human and great ape genomes, genes and gene products, and by elucidating biochemical and biological consequences of the differences. We have discovered multiple genetic and biochemical differences between humans and great apes, particularly in relationship to a family of cell surface molecules called sialic acids. These differences have implications for the human condition, ranging from susceptibility or resistance to microbial pathogens; effects on endogenous receptors in the immune system; potential effects on placental signaling; the expression of oncofetal antigens in cancers; consequences of dietary intake of animal foods; and the development of the mammalian brain. This talk will provide an overview of these and other genetic differences between humans and great apes, with attention to differences potentially relevant to the evolution of humans.

  13. Reciprocal interplay between thyroid hormone and microRNA-21 regulates hedgehog pathway–driven skin tumorigenesis

    PubMed Central

    Di Girolamo, Daniela; Ambrosio, Raffaele; De Stefano, Maria A.; Mancino, Giuseppina; Porcelli, Tommaso; Luongo, Cristina; Di Cicco, Emery; Scalia, Giulia; Vecchio, Luigi Del; Colao, Annamaria; Dlugosz, Andrzej A.; Missero, Caterina; Salvatore, Domenico


    The thyroid hormone–inactivating (TH-inactivating) enzyme type 3 iodothyronine deiodinase (D3) is an oncofetal protein that is rarely expressed in adult life but has been shown to be reactivated in the context of proliferation and neoplasms. D3 terminates TH action within the tumor microenvironment, thereby enhancing cancer cell proliferation. However, the pathological role of D3 and the contribution of TH metabolism in cancer have yet to be fully explored. Here, we describe a reciprocal regulation between TH action and the cancer-associated microRNA-21 (miR21) in basal cell carcinoma (BCC) skin tumors. We found that, besides being negatively regulated by TH at the transcriptional level, miR21 attenuates the TH signal by increasing D3 levels. The ability of miR21 to positively regulate D3 was mediated by the tumor suppressor gene GRHL3, a hitherto unrecognized D3 transcriptional inhibitor. Finally, in a BCC mouse model, keratinocyte-specific D3 depletion markedly reduced tumor growth. Together, our results establish TH action as a critical hub of multiple oncogenic pathways and provide functional and mechanistic evidence of the involvement of TH metabolism in BCC tumorigenesis. Moreover, our results identify a miR21/GRHL3/D3 axis that reduces TH in the tumor microenvironment and has potential to be targeted as a therapeutic approach to BCC. PMID:27159391

  14. Upregulation of H19 indicates a poor prognosis in gallbladder carcinoma and promotes epithelial-mesenchymal transition

    PubMed Central

    Wang, Shou-Hua; Wu, Xiao-Cai; Zhang, Ming-Di; Weng, Ming-Zhe; Zhou, Di; Quan, Zhi-Wei


    The imprinted oncofetal long non-coding RNA H19 has been reported to be involved in many kinds of human cancers. However, whether lncRNA H19 implicate in oncogenesis and cancer progression in gallbladder cancer remain largely unknown. In the present study, compared with adjacent normal tissues, the level of H19 was significantly upregulated in gallbladder cancer tissues and was positively associated with lymphatic metastasis and tumor size. The overall survival is shorter in those who had higher H19 expression among GBC patients. In vitro, both TGF-β1 and IL-6 treatment induced upregulation of H19, downregulated the protein level of E-cadherin while increased Vimentin, indicating an epithelial-mesenchymal transition (EMT) phenotype in GBC. The overexpression of H19 in GBC cells enhanced tumor invasion and promoted EMT by upregulated transcription factor Twist1. On the contrary, Loss of function studies indicated that H19 interference in GBC suppressed tumor cell invasion and promoted mesenchymal-epithelial transition (MET) via suppressing Twist expression. In vivo, the volume of the tumors in H19-inteference group was significantly decreased compared to those in the control group of nude mice. Both western-blot and immunohistochemistry confirmed that a MET phenotype existed in the H19 interference group when compared to control group. These results defined H19 as a novel prognostic factor for GBC, and indicated that it might play important regulatory roles in the EMT process. PMID:27073719

  15. The Interplay of LncRNA-H19 and Its Binding Partners in Physiological Process and Gastric Carcinogenesis.


    Zhang, Li; Zhou, Yuhang; Huang, Tingting; Cheng, Alfred S L; Yu, Jun; Kang, Wei; To, Ka Fai


    Long non-coding RNA (lncRNA), a novel and effective modulator in carcinogenesis, has become a study hotspot in recent years. The imprinted oncofetal lncRNA H19 is one of the first identified imprinted lncRNAs with a high expression level in embryogenesis but is barely detectable in most tissues after birth. Aberrant alterations of H19 expression have been demonstrated in various tumors, including gastric cancer (GC), implicating a crucial role of H19 in cancer progression. As one of the top malignancies in the world, GC has already become a serious concern to public health with poor prognosis. The regulatory roles of H19 in gastric carcinogenesis have been explored by various research groups, which leads to the development of GC therapy. This review comprehensively summarizes the current knowledge of H19 in tumorigenesis, especially in GC pathogenesis, with emphasis on the underneath molecular mechanisms depicted from its functional partners. Furthermore, the accumulated knowledge of H19 will provide better understanding on targeted therapy of GC.

  16. Design, characterization and anti-tumour cytotoxicity of a panel of recombinant, mammalian ribonuclease-based immunotoxins.

