Science.gov

Sample records for oncogenic k-ras mutation

  1. Characterization of a novel oncogenic K-ras mutation in colon cancer

    SciTech Connect

    Akagi, Kiwamu . E-mail: akagi@cancer-c.pref.saitama.jp; Uchibori, Ryosuke; Yamaguchi, Kensei; Kurosawa, Keiko; Tanaka, Yoichiro; Kozu, Tomoko

    2007-01-19

    Activating mutations of RAS are frequently observed in subsets of human cancers, indicating that RAS activation is involved in tumorigenesis. Here, we identified and characterized a novel G to T transversion mutation of the K-ras gene at the third position of codon 19 (TTG) which substituted phenylalanine for leucine in 3 primary colon carcinomas. Biological and biochemical activity was examined using transformed NIH3T3 cells expressing mutant or wild-type K-ras. Transformants harboring the K-ras mutation at codon 19 showed proliferative capacity under serum-starved conditions, less contact inhibition, anchorage-independent growth, tumorigenicity in nude mice and elevation of active Ras-GTP levels. These results indicated that this novel mutation possesses high oncogenic activity.

  2. Anti-tumor activity of ESX1 on cancer cells harboring oncogenic K-ras mutation

    SciTech Connect

    Nakajima, Junta; Ishikawa, Susumu; Hamada, Jun-Ichi; Yanagihara, Masatomo; Koike, Takao; Hatakeyama, Masanori

    2008-05-23

    Human ESX1 is a 65-kilodalton (kDa) paired-like homeoprotein that is proteolytically processed into N-terminal 45-kDa and C-terminal 20-kDa fragments. The N-terminal ESX1 fragment, which contains the homeodomain, localizes to the nucleus and represses mRNA transcription from the K-ras gene. When we inoculated human colorectal carcinoma HCT116 constitutive expressing N-terminal region of ESX1 (N-ESX1) into nude mice, transfectant cells uniformly showed decreased tumor-forming activity compared with that of the parental cells. Furthermore, pretreatment of HCT116 carcinoma cells with a fusion protein consisting of N-ESX1 and the protein-transduction domain derived from the human immunodeficiency virus type-1 TAT protein gave rise to a dramatic reduction in the tumorigenicity of HCT116 cells in nude mice. Our results provide first in vivo evidence for the molecular targeting therapeutic application of the K-ras repressor ESX1, especially TAT-mediated transduction of N-ESX1, in the treatment of human cancers having oncogenic K-ras mutations.

  3. Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site

    PubMed Central

    Mazhab-Jafari, Mohammad T.; Marshall, Christopher B.; Smith, Matthew J.; Gasmi-Seabrook, Geneviève M. C.; Stathopulos, Peter B.; Inagaki, Fuyuhiko; Kay, Lewis E.; Neel, Benjamin G.; Ikura, Mitsuhiko

    2015-01-01

    K-RAS4B (Kirsten rat sarcoma viral oncogene homolog 4B) is a prenylated, membrane-associated GTPase protein that is a critical switch for the propagation of growth factor signaling pathways to diverse effector proteins, including rapidly accelerated fibrosarcoma (RAF) kinases and RAS-related protein guanine nucleotide dissociation stimulator (RALGDS) proteins. Gain-of-function KRAS mutations occur frequently in human cancers and predict poor clinical outcome, whereas germ-line mutations are associated with developmental syndromes. However, it is not known how these mutations affect K-RAS association with biological membranes or whether this impacts signal transduction. Here, we used solution NMR studies of K-RAS4B tethered to nanodiscs to investigate lipid bilayer-anchored K-RAS4B and its interactions with effector protein RAS-binding domains (RBDs). Unexpectedly, we found that the effector-binding region of activated K-RAS4B is occluded by interaction with the membrane in one of the NMR-observable, and thus highly populated, conformational states. Binding of the RAF isoform ARAF and RALGDS RBDs induced marked reorientation of K-RAS4B from the occluded state to RBD-specific effector-bound states. Importantly, we found that two Noonan syndrome-associated mutations, K5N and D153V, which do not affect the GTPase cycle, relieve the occluded orientation by directly altering the electrostatics of two membrane interaction surfaces. Similarly, the most frequent KRAS oncogenic mutation G12D also drives K-RAS4B toward an exposed configuration. Further, the D153V and G12D mutations increase the rate of association of ARAF-RBD with lipid bilayer-tethered K-RAS4B. We revealed a mechanism of K-RAS4B autoinhibition by membrane sequestration of its effector-binding site, which can be disrupted by disease-associated mutations. Stabilizing the autoinhibitory interactions between K-RAS4B and the membrane could be an attractive target for anticancer drug discovery. PMID:25941399

  4. Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site.

    PubMed

    Mazhab-Jafari, Mohammad T; Marshall, Christopher B; Smith, Matthew J; Gasmi-Seabrook, Geneviève M C; Stathopulos, Peter B; Inagaki, Fuyuhiko; Kay, Lewis E; Neel, Benjamin G; Ikura, Mitsuhiko

    2015-05-26

    K-RAS4B (Kirsten rat sarcoma viral oncogene homolog 4B) is a prenylated, membrane-associated GTPase protein that is a critical switch for the propagation of growth factor signaling pathways to diverse effector proteins, including rapidly accelerated fibrosarcoma (RAF) kinases and RAS-related protein guanine nucleotide dissociation stimulator (RALGDS) proteins. Gain-of-function KRAS mutations occur frequently in human cancers and predict poor clinical outcome, whereas germ-line mutations are associated with developmental syndromes. However, it is not known how these mutations affect K-RAS association with biological membranes or whether this impacts signal transduction. Here, we used solution NMR studies of K-RAS4B tethered to nanodiscs to investigate lipid bilayer-anchored K-RAS4B and its interactions with effector protein RAS-binding domains (RBDs). Unexpectedly, we found that the effector-binding region of activated K-RAS4B is occluded by interaction with the membrane in one of the NMR-observable, and thus highly populated, conformational states. Binding of the RAF isoform ARAF and RALGDS RBDs induced marked reorientation of K-RAS4B from the occluded state to RBD-specific effector-bound states. Importantly, we found that two Noonan syndrome-associated mutations, K5N and D153V, which do not affect the GTPase cycle, relieve the occluded orientation by directly altering the electrostatics of two membrane interaction surfaces. Similarly, the most frequent KRAS oncogenic mutation G12D also drives K-RAS4B toward an exposed configuration. Further, the D153V and G12D mutations increase the rate of association of ARAF-RBD with lipid bilayer-tethered K-RAS4B. We revealed a mechanism of K-RAS4B autoinhibition by membrane sequestration of its effector-binding site, which can be disrupted by disease-associated mutations. Stabilizing the autoinhibitory interactions between K-RAS4B and the membrane could be an attractive target for anticancer drug discovery.

  5. The Structural Basis of Oncogenic Mutations G12, G13 and Q61 in Small GTPase K-Ras4B

    PubMed Central

    Lu, Shaoyong; Jang, Hyunbum; Nussinov, Ruth; Zhang, Jian

    2016-01-01

    Ras mediates cell proliferation, survival and differentiation. Mutations in K-Ras4B are predominant at residues G12, G13 and Q61. Even though all impair GAP-assisted GTP → GDP hydrolysis, the mutation frequencies of K-Ras4B in human cancers vary. Here we aim to figure out their mechanisms and differential oncogenicity. In total, we performed 6.4 μs molecular dynamics simulations on the wild-type K-Ras4B (K-Ras4BWT-GTP/GDP) catalytic domain, the K-Ras4BWT-GTP–GAP complex, and the mutants (K-Ras4BG12C/G12D/G12V-GTP/GDP, K-Ras4BG13D-GTP/GDP, K-Ras4BQ61H-GTP/GDP) and their complexes with GAP. In addition, we simulated ‘exchanged’ nucleotide states. These comprehensive simulations reveal that in solution K-Ras4BWT-GTP exists in two, active and inactive, conformations. Oncogenic mutations differentially elicit an inactive-to-active conformational transition in K-Ras4B-GTP; in K-Ras4BG12C/G12D-GDP they expose the bound nucleotide which facilitates the GDP-to-GTP exchange. These mechanisms may help elucidate the differential mutational statistics in K-Ras4B-driven cancers. Exchanged nucleotide simulations reveal that the conformational transition is more accessible in the GTP-to-GDP than in the GDP-to-GTP exchange. Importantly, GAP not only donates its R789 arginine finger, but stabilizes the catalytically-competent conformation and pre-organizes catalytic residue Q61; mutations disturb the R789/Q61 organization, impairing GAP-mediated GTP hydrolysis. Together, our simulations help provide a mechanistic explanation of key mutational events in one of the most oncogenic proteins in cancer. PMID:26902995

  6. Activation of a human c-K-ras oncogene.

    PubMed Central

    Yamamoto, F; Perucho, M

    1984-01-01

    The human lung carcinomas PR310 and PR371 contain activated c-K-ras oncogenes. The oncogene of PR371 was found to present a mutation at codon 12 of the first coding exon which substitutes cysteine for glycine in the encoded p21 protein. We report here that the transforming gene of PR310 tumor contains a mutation in the second coding exon. An A----T transversion at codon 61 results in the incorporation of histidine instead of glutamine in the c-K-ras gene product. By constructing c-K-ras/c-H-ras chimeric genes we show that this point mutation is sufficient to confer transforming potential to ras genes, and that a hybrid ras gene coding for a protein mutant at both codons 12 and 61 is also capable of transforming NIH3T3 cells. The relative transforming potency of p21 proteins encoded by ras genes mutant at codons 12, 61 or both has been analyzed. Our studies also show that the coding exons of ras genes, including the fourth, can be interchanged and the chimeric p21 ras proteins retain their oncogenic ability in normal rodent established cell lines. PMID:6096811

  7. K-ras oncogene DNA sequences in pink salmon in streams impacted by the Exxon Valdez oil spill: no evidence of oil-induced heritable mutations.

    PubMed

    Cronin, Matthew A; Wickliffe, Jeffrey K; Dunina, Yelena; Baker, Robert J

    2002-08-01

    It was hypothesized in previous studies that the Exxon Valdez oil spill in Prince William Sound, Alaska, induced heritable mutations and resulted in mortality of pink salmon (Oncorhynchus gorbuscha) embryos. In one of these studies, laboratory exposure of pink salmon embryos to crude oil resulted in apparent mutation-induction in exon 1 and exon 2 of the K-ras oncogene, but no fish from the area impacted by the oil spill were analyzed. We assessed K-ras exon 1 and exon 2 DNA sequences in pink salmon from five streams that were oiled and five streams that were not oiled by the Exxon Valdez oil spill in Prince William Sound, and two streams with natural oil seeps and one stream without seeps on the Alaska Peninsula. Of the 79 fish analyzed for exon 1 and the 89 fish analyzed for exon 2, none had the nucleotide substitutions representing the mutations induced in the laboratory study. Other variable nucleotides occurred in similar proportions in oiled and non-oiled streams and probably represent natural allelic variation. These data do not support the hypothesis that heritable mutations in the K-ras gene were induced by the Exxon Valdez oil spill or oil seeps. PMID:12211696

  8. K-ras oncogene DNA sequences in pink salmon in streams impacted by the Exxon Valdez oil spill: no evidence of oil-induced heritable mutations.

    PubMed

    Cronin, Matthew A; Wickliffe, Jeffrey K; Dunina, Yelena; Baker, Robert J

    2002-08-01

    It was hypothesized in previous studies that the Exxon Valdez oil spill in Prince William Sound, Alaska, induced heritable mutations and resulted in mortality of pink salmon (Oncorhynchus gorbuscha) embryos. In one of these studies, laboratory exposure of pink salmon embryos to crude oil resulted in apparent mutation-induction in exon 1 and exon 2 of the K-ras oncogene, but no fish from the area impacted by the oil spill were analyzed. We assessed K-ras exon 1 and exon 2 DNA sequences in pink salmon from five streams that were oiled and five streams that were not oiled by the Exxon Valdez oil spill in Prince William Sound, and two streams with natural oil seeps and one stream without seeps on the Alaska Peninsula. Of the 79 fish analyzed for exon 1 and the 89 fish analyzed for exon 2, none had the nucleotide substitutions representing the mutations induced in the laboratory study. Other variable nucleotides occurred in similar proportions in oiled and non-oiled streams and probably represent natural allelic variation. These data do not support the hypothesis that heritable mutations in the K-ras gene were induced by the Exxon Valdez oil spill or oil seeps.

  9. Detection of K-ras oncogene mutations & DNA adducts in the lungs of strain A/J mice exposed to benzo[b]fluoranthene (B[b]F)

    SciTech Connect

    Abu-Shakra, A.; Roop, B.C.; Nelson, G.

    1995-11-01

    The polycyclic aromatic hydrocarbon benzo[b]fluoranthene (B[b]F) has been shown in our laboratories to induce adenomas in strain A/J mouse lungs using i.p. doses above 50 mg/kg body weight. B[b]F appears to be less potent than benzo[a]pyrene on a mg/kg basis in this tumor model. We measured the formation of B[b]F-DNA adducts in mice exposed to B[b]F after 1-21 days and analyzed B[b]F-induced tumors for K-ras oncogene mutations approximately 8 months later. The major B[b]F-DNA adduct comigrated with an adduct seen after application of 5-hydroxy-B[b]F-9,10-dihydrodiol-11,12-oxide to mouse skin. Tumor DNA was extracted and amplified by the polymerase chain reaction (PCR) using primers flanking the 111 bp region of exon 1. Samples were sequenced using the dideoxy method; those samples that failed to show a clear sequence after repetitive sequencing were subjected to single stranded conformation polymorphism analysis (SSCP). B[b]F-induced tumors with K-ras mutations in codon 12, had the following distribution: GGT {yields}GTT, 50%; GGT{yields}TGT, 40%; GGT{yields} 10%. Further characterization of these mutations and their relationship to B[b]F-DNA adducts is in progress

  10. Nitrative and oxidative DNA damage caused by K-ras mutation in mice

    SciTech Connect

    Ohnishi, Shiho; Saito, Hiromitsu; Suzuki, Noboru; Ma, Ning; Hiraku, Yusuke; Murata, Mariko; Kawanishi, Shosuke

    2011-09-23

    Highlights: {yields} Mutated K-ras in transgenic mice caused nitrative DNA damage, 8-nitroguanine. {yields} The mutagenic 8-nitroguanine seemed to be generated by iNOS via Ras-MAPK signal. {yields} Mutated K-ras produces additional mutagenic lesions, as a new oncogenic role. -- Abstract: Ras mutation is important for carcinogenesis. Carcinogenesis consists of multi-step process with mutations in several genes. We investigated the role of DNA damage in carcinogenesis initiated by K-ras mutation, using conditional transgenic mice. Immunohistochemical analysis revealed that mutagenic 8-nitroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) were apparently formed in adenocarcinoma caused by mutated K-ras. 8-Nitroguanine was co-localized with iNOS, eNOS, NF-{kappa}B, IKK, MAPK, MEK, and mutated K-ras, suggesting that oncogenic K-ras causes additional DNA damage via signaling pathway involving these molecules. It is noteworthy that K-ras mutation mediates not only cell over-proliferation but also the accumulation of mutagenic DNA lesions, leading to carcinogenesis.

  11. Profiling of transcripts and proteins modulated by K-ras oncogene in the lung tissues of K-ras transgenic mice by omics approaches.

    PubMed

    Lee, Sojung; Kang, Jungwoo; Cho, Minchul; Seo, Eunhee; Choi, Heesook; Kim, Eunjin; Kim, Junghee; Kim, Heejong; Kang, Gum Yong; Kim, Kwang Pyo; Park, Young-Ho; Yu, Dae-Yeul; Yum, Young Na; Park, Sue-Nie; Yoon, Do-Young

    2009-01-01

    The mutated K-ras gene is involved in approximately 30% of human cancers. In order to search for K-ras oncogene-induced modulators in lung tissues of K-ras transgenic mice, we performed microarray and proteomics (LC/ESI-MS/MS) analysis. Genes (RAB27b RAS family, IL-1RA, IL-33, chemokine ligand 6, epiregulin, EGF-like domain and cathepsin) related to cancer development (Wnt signaling pathway) and inflammation (chemokine/cytokine signaling pathway, Toll receptor signaling) were up-regulated while genes (troponin, tropomodulin 2, endothelial lipase, FGFR4, integrin alpha8 and adenylate cyclase 8) related to the tumor suppression such as p53 pathway, TGF-beta signaling pathway and cadherin signaling pathway were down-regulated by K-ras oncogene. Proteomics approach revealed that up-regulated proteins in lung adenomas of K-ras mice were classified as follows: proteins related to the metabolism/catabolism (increased from 7 to 22% by K-ras gene), proteins related to translation/transcription and nucleotide (from 4 to 6%), proteins related to signal transduction (from 3 to 5%), proteins related to phosphorylation (from 1 to 2%). ATP synthase, Ras oncogene family, cytochrome c oxidase, flavoprotein, TEF 1, adipoprotein A-1 BP, glutathione oxidase, fatty acid BP 4, diaphorase 1, MAPK4 and transgelin were up-regulated by K-ras oncogene. However, integrin alpha1, Ras-interacting protein (Rain), endothelin-converting enzyme-1d and splicing factor 3b were down-regulated. These studies suggest that genes related to cancer development and inflammation were up-regulated while genes related to the tumor suppression were down-regulated by K-ras, resulting in the tumor growth. Putative biomarkers such as cell cycle related genes (Cdc37), cancer cell adhesion (Glycam 1, integrin alpha8, integrin alphaX and Clec4n), signal transduction (Tlr2, IL-33, and Ccbp2), migration (Ccr1, Ccl6, and diaphorase 1 (Cyb5r3) and cancer development (epiregulin) can be useful for diagnosis and as

  12. Profiling of transcripts and proteins modulated by K-ras oncogene in the lung tissues of K-ras transgenic mice by omics approaches.

    PubMed

    Lee, Sojung; Kang, Jungwoo; Cho, Minchul; Seo, Eunhee; Choi, Heesook; Kim, Eunjin; Kim, Junghee; Kim, Heejong; Kang, Gum Yong; Kim, Kwang Pyo; Park, Young-Ho; Yu, Dae-Yeul; Yum, Young Na; Park, Sue-Nie; Yoon, Do-Young

    2009-01-01

    The mutated K-ras gene is involved in approximately 30% of human cancers. In order to search for K-ras oncogene-induced modulators in lung tissues of K-ras transgenic mice, we performed microarray and proteomics (LC/ESI-MS/MS) analysis. Genes (RAB27b RAS family, IL-1RA, IL-33, chemokine ligand 6, epiregulin, EGF-like domain and cathepsin) related to cancer development (Wnt signaling pathway) and inflammation (chemokine/cytokine signaling pathway, Toll receptor signaling) were up-regulated while genes (troponin, tropomodulin 2, endothelial lipase, FGFR4, integrin alpha8 and adenylate cyclase 8) related to the tumor suppression such as p53 pathway, TGF-beta signaling pathway and cadherin signaling pathway were down-regulated by K-ras oncogene. Proteomics approach revealed that up-regulated proteins in lung adenomas of K-ras mice were classified as follows: proteins related to the metabolism/catabolism (increased from 7 to 22% by K-ras gene), proteins related to translation/transcription and nucleotide (from 4 to 6%), proteins related to signal transduction (from 3 to 5%), proteins related to phosphorylation (from 1 to 2%). ATP synthase, Ras oncogene family, cytochrome c oxidase, flavoprotein, TEF 1, adipoprotein A-1 BP, glutathione oxidase, fatty acid BP 4, diaphorase 1, MAPK4 and transgelin were up-regulated by K-ras oncogene. However, integrin alpha1, Ras-interacting protein (Rain), endothelin-converting enzyme-1d and splicing factor 3b were down-regulated. These studies suggest that genes related to cancer development and inflammation were up-regulated while genes related to the tumor suppression were down-regulated by K-ras, resulting in the tumor growth. Putative biomarkers such as cell cycle related genes (Cdc37), cancer cell adhesion (Glycam 1, integrin alpha8, integrin alphaX and Clec4n), signal transduction (Tlr2, IL-33, and Ccbp2), migration (Ccr1, Ccl6, and diaphorase 1 (Cyb5r3) and cancer development (epiregulin) can be useful for diagnosis and as

  13. Approaching real-time molecular diagnostics: single-pair fluorescence resonance energy transfer (spFRET) detection for the analysis of low abundant point mutations in K-ras oncogenes.

    PubMed

    Wabuyele, Musundi B; Farquar, Hannah; Stryjewski, Wieslaw; Hammer, Robert P; Soper, Steven A; Cheng, Yu-Wei; Barany, Francis

    2003-06-11

    The aim of this study was to develop new strategies for analyzing molecular signatures of disease states approaching real-time using single pair fluorescence resonance energy transfer (spFRET) to rapidly detect point mutations in unamplified genomic DNA. In addition, the detection process was required to discriminate between normal and mutant (minority) DNAs in heterogeneous populations. The discrimination was carried out using allele-specific primers, which flanked the point mutation in the target gene and were ligated using a thermostable ligase enzyme only when the genomic DNA carried this mutation. The allele-specific primers also carried complementary stem structures with end-labels (donor/acceptor fluorescent dyes, Cy5/Cy5.5, respectively), which formed a molecular beacon following ligation. We coupled ligase detection reaction (LDR) with spFRET to identify a single base mutation in codon 12 of a K-ras oncogene that has high diagnostic value for colorectal cancers. A simple diode laser-based fluorescence system capable of interrogating single fluorescent molecules undergoing FRET was used to detect photon bursts generated from the molecular beacon probes formed upon ligation. LDR-spFRET provided the necessary specificity and sensitivity to detect single-point mutations in as little as 600 copies of human genomic DNA directly without PCR at a level of 1 mutant per 1000 wild type sequences using 20 LDR thermal cycles. We also demonstrate the ability to rapidly discriminate single base differences in the K-ras gene in less than 5 min at a frequency of 1 mutant DNA per 10 normals using only a single LDR thermal cycle of genomic DNA (600 copies). Real-time LDR-spFRET detection of point mutations in the K-ras gene was accomplished in PMMA microfluidic devices using sheath flows.

  14. Oncogenic K-Ras promotes proliferation in quiescent intestinal stem cells.

    PubMed

    Gierut, Jessica J; Lyons, Jesse; Shah, Manasvi S; Genetti, Casie; Breault, David T; Haigis, Kevin M

    2015-07-01

    K-Ras is a monomeric GTPase that controls cellular and tissue homeostasis. Prior studies demonstrated that mutationally activated K-Ras (K-Ras(G12D)) signals through MEK to promote expansion and hyperproliferation of the highly mitotically active transit-amplifying cells (TACs) in the intestinal crypt. Its effect on normally quiescent stem cells was unknown, however. Here, we have used an H2B-Egfp transgenic system to demonstrate that K-Ras(G12D) accelerates the proliferative kinetics of quiescent intestinal stem cells. As in the TAC compartment, the effect of mutant K-Ras on the quiescent stem cell is dependent upon activation of MEK. Mutant K-Ras is also able to increase self-renewal potential of intestinal stem cells following damage. These results demonstrate that mutant K-Ras can influence intestinal homeostasis on multiple levels.

  15. [Research advances of K-ras mutation in the prognosis and targeted therapy of gastric cancer].

    PubMed

    Huang, Y; Wei, J; Liu, B R

    2016-02-01

    K-ras mutations have been described in 30% of human cancers with significantly different mutation frequencies. High K-ras mutation frequency is found in many cancers such as pancreas and lung cancers, whereas, gastric cancer has a relatively low K-ras mutation frequency. In recent years, numerous researches have focused on the K-ras mutation in gastric cancer. This review summarizes the K-ras mutation frequency in gastric cancer, the relationship of K-ras mutation with clinicopathologic features and prognosis of gastric cancer patients, targeted therapy for K-ras mutated gastric cancer, some small-molecular inhibitors of K-ras, and development of targeted therapy drugs for K-ras signaling pathway in gastric cancer.

  16. Prevalence of K-Ras mutations in hepatocellular carcinoma: A Turkish Oncology Group pilot study

    PubMed Central

    TURHAL, NAZIM SERDAR; SAVAŞ, BERNA; ÇOŞKUN, ÖZNUR; BAŞ, EMINE; KARABULUT, BÜLENT; NART, DENIZ; KORKMAZ, TANER; YAVUZER, DILEK; DEMIR, GÖKHAN; DOĞUSOY, GÜLEN; ARTAÇ, MEHMET

    2015-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common male-predominant type of cancer worldwide. There is no effective treatment regimen available for advanced-stage disease and chemotherapy is generally ineffective in these patients. The number of studies on the prevalence of K-Ras mutations in HCC patients is currently limited. A total of 58 patients from 6 comprehensive cancer centers in 4 metropolitan cities of Turkey were enrolled in this study. Each center committed to enroll approximately 10 random patients whose formalin-fixed paraffin-embedded tumor tissues were available for K-Ras, exon 2 genotyping. Two methods were applied based on the availability of adequate amounts of tumor DNA. In the first method, the samples were processed using TheraScreen. The genomic DNA was further used to detect the 7 most frequent somatic mutations (35G>A; 35G>C; 35G>T; 34G>A; 34G>C; 34G>T and 38G>A) in codons 12 and 13 in exon 2 of the K-Ras oncogene by quantitative polymerase chain reaction (PCR). In the second method, the genomic DNA was amplified by PCR using primers specific for K-Ras exon 2 with the GML SeqFinder Sequencing System's KRAS kit. The identified DNA sequence alterations were confirmed by sequencing both DNA strands in two independent experiments with forward and reverse primers. A total of 40 samples had adequate tumor tissue for the mutation analysis. A total of 33 (82.5%) of the investigated samples harbored no mutations in exon 2. All the mutations were identified via a direct sequencing technique, whereas none were identified by TheraScreen. In conclusion, in our patients, HCC exhibited a remarkably low (<20%) K-Ras mutation rate. Patients harboring K-Ras wild-type tumors may be good candidates for treatment with epidermal growth factor inhibitors, such as cetuximab. PMID:26807232

  17. Tissue-specific p19Arf regulation dictates the response to oncogenic K-ras.

    PubMed

    Young, Nathan P; Jacks, Tyler

    2010-06-01

    The ability of oncogenes to engage tumor suppressor pathways represents a key regulatory mechanism that can limit the outgrowth of incipient tumor cells. For example, in a number of settings oncogenic Ras strongly activates the Ink4a/Arf locus, resulting in cell cycle arrest or senescence. The capacity of different cell types to execute tumor suppressor programs following expression of endogenous K-ras(G12D) in vivo has not been examined. Using compound mutant mice containing the Arf(GFP) reporter and the spontaneously activating K-ras(LA2) allele, we have uncovered dramatic tissue specificity of K-ras(G12D)-dependent p19(Arf) up-regulation. Lung tumors, which can arise in the presence of functional p19(Arf), rarely display p19(Arf) induction. In contrast, sarcomas always show robust activation, which correlates with genetic evidence, suggesting that loss of the p19(Arf)-p53 pathway is a requisite event for sarcomagenesis. Using constitutive and inducible RNAi systems in vivo, we highlight cell type-specific chromatin regulation of Ink4a/Arf as a critical determinant of cellular responses to oncogenic K-ras. Polycomb-group complexes repress the locus in lung tumors, whereas the SWI/SNF family member Snf5 acts as an important mediator of p19(Arf) induction in sarcomas. This variation in tumor suppressor induction might explain the inherent differences between tissues in their sensitivity to Ras-mediated transformation. PMID:20479239

  18. K-ras gene mutation in gall bladder carcinomas and dysplasia.

    PubMed Central

    Ajiki, T; Fujimori, T; Onoyama, H; Yamamoto, M; Kitazawa, S; Maeda, S; Saitoh, Y

    1996-01-01

    Epithelial dysplasia of gall bladder is an important precancerous lesion of gall bladder carcinogenesis. To investigate the frequency of K-ras gene mutation in gall bladder carcinoma and dysplasia, K-ras codon 12 mutations were investigated by the polymerase chain reaction/restriction enzyme based method following direct sequencing. Mutation was detected in 59% (30 of 51) of gall bladder carcinomas, in 73% (8 of 11) of gall bladder dysplasia in gall stone cases, and in 0% of the normal gall bladder epithelium. There was, however, no correlation between K-ras mutation and clinicopathological factors of gall bladder carcinoma. K-ras gene mutation occurs even in gall bladder dysplasia at an incidence similar to that in carcinomas, suggesting that testing for K-ras gene mutation may prove useful as an adjunct to bile cytological or biopsy analysis. Images Figure 1 Figure 2 Figure 3 PMID:8675098

  19. Fendiline Inhibits K-Ras Plasma Membrane Localization and Blocks K-Ras Signal Transmission

    PubMed Central

    van der Hoeven, Dharini; Cho, Kwang-jin; Ma, Xiaoping; Chigurupati, Sravanthi; Parton, Robert G.

    2013-01-01

    Ras proteins regulate signaling pathways important for cell growth, differentiation, and survival. Oncogenic mutant Ras proteins are commonly expressed in human tumors, with mutations of the K-Ras isoform being most prevalent. To be active, K-Ras must undergo posttranslational processing and associate with the plasma membrane. We therefore devised a high-content screening assay to search for inhibitors of K-Ras plasma membrane association. Using this assay, we identified fendiline, an L-type calcium channel blocker, as a specific inhibitor of K-Ras plasma membrane targeting with no detectable effect on the localization of H- and N-Ras. Other classes of L-type calcium channel blockers did not mislocalize K-Ras, suggesting a mechanism that is unrelated to calcium channel blockade. Fendiline did not inhibit K-Ras posttranslational processing but significantly reduced nanoclustering of K-Ras and redistributed K-Ras from the plasma membrane to the endoplasmic reticulum (ER), Golgi apparatus, endosomes, and cytosol. Fendiline significantly inhibited signaling downstream of constitutively active K-Ras and endogenous K-Ras signaling in cells transformed by oncogenic H-Ras. Consistent with these effects, fendiline blocked the proliferation of pancreatic, colon, lung, and endometrial cancer cell lines expressing oncogenic mutant K-Ras. Taken together, these results suggest that inhibitors of K-Ras plasma membrane localization may have utility as novel K-Ras-specific anticancer therapeutics. PMID:23129805

  20. Detection of K-Ras oncogene using magnetic beads-quantum dots in microfluidic chip.

    PubMed

    Noh, Han Na; Kim, Jong Sung

    2013-08-01

    Recently quantum dots (QDs) have been extensively used in the field of biotechnology. QDs have merits of wide selection of emission wavelength and exceptional stability against photo bleaching over conventional organic fluorophores and are used in cell imaging, biomarker, and fluorescence resonance energy transfer (FRET) sensor. Magnetic beads have been used as solid support in microfluidic devices to trace bio-molecules. In this study, Polydimethylsiloxane (PDMS) based microfluidic chips were prepared for the detection of K-Ras oncogene by using QDs-DNA conjugate. K-Ras oncogene can be detected by fluorescence quenching in microfluidic chip. Carboxylated CdSe/ZnS QDs (emission wavelength: 605 nm) could bind to magnetic beads of polystyrene/divinyl benzene via EDC/NHS crosslinking reaction. The fluorescence from QDs could be quenched by intercalating dye (thiazol orange dimers: TOTO-3) after hybridization with target DNA and probe DNA in the channel of microfluidic chip. The fluorescence intensity change of QDs after hybridization in microfluidic chip has been studied. PMID:23882748

  1. Across the universe of K-RAS mutations in non-small-cell-lung cancer.

    PubMed

    Piva, Sheila; Ganzinelli, Monica; Garassino, Marina Chiara; Caiola, Elisa; Farina, Gabriella; Broggini, Massimo; Marabese, Mirko

    2014-01-01

    RAS family proteins are important signaling molecules that regulate cell growth, survival and differentiation by coupling receptor activation to downstream effector pathways. Three distinct genes encode for the three different proteins H-, K-, and N- RAS. These proteins share high sequence homology, particularly at the N-Terminal domain. Among them, K-RAS is one of the most frequently mutated in human cancer. The majority of the mutations present in K-RAS are at codon 12 (from 80 to 100%) followed by codon 13 and 61. In all cases, aminoacid change leads to a constitutively activated protein. K-RAS mutations have a role in tumor development as well as in tumor progression and resistance. Despite the various studies which have been published, the prognostic and predictive role of K-RAS mutations is still under debate. Keeping in mind that the glycine present at position 12 can be substituted by valine, aspartic acid or cysteine, it could be well understood that each different substitution plays a different role in K-RAS-dependent processes. The present article focuses on the molecular and biological characteristics of K-RAS protein, its role in NSCLC tumor development and progression. We also present an overview of the preclinical models both in vitro and in vivo available to determine the role of K-RAS in tumor progression and response to treatment and on the recent results obtained in this field. Finally, we have considered the impact of KRAS mutations in clinical practice, analyzing the different recent trials that have taken into consideration K-RAS.

  2. The mucin MUC4 is a transcriptional and post-transcriptional target of K-ras oncogene in pancreatic cancer. Implication of MAPK/AP-1, NF-κB and RalB signaling pathways.

    PubMed

    Vasseur, Romain; Skrypek, Nicolas; Duchêne, Belinda; Renaud, Florence; Martínez-Maqueda, Daniel; Vincent, Audrey; Porchet, Nicole; Van Seuningen, Isabelle; Jonckheere, Nicolas

    2015-12-01

    The membrane-bound mucinMUC4 is a high molecularweight glycoprotein frequently deregulated in cancer. In pancreatic cancer, one of the most deadly cancers in occidental countries, MUC4 is neo-expressed in the preneoplastic stages and thereafter is involved in cancer cell properties leading to cancer progression and chemoresistance. K-ras oncogene is a small GTPase of the RAS superfamily, highly implicated in cancer. K-ras mutations are considered as an initiating event of pancreatic carcinogenesis and K-ras oncogenic activities are necessary components of cancer progression. However, K-ras remains clinically undruggable. Targeting early downstream K-ras signaling in cancer may thus appear as an interesting strategy and MUC4 regulation by K-ras in pancreatic carcinogenesis remains unknown. Using the Pdx1-Cre; LStopL-K-rasG12D mouse model of pancreatic carcinogenesis, we show that the in vivo early neo-expression of the mucin Muc4 in pancreatic intraepithelial neoplastic lesions (PanINs) induced by mutated K-ras is correlated with the activation of ERK, JNK and NF-κB signaling pathways. In vitro, transfection of constitutively activated K-rasG12V in pancreatic cancer cells led to the transcriptional upregulation of MUC4. This activation was found to be mediated at the transcriptional level by AP-1 and NF-κB transcription factors via MAPK, JNK and NF-κB pathways and at the posttranscriptional level by a mechanism involving the RalB GTPase. Altogether, these results identify MUC4 as a transcriptional and post-transcriptional target of K-ras in pancreatic cancer. This opens avenues in developing new approaches to target the early steps of this deadly cancer.

  3. Prognostic significance of K-Ras mutation rate in metastatic colorectal cancer patients

    PubMed Central

    Vincenzi, Bruno; Cremolini, Chiara; Sartore-Bianchi, Andrea; Russo, Antonio; Mannavola, Francesco; Perrone, Giuseppe; Pantano, Francesco; Loupakis, Fotios; Rossini, Daniele; Ongaro, Elena; Bonazzina, Erica; Dell'Aquila, Emanuela; Imperatori, Marco; Zoccoli, Alice; Bronte, Giuseppe; De Maglio, Giovanna; Fontanini, Gabriella; Natoli, Clara; Falcone, Alfredo; Santini, Daniele; Onetti-Muda, Andrea; Siena, Salvatore; Tonini, Giuseppe; Aprile, Giuseppe

    2015-01-01

    Introduction: Activating mutations of K-Ras gene have a well-established role as predictors of resistance to anti-EGFR monoclonal antibodies in metastatic colorectal cancer (mCRC) patients. Their prognostic value is controversial, and no data regarding the prognostic value of mutation rate, defined as the percentage of mutated alleles/tumor sample, are available. We aimed to evaluate the prognostic value of K-Rasmutation rate in a homogenous cohort of mCRC patients receiving first-line doublet plus bevacizumab. Patients and Methods: This retrospective study enrolled 397 K-Ras mutant mCRC patients from 6 Italian centers, and 263 patients were fully evaluable for our analysis. K-Ras mutation rate was assessed by pyrosequencing. Patients with less than 60% of cancer cells in tumor tissue were excluded. No patients received anti-EGFR containing anticancer therapy, at any time. Median mutation rate was 40% and was adopted as cut-off. The primary and secondary endpoints were PFS and OS respectively. Results: At univariate analysis, K-Ras mutation rate higher than 40% was significantly associated with lower PFS (7.3 vs 9.1 months; P < 0.0001) and OS (21 vs 31 months; P = 0.004). A multivariate model adjusted for age at diagnosis, site of origin of tumor tissue (primary vs metastases), referral center, number of metastatic sites, and first-line chemotherapy backbone, showed that K-Ras mutation rate remained a significant predictor of PFS and OS in the whole population. Discussion: Our data demonstrate an association between K-Ras mutation rate and prognosis in mCRC patients treated with bevacizumab-containing first-line therapy. These data deserve to be verified in an independent validation set. PMID:26384309

  4. VEGF neutralizing aerosol therapy in primary pulmonary adenocarcinoma with K-ras activating-mutations.

    PubMed

    Hervé, Virginie; Rabbe, Nathalie; Guilleminault, Laurent; Paul, Flora; Schlick, Laurène; Azzopardi, Nicolas; Duruisseaux, Michael; Fouquenet, Delphine; Montharu, Jérôme; Redini, Françoise; Paintaud, Gilles; Lemarié, Etienne; Cadranel, Jacques; Wislez, Marie; Heuzé-Vourc'h, Nathalie

    2014-01-01

    K-ras mutations promote angiogenesis in lung cancer and contribute to the drug resistance of cancer cells. It is not clear whether K-ras mutated adenocarcinomas are sensitive to anti-angiogenic therapy with monoclonal antibodies (mAbs) that target vascular endothelial growth factor (VEGF). Anti-angiogenic mAbs are usually delivered systemically, but only a small proportion reaches the lung after intravenous injection. We investigated the relevance of a non-invasive pulmonary route for the delivery of anti-VEGF mAbs in the mouse K-ras(LA1) model. We found that pulmonary delivery of these mAbs significantly reduced the number of tumor lesions and inhibited malignant progression. The antitumor effect involves the VEGFR2-dependent inhibition of blood vessel growth, which impairs tumor proliferation. Pharmacokinetic analysis of aerosolized anti-VEGF showed its low rate of passage into the bloodstream, suggesting that this delivery route is associated with reduced systemic side effects. Our findings highlight the value of the aerosol route for administration of anti-angiogenic mAbs in pulmonary adenocarcinoma with K-ras activating-mutations. PMID:25484066

  5. K-ras genetic mutation and influencing factor analysis for Han and Uygur nationality colorectal cancer patients.

    PubMed

    Eli, Mayinur; Mollayup, Ablikim; Muattar; Liu, Chao; Zheng, Chao; Bao, Yong-Xing

    2015-01-01

    To investigate the K-ras genetic mutation status in colorectal cancer patients, compare the difference of K-ras genetic mutation rate in Han and Uygur nationality and analyze the influencing factor. 91 cases (52 cases of Han nationality and 39 cases of Uygur nationality) of colorectal biopsy or surgical ablation pathology specimen from the first affiliated hospital of Xinjiang Medical University during January, 2010 to March, 2013 were collected to detect the 12th and 13th code mutation status of K-ras gene exon 2 with pyrosequencing method and compare the difference of K-ras gene mutation rate between Han and Uygur nationality patients. Single factor analysis and multiple factor logistic regression analysis were utilized to analyze the influencing factor for K-ras genetic mutation. 33 cases of patients with K-ras genetic mutation were found from the 91 cases colorectal cancer patients and the total mutation rate was 36.3%. Among them, 24 cases (72.7%) were found with mutation only in the 12th code, 9 cases (27.3%) were found with mutation only in the 13th code and no one case was found with mutation in both the two codes. Mutation rate of the 12th code in the Uygur nationality was significantly higher than that in the Han nationality (P<0.05), but there were no significant difference in the comparison of the total mutation rate and the 13th code mutation rate between the two groups (P>0.05). There were no associativity (P>0.05) between the K-ras genetic mutation and sex, age, smoking history, drinking history, tumor location, macropathology type, differentiation level, staging, invasive depth, lymph nodes transferring and metastasis in colorectal cancer patients (P>0.05). K-ras genetic mutation rate is high in colorectal cancer patients. The mutation rate of 12th code in Uygur nationality is higher than that in Han nationality. There is no significant associativity between K-ras genetic mutation rate and patients' clinical pathology characteristic.

  6. Expression of oncogenic K-ras from its endogenous promoter leads to a partial block of erythroid differentiation and hyperactivation of cytokine-dependent signaling pathways.

    PubMed

    Zhang, Jing; Liu, Yangang; Beard, Caroline; Tuveson, David A; Jaenisch, Rudolf; Jacks, Tyler E; Lodish, Harvey F

    2007-06-15

    When overexpressed in primary erythroid progenitors, oncogenic Ras leads to the constitutive activation of its downstream signaling pathways, severe block of terminal erythroid differentiation, and cytokine-independent growth of primary erythroid progenitors. However, whether high-level expression of oncogenic Ras is required for these phenotypes is unknown. To address this issue, we expressed oncogenic K-ras (K-ras(G12D)) from its endogenous promoter using a tetracycline-inducible system. We show that endogenous K-ras(G12D) leads to a partial block of terminal erythroid differentiation in vivo. In contrast to results obtained when oncogenic Ras was overexpressed from retroviral vectors, endogenous levels of K-ras(G12D) fail to constitutively activate but rather hyperactivate cytokine-dependent signaling pathways, including Stat5, Akt, and p44/42 MAPK, in primary erythroid progenitors. This explains previous observations that hematopoietic progenitors expressing endogenous K-ras(G12D) display hypersensitivity to cytokine stimulation in various colony assays. Our results support efforts to modulate Ras signaling for treating hematopoietic malignancies.

  7. Immunophenotype and K-RAS mutation in mucinous ovarian adenocarcinoma with mural nodule of high-grade sarcoma: case report.

    PubMed

    Desouki, Mohamed M; Fadare, Oluwole; Kanbour, Anisa; Kanbour-Shakir, Amal

    2014-03-01

    Ovarian mucinous tumors with mural nodules are rare. The mural nodules are microscopically divergent neoplasms of varying sizes that may be benign (eg, sarcoma-like and carcinosarcoma-like), or malignant (eg, anaplastic carcinoma and sarcoma). The K-RAS gene mutation in ovarian mucinous neoplasms with mural nodules has not been previously reported. This is a case report of a 25-year-old female diagnosed with ovarian invasive mucinous adenocarcinoma with mural nodule of high-grade sarcoma. The mucinous tumor component demonstrated a K-RAS codon 12/13 mutation (p.G12V, c.35 G>T), whereas the sarcomatous component demonstrated a K-RAS codon 12/13 mutation (p.G12D, c.35 G>A). Although both tumor components revealed a mutation in codon 12 of K-RAS, they were of different nucleotide substitutions, indicating that these 2 tumor components were of different clonal origins. However, the fact that the 2 mutations identified in the tumor components are the most common mutations reported in mucinous tumors of the ovary, raises the possibility that sarcomatous mural nodules simply represent a form of dedifferentiation in mucinous tumors.

  8. Mutated K-ras(Asp12) promotes tumourigenesis in Apc(Min) mice more in the large than the small intestines, with synergistic effects between K-ras and Wnt pathways.

    PubMed

    Luo, Feijun; Brooks, David G; Ye, Hongtao; Hamoudi, Rifat; Poulogiannis, George; Patek, Charles E; Winton, Douglas J; Arends, Mark J

    2009-10-01

    Summary K-ras mutations are found in 40-50% of human colorectal adenomas and carcinomas, but their functional contribution remains incompletely understood. Here, we show that a conditional mutant K-ras mouse model (K-ras(Asp12)/Cre), with transient intestinal Cre activation by beta-Naphthoflavone (beta-NF) treatment, displayed transgene recombination and K-ras(Asp12) expression in the murine intestines, but developed few intestinal adenomas over 2 years. However, when crossed with Apc(Min/+) mice, the K-ras(Asp12)/Cre/Apc(Min/+) offspring showed acceleration of intestinal tumourigenesis with significantly changed average lifespan (P < 0.05) decreased to 18.4 +/- 5.4 weeks from 20.9 +/- 4.7 weeks (control Apc(Min/+) mice). The numbers of adenomas in the small intestine and large intestine were significantly (P < 0.01) increased by 1.5-fold and 5.7-fold, respectively, in K-ras(Asp12)/Cre/Apc(Min/+) mice compared with Apc(Min/+) mice, with the more marked increase in adenoma prevalence in the large intestine. To explore possible mechanisms for K-ras(Asp12) and Apc(Min) co-operation, the Mitogen-activated protein kinase (Mapk), Akt and Wnt signalling pathways, including selected target gene expression levels, were evaluated in normal large intestine and large intestinal tumours. K-ras(Asp12) increased activation of Mapk and Akt signalling pathway targets phospho-extracellular signal-regulated kinase (pErk) and pAkt, and increased relative expression levels of Wnt pathway targets vascular endothelial growth factor (VEGF), gastrin, cyclo-oxygenase 2 (Cox2) and T-cell lymphoma invasion and metastasis 1 (Tiam1) in K-ras(Asp12)/Cre/Apc(Min/+) adenomas compared with that of Apc(Min/+) adenomas, although other Wnt signalling pathway target genes such as Peroxisome proliferator-activated receptor delta (PPARd), matrix metalloproteinase 7 (MMP7), protein phosphatase 1 alpha (PP1A) and c-myc remained unchanged. In conclusion, intestinal expression of K-ras(Asp12) promotes mutant

  9. Association between coffee drinking and K-ras mutations in exocrine pancreatic cancer. PANKRAS II Study Group

    PubMed Central

    Porta, M.; Malats, N.; Guarner, L.; Carrato, A.; Rifa, J.; Salas, A.; Corominas, J. M.; Andreu, M.; Real, F. X.

    1999-01-01

    STUDY OBJECTIVE: To analyse the relation between coffee consumption and mutations in the K-ras gene in exocrine pancreatic cancer. DESIGN: Case- case study. Consumption of coffee among cases with the activating mutation in the K-ras gene was compared with that of cases without the mutation. SETTING AND PATIENTS: All cases of pancreatic cancer newly diagnosed at five hospitals in Spain during three years were included in the PANKRAS II Study (n = 185, of whom 121 whose tissue was available for molecular analysis are the object of the present report). Over 88% were personally interviewed in hospital. DNA was amplified from paraffin wax embedded tissues, and mutations in codon 12 of K-ras were detected by the artificial RFLP technique. MAIN RESULTS: Mutations were found in tumours from 94 of 121 patients (77.7%). Mutations were more common among regular coffee drinkers than among non-regular coffee drinkers (82.0% v 55.6%, p = 0.018, n = 107). The odds ratio adjusted by age, sex, smoking and alcohol drinking was 5.41 (95% CI 1.64, 17.78). The weekly intake of coffee was significantly higher among patients with a mutated tumour (mean of 14.5 cups/week v 8.8 among patients with a wild type tumour, p < 0.05). With respect to non- regular coffee drinkers, the odds ratio of a mutated tumour adjusted by age, sex, smoking and alcohol drinking was 3.26 for drinkers of 2-7 cups/week, 5.77 for drinkers of 8-14 cups/week and 9.99 for drinkers of > or = 15 cups/week (p < 0.01, test for trend). CONCLUSIONS: Pancreatic cancer cases without activating mutations in the K-ras gene had drank significantly less coffee than cases with a mutation, with a significant dose response relation: the less they drank, the less likely their tumours were to harbour a mutation. In exocrine pancreatic cancer the K-ras gene may be activated less often among non-regular coffee drinkers than among regular drinkers. Caffeine, other coffee compounds or other factors with which coffee drinking is

  10. Endogenous K-ras signaling in erythroid differentiation.

    PubMed

    Zhang, Jing; Lodish, Harvey F

    2007-08-15

    K-ras is one of the most frequently mutated genes in virtually all types of human cancers. Using mouse fetal liver erythroid progenitors as a model system, we studied the role of endogenous K-ras signaling in erythroid differentiation. When oncogenic K-ras is expressed from its endogenous promoter, it hyperactivates cytokine-dependent signaling pathways and results in a partial block in erythroid differentiation. In erythroid progenitors deficient in K-ras, cytokine-dependent Akt activation is greatly reduced, leading to delays in erythroid differentiation. Thus, both loss- and gain-of-Kras functions affect erythroid differentiation through modulation of cytokine signaling. These results support the notion that in human cancer patients oncogenic Ras signaling might be controlled by antagonizing essential cytokines.

  11. KRAS insertion mutations are oncogenic and exhibit distinct functional properties

    PubMed Central

    White, Yasmine; Bagchi, Aditi; Van Ziffle, Jessica; Inguva, Anagha; Bollag, Gideon; Zhang, Chao; Carias, Heidi; Dickens, David; Loh, Mignon; Shannon, Kevin; Firestone, Ari J.

    2016-01-01

    Oncogenic KRAS mutations introduce discrete amino acid substitutions that reduce intrinsic Ras GTPase activity and confer resistance to GTPase-activating proteins (GAPs). Here we discover a partial duplication of the switch 2 domain of K-Ras encoding a tandem repeat of amino acids G60_A66dup in a child with an atypical myeloproliferative neoplasm. K-Ras proteins containing this tandem duplication or a similar five amino acid E62_A66dup mutation identified in lung and colon cancers transform the growth of primary myeloid progenitors and of Ba/F3 cells. Recombinant K-RasG60_A66dup and K-RasE62_A66dup proteins display reduced intrinsic GTP hydrolysis rates, accumulate in the GTP-bound conformation and are resistant to GAP-mediated GTP hydrolysis. Remarkably, K-Ras proteins with switch 2 insertions are impaired for PI3 kinase binding and Akt activation, and are hypersensitive to MEK inhibition. These studies illuminate a new class of oncogenic KRAS mutations and reveal unexpected plasticity in oncogenic Ras proteins that has diagnostic and therapeutic implications. PMID:26854029

  12. Frequency and spectrum of mutations at codons 12 and 13 of the C-K-ras gene in human tumors

    SciTech Connect

    Capella, G.; Cronauer-Mitra, S.; Peinado, M.A.; Perucho, M. )

    1991-06-01

    The frequency of point mutations at codons 12 and 13 of the c-K-ras gene has been determined in a panel of more than 400 human tumors. Mutant c-K-ras genes were detected in about 75% of adenocarcinomas of the pancreas; 40% of adenomas and carcinomas of the colon and rectum; 30% of carcinomas of the bile duct; 25% of carcinomas of the lung, and in lower frequency in other carcinomas, including liver, stomach, and kidney. No mutations were found in carcinomas of the breast, prostate, esophagus, and gall bladder, among others. Comparative analysis of the spectrum of mutations show that while G to A transitions were the most frequent mutations in pancreatic and colo-rectal tumors, G to T transversions were more prevalent in lung carcinomas. The aspartic acid mutation at codon 13 (GGC {r arrow} GAC) was relatively frequent in colo-rectal tumors but rare in pancreatic and lung carcinomas. The differences in the mutation spectrum of the c-K-ras gene in cancers of the gastrointestinal and respiratory tracts are suggestive of differential exposure to genotoxic agents.

  13. Discordance of Mutation Statuses of Epidermal Growth Factor Receptor and K-ras between Primary Adenocarcinoma of Lung and Brain Metastasis.

    PubMed

    Rau, Kun-Ming; Chen, Han-Ku; Shiu, Li-Yen; Chao, Tsai-Ling; Lo, Yi-Ping; Wang, Chin-Chou; Lin, Meng-Chih; Huang, Chao-Cheng

    2016-01-01

    Mutations on epidermal growth factor receptor (EGFR) of adenocarcinomas of lung have been found to be associated with increased sensitivity to EGFR tyrosine kinase inhibitors and K-ras mutations may correlate with primary resistance. We aimed to explore the discordant mutation statuses of EGFR and K-ras between primary tumors and matched brain metastases in adenocarcinomas of lung. We used a sensitive Scorpion ARMS method to analyze EGFR mutation, and Sanger sequencing followed by allele-specific real-time polymerase chain reaction to analyze K-ras mutation. Forty-nine paired tissues with both primary adenocarcinoma of lung and matched brain metastasis were collected. Thirteen patients (26.5%) were discordant for the status of EGFR between primary and metastatic sites. K-ras gene could be checked in paired specimens from 33 patients, thirteen patients (39.6%) were discordant for the status of K-ras. In primary lung adenocarcinoma, there were 14 patients of mutant EGFR had mutant K-ras synchronously. This study revealed that the status of EGFR mutation in lung adenocarcinomas is relatively consistent between primary and metastatic sites compared to K-ras mutation. However, there are still a few cases of adenocarcinoma of lung showing discordance for the status of EGFR mutation. Repeated analysis of EGFR mutation is highly recommended if tissue from metastatic or recurrent site is available for the evaluation of target therapy. PMID:27070580

  14. Assessment of epidermal growth factor receptor mutation/copy number and K-ras mutation in esophageal cancer

    PubMed Central

    Guo, Kang; Wang, Wu-Ping; Jiang, Tao; Wang, Ju-Zheng; Chen, Zhao; Li, Yong; Zhou, Yong-An; Li, Xiao-Fei

    2016-01-01

    Background The molecular status of epidermal growth factor receptor (EGFR) in esophageal cancer has not been well elucidated. The purpose of the study was to investigate the prevalence of EGFR and K-ras mutation, and EGFR gene copy number status as well as its association with clinicopathologic characteristics, and also to identify the prognostic value of EGFR gene copy number in esophageal cancer. Methods EGFR mutation in exon 19/exon 21 and K-ras mutation in codon 12/codon 13 were detected by real-time PCR method, while EGFR gene copy number status was analyzed by fluorescent in situ hybridization (FISH). EGFR gene amplification and high polysomy were defined as high EGFR gene copy number status (FISH-positive), and all else were defined as low EGFR gene copy number status (FISH-negative). The relationship between EGFR gene copy number status and clinicpathologic characteristics was analyzed. Kaplan-Meier method and Cox proportional hazards regression model were employed to evaluate the effects of EGFR gene copy number status on the patients’ survival. Results A total of 57 esophageal squamous cell carcinoma (ESCC) patients and 9 esophageal adenocarcinoma (EADC) patients were enrolled in the study. EGFR mutation was identified in one patient who was diagnosed as ESCC with stage IIIC disease. K-ras mutation was identified in one patient who was diagnosed as EADC. In all, 34 of 66 (51.5%) samples were detected as FISH-positive, which includes 30 ESCC and 4 EADC tumor samples. The correlation analysis showed that FISH-positive was significantly associated with the tumor stage (P=0.019) and lymph node metastasis (P=0.005) in esophageal cancer patients, and FISH-positive was also significantly associated with the tumor stage (P=0.007) and lymph node metastasis (P=0.008) in ESCC patients. Cox regression analysis showed that high EGFR gene copy number was not a significant predictor of a poor outcome for esophageal cancer patients (P=0.251) or for ESCC patients (P=0

  15. K-Ras mutation-mediated IGF-1-induced feedback ERK activation contributes to the rapalog resistance in pancreatic ductal adenocarcinomas.

    PubMed

    Wei, Feng; Liu, Yan; Bellail, Anita C; Olson, Jeffrey J; Sun, Shi-Yong; Lu, Guoyue; Ding, Lijuan; Yuan, Changji; Wang, Guangyi; Hao, Chunhai

    2012-09-01

    Mammalian target of rapamycin complex 1 (mTORC1) is frequently activated in human cancers; however, clinical trials of rapalog (the mTORC1 inhibitors) have shown that pancreatic ductal adenocarcinomas (PDACs) resist to the treatment. Rapalog treatment activated the extracellular signal-regulated kinase (ERK) pathway in K-Ras mt PDAC cells. K-Ras knockdown abolished the insulin-like growth factor-1 (IGF-1)-induced ERK pathway in the K-Ras mt PDAC cells and enhanced the therapeutic efficacy of everolimus in treating K-Ras mt PDAC cells-derived mouse xenografts. The results indicate that targeting of K-Ras mutation may lead to the development of therapies that overcome rapalog resistance in PDAC.

  16. DETECTION OF K-RAS AND P53 MUTATIONS IN SPUTUM SAMPLES OF LUNG CANCER PATIENTS USING LASER CAPTURE MICRODISSECTION MICROSCOPE AND MUTATION ANALYSIS

    EPA Science Inventory

    Detection of K-ras and p53 Mutations in Sputum Samples of Lung Cancer Patients Using Laser Capture Microdissection Microscope and Mutation Analysis

    Phouthone Keohavong a,*, Wei-Min Gao a, Kui-Cheng Zheng a, Hussam Mady b, Qing Lan c, Mona Melhem b, and Judy Mumford d.
    <...

  17. K-Ras mutation detection in liquid biopsy and tumor tissue as prognostic biomarker in patients with pancreatic cancer: a systematic review with meta-analysis.

    PubMed

    Li, Tao; Zheng, Yuanting; Sun, Hong; Zhuang, Rongyuan; Liu, Jing; Liu, Tianshu; Cai, Weimin

    2016-07-01

    K-Ras gene mutations have been found in most pancreatic cancers; however, conflicting data on the prognostic value of K-Ras mutations in pancreatic cancer have been published. We conducted a meta-analysis to assess its prognostic significance. Literature searches of PubMed, EMBASE, Cochrane Library, Web of Science and Google Scholar were performed through December 2015 to identify publications exploring the association of K-Ras mutation with overall survival. Forty eligible studies involving 3427 patients with pancreatic cancer were included in the present meta-analysis. Our analysis showed a hazard ratio (HR) of negative association with survival of 1.61 [95 % confidence interval (CI) 1.36-1.90; p < 0.01] in K-Ras mutant pancreatic cancer patients. In subgroup analyses, K-Ras mutations detected in tumor tissues and in liquid biopsies had HRs of 1.37 (95 % CI 1.20-1.57; p < 0.01) and 3.16 (95 % CI 2.1-4.71; p < 0.01), respectively. In addition, the HR was higher when K-Ras mutations were detected in fresh frozen samples (HR = 2.01, 95 % CI 1.28-3.16, p = 0.002) than in formalin-fixed, paraffin-embedded (FFPE) samples (HR = 1.29, 95 % CI 1.12-1.49, p < 0.01). Though K-Ras alterations are more frequent among non-East Asian individuals than East Asian individuals, there were no significant differences in HRs of survival between the two ethnic subgroups. In conclusion, this meta-analysis suggests that K-Ras mutations are associated with a worse overall survival in pancreatic cancer patients, especially when mutations are detected in liquid biopsies or fresh frozen tumor tissue samples.

  18. K-Ras mutation detection in liquid biopsy and tumor tissue as prognostic biomarker in patients with pancreatic cancer: a systematic review with meta-analysis.

    PubMed

    Li, Tao; Zheng, Yuanting; Sun, Hong; Zhuang, Rongyuan; Liu, Jing; Liu, Tianshu; Cai, Weimin

    2016-07-01

    K-Ras gene mutations have been found in most pancreatic cancers; however, conflicting data on the prognostic value of K-Ras mutations in pancreatic cancer have been published. We conducted a meta-analysis to assess its prognostic significance. Literature searches of PubMed, EMBASE, Cochrane Library, Web of Science and Google Scholar were performed through December 2015 to identify publications exploring the association of K-Ras mutation with overall survival. Forty eligible studies involving 3427 patients with pancreatic cancer were included in the present meta-analysis. Our analysis showed a hazard ratio (HR) of negative association with survival of 1.61 [95 % confidence interval (CI) 1.36-1.90; p < 0.01] in K-Ras mutant pancreatic cancer patients. In subgroup analyses, K-Ras mutations detected in tumor tissues and in liquid biopsies had HRs of 1.37 (95 % CI 1.20-1.57; p < 0.01) and 3.16 (95 % CI 2.1-4.71; p < 0.01), respectively. In addition, the HR was higher when K-Ras mutations were detected in fresh frozen samples (HR = 2.01, 95 % CI 1.28-3.16, p = 0.002) than in formalin-fixed, paraffin-embedded (FFPE) samples (HR = 1.29, 95 % CI 1.12-1.49, p < 0.01). Though K-Ras alterations are more frequent among non-East Asian individuals than East Asian individuals, there were no significant differences in HRs of survival between the two ethnic subgroups. In conclusion, this meta-analysis suggests that K-Ras mutations are associated with a worse overall survival in pancreatic cancer patients, especially when mutations are detected in liquid biopsies or fresh frozen tumor tissue samples. PMID:27225938

  19. Hyperglycemia Promotes K-Ras-Induced Lung Tumorigenesis through BASCs Amplification

    PubMed Central

    Micucci, Carla; Orciari, Silvia; Catalano, Alfonso

    2014-01-01

    Oncogenic K-Ras represents the most common molecular change in human lung adenocarcinomas, the major histologic subtype of non–small cell lung cancer (NSCLC). The presence of K-Ras mutation is associated with a poor prognosis, but no effective treatment strategies are available for K-Ras -mutant NSCLC. Epidemiological studies report higher lung cancer mortality rates in patients with type 2 diabetes. Here, we use a mouse model of K-Ras-mediated lung cancer on a background of chronic hyperglycemia to determine whether elevated circulating glycemic levels could influence oncogenic K-Ras-mediated tumor development. Inducible oncogenic K-Ras mouse model was treated with subtoxic doses of streptozotocin (STZ) to induce chronic hyperglycemia. We observed increased tumor mass and higher grade of malignancy in STZ treated diabetic mice analyzed at 4, 12 and 24 weeks, suggesting that oncogenic K-Ras increased lung tumorigenesis in hyperglycemic condition. This promoting effect is achieved by expansion of tumor-initiating lung bronchio-alveolar stem cells (BASCs) in bronchio-alveolar duct junction, indicating a role of hyperglycemia in the activity of K-Ras-transformed putative lung stem cells. Notably, after oncogene K-Ras activation, BASCs show upregulation of the glucose transporter (Glut1/Slc2a1), considered as an important player of the active control of tumor cell metabolism by oncogenic K-Ras. Our novel findings suggest that anti-hyperglycemic drugs, such as metformin, may act as therapeutic agent to restrict lung neoplasia promotion and progression. PMID:25144301

  20. A gene expression signature associated with “K-Ras addiction” reveals regulators of EMT and tumor cell survival

    PubMed Central

    Singh, Anurag; Greninger, Patricia; Rhodes, Daniel; Koopman, Louise; Violette, Sheila; Bardeesy, Nabeel; Settleman, Jeff

    2009-01-01

    SUMMARY K-Ras mutations occur frequently in epithelial cancers. Using shRNAs to deplete K-Ras in lung and pancreatic cancer cell lines harboring K-Ras mutations, two classes were identified—lines that do or do not require K-Ras to maintain viability. Comparing these two classes of cancer cells revealed a gene expression signature in K-Ras-dependent cells, associated with a well-differentiated epithelial phenotype, which was also seen in primary tumors. Several of these genes encode pharmacologically tractable proteins, such as Syk and Ron kinases and integrin beta6, depletion of which induces epithelial-mesenchymal transformation (EMT) and apoptosis specifically in K-Ras-dependent cells. These findings indicate that epithelial differentiation and tumor cell viability are associated, and that EMT regulators in “K-Ras-addicted” cancers represent candidate therapeutic targets. SIGNIFICANCE K-Ras is the most frequently mutated oncogene in solid tumors and when aberrantly activated, is a potent tumor initiator. However, the identification of the critical effectors of K-Ras-mediated tumorigenesis and the development of clinically effective therapeutic strategies in this setting remain challenging. We have found that cancer cell lines harboring K-Ras mutations can be broadly classified into K-Ras-dependent and K-Ras-independent groups. By establishing a gene expression signature that can distinguish these two groups, we identified genes that are specifically up-regulated in K-Ras-dependent cells and are required for their viability. Therefore, the K-Ras dependency signature has revealed several potential therapeutic targets in a subset of otherwise pharmacologically intractable human cancers. PMID:19477428

  1. Degradation of Activated K-Ras Orthologue via K-Ras-specific Lysine Residues Is Required for Cytokinesis*

    PubMed Central

    Sumita, Kazutaka; Yoshino, Hirofumi; Sasaki, Mika; Majd, Nazanin; Kahoud, Emily Rose; Takahashi, Hidenori; Takeuchi, Koh; Kuroda, Taruho; Lee, Susan; Charest, Pascale G.; Takeda, Kosuke; Asara, John M.; Firtel, Richard A.; Anastasiou, Dimitrios; Sasaki, Atsuo T.

    2014-01-01

    Mammalian cells encode three closely related Ras proteins, H-Ras, N-Ras, and K-Ras. Oncogenic K-Ras mutations frequently occur in human cancers, which lead to dysregulated cell proliferation and genomic instability. However, mechanistic role of the Ras isoform regulation have remained largely unknown. Furthermore, the dynamics and function of negative regulation of GTP-loaded K-Ras have not been fully investigated. Here, we demonstrate RasG, the Dictyostelium orthologue of K-Ras, is targeted for degradation by polyubiquitination. Both ubiquitination and degradation of RasG were strictly associated with RasG activity. High resolution tandem mass spectrometry (LC-MS/MS) analysis indicated that RasG ubiquitination occurs at C-terminal lysines equivalent to lysines found in human K-Ras but not in H-Ras and N-Ras homologues. Substitution of these lysine residues with arginines (4KR-RasG) diminished RasG ubiquitination and increased RasG protein stability. Cells expressing 4KR-RasG failed to undergo proper cytokinesis and resulted in multinucleated cells. Ectopically expressed human K-Ras undergoes polyubiquitin-mediated degradation in Dictyostelium, whereas human H-Ras and a Dictyostelium H-Ras homologue (RasC) are refractory to ubiquitination. Our results indicate the existence of GTP-loaded K-Ras orthologue-specific degradation system in Dictyostelium, and further identification of the responsible E3-ligase may provide a novel therapeutic approach against K-Ras-mutated cancers. PMID:24338482

  2. Are high initial CEA and CA 19-9 levels associated with the presence of K-ras mutation in patients with metastatic colorectal cancer?

    PubMed

    Selcukbiricik, Fatih; Bilici, Ahmet; Tural, Deniz; Erdamar, Sibel; Soyluk, Ozlem; Buyukunal, Evin; Demirelli, Fuat; Serdengecti, Suheyla

    2013-08-01

    In certain cell culture studies, significant CEA expression was observed in K-ras mutant cells. However, the relationship between high CEA levels and K-ras status has not been sufficiently investigated. In the present study, we aimed to determine the prognostic role of initial CEA and CA 19-9 values in metastatic colorectal cancer patients according to the status of K-ras. Between 2000 and 2010, a total of 215 patients with metastatic colorectal cancer who were treated and followed up in our oncology center were analyzed. Smokers were excluded from the study. The clinicopathological findings and initial CEA and CA19-9 values were determined. K-ras mutation analysis was performed using quantitative PCR evaluation of the DNA from the tumor tissues. Eighty-two patients (38.1 %) were female and 133 (61.9 %) were male, with a median age of 59 years (range 27-83). Based on tumor localization, 127 patients (59 %) were classified as colon cancer patients and 88 patients (41 %) were classified as rectal cancer patients. The majority of patients (83.3 %) had pure adenocarcinoma histology, while 36 cases (16.7 %) had mucinous adenocarcinoma. The initial CEA levels were detected to be high (>5 ng/mL) in 108 of the patients (50.2 %), while high levels of initial CA 19-9 (>37 ng/mL) were found in 90 patients (41.8 %). K-ras mutations were detected in 99 of the patients (46 %). K-ras was found to be wild type in 116 patients (54 %). Significant differences were detected between the K-ras wild-type and mutant groups with respect to age and the initial serum CEA levels. Patients with K-ras mutations were younger (p = 0.04) and had higher initial CEA levels (p = 0.02) compared to patients with K-ras wild type. The median overall survival (OS) time and 3-year OS rate for patients with a high initial CEA level (>5 ng/mL) were significantly shorter than those of patients with a low initial CEA level (<5 ng/mL) (50.5 months and 61.8 % vs. 78.6 months and 79.1 %, p = 0.014). Furthermore

  3. Mutant K-RAS Promotes Invasion and Metastasis in Pancreatic Cancer Through GTPase Signaling Pathways

    PubMed Central

    Padavano, Julianna; Henkhaus, Rebecca S; Chen, Hwudaurw; Skovan, Bethany A; Cui, Haiyan; Ignatenko, Natalia A

    2015-01-01

    Pancreatic ductal adenocarcinoma is one of the most aggressive malignancies, characterized by the local invasion into surrounding tissues and early metastasis to distant organs. Oncogenic mutations of the K-RAS gene occur in more than 90% of human pancreatic cancers. The goal of this study was to investigate the functional significance and downstream effectors of mutant K-RAS oncogene in the pancreatic cancer invasion and metastasis. We applied the homologous recombination technique to stably disrupt K-RAS oncogene in the human pancreatic cell line MiaPaCa-2, which carries the mutant K-RASG12C oncogene in both alleles. Using in vitro assays, we found that clones with disrupted mutant K-RAS gene exhibited low RAS activity, reduced growth rates, increased sensitivity to the apoptosis inducing agents, and suppressed motility and invasiveness. In vivo assays showed that clones with decreased RAS activity had reduced tumor formation ability in mouse xenograft model and increased survival rates in the mouse orthotopic pancreatic cancer model. We further examined molecular pathways downstream of mutant K-RAS and identified RhoA GTP activating protein 5, caveolin-1, and RAS-like small GTPase A (RalA) as key effector molecules, which control mutant K-RAS-dependent migration and invasion in MiaPaCa-2 cells. Our study provides rational for targeting RhoA and RalA GTPase signaling pathways for inhibition of pancreatic cancer metastasis. PMID:26512205

  4. k-RAS mutations in non-small cell lung cancer patients treated with TKIs among smokers and non-smokers: a meta-analysis

    PubMed Central

    Lu, Hui-Yu

    2016-01-01

    Aim of the study Recent studies have suggested that k-RAS mutations are related to the response to epidermal growth factor receptor (EGFR) tyrosine-kinase inhibitions (TKIs) in advanced non-small cell lung cancer (NSCLC) treatment. The aim of this meta-analysis was to assess the relationship between smoking history and k-RAS mutations in NSCLC treated with TKIs. Material and methods We searched MEDLINE and Web of Science up to 15 March 2014. The pooled relative risk (RR) was estimated by using fixed effect model or random effect model, according to heterogeneity between studies. We also carried out power analyses. Results We identified 12 studies with 1193 patients, including 196 patients (16.4%) with k-RAS mutations. The pooled k-RAS mutations incidence was 22.8% (174/764) in patients with smoke expose vs. 5.4% (23/429) in those with no smoke exposure. The pooled RR was 2.991 (95% CI: 1.884–4.746; Z = 4.65, p = 0.000). No publication bias was found (Begg's test: z = 1.09, p = 0.274 and Egger's test: t = 1.38, p = 0.201). In subgroup analyses, the pooled RR was 3.336 (95% CI: 1.925–5.779; Z = 4.30, p = 0.000) in the Caucasian subgroup, while in the Asian subgroup the pooled RR was 2.093 (95% CI: 0.909–4.822; Z = 1.73, p = 0.083), but the sample size was underpowered (0.465). Conclusions The current meta-analysis found that smoking was related to increased incidence of k-RAS mutations in non-small cell lung cancer treated with TKIs. This may be further evidence that smoking will lead to a worse prognosis in NSCLC patients treated with TKIs. PMID:27358590

  5. PCR bias toward the wild-type k-ras and p53 sequences: implications for PCR detection of mutations and cancer diagnosis.

    PubMed

    Barnard, R; Futo, V; Pecheniuk, N; Slattery, M; Walsh, T

    1998-10-01

    PCR-based cancer diagnosis requires detection of rare mutations in k-ras, p53 or other genes. The assumption has been that mutant and wild-type sequences amplify with near equal efficiency, so that they are eventually present in proportions representative of the starting material. Work on factor IX suggests that this assumption is invalid for one case of near-sequence identity. To test the generality of this phenomenon and its relevance to cancer diagnosis, primers distant from point mutations in p53 and k-ras were used to amplify wild-type and mutant sequences from these genes. A substantial bias against PCR amplification of mutants was observed for two regions of the p53 gene and one region of k-ras. For k-ras and p53, bias was observed when the wild-type and mutant sequences were amplified separately or when mixed in equal proportions before PCR. Bias was present with proofreading and non-proofreading polymerases. Mutant and wild-type segments of the factor V, cystic fibrosis transmembrane conductance regulator and prothrombin genes were amplified and did not exhibit PCR bias. Therefore, the assumption of equal PCR efficiency for point mutant and wild-type sequences is invalid in several systems. Quantitative or diagnostic PCR will require validation for each locus, and enrichment strategies may be needed to optimize detection of mutants. PMID:9793653

  6. Mechanisms of Membrane Binding of Small GTPase K-Ras4B Farnesylated Hypervariable Region*

    PubMed Central

    Jang, Hyunbum; Abraham, Sherwin J.; Chavan, Tanmay S.; Hitchinson, Ben; Khavrutskii, Lyuba; Tarasova, Nadya I.; Nussinov, Ruth; Gaponenko, Vadim

    2015-01-01

    K-Ras4B belongs to a family of small GTPases that regulates cell growth, differentiation and survival. K-ras is frequently mutated in cancer. K-Ras4B association with the plasma membrane through its farnesylated and positively charged C-terminal hypervariable region (HVR) is critical to its oncogenic function. However, the structural mechanisms of membrane association are not fully understood. Here, using confocal microscopy, surface plasmon resonance, and molecular dynamics simulations, we observed that K-Ras4B can be distributed in rigid and loosely packed membrane domains. Its membrane binding domain interaction with phospholipids is driven by membrane fluidity. The farnesyl group spontaneously inserts into the disordered lipid microdomains, whereas the rigid microdomains restrict the farnesyl group penetration. We speculate that the resulting farnesyl protrusion toward the cell interior allows oligomerization of the K-Ras4B membrane binding domain in rigid microdomains. Unlike other Ras isoforms, K-Ras4B HVR contains a single farnesyl modification and positively charged polylysine sequence. The high positive charge not only modulates specific HVR binding to anionic phospholipids but farnesyl membrane orientation. Phosphorylation of Ser-181 prohibits spontaneous farnesyl membrane insertion. The mechanism illuminates the roles of HVR modifications in K-Ras4B targeting microdomains of the plasma membrane and suggests an additional function for HVR in regulation of Ras signaling. PMID:25713064

  7. K-Ras Promotes Tumorigenicity through Suppression of Non-canonical Wnt Signaling.

    PubMed

    Wang, Man-Tzu; Holderfield, Matthew; Galeas, Jacqueline; Delrosario, Reyno; To, Minh D; Balmain, Allan; McCormick, Frank

    2015-11-19

    K-Ras and H-Ras share identical effectors and have similar properties; however, the high degree of tumor-type specificity associated with K-Ras and H-Ras mutations suggests that they have unique roles in oncogenesis. Here, we report that oncogenic K-Ras, but not H-Ras, suppresses non-canonical Wnt/Ca(2+) signaling, an effect that contributes strongly to its tumorigenic properties. K-Ras does this by binding to calmodulin and so reducing CaMKii activity and expression of Fzd8. Restoring Fzd8 in K-Ras mutant pancreatic cells suppresses malignancy, whereas depletion of Fzd8 in H-Ras(V12)-transformed cells enhances their tumor initiating capacity. Interrupting K-Ras-calmodulin binding using genetic means or by treatment with an orally active protein kinase C (PKC)-activator, prostratin, represses tumorigenesis in K-Ras mutant pancreatic cancer cells. These findings provide an alternative way to selectively target this "undruggable" protein.