    PubMed Central

    Deonarain, M. P.; Epenetos, A. A.


    Bovine seminal ribonuclease (BSRNase) is an unusual member of the ribonuclease superfamily, because of its remarkable anti-tumour and immunosuppressive properties. We describe here the construction, expression, purification and characterization of a panel of six immunotoxins based upon this enzyme and show that we can increase its anti-tumour activity by over 2 x 10(4)-fold. This is achieved by improving tumour cell targeting using a single-chain Fv (scFv) directed against the oncofetal antigen placental alkaline phosphatase. As well as the simple scFv-BSRNase fusion protein, we have constructed five other derivatives with additional peptides designed to improve folding and intracellular trafficking and delivery. We find that the molecule most cytotoxic to antigen (PLAP)-positive cells in vitro is one that contains a C-terminal 'KDEL' endoplasmic reticulum retention signal and a peptide sequence derived from diphtheria toxin. All these molecules are produced in Escherichia coli (E. coli) as insoluble inclusion bodies and require extensive in vitro processing to recover antigen binding and ribonuclease activity. Despite incomplete ribonuclease activity and quaternary assembly, these molecules are promising reagents for specific chemotherapy of cancer and are potentially less harmful and immunogenic than current immunotoxins. Images Figure 2 PMID:9484808

  17. Fibronectin-guided migration of carcinoma collectives

    PubMed Central

    Gopal, Sandeep; Veracini, Laurence; Grall, Dominique; Butori, Catherine; Schaub, Sébastien; Audebert, Stéphane; Camoin, Luc; Baudelet, Emilie; Radwanska, Agata; Beghelli-de la Forest Divonne, Stéphanie; Violette, Shelia M.; Weinreb, Paul H.; Rekima, Samah; Ilie, Marius; Sudaka, Anne; Hofman, Paul; Van Obberghen-Schilling, Ellen


    Functional interplay between tumour cells and their neoplastic extracellular matrix plays a decisive role in malignant progression of carcinomas. Here we provide a comprehensive data set of the human HNSCC-associated fibroblast matrisome. Although much attention has been paid to the deposit of collagen, we identify oncofetal fibronectin (FN) as a major and obligate component of the matrix assembled by stromal fibroblasts from head and neck squamous cell carcinomas (HNSCC). FN overexpression in tumours from 435 patients corresponds to an independent unfavourable prognostic indicator. We show that migration of carcinoma collectives on fibrillar FN-rich matrices is achieved through αvβ6 and α9β1 engagement, rather than α5β1. Moreover, αvβ6-driven migration occurs independently of latent TGF-β activation and Smad-dependent signalling in tumour epithelial cells. These results provide insights into the adhesion-dependent events at the tumour–stroma interface that govern the collective mode of migration adopted by carcinoma cells to invade surrounding stroma in HNSCC. PMID:28102238

  18. Chemopreventive effect of Korean Angelica root extract on TRAMP carcinogenesis and integrative "omic" profiling of affected neuroendocrine carcinomas.


    Zhang, Jinhui; Wang, Lei; Zhang, Yong; Li, Li; Tang, Suni; Xing, Chengguo; Kim, Sung-Hoon; Jiang, Cheng; Lü, Junxuan


    Angelica gigas Nakai (AGN) root ethanol extract exerts anti-cancer activity in several allograft and xenograft models. Here we examined its chemopreventive efficacy through gavage administration against primary carcinogenesis in the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Male C57BL/6 TRAMP mice and wild type littermates were given a daily gavage (5 mg/mouse, Monday-Friday) of AGN or vehicle, beginning at 8 wk of age (WOA). All mice were terminated at 24 WOA, unless earlier euthanasia was necessitated by large tumors. Whereas AGN-treated TRAMP mice decreased dorsolateral prostate lesion growth by 30% (P = 0.009), they developed fewer and smaller neuroendocrine-carcinomas (NE-Ca) (0.12 g/mouse) than vehicle-treated counterparts (0.81 g/mouse, P = 0.037). We analyzed the proteome and transcriptome of banked NE-Ca to gain molecular insights. Angiogenesis-antibody array detected a substantial reduction in AGN-treated NE-Ca of basic fibroblast growth factor (FGF2), an angiogenesis stimulator. iTRAQ proteomics plus data mining suggested changes of genes upstream and downstream of FGF2 functionally consistent with AGN inhibiting FGF2/FGFR1 signaling at different levels of the transduction cascade. Moreover, AGN upregulated mRNA of genes related to immune responses, restored expression of many tumor suppressor genes, and prostate function and muscle differentiation genes. On the other hand, AGN down-regulated mRNA of genes related to neuron signaling, oncofetal antigens, inflammation, and mast cells, Wnt signaling, embryonic morphogenesis, biosynthesis, cell adhesion, motility, invasion, and angiogenesis. These changes suggest not only multiple cancer cell targeting actions of AGN but also impact on the tumor microenvironments such as angiogenesis, inflammation, and immune surveillance.

  19. Evidence for a human-specific mechanism for diet and antibody-mediated inflammation in carcinoma progression

    PubMed Central

    Hedlund, Maria; Padler-Karavani, Vered; Varki, Nissi M.; Varki, Ajit


    Patients with cancer have circulating heterophile antibodies that agglutinate animal red cells via recognition of the mammalian cell surface sialic acid N-glycolylneuraminic acid (Neu5Gc), which was long considered an oncofetal antigen in humans. However, humans are genetically deficient in Neu5Gc production and instead metabolically accumulate Neu5Gc from dietary sources, particularly red meats and milk products. Moreover, mice with a human-like defect showed no alternate pathway for Neu5Gc synthesis and even normal humans express anti-Neu5Gc antibodies. We show here that human tumors accumulate Neu5Gc that is covalently attached to multiple classes of glycans. The paradox of human tumor Neu5Gc accumulation in the face of circulating anti-Neu5Gc antibodies was hypothesized to be due to facilitation of tumor progression by the resulting low-grade chronic inflammation. Indeed, murine tumors expressing human-like levels of Neu5Gc show accelerated growth in syngeneic mice with a human-like Neu5Gc deficiency, coincident with the induction of anti-Neu5Gc antibodies and increased infiltration of inflammatory cells. Transfer of polyclonal monospecific syngeneic mouse anti-Neu5Gc serum also enhanced growth of transplanted syngeneic tumors bearing human-like levels of Neu5Gc, with tumors showing evidence for antibody deposition, enhanced angiogenesis and chronic inflammation. These effects were suppressed by a cyclooxygenase-2 inhibitor, a drug type known to reduce human carcinoma risk. Finally, affinity-purified human anti-Neu5Gc antibodies also accelerate growth of Neu5Gc-containing tumors in Neu5Gc-deficient mice. Taken together, the data suggest that the human propensity to develop diet-related carcinomas is contributed to by local chronic inflammation, resulting from interaction of metabolically-accumulated dietary Neu5Gc with circulating anti-Neu5Gc antibodies. PMID:19017806

  20. Proper exercise decreases plasma carcinoembryonic antigen levels with the improvement of body condition in elderly women.


    Ko, Il-Gyu; Park, Eung-Mi; Choi, Hye-Jung; Yoo, Jaehyun; Lee, Jong-Kyun; Jee, Yong-Seok


    Aging increases the risk of chronic diseases including cancers. Physical exercise has the beneficial effects for the elderly susceptible to the development of cancers, through maintaining a healthy body condition and improving the immune system. However, excessive or insufficient exercise might increase the risk for cancer. In the present study, we investigated what exercise frequency improves cancer-related biomarkers, such as carcinoembryonic antigen (CEA), alpha fetoprotein (AFP), red blood cell (RBC), and white blood cell (WBC), and the body composition of elderly women. Fifty-four females, aged 70 to 77 years, were divided into 4 groups: control, 1-day exercise (1E), 2-3-day exercise (2-3E), and 5-day exercise (5E) groups. The control group did not participate in any physical activity, while the subjects in the exercise groups underwent the exercise program for 12 weeks. As results, CEA was significantly decreased in the exercise groups, with the lowest values in 2-3E group. In contrast, AFP, RBC and WBC were not significantly changed. CEA is an oncofetal glycoprotein that is overexpressed in adenocarcinomas. Although the function of CEA has not been fully understood, CEA has been suggested to be involved in the release of pro-inflammatory cytokines via stimulating monocytes and macrophages. Moreover, body weight and body mass index were improved in the exercise groups, with the lowest levels in 5E group. Thus, we suggest that exercise for 2-3 days per week decreases the expression of CEA and improves body condition, without loading fatigue or stress, which may contribute to preventing cancer in the elderly women.

  1. Molecular mechanism of anticancer effect of Sclerotium rolfsii lectin in HT29 cells involves differential expression of genes associated with multiple signaling pathways: A microarray analysis.


    Barkeer, Srikanth; Guha, Nilanjan; Hothpet, Vishwanathreddy; Saligrama Adavigowda, Deepak; Hegde, Prajna; Padmanaban, Arunkumar; Yu, Lu-Gang; Swamy, Bale M; Inamdar, Shashikala R


    Sclerotium rolfsii lectin (SRL) is a lectin isolated from fungus S. rolfsii and has high binding specificity toward the oncofetal Thomsen-Friedenreich carbohydrate antigen (Galβ1-3GalNAc-α-O-Ser/Thr, T or TF), which is expressed in more than 90% of human cancers. Our previous studies have shown that binding of SRL to human colon, breast and ovarian cancer cells induces cell apoptosis in vitro and suppresses tumor growth in vivo. This study investigated the SRL-mediated cell signaling in human colon cancer HT29 cells by mRNA and miRNA microarrays. It was found that SRL treatment results in altered expression of several hundred molecules including mitogen-activated protein kinase (MAPK) and c-JUN-associated, apoptosis-associated and cell cycle and DNA replication-associated signaling molecules. Pathway analysis using GeneSpring 12.6.1 revealed that SRL treatment induces changes of MAPK and c-JUN-associated signaling pathways as early as 2 h while changes of cell cycle, DNA replication and apoptosis pathways were significantly affected only after 24 h. A significant change of cell miRNA expression was also observed after 12 h treatment of the cells with SRL. These changes were further validated by quantitative real time polymerase chain reaction and immunoblotting. This study thus suggests that the presence of SRL affects multiple signaling pathways in cancer cells with early effects on cell proliferation pathways associated with MAPK and c-JUN, followed by miRNA-associated cell activity and apoptosis. This provides insight information into the molecular mechanism of the anticancer activity of this fungal lectin.