  8. K-Ras(V14I) -induced Noonan syndrome predisposes to tumour development in mice.

    PubMed

    Hernández-Porras, Isabel; Schuhmacher, Alberto J; Garcia-Medina, Raquel; Jiménez, Beatriz; Cañamero, Marta; de Martino, Alba; Guerra, Carmen

    2016-06-01

    The Noonan syndrome (NS) is an autosomal dominant genetic disorder characterized by short stature, craniofacial dysmorphism, and congenital heart defects. A significant proportion of NS patients may also develop myeloproliferative disorders (MPDs), including juvenile myelomonocytic leukaemia (JMML). Surprisingly, scarce information is available in relation to other tumour types in these patients. We have previously developed and characterized a knock-in mouse model that carries one of the most frequent KRAS-NS-related mutations, the K-Ras(V14I) substitution, which recapitulates most of the alterations described in NS patients, including MPDs. The K-Ras(V14I) mutation is a mild activating K-Ras protein; thus, we have used this model to study tumour susceptibility in comparison with mice expressing the classical K-Ras(G12V) oncogene. Interestingly, our studies have shown that these mice display a generalized tumour predisposition and not just MPDs. In fact, we have observed that the K-Ras(V14I) mutation is capable of cooperating with the p16Ink4a/p19Arf and Trp53 tumour suppressors, as well as with other risk factors such as pancreatitis, thereby leading to a higher cancer incidence. In conclusion, our results illustrate that the K-Ras(V14I) activating protein is able to induce cancer, although at a much lower level than the classical K-Ras(G12V) oncogene, and that it can be significantly modulated by both genetic and non-genetic events. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. PMID:27174785

  9. K-Ras(V14I) -induced Noonan syndrome predisposes to tumour development in mice.

    PubMed

    Hernández-Porras, Isabel; Schuhmacher, Alberto J; Garcia-Medina, Raquel; Jiménez, Beatriz; Cañamero, Marta; de Martino, Alba; Guerra, Carmen

    2016-06-01

    The Noonan syndrome (NS) is an autosomal dominant genetic disorder characterized by short stature, craniofacial dysmorphism, and congenital heart defects. A significant proportion of NS patients may also develop myeloproliferative disorders (MPDs), including juvenile myelomonocytic leukaemia (JMML). Surprisingly, scarce information is available in relation to other tumour types in these patients. We have previously developed and characterized a knock-in mouse model that carries one of the most frequent KRAS-NS-related mutations, the K-Ras(V14I) substitution, which recapitulates most of the alterations described in NS patients, including MPDs. The K-Ras(V14I) mutation is a mild activating K-Ras protein; thus, we have used this model to study tumour susceptibility in comparison with mice expressing the classical K-Ras(G12V) oncogene. Interestingly, our studies have shown that these mice display a generalized tumour predisposition and not just MPDs. In fact, we have observed that the K-Ras(V14I) mutation is capable of cooperating with the p16Ink4a/p19Arf and Trp53 tumour suppressors, as well as with other risk factors such as pancreatitis, thereby leading to a higher cancer incidence. In conclusion, our results illustrate that the K-Ras(V14I) activating protein is able to induce cancer, although at a much lower level than the classical K-Ras(G12V) oncogene, and that it can be significantly modulated by both genetic and non-genetic events. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  10. Pyrosequencing-based methods reveal marked inter-individual differences in oncogene mutation burden in human colorectal tumours

    PubMed Central

    Weidlich, S; Walsh, K; Crowther, D; Burczynski, M E; Feuerstein, G; Carey, F A; Steele, R J C; Wolf, C R; Miele, G; Smith, G

    2011-01-01

    Background: The epidermal growth factor receptor-targeted monoclonal antibody cetuximab (Erbitux) was recently introduced for the treatment of metastatic colorectal cancer. Treatment response is dependent on Kirsten-Ras (K-Ras) mutation status, in which the majority of patients with tumour-specific K-Ras mutations fail to respond to treatment. Mutations in the oncogenes B-Raf and PIK3CA (phosphoinositide-3-kinase) may also influence cetuximab response, highlighting the need for a sensitive, accurate and quantitative assessment of tumour mutation burden. Methods: Mutations in K-Ras, B-Raf and PIK3CA were identified by both dideoxy and quantitative pyrosequencing-based methods in a cohort of unselected colorectal tumours (n=102), and pyrosequencing-based mutation calls correlated with various clinico-pathological parameters. Results: The use of quantitative pyrosequencing-based methods allowed us to report a 13.7% increase in mutation burden, and to identify low-frequency (<30% mutation burden) mutations not routinely detected by dideoxy sequencing. K-Ras and B-Raf mutations were mutually exclusive and independently associated with a more advanced tumour phenotype. Conclusion: Pyrosequencing-based methods facilitate the identification of low-frequency tumour mutations and allow more accurate assessment of tumour mutation burden. Quantitative assessment of mutation burden may permit a more detailed evaluation of the role of specific tumour mutations in the pathogenesis and progression of colorectal cancer and may improve future patient selection for targeted drug therapies. PMID:21712828

  11. Insights into K-Ras 4B regulation by post-translational lysine acetylation.

    PubMed

    Knyphausen, Philipp; Lang, Franziska; Baldus, Linda; Extra, Antje; Lammers, Michael

    2016-10-01

    Ras is a molecular switch cycling between an active, GTP-bound and an inactive, GDP-bound state. Mutations in Ras, mostly affecting the off-switch, are found in many human tumours. Recently, it has been shown that K-Ras 4B is targeted by lysine acetylation at K104. Based on results obtained for an acetylation mimetic Ras mutant (K104Q), it was hypothesised that K104-acetylation might interfere with its oncogenicity by impairing SOS-catalysed guanine-nucleotide exchange. We prepared site-specifically K104-acetylated K-Ras 4B and the corresponding oncogenic mutant protein G12V using the genetic-code expansion concept. We found that SOS-catalysed nucleotide exchange, also of allosterically activated SOS, was neither affected by acetylation of K104 in wildtype K-Ras 4B nor in the G12V mutant, suggesting that glutamine is a poor mimetic for acetylation at this site. In vitro, the lysine-acetyltransferases CBP and p300 were able to acetylate both, wildtype and G12V K-Ras 4B. In addition to K104 we identified further acetylation sites in K-Ras 4B, including K147, within the important G5/SAK-motif. However, the intrinsic and the SOS-catalysed nucleotide exchange was not affected by K147-acetylation of K-Ras 4B. Finally, we show that Sirt2 and HDAC6 do neither deacetylate K-Ras 4B if acetylated at K104 nor if acetylated at K147 in vitro.

  12. K-Ras4B phosphorylation at Ser181 is inhibited by calmodulin and modulates K-Ras activity and function.

    PubMed

    Alvarez-Moya, B; López-Alcalá, C; Drosten, M; Bachs, O; Agell, N

    2010-11-01

    Fine tuning of Ras activity is widely known as a mechanism to induce different cellular responses. Recently, we have shown that calmodulin (CaM) binds to K-Ras and that K-Ras phosphorylation inhibits its interaction with CaM. In this study we report that CaM inhibits K-Ras phosphorylation at Ser181 by protein kinase C (PKC) in vivo, and this is a mechanism to modulate K-Ras activity and signaling. Although CaM inhibition increased the activation of endogenous K-Ras, PKC inhibition decreased its activation status. We demonstrate that K-Ras phosphorylation decreased susceptibility to p120GAP activity. Accordingly, we also observed that non-phosphorylable K-Ras mutant exhibits a less sustained activation profile and do not efficiently activate AKT at low growth factor doses compared with wild-type K-Ras. It is interesting that the physiological responses induced by K-Ras are affected by this phosphorylation; when K-Ras cannot be phosphorylated it exhibits a remarkably decreased ability to stimulate proliferation in non-saturated serum conditions. Finally, we demonstrate that phosphorylation also regulates oncogenic K-Ras functions, as focus formation capacity, mobility and apoptosis resistance upon adriamycin treatment of cells expressing oncogenic K-Ras that cannot be phosphorylated are highly compromised. Moreover, at low serum concentration proliferation and survival is practically inhibited when cells cannot phosphorylate oncogenic K-Ras. In this condition, K-Ras phosphorylation is essential to ensure a proper activation of mitogen-activated protein kinase and PI3K/AKT pathways. In summary, our findings suggest that the interplay between CaM interaction and PKC phosphorylation is essential to regulate non-oncogenic and oncogenic K-Ras activity and functionality.

  13. Coamplification at lower denaturation temperature polymerase chain reaction enables selective identification of K-Ras mutations in formalin-fixed, paraffin-embedded tumor tissues without tumor-cell enrichment.

    PubMed

    Yu, Shaorong; Xie, Li; Hou, Zhibo; Qian, Xiaoping; Yu, Lixia; Wei, Jia; Ding, Yitao; Liu, Baorui

    2011-09-01

    Conventional polymerase chain reaction-based Sanger sequencing is the standard assay for the detection of K-Ras mutations. However, this method is deficient in identifying small numbers of mutation-bearing cells, and tumor-cell enrichment methods such as microdissection or macrodissection are labor intensive and not always achievable. We applied the recently described coamplification at lower denaturation temperature polymerase chain reaction, which amplifies minority alleles selectively, to detect K-Ras mutations directly in 29 formalin-fixed, paraffin-embedded pancreatic specimens and compared the results with those of conventional polymerase chain reaction. To avoid a false-negative result from the coamplification at lower denaturation temperature polymerase chain reaction assay, we applied a more sensitive peptide nucleic acid polymerase chain reaction method as the gold standard. Dilution experiments indicated an approximately 5-fold improvement in sensitivity with coamplification at lower denaturation temperature polymerase chain reaction-based Sanger sequencing. Conventional polymerase chain reaction detected K-Ras mutations in 11 formalin-fixed, paraffin-embedded pancreatic specimens (37.9%), whereas coamplification at lower denaturation temperature polymerase chain reaction could identify all of those mutations as well as mutations in 10 additional samples, for a total of 21 (72.4%, P = .002) of 29. Unlike peptide nucleic acid polymerase chain reaction, coamplification at lower denaturation temperature polymerase chain reaction identified all K-Ras mutations in specimens in which tumor cells accounted for at least 20% of the total. Adoption of coamplification at lower denaturation temperature polymerase chain reaction is straightforward and requires no additional reagents or instruments. The technique is a good strategy to detect K-Ras mutations selectively in formalin-fixed, paraffin-embedded tissues without tumor-cell enrichment.

  14. The Bisphenol A analogue Bisphenol S binds to K-Ras4B--implications for 'BPA-free' plastics.

    PubMed

    Schöpel, Miriam; Herrmann, Christian; Scherkenbeck, Jürgen; Stoll, Raphael

    2016-02-01

    K-Ras4B is a small GTPase that belongs to the Ras superfamily of guanine nucleotide-binding proteins. GTPases function as molecular switches in cells and are key players in intracellular signalling. Ras has been identified as an oncogene and is mutated in more than 20% of human cancers. Here, we report that Bisphenol S binds into a binding pocket of K-Ras4B previously identified for various low molecular weight compounds. Our results advocate for more comprehensive safety studies on the toxicity of Bisphenol S, as it is frequently used for Bisphenol A-free food containers. PMID:26867649

  15. The Bisphenol A analogue Bisphenol S binds to K-Ras4B--implications for 'BPA-free' plastics.

    PubMed

    Schöpel, Miriam; Herrmann, Christian; Scherkenbeck, Jürgen; Stoll, Raphael

    2016-02-01

    K-Ras4B is a small GTPase that belongs to the Ras superfamily of guanine nucleotide-binding proteins. GTPases function as molecular switches in cells and are key players in intracellular signalling. Ras has been identified as an oncogene and is mutated in more than 20% of human cancers. Here, we report that Bisphenol S binds into a binding pocket of K-Ras4B previously identified for various low molecular weight compounds. Our results advocate for more comprehensive safety studies on the toxicity of Bisphenol S, as it is frequently used for Bisphenol A-free food containers.

  16. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions

    NASA Astrophysics Data System (ADS)

    Ostrem, Jonathan M.; Peters, Ulf; Sos, Martin L.; Wells, James A.; Shokat, Kevan M.

    2013-11-01

    Somatic mutations in the small GTPase K-Ras are the most common activating lesions found in human cancer, and are generally associated with poor response to standard therapies. Efforts to target this oncogene directly have faced difficulties owing to its picomolar affinity for GTP/GDP and the absence of known allosteric regulatory sites. Oncogenic mutations result in functional activation of Ras family proteins by impairing GTP hydrolysis. With diminished regulation by GTPase activity, the nucleotide state of Ras becomes more dependent on relative nucleotide affinity and concentration. This gives GTP an advantage over GDP and increases the proportion of active GTP-bound Ras. Here we report the development of small molecules that irreversibly bind to a common oncogenic mutant, K-Ras(G12C). These compounds rely on the mutant cysteine for binding and therefore do not affect the wild-type protein. Crystallographic studies reveal the formation of a new pocket that is not apparent in previous structures of Ras, beneath the effector binding switch-II region. Binding of these inhibitors to K-Ras(G12C) disrupts both switch-I and switch-II, subverting the native nucleotide preference to favour GDP over GTP and impairing binding to Raf. Our data provide structure-based validation of a new allosteric regulatory site on Ras that is targetable in a mutant-specific manner.

  17. Non-covalent interactions of the carcinogen (+)-anti-BPDE with exon 1 of the human K-ras proto-oncogene

    NASA Astrophysics Data System (ADS)

    Rodriguez, Jorge H.; Deligkaris, Christos

    2013-03-01

    Investigating the complementary, but different, effects of physical (non-covalent) and chemical (covalent) mutagen-DNA and carcinogen-DNA interactions is important for understanding possible mechanisms of development and prevention of mutagenesis and carcinogenesis. A highly mutagenic and carcinogenic metabolite of the polycyclic aromatic hydrocarbon benzo[ α]pyrene, namely (+)-anti-BPDE, is known to undergo both physical and chemical complexation with DNA. The major covalent adduct, a promutagenic, is known to be an external (+)-trans-anti-BPDE-N2-dGuanosine configuration whose origins are not fully understood. Thus, it is desirable to study the mechanisms of external non-covalent BPDE-DNA binding and their possible relationships to external covalent trans adduct formation. We present a detailed codon-by-codon computational study of the non-covalent interactions of (+)-anti-BPDE with DNA which explains and correctly predicts preferential (+)-anti-BPDE binding at minor groove guanosines. Due to its relevance to carcinogenesis, the interaction of (+)-anti-BPDE with exon 1 of the human K-ras gene has been studied in detail. Present address: Department of Physics, Drury University

  18. Picoliter droplet-based digital peptide nucleic acid clamp PCR and dielectric sorting for low abundant K-ras mutations

    NASA Astrophysics Data System (ADS)

    Zhang, Huidan; Sperling, Ralph; Rotem, Assaf; Shan, Lianfeng; Heyman, John; Zhang, Yizhe; Weitz, David

    2012-02-01

    Colorectal cancer (CRC) remains the second leading cause of cancer-related mortality in the US, and the 5-year survival of metastatic CRC (mCRC) is less than 10%. Although monoclonal antibodies against epidermal growth factor receptor (EGFR) provide incremental improvements in survival, approximately 40% of mCRC patients with activating KRAS mutations won't benefit from this therapy. Peptide nucleic acid (PNA), a synthetic non-extendable oligonucleotides, can bind strongly to completely complementary wild-type KRAS by Watson-Crick base pairing and suppress its amplification during PCR, while any mutant allele will show unhindered amplification. The method is particularly suitable for the simultaneously detection of several adjoining mutant sites, just as mutations of codons 12 and 13 of KRAS gene where there are totally 12 possible mutation types. In this work, we describe the development and validation of this method, based on the droplet-based digital PCR. Using a microfluidic system, single target DNA molecule is compartmentalized in microdroplets together with PNA specific for wild-type KRAS, thermocycled and the fluorescence of each droplet was detected, followed by sorting and sequencing. It enables the precise determination of all possible mutant KRAS simultaneously, and the precise quantification of a single mutated KRAS in excess background unmutated KRAS.

  19. The noncoding RNAs SNORD50A and SNORD50B bind K-Ras and are recurrently deleted in human cancer.

    PubMed

    Siprashvili, Zurab; Webster, Dan E; Johnston, Danielle; Shenoy, Rajani M; Ungewickell, Alexander J; Bhaduri, Aparna; Flockhart, Ross; Zarnegar, Brian J; Che, Yonglu; Meschi, Francesca; Puglisi, Joseph D; Khavari, Paul A

    2016-01-01

    Small nucleolar RNAs (snoRNAs) are conserved noncoding RNAs best studied as ribonucleoprotein (RNP) guides in RNA modification. To explore their role in cancer, we compared 5,473 tumor-normal genome pairs to identify snoRNAs with frequent copy number loss. The SNORD50A-SNORD50B snoRNA locus was deleted in 10-40% of 12 common cancers, where its loss was associated with reduced survival. A human protein microarray screen identified direct SNORD50A and SNORD50B RNA binding to K-Ras. Loss of SNORD50A and SNORD50B increased the amount of GTP-bound, active K-Ras and hyperactivated Ras-ERK1/ERK2 signaling. Loss of these snoRNAs also increased binding by farnesyltransferase to K-Ras and increased K-Ras prenylation, suggesting that KRAS mutation might synergize with SNORD50A and SNORD50B loss in cancer. In agreement with this hypothesis, CRISPR-mediated deletion of SNORD50A and SNORD50B in KRAS-mutant tumor cells enhanced tumorigenesis, and SNORD50A and SNORD50B deletion and oncogenic KRAS mutation co-occurred significantly in multiple human tumor types. SNORD50A and SNORD50B snoRNAs thus directly bind and inhibit K-Ras and are recurrently deleted in human cancer.

  20. Analysis of the K-ras and p53 pathways in x-ray-induced lung tumors in the rat

    SciTech Connect

    Belinsky, S.A.; Middleton, S.K.; Hahn, F.F.; Nikula, K.J.; Picksley, S.M.

    1996-04-01

    The risk from exposure to low-dose radiation in conjunction with cigarette smoking has not been estimated due in part to lmited knowledge surrounding the molecular mechanisms underlying radiation-induced cancers. The purpose of this investigation was to determine the frequency for alterations in genes within the K-ras and p53 signal and cell cycle regulatory pathways, respectively, in X-ray-induced lung tumors in the F344/N rat. These tumors were examined for genetic alterations in the K-ras, c-raf-1, p53, mdm2 and cip1 genes. No K-ras mutations were detected by sequencing in 18 squamous cell carcinomas (SCCs) or 17 adenocarcinomas. However, using a K-ras codon 12 mutation selection assay, a codon 12 GGT {r_arrow} GAT mutation was detected in one SCC, suggesting that activation of the K-ras proto-oncogene is both a rare and late event. Single-strand conformation polymorphism (SSCP) analysis of the kinase-binding domain of the c-raf-1 gene did not detect any polymorphisms. Three of 18 SCCs but none of the adenocarcinomas showed p53 nuclear immunoreactivity. Single-strand conformation polymorphism analysis of exons 4-9 of the p53 gene detected only an exon 9 mutation in one SCC. Mutations were not detected in the three SCCs with immunoreactive p53 protein. No amplification of the mdm2 gene was detected; however, nuclear mdm2 immunoreactivity was present in one of the three SCCs that stained positive for the p53 protein. The complete cDNA of the rat cip1 gene comprising 810 bases was cloned and sequenced. The frequency of somatic mutations in exon 2 of the cip1 gene was determined by SSCP analysis. No alterations in electrophoretic mobility were detected. The results of this investigation indicate that alterations in the K-ras and p53 pathways do not play a major role in the genesis of X-ray-induced lung tumors in the rat. 49 refs., 5 figs.

  1. Requirement of the NF-κB Subunit p65/RelA for K-Ras-Induced Lung Tumorigenesis

    PubMed Central

    Basseres, Daniela S.; Ebbs, Aaron; Levantini, Elena; Baldwin, Albert S.

    2010-01-01

    K-Ras-induced lung cancer is a very common disease, for which there are currently no effective therapies. Because therapy directly targeting the activity of oncogenic Ras has been unsuccessful, a different approach for novel therapy design is to identify critical Ras downstream oncogenic targets. Given that oncogenic Ras proteins activate the transcription factor NF-κB, and the importance of NF-κB in oncogenesis, we hypothesized that NF-κB would be an important K-Ras target in lung cancer. To address this hypothesis, we generated an NF-κB-EGFP reporter mouse model of K-Ras-induced lung cancer and determined that K-Ras activates NF-κB in lung tumors in situ. Furthermore, a mouse model was generated where activation of oncogenic K-Ras in lung cells was coupled with inactivation of the NF-κB subunit p65/RelA. In this model, deletion of p65/RelA reduces the number of K-Ras-induced lung tumors both in the presence and absence of the tumor suppressor p53. Lung tumors with loss of p65/RelA have higher numbers of apoptotic cells, reduced spread and lower grade. Using lung cell lines expressing oncogenic K-Ras, we show that NF-κB is activated in these cells in a K-Ras-dependent manner and that NF-κB activation by K-Ras requires IKKβ kinase activity. Taken together, these results demonstrate the importance of the NF-κB subunit p65/RelA in K-Ras induced lung transformation and identify IKKβ as a potential therapeutic target for K-Ras-induced lung cancer. PMID:20406971

  2. A comparison of Direct sequencing, Pyrosequencing, High resolution melting analysis, TheraScreen DxS, and the K-ras StripAssay for detecting KRAS mutations in non small cell lung carcinomas

    PubMed Central

    2012-01-01

    Background It is mandatory to confirm the absence of mutations in the KRAS gene before treating metastatic colorectal cancers with epidermal growth factor receptor inhibitors, and similar regulations are being considered for non-small cell lung carcinomas (NSCLC) and other tumor types. Routine diagnosis of KRAS mutations in NSCLC is challenging because of compromised quantity and quality of biological material. Although there are several methods available for detecting mutations in KRAS, there is little comparative data regarding their analytical performance, economic merits, and workflow parameters. Methods We compared the specificity, sensitivity, cost, and working time of five methods using 131 frozen NSCLC tissue samples. We extracted genomic DNA from the samples and compared the performance of Sanger cycle sequencing, Pyrosequencing, High-resolution melting analysis (HRM), and the Conformité Européenne (CE)-marked TheraScreen DxS and K-ras StripAssay kits. Results and conclusions Our results demonstrate that TheraScreen DxS and the StripAssay, in that order, were most effective at diagnosing mutations in KRAS. However, there were still unsatisfactory disagreements between them for 6.1% of all samples tested. Despite this, our findings are likely to assist molecular biologists in making rational decisions when selecting a reliable, efficient, and cost-effective method for detecting KRAS mutations in heterogeneous clinical tumor samples. PMID:22995035

  3. Common Oncogene Mutations and Novel SND1-BRAF Transcript Fusion in Lung Adenocarcinoma from Never Smokers

    PubMed Central

    Jang, Jin Sung; Lee, Adam; Li, Jun; Liyanage, Hema; Yang, Yanan; Guo, Lixia; Asmann, Yan W.; Li, Peter W.; Erickson-Johnson, Michele; Sakai, Yuta; Sun, ZhiFu; Jeon, Hyo-Sung; Hwang, Hayoung; Bungum, Aaron O.; Edell, Eric S.; Simon, Vernadette A.; Kopp, Karla J.; Eckloff, Bruce; Oliveira, Andre M.; Wieben, Eric; Aubry, Marie Christine; Yi, Eunhee; Wigle, Dennis; Diasio, Robert B.; Yang, Ping; Jen, Jin

    2015-01-01

    Lung adenocarcinomas from never smokers account for approximately 15 to 20% of all lung cancers and these tumors often carry genetic alterations that are responsive to targeted therapy. Here we examined mutation status in 10 oncogenes among 89 lung adenocarcinomas from never smokers. We also screened for oncogene fusion transcripts in 20 of the 89 tumors by RNA-Seq. In total, 62 tumors had mutations in at least one of the 10 oncogenes, including EGFR (49 cases, 55%), K-ras (5 cases, 6%), BRAF (4 cases, 5%), PIK3CA (3 cases, 3%), and ERBB2 (4 cases, 5%). In addition to ALK fusions identified by IHC/FISH in four cases, two previously known fusions involving EZR- ROS1 and KIF5B-RET were identified by RNA-Seq as well as a third novel fusion transcript that was formed between exons 1–9 of SND1 and exons 2 to 3′ end of BRAF. This in-frame fusion was observed in 3/89 tested tumors and 2/64 additional never smoker lung adenocarcinoma samples. Ectopic expression of SND1-BRAF in H1299 cells increased phosphorylation levels of MEK/ERK, cell proliferation, and spheroid formation compared to parental mock-transfected control. Jointly, our results suggest a potential role of the novel BRAF fusion in lung cancer development and therapy. PMID:25985019

  4. Common Oncogene Mutations and Novel SND1-BRAF Transcript Fusion in Lung Adenocarcinoma from Never Smokers.

    PubMed

    Jang, Jin Sung; Lee, Adam; Li, Jun; Liyanage, Hema; Yang, Yanan; Guo, Lixia; Asmann, Yan W; Li, Peter W; Erickson-Johnson, Michele; Sakai, Yuta; Sun, ZhiFu; Jeon, Hyo-Sung; Hwang, Hayoung; Bungum, Aaron O; Edell, Eric S; Simon, Vernadette A; Kopp, Karla J; Eckloff, Bruce; Oliveira, Andre M; Wieben, Eric; Aubry, Marie Christine; Yi, Eunhee; Wigle, Dennis; Diasio, Robert B; Yang, Ping; Jen, Jin

    2015-05-18

    Lung adenocarcinomas from never smokers account for approximately 15 to 20% of all lung cancers and these tumors often carry genetic alterations that are responsive to targeted therapy. Here we examined mutation status in 10 oncogenes among 89 lung adenocarcinomas from never smokers. We also screened for oncogene fusion transcripts in 20 of the 89 tumors by RNA-Seq. In total, 62 tumors had mutations in at least one of the 10 oncogenes, including EGFR (49 cases, 55%), K-ras (5 cases, 6%), BRAF (4 cases, 5%), PIK3CA (3 cases, 3%), and ERBB2 (4 cases, 5%). In addition to ALK fusions identified by IHC/FISH in four cases, two previously known fusions involving EZR- ROS1 and KIF5B-RET were identified by RNA-Seq as well as a third novel fusion transcript that was formed between exons 1-9 of SND1 and exons 2 to 3' end of BRAF. This in-frame fusion was observed in 3/89 tested tumors and 2/64 additional never smoker lung adenocarcinoma samples. Ectopic expression of SND1-BRAF in H1299 cells increased phosphorylation levels of MEK/ERK, cell proliferation, and spheroid formation compared to parental mock-transfected control. Jointly, our results suggest a potential role of the novel BRAF fusion in lung cancer development and therapy.

  5. Low prevalence of K-RAS, EGF-R and BRAF mutations in sinonasal adenocarcinomas. Implications for anti-EGFR treatments.

    PubMed

    Franchi, Alessandro; Innocenti, Duccio Rossi Degli; Palomba, Annarita; Miligi, Lucia; Paiar, Fabiola; Franzese, Ciro; Santucci, Marco

    2014-07-01

    We have previously shown that a subset of sinonasal intestinal-type adenocarcinomas (ITAC) shows activation of the epidermal growth factor-receptor (EGFR) pathway. In this study we examine the status of the EGFR, KRAS and BRAF genes in a series of sinonasal intestinal (ITAC) and non-intestinal type adenocarcinomas (non-ITAC). Eighteen ITACs and 12 non-ITACs were studied immunohistochemically for EGFR expression. Point mutations were analyzed for EGFR exons 19 and 21, KRAS exon 2 and BRAF exon 15 by direct sequencing. Non-ITACs showed significantly higher expression of EGFR (p = 0.015). Mutation analysis revealed one ITAC with EGFR and one ITAC with KRAS mutation, while two non-ITACs presented mutation of BRAF. We conclude that a subset of sinonasal adenocarcinomas shows overexpression of EGFR, while activating mutations of the signaling cascade downstream of EGFR are rare, suggesting that these tumors could be good candidates for anti-EGFR therapies.

  6. Novel approach to abuse the hyperactive K-Ras pathway for adenoviral gene therapy of colorectal cancer

    SciTech Connect

    Naumov, Inna; Kazanov, Dina; Lisiansky, Victoria; Starr, Alex; Aroch, Ilan; Shapira, Shiran; Kraus, Sarah; Arber, Nadir

    2012-01-15

    Background: Functional activation of oncogenic K-Ras signaling pathway plays an important role in the early events of colorectal carcinogenesis (CRC). K-Ras proto-oncogene is involved in 35-40% of CRC cases. Mutations in the Ras gene trigger the transduction of proliferative and anti-apoptotic signals, even in the absence of extra cellular stimuli. The objective of the current study was to use a gene-targeting approach to kill human CRC cells selectively harboring mutated K-Ras. Results: A recombinant adenovirus that carries a lethal gene, PUMA, under the control of a Ras responsive promoter (Ad-Py4-SV40-PUMA) was used selectively to target CRC cells (HCT116, SW480, DLD1 and RIE-Ras) that possess a hyperactive Ras pathway while using HT29 and RIE cells as a control that harbors wild type Ras and exhibit very low Ras activity. Control vector, without the Ras responsive promoter elements was used to assess the specificity of our 'gene therapy' approach. Both adenoviral vectors were assed in vitro and in xenograft model in vivo. Ad-Py4-SV40-PUMA showed high potency to induce {approx} 50% apoptosis in vitro, to abolish completely tumor formation by infecting cells with the Ad-Py4-SV40-PUMA prior xenografting them in nude mice and high ability to suppress by {approx} 35% tumor progression in vivo in already established tumors. Conclusions: Selective targeting of CRC cells with the activated Ras pathway may be a novel and effective therapy in CRC. The high potency of this adenoviral vector may help to overcome an undetectable micro metastasis that is the major hurdle in challenging with CRC.

  7. ACB-PCR MEASUREMENT OF K-RAS CODON 12 MUTATION IN A/J MOUSE LUNG EXPOSED TO BENZO[A]PYRENE: A DOSE-RESPONSE ASSESSMENT

    EPA Science Inventory

    Benzo[a]pyrene (B[a]P) is a known human carcinogen and environmental contaminant. The direct measurement of K-Ras mutant fraction (MF) was developed as a metric with which to examine the default assumption of low dose linearity in the mutational response to B...

  8. Lin28-let7 Modulates Radiosensitivity of Human Cancer Cells With Activation of K-Ras

    SciTech Connect

    Oh, Jee-Sun.; Kim, Jae-Jin; Byun, Ju-Yeon; Kim, In-Ah

    2010-01-15

    Purpose: To evaluate the potential of targeting Lin28-let7 microRNA regulatory network for overcoming the radioresistance of cancer cells having activated K-Ras signaling. Methods and Materials: A549 lung carcinoma cells and ASPC1 pancreatic cancer cells possessing K-RAS mutation were transfected with pre-let7a microRNA or Lin28 siRNA, respectively. Clonogenic assay, quantitative reverse transcription polymerase chain reaction, and Western analysis were performed. The effects of Lin28 on SQ20B cells having wild-type K-RAS, and a normal fibroblast were also assessed. Results: The overexpression of let-7a decreased expression of K-Ras and radiosensitized A549 cells. Inhibition of Lin28, a repressor of let-7, attenuated K-Ras expression and radiosensitized A549 and ASPC1 cells. Neither SQ20B cells expressing wild-type K-RAS nor HDF, the normal human fibroblasts, were radiosensitized by this approach. Conclusions: The Lin28-let7 regulatory network may be a potentially useful therapeutic target for overcoming the radioresistance of human cancers having activated K-Ras signaling.

  9. Synergism between K-rasVal12 and mutant Apc accelerates murine large intestinal tumourigenesis.

    PubMed

    Luo, Feijun; Poulogiannis, George; Ye, Hongtao; Hamoudi, Rifat; Arends, Mark J

    2011-07-01

    K-ras (KRAS) is mutated in 40-50% of human colorectal adenomas and carcinomas and plays key roles in cell proliferation, apoptosis, motility and differentiation, but its functional contribution to intestinal tumourigenesis in vivo remains incompletely understood. We have previously crossed K-rasVal12 transgenic mice with Ah-Cre mice to produce K-rasVal12/Cre offspring that inducibly express K-rasVal12 4A and 4B in the intestines, but this alone showed no significant effect on intestinal adenoma formation. Here, we crossed these mice with Min mice to evaluate the effect of K-rasVal12 and Apc mutation on intestinal tumourigenesis in vivo. The double mutant K-rasVal12/Cre/ApcMin/+ mice showed a moderate (1.86-fold) increase in adenomas in the small intestines, but a striking acceleration (6-fold increase) of large intestinal adenoma formation (P<0.01) and significantly reduced survival (by ~5 weeks) compared with control ApcMin/+ mice (P<0.01). There was recombination of the mutant K-rasVal12 transgene in 80% of large intestinal adenomas with expression of both K-rasVal12 4A and 4B isoform transcripts and expression of K-RasVal12 protein. The large intestinal adenomas showed immunohistochemical evidence of activation of MapK, Akt and Wnt signaling pathways and this was confirmed by quantitative RT-PCR analysis of relative transcript expression levels of target genes using a panel of 23 selected genes evaluated in both adenomas and non-tumour-bearing intestines. Several genes including Tiam1, Gastrin, CD44, uPA, Igfbp4, VEGF and Cox-2 that are known to be transcriptionally regulated by activation of the Wnt signaling pathway were found to be expressed at higher levels in the large intestinal adenomas from K-rasVal12/Cre/ApcMin/+ mice compared with those from controls, although other Wnt signaling pathway target genes remained unchanged. These data show that intestinal expression of K-rasVal12 accelerates Apc-initiated intestinal adenomagenesis in vivo with

  10. STAT3 supports experimental K-RasG12D–induced murine myeloproliferative neoplasms dependent on serine phosphorylation

    PubMed Central

    Gough, Daniel J.; Marié, Isabelle J.; Lobry, Camille; Aifantis, Iannis

    2014-01-01

    Juvenile myelomonocytic leukemia, acute myeloid leukemia (AML), and other myeloproliferative neoplasms (MPNs) are genetically heterogeneous but frequently display activating mutations in Ras GTPases and activation of signal transducer and activator of transcription 3 (STAT3). Altered STAT3 activity is observed in up to 50% of AML correlating with poor prognosis. Activated STAT proteins, classically associated with tyrosine phosphorylation, support tumor development as transcription factors, but alternative STAT functions independent of tyrosine phosphorylation have been documented, including roles for serine-phosphorylated STAT3 in mitochondria supporting transformation by oncogenic Ras. We examined requirements for STAT3 in experimental murine K-Ras–dependent hematopoietic neoplasia. We show that STAT3 is phosphorylated on S727 but not Y705 in diseased animals. Moreover, a mouse with a point mutation abrogating STAT3 S727 phosphorylation displayed delayed onset and decreased disease severity with significantly extended survival. Activated K-Ras required STAT3 for cytokine-independent growth of myeloid progenitors in vitro, and mitochondrially restricted STAT3 and STAT3-Y705F, both transcriptionally inert mutants, supported factor-independent growth. STAT3 was dispensable for growth of normal or K-Ras–mutant myeloid progenitors in response to cytokines. However, abrogation of STAT3-S727 phosphorylation impaired factor-independent malignant growth. These data document that serine-phosphorylated mitochondrial STAT3 supports neoplastic hematopoietic cell growth induced by K-Ras. PMID:25150294

  11. Post-translational processing of purified human K-ras in Xenopus oocytes.

    PubMed

    Kaplan, J B; Sass, P M

    1991-01-01

    Membrane localization of ras p21 involves a complex series of post-translational processing events, including S-farnesylation of Cys-186, removal of three carboxyl-terminal amino acid residues, and methylation of the carboxyl-terminal farnesylcysteine residue. Palmitoylation of cysteine residues within the hypervariable region (amino acids 165-185) is also required for membrane localization of mammalian H-, N-, and K-ras(A). For K-ras(B), which contains no cysteine residues within the hypervariable region, a polybasic domain substitutes for palmitoylation as a second signal for plasma membrane targeting. In order to investigate the localization of K-ras(B) to the plasma membrane, we purified wild-type and mutant human K-ras(B) proteins from strains of E. coli harboring bacterial expression plasmids and injected them into Xenopus laevis oocytes. Our results show that wild-type and activated K-ras(B) proteins can be post-translationally modified and can induce meiotic maturation in Xenopus oocytes. A mutation at Cys-186 (Cys to Gly) abolished the ability of activated K-ras(B) to induce meiosis. Deprivation of isoprenyl precursors by the addition of lovastatin, a drug that blocks the synthesis of mevalonate, also abolished the ability of activated K-ras(B) to induce meiosis, although this inhibition could be overcome by the addition of exogenous mevalonate. Lovastatin did not block meiotic maturation induced by microinjection of purified mos protein, a component of the cytostatic factor that arrests Xenopus oocytes at the first meiotic prophase. These results indicate that post-translational isoprenylation of K-ras(B) is essential for plasma membrane targeting and induction of meiotic maturation in Xenopus oocytes and that further isoprenyl modification of proteins downstream from mos signal transduction is not essential for this process. PMID:16296004

  12. K-RAS(V12) Induces Autocrine Production of EGFR Ligands and Mediates Radioresistance Through EGFR-Dependent Akt Signaling and Activation of DNA-PKcs

    SciTech Connect

    Minjgee, Minjmaa; Toulany, Mahmoud; Kehlbach, Rainer; Giehl, Klaudia; Rodemann, H. Peter

    2011-12-01

    Purpose: It is known that postirradiation survival of tumor cells presenting mutated K-RAS is mediated through autocrine activation of epidermal growth factor receptor (EGFR). In this study the molecular mechanism of radioresistance of cells overexpressing mutated K-RAS(V12) was investigated. Methods and Materials: Head-and-neck cancer cells (FaDu) presenting wild-type K-RAS were transfected with empty vector or vector expressing mutated K-RAS(V12). The effect of K-RAS(V12) on autocrine production of EGFR ligands, activation of EGFR downstream pathways, DNA damage repair, and postirradiation survival was analyzed. Results: Conditioned medium collected from K-RAS(V12)-transfected cells enhanced activation of the phosphatidylinositol-3-kinase-Akt pathway and increased postirradiation survival of wild-type K-RAS parental cells when compared with controls. These effects were reversed by amphiregulin (AREG)-neutralizing antibody. In addition, secretion of the EGFR ligands AREG and transforming growth factor {alpha} was significantly increased upon overexpression of K-RAS(V12). Expression of mutated K-RAS(V12) resulted in an increase in radiation-induced DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation at S2056. This increase was accompanied by increased repair of DNA double-strand breaks. Abrogation of DNA-PKcs phosphorylation by serum depletion or AREG-neutralizing antibody underscored the role of autocrine production of EGFR ligands, namely, AREG, in regulating DNA-PKcs activation in K-RAS mutated cells. Conclusions: These data indicate that radioresistance of K-RAS mutated tumor cells is at least in part due to constitutive production of EGFR ligands, which mediate enhanced repair of DNA double-strand breaks through the EGFR-phosphatidylinositol-3-kinase-Akt cascade.

  13. Specific repression of mutant K-RAS by 10-23 DNAzyme: Sensitizing cancer cell to anti-cancer therapies

    SciTech Connect

    Yu, S.-H.; Wang, T.-H.; Au, L.-C.

    2009-01-09

    Point mutations of the Ras family are frequently found in human cancers at a prevalence rate of 30%. The most common mutation K-Ras(G12V), required for tumor proliferation, survival, and metastasis due to its constitutively active GTPase activity, has provided an ideal target for cancer therapy. 10-23 DNAzyme, an oligodeoxyribonucleotide-based ribonuclease consisting of a 15-nucleotide catalytical domain flanked by two target-specific complementary arms, has been shown to effectively cleave the target mRNA at purine-pyrimidine dinucleotide. Taking advantage of this specific property, 10-23 DNAzyme was designed to cleave mRNA of K-Ras(G12V)(GGU {yields} GUU) at the GU dinucleotide while left the wild-type (WT) K-Ras mRNA intact. The K-Ras(G12V)-specific 10-23 DNAzyme was able to reduce K-Ras(G12V) at both mRNA and protein levels in SW480 cell carrying homozygous K-Ras(G12V). No effect was observed on the WT K-Ras in HEK cells. Although K-Ras(G12V)-specific DNAzymes alone did not inhibit proliferation of SW480 or HEK cells, pre-treatment of this DNAzyme sensitized the K-Ras(G12V) mutant cells to anti-cancer agents such as doxorubicin and radiation. These results offer a potential of using allele-specific 10-23 DNAzyme in combination with other cancer therapies to achieve better effectiveness on cancer treatment.

  14. Alterations in the K-ras and p53 genes in rat lung tumors

    SciTech Connect

    Belinsky, S.A.; Swafford, D.S.; Finch, G.L.; Mitchell, C.E.

    1997-06-01

    Activation of the K-ras protooncogene and inactivation of the p53 tumor suppressor gene are events common to many types of human cancers. Molecular epidemiology studies have associated mutational profiles in these genes with specific exposures. The purpose of this paper is to review investigations that have examined the role of the K-ras and p53 genes in lung tumors induced in the F344 rat by mutagenic and nonmutagenic exposures. Mutation profiles within the K-ras and p53 genes, if present in rat lung tumors, would help to define some of the molecular mechanisms underlying cancer induction by various environmental agents. Pulmonary adenocarcinomas or squamous cell carcinomas were induced by tetranitromethane (TNM), 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK), beryllium metal, plutonium-239, X-ray, diesel exhaust, or carbon black. These agents were chosen because the tumors they produced could arise via different types of DNA damage. Mutation of the K-ras gene was determined by approaches that included DNA transfection, direct sequencing, mismatch hybridization, and restriction fragment length polymorphism analysis. The frequency for mutation of the K-ras gene was exposure dependent. The transition mutations formed could have been derived from deamination of cytosine. Alteration in the p53 gene was assessed by immunohistochemical analysis for p53 protein and single-strand conformation polymorphism (SSCP) analysis of exons 4 to 9. None of the 93 adenocarinomas examined was immunoreactive toward the anti-p53 antibody CM1. In contrast, 14 of 71 squamous cell carcinomas exhibited nuclear p53 immunoreactivity with no correlation to type of exposure. However, SSCP analysis only detected mutations in 2 of 14 squamous cell tumors that were immunoreactive, suggesting that protein stabilization did not stem from mutations within the p53 gene. Thus, the p53 gene does not appear to be involved in the genesis of most rat lung tumors. 2 figs., 2 tabs., 48 refs.

  15. Mutations, expression and genomic instability of the H-ras proto-oncogene in squamous cell carcinomas of the head and neck.

    PubMed Central

    Kiaris, H.; Spandidos, D. A.; Jones, A. S.; Vaughan, E. D.; Field, J. K.

    1995-01-01

    Mutation and overexpression are the main activating mechanisms for the ras family of genes in human cancer and the variable tandem repeat (VTR) located at the 3' end of H-ras has been associated with this risk. In the present study, we have analysed the relative levels of expression of H-ras mRNA in 26 samples of squamous cell carcinomas of the head and neck (SCCHN) by competitive reverse transcription-polymerase chain reaction (competitive RT-PCR) and also investigated whether there is an association between ras expression and alterations in the 3'-VTR region. In addition, we have studied the incidence of point mutations in codon 12 of H-ras, codons 12 and 13 of K-ras and codon 61 of N-ras in 120 SCCHN samples. Our results indicate that only two samples carry mutations, both of which are located in codon 12 of K-ras, but that overexpression of the H-ras proto-oncogene is a frequent event in SCCHN [54% (14/26)] and is associated with a favourable prognosis: 3 of 14 patients with H-ras overexpression have died, whereas 9 of 12 patients with low levels of H-ras expression have died. We have also undertaken an analysis of these results together with our previous investigations on microsatellite instability and loss of heterozygosity in SCCHN, but no associations were found. We therefore conclude that ras mutations are an infrequent event in the progression of the SCCHN in the Western world, whereas overexpression of the H-ras proto-oncogene is a common event. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7599040

  16. Structural Effects of Oncogenic PI3K alpha Mutations

    SciTech Connect

    S Gabelli; C Huang; D Mandelker; O Schmidt-Kittler; B Vogelstein; L Amzel

    2011-12-31

    Physiological activation of PI3K{alpha} is brought about by the release of the inhibition by p85 when the nSH2 binds the phosphorylated tyrosine of activated receptors or their substrates. Oncogenic mutations of PI3K{alpha} result in a constitutively activated enzyme that triggers downstream pathways that increase tumor aggressiveness and survival. Structural information suggests that some mutations also activate the enzyme by releasing p85 inhibition. Other mutations work by different mechanisms. For example, the most common mutation, His1047Arg, causes a conformational change that increases membrane association resulting in greater accessibility to the substrate, an integral membrane component. These effects are examples of the subtle structural changes that result in increased activity. The structures of these and other mutants are providing the basis for the design of isozyme-specific, mutation-specific inhibitors for individualized cancer therapies.

  17. K-RasV14I recapitulates Noonan syndrome in mice

    PubMed Central

    Hernández-Porras, Isabel; Fabbiano, Salvatore; Schuhmacher, Alberto J.; Aicher, Alexandra; Cañamero, Marta; Cámara, Juan Antonio; Cussó, Lorena; Desco, Manuel; Heeschen, Christopher; Mulero, Francisca; Bustelo, Xosé R.; Guerra, Carmen; Barbacid, Mariano

    2014-01-01

    Noonan syndrome (NS) is an autosomal dominant genetic disorder characterized by short stature, craniofacial dysmorphism, and congenital heart defects. NS also is associated with a risk for developing myeloproliferative disorders (MPD), including juvenile myelomonocytic leukemia (JMML). Mutations responsible for NS occur in at least 11 different loci including KRAS. Here we describe a mouse model for NS induced by K-RasV14I, a recurrent KRAS mutation in NS patients. K-RasV14I–mutant mice displayed multiple NS-associated developmental defects such as growth delay, craniofacial dysmorphia, cardiac defects, and hematologic abnormalities including a severe form of MPD that resembles human JMML. Homozygous animals had perinatal lethality whose penetrance varied with genetic background. Exposure of pregnant mothers to a MEK inhibitor rescued perinatal lethality and prevented craniofacial dysmorphia and cardiac defects. However, Mek inhibition was not sufficient to correct these defects when mice were treated after weaning. Interestingly, Mek inhibition did not correct the neoplastic MPD characteristic of these mutant mice, regardless of the timing at which the mice were treated, thus suggesting that MPD is driven by additional signaling pathways. These genetically engineered K-RasV14I–mutant mice offer an experimental tool for studying the molecular mechanisms underlying the clinical manifestations of NS. Perhaps more importantly, they should be useful as a preclinical model to test new therapies aimed at preventing or ameliorating those deficits associated with this syndrome. PMID:25359213

  18. K-RasV14I recapitulates Noonan syndrome in mice.

    PubMed

    Hernández-Porras, Isabel; Fabbiano, Salvatore; Schuhmacher, Alberto J; Aicher, Alexandra; Cañamero, Marta; Cámara, Juan Antonio; Cussó, Lorena; Desco, Manuel; Heeschen, Christopher; Mulero, Francisca; Bustelo, Xosé R; Guerra, Carmen; Barbacid, Mariano

    2014-11-18

    Noonan syndrome (NS) is an autosomal dominant genetic disorder characterized by short stature, craniofacial dysmorphism, and congenital heart defects. NS also is associated with a risk for developing myeloproliferative disorders (MPD), including juvenile myelomonocytic leukemia (JMML). Mutations responsible for NS occur in at least 11 different loci including KRAS. Here we describe a mouse model for NS induced by K-Ras(V14I), a recurrent KRAS mutation in NS patients. K-Ras(V14I)-mutant mice displayed multiple NS-associated developmental defects such as growth delay, craniofacial dysmorphia, cardiac defects, and hematologic abnormalities including a severe form of MPD that resembles human JMML. Homozygous animals had perinatal lethality whose penetrance varied with genetic background. Exposure of pregnant mothers to a MEK inhibitor rescued perinatal lethality and prevented craniofacial dysmorphia and cardiac defects. However, Mek inhibition was not sufficient to correct these defects when mice were treated after weaning. Interestingly, Mek inhibition did not correct the neoplastic MPD characteristic of these mutant mice, regardless of the timing at which the mice were treated, thus suggesting that MPD is driven by additional signaling pathways. These genetically engineered K-Ras(V14I)-mutant mice offer an experimental tool for studying the molecular mechanisms underlying the clinical manifestations of NS. Perhaps more importantly, they should be useful as a preclinical model to test new therapies aimed at preventing or ameliorating those deficits associated with this syndrome.

  19. K-RasV14I recapitulates Noonan syndrome in mice.

    PubMed

    Hernández-Porras, Isabel; Fabbiano, Salvatore; Schuhmacher, Alberto J; Aicher, Alexandra; Cañamero, Marta; Cámara, Juan Antonio; Cussó, Lorena; Desco, Manuel; Heeschen, Christopher; Mulero, Francisca; Bustelo, Xosé R; Guerra, Carmen; Barbacid, Mariano

    2014-11-18

    Noonan syndrome (NS) is an autosomal dominant genetic disorder characterized by short stature, craniofacial dysmorphism, and congenital heart defects. NS also is associated with a risk for developing myeloproliferative disorders (MPD), including juvenile myelomonocytic leukemia (JMML). Mutations responsible for NS occur in at least 11 different loci including KRAS. Here we describe a mouse model for NS induced by K-Ras(V14I), a recurrent KRAS mutation in NS patients. K-Ras(V14I)-mutant mice displayed multiple NS-associated developmental defects such as growth delay, craniofacial dysmorphia, cardiac defects, and hematologic abnormalities including a severe form of MPD that resembles human JMML. Homozygous animals had perinatal lethality whose penetrance varied with genetic background. Exposure of pregnant mothers to a MEK inhibitor rescued perinatal lethality and prevented craniofacial dysmorphia and cardiac defects. However, Mek inhibition was not sufficient to correct these defects when mice were treated after weaning. Interestingly, Mek inhibition did not correct the neoplastic MPD characteristic of these mutant mice, regardless of the timing at which the mice were treated, thus suggesting that MPD is driven by additional signaling pathways. These genetically engineered K-Ras(V14I)-mutant mice offer an experimental tool for studying the molecular mechanisms underlying the clinical manifestations of NS. Perhaps more importantly, they should be useful as a preclinical model to test new therapies aimed at preventing or ameliorating those deficits associated with this syndrome. PMID:25359213

  20. Oncogenically active MYD88 mutations in human lymphoma

    PubMed Central

    Ngo, Vu N.; Young, Ryan M.; Schmitz, Roland; Jhavar, Sameer; Xiao, Wenming; Lim, Kian-Huat; Kohlhammer, Holger; Xu, Weihong; Yang, Yandan; Zhao, Hong; Shaffer, Arthur L.; Romesser, Paul; Wright, George; Powell, John; Rosenwald, Andreas; Muller-Hermelink, Hans Konrad; Ott, German; Gascoyne, Randy D.; Connors, Joseph M.; Rimsza, Lisa M.; Campo, Elias; Jaffe, Elaine S.; Delabie, Jan; Smeland, Erlend B.; Fisher, Richard I.; Braziel, Rita M.; Tubbs, Raymond R.; Cook, J. R.; Weisenburger, Denny D.; Chan, Wing C.; Staudt, Louis M.

    2016-01-01

    The activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) remains the least curable form of this malignancy despite recent advances in therapy1. Constitutive nuclear factor (NF)-κB and JAK kinase signalling promotes malignant cell survival in these lymphomas, but the genetic basis for this signalling is incompletely understood. Here we describe the dependence of ABC DLBCLs on MYD88, an adaptor protein that mediates toll and interleukin (IL)-1 receptor signalling2,3, and the discovery of highly recurrent oncogenic mutations affecting MYD88 in ABC DLBCL tumours. RNA interference screening revealed that MYD88 and the associated kinases IRAK1 and IRAK4 are essential for ABC DLBCL survival. High-throughput RNA resequencing uncovered MYD88 mutations in ABC DLBCL lines. Notably, 29% of ABC DLBCL tumours harboured the same amino acid substitution, L265P, in the MYD88 Toll/IL-1 receptor (TIR) domain at an evolutionarily invariant residue in its hydrophobic core. This mutation was rare or absent in other DLBCL subtypes and Burkitt’s lymphoma, but was observed in 9% of mucosa-associated lymphoid tissue lymphomas. At a lower frequency, additional mutations were observed in the MYD88 TIR domain, occurring in both the ABC and germinal centre B-cell-like (GCB) DLBCL subtypes. Survival of ABC DLBCL cells bearing the L265P mutation was sustained by the mutant but not the wild-type MYD88 isoform, demonstrating that L265P is a gain-of-function driver mutation. The L265P mutant promoted cell survival by spontaneously assembling a protein complex containing IRAK1 and IRAK4, leading to IRAK4 kinase activity, IRAK1 phosphorylation, NF-κB signalling, JAK kinase activation of STAT3, and secretion of IL-6, IL-10 and interferon-β. Hence, theMYD88 signalling pathway is integral to the pathogenesis of ABC DLBCL, supporting the development of inhibitors of IRAK4 kinase and other components of this pathway for the treatment of tumours bearing oncogenic MYD88 mutations

  1. Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas.

    PubMed

    Paugh, Barbara S; Zhu, Xiaoyan; Qu, Chunxu; Endersby, Raelene; Diaz, Alexander K; Zhang, Junyuan; Bax, Dorine A; Carvalho, Diana; Reis, Rui M; Onar-Thomas, Arzu; Broniscer, Alberto; Wetmore, Cynthia; Zhang, Jinghui; Jones, Chris; Ellison, David W; Baker, Suzanne J

    2013-10-15

    The outcome for children with high-grade gliomas (HGG) remains dismal, with a 2-year survival rate of only 10% to 30%. Diffuse intrinsic pontine glioma (DIPG) comprise a subset of HGG that arise in the brainstem almost exclusively in children. Genome-wide analyses of copy number imbalances previously showed that platelet-derived growth factor receptor α (PDGFRA) is the most frequent target of focal amplification in pediatric HGGs, including DIPGs. To determine whether PDGFRA is also targeted by more subtle mutations missed by copy number analysis, we sequenced all PDGFRA coding exons from a cohort of pediatric HGGs. Somatic-activating mutations were identified in 14.4% (13 of 90) of nonbrainstem pediatric HGGs and 4.7% (2 of 43) of DIPGs, including missense mutations and in-frame deletions and insertions not previously described. Forty percent of tumors with mutation showed concurrent amplification, whereas 60% carried heterozygous mutations. Six different mutations impacting different domains all resulted in ligand-independent receptor activation that was blocked by small molecule inhibitors of PDGFR. Expression of mutants in p53-null primary mouse astrocytes conferred a proliferative advantage in vitro and generated HGGs in vivo with complete penetrance when implanted into brain. The gene expression signatures of these murine HGGs reflected the spectrum of human diffuse HGGs. PDGFRA intragenic deletion of exons 8 and 9 were previously shown in adult HGG, but were not detected in 83 nonbrainstem pediatric HGG and 57 DIPGs. Thus, a distinct spectrum of mutations confers constitutive receptor activation and oncogenic activity to PDGFRα in childhood HGG. PMID:23970477

  2. Oncogenes

    SciTech Connect

    Compans, R.W.; Cooper, M.; Koprowski, H.; McConell, I.; Melchers, F.; Nussenzweig, V.; Oldstone, M.; Olsnes, S.; Saedler, H.; Vogt, P.K.

    1989-01-01

    This book covers the following topics: Roles of drosophila proto-oncogenes and growth factor homologs during development of the fly; Interaction of oncogenes with differentiation programs; Genetics of src: structure and functional organization of a protein tyrosine kinase; Structures and activities of activated abl oncogenes; Eukaryotic RAS proteins and yeast proteins with which they interact. This book presents up-to-data review articles on oncogenes. The editor includes five contributions which critically evaluate recent research in the field.

  3. Targeting Bcl-2 stability to sensitize cells harboring oncogenic ras.

    PubMed

    Peng, Bo; Ganapathy, Suthakar; Shen, Ling; Huang, Junchi; Yi, Bo; Zhou, Xiaodong; Dai, Wei; Chen, Changyan

    2015-09-01

    The pro-survival factor Bcl-2 and its family members are critical determinants of the threshold of the susceptibility of cells to apoptosis. Studies are shown that cells harboring an oncogenic ras were extremely sensitive to the inhibition of protein kinase C (PKC) and Bcl-2 could antagonize this apoptotic process. However, it remains unrevealed how Bcl-2 is being regulated in this apoptotic process. In this study, we investigate the role of Bcl-2 stability in sensitizing the cells harboring oncogenic K-ras to apoptosis triggered by PKC inhibitor GO6976. We demonstrated that Bcl-2 in Swiss3T3 cells ectopically expressing or murine lung cancer LKR cells harboring K-ras rapidly underwent ubiquitin-dependent proteasome pathway after the treatment of GO6976, accompanied with induction of apoptosis. In this process, Bcl-2 formed the complex with Keap-1 and Cul3. The mutation of serine-17 and deletion of BH-2 or 4 was required for Bcl-2 ubiquitination and degradation, which elevate the signal threshold for the induction of apoptosis in the cells following PKC inhibition. Thus, Bcl-2 appears an attractive target for the induction of apoptosis by PKC inhibition in cancer cells expressing oncogenic K-ras. PMID:26041886

  4. miR-181a shows tumor suppressive effect against oral squamous cell carcinoma cells by downregulating K-ras

    SciTech Connect

    Shin, Ki-Hyuk; Bae, Susan D.; Hong, Hannah S.; Kim, Reuben H.; Kang, Mo K.; Park, No-Hee

    2011-01-28

    Research highlights: {yields} MicroRNA-181a (miR-181a) was frequently downregulated in oral squamous cell carcinoma (OSCC). {yields} Overexpression of miR-181a suppressed OSCC growth. {yields} K-ras is a novel target of miR-181a. {yields} Decreased miR-181a expression is attributed to its lower promoter activity in OSCC. -- Abstract: MicroRNAs (miRNAs) are epigenetic regulators of gene expression, and their deregulation plays an important role in human cancer, including oral squamous cell carcinoma (OSCC). Recently, we found that miRNA-181a (miR-181a) was upregulated during replicative senescence of normal human oral keratinocytes. Since senescence is considered as a tumor suppressive mechanism, we thus investigated the expression and biological role of miR-181a in OSCC. We found that miR-181a was frequently downregulated in OSCC. Ectopic expression of miR-181a suppressed proliferation and anchorage independent growth ability of OSCC. Moreover, miR-181a dramatically reduces the growth of OSCC on three dimensional organotypic raft culture. We also identified K-ras as a novel target of miR-181a. miR-181a decreased K-ras protein level as well as the luciferase activity of reporter vectors containing the 3'-untranslated region of K-ras gene. Finally, we defined a minimal regulatory region of miR-181a and found a positive correlation between its promoter activity and the level of miR-181a expression. In conclusion, miR-181a may function as an OSCC suppressor by targeting on K-ras oncogene. Thus, miR-181a should be considered for therapeutic application for OSCC.

  5. KLF4 regulates adult lung tumor-initiating cells and represses K-Ras-mediated lung cancer.

    PubMed

    Yu, T; Chen, X; Zhang, W; Liu, J; Avdiushko, R; Napier, D L; Liu, A X; Neltner, J M; Wang, C; Cohen, D; Liu, C

    2016-02-01

    Lung cancer is the leading cause of cancer-related mortality in both men and women worldwide. To identify novel factors that contribute to lung cancer pathogenesis, we analyzed a lung cancer database from The Cancer Genome Atlas and found that Krüppel-like Factor 4 (KLF4) expression is significantly lower in patients' lung cancer tissue than in normal lung tissue. In addition, we identified seven missense mutations in the KLF4 gene. KLF4 is a transcription factor that regulates cell proliferation and differentiation as well as the self-renewal of stem cells. To understand the role of KLF4 in the lung, we generated a tamoxifen-induced Klf4 knockout mouse model. We found that KLF4 inhibits lung cancer cell growth and that depletion of Klf4 altered the differentiation pattern in the developing lung. To understand how KLF4 functions during lung tumorigenesis, we generated the K-ras(LSL-G12D/+);Klf4(fl/fl) mouse model, and we used adenovirus-expressed Cre to induce K-ras activation and Klf4 depletion in the lung. Although Klf4 deletion alone or K-ras mutation alone can trigger lung tumor formation, Klf4 deletion combined with K-ras mutation significantly enhanced lung tumor formation. We also found that Klf4 deletion in conjunction with K-ras activation caused lung inflammation. To understand the mechanism whereby KLF4 is regulated during lung tumorigenesis, we analyzed KLF4 promoter methylation and the profiles of epigenetic factors. We found that Class I histone deacetylases (HDACs) are overexpressed in lung cancer and that HDAC inhibitors induced expression of KLF4 and inhibited proliferation of lung cancer cells, suggesting that KLF4 is probably repressed by histone acetylation and that HDACs are valuable drug targets for lung cancer treatment.

  6. K-ras activation occurs frequently in mucinous adenocarcinomas and rarely in other common epithelial tumors of the human ovary.

    PubMed Central

    Enomoto, T.; Weghorst, C. M.; Inoue, M.; Tanizawa, O.; Rice, J. M.

    1991-01-01

    To explore the role of mutational activation of members of the ras family of cellular protooncogenes in the development of human ovarian neoplasms, a series of 37 ovarian tumors from Japanese patients was studied. These included 30 common epithelial tumors (1 mucinous tumor of borderline malignancy, 7 mucinous adenocarcinomas, and 22 nonmucinous carcinomas: 10 serous, 3 clear cell, 8 endometrioid, and 1 undifferentiated), 5 tumors of germ cell origin, and 2 sex cord/stromal cell tumors. Polymerase chain reaction was performed from selected areas of deparaffinized sections of formalin-fixed paraffin-embedded tissue, and the presence of activating point mutations in codons 12, 13, and 61 of the H-, N-, and K-ras genes was probed by dot-blot hybridization analysis with mutation specific oligonucleotides. Mutations in K-ras were also looked for by direct genomic sequencing. The overall frequency of ras gene mutations was 10/37 (27%). Mutations were detected only in K-ras, and were found in most of the mucinous tumors, including the one such tumor of borderline malignancy (6/8; 75%). In one mucinous adenocarcinoma, two mutations were detected in paraffin-embedded material that had not previously been found in high molecular weight DNA isolated from frozen tissue from the same case. K-ras mutations occurred significantly more frequently in mucinous tumors (6/8, 75%) than in serous carcinomas (2/10, 20%; P = 0.031) or in all nonmucinous types of epithelial ovarian tumors combined (3/22, 14%; P = 0.0031). Images Figure 1 Figure 2 PMID:1656759

  7. Deletion of Pim Kinases Elevates the Cellular Levels of Reactive Oxygen Species and Sensitizes to K-Ras-Induced Cell Killing

    PubMed Central

    Song, Jin H.; An, Ningfei; Chatterjee, Shilpak; Kistner-Griffin, Emily; Mahajan, Sandeep; Mehrotra, Shikhar; Kraft, Andrew S.

    2014-01-01

    The Pim protein kinases contribute to transformation by enhancing the activity of oncogenic Myc and Ras, which drives significant metabolic changes during tumorigenesis. In this report, we demonstrate that mouse embryo fibroblasts (MEFs) lacking all three isoforms of Pim protein kinases, triple knockout (TKO), cannot tolerate the expression of activated K-Ras (K-RasG12V) and undergo cell death. Transduction of K-RasG12V into these cells markedly increased the level of cellular reactive oxygen species (ROS). The addition of N-acetyl cysteine attenuates ROS production and reversed the cytotoxic effects of K-RasG12V in the TKO MEFs. The altered cellular redox state caused by the loss of Pim occurred as a result of lower levels of metabolic intermediates in the glycolytic and pentose phosphate pathways as well as abnormal mitochondrial oxidative phosphorylation. TKO MEFs exhibit reduced levels of superoxide dismutase (Sod), glutathione peroxidase 4 (Gpx4) and peroxiredoxin 3 (Prdx3) that render them susceptible to killing by K-RasG12V-mediated ROS production. In contrast, the transduction of c-Myc into TKO cells can overcome the lack of Pim protein kinases by regulating cellular metabolism and Sod2. In the absence of the Pim kinases, c-Myc transduction permitted K-RasG12V-induced cell growth by decreasing Ras-induced cellular ROS levels. These results demonstrate that the Pim protein kinases play an important role in regulating cellular redox, metabolism and K-Ras-stimulated cell growth. PMID:25241892

  8. Spliceosome mutations exhibit specific associations with epigenetic modifiers and proto-oncogenes mutated in myelodysplastic syndrome.

    PubMed

    Mian, Syed A; Smith, Alexander E; Kulasekararaj, Austin G; Kizilors, Aytug; Mohamedali, Azim M; Lea, Nicholas C; Mitsopoulos, Konstantinos; Ford, Kevin; Nasser, Erick; Seidl, Thomas; Mufti, Ghulam J

    2013-07-01

    evolution with emerging oncogenic mutations adversely affecting patients' outcome, implicating spliceosome mutations as founder mutations in myelodysplastic syndromes.

  9. Early recognition of lung cancer by integrin targeted imaging in K-ras mouse model.

    PubMed

    Ermolayev, Vladimir; Mohajerani, Pouyan; Ale, Angelique; Sarantopoulos, Athanasios; Aichler, Michaela; Kayser, Gian; Walch, Axel; Ntziachristos, Vasilis

    2015-09-01

    Non-small cell lung cancer is characterized by slow progression and high heterogeneity of tumors. Integrins play an important role in lung cancer development and metastasis and were suggested as a tumor marker; however their role in anticancer therapy remains controversial. In this work, we demonstrate the potential of integrin-targeted imaging to recognize early lesions in transgenic mouse model of lung cancer based on spontaneous introduction of mutated human gene bearing K-ras mutation. We conducted ex vivo and fluorescence molecular tomography-X-ray computed tomography (FMT-XCT) in vivo imaging and analysis for specific targeting of early lung lesions and tumors in rodent preclinical model for lung cancer. The lesions and tumors were characterized by histology, immunofluorescence and immunohistochemistry using a panel of cancer markers. Ex vivo, the integrin-targeted fluorescent signal significantly differed between wild type lung tissue and K-ras pulmonary lesions (PL) at all ages studied. The panel of immunofluorescence experiments demonstrated that PL, which only partially show cancer cell features were detected by αvβ3-integrin targeted imaging. Human patient material analysis confirmed the specificity of target localization in different lung cancer types. Most importantly, small tumors in the lungs of 4-week-old animals could be noninvasively detected in vivo on the fluorescence channel of FMT-XCT. Our findings demonstrated αvβ3-integrin targeted fluorescent imaging to specifically detect premalignant pleural lesions in K-ras mice. Integrin targeted imaging may find application areas in preclinical research and clinical practice, such as early lung cancer diagnostics, intraoperative assistance or therapy monitoring.

  10. Common Oncogenic Mutations Are Infrequent in Oral Squamous Cell Carcinoma of Asian Origin

    PubMed Central

    Zanaruddin, Sharifah Nurain Syed; Yee, Pei San; Hor, Seen Yii; Kong, Yink Heay; Ghani, Wan Maria Nabillah Wan Abd; Mustafa, Wan Mahadzir Wan; Zain, Rosnah Binti; Prime, Stephen S.; Rahman, Zainal Ariff Abd; Cheong, Sok-Ching

    2013-01-01

    Objectives The frequency of common oncogenic mutations and TP53 was determined in Asian oral squamous cell carcinoma (OSCC). Materials and Methods The OncoCarta™ panel v1.0 assay was used to characterize oncogenic mutations. In addition, exons 4-11 of the TP53 gene were sequenced. Statistical analyses were conducted to identify associations between mutations and selected clinico-pathological characteristics and risk habits. Results Oncogenic mutations were detected in PIK3CA (5.7%) and HRAS (2.4%). Mutations in TP53 were observed in 27.7% (31/112) of the OSCC specimens. Oncogenic mutations were found more frequently in non-smokers (p = 0.049) and TP53 truncating mutations were more common in patients with no risk habits (p = 0.019). Patients with mutations had worse overall survival compared to those with absence of mutations; and patients who harbored DNA binding domain (DBD) and L2/L3/LSH mutations showed a worse survival probability compared to those patients with wild type TP53. The majority of the oncogenic and TP53 mutations were G:C > A:T and A:T > G:C base transitions, regardless of the different risk habits. Conclusion Hotspot oncogenic mutations which are frequently present in common solid tumors are exceedingly rare in OSCC. Despite differences in risk habit exposure, the mutation frequency of PIK3CA and HRAS in Asian OSCC were similar to that reported in OSCC among Caucasians, whereas TP53 mutations rates were significantly lower. The lack of actionable hotspot mutations argue strongly for the need to comprehensively characterize gene mutations associated with OSCC for the development of new diagnostic and therapeutic tools. PMID:24224046

  11. Multiple oncogenic mutations and clonal relationship in spatially distinct benign human epidermal tumors

    PubMed Central

    Hafner, Christian; Toll, Agustí; Fernández-Casado, Alejandro; Earl, Julie; Marqués, Miriam; Acquadro, Francesco; Méndez-Pertuz, Marinela; Urioste, Miguel; Malats, Núria; Burns, Julie E.; Knowles, Margaret A.; Cigudosa, Juan C.; Hartmann, Arndt; Vogt, Thomas; Landthaler, Michael; Pujol, Ramón M.; Real, Francisco X.

    2010-01-01

    Malignant tumors result from the accumulation of genetic alterations in oncogenes and tumor suppressor genes. Much less is known about the genetic changes in benign tumors. Seborrheic keratoses (SK) are very frequent benign human epidermal tumors without malignant potential. We performed a comprehensive mutational screen of genes in the FGFR3-RAS-MAPK and phosphoinositide 3-kinase (PI3K)-AKT pathways from 175 SK, including multiple lesions from each patient. SK commonly harbored multiple bona fide oncogenic mutations in FGFR3, PIK3CA, KRAS, HRAS, EGFR, and AKT1 oncogenes but not in tumor suppressor genes TSC1 and PTEN. Despite the occurrence of oncogenic mutations and the evidence for downstream ERK/MAPK and PI3K pathway signaling, we did not find induction of senescence or a DNA damage response. Array comparative genomic hybridization (aCGH) analysis revealed that SK are genetically stable. The pattern of oncogenic mutations and X chromosome inactivation departs significantly from randomness and indicates that spatially independent lesions from a given patient share a clonal relationship. Our findings show that multiple oncogenic mutations in the major signaling pathways involved in cancer are not sufficient to drive malignant tumor progression. Furthermore, our data provide clues on the origin and spread of oncogenic mutations in tissues, suggesting that apparently independent (multicentric) adult benign tumors may have a clonal origin. PMID:21078999

  12. Inhibition of Acid Sphingomyelinase Depletes Cellular Phosphatidylserine and Mislocalizes K-Ras from the Plasma Membrane.

    PubMed

    Cho, Kwang-Jin; van der Hoeven, Dharini; Zhou, Yong; Maekawa, Masashi; Ma, Xiaoping; Chen, Wei; Fairn, Gregory D; Hancock, John F

    2015-01-01

    K-Ras must localize to the plasma membrane for biological activity; thus, preventing plasma membrane interaction blocks K-Ras signal output. Here we show that inhibition of acid sphingomyelinase (ASM) mislocalizes both the K-Ras isoforms K-Ras4A and K-Ras4B from the plasma membrane to the endomembrane and inhibits their nanoclustering. We found that fendiline, a potent ASM inhibitor, reduces the phosphatidylserine (PtdSer) and cholesterol content of the inner plasma membrane. These lipid changes are causative because supplementation of fendiline-treated cells with exogenous PtdSer rapidly restores K-Ras4A and K-Ras4B plasma membrane binding, nanoclustering, and signal output. Conversely, supplementation with exogenous cholesterol restores K-Ras4A but not K-Ras4B nanoclustering. These experiments reveal different operational pools of PtdSer on the plasma membrane. Inhibition of ASM elevates cellular sphingomyelin and reduces cellular ceramide levels. Concordantly, delivery of recombinant ASM or exogenous ceramide to fendiline-treated cells rapidly relocalizes K-Ras4B and PtdSer to the plasma membrane. K-Ras4B mislocalization is also recapitulated in ASM-deficient Neimann-Pick type A and B fibroblasts. This study identifies sphingomyelin metabolism as an indirect regulator of K-Ras4A and K-Ras4B signaling through the control of PtdSer plasma membrane content. It also demonstrates the critical and selective importance of PtdSer to K-Ras4A and K-Ras4B plasma membrane binding and nanoscale spatial organization. PMID:26572827

  13. Conditional expression of K-ras in an epithelial compartment that includes the stem cells is sufficient to promote squamous cell carcinogenesis.

    PubMed

    Vitale-Cross, Lynn; Amornphimoltham, Panomwat; Fisher, Galen; Molinolo, Alfredo A; Gutkind, J Silvio

    2004-12-15

    Ras genes are the most frequently mutated oncogenes in human cancer. However, the contribution of ras to tumor initiation still is unclear because ras expression in primary cells can cause cell cycle arrest and even cell death by apoptosis. Furthermore, when expressed in the epidermis of mice, mutant ras promotes the formation of benign papillomas, only few of which will progress into carcinomas. However, in these cases, ras-transgene expression often is restricted to suprabasal or follicular epithelial cells that may lack self-renewal capacity. Thus, it still is conceivable that expression of active ras in other epithelial compartments may exert a distinct ability to promote malignant progression. To address this possibility, transgenic mice carrying the tetracycline-inducible system (tet-on receptor) targeted to the basal layer of stratified epithelium, which includes the epithelial stem cells, were engineered and crossed with mice expressing the K-ras(G12D) oncogene under the control of tet-regulated responsive elements. On doxycycline administration, proliferative lesions ranging from hyperplasias, papillomas, and dysplasias to metastatic carcinomas developed in squamous epithelia of the skin, oral mucosa, salivary glands, tongue, esophagus, forestomach, and uterine cervix within just 10 to 20 days. The most noticeable lesions were invasive squamous carcinomas of the skin and oral mucosa. These findings suggest that the expression of oncogenes in an epithelial compartment that includes the stem cells may be sufficient to promote squamous carcinogenesis. They also provide a molecularly defined conditional animal model system in which the mechanisms responsible for cancer initiation, maintenance, and metastatic spread can be readily investigated.

  14. Carcinogen-specific mutations in preferred Ras-Raf pathway oncogenes directed by strand bias.

    PubMed

    Keller, Ross R; Gestl, Shelley A; Lu, Amy Q; Hoke, Alicia; Feith, David J; Gunther, Edward J

    2016-08-01

    Carcinogen exposures inscribe mutation patterns on cancer genomes and sometimes bias the acquisition of driver mutations toward preferred oncogenes, potentially dictating sensitivity to targeted agents. Whether and how carcinogen-specific mutation patterns direct activation of preferred oncogenes remains poorly understood. Here, mouse models of breast cancer were exploited to uncover a mechanistic link between strand-biased mutagenesis and oncogene preference. When chemical carcinogens were employed during Wnt1-initiated mammary tumorigenesis, exposure to either 7,12-dimethylbenz(a)anthracene (DMBA) or N-ethyl-N-nitrosourea (ENU) dramatically accelerated tumor onset. Mammary tumors that followed DMBA exposure nearly always activated the Ras pathway via somatic Hras(CAA61CTA) mutations. Surprisingly, mammary tumors that followed ENU exposure typically lacked Hras mutations, and instead activated the Ras pathway downstream via Braf(GTG636GAG) mutations. Hras(CAA61CTA) mutations involve an A-to-T change on the sense strand, whereas Braf(GTG636GAG) mutations involve an inverse T-to-A change, suggesting that strand-biased mutagenesis may determine oncogene preference. To examine this possibility further, we turned to an alternative Wnt-driven tumor model in which carcinogen exposures augment a latent mammary tumor predisposition in Apc(min) mice. DMBA and ENU each accelerated mammary tumor onset in Apc(min) mice by introducing somatic, "second-hit" Apc mutations. Consistent with our strand bias model, DMBA and ENU generated strikingly distinct Apc mutation patterns, including stringently strand-inverse mutation signatures at A:T sites. Crucially, these contrasting signatures precisely match those proposed to confer bias toward Hras(CAA61CTA) versus Braf(GTG636GAG) mutations in the original tumor sets. Our findings highlight a novel mechanism whereby exposure history acts through strand-biased mutagenesis to specify activation of preferred oncogenes. PMID:27207659

  15. Nucleophosmin and Nucleolin Regulate K-Ras Plasma Membrane Interactions and MAPK Signal Transduction*

    PubMed Central

    Inder, Kerry L.; Lau, Chiyan; Loo, Dorothy; Chaudhary, Natasha; Goodall, Andrew; Martin, Sally; Jones, Alun; van der Hoeven, Dharini; Parton, Robert G.; Hill, Michelle M.; Hancock, John F.

    2009-01-01

    The spatial organization of Ras proteins into nanoclusters on the inner leaflet of the plasma membrane is essential for high fidelity signaling through the MAPK pathway. Here we identify two selective regulators of K-Ras nanoclustering from a proteomic screen for K-Ras interacting proteins. Nucleophosmin (NPM) and nucleolin are predominantly localized to the nucleolus but also have extranuclear functions. We show that a subset of NPM and nucleolin localizes to the inner leaflet of plasma membrane and forms specific complexes with K-Ras but not other Ras isoforms. Active GTP-loaded and inactive GDP-loaded K-Ras both interact with NPM, although NPM-K-Ras binding is increased by growth factor receptor activation. NPM and nucleolin both stabilize K-Ras levels on the plasma membrane, but NPM concurrently increases the clustered fraction of GTP-K-Ras. The increase in nanoclustered GTP-K-Ras in turn enhances signal gain in the MAPK pathway. In summary these results reveal novel extranucleolar functions for NPM and nucleolin as regulators of K-Ras nanocluster formation and activation of the MAPK pathway. The study also identifies a new class of K-Ras nanocluster regulator that operates independently of the structural scaffold galectin-3. PMID:19661056

  16. 4-Hydroxytamoxifen induces autophagic death through K-Ras degradation.

    PubMed

    Kohli, Latika; Kaza, Niroop; Coric, Tatjana; Byer, Stephanie J; Brossier, Nicole M; Klocke, Barbara J; Bjornsti, Mary-Ann; Carroll, Steven L; Roth, Kevin A

    2013-07-15

    Tamoxifen is widely used to treat estrogen receptor-positive breast cancer. Recent findings that tamoxifen and its derivative 4-hydroxytamoxifen (OHT) can exert estrogen receptor-independent cytotoxic effects have prompted the initiation of clinical trials to evaluate its use in estrogen receptor-negative malignancies. For example, tamoxifen and OHT exert cytotoxic effects in malignant peripheral nerve sheath tumors (MPNST) where estrogen is not involved. In this study, we gained insights into the estrogen receptor-independent cytotoxic effects of OHT by studying how it kills MPNST cells. Although caspases were activated following OHT treatment, caspase inhibition provided no protection from OHT-induced death. Rather, OHT-induced death in MPNST cells was associated with autophagic induction and attenuated by genetic inhibition of autophagic vacuole formation. Mechanistic investigations revealed that OHT stimulated autophagic degradation of K-Ras, which is critical for survival of MPNST cells. Similarly, we found that OHT induced K-Ras degradation in breast, colon, glioma, and pancreatic cancer cells. Our findings describe a novel mechanism of autophagic death triggered by OHT in tumor cells that may be more broadly useful clinically in cancer treatment.

  17. Targeting the K-Ras/PDEδ protein-protein interaction: the solution for Ras-driven cancers or just another therapeutic mirage?

    PubMed

    Frett, Brendan; Wang, Yuanxiang; Li, Hong-Yu

    2013-10-01

    The holy grail, finally? After years of unsuccessful attempts at drugging the Ras oncogene, a recent paper by Zimmerman et al. has revealed the possibility of inhibiting Ras signaling on a clinically relevant level by blocking the K-Ras/PDEδ protein-protein interaction. The results, reported in Nature, are highlighted herein with future implications and directions to evaluate the full clinical potential of this research. PMID:23939923

  18. Carbon metabolism and the sign of control coefficients in metabolic adaptations underlying K-ras transformation.

    PubMed

    de Atauri, Pedro; Benito, Adrian; Vizán, Pedro; Zanuy, Miriam; Mangues, Ramón; Marín, Silvia; Cascante, Marta

    2011-06-01

    Metabolic adaptations are associated with changes in enzyme activities. These adaptations are characterized by patterns of positive and negative changes in metabolic fluxes and concentrations of intermediate metabolites. Knowledge of the mechanism and parameters governing enzyme kinetics is rarely available. However, the signs-increases or decreases-of many of these changes can be predicted using the signs of metabolic control coefficients. These signs require the only knowledge of the structure of the metabolic network and a limited qualitative knowledge of the regulatory dependences, which is widely available for carbon metabolism. Here, as a case study, we identified control coefficients with fixed signs in order to predict the pattern of changes in key enzyme activities which can explain the observed changes in fluxes and concentrations underlying the metabolic adaptations in oncogenic K-ras transformation in NIH-3T3 cells. The fixed signs of control coefficients indicate that metabolic changes following the oncogenic transformation-increased glycolysis and oxidative branch of the pentose-phosphate pathway, and decreased concentration in sugar-phosphates-could be associated with increases in activity for glucose-6-phosphate dehydrogenase, pyruvate kinase and lactate dehydrogenase, and decrease for transketolase. These predictions were validated experimentally by measuring specific activities. We conclude that predictions based on fixed signs of control coefficients are a very robust tool for the identification of changes in enzyme activities that can explain observed metabolic adaptations in carbon metabolism.