  2. Chromosome 12p abnormalities and IMP3 expression in prepubertal pure testicular teratomas.


    Cornejo, Kristine M; Cheng, Liang; Church, Alanna; Wang, Mingsheng; Jiang, Zhong


    Although the histologic appearance of pure testicular teratomas (PTTs) is similar in children and adults, the prognosis is dramatically different. Prepubertal PTTs are rare, with a benign clinical course, whereas the adult cases typically have malignant outcomes. Chromosome 12p abnormalities are seen in most adult testicular germ cell tumors but have not been found in prepubertal PTTs. IMP3 is an oncofetal protein that is highly expressed in many malignancies. Recently, we demonstrated IMP3 is expressed in adult mature testicular teratomas but not in mature ovarian teratomas. The aim of this study was to evaluate prepubertal PTTs for chromosome 12p abnormalities and expression of IMP3. A total of 11 cases (excision, n=1; orchiectomy, n=10) were obtained from the surgical pathology archives of 2 large medical centers (1957-2013). All 11 cases were investigated for isochromosome 12p and 12p copy number gain using interphase fluorescence in situ hybridization analysis and were examined by immunohistochemistry for IMP3 expression. Patients ranged in age from 0.9 to 7.0 (mean, 2.4) years. A positive immunohistochemical stain for IMP3 (cytoplasmic staining) was identified in 5 (46%) of 11 cases. Isochromosome 12p was detected in 2 cases (18%) that also expressed IMP3. Somatic copy number alterations of 12p were not observed (0%). We are the first to describe 12p abnormalities and IMP3 expression in prepubertal PTTs. Our data demonstrate a small subset of PTTs harbor typical molecular alterations observed in adult testicular germ cell tumors. Although prepubertal PTTs are considered to be benign neoplasms, it may be a heterogeneous group.

  3. IMP3 expression in lesions of the biliary tract: a marker for high-grade dysplasia and an independent prognostic factor in bile duct carcinomas.


    Riener, Marc-Oliver; Fritzsche, Florian R; Clavien, Pierre-Alain; Pestalozzi, Bernhard C; Probst-Hensch, Nicole; Jochum, Wolfram; Kristiansen, Glen


    The oncofetal protein IMP3 (insulin-like growth factor II mRNA binding protein 3) is expressed during embryogenesis and carcinogenesis. Various tumor types have been analyzed for IMP3 expression, which was exclusively found in tumor cells and correlated with increased tumor aggressiveness and reduced overall survival. To our knowledge, IMP3 expression has not been investigated in bile duct carcinomas. Using large tissue sections from resection specimens of the extrahepatic biliary tract, we analyzed IMP3 in normal bile ducts (n = 36), bile ducts with acute inflammation and reactive epithelial changes (n = 26), low-grade dysplasia (n = 9), and high-grade dysplasia (n = 11). Furthermore, IMP3 expression was assessed in bile duct carcinoma (n = 115) using clinically well-characterized tissue microarrays. The findings were correlated with clinical-pathologic parameters including survival. High-grade dysplasia was strongly positive for IMP3 in all cases studied compared with no or weak expression in normal, inflamed, and low-grade dysplastic bile ducts. Of the bile duct carcinomas 58.3% (67/115) were strongly positive for IMP3, which was associated with a higher proliferation rate (P = .004) and p53 positivity (P = .022). Patients with strong IMP3 expression had significantly reduced overall survival (P = .037) similarly to the subgroup of pT3 carcinomas (P = .007). In multivariate analysis, IMP3 expression was an independent prognostic factor for overall survival (P = .040, RR = 1.809). This comprehensive study shows that IMP3 is an independent prognostic biomarker in bile duct carcinoma. In addition, it may be a marker for high-grade dysplasia in the extrahepatic biliary tract.

  4. Purification and refolding of anti-T-antigen single chain antibodies (scFvs) expressed in Escherichia coli as inclusion bodies.


    Yuasa, Noriyuki; Koyama, Tsubasa; Fujita-Yamaguchi, Yoko


    T-antigen (Galβ1-3GalNAcα-1-Ser/Thr) is an oncofetal antigen that is commonly expressed as a carbohydrate determinant in many adenocarcinomas. Since it is associated with tumor progression and metastasis, production of recombinant antibodies specific for T-antigen could lead to the development of cancer diagnostics and therapeutics. Previously, we isolated and characterized 11 anti-T-antigen phage clones from a phage library displaying human single-chain antibodies (scFvs) and purified one scFv protein, 1G11. More recently, we purified and characterized 1E8 scFv protein using a Drosophila S2 expression system. In the current study, four anti-T-antigen scFv genes belonging to Groups 1-4 were purified from inclusion bodies expressed in Escherichia coli cells. Inclusion bodies isolated from E. coli cells were denatured in 3.5 M Gdn-HCl. Solubilized His-tagged scFv proteins were purified using Ni(2+)-Sepharose column chromatography in the presence of 3.5 M Gdn-HCl. Purified scFv proteins were refolded according to a previously published method of step-wise dialysis. Two anti-T-antigen scFv proteins, 1E6 and 1E8 that belong to Groups 1 and 2, respectively, were produced in sufficient amounts, thus allowing further characterization of their binding activity with T-antigen. Specificity and affinity constants determined using enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR), respectively, provided evidence that both 1E8 and 1E6 scFv proteins are T-antigen specific and suggested that 1E8 scFv protein has a higher affinity for T-antigen than 1E6 scFv protein.