  19. HER2 missense mutations have distinct effects on oncogenic signaling and migration

    PubMed Central

    Zabransky, Daniel J.; Yankaskas, Christopher L.; Cochran, Rory L.; Wong, Hong Yuen; Croessmann, Sarah; Chu, David; Kavuri, Shyam M.; Red Brewer, Monica; Rosen, D. Marc; Dalton, W. Brian; Cimino-Mathews, Ashley; Cravero, Karen; Button, Berry; Kyker-Snowman, Kelly; Cidado, Justin; Erlanger, Bracha; Parsons, Heather A.; Manto, Kristen M.; Bose, Ron; Lauring, Josh; Arteaga, Carlos L.; Konstantopoulos, Konstantinos; Park, Ben Ho

    2015-01-01

    Recurrent human epidermal growth factor receptor 2 (HER2) missense mutations have been reported in human cancers. These mutations occur primarily in the absence of HER2 gene amplification such that most HER2-mutant tumors are classified as “negative” by FISH or immunohistochemistry assays. It remains unclear whether nonamplified HER2 missense mutations are oncogenic and whether they are targets for HER2-directed therapies that are currently approved for the treatment of HER2 gene-amplified breast cancers. Here we functionally characterize HER2 kinase and extracellular domain mutations through gene editing of the endogenous loci in HER2 nonamplified human breast epithelial cells. In in vitro and in vivo assays, the majority of HER2 missense mutations do not impart detectable oncogenic changes. However, the HER2 V777L mutation increased biochemical pathway activation and, in the context of a PIK3CA mutation, enhanced migratory features in vitro. However, the V777L mutation did not alter in vivo tumorigenicity or sensitivity to HER2-directed therapies in proliferation assays. Our results suggest the oncogenicity and potential targeting of HER2 missense mutations should be considered in the context of cooperating genetic alterations and provide previously unidentified insights into functional analysis of HER2 mutations and strategies to target them. PMID:26508629

  20. Identification of Oncogenic Mutations and Gene Fusions in the Follicular Variant of Papillary Thyroid Carcinoma

    PubMed Central

    Dias-Santagata, Dora; Sadow, Peter M.; Lynch, Kerry D.; Lubitz, Carrie; Donovan, Samuel E.; Zheng, Zongli; Le, Long; Iafrate, A. J.; Daniels, Gilbert H.

    2014-01-01

    Background: The diagnosis of the follicular variant of papillary thyroid carcinoma (FVPTC) is increasingly common. Recent studies have suggested that FVPTC is heterogeneous and comprises multiple tumor types with distinct biological behaviors and underlying genetics. Objectives: The purpose of this work was to identify the prevalence of mutations and gene fusions in known oncogenes in a panel representative of the common spectrum of FVPTC diagnosed at an academic medical center and correlate the clinical and pathological features obtained at the initial diagnosis with the tumor genotype. Materials and Methods: We performed SNaPshot genotyping on a panel of 129 FVPTCs of ≥1 cm for 90 point mutations or small deletions in known oncogenes and tumor suppressors and identified gene fusions using an anchored multiplex PCR assay targeting a panel of rearranged oncogenes. Results: We identified a mutation or gene fusion in 70% (89 of 127) of cases. Mutations targeting the RAS family of oncogenes were the most frequently observed class of alterations, present in 36% (46 of 127) of cases, followed by BRAF mutation, present in 30% (38 of 127). We also detected oncogenic rearrangements not previously associated with FVPTC, including TFG-ALK and CREB3L2-PPARγ. BRAF mutation was significantly associated with unencapsulated tumor status. Conclusions: These data support the hypothesis that FVPTC is composed of distinct biological entities, with one class being identified by BRAF mutation and support the use of clinical genotyping assays that detect a diverse array of rearrangements involving ALK and PPARγ. Additional studies are necessary to identify genetic drivers in the 30% of FVPTCs with no known oncogenic alteration and to better predict behavior in tumors with known genotypes. PMID:25148236

  1. Interaction of a novel fluorescent GTP analogue with the small G-protein K-Ras.

    PubMed

    Iwata, Seigo; Masuhara, Kaori; Umeki, Nobuhisa; Sako, Yasushi; Maruta, Shinsaku

    2016-01-01

    A novel fluorescent guanosine 5'-triphosphate (GTP) analogue, 2'(3')-O-{6-(N-(7-nitrobenz-2-oxa-l,3-diazol-4-yl)amino) hexanoic}-GTP (NBD-GTP), was synthesized and utilized to monitor the effect of mutations in the functional region of mouse K-Ras. The effects of the G12S, A59T and G12S/A59T mutations on GTPase activity, nucleotide exchange rates were compared with normal Ras. Mutation at A59T resulted in reduction of the GTPase activity by 0.6-fold and enhancement of the nucleotide exchange rate by 2-fold compared with normal Ras. On the other hand, mutation at G12S only slightly affected the nucleotide exchange rate and did not affect the GTPase activity. We also used NBD-GTP to study the effect of these mutations on the interaction between Ras and SOS1, a guanine nucleotide exchange factor. The mutation at A59T abolished the interaction with SOS1. The results suggest that the fluorescent GTP analogue, NBD-GTP, is applicable to the kinetic studies for small G-proteins.

  2. K-Ras and cyclooxygenase-2 coactivation augments intraductal papillary mucinous neoplasm and Notch1 mimicking human pancreas lesions

    PubMed Central

    Chiblak, Sara; Steinbauer, Brigitte; Pohl-Arnold, Andrea; Kucher, Dagmar; Abdollahi, Amir; Schwager, Christian; Höft, Birgit; Esposito, Irene; Müller-Decker, Karin

    2016-01-01

    Mutational activation of K-Ras is an initiating event of pancreatic ductal adenocarcinomas (PDAC) that may develop either from pancreatic intraepithelial neoplasia (PanIN) or intraductal papillary mucinous neoplasms (IPMN). Cyclooxygenase-2 (COX-2)-derived prostaglandin E2 (PGE2) is causally related to pancreatic carcinogenesis. Here, we deciphered the impact of COX-2, a key modulator of inflammation, in concert with active mutant K-RasG12D on tumor burden and gene expression signature using compound mutant mouse lines. Concomitant activation of COX-2 and K-RasG12D accelerated the progression of pancreatic intraepithelial lesions predominantly with a cystic papillary phenotype resembling human IPMN. Transcriptomes derived from laser capture microdissected preneoplastic lesions of single and compound mutants revealed a signature that was significantly enriched in Notch1 signaling components. In vitro, Notch1 signaling was COX-2-dependent. In line with these findings, human IPMN stratified into intestinal, gastric and pancreatobillary types displayed Notch1 immunosignals with high prevalence, especially in the gastric lesions. In conclusion, a yet unknown link between activated Ras, protumorigenic COX-2 and Notch1 in IPMN onset was unraveled. PMID:27381829

  3. Determination of somatic oncogenic mutations linked to target-based therapies using MassARRAY technology

    PubMed Central

    Llorca-Cardeñosa, Marta J.; Mongort, Cristina; Alonso, Elisa; Navarro, Samuel; Burgues, Octavio; Vivancos, Ana; Cejalvo, Juan Miguel; Perez-Fidalgo, José Alejandro; Roselló, Susana; Ribas, Gloria; Cervantes, Andrés

    2016-01-01

    Somatic mutation analysis represents a useful tool in selecting personalized therapy. The aim of our study was to determine the presence of common genetic events affecting actionable oncogenes using a MassARRAY technology in patients with advanced solid tumors who were potential candidates for target-based therapies. The analysis of 238 mutations across 19 oncogenes was performed in 197 formalin-fixed paraffin-embedded samples of different tumors using the OncoCarta Panel v1.0 (Sequenom Hamburg, Germany). Of the 197 specimens, 97 (49.2%) presented at least one mutation. Forty-nine different oncogenic mutations in 16 genes were detected. Mutations in KRAS and PIK3CA were detected in 40/97 (41.2%) and 30/97 (30.9%) patients respectively. Thirty-one patients (32.0%) had mutations in two genes, 20 of them (64.5%) initially diagnosed with colorectal cancer. The co-occurrence of mutation involved mainly KRAS, PIK3CA, KIT and RET. Mutation profiles were validated using a customized panel and the Junior Next-Generation Sequencing technology (GS-Junior 454, Roche). Twenty-eight patients participated in early clinical trials or received specific treatments according to the molecular characterization (28.0%). MassARRAY technology is a rapid and effective method for identifying key cancer-driving mutations across a large number of samples, which allows for a more appropriate selection for personalized therapies. PMID:26968814

  4. CYCLOPENTA-FUSED POLYCYCLIC AROMATIC HYDROCARBONS IN STRAIN A/J MOUSE LUNG: DNA ADDUCTS, ONCOGENE MUTATIONS, & TUMORIGENESIS

    EPA Science Inventory

    Cyclopenta-fused Polycyclic Aromatic Hydrocarbons in Strain AJJ Mouse Lung: DNA Adducts, Oncogene Mutations, and Tumorigenesis.

    We have examined the relationships between DNA adducts, Ki-ras oncogene mutations, DNA adducts, and adenoma induction in the lungs of strain A/J...

  5. Autism Linked to Increased Oncogene Mutations but Decreased Cancer Rate

    PubMed Central

    Zimmerman, M. Bridget; Mahajan, Vinit B.; Bassuk, Alexander G.

    2016-01-01

    Autism spectrum disorder (ASD) is one phenotypic aspect of many monogenic, hereditary cancer syndromes. Pleiotropic effects of cancer genes on the autism phenotype could lead to repurposing of oncology medications to treat this increasingly prevalent neurodevelopmental condition for which there is currently no treatment. To explore this hypothesis we sought to discover whether autistic patients more often have rare coding, single-nucleotide variants within tumor suppressor and oncogenes and whether autistic patients are more often diagnosed with neoplasms. Exome-sequencing data from the ARRA Autism Sequencing Collaboration was compared to that of a control cohort from the Exome Variant Server database revealing that rare, coding variants within oncogenes were enriched for in the ARRA ASD cohort (p<1.0x10-8). In contrast, variants were not significantly enriched in tumor suppressor genes. Phenotypically, children and adults with ASD exhibited a protective effect against cancer, with a frequency of 1.3% vs. 3.9% (p<0.001), but the protective effect decreased with age. The odds ratio of neoplasm for those with ASD relative to controls was 0.06 (95% CI: 0.02, 0.19; p<0.0001) in the 0 to 14 age group; 0.35 (95% CI: 0.14, 0.87; p = 0.024) in the 15 to 29 age group; 0.41 (95% CI: 0.15, 1.17; p = 0.095) in the 30 to 54 age group; and 0.49 (95% CI: 0.14, 1.74; p = 0.267) in those 55 and older. Both males and females demonstrated the protective effect. These findings suggest that defects in cellular proliferation, and potentially senescence, might influence both autism and neoplasm, and already approved drugs targeting oncogenic pathways might also have therapeutic value for treating autism. PMID:26934580

  6. Genome-wide gene expression analysis identifies K-ras as a regulator of alcohol intake.

    PubMed

    Repunte-Canonigo, Vez; van der Stap, Lena D; Chen, Jihuan; Sabino, Valentina; Wagner, Ulrich; Zorrilla, Eric P; Schumann, Gunter; Roberts, Amanda J; Sanna, Pietro Paolo

    2010-06-21

    Adaptations in the anterior cingulate cortex (ACC) have been implicated in alcohol and drug addiction. To identify genes that may contribute to excessive drinking, here we performed microarray analyses in laser microdissected rat ACC after a single or repeated administration of an intoxicating dose of alcohol (3 g/kg). Expression of the small G protein K-ras was differentially regulated following both single and repeated alcohol administration. We also observed that voluntary alcohol intake in K-ras heterozygous null mice (K-ras(+/-)) did not increase after withdrawal from repeated cycles of intermittent ethanol vapor exposure, unlike in their wild-type littermates. To identify K-ras regulated pathways, we then profiled gene expression in the ACC of K-ras(+/-), heterozygous null mice for the K-ras negative regulator Nf1 (Nf1(+/-)) and wild-type mice following repeated administration of an intoxicating dose of alcohol. Pathway analysis showed that alcohol differentially affected various pathways in a K-ras dependent manner - some of which previously shown to be regulated by alcohol - including the insulin/PI3K pathway, the NF-kappaB, the phosphodiesterases (PDEs) pathway, the Jak/Stat and the adipokine signaling pathways. Altogether, the data implicate K-ras-regulated pathways in the regulation of excessive alcohol drinking after a history of dependence.

  7. Multiple cellular proteins modulate the dynamics of K-ras association with the plasma membrane.

    PubMed

    Bhagatji, Pinkesh; Leventis, Rania; Rich, Rebecca; Lin, Chen-ju; Silvius, John R

    2010-11-17

    Although specific proteins have been identified that regulate the membrane association and facilitate intracellular transport of prenylated Rho- and Rab-family proteins, it is not known whether cellular proteins fulfill similar roles for other prenylated species, such as Ras-family proteins. We used a previously described method to evaluate how several cellular proteins, previously identified as potential binding partners (but not effectors) of K-ras4B, influence the dynamics of K-ras association with the plasma membrane. Overexpression of either PDEδ or PRA1 enhances, whereas knockdown of either protein reduces, the rate of dissociation of K-ras from the plasma membrane. Inhibition of calmodulin likewise reduces the rate of K-ras dissociation from the plasma membrane, in this case in a manner specific for the activated form of K-ras. By contrast, galectin-3 specifically reduces the rate of plasma membrane dissociation of activated K-ras, an effect that is blocked by the K-ras antagonist farnesylthiosalicylic acid (salirasib). Multiple cellular proteins thus control the dynamics of membrane association and intercompartmental movement of K-ras to an important degree even under basal cellular conditions.

  8. Absence of K-Ras Reduces Proliferation and Migration But Increases Extracellular Matrix Synthesis in Fibroblasts.

    PubMed

    Muñoz-Félix, José M; Fuentes-Calvo, Isabel; Cuesta, Cristina; Eleno, Nélida; Crespo, Piero; López-Novoa, José M; Martínez-Salgado, Carlos

    2016-10-01

    The involvement of Ras-GTPases in the development of renal fibrosis has been addressed in the last decade. We have previously shown that H- and N-Ras isoforms participate in the regulation of fibrosis. Herein, we assessed the role of K-Ras in cellular processes involved in the development of fibrosis: proliferation, migration, and extracellular matrix (ECM) proteins synthesis. K-Ras knockout (KO) mouse embryonic fibroblasts (K-ras(-/-) ) stimulated with transforming growth factor-β1 (TGF-β1) exhibited reduced proliferation and impaired mobility than wild-type fibroblasts. Moreover, an increase on ECM production was observed in K-Ras KO fibroblasts in basal conditions. The absence of K-Ras was accompanied by reduced Ras activation and ERK phosphorylation, and increased AKT phosphorylation, but no differences were observed in TGF-β1-induced Smad signaling. The MEK inhibitor U0126 decreased cell proliferation independently of the presence of K-ras but reduced migration and ECM proteins expression only in wild-type fibroblasts, while the PI3K-AKT inhibitor LY294002 decreased cell proliferation, migration, and ECM synthesis in both types of fibroblasts. Thus, our data unveil that K-Ras and its downstream effector pathways distinctively regulate key biological processes in the development of fibrosis. Moreover, we show that K-Ras may be a crucial mediator in TGF-β1-mediated effects in this cell type. J. Cell. Physiol. 231: 2224-2235, 2016. © 2016 Wiley Periodicals, Inc.

  9. IMP-1 displays crosstalk with K-Ras and modulates colon cancer cell survival through the novel pro-apoptotic protein CYFIP2

    PubMed Central

    Mongroo, Perry S.; Noubissi, Felicite K.; Cuatrecasas, Miriam; Kalabis, Jiri; King, Catrina E.; Johnstone, Cameron N.; Bowser, Mark J.; Castells, Antoni; Spiegelman, Vladimir S.; Rustgi, Anil K.

    2011-01-01

    Insulin-like growth factor 2 mRNA-binding protein-1 (IMP-1) is an oncofetal protein that binds directly to and stabilizes oncogenic c-Myc and regulates in turn its post-transcriptional expression and translation. In contrast to normal adult tissue, IMP-1 is re-expressed and/or overexpressed in human cancers. We demonstrate that knock-down of c-Myc in human colon cancer cell lines increases the expression of mature let-7 miRNA family members and downregulates several of its mRNA targets: IMP-1, Cdc34, and K-Ras. We further demonstrate that loss of IMP-1 inhibits Cdc34, Lin-28B, and K-Ras, and suppresses SW-480 cell proliferation and anchorage-independent growth, and promotes caspase and lamin-mediated cell death. We also found that IMP-1 binds to the coding region and 3′UTR of K-Ras mRNA. RNA microarray profiling and validation by reverse transcription PCR reveals that the p53-inducible pro-apoptotic protein, CYFIP2, is upregulated in IMP-1 knock-down SW480 cells, a novel finding. We also show that overexpression of IMP-1 increases c-Myc and K-Ras expression, and LIM2405 cell proliferation. Furthermore, we show that loss of IMP-1 induces Caspase-3 and Parp–mediated apoptosis, and inhibits K-Ras expression in SW480 cells, which is rescued by CYFIP2 knock-down. Importantly, analysis of 228 patients with colon cancers reveals that IMP-1 is significantly upregulated in differentiated colon tumors (p ≤ 0.0001) and correlates with K-Ras expression (r=0.35, p ≤ 0.0001) relative to adjacent normal mucosa. These findings indicate that IMP-1, interrelated with c-myc, acts upstream of K-Ras to promote survival through a novel mechanism that may be important in colon cancer pathogenesis. PMID:21252116

  10. Normal Expression of a Rearranged and Mutated c-myc Oncogene after Transfection into Fibroblasts

    NASA Astrophysics Data System (ADS)

    Richman, Adam; Hayday, Adrian

    1989-10-01

    Expression of the c-myc oncogene is deregulated in a variety of malignancies. Rearrangement and mutation of the c-myc locus is a characteristic feature of human Burkitt's lymphoma. Whether deregulation is solely a result of mutation of c-myc or whether it is influenced by the transformed B cell context has not been determined. A translocated and mutated allele of c-myc was stably transfected into fibroblasts. The rearranged allele was expressed indistinguishably from a normal c-myc gene: it had serum-regulated expression, was transcribed with normal promoter preference, and was strongly attenuated. Thus mutations by themselves are insufficient to deregulate c-myc transcription.

  11. Expression of proto-oncogenes and gene mutation of sarcomeric proteins in patients with hypertrophic cardiomyopathy.

    PubMed

    Kai, H; Muraishi, A; Sugiu, Y; Nishi, H; Seki, Y; Kuwahara, F; Kimura, A; Kato, H; Imaizumi, T

    1998-09-21

    Several mutations of cardiac beta-myosin heavy chain (beta-MHC) gene were reported in patients with hypertrophic cardiomyopathy (HCM). Involvement of proto-oncogenes has been shown in the mechanism of experimental cardiac hypertrophy. This study sought to examine the effects of c-H-ras and c-myc expression in the steady-state myocardium on hypertrophic changes and to evaluate the possible interaction between beta-MHC mutation and proto-oncogene expression in HCM. Endomyocardial biopsy was performed in 17 HCM patients (5 beta-MHC mutations and 1 troponin T mutation) and 7 control subjects (no mutation). Reverse transcription-polymerase chain reaction analysis revealed c-H-ras expression in all members of both groups. Cardiomyocyte size was correlated with the expression level of c-H-ras (P<0.001), and c-H-ras expression was upregulated in HCM patients (P<0.01). HCM patients with a beta-MHC mutation had the higher c-H-ras expression than did control subjects or patients without a mutation (P<0.01). c-myc mRNA was expressed in 7 of 17 HCM patients but not in control subjects. Myocyte size was greater in c-myc-positive HCM patients than in control subjects and c-myc-negative HCM patients (P<0.001 and P<0.05, respectively). The proto-oncogene expression did not affect clinical findings, myocardial fibrosis, or disarray. In conclusion, c-H-ras and c-myc expression in the steady-state myocardium may play a role in the hypertrophic mechanism in HCM. It is possible that ss-MHC gene mutation has some effect on the regulation of proto-oncogene expression in HCM.

  12. Whole-genome sequencing reveals oncogenic mutations in mycosis fungoides.

    PubMed

    McGirt, Laura Y; Jia, Peilin; Baerenwald, Devin A; Duszynski, Robert J; Dahlman, Kimberly B; Zic, John A; Zwerner, Jeffrey P; Hucks, Donald; Dave, Utpal; Zhao, Zhongming; Eischen, Christine M

    2015-07-23

    The pathogenesis of mycosis fungoides (MF), the most common cutaneous T-cell lymphoma (CTCL), is unknown. Although genetic alterations have been identified, none are considered consistently causative in MF. To identify potential drivers of MF, we performed whole-genome sequencing of MF tumors and matched normal skin. Targeted ultra-deep sequencing of MF samples and exome sequencing of CTCL cell lines were also performed. Multiple mutations were identified that affected the same pathways, including epigenetic, cell-fate regulation, and cytokine signaling, in MF tumors and CTCL cell lines. Specifically, interleukin-2 signaling pathway mutations, including activating Janus kinase 3 (JAK3) mutations, were detected. Treatment with a JAK3 inhibitor significantly reduced CTCL cell survival. Additionally, the mutation data identified 2 other potential contributing factors to MF, ultraviolet light, and a polymorphism in the tumor suppressor p53 (TP53). Therefore, genetic alterations in specific pathways in MF were identified that may be viable, effective new targets for treatment.

  13. Oncogene Mutations in Colorectal Polyps Identified in the Norwegian Colorectal Cancer Prevention (NORCCAP) Screening Study

    PubMed Central

    Lorentzen, Jon A.; Grzyb, Krzysztof; De Angelis, Paula M.; Hoff, Geir; Eide, Tor J.; Andresen, Per Arne

    2016-01-01

    Data are limited on oncogene mutation frequencies in polyps from principally asymptomatic participants of population-based colorectal cancer screening studies. In this study, DNA from 204 polyps, 5 mm or larger, were collected from 176 participants of the NORCCAP screening study and analyzed for mutations in KRAS, BRAF, and PIK3CA including the rarely studied KRAS exons 3 and 4 mutations. KRAS mutations were identified in 23.0% of the lesions and were significantly associated with tubulovillous adenomas and large size. A significantly higher frequency of KRAS mutations in females was associated with mutations in codon 12. The KRAS exon 3 and 4 mutations constituted 23.4% of the KRAS positive lesions, which is a larger proportion compared to previous observations in colorectal cancer. BRAF mutations were identified in 11.3% and were associated with serrated polyps. None of the individuals were diagnosed with de novo or recurrent colorectal cancer during the follow-up time (median 11.2 years). Revealing differences in mutation-spectra according to gender and stages in tumorigenesis might be important for optimal use of oncogenes as therapeutic targets and biomarkers. PMID:27656095

  14. Oncogene Mutations in Colorectal Polyps Identified in the Norwegian Colorectal Cancer Prevention (NORCCAP) Screening Study.

    PubMed

    Lorentzen, Jon A; Grzyb, Krzysztof; De Angelis, Paula M; Hoff, Geir; Eide, Tor J; Andresen, Per Arne

    2016-01-01

    Data are limited on oncogene mutation frequencies in polyps from principally asymptomatic participants of population-based colorectal cancer screening studies. In this study, DNA from 204 polyps, 5 mm or larger, were collected from 176 participants of the NORCCAP screening study and analyzed for mutations in KRAS, BRAF, and PIK3CA including the rarely studied KRAS exons 3 and 4 mutations. KRAS mutations were identified in 23.0% of the lesions and were significantly associated with tubulovillous adenomas and large size. A significantly higher frequency of KRAS mutations in females was associated with mutations in codon 12. The KRAS exon 3 and 4 mutations constituted 23.4% of the KRAS positive lesions, which is a larger proportion compared to previous observations in colorectal cancer. BRAF mutations were identified in 11.3% and were associated with serrated polyps. None of the individuals were diagnosed with de novo or recurrent colorectal cancer during the follow-up time (median 11.2 years). Revealing differences in mutation-spectra according to gender and stages in tumorigenesis might be important for optimal use of oncogenes as therapeutic targets and biomarkers. PMID:27656095

  15. Oncogene Mutations in Colorectal Polyps Identified in the Norwegian Colorectal Cancer Prevention (NORCCAP) Screening Study

    PubMed Central

    Lorentzen, Jon A.; Grzyb, Krzysztof; De Angelis, Paula M.; Hoff, Geir; Eide, Tor J.; Andresen, Per Arne

    2016-01-01

    Data are limited on oncogene mutation frequencies in polyps from principally asymptomatic participants of population-based colorectal cancer screening studies. In this study, DNA from 204 polyps, 5 mm or larger, were collected from 176 participants of the NORCCAP screening study and analyzed for mutations in KRAS, BRAF, and PIK3CA including the rarely studied KRAS exons 3 and 4 mutations. KRAS mutations were identified in 23.0% of the lesions and were significantly associated with tubulovillous adenomas and large size. A significantly higher frequency of KRAS mutations in females was associated with mutations in codon 12. The KRAS exon 3 and 4 mutations constituted 23.4% of the KRAS positive lesions, which is a larger proportion compared to previous observations in colorectal cancer. BRAF mutations were identified in 11.3% and were associated with serrated polyps. None of the individuals were diagnosed with de novo or recurrent colorectal cancer during the follow-up time (median 11.2 years). Revealing differences in mutation-spectra according to gender and stages in tumorigenesis might be important for optimal use of oncogenes as therapeutic targets and biomarkers.

  16. Diversity of mutations in the RET proto-oncogene and its oncogenic mechanism in medullary thyroid cancer.

    PubMed

    Hedayati, Mehdi; Zarif Yeganeh, Marjan; Sheikholeslami, Sara; Afsari, Farinaz

    2016-08-01

    Thyroid cancer is the most common endocrine malignancy and accounts for nearly 1% of all of human cancer. Thyroid cancer has four main histological types: papillary, follicular, medullary, and anaplastic. Papillary, follicular, and anaplastic thyroid carcinomas are derived from follicular thyroid cells, whereas medullary thyroid carcinoma (MTC) originates from the neural crest parafollicular cells or C-cells of the thyroid gland. MTC represents a neuroendocrine tumor and differs considerably from differentiated thyroid carcinoma. MTC is one of the aggressive types of thyroid cancer, which represents 3-10% of all thyroid cancers. It occurs in hereditary (25%) and sporadic (75%) forms. The hereditary form of MTC has an autosomal dominant mode of inheritance. According to the present classification, hereditary MTC is classified as a multiple endocrine neoplasi type 2 A & B (MEN2A & MEN2B) and familial MTC (FMTC). The RET proto-oncogene is located on chromosome 10q11.21. It is composed of 21 exons and encodes a transmembrane receptor tyrosine kinase. RET regulates a complex network of signal transduction pathways during development, survival, proliferation, differentiation, and migration of the enteric nervous system progenitor cells. Gain of function mutations in RET have been well demonstrated in MTC development. Variants of MTC result from different RET mutations, and they have a good genotype-phenotype correlation. Various MTC related mutations have been reported in different exons of the RET gene. We proposed that RET genetic mutations may be different in distinct populations. Therefore, the aim of this study was to find a geographical pattern of RET mutations in different populations. PMID:26678667

  17. Whole-genome sequencing reveals oncogenic mutations in mycosis fungoides

    PubMed Central

    McGirt, Laura Y.; Jia, Peilin; Baerenwald, Devin A.; Duszynski, Robert J.; Dahlman, Kimberly B.; Zic, John A.; Zwerner, Jeffrey P.; Hucks, Donald; Dave, Utpal; Zhao, Zhongming

    2015-01-01

    The pathogenesis of mycosis fungoides (MF), the most common cutaneous T-cell lymphoma (CTCL), is unknown. Although genetic alterations have been identified, none are considered consistently causative in MF. To identify potential drivers of MF, we performed whole-genome sequencing of MF tumors and matched normal skin. Targeted ultra-deep sequencing of MF samples and exome sequencing of CTCL cell lines were also performed. Multiple mutations were identified that affected the same pathways, including epigenetic, cell-fate regulation, and cytokine signaling, in MF tumors and CTCL cell lines. Specifically, interleukin-2 signaling pathway mutations, including activating Janus kinase 3 (JAK3) mutations, were detected. Treatment with a JAK3 inhibitor significantly reduced CTCL cell survival. Additionally, the mutation data identified 2 other potential contributing factors to MF, ultraviolet light, and a polymorphism in the tumor suppressor p53 (TP53). Therefore, genetic alterations in specific pathways in MF were identified that may be viable, effective new targets for treatment. PMID:26082451

  18. Lead identification for the K-Ras protein: virtual screening and combinatorial fragment-based approaches

    PubMed Central

    Pathan, Akbar Ali Khan; Panthi, Bhavana; Khan, Zahid; Koppula, Purushotham Reddy; Alanazi, Mohammed Saud; Sachchidanand; Parine, Narasimha Reddy; Chourasia, Mukesh

    2016-01-01

    Objective Kirsten rat sarcoma (K-Ras) protein is a member of Ras family belonging to the small guanosine triphosphatases superfamily. The members of this family share a conserved structure and biochemical properties, acting as binary molecular switches. The guanosine triphosphate-bound active K-Ras interacts with a range of effectors, resulting in the stimulation of downstream signaling pathways regulating cell proliferation, differentiation, and apoptosis. Efforts to target K-Ras have been unsuccessful until now, placing it among high-value molecules against which developing a therapy would have an enormous impact. K-Ras transduces signals when it binds to guanosine triphosphate by directly binding to downstream effector proteins, but in case of guanosine diphosphate-bound conformation, these interactions get disrupted. Methods In the present study, we targeted the nucleotide-binding site in the “on” and “off” state conformations of the K-Ras protein to find out suitable lead compounds. A structure-based virtual screening approach has been used to screen compounds from different databases, followed by a combinatorial fragment-based approach to design the apposite lead for the K-Ras protein. Results Interestingly, the designed compounds exhibit a binding preference for the “off” state over “on” state conformation of K-Ras protein. Moreover, the designed compounds’ interactions are similar to guanosine diphosphate and, thus, could presumably act as a potential lead for K-Ras. The predicted drug-likeness properties of these compounds suggest that these compounds follow the Lipinski’s rule of five and have tolerable absorption, distribution, metabolism, excretion and toxicity values. Conclusion Thus, through the current study, we propose targeting only “off” state conformations as a promising strategy for the design of reversible inhibitors to pharmacologically inhibit distinct conformations of K-Ras protein. PMID:27217775

  19. Membrane potential modulates plasma membrane phospholipid dynamics and K-Ras signaling

    PubMed Central

    Zhou, Yong; Wong, Ching-On; Cho, Kwang-jin; van der Hoeven, Dharini; Liang, Hong; Thakur, Dhananiay P.; Luo, Jialie; Babic, Milos; Zinsmaier, Konrad E.; Zhu, Michael X.; Hu, Hongzhen; Venkatachalam, Kartik; Hancock, John F.

    2015-01-01

    Plasma membrane depolarization can trigger cell proliferation, but how membrane potential influences mitogenic signaling is uncertain. Here, we show that plasma membrane depolarization induces nanoscale reorganization of phosphatidylserine and phosphatidylinositol 4,5-bisphosphate but not other anionic phospholipids. K-Ras, which is targeted to the plasma membrane by electrostatic interactions with phosphatidylserine, in turn undergoes enhanced nanoclustering. Depolarization-induced changes in phosphatidylserine and K-Ras plasma membrane organization occur in fibroblasts, excitable neuroblastoma cells, and Drosophila neurons in vivo and robustly amplify K-Ras–dependent mitogen-activated protein kinase (MAPK) signaling. Conversely, plasma membrane repolarization disrupts K-Ras nanoclustering and inhibits MAPK signaling. By responding to voltage-induced changes in phosphatidylserine spatiotemporal dynamics, K-Ras nanoclusters set up the plasma membrane as a biological field-effect transistor, allowing membrane potential to control the gain in mitogenic signaling circuits. PMID:26293964

  20. K-Ras mutant fraction in A/J mouse lung increases as a function of benzo[a]pyrene dose

    EPA Science Inventory

    K-Ras mutant fraction (MF) was measured to examine the default assumption of low dose linearity in the benzo[a]pyrene (B[a]P) mutational response. Groups of ten male A/J mice (7-9 weeks-old) received a single i.p. injection of 0, 0.05, 0.5, 5, or 50 mg/kg B[a]P, and were sacrifi...

  1. Complete surgical resection of lung tumor decreases exhalation of mutated KRAS oncogene.

    PubMed

    Kordiak, Jacek; Szemraj, Janusz; Hamara, Katarzyna; Bialasiewicz, Piotr; Nowak, Dariusz

    2012-09-01

    Exhaled breath condensate (EBC) contains extracellular DNA that may originate from pathological lesions of the respiratory tract and can be a genetic marker of pulmonary malignancy. We tested whether complete surgical excision of lung cancer will decrease exhalation of mutated KRAS oncogene. Fifty seven patients with clinical diagnosis of lung cancer and detectable KRAS mutations in pre-surgery EBC-DNA were qualified for surgical treatment. Point mutations at codon 12 of KRAS oncogene were detected using mutant-enriched PCR technique in DNA from pre-surgery blood, EBC collected before, 7 and 30 days after surgery and from specimens of resected tumor and normal pulmonary parenchyma. The ratio of mutated to wild type KRAS DNA (R mut/wild KRAS) was calculated for each specimen after electrophoresis and densitometry of the final amplification and digestion product. In 46 patients non-small cell lung cancer (NSCLC) and in 11 benign lesion (BL) were confirmed. All blood and tumor specimens were positive for KRAS mutations, while 41 specimens of normal pulmonary parenchyma were negative. In NSCLC patients pre-surgery EBC R mut/wild KRAS of 0.20 ± 0.03 decreased by 1.3- and 3.7-times (p < 0.001) at 7th and 30th day and 10 EBC specimens at day 30th became negative. The highest R mut/wild KRAS was found in NSCLC specimens - 1.36 ± 0.29 while the lowest in pulmonary parenchyma - 0.02 ± 0.03 (p < 0.001). R mut/wild KRAS in EBC did not correlate with the blood and cancer ratios. Determination of mutated KRAS oncogene in EBC can be potentially helpful in the follow-up of surgical treatment of pulmonary malignancy. PMID:22795503

  2. Detection of endogenous K-ras mRNA in living cells at a single base resolution by a PNA molecular beacon.

    PubMed

    Kam, Yossi; Rubinstein, Abraham; Nissan, Aviram; Halle, David; Yavin, Eylon

    2012-03-01

    Detection of mRNA alterations is a promising approach for identifying biomarkers as means of differentiating benign from malignant lesions. By choosing the KRAS oncogene as a target gene, two types of molecular beacons (MBs) based on either phosphothioated DNA (PS-DNA-MB) or peptide nucleic acid (TO-PNA-MB, where TO = thiazole orange) were synthesized and compared in vitro and in vivo. Their specificity was examined in wild-type KRAS (HT29) or codon 12 point mutation (Panc-1, SW480) cells. Incubation of both beacons with total RNA extracted from the Panc-1 cell line (fully complementary sequence) showed a fluorescent signal for both beacons. Major differences were observed, however, for single mismatch mRNA transcripts in cell lines HT29 and SW480. PS-DNA-MB weakly discriminated such single mismatches in comparison to TO-PNA-MB, which was profoundly more sensitive. Cell transfection of TO-PNA-MB with the aid of PEI resulted in fluorescence in cells expressing the fully complementary RNA transcript (Panc-1) but undetectable fluorescence in cells expressing the K-ras mRNA that has a single mismatch to the designed TO-PNA-MB (HT29). A weaker fluorescent signal was also detected in SW480 cells; however, these cells express approximately one-fifth of the target mRNA of the designed TO-PNA-MB. In contrast, PS-DNA-MB showed no fluorescence in all cell lines tested post PEI transfection. Based on the fast hybridization kinetics and on the single mismatch discrimination found for TO-PNA-MB we believe that such molecular beacons are promising for in vivo real-time imaging of endogenous mRNA with single nucleotide polymorphism (SNP) resolution.

  3. Ca2+/calmodulin binds and dissociates K-RasB from membrane.

    PubMed

    Sidhu, Ranjinder S; Clough, Richard R; Bhullar, Rajinder P

    2003-05-16

    We have investigated the interaction of calmodulin (CaM) with Ras-p21 and the significance of this association. All Ras-p21 isoforms tested (H-, K-, and N-Ras) were detected in the particulate fraction of human platelets and MCF-7 cells, a human breast cancer cell line. In MCF-7 cells, H- and N-Ras were also detected in the cytosolic fraction. K-RasB from platelet and MCF-7 cell lysates was found to bind CaM in a Ca2+ -dependent but GTPgammaS-independent manner. The yeast two-hybrid analysis demonstrated that K-RasB binds to CaM in vivo. Incubation of isolated membranes from platelet and MCF-7 cells with CaM caused dissociation of only K-RasB from membranes in a Ca2+ -dependent manner. CaM antagonist, W7, inhibited dissociation of K-RasB. Addition of platelet or MCF-7 cytosol alone to isolated platelet membranes did not cause dissociation of K-RasB and only addition of exogenous CaM caused dissociation. The results suggest a potential role for Ca2+/CaM in the regulation of K-RasB function.

  4. Mutation detection in autosomal dominant Hirschsprung disease: SSCP analysis of the RET proto-oncogene

    SciTech Connect

    Angrist, M.; Bolk, S.; Chakravarti, A.

    1994-09-01

    Hirschsprung disease (HSCR), or congenital aganglionic megacolon, is the most common cause of congenital bowel obstruction, with an incidence of 1 in 5000. Recently, linkage of an incompletely penetrant, dominant form of HSCR to the pericentromeric region of chromosome 10 was reported, followed by identification of mutations in the RET proto-oncogene in HSCR patients. RET mutations have also been reported in both sporadic and familial forms of three neuroendrocrine tumor syndromes. Unlike the clustered RET mutations observed in these syndromes, the 18 reported HSCR mutations are distributed throughout the extracellular and tryosine kinase domains of RET. In an effort to determine the frequency of RET mutations in HSCR and correlate genotype with phenotype, we have begun to screen for mutations among 80 HSCR probands representing a wide range of phenotypes and pedigree structures. Non-isotopic single strand conformation of polymorphism (SSCP) analysis was carried out using the Pharmacia PhastSystem{trademark}. Initial screening of exons 2 through 6 detected variants in 11 patients not seen in 24 controls. One additional band shift in exon 6 has been observed in both patients and controls. Preliminary sequence analysis has revealed two putative familial mutations in exon 2: a single base pair deletion (49Pro del C 296) and a point mutation that leads to a conservative amino acid substitution (93Gly{r_arrow}Ser). These results suggest that HSCR may be associated with a range of alterations in the coding sequence of the RET extracellular domain. Additional mutations will be described.

  5. Lack of evidence for KRAS oncogenic mutations in triple-negative breast cancer

    PubMed Central

    2010-01-01

    Background Mutational analysis of the KRAS gene has recently been established as a complementary in vitro diagnostic tool for the identification of patients with colorectal cancer who will not benefit from anti-epidermal growth factor receptor (EGFR) therapies. Assessment of the mutation status of KRAS might also be of potential relevance in other EGFR-overexpressing tumors, such as those occurring in breast cancer. Although KRAS is mutated in only a minor fraction of breast tumors (5%), about 60% of the basal-like subtype express EGFR and, therefore could be targeted by EGFR inhibitors. We aimed to study the mutation frequency of KRAS in that subtype of breast tumors to provide a molecular basis for the evaluation of anti-EGFR therapies. Methods Total, genomic DNA was obtained from a group of 35 formalin-fixed paraffin-embedded, triple-negative breast tumor samples. Among these, 77.1% (27/35) were defined as basal-like by immunostaining specific for the established surrogate markers cytokeratin (CK) 5/6 and/or EGFR. KRAS mutational status was determined in the purified DNA samples by Real Time (RT)-PCR using primers specific for the detection of wild-type KRAS or the following seven oncogenic somatic mutations: Gly12Ala, Gly12Asp, Gly12Arg, Gly12Cys, Gly12Ser, Gly12Val and Gly13Asp. Results We found no evidence of KRAS oncogenic mutations in all analyzed tumors. Conclusions This study indicates that KRAS mutations are very infrequent in triple-negative breast tumors and that EGFR inhibitors may be of potential benefit in the treatment of basal-like breast tumors, which overexpress EGFR in about 60% of all cases. PMID:20385028

  6. The impact of the genetic background in the Noonan syndrome phenotype induced by K-RasV14I

    PubMed Central

    Hernández-Porras, Isabel; Jiménez-Catalán, Beatriz; Schuhmacher, Alberto J; Guerra, Carmen

    2015-01-01

    Noonan syndrome (NS) is an autosomal dominant genetic disorder characterized by short stature, craniofacial dysmorphism, and congenital heart defects. A significant fraction of NS-patients also develop myeloproliferative disorders. The penetrance of these defects varies considerably among patients. In this study, we have examined the effect of 2 genetic backgrounds (C57BL/6J.OlaHsd and 129S2/SvPasCrl) on the phenotypes displayed by a mouse model of NS induced by germline expression of the mutated K-RasV14I allele, one of the most frequent NS-KRAS mutations. Our results suggest the presence of genetic modifiers associated to the genetic background that are essential for heart development and function at early stages of postnatal life as well as in the severity of the haematopoietic alterations. PMID:26458870

  7. Mutations in exon 10 of the RET proto-oncogene in Hirschsprung`s disease

    SciTech Connect

    Attie, T.; Eng, C.; Mulligan, L.M.

    1994-09-01

    Hirschsprung`s disease (HSCR) is a frequent congenital malformation ascribed to the absence of autonomic ganglion cells in the terminal hindgut. Recently, we have identified mutations in the RET proto-oncogene in HSCR families. Mutations of the RET gene have also been reported in multiple endocrine neoplasia type 2A (MEN 2A) and familial medullary thyroid carcinoma (FMTC). While RET mutations in HSCR are scattered on the whole coding sequence, MEN 2A and FMTC mutations are clustered in 5 cystein codons of exons 10 and 11. Here, we report on HSCR families carrying mutations in exon 10 of the RET gene, one of them involving a cystein codon. Germ-line mutations in exon 10 of the RET gene may contribute to either an early development defect (HSCR) or inherited predisposition to cancer (MEN 2A and FMTC), probable depending on the nature and location of the mutation. These data also suggest that HSCR patients with mutations in exon 10 might subsequently prove to be at risk for MEN 2A or FMTC since several MEN 2A/HSCR associations have been reported.

  8. Activation Mechanism of Oncogenic Deletion Mutations in BRAF, EGFR, and HER2.

    PubMed

    Foster, Scott A; Whalen, Daniel M; Özen, Ayşegül; Wongchenko, Matthew J; Yin, JianPing; Yen, Ivana; Schaefer, Gabriele; Mayfield, John D; Chmielecki, Juliann; Stephens, Philip J; Albacker, Lee A; Yan, Yibing; Song, Kyung; Hatzivassiliou, Georgia; Eigenbrot, Charles; Yu, Christine; Shaw, Andrey S; Manning, Gerard; Skelton, Nicholas J; Hymowitz, Sarah G; Malek, Shiva

    2016-04-11

    Activating mutations in protein kinases drive many cancers. While how recurring point mutations affect kinase activity has been described, the effect of in-frame deletions is not well understood. We show that oncogenic deletions within the β3-αC loop of HER2 and BRAF are analogous to the recurrent EGFR exon 19 deletions. We identify pancreatic carcinomas with BRAF deletions mutually exclusive with KRAS mutations. Crystal structures of BRAF deletions reveal the truncated loop restrains αC in an active "in" conformation, imparting resistance to inhibitors like vemurafenib that bind the αC "out" conformation. Characterization of loop length explains the prevalence of five amino acid deletions in BRAF, EGFR, and HER2 and highlights the importance of this region for kinase activity and inhibitor efficacy. PMID:26996308

  9. Cancer stem cell drugs target K-ras signaling in a stemness context

    PubMed Central

    Najumudeen, A K; Jaiswal, A; Lectez, B; Oetken-Lindholm, C; Guzmán, C; Siljamäki, E; Posada, I M D; Lacey, E; Aittokallio, T; Abankwa, D

    2016-01-01

    Cancer stem cells (CSCs) are considered to be responsible for treatment relapse and have therefore become a major target in cancer research. Salinomycin is the most established CSC inhibitor. However, its primary mechanistic target is still unclear, impeding the discovery of compounds with similar anti-CSC activity. Here, we show that salinomycin very specifically interferes with the activity of K-ras4B, but not H-ras, by disrupting its nanoscale membrane organization. We found that caveolae negatively regulate the sensitivity to this drug. On the basis of this novel mechanistic insight, we defined a K-ras-associated and stem cell-derived gene expression signature that predicts the drug response of cancer cells to salinomycin. Consistent with therapy resistance of CSC, 8% of tumor samples in the TCGA-database displayed our signature and were associated with a significantly higher mortality. Using our K-ras-specific screening platform, we identified several new candidate CSC drugs. Two of these, ophiobolin A and conglobatin A, possessed a similar or higher potency than salinomycin. Finally, we established that the most potent compound, ophiobolin A, exerts its K-ras4B-specific activity through inactivation of calmodulin. Our data suggest that specific interference with the K-ras4B/calmodulin interaction selectively inhibits CSC. PMID:26973241

  10. Effects of oncogenic mutations on the conformational free-energy landscape of EGFR kinase

    PubMed Central

    Sutto, Ludovico; Gervasio, Francesco Luigi

    2013-01-01

    Activating mutations in the epidermal growth factor receptor (EGFR) tyrosine kinase are frequently found in many cancers. It has been suggested that changes in the equilibrium between its active and inactive conformations are linked to its oncogenic potential. Here, we quantify the effects of some of the most common single (L858R and T790M) and double (T790M-L858R) oncogenic mutations on the conformational free-energy landscape of the EGFR kinase domain by using massive molecular dynamics simulations together with parallel tempering, metadynamics, and one of the best force-fields available. Whereas the wild-type EGFR catalytic domain monomer is mostly found in an inactive conformation, our results show a clear shift toward the active conformation for all of the mutants. The L858R mutation stabilizes the active conformation at the expense of the inactive conformation and rigidifies the αC-helix. The T790M gatekeeper mutant favors activation by stabilizing a hydrophobic cluster. Finally, T790M with L858R shows a significant positive epistasis effect. This combination not only stabilizes the active conformation, but in nontrivial ways changes the free-energy landscape lowering the transition barriers. PMID:23754386

  11. Spectrum of mutations of the ret proto-oncogene in Hirschsprung`s disease

    SciTech Connect

    Lyonnet, S.; Attie, T.; Pelet, A.

    1994-09-01

    Hirschsprung`s disease (HSCR) is a frequent congenital malformation (1 in 5,000 live births) ascribed to the absence of autonomic ganglia cells in the terminal hindgut. HSCR is a neurocristopathie resulting in intestinal obstruction in neonates and in milder phenotypes in adults. Recently, we have mapped a dominant gene for familial HSCR to chromosome 10q11.2 and identified mutations of the RET proto-oncogene in HSCR families. Studying a large number of HSCR patients by DGGE analysis of the RET coding sequence we observed: (a) various RET mutations in our series of 30 HSCR families, (b) de novo mutations in several sporadic HSCR cases, (c) the variable clinical expression of RET mutations in HSCR families and the absence of genotype/phenotype correlations at the RET locus, (d) the low penetrance of RET mutations in HSCR families supporting the role of one or several modifier genes, and (e) the existence of syndromic HSCR families unlinked to the RET locus.

  12. Oncogenic PIK3CA mutations reprogram glutamine metabolism in colorectal cancer

    PubMed Central

    Hao, Yujun; Samuels, Yardena; Li, Qingling; Krokowski, Dawid; Guan, Bo-Jhih; Wang, Chao; Jin, Zhicheng; Dong, Bohan; Cao, Bo; Feng, Xiujing; Xiang, Min; Xu, Claire; Fink, Stephen; Meropol, Neal J.; Xu, Yan; Conlon, Ronald A.; Markowitz, Sanford; Kinzler, Kenneth W.; Velculescu, Victor E.; Brunengraber, Henri; Willis, Joseph E.; LaFramboise, Thomas; Hatzoglou, Maria; Zhang, Guo-Fang; Vogelstein, Bert; Wang, Zhenghe

    2016-01-01

    Cancer cells often require glutamine for growth, thereby distinguishing them from most normal cells. Here we show that PIK3CA mutations reprogram glutamine metabolism by upregulating glutamate pyruvate transaminase 2 (GPT2) in colorectal cancer (CRC) cells, making them more dependent on glutamine. Compared with isogenic wild-type (WT) cells, PIK3CA mutant CRCs convert substantially more glutamine to α-ketoglutarate to replenish the tricarboxylic acid cycle and generate ATP. Mutant p110α upregulates GPT2 gene expression through an AKT-independent, PDK1–RSK2–ATF4 signalling axis. Moreover, aminooxyacetate, which inhibits the enzymatic activity of aminotransferases including GPT2, suppresses xenograft tumour growth of CRCs with PIK3CA mutations, but not with WT PIK3CA. Together, these data establish oncogenic PIK3CA mutations as a cause of glutamine dependency in CRCs and suggest that targeting glutamine metabolism may be an effective approach to treat CRC patients harbouring PIK3CA mutations. PMID:27321283

  13. Differential response to 1α, 25-dihydroxyvitamin D3 (1α,25(OH)2D3) in non-small cell lung cancer cells with distinct oncogene mutations1

    PubMed Central

    Zhang, Qiuhong; Kanterewicz, Beatriz; Shoemaker, Suzanne; Hu, Qiang; Liu, Song; Atwood, Kristopher; Hershberger, Pamela

    2012-01-01

    We previously demonstrated that non-small cell lung cancer (NSCLC) cells and primary human lung tumors aberrantly express the vitamin D3-catabolizing enzyme, CYP24, and that CYP24 restricts transcriptional regulation and growth control by 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) in NSCLC cells. To ascertain the basis for CYP24 dysregulation, we assembled a panel of cell lines that represent distinct molecular classes of lung cancer: Cell lines were selected which harbored mutually exclusive mutations in either the K-ras or the Epidermal Growth Factor Receptor (EGFR) genes. We observed that K-ras mutant lines displayed a basal vitamin D receptor (VDR)lowCYP24high phenotype, whereas EGFR mutant lines had a VDRhighCYP24low phenotype. A mutation-associated difference in CYP24 expression was also observed in clinical specimens. Specifically, K-ras mutation was associated with a median 4.2-fold increase in CYP24 mRNA expression (p = 4.8 × 10−7) compared to EGFR mutation in a series of 147 primary lung adenocarcinoma cases. Because of their differential basal expression of VDR and CYP24, we hypothesized that NSCLC cells with an EGFR mutation would be more responsive to 1,25(OH)2D3 treatment than those with a K-ras mutation. To test this, we measured the ability of 1,25(OH)2D3 to increase reporter gene activity, induce transcription of endogenous target genes, and suppress colony formation. In each assay, the extent of 1,25(OH)2D3 response was greater in EGFR mutation-positive HCC827 and H1975 cells than in K-ras mutation-positive A549 and 128.88T cells. We subsequently examined the effect of combining 1,25(OH)2D3 with erlotinib, which is used clinically in the treatment of EGFR mutation-positive NSCLC. 1,25(OH)2D3/erlotinib combination resulted in significantly greater growth inhibition than either single agent in both the erlotinib-sensitive HCC827 cell line and the erlotinib-resistant H1975 cell line. These data are the first to suggest that EGFR mutations may

  14. The hypervariable region of K-Ras4B is responsible for its specific interactions with Calmodulin

    PubMed Central

    Abraham, Sherwin J.; Nolet, Ryan P.; Calvert, Richard J.; Anderson, Lucy M.; Gaponenko, Vadim

    2009-01-01

    K-Ras4B belongs to the family of p21 Ras GTPases, which play an important role in cell proliferation, survival and motility. The p21 Ras proteins such as K-Ras4B, K-Ras4A, H-Ras, and N-Ras, share 85% sequence homology and activate very similar signaling pathways. Only the C-terminal hypervariable regions differ significantly. A growing body of literature demonstrates that each Ras isoform possesses unique functions in normal physiological processes as well as in pathogenesis. One of the central questions in the field of Ras biology is how these very similar proteins achieve such remarkable specificity in protein-protein interactions that regulate signal transduction pathways. Here we explore specific binding of K-Ras4B to calmodulin. Using NMR techniques and isothermal titration calorimetry we demonstrate that the hypervariable region of K-Ras contributes in a major way to the interaction with calmodulin while the catalytic domain of K-Ras4B provides a way to control the interaction by nucleotide binding. The hypervariable region of K-Ras4B binds specifically to the C-terminal domain of Ca2+-loaded calmodulin with micromolar affinity, while the GTP-γ-S loaded catalytic domain of K-Ras4B may interact with the N-terminal domain of calmodulin. PMID:19583261

  15. The hypervariable region of K-Ras4B is responsible for its specific interactions with calmodulin.

    PubMed

    Abraham, Sherwin J; Nolet, Ryan P; Calvert, Richard J; Anderson, Lucy M; Gaponenko, Vadim

    2009-08-18

    K-Ras4B belongs to the family of p21 Ras GTPases, which play an important role in cell proliferation, survival, and motility. The p21 Ras proteins, such as K-Ras4B, K-Ras4A, H-Ras, and N-Ras, share 85% sequence homology and activate very similar signaling pathways. Only the C-terminal hypervariable regions differ significantly. A growing body of literature demonstrates that each Ras isoform possesses unique functions in normal physiological processes as well as in pathogenesis. One of the central questions in the field of Ras biology is how these very similar proteins achieve such remarkable specificity in protein-protein interactions that regulate signal transduction pathways. Here we explore specific binding of K-Ras4B to calmodulin. Using NMR techniques and isothermal titration calorimetry, we demonstrate that the hypervariable region of K-Ras4B contributes in a major way to the interaction with calmodulin, while the catalytic domain of K-Ras4B provides a way to control the interaction by nucleotide binding. The hypervariable region of K-Ras4B binds specifically to the C-terminal domain of Ca(2+)-loaded calmodulin with micromolar affinity, while the GTP-gamma-S-loaded catalytic domain of K-Ras4B may interact with the N-terminal domain of calmodulin.

  16. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations

    PubMed Central

    Brastianos, Priscilla K.; Horowitz, Peleg M.; Santagata, Sandro; Jones, Robert T.; McKenna, Aaron; Getz, Gad; Ligon, Keith L.; Palescandolo, Emanuele; Van Hummelen, Paul; Ducar, Matthew D.; Raza, Alina; Sunkavalli, Ashwini; MacConaill, Laura E.; Stemmer-Rachamimov, Anat O.; Louis, David N.; Hahn, William C.; Dunn, Ian F.; Beroukhim, Rameen

    2013-01-01

    Meningiomas are the most common primary nervous system tumor. The tumor suppressor NF2 is disrupted in approximately half of meningiomas1 but the complete spectrum of genetic changes remains undefined. We performed whole-genome or whole-exome sequencing on 17 meningiomas and focused sequencing on an additional 48 tumors to identify and validate somatic genetic alterations. Most meningiomas exhibited simple genomes, with fewer mutations, rearrangements, and copy-number alterations than reported in other adult tumors. However, several meningiomas harbored more complex patterns of copy-number changes and rearrangements including one tumor with chromothripsis. We confirmed focal NF2 inactivation in 43% of tumors and found alterations in epigenetic modifiers among an additional 8% of tumors. A subset of meningiomas lacking NF2 alterations harbored recurrent oncogenic mutations in AKT1 (E17K) and SMO (W535L) and exhibited immunohistochemical evidence of activation of their pathways. These mutations were present in therapeutically challenging tumors of the skull base and higher grade. These results begin to define the spectrum of genetic alterations in meningiomas and identify potential therapeutic targets. PMID:23334667

  17. High TUBB3 expression, an independent prognostic marker in patients with early non-small cell lung cancer treated by preoperative chemotherapy, is regulated by K-Ras signaling pathway.

    PubMed

    Levallet, Guénaëlle; Bergot, Emmanuel; Antoine, Martine; Creveuil, Christian; Santos, Adriana O; Beau-Faller, Michelle; de Fraipont, Florence; Brambilla, Elisabeth; Levallet, Jérôme; Morin, Franck; Westeel, Virginie; Wislez, Marie; Quoix, Elisabeth; Debieuvre, Didier; Dubois, Fatéméh; Rouquette, Isabelle; Pujol, Jean-Louis; Moro-Sibilot, Denis; Camonis, Jacques; Zalcman, Gérard

    2012-05-01

    We assessed the prognostic and predictive value of β-tubulin III (TUBB3) expression, as determined by immunohistochemistry, in 412 non-small cell lung cancer (NSCLC) specimens from early-stage patients who received neoadjuvant chemotherapy (paclitaxel- or gemcitabine-based) in a phase III trial (IFCT-0002). We also correlated TUBB3 expression with K-Ras and EGF receptor (EGFR) mutations in a subset of 208 cryopreserved specimens. High TUBB3 protein expression was associated with nonsquamous cell carcinomas (P < 0.001) and K-Ras mutation (P < 0.001). The 127 (30.8%) TUBB3-negative patients derived more than 1 year of overall survival advantage, with more than 84 months median overall survival versus 71.7 months for TUBB3-positive patients [HR, 1.58; 95% confidence interval (CI), 1.11-2.25)]. This prognostic value was confirmed in multivariate analysis (adjusted HR for death, 1.51; 95% CI, 1.04-2.21; P = 0.031) with a bootstrapping validation procedure. TUBB3 expression was associated with nonresponse to chemotherapy (adjusted HR, 1.31; 95% CI, 1.01-1.70; P = 0.044) but had no predictive value (taxane vs. gemcitabine). Taking account of these clinical findings, we further investigated TUBB3 expression in isogenic human bronchial cell lines only differing by K-Ras gene status and assessed the effect of K-Ras short interfering RNA (siRNA) mediated depletion, cell hypoxia, or pharmacologic inhibitors of K-Ras downstream effectors, on TUBB3 protein cell content. siRNA K-Ras knockdown, inhibition of RAF/MEK (MAP-ERK kinase) and phosphoinositide 3-kinase (PI3K)/AKT signaling, and hypoxia were shown to downregulate TUBB3 expression in bronchial cells. This study is the first one to identify K-Ras mutations as determinant of TUBB3 expression, a chemoresistance marker. Our in vitro data deserve studies combining standard chemotherapy with anti-MEK or anti-PI3K drugs in patients with TUBB3-overexpressing tumors.

  18. MEF2B mutations lead to deregulated expression of the BCL6 oncogene in Diffuse Large B cell Lymphoma

    PubMed Central

    Ying, Carol Y.; Dominguez-Sola, David; Fabi, Melissa; Lorenz, Ivo C.; Hussein, Shafinaz; Bansal, Mukesh; Califano, Andrea; Pasqualucci, Laura; Basso, Katia; Dalla-Favera, Riccardo

    2014-01-01

    The MEF2B gene encodes a transcriptional activator and is found mutated in ∼11% of diffuse large B cell lymphomas (DLBCLs) and ∼12% of follicular lymphomas. Here, we show that MEF2B directly activates the transcription of the proto-oncogene BCL6 in normal germinal-center B cells and is required for DLBCL proliferation. MEF2B mutations enhance MEF2B transcriptional activity either by disrupting its interaction with the co-repressor CABIN1, or by rendering it insensitive to phosphorylation- and sumoylation-mediated inhibitory signaling events. Consequently, Bcl-6 transcriptional activity is deregulated in DLBCL harboring MEF2B mutations. Thus, somatic mutations of MEF2B may contribute to lymphomagenesis by deregulating the expression of the BCL6 oncogene, and MEF2B may represent an alternative target to block Bcl-6 activity in DLBCLs. PMID:23974956

  19. Oncogenic Activation of NF-κB

    PubMed Central

    Staudt, Louis M.

    2010-01-01

    Recent genetic evidence has established a pathogenetic role for NF-κB signaling in cancer. NF-κB signaling is engaged transiently when normal B lymphocytes respond to antigens, but lymphomas derived from these cells accumulate genetic lesions that constitutively activate NF-κB signaling. Many genetic aberrations in lymphomas alter CARD11, MALT1, or BCL10, which constitute a signaling complex that is intermediate between the B-cell receptor and IκB kinase. The activated B-cell-like subtype of diffuse large B-cell lymphoma activates NF-κB by a variety of mechanisms including oncogenic mutations in CARD11 and a chronic active form of B-cell receptor signaling. Normal plasma cells activate NF-κB in response to ligands in the bone marrow microenvironment, but their malignant counterpart, multiple myeloma, sustains a variety of genetic hits that stabilize the kinase NIK, leading to constitutive activation of the classical and alternative NF-κB pathways. Various oncogenic abnormalities in epithelial cancers, including mutant K-ras, engage unconventional IκB kinases to activate NF-κB. Inhibition of constitutive NF-κB signaling in each of these cancer types induces apoptosis, providing a rationale for the development of NF-κB pathway inhibitors for the treatment of cancer. PMID:20516126

  20. K-Ras Activation Induces Differential Sensitivity to Sulfur Amino Acid Limitation and Deprivation and to Oxidative and Anti-Oxidative Stress in Mouse Fibroblasts

    PubMed Central

    De Sanctis, Gaia; Spinelli, Michela; Vanoni, Marco

    2016-01-01

    Background Cancer cells have an increased demand for amino acids and require transport even of non-essential amino acids to support their increased proliferation rate. Besides their major role as protein synthesis precursors, the two proteinogenic sulfur-containing amino acids, methionine and cysteine, play specific biological functions. In humans, methionine is essential for cell growth and development and may act as a precursor for cysteine synthesis. Cysteine is a precursor for the biosynthesis of glutathione, the major scavenger for reactive oxygen species. Methodology and Principal Findings We study the effect of K-ras oncogene activation in NIH3T3 mouse fibroblasts on transport and metabolism of cysteine and methionine. We show that cysteine limitation and deprivation cause apoptotic cell death (cytotoxic effect) in both normal and K-ras-transformed fibroblasts, due to accumulation of reactive oxygen species and a decrease in reduced glutathione. Anti-oxidants glutathione and MitoTEMPO inhibit apoptosis, but only cysteine-containing glutathione partially rescues the cell growth defect induced by limiting cysteine. Methionine limitation and deprivation has a cytostatic effect on mouse fibroblasts, unaffected by glutathione. K-ras-transformed cells–but not their parental NIH3T3—are extremely sensitive to methionine limitation. This fragility correlates with decreased expression of the Slc6a15 gene—encoding the nutrient transporter SBAT1, known to exhibit a strong preference for methionine—and decreased methionine uptake. Conclusions and Significance Overall, limitation of sulfur-containing amino acids results in a more dramatic perturbation of the oxido-reductive balance in K-ras-transformed cells compared to NIH3T3 cells. Growth defects induced by cysteine limitation in mouse fibroblasts are largely–though not exclusively–due to cysteine utilization in the synthesis of glutathione, mouse fibroblasts requiring an exogenous cysteine source for

  1. The K-Ras 4A isoform promotes apoptosis but does not affect either lifespan or spontaneous tumor incidence in aging mice

    SciTech Connect

    Plowman, Sarah J.; Arends, Mark J.; Brownstein, David G.; Luo Feijun; Devenney, Paul S.; Rose, Lorraine; Ritchie, Ann-Marie; Berry, Rachel L.; Harrison, David J.; Hooper, Martin L.; Patek, Charles E. . E-mail: Charles.Patek@ed.ac.uk

    2006-01-01

    Ras proteins function as molecular switches in signal transduction pathways, and, here, we examined the effects of the K-ras4A and 4B splice variants on cell function by comparing wild-type embryonic stem (ES) cells with K-ras {sup tm{delta}}{sup 4A/tm{delta}}{sup 4A} (exon 4A knock-out) ES cells which express K-ras4B only and K-ras {sup -/-} (exons 1-3 knock-out) ES cells which express neither splice variant, and intestinal epithelium from wild-type and K-ras {sup tm{delta}}{sup 4A/tm{delta}}{sup 4A} mice. RT-qPCR analysis found that K-ras4B expression was reduced in K-ras {sup tm{delta}}{sup 4A/tm{delta}}{sup 4A} ES cells but unaffected in small intestine. K-Ras deficiency did not affect ES cell growth, and K-Ras4A deficiency did not affect intestinal epithelial proliferation. K-ras {sup tm{delta}}{sup 4A/tm{delta}}{sup 4A} and K-ras {sup -/-} ES cells showed a reduced capacity for differentiation following LIF withdrawal, and K-ras {sup -/-} cells were least differentiated. K-Ras4A deficiency inhibited etoposide-induced apoptosis in ES cells and intestinal epithelial cells. However, K-ras {sup tm{delta}}{sup 4A/tm{delta}}{sup 4A} ES cells were more resistant to etoposide-induced apoptosis than K-ras {sup -/-} cells. The results indicate that (1) K-Ras4A promotes apoptosis while K-Ras4B inhibits it, and (2) K-Ras4B, and possibly K-Ras4A, promotes differentiation. The findings raise the possibility that alteration of the K-Ras4A/4B isoform ratio modulates tumorigenesis by differentially affecting stem cell survival and/or differentiation. However, K-Ras4A deficiency did not affect life expectancy or spontaneous overall tumor incidence in aging mice.

  2. Altered expression of Bcl-2, c-Myc, H-Ras, K-Ras, and N-Ras does not influence the course of mycosis fungoides

    PubMed Central

    Maj, Joanna; Jankowska-Konsur, Alina; Plomer-Niezgoda, Ewa; Sadakierska-Chudy, Anna

    2013-01-01

    Introduction Data about genetic alterations in mycosis fungoides (MF) are limited and their significance not fully elucidated. The aim of the study was to explore the expression of various oncogenes in MF and to assess their influence on the disease course. Material and methods Skin biopsies from 27 MF patients (14 with early MF and 13 with advanced disease) and 8 healthy volunteers were analyzed by real-time polymerase chain reaction (PCR) to detect Bcl-2, c-Myc, H-Ras, K-Ras and N-Ras expression. All PCR reactions were performed using an Applied Biosystems 7900HT Fast Real-Time PCR System and interpreted using Sequence Detection Systems software which utilizes the comparative delta Ct method. The level of mRNA was normalized to GAPDH expression. All data were analyzed statistically. Results All evaluated oncogenes were found to be expressed in the skin from healthy controls and MF patients. Bcl-2 (–4.2 ±2.2 vs. –2.2 ±1.1; p = 0.01), H-Ras (–3.0 ±3.3 vs. 0.6 ±2.6; p = 0.01) and N-Ras (–3.6 ±2.0 vs. –1.1 ±2.4; p = 0.03) were expressed at significantly lower levels in MF. No relationships between oncogene expression and disease stage, presence of distant metastases and survival were observed (p > 0.05 for all comparisons). Conclusions The pathogenic role and prognostic significance of analyzed oncogenes in MF seem to be limited and further studies are needed to establish better prognostic factors for patients suffering from MF. PMID:24273576

  3. Discovery of drug-resistant and drug-sensitizing mutations in the oncogenic PI3K isoform p110α

    PubMed Central

    Zunder, Eli R.; Knight, Zachary A.; Houseman, Benjamin T.; Apsel, Beth; Shokat, Kevan M.

    2009-01-01

    Summary p110α (PIK3CA) is the most frequently mutated kinase in human cancer, and numerous drugs targeting this kinase are currently in pre-clinical development or early stage clinical trials. Clinical resistance to protein kinase inhibitors frequently results from point mutations that block drug binding; similar mutations in p110α are likely, but currently none have been reported. Using a S. cerevisiae screen against a structurally diverse panel of PI3K inhibitors, we have identified a potential hotspot for resistance mutations (I800), a drug-sensitizing mutation (L814C), and a surprising lack of resistance mutations at the “gatekeeper” residue. Our analysis further reveals that clinical resistance to these drugs may be attenuated by using multi-targeted inhibitors that simultaneously inhibit additional PI3K pathway members. Significance Point mutations that block drug binding are likely to be a major mechanism of clinical resistance to PI3K-targeted cancer therapy. Here we report resistance mutations in the oncogenic PI3K isoform p110α, as well as a drug-sensitizing mutation that will be useful for chemical genetic studies. This study anticipates p110α mutations that are likely to emerge against PI3K-targeted drugs, and identifies inhibitor classes that can overcome these resistance mutations. Our experiments in mammalian cells show that multi-targeted inhibitors with additional PI3K pathway targets are less susceptible to drug resistance than selective PI3K inhibitors. The screening protocol described here is applicable to several other drug targets that inhibit S. cerevisiae growth in addition to p110α. PMID:18691552

  4. Oncogenic CARD11 mutations induce hyperactive signaling by disrupting autoinhibition by the PKC-responsive inhibitory domain.

    PubMed

    Lamason, Rebecca L; McCully, Ryan R; Lew, Stefanie M; Pomerantz, Joel L

    2010-09-28

    The regulated activation of NF-κB by antigen receptor signaling is required for normal B and T lymphocyte activation during the adaptive immune response. Dysregulated NF-κB activation is associated with several types of lymphoma, including diffuse large B cell lymphoma (DLBCL). During normal antigen receptor signaling, the multidomain scaffold protein CARD11 undergoes a transition from a closed, inactive state to an open, active conformation that recruits several signaling proteins into a complex, leading to IKK kinase activation. This transition is regulated by the CARD11 inhibitory domain (ID), which participates in intramolecular interactions that prevent cofactor binding to CARD11 prior to signaling, but which is neutralized after receptor engagement by phosphorylation. Several oncogenic CARD11 mutations have been identified in DLBCL that enhance activity and that are mostly found in the coiled-coil domain. However, the mechanisms by which these mutations cause CARD11 hyperactivity and spontaneous NF-κB activation are poorly understood. In this report, we provide several lines of evidence that oncogenic mutations F123I and L225LI induce CARD11 hyperactivity by disrupting autoinhibition by the CARD11 ID. These mutations disrupt ID-mediated intramolecular interactions and ID-dependent inhibition and bypass the requirement for ID phosphorylation during T cell receptor signaling. Intriguingly, these mutations selectively enhance the apparent affinity of CARD11 for Bcl10, but not for other signaling proteins that are recruited to CARD11 in an ID-dependent manner during normal antigen receptor signaling. Our results establish a mechanism that explains how DLBCL-associated mutations in CARD11 can initiate spontaneous, receptor-independent activation of NF-κB.

  5. Down-regulation of let-7 microRNA increased K-ras expression in lung damage induced by radon.

    PubMed

    Chen, Zhihai; Wang, Dapeng; Gu, Chao; Liu, Xing; Pei, Weiwei; Li, Jianxiang; Cao, Yi; Jiao, Yang; Tong, Jian; Nie, Jihua

    2015-09-01

    Radon has long been recognized as a human carcinogen leading to lung cancer, but the underlying mechanisms remain obscure. Recent studies have shown that the let-7 microRNA and K-ras play an important role in the development of various cancers. However, the exact role between let-7 and K-ras in radon induced lung damage has not been explored so far. In the present study, wistar rats and human bronchial epithelial (HBE) cells were long-term exposed to radon, and then alterations in histological pathology of rat lung tissue, ROS, antioxidant enzymes activities and clonogenic formation in HBE cells, as well as changes in let-7 and K-ras expression were determined to observe the adverse effects induced by radon. The results showed that long-term exposure to radon produced severe lung damage in rats, significantly increased ROS production and clonogenic formation ratios and decreased SOD activities in HBE cells. In addition, an obvious down-regulation of let-7 and up-regulation of K-ras were also revealed both in mRNA and in protein level in lung tissue of rats and HBE cells exposed to radon. Furthermore, a significant down-regulation of K-ras was then confirmed in both let-7b-3p and let-7a-2-3p transfected HBE cells. Taken together, the present results propose an involvement of let-7 microRNA and K-ras in radon induced lung damage both in vivo and in vitro, which may thus be of potential value in early diagnosis and therapy of radon-induced lung tumorgenesis.

  6. Calmodulin binds to K-Ras, but not to H- or N-Ras, and modulates its downstream signaling.

    PubMed

    Villalonga, P; López-Alcalá, C; Bosch, M; Chiloeches, A; Rocamora, N; Gil, J; Marais, R; Marshall, C J; Bachs, O; Agell, N

    2001-11-01

    Activation of Ras induces a variety of cellular responses depending on the specific effector activated and the intensity and amplitude of this activation. We have previously shown that calmodulin is an essential molecule in the down-regulation of the Ras/Raf/MEK/extracellularly regulated kinase (ERK) pathway in cultured fibroblasts and that this is due at least in part to an inhibitory effect of calmodulin on Ras activation. Here we show that inhibition of calmodulin synergizes with diverse stimuli (epidermal growth factor, platelet-derived growth factor, bombesin, or fetal bovine serum) to induce ERK activation. Moreover, even in the absence of any added stimuli, activation of Ras by calmodulin inhibition was observed. To identify the calmodulin-binding protein involved in this process, calmodulin affinity chromatography was performed. We show that Ras and Raf from cellular lysates were able to bind to calmodulin. Furthermore, Ras binding to calmodulin was favored in lysates with large amounts of GTP-bound Ras, and it was Raf independent. Interestingly, only one of the Ras isoforms, K-RasB, was able to bind to calmodulin. Furthermore, calmodulin inhibition preferentially activated K-Ras. Interaction between calmodulin and K-RasB is direct and is inhibited by the calmodulin kinase II calmodulin-binding domain. Thus, GTP-bound K-RasB is a calmodulin-binding protein, and we suggest that this binding may be a key element in the modulation of Ras signaling.

  7. Binding hotspots on K-ras: consensus ligand binding sites and other reactive regions from probe-based molecular dynamics analysis.

    PubMed

    Prakash, Priyanka; Hancock, John F; Gorfe, Alemayehu A

    2015-05-01

    We have used probe-based molecular dynamics (pMD) simulations to search for interaction hotspots on the surface of the therapeutically highly relevant oncogenic K-Ras G12D. Combining the probe-based query with an ensemble-based pocket identification scheme and an analysis of existing Ras-ligand complexes, we show that (i) pMD is a robust and cost-effective strategy for binding site identification, (ii) all four of the previously reported ligand binding sites are suitable for structure-based ligand design, and (iii) in some cases probe binding and expanded sampling of configurational space enable pocket expansion and increase the likelihood of site identification. Furthermore, by comparing the distribution of hotspots in nonpocket-like regions with known protein- and membrane-interacting interfaces, we propose that pMD has the potential to predict surface patches responsible for protein-biomolecule interactions. These observations have important implications for future drug design efforts and will facilitate the search for potential interfaces responsible for the proposed transient oligomerization or interaction of Ras with other biomolecules in the cellular milieu.

  8. INDUCTION OF DNA ADDUCTS, TUMORS, AND KI-RAS ONCOGENE MUTATIONS IN STRAIN A/J MOUSE LUNG BY IP. ADMINISTRATION OF DIBENZ[A,H]ANTHRACENE

    EPA Science Inventory

    Induction of DNA adducts, tumors, and Ki-ras oncogene mutations in strain AlJ mouse lung by ip. administration of dibenz[a,h]anthracene

    Previous studies of polycyclic aromatic hydrocarbon (P AH) induced lung tumors in the strain NJ mouse model system have demonstrated qua...

  9. MassARRAY determination of somatic oncogenic mutations in solid tumors: Moving forward to personalized medicine.

    PubMed

    Fleitas, Tania; Ibarrola-Villava, Maider; Ribas, Gloria; Cervantes, Andrés

    2016-09-01

    This article will review the impact of the recently developed MassARRAY technology on our understanding of cancer biology and treatment. Analysis of somatic mutations is a useful tool in selecting personalized therapy, and for predicting the outcome of many solid tumors. Here, we review the literature on the application of MassARRAY technology (Sequenom Hamburg, Germany) to determine the mutation profile of solid tumors from patients. We summarize the use of commercially available panels of mutations - such as OncoCarta™ or other combinations - and their concordance with results obtained by using other technologies, such as next generation sequencing. PMID:27501018

  10. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations

    PubMed Central

    Semenza, Gregg L.

    2013-01-01

    Hypoxia occurs frequently in human cancers and induces adaptive changes in cell metabolism that include a switch from oxidative phosphorylation to glycolysis, increased glycogen synthesis, and a switch from glucose to glutamine as the major substrate for fatty acid synthesis. This broad metabolic reprogramming is coordinated at the transcriptional level by HIF-1, which functions as a master regulator to balance oxygen supply and demand. HIF-1 is also activated in cancer cells by tumor suppressor (e.g., VHL) loss of function and oncogene gain of function (leading to PI3K/AKT/mTOR activity) and mediates metabolic alterations that drive cancer progression and resistance to therapy. Inhibitors of HIF-1 or metabolic enzymes may impair the metabolic flexibility of cancer cells and make them more sensitive to anticancer drugs. PMID:23999440

  11. Mutation profiles of synchronous colorectal cancers from a patient with Lynch syndrome suggest distinct oncogenic pathways

    PubMed Central

    Shi, Chanjuan; Holt, Jonathan A.; Vnencak-Jones, Cindy L.

    2016-01-01

    Patients with Lynch syndrome often present with multiple synchronous or metachronous colorectal cancers (CRCs). The presence of multiple CRCs with distinct genetic profiles and driver mutations could complicate treatment as each cancer may respond differently to therapy. Studies of sporadic CRCs suggested that synchronous tumors have distinct etiologies, but could not rule out differences in genetic background. The presence of multiple cancers in a patient with a predisposing mutation provides an opportunity to profile synchronous cancers in the same genetic background. Here, we describe the case of a patient with Lynch syndrome that presented with six synchronous CRCs. Microsatellite instability (MSI) and genomic profiling indicated that each lesion had a unique pattern of instability and a distinct profile of affected genes. These findings support the idea that in Lynch syndrome, synchronous CRCs can develop in parallel with distinct mutation profiles and that these differences may inform treatment decisions. PMID:27284491

  12. Frameshift mutation of UVRAG: Switching a tumor suppressor to an oncogene in colorectal cancer.

    PubMed

    He, Shanshan; Liang, Chengyu

    2015-01-01

    Colorectal cancer (CRC) ranks as the second leading cause of cancer-related deaths in the Western world. It has a nearly 50% metastasis rate and only a subset of patients respond to current treatment strategy. UVRAG, a key autophagy effector and a guardian of chromosomal stability, is truncated by a frameshift (FS) mutation in CRC with microsatellite instability (MSI). However, the pathological and clinical significance of this UVRAG truncation remains less understood. Our recent study discovered that this FS mutation yields a much shortened form of the UVRAG protein, which counteracts most of the tumor-suppressor functions of wild-type (WT) UVRAG in autophagy, centrosome stability, and DNA repair in a dominant-negative fashion. Whereas this truncated mutation of UVRAG promotes tumorigenesis, epithelial-to-mesenchymal transition, and metastasis, it appears to sensitize CRC tumors to adjuvant chemotherapy, making it a potential molecular marker to individualize therapeutic approach in CRC.

  13. Oncogenic Mutations Differentially Affect Bax Monomer, Dimer, and Oligomeric Pore Formation in the Membrane

    PubMed Central

    Zhang, Mingzhen; Zheng, Jie; Nussinov, Ruth; Ma, Buyong

    2016-01-01

    Dysfunction of Bax, a pro-apoptotic regulator of cellular metabolism is implicated in neurodegenerative diseases and cancer. We have constructed the first atomistic models of the Bax oligomeric pore consisting with experimental residue-residue distances. The models are stable, capturing well double electron-electron resonance (DEER) spectroscopy measurements and provide structural details in line with the DEER data. Comparison with the latest experimental results revealed that our models agree well with both Bax and Bak pores, pointed to a converged structural arrangement for Bax and Bak pore formation. Using multi-scale molecular dynamics simulations, we probed mutational effects on Bax transformation from monomer → dimer → membrane pore formation at atomic resolution. We observe that two cancer-related mutations, G40E and S118I, allosterically destabilize the monomer and stabilize an off-pathway swapped dimer, preventing productive pore formation. This observation suggests a mechanism whereby the mutations may work mainly by over-stabilizing the monomer → dimer transformation toward an unproductive off-pathway swapped-dimer state. Our observations point to misfolded Bax states, shedding light on the molecular mechanism of Bax mutation-elicited cancer. Most importantly, the structure of the Bax pore facilitates future study of releases cytochrome C in atomic detail. PMID:27630059

  14. Oncogenic Mutations Differentially Affect Bax Monomer, Dimer, and Oligomeric Pore Formation in the Membrane.

    PubMed

    Zhang, Mingzhen; Zheng, Jie; Nussinov, Ruth; Ma, Buyong

    2016-01-01

    Dysfunction of Bax, a pro-apoptotic regulator of cellular metabolism is implicated in neurodegenerative diseases and cancer. We have constructed the first atomistic models of the Bax oligomeric pore consisting with experimental residue-residue distances. The models are stable, capturing well double electron-electron resonance (DEER) spectroscopy measurements and provide structural details in line with the DEER data. Comparison with the latest experimental results revealed that our models agree well with both Bax and Bak pores, pointed to a converged structural arrangement for Bax and Bak pore formation. Using multi-scale molecular dynamics simulations, we probed mutational effects on Bax transformation from monomer → dimer → membrane pore formation at atomic resolution. We observe that two cancer-related mutations, G40E and S118I, allosterically destabilize the monomer and stabilize an off-pathway swapped dimer, preventing productive pore formation. This observation suggests a mechanism whereby the mutations may work mainly by over-stabilizing the monomer → dimer transformation toward an unproductive off-pathway swapped-dimer state. Our observations point to misfolded Bax states, shedding light on the molecular mechanism of Bax mutation-elicited cancer. Most importantly, the structure of the Bax pore facilitates future study of releases cytochrome C in atomic detail. PMID:27630059

  15. Truncating mutation in the autophagy gene UVRAG confers oncogenic properties and chemosensitivity in colorectal cancers

    PubMed Central

    He, Shanshan; Zhao, Zhen; Yang, Yongfei; O'Connell, Douglas; Zhang, Xiaowei; Oh, Soohwan; Ma, Binyun; Lee, Joo-Hyung; Zhang, Tian; Varghese, Bino; Yip, Janae; Dolatshahi Pirooz, Sara; Li, Ming; Zhang, Yong; Li, Guo-Min; Ellen Martin, Sue; Machida, Keigo; Liang, Chengyu

    2015-01-01

    Autophagy-related factors are implicated in metabolic adaptation and cancer metastasis. However, the role of autophagy factors in cancer progression and their effect in treatment response remain largely elusive. Recent studies have shown that UVRAG, a key autophagic tumour suppressor, is mutated in common human cancers. Here we demonstrate that the cancer-related UVRAG frameshift (FS), which does not result in a null mutation, is expressed as a truncated UVRAGFS in colorectal cancer (CRC) with microsatellite instability (MSI), and promotes tumorigenesis. UVRAGFS abrogates the normal functions of UVRAG, including autophagy, in a dominant-negative manner. Furthermore, expression of UVRAGFS can trigger CRC metastatic spread through Rac1 activation and epithelial-to-mesenchymal transition, independently of autophagy. Interestingly, UVRAGFS expression renders cells more sensitive to standard chemotherapy regimen due to a DNA repair defect. These results identify UVRAG as a new MSI target gene and provide a mechanism for UVRAG participation in CRC pathogenesis and treatment response. PMID:26234763

  16. Comparison of mutated JAK2 and ABL1 as oncogenes and drug targets in myeloproliferative disorders

    PubMed Central

    Walz, Christoph; Cross, Nicholas C. P.; Van Etten, Richard A.; Reiter, Andreas

    2012-01-01

    Constitutively activated mutants of the non-receptor tyrosine kinases (TK) ABL1 and JAK2 play a central role in the pathogenesis of clinically and morphologically distinct chronic myeloproliferative disorders but are also found in some cases of de novo acute leukemia and lymphoma. Ligand-independent activation occurs as a consequence of point mutations or insertions/deletions within functionally relevant regulatory domains (JAK2), or the creation of TK fusion proteins by balanced reciprocal translocations, insertions or episomal amplification (ABL1 and JAK2). Specific abnormalities are correlated with clinical phenotype, although some are broad and encompass several WHO-defined entities. TKs are excellent drug targets as exemplified by the activity of imatinib in BCR-ABL1-positive disease, particularly chronic myeloid leukemia. Resistance to imatinib is seen in a minority of cases and is often associated with the appearance of secondary point mutations within the TK domain of BCR-ABL1. These mutations are highly variable in their sensitivity to increased doses of imatinib or alternative TK-inhibitors such as nilotinib or dasatinib. Selective and non-selective inhibitors of JAK2 are currently being developed and encouraging data from pre-clinical experiments and initial phase-I-studies regarding efficacy and potential toxicity of these compounds have already been reported. PMID:18528425

  17. Global expression profiling reveals gain-of-function onco-genic activity of a mutated thyroid hormone receptor in thyroid carcinogenesis

    PubMed Central

    Lu, Changxue; Mishra, Alok; Zhu, Yuelin J; Meltzer, Paul; Cheng, Sheue-yann

    2011-01-01

    Thyroid hormone receptors (TRs) are critical in regulating gene expression in normal physiological processes. Decreased expression and/or somatic mutations of TRs have been shown to be associated several types of human cancers including liver, breast, lung, and thyroid. To understand the molecular mechanisms by which mutated TRs promote carcinogenesis, an animal model of follicular thyroid carcinoma (FTC) (Thrbpv/pv mice) was used in the present study. The Thrbpv/pv mouse harbors a knockin dominant negative PV mutation, identified in a patient with resistance to thyroid hormone. To understand whether oncogenic actions of PV involve not only the loss of normal TR functions but also gain-of-function activities, we compared the gene expression profiles of thyroid lesions in Thrbpv/pv mice and Thra1-/- Thrb-/- mice that also spontaneously develop FTC, but with less severe malignancy. Analysis of the cDNA microarray data derived from microdissected thyroid tumor cells of these two mice showed contrasting global gene expression profiles. With stringent selection using 2.5-fold change (p<0.01) in cDNA microarray analysis, 241 genes with altered gene expression were identified. Nearly half of the genes (n=103: 42.7% of total) with altered gene expression in thyroid tumor cells of Thrbpv/pv mice were associated with tumorigenesis and metastasis; some of these genes function as oncogenes in human thyroid cancers. The remaining genes were found to function in transcriptional regulation, RNA processing, cell proliferation, apoptosis, angiogenesis, and cytoskeleton modification. These results indicate that the more aggressive thyroid tumor progression in Thrbpv/pv mice was not due simply to the loss of tumor suppressor functions of TR via mutation but also, importantly, to gain-of-function in the oncogenic activities of PV to drive thyroid carcinogenesis. Thus, the present study identifies a novel mechanism by which a mutated TRβ evolves with an oncogenic advantage to promote

  18. High prevalence of the C634Y mutation in the RET proto-oncogene in MEN 2A families in Spain

    PubMed Central

    Sanchez, B.; Robledo, M.; Biarnes, J.; Saez, M.; Volpini, V.; Benitez, J.; Navarro, E.; Ruiz, A.; Antinolo, G.; Borrego, S.

    1999-01-01

    The RET proto-oncogene encodes a receptor tyrosine kinase expressed in neural crest derived tissues. Germline mutations in the RET proto-oncogene are responsible for three different dominantly inherited cancer syndromes: multiple endocrine neoplasia type 2A (MEN 2A), type 2B (MEN 2B), and familial medullary thyroid carcinoma (FMTC). MTC can also occur sporadically. Molecular characterisation of the RET proto-oncogene has been performed by PCR-SSCP analysis, direct DNA sequencing, and restriction enzyme analysis in 49 unrelated, Spanish, MEN 2 families: 30 MEN 2A families, six FMTC families, and 13 families classified as "other". Germline missense mutations in one of six cysteine codons (609, 611, 618, and 620 in exon 10, and codons 630 and 634 in exon 11), which encode part of the extracellular cysteine rich domain of RET, have been detected in the majority of these families: 100% of MEN 2A families, 67% of FMTC families, and 54% of families classified as "other". No RET mutations in exons 10, 11, 13, 14, 15, or 16 were detected in the remaining families. The most frequent RET mutation in MEN 2A Spanish families is C634Y, occurring in 73% of cases. Haplotype analysis does not exclude the possibility of founder effects in Spanish MEN 2A families with the C634Y mutation.


Keywords: medullary thyroid carcinoma; RET proto-oncogene; molecular analysis PMID:9950371

  19. Oncogenic AKT1(E17K) mutation induces mammary hyperplasia but prevents HER2-driven tumorigenesis

    PubMed Central

    Mancini, Maria L.; Lien, Evan C.; Toker, Alex

    2016-01-01

    One of the most frequently deregulated signaling pathways in breast cancer is the PI 3-K/Akt cascade. Genetic lesions are commonly found in PIK3CA, PTEN, and AKT, which lead to excessive and constitutive activation of Akt and downstream signaling that results in uncontrolled proliferation and increased cellular survival. One such genetic lesion is the somatic AKT1(E17K) mutation, which has been identified in 4-8% of breast cancer patients. To determine how this mutation contributes to mammary tumorigenesis, we constructed a genetically engineered mouse model that conditionally expresses human AKT1(E17K) in the mammary epithelium. Although AKT1(E17K) is only weakly constitutively active and does not promote proliferation in vitro, it is capable of escaping negative feedback inhibition to exhibit sustained signaling dynamics in vitro. Consistently, both virgin and multiparous AKT1(E17K) mice develop mammary gland hyperplasia that do not progress to carcinoma. This hyperplasia is accompanied by increased estrogen receptor expression, although exposure of the mice to estrogen does not promote tumor development. Moreover, AKT1(E17K) prevents HER2-driven mammary tumor formation, in part through negative feedback inhibition of RTK signaling. Analysis of TCGA breast cancer data revealed that the mRNA expression, total protein levels, and phosphorylation of various RTKs are decreased in human tumors harboring AKT1(E17K). PMID:27004402

  20. Therapeutic inhibition of TRF1 impairs the growth of p53-deficient K-RasG12V-induced lung cancer by induction of telomeric DNA damage

    PubMed Central

    García-Beccaria, María; Martínez, Paula; Méndez-Pertuz, Marinela; Martínez, Sonia; Blanco-Aparicio, Carmen; Cañamero, Marta; Mulero, Francisca; Ambrogio, Chiara; Flores, Juana M; Megias, Diego; Barbacid, Mariano; Pastor, Joaquín; Blasco, Maria A

    2015-01-01

    Telomeres are considered anti-cancer targets, as telomere maintenance above a minimum length is necessary for cancer growth. Telomerase abrogation in cancer-prone mouse models, however, only decreased tumor growth after several mouse generations when telomeres reach a critically short length, and this effect was lost upon p53 mutation. Here, we address whether induction of telomere uncapping by inhibition of the TRF1 shelterin protein can effectively block cancer growth independently of telomere length. We show that genetic Trf1 ablation impairs the growth of p53-null K-RasG12V-induced lung carcinomas and increases mouse survival independently of telomere length. This is accompanied by induction of telomeric DNA damage, apoptosis, decreased proliferation, and G2 arrest. Long-term whole-body Trf1 deletion in adult mice did not impact on mouse survival and viability, although some mice showed a moderately decreased cellularity in bone marrow and blood. Importantly, inhibition of TRF1 binding to telomeres by small molecules blocks the growth of already established lung carcinomas without affecting mouse survival or tissue function. Thus, induction of acute telomere uncapping emerges as a potential new therapeutic target for lung cancer. PMID:25971796

  1. Therapeutic inhibition of TRF1 impairs the growth of p53-deficient K-RasG12V-induced lung cancer by induction of telomeric DNA damage.

    PubMed

    García-Beccaria, María; Martínez, Paula; Méndez-Pertuz, Marinela; Martínez, Sonia; Blanco-Aparicio, Carmen; Cañamero, Marta; Mulero, Francisca; Ambrogio, Chiara; Flores, Juana M; Megias, Diego; Barbacid, Mariano; Pastor, Joaquín; Blasco, Maria A

    2015-05-13

    Telomeres are considered anti-cancer targets, as telomere maintenance above a minimum length is necessary for cancer growth. Telomerase abrogation in cancer-prone mouse models, however, only decreased tumor growth after several mouse generations when telomeres reach a critically short length, and this effect was lost upon p53 mutation. Here, we address whether induction of telomere uncapping by inhibition of the TRF1 shelterin protein can effectively block cancer growth independently of telomere length. We show that genetic Trf1 ablation impairs the growth of p53-null K-Ras(G12V)-induced lung carcinomas and increases mouse survival independently of telomere length. This is accompanied by induction of telomeric DNA damage, apoptosis, decreased proliferation, and G2 arrest. Long-term whole-body Trf1 deletion in adult mice did not impact on mouse survival and viability, although some mice showed a moderately decreased cellularity in bone marrow and blood. Importantly, inhibition of TRF1 binding to telomeres by small molecules blocks the growth of already established lung carcinomas without affecting mouse survival or tissue function. Thus, induction of acute telomere uncapping emerges as a potential new therapeutic target for lung cancer.

  2. Pancreatitis-induced Inflammation Contributes to Pancreatic Cancer by Inhibiting Oncogene-Induced Senescence

    PubMed Central

    Guerra, Carmen; Collado, Manuel; Navas, Carolina; Schuhmacher, Alberto J; Hernández-Porras, Isabel; Cañamero, Marta; Rodriguez-Justo, Manuel; Serrano, Manuel; Barbacid, Mariano

    2016-01-01

    Pancreatic acinar cells of adult mice (≥P60) are resistant to transformation by some of the most robust oncogenic insults including expression of K-Ras oncogenes and loss of p16Ink4a/p19Arf or Trp53 tumor suppressors. Yet, these acinar cells yield pancreatic intraepithelial neoplasias (mPanIN) and ductal adenocarcinomas (mPDAC) if exposed to limited bouts of non-acute pancreatitis, providing they harbor K-Ras oncogenes. Pancreatitis contributes to tumor progression by abrogating the senescence barrier characteristic of low-grade mPanINs. Attenuation of pancreatitis-induced inflammation also accelerates tissue repair and thwarts mPanIN expansion. Patients with chronic pancreatitis display senescent PanINs, if they have received anti-inflammatory drugs. These results put forward the concept that anti-inflammatory treatment of people diagnosed with pancreatitis may reduce their risk of developing PDAC. PMID:21665147

  3. Mutations of the KIT (Mast/Stem cell growth factor receptor) proto-oncogene account for a continuous range of phenotypes in human piebaldism

    SciTech Connect

    Spritz, R.A.; Holmes, S.A. ); Ramesar, R.; Greenberg, J.; Beighton, P.; Curtis, D.

    1992-11-01

    Piebaldism is a rare autosomal dominant disorder of pigmentation, characterized by congenital patches of white skin and hair from which melanocytes are absent. The authors have previously shown that piebaldism can result from missense and frameshift mutations of the KIT proto-oncogene, which encodes the cellular receptor tyrosine kinase for the mast/stem cell growth factor. Here, the authors report two novel KIT mutations associated with human piebaldism. A proximal frameshift is associated with a mild piebald phenotype, and a splice-junction mutation is associated with a highly variable piebald phenotype. They discuss the apparent relationship between the predicted impact of specific KIT mutations on total KIT-dependent signal transduction and the severity of the resultant piebald phenotypes. 35 refs., 5 figs.

  4. Targeting the protein prenyltransferases efficiently reduces tumor development in mice with K-RAS-induced lung cancer.

    PubMed

    Liu, Meng; Sjogren, Anna-Karin M; Karlsson, Christin; Ibrahim, Mohamed X; Andersson, Karin M E; Olofsson, Frida J; Wahlstrom, Annika M; Dalin, Martin; Yu, Huiming; Chen, Zhenggang; Yang, Shao H; Young, Stephen G; Bergo, Martin O

    2010-04-01

    RAS and RHO proteins, which contribute to tumorigenesis and metastasis, undergo posttranslational modification with an isoprenyl lipid by protein farnesyltransferase (FTase) or protein geranylgeranyltransferase-I (GGTase-I). Inhibitors of FTase and GGTase-I were developed to block RAS-induced malignancies, but their utility has been difficult to evaluate because of off-target effects, drug resistance, and toxicity. Moreover, the impact of FTase deficiency and combined FTase/GGTase-I deficiency has not been evaluated with genetic approaches. We found that inactivation of FTase eliminated farnesylation of HDJ2 and H-RAS, prevented H-RAS targeting to the plasma membrane, and blocked proliferation of primary and K-RAS(G12D)-expressing fibroblasts. FTase inactivation in mice with K-RAS-induced lung cancer reduced tumor growth and improved survival, similar to results obtained previously with inactivation of GGTase-I. Simultaneous inactivation of FTase and GGTase-I markedly reduced lung tumors and improved survival without apparent pulmonary toxicity. These data shed light on the biochemical and therapeutic importance of FTase and suggest that simultaneous inhibition of FTase and GGTase-I could be useful in cancer therapeutics.

  5. Insights into the oncogenic effects of /PIK3CA/ mutations from the structure of p110[alpha]/p85[alpha

    SciTech Connect

    Huang, Chuan-Hsiang; Mandelker, Diana; Gabelli, Sandra B.; Amzel, L.Mario

    2011-07-14

    Phosphatidylinositide-3-kinases (PI3K) initiate a number of signaling pathways by recruiting other kinases, such as Akt, to the plasma membrane. One of the isoforms, PI3K{alpha}, is an oncogene frequently mutated in several cancer types. These mutations increase PI3K kinase activity, leading to increased cell survival, cell motility, cell metabolism, and cell cycle progression. The structure of the complex between the catalytic subunit of PI3K{alpha}, p110{alpha}, and a portion of its regulatory subunit, p85{alpha} reveals that the majority of the oncogenic mutations occur at the interfaces between p110 domains and between p110 and p85 domains. At these positions, mutations disrupt interactions resulting in changes in the kinase domain that may increase enzymatic activity. The structure also suggests that interaction with the membrane is mediated by one of the p85 domains (iSH2). These findings may provide novel structural loci for the design of new anti-cancer drugs.

  6. Satellite RNAs promote pancreatic oncogenic processes via the dysfunction of YBX1

    PubMed Central

    Kishikawa, Takahiro; Otsuka, Motoyuki; Yoshikawa, Takeshi; Ohno, Motoko; Ijichi, Hideaki; Koike, Kazuhiko

    2016-01-01

    Highly repetitive tandem arrays at the centromeric and pericentromeric regions in chromosomes, previously considered silent, are actively transcribed, particularly in cancer. This aberrant expression occurs even in K-ras-mutated pancreatic intraepithelial neoplasia (PanIN) tissues, which are precancerous lesions. To examine the biological roles of the satellite RNAs in carcinogenesis, we construct mouse PanIN-derived cells expressing major satellite (MajSAT) RNA and show increased malignant properties. We find an increase in frequency of chromosomal instability and point mutations in both genomic and mitochondrial DNA. We identify Y-box binding protein 1 (YBX1) as a protein that binds to MajSAT RNA. MajSAT RNA inhibits the nuclear translocation of YBX1 under stress conditions, thus reducing its DNA-damage repair function. The forced expression of YBX1 significantly decreases the aberrant phenotypes. These findings indicate that during the early stage of cancer development, satellite transcripts may act as ‘intrinsic mutagens' by inducing YBX1 dysfunction, which may be crucial in oncogenic processes. PMID:27667193

  7. Genotyping Cancer-Associated Genes in Chordoma Identifies Mutations in Oncogenes and Areas of Chromosomal Loss Involving CDKN2A, PTEN, and SMARCB1

    PubMed Central

    Choy, Edwin; MacConaill, Laura E.; Cote, Gregory M.; Le, Long P.; Shen, Jacson K.; Nielsen, Gunnlaugur P.; Iafrate, Anthony J.; Garraway, Levi A.; Hornicek, Francis J.; Duan, Zhenfeng

    2014-01-01

    The molecular mechanisms underlying chordoma pathogenesis are unknown. We therefore sought to identify novel mutations to better understand chordoma biology and to potentially identify therapeutic targets. Given the relatively high costs of whole genome sequencing, we performed a focused genetic analysis using matrix-assisted laser desorption/ionization-time of flight mass spectrometer (Sequenom iPLEX genotyping). We tested 865 hotspot mutations in 111 oncogenes and selected tumor suppressor genes (OncoMap v. 3.0) of 45 human chordoma tumor samples. Of the analyzed samples, seven were identified with at least one mutation. Six of these were from fresh frozen samples, and one was from a paraffin embedded sample. These observations were validated using an independent platform using homogeneous mass extend MALDI-TOF (Sequenom hME Genotyping). These genetic alterations include: ALK (A877S), CTNNB1 (T41A), NRAS (Q61R), PIK3CA (E545K), PTEN (R130), CDKN2A (R58*), and SMARCB1 (R40*). This study reports on the largest comprehensive mutational analysis of chordomas performed to date. To focus on mutations that have the greatest chance of clinical relevance, we tested only oncogenes and tumor suppressor genes that have been previously implicated in the tumorigenesis of more common malignancies. We identified rare genetic changes that may have functional significance to the underlying biology and potential therapeutics for chordomas. Mutations in CDKN2A and PTEN occurred in areas of chromosomal copy loss. When this data is paired with the studies showing 18 of 21 chordoma samples displaying copy loss at the locus for CDKN2A, 17 of 21 chordoma samples displaying copy loss at PTEN, and 3 of 4 chordoma samples displaying deletion at the SMARCB1 locus, we can infer that a loss of heterozygosity at these three loci may play a significant role in chordoma pathogenesis. PMID:24983247

  8. The relationship between microvessel count and the expression of vascular endothelial growth factor, p53, and K-ras in non-small cell lung cancer.

    PubMed Central

    Kang, Y. H.; Kim, K. S.; Yu, Y. K.; Lim, S. C.; Kim, Y. C.; Park, K. O.

    2001-01-01

    Using immunohistochemical staining, we studied the relationship between the microvessel count (MC) and the expression of K-ras, mutant p53 protein, and vascular endothelial growth factor (VEGF) in 61 surgically resected non-small cell lung cancers (NSCLC) (42 squamous cell carcinoma, 14 adenocarcinoma, 2 large cell carcinoma, 2 adenosquamous carcinoma, and 1 mucoepidermoid carcinoma). MC of the tumors with lymph node (LN) metastasis was significantly higher than that of tumors without LN metastasis (66.1+/-23.1 vs. 33.8+/-13.1, p<0.05). VEGF was positive in 54 patients (88.5%). MC was 58.1+/-25.2 (mean+/-S.D.) in a x200 field, and it was significantly higher in VEGF(+) tumors than in VEGF(-) tumors (61.4+/-23.7 vs. 32.9+/-23.8, p<0.05). VEGF expression was higher in K-ras-positive or mutant p53-positive tumors than in negative tumors (p<0.05). MC was significantly higher in K-ras(+) tumors than in K-ras(-) tumors, although it did not differ according to the level of mutant p53 protein expression. Survival did not differ with VEGF, mutant p53, or K-ras expression, or the level of MC. In conclusion, there is a flow of molecular alterations from K-ras and p53, to VEGF expression, leading to angiogenesis and ultimately lymph node metastasis. Correlations between variables in close approximation and the lack of prognostic significance of individual molecular alterations suggest that tumorigenesis and metastasis are multifactorial processes. PMID:11511786

  9. K-RAS MUTATIONS IN LUNG CARCINOMAS FROM NONSMOKING WOMEN EXPOSED TO UNVENTED COAL SMOKE IN CHINA

    EPA Science Inventory

    Abstract Lung cancer mortality rate in nonsmoking women in Xuan Wei (XW) County is the highest in China. The XW lung cancer rate is associated with exposure to coal smoke, containing high concentrations of polycyclic aromatic hydrocarbons (PARs), in unvented homes. Here we restig...

  10. Dominant negative and loss of function mutations of the c-kit (mast/stem cell growth factor receptor) proto-oncogene in human piebaldism

    SciTech Connect

    Spritz, R.A.; Giebel, L.B.; Holmes, S.A. )

    1992-02-01

    Piebaldism is an autosomal dominant disorder of melanocyte development and is characterized by congenital white parches of skin and hair from which melanocytes are completely absent. A similar disorder of the mouse, 'dominant white spotting' (W), results from mutations of the c-kit proto-oncogene, which encodes the cellular tyrosine kinases receptor for the mast/stem cell growth factor. The authors have identified c-kit gene mutations in three patients with piebaldism. A missense substitution (Phe[r arrow]Leu) at codon 584, within the tyrosine kinases domain, is associated with a severe piebald phenotype, whereas two different frameshifts, within codons 561 and 642, are both associated with a variable and relatively mild piebald phenotype. This is consistent with a possible 'dominant negative' effect of missense c-kit polypeptides on the function of the dimeric receptor.

  11. [The direct gene test in familial medullary thyroid gland carcinoma and in MEN syndromes. Detection of mutations in the ret proto-oncogene saves screening studies].

    PubMed

    Stuhrmann, M

    1995-12-20

    Multiple endocrine neoplasias, type 2A and type 2B (MEN2A, MEN2B), and familial medullary thyroid carcinoma (FMTC) have an autosomal dominant mode of inheritance. The risk of passing on the disease is almost 50%. Early diagnosis and surgical intervention largely prevents aggressive metastasis of thyroid carcinoma, the main cause of death. The diagnostic possibilities have been much improved by the implementation of direct gene testing. Exclusion of the inheritance of a parental mutation in the RET proto-oncogene removes the potential risk of progeny contracting the disease, and obviates the need for the usual annual screening from age 5 years onward. In many of those cases in whom a mutation is detected, prophylactic surgical intervention should be considered.

  12. Oncogenes and surgical pathology.

    PubMed

    Bartow, S A

    1987-08-01

    The discovery of oncogenes began with identification of genetic material in viruses capable of causing neoplasia in animals. Through processes of "transduction" and "insertional mutagenesis," RNA/retroviruses may (1) alter directly, (2) alter expression of, or (3) move pieces of host cellular genome in ways that they become potential agents of neoplastic transformation. The pieces of host cellular genome, either affected in situ by viral gene insertion or transduced by the virus, are known as oncogenes. Approximately 20 oncogenes have been identified. Although they have yet to be proven to be sufficient or necessary for neoplastic transformation, the evidence for their playing a part in the transformation process is mounting. The functions of the protein products of the various oncogenes are closely related to those of proteins involved in normal cell regulatory and cycle activities. Study of the oncogene products and their functions serves to elucidate the basic character of neoplasia. The functional classes of oncogenes with specific examples of genomic amplification, altered mRNA or protein product expression, or mutational deletion associated with human neoplasia are reviewed herein. Since the techniques for detecting oncogene DNA and mRNA alterations are rapidly becoming a part of our diagnostic armamentarium, surgical pathologists should be prepared for the imminent use of such molecular techniques and information in diagnosis and prognosis of human neoplasia.

  13. The farnesyltransferase inhibitor, LB42708, inhibits growth and induces apoptosis irreversibly in H-ras and K-ras-transformed rat intestinal epithelial cells

    SciTech Connect

    Kim, Han-Soo; Kim, Ju Won; Gang, Jingu; Wen, Jing; Koh, Sang Seok; Koh, Jong Sung; Chung, Hyun-Ho; Song, Si Young . E-mail: gisong@yumc.yonsei.ac.kr

    2006-09-15

    LB42708 (LB7) and LB42908 (LB9) are pyrrole-based orally active farnesyltransferase inhibitors (FTIs) that have similar structures. The in vitro potencies of these compounds against FTase and GGTase I are remarkably similar, and yet they display different activity in apoptosis induction and morphological reversion of ras-transformed rat intestinal epithelial (RIE) cells. Both FTIs induced cell death despite K-ras prenylation, implying the participation of Ras-independent mechanism(s). Growth inhibition by these two FTIs was accompanied by G1 and G2/M cell cycle arrests in H-ras and K-ras-transformed RIE cells, respectively. We identified three key markers, p21{sup CIP1/WAF1}, RhoB and EGFR, that can explain the differences in the molecular mechanism of action between two FTIs. Only LB7 induced the upregulation of p21{sup CIP1/WAF1} and RhoB above the basal level that led to the cell cycle arrest and to distinct morphological alterations of ras-transformed RIE cells. Both FTIs successfully inhibited the ERK and activated JNK in RIE/K-ras cells. While the addition of conditioned medium from RIE/K-ras reversed the growth inhibition of ras-transformed RIE cells by LB9, it failed to overcome the growth inhibitory effect of LB7 in both H-ras- and K-ras-transformed RIE cells. We found that LB7, but not LB9, decreased the expression of EGFRs that confers the cellular unresponsiveness to EGFR ligands. These results suggest that LB7 causes the induction of p21{sup CIP1/WAF1} and RhoB and downregulation of EGFR that may serve as critical steps in the mechanism by which FTIs trigger irreversible inhibitions on the cell growth and apoptosis in ras-transformed cells.

  14. Pesticides and oncogenic modulation.

    PubMed

    Vakonaki, Elena; Androutsopoulos, Vasilis P; Liesivuori, Jyrki; Tsatsakis, Aristidis M; Spandidos, Demetrios A

    2013-05-10

    Pesticides constitute a diverse class of chemicals used for the protection of agricultural products. Several lines of evidence demonstrate that organochlorine and organophosphate pesticides can cause malignant transformation of cells in in vitro and in vivo models. In the current minireview a comprehensive summary of recent in vitro findings is presented along with data reported from human population studies, regarding the impact of pesticide exposure on activation or dysregulation of oncogenes and tumor suppressor genes. Substantial mechanistic work suggests that pesticides are capable of inducing mutations in oncogenes and increase their transcriptional expression in vitro, whereas human population studies indicate associations between pesticide exposure levels and mutation occurrence in cancer-related genes. Further work is required to fully explore the exact mechanisms by which pesticide exposure affects the integrity and normal function of oncogenes and tumor suppressor genes in human populations.

  15. Transcriptional profiling of immortalized and K-ras-transformed mouse fibroblasts upon PKA stimulation by forskolin in low glucose availability.

    PubMed

    Chiaradonna, Ferdinando; Pirola, Yuri; Ricciardiello, Francesca; Palorini, Roberta

    2016-09-01

    Forskolin (FSK) induces activation of protein kinase A (PKA). This activation protects specifically some cancer cells from death induced by glucose starvation. Cell effects upon FSK treatment prompted us to investigate in detail the physiological role of PKA in the activation of pro-survival mechanisms in glucose starvation. In this regard we performed a microarray analysis of normal NIH3T3 and transformed NIH3T3-K-ras mouse fibroblasts cultured at 1 mM glucose and daily treated or not with 10 μM FSK until 72 h of growth, when the samples were collected. The microarray is deposited into Gene Expression Omnibus under Series GSE68266. The microarray data revealed that the activation of PKA regulates the expression of genes involved in metabolic, stress-response and pro-survival processes, like glutamine metabolism, autophagy and unfolded protein response, preventing cancer cell death in glucose starvation. Altogether these findings suggest that PKA activation, by inducing a complex transcriptional program, leads to cancer survival in nutrient stress, a typical feature of developing tumor. These transcriptional data, identifying this important role of PKA, will be useful to identify novel target in cancer therapy. PMID:27486565

  16. Ultra-sensitive biosensor for K-ras gene detection using enzyme capped gold nanoparticles conjugates for signal amplification.

    PubMed

    Fang, Xian; Bai, Lijuan; Han, Xiaowei; Wang, Jiao; Shi, Anqi; Zhang, Yuzhong

    2014-09-01

    In this study, an ultra-sensitive hairpin DNA-based electrochemical DNA biosensor for K-ras gene detection is described. Gold nanoparticles (Au-NPs) and horseradish peroxidase (HRP)-streptavidin capped Au-NPs (HAS) conjugates are used for signal amplification. Initially, hairpin DNA dually labeled with thiol at its 5' end and with biotin at its 3' end is immobilized on the surface of Au-NPs modified electrode, and the hairpin DNA is in a "closed" state; hence, the HAS conjugates are shielded from being approached by the biotin due to steric hindrance. However, in the presence of target DNA, the target DNA hybridizes with the loop structure of hairpin DNA and causes conformational change, resulting in biotin forced away from the electrode surface, thereby becoming accessible for the HAS conjugates. Thus, the HAS conjugates are linked to the electrode surface via the specific interaction between biotin and streptavidin. Electrochemical detection was performed in phosphate-buffered saline (PBS) containing tetramethylbenzidine (TMB) and H2O2. Under optimal conditions, the peak current differences (ΔI) are linear with the target DNA in the range from 0.1 fM to 1 nM with a detection limit of 0.035 fM. Furthermore, this biosensor also demonstrates its excellent specificity for single-base mismatched DNA. PMID:24939462

  17. An inducible mouse model for skin cancer reveals distinct roles for gain- and loss-of-function p53 mutations

    PubMed Central

    Caulin, Carlos; Nguyen, Thao; Lang, Gene A.; Goepfert, Thea M.; Brinkley, Bill R.; Cai, Wei-Wen; Lozano, Guillermina; Roop, Dennis R.

    2007-01-01

    Mutations in ras and p53 are the most prevalent mutations found in human nonmelanoma skin cancers. Although some p53 mutations cause a loss of function, most result in expression of altered forms of p53, which may exhibit gain-of-function properties. Therefore, understanding the consequences of acquiring p53 gain-of-function versus loss-of-function mutations is critical for the generation of effective therapies for tumors harboring p53 mutations. Here we describe an inducible mouse model in which skin tumor formation is initiated by activation of an endogenous K-rasG12D allele. Using this model we compared the consequences of activating the p53 gain-of-function mutation p53R172H and of deleting the p53 gene. Activation of the p53R172H allele resulted in increased skin tumor formation, accelerated tumor progression, and induction of metastasis compared with deletion of p53. Consistent with these observations, the p53R172H tumors exhibited aneuploidy associated with centrosome amplification, which may underlie the mechanism by which p53R172H exerts its oncogenic properties. These results clearly demonstrate that p53 gain-of-function mutations confer poorer prognosis than loss of p53 during skin carcinogenesis and have important implications for the future design of therapies for tumors that exhibit p53 gain-of-function mutations. PMID:17607363

  18. Transforming activity of the c-Ha-ras oncogene having two point mutations in codons 12 and 61.

    PubMed

    Sekiya, T; Prassolov, V S; Fushimi, M; Nishimura, S

    1985-09-01

    A recombinant plasmid carrying the human c-Ha-ras gene with two point mutations in codons 12 and 61 was constructed and its transforming activity on mouse NIH 3T3 cells was compared with those of genes with a single mutation in either codon 12 or 61. Quantitative analyses revealed that the gene with two mutations had essentially the same transforming activity as the genes with single mutations. These results indicate that a single mutation of the c-Ha-ras gene in either codon 12 or 61 is sufficient to activate the gene and that neither of the two mutation sites involved in activation of the gene needs to be intact for transforming activity.

  19. Oncogenes in melanoma: an update.

    PubMed

    Kunz, Manfred

    2014-01-01

    Melanoma is a highly aggressive tumour with poor prognosis in the metastatic stage. BRAF, NRAS, and KIT are three well-known oncogenes involved in melanoma pathogenesis. Targeting of mutated BRAF kinase has recently been shown to significantly improve overall survival of metastatic melanoma patients, underscoring the particular role of this oncogene in melanoma biology. However, recurrences regularly occur within several months, which supposedly involve further oncogenes. Moreover, oncogenic driver mutations have not been described for up to 30% of all melanomas. In order to obtain a more complete picture of the mutational landscape of melanoma, more recent studies used high-throughput DNA sequencing technologies. A number of new oncogene candidates such as MAPK1/2, ERBB4, GRIN2A, GRM3, RAC1, and PREX2 were identified. Their particular role in melanoma biology is currently under investigation. Evidence for the functional relevance of some of these new oncogene candidates has been provided in in vitro and in vivo experiments. However, these findings await further validation in clinical studies. This review provides an overview on well-known melanoma oncogenes and new oncogene candidates, based on recent high-throughput sequencing studies. The list of genes discussed herein is of course not complete but highlights some of the most significant of recent findings in this area. The new candidates may support more individualized treatment approaches for metastatic melanoma patients in the future. PMID:24468268

  20. A PCR-mutagenesis strategy for rapid detection of mutations in codon 634 of the ret proto-oncogene related to MEN 2A.

    PubMed Central

    Roqué, María; Pusiol, Eduardo; Perinetti, Héctor; Godoy, Clara Pott; Mayorga, Luis S

    2002-01-01

    Background Multiple endocrine neoplasias type 2A (MEN 2A) is a dominantly inherited cancer syndrome. Missence mutations in the codon encoding cysteine 634 of the ret proto-oncogene have been found in 85% of the MEN 2A families. The main tumour type always present in MEN 2A is medullar thyroid carcinoma (MTC). Only 25% of all MTC are hereditary, and generally they are identified by a careful family history. However, some familial MTCs are not easily detected by this means and underdiagnosis of MEN 2A is suspected. Methods DNA samples from MEN 2A patients were amplified by PCR. The products were incubated with the restriction enzyme Bst ApI or Bgl I. The samples were loaded in non-denaturing 10% Polyacrilamyde Gel and run at 120 volts for 40 min. The gels were stained with 10 μg/ml ethidium bromide, and the bands were visualized under a UV lamp. Results We developed a PCR-mutagenic method to check the integrity of the three bases of the cysteine 634 codon. Conclusion The method can be used to detect inherited mutations in MTC patients without a clear family history. The method is relatively simple to use as a routine test in these patients to decrease the underdiagnosis of MEN 2A. In addition, the assay can be used to screen affected families with any mutation in cysteine 634. PMID:12033991

  1. Activation of ras oncogenes preceding the onset of neoplasia

    SciTech Connect

    Kumar, R.; Barbacid, M. ); Sukumar, S. )

    1990-06-01

    The identification of ras oncogenes in human and animal cancers including precancerous lesions indicates that these genes participate in the early stages of neoplastic development. Yet, these observations do not define the timing of ras oncogene activation in the multistep process of carcinogenesis. To ascertain the timing of ras oncogene activation, an animal model system was devised that involves the induction of mammary carcinomas in rats exposed at birth to the carcinogen nitrosomethylurea. High-resolution restriction fragment length polymorphism analysis of polymerase chain reaction-amplified ras sequences revealed the presence of both H-ras and K-ras oncogenes in normal mammary glands 2 weeks after carcinogen treatment and at least 2 months before the onset of neoplasia. These ras oncogenes can remain latent within the mammary gland until exposure to estrogens, demonstrating that activation of ras oncogenes can precede the onset of neoplasia and suggesting that normal physiological proliferative processes such as estrogen-induced mammary gland development may lead to neoplasia if the targeted cells harbor latent ras oncogenes.

  2. A method for the second-site screening of K-Ras in the presence of a covalently attached first-site ligand

    PubMed Central

    Sun, Qi; Phan, Jason; Friberg, Anders R.; Camper, DeMarco V.; Olejniczak, Edward T.; Fesik, Stephen W.

    2015-01-01

    K-Ras is a well-validated cancer target but is considered to be “undruggable” due to the lack of suitable binding pockets. We previously discovered small molecules that bind weakly to K-Ras but wanted to improve their binding affinities by identifying ligands that bind near our initial hits that we could link together. Here we describe an approach for identifying second site ligands that uses a cysteine residue to covalently attach a compound for tight binding to the first site pocket followed by a fragment screen for binding to a second site. This approach could be very useful for targeting Ras and other challenging drug targets. PMID:25087006

  3. Aerosol delivery of eukaryotic translation initiation factor 4E-binding protein 1 effectively suppresses lung tumorigenesis in K-rasLA1 mice.

    PubMed

    Chang, S-H; Kim, J-E; Lee, J-H; Minai-Tehrani, A; Han, K; Chae, C; Cho, Y-H; Yun, J-H; Park, K; Kim, Y-S; Cho, M-H

    2013-06-01

    Conventional radiotherapy or chemotherapy for the long-term survival of patients with lung cancer is still difficult for treatment in metastatic and advanced tumors. Therefore, the safe and effective approaches to the treatment of lung cancer are needed. In this study, the effect of delivered eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) on lung cancer progression was evaluated. Recombinant adeno-associated virus (rAAV)-M3/4E-BP1 was delivered into 6-week-old K-rasLA1 lung cancer model mice through a nose-only inhalation system twice a week for 4 weeks. Long-term repeated delivery of 4E-BP1 effectively reduced tumor progression in the lungs of K-rasLA1 mice. Reduction of eIF4E by overexpression of 4E-BP1 resulted in suppression of cap-dependent protein expression of basic fibroblast growth factor (bFGF or FGF-2) and vascular endothelial growth factor (VEGF). In addition, delivered 4E-BP1 inhibited the proliferation of lung cancer cells in K-rasLA1 mice model. Our results suggest that long-term repeated viral delivery of 4E-BP1 may provide a useful tool for designing lung cancer treatment. PMID:23640516

  4. K-Ras promotes the non-small lung cancer cells survival by cooperating with sirtuin 1 and p27 under ROS stimulation.

    PubMed

    Cheng, Dezhi; Zhao, Liang; Xu, Yunsheng; Ou, Rongying; Li, Gang; Yang, Han; Li, Wenfeng

    2015-09-01

    Cigarette smoking might lead to lung cancer. However, the related signaling pathways at molecular level remained unknown until now. In this study, we studied the signaling processes associated between tobacco exposure and lung cancer. First, we detected and validated pathway-specific gene expression at bronchial epithelium. These proteins reflected the activation of signaling pathways relevant to tobacco exposure, including ATM, BCL2, GPX1, K-Ras, IKBKB, and SIRT1. Tobacco smoking was simulated via reactive oxygen species (ROS) pathway. ROS not only arrested cell cycle at G1/S stage but also increased expressions of Sirt1 and p27. Further studies showed that the expression of p27 was dependent on ERK1/2 activation, and p27 itself could halt cell cycle by inhibiting the activation of CDKs. Moreover, activation of K-Ras, the key regulator of Ras/ERK pathway, was tightly regulated by enzyme activity of Sirt1. Deacetylation of K-Ras by Sirt1 increased the transformation of Ras-GTP to Ras-GDP, promoting the activation of downstream of ERK1/2. In reverse, Ras/ERK pathway could also regulate Sirt1 transcription. In conclusion, inhibition of Sirt1 may be an effective strategy for the prevention of tumor progression in high-risk patients or as a therapeutic strategy in established tumors. PMID:25894374

  5. Gain-of-function mutations in chromatin regulators as an oncogenic mechanism and opportunity for drug intervention

    PubMed Central

    Shen, Chen

    2015-01-01

    Purpose of review Somatic gain-of-function mutations that drive cancer pathogenesis are well-established opportunities for therapeutic intervention, as demonstrated by the clinical efficacy of kinase inhibitors in kinase-mutant malignancies. Here, we discuss recently discovered gain-of-function mutations in chromatin regulatory machineries that promote the pathogenesis of cancer. The current understanding of underlying molecular mechanisms and the therapeutic potential for direct chemical inhibition will be reviewed. Recent findings Point mutations that increase the catalytic activity of EZH2 and NSD2 histone methyltransferases are found in distinct subsets of B cell neoplasms, which promote cell transformation by elevating the global level of H3K27 tri-methylation or H3K36 di-methylation, respectively. In addition, mutations in histone H3 have been identified in certain pediatric cancers which cause reprogramming of H3K27 and H3K36 methylation by dominantly interfering with histone methyltransferase activity. Finally, chromosomal translocations involving chromatin regulator genes can lead to the formation of fusion oncoproteins that directly modify chromatin as their mechanism of action. Summary While relatively rare in aggregate, gain-of-function mutations in chromatin regulators represent compelling therapeutic targets in genetically-defined subsets of cancer patients. However, a broader clinical impact for epigenetic therapies in oncology will require an increased understanding of how non-mutated chromatin regulators function as cancer-specific dependencies. PMID:25402979

  6. Cribriform adenocarcinoma of minor salivary glands may express galectin-3, cytokeratin 19, and HBME-1 and contains polymorphisms of RET and H-RAS proto-oncogenes.

    PubMed

    Laco, Jan; Kamarádová, Kateřina; Vítková, Pavla; Sehnálková, Eva; Dvořáková, Sárka; Václavíková, Eliška; Sýkorová, Vlasta; Kašpírková, Jana; Skálová, Alena; Ryška, Aleš

    2012-11-01

    The aim of the study was to further elucidate the immunohistochemical and genetic characteristics of cribriform adenocarcinoma of minor salivary glands (CAMSG). The study comprised five CAMSG from two males and three females, aged 21-72 years. Four tumors were localized at the base of tongue and one in the floor of mouth. At the time of diagnosis, four tumors had metastasised to regional lymph nodes. After tumor resection, two patients were treated by radiotherapy and one by chemoradiotherapy. During the follow-up (median 14 months), two patients developed lymph node metastasis. Microscopically, all tumors showed cribriform, papillary, follicular, and microcystic growth patterns. The tumor cells displayed vesicular nuclei with intranuclear grooves. Immunohistochemically, all tumors showed expression of cytokeratin (CK) 7, CK8, CK18, vimentin, smooth muscle actin, calponin, S-100 protein, and p16 protein. In addition, we observed expression of galectin-3, CK19, and HBME-1, but not of thyroglobulin and TTF-1. No mutations of RET, BRAF, K-RAS, H-RAS, and N-RAS proto-oncogenes were detected. However, in RET proto-oncogene, we found polymorphisms Gly691Ser (exon 11) and Ser904Ser (exon 15) in one case, p.Leu769Leu (exon 13) in one case, and variant p.IVS14-24 G/A of intron 14 in two cases, and in H-RAS proto-oncogene we found polymorphism 81 T-C (exon 1) in three cases. Thyroglobulin and TTF-1 are the only useful markers in the differential diagnosis between CAMSG and papillary thyroid carcinoma as both tumors may express galectin-3, CK19, and HBME-1. The RET, H-RAS, and N-RAS proto-oncoogenes are not mutated in CAMSG.

  7. Limited Role of Murine ATM in Oncogene-Induced Senescence and p53-Dependent Tumor Suppression

    PubMed Central

    Martinez-Pastor, Barbara; Ortega-Molina, Ana; Soria, Rebeca; Collado, Manuel; Fernandez-Capetillo, Oscar; Serrano, Manuel

    2009-01-01

    Recent studies in human fibroblasts have provided a new general paradigm of tumor suppression according to which oncogenic signaling produces DNA damage and this, in turn, results in ATM/p53-dependent cellular senescence. Here, we have tested this model in a variety of murine experimental systems. Overexpression of oncogenic Ras in murine fibroblasts efficiently induced senescence but this occurred in the absence of detectable DNA damage signaling, thus suggesting a fundamental difference between human and murine cells. Moreover, lung adenomas initiated by endogenous levels of oncogenic K-Ras presented abundant senescent cells, but undetectable DNA damage signaling. Accordingly, K-Ras-driven adenomas were also senescent in Atm-null mice, and the tumorigenic progression of these lesions was only modestly accelerated by Atm-deficiency. Finally, we have examined chemically-induced fibrosarcomas, which possess a persistently activated DNA damage response and are highly sensitive to the activity of p53. We found that the absence of Atm favored genomic instability in the resulting tumors, but did not affect the persistent DNA damage response and did not impair p53-dependent tumor suppression. All together, we conclude that oncogene-induced senescence in mice may occur in the absence of a detectable DNA damage response. Regarding murine Atm, our data suggest that it plays a minor role in oncogene-induced senescence or in p53-dependent tumor suppression, being its tumor suppressive activity probably limited to the maintenance of genomic stability. PMID:19421407

  8. Hot Spot Mutation in TP53 (R248Q) Causes Oncogenic Gain-of-Function Phenotypes in a Breast Cancer Cell Line Derived from an African American patient.

    PubMed

    Shtraizent, Nataly; Matsui, Hiroshi; Polotskaia, Alla; Bargonetti, Jill

    2016-01-01

    African American (AA) breast cancer patients often have triple negative breast cancer (TNBC) that contains mutations in the TP53 gene. The point mutations at amino acid residues R273 and R248 both result in oncogenic gain-of-function (GOF) phenotypes. Expression of mutant p53 (mtp53) R273H associates with increased cell elasticity, survival under serum deprivation conditions, and increased Poly (ADP ribose) polymerase 1 (PARP1) on the chromatin in the AA-derived TNBC breast cancer cell line MDA-MB-468. We hypothesized that GOF mtp53 R248Q expression could stimulate a similar phenotype in the AA-derived TNBC cell line HCC70. To test this hypothesis we depleted the R248Q protein in the HCC70 cell line using shRNA-mediated knockdown. Using impedance-based real-time analysis we correlated the expression of mtp53 R248Q with increased cell deformability. We also documented that depletion of mtp53 R248Q increased PARP1 in the cytoplasm and decreased PARP1 on the chromatin. We conclude that in the AA-derived TNBC HCC70 cells mtp53 R248Q expression results in a causative tumor associated phenotype. This study supports using the biological markers of high expression of mtp53 R273H or R248Q as additional diagnostics for TNBC resistant subtypes often found in the AA community. Each mtp53 protein must be considered separately and this work adds R248Q to the increasing list of p53 mutations that can be used for diagnostics and drug targeting. Here we report that when R248Q mtp53 proteins are expressed in TNBC, then targeting the gain-of-function pathways may improve treatment efficacy.

  9. Hot Spot Mutation in TP53 (R248Q) Causes Oncogenic Gain-of-Function Phenotypes in a Breast Cancer Cell Line Derived from an African American patient

    PubMed Central

    Shtraizent, Nataly; Matsui, Hiroshi; Polotskaia, Alla; Bargonetti, Jill

    2015-01-01

    African American (AA) breast cancer patients often have triple negative breast cancer (TNBC) that contains mutations in the TP53 gene. The point mutations at amino acid residues R273 and R248 both result in oncogenic gain-of-function (GOF) phenotypes. Expression of mutant p53 (mtp53) R273H associates with increased cell elasticity, survival under serum deprivation conditions, and increased Poly (ADP ribose) polymerase 1 (PARP1) on the chromatin in the AA-derived TNBC breast cancer cell line MDA-MB-468. We hypothesized that GOF mtp53 R248Q expression could stimulate a similar phenotype in the AA-derived TNBC cell line HCC70. To test this hypothesis we depleted the R248Q protein in the HCC70 cell line using shRNA-mediated knockdown. Using impedance-based real-time analysis we correlated the expression of mtp53 R248Q with increased cell deformability. We also documented that depletion of mtp53 R248Q increased PARP1 in the cytoplasm and decreased PARP1 on the chromatin. We conclude that in the AA-derived TNBC HCC70 cells mtp53 R248Q expression results in a causative tumor associated phenotype. This study supports using the biological markers of high expression of mtp53 R273H or R248Q as additional diagnostics for TNBC resistant subtypes often found in the AA community. Each mtp53 protein must be considered separately and this work adds R248Q to the increasing list of p53 mutations that can be used for diagnostics and drug targeting. Here we report that when R248Q mtp53 proteins are expressed in TNBC, then targeting the gain-of-function pathways may improve treatment efficacy. PMID:26703669

  10. No evidence of oncogenic KRAS mutations in squamous cell carcinomas of the anogenital tract and head and neck region independent of human papillomavirus and p16(INK4a) status.

    PubMed

    Prigge, Elena-Sophie; Urban, Katharina; Stiegler, Sandrine; Müller, Meike; Kloor, Matthias; Mai, Sabine; Ottstadt, Martine; Lohr, Frank; Wenz, Frederik; Wagner, Steffen; Wittekindt, Claus; Klussmann, Jens Peter; Hampl, Monika; von Knebel Doeberitz, Magnus; Reuschenbach, Miriam

    2014-11-01

    Carcinogenesis of squamous cell carcinomas (SCCs) in the anogenital tract and head and neck region is heterogeneous. A substantial proportion of SCC in the vulva, anus, and head and neck follows a human papillomavirus (HPV)-induced carcinogenic pathway. However, the molecular pathways of carcinogenesis in the HPV-independent lesions are not completely understood. We hypothesized that oncogenic Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations might represent a carcinogenic mechanism in a proportion of those HPV-negative cancers. Considering the repeated observation of KRAS-associated p16(INK4a) overexpression in human tumors, it was assumed that KRAS mutations might be particularly present in the group of HPV-negative, p16(INK4a)-positive cancers. To test this hypothesis, we analyzed 66 anal, vulvar, and head and neck SCC with known immunohistochemical p16(INK4a) and HPV DNA status for KRAS mutations in exon 2 (codons 12, 13, and 15). We enriched the tumor collection with HPV DNA-negative, p16(INK4a)-positive cancers. A subset of 37 cancers was also analyzed for mutations in the B-Raf proto-oncogene, serine/threonine kinase (BRAF) gene. None of the 66 tumors harbored mutations in KRAS exon 2, thus excluding KRAS mutations as a common event in SCC of the anogenital and head and neck region and as a cause of p16(INK4a) expression in these tumors. In addition, no BRAF mutations were detected in the 37 analyzed tumors. Further studies are required to determine the molecular events underlying HPV-negative anal, vulvar, and head and neck carcinogenesis. Considering HPV-independent p16(INK4a) overexpression in some of these tumors, particular focus should be placed on alternative upstream activators and potential downstream disruption of the p16(INK4a) pathway.

  11. BRAF(V600E) mutation is highly prevalent in thyroid carcinomas in the young population in Fukushima: a different oncogenic profile from Chernobyl.

    PubMed

    Mitsutake, Norisato; Fukushima, Toshihiko; Matsuse, Michiko; Rogounovitch, Tatiana; Saenko, Vladimir; Uchino, Shinya; Ito, Masahiro; Suzuki, Keiji; Suzuki, Shinichi; Yamashita, Shunichi

    2015-11-20

    After the accident at the Fukushima Daiichi Nuclear Power Plant, the thyroid ultrasound screening program for children aged 0-18 at the time of the accident was started from October 2011. The prevalence of thyroid carcinomas in that population has appeared to be very high (84 cases per 296,253). To clarify the pathogenesis, we investigated the presence of driver mutations in these tumours. 61 classic papillary thyroid carcinomas (PTCs), two follicular variant PTCs, four cribriform-morular variant PTCs and one poorly-differentiated thyroid carcinoma were analysed. We detected BRAF(V600E) in 43 cases (63.2%), RET/PTC1 in six (8.8%), RET/PTC3 in one (1.5%) and ETV6/NTRK3 in four (5.9%). Among classic and follicular variant PTCs, BRAF(V600E) was significantly associated with the smaller size. The genetic pattern was completely different from post-Chernobyl PTCs, suggesting non-radiogenic etiology of these cancers. This is the first study demonstrating the oncogene profile in the thyroid cancers discovered by large mass screening, which probably reflects genetic status of all sporadic and latent tumours in the young Japanese population. It is assumed that BRAF(V600E) may not confer growth advantage on paediatric PTCs, and many of these cases grow slowly, suggesting that additional factors may be important for tumour progression in paediatric PTCs.

  12. BRAFV600E mutation is highly prevalent in thyroid carcinomas in the young population in Fukushima: a different oncogenic profile from Chernobyl

    PubMed Central

    Mitsutake, Norisato; Fukushima, Toshihiko; Matsuse, Michiko; Rogounovitch, Tatiana; Saenko, Vladimir; Uchino, Shinya; Ito, Masahiro; Suzuki, Keiji; Suzuki, Shinichi; Yamashita, Shunichi

    2015-01-01

    After the accident at the Fukushima Daiichi Nuclear Power Plant, the thyroid ultrasound screening program for children aged 0–18 at the time of the accident was started from October 2011. The prevalence of thyroid carcinomas in that population has appeared to be very high (84 cases per 296,253). To clarify the pathogenesis, we investigated the presence of driver mutations in these tumours. 61 classic papillary thyroid carcinomas (PTCs), two follicular variant PTCs, four cribriform-morular variant PTCs and one poorly-differentiated thyroid carcinoma were analysed. We detected BRAFV600E in 43 cases (63.2%), RET/PTC1 in six (8.8%), RET/PTC3 in one (1.5%) and ETV6/NTRK3 in four (5.9%). Among classic and follicular variant PTCs, BRAFV600E was significantly associated with the smaller size. The genetic pattern was completely different from post-Chernobyl PTCs, suggesting non-radiogenic etiology of these cancers. This is the first study demonstrating the oncogene profile in the thyroid cancers discovered by large mass screening, which probably reflects genetic status of all sporadic and latent tumours in the young Japanese population. It is assumed that BRAFV600E may not confer growth advantage on paediatric PTCs, and many of these cases grow slowly, suggesting that additional factors may be important for tumour progression in paediatric PTCs. PMID:26584635

  13. BRAF(V600E) mutation is highly prevalent in thyroid carcinomas in the young population in Fukushima: a different oncogenic profile from Chernobyl.

    PubMed

    Mitsutake, Norisato; Fukushima, Toshihiko; Matsuse, Michiko; Rogounovitch, Tatiana; Saenko, Vladimir; Uchino, Shinya; Ito, Masahiro; Suzuki, Keiji; Suzuki, Shinichi; Yamashita, Shunichi

    2015-01-01

    After the accident at the Fukushima Daiichi Nuclear Power Plant, the thyroid ultrasound screening program for children aged 0-18 at the time of the accident was started from October 2011. The prevalence of thyroid carcinomas in that population has appeared to be very high (84 cases per 296,253). To clarify the pathogenesis, we investigated the presence of driver mutations in these tumours. 61 classic papillary thyroid carcinomas (PTCs), two follicular variant PTCs, four cribriform-morular variant PTCs and one poorly-differentiated thyroid carcinoma were analysed. We detected BRAF(V600E) in 43 cases (63.2%), RET/PTC1 in six (8.8%), RET/PTC3 in one (1.5%) and ETV6/NTRK3 in four (5.9%). Among classic and follicular variant PTCs, BRAF(V600E) was significantly associated with the smaller size. The genetic pattern was completely different from post-Chernobyl PTCs, suggesting non-radiogenic etiology of these cancers. This is the first study demonstrating the oncogene profile in the thyroid cancers discovered by large mass screening, which probably reflects genetic status of all sporadic and latent tumours in the young Japanese population. It is assumed that BRAF(V600E) may not confer growth advantage on paediatric PTCs, and many of these cases grow slowly, suggesting that additional factors may be important for tumour progression in paediatric PTCs. PMID:26584635

  14. Mesenchymal Transition and PDGFRA Amplification/Mutation Are Key Distinct Oncogenic Events in Pediatric Diffuse Intrinsic Pontine Gliomas

    PubMed Central

    Bax, Dorine A.; Job, Bastien; Varlet, Pascale; Junier, Marie-Pierre; Andreiuolo, Felipe; Carvalho, Dina; Reis, Ricardo; Guerrini-Rousseau, Lea; Roujeau, Thomas; Dessen, Philippe; Richon, Catherine; Lazar, Vladimir; Le Teuff, Gwenael; Sainte-Rose, Christian; Geoerger, Birgit; Vassal, Gilles; Jones, Chris; Grill, Jacques

    2012-01-01

    Diffuse intrinsic pontine glioma (DIPG) is one of the most frequent malignant pediatric brain tumor and its prognosis is universaly fatal. No significant improvement has been made in last thirty years over the standard treatment with radiotherapy. To address the paucity of understanding of DIPGs, we have carried out integrated molecular profiling of a large series of samples obtained with stereotactic biopsy at diagnosis. While chromosomal imbalances did not distinguish DIPG and supratentorial tumors on CGHarrays, gene expression profiling revealed clear differences between them, with brainstem gliomas resembling midline/thalamic tumours, indicating a closely-related origin. Two distinct subgroups of DIPG were identified. The first subgroup displayed mesenchymal and pro-angiogenic characteristics, with stem cell markers enrichment consistent with the possibility to grow tumor stem cells from these biopsies. The other subgroup displayed oligodendroglial features, and appeared largely driven by PDGFRA, in particular through amplification and/or novel missense mutations in the extracellular domain. Patients in this later group had a significantly worse outcome with an hazard ratio for early deaths, ie before 10 months, 8 fold greater that the ones in the other subgroup (p = 0.041, Cox regression model). The worse outcome of patients with the oligodendroglial type of tumors was confirmed on a series of 55 paraffin-embedded biopsy samples at diagnosis (median OS of 7.73 versus 12.37 months, p = 0.045, log-rank test). Two distinct transcriptional subclasses of DIPG with specific genomic alterations can be defined at diagnosis by oligodendroglial differentiation or mesenchymal transition, respectively. Classifying these tumors by signal transduction pathway activation and by mutation in pathway member genes may be particularily valuable for the development of targeted therapies. PMID:22389665

  15. Aerosol delivery of beclin1 enhanced the anti-tumor effect of radiation in the lungs of K-rasLA1 mice.

    PubMed

    Shin, Ji-Young; Lim, Hwang-Tae; Minai-Tehrani, Arash; Noh, Mi-Suk; Kim, Ji-Eun; Kim, Ji-Hye; Jiang, Hu-Lin; Arote, Rohidas; Kim, Doo-Yeol; Chae, Chanhee; Lee, Kee-Ho; Kim, Mi-Sook; Cho, Myung-Haing

    2012-07-01

    Radiotherapy alone has several limitations for treating lung cancer. Inhalation, a non-invasive approach for direct delivery of therapeutic agents to the lung, may help to enhance the therapeutic efficacy of radiation. Up-regulating beclin1, known as a tumor suppressor gene that plays a major role in autophagy, may sensitize tumors and lead to tumor regression in lungs of K-ras(LA1) lung cancer model mice. To minimize the side-effects of radiotherapy, fractionated exposures (five times, 24-h interval) with low dose (2 Gy) of radiation to the restricted area (thorax, 2 cm) were conducted. After sensitizing the lungs with radiation, beclin1, complexed with a nano-sized biodegradable poly(ester amine), was prepared and delivered into the murine lung via aerosol three times/week for four weeks. In a histopathological analysis, animals treated with beclin1 and radiation showed highly significant tumor regression and low progression to adenocarcinoma. An increase in the number of autophagic vacuoles and secondary lysosomes was detected. Dissociation of beclin1-bcl2 stimulated autophagy activation and showed a synergistic anti-tumor effect by inhibiting the Akt-mTOR pathway, cell proliferation and angiogenesis. The combination of radiation with non-invasive aerosol delivery of beclin1 may provide a prospect for developing novel therapy regimens applicable in clinics. PMID:22843615

  16. RAS oncogenes: weaving a tumorigenic web

    PubMed Central

    Pylayeva-Gupta, Yuliya; Grabocka, Elda; Bar-Sagi, Dafna

    2013-01-01

    RAS proteins are essential components of signalling pathways that emanate from cell surface receptors. Oncogenic activation of these proteins owing to missense mutations is frequently detected in several types of cancer. A wealth of biochemical and genetic studies indicates that RAS proteins control a complex molecular circuitry that consists of a wide array of interconnecting pathways. In this Review, we describe how RAS oncogenes exploit their extensive signalling reach to affect multiple cellular processes that drive tumorigenesis. PMID:21993244

  17. Deep Sequence Analysis of Non-Small Cell Lung Cancer: Integrated Analysis of Gene Expression, Alternative Splicing, and Single Nucleotide Variations in Lung Adenocarcinomas with and without Oncogenic KRAS Mutations

    PubMed Central

    Kalari, Krishna R.; Rossell, David; Necela, Brian M.; Asmann, Yan W.; Nair, Asha; Baheti, Saurabh; Kachergus, Jennifer M.; Younkin, Curtis S.; Baker, Tiffany; Carr, Jennifer M.; Tang, Xiaojia; Walsh, Michael P.; Chai, High-Seng; Sun, Zhifu; Hart, Steven N.; Leontovich, Alexey A.; Hossain, Asif; Kocher, Jean-Pierre; Perez, Edith A.; Reisman, David N.; Fields, Alan P.; Thompson, E. Aubrey

    2012-01-01

    KRAS mutations are highly prevalent in non-small cell lung cancer (NSCLC), and tumors harboring these mutations tend to be aggressive and resistant to chemotherapy. We used next-generation sequencing technology to identify pathways that are specifically altered in lung tumors harboring a KRAS mutation. Paired-end RNA-sequencing of 15 primary lung adenocarcinoma tumors (8 harboring mutant KRAS and 7 with wild-type KRAS) were performed. Sequences were mapped to the human genome, and genomic features, including differentially expressed genes, alternate splicing isoforms and single nucleotide variants, were determined for tumors with and without KRAS mutation using a variety of computational methods. Network analysis was carried out on genes showing differential expression (374 genes), alternate splicing (259 genes), and SNV-related changes (65 genes) in NSCLC tumors harboring a KRAS mutation. Genes exhibiting two or more connections from the lung adenocarcinoma network were used to carry out integrated pathway analysis. The most significant signaling pathways identified through this analysis were the NFκB, ERK1/2, and AKT pathways. A 27 gene mutant KRAS-specific sub network was extracted based on gene–gene connections from the integrated network, and interrogated for druggable targets. Our results confirm previous evidence that mutant KRAS tumors exhibit activated NFκB, ERK1/2, and AKT pathways and may be preferentially sensitive to target therapeutics toward these pathways. In addition, our analysis indicates novel, previously unappreciated links between mutant KRAS and the TNFR and PPARγ signaling pathways, suggesting that targeted PPARγ antagonists and TNFR inhibitors may be useful therapeutic strategies for treatment of mutant KRAS lung tumors. Our study is the first to integrate genomic features from RNA-Seq data from NSCLC and to define a first draft genomic landscape model that is unique to tumors with oncogenic KRAS mutations. PMID:22655260

  18. Humoral and cellular responses raised against the human HER2 oncoprotein are cross-reactive with the homologous product of the new proto-oncogene, but do not protect rats against B104 tumors expressing mutated neu.

    PubMed

    Taylor, P; Gerder, M; Moros, Z; Feldmann, M

    1996-03-01

    The neu proto-oncogene encodes a plasma membrane protein belonging to the epidermal growth factor receptor family. The cell line B104, derived from BDIX rat neuroblastoma, carries a point mutation in neu, and forms a tumor when injected into these rats. The human homologue of the neu oncogene (here called HER2) is overexpressed in certain types of cancer. Rats were immunized with HER2 protein (HER2) to investigate a possible cross-reaction between the homologous proteins which could protect them against subsequent inoculation with B104. Specific antibody in the serum was measured by cell-based enzyme-linked immunoabsorbent assay and fluorescence immunocytochemistry, and delayed-type hypersensitivity by an ear assay. Sera from animals immunized with the HER2 extracellular domain (HER2-ECD) reacted with both HER2- and neu-expressing cells. In the ear assay, a significant cellular response to both HER-ECD (P < 0.05) and neu protein (P < 0.001) was observed in HER2-ECD-immunized rats. However, the growth of B104 tumors in rats was not affected by preimmunization with HER2-ECD. The results indicate that an autoreactive immune response to neu was induced by immunization with HER2-ECD, but was too weak to affect the growth of the neu-bearing tumor.

  19. Preventive effects of butyric acid, nicotinamide, calcium glucarate alone or in combination during the 7, 12-dimethylbenz (a) anthracene induced mouse skin tumorigenesis via modulation of K-Ras-PI3K-AKTpathway and associated micro RNAs.

    PubMed

    Tiwari, Prakash; Sahay, Satya; Pandey, Manuraj; Qadri, Syed S Y H; Gupta, Krishna P

    2016-02-01

    Skin cancer is among the most common cancers worldwide and identifiable molecular changes for early and late stage of skin tumorigenesis can suggest the better targets for its control. In this study, we investigated the status of K-Ras-PI3K-AKTpathway followed by NF-κB, cyclin D1, MMP-9 and regulatory micro RNA during 7, 12-dimethylbenz[a]anthracene (DMBA) induced mouse skin tumorigenesis and its prevention by butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG), individually or in combination with respect to time. DMBA upregulated the K-Ras, PI3K, Akt, NF-κB, cyclin D1 and MMP-9, but downregulated the PTEN in a time dependent manner. DMBA also reduced the levels of micoRNA let-7a but induced the levels of miR-21 and miR-20a as a function of time. BA, NA and CAG were found to prevent DMBA induced changes, but they were most effective when used together in a combination. Reduced let-7a and miR-211 were correlated with the overexpression of K-Ras and MMP-9. Overexpression of miR-21 and miR-20a was correlated with the down regulation of PTEN and overexpression of Cyclin D1. Collectively, the enhanced chemopreventive potential of natural compound in combination via regulation of K-Ras-PI3K-AKTpathway along with regulatory micro RNAs provide a newer and effective mean for cancer management.

  20. Preventive effects of butyric acid, nicotinamide, calcium glucarate alone or in combination during the 7, 12-dimethylbenz (a) anthracene induced mouse skin tumorigenesis via modulation of K-Ras-PI3K-AKTpathway and associated micro RNAs.

    PubMed

    Tiwari, Prakash; Sahay, Satya; Pandey, Manuraj; Qadri, Syed S Y H; Gupta, Krishna P

    2016-02-01

    Skin cancer is among the most common cancers worldwide and identifiable molecular changes for early and late stage of skin tumorigenesis can suggest the better targets for its control. In this study, we investigated the status of K-Ras-PI3K-AKTpathway followed by NF-κB, cyclin D1, MMP-9 and regulatory micro RNA during 7, 12-dimethylbenz[a]anthracene (DMBA) induced mouse skin tumorigenesis and its prevention by butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG), individually or in combination with respect to time. DMBA upregulated the K-Ras, PI3K, Akt, NF-κB, cyclin D1 and MMP-9, but downregulated the PTEN in a time dependent manner. DMBA also reduced the levels of micoRNA let-7a but induced the levels of miR-21 and miR-20a as a function of time. BA, NA and CAG were found to prevent DMBA induced changes, but they were most effective when used together in a combination. Reduced let-7a and miR-211 were correlated with the overexpression of K-Ras and MMP-9. Overexpression of miR-21 and miR-20a was correlated with the down regulation of PTEN and overexpression of Cyclin D1. Collectively, the enhanced chemopreventive potential of natural compound in combination via regulation of K-Ras-PI3K-AKTpathway along with regulatory micro RNAs provide a newer and effective mean for cancer management. PMID:26655363

  1. BRAF, PIK3CA, and HER2 Oncogenic Alterations According to KRAS Mutation Status in Advanced Colorectal Cancers with Distant Metastasis

    PubMed Central

    Koh, Jiwon; Kwak, Yoonjin; Seo, An Na; Park, Kyoung Un; Kim, Duck-Woo; Kang, Sung-Bum; Kim, Woo Ho; Lee, Hye Seung

    2016-01-01

    Background Anti-EGFR antibody–based treatment is an important therapeutic strategy for advanced colorectal cancer (CRC); despite this, several mutations—including KRAS, BRAF, and PIK3CA mutations, and HER2 amplification—are associated with the mechanisms underlying the development of resistance to anti-EGFR therapy. The aim of our study was to investigate the frequencies and clinical implications of these genetic alterations in advanced CRC. Methods KRAS, BRAF, and PIK3CA mutations were determined by Cobas real-time polymerase chain reaction (PCR) in 191 advanced CRC patients with distant metastasis. Microsatellite instability (MSI) status was determined by a fragmentation assay and HER2 amplification was assessed by silver in situ hybridization. In addition, KRAS mutations were investigated by the Sanger sequencing method in 97 of 191 CRC cases. Results Mutations in KRAS, BRAF, and PIK3CA were found in 104 (54.5%), 6 (3.1%), and 25 (13.1%) cases of advanced CRC, respectively. MSI-high status and HER2 amplification were observed in 3 (1.6%) and 16 (8.4%) cases, respectively. PIK3CA mutations were more frequently found in KRAS mutant type (18.3%) than KRAS wild type (6.9%) (P = 0.020). In contrast, HER2 amplifications and BRAF mutations were associated with KRAS wild type with borderline significance (P = 0.052 and 0.094, respectively). In combined analyses with KRAS, BRAF and HER2 status, BRAF mutations or HER2 amplifications were associated with the worst prognosis in the wild type KRAS group (P = 0.004). When comparing the efficacy of detection methods, the results of real time PCR analysis revealed 56 of 97 (57.7%) CRC cases with KRAS mutations, whereas Sanger sequencing revealed 49 cases (50.5%). Conclusions KRAS mutations were found in 54.5% of advanced CRC patients. Our results support that subgrouping using PIK3CA and BRAF mutation or HER2 amplification status, in addition to KRAS mutation status, is helpful for managing advanced CRC patients. PMID

  2. A Network-Based Model of Oncogenic Collaboration for Prediction of Drug Sensitivity

    PubMed Central

    Laderas, Ted G.; Heiser, Laura M.; Sönmez, Kemal

    2015-01-01

    Tumorigenesis is a multi-step process, involving the acquisition of multiple oncogenic mutations that transform cells, resulting in systemic dysregulation that enables proliferation, invasion, and other cancer hallmarks. The goal of precision medicine is to identify therapeutically-actionable mutations from large-scale omic datasets. However, the multiplicity of oncogenes required for transformation, known as oncogenic collaboration, makes assigning effective treatments difficult. Motivated by this observation, we propose a new type of oncogenic collaboration where mutations in genes that interact with an oncogene may contribute to the oncogene’s deleterious potential, a new genomic feature that we term “surrogate oncogenes.” Surrogate oncogenes are representatives of these mutated subnetworks that interact with oncogenes. By mapping mutations to a protein–protein interaction network, we determine the significance of the observed distribution using permutation-based methods. For a panel of 38 breast cancer cell lines, we identified a significant number of surrogate oncogenes in known oncogenes such as BRCA1 and ESR1, lending credence to this approach. In addition, using Random Forest Classifiers, we show that these significant surrogate oncogenes predict drug sensitivity for 74 drugs in the breast cancer cell lines with a mean error rate of 30.9%. Additionally, we show that surrogate oncogenes are predictive of survival in patients. The surrogate oncogene framework incorporates unique or rare mutations from a single sample, and therefore has the potential to integrate patient-unique mutations into drug sensitivity predictions, suggesting a new direction in precision medicine and drug development. Additionally, we show the prevalence of significant surrogate oncogenes in multiple cancers from The Cancer Genome Atlas, suggesting that surrogate oncogenes may be a useful genomic feature for guiding pancancer analyses and assigning therapies across many tissue

  3. Continued withdrawal from the cell cycle and regulation of cellular genes in mouse erythroleukemia cells blocked in differentiation by the c-myc oncogene.

    PubMed Central

    Coppola, J A; Parker, J M; Schuler, G D; Cole, M D

    1989-01-01

    Constitutive expression of the c-myc oncogene blocks dimethyl sulfoxide (DMSO)-induced differentiation of mouse erythroleukemia (MEL) cells. During the first 12 h of treatment with DMSO, MEL cells undergo a temporary decrease in the level of c-myc mRNA, followed by a temporary withdrawal from the cell cycle. We found the same shutoff of DNA synthesis during the first 12 to 30 h after DMSO induction in normal MEL cells (which differentiate) and in c-myc-transfected MEL cells (which do not differentiate). We also examined whether deregulated c-myc expression grossly interfered with the regulation of gene expression during MEL cell differentiation. We used run-on transcription assays to monitor the rate of transcription of four oncogenes (c-myc, c-myb, c-fos, and c-K-ras); all except c-K-ras showed a rapid but temporary decrease in transcription after induction in both c-myc-transfected and control cells. Finally, we found the same regulation of cytoplasmic mRNA expression in both types of cells for four oncogenes and three housekeeping genes associated with growth. We conclude that in the MEL cell system, the effects of deregulated c-myc expression do not occur through a disruption of cell cycle control early in induction, nor do they occur through gross deregulation of gene expression. Images PMID:2657403

  4. Cell type-specific targeted mutations of Kras and Pten document proliferation arrest in granulosa cells versus oncogenic insult to ovarian surface epithelial cells.

    PubMed

    Fan, Heng-Yu; Liu, Zhilin; Paquet, Marilene; Wang, Jinrong; Lydon, John P; DeMayo, Francesco J; Richards, JoAnne S

    2009-08-15

    The small G-protein KRAS is crucial for mediating gonadotropin-induced events associated with ovulation. However, constitutive expression of KrasG12D in granulosa cells disrupted normal follicle development leading to the persistence of abnormal follicle-like structures containing nonmitotic cells. To determine what factors mediate this potent effect of KrasG12D, gene profiling analyses were done. We also analyzed KrasG12D;Cyp19-Cre and KrasG12;Pgr-Cre mutant mouse models that express Cre prior to or after the initiation of granulosa cell differentiation, respectively. KrasG12D induced cell cycle arrest in granulosa cells of the KrasG12D;Cyp19-Cre mice but not in the KrasG12D;Pgr-Cre mice, documenting the cell context-specific effect of KrasG12D. Expression of KrasG12D silenced the Kras gene, reduced cell cycle activator genes, and impaired the expression of granulosa cell and oocyte-specific genes. Conversely, levels of PTEN and phosphorylated p38 mitogen-activated protein kinase (MAPK) increased markedly in the mutant granulosa cells. Because disrupting Pten in granulosa cells leads to increased proliferation and survival, Pten was disrupted in the KrasG12D mutant mice. The Pten/Kras mutant mice were infertile but lacked granulosa cell tumors. By contrast, the Ptenfl/fl;KrasG12D;Amhr2-Cre mice developed aggressive ovarian surface epithelial cell tumors that did not occur in the Ptenfl/fl;KrasG12D;Cyp19-Cre or Ptenfl/fl;KrasG12D;Pgr-Cre mouse strains. These data document unequivocally that Amhr2-Cre is expressed in and mediates allelic recombination of oncogenic genes in ovarian surface epithelial cells. That KrasG12D/Pten mutant granulosa cells do not transform but rather undergo cell cycle arrest indicates that they resist the oncogenic insults of Kras/Pten by robust self-protecting mechanisms that silence the Kras gene and elevate PTEN and phosphorylated p38 MAPK.