  5. Migration-stimulating factor (MSF) is over-expressed in non-small cell lung cancer and promotes cell migration and invasion in A549 cells over-expressing MSF

    SciTech Connect

    Deng, Xuefeng; Ma, Qunfeng; Zhang, Bo; Jiang, Hong; Zhang, Zhipei; Wang, Yunjie


    Migration-stimulating factor (MSF), an oncofetal truncated isoform of fibronectin, is a potent stimulator of cell invasion. However, its distribution and motogenic role in non-small cell lung cancer (NSCLC) have never been identified. In this study, real-time PCR and immunohistochemical staining (IHC) were performed to detect MSF mRNA and protein levels in tumor tissues and matched adjacent tumor-free tissues. Furthermore, to examine the effect of MSF on invasiveness, MSF was upregulated in A549 cells. The invasiveness and viability of A549 cells were then determined using a transwell migration assay and the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assays, respectively. The expression level of MSF in NSCLC tissue was markedly higher than in matched adjacent tumor-free tissue. Additionally, the level of MSF protein expression in stage III and IV NSCLC samples was higher than in stage I and II NSCLC samples. More importantly, we also demonstrated that migration and invasion of A549 cells increased substantially after upregulating MSF, although proliferation remained unchanged. Meanwhile, we found no correlation between increasing motility and invasiveness of MSF-overexpressing cells and expression levels and activities of matrix metalloprotease MMP-2 and MMP-9. Our current study shows that MSF plays a role in migration and invasion of A549 cells and suggests that MSF may be a potential biomarker of NSCLC progression. - Highlights: • MSF expression was upregulated in NSCLC and correlated with TNM stages. • MSF may be a new biomarker for NSCLC progression. • MSF promoted migration and invasion in A549 cells, independent of MMP-2/MMP-9 expression.

  6. Biosynthesis and turnover of O-acetyl and N-acetyl groups in the gangliosides of human melanoma cells

    SciTech Connect

    Manzi, A.E.; Sjoberg, E.R.; Diaz, S.; Varki, A.


    We and others previously described the melanoma-associated oncofetal glycosphingolipid antigen 9-O-acetyl-GD3, a disialoganglioside O-acetylated at the 9-position of the outer sialic acid residue. We have now developed methods to examine the biosynthesis and turnover of disialogangliosides in cultured melanoma cells and in Golgi-enriched vesicles from these cells. O-Acetylation was selectively expressed on di- and trisialogangliosides, but not on monosialogangliosides, nor on glycoprotein-bound sialic acids. Double-labeling of cells with (3H)acetate and (14C)glucosamine introduced easily detectable labels into each of the components of the ganglioside molecules. Pulse-chase studies of such doubly labeled molecules indicated that the O-acetyl groups turn over faster than the parent molecule. When Golgi-enriched vesicles from these cells were incubated with (acetyl-3H)acetyl-coenzyme A, the major labeled products were disialogangliosides. (Acetyl-3H)O-acetyl groups were found at both the 7- and the 9-positions, indicating that both 7-O-acetyl GD3 and 9-O-acetyl GD3 were synthesized by the action of O-acetyltransferase(s) on endogenous GD3. Analysis of the metabolically labeled molecules confirmed the existence of both 7- and 9-O-acetylated GD3 in the intact cells. Surprisingly, the major 3H-labeled product of the in vitro labeling reaction was not O-acetyl-GD3, but GD3, with the label exclusively in the sialic acid residues. Fragmentation of the labeled sialic acids by enzymatic and chemical methods showed that the 3H-label was exclusively in (3H)N-acetyl groups. Analyses of the double-labeled sialic acids from intact cells also showed that the 3H-label from (3H)acetate was exclusively in the form of (3H)N-acetyl groups, whereas the 14C-label was at the 4-position.

  7. Enrichment of Human Stem-Like Prostate Cells with s-SHIP Promoter Activity Uncovers a Role in Stemness for the Long Noncoding RNA H19.


    Bauderlique-Le Roy, Hélène; Vennin, Constance; Brocqueville, Guillaume; Spruyt, Nathalie; Adriaenssens, Eric; Bourette, Roland P


    Understanding normal and cancer stem cells should provide insights into the origin of prostate cancer and their mechanisms of resistance to current treatment strategies. In this study, we isolated and characterized stem-like cells present in the immortalized human prostate cell line, RWPE-1. We used a reporter system with green fluorescent protein (GFP) driven by the promoter of s-SHIP (for stem-SH2-domain-containing 5'-inositol phosphatase) whose stem cell-specific expression has been previously shown. We observed that s-SHIP-GFP-expressing RWPE-1 cells showed stem cell characteristics such as increased expression of stem cell surface markers (CD44, CD166, TROP2) and pluripotency transcription factors (Oct4, Sox2), and enhanced sphere-forming capacity and resistance to arsenite-induced cell death. Concomitant increased expression of the long noncoding RNA H19 was observed, which prompted us to investigate a putative role in stemness for this oncofetal gene. Targeted suppression of H19 with siRNA decreased Oct4 and Sox2 gene expression and colony-forming potential in RWPE-1 cells. Conversely, overexpression of H19 significantly increased gene expression of these two transcription factors and the sphere-forming capacity of RWPE-1 cells. Analysis of H19 expression in various prostate and mammary human cell lines revealed similarities with Sox2 expression, suggesting that a functional relationship may exist between H19 and Sox2. Collectively, we provide the first evidence that s-SHIP-GFP promoter reporter offers a unique marker for the enrichment of human stem-like cell populations and highlight a role in stemness for the long noncoding RNA H19.