  5. Clinical Genotyping of Non-Small Cell Lung Cancers Using Targeted Next-Generation Sequencing: Utility of Identifying Rare and Co-mutations in Oncogenic Driver Genes.

    PubMed

    Tafe, Laura J; Pierce, Kirsten J; Peterson, Jason D; de Abreu, Francine; Memoli, Vincent A; Black, Candice C; Pettus, Jason R; Marotti, Jonathan D; Gutmann, Edward J; Liu, Xiaoying; Shirai, Keisuke; Dragnev, Konstantin H; Amos, Christopher I; Tsongalis, Gregory J

    2016-09-01

    Detection of somatic mutations in non-small cell lung cancers (NSCLCs), especially adenocarcinomas, is important for directing patient care when targeted therapy is available. Here, we present our experience with genotyping NSCLC using the Ion Torrent Personal Genome Machine (PGM) and the AmpliSeq Cancer Hotspot Panel v2. We tested 453 NSCLC samples from 407 individual patients using the 50 gene AmpliSeq Cancer Hotspot Panel v2 from May 2013 to July 2015. Using 10 ng of DNA, up to 11 samples were simultaneously sequenced on the Ion Torrent PGM (316 and 318 chips). We identified variants with the Ion Torrent Variant Caller Plugin, and Golden Helix's SVS software was used for annotation and prediction of the significance of the variants. Three hundred ninety-eight samples were successfully sequenced (12.1% failure rate). In all, 633 variants in 41 genes were detected with a median of 2 (range of 0 to 7) variants per sample. Mutations detected in BRAF, EGFR, ERBB2, KRAS, NRAS, and PIK3CA were considered potentially actionable and were identified in 237 samples, most commonly in KRAS (37.9%), EGFR (11.1%), BRAF (4.8%), and PIK3CA (4.3%). In our patient population, all mutations in EGFR, KRAS, and BRAF were mutually exclusive. The Ion Torrent Ampliseq technology can be utilized on small biopsy and cytology specimens, requires very little input DNA, and can be applied in clinical laboratories for genotyping of NSCLC. This targeted next-generation sequencing approach allows for detection of common and also rare mutations that are clinically actionable in multiple patients simultaneously. PMID:27659017

  6. Activation of proto-oncogenes by disruption of chromosome neighborhoods.

    PubMed

    Hnisz, Denes; Weintraub, Abraham S; Day, Daniel S; Valton, Anne-Laure; Bak, Rasmus O; Li, Charles H; Goldmann, Johanna; Lajoie, Bryan R; Fan, Zi Peng; Sigova, Alla A; Reddy, Jessica; Borges-Rivera, Diego; Lee, Tong Ihn; Jaenisch, Rudolf; Porteus, Matthew H; Dekker, Job; Young, Richard A

    2016-03-25

    Oncogenes are activated through well-known chromosomal alterations such as gene fusion, translocation, and focal amplification. In light of recent evidence that the control of key genes depends on chromosome structures called insulated neighborhoods, we investigated whether proto-oncogenes occur within these structures and whether oncogene activation can occur via disruption of insulated neighborhood boundaries in cancer cells. We mapped insulated neighborhoods in T cell acute lymphoblastic leukemia (T-ALL) and found that tumor cell genomes contain recurrent microdeletions that eliminate the boundary sites of insulated neighborhoods containing prominent T-ALL proto-oncogenes. Perturbation of such boundaries in nonmalignant cells was sufficient to activate proto-oncogenes. Mutations affecting chromosome neighborhood boundaries were found in many types of cancer. Thus, oncogene activation can occur via genetic alterations that disrupt insulated neighborhoods in malignant cells.

  7. Cdc42 and k-Ras Control Endothelial Tubulogenesis through Apical Membrane and Cytoskeletal Polarization: Novel Stimulatory Roles for GTPase Effectors, the Small GTPases, Rac2 and Rap1b, and Inhibitory Influence of Arhgap31 and Rasa1

    PubMed Central

    Norden, Pieter R.; Kim, Dae Joong; Barry, David M.; Cleaver, Ondine B.; Davis, George E.

    2016-01-01

    A critical and understudied property of endothelial cells is their ability to form lumens and tube networks. Although considerable information has been obtained concerning these issues, including the role of Cdc42 and Rac1 and their effectors such as Pak2, Pak4, Par6b, and co-regulators such as integrins, MT1-MMP and Par3; many key questions remain that are necessary to elucidate molecular and signaling requirements for this fundamental process. In this work, we identify new small GTPase regulators of EC tubulogenesis including k-Ras, Rac2 and Rap1b that act in conjunction with Cdc42 as well as the key downstream effectors, IQGAP1, MRCKβ, beta-Pix, GIT1, and Rasip1 (which can assemble into multiprotein complexes with key regulators including α2β1 integrin and MT1-MMP). In addition, we identify the negative regulators, Arhgap31 (by inactivating Cdc42 and Rac) and Rasa1 (by inactivating k-Ras) and the positive regulator, Arhgap29 (by inactivating RhoA) which play a major functional role during the EC tubulogenic process. Human EC siRNA suppression or mouse knockout of Rasip1 leads to identical phenotypes where ECs form extensive cord networks, but cannot generate lumens or tubes. Essential roles for these molecules during EC tubulogenesis include; i) establishment of asymmetric EC cytoskeletal polarization (subapical distribution of acetylated tubulin and basal membrane distribution of F-actin); and ii) directed membrane trafficking of pinocytic vacuoles or other intracellular vesicles along acetylated tubulin tracks to the developing apical membrane surface. Cdc42 co-localizes subapically with acetylated tubulin, while Rac1 and k-Ras strongly label vacuole/ vesicle membranes which accumulate and fuse together in a polarized, perinuclear manner. We observe polarized apical membrane and subapical accumulation of key GTPases and effectors regulating EC lumen formation including Cdc42, Rac1, Rac2, k-Ras, Rap1b, activated c-Raf and Rasip1 to control EC tube network

  8. Cdc42 and k-Ras Control Endothelial Tubulogenesis through Apical Membrane and Cytoskeletal Polarization: Novel Stimulatory Roles for GTPase Effectors, the Small GTPases, Rac2 and Rap1b, and Inhibitory Influence of Arhgap31 and Rasa1.

    PubMed

    Norden, Pieter R; Kim, Dae Joong; Barry, David M; Cleaver, Ondine B; Davis, George E

    2016-01-01

    A critical and understudied property of endothelial cells is their ability to form lumens and tube networks. Although considerable information has been obtained concerning these issues, including the role of Cdc42 and Rac1 and their effectors such as Pak2, Pak4, Par6b, and co-regulators such as integrins, MT1-MMP and Par3; many key questions remain that are necessary to elucidate molecular and signaling requirements for this fundamental process. In this work, we identify new small GTPase regulators of EC tubulogenesis including k-Ras, Rac2 and Rap1b that act in conjunction with Cdc42 as well as the key downstream effectors, IQGAP1, MRCKβ, beta-Pix, GIT1, and Rasip1 (which can assemble into multiprotein complexes with key regulators including α2β1 integrin and MT1-MMP). In addition, we identify the negative regulators, Arhgap31 (by inactivating Cdc42 and Rac) and Rasa1 (by inactivating k-Ras) and the positive regulator, Arhgap29 (by inactivating RhoA) which play a major functional role during the EC tubulogenic process. Human EC siRNA suppression or mouse knockout of Rasip1 leads to identical phenotypes where ECs form extensive cord networks, but cannot generate lumens or tubes. Essential roles for these molecules during EC tubulogenesis include; i) establishment of asymmetric EC cytoskeletal polarization (subapical distribution of acetylated tubulin and basal membrane distribution of F-actin); and ii) directed membrane trafficking of pinocytic vacuoles or other intracellular vesicles along acetylated tubulin tracks to the developing apical membrane surface. Cdc42 co-localizes subapically with acetylated tubulin, while Rac1 and k-Ras strongly label vacuole/ vesicle membranes which accumulate and fuse together in a polarized, perinuclear manner. We observe polarized apical membrane and subapical accumulation of key GTPases and effectors regulating EC lumen formation including Cdc42, Rac1, Rac2, k-Ras, Rap1b, activated c-Raf and Rasip1 to control EC tube network

  9. Oncogene addiction: pathways of therapeutic response, resistance, and road maps toward a cure.

    PubMed

    Pagliarini, Raymond; Shao, Wenlin; Sellers, William R

    2015-03-01

    A key goal of cancer therapeutics is to selectively target the genetic lesions that initiate and maintain cancer cell proliferation and survival. While most cancers harbor multiple oncogenic mutations, a wealth of preclinical and clinical data supports that many cancers are sensitive to inhibition of single oncogenes, a concept referred to as 'oncogene addiction'. Herein, we describe the clinical evidence supporting oncogene addiction and discuss common mechanistic themes emerging from the response and acquired resistance to oncogene-targeted therapies. Finally, we suggest several opportunities toward exploiting oncogene addiction to achieve curative cancer therapies.

  10. Oncogene addiction: pathways of therapeutic response, resistance, and road maps toward a cure

    PubMed Central

    Pagliarini, Raymond; Shao, Wenlin; Sellers, William R

    2015-01-01

    A key goal of cancer therapeutics is to selectively target the genetic lesions that initiate and maintain cancer cell proliferation and survival. While most cancers harbor multiple oncogenic mutations, a wealth of preclinical and clinical data supports that many cancers are sensitive to inhibition of single oncogenes, a concept referred to as ‘oncogene addiction’. Herein, we describe the clinical evidence supporting oncogene addiction and discuss common mechanistic themes emerging from the response and acquired resistance to oncogene-targeted therapies. Finally, we suggest several opportunities toward exploiting oncogene addiction to achieve curative cancer therapies. PMID:25680965

  11. TAD disruption as oncogenic driver.

    PubMed

    Valton, Anne-Laure; Dekker, Job

    2016-02-01

    Topologically Associating Domains (TADs) are conserved during evolution and play roles in guiding and constraining long-range regulation of gene expression. Disruption of TAD boundaries results in aberrant gene expression by exposing genes to inappropriate regulatory elements. Recent studies have shown that TAD disruption is often found in cancer cells and contributes to oncogenesis through two mechanisms. One mechanism locally disrupts domains by deleting or mutating a TAD boundary leading to fusion of the two adjacent TADs. The other mechanism involves genomic rearrangements that break up TADs and creates new ones without directly affecting TAD boundaries. Understanding the mechanisms by which TADs form and control long-range chromatin interactions will therefore not only provide insights into the mechanism of gene regulation in general, but will also reveal how genomic rearrangements and mutations in cancer genomes can lead to misregulation of oncogenes and tumor suppressors. PMID:27111891

  12. Second-Line Treatment of Non-Small Cell Lung Cancer: New Developments for Tumours Not Harbouring Targetable Oncogenic Driver Mutations.

    PubMed

    Barnfield, Paul C; Ellis, Peter M

    2016-09-01

    Platinum-based doublet chemotherapy with or without bevacizumab is the standard of care for the initial management of advanced and metastatic non-small cell lung cancer (NSCLC) without a targetable molecular abnormality. However, the majority of patients with NSCLC will ultimately develop resistance to initial platinum-based chemotherapy, and many remain candidates for subsequent lines of therapy. Randomised trials over the past 10-15 years have established pemetrexed (non-squamous histology), docetaxel, erlotinib and gefitinib as approved second-line agents in NSCLC without targetable driver mutations or rearrangements. Trials comparing these agents with other chemotherapy, evaluating the addition of an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) to chemotherapy or the addition of another targeted agent to erlotinib or gefitinib have all failed to demonstrate an improvement in overall survival for patients with NSCLC. In contrast, recent data comparing therapy with novel monoclonal antibodies against programmed cell death 1 (PD-1) or PD ligand (PD-L1) pathway versus standard chemotherapy following platinum failure have demonstrated significant improvements in overall survival. Therapy with nivolumab or pembrolizumab would now be considered standard second-line therapy in patients without contraindication to immune checkpoint inhibitors. Atezolizumab also appears promising in this setting. PMID:27557830

  13. Rapid growth of invasive metastatic melanoma in carcinogen-treated hepatocyte growth factor/scatter factor-transgenic mice carrying an oncogenic CDK4 mutation.

    PubMed

    Tormo, Damia; Ferrer, Aleix; Gaffal, Evelyn; Wenzel, Jörg; Basner-Tschakarjan, Etiena; Steitz, Julia; Heukamp, Lukas C; Gütgemann, Ines; Buettner, Reinhard; Malumbres, Marcos; Barbacid, Mariano; Merlino, Glenn; Tüting, Thomas

    2006-08-01

    Currently, novel mouse models of melanoma are being generated that recapitulate the histopathology and molecular pathogenesis observed in human disease. Impaired cell-cycle control, which is a hallmark of both familial and sporadic melanoma, promotes slowly growing carcinogen-induced melanomas in the skin of mice carrying a mutated cyclin-dependent kinase 4 (CDK4(R24C)). Deregulated receptor tyrosine kinase signaling, which is another important feature of human melanoma, leads to spontaneous development of metastatic melanoma after a long latency period in mice overexpressing hepatocyte growth factor/scatter factor (HGF/SF mice). Here we report that treatment with 7,12-dimethylbenz[a]anthracene and 12-O-tetradecanoylphorbol-13-acetate induced metastatic melanomas in all HGF/SF mice on the C57BL/6 background, which histologically resemble human melanoma. Importantly, mutant CDK4 dramatically increased the number and the growth kinetics of carcinogen-induced primary melanomas in the skin and promoted the growth of spontaneous metastases in lymph nodes and lungs in all HGF/SF mice within the first 3 months of life. Apart from very few skin papillomas, we did not observe tumors of other histology in carcinogen-treated HGF/SF x CDK4(R24C) mice. This new experimental mouse model can now be exploited to study further the biology of melanoma and evaluate new treatment modalities.

  14. Integrated genomic approaches identify upregulation of SCRN1 as a novel mechanism associated with acquired resistance to erlotinib in PC9 cells harboring oncogenic EGFR mutation

    PubMed Central

    Kim, Nayoung; Cho, Ahye; Watanabe, Hideo; Choi, Yoon-La; Aziz, Meraj; Kassner, Michelle; Joung, Je-Gun; Park, Angela KJ; Francis, Joshua M.; Bae, Joon Seol; Ahn, Soo-min; Kim, Kyoung-Mee; Park, Joon Oh; Park, Woong-Yang; Ahn, Myung-Ju; Park, Keunchil; Koo, Jaehyung; Yin, Hongwei Holly; Cho, Jeonghee

    2016-01-01

    Therapies targeting the tyrosine kinase activity of Epidermal Growth Factor Receptor (EGFR) have been proven to be effective in treating a subset of non-small cell lung cancer (NSCLC) patients harboring activating EGFR mutations. Inevitably these patients develop resistance to the EGFR-targeted tyrosine kinase inhibitors (TKIs). Here, we performed integrated genomic analyses using an in vitro system to uncover alternative genomic mechanisms responsible for acquired resistance to EGFR-TKIs. Specifically, we identified 80 genes whose expression is significantly increased in the erlotinib-resistant clones. RNAi-based systematic synthetic lethal screening of these candidate genes revealed that suppression of one upregulated transcript, SCRN1, a secernin family member, restores sensitivity to erlotinib by enhancing inhibition of PI3K/AKT signaling pathway. Furthermore, immunohistochemical analysis revealed increased levels of SCRN1 in 5 of 11 lung tumor specimens from EGFR-TKIs resistant patients. Taken together, we propose that upregulation of SCRN1 is an additional mechanism associated with acquired resistance to EGFR-TKIs and that its suppression serves as a novel therapeutic strategy to overcome drug resistance in these patients. PMID:26883194

  15. Ras CAAX peptidomimetic FTI-277 selectively blocks oncogenic Ras signaling by inducing cytoplasmic accumulation of inactive Ras-Raf complexes.

    PubMed

    Lerner, E C; Qian, Y; Blaskovich, M A; Fossum, R D; Vogt, A; Sun, J; Cox, A D; Der, C J; Hamilton, A D; Sebti, S M

    1995-11-10

    Ras-induced malignant transformation requires Ras farnesylation, a lipid posttranslational modification catalyzed by farnesyltransferase (FTase). Inhibitors of this enzyme have been shown to block Ras-dependent transformation, but the mechanism by which this occurs remains largely unknown. We have designed FTI-276, a peptide mimetic of the COOH-terminal Cys-Val-Ile-Met of K-Ras4B that inhibited potently FTase in vitro (IC50 = 500 pM) and was highly selective for FTase over geranylgeranyltransferase I (GGTase I) (IC50 = 50 nM). FTI-277, the methyl ester derivative of FTI-276, was extremely potent (IC50 = 100 nM) at inhibiting H-Ras, but not the geranylgeranylated Rap1A processing in whole cells. Treatment of H-Ras oncogene-transformed NIH 3T3 cells with FTI-277 blocked recruitment to the plasma membrane and subsequent activation of the serine/threonine kinase c-Raf-1 in cells transformed by farnesylated Ras (H-RasF), but not geranylgeranylated, Ras (H-RasGG). FTI-277 induced accumulation of cytoplasmic non-farnesylated H-Ras that was able to bind Raf and form cytoplasmic Ras/Raf complexes in which Raf kinase was not activated. Furthermore, FTI-277 blocked constitutive activation of mitogen-activated protein kinase (MAPK) in H-RasF, but not H-RasGG, or Raf-transformed cells. FTI-277 also inhibited oncogenic K-Ras4B processing and constitutive activation of MAPK, but the concentrations required were 100-fold higher than those needed for H-Ras inhibition. The results demonstrate that FTI-277 blocks Ras oncogenic signaling by accumulating inactive Ras/Raf complexes in the cytoplasm, hence preventing constitutive activation of the MAPK cascade.

  16. Active macropinocytosis induction by stimulation of epidermal growth factor receptor and oncogenic Ras expression potentiates cellular uptake efficacy of exosomes

    PubMed Central

    Nakase, Ikuhiko; Kobayashi, Nahoko Bailey; Takatani-Nakase, Tomoka; Yoshida, Tetsuhiko

    2015-01-01

    Exosomes are approximately 100-nm vesicles that consist of a lipid bilayer of cellular membranes secreted in large quantities from various types of normal and disease-related cells. Endocytosis has been reported as a major pathway for the cellular uptake of exosomes; however, the detailed mechanisms of their cellular uptake are still unknown. Here, we demonstrate the active induction of macropinocytosis (accompanied by actin reorganisation, ruffling of plasma membrane, and engulfment of large volumes of extracellular fluid) by stimulation of cancer-related receptors and show that the epidermal growth factor (EGF) receptor significantly enhances the cellular uptake of exosomes. We also demonstrate that oncogenic K-Ras-expressing MIA PaCa-2 cells exhibit intensive macropinocytosis that actively transports extracellular exosomes into the cells compared with wild-type K-Ras-expressing BxPC-3 cells. Furthermore, encapsulation of the ribosome-inactivating protein saporin with EGF in exosomes using our simple electroporation method produces superior cytotoxicity via the enhanced cellular uptake of exosomes. Our findings contribute to the biological, pharmaceutical, and medical research fields in terms of understanding the macropinocytosis-mediated cellular uptake of exosomes with applications for exosomal delivery systems. PMID:26036864

  17. Active macropinocytosis induction by stimulation of epidermal growth factor receptor and oncogenic Ras expression potentiates cellular uptake efficacy of exosomes.

    PubMed

    Nakase, Ikuhiko; Kobayashi, Nahoko Bailey; Takatani-Nakase, Tomoka; Yoshida, Tetsuhiko

    2015-06-03

    Exosomes are approximately 100-nm vesicles that consist of a lipid bilayer of cellular membranes secreted in large quantities from various types of normal and disease-related cells. Endocytosis has been reported as a major pathway for the cellular uptake of exosomes; however, the detailed mechanisms of their cellular uptake are still unknown. Here, we demonstrate the active induction of macropinocytosis (accompanied by actin reorganisation, ruffling of plasma membrane, and engulfment of large volumes of extracellular fluid) by stimulation of cancer-related receptors and show that the epidermal growth factor (EGF) receptor significantly enhances the cellular uptake of exosomes. We also demonstrate that oncogenic K-Ras-expressing MIA PaCa-2 cells exhibit intensive macropinocytosis that actively transports extracellular exosomes into the cells compared with wild-type K-Ras-expressing BxPC-3 cells. Furthermore, encapsulation of the ribosome-inactivating protein saporin with EGF in exosomes using our simple electroporation method produces superior cytotoxicity via the enhanced cellular uptake of exosomes. Our findings contribute to the biological, pharmaceutical, and medical research fields in terms of understanding the macropinocytosis-mediated cellular uptake of exosomes with applications for exosomal delivery systems.

  18. Oncogenes: The Passport for Viral Oncolysis Through PKR Inhibition

    PubMed Central

    Fernandes, Janaina

    2016-01-01

    The transforming properties of oncogenes are derived from gain-of-function mutations, shifting cell signaling from highly regulated homeostatic to an uncontrolled oncogenic state, with the contribution of the inactivating mutations in tumor suppressor genes P53 and RB, leading to tumor resistance to conventional and target-directed therapy. On the other hand, this scenario fulfills two requirements for oncolytic virus infection in tumor cells: inactivation of tumor suppressors and presence of oncoproteins, also the requirements to engage malignancy. Several of these oncogenes have a negative impact on the main interferon antiviral defense, the double-stranded RNA-activated protein kinase (PKR), which helps viruses to spontaneously target tumor cells instead of normal cells. This review is focused on the negative impact of overexpression of oncogenes on conventional and targeted therapy and their positive impact on viral oncolysis due to their ability to inhibit PKR-induced translation blockage, allowing virion release and cell death. PMID:27486347

  19. Oncogenes: The Passport for Viral Oncolysis Through PKR Inhibition.

    PubMed

    Fernandes, Janaina

    2016-01-01

    The transforming properties of oncogenes are derived from gain-of-function mutations, shifting cell signaling from highly regulated homeostatic to an uncontrolled oncogenic state, with the contribution of the inactivating mutations in tumor suppressor genes P53 and RB, leading to tumor resistance to conventional and target-directed therapy. On the other hand, this scenario fulfills two requirements for oncolytic virus infection in tumor cells: inactivation of tumor suppressors and presence of oncoproteins, also the requirements to engage malignancy. Several of these oncogenes have a negative impact on the main interferon antiviral defense, the double-stranded RNA-activated protein kinase (PKR), which helps viruses to spontaneously target tumor cells instead of normal cells. This review is focused on the negative impact of overexpression of oncogenes on conventional and targeted therapy and their positive impact on viral oncolysis due to their ability to inhibit PKR-induced translation blockage, allowing virion release and cell death. PMID:27486347

  20. Electrical detection of single-base DNA mutation using functionalized nanoparticles

    NASA Astrophysics Data System (ADS)

    Noor, Mohammud R.; Goyal, Swati; Christensen, Shawn M.; Iqbal, Samir M.

    2009-08-01

    We report an electrical scheme to detect specific DNA. Engineered hairpin probe DNA are immobilized on a silicon chip between gold nanoelectrodes. Hybridization of target DNA to the hairpin melts the stem nucleotides. Gold nanoparticle-conjugated universal reporter sequence detects the open hairpins by annealing to the exposed stem nucleotides. The gold nanoparticles increase charge conduction between the electrodes. Specifically, we report on a hairpin probe designed to detect a medically relevant mutant form of the K-ras oncogene. Direct current measurements show three orders of magnitude increase in conductivity for as low as 2fmol of target molecules.

  1. Electrical detection of single-base DNA mutation using functionalized nanoparticles

    NASA Astrophysics Data System (ADS)

    Noor, Mohammud R.; Goyal, Swati; Christensen, Shawn M.; Iqbal, Samir M.

    2009-08-01

    We report an electrical scheme to detect specific DNA. Engineered hairpin probe DNA are immobilized on a silicon chip between gold nanoelectrodes. Hybridization of target DNA to the hairpin melts the stem nucleotides. Gold nanoparticle-conjugated universal reporter sequence detects the open hairpins by annealing to the exposed stem nucleotides. The gold nanoparticles increase charge conduction between the electrodes. Specifically, we report on a hairpin probe designed to detect a medically relevant mutant form of the K-ras oncogene. Direct current measurements show three orders of magnitude increase in conductivity for as low as 2 fmol of target molecules.

  2. Myc oncogenes: the enigmatic family.

    PubMed Central

    Ryan, K M; Birnie, G D

    1996-01-01

    The myc family of proto-oncogenes is believed to be involved in the establishment of many types of human malignancy. The members of this family have been shown to function as transcription factors, and through a designated target sequence bring about continued cell-cycle progression, cellular immortalization and blockages to differentiation in many lineages. However, while much of the recent work focusing on the c-myc oncogene has provided some very important advances, it has also brought to light a large amount of conflicting data as to the mechanism of action of the gene product. In this regard, it has now been shown that c-myc is effective in transcriptional repression as well as transcriptional activation and, perhaps more paradoxically, that it has a role in programmed cell death (apoptosis) as well as in processes of cell-cycle progression. In addition, particular interest has surrounded the distinct roles of the two alternative translation products of the c-myc gene, c-Myc 1 and c-Myc 2. The intriguing observation that the ratio of c-Myc 1 to c-Myc 2 increases markedly upon cellular quiescence led to the discovery that the enforced expression of the two proteins individually showed that c-Myc 2 stimulates cell growth, whereas c-Myc 1 appears to be growth suppressing. Clearly, the disparities in the activities of c-Myc, together with the consistent occurrence of mutations of c-myc in human malignancies, means that, although reaching an understanding of the functions of the myc gene family might not be simple, it remains well worthy of pursuit. PMID:8615760

  3. Inhibition of Ras oncogenic activity by Ras protooncogenes.

    PubMed

    Diaz, Roberto; Lue, Jeffrey; Mathews, Jeremy; Yoon, Andrew; Ahn, Daniel; Garcia-España, Antonio; Leonardi, Peter; Vargas, Marcelo P; Pellicer, Angel

    2005-01-10

    Point mutations in ras genes have been found in a large number and wide variety of human tumors. These oncogenic Ras mutants are locked in an active GTP-bound state that leads to a constitutive and deregulated activation of Ras function. The dogma that ras oncogenes are dominant, whereby the mutation of a single allele in a cell will predispose the host cell to transformation regardless of the presence of the normal allele, is being challenged. We have seen that increasing amounts of Ras protooncogenes are able to inhibit the activity of the N-Ras oncogene in the activation of Elk in NIH 3T3 cells and in the formation of foci. We have been able to determine that the inhibitory effect is by competition between Ras protooncogenes and the N-Ras oncogene that occurs first at the effector level at the membranes, then at the processing level and lastly at the effector level in the cytosol. In addition, coexpression of the N-Ras protooncogene in thymic lymphomas induced by the N-Ras oncogene is associated with increased levels of p107, p130 and cyclin A and decreased levels of Rb. In the present report, we have shown that the N-Ras oncogene is not truly dominant over Ras protooncogenes and their competing activities might be depending on cellular context.

  4. [Atherosclerosis and oncogenes].

    PubMed

    Onraed-Dupriez, B

    1992-01-01

    Atherosclerosis, a leading cause of mortality in the developed world, has mainly been studied with respect to the pathogenic role of lipids. However, over the last few years, a new avenue of research has stemmed from Benditt's monoclonal theory which linkens the atheroma plaque to a benign tumor developed from a single smooth muscle cell. Investigations into mechanisms capable of initiating this monoclonal cell growth have included studies of protooncogene activation. Barrett and Benditt have reported increased expression of the sis oncogene in the atheroma plaque; the product of this oncogene is very similar to the beta chain of platelet-derived growth factor (PDGF) which may play a role in the development of the atheroma plaque. These recent studies focusing on the earliest step of formation of the atheroma plaque, ie, cell growth, complement the pathophysiologic theories studied until now.

  5. Oncogenes and growth control

    SciTech Connect

    Kahn, P.; Graf, T.

    1986-01-01

    This book contains six sections, each consisting of several papers. Some of the paper titles are: A Role for Proto-Oncogenes in Differentiation.; The ras Gene Family; Regulation of Human Globin Gene Expression; Regulation of Gene Expression by Steroid Hormones; The Effect of DNA Methylation on DNA-Protein Interactions and on the Regulation of Gene Expression; and Trans-Acting Elements Encoded in Immediate Early Genes of DNA Tumor Viruses.

  6. The human oncogenic viruses

    SciTech Connect

    Luderer, A.A.; Weetall, H.H

    1986-01-01

    This book contains eight selections. The titles are: Cytogenetics of the Leukemias and Lymphomas; Cytogenetics of Solid Tumors: Renal Cell Carcinoma, Malignant Melanoma, Retinoblastoma, and Wilms' Tumor; Elucidation of a Normal Function for a Human Proto-Oncogene; Detection of HSV-2 Genes and Gene Products in Cervical Neoplasia; Papillomaviruses in Anogennital Neoplasms; Human Epstein-Barr Virus and Cancer; Hepatitis B Virus and Hepatocellular Carcinoma; and Kaposi's Sarcoma: Acquired Immunodeficiency Syndrome (AIDS) and Associated Viruses.

  7. G9a/RelB regulates self-renewal and function of colon-cancer-initiating cells by silencing Let-7b and activating the K-RAS/β-catenin pathway.

    PubMed

    Cha, Shih-Ting; Tan, Ching-Ting; Chang, Cheng-Chi; Chu, Chia-Yu; Lee, Wei-Jiunn; Lin, Been-Zen; Lin, Ming-Tsan; Kuo, Min-Liang

    2016-09-01

    Epigenetic reprogramming has been associated with the functional plasticity of cancer-initiating cells (CICs); however, the regulatory pathway has yet to be elucidated. A siRNA screen targeting known epigenetic genes revealed that G9a profoundly impairs the chemo-resistance, self-renewal and metastasis of CICs obtained from patients with colorectal cancer (CRC). Patients with elevated G9a were shown to face a high risk of relapse and poor survival rates. From a mechanistic perspective, G9a binds with and stabilizes RelB, thereby recruiting DNA methyltransferase 3 on the Let-7b promoter and repressing its expression. This leads to the activation of the K-RAS/β-catenin pathway and regulates self-renewal and function of CICs. These findings indicate that the G9a/RelB/Let-7b axis acts as a critical regulator in the maintenance of CIC phenotypes and is strongly associated with negative clinical outcomes. Thus, these findings may have diagnostic as well as therapeutic implications for the treatment of chemotherapy-resistant or metastatic CRC. PMID:27525719

  8. Melanoma: oncogenic drivers and the immune system

    PubMed Central

    Karachaliou, Niki; Pilotto, Sara; Teixidó, Cristina; Viteri, Santiago; González-Cao, María; Riso, Aldo; Morales-Espinosa, Daniela; Molina, Miguel Angel; Chaib, Imane; Santarpia, Mariacarmela; Richardet, Eduardo; Bria, Emilio

    2015-01-01

    Advances and in-depth understanding of the biology of melanoma over the past 30 years have contributed to a change in the consideration of melanoma as one of the most therapy-resistant malignancies. The finding that oncogenic BRAF mutations drive tumor growth in up to 50% of melanomas led to a molecular therapy revolution for unresectable and metastatic disease. Moving beyond BRAF, inactivation of immune regulatory checkpoints that limit T cell responses to melanoma has provided targets for cancer immunotherapy. In this review, we discuss the molecular biology of melanoma and we focus on the recent advances of molecularly targeted and immunotherapeutic approaches. PMID:26605311

  9. Mutations associated with carcinomas arising from pleomorphic adenomas of the salivary glands.

    PubMed

    Yamamoto, Y; Kishimoto, Y; Virmani, A K; Smith, A; Vuitch, F; Albores-Saavedra, J; Gazdar, A F

    1996-08-01

    Pleomorphic adenoma (PA) is the most common benign tumor of salivary glands. Carcinomas in pleomorphic adenomas (CPAs) may arise by malignant transformation of the epithelial components of PAs. Occasionally, transitional zones containing cells with histological features intermediate between those of the benign PA and carcinomatous components of CPA are identified. After careful microdissection of archival microslides, the authors studied 12 cases of CPAs and their attendant adenomatous and transitional areas for mutations in the p53, RB, and K-ras genes, and at chromosomal loci 5q and 9p. The authors failed to find mutations in the K-ras gene or 9p locus. A relatively high rate of mutations (loss of heterozygosity [LOH] and microsatellite alterations) at the p53 gene were detected in CPAs (58%), and at somewhat lower frequencies at the RB gene (33%) and chromosomal location 5q (17%). Mutational frequency in the associated transitional and adenomatous areas were slightly lower than in the corresponding CPAs. No mutations were detected in adenomatous or transitional areas unless they also were present in the corresponding CPAs. Mutations of these three genes were absent in four cases of CPA, and in seven PAs without malignant change. These findings indicate that most CPAs arise from adenomas as the result of mutations in the three genes, especially p53. In addition, other, as yet unidentified genes may also be involved both in the development of PA and in its malignant progression to CPA. Mutational analysis of PAs may provide information of prognostic importance.

  10. Pro-oncogenic and anti-oncogenic pathways: opportunities and challenges of cancer therapy

    PubMed Central

    Zhang, Jiao; Chen, Yan-Hua; Lu, Qun

    2010-01-01

    Carcinogenesis is the uncontrolled growth of cells gaining the potential to invade and disrupt vital tissue functions. This malignant process includes the occurrence of ‘unwanted’ gene mutations that induce the transformation of normal cells, for example, by overactivation of pro-oncogenic pathways and inactivation of tumor-suppressive or anti-oncogenic pathways. It is now recognized that the number of major signaling pathways that control oncogenesis is not unlimited; therefore, suppressing these pathways can conceivably lead to a cancer cure. However, the clinical application of cancer intervention has not matched up to scientific expectations. Increasing numbers of studies have revealed that many oncogenic-signaling elements show double faces, in which they can promote or suppress cancer pathogenesis depending on tissue type, cancer stage, gene dosage and their interaction with other players in carcinogenesis. This complexity of oncogenic signaling poses challenges to traditional cancer therapy and calls for considerable caution when designing an anticancer drug strategy. We propose future oncology interventions with the concept of integrative cancer therapy. PMID:20373871

  11. Inhibition of ras oncogene: a novel approach to antineoplastic therapy.

    PubMed

    Scharovsky, O G; Rozados, V R; Gervasoni, S I; Matar, P

    2000-01-01

    The most frequently detected oncogene alterations, both in animal and human cancers, are the mutations in the ras oncogene family. These oncogenes are mutated or overexpressed in many human tumors, with a high incidence in tumors of the pancreas, thyroid, colon, lung and certain types of leukemia. Ras is a small guanine nucleotide binding protein that transduces biological information from the cell surface to cytoplasmic components within cells. The signal is transduced to the cell nucleus through second messengers, and it ultimately induces cell division. Oncogenic forms of p21(ras) lead to unregulated, sustained signaling through downstream effectors. The ras family of oncogenes is involved in the development of both primary tumors and metastases making it a good therapeutic target. Several therapeutic approaches to cancer have been developed pointing to reducing the altered gene product or to eliminating its biological function: (1) gene therapy with ribozymes, which are able to break down specific RNA sequences, or with antisense oligonucleotides, (2) immunotherapy through passive or active immunization protocols, and (3) inhibition of p21(ras) farnesylation either by inhibition of farnesyl transferase or synthesis inhibition of farnesyl moieties. PMID:10895051

  12. RET oncogene in MEN2, MEN2B, MTC and other forms of thyroid cancer.

    PubMed

    Lodish, Maya B; Stratakis, Constantine A

    2008-04-01

    Hereditary medullary thyroid carcinoma (MTC) is caused by specific autosomal dominant gain-of-function mutations in the RET proto-oncogene. Genotype-phenotype correlations exist that help predict the presence of other associated endocrine neoplasms as well as the timing of thyroid cancer development. MTC represents a promising model for targeted cancer therapy, as the oncogenic event responsible for initiating malignancy has been well characterized. The RET proto-oncogene has become the target for molecularly designed drug therapy. Tyrosine kinase inhibitors targeting activated RET are currently in clinical trials for the treatment of patients with MTC. This review will provide a brief overview of MTC and the associated RET oncogenic mutations, and will summarize the therapies designed to strategically interfere with the pathologic activation of the RET oncogene.

  13. Targeting Oncogenic Mutant p53 for Cancer Therapy

    PubMed Central

    Parrales, Alejandro; Iwakuma, Tomoo

    2015-01-01

    Among genetic alterations in human cancers, mutations in the tumor suppressor p53 gene are the most common, occurring in over 50% of human cancers. The majority of p53 mutations are missense mutations and result in the accumulation of dysfunctional p53 protein in tumors. These mutants frequently have oncogenic gain-of-function activities and exacerbate malignant properties of cancer cells, such as metastasis and drug resistance. Increasing evidence reveals that stabilization of mutant p53 in tumors is crucial for its oncogenic activities, while depletion of mutant p53 attenuates malignant properties of cancer cells. Thus, mutant p53 is an attractive druggable target for cancer therapy. Different approaches have been taken to develop small-molecule compounds that specifically target mutant p53. These include compounds that restore wild-type conformation and transcriptional activity of mutant p53, induce depletion of mutant p53, inhibit downstream pathways of oncogenic mutant p53, and induce synthetic lethality to mutant p53. In this review article, we comprehensively discuss the current strategies targeting oncogenic mutant p53 in cancers, with special focus on compounds that restore wild-type p53 transcriptional activity of mutant p53 and those reducing mutant p53 levels. PMID:26732534

  14. CRAF R391W is a melanoma driver oncogene

    PubMed Central

    Atefi, Mohammad; Titz, Bjoern; Tsoi, Jennifer; Avramis, Earl; Le, Allison; Ng, Charles; Lomova, Anastasia; Lassen, Amanda; Friedman, Michael; Chmielowski, Bartosz; Ribas, Antoni; Graeber, Thomas G.

    2016-01-01

    Approximately 75% of melanomas have known driver oncogenic mutations in BRAF, NRAS, GNA11 or GNAQ, while the mutations providing constitutive oncogenic signaling in the remaining melanomas are not known. We established a melanoma cell line from a tumor with none of the common driver mutations. This cell line demonstrated a signaling profile similar to BRAF-mutants, but lacked sensitivity to the BRAF inhibitor vemurafenib. RNA-seq mutation data implicated CRAF R391W as the alternative driver mutation of this melanoma. CRAF R391W was homozygous and over expressed. These melanoma cells were highly sensitive to CRAF, but not BRAF knockdown. In reconstitution experiments, CRAF R391W, but not CRAF WT, transformed NIH3T3 cells in soft-agar colony formation assays, increased kinase activity in vitro, induced MAP kinase signaling and conferred vemurafenib resistance. MAP kinase inducing activity was dependent on CRAF dimerization. Thus, CRAF is a bona fide alternative oncogene for BRAF/NRAS/GNAQ/GNA11 wild type melanomas. PMID:27273450

  15. Principles of cancer therapy: oncogene and non-oncogene addiction.

    PubMed

    Luo, Ji; Solimini, Nicole L; Elledge, Stephen J

    2009-03-01

    Cancer is a complex collection of distinct genetic diseases united by common hallmarks. Here, we expand upon the classic hallmarks to include the stress phenotypes of tumorigenesis. We describe a conceptual framework of how oncogene and non-oncogene addictions contribute to these hallmarks and how they can be exploited through stress sensitization and stress overload to selectively kill cancer cells. In particular, we present evidence for a large class of non-oncogenes that are essential for cancer cell survival and present attractive drug targets. Finally, we discuss the path ahead to therapeutic discovery and provide theoretical considerations for combining orthogonal cancer therapies. PMID:19269363

  16. Oncogenes in myeloproliferative disorders.

    PubMed

    Tefferi, Ayalew; Gilliland, D Gary

    2007-03-01

    Myeloproliferative disorders (MPDs) constitute a group of hematopoietic malignancies that feature enhanced proliferation and survival of one or more myeloid lineage cells. William Dameshek is credited for introducing the term "MPDs" in 1951 when he used it to group chronic myeloid leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF) under one clinicopathologic category. Since then, other myeloid neoplasms have been added to the MPD member list: chronic neutrophilic (CNL), eosinophilic (CEL) and myelomonocytic (CMML) leukemias; juvenile myelomonocytic leukemia (JMML); hypereosinophilic syndrome (HES); systemic mastocytosis (SM); and others. Collectively, MPDs are stem cell-derived clonal proliferative diseases whose shared and diverse phenotypic characteristics can be attributed to dysregulated signal transduction--a consequence of acquired somatic mutations. The most recognized among the latter is BCR-ABL, the disease-causing mutation in CML. Other mutations of putative pathogenetic relevance in MPDs include: JAK2V617F in PV, ET, and PMF; JAK2 exon 12 mutations in PV; MPLW515L/K in PMF and ET; KITD816V in SM; FIP1L1-PDGFRA in CEL-SM; rearrangements of PDGFRB in CEL-CMML and FGFR1 in stem cell leukemia-lymphoma syndrome; and RAS/PTPN11/NF1 mutations in JMML. This increasing repertoire of mutant molecules has streamlined translational research and molecularly targeted drug development in MPDs.

  17. Identification of Novel Small Molecule Inhibitors of Oncogenic RET Kinase.

    PubMed

    Moccia, Marialuisa; Liu, Qingsong; Guida, Teresa; Federico, Giorgia; Brescia, Annalisa; Zhao, Zheng; Choi, Hwan Geun; Deng, Xianming; Tan, Li; Wang, Jinhua; Billaud, Marc; Gray, Nathanael S; Carlomagno, Francesca; Santoro, Massimo

    2015-01-01

    Oncogenic mutation of the RET receptor tyrosine kinase is observed in several human malignancies. Here, we describe three novel type II RET tyrosine kinase inhibitors (TKI), ALW-II-41-27, XMD15-44 and HG-6-63-01, that inhibit the cellular activity of oncogenic RET mutants at two digit nanomolar concentration. These three compounds shared a 3-trifluoromethyl-4-methylpiperazinephenyl pharmacophore that stabilizes the 'DFG-out' inactive conformation of RET activation loop. They blocked RET-mediated signaling and proliferation with an IC50 in the nM range in fibroblasts transformed by the RET/C634R and RET/M918T oncogenes. They also inhibited autophosphorylation of several additional oncogenic RET-derived point mutants and chimeric oncogenes. At a concentration of 10 nM, ALW-II-41-27, XMD15-44 and HG-6-63-01 inhibited RET kinase and signaling in human thyroid cancer cell lines carrying oncogenic RET alleles; they also inhibited proliferation of cancer, but not non-tumoral Nthy-ori-3-1, thyroid cells, with an IC50 in the nM range. The three compounds were capable of inhibiting the 'gatekeeper' V804M mutant which confers substantial resistance to established RET inhibitors. In conclusion, we have identified a type II TKI scaffold, shared by ALW-II-41-27, XMD15-44 and HG-6-63-01, that may be used as novel lead for the development of novel agents for the treatment of cancers harboring oncogenic activation of RET.

  18. Oncogenic extracellular vesicles in brain tumor progression.

    PubMed

    D'Asti, Esterina; Garnier, Delphine; Lee, Tae H; Montermini, Laura; Meehan, Brian; Rak, Janusz

    2012-01-01

    The brain is a frequent site of neoplastic growth, including both primary and metastatic tumors. The clinical intractability of many brain tumors and their distinct biology are implicitly linked to the unique microenvironment of the central nervous system (CNS) and cellular interactions within. Among the most intriguing forms of cellular interactions is that mediated by membrane-derived extracellular vesicles (EVs). Their biogenesis (vesiculation) and uptake by recipient cells serves as a unique mechanism of intercellular trafficking of complex biological messages including the exchange of molecules that cannot be released through classical secretory pathways, or that are prone to extracellular degradation. Tumor cells produce EVs containing molecular effectors of several cancer-related processes such as growth, invasion, drug resistance, angiogenesis, and coagulopathy. Notably, tumor-derived EVs (oncosomes) also contain oncogenic proteins, transcripts, DNA, and microRNA (miR). Uptake of this material may change properties of the recipient cells and impact the tumor microenvironment. Examples of transformation-related molecules found in the cargo of tumor-derived EVs include the oncogenic epidermal growth factor receptor (EGFRvIII), tumor suppressors (PTEN), and oncomirs (miR-520g). It is postulated that EVs circulating in blood or cerebrospinal fluid (CSF) of brain tumor patients may be used to decipher molecular features (mutations) of the underlying malignancy, reflect responses to therapy, or molecular subtypes of primary brain tumors [e.g., glioma or medulloblastoma (MB)]. It is possible that metastases to the brain may also emit EVs with clinically relevant oncogenic signatures. Thus, EVs emerge as a novel and functionally important vehicle of intercellular communication that can mediate multiple biological effects. In addition, they provide a unique platform to develop molecular biomarkers in brain malignancies. PMID:22934045

  19. Identification of an Oncogenic RAB Protein

    PubMed Central

    Wheeler, Douglas B.; Zoncu, Roberto; Root, David E.; Sabatini, David M.; Sawyers, Charles L.

    2015-01-01

    In an shRNA screen for genes that affect AKT phosphorylation, we identified the RAB35 small GTPase—a protein previously implicated in endomembrane trafficking—as a new regulator of the PI3K pathway. Depletion of RAB35 suppresses AKT phosphorylation in response to growth factors, whereas expression of a dominant active GTPase-deficient mutant of RAB35 constitutively activates the PI3K/AKT pathway. RAB35 functions downstream of growth factor receptors and upstream of PDK1 and mTORC2 and co-purifies with PI3K in immunoprecipitation assays. Two somatic RAB35 mutations found in human tumors generate alleles that constitutively activate PI3K/AKT signaling, suppress apoptosis, and transform cells in a PI3K-dependent manner. Furthermore, oncogenic RAB35 is sufficient to drive PDGFRα to LAMP2-positive endomembranes in the absence of ligand, suggesting there may be latent oncogenic potential in dysregulated endomembrane trafficking. PMID:26338797

  20. Identification of an oncogenic RAB protein.

    PubMed

    Wheeler, Douglas B; Zoncu, Roberto; Root, David E; Sabatini, David M; Sawyers, Charles L

    2015-10-01

    In a short hairpin RNA screen for genes that affect AKT phosphorylation, we identified the RAB35 small guanosine triphosphatase (GTPase)-a protein previously implicated in endomembrane trafficking-as a regulator of the phosphatidylinositol 3'-OH kinase (PI3K) pathway. Depletion of RAB35 suppresses AKT phosphorylation in response to growth factors, whereas expression of a dominant active GTPase-deficient mutant of RAB35 constitutively activates the PI3K/AKT pathway. RAB35 functions downstream of growth factor receptors and upstream of PDK1 and mTORC2 and copurifies with PI3K in immunoprecipitation assays. Two somatic RAB35 mutations found in human tumors generate alleles that constitutively activate PI3K/AKT signaling, suppress apoptosis, and transform cells in a PI3K-dependent manner. Furthermore, oncogenic RAB35 is sufficient to drive platelet-derived growth factor receptor α to LAMP2-positive endomembranes in the absence of ligand, suggesting that there may be latent oncogenic potential in dysregulated endomembrane trafficking.

  1. The oncogenic action of ionizing radiation on rat skin

    SciTech Connect

    Burns, F.J.; Garte, S.J.

    1992-01-01

    The multistage theory of carcinogenesis specifies that cells progress to cancer through a series of discrete, irreversible genetic alterations, but data on radiation-induced cancer incidence in rat skin suggests that an intermediate repairable alteration may occur. Data are presented on cancer induction in rat skin exposed to an electron beam (LET=0.34 keV/[mu]), a neon ion beam (LET=45) or an argon ion beam (LET=125). The rats were observed for tumors at least 78 weeks with squamous and basal cell carcinomas observed. The total cancer yield was fitted by the quadratic equation, and the equation parameters were estimated by linear regression for each type of radiation. Analysis of the DNA from the electron-induced carcinomas indicated that K-ras and/or c-myc oncogenes were activated. In situ hybridization indicated that the cancers contain subpopulations of cells with differing amounts of c-myc and H-ras amplification. The results are consistent with the idea that ionizing radiation produces stable, carcinogenically relevant lesions via 2 repairable events at low LET and via a non-repairable linked event pathway at high LET; either pathway may advance the cell by 1 stage. The proliferative response of rat epidermis following exposure to ionizing radiation was quantified by injection of [sup 14]C-thymidine. The return of these cells to S-phase a second time was detected by a second label ([sup 3]H). When the labeled cells were in G1-phase, the dorsal skin was irradiated with X-rays. All labeling indices were determined. The [sup 14]C labeling index was constant and unaffected by the radiation. The proportion of all cells entering S-phase averaged 3.5% at 18 hr and increased after 44, 52 and 75 hr to average levels of 11.8%, 5. 3%, and 6.6% at 0, 10 and 25 Gy respectively. The proportion of S-phase cells labeled with [sup 14]C increased after 42 hr and remained relatively constant thereafter.

  2. Involvement of oncogenes in radon-induced lung tumors in rats

    SciTech Connect

    Foreman, M.E.; McCoy, L.S.; Frazier, M.E.

    1992-12-31

    Several oncogenes, notably those of the ras and myc family, have been implicated in the induction of lung tumors. Although inhalation of radon and radon daughters has been shown to result in a high incidence of lung tumors, the role of oncogenes in these tumors (if any) remains unknown. In certain cases of chemically induced carcinogenesis, unique point mutations in the 12th, 59th, and 61st codons of H-ras and Ki-ras have been found to transform ras proto-oncogenes to dominant-acting oncogenes. We have isolated DNA from fixed, archived, radon-induced tumors in rats, amplified the oncogene of interest by polymerase chain reaction, and analyzed it by sequencing. Although we have not found any of the classically described point mutations in the H-ras gene, preliminary evidence indicates that several common mutations occur with high frequency in the second exon. These point mutations have not been seen in any {open_quotes}spontaneously{close_quotes} occurring tumors. At present we theorize that these mutations represent one of the secondary effects of a multi-step process in the development of these lung tumors. As this project expands, we are making a systematic effort to correlate the molecular data with the pathological data derived from the original studies of these archived tumors.

  3. The guardians of inherited oncogenic vulnerabilities.

    PubMed

    Arnal, Audrey; Tissot, Tazzio; Ujvari, Beata; Nunney, Leonard; Solary, Eric; Laplane, Lucie; Bonhomme, François; Vittecoq, Marion; Tasiemski, Aurélie; Renaud, François; Pujol, Pascal; Roche, Benjamin; Thomas, Frédéric

    2016-01-01

    Similar to seemingly maladaptive genes in general, the persistence of inherited cancer-causing mutant alleles in populations remains a challenging question for evolutionary biologists. In addition to traditional explanations such as senescence or antagonistic pleiotropy, here we put forward a new hypothesis to explain the retention of oncogenic mutations. We propose that although natural defenses evolve to prevent neoplasm formation and progression thus increasing organismal fitness, they also conceal the effects of cancer-causing mutant alleles on fitness and concomitantly protect inherited ones from purging by purifying selection. We also argue for the importance of the ecological contexts experienced by individuals and/or species. These contexts determine the locally predominant fitness-reducing risks, and hence can aid the prediction of how natural selection will influence cancer outcomes. PMID:26519218

  4. Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture.

    PubMed

    Li, Xingnan; Nadauld, Lincoln; Ootani, Akifumi; Corney, David C; Pai, Reetesh K; Gevaert, Olivier; Cantrell, Michael A; Rack, Paul G; Neal, James T; Chan, Carol W-M; Yeung, Trevor; Gong, Xue; Yuan, Jenny; Wilhelmy, Julie; Robine, Sylvie; Attardi, Laura D; Plevritis, Sylvia K; Hung, Kenneth E; Chen, Chang-Zheng; Ji, Hanlee P; Kuo, Calvin J

    2014-07-01

    The application of primary organoid cultures containing epithelial and mesenchymal elements to cancer modeling holds promise for combining the accurate multilineage differentiation and physiology of in vivo systems with the facile in vitro manipulation of transformed cell lines. Here we used a single air-liquid interface culture method without modification to engineer oncogenic mutations into primary epithelial and mesenchymal organoids from mouse colon, stomach and pancreas. Pancreatic and gastric organoids exhibited dysplasia as a result of expression of Kras carrying the G12D mutation (Kras(G12D)), p53 loss or both and readily generated adenocarcinoma after in vivo transplantation. In contrast, primary colon organoids required combinatorial Apc, p53, Kras(G12D) and Smad4 mutations for progressive transformation to invasive adenocarcinoma-like histology in vitro and tumorigenicity in vivo, recapitulating multi-hit models of colorectal cancer (CRC), as compared to the more promiscuous transformation of small intestinal organoids. Colon organoid culture functionally validated the microRNA miR-483 as a dominant driver oncogene at the IGF2 (insulin-like growth factor-2) 11p15.5 CRC amplicon, inducing dysplasia in vitro and tumorigenicity in vivo. These studies demonstrate the general utility of a highly tractable primary organoid system for cancer modeling and driver oncogene validation in diverse gastrointestinal tissues.

  5. Effects of the oncogenic V(664)E mutation on membrane insertion, structure, and sequence-dependent interactions of the Neu transmembrane domain in micelles and model membranes: an integrated biophysical and simulation study.

    PubMed

    Beevers, Andrew J; Nash, Anthony; Salazar-Cancino, Martha; Scott, David J; Notman, Rebecca; Dixon, Ann M

    2012-03-27

    Receptor tyrosine kinases bind ligands such as cytokines, hormones, and growth factors and regulate key cellular processes, including cell division. They are also implicated in the development of many types of cancer. One such example is the Neu receptor tyrosine kinase found in rats (homologous to the human ErbB2 protein), which can undergo a valine to glutamic acid (V(664)E) mutation at the center of its α-helical transmembrane domain. This substitution results in receptor activation and oncogenesis. The molecular basis of this dramatic change in behavior upon introduction of the V(664)E mutation has been difficult to pin down, with conflicting results reported in the literature. Here we report the first quantitative, thermodynamic analysis of dimerization and biophysical characterization of the rat Neu transmembrane domain and several mutants in a range of chemical environments. These data have allowed us to identify the effects of the V(664)E mutation in the isolated TM domain with respect to protein-protein and protein-lipid interactions, membrane insertion, and secondary structure. We also report the results from a 100 ns atomistic molecular dynamics simulation of the Neu transmembrane domain in a model membrane bilayer (dipalmitoylphosphatidylcholine). The results from simulation and experiment are in close agreement and suggest that, in the model systems investigated, the V(664)E mutation leads to a weakening of the TM dimer and a change in sequence-dependent interactions. These results are contrary to recent results obtained in mammalian membranes, and the implications of this are discussed. PMID:22385253

  6. Molecular biology of oncogenic inflammatory processes. I. Non-oncogenic and oncogenic pathogens, intrinsic inflammatory reactions without pathogens, and microRNA/DNA interactions (Review).

    PubMed

    Sinkovics, Joseph G

    2012-02-01

    In some inflammasomes tumor cells are generated. The internal environment of the inflammasome is conducive to the induction of malignant transformation. Epigenetic changes initiate this process. The subverted stromal connective tissue cells act to promote and sustain the process of malignant trans-formation. In its early stages, the premalignant cells depend on paracrine circuitries for the reception of growth factors. The ligands are derived from the connective tissue, and the receptors are expressed on the recipient premalignant cells. The initial events are not a direct attack on the proto-oncogenes, and thus it may be entirely reversible. Epigenetic processes of hypermethylation of the genes at the promoters of tumor suppressor genes (to silence them), and deacetylation of the histones aimed at the promoters of proto-oncogenes (to activate them) are on-going. A large number of short RNA sequences (interfering, micro-, short hairpin, non-coding RNAs) silence tumor suppressor genes, by neutralizing their mRNAs. In a serial sequence oncogenes undergo amplifications, point-mutations, translocations and fusions. In its earliest stage, the process is reversible by demethylation of the silenced suppressor gene promoters (to reactivate them), or re-acetylation of the histones of the oncogene promoters, thus de-activating them. The external administration of histone deacetylase inhibitors usually leads to the restoration of histone acetylation. In time, the uncorrected processes solidify into constitutive and irreversible gene mutations. Some of the pathogens inducing inflammations with consquential malignant transformation contain oncogenic gene sequences (papilloma viruses, Epstein-Barr virus, Kaposi's sarcoma-associated herpesvirus, hepatitis B and C viruses, Merkel cell polyoma virus, Helicobacter pylori, enterotoxigenic Bacteroides fragilis). These induced malignancies may be multifocal. Other pathogens are devoid of any known oncogenic genomic sequences

  7. Regulation of autophagy and chloroquine sensitivity by oncogenic RAS in vitro is context-dependent.

    PubMed

    Morgan, Michael J; Gamez, Graciela; Menke, Christina; Hernandez, Ariel; Thorburn, Jacqueline; Gidan, Freddi; Staskiewicz, Leah; Morgan, Shellie; Cummings, Christopher; Maycotte, Paola; Thorburn, Andrew

    2014-10-01

    Chloroquine (CQ) is an antimalarial drug and late-stage inhibitor of autophagy currently FDA-approved for use in the treatment of rheumatoid arthritis and other autoimmune diseases. Based primarily on its ability to inhibit autophagy, CQ and its derivative, hydroxychloroquine, are currently being investigated as primary or adjuvant therapy in multiple clinical trials for cancer treatment. Oncogenic RAS has previously been shown to regulate autophagic flux, and cancers with high incidence of RAS mutations, such as pancreatic cancer, have been described in the literature as being particularly susceptible to CQ treatment, leading to the hypothesis that oncogenic RAS makes cancer cells dependent on autophagy. This autophagy "addiction" suggests that the mutation status of RAS in tumors could identify patients who would be more likely to benefit from CQ therapy. Here we show that RAS mutation status itself is unlikely to be beneficial in such a patient selection because oncogenic RAS does not always promote autophagy addiction. Moreover, oncogenic RAS can have opposite effects on both autophagic flux and CQ sensitivity in different cells. Finally, for any given cell type, the positive or negative effect of oncogenic RAS on autophagy does not necessarily predict whether RAS will promote or inhibit CQ-mediated toxicity. Thus, although our results confirm that different tumor cell lines display marked differences in how they respond to autophagy inhibition, these differences can occur irrespective of RAS mutation status and, in different contexts, can either promote or reduce chloroquine sensitivity of tumor cells.

  8. The contrasting oncogenic and tumor suppressor roles of FES.

    PubMed

    Greer, Peter A; Kanda, Shigeru; Smithgall, Thomas E

    2012-01-01

    The FES gene was first discovered as a protein-tyrosine kinase-encoding retroviral oncogene. The ability of v-FES to transform cells in vitro and initiate cancer in vivo has been established by cell culture, engraftment and transgenic mouse studies. The corresponding cellular c-FES proto-oncogene encodes a cytoplasmic FES protein-tyrosine kinase with restrained catalytic activity relative to its retrovirally encoded homologs. These observations have stimulated a search for mutations or inappropriate expression of c-FES in human cancers and research aimed at understanding the functions of the FES kinase and its potential involvement in cancer and other diseases. Paradoxically, although first identified as an oncogene, genetic evidence has also implicated c-fes as a potential tumor suppressor. This review will describe observations from basic and translational research which shapes our current understanding of the physiological, cellular and molecular functions of the FES protein-tyrosine kinase and its potential roles in tumorigenesis. We also propose a model to reconcile the conflicting oncogenic and tumor suppressor roles of c-FES in tumorigenesis.

  9. Complex effects of Ras proto-oncogenes in tumorigenesis.

    PubMed

    Diaz, Roberto; Lopez-Barcons, Lluis; Ahn, Daniel; Garcia-Espana, Antonio; Yoon, Andrew; Matthews, Jeremy; Mangues, Ramon; Perez-Soler, Roman; Pellicer, Angel

    2004-04-01

    Ras proteins have been found mutated in about one-third of human tumors. In vitro, Ras has been shown to regulate distinct and contradictory effects, such as cellular proliferation and apoptosis. Nonetheless, the effects that the wild-type protein elicits in tumorigenesis are poorly understood. Depending on the type of tissue, Ras proto-oncogenes appear to either promote or inhibit the tumor phenotype. In this report, we treated wild-type and N-ras knockout mice with 3-methylcholanthrene (MCA) to induce fibrosarcomas and found that MCA is more carcinogenic in wild-type mice than in knockout mice. After injecting different doses of a tumorigenic cell line, the wild-type mice exhibited a shorter latency of tumor development than the knockouts, indicating that there are N-ras-dependent differences in the stromal cells. Likewise, we have analyzed B-cell lymphomas induced by either N-methylnitrosourea or by the N-ras oncogene in mice that over-express the N-ras proto-oncogene and found that the over-expression of wild-type N-ras is able to increase the incidence of these lymphomas. Considered together, our results indicate that Ras proto-oncogenes can enhance or inhibit the malignant phenotype in vivo in different systems.

  10. c-Abl antagonizes the YAP oncogenic function

    PubMed Central

    Keshet, R; Adler, J; Ricardo Lax, I; Shanzer, M; Porat, Z; Reuven, N; Shaul, Y

    2015-01-01

    YES-associated protein (YAP) is a central transcription coactivator that functions as an oncogene in a number of experimental systems. However, under DNA damage, YAP activates pro-apoptotic genes in conjunction with p73. This program switching is mediated by c-Abl (Abelson murine leukemia viral oncogene) via phosphorylation of YAP at the Y357 residue (pY357). YAP as an oncogene coactivates the TEAD (transcriptional enhancer activator domain) family transcription factors. Here we asked whether c-Abl regulates the YAP–TEAD functional module. We found that DNA damage, through c-Abl activation, specifically depressed YAP–TEAD-induced transcription. Remarkably, c-Abl counteracts YAP-induced transformation by interfering with the YAP–TEAD transcriptional program. c-Abl induced TEAD1 phosphorylation, but the YAP–TEAD complex remained unaffected. In contrast, TEAD coactivation was compromised by phosphomimetic YAP Y357E mutation but not Y357F, as demonstrated at the level of reporter genes and endogenous TEAD target genes. Furthermore, YAP Y357E also severely compromised the role of YAP in cell transformation, migration, anchorage-independent growth, and epithelial-to-mesenchymal transition (EMT) in human mammary MCF10A cells. These results suggest that YAP pY357 lost TEAD transcription activation function. Our results demonstrate that YAP pY357 inactivates YAP oncogenic function and establish a role for YAP Y357 phosphorylation in cell-fate decision. PMID:25361080

  11. Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture

    PubMed Central

    Li, Xingnan; Nadauld, Lincoln; Ootani, Akifumi; Corney, David C.; Pai, Reetesh K.; Gevaert, Olivier; Cantrell, Michael A.; Rack, Paul G.; Neal, James T.; Chan, Carol W-M.; Yeung, Trevor; Gong, Xue; Yuan, Jenny; Wilhelmy, Julie; Robine, Sylvie; Attardi, Laura D.; Plevritis, Sylvia K.; Hung, Kenneth E.; Chen, Chang-Zheng; Ji, Hanlee P.; Kuo, Calvin J.

    2014-01-01

    The application of primary organoid cultures containing epithelial and mesenchymal elements to cancer modeling holds promise for combining the accurate multilineage differentiation and physiology of in vivo systems with the facile in vitro manipulation of transformed cell lines. Here, a single air-liquid interface culture method was used without modification to engineer oncogenic mutations into primary epithelial/mesenchymal organoids from mouse colon, stomach and pancreas. Pancreatic and gastric organoids exhibited dysplasia upon KrasG12D expression and/or p53 loss, and readily generated adenocarcinoma upon in vivo transplantation. In contrast, primary colon organoids required combinatorial Apc, p53, KrasG12D and Smad4 mutations for progressive transformation to invasive adenocarcinoma-like histology in vitro and tumorigenicity in vivo, recapitulating multi-hit models of colorectal cancer (CRC), and versus more promiscuous transformation of small intestinal organoids. Colon organoid culture functionally validated the microRNA miR-483 as a dominant driver oncogene at the Insulin-like growth factor-2 (IGF2) 11p15.5 CRC amplicon, inducing dysplasia in vitro and tumorigenicity in vivo. These studies demonstrate the general utility of a highly tractable primary organoid system for cancer modeling and driver oncogene validation in diverse gastrointestinal tissues. PMID:24859528

  12. Oncogenic NRAS Primes Primary Acute Myeloid Leukemia Cells for Differentiation.

    PubMed

    Brendel, Cornelia; Teichler, Sabine; Millahn, Axel; Stiewe, Thorsten; Krause, Michael; Stabla, Kathleen; Ross, Petra; Huynh, Minh; Illmer, Thomas; Mernberger, Marco; Barckhausen, Christina; Neubauer, Andreas

    2015-01-01

    RAS mutations are frequently found among acute myeloid leukemia patients (AML), generating a constitutively active signaling protein changing cellular proliferation, differentiation and apoptosis. We have previously shown that treatment of AML patients with high-dose cytarabine is preferentially beneficial for those harboring oncogenic RAS. On the basis of a murine AML cell culture model, we ascribed this effect to a RAS-driven, p53-dependent induction of differentiation. Hence, in this study we sought to confirm the correlation between RAS status and differentiation of primary blasts obtained from AML patients. The gene expression signature of AML blasts with oncogenic NRAS indeed corresponded to a more mature profile compared to blasts with wildtype RAS, as demonstrated by gene set enrichment analysis (GSEA) and real-time PCR analysis of myeloid ecotropic viral integration site 1 homolog (MEIS1) in a unique cohort of AML patients. In addition, in vitro cell culture experiments with established cell lines and a second set of primary AML cells showed that oncogenic NRAS mutations predisposed cells to cytarabine (AraC) driven differentiation. Taken together, our findings show that AML with inv(16) and NRAS mutation have a differentiation gene signature, supporting the notion that NRAS mutation may predispose leukemic cells to AraC induced differentiation. We therefore suggest that promotion of differentiation pathways by specific genetic alterations could explain the superior treatment outcome after therapy in some AML patient subgroups. Whether a differentiation gene expression status may generally predict for a superior treatment outcome in AML needs to be addressed in future studies. PMID:25901794

  13. The Significance of Ras Activity in Pancreatic Cancer Initiation

    PubMed Central

    Logsdon, Craig D.; Lu, Weiqin

    2016-01-01

    The genetic landscape of pancreatic cancer shows nearly ubiquitous mutations of K-RAS. However, oncogenic K-Rasmt alone is not sufficient to lead to pancreatic ductal adenocarcinoma (PDAC) in either human or in genetically modified adult mouse models. Many stimulants, such as high fat diet, CCK, LPS, PGE2 and others, have physiological effects at low concentrations that are mediated in part through modest increases in K-Ras activity. However, at high concentrations, they induce inflammation that, in the presence of oncogenic K-Ras expression, substantially accelerates PDAC formation. The mechanism involves increased activity of oncogenic K-Rasmt. Unlike what has been proposed in the standard paradigm for the role of Ras in oncogenesis, oncogenic K-Rasmt is now known to not be constitutively active. Rather, it can be activated by standard mechanisms similar to wild-type K-Ras, but its activity is sustained for a prolonged period. Furthermore, if the level of K-Ras activity exceeds a threshold at which it begins to generate its own activators, then a feed-forward loop is formed between K-Ras activity and inflammation and pathological processes including oncogenesis are initiated. Oncogenic K-Rasmt activation, a key event in PDAC initiation and development, is subject to complex regulatory mechanisms. Reagents which inhibit inflammation, such as the Cox2 inhibitor celecoxib, block the feed-forward loop and prevent induction of PDAC in models with endogenous oncogenic K-Rasmt. Increased understanding of the role of activating and inhibitory mechanisms on oncogenic K-Rasmt activity is of paramount importance for the development of preventive and therapeutic strategies to fight against this lethal disease. PMID:26929740

  14. Functional transition of Pak proto-oncogene during early evolution of metazoans.

    PubMed

    Watari, A; Iwabe, N; Masuda, H; Okada, M

    2010-07-01

    Proto-oncogenes encode signaling molecular switches regulating cellular homeostasis in metazoans, and can be converted to oncogenes by gain-of-function mutations. To address the molecular basis for development of the regulatory system of proto-oncogenes during evolution, we screened for ancestral proto-oncogenes from the unicellular choanoflagellate Monosiga ovata by monitoring their transforming activities, and isolated a Pak gene ortholog encoding a serine/threonine kinase as a 'primitive oncogene'. We also cloned Pak orthologs from fungi and the multicellular sponge Ephydatia fluviatilis, and compared their regulatory features with that of M. ovata Pak (MoPak). MoPak is constitutively active and induces cell transformation in mammalian fibroblasts, although the Pak orthologs from multicellular animals are strictly regulated. Analyses of Pak mutants revealed that structural alteration of the auto-inhibitory domain (AID) of MoPak confers higher constitutive kinase activity, as well as greater binding ability to Rho family GTPases than the multicellular Paks, and this structural alteration is responsible for cell transformation and disruption of multicellular tissue organization. These results show that maturation of AID function was required for the development of the strict regulatory system of the Pak proto-oncogene, and suggest a potential link between the establishment of the regulatory system of proto-oncogenes and metazoan evolution.

  15. Oncogenicity of human N-ras oncogene and proto-oncogene introduced into retroviral vectors

    SciTech Connect

    Souyri, M.; Vigon, I.; Charon, M.; Tambourin, P. )

    1989-09-01

    The N-ras gene is the only member of the ras family which has never been naturally transduced into a retrovirus. In order to study the in vitro and in vivo oncogenicity of N-ras and to compare its pathogenicity to that of H-ras, the authors have inserted an activated or a normal form of human N-ras cDNA into a slightly modified Harvey murine sarcoma virus-derived vector in which the H-ras p21 coding region had been deleted. The resulting constructions were transfected into NIH 3T3 cells. The activated N-ras-containing construct (HSN) induced 10{sup 4} foci per {mu}g of DNA and was found to be as transforming as H-ras was. After infection of the transfected cells by either the ecotropic Moloney murine leukemia virus or the amphotropic 4070A helper viruses, rescued transforming viruses were injected into newborn mice. Both pseudotypes of HSN virus containing activated N-ras induced the typical Harvey disease with similar latency. However, they found that the virus which contained normal N-ras p21 (HSn) was also pathogenic and induced splenomegaly, lymphadenopathies, and sarcoma in mice after a latency of 3 to 7 weeks. In addition, Moloney murine leukemia virus pseudotypes of N-ras caused neurological disorders in 30% of the infected animals. These results differed markedly from those of previous experiments in which the authors had inserted the activated form of N-ras in the pSV(X) vector: the resulting SVN-ras virus was transforming on NIH 3T3 cells but was poorly oncogenic in vivo. Altogether, these data demonstrated unequivocally that N-ras is potentially as oncogenic as H-ras and that such oncogenic effect could depend on the vector environment.

  16. Oncogenic Brain Metazoan Parasite Infection

    PubMed Central

    Spurgeon, Angela N.; Cress, Marshall C.; Gabor, Oroszi; Ding, Qing-Qing; Miller, Douglas C.

    2013-01-01

    Multiple observations suggest that certain parasitic infections can be oncogenic. Among these, neurocysticercosis is associated with increased risk for gliomas and hematologic malignancies. We report the case of a 71-year-old woman with colocalization of a metazoan parasite, possibly cysticercosis, and a WHO grade IV neuroepithelial tumor with exclusively neuronal differentiation by immunohistochemical stains (immunopositive for synaptophysin, neurofilament protein, and Neu-N and not for GFAP, vimentin, or S100). The colocalization and temporal relationship of these two entities suggest a causal relationship. PMID:24151568

  17. (Oncogenic action of ionizing radiation)

    SciTech Connect

    Not Available

    1990-01-01

    An extensive experiment involving approximately 400 rats exposed to the neon ion beam at the Bevalac in Berkeley, CA and to electrons is nearing completion. The carcinogenicity of energetic electrons was determined for comparison with the neon ion results. As in past reports we will describe progress in three areas corresponding to the specific aims of the proposal: (1) carcinogenesis and DNA strand breaks in rat skin following exposure by the neon ions or electrons; (2) DNA strand breaks in the epidermis as a function of radiation penetration; (3) oncogene activation in radiation-induced rat skin cancers. 72 refs., 6 tabs.

  18. The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias.

    PubMed

    Andersson, Anna K; Ma, Jing; Wang, Jianmin; Chen, Xiang; Gedman, Amanda Larson; Dang, Jinjun; Nakitandwe, Joy; Holmfeldt, Linda; Parker, Matthew; Easton, John; Huether, Robert; Kriwacki, Richard; Rusch, Michael; Wu, Gang; Li, Yongjin; Mulder, Heather; Raimondi, Susana; Pounds, Stanley; Kang, Guolian; Shi, Lei; Becksfort, Jared; Gupta, Pankaj; Payne-Turner, Debbie; Vadodaria, Bhavin; Boggs, Kristy; Yergeau, Donald; Manne, Jayanthi; Song, Guangchun; Edmonson, Michael; Nagahawatte, Panduka; Wei, Lei; Cheng, Cheng; Pei, Deqing; Sutton, Rosemary; Venn, Nicola C; Chetcuti, Albert; Rush, Amanda; Catchpoole, Daniel; Heldrup, Jesper; Fioretos, Thoas; Lu, Charles; Ding, Li; Pui, Ching-Hon; Shurtleff, Sheila; Mullighan, Charles G; Mardis, Elaine R; Wilson, Richard K; Gruber, Tanja A; Zhang, Jinghui; Downing, James R

    2015-04-01

    Infant acute lymphoblastic leukemia (ALL) with MLL rearrangements (MLL-R) represents a distinct leukemia with a poor prognosis. To define its mutational landscape, we performed whole-genome, exome, RNA and targeted DNA sequencing on 65 infants (47 MLL-R and 18 non-MLL-R cases) and 20 older children (MLL-R cases) with leukemia. Our data show that infant MLL-R ALL has one of the lowest frequencies of somatic mutations of any sequenced cancer, with the predominant leukemic clone carrying a mean of 1.3 non-silent mutations. Despite this paucity of mutations, we detected activating mutations in kinase-PI3K-RAS signaling pathway components in 47% of cases. Surprisingly, these mutations were often subclonal and were frequently lost at relapse. In contrast to infant cases, MLL-R leukemia in older children had more somatic mutations (mean of 6.5 mutations/case versus 1.3 mutations/case, P = 7.15 × 10(-5)) and had frequent mutations (45%) in epigenetic regulators, a category of genes that, with the exception of MLL, was rarely mutated in infant MLL-R ALL.

  19. Constitutive asymmetric dimerization drives oncogenic activation of epidermal growth factor receptor carboxyl-terminal deletion mutants

    PubMed Central

    Park, Angela K.J.; Francis, Joshua M.; Park, Woong-Yang; Park, Joon-Oh; Cho, Jeonghee

    2015-01-01

    Genomic alterations targeting the Epidermal Growth Factor Receptor (EGFR) gene have been strongly associated with cancer pathogenesis. The clinical effectiveness of EGFR targeted therapies, including small molecules directed against the kinase domain such as gefitinib, erlotinib and afatinib, have been proven successful in treating non-small cell lung cancer patients with tumors harboring EGFR kinase domain mutations. Recent large-scale genomic studies in glioblastoma and lung cancer have identified an additional class of oncogenic mutations caused by the intragenic deletion of carboxy-terminal coding regions. Here, we report that combinations of exonic deletions of exon 25 to 28 lead to the oncogenic activation of EGF receptor in the absence of ligand and consequent cellular transformation, indicating a significant role of C-terminal domain in modulating EGFR activation. Furthermore, we show that the oncogenic activity of the resulting C-terminal deletion mutants are efficiently inhibited by EGFR-targeted drugs including erlotinib, afatinib, dacomitinib as well as cetuximab, expanding the therapeutic rationale of cancer genome-based EGFR targeted approaches. Finally, in vivo and in vitro preclinical studies demonstrate that constitutive asymmetric dimerization in mutant EGFR is a key mechanism for oncogenic activation and tumorigenesis by C-terminal deletion mutants. Therefore, our data provide compelling evidence for oncogenic activation of C-terminal deletion mutants at the molecular level and we propose that C-terminal deletion status of EGFR can be considered as a potential genomic marker for EGFR-targeted therapy. PMID:25826094

  20. A mouse model of melanoma driven by oncogenic KRAS

    PubMed Central

    Milagre, Carla; Dhomen, Nathalie; Geyer, Felipe C; Hayward, Robert; Lambros, Maryou; Reis-Filho, Jorge S; Marais, Richard

    2010-01-01

    The small G-protein NRAS is mutated in 22% of human melanomas, whereas the related proteins, KRAS and HRAS are mutated in only 2% and 1% of melanomas respectively. We have developed a mouse models of melanoma in which Cre recombinase/loxP technology is used to drive inducible expression of G12VKRAS in the melanocytic lineage. The mice develop skin hyper-pigmentation, nevi and tumors that bear many of the cardinal histopathology features and molecular characteristics of human melanoma. These tumors invade and destroy the underlying muscles and cells derived from them can grow as subcutaneous tumors and colonise the lungs of nude mice. These data establish that oncogenic KRAS can be a founder event in melanomagenesis. PMID:20516123

  1. Significance of oncogenes and tumor suppressor genes in AML prognosis.

    PubMed

    Kavianpour, Maria; Ahmadzadeh, Ahmad; Shahrabi, Saeid; Saki, Najmaldin

    2016-08-01

    Acute myeloid leukemia (AML) is a heterogeneous disorder among hematologic malignancies. Several genetic alterations occur in this disease, which cause proliferative progression, reducing differentiation and apoptosis in leukemic cells as well as increasing their survival. In the genetic study of AML, genetic translocations, gene overexpression, and mutations effective upon biology and pathogenesis of this disease have been recognized. Proto-oncogenes and tumor suppressor genes, which are important in normal development of myeloid cells, are involved in the regulation of cell cycle and apoptosis, undergo mutation in this type of leukemia, and are effective in prognosis of AML subtypes. This review deals with these genes, the assessment of which can be important in the diagnosis and prognosis of patients as well as therapeutic outcome. PMID:27179964

  2. Class I PI3K in oncogenic cellular transformation

    PubMed Central

    Zhao, Li; Vogt, Peter K.

    2009-01-01

    Class I phosphoinositide 3-kinase (PI3K) is a dimeric enzyme, consisting of a catalytic and a regulatory subunit. The catalytic subunit occurs in four isoforms designated as p110α, p110β, p110γ and p110δ. These combine with several regulatory subunits; for p110α, β and δ the standard regulatory subunit is p85, for p110γ it is p101. PI3Ks play important roles in human cancer. PIK3CA, the gene encoding p110α, is mutated frequently in common cancers, including carcinoma of the breast, prostate, colon and endometrium. Eighty percent of these mutations are represented by one of three amino acid substitutions in the helical or kinase domains of the enzyme. The mutant p110α shows a gain of function in enzymatic and signaling activity and is oncogenic in cell culture and in animal model systems. Structural and genetic data suggest that the mutations affect regulatory inter- and intramolecular interactions and support the conclusion that there are at least two molecular mechanisms for the gain-of-function in p110α. One of these mechanisms operates largely independently of binding to p85, the other abolishes the requirement for an interaction with Ras. The non-alpha isoforms of p110 do not show cancer-specific mutations. However, they are often differentially expressed in cancer and, in contrast to p110α, wild-type non-alpha isoforms of p110 are oncogenic when overexpressed in cell culture. The isoforms of p110 have become promising drug targets. Isoform-selective inhibitors have been identified. Inhibitors that target exclusively the cancer-specific mutants of p110α constitute an important goal and challenge for current drug development. PMID:18794883

  3. Oncogenic c-kit transcript is a target for binase.

    PubMed

    Mitkevich, Vladimir A; Petrushanko, Irina Y; Kretova, Olga V; Zelenikhin, Pavel V; Prassolov, Vladimir S; Tchurikov, Nickolai A; Ilinskaya, Olga N; Makarov, Alexander A

    2010-07-01

    Mutational activation of c-Kit receptor tyrosine kinase is common in acute myelogenous leukemia (AML). One such activating point mutation is the N822K replacement in the c-Kit protein. Here we investigate the selective cytotoxic effect of binase--RNase from Bacillus intermedius--on FDC-P1-N822K cells. These cells were derived from myeloid progenitor FDC-P1 cells, in which ectopic expression of N822K c-kit gene induces interleukin-3 independent growth. In order to determine whether the sensitivity of these cells to binase is caused by the expression of c-kit oncogene, the cytotoxicity of the RNase was studied in the presence of selective inhibitor of mutated c-Kit imatinib (Gleevec). Inhibition of mutated c-Kit protein leads to the loss of cell sensitivity to the apoptotic effect of binase, while the latter still decreases the amount of cellular RNA. Using green fluorescent protein as an expression marker for the c-Kit oncoprotein, we demonstrate that the elimination of c-Kit is the key factor in selective cytotoxicity of binase. Quantitative RT-PCR with RNA samples isolated from the binase-treated FDC-P1-N822K cells shows that binase treatment results in 41% reduction in the amount of с-kit mRNA. This indicates that the transcript of the activated mutant c-kit is the target for toxic action of binase. Thus, the combination of inhibition of oncogenic protein with the destruction of its mRNA is a promising approach to eliminating malignant cells.

  4. Insulator dysfunction and oncogene activation in IDH mutant gliomas

    PubMed Central

    Flavahan, William A.; Drier, Yotam; Liau, Brian B.; Gillespie, Shawn M.; Venteicher, Andrew S.; Stemmer-Rachamimov, Anat O.; Suvà, Mario L.; Bernstein, Bradley E.

    2015-01-01

    Gain-of-function IDH mutations are initiating events that define major clinical and prognostic classes of gliomas1,2. Mutant IDH protein produces a novel onco-metabolite, 2-hydroxyglutarate (2-HG), that interferes with iron-dependent hydroxylases, including the TET family of 5′-methylcytosine hydroxylases3–7. TET enzymes catalyze a key step in the removal of DNA methylation8,9. IDH mutant gliomas thus manifest a CpG island methylator phenotype (G-CIMP)10,11, though the functional significance of this altered epigenetic state remains unclear. Here we show that IDH mutant gliomas exhibit hyper-methylation at CTCF binding sites, compromising binding of this methylation-sensitive insulator protein. Reduced CTCF binding is associated with loss of insulation between topological domains and aberrant gene activation. We specifically demonstrate that loss of CTCF at a domain boundary permits a constitutive enhancer to aberrantly interact with the receptor tyrosine kinase gene PDGFRA, a prominent glioma oncogene. Treatment of IDH mutant gliomaspheres with demethylating agent partially restores insulator function and down-regulates PDGFRA. Conversely, CRISPR-mediated disruption of the CTCF motif in IDH wildtype gliomaspheres up-regulates PDGFRA and increases proliferation. Our study suggests that IDH mutations promote gliomagenesis by disrupting chromosomal topology and allowing aberrant regulatory interactions that induce oncogene expression. PMID:26700815

  5. Expression of Cellular Oncogenes in Human Malignancies

    NASA Astrophysics Data System (ADS)

    Slamon, Dennis J.; Dekernion, Jean B.; Verma, Inder M.; Cline, Martin J.

    1984-04-01

    Cellular oncogenes have been implicated in the induction of malignant transformation in some model systems in vitro and may be related to malignancies in vivo in some vertebrate species. This article describes a study of the expression of 15 cellular oncogenes in fresh human tumors from 54 patients, representing 20 different tumor types. More than one cellular oncogene was transcriptionally active in all of the tumors examined. In 14 patients it was possible to study normal and malignant tissue from the same organ. In many of these patients, the transcriptional activity of certain oncogenes was greater in the malignant than the normal tissue. The cellular fes (feline sarcoma) oncogene, not previously known to be transcribed in mammalian tissue, was found to be active in lung and hematopoietic malignancies.

  6. MYC oncogene in myeloid neoplasias.

    PubMed

    Delgado, M Dolores; Albajar, Marta; Gomez-Casares, M Teresa; Batlle, Ana; León, Javier

    2013-02-01

    MYC is a transcription factor that regulates many critical genes for cell proliferation, differentiation, and biomass accumulation. MYC is one of the most prevalent oncogenes found to be altered in human cancer, being deregulated in about 50 % of tumors. Although MYC deregulation has been more frequently associated to lymphoma and lymphoblastic leukemia than to myeloid malignancies, a body of evidence has been gathered showing that MYC plays a relevant role in malignancies derived from the myeloid compartment. The myeloid leukemogenic activity of MYC has been demonstrated in different murine models. Not surprisingly, MYC has been found to be amplified or/and deregulated in the three major types of myeloid neoplasms: acute myeloid leukemia, myelodysplastic syndromes, and myeloproliferative neoplasms, including chronic myeloid leukemia. Here, we review the recent literature describing the involvement of MYC in myeloid tumors.

  7. Efficiency of carcinogenesis: is the mutator phenotype inevitable?

    PubMed

    Beckman, Robert A

    2010-10-01

    Cancer development requires multiple oncogenic mutations. Pathogenic mechanisms which accelerate this process may be favored carcinogenic pathways. Mutator mutations are mutations in genetic stability genes, and increase the mutation rate, speeding up the accumulation of oncogenic mutations. The mutator hypothesis states that mutator mutations play a critical role in carcinogenesis. Alternatively, tumors might arise by mutations occurring at the normal rate followed by selection and expansion of various premalignant lineages on the path to cancer. This alternative pathway is a significant argument against the mutator hypothesis. Mutator mutations may also lead to accumulation of deleterious mutations, which could lead to extinction of premalignant lineages before they become cancerous, another argument against the mutator hypothesis. Finally, the need for acquisition of a mutator mutation imposes an additional step on the carcinogenic process. Accordingly, the mutator hypothesis has been a seminal but controversial idea for several decades despite considerable experimental and theoretical work. To resolve this debate, the concept of efficiency has been introduced as a metric for comparing carcinogenic mechanisms, and a new theoretical approach of focused quantitative modeling has been applied. The results demonstrate that, given what is already known, the predominance of mutator mechanisms is likely inevitable, as they overwhelm less efficient non-mutator pathways to cancer.

  8. Efficiency of carcinogenesis: is the mutator phenotype inevitable?

    PubMed

    Beckman, Robert A

    2010-10-01

    Cancer development requires multiple oncogenic mutations. Pathogenic mechanisms which accelerate this process may be favored carcinogenic pathways. Mutator mutations are mutations in genetic stability genes, and increase the mutation rate, speeding up the accumulation of oncogenic mutations. The mutator hypothesis states that mutator mutations play a critical role in carcinogenesis. Alternatively, tumors might arise by mutations occurring at the normal rate followed by selection and expansion of various premalignant lineages on the path to cancer. This alternative pathway is a significant argument against the mutator hypothesis. Mutator mutations may also lead to accumulation of deleterious mutations, which could lead to extinction of premalignant lineages before they become cancerous, another argument against the mutator hypothesis. Finally, the need for acquisition of a mutator mutation imposes an additional step on the carcinogenic process. Accordingly, the mutator hypothesis has been a seminal but controversial idea for several decades despite considerable experimental and theoretical work. To resolve this debate, the concept of efficiency has been introduced as a metric for comparing carcinogenic mechanisms, and a new theoretical approach of focused quantitative modeling has been applied. The results demonstrate that, given what is already known, the predominance of mutator mechanisms is likely inevitable, as they overwhelm less efficient non-mutator pathways to cancer. PMID:20934514

  9. Human gene control by vital oncogenes: revisiting a theoretical model and its implications for targeted cancer therapy.

    PubMed

    Willis, Rudolph E

    2012-01-01

    An important assumption of our current understanding of the mechanisms of carcinogenesis has been the belief that clarification of the cancer process would inevitably reveal some of the crucial mechanisms of normal human gene regulation. Since the momentous work of Bishop and Varmus, both the molecular and the biochemical processes underlying the events in the development of cancer have become increasingly clear. The identification of cellular signaling pathways and the role of protein kinases in the events leading to gene activation have been critical to our understanding not only of normal cellular gene control mechanisms, but also have clarified some of the important molecular and biochemical events occurring within a cancer cell. We now know that oncogenes are dysfunctional proto-oncogenes and that dysfunctional tumor suppressor genes contribute to the cancer process. Furthermore, Weinstein and others have hypothesized the phenomenon of oncogene addiction as a distinct characteristic of the malignant cell. It can be assumed that cancer cells, indeed, become dependent on such vital oncogenes. The products of these vital oncogenes, such as c-myc, may well be the Achilles heel by which targeted molecular therapy may lead to truly personalized cancer therapy. The remaining problem is the need to introduce relevant molecular diagnostic tests such as genome microarray analysis and proteomic methods, especially protein kinase identification arrays, for each individual patient. Genome wide association studies on cancers with gene analysis of single nucleotide and other mutations in functional proto-oncogenes will, hopefully, identify dysfunctional proto-oncogenes and allow the development of more specific targeted drugs directed against the protein products of these vital oncogenes. In 1984 Willis proposed a molecular and biochemical model for eukaryotic gene regulation suggesting how proto-oncogenes might function within the normal cell. That model predicted the

  10. Activation of cellular oncogenes by chemical carcinogens in Syrian hamster embryo fibroblasts

    SciTech Connect

    Ebert, R.; Reiss, E.; Roellich, G.; Schiffmann, D. ); Barrett, J.C.; Wiseman, R.W. ); Pechan, R.

    1990-08-01

    Carcinogen-induced point mutations resulting in activation of ras oncogenes have been demonstrated in various experimental systems such as skin carcinogenesis, mammary, and liver carcinogenesis. In many cases, the data support the conclusion that these point mutations are critical changes in the initiation of these tumors. The Syrian hamster embryo (SHE) cell transformation model system has been widely used to study the multistep process of chemically induced neoplastic transformation. Recent data suggest that activation of the Ha-ras gene via point mutation is one of the crucial events in the transformation of these cells. The authors have now cloned the c-Ha-ras proto-oncogene from SHE cDNA-libraries, and we have performed polymerase chain reaction and direct sequencing to analyze tumor cell lines induced by different chemical carcinogens for the presence of point mutations. No changes were detectable at codons 12, 13, 59, 61, and 117 or adjacent regions in tumor cell lines induced by diethylstilbestrol, asbestos, benzo(a)pyrene, trenbolone, or aflatoxin B{sub 1}. Thus, it is not known whether point mutations in the Ha-ras proto-oncogene are essential for the acquisition of the neoplastic phenotype of SHE cells. Activation of other oncogenes or inactivation of tumor suppressor genes may be responsible for the neoplastic progression of these cells. However, in SHE cells neoplastically transformed by diethylstilbestrol or trenbolone, a significant elevation of the c-Ha-ras expression was observed. Enhanced expression of c-myc was detected in SHE cells transformed by benzo(a)pyrene or trenbolone.

  11. ER functions of oncogenes and tumor suppressors: Modulators of intracellular Ca(2+) signaling.

    PubMed

    Bittremieux, Mart; Parys, Jan B; Pinton, Paolo; Bultynck, Geert

    2016-06-01

    Intracellular Ca(2+) signals that arise from the endoplasmic reticulum (ER), the major intracellular Ca(2+)-storage organelle, impact several mitochondrial functions and dictate cell survival and cell death processes. Furthermore, alterations in Ca(2+) signaling in cancer cells promote survival and establish a high tolerance towards cell stress and damage, so that the on-going oncogenic stress does not result in the activation of cell death. Over the last years, the mechanisms underlying these oncogenic alterations in Ca(2+) signaling have started to emerge. An important aspect of this is the identification of several major oncogenes, including Bcl-2, Bcl-XL, Mcl-1, PKB/Akt, and Ras, and tumor suppressors, such as p53, PTEN, PML, BRCA1, and Beclin 1, as direct and critical regulators of Ca(2+)-transport systems located at the ER membranes, including IP3 receptors and SERCA Ca(2+) pumps. In this way, these proteins execute part of their function by controlling the ER-mitochondrial Ca(2+) fluxes, favoring either survival (oncogenes) or cell death (tumor suppressors). Oncogenic mutations, gene deletions or amplifications alter the expression and/or function of these proteins, thereby changing the delicate balance between oncogenes and tumor suppressors, impacting oncogenesis and favoring malignant cell function and behavior. In this review, we provided an integrated overview of the impact of the major oncogenes and tumor suppressors, often altered in cancer cells, on Ca(2+) signaling from the ER Ca(2+) stores. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.

  12. A human oncogene of the RAS superfamily unmasked by expression cDNA cloning.

    PubMed Central

    Chan, A M; Miki, T; Meyers, K A; Aaronson, S A

    1994-01-01

    As an approach to identify human oncogenes, we generated an expression cDNA library from an ovarian carcinoma line. A potent transforming gene was detected by transfection analysis and identified as TC21, a recently cloned member of the RAS gene superfamily. A single point mutation substituting glutamine for leucine at position 72 was shown to be responsible for activation of transforming properties. While the cDNA clone possessed high transforming activity, the ovarian tumor genomic DNA, which contained the mutated TC21 allele, failed to induce transformed foci. Thus, expression cDNA cloning made it possible to identify and isolate a human oncogene that has evaded detection by conventional approaches. Images PMID:8052619

  13. Oncogenic programmes and Notch activity: an 'organized crime'?

    PubMed

    Dominguez, Maria

    2014-04-01

    The inappropriate Notch signalling can influence virtually all aspect of cancer, including tumour-cell growth, survival, apoptosis, angiogenesis, invasion and metastasis, although it does not do this alone. Hence, elucidating the partners of Notch that are active in cancer is now the focus of much intense research activity. The genetic toolkits available, coupled to the small size and short life of the fruit fly Drosophila melanogaster, makes this an inexpensive and effective animal model, suited to large-scale cancer gene discovery studies. The fly eye is not only a non-vital organ but its stereotyped size and disposition also means it is easy to screen for mutations that cause tumours and metastases and provides ample opportunities to test cancer theories and to unravel unanticipated nexus between Notch and other cancer genes, or to discover unforeseen Notch's partners in cancer. These studies suggest that Notch's oncogenic capacity is brought about not simply by increasing signal strength but through partnerships, whereby oncogenes gain more by cooperating than acting individually, as in a ring 'organized crime'. PMID:24780858

  14. Oncogenic programmes and Notch activity: an 'organized crime'?

    PubMed

    Dominguez, Maria

    2014-04-01

    The inappropriate Notch signalling can influence virtually all aspect of cancer, including tumour-cell growth, survival, apoptosis, angiogenesis, invasion and metastasis, although it does not do this alone. Hence, elucidating the partners of Notch that are active in cancer is now the focus of much intense research activity. The genetic toolkits available, coupled to the small size and short life of the fruit fly Drosophila melanogaster, makes this an inexpensive and effective animal model, suited to large-scale cancer gene discovery studies. The fly eye is not only a non-vital organ but its stereotyped size and disposition also means it is easy to screen for mutations that cause tumours and metastases and provides ample opportunities to test cancer theories and to unravel unanticipated nexus between Notch and other cancer genes, or to discover unforeseen Notch's partners in cancer. These studies suggest that Notch's oncogenic capacity is brought about not simply by increasing signal strength but through partnerships, whereby oncogenes gain more by cooperating than acting individually, as in a ring 'organized crime'.

  15. KIT oncogene inhibition drives intratumoral macrophage M2 polarization

    PubMed Central

    Cavnar, Michael J.; Zeng, Shan; Kim, Teresa S.; Sorenson, Eric C.; Ocuin, Lee M.; Balachandran, Vinod P.; Seifert, Adrian M.; Greer, Jonathan B.; Popow, Rachel; Crawley, Megan H.; Cohen, Noah A.; Green, Benjamin L.; Rossi, Ferdinand; Besmer, Peter; Antonescu, Cristina R.

    2013-01-01

    Tumor-associated macrophages (TAMs) are a major component of the cancer microenvironment. Modulation of TAMs is under intense investigation because they are thought to be nearly always of the M2 subtype, which supports tumor growth. Gastrointestinal stromal tumor (GIST) is the most common human sarcoma and typically results from an activating mutation in the KIT oncogene. Using a spontaneous mouse model of GIST and 57 freshly procured human GISTs, we discovered that TAMs displayed an M1-like phenotype and function at baseline. In both mice and humans, the KIT oncoprotein inhibitor imatinib polarized TAMs to become M2-like, a process which involved TAM interaction with apoptotic tumor cells leading to the induction of CCAAT/enhancer binding protein (C/EBP) transcription factors. In human GISTs that eventually developed resistance to imatinib, TAMs reverted to an M1-like phenotype and had a similar gene expression profile as TAMs from untreated human GISTs. Therefore, TAM polarization depends on tumor cell oncogene activity and has important implications for immunotherapeutic strategies in human cancers. PMID:24323358

  16. Hirschsprung disease of the colon, a vaginal mass and medullary thyroid cancer - a RET oncogene driven problem.

    PubMed

    Pandey, Romy; Thurow, Tiffany; de W Marsh, Robert

    2011-12-01

    This case report emphasizes the fact that all patients with Hirschsprung disease should be screened for RET Oncogene mutation as there is a well known association between Hirschsprung Disease and Multiple Endocrine Neoplasia (MEN) Type 2A. It also reminds us that Medullary Thyroid Carcinoma is known to cause elevated levels of CEA which does not originate from gastrointestinal tract.

  17. Hirschsprung disease of the colon, a vaginal mass and medullary thyroid cancer – a RET oncogene driven problem

    PubMed Central

    Pandey, Romy; Thurow, Tiffany

    2011-01-01

    This case report emphasizes the fact that all patients with Hirschsprung disease should be screened for RET Oncogene mutation as there is a well known association between Hirschsprung Disease and Multiple Endocrine Neoplasia (MEN) Type 2A. It also reminds us that Medullary Thyroid Carcinoma is known to cause elevated levels of CEA which does not originate from gastrointestinal tract. PMID:22811860

  18. Copper is required for oncogenic BRAF signaling and tumorigenesis

    PubMed Central

    Brady, Donita C.; Crowe, Matthew S.; Turski, Michelle L.; Hobbs, G. Aaron; Yao, Xiaojie; Chaikuad, Apirat; Knapp, Stefan; Xiao, Kunhong; Campbell, Sharon L.; Thiele, Dennis J.; Counter, Christopher M.

    2014-01-01

    The BRAF kinase is mutated, typically V600E, to induce an active oncogenic state in a large fraction of melanoma, thyroid, hairy cell leukemia, and to a lesser extent, a wide spectrum of other cancers1,2. BRAFV600E phosphorylates and activates the kinases MEK1 and MEK2, which in turn phosphorylate and activate the kinases ERK1 and ERK2, stimulating the MAPK pathway to promote cancer3. Targeting MEK1/2 is proving to be an important therapeutic strategy, as a MEK1/2 inhibitor provides a survival advantage in metastatic melanoma4, which is increased when co-administered with a BRAFV600E inhibitor5. In this regard, we previously found that copper (Cu) influx enhances MEK1 phosphorylation of ERK1/2 through a Cu-MEK1 interaction6. We now show that genetic loss of the high affinity Cu transporter Ctr1 or mutations in MEK1 that disrupt Cu binding reduced BRAFV600E-driven signaling and tumorigenesis. Conversely, a MEK1-MEK5 chimera that phosphorylates ERK1/2 independent of Cu or an active ERK2 restored tumor growth to cells lacking Ctr1. Importantly, Cu chelators used in the treatment of Wilson disease7 reduced tumor growth of both BRAFV600E-transformed cells and cells resistant to BRAF inhibition. Taken together, these results suggest that Cu-chelation therapy could be repurposed to treat BRAFV600E mutation-positive cancers. PMID:24717435

  19. Oncogenes, protooncogenes, and tumor suppressor genes in acute myelogenous leukemia.

    PubMed

    Hijiya, N; Gewirtz, A M

    1995-05-01

    In recent years, our understanding of normal human hematopoiesis has expanded greatly. We have increased our knowledge of regulatory growth factors, the receptors through which they act, and the secondary messengers involved in transducing the growth/differentiation signals from the cytoplasmic membrane to the nucleus. This knowledge has revealed potential mechanisms for inducing the neoplastic transformation of hematopoietic cells. This applies in particular to the role of viral oncogenes and cellular protooncogenes and, more recently, to the role of tumor suppressor genes. Protooncogenes are intimately involved in the processes of cell proliferation and differentiation. Therefore, any amplification, mutation, structural alteration, or change in transcriptional regulation of protooncogenes might lead to or be associated with induction of the malignant phenotype. Based on the importance of these genes in leukemogenesis and the maintenance of the malignant phenotype, it seems reasonable to hypothesize that targeted disruption of leukemogenic genes may be of therapeutic value.

  20. Sensitivity of acute myeloid leukemia Kasumi-1 cells to binase toxic action depends on the expression of KIT and АML1-ETO oncogenes.

    PubMed

    Mitkevich, Vladimir A; Petrushanko, Irina Y; Spirin, Pavel V; Fedorova, Tatiana V; Kretova, Olga V; Tchurikov, Nickolai A; Prassolov, Vladimir S; Ilinskaya, Olga N; Makarov, Alexander A

    2011-12-01

    Some RNases selectively attack malignant cells, triggering an apoptotic response, and therefore are considered as alternative chemotherapeutic drugs. Here we studied the effects of Bacillus intermedius RNase (binase) on murine myeloid progenitor cells FDC-P1; transduced FDC-P1 cells ectopically expressing mutated human KIT N822K oncogene and/or human AML1-ETO oncogene; and human leukemia Kasumi-1 cells expressing both of these oncogenes. Expression of both KIT and AML1-ETO oncogenes makes FDC-P1 cells sensitive to the toxic effects of binase. Kasumi-1 cells were the most responsive to the toxic actions of binase among the cell lines used in this work with an IC50 value of 0.56 µM. Either blocking the functional activity of the KIT protein with imatinib or knocking-down oncogene expression using lentiviral vectors producing shRNA against AML1-ETO or KIT eliminated the sensitivity of Kasumi-1 cells to binase toxic action and promoted their survival, even in the absence of KIT-dependent proliferation and antiapoptotic pathways. Here we provide evidence that the cooperative effect of the expression of mutated KIT and AML1-ETO oncogenes is crucial for selective toxic action of binase on malignant cells. These findings can facilitate clinical applications of binase providing a useful screen based on the presence of the corresponding target oncogenes in malignant cells.

  1. Human genome: proto-oncogenes and proretroviruses.

    PubMed

    Kisselev, L L; Chumakov, I M; Zabarovsky, E R; Prassolov, V S; Mett, V L; Berditchevsky, F B; Tret'yakov, L D

    1985-01-01

    A brief review of the studies undertaken at the Laboratory for Molecular Bases of Oncogenesis (Institute of Molecular Biology, Moscow) till middle of 1984 is presented. The human genome contains multiple dispersed nucleotide sequences related to the proto-oncogene mos and to proretroviral sequences in tight juxtaposition to each other. From sequencing appropriate cloned fragments of human DNA in phage and plasmid vectors it follows that one of these regions, NV-1, is a pseudogene of proto-mos with partial duplications and two Alu elements intervening its coding sequence, and the other, CL-1, seems to be also a mos-related gene with a deletion of the internal part of the structural gene. CL-1 is flanked by a proretroviral-like sequence including tRNAiMet binding site and U5 (part of the long terminal repeat). The proretroviral-like sequences are transcribed in 21-35S poly(A)+RNA abundant in normal and malignant human cells. Two hypotheses are proposed: endogenous retroviruses take part in amplification of at least some proto-oncogenes; proto-oncogenes are inactivated via insertion of movable genetic elements and conversion into pseudogenes. Potential oncogenicity of a normal human genome undergoes two controversial influences: it increases due to proto-oncogene amplification and decreases due to inactivation of some of them.

  2. Oncogenic KRAS and BRAF Drive Metabolic Reprogramming in Colorectal Cancer.

    PubMed

    Hutton, Josiah E; Wang, Xiaojing; Zimmerman, Lisa J; Slebos, Robbert J C; Trenary, Irina A; Young, Jamey D; Li, Ming; Liebler, Daniel C

    2016-09-01

    Metabolic reprogramming, in which altered utilization of glucose and glutamine supports rapid growth, is a hallmark of most cancers. Mutations in the oncogenes KRAS and BRAF drive metabolic reprogramming through enhanced glucose uptake, but the broader impact of these mutations on pathways of carbon metabolism is unknown. Global shotgun proteomic analysis of isogenic DLD-1 and RKO colon cancer cell lines expressing mutant and wild type KRAS or BRAF, respectively, failed to identify significant differences (at least 2-fold) in metabolic protein abundance. However, a multiplexed parallel reaction monitoring (PRM) strategy targeting 73 metabolic proteins identified significant protein abundance increases of 1.25-twofold in glycolysis, the nonoxidative pentose phosphate pathway, glutamine metabolism, and the phosphoserine biosynthetic pathway in cells with KRAS G13D mutations or BRAF V600E mutations. These alterations corresponded to mutant KRAS and BRAF-dependent increases in glucose uptake and lactate production. Metabolic reprogramming and glucose conversion to lactate in RKO cells were proportional to levels of BRAF V600E protein. In DLD-1 cells, these effects were independent of the ratio of KRAS G13D to KRAS wild type protein. A study of 8 KRAS wild type and 8 KRAS mutant human colon tumors confirmed the association of increased expression of glycolytic and glutamine metabolic proteins with KRAS mutant status. Metabolic reprogramming is driven largely by modest (<2-fold) alterations in protein expression, which are not readily detected by the global profiling methods most commonly employed in proteomic studies. The results indicate the superiority of more precise, multiplexed, pathway-targeted analyses to study functional proteome systems. Data are available through MassIVE Accession MSV000079486 at ftp://MSV000079486@massive.ucsd.edu. PMID:27340238

  3. Oncogene and therapeutic target analyses in atypical fibroxanthomas and pleomorphic dermal sarcomas

    PubMed Central

    Pütz, Katharina; Tantcheva-Poor, Iliana; Mauch, Cornelia; Büttner, Reinhard; Quaas, Alexander

    2016-01-01

    Background Until now, almost nothing is known about the tumorigenesis of atypical fibroxanthoma (AFX) and pleomorphic dermal sarcoma (PDS). Our hypothesis is that AFX is the non-infiltrating precursor lesion of PDS. Materials and Methods We performed the world-wide most comprehensive immunohistochemical and mutational analysis in well-defined AFX (n=5) and PDS (n=5). Results In NGS-based mutation analyses of selected regions by a 17 hotspot gene panel of 102 amplicons we could detect TP53 mutations in all PDS as well as in the only analyzed AFX and PDS of the same patient. Besides, we detected mutations in the CDKN2A, HRAS, KNSTRN and PIK3CA genes. Performing immunohistochemistry for CTNNB1, KIT, CDK4, c-MYC, CTLA-4, CCND1, EGFR, EPCAM, ERBB2, IMP3, INI-1, MKI67, MDM2, MET, p40, TP53, PD-L1 and SOX2 overexpression of TP53, CCND1 and CDK4 was seen in AFX as well as in PDS. IMP3 was upregulated in 2 AFX (weak staining) and 4 PDS (strong staining). FISH analyses for the genes FGFR1, FGFR2 and FGFR3 revealed negative results in all tumors. Conclusions UV-induced TP53 mutations as well as CCND1/CDK4 changes seem to play essential roles in tumorigenesis of PDS. Furthermore, we found some more interesting mutated genes in other oncogene pathways (activating mutations of HRAS and PIK3CA). All AFX and PDS investigated immunohistochemically presented with similar oncogene expression profiles (TP53, CCND1, CDK4 overexpression) and the single case with an AFX and PDS showed complete identical TP53 and PIK3CA mutation profiles in both tumors. This reinforces our hypothesis that AFX is the non-infiltrating precursor lesion of PDS. PMID:26943575

  4. Intrinsically active variants of Erk oncogenically transform cells and disclose unexpected autophosphorylation capability that is independent of TEY phosphorylation

    PubMed Central

    Smorodinsky-Atias, Karina; Goshen-Lago, Tal; Goldberg-Carp, Anat; Melamed, Dganit; Shir, Alexei; Mooshayef, Navit; Beenstock, Jonah; Karamansha, Yael; Darlyuk-Saadon, Ilona; Livnah, Oded; Ahn, Natalie G.; Admon, Arie; Engelberg, David

    2016-01-01

    The receptor-tyrosine kinase (RTK)/Ras/Raf pathway is an essential cascade for mediating growth factor signaling. It is abnormally overactive in almost all human cancers. The downstream targets of the pathway are members of the extracellular regulated kinases (Erk1/2) family, suggesting that this family is a mediator of the oncogenic capability of the cascade. Although all oncogenic mutations in the pathway result in strong activation of Erks, activating mutations in Erks themselves were not reported in cancers. Here we used spontaneously active Erk variants to check whether Erk’s activity per se is sufficient for oncogenic transformation. We show that Erk1(R84S) is an oncoprotein, as NIH3T3 cells that express it form foci in tissue culture plates, colonies in soft agar, and tumors in nude mice. We further show that Erk1(R84S) and Erk2(R65S) are intrinsically active due to an unusual autophosphorylation activity they acquire. They autophosphorylate the activatory TEY motif and also other residues, including the critical residue Thr-207 (in Erk1)/Thr-188 (in Erk2). Strikingly, Erk2(R65S) efficiently autophosphorylates its Thr-188 even when dually mutated in the TEY motif. Thus this study shows that Erk1 can be considered a proto-oncogene and that Erk molecules possess unusual autoregulatory properties, some of them independent of TEY phosphorylation. PMID:26658610

  5. Cell fate decisions in malignant hematopoiesis: leukemia phenotype is determined by distinct functional domains of the MN1 oncogene.

    PubMed

    Lai, Courteney K; Moon, Yeonsook; Kuchenbauer, Florian; Starzcynowski, Daniel T; Argiropoulos, Bob; Yung, Eric; Beer, Philip; Schwarzer, Adrian; Sharma, Amit; Park, Gyeongsin; Leung, Malina; Lin, Grace; Vollett, Sarah; Fung, Stephen; Eaves, Connie J; Karsan, Aly; Weng, Andrew P; Humphries, R Keith; Heuser, Michael

    2014-01-01

    Extensive molecular profiling of leukemias and preleukemic diseases has revealed that distinct clinical entities, like acute myeloid (AML) and T-lymphoblastic leukemia (T-ALL), share similar pathogenetic mutations. It is not well understood how the cell of origin, accompanying mutations, extracellular signals or structural differences in a mutated gene determine the phenotypic identity of leukemias. We dissected the functional aspects of different protein regions of the MN1 oncogene and their effect on the leukemic phenotype, building on the ability of MN1 to induce leukemia without accompanying mutations. We found that the most C-terminal region of MN1 was required to block myeloid differentiation at an early stage, and deletion of an extended C-terminal region resulted in loss of myeloid identity and cell differentiation along the T-cell lineage in vivo. Megakaryocytic/erythroid lineage differentiation was blocked by the N-terminal region. In addition, the N-terminus was required for proliferation and leukemogenesis in vitro and in vivo through upregulation of HoxA9, HoxA10 and Meis2. Our results provide evidence that a single oncogene can modulate cellular identity of leukemic cells based on its active gene regions. It is therefore likely that different mutations in the same oncogene may impact cell fate decisions and phenotypic appearance of malignant diseases.

  6. The contribution of tumor and host tissue factor expression to oncogene-driven gliomagenesis.

    PubMed

    Magnus, Nathalie; Meehan, Brian; Garnier, Delphine; Hashemi, Maryam; Montermini, Laura; Lee, Tae Hoon; Milsom, Chloe; Pawlinski, Rafal; Ohlfest, John; Anderson, Mark; Mackman, Nigel; Rak, Janusz

    2014-11-14

    Glioblastoma multiforme (GBM) is an aggressive form of glial brain tumors, associated with angiogenesis, thrombosis, and upregulation of tissue factor (TF), the key cellular trigger of coagulation and signaling. Since TF is upregulated by oncogenic mutations occurring in different subsets of human brain tumors we investigated whether TF contributes to tumourigenesis driven by oncogenic activation of EGFR (EGFRvIII) and RAS pathways in the brain. Here we show that TF expression correlates with poor prognosis in glioma, but not in GBM. In situ, the TF protein expression is heterogeneously expressed in adult and pediatric gliomas. GBM cells harboring EGFRvIII (U373vIII) grow aggressively as xenografts in SCID mice and their progression is delayed by administration of monoclonal antibodies blocking coagulant (CNTO 859) and signaling (10H10) effects of TF in vivo. Mice in which TF gene is disrupted in the neuroectodermal lineage exhibit delayed progression of spontaneous brain tumors driven by oncogenic N-ras and SV40 large T antigen (SV40LT) expressed under the control of sleeping beauty transposase. Reduced host TF levels in low-TF/SCID hypomorphic mice mitigated growth of glioma subcutaneously but not in the brain. Thus, we suggest that tumor-associated TF may serve as therapeutic target in the context of oncogene-driven disease progression in a subset of glioma.

  7. MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism

    PubMed Central

    Shroff, Emelyn H.; Eberlin, Livia S.; Dang, Vanessa M.; Gouw, Arvin M.; Gabay, Meital; Adam, Stacey J.; Bellovin, David I.; Tran, Phuoc T.; Philbrick, William M.; Garcia-Ocana, Adolfo; Casey, Stephanie C.; Li, Yulin; Dang, Chi V.; Zare, Richard N.; Felsher, Dean W.

    2015-01-01

    The MYC oncogene is frequently mutated and overexpressed in human renal cell carcinoma (RCC). However, there have been no studies on the causative role of MYC or any other oncogene in the initiation or maintenance of kidney tumorigenesis. Here, we show through a conditional transgenic mouse model that the MYC oncogene, but not the RAS oncogene, initiates and maintains RCC. Desorption electrospray ionization–mass-spectrometric imaging was used to obtain chemical maps of metabolites and lipids in the mouse RCC samples. Gene expression analysis revealed that the mouse tumors mimicked human RCC. The data suggested that MYC-induced RCC up-regulated the glutaminolytic pathway instead of the glycolytic pathway. The pharmacologic inhibition of glutamine metabolism with bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide impeded MYC-mediated RCC tumor progression. Our studies demonstrate that MYC overexpression causes RCC and points to the inhibition of glutamine metabolism as a potential therapeutic approach for the treatment of this disease. PMID:25964345

  8. Somatic Copy Number Alterations at Oncogenic Loci Show Diverse Correlations with Gene Expression

    NASA Astrophysics Data System (ADS)

    Roszik, Jason; Wu, Chang-Jiun; Siroy, Alan E.; Lazar, Alexander J.; Davies, Michael A.; Woodman, Scott E.; Kwong, Lawrence N.

    2016-01-01

    Somatic copy number alterations (SCNAs) affecting oncogenic drivers have a firmly established role in promoting cancer. However, no agreed-upon standard exists for calling locus-specific amplifications and deletions in each patient sample. Here, we report the correlative analysis of copy number amplitude and length with gene expression across 6,109 samples from The Cancer Genome Atlas (TCGA) dataset across 16 cancer types. Using specificity, sensitivity, and precision-based scores, we assigned optimized amplitude and length cutoffs for nine recurrent SCNAs affecting known oncogenic drivers, using mRNA expression as a functional readout. These cutoffs captured the majority of SCNA-driven, highly-expression-altered samples. The majority of oncogenes required only amplitude cutoffs, as high amplitude samples were almost invariably focal; however, CDKN2A and PTEN uniquely required both amplitude and length cutoffs as primary predictors. For PTEN, these extended to downstream AKT activation. In contrast, SCNA genes located peri-telomerically or in fragile sites showed poor expression-copy number correlations. Overall, our analyses identify optimized amplitude and length cutoffs as efficient predictors of gene expression changes for specific oncogenic SCNAs, yet warn against one-size-fits-all interpretations across all loci. Our results have implications for cancer data analyses and the clinic, where copy number and mutation data are increasingly used to personalize cancer therapy.

  9. Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers

    PubMed Central

    Ricarte-Filho, Julio C.; Li, Sheng; Garcia-Rendueles, Maria E.R.; Montero-Conde, Cristina; Voza, Francesca; Knauf, Jeffrey A.; Heguy, Adriana; Viale, Agnes; Bogdanova, Tetyana; Thomas, Geraldine A.; Mason, Christopher E.; Fagin, James A.

    2013-01-01

    Exposure to ionizing radiation during childhood markedly increases the risk of developing papillary thyroid cancer. We examined tissues from 26 Ukrainian patients with thyroid cancer who were younger than 10 years of age and living in contaminated areas during the time of the Chernobyl nuclear reactor accident. We identified nonoverlapping somatic driver mutations in all 26 cases through candidate gene assays and next-generation RNA sequencing. We found that 22 tumors harbored fusion oncogenes that arose primarily through intrachromosomal rearrangements. Altogether, 23 of the oncogenic drivers identified in this cohort aberrantly activate MAPK signaling, including the 2 somatic rearrangements resulting in fusion of transcription factor ETS variant 6 (ETV6) with neurotrophic tyrosine kinase receptor, type 3 (NTRK3) and fusion of acylglycerol kinase (AGK) with BRAF. Two other tumors harbored distinct fusions leading to overexpression of the nuclear receptor PPARγ. Fusion oncogenes were less prevalent in tumors from a cohort of children with pediatric thyroid cancers that had not been exposed to radiation but were from the same geographical regions. Radiation-induced thyroid cancers provide a paradigm of tumorigenesis driven by fusion oncogenes that activate MAPK signaling or, less frequently, a PPARγ-driven transcriptional program. PMID:24135138

  10. Somatic Copy Number Alterations at Oncogenic Loci Show Diverse Correlations with Gene Expression

    PubMed Central

    Roszik, Jason; Wu, Chang-Jiun; Siroy, Alan E.; Lazar, Alexander J.; Davies, Michael A; Woodman, Scott E; Kwong, Lawrence N

    2016-01-01

    Somatic copy number alterations (SCNAs) affecting oncogenic drivers have a firmly established role in promoting cancer. However, no agreed-upon standard exists for calling locus-specific amplifications and deletions in each patient sample. Here, we report the correlative analysis of copy number amplitude and length with gene expression across 6,109 samples from The Cancer Genome Atlas (TCGA) dataset across 16 cancer types. Using specificity, sensitivity, and precision-based scores, we assigned optimized amplitude and length cutoffs for nine recurrent SCNAs affecting known oncogenic drivers, using mRNA expression as a functional readout. These cutoffs captured the majority of SCNA-driven, highly-expression-altered samples. The majority of oncogenes required only amplitude cutoffs, as high amplitude samples were almost invariably focal; however, CDKN2A and PTEN uniquely required both amplitude and length cutoffs as primary predictors. For PTEN, these extended to downstream AKT activation. In contrast, SCNA genes located peri-telomerically or in fragile sites showed poor expression-copy number correlations. Overall, our analyses identify optimized amplitude and length cutoffs as efficient predictors of gene expression changes for specific oncogenic SCNAs, yet warn against one-size-fits-all interpretations across all loci. Our results have implications for cancer data analyses and the clinic, where copy number and mutation data are increasingly used to personalize cancer therapy. PMID:26787600

  11. Src-like-adaptor protein (SLAP) differentially regulates normal and oncogenic c-Kit signaling.

    PubMed

    Kazi, Julhash U; Agarwal, Shruti; Sun, Jianmin; Bracco, Enrico; Rönnstrand, Lars

    2014-02-01

    The Src-like-adaptor protein (SLAP) is an adaptor protein sharing considerable structural homology with Src. SLAP is expressed in a variety of cells and regulates receptor tyrosine kinase signaling by direct association. In this report, we show that SLAP associates with both wild-type and oncogenic c-Kit (c-Kit-D816V). The association involves the SLAP SH2 domain and receptor phosphotyrosine residues different from those mediating Src interaction. Association of SLAP triggers c-Kit ubiquitylation which, in turn, is followed by receptor degradation. Although SLAP depletion potentiates c-Kit downstream signaling by stabilizing the receptor, it remains non-functional in c-Kit-D816V signaling. Ligand-stimulated c-Kit or c-Kit-D816V did not alter membrane localization of SLAP. Interestingly oncogenic c-Kit-D816V, but not wild-type c-Kit, phosphorylates SLAP on residues Y120, Y258 and Y273. Physical interaction between c-Kit-D816V and SLAP is mandatory for the phosphorylation to take place. Although tyrosine-phosphorylated SLAP does not affect c-Kit-D816V signaling, mutation of these tyrosine sites to phenylalanine can restore SLAP activity. Taken together the data demonstrate that SLAP negatively regulates wild-type c-Kit signaling, but not its oncogenic counterpart, indicating a possible mechanism by which the oncogenic c-Kit bypasses the normal cellular negative feedback control.

  12. Suppressor of cytokine signaling 1 interacts with oncogenic lymphocyte-specific protein tyrosine kinase.

    PubMed

    Venkitachalam, Srividya; Chueh, Fu-Yu; Leong, King-Fu; Pabich, Samantha; Yu, Chao-Lan

    2011-03-01

    Lymphocyte-specific protein tyrosine kinase (Lck) plays a key role in T cell signal transduction and is tightly regulated by phosphorylation and dephosphorylation. Lck can function as an oncoprotein when overexpressed or constantly activated by mutations. Our previous studies showed that Lck-induced cellular transformation could be suppressed by enforced expression of suppressor of cytokine signaling 1 (SOCS1), a SOCS family member involved in the negative feedback control of cytokine signaling. We observed attenuated Lck kinase activity in SOCS1-expressing cells, suggesting an important role of SOCS in regulating Lck functions. It remains largely unknown whether and how SOCS proteins interact with the oncogenic Lck kinase. Here, we report that among four SOCS family proteins, SOCS1, SOCS2, SOCS3 and CIS (cytokine-inducible SH2 domain containing protein), SOCS1 has the highest affinity in binding to the oncogenic Lck kinase. We identified the positive regulatory phosphotyrosine 394 residue in the kinase domain as the key interacting determinant in Lck. Additionally, the Lck kinase domain alone is sufficient to bind SOCS1. While the SH2 domain in SOCS1 is important in its association with the oncogenic Lck kinase, other functional domains may also contribute to overall binding affinity. These findings provide important mechanistic insights into the role of SOCS proteins as tumor suppressors in cells transformed by oncogenic protein tyrosine kinases.

  13. The Ubiquitin-associated (UBA) Domain of SCCRO/DCUN1D1 Protein Serves as a Feedback Regulator of Biochemical and Oncogenic Activity*

    PubMed Central

    Huang, Guochang; Towe, Christopher W.; Choi, Lydia; Yonekawa, Yoshihiro; Bommeljé, Claire C.; Bains, Sarina; Rechler, Willi; Hao, Bing; Ramanathan, Yegnanarayana; Singh, Bhuvanesh

    2015-01-01

    Amplification of squamous cell carcinoma-related oncogene (SCCRO) activates its function as an oncogene in a wide range of human cancers. The oncogenic activity of SCCRO requires its potentiating neddylation domain, which regulates its E3 activity for neddylation. The contribution of the N-terminal ubiquitin-associated (UBA) domain to SCCRO function remains to be defined. We found that the UBA domain of SCCRO preferentially binds to polyubiquitin chains in a linkage-independent manner. Binding of polyubiquitin chains to the UBA domain inhibits the neddylation activity of SCCRO in vivo by inhibiting SCCRO-promoted nuclear translocation of neddylation components and results in a corresponding decrease in cullin-RING-ligase-promoted ubiquitination. The results of colony formation and xenograft assays showed a mutation in the UBA domain of SCCRO that reduces binding to polyubiquitin chains, significantly enhancing its oncogenic activity. Analysis of 47 lung and head and neck squamous cell carcinomas identified a case with a frameshift mutation in SCCRO that putatively codes for a protein that lacks a UBA domain. Analysis of data from The Cancer Genome Atlas showed that recurrent mutations cluster in the UBA domains of SCCRO, lose the ability to bind to polyubiquitinated proteins, and have increased neddylation and transformation activities. Combined, these data suggest that the UBA domain functions as a negative regulator of SCCRO function. Mutations in the UBA domain lead to loss of inhibitory control, which results in increased biochemical and oncogenic activity. The clustering of mutations in the UBA domain of SCCRO suggests that mutations may be a mechanism of oncogene activation in human cancers. PMID:25411243

  14. Using Multiplexed Assays of Oncogenic Drivers in Lung Cancers to Select Targeted Drugs

    PubMed Central

    Kris, Mark G.; Johnson, Bruce E.; Berry, Lynne D.; Kwiatkowski, David J.; Iafrate, A. John; Wistuba, Ignacio I.; Varella-Garcia, Marileila; Franklin, Wilbur A.; Aronson, Samuel L.; Su, Pei-Fang; Shyr, Yu; Camidge, D. Ross; Sequist, Lecia V.; Glisson, Bonnie S.; Khuri, Fadlo R.; Garon, Edward B.; Pao, William; Rudin, Charles; Schiller, Joan; Haura, Eric B.; Socinski, Mark; Shirai, Keisuke; Chen, Heidi; Giaccone, Giuseppe; Ladanyi, Marc; Kugler, Kelly; Minna, John D.; Bunn, Paul A.

    2014-01-01

    IMPORTANCE Targeting oncogenic drivers (genomic alterations critical to cancer development and maintenance) has transformed the care of patients with lung adenocarcinomas. The Lung Cancer Mutation Consortium was formed to perform multiplexed assays testing adenocarcinomas of the lung for drivers in 10 genes to enable clinicians to select targeted treatments and enroll patients into clinical trials. OBJECTIVES To determine the frequency of oncogenic drivers in patients with lung adenocarcinomas and to use the data to select treatments targeting the identified driver(s) and measure survival. DESIGN, SETTING, AND PARTICIPANTS From 2009 through 2012, 14 sites in the United States enrolled patients with metastatic lung adenocarcinomas and a performance status of 0 through 2 and tested their tumors for 10 drivers. Information was collected on patients, therapies, and survival. INTERVENTIONS Tumors were tested for 10 oncogenic drivers, and results were used to select matched targeted therapies. MAIN OUTCOMES AND MEASURES Determination of the frequency of oncogenic drivers, the proportion of patients treated with genotype-directed therapy, and survival. RESULTS From 2009 through 2012, tumors from 1007 patients were tested for at least 1 gene and 733 for 10 genes (patients with full genotyping). An oncogenic driver was found in 466 of 733 patients (64%). Among these 733 tumors, 182 tumors (25%) had the KRAS driver; sensitizing EGFR, 122 (17%); ALK rearrangements, 57 (8%); other EGFR, 29 (4%); 2 or more genes, 24 (3%); ERBB2 (formerly HER2), 19 (3%); BRAF, 16 (2%); PIK3CA, 6 (<1%); MET amplification, 5 (<1%); NRAS, 5 (<1%); MEK1, 1 (<1%); AKT1, 0. Results were used to select a targeted therapy or trial in 275 of 1007 patients (28%). The median survival was 3.5 years (interquartile range [IQR], 1.96-7.70) for the 260 patients with an oncogenic driver and genotype-directed therapy compared with 2.4 years (IQR, 0.88-6.20) for the 318 patients with any oncogenic driver(s) who

  15. B-Raf mutation: a key player in molecular biology of cancer.

    PubMed

    Rahman, M A; Salajegheh, A; Smith, R A; Lam, A K-Y

    2013-12-01

    B-Raf is one of the more commonly mutated proto-oncogenes implicated in the development of cancers. In this review, we consider the mechanisms and clinical impacts of B-Raf mutations in cancer and discuss the implications for the patient in melanoma, thyroid cancer and colorectal cancer, where B-Raf mutations are particularly common.

  16. Oncogenic Role of Merlin/NF2 in Glioblastoma

    PubMed Central

    Guerrero, Paola A.; Yin, Wei; Camacho, Laura; Marchetti, Dario

    2014-01-01

    Glioblastoma is the most common and aggressive primary brain tumor in adults, with a poor prognosis because of its resistance to radiotherapy and chemotherapy. Merlin/NF2 (neurofibromatosis type 2) is a tumor suppressor found to be mutated in most nervous system tumors; however, it is not mutated in glioblastomas. Merlin associates with several transmembrane receptors and intracellular proteins serving as an anchoring molecule. Additionally, it acts as a key component of cell motility. By selecting subpopulations of U251 glioblastoma cells, we observed that high expression of phosphorylated Merlin at serine 518 (S518-Merlin), Notch1 and epidermal growth factor receptor (EGFR) correlated with increased cell proliferation and tumorigenesis. These cells were defective in cell-contact inhibition with changes in Merlin phosphorylation directly affecting Notch1, EGFR expression as well as downstream targets Hes1 and Ccnd. Of note, we identified a function for S518-Merlin which is distinct from what has been reported when the expression of Merlin is diminished in relation to EGFR and Notch expression, providing first-time evidence that demonstrates that the phosphorylation of Merlin at S518 in glioblastoma promotes oncogenic properties that are not only the result of inactivation of the tumor suppressor role of Merlin, but also, an independent process implicating a Merlin-driven regulation of Notch1 and EGFR. PMID:25043298

  17. Amino-acid substitutions at codon 13 of the N-ras oncogene in human acute myeloid leukaemia

    NASA Astrophysics Data System (ADS)

    Bos, Johannes L.; Toksoz, Deniz; Marshall, Christopher J.; Verlaan-de Vries, Matty; Veeneman, Gerrit H.; van der Eb, Alex J.; van Boom, Jacques H.; Janssen, Johannes W. G.; Steenvoorden, Ada C. M.

    1985-06-01

    DNAs from four out of five patients with acute myeloid leukaemia (AML) tested by an in vivo selection assay in nude mice using transfected mouse NIH 3T3 cells were found to contain an activated N-ras oncogene. Using a set of synthetic oligonucleotide probes, we have detected a mutation at codon 13 in all four genes. The same codon is mutated in an additional AML DNA that is positive in the focus-formation assay on 3T3 cells. DNA from the peripheral blood of one patient in remission does not contain a codon 13 mutation.

  18. Heterogeneity of Colorectal Cancer (CRC) in reference to KRAS proto-oncogene utilizing WAVE technology

    PubMed Central

    Perez, K; Walsh, R; Brilliant, K; Noble, L; Yakerivich, E; Breese, V; Jackson, C; Chatterjee, D; Pricolo, V; Roth, L; Shah, N; Cataldo, T; Safran, H; Hixson, D; Quesenberry, P

    2014-01-01

    Background New drugs targeting specific genes required for unregulated growth and metastases have improved survival rates for patients with metastatic colorectal cancer. Resistance to monoclonal antibodies specific for the epidermal growth factor receptor (EGFR) has been attributed to the presence of activating point mutations in the proto-oncogene KRAS. The use of EGFR inhibitor monotherapy in patients that have KRAS wild type has produced response rates of only 10–20%. The molecular basis for clinical resistance remains poorly understood. We propose two possible explanations to explain these low response rates; 1) levels of resistant CRC cells carrying mutated KRAS are below the sensitivity of standard direct sequencing modalities (<5%) or 2) the standard practice of analyzing a single area within a heterogeneous tumor is a practice that can overlook areas with mutated KRAS. Methods In a collaborative effort with the surgical and molecular pathology departments, 3 formalin fixed paraffin embedded tissue blocks of human CRC were obtained from the human tissue bank maintained by Lifespan Pathology Department and/or the human tissue bank maintained by the Molecular Pathology Core of the COBRE for Cancer Research Development. The three specimens previously demonstrated KRAS mutations detected by the Applied Biosystems Kit. The Wave system 4500 (High performance ion-pairing liquid chromatography (IP-HPLC)) was utilized to evaluate tissue for presence of KRAS proto-oncogene mutations at codon 12 and 13. Results Initially, sensitivity of WAVE technology was compared with direct sequencing by evaluating a dilutional series. WAVE detected mutant alleles at levels of 2.5% compared to 20% performed with standard direct sequencing. Samples from three patients were evaluated by WAVE technology. Eight samples from patient 1 were analyzed. In two of eight samples, no mutations were detected at concentrations as low as 5%. In one sample a mutation was noted by WAVE and not by

  19. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function.

    PubMed

    Viale, Andrea; Pettazzoni, Piergiorgio; Lyssiotis, Costas A; Ying, Haoqiang; Sánchez, Nora; Marchesini, Matteo; Carugo, Alessandro; Green, Tessa; Seth, Sahil; Giuliani, Virginia; Kost-Alimova, Maria; Muller, Florian; Colla, Simona; Nezi, Luigi; Genovese, Giannicola; Deem, Angela K; Kapoor, Avnish; Yao, Wantong; Brunetto, Emanuela; Kang, Ya'an; Yuan, Min; Asara, John M; Wang, Y Alan; Heffernan, Timothy P; Kimmelman, Alec C; Wang, Huamin; Fleming, Jason B; Cantley, Lewis C; DePinho, Ronald A; Draetta, Giulio F

    2014-10-30

    Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in western countries, with a median survival of 6 months and an extremely low percentage of long-term surviving patients. KRAS mutations are known to be a driver event of PDAC, but targeting mutant KRAS has proved challenging. Targeting oncogene-driven signalling pathways is a clinically validated approach for several devastating diseases. Still, despite marked tumour shrinkage, the frequency of relapse indicates that a fraction of tumour cells survives shut down of oncogenic signalling. Here we explore the role of mutant KRAS in PDAC maintenance using a recently developed inducible mouse model of mutated Kras (Kras(G12D), herein KRas) in a p53(LoxP/WT) background. We demonstrate that a subpopulation of dormant tumour cells surviving oncogene ablation (surviving cells) and responsible for tumour relapse has features of cancer stem cells and relies on oxidative phosphorylation for survival. Transcriptomic and metabolic analyses of surviving cells reveal prominent expression of genes governing mitochondrial function, autophagy and lysosome activity, as well as a strong reliance on mitochondrial respiration and a decreased dependence on glycolysis for cellular energetics. Accordingly, surviving cells show high sensitivity to oxidative phosphorylation inhibitors, which can inhibit tumour recurrence. Our integrated analyses illuminate a therapeutic strategy of combined targeting of the KRAS pathway and mitochondrial respiration to manage pancreatic cancer.

  20. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas.

    PubMed

    Pasqualucci, L; Neumeister, P; Goossens, T; Nanjangud, G; Chaganti, R S; Küppers, R; Dalla-Favera, R

    2001-07-19

    Genomic instability promotes tumorigenesis and can occur through various mechanisms, including defective segregation of chromosomes or inactivation of DNA mismatch repair. Although B-cell lymphomas are associated with chromosomal translocations that deregulate oncogene expression, a mechanism for genome-wide instability during lymphomagenesis has not been described. During B-cell development, the immunoglobulin variable (V) region genes are subject to somatic hypermutation in germinal-centre B cells. Here we report that an aberrant hypermutation activity targets multiple loci, including the proto-oncogenes PIM1, MYC, RhoH/TTF (ARHH) and PAX5, in more than 50% of diffuse large-cell lymphomas (DLCLs), which are tumours derived from germinal centres. Mutations are distributed in the 5' untranslated or coding sequences, are independent of chromosomal translocations, and share features typical of V-region-associated somatic hypermutation. In contrast to mutations in V regions, however, these mutations are not detectable in normal germinal-centre B cells or in other germinal-centre-derived lymphomas, suggesting a DLCL-associated malfunction of somatic hypermutation. Intriguingly, the four hypermutable genes are susceptible to chromosomal translocations in the same region, consistent with a role for hypermutation in generating translocations by DNA double-strand breaks. By mutating multiple genes, and possibly by favouring chromosomal translocations, aberrant hypermutation may represent the major contributor to lymphomagenesis.

  1. Elucidation of changes in molecular signalling leading to increased cellular transformation in oncogenically progressed human bronchial epithelial cells exposed to radiations of increasing LET.

    PubMed

    Ding, Liang-Hao; Park, Seongmi; Xie, Yang; Girard, Luc; Minna, John D; Story, Michael D

    2015-09-01

    The early transcriptional response and subsequent induction of anchorage-independent growth after exposure to particles of high Z and energy (HZE) as well as γ-rays were examined in human bronchial epithelial cells (HBEC3KT) immortalised without viral oncogenes and an isogenic variant cell line whose p53 expression was suppressed but that expressed an active mutant K-RAS(V12) (HBEC3KT-P53KRAS). Cell survival following irradiation showed that HBEC3KT-P53KRAS cells were more radioresistant than HBEC3KT cells irrespective of the radiation species. In addition, radiation enhanced the ability of the surviving HBEC3KT-P53RAS cells but not the surviving HBEC3KT cells to grow in anchorage-independent fashion (soft agar colony formation). HZE particle irradiation was far more efficient than γ-rays at rendering HBEC3KT-P53RAS cells permissive for soft agar growth. Gene expression profiles after radiation showed that the molecular response to radiation for HBEC3KT-P53RAS, similar to that for HBEC3KT cells, varies with radiation quality. Several pathways associated with anchorage independent growth, including the HIF-1α, mTOR, IGF-1, RhoA and ERK/MAPK pathways, were over-represented in the irradiated HBEC3KT-P53RAS cells compared to parental HBEC3KT cells. These results suggest that oncogenically progressed human lung epithelial cells are at greater risk for cellular transformation and carcinogenic risk after ionising radiation, but particularly so after HZE radiations. These results have implication for: (i) terrestrial radiation and suggests the possibility of enhanced carcinogenic risk from diagnostic CT screens used for early lung cancer detection; (ii) enhanced carcinogenic risk from heavy particles used in radiotherapy; and (iii) for space radiation, raising the possibility that astronauts harbouring epithelial regions of dysplasia or hyperplasia within the lung that contain oncogenic changes, may have a greater risk for lung cancers based upon their exposure to heavy

  2. Elucidation of changes in molecular signalling leading to increased cellular transformation in oncogenically progressed human bronchial epithelial cells exposed to radiations of increasing LET.

    PubMed

    Ding, Liang-Hao; Park, Seongmi; Xie, Yang; Girard, Luc; Minna, John D; Story, Michael D

    2015-09-01

    The early transcriptional response and subsequent induction of anchorage-independent growth after exposure to particles of high Z and energy (HZE) as well as γ-rays were examined in human bronchial epithelial cells (HBEC3KT) immortalised without viral oncogenes and an isogenic variant cell line whose p53 expression was suppressed but that expressed an active mutant K-RAS(V12) (HBEC3KT-P53KRAS). Cell survival following irradiation showed that HBEC3KT-P53KRAS cells were more radioresistant than HBEC3KT cells irrespective of the radiation species. In addition, radiation enhanced the ability of the surviving HBEC3KT-P53RAS cells but not the surviving HBEC3KT cells to grow in anchorage-independent fashion (soft agar colony formation). HZE particle irradiation was far more efficient than γ-rays at rendering HBEC3KT-P53RAS cells permissive for soft agar growth. Gene expression profiles after radiation showed that the molecular response to radiation for HBEC3KT-P53RAS, similar to that for HBEC3KT cells, varies with radiation quality. Several pathways associated with anchorage independent growth, including the HIF-1α, mTOR, IGF-1, RhoA and ERK/MAPK pathways, were over-represented in the irradiated HBEC3KT-P53RAS cells compared to parental HBEC3KT cells. These results suggest that oncogenically progressed human lung epithelial cells are at greater risk for cellular transformation and carcinogenic risk after ionising radiation, but particularly so after HZE radiations. These results have implication for: (i) terrestrial radiation and suggests the possibility of enhanced carcinogenic risk from diagnostic CT screens used for early lung cancer detection; (ii) enhanced carcinogenic risk from heavy particles used in radiotherapy; and (iii) for space radiation, raising the possibility that astronauts harbouring epithelial regions of dysplasia or hyperplasia within the lung that contain oncogenic changes, may have a greater risk for lung cancers based upon their exposure to heavy

  3. Distinct cellular properties of oncogenic KIT receptor tyrosine kinase mutants enable alternative courses of cancer cell inhibition.

    PubMed

    Shi, Xiarong; Sousa, Leiliane P; Mandel-Bausch, Elizabeth M; Tome, Francisco; Reshetnyak, Andrey V; Hadari, Yaron; Schlessinger, Joseph; Lax, Irit

    2016-08-16

    Large genomic sequencing analysis as part of precision medicine efforts revealed numerous activating mutations in receptor tyrosine kinases, including KIT. Unfortunately, a single approach is not effective for inhibiting cancer cells or treating cancers driven by all known oncogenic KIT mutants. Here, we show that each of the six major KIT oncogenic mutants exhibits different enzymatic, cellular, and dynamic properties and responds distinctly to different KIT inhibitors. One class of KIT mutants responded well to anti-KIT antibody treatment alone or in combination with a low dose of tyrosine kinase inhibitors (TKIs). A second class of KIT mutants, including a mutant resistant to imatinib treatment, responded well to a combination of TKI with anti-KIT antibodies or to anti-KIT toxin conjugates, respectively. We conclude that the preferred choice of precision medicine treatments for cancers driven by activated KIT and other RTKs may rely on clear understanding of the dynamic properties of oncogenic mutants. PMID:27482095

  4. Mitochondrial Ca2+ Remodeling is a Prime Factor in Oncogenic Behavior

    PubMed Central

    Rimessi, Alessandro; Patergnani, Simone; Bonora, Massimo; Wieckowski, Mariusz R.; Pinton, Paolo

    2015-01-01

    Cancer is sustained by defects in the mechanisms underlying cell proliferation, mitochondrial metabolism, and cell death. Mitochondrial Ca2+ ions are central to all these processes, serving as signaling molecules with specific spatial localization, magnitude, and temporal characteristics. Mutations in mtDNA, aberrant expression and/or regulation of Ca2+-handling/transport proteins and abnormal Ca2+-dependent relationships among the cytosol, endoplasmic reticulum, and mitochondria can cause the deregulation of mitochondrial Ca2+-dependent pathways that are related to these processes, thus determining oncogenic behavior. In this review, we propose that mitochondrial Ca2+ remodeling plays a pivotal role in shaping the oncogenic signaling cascade, which is a required step for cancer formation and maintenance. We will describe recent studies that highlight the importance of mitochondria in inducing pivotal “cancer hallmarks” and discuss possible tools to manipulate mitochondrial Ca2+ to modulate cancer survival. PMID:26161362

  5. The MET Oncogene as a Therapeutical Target in Cancer Invasive Growth

    PubMed Central

    Luraghi, Paolo; Schelter, Florian; Krüger, Achim; Boccaccio, Carla

    2012-01-01

    The MET proto-oncogene, encoding the tyrosine kinase receptor for Hepatocyte Growth Factor (HGF) regulates invasive growth, a genetic program that associates control of cell proliferation with invasion of the extracellular matrix and protection from apoptosis. Physiologically, invasive growth takes place during embryonic development, and, in post-natal life, in wound healing and regeneration of several tissues. The MET oncogene is overexpressed and/or genetically mutated in many tumors, thereby sustaining pathological invasive growth, a prerequisite for metastasis. MET is the subject of intense research as a target for small molecule kinase inhibitors and, together with its ligand HGF, for inhibitory antibodies. The tight interplay of MET with the protease network has unveiled mechanisms to be exploited to achieve effective inhibition of invasive growth. PMID:22973229

  6. Oncogenic KRAS sensitizes premalignant, but not malignant cells, to Noxa-dependent apoptosis through the activation of the MEK/ERK pathway

    PubMed Central

    Conti, Annalisa; Majorini, Maria Teresa; Elliott, Richard; Ashworth, Alan; Lord, Christopher J.; Cancelliere, Carlotta; Bardelli, Alberto; Seneci, Pierfausto; Walczak, Henning; Delia, Domenico; Lecis, Daniele

    2015-01-01

    KRAS is mutated in about 20-25% of all human cancers and especially in pancreatic, lung and colorectal tumors. Oncogenic KRAS stimulates several pro-survival pathways, but it also triggers the trans-activation of pro-apoptotic genes. In our work, we show that G13D mutations of KRAS activate the MAPK pathway, and ERK2, but not ERK1, up-regulates Noxa basal levels. Accordingly, premalignant epithelial cells are sensitized to various cytotoxic compounds in a Noxa-dependent manner. In contrast to these findings, colorectal cancer cell sensitivity to treatment is independent of KRAS status and Noxa levels are not up-regulated in the presence of mutated KRAS despite the fact that ERK2 still promotes Noxa expression. We therefore speculated that other survival pathways are counteracting the pro-apoptotic effect of mutated KRAS and found that the inhibition of AKT restores sensitivity to treatment, especially in presence of oncogenic KRAS. In conclusion, our work suggests that the pharmacological inhibition of the pathways triggered by mutated KRAS could also switch off its oncogene-activated pro-apoptotic stimulation. On the contrary, the combination of chemotherapy to inhibitors of specific pro-survival pathways, such as the one controlled by AKT, could enhance treatment efficacy by exploiting the pro-death stimulation derived by oncogene activation. PMID:26028667

  7. Function of oncogenes in cancer development: a changing paradigm

    PubMed Central

    Vicente-Dueñas, Carolina; Romero-Camarero, Isabel; Cobaleda, Cesar; Sánchez-García, Isidro

    2013-01-01

    Tumour-associated oncogenes induce unscheduled proliferation as well as genomic and chromosomal instability. According to current models, therapeutic strategies that block oncogene activity are likely to selectively target tumour cells. However, recent evidences have revealed that oncogenes are only essential for the proliferation of some specific tumour cell types, but not all. Indeed, the latest studies of the interactions between the oncogene and its target cell have shown that oncogenes contribute to cancer development not only by inducing proliferation but also by developmental reprogramming of the epigenome. This provides the first evidence that tumorigenesis can be initiated by stem cell reprogramming, and uncovers a new role for oncogenes in the origin of cancer. Here we analyse these evidences and propose an updated model of oncogene function that can explain the full range of genotype–phenotype associations found in human cancer. Finally, we discuss how this vision opens new avenues for developing novel anti-cancer interventions. PMID:23632857

  8. The Activating Transcription Factor 3 Protein Suppresses the Oncogenic Function of Mutant p53 Proteins*

    PubMed Central

    Wei, Saisai; Wang, Hongbo; Lu, Chunwan; Malmut, Sarah; Zhang, Jianqiao; Ren, Shumei; Yu, Guohua; Wang, Wei; Tang, Dale D.; Yan, Chunhong

    2014-01-01

    Mutant p53 proteins (mutp53) often acquire oncogenic activities, conferring drug resistance and/or promoting cancer cell migration and invasion. Although it has been well established that such a gain of function is mainly achieved through interaction with transcriptional regulators, thereby modulating cancer-associated gene expression, how the mutp53 function is regulated remains elusive. Here we report that activating transcription factor 3 (ATF3) bound common mutp53 (e.g. R175H and R273H) and, subsequently, suppressed their oncogenic activities. ATF3 repressed mutp53-induced NFKB2 expression and sensitized R175H-expressing cancer cells to cisplatin and etoposide treatments. Moreover, ATF3 appeared to suppress R175H- and R273H-mediated cancer cell migration and invasion as a consequence of preventing the transcription factor p63 from inactivation by mutp53. Accordingly, ATF3 promoted the expression of the metastasis suppressor SHARP1 in mutp53-expressing cells. An ATF3 mutant devoid of the mutp53-binding domain failed to disrupt the mutp53-p63 binding and, thus, lost the activity to suppress mutp53-mediated migration, suggesting that ATF3 binds to mutp53 to suppress its oncogenic function. In line with these results, we found that down-regulation of ATF3 expression correlated with lymph node metastasis in TP53-mutated human lung cancer. We conclude that ATF3 can suppress mutp53 oncogenic function, thereby contributing to tumor suppression in TP53-mutated cancer. PMID:24554706

  9. Structure of mutant human oncogene protein determined

    SciTech Connect

    Baum, R.

    1989-01-16

    The protein encoded by a mutant human oncogene differs only slightly in structure from the native protein that initiates normal cell division, a finding that may complicate efforts to develop inhibitors of the mutant protein. Previously, the x-ray structure of the protein encoded by the normal c-Ha-ras gene, a protein believed to signal cells to start or stop dividing through its interaction with guanosine triphosphate (GTP), was reported. The structure of the protein encoded by a transforming c-Ha-ras oncogene, in which a valine codon replaces the normal glycine codon at position 12 in the gene, has now been determined. The differences in the structures of the mutant and normal proteins are located primarily in a loop that interacts with the /beta/-phosphate of a bound guanosine diphosphate (GDP) molecule.

  10. Macroautophagy and the Oncogene-Induced Senescence

    PubMed Central

    Grasso, Daniel; Vaccaro, Maria I.

    2014-01-01

    The oncogene-induced senescence is emerging as a potent tumor suppressor mechanism and as a possible therapeutic target. Macroautophagy is intimately linked to the senescence condition setup, although its role has not been elucidated yet. Here, we discuss up-to-date concepts of senescence-related macroautophagy and evaluate the current trend of this growing research field, which has relevance in future perspectives toward therapeutic options against cancer. PMID:25324830

  11. Oncogenic KRAS triggers MAPK-dependent errors in mitosis and MYC-dependent sensitivity to anti-mitotic agents

    PubMed Central

    Perera, David; Venkitaraman, Ashok R.

    2016-01-01

    Oncogenic KRAS induces cell proliferation and transformation, but little is known about its effects on cell division. Functional genetic screens have recently revealed that cancer cell lines expressing oncogenic KRAS are sensitive to interference with mitosis, but neither the mechanism nor the uniformity of anti-mitotic drug sensitivity connected with mutant KRAS expression are yet clear. Here, we report that acute expression of oncogenic KRAS in HeLa cells induces mitotic delay and defects in chromosome segregation through mitogen-activated protein kinase (MAPK) pathway activation and de-regulated expression of several mitosis-related genes. These anomalies are accompanied by increased sensitivity to anti-mitotic agents, a phenotype dependent on the transcription factor MYC and its downstream target anti-apoptotic protein BCL-XL. Unexpectedly, we find no correlation between KRAS mutational status or MYC expression levels and anti-mitotic drug sensitivity when surveying a large database of anti-cancer drug responses. However, we report that the co-existence of KRAS mutations and high MYC expression predicts anti-mitotic drug sensitivity. Our findings reveal a novel function of oncogenic KRAS in regulating accurate mitotic progression and suggest new avenues to therapeutically target KRAS-mutant tumours and stratify patients in ongoing clinical trials of anti-mitotic drugs. PMID:27412232

  12. Oncogenic KRAS triggers MAPK-dependent errors in mitosis and MYC-dependent sensitivity to anti-mitotic agents.

    PubMed

    Perera, David; Venkitaraman, Ashok R

    2016-01-01

    Oncogenic KRAS induces cell proliferation and transformation, but little is known about its effects on cell division. Functional genetic screens have recently revealed that cancer cell lines expressing oncogenic KRAS are sensitive to interference with mitosis, but neither the mechanism nor the uniformity of anti-mitotic drug sensitivity connected with mutant KRAS expression are yet clear. Here, we report that acute expression of oncogenic KRAS in HeLa cells induces mitotic delay and defects in chromosome segregation through mitogen-activated protein kinase (MAPK) pathway activation and de-regulated expression of several mitosis-related genes. These anomalies are accompanied by increased sensitivity to anti-mitotic agents, a phenotype dependent on the transcription factor MYC and its downstream target anti-apoptotic protein BCL-XL. Unexpectedly, we find no correlation between KRAS mutational status or MYC expression levels and anti-mitotic drug sensitivity when surveying a large database of anti-cancer drug responses. However, we report that the co-existence of KRAS mutations and high MYC expression predicts anti-mitotic drug sensitivity. Our findings reveal a novel function of oncogenic KRAS in regulating accurate mitotic progression and suggest new avenues to therapeutically target KRAS-mutant tumours and stratify patients in ongoing clinical trials of anti-mitotic drugs. PMID:27412232

  13. Oncogenic KRAS triggers MAPK-dependent errors in mitosis and MYC-dependent sensitivity to anti-mitotic agents.

    PubMed

    Perera, David; Venkitaraman, Ashok R

    2016-07-14

    Oncogenic KRAS induces cell proliferation and transformation, but little is known about its effects on cell division. Functional genetic screens have recently revealed that cancer cell lines expressing oncogenic KRAS are sensitive to interference with mitosis, but neither the mechanism nor the uniformity of anti-mitotic drug sensitivity connected with mutant KRAS expression are yet clear. Here, we report that acute expression of oncogenic KRAS in HeLa cells induces mitotic delay and defects in chromosome segregation through mitogen-activated protein kinase (MAPK) pathway activation and de-regulated expression of several mitosis-related genes. These anomalies are accompanied by increased sensitivity to anti-mitotic agents, a phenotype dependent on the transcription factor MYC and its downstream target anti-apoptotic protein BCL-XL. Unexpectedly, we find no correlation between KRAS mutational status or MYC expression levels and anti-mitotic drug sensitivity when surveying a large database of anti-cancer drug responses. However, we report that the co-existence of KRAS mutations and high MYC expression predicts anti-mitotic drug sensitivity. Our findings reveal a novel function of oncogenic KRAS in regulating accurate mitotic progression and suggest new avenues to therapeutically target KRAS-mutant tumours and stratify patients in ongoing clinical trials of anti-mitotic drugs.

  14. Oncogene-Induced Senescence as a New Mechanism of Disease: The Paradigm of Erdheim–Chester Disease

    PubMed Central

    Cavalli, Giulio; Biavasco, Riccardo; Borgiani, Bruno; Dagna, Lorenzo

    2014-01-01

    Erdheim–Chester disease (ECD) is a rare form of systemic histiocytosis characterized by the diffuse infiltration of tissues by lipid-laden macrophages. As the clinical course and prognosis are highly influenced by site of disease involvement, ECD course ranges from asymptomatic to life threatening, with a reported global 5-year mortality of 30–40%. Whether ECD is an inflammatory or clonal disease in its nature has long been debated. The disease is characterized by a network of pro-inflammatory cyto/chemokines responsible for the recruitment and activation of histiocytes into ECD lesions, similarly to what reported in Langerhans cell histiocytosis (LCH). Growing evidence supports a central role of the oncogenic BRAFV600E mutation in histiocytosis pathogenesis, and suggests oncogene-induced senescence (OIS), a major protective mechanism against oncogenic events characterized by cell-cycle arrest and the induction of pro-inflammatory molecules, as the possible link between the oncogenic mutation and the observed inflammation. Indeed, ECD recapitulates in vivo the molecular events associated with OIS, i.e., cell-cycle arrest and a potent local inflammatory response. Accordingly, the infiltration of different tissues by macrophages and the inflammatory local and systemic effects observed in ECD likely represent a drawback of OIS. Therefore, these findings delineate a new conception of OIS as a new pathogenic mechanism intrinsically responsible for disease development. PMID:24982657

  15. Distinct clinical characteristics of myeloproliferative neoplasms with calreticulin mutations

    PubMed Central

    Andrikovics, Hajnalka; Krahling, Tunde; Balassa, Katalin; Halm, Gabriella; Bors, Andras; Koszarska, Magdalena; Batai, Arpad; Dolgos, Janos; Csomor, Judit; Egyed, Miklos; Sipos, Andrea; Remenyi, Peter; Tordai, Attila; Masszi, Tamas

    2014-01-01

    Somatic insertions/deletions in the calreticulin gene have recently been discovered to be causative alterations in myeloproliferative neoplasms. A combination of qualitative and quantitative allele-specific polymerase chain reaction, fragment-sizing, high resolution melting and Sanger-sequencing was applied for the detection of three driver mutations (in Janus kinase 2, calreticulin and myeloproliferative leukemia virus oncogene genes) in 289 cases of essential thrombocythemia and 99 cases of primary myelofibrosis. In essential thrombocythemia, 154 (53%) Janus kinase 2 V617F, 96 (33%) calreticulin, 9 (3%) myeloproliferative leukemia virus oncogene gene mutation-positive and 30 triple-negative (11%) cases were identified, while in primary myelofibrosis 56 (57%) Janus kinase 2 V617F, 25 (25%) calreticulin, 7 (7%) myeloproliferative leukemia virus oncogene gene mutation-positive and 11 (11%) triple-negative cases were identified. Patients positive for the calreticulin mutation were younger and had higher platelet counts compared to Janus kinase 2 mutation-positive counterparts. Calreticulin mutation-positive patients with essential thrombocythemia showed a lower risk of developing venous thrombosis, but no difference in overall survival. Calreticulin mutation-positive patients with primary myelofibrosis had a better overall survival compared to that of the Janus kinase 2 mutation-positive (P=0.04) or triple-negative cases (P=0.01). Type 2 calreticulin mutation occurred more frequently in essential thrombocythemia than in primary myelofibrosis (P=0.049). In essential thrombocythemia, the calreticulin mutational load was higher than the Janus kinase 2 mutational load (P<0.001), and increased gradually in advanced stages. Calreticulin mutational load influenced blood counts even at the time point of diagnosis in essential thrombocythemia. We confirm that calreticulin mutation is associated with distinct clinical characteristics and explored relationships between mutation

  16. Activated leukemic oncogenes AML1-ETO and c-kit: role in development of acute myeloid leukemia and current approaches for their inhibition.

    PubMed

    Rulina, A V; Spirin, P V; Prassolov, V S

    2010-12-01

    Acute myeloid leukemia (AML) is a malignant blood disease caused by different mutations that enhance the proliferative activity and survival of blood cells and affect their differentiation and apoptosis. The most frequent disorders in AML are translocations between chromosomes 21 and 8 leading to production of a chimeric oncogene, AML1-ETO, and hyperexpression of the receptor tyrosine kinase KIT. Mutations in these genes often occur jointly. The presence in cells of two activated oncogenes is likely to trigger their malignization. The current approaches for treatment of oncologic diseases (bone marrow transplantation, radiotherapy, and chemotherapy) have significant shortcomings, and thus many laboratories are intensively developing new approaches against leukemias. Inhibiting expression of activated leukemic oncogenes based on the principle of RNA interference seems to be a promising approach in this field.