  8. Pharmacokinetics, biodistribution and antitumour effects of Sclerotium rolfsii lectin in mice.


    Anupama, S; Laha, Preeti; Sharma, Mamta; Pathak, Kamal; Bane, Sanjay; Ingle, Arvind D; Gota, Vikram; Kalraiya, Rajiv D; Yu, Lu-Gang; Rhodes, Jonathan M; Swamy, Bale M; Inamdar, Shashikala R


    Sclerotium rolfsii lectin (SRL) is a lectin isolated from the fungus Sclerotium rolfsii and has exquisite binding specificity towards the oncofetal Thomsen-Friedenreich antigen (TF-Ag; Galβ1-3GalNAcα-O-Ser/Thr) and its derivatives. Previous studies have shown that SRL inhibits the proliferation of human colon, breast and ovarian cancer cells in vitro and suppresses tumour growth in mice when introduced intratumourally. The present study assessed the effect of SRL on tumour growth when introduced intraperitoneally in BALB/c nude mice and investigated the pharmacokinetics and biodistribution of SRL in Swiss albino mice. When 9 doses of SRL (30 mg/kg body weight/mice) was administered to BALB/c nude mice bearing human colon cancer HT-29 xenografts, a substantial reduction in tumour size was observed. A 35.8% reduction in tumour size was noted in the treated animals after 17 days. SRL treatment also inhibited angiogenesis, and the tumours from the treated animals were observed to carry fewer blood vessels and express less angiogenesis marker protein CD31, than that from the control animals. Pharmacokinetics and biodistribution analysis revealed that SRL was detected in the serum after 1 h and its level peaked after 24 h. SRL was not detected in any of the organs apart from the kidney where a trace amount was detected after 24 h of SRL injection. No significant changes were observed in any of the biochemical parameters tested including SGOT, SGPT, LDH, CREAT and BUN in the SRL-treated mice compared to these levels in the controls. This suggests that SRL has good potential to be developed as a therapeutic agent for cancer treatment and warrant further investigations in vivo and subsequent clinical trials.

  9. Hepatic miR-29ab1 expression modulates chronic hepatic injury

    PubMed Central

    Kogure, Takayuki; Costinean, Stefan; Yan, Irene; Braconi, Chiara; Croce, Carlo; Patel, Tushar


    MicroRNAs (miRNAs) are small, regulatory non-coding RNAs that have potent effects on gene expression. Several miRNA are deregulated in cellular processes involved in human liver diseases and regulation of cellular processes. Recent studies have identified the involvement of miR-29 in hepatic fibrosis and carcinogenesis. Although several targets of miR-29 have been identified, there is limited information regarding the cell-type specific roles of miR-29 in the liver, and we sought to evaluate the role of this miRNA in hepatic pathobiology. We report the generation of a tissue–specific knockout mouse to evaluate the role of miR-29 in hepatic fibrosis and carcinogenesis in response to injury. We hypothesized that miR-29 contributes to the hepatocyte driven response to chronic cellular injury that results in fibrosis. In support of this hypothesis, fibrosis and mortality were enhanced in miR29 knockout mice in response to carbon tetrachloride. Genome-wide gene expression analysis identified an over-representation of genes associated with fibrosis. The oncofetal RNA H19 was modulated in a miR-29 dependent manner following exposure to carbon tetrachloride in vivo. The impact of a hepatocyte specific miR-29 knockout on survival following chronic hepatic injury in vivo implicates this miRNA as a potential target for intervention. These results provide evidence of the involvement of miR-29 in chronic hepatic injury, and suggest a role for deregulated hepatocyte expression of miR-29 in the response to hepatic injury, fibrosis and carcinogenesis. PMID:22469499

  10. Breast Cancer Cells in Three-dimensional Culture Display an Enhanced Radioresponse after Coordinate Targeting of Integrin ?5?1 and Fibronectin

    SciTech Connect

    Nam, Jin-Min; Onodera, Yasuhito; Bissell, Mina J; Park, Catherine C


    Tactics to selectively enhance cancer radioresponse are of great interest. Cancer cells actively elaborate and remodel their extracellular matrix (ECM) to aid in survival and progression. Previous work has shown that {beta}1-integrin inhibitory antibodies can enhance the growth-inhibitory and apoptotic responses of human breast cancer cell lines to ionizing radiation, either when cells are cultured in three-dimensional laminin-rich ECM (3D lrECM) or grown as xenografts in mice. Here, we show that a specific {alpha} heterodimer of {beta}1-integrin preferentially mediates a prosurvival signal in human breast cancer cells that can be specifically targeted for therapy. 3D lrECM culture conditions were used to compare {alpha}-integrin heterodimer expression in malignant and nonmalignant cell lines. Under these conditions, we found that expression of {alpha}5{beta}1-integrin was upregulated in malignant cells compared with nonmalignant breast cells. Similarly, we found that normal and oncofetal splice variants of fibronectin, the primary ECM ligand of {alpha}5{beta}1-integrin, were also strikingly upregulated in malignant cell lines compared with nonmalignant acini. Cell treatment with a peptide that disrupts the interactions of {alpha}5{beta}1-integrin with fibronectin promoted apoptosis in malignant cells and further heightened the apoptotic effects of radiation. In support of these results, an analysis of gene expression array data from breast cancer patients revealed an association of high levels of {alpha}5-integrin expression with decreased survival. Our findings offer preclinical validation of fibronectin and {alpha}5{beta}1-integrin as targets for breast cancer therapy.