  17. WT1 mutations in T-ALL.

    PubMed

    Tosello, Valeria; Mansour, Marc R; Barnes, Kelly; Paganin, Maddalena; Sulis, Maria Luisa; Jenkinson, Sarah; Allen, Christopher G; Gale, Rosemary E; Linch, David C; Palomero, Teresa; Real, Pedro; Murty, Vundavalli; Yao, Xiaopan; Richards, Susan M; Goldstone, Anthony; Rowe, Jacob; Basso, Giuseppe; Wiernik, Peter H; Paietta, Elisabeth; Pieters, Rob; Horstmann, Martin; Meijerink, Jules P P; Ferrando, Adolfo A

    2009-07-30

    The molecular mechanisms involved in disease progression and relapse in T-cell acute lymphoblastic leukemia (T-ALL) are poorly understood. We used single nucleotide polymorphism array analysis to analyze paired diagnostic and relapsed T-ALL samples to identify recurrent genetic alterations in T-ALL. This analysis showed that diagnosis and relapsed cases have common genetic alterations, but also that relapsed samples frequently lose chromosomal markers present at diagnosis, suggesting that relapsed T-ALL emerges from an ancestral clone different from the major leukemic population at diagnosis. In addition, we identified deletions and associated mutations in the WT1 tumor suppressor gene in 2 of 9 samples. Subsequent analysis showed WT1 mutations in 28 of 211 (13.2%) of pediatric and 10 of 85 (11.7%) of adult T-ALL cases. WT1 mutations present in T-ALL are predominantly heterozygous frameshift mutations resulting in truncation of the C-terminal zinc finger domains of this transcription factor. WT1 mutations are most prominently found in T-ALL cases with aberrant rearrangements of the oncogenic TLX1, TLX3, and HOXA transcription factor oncogenes. Survival analysis demonstrated that WT1 mutations do not confer adverse prognosis in pediatric and adult T-ALL. Overall, these results identify the presence of WT1 mutations as a recurrent genetic alteration in T-ALL. PMID:19494353

  18. Mutations and epimutations in the origin of cancer

    SciTech Connect

    Peltomaeki, Paeivi

    2012-02-15

    Cancer is traditionally viewed as a disease of abnormal cell proliferation controlled by a series of mutations. Mutations typically affect oncogenes or tumor suppressor genes thereby conferring growth advantage. Genomic instability facilitates mutation accumulation. Recent findings demonstrate that activation of oncogenes and inactivation of tumor suppressor genes, as well as genomic instability, can be achieved by epigenetic mechanisms as well. Unlike genetic mutations, epimutations do not change the base sequence of DNA and are potentially reversible. Similar to genetic mutations, epimutations are associated with specific patterns of gene expression that are heritable through cell divisions. Knudson's hypothesis postulates that inactivation of tumor suppressor genes requires two hits, with the first hit occurring either in somatic cells (sporadic cancer) or in the germline (hereditary cancer) and the second one always being somatic. Studies on hereditary and sporadic forms of colorectal carcinoma have made it evident that, apart from genetic mutations, epimutations may serve as either hit or both. Furthermore, recent next-generation sequencing studies show that epigenetic genes, such as those encoding histone modifying enzymes and subunits for chromatin remodeling systems, are themselves frequent targets of somatic mutations in cancer and can act like tumor suppressor genes or oncogenes. This review discusses genetic vs. epigenetic origin of cancer, including cancer susceptibility, in light of recent discoveries. Situations in which mutations and epimutations occur to serve analogous purposes are highlighted.

  19. Associations between clinical characteristics and oncogene expression in patients with non-small cell lung cancer.

    PubMed

    Han, Y; Yu, D P; Zhou, S J; Song, X Y; Li, Y S; Xiao, N; Liu, Z D; Sun, X J; Zhao, Q Y; Liu, S K

    2014-10-31

    More than 40 oncogenes associated with non-small cell lung cancer (NSCLC) have been identified with varied gene expression. The correlations between specific clinical characteristics and oncogene expression in NSCLC patients were examined. From October 2011 to September 2012, a total of 60 patients with NSCLC (male:female, 34:24; mean age, 59.5 ± 10.6 years; age range, 31-81 years) were diagnosed and evaluated for treatment with radical resection at a single facility. Eligible patients exhibiting tumor node metastasis (TNM) stage I-III NSCLC confirmed by post-surgical pathology were included. mRNA expression was detected by branched DNA-liquidchip technology (bDNA-LCT) and mutations were detected at EGFR exons 18, 19, 20, and 21, KRAS exons 2 and 3, BRAF and PIK3CA exons 9 and 20. Correlations between gene expression at mutations and clinical characteristics of gender, age, histological type, degree of differentiation, smoking status, immunohistochemical (IHC) evaluation of TTF-1, TNM staging, and discrete age ("nage") were examined. Significant associations were observed between IHC staining for TTF-1 and histological type (P = 0.00001) and with BRAC1, TYMS, RRM1, and TUBB3 expression (P = 0.0187, 0.0051, 0.024, and 0.0238, respectively). Significant cross-correlations were observed between TYMS, BRAC1, TOP2A, STMN1, TUBB3, and RRM1 expression (P < 0.05), but not between EGFR exon 21, KRAS exon 2, and PIK3CA exon 9 expression and any other mutation expression (P > 0.05). Relationships between clinical characteristics and oncogene expression in NSCLC, particularly those of TTF-1 level and smoking status, may be useful indicators of prognosis and development of anti-cancer drug resistance.

  20. Kaposi Sarcoma of Childhood: Inborn or Acquired Immunodeficiency to Oncogenic HHV-8.

    PubMed

    Jackson, Carolyn C; Dickson, Mark A; Sadjadi, Mahan; Gessain, Antoine; Abel, Laurent; Jouanguy, Emmanuelle; Casanova, Jean-Laurent

    2016-03-01

    Kaposi sarcoma (KS) is an endothelial malignancy caused by human herpes virus-8 (HHV-8) infection. The epidemic and iatrogenic forms of childhood KS result from a profound and acquired T cell deficiency. Recent studies have shown that classic KS of childhood can result from rare single-gene inborn errors of immunity, with mutations in WAS, IFNGR1, STIM1, and TNFRSF4. The pathogenesis of the endemic form of childhood KS has remained elusive. We review childhood KS pathogenesis and its relationship to inherited and acquired immunodeficiency to oncogenic HHV-8. PMID:26469702

  1. The oncogenic action of ionizing radiation on rat skin. Final progress report, May 1, 1990--April 30, 1992

    SciTech Connect

    Burns, F.J.; Garte, S.J.

    1992-12-31

    The multistage theory of carcinogenesis specifies that cells progress to cancer through a series of discrete, irreversible genetic alterations, but data on radiation-induced cancer incidence in rat skin suggests that an intermediate repairable alteration may occur. Data are presented on cancer induction in rat skin exposed to an electron beam (LET=0.34 keV/{mu}), a neon ion beam (LET=45) or an argon ion beam (LET=125). The rats were observed for tumors at least 78 weeks with squamous and basal cell carcinomas observed. The total cancer yield was fitted by the quadratic equation, and the equation parameters were estimated by linear regression for each type of radiation. Analysis of the DNA from the electron-induced carcinomas indicated that K-ras and/or c-myc oncogenes were activated. In situ hybridization indicated that the cancers contain subpopulations of cells with differing amounts of c-myc and H-ras amplification. The results are consistent with the idea that ionizing radiation produces stable, carcinogenically relevant lesions via 2 repairable events at low LET and via a non-repairable linked event pathway at high LET; either pathway may advance the cell by 1 stage. The proliferative response of rat epidermis following exposure to ionizing radiation was quantified by injection of {sup 14}C-thymidine. The return of these cells to S-phase a second time was detected by a second label ({sup 3}H). When the labeled cells were in G1-phase, the dorsal skin was irradiated with X-rays. All labeling indices were determined. The {sup 14}C labeling index was constant and unaffected by the radiation. The proportion of all cells entering S-phase averaged 3.5% at 18 hr and increased after 44, 52 and 75 hr to average levels of 11.8%, 5. 3%, and 6.6% at 0, 10 and 25 Gy respectively. The proportion of S-phase cells labeled with {sup 14}C increased after 42 hr and remained relatively constant thereafter.

  2. RECQL4 helicase has oncogenic potential in sporadic breast cancers.

    PubMed

    Arora, Arvind; Agarwal, Devika; Abdel-Fatah, Tarek Ma; Lu, Huiming; Croteau, Deborah L; Moseley, Paul; Aleskandarany, Mohammed A; Green, Andrew R; Ball, Graham; Rakha, Emad A; Chan, Stephen Yt; Ellis, Ian O; Wang, Lisa L; Zhao, Yongliang; Balajee, Adayabalam S; Bohr, Vilhelm A; Madhusudan, Srinivasan

    2016-03-01

    RECQL4 helicase is a molecular motor that unwinds DNA, a process essential during DNA replication and DNA repair. Germ-line mutations in RECQL4 cause type II Rothmund-Thomson syndrome (RTS), characterized by a premature ageing phenotype and cancer predisposition. RECQL4 is widely considered to be a tumour suppressor, although its role in human breast cancer is largely unknown. As the RECQL4 gene is localized to chromosome 8q24, a site frequently amplified in sporadic breast cancers, we hypothesized that it may play an oncogenic role in breast tumourigenesis. To address this, we analysed large cohorts for gene copy number changes (n = 1977), mRNA expression (n = 1977) and protein level (n = 1902). Breast cancer incidence was also explored in 58 patients with type II RTS. DNA replication dynamics and chemosensitivity was evaluated in RECQL4-depleted breast cancer cells in vitro. Amplification or gain in gene copy number (30.6%), high-level mRNA expression (51%) and high levels of protein (23%) significantly associated with aggressive tumour behaviour, including lymph node positivity, larger tumour size, HER2 overexpression, ER-negativity, triple-negative phenotypes and poor survival. RECQL4 depletion impaired the DNA replication rate and increased chemosensitivity in cultured breast cancer cells. Thus, although recognized as a 'safe guardian of the genome', our data provide compelling evidence that RECQL4 is tumour promoting in established breast cancers. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  3. A Computational Drug Repositioning Approach for Targeting Oncogenic Transcription Factors

    PubMed Central

    Gayvert, Kaitlyn; Dardenne, Etienne; Cheung, Cynthia; Boland, Mary Regina; Lorberbaum, Tal; Wanjala, Jackline; Chen, Yu; Rubin, Mark; Tatonetti, Nicholas P.; Rickman, David; Elemento, Olivier

    2016-01-01

    Summary Mutations in transcription factors (TFs) genes are frequently observed in tumors, often leading to aberrant transcriptional activity. Unfortunately, TFs are often considered undruggable due to the absence of targetable enzymatic activity. To address this problem, we developed CRAFTT, a Computational drug-Repositioning Approach For Targeting Transcription factor activity. CRAFTT combines ChIP-seq with drug-induced expression profiling to identify small molecules that can specifically perturb TF activity. Application to ENCODE ChIP-seq datasets revealed known drug-TF interactions and a global drug-protein network analysis further supported these predictions. Application of CRAFTT to ERG, a pro-invasive, frequently over-expressed oncogenic TF predicted that dexamethasone would inhibit ERG activity. Indeed, dexamethasone significantly decreased cell invasion and migration in an ERG-dependent manner. Furthermore, analysis of Electronic Medical Record data indicates a protective role for dexamethasone against prostate cancer. Altogether, our method provides a broadly applicable strategy to identify drugs that specifically modulate TF activity. PMID:27264179

  4. Aging-associated inflammation promotes selection for adaptive oncogenic events in B cell progenitors.

    PubMed

    Henry, Curtis J; Casás-Selves, Matias; Kim, Jihye; Zaberezhnyy, Vadym; Aghili, Leila; Daniel, Ashley E; Jimenez, Linda; Azam, Tania; McNamee, Eoin N; Clambey, Eric T; Klawitter, Jelena; Serkova, Natalie J; Tan, Aik Choon; Dinarello, Charles A; DeGregori, James

    2015-12-01

    The incidence of cancer is higher in the elderly; however, many of the underlying mechanisms for this association remain unexplored. Here, we have shown that B cell progenitors in old mice exhibit marked signaling, gene expression, and metabolic defects. Moreover, B cell progenitors that developed from hematopoietic stem cells (HSCs) transferred from young mice into aged animals exhibited similar fitness defects. We further demonstrated that ectopic expression of the oncogenes BCR-ABL, NRAS(V12), or Myc restored B cell progenitor fitness, leading to selection for oncogenically initiated cells and leukemogenesis specifically in the context of an aged hematopoietic system. Aging was associated with increased inflammation in the BM microenvironment, and induction of inflammation in young mice phenocopied aging-associated B lymphopoiesis. Conversely, a reduction of inflammation in aged mice via transgenic expression of α-1-antitrypsin or IL-37 preserved the function of B cell progenitors and prevented NRAS(V12)-mediated oncogenesis. We conclude that chronic inflammatory microenvironments in old age lead to reductions in the fitness of B cell progenitor populations. This reduced progenitor pool fitness engenders selection for cells harboring oncogenic mutations, in part due to their ability to correct aging-associated functional defects. Thus, modulation of inflammation--a common feature of aging--has the potential to limit aging-associated oncogenesis.

  5. The MYC 3' Wnt-Responsive Element Drives Oncogenic MYC Expression in Human Colorectal Cancer Cells.

    PubMed

    Rennoll, Sherri A; Eshelman, Melanie A; Raup-Konsavage, Wesley M; Kawasawa, Yuka Imamura; Yochum, Gregory S

    2016-01-01

    Mutations in components of the Wnt/β-catenin signaling pathway drive colorectal cancer (CRC) by deregulating expression of downstream target genes including the c-MYC proto-oncogene (MYC). The critical regulatory DNA enhancer elements that control oncogenic MYC expression in CRC have yet to be fully elucidated. In previous reports, we correlated T-cell factor (TCF) and β-catenin binding to the MYC 3' Wnt responsive DNA element (MYC 3' WRE) with MYC expression in HCT116 cells. Here we used CRISPR/Cas9 to determine whether this element is a critical driver of MYC. We isolated a clonal population of cells that contained a deletion of a single TCF binding element (TBE) within the MYC 3' WRE. This deletion reduced TCF/β-catenin binding to this regulatory element and decreased MYC expression. Using RNA-Seq analysis, we found altered expression of genes that regulate metabolic processes, many of which are known MYC target genes. We found that 3' WRE-Mut cells displayed a reduced proliferative capacity, diminished clonogenic growth, and a decreased potential to form tumors in vivo. These findings indicate that the MYC 3' WRE is a critical driver of oncogenic MYC expression and suggest that this element may serve as a therapeutic target for CRC. PMID:27223305

  6. Oncogenic KRAS regulates BMP4 expression in colon cancer cell lines.

    PubMed

    Duerr, Eva-Maria; Mizukami, Yusuke; Moriichi, Kentaro; Gala, Manish; Jo, Won-Seok; Kikuchi, Hirotoshi; Xavier, Ramnik J; Chung, Daniel C

    2012-05-15

    Activating mutations in the KRAS oncogene are common in colorectal cancer. However, the complete spectrum of KRAS targets that mediate its tumorigenic effect has not yet been fully delineated. We identified bone morphogenetic protein 4 (Bmp4), a transforming growth factor-β family member that regulates development and tissue homeostasis, as a new target of KRAS. In SW480, Hela, and 293 cells, oncogenic KRAS(V12) downregulated BMP4 RNA levels, a BMP4 promoter luciferase construct, and Bmp4 protein levels. The MEK inhibitor PD98059 but not the phosphatidylinositol 3-kinase inhibitor LY294002 blocked this downregulation of BMP4. To identify the region of the BMP4 promoter that mediated this regulation by KRAS, serial 5'-deletions of the promoter were generated. An inhibitory region was identified between -3,285 and -3,258 bp in the Bmp4 promoter. In summary, oncogenic KRAS can downregulate Bmp4 through a transcriptional pathway that depends on ERK. These findings point to a unique link between two pathways that are frequently altered in colon cancer.

  7. The impact of the MYB-NFIB fusion proto-oncogene in vivo

    PubMed Central

    Mikse, Oliver R.; Tchaicha, Jeremy H.; Akbay, Esra A.; Chen, Liang; Bronson, Roderick T.; Hammerman, Peter S.; Wong, Kwok-Kin

    2016-01-01

    Recurrent fusion of the v-myb avian myelobastosis viral oncogene homolog (MYB) and nuclear factor I/B (NFIB) generates the MYB-NFIB transcription factor, which has been detected in a high percentage of individuals with adenoid cystic carcinoma (ACC). To understand the functional role of this fusion protein in carcinogenesis, we generated a conditional mutant transgenic mouse that expresses MYB-NFIB along with p53 mutation in tissues that give rise to ACC: mammary tissue, salivary glands, or systemically in the whole body. Expression of the oncogene in mammary tissue resulted in hyperplastic glands that developed into adenocarcinoma in 27.3% of animals. Systemic expression of the MYB-NFIB fusion caused more rapid development of this breast phenotype, but mice died due to abnormal proliferation in the glomerular compartment of the kidney, which led to development of glomerulonephritis. These findings suggest the MYB-NFIB fusion is oncogenic and treatments targeting this transcription factor may lead to therapeutic responses in ACC patients. PMID:27213588

  8. Oncogenic osteomalacia: strange tumours in strange places.

    PubMed Central

    Weiss, D.; Bar, R. S.; Weidner, N.; Wener, M.; Lee, F.

    1985-01-01

    Two patients presented with hypophosphataemic osteomalacia and were subsequently found to have small tumours unusual histopathology and location causing the osteomalacia. Each tumour was found after an intensive search for occult masses. Studies of vitamin D metabolism and renal tubular function before and after surgery yielded further insight into the pathophysiology of oncogenic osteomalacia. These cases demonstrate that microscopic quantities of tumour are capable of causing the syndrome and further illustrate the high index of suspicion often necessary to locate causative tumours in patients with hypophosphataemic osteomalacia. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:4022870

  9. Characterization of Leukemia-Inducing Genes Using a Proto-Oncogene/Homeobox Gene Retroviral Human cDNA Library in a Mouse In Vivo Model.

    PubMed

    Jang, Su Hwa; Lee, Sohyun; Chung, Hee Yong

    2015-01-01

    The purpose of this research is to develop a method to screen a large number of potential driver mutations of acute myeloid leukemia (AML) using a retroviral cDNA library and murine bone marrow transduction-transplantation system. As a proof-of-concept, murine bone marrow (BM) cells were transduced with a retroviral cDNA library encoding well-characterized oncogenes and homeobox genes, and the virus-transduced cells were transplanted into lethally irradiated mice. The proto-oncogenes responsible for leukemia initiation were identified by PCR amplification of cDNA inserts from genomic DNA isolated from leukemic cells. In an initial screen of ten leukemic mice, the MYC proto-oncogene was detected in all the leukemic mice. Of ten leukemic mice, 3 (30%) had MYC as the only transgene, and seven mice (70%) had additional proto-oncogene inserts. We repeated the same experiment after removing MYC-related genes from the library to characterize additional leukemia-inducing gene combinations. Our second screen using the MYC-deleted proto-oncogene library confirmed MEIS1and the HOX family as cooperating oncogenes in leukemia pathogenesis. The model system we introduced in this study will be valuable in functionally screening novel combinations of genes for leukemogenic potential in vivo, and the system will help in the discovery of new targets for leukemia therapy.

  10. The Oncogenic Functions of Nicotinic Acetylcholine Receptors

    PubMed Central

    Zhao, Yue

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) are ion channels that are expressed in the cell membrane of all mammalian cells, including cancer cells. Recent findings suggest that nAChRs not only mediate nicotine addiction in the brain but also contribute to the development and progression of cancers directly induced by nicotine and its derived carcinogenic nitrosamines whereas deregulation of the nAChRs is observed in many cancers, and genome-wide association studies (GWAS) indicate that SNPs nAChRs associate with risks of lung cancers and nicotine addiction. Emerging evidences suggest nAChRs are posited at the central regulatory loops of numerous cell growth and prosurvival signal pathways and also mediate the synthesis and release of stimulatory and inhibitory neurotransmitters induced by their agonists. Thus nAChRs mediated cell signaling plays an important role in stimulating the growth and angiogenic and neurogenic factors and mediating oncogenic signal transduction during cancer development in a cell type specific manner. In this review, we provide an integrated view of nAChRs signaling in cancer, heightening on the oncogenic properties of nAChRs that may be targeted for cancer treatment. PMID:26981122

  11. The Oncogenic Functions of Nicotinic Acetylcholine Receptors.

    PubMed

    Zhao, Yue

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) are ion channels that are expressed in the cell membrane of all mammalian cells, including cancer cells. Recent findings suggest that nAChRs not only mediate nicotine addiction in the brain but also contribute to the development and progression of cancers directly induced by nicotine and its derived carcinogenic nitrosamines whereas deregulation of the nAChRs is observed in many cancers, and genome-wide association studies (GWAS) indicate that SNPs nAChRs associate with risks of lung cancers and nicotine addiction. Emerging evidences suggest nAChRs are posited at the central regulatory loops of numerous cell growth and prosurvival signal pathways and also mediate the synthesis and release of stimulatory and inhibitory neurotransmitters induced by their agonists. Thus nAChRs mediated cell signaling plays an important role in stimulating the growth and angiogenic and neurogenic factors and mediating oncogenic signal transduction during cancer development in a cell type specific manner. In this review, we provide an integrated view of nAChRs signaling in cancer, heightening on the oncogenic properties of nAChRs that may be targeted for cancer treatment. PMID:26981122

  12. Biological basis of personalized anticoagulation in cancer: oncogene and oncomir networks as putative regulators of coagulopathy.

    PubMed

    D'Asti, Esterina; Rak, Janusz

    2016-04-01

    Activation of stromal response pathways in cancer is increasingly viewed as both a local and systemic extension of molecular alterations driving malignant transformation. Rather than reflecting passive and unspecific responses to anatomical abnormalities, the coagulation system is a target of oncogenic deregulation, impacting the role of clotting and fibrinolytic proteins, and integrating hemostasis, inflammation, angiogenesis and cellular growth effects in cancer. These processes signify, but do not depend on, the clinically manifest coagulopathy and thrombosis. In this regard, the role of driver mutations affecting oncoprotein coding genes such as RAS, EGFR or MET and tumour suppressors (PTEN, TP53) are well described as regulators of tissue factor (TF), protease activated receptors (PAR-1/2) and ectopic coagulation factors (FVII). Indeed, in both adult and pediatric brain tumours the expression patterns of coagulation and angiogenesis regulators (coagulome and angiome, respectively) reflect the molecular subtypes of the underlying diseases (glioblastoma or medulloblastoma) as defined by their oncogenic classifiers and clinical course. This emerging understanding is still poorly established in relation to the transforming effects of non-coding genes, including those responsible for the expression of microRNA (miR). Indeed, several miRs have been recently found to regulate TF and other effectors. We recently documented that in the context of the aggressive embryonal tumour with multilayered rosettes (ETMR) the oncogenic driver miR (miR-520g) suppresses the expression of TF and correlates with hypocoagulant tumour characteristics. Unlike in adult cancers, the growth of pediatric embryonal brain tumour cells as spheres (to maintain stem cell properties) results in upregulation of miR-520g and downregulation of TF expression and activity. We postulate that oncogenic protein and miR coding genes form alternative pathways of coagulation system regulation in different

  13. Mitochondrial dysfunctions in cancer: genetic defects and oncogenic signaling impinging on TCA cycle activity.

    PubMed

    Desideri, Enrico; Vegliante, Rolando; Ciriolo, Maria Rosa

    2015-01-28

    The tricarboxylic acid (TCA) cycle is a central route for oxidative metabolism. Besides being responsible for the production of NADH and FADH2, which fuel the mitochondrial electron transport chain to generate ATP, the TCA cycle is also a robust source of metabolic intermediates required for anabolic reactions. This is particularly important for highly proliferating cells, like tumour cells, which require a continuous supply of precursors for the synthesis of lipids, proteins and nucleic acids. A number of mutations among the TCA cycle enzymes have been discovered and their association with some tumour types has been established. In this review we summarise the current knowledge regarding alterations of the TCA cycle in tumours, with particular attention to the three germline mutations of the enzymes succinate dehydrogenase, fumarate hydratase and isocitrate dehydrogenase, which are involved in the pathogenesis of tumours, and to the aberrant regulation of TCA cycle components that are under the control of oncogenes and tumour suppressors. PMID:24614286

  14. Direct identification of all oncogenic mutants in KRAS exon 1 by cycling temperature capillary electrophoresis.

    PubMed

    Bjørheim, Jens; Gaudernack, Gustav; Giercksky, Karl-Erik; Ekstrøm, Per O

    2003-01-01

    Over the past few decades, advances in genetics and molecular biology have revolutionized our understanding of cancer initiation and progression. Molecular progression models outlining genetic events have been developed for many solid tumors, including colon cancer. Previous reports in the literature have shown a relationship between different KRAS mutations and prognosis and response to medical treatment in colon cancer patients. Furthermore, the presence of a mutated KRAS has been correlated with different clinicopathological variables including age and gender of patients and tumor location. To our knowledge, few institutions screen for KRAS mutations on regular basis in colon cancer patients despite such evidence that knowledge of KRAS exon 1 status is informative. Here, we report on a mutation analysis method adapted to a 96-capillary electrophoresis instrument that allows identification of all 12 oncogenic mutations in KRAS exon 1 under denaturing conditions. To determine the optimal parameters, a series of DNA constructs generated by site-directed mutagenesis was analyzed and the migration times of all mutant peaks were measured. A classification tree was then made based on the differences in migration time between the mutants and an internal standard. A randomized series of 500 samples constructed with mutagenesis as well as 60 blind samples from sporadic colon carcinomas was analyzed to test the method. No wild-type samples were scored as mutants and all mutants were correctly identified. Post polymerase chain reaction (PCR) analysis time of 96 samples was performed within 40 min. PMID:12652573

  15. Do mutator mutations fuel tumorigenesis?

    PubMed

    Fox, Edward J; Prindle, Marc J; Loeb, Lawrence A

    2013-12-01

    The mutator phenotype hypothesis proposes that the mutation rate of normal cells is insufficient to account for the large number of mutations found in human cancers. Consequently, human tumors exhibit an elevated mutation rate that increases the likelihood of a tumor acquiring advantageous mutations. The hypothesis predicts that tumors are composed of cells harboring hundreds of thousands of mutations, as opposed to a small number of specific driver mutations, and that malignant cells within a tumor therefore constitute a highly heterogeneous population. As a result, drugs targeting specific mutated driver genes or even pathways of mutated driver genes will have only limited anticancer potential. In addition, because the tumor is composed of such a diverse cell population, tumor cells harboring drug-resistant mutations will exist prior to the administration of any chemotherapeutic agent. We present recent evidence in support of the mutator phenotype hypothesis, major arguments against this concept, and discuss the clinical consequences of tumor evolution fueled by an elevated mutation rate. We also consider the therapeutic possibility of altering the rate of mutation accumulation. Most significantly, we contend that there is a need to fundamentally reconsider current approaches to personalized cancer therapy. We propose that targeting cellular pathways that alter the rate of mutation accumulation in tumors will ultimately prove more effective than attempting to identify and target mutant driver genes or driver pathways.

  16. Epigenetics provides a new generation of oncogenes and tumour-suppressor genes

    PubMed Central

    Esteller, M

    2006-01-01

    Cancer is nowadays recognised as a genetic and epigenetic disease. Much effort has been devoted in the last 30 years to the elucidation of the ‘classical' oncogenes and tumour-suppressor genes involved in malignant cell transformation. However, since the acceptance that major disruption of DNA methylation, histone modification and chromatin compartments are a common hallmark of human cancer, epigenetics has come to the fore in cancer research. One piece is still missing from the story: are the epigenetic genes themselves driving forces on the road to tumorigenesis? We are in the early stages of finding the answer, and the data are beginning to appear: knockout mice defective in DNA methyltransferases, methyl-CpG-binding proteins and histone methyltransferases strongly affect the risk of cancer onset; somatic mutations, homozygous deletions and methylation-associated silencing of histone acetyltransferases, histone methyltransferases and chromatin remodelling factors are being found in human tumours; and the first cancer-prone families arising from germline mutations in epigenetic genes, such as hSNF5/INI1, have been described. Even more importantly, all these ‘new' oncogenes and tumour-suppressor genes provide novel molecular targets for designed therapies, and the first DNA-demethylating agents and inhibitors of histone deacetylases are reaching the bedside of patients with haematological malignancies. PMID:16404435

  17. Prevalence of gsp oncogene in somatotropinomas and clinically non-functioning pituitary adenomas: our experience.

    PubMed

    Taboada, Giselle Fernandes; Tabet, Ana Lúcia Osório; Naves, Luciana A; de Carvalho, Denise Pires; Gadelha, Mônica Roberto

    2009-01-01

    The purpose of the present study is to evaluate the prevalence of the gsp oncogene in Brazilian patients harboring somatotropinomas and non-functioning pituitary adenomas (NFPA). Patients and methods Deoxyribonucleic acid was extracted from 54 somatotropinomas and 14 NFPA. Exons 8 and 9 (including codons 201 and 227, respectively) of the GNAS gene were amplified by polymerase chain reaction (PCR). The PCR products were then purified and sequenced using the same primers. Results The gsp oncogene was found in nine tumors (eight somatotropinomas). The prevalence among somatotropinomas was 15% and among NFPA was 7%. The mutation was found in codon 201 in eight tumors and in codon 227 in one tumor (a somatotropinoma). No differences were found in age, sex, GH, and IGF-I levels or tumor volume at diagnosis between gsp+ and gsp- patients. Conclusion We found a lower than expected prevalence of gsp mutations in somatotropinomas and a similar prevalence in NFPA compared to previous studies from other countries. PMID:18642089

  18. Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma.

    PubMed

    Northcott, Paul A; Lee, Catherine; Zichner, Thomas; Stütz, Adrian M; Erkek, Serap; Kawauchi, Daisuke; Shih, David J H; Hovestadt, Volker; Zapatka, Marc; Sturm, Dominik; Jones, David T W; Kool, Marcel; Remke, Marc; Cavalli, Florence M G; Zuyderduyn, Scott; Bader, Gary D; VandenBerg, Scott; Esparza, Lourdes Adriana; Ryzhova, Marina; Wang, Wei; Wittmann, Andrea; Stark, Sebastian; Sieber, Laura; Seker-Cin, Huriye; Linke, Linda; Kratochwil, Fabian; Jäger, Natalie; Buchhalter, Ivo; Imbusch, Charles D; Zipprich, Gideon; Raeder, Benjamin; Schmidt, Sabine; Diessl, Nicolle; Wolf, Stephan; Wiemann, Stefan; Brors, Benedikt; Lawerenz, Chris; Eils, Jürgen; Warnatz, Hans-Jörg; Risch, Thomas; Yaspo, Marie-Laure; Weber, Ursula D; Bartholomae, Cynthia C; von Kalle, Christof; Turányi, Eszter; Hauser, Peter; Sanden, Emma; Darabi, Anna; Siesjö, Peter; Sterba, Jaroslav; Zitterbart, Karel; Sumerauer, David; van Sluis, Peter; Versteeg, Rogier; Volckmann, Richard; Koster, Jan; Schuhmann, Martin U; Ebinger, Martin; Grimes, H Leighton; Robinson, Giles W; Gajjar, Amar; Mynarek, Martin; von Hoff, Katja; Rutkowski, Stefan; Pietsch, Torsten; Scheurlen, Wolfram; Felsberg, Jörg; Reifenberger, Guido; Kulozik, Andreas E; von Deimling, Andreas; Witt, Olaf; Eils, Roland; Gilbertson, Richard J; Korshunov, Andrey; Taylor, Michael D; Lichter, Peter; Korbel, Jan O; Wechsler-Reya, Robert J; Pfister, Stefan M

    2014-07-24

    Medulloblastoma is a highly malignant paediatric brain tumour currently treated with a combination of surgery, radiation and chemotherapy, posing a considerable burden of toxicity to the developing child. Genomics has illuminated the extensive intertumoral heterogeneity of medulloblastoma, identifying four distinct molecular subgroups. Group 3 and group 4 subgroup medulloblastomas account for most paediatric cases; yet, oncogenic drivers for these subtypes remain largely unidentified. Here we describe a series of prevalent, highly disparate genomic structural variants, restricted to groups 3 and 4, resulting in specific and mutually exclusive activation of the growth factor independent 1 family proto-oncogenes, GFI1 and GFI1B. Somatic structural variants juxtapose GFI1 or GFI1B coding sequences proximal to active enhancer elements, including super-enhancers, instigating oncogenic activity. Our results, supported by evidence from mouse models, identify GFI1 and GFI1B as prominent medulloblastoma oncogenes and implicate 'enhancer hijacking' as an efficient mechanism driving oncogene activation in a childhood cancer.

  19. Transformation with Oncogenic Ras and the Simian Virus 40 T Antigens Induces Caspase-Dependent Sensitivity to Fatty Acid Biosynthetic Inhibition

    PubMed Central

    Xu, Shihao; Spencer, Cody M.

    2015-01-01

    ABSTRACT Oncogenesis is frequently accompanied by the activation of specific metabolic pathways. One such pathway is fatty acid biosynthesis, whose induction is observed upon transformation of a wide variety of cell types. Here, we explored how defined oncogenic alleles, specifically the simian virus 40 (SV40) T antigens and oncogenic Ras12V, affect fatty acid metabolism. Our results indicate that SV40/Ras12V-mediated transformation of fibroblasts induces fatty acid biosynthesis in the absence of significant changes in the concentration of fatty acid biosynthetic enzymes. This oncogene-induced activation of fatty acid biosynthesis was found to be mammalian target of rapamycin (mTOR) dependent, as it was attenuated by rapamycin treatment. Furthermore, SV40/Ras12V-mediated transformation induced sensitivity to treatment with fatty acid biosynthetic inhibitors. Pharmaceutical inhibition of acetyl-coenzyme A (CoA) carboxylase (ACC), a key fatty acid biosynthetic enzyme, induced caspase-dependent cell death in oncogene-transduced cells. In contrast, isogenic nontransformed cells were resistant to fatty acid biosynthetic inhibition. This oncogene-induced sensitivity to fatty acid biosynthetic inhibition was independent of the cells' growth rates and could be attenuated by supplementing the medium with unsaturated fatty acids. Both the activation of fatty acid biosynthesis and the sensitivity to fatty acid biosynthetic inhibition could be conveyed to nontransformed breast epithelial cells through transduction with oncogenic Ras12V. Similar to what was observed in the transformed fibroblasts, the Ras12V-induced sensitivity to fatty acid biosynthetic inhibition was independent of the proliferative status and could be attenuated by supplementing the medium with unsaturated fatty acids. Combined, our results indicate that specific oncogenic alleles can directly confer sensitivity to inhibitors of fatty acid biosynthesis. IMPORTANCE Viral oncoproteins and cellular mutations

  20. Hedgehog Cholesterolysis: Specialized Gatekeeper to Oncogenic Signaling

    PubMed Central

    Callahan, Brian P.; Wang, Chunyu

    2015-01-01

    Discussions of therapeutic suppression of hedgehog (Hh) signaling almost exclusively focus on receptor antagonism; however, hedgehog’s biosynthesis represents a unique and potentially targetable aspect of this oncogenic signaling pathway. Here, we review a key biosynthetic step called cholesterolysis from the perspectives of structure/function and small molecule inhibition. Cholesterolysis, also called cholesteroylation, generates cholesterol-modified Hh ligand via autoprocessing of a hedgehog precursor protein. Post-translational modification by cholesterol appears to be restricted to proteins in the hedgehog family. The transformation is essential for Hh biological activity and upstream of signaling events. Despite its decisive role in generating ligand, cholesterolysis remains conspicuously unexplored as a therapeutic target. PMID:26473928

  1. PLAG1 fusion oncogenes in lipoblastoma.

    PubMed

    Hibbard, M K; Kozakewich, H P; Dal Cin, P; Sciot, R; Tan, X; Xiao, S; Fletcher, J A

    2000-09-01

    Lipoblastomas are pediatric neoplasms resulting from transformation of adipocytes. These benign tumors are typically composed of adipose cells in different stages of maturation within a variably myxoid matrix, and they contain clonal rearrangements of chromosome band 8q12. Because lipoblastomas resemble embryonic adipose tissue, characterization of their transforming mechanisms might reveal biological pathways in physiological adipogenesis. Herein, we demonstrate that lipoblastoma chromosome 8q12 rearrangements bring about promoter-swapping events in the PLAG1 oncqgene. We show that the hyaluronic acid synthase 2 (HAS2) or collagen 1 alpha 2 (COL1A2) gene promoter regions are fused to the entire PLAG1 coding sequence in each of four lipoblastomas. PLAG1 is a developmentally regulated zinc finger gene whose tumorigenic function has been shown previously only in epithelial salivary gland cells. Our findings reveal that PLAG1 activation, presumably resulting from transcriptional up-regulation, is a central oncogenic event in lipoblastoma.

  2. Calreticulin Exon 9 Mutations in Myeloproliferative Neoplasms

    PubMed Central

    Kim, Yu-Kyung

    2015-01-01

    Background Calreticulin (CALR) mutations were recently discovered in patients with myeloproliferative neoplasms (MPNs). We studied the frequency and type of CALR mutations and their hematological characteristics. Methods A total of 168 MPN patients (36 polycythemia vera [PV], 114 essential thrombocythemia [ET], and 18 primary myelofibrosis [PMF] cases) were included in the study. CALR mutation was analyzed by the direct sequencing method. Results CALR mutations were detected in 21.9% of ET and 16.7% of PMF patients, which accounted for 58.5% and 33.3% of ET and PMF patients without Janus kinase 2 (JAK2) or myeloproliferative leukemia virus oncogenes (MPL) mutations, respectively. A total of five types of mutation were detected, among which, L367fs*46 (53.6%) and K385fs*47 (35.7%) were found to be the most common. ET patients with CALR mutation had lower leukocyte counts and ages compared with JAK2-mutated ET patients. Conclusion Genotyping for CALR could be a useful diagnostic tool for JAK2-or MPL-negative ET or PMF patients. CALR mutation may be a distinct disease group, with different hematological characteristics than that of JAK2-positive patients. PMID:25553276

  3. A Landscape of Driver Mutations in Melanoma

    PubMed Central

    Hodis, Eran; Watson, Ian R.; Kryukov, Gregory V.; Arold, Stefan T.; Imielinski, Marcin; Theurillat, Jean-Philippe; Nickerson, Elizabeth; Auclair, Daniel; Li, Liren; Place, Chelsea; DiCara, Daniel; Ramos, Alex H.; Lawrence, Michael S.; Cibulskis, Kristian; Sivachenko, Andrey; Voet, Douglas; Saksena, Gordon; Stransky, Nicolas; Onofrio, Robert C.; Winckler, Wendy; Ardlie, Kristin; Wagle, Nikhil; Wargo, Jennifer; Chong, Kelly; Morton, Donald L.; Stemke-Hale, Katherine; Chen, Guo; Noble, Michael; Meyerson, Matthew; Ladbury, John E.; Davies, Michael A.; Gershenwald, Jeffrey E.; Wagner, Stephan N.; Hoon, Dave S.B.; Schadendorf, Dirk; Lander, Eric S.; Gabriel, Stacey B.; Getz, Gad; Garraway, Levi A.; Chin, Lynda

    2012-01-01

    SUMMARY Despite recent insights into melanoma genetics, systematic surveys for driver mutations are challenged by an abundance of passenger mutations caused by carcinogenic ultraviolet (UV) light exposure. We developed a permutation-based framework to address this challenge, employing mutation data from intronic sequences to control for passenger mutational load on a per gene basis. Analysis of large-scale melanoma exome data by this approach discovered six novel melanoma genes (PPP6C, RAC1, SNX31, TACC1, STK19 and ARID2), three of which - RAC1, PPP6C and STK19 - harbored recurrent and potentially targetable mutations. Integration with chromosomal copy number data contextualized the landscape of driver mutations, providing oncogenic insights in BRAF- and NRAS-driven melanoma as well as those without known NRAS/BRAF mutations. The landscape also clarified a mutational basis for RB and p53 pathway deregulation in this malignancy. Finally, the spectrum of driver mutations provided unequivocal genomic evidence for a direct mutagenic role of UV light in melanoma pathogenesis. PMID:22817889

  4. Activated neu oncogene sequences in primary tumors of the peripheral nervous system induced in rats by transplacental exposure to ethylnitrosourea

    SciTech Connect

    Perantoni, A.O.; Rice, J.M.; Reed, C.D.; Watatani, M.; Wenk, M.L.

    1987-09-01

    Neurogenic tumors were selectively induced in high incidence in F344 rats by a single transplacental exposure to the direct-acting alkylating agent N-ethyl-N-nitrosourea (EtNU). The authors prepared DNA for transfection of NIH 3T3 cells from primary glial tumors of the brain and form schwannomas of the cranial and spinal nerves that developed in the transplacentally exposed offspring between 20 and 40 weeks after birth. DNA preparations from 6 of 13 schwannomas, but not from normal liver, kidney, or intestine of tumor-bearing rats, transformed NIH 3T3 cells. NIH 3T3 clones transformed by schwannoma DNA contained rat repetitive DNA sequences, and all isolates contained rat neu oncogene sequences. A point mutation in the transmembrane region of the putative protein product of neu was identified in all six transformants and in the primary tumors from which they were derived as well as in 5 of 6 schwannomas tested that did not transform NIH 3T3 cells. Of 59 gliomas, only one yielded transforming DNA, and an activated N-ras oncogen was identified. The normal cellular neu sequence for the transmembrane region, but not the mutated sequence, was identified in DNA from all 11 gliomas surveyed by oligonucleotide hybridization. Activation of the neu oncogene, originally identified in cultured cell lines derived from EtNU-induced neurogenic tumors appears specifically associated with tumors of the peripheral nervous system in the F344 inbred strain.

  5. ROLE OF RAC-1 DEPENDENT NADPH OXIDASE IN THE GROWTH OF PANCREATIC CANCER

    PubMed Central

    Du, Juan; Liu, Jingru; Smith, Brian J.; Tsao, Ming-Sound; Cullen, Joseph J.

    2010-01-01

    K-ras mutations occur in as high as 95% of patients with pancreatic cancer. K-ras activates Rac1-dependent NADPH oxidase, a key source of superoxide. Superoxide plays an important role in pancreatic cancer cell proliferation and scavenging or decreasing the levels of superoxide inhibits pancreatic cancer cell growth both in vitro and in vivo. DNA microarray analysis and RT-PCR has demonstrated that Rac1 is also upregulated in pancreatic cancer. The aim of this study was to determine if inhibiting Rac1 would alter pancreatic tumor cell behavior. Human pancreatic cancer cells with mutant K-ras (MIA PaCa-2), wild-type K-ras (BxPC-3), and the immortal H6c7 cell line (pancreatic ductal epithelium) expressing K-ras oncogene (H6c7eR-KrasT) that is tumorigenic, were infected with a dominant/negative Rac1 construct (AdN17Rac1). In cells with mutant K-ras, AdN17Rac1 decreased rac activity, decreased superoxide levels, and inhibited in vitro growth. However in the BxPC-3 cell line, AdN17Rac1 did not change rac activity, superoxide levels, or in vitro cell growth. Additionally, AdN17Rac1 decreased superoxide levels and inhibited in vitro growth in the KrasT tumorigenic cell line, but had no effect in the immortalized H6c7 cell line. In human pancreatic tumor xenografts, intratumoral injections of AdN17Rac1 inhibited tumor growth. These results suggest that activation of Rac1-dependent superoxide generation leads to pancreatic cancer cell proliferation. In pancreatic cancer inhibition of Rac1 may be a potential therapeutic target. PMID:21037555

  6. Protein kinase A activation inhibits oncogenic Sonic hedgehog signalling and suppresses basal cell carcinoma of the skin.

    PubMed

    Makinodan, Eri; Marneros, Alexander G

    2012-11-01

    Basal cell carcinoma of the skin (BCC) is caused by constitutive activation of the Sonic hedgehog (Shh) pathway, mainly through mutations either in the Shh receptor Patched (PTCH) or in its co-receptor Smoothened (Smo). Inhibitors of this pathway that are currently in clinical trials inhibit Smo. However, mutations in Smo can result in resistance to these inhibitors. To target most BCCs and avoid acquired resistance because of Smo mutations, inhibiting the Shh-pathway downstream of Smo is critical. Attractive downstream targets would be at the level of Gli proteins, the transcriptional activators of this pathway in BCCs. Previously it has been shown that Gli1 and Gli2, when phosphorylated by protein kinase A (PKA), are targeted for proteosomal degradation. Here we show that PKA activation via the cAMP agonist forskolin is sufficient to completely abolish oncogenic Smo activity in vitro. In an inducible BCC mouse model due to a Smo mutation that confers resistance to current Smo inhibitors, topical forskolin treatment significantly reduced Gli1 mRNA levels and resulted in strongly suppressed BCC tumor growth. Our data show that forskolin inhibits the growth of even those BCCs that are resistant to Smo inhibitors and provide a proof-of-principle framework for the development of topically applied human skin-permeable novel pharmacologic inhibitors of oncogenic Shh-signaling through PKA activation. PMID:23163650

  7. Kinase-dead ATM protein is highly oncogenic and can be preferentially targeted by Topo-isomerase I inhibitors

    PubMed Central

    Yamamoto, Kenta; Wang, Jiguang; Sprinzen, Lisa; Xu, Jun; Haddock, Christopher J; Li, Chen; Lee, Brian J; Loredan, Denis G; Jiang, Wenxia; Vindigni, Alessandro; Wang, Dong; Rabadan, Raul; Zha, Shan

    2016-01-01

    Missense mutations in ATM kinase, a master regulator of DNA damage responses, are found in many cancers, but their impact on ATM function and implications for cancer therapy are largely unknown. Here we report that 72% of cancer-associated ATM mutations are missense mutations that are enriched around the kinase domain. Expression of kinase-dead ATM (AtmKD/-) is more oncogenic than loss of ATM (Atm-/-) in mouse models, leading to earlier and more frequent lymphomas with Pten deletions. Kinase-dead ATM protein (Atm-KD), but not loss of ATM (Atm-null), prevents replication-dependent removal of Topo-isomerase I-DNA adducts at the step of strand cleavage, leading to severe genomic instability and hypersensitivity to Topo-isomerase I inhibitors. Correspondingly, Topo-isomerase I inhibitors effectively and preferentially eliminate AtmKD/-, but not Atm-proficientor Atm-/- leukemia in animal models. These findings identify ATM kinase-domain missense mutations as a potent oncogenic event and a biomarker for Topo-isomerase I inhibitor based therapy. DOI: http://dx.doi.org/10.7554/eLife.14709.001 PMID:27304073

  8. DNA mutation detection with chip-based temperature gradient capillary electrophoresis using a slantwise radiative heating system.

    PubMed

    Zhang, Hui-Dan; Zhou, Jing; Xu, Zhang-Run; Song, Jin; Dai, Jing; Fang, Jin; Fang, Zhao-Lun

    2007-09-01

    A simple and robust chip-based temperature gradient capillary electrophoresis (TGCE) system was developed for DNA mutation/single-nucleotide polymorphism (SNP) analysis using a radiative heating system. Reproducible, stable and uniform temperature gradients were established along a 3 cm length of the electrophoretic separation channel using a single thermostated aluminium heater plate. The heater was slightly slanted relative to the plane of the glass chip at 0.2-1.3 degrees by inserting thin spacers between the plate and chip at one end to produce differences in radiative heating that created the temperature gradient. On-chip TGCE analyses of 4 mutant DNA model samples amplified from plasmid templates, each containing a single base substitution, with a wide range of melting temperatures, showed that mutations were successfully detected under a wide temperature gradient of 10 degrees C and within a short gradient region of about 3 cm (3.3 degrees C cm(-1) gradient). The radiative heating system was able to establish stable spatial temperature gradients along short microfluidic separation channels using simple peripheral equipment and manipulation while ensuring good resolution for detecting a wide range of mutations. Effectiveness of the system was demonstrated by the successful detection of K-ras gene mutations in 6 colon cancer cell lines.

  9. Flexible Lab-Tailored Cut-Offs for Suitability of Formalin-Fixed Tumor Samples for Diagnostic Mutational Analyses

    PubMed Central

    Mariani, Sara; Tondat, Fabrizio; Pacchioni, Donatella; Molinaro, Luca; Barreca, Antonella; Macrì, Luigia; Chiusa, Luigi; di Celle, Paola Francia; Cassoni, Paola; Sapino, Anna

    2015-01-01

    The selection of proper tissues from formalin-fixed and paraffin-embedded tumors before diagnostic molecular testing is responsibility of the pathologist and represents a crucial step to produce reliable test results. The international guidelines suggest two cut-offs, one for the percentage and one for the number of tumor cells, in order to enrich the tumor content before DNA extraction. The aim of the present work was two-fold: to evaluate to what extent a low percentage or absolute number of tumor cells can be qualified for somatic mutation testing; and to determine how assay sensitivities can guide pathologists towards a better definition of morphology-based adequacy cut-offs. We tested 1797 tumor specimens from melanomas, colorectal and lung adenocarcinomas. Respectively, their BRAF, K-RAS and EGFR genes were analyzed at specific exons by mutation-enriched PCR, pyrosequencing, direct sequencing and real-time PCR methods. We demonstrate that poorly cellular specimens do not modify the frequency distribution of either mutated or wild-type DNA samples nor that of specific mutations. This observation suggests that currently recommended cut-offs for adequacy of specimens to be processed for molecular assays seem to be too much stringent in a laboratory context that performs highly sensitive routine analytical methods. In conclusion, new cut-offs are needed based on test sensitivities and documented tumor heterogeneity. PMID:25844806

  10. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma

    PubMed Central

    McFadden, David G.; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K.; Song, Xiaoling; Pirun, Mono; Santiago, Philip M.; Kim-Kiselak, Caroline; Platt, James T.; Lee, Emily; Hodges, Emily; Rosebrock, Adam P.; Bronson, Roderick T.; Socci, Nicholas D.; Hannon, Gregory J.; Jacks, Tyler; Varmus, Harold

    2016-01-01

    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity. PMID:27702896

  11. Bladder Cancer and Genetic Mutations.

    PubMed

    Zhang, Xiaoying; Zhang, Yangde

    2015-09-01

    The most common type of urinary bladder cancer is called as transitional cell carcinoma. The major risk factors for bladder cancer are environmental, tobacco smoking, exposure to toxic industrial chemicals and gases, bladder inflammation due to microbial and parasitic infections, as well as some adverse side-effects of medications. The genetic mutations in some chromosomal genes, such as FGFR3, RB1, HRAS, TP53, TSC1, and others, occur which form tumors in the urinary bladder. These genes play an important role in the regulation of cell division which prevents cells from dividing too quickly. The changes in the genes of human chromosome 9 are usually responsible for tumor in bladder cancer, but the genetic mutation of chromosome 22 can also result in bladder cancer. The identification of p53 gene mutation has been studied at NIH, Washington, DC, USA, in urine samples of bladder cancer patients. The invasive bladder cancers were determined for the presence of gene mutations on p53 suppressor gene. The 18 different bladder tumors were evaluated, and 11 (61 %) had genetic mutations of p53 gene. The bladder cancer studies have suggested that 70 % of bladder cancers involve a specific mutation in a particular gene, namely telomerase reverse transcriptase (TERT) gene. The TERT gene is involved in DNA protection, cellular aging processes, and cancer. The Urothelial carcinomas of the bladder have been described in Atlas of genetics and cytogenetics in oncology and hematology. HRAS is a proto-oncogene and has potential to cause cancer in several organs including the bladder. The TSC1 c. 1907 1908 del (E636fs) mutation in bladder cancer suggests that the location of the mutation is Exon 15 with frequency of TSC1 mutation of 11.7 %. The recent findings of BAP1 mutations have shown that it contributes to BRCA pathway alterations in bladder cancer. The discoveries of more gene mutations and new biomarkers and polymerase chain reaction bioassays for gene mutations in bladder

  12. Noncanonical Roles of the Immune System in Eliciting Oncogene Addiction

    PubMed Central

    Casey, Stephanie C.; Bellovin, David I.; Felsher, Dean W.

    2013-01-01

    Summary Cancer is highly complex. The magnitude of this complexity makes it highly surprising that even the brief suppression of an oncogene can sometimes result in rapid and sustained tumor regression illustrating that cancers can be “oncogene addicted” [1-10]. The essential implication is that oncogenes may not only fuel the initiation of tumorigenesis, but in some cases necessarily their surfeit of activation is paramaount to maintain a neoplastic state [11]. Oncogene suppression acutely restores normal physiological programs that effectively overrides secondary genetic events and a cancer collapses [12,13]. Oncogene addiction is mediated both through both tumor intrinsic cell-autonomous mechanisms including proliferative arrest, apoptosis, differentiation and cellular senescence [1,2,4,12] but also host-dependent mechanisms that interact with these tumor intrinsic programs [14,15]. Notably, oncogene inactivation elicits a host immune response that involves specific immune effectors and cytokines that facilitate a remodeling of the tumor microenvironment including the shut down of angiogenesis and the induction of cellular senescence of tumor cells [16]. Hence, immune effectors are critically involved in tumor initiation and prevention [17-19] and progression [20], but also appear to be essential to tumor regression upon oncogene inactivation [21-23]. The understanding how the inactivation of an oncogene elicits a systemic signal in the host that prompts a deconstruction of a tumor could have important implications. The combination of oncogene-targeted therapy together with immunomodulatory therapy may be ideal for the development of both a robust tumor intrinsic as well as immunological effectively leading to sustained tumor regression. PMID:23571026

  13. Human cancers converge at the HIF-2alpha oncogenic axis.

    PubMed

    Franovic, Aleksandra; Holterman, Chet E; Payette, Josianne; Lee, Stephen

    2009-12-15

    Cancer development is a multistep process, driven by a series of genetic and environmental alterations, that endows cells with a set of hallmark traits required for tumorigenesis. It is broadly accepted that growth signal autonomy, the first hallmark of malignancies, can be acquired through multiple genetic mutations that activate an array of complex, cancer-specific growth circuits [Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57-70; Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789-799]. The superfluous nature of these pathways is thought to severely limit therapeutic approaches targeting tumor proliferation, and it has been suggested that this strategy be abandoned in favor of inhibiting more systemic hallmarks, including angiogenesis (Ellis LM, Hicklin DJ (2008) VEGF-targeted therapy: Mechanisms of anti-tumor activity. Nat Rev Cancer 8:579-591; Stommel JM, et al. (2007) Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 318:287-290; Kerbel R, Folkman J (2002) Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2:727-739; Kaiser J (2008) Cancer genetics: A detailed genetic portrait of the deadliest human cancers. Science 321:1280-1281]. Here, we report the unexpected observation that genetically diverse cancers converge at a common and obligatory growth axis instigated by HIF-2alpha, an element of the oxygen-sensing machinery. Inhibition of HIF-2alpha prevents the in vivo growth and tumorigenesis of highly aggressive glioblastoma, colorectal, and non-small-cell lung carcinomas and the in vitro autonomous proliferation of several others, regardless of their mutational status and tissue of origin. The concomitant deactivation of select receptor tyrosine kinases, including the EGFR and IGF1R, as well as downstream ERK/Akt signaling, suggests that HIF-2alpha exerts its proliferative effects by endorsing these major pathways. Consistently

  14. The oncogenic action of ionizing radiation on rat skin

    SciTech Connect

    Burns, F.J.

    1991-01-01

    Progress has occurred in several areas corresponding to the specific aims of the proposal: (1) Progression and multiple events in radiation carcinogenesis of rat skin as a function of LET; (2) cell cycle kinetics of irradiated rat epidermis as determined by double labeling and double emulsion autoradiography; (3) oncogene activation detected by in situ hybridization in radiation-induced rat skin tumors; (4) amplification of the c-myc oncogene in radiation-induced rat skin tumors as a function of LET; and (5) transformation of rat skin keratinocytes by ionizing radiation in combination with c-Ki-ras and c-myc oncogenes. 111 refs., 13 figs., 12 tabs.

  15. An Oncogenic Role for Alternative NF-κB Signaling in DLBCL, Revealed Upon Deregulated BCL6 Expression

    PubMed Central

    Zhang, Baochun; Calado, Dinis Pedro; Wang, Zhe; Fröhler, Sebastian; Köchert, Karl; Qian, Yu; Koralov, Sergei B.; Schmidt-Supprian, Marc; Sasaki, Yoshiteru; Unitt, Christine; Rodig, Scott; Chen, Wei; Dalla-Favera, Riccardo; Alt, Frederick W.; Pasqualucci, Laura; Rajewsky, Klaus

    2015-01-01

    Diffuse large B cell lymphoma (DLBCL) is a complex disease comprising diverse subtypes and genetic profiles. Possibly due to the prevalence of genetic alterations activating canonical NF-κB activity, a role for oncogenic lesions that activate the alternative NF-κB pathway in DLBCL has remained elusive. Here we show that deletion/mutation of TRAF3, a negative regulator of the alternative NF-κB pathway, occurs in ∼15% of DLBCLs, and that it often coexists with BCL6 translocation, which prevents terminal B cell differentiation. Accordingly, in a mouse model constitutive activation of the alternative NF-κB pathway cooperates with BCL6 deregulation in DLBCL development. This work demonstrates a key oncogenic role for the alternative NF-κB pathway in DLBCL development. PMID:25921526

  16. The role of small adaptor proteins in the control of oncogenic signaling driven by tyrosine kinases in human cancer

    PubMed Central

    Naudin, Cécile; Chevalier, Clément; Roche, Serge

    2016-01-01

    Protein phosphorylation on tyrosine (Tyr) residues has evolved as an important mechanism to coordinate cell communication in multicellular organisms. The importance of this process has been revealed by the discovery of the prominent oncogenic properties of tyrosine kinases (TK) upon deregulation of their physiological activities, often due to protein overexpression and/or somatic mutation. Recent reports suggest that TK oncogenic signaling is also under the control of small adaptor proteins. These cytosolic proteins lack intrinsic catalytic activity and signal by linking two functional members of a catalytic pathway. While most adaptors display positive regulatory functions, a small group of this family exerts negative regulatory functions by targeting several components of the TK signaling cascade. Here, we review how these less studied adaptor proteins negatively control TK activities and how their loss of function induces abnormal TK signaling, promoting tumor formation. We also discuss the therapeutic consequences of this novel regulatory mechanism in human oncology. PMID:26788993

  17. Oncogenic CARMA1 couples NF-κB and β-catenin signaling in diffuse large B-cell lymphomas

    PubMed Central

    Bognar, M K; Vincendeau, M; Erdmann, T; Seeholzer, T; Grau, M; Linnemann, J R; Ruland, J; Scheel, C H; Lenz, P; Ott, G; Lenz, G; Hauck, S M; Krappmann, D

    2016-01-01

    Constitutive activation of the antiapoptotic nuclear factor-κB (NF-κB) signaling pathway is a hallmark of the activated B-cell-like (ABC) subtype of diffuse large B-cell lymphomas (DLBCL). Recurrent oncogenic mutations are found in the scaffold protein CARMA1 (CARD11) that connects B-cell receptor (BCR) signaling to the canonical NF-κB pathway. We asked how far additional downstream processes are activated and contribute to the oncogenic potential of DLBCL-derived CARMA1 mutants. To this end, we expressed oncogenic CARMA1 in the NF-κB negative DLBCL lymphoma cell line BJAB. By a proteomic approach we identified recruitment of β-catenin and its destruction complex consisting of APC, AXIN1, CK1α and GSK3β to oncogenic CARMA1. Recruitment of the β-catenin destruction complex was independent of CARMA1-BCL10-MALT1 complex formation or constitutive NF-κB activation and promoted the stabilization of β-catenin. The β-catenin destruction complex was also recruited to CARMA1 in ABC DLBCL cell lines, which coincided with elevated β-catenin expression. In line, β-catenin was frequently detected in non-GCB DLBCL biopsies that rely on chronic BCR signaling. Increased β-catenin amounts alone were not sufficient to induce classical WNT target gene signatures, but could augment TCF/LEF-dependent transcriptional activation in response to WNT signaling. In conjunction with NF-κB, β-catenin enhanced expression of immunosuppressive interleukin-10 and suppressed antitumoral CCL3, indicating that β-catenin can induce a favorable tumor microenvironment. Thus, parallel activation of NF-κB and β-catenin signaling by gain-of-function mutations in CARMA1 augments WNT stimulation and is required for regulating the expression of distinct NF-κB target genes to trigger cell-intrinsic and extrinsic processes that promote DLBCL lymphomagenesis. PMID:26776161

  18. Oncogene-dependent apoptosis is mediated by caspase-9

    PubMed Central

    Fearnhead, Howard O.; Rodriguez, Joe; Govek, Eve-Ellen; Guo, Wenjun; Kobayashi, Ryuji; Hannon, Greg; Lazebnik, Yuri A.

    1998-01-01

    Understanding how oncogenic transformation sensitizes cells to apoptosis may provide a strategy to kill tumor cells selectively. We previously developed a cell-free system that recapitulates oncogene dependent apoptosis as reflected by activation of caspases, the core of the apoptotic machinery. Here, we show that this activation requires a previously identified apoptosis-promoting complex consisting of caspase-9, APAF-1, and cytochrome c. As predicted by the in vitro system, preventing caspase-9 activation blocked drug-induced apoptosis in cells sensitized by E1A, an adenoviral oncogene. Oncogenes, such as E1A, appear to facilitate caspase-9 activation by several mechanisms, including the control of cytochrome c release from the mitochondria. PMID:9811857

  19. Elimination of B-RAF in Oncogenic C-RAF-expressing Alveolar Epithelial Type II Cells Reduces MAPK Signal Intensity and Lung Tumor Growth*

    PubMed Central

    Zanucco, Emanuele; El-Nikhely, Nefertiti; Götz, Rudolf; Weidmann, Katharina; Pfeiffer, Verena; Savai, Rajkumar; Seeger, Werner; Ullrich, Axel; Rapp, Ulf R.

    2014-01-01

    Tumors are often greatly dependent on signaling cascades promoting cell growth or survival and may become hypersensitive to inactivation of key components within these signaling pathways. Ras and RAF mutations found in human cancer confer constitutive activity to these signaling molecules thereby converting them into an oncogenic state. RAF dimerization is required for normal Ras-dependent RAF activation and is required for the oncogenic potential of mutant RAFs. Here we describe a new mouse model for lung tumor development to investigate the role of B-RAF in oncogenic C-RAF-mediated adenoma initiation and growth. Conditional elimination of B-RAF in C-RAF BxB-expressing embryonic alveolar epithelial type II cells did not block adenoma formation. However, loss of B-RAF led to significantly reduced tumor growth. The diminished tumor growth upon B-RAF inactivation was due to reduced cell proliferation in absence of senescence and increased apoptosis. Furthermore, B-RAF elimination inhibited C-RAF BxB-mediated activation of the mitogenic cascade. In line with these data, mutation of Ser-621 in C-RAF BxB abrogated in vitro the dimerization with B-RAF and blocked the ability to activate the MAPK cascade. Taken together these data indicate that B-RAF is an important factor in oncogenic C-RAF-mediated tumorigenesis. PMID:25096573

  20. Silent assassin: oncogenic ras directs epigenetic inactivation of target genes.

    PubMed

    Cheng, Xiaodong

    2008-01-01

    Oncogenic transformation is associated with genetic changes and epigenetic alterations. A study now shows that oncogenic Ras uses a complex and elaborate epigenetic silencing program to specifically repress the expression of multiple unrelated cancer-suppressing genes through a common pathway. These results suggest that cancer-related epigenetic modifications may arise through a specific and instructive mechanism and that genetic changes and epigenetic alterations are intimately connected and contribute to tumorigenesis cooperatively. PMID:18385037

  1. Know thy neighbor: stromal cells can contribute oncogenic signals

    NASA Technical Reports Server (NTRS)

    Tlsty, T. D.; Hein, P. W.

    2001-01-01

    Although the stroma within carcinogenic lesions is known to be supportive and responsive to tumors, new data increasingly show that the stroma also has a more active, oncogenic role in tumorigenesis. Stromal cells and their products can transform adjacent tissues in the absence of pre-existing tumor cells by inciting phenotypic and genomic changes in the epithelial cells. The oncogenic action of distinctive stromal components has been demonstrated through a variety of approaches, which provide clues about the cellular pathways involved.

  2. Gene mutation discovery research of non-smoking lung cancer patients due to indoor radon exposure.

    PubMed

    Choi, Jung Ran; Park, Seong Yong; Noh, O Kyu; Koh, Young Wha; Kang, Dae Ryong

    2016-01-01

    Although the incidence and mortality for most cancers such as lung and colon are decreasing in several countries, they are increasing in several developed countries because of an unhealthy western lifestyles including smoking, physical inactivity and consumption of calorie-dense food. The incidences for lung and colon cancers in a few of these countries have already exceeded those in the United States and other western countries. Among them, lung cancer is the main cause of cancer death in worldwide. The cumulative survival rate at five years differs between 13 and 21 % in several countries. Although the most important risk factors are smoking for lung cancer, however, the increased incidence of lung cancer in never smokers(LCINS) is necessary to improve knowledge concerning other risk factors. Environmental factors and genetic susceptibility are also thought to contribute to lung cancer risk. Patients with lung adenocarcinoma who have never smoking frequently contain mutation within tyrosine kinase domain of the epidermal growth factor receptor(EGFR) gene. Also, K-ras mutations are more common in individuals with a history of smoking use and are related with resistance to EFGR-tyrosine kinase inhibitors. Recently, radon(Rn), natural and noble gas, has been recognized as second common reason of lung cancer. In this review, we aim to know whether residential radon is associated with an increased risk for developing lung cancer and regulated by several genetic polymorphisms.

  3. Gene mutation discovery research of non-smoking lung cancer patients due to indoor radon exposure.

    PubMed

    Choi, Jung Ran; Park, Seong Yong; Noh, O Kyu; Koh, Young Wha; Kang, Dae Ryong

    2016-01-01

    Although the incidence and mortality for most cancers such as lung and colon are decreasing in several countries, they are increasing in several developed countries because of an unhealthy western lifestyles including smoking, physical inactivity and consumption of calorie-dense food. The incidences for lung and colon cancers in a few of these countries have already exceeded those in the United States and other western countries. Among them, lung cancer is the main cause of cancer death in worldwide. The cumulative survival rate at five years differs between 13 and 21 % in several countries. Although the most important risk factors are smoking for lung cancer, however, the increased incidence of lung cancer in never smokers(LCINS) is necessary to improve knowledge concerning other risk factors. Environmental factors and genetic susceptibility are also thought to contribute to lung cancer risk. Patients with lung adenocarcinoma who have never smoking frequently contain mutation within tyrosine kinase domain of the epidermal growth factor receptor(EGFR) gene. Also, K-ras mutations are more common in individuals with a history of smoking use and are related with resistance to EFGR-tyrosine kinase inhibitors. Recently, radon(Rn), natural and noble gas, has been recognized as second common reason of lung cancer. In this review, we aim to know whether residential radon is associated with an increased risk for developing lung cancer and regulated by several genetic polymorphisms. PMID:26985396

  4. RAS Mutations and Oncogenesis: Not all RAS Mutations are Created Equally

    PubMed Central

    Miller, Mark Steven; Miller, Lance D.

    2012-01-01

    Mutation in RAS proteins is one of the most common genetic alterations observed in human and experimentally induced rodent cancers. In vivo, oncogenic mutations have been shown to occur at exons 12, 13, and 61, resulting in any 1 of 19 possible point mutations in a given tumor for a specific RAS isoform. While some studies have suggested a possible role of different mutant alleles in determining tumor severity and phenotype, no general consensus has emerged on the oncogenicity of different mutant alleles in tumor formation and progression. Part of this may be due to a lack of a single, signature pathway that shows significant alterations between different mutations. Rather, it is likely that subtle differences in the activation, or lack thereof, of downstream effectors by different RAS mutant alleles may determine the eventual outcome in terms of tumor phenotype. This paper reviews our current understanding of the potential role of different RAS mutations on tumorigenesis, highlights studies in model cell culture and in vivo systems, and discusses the potential of expression array and computational network modeling to dissect out differences in activated RAS genes in conferring a transforming phenotype. PMID:22303394

  5. In vivo quantification and perturbation of Myc-Max interactions and the impact on oncogenic potential.

    PubMed

    Raffeiner, Philipp; Röck, Ruth; Schraffl, Andrea; Hartl, Markus; Hart, Jonathan R; Janda, Kim D; Vogt, Peter K; Stefan, Eduard; Bister, Klaus

    2014-10-15

    The oncogenic bHLH-LZ transcription factor Myc forms binary complexes with its binding partner Max. These and other bHLH-LZ-based protein-protein interactions (PPI) in the Myc-Max network are essential for the physiological and oncogenic activities of Myc. We have generated a genetically determined and highly specific protein-fragment complementation assay based on Renilla luciferase to analyze the dynamic interplay of bHLH-LZ transcription factors Myc, Max, and Mxd1 in vivo. We also applied this PPI reporter to quantify alterations of nuclear Myc-Max complexes in response to mutational events, competitive binding by the transcriptional repressor Mxd1, or perturbations by small-molecule Myc inhibitors, including recently identified potent PPI inhibitors from a Kröhnke pyridine library. We show that the specificity of Myc-Max PPI reduction by the pyridine inhibitors directly correlates with their efficient and highly specific potential to interfere with the proliferation of human and avian tumor cells displaying deregulated Myc expression. In a direct comparison with known Myc inhibitors using human and avian cell systems, the pyridine compounds reveal a unique inhibitory potential even at sub-micromolar concentrations combined with remarkable specificity for the inhibition of Myc-driven tumor cell proliferation. Furthermore, we show in direct comparisons using defined avian cell systems that different Max PPI profiles for the variant members of the Myc protein family (c-Myc, v-Myc, N-Myc, L-Myc) correlate with their diverse oncogenic potential and their variable sensitivity to the novel pyridine inhibitors.

  6. How do oncoprotein mutations rewire protein-protein interaction networks?

    PubMed

    Bowler, Emily H; Wang, Zhenghe; Ewing, Rob M

    2015-01-01

    The acquisition of mutations that activate oncogenes or inactivate tumor suppressors is a primary feature of most cancers. Mutations that directly alter protein sequence and structure drive the development of tumors through aberrant expression and modification of proteins, in many cases directly impacting components of signal transduction pathways and cellular architecture. Cancer-associated mutations may have direct or indirect effects on proteins and their interactions and while the effects of mutations on signaling pathways have been widely studied, how mutations alter underlying protein-protein interaction networks is much less well understood. Systematic mapping of oncoprotein protein interactions using proteomics techniques as well as computational network analyses is revealing how oncoprotein mutations perturb protein-protein interaction networks and drive the cancer phenotype. PMID:26325016

  7. Effect of cellular determination on oncogenic transformation by chemicals and oncogenes.

    PubMed Central

    Harrington, M A; Gonzales, F; Jones, P A

    1988-01-01

    Three developmentally determined myogenic cell lines derived from C3H 10T1/2 C18 (10T1/2) mouse embryo cells treated with 5-azacytidine were compared with the parental 10T1/2 line for their susceptibility to oncogenic transformation by 3-methylcholanthrene or the activated human c-Ha-ras oncogene. Neither the 10T1/2 cells nor the myogenic derivatives grew in soft agar or formed tumors in nude mice. In contrast to 10T1/2 cells, the three myogenic derivatives were not susceptible to transformation by 3-methylcholanthrene, so that cellular determination altered the response of 10T1/2 cells to chemical carcinogen. On the other hand, all cell types were transformed to a tumorigenic phenotype following transfection with the activated c-Ha-ras gene. The transfected myogenic cells expressed both the c-Ha-ras gene and the muscle determination gene MyoD1. In contrast to other reports, the presence of as many as six copies of the c-Ha-ras gene per genome did not prevent the formation of striated muscle cells which expressed immunologically detectable muscle-specific myosin. The expression of the c-Ha-ras gene does not therefore necessarily preclude the expression of the determination gene for myogenesis or prevent end-stage myogenic differentiation. Images PMID:2460742

  8. AID-expressing epithelium is protected from oncogenic transformation by an NKG2D surveillance pathway.

    PubMed

    Pérez-García, Arantxa; Pérez-Durán, Pablo; Wossning, Thomas; Sernandez, Isora V; Mur, Sonia M; Cañamero, Marta; Real, Francisco X; Ramiro, Almudena R

    2015-08-17

    Activation-induced deaminase (AID) initiates secondary antibody diversification in germinal center B cells, giving rise to higher affinity antibodies through somatic hypermutation (SHM) or to isotype-switched antibodies through class switch recombination (CSR). SHM and CSR are triggered by AID-mediated deamination of cytosines in immunoglobulin genes. Importantly, AID activity in B cells is not restricted to Ig loci and can promote mutations and pro-lymphomagenic translocations, establishing a direct oncogenic mechanism for germinal center-derived neoplasias. AID is also expressed in response to inflammatory cues in epithelial cells, raising the possibility that AID mutagenic activity might drive carcinoma development. We directly tested this hypothesis by generating conditional knock-in mouse models for AID overexpression in colon and pancreas epithelium. AID overexpression alone was not sufficient to promote epithelial cell neoplasia in these tissues, in spite of displaying mutagenic and genotoxic activity. Instead, we found that heterologous AID expression in pancreas promotes the expression of NKG2D ligands, the recruitment of CD8(+) T cells, and the induction of epithelial cell death. Our results indicate that AID oncogenic potential in epithelial cells can be neutralized by immunosurveillance protective mechanisms.

  9. SRSF2 promotes splicing and transcription of exon 11 included isoform in Ron proto-oncogene.

    PubMed

    Moon, Heegyum; Cho, Sunghee; Loh, Tiing Jen; Oh, Hyun Kyung; Jang, Ha Na; Zhou, Jianhua; Kwon, Young-Soo; Liao, D Joshua; Jun, Youngsoo; Eom, Soohyun; Ghigna, Claudia; Biamonti, Giuseppe; Green, Michael R; Zheng, Xuexiu; Shen, Haihong

    2014-11-01

    The product of proto-oncogene Ron is a human receptor for the macrophage-stimulating protein (MSP). Upon activation, Ron is able to induce cell dissociation, migration and matrix invasion. Exon 11 skipping of Ron pre-mRNA produces Ron△165 protein that is constitutively active even in the absence of its ligand. Here we show that knockdown of SRSF2 promotes the decrease of exon 11 inclusion, whereas overexpression of SRSF2 promotes exon 11 inclusion. We demonstrate that SRSF2 promotes exon 11 inclusion through splicing and transcription procedure. We also present evidence that reduced expression of SRSF2 induces a decrease in the splicing of both introns 10 and 11; by contrast, overexpression of SRSF2 induces an increase in the splicing of introns 10 and 11. Through mutation analysis, we show that SRSF2 functionally targets and physically interacts with CGAG sequence on exon 11. In addition, we reveal that the weak strength of splice sites of exon 11 is not required for the function of SRSF2 on the splicing of Ron exon 11. Our results indicate that SRSF2 promotes exon 11 inclusion of Ron proto-oncogene through targeting exon 11. Our study provides a novel mechanism by which Ron is expressed.

  10. AID-expressing epithelium is protected from oncogenic transformation by an NKG2D surveillance pathway

    PubMed Central

    Pérez-García, Arantxa; Pérez-Durán, Pablo; Wossning, Thomas; Sernandez, Isora V; Mur, Sonia M; Cañamero, Marta; Real, Francisco X; Ramiro, Almudena R

    2015-01-01

    Activation-induced deaminase (AID) initiates secondary antibody diversification in germinal center B cells, giving rise to higher affinity antibodies through somatic hypermutation (SHM) or to isotype-switched antibodies through class switch recombination (CSR). SHM and CSR are triggered by AID-mediated deamination of cytosines in immunoglobulin genes. Importantly, AID activity in B cells is not restricted to Ig loci and can promote mutations and pro-lymphomagenic translocations, establishing a direct oncogenic mechanism for germinal center-derived neoplasias. AID is also expressed in response to inflammatory cues in epithelial cells, raising the possibility that AID mutagenic activity might drive carcinoma development. We directly tested this hypothesis by generating conditional knock-in mouse models for AID overexpression in colon and pancreas epithelium. AID overexpression alone was not sufficient to promote epithelial cell neoplasia in these tissues, in spite of displaying mutagenic and genotoxic activity. Instead, we found that heterologous AID expression in pancreas promotes the expression of NKG2D ligands, the recruitment of CD8+ T cells, and the induction of epithelial cell death. Our results indicate that AID oncogenic potential in epithelial cells can be neutralized by immunosurveillance protective mechanisms. PMID:26282919

  11. Identification and Validation of Oncogenes in Liver Cancer Using an Integrative Oncogenomic Approach

    PubMed Central

    Zender, Lars; Spector, Mona S.; Xue, Wen; Flemming, Peer; Cordon-Cardo, Carlos; Silke, John; Fan, Sheung-Tat; Luk, John M.; Wigler, Michael; Hannon, Gregory J.; Mu, David; Lucito, Robert; Powers, Scott; Lowe, Scott W.

    2010-01-01

    SUMMARY The heterogeneity and instability of human tumors hamper straightforward identification of cancer-causing mutations through genomic approaches alone. Herein we describe a mouse model of liver cancer initiated from progenitor cells harboring defined cancer-predisposing lesions. Genome-wide analyses of tumors in this mouse model and in human hepatocellular carcinomas revealed a recurrent amplification at mouse chromosome 9qA1, the syntenic region of human chromosome 11q22. Gene-expression analyses delineated cIAP1, a known inhibitor of apoptosis, and Yap, a transcription factor, as candidate oncogenes in the amplicon. In the genetic context of their amplification, both cIAP1 and Yap accelerated tumorigenesis and were required to sustain rapid growth of amplicon-containing tumors. Furthermore, cIAP1 and Yap cooperated to promote tumorigenesis. Our results establish a tractable model of liver cancer, identify two oncogenes that cooperate by virtue of their coamplification in the same genomic locus, and suggest an efficient strategy for the annotation of human cancer genes. PMID:16814713

  12. mTORC1 is a critical mediator of oncogenic Semaphorin3A signaling.