  11. Tumor-derived alpha-fetoprotein impairs the differentiation and T cell stimulatory activity of human dendritic cells

    PubMed Central

    Pardee, Angela D.; Shi, Jian; Butterfield, Lisa H.


    Several tumor-derived factors have been implicated in DC dysfunction in cancer patients. Alpha-fetoprotein (AFP) is an oncofetal antigen that is highly expressed in abnormalities of prenatal development and several epithelial cancers, including hepatocellular carcinoma (HCC). In HCC patients exhibiting high levels of serum AFP, we have observed a lower ratio of myeloid-to-plasmacytoid circulating DC compared to patients with low serum AFP levels and healthy donors. To test the effect of AFP on DC differentiation in vitro, peripheral blood monocytes from healthy donors were cultured in the presence of cord blood-derived normal AFP (nAFP) or HCC tumor-derived AFP (tAFP), and DC phenotype and function was assessed. Although the nAFP and tAFP isoforms only differ at one carbohydrate group, low (physiological) levels of tAFP, but not nAFP, significantly inhibited DC differentiation. tAFP-conditioned DC expressed diminished levels of DC maturation markers, retained a monocyte-like morphology, exhibited limited production of inflammatory mediators, and failed to induce robust T cell proliferative responses. Mechanistic studies revealed that the suppressive activity of tAFP is dependent on the presence of low molecular weight (LMW) species that i) co-purify with tAFP, and ii) function equivalently to the LMW fractions of both tumor and non-tumor cell lysates. These data reveal the unique ability of tAFP to serve as a chaperone protein for LMW molecules, both endogenous and ubiquitous in nature, which function cooperatively to impair DC differentiation and function. Therefore, novel therapeutic approaches that antagonize the regulatory properties of tAFP will be critical to enhance immunity and improve clinical outcomes. PMID:25355916

  12. Tumor-derived α-fetoprotein impairs the differentiation and T cell stimulatory activity of human dendritic cells.


    Pardee, Angela D; Shi, Jian; Butterfield, Lisa H


    Several tumor-derived factors have been implicated in dendritic cell (DC) dysfunction in cancer patients. α-fetoprotein (AFP) is an oncofetal Ag that is highly expressed in abnormalities of prenatal development and several epithelial cancers, including hepatocellular carcinoma (HCC). In HCC patients exhibiting high levels of serum AFP, we observed a lower ratio of myeloid/plasmacytoid circulating DCs compared with patients with low serum AFP levels and healthy donors. To test the effect of AFP on DC differentiation in vitro, peripheral blood monocytes from healthy donors were cultured in the presence of cord blood-derived normal AFP (nAFP) or HCC tumor-derived AFP (tAFP), and DC phenotype and function were assessed. Although the nAFP and tAFP isoforms only differ at one carbohydrate group, low (physiological) levels of tAFP, but not nAFP, significantly inhibited DC differentiation. tAFP-conditioned DCs expressed diminished levels of DC maturation markers, retained a monocyte-like morphology, exhibited limited production of inflammatory mediators, and failed to induce robust T cell proliferative responses. Mechanistic studies revealed that the suppressive activity of tAFP is dependent on the presence of low molecular mass (LMM) species that copurify with tAFP and function equivalently to the LMM fractions of both tumor and nontumor cell lysates. These data reveal the unique ability of tAFP to serve as a chaperone protein for LMM molecules, both endogenous and ubiquitous in nature, which function cooperatively to impair DC differentiation and function. Therefore, novel therapeutic approaches that antagonize the regulatory properties of tAFP will be critical to enhance immunity and improve clinical outcomes.

  13. Sweet and Sour: The Impact of Differential Glycosylation in Cancer Cells Undergoing Epithelial–Mesenchymal Transition

    PubMed Central

    Freire-de-Lima, Leonardo


    Glycosylation changes are a feature of disease states. One clear example is cancer cells, which commonly express glycans at atypical levels or with different structural attributes than those found in normal cells. Epithelial–mesenchymal transition (EMT) was initially recognized as an important step for morphogenesis during embryonic development, and is now shown to be one of the key steps promoting tumor metastasis. Cancer cells undergoing EMT are characterized by significant changes in glycosylation of the extracellular matrix (ECM) components and cell-surface glycoconjugates. Current scientific methodology enables all hallmarks of EMT to be monitored in vitro and this experimental model has been extensively used in oncology research during the last 10 years. Several studies have shown that cell-surface carbohydrates attached to proteins through the amino acids, serine, or threonine (O-glycans), are involved in tumor progression and metastasis, however, the impact of O-glycans on EMT is poorly understood. Recent studies have demonstrated that transforming growth factor-beta (TGF-β), a known EMT inducer, has the ability to promote the up-regulation of a site-specific O-glycosylation in the IIICS domain of human oncofetal fibronectin, a major ECM component expressed by cancer cells and embryonic tissues. Armed with the knowledge that cell-surface glycoconjugates play a major role in the maintenance of cell homeostasis and that EMT is closely associated with glycosylation changes, we may benefit from understanding how unusual glycans can govern the molecular pathways associated with cancer progression. This review initially focuses on some well-known changes found in O-glycans expressed by cancer cells, and then discusses how these alterations may modulate the EMT process. PMID:24724053

  14. A pancreatic tumor-specific biomarker characterized in humans and mice as an immunogenic onco-glycoprotein is efficient in dendritic cell vaccination

    PubMed Central

    Collignon, Aurélie; Perles-Barbacaru, Adriana Teodora; Robert, Stéphane; Silvy, Françoise; Martinez, Emmanuelle; Crenon, Isabelle; Germain, Sébastien; Garcia, Stéphane; Viola, Angèle; Lombardo, Dominique


    Oncofetal fucose-rich glycovariants of the pathological bile salt-dependent lipase (pBSDL) appear during human pancreatic oncogenesis and are detected by themonoclonal antibody J28 (mAbJ28). We aimed to identify murine counterparts onpancreatic ductal adenocarcinoma (PDAC) cells and tissue and investigate the potential of dendritic cells (DC) loaded with this unique pancreatic tumor antigen to promote immunotherapy in preclinical trials. Pathological BSDLs purified from pancreatic juices of patients with PDAC were cleaved to generate glycosylated C-terminal moieties (C-ter) containing mAbJ28-reactive glycoepitopes. Immunoreactivity of the murine PDAC line Panc02 and tumor tissue to mAbJ28 was detected by immunohistochemistry and flow cytometry. C-ter-J28+ immunization promoted Th1-dominated immune responses. In vitro C-ter-J28+-loaded DCskewed CD3+ T-cells toward Th1 polarization. C-ter-J28+-DC-vaccinations selectively enhanced cell immunoreactivity to Panc02, as demonstrated by CD4+- and CD8+-T-cell activation, increased percentages of CD4+- and CD8+-T-cells and NK1.1+ cells expressing granzyme B, and T-cell cytotoxicity. Prophylactic and therapeutic C-ter-J28+-DC-vaccinations reduced ectopic Panc02-tumor growth, provided long-lasting protection from Panc02-tumor development in 100% of micebut not from melanoma, and attenuated progression of orthotopic tumors as revealed by MRI. Thusmurine DC loaded with pancreatic tumor-specific glycoepitope C-ter-J28+ induce efficient anticancer adaptive immunity and represent a potential adjuvant therapy for patients afflicted with PDAC. PMID:26405163

  15. Deregulation of MYCN, LIN28B and LET7 in a Molecular Subtype of Aggressive High-Grade Serous Ovarian Cancers

    PubMed Central

    Cowin, Prue A.; Johnstone, Cameron N.; House, Colin M.; Sheppard, Karen E.; Etemadmoghadam, Dariush; Melnyk, Nataliya; Rustgi, Anil K.; Phillips, Wayne A.; Johnsen, Hilde; Holm, Ruth; Kristensen, Gunnar B.; Birrer, Michael J.; Pearson, Richard B.; Børresen-Dale, Anne-Lise; Huntsman, David G.; deFazio, Anna; Creighton, Chad J.; Smyth, Gordon K.; Bowtell, David D. L.


    Molecular subtypes of serous ovarian cancer have been recently described. Using data from independent datasets including over 900 primary tumour samples, we show that deregulation of the Let-7 pathway is specifically associated with the C5 molecular subtype of serous ovarian cancer. DNA copy number and gene expression of HMGA2, alleles of Let-7, LIN28, LIN28B, MYC, MYCN, DICER1, and RNASEN were measured using microarray and quantitative reverse transcriptase PCR. Immunohistochemistry was performed on 127 samples using tissue microarrays and anti-HMGA2 antibodies. Fluorescence in situ hybridisation of bacterial artificial chromosomes hybridized to 239 ovarian tumours was used to measure translocation at the LIN28B locus. Short interfering RNA knockdown in ovarian cell lines was used to test the functionality of associations observed. Four molecular subtypes (C1, C2, C4, C5) of high-grade serous ovarian cancers were robustly represented in each dataset and showed similar pattern of patient survival. We found highly specific activation of a pathway involving MYCN, LIN28B, Let-7 and HMGA2 in the C5 molecular subtype defined by MYCN amplification and over-expression, over-expression of MYCN targets including the Let-7 repressor LIN28B, loss of Let-7 expression and HMGA2 amplification and over-expression. DICER1, a known Let-7 target, and RNASEN were over-expressed in C5 tumours. We saw no evidence of translocation at the LIN28B locus in C5 tumours. The reported interaction between LIN28B and Let-7 was recapitulated by siRNA knockdown in ovarian cancer cell lines. Our results associate deregulation of MYCN and downstream targets, including Let-7 and oncofetal genes, with serous ovarian cancer. We define for the first time how elements of an oncogenic pathway, involving multiple genes that contribute to stem cell renewal, is specifically altered in a molecular subtype of serous ovarian cancer. By defining the drivers of a molecular subtype of serous ovarian cancers we

  16. Expression of serum albumin and of alphafetoprotein in murine normal and neoplastic primitive embryonic structures.


    Trojan, J; Naval, X; Johnson, T; Lafarge-Frayssinet, C; Hajeri-Germond, M; Farges, O; Pan, Y; Uriel, J; Abramasky, O; Ilan, J


    corresponding morphologically neoplastic tissues of the teratocarcinomas. The same SA:AFP relationship constitutes an oncofetal marker of primitive neuroectoblastic structures.