    PubMed

    Yamada, Daisuke; Kawahara, Kohichi; Maeda, Takehiko

    2016-08-01

    Aberration of signaling pathways by genetic mutations or alterations in the surrounding tissue environments can result in tumor development or metastasis. However, signaling molecules responsible for these processes have not been completely elucidated. Here, we used mouse Lewis lung carcinoma cells (LLC) to explore the mechanism by which the oncogenic activity of Semaphorin3A (Sema3A) signaling is regulated. Sema3A knockdown by shRNA did not affect apoptosis, but decreased cell proliferation in LLCs; both the mammalian target of rapamycin complex 1 (mTORC1) level and glycolytic activity were also decreased. In addition, Sema3A knockdown sensitized cells to inhibition of oxidative phosphorylation by oligomycin, but conferred resistance to decreased cell viability induced by glucose starvation. Furthermore, recombinant SEMA3A rescued the attenuation of cell proliferation and glycolytic activity in LLCs after Sema3A knockdown, whereas mTORC1 inhibition by rapamycin completely counteracted this effect. These results demonstrate that Sema3A signaling exerts its oncogenic effect by promoting an mTORC1-mediated metabolic shift from oxidative phosphorylation to aerobic glycolysis. PMID:27246732

  13. AID-expressing epithelium is protected from oncogenic transformation by an NKG2D surveillance pathway.

    PubMed

    Pérez-García, Arantxa; Pérez-Durán, Pablo; Wossning, Thomas; Sernandez, Isora V; Mur, Sonia M; Cañamero, Marta; Real, Francisco X; Ramiro, Almudena R

    2015-10-01

    Activation-induced deaminase (AID) initiates secondary antibody diversification in germinal center B cells, giving rise to higher affinity antibodies through somatic hypermutation (SHM) or to isotype-switched antibodies through class switch recombination (CSR). SHM and CSR are triggered by AID-mediated deamination of cytosines in immunoglobulin genes. Importantly, AID activity in B cells is not restricted to Ig loci and can promote mutations and pro-lymphomagenic translocations, establishing a direct oncogenic mechanism for germinal center-derived neoplasias. AID is also expressed in response to inflammatory cues in epithelial cells, raising the possibility that AID mutagenic activity might drive carcinoma development. We directly tested this hypothesis by generating conditional knock-in mouse models for AID overexpression in colon and pancreas epithelium. AID overexpression alone was not sufficient to promote epithelial cell neoplasia in these tissues, in spite of displaying mutagenic and genotoxic activity. Instead, we found that heterologous AID expression in pancreas promotes the expression of NKG2D ligands, the recruitment of CD8(+) T cells, and the induction of epithelial cell death. Our results indicate that AID oncogenic potential in epithelial cells can be neutralized by immunosurveillance protective mechanisms. PMID:26282919

  14. Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma

    PubMed Central

    Grosso, Ana R; Leite, Ana P; Carvalho, Sílvia; Matos, Mafalda R; Martins, Filipa B; Vítor, Alexandra C; Desterro, Joana MP; Carmo-Fonseca, Maria; de Almeida, Sérgio F

    2015-01-01

    Aberrant expression of cancer genes and non-canonical RNA species is a hallmark of cancer. However, the mechanisms driving such atypical gene expression programs are incompletely understood. Here, our transcriptional profiling of a cohort of 50 primary clear cell renal cell carcinoma (ccRCC) samples from The Cancer Genome Atlas (TCGA) reveals that transcription read-through beyond the termination site is a source of transcriptome diversity in cancer cells. Amongst the genes most frequently mutated in ccRCC, we identified SETD2 inactivation as a potent enhancer of transcription read-through. We further show that invasion of neighbouring genes and generation of RNA chimeras are functional outcomes of transcription read-through. We identified the BCL2 oncogene as one of such invaded genes and detected a novel chimera, the CTSC-RAB38, in 20% of ccRCC samples. Collectively, our data highlight a novel link between transcription read-through and aberrant expression of oncogenes and chimeric transcripts that is prevalent in cancer. DOI: http://dx.doi.org/10.7554/eLife.09214.001 PMID:26575290

  15. SRSF2 promotes splicing and transcription of exon 11 included isoform in Ron proto-oncogene

    PubMed Central

    Moon, Heegyum; Cho, Sunghee; Loh, Tiing Jen; Oh, Hyun Kyung; Jang, Ha Na; Zhou, Jianhua; Kwon, Young-Soo; Liao, D. Joshua; Jun, Youngsoo; Eom, Soohyun; Ghigna, Claudia; Biamonti, Giuseppe; Green, Michael R; Zheng, Xuexiu; Shen, Haihong

    2015-01-01

    The product of proto-oncogene Ron is a human receptor for the macrophage-stimulating protein (MSP). Upon activation, Ron is able to induce cell dissociation, migration and matrix invasion. Exon 11 skipping of Ron pre-mRNA produces Ron△165 protein that is constitutively active even in the absence of its ligand. Here we show that knockdown of SRSF2 promotes the decrease of exon 11 inclusion, whereas overexpression of SRSF2 promotes exon 11 inclusion. We demonstrate that SRSF2 promotes exon 11 inclusion through splicing and transcription procedure. We also present evidence that reduced expression of SRSF2 induce a decrease in the splicing of both intron 10 and 11, by contrast, overexpression of SRSF2 induce an increase in the splicing of intron 10 and 11. Through mutation analysis, we show that SRSF2 functionally target and physically interact with CGAG sequence on exon 11. In addition, we reveal that weak strength of splice sites of exon 11 is not required for the function of SRSF2 on the splicing of Ron exon 11. Our results indicate that SRSF2 promotes exon 11 inclusion of Ron proto-oncogene through targeting exon 11. Our study provides a novel mechanism by which Ron is expressed. PMID:25220236

  16. RUNX3 is a novel negative regulator of oncogenic TEAD-YAP complex in gastric cancer.

    PubMed

    Qiao, Y; Lin, S J; Chen, Y; Voon, D C-C; Zhu, F; Chuang, L S H; Wang, T; Tan, P; Lee, S C; Yeoh, K G; Sudol, M; Ito, Y

    2016-05-19

    Runt-related transcription factor 3 (RUNX3) is a well-documented tumour suppressor that is frequently inactivated in gastric cancer. Here, we define a novel mechanism by which RUNX3 exerts its tumour suppressor activity involving the TEAD-YAP complex, a potent positive regulator of proliferative genes. We report that the TEAD-YAP complex is not only frequently hyperactivated in liver and breast cancer, but also confers a strong oncogenic activity in gastric epithelial cells. The increased expression of TEAD-YAP in tumour tissues significantly correlates with poorer overall survival of gastric cancer patients. Strikingly, RUNX3 physically interacts with the N-terminal region of TEAD through its Runt domain. This interaction markedly reduces the DNA-binding ability of TEAD that attenuates the downstream signalling of TEAD-YAP complex. Mutation of RUNX3 at Arginine 122 to Cysteine, which was previously identified in gastric cancer, impairs the interaction between RUNX3 and TEAD. Our data reveal that RUNX3 acts as a tumour suppressor by negatively regulating the TEAD-YAP oncogenic complex in gastric carcinogenesis. PMID:26364597

  17. RET mutations in MEN 2 associated diseases

    SciTech Connect

    Hofstra, R.M.W.; Stelwagen, T.; Stulp, R.P.

    1994-09-01

    Multiple endocrine neoplasia type 2 (MEN 2) comprises three clinically distinct dominantly inherited cancer syndromes namely MEN 2A, MEN 2B and familial medullary thyroid carcinoma (FMTC). Germline (point) mutations of the RET proto-oncogene have been reported to occur in all these syndromes. In MEN 2A and FMTC patients the mutations occurred within codons specifying cysteine residues in the transition of the RET extracellular and transmembrane domains, while in MEN 2B patients we could detect a single RET mutation in the tyrosine kinase domain in all patients. Also in patients suffering from Hirschsprung`s disease (HSCR), mutations in the RET gene have been found. These mutations are spread all over the gene. Several families have been described in which MEN 2 and HSCR are associated. MEN 2A is also found associated with cutaneous lichen amyloidosis (CLA). It might be that specific RET mutations correlate with these disease associations. We therefore scanned DNA from patients from a family with MEN 2A and HSCR, MEN 2A and CLA and CLA only for RET mutations. Results obtained thus far do not support the existence of specific correlations.

  18. BRAF Mutation in Colorectal Cancer: An Update

    PubMed Central

    Barras, David

    2015-01-01

    Colorectal cancer (CRC) is still one of the deadliest cancer-related diseases. About 10% of CRC patients are characterized by a mutation in the B-Raf proto-oncogene serine/threonine kinase (BRAF) gene resulting in a valine-to-glutamate change at the residue 600 (V600E). This mutation is also present in more than 60% of melanoma patients. BRAF inhibitors were developed and found to improve patient survival; however, most patients at the end of the track ultimately develop resistance to these inhibitors. Melanoma patients benefit from the combination of BRAF inhibitors with mitogen/extracellular signal-regulated kinase (MEK) inhibitors, among others. Unfortunately, colorectal patients do not respond much efficiently, which suggests different resistance mechanisms between the two cancer types. This review aims at shedding light on recent discoveries that improve our understanding of the BRAF mutation biology in CRC. PMID:26396549

  19. Comparative sequence analysis of a highly oncogenic but horizontal spread-defective clone of Marek's disease virus.

    PubMed

    Spatz, Stephen J; Zhao, Yuguang; Petherbridge, Lawrence; Smith, Lorraine P; Baigent, Susan J; Nair, Venugopal

    2007-12-01

    Marek's disease virus (MDV) is a cell-associated alphaherpesvirus that induces rapid-onset T-cell lymphomas in poultry. MDV isolates vary greatly in pathogenicity. While some of the strains such as CVI988 are non-pathogenic and are used as vaccines, others such as RB-1B are highly oncogenic. Molecular determinants associated with differences in pathogenicity are not completely understood. Comparison of the genome sequences of phenotypically different strains could help to identify molecular determinants of pathogenicity. We have previously reported the construction of bacterial artificial chromosome (BAC) clones of RB-1B from which fully infectious viruses could be reconstituted upon DNA transfection into chicken cells. MDV reconstituted from one of these clones (pRB-1B-5) showed similar in vitro and in vivo replication kinetics and oncogenicity as the parental virus. However, unlike the parental RB-1B virus, the BAC-derived virus showed inability to spread between birds. In order to identify the unique determinants for oncogenicity and the ''non-spreading phenotype'' of MDV derived from this clone, we determined the full-length sequence of pRB-1B-5. Comparative sequence analysis with the published sequences of strains such as Md5, Md11, and CVI988 identified frameshift mutations in RLORF1, protein kinase (UL13), and glycoproteins C (UL44) and D (US6). Comparison of the sequences of these genes with the parental virus indicated that the RLORF1, UL44, and US6 mutations were also present in the parental RB-1B stock of the virus. However with regard to UL13 mutation, the parental RB-1B stock appeared to be a mixture of wild type and mutant viruses, indicating that the BAC cloning has selected a mutant clone. Although further studies are needed to evaluate the role of these genes in the horizontal-spreading defective phenotype, our data clearly indicate that mutations in these genes do not affect the oncogenicity of MDV.

  20. New strategies in metastatic melanoma: oncogene-defined taxonomy leads to therapeutic advances.

    PubMed

    Flaherty, Keith T; Fisher, David E

    2011-08-01

    The discovery of BRAF and KIT mutations provided the first basis for a molecular classification of cutaneous melanoma on therapeutic grounds. As BRAF-targeted therapy quickly moves toward regulatory approval and incorporation as standard therapy for patients with metastatic disease, proof of concept has also been established for targeting mutated KIT in melanoma. NRAS mutations have long been known to be present in a subset of melanomas and represent an elusive subgroup for targeted therapies. Matching patient subgroups defined by genetic aberrations in the phosphoinositide 3-kinase and p16/cyclin dependent kinase 4 (CDK4) pathways with appropriate targeted therapies has not yet been realized. And, an increasing understanding of lineage-specific transcriptional regulators, most notably MITF, and how they may play a role in melanoma pathophysiology, has provided another axis to approach with therapies. The foundation has been established for individual oncogene targeting, and current investigations seek to understand the intersection of these susceptibilities and other described potential targets and pathways. The melanoma field stands poised to take the lead among cancer subtypes in advancing combination therapy strategies that simultaneously target multiple biologic underpinnings of the disease. PMID:21670085

  1. DNA sequence, structure, and tyrosine kinase activity of the Drosophila melanogaster abelson proto-oncogene homolog

    SciTech Connect

    Henkemeyer, M.J.; Bennett, R.L.; Gertler, F.B.; Hoffmann, F.M.

    1988-02-01

    The authors report their molecular characterization of the Drosophila melanogaster Abelson gene (abl), a gene in which recessive loss-of-function mutations result in lethality at the pupal stage of development. This essential gene consists of 10 exons extending over 26 kilobase pairs of genomic DNA. The DNA sequence encodes a protein of 1,520 amino acids with strong sequence similarity to the human c-abl proto-oncogene beginning in the type 1b 5' exon and extending through the region essential for tyrosine kinase activity. When the tyrosine kinase homologous region was expressed in Escherichia coli, phosphorylation of proteins on tyrosine residues was observed with an antiphosphotyrosine antibody. These results show that the abl gene is highly conserved through evolution and encodes a functional tyrosine protein kinase required for Drosophila development.

  2. ARF6 Is an Actionable Node that Orchestrates Oncogenic GNAQ Signaling in Uveal Melanoma.

    PubMed

    Yoo, Jae Hyuk; Shi, Dallas S; Grossmann, Allie H; Sorensen, Lise K; Tong, ZongZhong; Mleynek, Tara M; Rogers, Aaron; Zhu, Weiquan; Richards, Jackson R; Winter, Jacob M; Zhu, Jie; Dunn, Christine; Bajji, Ashok; Shenderovich, Mark; Mueller, Alan L; Woodman, Scott E; Harbour, J William; Thomas, Kirk R; Odelberg, Shannon J; Ostanin, Kirill; Li, Dean Y

    2016-06-13

    Activating mutations in Gαq proteins, which form the α subunit of certain heterotrimeric G proteins, drive uveal melanoma oncogenesis by triggering multiple downstream signaling pathways, including PLC/PKC, Rho/Rac, and YAP. Here we show that the small GTPase ARF6 acts as a proximal node of oncogenic Gαq signaling to induce all of these downstream pathways as well as β-catenin signaling. ARF6 activates these diverse pathways through a common mechanism: the trafficking of GNAQ and β-catenin from the plasma membrane to cytoplasmic vesicles and the nucleus, respectively. Blocking ARF6 with a small-molecule inhibitor reduces uveal melanoma cell proliferation and tumorigenesis in a mouse model, confirming the functional relevance of this pathway and suggesting a therapeutic strategy for Gα-mediated diseases. PMID:27265506

  3. Oncogenic acidic nuclear phosphoproteins ANP32C/D are novel clients of heat shock protein 90.

    PubMed

    Yuzefovych, Yuliia; Blasczyk, Rainer; Huyton, Trevor

    2015-10-01

    The acidic nuclear phosphoproteins (ANP32A-H) are an evolutionarily conserved family of proteins with diverse and sometimes opposing cellular functions. Here we show that the oncogenic family members ANP32C and ANP32D are associated in complexes containing the molecular chaperone Hsp90. The oncogenic ANP32C protein appears to be highly unstable with a rapid degradation (t1/2>30 min) occurring upon treatment of cells with cycloheximide. ANP32C was also found to be associated with oncogenic Hsp90 complexes by virtue of its ability to interact and be immunoprecipitated by the Hsp90 inhibitor PU-H71. Further studies treating cells with the Hsp90 inhibitors PU-H71 and 17-AAG showed atypical increased protein stability and prevention of ANP32C degradation compared to the Hsp90 client AKT. Cells overexpressing ANP32C or its mutant ANP32CY140H showed enhanced sensitivity to treatment with PU-H71 as demonstrated by CCK-8 and colony formation assays. Our results highlight that certain malignancies with ANP32C/D overexpression or mutation might be specifically targeted using Hsp90 inhibitors.

  4. The MYC 3′ Wnt-Responsive Element Drives Oncogenic MYC Expression in Human Colorectal Cancer Cells

    PubMed Central

    Rennoll, Sherri A.; Eshelman, Melanie A.; Raup-Konsavage, Wesley M.; Kawasawa, Yuka Imamura; Yochum, Gregory S.

    2016-01-01

    Mutations in components of the Wnt/β-catenin signaling pathway drive colorectal cancer (CRC) by deregulating expression of downstream target genes including the c-MYC proto-oncogene (MYC). The critical regulatory DNA enhancer elements that control oncogenic MYC expression in CRC have yet to be fully elucidated. In previous reports, we correlated T-cell factor (TCF) and β-catenin binding to the MYC 3′ Wnt responsive DNA element (MYC 3′ WRE) with MYC expression in HCT116 cells. Here we used CRISPR/Cas9 to determine whether this element is a critical driver of MYC. We isolated a clonal population of cells that contained a deletion of a single TCF binding element (TBE) within the MYC 3′ WRE. This deletion reduced TCF/β-catenin binding to this regulatory element and decreased MYC expression. Using RNA-Seq analysis, we found altered expression of genes that regulate metabolic processes, many of which are known MYC target genes. We found that 3′ WRE-Mut cells displayed a reduced proliferative capacity, diminished clonogenic growth, and a decreased potential to form tumors in vivo. These findings indicate that the MYC 3′ WRE is a critical driver of oncogenic MYC expression and suggest that this element may serve as a therapeutic target for CRC. PMID:27223305

  5. Identification of a pan-cancer oncogenic microRNA superfamily anchored by a central core seed motif

    NASA Astrophysics Data System (ADS)

    Hamilton, Mark P.; Rajapakshe, Kimal; Hartig, Sean M.; Reva, Boris; McLellan, Michael D.; Kandoth, Cyriac; Ding, Li; Zack, Travis I.; Gunaratne, Preethi H.; Wheeler, David A.; Coarfa, Cristian; McGuire, Sean E.

    2013-11-01

    MicroRNAs modulate tumorigenesis through suppression of specific genes. As many tumour types rely on overlapping oncogenic pathways, a core set of microRNAs may exist, which consistently drives or suppresses tumorigenesis in many cancer types. Here we integrate The Cancer Genome Atlas (TCGA) pan-cancer data set with a microRNA target atlas composed of publicly available Argonaute Crosslinking Immunoprecipitation (AGO-CLIP) data to identify pan-tumour microRNA drivers of cancer. Through this analysis, we show a pan-cancer, coregulated oncogenic microRNA ‘superfamily’ consisting of the miR-17, miR-19, miR-130, miR-93, miR-18, miR-455 and miR-210 seed families, which cotargets critical tumour suppressors via a central GUGC core motif. We subsequently define mutations in microRNA target sites using the AGO-CLIP microRNA target atlas and TCGA exome-sequencing data. These combined analyses identify pan-cancer oncogenic cotargeting of the phosphoinositide 3-kinase, TGFβ and p53 pathways by the miR-17-19-130 superfamily members.

  6. Metabolic Rewiring by Oncogenic BRAF V600E Links Ketogenesis Pathway to BRAF-MEK1 Signaling.

    PubMed

    Kang, Hee-Bum; Fan, Jun; Lin, Ruiting; Elf, Shannon; Ji, Quanjiang; Zhao, Liang; Jin, Lingtao; Seo, Jae Ho; Shan, Changliang; Arbiser, Jack L; Cohen, Cynthia; Brat, Daniel; Miziorko, Henry M; Kim, Eunhee; Abdel-Wahab, Omar; Merghoub, Taha; Fröhling, Stefan; Scholl, Claudia; Tamayo, Pablo; Barbie, David A; Zhou, Lu; Pollack, Brian P; Fisher, Kevin; Kudchadkar, Ragini R; Lawson, David H; Sica, Gabriel; Rossi, Michael; Lonial, Sagar; Khoury, Hanna J; Khuri, Fadlo R; Lee, Benjamin H; Boggon, Titus J; He, Chuan; Kang, Sumin; Chen, Jing

    2015-08-01

    Many human cancers share similar metabolic alterations, including the Warburg effect. However, it remains unclear whether oncogene-specific metabolic alterations are required for tumor development. Here we demonstrate a "synthetic lethal" interaction between oncogenic BRAF V600E and a ketogenic enzyme 3-hydroxy-3-methylglutaryl-CoA lyase (HMGCL). HMGCL expression is upregulated in BRAF V600E-expressing human primary melanoma and hairy cell leukemia cells. Suppression of HMGCL specifically attenuates proliferation and tumor growth potential of human melanoma cells expressing BRAF V600E. Mechanistically, active BRAF upregulates HMGCL through an octamer transcription factor Oct-1, leading to increased intracellular levels of HMGCL product, acetoacetate, which selectively enhances binding of BRAF V600E but not BRAF wild-type to MEK1 in V600E-positive cancer cells to promote activation of MEK-ERK signaling. These findings reveal a mutation-specific mechanism by which oncogenic BRAF V600E "rewires" metabolic and cell signaling networks and signals through the Oct-1-HMGCL-acetoacetate axis to selectively promote BRAF V600E-dependent tumor development. PMID:26145173

  7. Metabolic rewiring by oncogenic BRAF V600E links ketogenesis pathway to BRAF-MEK1 signaling

    PubMed Central

    Elf, Shannon; Ji, Quanjiang; Zhao, Liang; Jin, Lingtao; Seo, Jae Ho; Shan, Changliang; Arbiser, Jack L.; Cohen, Cynthia; Brat, Daniel; Miziorko, Henry M.; Kim, Eunhee; Abdel-Wahab, Omar; Merghoub, Taha; Fröhling, Stefan; Scholl, Claudia; Tamayo, Pablo; Barbie, David A.; Zhou, Lu; Pollack, Brian P.; Fisher, Kevin; Kudchadkar, Ragini R.; Lawson, David H.; Sica, Gabriel; Rossi, Michael; Lonial, Sagar; Khoury, Hanna J.; Khuri, Fadlo R.; Lee, Benjamin H.; Boggon, Titus J.; He, Chuan; Kang, Sumin; Chen, Jing

    2015-01-01

    SUMMARY Many human cancers share similar metabolic alterations, including the Warburg effect. However, it remains unclear whether oncogene-specific metabolic alterations are required for tumor development. Here we demonstrate a “synthetic lethal” interaction between oncogenic BRAF V600E and a ketogenic enzyme 3-hydroxy-3-methylglutaryl-CoA lyase (HMGCL). HMGCL expression is upregulated in BRAF V600E-expressing human primary melanoma and hairy cell leukemia cells. Suppression of HMGCL specifically attenuates proliferation and tumor growth potential of human melanoma cells expressing BRAF V600E. Mechanistically, active BRAF upregulates HMGCL through an octamer transcription factor Oct-1, leading to increased intracellular levels of HMGCL product, acetoacetate, which selectively enhances binding of BRAF V600E but not BRAF wild type to MEK1 in V600E-positive cancer cells to promote activation of MEK-ERK signaling. These findings reveal a mutation-specific mechanism by which oncogenic BRAF V600E “rewires” metabolic and cell signaling networks and signals through the Oct-1-HMGCL-acetoacetate axis to selectively promote BRAF V600E-dependent tumor development. PMID:26145173

  8. Loss of Dependence on Continued Expression of the Human Papillomavirus 16 E7 Oncogene in Cervical Cancers and Precancerous Lesions Arising in Fanconi Anemia Pathway-Deficient Mice

    PubMed Central

    Park, Soyeong; Park, Jung Wook; Pitot, Henry C.

    2016-01-01

    ABSTRACT   Fanconi anemia (FA) is a rare genetic disorder caused by defects in DNA damage repair. FA patients often develop squamous cell carcinoma (SCC) at sites where high-risk human papillomaviruses (HPVs) are known to cause cancer, including the cervix. However, SCCs found in human FA patients are often HPV negative, even though the majority of female FA patients with anogenital cancers had preexisting HPV-positive dysplasia. We hypothesize that HPVs contribute to the development of SCCs in FA patients but that the continued expression of HPV oncogenes is not required for the maintenance of the cancer state because FA deficiency leads to an accumulation of mutations in cellular genes that render the cancer no longer dependent upon viral oncogenes. We tested this hypothesis, making use of Bi-L E7 transgenic mice in which we temporally controlled expression of HPV16 E7, the dominant viral oncogene in HPV-associated cancers. As seen before, the persistence of cervical neoplastic disease was highly dependent upon the continued expression of HPV16 E7 in FA-sufficient mice. However, in mice with FA deficiency, cervical cancers persisted in a large fraction of the mice after HPV16 E7 expression was turned off, indicating that these cancers had escaped from their dependency on E7. Furthermore, the severity of precancerous lesions also failed to be reduced significantly in the mice with FA deficiency upon turning off expression of E7. These findings confirm our hypothesis and may explain the fact that, while FA patients have a high frequency of infections by HPVs and HPV-induced precancerous lesions, the cancers are frequently HPV negative. Importance   Fanconi anemia (FA) patients are at high risk for developing squamous cell carcinoma (SCC) at sites where high-risk human papillomaviruses (HPVs) frequently cause cancer. Yet these SCCs are often HPV negative. FA patients have a genetic defect in their capacity to repair damaged DNA. HPV oncogenes cause an

  9. Loss of Dependence on Continued Expression of the Human Papillomavirus 16 E7 Oncogene in Cervical Cancers and Precancerous Lesions Arising in Fanconi Anemia Pathway-Deficient Mice.

    PubMed

    Park, Soyeong; Park, Jung Wook; Pitot, Henry C; Lambert, Paul F

    2016-01-01

    Fanconi anemia (FA) is a rare genetic disorder caused by defects in DNA damage repair. FA patients often develop squamous cell carcinoma (SCC) at sites where high-risk human papillomaviruses (HPVs) are known to cause cancer, including the cervix. However, SCCs found in human FA patients are often HPV negative, even though the majority of female FA patients with anogenital cancers had preexisting HPV-positive dysplasia. We hypothesize that HPVs contribute to the development of SCCs in FA patients but that the continued expression of HPV oncogenes is not required for the maintenance of the cancer state because FA deficiency leads to an accumulation of mutations in cellular genes that render the cancer no longer dependent upon viral oncogenes. We tested this hypothesis, making use of Bi-L E7 transgenic mice in which we temporally controlled expression of HPV16 E7, the dominant viral oncogene in HPV-associated cancers. As seen before, the persistence of cervical neoplastic disease was highly dependent upon the continued expression of HPV16 E7 in FA-sufficient mice. However, in mice with FA deficiency, cervical cancers persisted in a large fraction of the mice after HPV16 E7 expression was turned off, indicating that these cancers had escaped from their dependency on E7. Furthermore, the severity of precancerous lesions also failed to be reduced significantly in the mice with FA deficiency upon turning off expression of E7. These findings confirm our hypothesis and may explain the fact that, while FA patients have a high frequency of infections by HPVs and HPV-induced precancerous lesions, the cancers are frequently HPV negative. IMPORTANCE  : Fanconi anemia (FA) patients are at high risk for developing squamous cell carcinoma (SCC) at sites where high-risk human papillomaviruses (HPVs) frequently cause cancer. Yet these SCCs are often HPV negative. FA patients have a genetic defect in their capacity to repair damaged DNA. HPV oncogenes cause an accumulation of DNA

  10. Oncogenes and RNA splicing of human tumor viruses.

    PubMed

    Ajiro, Masahiko; Zheng, Zhi-Ming

    2014-09-01

    Approximately 10.8% of human cancers are associated with infection by an oncogenic virus. These viruses include human papillomavirus (HPV), Epstein-Barr virus (EBV), Merkel cell polyomavirus (MCV), human T-cell leukemia virus 1 (HTLV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), hepatitis C virus (HCV) and hepatitis B virus (HBV). These oncogenic viruses, with the exception of HCV, require the host RNA splicing machinery in order to exercise their oncogenic activities, a strategy that allows the viruses to efficiently export and stabilize viral RNA and to produce spliced RNA isoforms from a bicistronic or polycistronic RNA transcript for efficient protein translation. Infection with a tumor virus affects the expression of host genes, including host RNA splicing factors, which play a key role in regulating viral RNA splicing of oncogene transcripts. A current prospective focus is to explore how alternative RNA splicing and the expression of viral oncogenes take place in a cell- or tissue-specific manner in virus-induced human carcinogenesis.

  11. Oncogenes and RNA splicing of human tumor viruses.

    PubMed

    Ajiro, Masahiko; Zheng, Zhi-Ming

    2014-09-01

    Approximately 10.8% of human cancers are associated with infection by an oncogenic virus. These viruses include human papillomavirus (HPV), Epstein-Barr virus (EBV), Merkel cell polyomavirus (MCV), human T-cell leukemia virus 1 (HTLV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), hepatitis C virus (HCV) and hepatitis B virus (HBV). These oncogenic viruses, with the exception of HCV, require the host RNA splicing machinery in order to exercise their oncogenic activities, a strategy that allows the viruses to efficiently export and stabilize viral RNA and to produce spliced RNA isoforms from a bicistronic or polycistronic RNA transcript for efficient protein translation. Infection with a tumor virus affects the expression of host genes, including host RNA splicing factors, which play a key role in regulating viral RNA splicing of oncogene transcripts. A current prospective focus is to explore how alternative RNA splicing and the expression of viral oncogenes take place in a cell- or tissue-specific manner in virus-induced human carcinogenesis. PMID:26038756

  12. Oncogenes and RNA splicing of human tumor viruses

    PubMed Central

    Ajiro, Masahiko; Zheng, Zhi-Ming

    2014-01-01

    Approximately 10.8% of human cancers are associated with infection by an oncogenic virus. These viruses include human papillomavirus (HPV), Epstein–Barr virus (EBV), Merkel cell polyomavirus (MCV), human T-cell leukemia virus 1 (HTLV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), hepatitis C virus (HCV) and hepatitis B virus (HBV). These oncogenic viruses, with the exception of HCV, require the host RNA splicing machinery in order to exercise their oncogenic activities, a strategy that allows the viruses to efficiently export and stabilize viral RNA and to produce spliced RNA isoforms from a bicistronic or polycistronic RNA transcript for efficient protein translation. Infection with a tumor virus affects the expression of host genes, including host RNA splicing factors, which play a key role in regulating viral RNA splicing of oncogene transcripts. A current prospective focus is to explore how alternative RNA splicing and the expression of viral oncogenes take place in a cell- or tissue-specific manner in virus-induced human carcinogenesis. PMID:26038756

  13. Oncogenic Ras influences the expression of multiple lncRNAs.

    PubMed

    Kotake, Yojiro; Naemura, Madoka; Kitagawa, Kyoko; Niida, Hiroyuki; Tsunoda, Toshiyuki; Shirasawa, Senji; Kitagawa, Masatoshi

    2016-08-01

    Recent ultrahigh-density tiling array and large-scale transcriptome analysis have revealed that large numbers of long non-coding RNAs (lncRNAs) are transcribed in mammals. Several lncRNAs have been implicated in transcriptional regulation, organization of nuclear structure, and post-transcriptional processing. However, the regulation of expression of lncRNAs is less well understood. Here, we show that the exogenous and endogenous expression of an oncogenic form of small GTPase Ras (called oncogenic Ras) decrease the expression of lncRNA ANRIL (antisense non-coding RNA in the INK4 locus), which is involved in the regulation of cellular senescence. We also show that forced expression of oncogenic Ras increases the expression of lncRNA PANDA (p21 associated ncRNA DNA damage activated), which is involved in the regulation of apoptosis. Microarray analysis demonstrated that expression of multiple lncRNAs fluctuated by forced expression of oncogenic Ras. These findings indicate that oncogenic Ras regulates the expression of a large number of lncRNAs including functional lncRNAs, such as ANRIL and PANDA.

  14. Absence of missense mutations in activated c-myc genes in avian leukosis virus-induced B-cell lymphomas

    SciTech Connect

    Hahn, M.; Hayward, W.S.

    1988-06-01

    The authors determined the nucleotide sequences of two independent DNA clones which contained the activated c-myc genes from avian leukosis virus-induced B-cell lymphomas. Neither of these c-myce genes contained missense mutations. This strongly supports the notion that the c-myc photo-oncogene in avian leukosis virus-induced B-cell lymphomas can be oncogenically activated by altered expression of the gene without a change in the primary structure of the gene product.

  15. The lymphoma-associated NPM-ALK oncogene elicits a p16INK4a/pRb-dependent tumor-suppressive pathway.

    PubMed

    Martinelli, Paola; Bonetti, Paola; Sironi, Cristina; Pruneri, Giancarlo; Fumagalli, Caterina; Raviele, Paola Rafaniello; Volorio, Sara; Pileri, Stefano; Chiarle, Roberto; McDuff, Fiona Kate Elizabeth; Tusi, Betsabeh Khoramian; Turner, Suzanne D; Inghirami, Giorgio; Pelicci, Pier Giuseppe; Colombo, Emanuela

    2011-06-16

    Oncogene-induced senescence (OIS) is a barrier for tumor development. Oncogene-dependent DNA damage and activation of the ARF/p53 pathway play a central role in OIS and, accordingly, ARF and p53 are frequently mutated in human cancer. A number of leukemia/lymphoma-initiating oncogenes, however, inhibit ARF/p53 and only infrequently select for ARF or p53 mutations, suggesting the involvement of other tumor-suppressive pathways. We report that NPM-ALK, the initiating oncogene of anaplastic large cell lymphomas (ALCLs), induces DNA damage and irreversibly arrests the cell cycle of primary fibroblasts and hematopoietic progenitors. This effect is associated with inhibition of p53 and is caused by activation of the p16INK4a/pRb tumor-suppressive pathway. Analysis of NPM-ALK lymphomagenesis in transgenic mice showed p16INK4a-dependent accumulation of senescent cells in premalignant lesions and decreased tumor latency in the absence of p16INK4a. Accordingly, human ALCLs showed no expression of either p16INK4a or pRb. Up-regulation of the histone-demethylase Jmjd3 and de-methylation at the p16INK4a promoter contributed to the effect of NPM-ALK on p16INK4a, which was transcriptionally regulated. These data demonstrate that p16INK4a/pRb may function as an alternative pathway of oncogene-induced senescence, and suggest that the reactivation of p16INK4a expression might be a novel strategy to restore the senescence program in some tumors.

  16. Mutation of NRAS but not KRAS significantly reduces myeloma sensitivity to single-agent bortezomib therapy

    PubMed Central

    Lichter, David I.; Di Bacco, Alessandra; Blakemore, Stephen J.; Berger, Allison; Koenig, Erik; Bernard, Hugues; Trepicchio, William; Li, Bin; Neuwirth, Rachel; Chattopadhyay, Nibedita; Bolen, Joseph B.; Dorner, Andrew J.; van de Velde, Helgi; Ricci, Deborah; Jagannath, Sundar; Berenson, James R.; Richardson, Paul G.; Stadtmauer, Edward A.; Orlowski, Robert Z.; Lonial, Sagar; Anderson, Kenneth C.; Sonneveld, Pieter; San Miguel, Jesús F.; Esseltine, Dixie-Lee; Schu, Matthew

    2014-01-01

    Various translocations and mutations have been identified in myeloma, and certain aberrations, such as t(4;14) and del17, are linked with disease prognosis. To investigate mutational prevalence in myeloma and associations between mutations and patient outcomes, we tested a panel of 41 known oncogenes and tumor suppressor genes in tumor samples from 133 relapsed myeloma patients participating in phase 2 or 3 clinical trials of bortezomib. DNA mutations were identified in 14 genes. BRAF as well as RAS genes were mutated in a large proportion of cases (45.9%) and these mutations were mutually exclusive. New recurrent mutations were also identified, including in the PDGFRA and JAK3 genes. NRAS mutations were associated with a significantly lower response rate to single-agent bortezomib (7% vs 53% in patients with mutant vs wild-type NRAS, P = .00116, Bonferroni-corrected P = .016), as well as shorter time to progression in bortezomib-treated patients (P = .0058, Bonferroni-corrected P = .012). However, NRAS mutation did not impact outcome in patients treated with high-dose dexamethasone. KRAS mutation did not reduce sensitivity to bortezomib or dexamethasone. These findings identify a significant clinical impact of NRAS mutation in myeloma and demonstrate a clear example of functional differences between the KRAS and NRAS oncogenes. PMID:24335104

  17. The Ras oncogene signals centrosome amplification in mammary epithelial cells through cyclin D1/Cdk4 and Nek2

    PubMed Central

    Zeng, X; Shaikh, FY; Harrison, MK; Adon, AM; Trimboli, AJ; Carroll, KA; Sharma, N; Timmers, C; Chodosh, LA; Leone, G; Saavedra, HI

    2010-01-01

    Centrosome amplification (CA) contributes to carcinogenesis by generating aneuploidy. Elevated frequencies of CA in most benign breast lesions and primary tumors suggest a causative role for CA in breast cancers. Clearly, identifying which and how altered signal transduction pathways contribute to CA is crucial to breast cancer control. Although a causative and cooperative role for c-Myc and Ras in mammary tumorigenesis is well documented, their ability to generate CA during mammary tumor initiation remains unexplored. To answer that question, K-RasG12D and c-Myc were induced in mouse mammary glands. Although CA was observed in mammary tumors initiated by c-Myc or K-RasG12D, it was detected only in premalignant mammary lesions expressing K-RasG12D. CA, both in vivo and in vitro, was associated with increased expression of the centrosome-regulatory proteins, cyclin D1 and Nek2. Abolishing the expression of cyclin D1, Cdk4 or Nek2 in MCF10A human mammary epithelial cells expressing H-RasG12V abrogated Ras-induced CA, whereas silencing cyclin E1 or B2 had no effect. Thus, we conclude that CA precedes mammary tumorigenesis, and interfering with centrosome-regulatory targets suppresses CA. PMID:20581865

  18. Oncogenic kinase fusions: an evolving arena with innovative clinical opportunities

    PubMed Central

    Tabbò, Fabrizio; Pizzi, Marco; Kyriakides, Peter W.; Ruggeri, Bruce; Inghirami, Giorgio

    2016-01-01

    Cancer biology relies on intrinsic and extrinsic deregulated pathways, involving a plethora of intra-cellular and extra-cellular components. Tyrosine kinases are frequently deregulated genes, whose aberrant expression is often caused by major cytogenetic events (e.g. chromosomal translocations). The resulting tyrosine kinase fusions (TKFs) prompt the activation of oncogenic pathways, determining the biological and clinical features of the associated tumors. First reported half a century ago, oncogenic TKFs are now found in a large series of hematologic and solid tumors. The molecular basis of TKFs has been thoroughly investigated and tailored therapies against recurrent TKFs have recently been developed. This review illustrates the biology of oncogenic TKFs and their role in solid as well as hematological malignancies. We also address the therapeutic implications of TKFs and the many open issues concerning their clinical impact. PMID:26943776

  19. Developmental-stage-dependent transcriptional response to leukaemic oncogene expression

    PubMed Central

    Regha, Kakkad; Assi, Salam A.; Tsoulaki, Olga; Gilmour, Jane; Lacaud, Georges; Bonifer, Constanze

    2015-01-01

    Acute myeloid leukaemia (AML) is characterized by a block in myeloid differentiation the stage of which is dependent on the nature of the transforming oncogene and the developmental stage of the oncogenic hit. This is also true for the t(8;21) translocation that gives rise to the RUNX1-ETO fusion protein and initiates the most common form of human AML. Here we study the differentiation of mouse embryonic stem cells expressing an inducible RUNX1-ETO gene into blood cells as a model, combined with genome-wide analyses of transcription factor binding and gene expression. RUNX1-ETO interferes with both the activating and repressive function of its normal counterpart, RUNX1, at early and late stages of blood cell development. However, the response of the transcriptional network to RUNX1-ETO expression is developmental stage specific, highlighting the molecular mechanisms determining specific target cell expansion after an oncogenic hit. PMID:26018585

  20. Mastocytosis: a mutated KIT receptor induced myeloproliferative disorder

    PubMed Central

    Chatterjee, Anindya; Ghosh, Joydeep; Kapur, Reuben

    2015-01-01

    Although more than 90% systemic mastocytosis (SM) patients express gain of function mutations in the KIT receptor, recent next generation sequencing has revealed the presence of several additional genetic and epigenetic mutations in a subset of these patients, which confer poor prognosis and inferior overall survival. A clear understanding of how genetic and epigenetic mutations cooperate in regulating the tremendous heterogeneity observed in these patients will be essential for designing effective treatment strategies for this complex disease. In this review, we describe the clinical heterogeneity observed in patients with mastocytosis, the nature of relatively novel mutations identified in these patients, therapeutic strategies to target molecules downstream from activating KIT receptor and finally we speculate on potential novel strategies to interfere with the function of not only the oncogenic KIT receptor but also epigenetic mutations seen in these patients. PMID:26158763

  1. Avian oncogenic virus differential diagnosis in chickens using oligonucleotide microarray.

    PubMed

    Wang, Lih-Chiann; Huang, Dean; Pu, Chang-En; Wang, Ching-Ho

    2014-12-15

    Avian oncogenic viruses include the avian leukosis virus (ALV), reticuloendotheliosis virus (REV) and Marek's disease virus (MDV). Multiple oncogenic viral infections are frequently seen, with even Marek's disease vaccines reported to be contaminated with ALV and REV. The gross lesions caused by avian oncogenic viruses often overlap, making differentiation diagnosis based on histopathology difficult. The objective of this study is to develop a rapid approach to simultaneously differentiate, subgroup and pathotype the avian oncogenic viruses. The oligonucleotide microarray was employed in this study. Particular DNA sequences were recognized using specific hybridization between the DNA target and probe on the microarray, followed with colorimetric development through enzyme reaction. With 10 designed probes, ALV-A, ALV-E, ALV-J, REV, MDV pathogenic and vaccine strains were clearly discriminated on the microarray with the naked eyes. The detection limit was 27 copy numbers, which was 10-100 times lower than multiplex PCR. Of 102 field samples screened using the oligonucleotide microarray, 32 samples were positive for ALV-E, 17 samples were positive for ALV-J, 6 samples were positive for REV, 4 samples were positive for MDV, 7 samples were positive for both ALV-A and ALV-E, 5 samples were positive for ALV-A, ALV-E and ALV-J, one sample was positive for both ALV-J and MDV, and 3 samples were positive for both REV and MDV. The oligonucleotide microarray, an easy-to-use, high-specificity, high-sensitivity and extendable assay, presents a potent technique for rapid differential diagnosis of avian oncogenic viruses and the detection of multiple avian oncogenic viral infections under field conditions.

  2. Oncogenic MicroRNAs: Key Players in Malignant Transformation

    PubMed Central

    Frixa, Tania; Donzelli, Sara; Blandino, Giovanni

    2015-01-01

    MicroRNAs (miRNAs) represent a class of non-coding RNAs that exert pivotal roles in the regulation of gene expression at the post-transcriptional level. MiRNAs are involved in many biological processes and slight modulations in their expression have been correlated with the occurrence of different diseases. In particular, alterations in the expression of miRNAs with oncogenic or tumor suppressor functions have been associated with carcinogenesis, malignant transformation, metastasis and response to anticancer treatments. This review will mainly focus on oncogenic miRNAs whose aberrant expression leads to malignancy. PMID:26694467

  3. Avian sarcoma virus 17 carries the jun oncogene.

    PubMed Central

    Maki, Y; Bos, T J; Davis, C; Starbuck, M; Vogt, P K

    1987-01-01

    Biologically active molecular clones of avian sarcoma virus 17 (ASV 17) contain a replication-defective proviral genome of 3.5 kilobases (kb). The genome retains partial gag and env sequences, which flank a cell-derived putative oncogene of 0.93 kb, termed jun. The jun gene lacks preserved coding domains of tyrosine-specific protein kinases. It also shows no significant nucleic acid homology with other known oncogenes. The probable transformation-specific protein in ASV 17-transformed cells is a 55-kDa gag-jun fusion product. Images PMID:3033666

  4. Molecular screening of pituitary adenomas for gene mutations and rearrangements

    SciTech Connect

    Herman, V.; Drazin, N.Z.; Gonskey, R.; Melmed, S. )

    1993-07-01

    Although pituitary tumors arise as benign monoclonal neoplasms, genetic alterations have not readily been identified in these adenomas. The authors studied restriction fragment abnormalities involving the GH gene locus, and mutations in the p53 and H-, K-, and N-ras genes in 22 human GH cell adenomas. Twenty two nonsecretory adenomas were also examined for p53 and ras gene mutations. Seven prolactinoma DNA samples were tested for deletions in the multiple endocrine neoplasia-1 (MEN-1) locus, as well as for rearrangements in the hst gene, a member of the fibroblast growth factor family. In DNA from GH-cell adenomas, identical GH restriction patterns were detected in both pituitary and lymphocyte DNA in all patients and in one patient with a mixed GH-TSH cell adenoma. Using polymerase chain reaction (PCR)-single stranded conformation polymorphism analysis, no mutations were detected in exons 5, 6, 7 and 8 of the p53 gene in GH cell adenomas nor in 22 nonsecretory adenomas. Codons 12/13 and 61 of H-ras, K-ras, and N-ras genes were also intact on GH cell adenomas and in nonsecretory adenomas. Site-specific probes for chromosome 11q13 including, PYGM, D11S146, and INT2 were used in 7 sporadic PRL-secreting adenomas to detect deletions of the MEN-1 locus on chromosome 11. One patient was identified with a loss of 11p, and the remaining 6 patients did not demonstrate loss of heterozygosity in the pituitary 11q13 locus, compared to lymphocyte DNA. None of these patients demonstrated hst gene rearrangements which also maps to this locus. These results show that p53 and ras gene mutations are not common events in the pathogenesis of acromegaly and nonsecretory tumors. Although hst gene rearrangements and deletions of 11q13 are not associated with sporadic PRl-cell adenoma formation, a single patient was detected with a partial loss of chromosome 11, including the putative MEN-1 site. 31 refs., 5 figs., 2 tabs.

  5. Selective BRAFV600E inhibitor PLX4720, requires TRAIL assistance to overcome oncogenic PIK3CA resistance.

    PubMed

    Oikonomou, Eftychia; Koc, Michal; Sourkova, Vladimira; Andera, Ladislav; Pintzas, Alexander

    2011-01-01

    Documented sensitivity of melanoma cells to PLX4720, a selective BRAFV600E inhibitor, is based on the presence of mutant BRAF(V600E) alone, while wt-BRAF or mutated KRAS result in cell proliferation. In colon cancer appearance of oncogenic alterations is complex , since BRAF, like KRAS mutations, tend to co-exist with those in PIK3CA and mutated PI3K has been shown to interfere with the successful application of MEK inhibitors. When PLX4720 was used to treat colon tumours, results were not encouraging and herein we attempt to understand the cause of this recorded resistance and discover rational therapeutic combinations to resensitize oncogene driven tumours to apoptosis. Treatment of two genetically different BRAF(V600E) mutant colon cancer cell lines with PLX4720 conferred complete resistance to cell death. Even though p-MAPK/ ERK kinase (MEK) suppression was achieved, TRAIL, an apoptosis inducing agent, was used synergistically in order to achieve cell death by apoptosis in RKO(BRAFV600E/PIK3CAH1047) cells. In contrast, for the same level of apoptosis in HT29(BRAFV600E/PIK3CAP449T) cells, TRAIL was combined with 17-AAG, an Hsp90 inhibitor. For cells where PLX4720 was completely ineffective, 17-AAG was alternatively used to target mutant BRAF(V600E). TRAIL dependence on the constitutive activation of BRAF(V600E) is emphasised through the overexpression of BRAF(V600E) in the permissive genetic background of colon adenocarcinoma Caco-2 cells. Pharmacological suppression of the PI3K pathway further enhances the synergistic effect between TRAIL and PLX4720 in RKO cells, indicating the presence of PIK3CA(MT) as the inhibitory factor. Another rational combination includes 17-AAG synergism with TRAIL in a BRAF(V600E) mutant dependent manner to commit cells to apoptosis, through DR5 and the amplification of the apoptotic pathway. We have successfully utilised combinations of two chemically unrelated BRAF(V600E) inhibitors in combination with TRAIL in a BRAF(V600E

  6. Transcriptomic Characterization of Hepatocellular Carcinoma with CTNNB1 Mutation

    PubMed Central

    Du, Chengzhi; Xu, Naiqing; Huang, Huanwei; Cai, Tao; Zhang, Aiqun; Han, Ze-Guang; Zhou, Weiping; Chen, Liang

    2014-01-01

    Purpose Hepatocellular carcinoma (HCC) is the sixth most common solid tumor worldwide and the third leading cause of cancer-related death. HCC is a particularly serious threat to the Chinese population. Although many molecular alterations are known to be involved in the tumorigenesis of hepatocytes, no systemic survey has examined the somatic mutations in HCC samples from Chinese patients. Our goal was to elucidate somatic mutations in Chinese HCC patients and investigate the possible molecular mechanisms involved in tumorigenesis. Experimental Design A total of 110 hepatitis B virus (HBV)-positive HCC samples and 46 HBV-negative HCC samples were genotyped for hot-spot mutations in the CSF1R, CTNNB1, KRAS, BRAF, NRAS, ERBB2, MET, PIK3CA, JAK1, and SMO genes. The transcriptomes of the CTNNB1 mutation-positive HCC samples from the HBV-positive patients (CB+ HCC) were compared to adjacent non-cancerous livers, and significantly altered genes were functionally validated in vitro. Results CTNNB1 mutations accounted for the majority of the mutations detected in our study. A slightly higher mutation rate was found in the HBV-positive patients than in their negative counterparts. A distinct pattern of CTNNB1 mutation was detected in these two populations, and drastic changes at the transcriptomic level were detected in the CB+ tumors compared to adjacent non-cancerous livers. Potential tumor suppressors (FoxA3 and Onecut1) and oncogenes (MAFG and SSX1) were functionally validated. Conclusions Our work is the first systemic characterization of oncogenic mutations in HCC samples from Chinese patients. Targeting the Wnt-β-catenin pathway may represent a valid treatment option for Chinese HCC patients. Our work also suggests that targeting ONECUT1, FOXA3, SSX1, and MAFG may be a valid treatment option for CTNNB1 mutation positive HCC patients. PMID:24798046

  7. Small molecule inhibition of MERTK is efficacious in non-small cell lung cancer models independent of driver oncogene status

    PubMed Central

    Cummings, Christopher T.; Zhang, Weihe; Davies, Kurtis D.; Kirkpatrick, Gregory D.; Zhang, Dehui; DeRyckere, Deborah; Wang, Xiaodong; Frye, Stephen V.; Earp, H. Shelton; Graham, Douglas K.

    2015-01-01

    Treatment of non-small cell lung cancer (NSCLC) has been transformed by targeted therapies directed against molecular aberrations specifically activated within an individual patient’s tumor. However, such therapies are currently only available against a small number of such aberrations, and new targets and therapeutics are needed. Our laboratory has previously identified the MERTK receptor tyrosine kinase (RTK) as a potential drug target in multiple cancer types, including NSCLC. We have recently developed UNC2025 – the first-in-class small molecule inhibitor targeting MERTK with pharmacokinetic properties sufficient for clinical translation. Here we utilize this compound to further validate the important emerging biologic functions of MERTK in lung cancer pathogenesis, to establish that MERTK can be effectively targeted by a clinically translatable agent, and to demonstrate that inhibition of MERTK is a valid treatment strategy in a wide variety of non-small cell lung cancer cell lines independent of their driver oncogene status, including in lines with an EGFR mutation, a KRAS/NRAS mutation, an RTK fusion, or another or unknown driver oncogene. Biochemically, we report the selectivity of UNC2025 for MERTK, and its inhibition of oncogenic downstream signaling. Functionally, we demonstrate that UNC2025 induces apoptosis of MERTK-dependent NSCLC cell lines, while decreasing colony formation in vitro and tumor xenograft growth in vivo in murine models. These findings provide further evidence for the importance of MERTK in NSCLC, and demonstrate that MERTK inhibition by UNC2025 is a feasible, clinically relevant treatment strategy in a wide variety of NSCLC sub-types, which warrants further investigation in clinical trials. PMID:26162689

  8. Proteome Analysis for Downstream Targets of Oncogenic KRAS - the Potential Participation of CLIC4 in Carcinogenesis in the Lung

    PubMed Central

    Okudela, Koji; Katayama, Akira; Woo, Tetsukan; Mitsui, Hideaki; Suzuki, Takehisa; Tateishi, Yoko; Umeda, Shigeaki; Tajiri, Michihiko; Masuda, Munetaka; Nagahara, Noriyuki; Kitamura, Hitoshi; Ohashi, Kenichi

    2014-01-01

    This study investigated the proteome modulated by oncogenic KRAS in immortalized airway epithelial cells. Chloride intracellular channel protein 4 (CLIC4), S100 proteins (S100A2 and S100A11), tropomyosin 2, cathepsin L1, integrinsα3, eukaryotic elongation factor 1, vimentin, and others were discriminated. We here focused on CLIC4 to investigate its potential involvement in carcinogenesis in the lung because previous studies suggested that some chloride channels and chloride channel regulators could function as tumor suppressors. CILC4 protein levels were reduced in some lung cancer cell lines. The restoration of CLIC4 in lung cancer cell lines in which CLIC4 expression was reduced attenuated their growth activity. The immunohistochemical expression of the CLIC4 protein was weaker in primary lung cancer cells than in non-tumorous airway epithelial cells and was occasionally undetectable in some tumors. CLIC4 protein levels were significantly lower in a subtype of mucinous ADC than in others, and were also significantly lower in KRAS-mutated ADC than in EGFR-mutated ADC. These results suggest that the alteration in CLIC4 could be involved in restrictedly the development of a specific fraction of lung adenocarcinomas. The potential benefit of the proteome modulated by oncogenic KRAS to lung cancer research has been demonstrated. PMID:24503901

  9. Mouse Elk oncogene maps to chromosome X and a novel Elk oncogene (Elk3) maps to chromosome 10

    SciTech Connect

    Tamai, Yoshitaka; Taketo, Makoto; Nozaki, Masami

    1995-03-20

    The Elk protein is a member of the Ets family found in both vertebrates and invertebrates. Human ELK1 encoded by ELK1 binds alone or together with serum response factor to DNA and regulates gene expression in a variety of biological processes. Using a panel of interspecific backcross mice, we have mapped the Elk oncogene (Elk) and a novel type Elk oncogene (Elk3), closely related to ELK1. Elk maps to Chr X, and Elk3 maps to the proximal region of Chr 10. 18 refs., 1 fig., 1 tab.

  10. Suppression of Akt-mTOR Pathway-A Novel Component of Oncogene Induced DNA Damage Response Barrier in Breast Tumorigenesis

    PubMed Central

    Bhardwaj, Anjana; Rosen, Daniel; Liu, Mei; Liu, Yan; Hao, Qiang; Ganesan, Nivetha; Etzel, Carol J.; Gullett, Ashley; Albarracin, Constance T.; Bedrosian, Isabelle

    2014-01-01

    DNA damage has been thought to be directly associated with the neoplastic progression by enabling mutations in tumor suppressor genes and activating/and amplifying oncogenes ultimately resulting in genomic instability. DNA damage causes activation of the DNA damage response (DDR) that is an important cellular mechanism for maintaining genomic integrity in the face of genotoxic stress. While the cellular response to genotoxic stress has been extensively studied in cancer models, less is known about the cellular response to oncogenic stress in the premalignant context. In the present study, by using breast tissues samples from women at different risk levels for invasive breast cancer (normal, proliferative breast disease and ductal carcinoma in situ) we found that DNA damage is inversely correlated with risk of invasive breast cancer. Similarly, in MCF10A based in vitro model system where we recapitulated high DNA damage conditions as seen in patient samples by stably cloning in cyclin E, we found that high levels of oncogene induced DNA damage, by triggering inhibition of a major proliferative pathway (AKT), inhibits cell growth and causes cells to die through autophagy. These data suggest that AKT-mTOR pathway is a novel component of oncogene induced DNA damage response in immortalized ‘normal-like’ breast cells and its suppression may contribute to growth arrest and arrest of the breast tumorigenesis. PMID:24811059

  11. Mutation Profile of Well-Differentiated Thyroid Cancer in Asians

    PubMed Central

    Song, Young Shin; Lim, Jung Ah

    2015-01-01

    Recent advances in molecular diagnostics have led to significant insights into the genetic basis of thyroid tumorigenesis. Among the mutations commonly seen in thyroid cancers, the vast majority are associated with the mitogen-activated protein kinase pathway. B-Raf proto-oncogene (BRAF) mutations are the most common mutations observed in papillary thyroid cancers (PTCs), followed by RET/PTC rearrangements and RAS mutations, while follicular thyroid cancers are more likely to harbor RAS mutations or PAX8/peroxisome proliferator-activated receptor γ (PPARγ) rearrangements. Beyond these more common mutations, alterations in the telomerase reverse transcriptase (TERT) promoter have recently been associated with clinicopathologic features, disease prognosis, and tumorigenesis in thyroid cancer. While the mutations underlying thyroid tumorigenesis are well known, the frequency of these mutations is strongly associated with geography, with clear differences reported between Asian and Western countries. Of particular interest is the prevalence of BRAF mutations, with Korean patients exhibiting the highest rate of BRAF-associated thyroid cancers in the world. Here, we review the prevalence of each of the most common mutations in Asian and Western countries, and identify the characteristics of well-differentiated thyroid cancer in Asians. PMID:26435130

  12. Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma

    PubMed Central

    Northcott, Paul A; Lee, Catherine; Zichner, Thomas; Stütz, Adrian M; Erkek, Serap; Kawauchi, Daisuke; Shih, David JH; Hovestadt, Volker; Zapatka, Marc; Sturm, Dominik; Jones, David TW; Kool, Marcel; Remke, Marc; Cavalli, Florence; Zuyderduyn, Scott; Bader, Gary; VandenBerg, Scott; Esparza, Lourdes Adriana; Ryzhova, Marina; Wang, Wei; Wittmann, Andrea; Stark, Sebastian; Sieber, Laura; Seker-Cin, Huriye; Linke, Linda; Kratochwil, Fabian; Jäger, Natalie; Buchhalter, Ivo; Imbusch, Charles D; Zipprich, Gideon; Raeder, Benjamin; Schmidt, Sabine; Diessl, Nicolle; Wolf, Stephan; Wiemann, Stefan; Brors, Benedikt; Lawerenz, Chris; Eils, Jürgen; Warnatz, Hans-Jörg; Risch, Thomas; Yaspo, Marie-Laure; Weber, Ursula D; Bartholomae, Cynthia C; von Kalle, Christof; Turányi, Eszter; Hauser, Peter; Sanden, Emma; Darabi, Anna; Siesjö, Peter; Sterba, Jaroslav; Zitterbart, Karel; Sumerauer, David; van Sluis, Peter; Versteeg, Rogier; Volckmann, Richard; Koster, Jan; Schuhmann, Martin U; Ebinger, Martin; Grimes, H. Leighton; Robinson, Giles W; Gajjar, Amar; Mynarek, Martin; von Hoff, Katja; Rutkowski, Stefan; Pietsch, Torsten; Scheurlen, Wolfram; Felsberg, Jörg; Reifenberger, Guido; Kulozik, Andreas E; von Deimlmg, Andreas; Witt, Olaf; Eils, Roland; Gilbertson, Richard J; Korshunov, Andrey; Taylor, Michael D; Lichter, Peter; Korbel, Jan O; Wechsler-Reya, Robert J; Pfister, Stefan M

    2014-01-01

    Summary Paragraph Medulloblastoma is a highly malignant paediatric brain tumour currently treated with a combination of surgery, radiation, and chemotherapy, posing a considerable burden of toxicity to the developing child. Genomics has illuminated the extensive intertumoural heterogeneity of medulloblastoma, identifying four distinct molecular subgroups. Group 3 and Group 4 subgroup medulloblastomas account for the majority of paediatric cases; yet, oncogenic drivers for these subtypes remain largely unidentified. Here we describe a series of prevalent, highly disparate genomic structural variants, restricted to Groups 3 and 4, resulting in specific and mutually exclusive activation of the growth factor independent 1 family protooncogenes, GFI1 and GFI1B. Somatic structural variants juxtapose GFI1/GFI1B coding sequences proximal to active enhancer elements, including super-enhancers, instigating oncogenic activity. Our results, supported by evidence from mouse models, identify GFI1 and GFI1B as prominent medulloblastoma oncogenes and implicate ‘enhancer hijacking’ as an efficient mechanism driving oncogene activation in a childhood cancer. PMID:25043047

  13. Oncogenic cancer/testis antigens: prime candidates for immunotherapy.

    PubMed

    Gjerstorff, Morten F; Andersen, Mads H; Ditzel, Henrik J

    2015-06-30

    Recent developments have set the stage for immunotherapy as a supplement to conventional cancer treatment. Consequently, a significant effort is required to further improve efficacy and specificity, particularly the identification of optimal therapeutic targets for clinical testing. Cancer/testis antigens are immunogenic, highly cancer-specific, and frequently expressed in various types of cancer, which make them promising candidate targets for cancer immunotherapy, including cancer vaccination and adoptive T-cell transfer with chimeric T-cell receptors. Our current understanding of tumor immunology and immune escape suggests that targeting oncogenic antigens may be beneficial, meaning that identification of cancer/testis antigens with oncogenic properties is of high priority. Recent work from our lab and others provide evidence that many cancer/testis antigens, in fact, have oncogenic functions, including support of growth, survival and metastasis. This novel insight into the function of cancer/testis antigens has the potential to deliver more effective cancer vaccines. Moreover, immune targeting of oncogenic cancer/testis antigens in combination with conventional cytotoxic therapies or novel immunotherapies such as checkpoint blockade or adoptive transfer, represents a highly synergistic approach with the potential to improve patient survival.

  14. Oncogenic human papillomaviruses and ploidy in cervical lesions.

    PubMed Central

    Rihet, S; Lorenzato, M; Clavel, C

    1996-01-01

    AIM: To compare ploidy measurements obtained on tissue sections of selected low and high grade squamous intraepithelial lesions containing oncogenic HPV (types 16, 18 or 33) detected by in situ hybridisation (ISH) or PCR. METHODS: DNA ploidy was assessed by image cytometry after Feulgen staining of contiguous serial sections of eight lesions exhibiting atypical squamous cells or squamous atypia and 53 low and 63 high grade squamous intraepithelial lesions in which HPV had been detected by ISH or PCR. RESULTS: Aneuploidy was strongly associated with the presence of oncogenic HPV, being detected in 50% of lesions with squamous atypia and 75.5% of the low and 95.2% of the high grade squamous intraepithelial lesions. The multiploid profile was highly associated with high grade lesions and with the pattern of HPV DNA integration. CONCLUSIONS: The presence of aneuploidy is strongly suggestive of the presence of oncogenic HPV types. Combining the detection of HPV by ISH and PCR with DNA image cytometry may provide the pathologist and the physician with important prognostic information about low grade lesions, especially when these lesions have a multiploid DNA profile and contain oncogenic HPV. PMID:8944607

  15. Folate levels modulate oncogene-induced replication stress and tumorigenicity

    PubMed Central

    Lamm, Noa; Maoz, Karin; Bester, Assaf C; Im, Michael M; Shewach, Donna S; Karni, Rotem; Kerem, Batsheva

    2015-01-01

    Chromosomal instability in early cancer stages is caused by replication stress. One mechanism by which oncogene expression induces replication stress is to drive cell proliferation with insufficient nucleotide levels. Cancer development is driven by alterations in both genetic and environmental factors. Here, we investigated whether replication stress can be modulated by both genetic and non-genetic factors and whether the extent of replication stress affects the probability of neoplastic transformation. To do so, we studied the effect of folate, a micronutrient that is essential for nucleotide biosynthesis, on oncogene-induced tumorigenicity. We show that folate deficiency by itself leads to replication stress in a concentration-dependent manner. Folate deficiency significantly enhances oncogene-induced replication stress, leading to increased DNA damage and tumorigenicity in vitro. Importantly, oncogene-expressing cells, when grown under folate deficiency, exhibit a significantly increased frequency of tumor development in mice. These findings suggest that replication stress is a quantitative trait affected by both genetic and non-genetic factors and that the extent of replication stress plays an important role in cancer development. PMID:26197802

  16. Notch signaling: switching an oncogene to a tumor suppressor

    PubMed Central

    Lobry, Camille; Oh, Philmo; Mansour, Marc R.; Look, A. Thomas

    2014-01-01

    The Notch signaling pathway is a regulator of self-renewal and differentiation in several tissues and cell types. Notch is a binary cell-fate determinant, and its hyperactivation has been implicated as oncogenic in several cancers including breast cancer and T-cell acute lymphoblastic leukemia (T-ALL). Recently, several studies also unraveled tumor-suppressor roles for Notch signaling in different tissues, including tissues where it was before recognized as an oncogene in specific lineages. Whereas involvement of Notch as an oncogene in several lymphoid malignancies (T-ALL, B-chronic lymphocytic leukemia, splenic marginal zone lymphoma) is well characterized, there is growing evidence involving Notch signaling as a tumor suppressor in myeloid malignancies. It therefore appears that Notch signaling pathway’s oncogenic or tumor-suppressor abilities are highly context dependent. In this review, we summarize and discuss latest advances in the understanding of this dual role in hematopoiesis and the possible consequences for the treatment of hematologic malignancies. PMID:24608975

  17. EVI1 oncogene promotes KRAS pathway through suppression of microRNA-96 in pancreatic carcinogenesis.

    PubMed

    Tanaka, M; Suzuki, H I; Shibahara, J; Kunita, A; Isagawa, T; Yoshimi, A; Kurokawa, M; Miyazono, K; Aburatani, H; Ishikawa, S; Fukayama, M

    2014-05-01

    Despite frequent KRAS mutation, the early molecular mechanisms of pancreatic ductal adenocarcinoma (PDAC) development have not been fully elucidated. By tracking a potential regulator of another feature of PDAC precursors, acquisition of foregut or gastric epithelial gene signature, we herein report that aberrant overexpression of ecotropic viral integration site 1 (EVI1) oncoprotein, which is usually absent in normal pancreatic duct, is a widespread marker across the full spectrum of human PDAC precursors and PDAC. In pancreatic cancer cells, EVI1 depletion caused remarkable inhibition of cell growth and migration, indicating its oncogenic roles. Importantly, we found that EVI1 upregulated KRAS expression through suppression of a potent KRAS suppressor, miR-96, in pancreatic cancer cells. Collectively, the present findings suggest that EVI1 overexpression and KRAS mutation converge on activation of the KRAS pathway in early phases of pancreatic carcinogenesis and propose EVI1 and/or miR-96 as early markers and therapeutic targets in this dismal disease.

  18. Oncogenic events triggered by AID, the adverse effect of antibody diversification.

    PubMed

    Pérez-Durán, Pablo; de Yebenes, Virginia G; Ramiro, Almudena R

    2007-12-01

    The generation of an efficient immune response depends on highly refined mechanisms of antibody diversification. Two of these mechanisms, somatic hypermutation (SHM) and class switch recombination (CSR), are initiated by activation-induced cytidine deaminase (AID) upon antigen stimulation of mature B cells. AID deaminates cytosines on the DNA of Ig genes thereby generating a lesion that can be processed into a mutation (SHM) or a DNA double-strand break followed by a recombination reaction (CSR). A number of mechanisms are probably responsible for regulating AID function, such as transcriptional regulation, subcellular localization, post-transcriptional modifications and target specificity, but the issue remains of how unwanted DNA damage is fully prevented. Most lymphocyte neoplasias are originated from mature B cells and harbour hallmark chromosome translocations of lymphomagenic potential, such as the c-myc/IgH translocations found in Burkitt lymphomas. It has been recently shown that such translocations are initiated by AID and that ataxia-telangiectasia mutated, p53 and ARF provide surveillance mechanisms to prevent these aberrations. In addition, evidence is accumulating that AID expression can be induced in B cells independently of the germinal centre environment, such as in response to some viral infections, and occasionally in non-B cells, at least in certain inflammation-associated neoplasic situations. The most recent findings on AID expression and function and their relevance to the generation of oncogenic lesions will be discussed.

  19. Genetic mutational profiling analysis of T cell acute lymphoblastic leukemia reveal mutant FBXW7 as a prognostic indicator for inferior survival.

    PubMed

    Yuan, Lan; Lu, Ling; Yang, Yongchen; Sun, Hengjuan; Chen, Xi; Huang, Yi; Wang, Xingjuan; Zou, Lin; Bao, Liming

    2015-11-01

    T cell acute lymphoblastic leukemia (T-ALL) is an aggressive neoplasm for which there are currently no adequate biomarkers for developing risk-adapted therapeutic regimens to improve the treatment outcome. In this prospective study of 83 Chinese patients (54 children and 29 adults) with de novo T-ALL, we analyzed mutations in 11 T-ALL genes: NOTCH1, FBXW7, PHF6, PTEN, N-RAS, K-RAS, WT1, IL7R, PIK3CA, PIK3RA, and AKT1. NOTCH1 mutations were identified in 51.9 and 37.9 % of pediatric and adult patients, respectively, and these patients showed improved overall survival (OS) and event-free survival (EFS). The FBXW7 mutant was present in 25.9 and 6.9 % of pediatric and adult patients, respectively, and was associated with inferior OS and EFS in pediatric T-ALL. Multivariate analysis revealed that mutant FBXW7 was an independent prognostic indicator for inferior EFS (hazard ratio [HR] 4.38; 95 % confidence interval [CI] 1.15-16.71; p = 0.03) and tended to be associated with reduced OS (HR 2.81; 95 % CI 0.91-8.69; p = 0.074) in pediatric T-ALL. Mutant PHF6 was present in 13 and 20.7 % of our childhood and adult cohorts, respectively, while PTEN mutations were noted in 11.1 % of the pediatric patients. PTEN and NOTCH1 mutations were almost mutually exclusive, while IL7R and WT1 mutations were rare in pediatric T-ALL and PTPN11 and AKT1 mutations were infrequent in adult T-ALL. This study revealed differences in the mutational profiles of pediatric and adult T-ALL and suggests mutant FBXW7 as an independent prognostic indicator for inferior survival in pediatric T-ALL.

  20. The cnidarian origin of the proto-oncogenes NF-κB/STAT and WNT-like oncogenic pathway drives the ctenophores (Review).

    PubMed

    Sinkovics, Joseph G

    2015-10-01

    The cell survival pathways of the diploblastic early multicellular eukaryotic hosts contain and operate the molecular machinery resembling those of malignantly transformed individual cells of highly advanced multicellular hosts (including Homo). In the present review, the STAT/NF-κB pathway of the cnidarian Nematostella vectensis is compared with that of human tumors (malignant lymphomas, including Reed-Sternberg cells) pointing out similarities, including possible viral initiation in both cases. In the ctenophore genome and proteome, β-catenin gains intranuclear advantages due to a physiologically weak destructive complex in the cytoplasm, and lack of natural inhibitors (the dickkopfs). Thus, a scenario similar to what tumor cells initiate and achieve is presented through several constitutive loss-of-function type mutations in the destructive complex and in the elimination of inhibitors. Vice versa, malignantly transformed individual cells of advanced multicellular hosts assume pheno-genotypic resemblance to cells of unicellular or early multicellular hosts, and presumably to their ancient predecessors, by returning to the semblance of immortality and to the resumption of the state of high degree of resistance to physicochemical insults. Human leukemogenic and oncogenic pathways are presented for comparisons. The supreme bioengineers RNA/DNA complex encoded both the malignantly transformed immortal cell and the human cerebral cortex. The former generates molecules for the immortality of cellular life in the Universe. The latter invents the inhibitors of the process in order to gain control over it.

  1. The cnidarian origin of the proto-oncogenes NF-κB/STAT and WNT-like oncogenic pathway drives the ctenophores (Review)

    PubMed Central

    SINKOVICS, JOSEPH G.

    2015-01-01

    The cell survival pathways of the diploblastic early multicellular eukaryotic hosts contain and operate the molecular machinery resembling those of malignantly transformed individual cells of highly advanced multicellular hosts (including Homo). In the present review, the STAT/NF-κB pathway of the cnidarian Nematostella vectensis is compared with that of human tumors (malignant lymphomas, including Reed-Sternberg cells) pointing out similarities, including possible viral initiation in both cases. In the ctenophore genome and proteome, β-catenin gains intranuclear advantages due to a physiologically weak destructive complex in the cytoplasm, and lack of natural inhibitors (the Dickkopfs). Thus, a scenario similar to what tumor cells initiate and achieve is presented through several constitutive loss-of-function type mutations in the destructive complex and in the elimination of inhibitors. Vice versa, malignantly transformed individual cells of advanced multicellular hosts assume pheno-genotypic resemblance to cells of unicellular or early multicellular hosts, and presumably to their ancient predecessors, by returning to the semblance of immortality and to the resumption of the state of high degree of resistance to physicochemical insults. Human leukemogenic and oncogenic pathways are presented for comparisons. The supreme bioengineers RNA/DNA complex encoded both the malignantly transformed immortal cell and the human cerebral cortex. The former generates molecules for the immortality of cellular life in the Universe. The latter invents the inhibitors of the process in order to gain control over it. PMID:26239915

  2. The cnidarian origin of the proto-oncogenes NF-κB/STAT and WNT-like oncogenic pathway drives the ctenophores (Review).

    PubMed

    Sinkovics, Joseph G

    2015-10-01

    The cell survival pathways of the diploblastic early multicellular eukaryotic hosts contain and operate the molecular machinery resembling those of malignantly transformed individual cells of highly advanced multicellular hosts (including Homo). In the present review, the STAT/NF-κB pathway of the cnidarian Nematostella vectensis is compared with that of human tumors (malignant lymphomas, including Reed-Sternberg cells) pointing out similarities, including possible viral initiation in both cases. In the ctenophore genome and proteome, β-catenin gains intranuclear advantages due to a physiologically weak destructive complex in the cytoplasm, and lack of natural inhibitors (the dickkopfs). Thus, a scenario similar to what tumor cells initiate and achieve is presented through several constitutive loss-of-function type mutations in the destructive complex and in the elimination of inhibitors. Vice versa, malignantly transformed individual cells of advanced multicellular hosts assume pheno-genotypic resemblance to cells of unicellular or early multicellular hosts, and presumably to their ancient predecessors, by returning to the semblance of immortality and to the resumption of the state of high degree of resistance to physicochemical insults. Human leukemogenic and oncogenic pathways are presented for comparisons. The supreme bioengineers RNA/DNA complex encoded both the malignantly transformed immortal cell and the human cerebral cortex. The former generates molecules for the immortality of cellular life in the Universe. The latter invents the inhibitors of the process in order to gain control over it. PMID:26239915

  3. The Energy Landscape Analysis of Cancer Mutations in Protein Kinases

    PubMed Central

    Dixit, Anshuman; Verkhivker, Gennady M.

    2011-01-01

    The growing interest in quantifying the molecular basis of protein kinase activation and allosteric regulation by cancer mutations has fueled computational studies of allosteric signaling in protein kinases. In the present study, we combined computer simulations and the energy landscape analysis of protein kinases to characterize the interplay between oncogenic mutations and locally frustrated sites as important catalysts of allostetric kinase activation. While structurally rigid kinase core constitutes a minimally frustrated hub of the catalytic domain, locally frustrated residue clusters, whose interaction networks are not energetically optimized, are prone to dynamic modulation and could enable allosteric conformational transitions. The results of this study have shown that the energy landscape effect of oncogenic mutations may be allosteric eliciting global changes in the spatial distribution of highly frustrated residues. We have found that mutation-induced allosteric signaling may involve a dynamic coupling between structurally rigid (minimally frustrated) and plastic (locally frustrated) clusters of residues. The presented study has demonstrated that activation cancer mutations may affect the thermodynamic equilibrium between kinase states by allosterically altering the distribution of locally frustrated sites and increasing the local frustration in the inactive form, while eliminating locally frustrated sites and restoring structural rigidity of the active form. The energy landsape analysis of protein kinases and the proposed role of locally frustrated sites in activation mechanisms may have useful implications for bioinformatics-based screening and detection of functional sites critical for allosteric regulation in complex biomolecular systems. PMID:21998754

  4. Next generation sequencing in synovial sarcoma reveals novel gene mutations

    PubMed Central

    Vlenterie, Myrella; Hillebrandt-Roeffen, Melissa H.S.; Flucke, Uta E.; Groenen, Patricia J.T.A.; Tops, Bastiaan B.J.; Kamping, Eveline J.; Pfundt, Rolph; de Bruijn, Diederik R.H.; van Kessel, Ad H.M. Geurts; van Krieken, Han J.H.J.M.; van der Graaf, Winette T.A.; Versleijen-Jonkers, Yvonne M.H.

    2015-01-01

    Over 95% of all synovial sarcomas (SS) share a unique translocation, t(X;18), however, they show heterogeneous clinical behavior. We analyzed multiple SS to reveal additional genetic alterations besides the translocation. Twenty-six SS from 22 patients were sequenced for 409 cancer-related genes using the Comprehensive Cancer Panel (Life Technologies, USA) on an Ion Torrent platform. The detected variants were verified by Sanger sequencing and compared to matched normal DNAs. Copy number variation was assessed in six tumors using the Oncoscan array (Affymetrix, USA). In total, eight somatic mutations were detected in eight samples. These mutations have not been reported previously in SS. Two of these, in KRAS and CCND1, represent known oncogenic mutations in other malignancies. Additional mutations were detected in RNF213, SEPT9, KDR, CSMD3, MLH1 and ERBB4. DNA alterations occurred more often in adult tumors. A distinctive loss of 6q was found in a metastatic lesion progressing under pazopanib, but not in the responding lesion. Our results emphasize t(X;18) as a single initiating event in SS and as the main oncogenic driver. Our results also show the occurrence of additional genetic events, mutations or chromosomal aberrations, occurring more frequently in SS with an onset in adults. PMID:26415226

  5. BRAF inhibitor resistance mediated by the AKT pathway in an oncogenic BRAF mouse melanoma model.

    PubMed

    Perna, Daniele; Karreth, Florian A; Rust, Alistair G; Perez-Mancera, Pedro A; Rashid, Mamunur; Iorio, Francesco; Alifrangis, Constantine; Arends, Mark J; Bosenberg, Marcus W; Bollag, Gideon; Tuveson, David A; Adams, David J

    2015-02-10

    BRAF (v-raf murine sarcoma viral oncogene homolog B) inhibitors elicit a transient anti-tumor response in ∼ 80% of BRAF(V600)-mutant melanoma patients that almost uniformly precedes the emergence of resistance. Here we used a mouse model of melanoma in which melanocyte-specific expression of Braf(V618E) (analogous to the human BRAF(V600E) mutation) led to the development of skin hyperpigmentation and nevi, as well as melanoma formation with incomplete penetrance. Sleeping Beauty insertional mutagenesis in this model led to accelerated and fully penetrant melanomagenesis and synchronous tumor formation. Treatment of Braf(V618E) transposon mice with the BRAF inhibitor PLX4720 resulted in tumor regression followed by relapse. Analysis of transposon insertions identified eight genes including Braf, Mitf, and ERas (ES-cell expressed Ras) as candidate resistance genes. Expression of ERAS in human melanoma cell lines conferred resistance to PLX4720 and induced hyperphosphorylation of AKT (v-akt murine thymoma viral oncogene homolog 1), a phenotype reverted by combinatorial treatment with PLX4720 and the AKT inhibitor MK2206. We show that ERAS expression elicits a prosurvival signal associated with phosphorylation/inactivation of BAD, and that the resistance of hepatocyte growth factor-treated human melanoma cells to PLX4720 can be reverted by treatment with the BAD-like BH3 mimetic ABT-737. Thus, we define a role for the AKT/BAD pathway in resistance to BRAF inhibition and illustrate an in vivo approach for finding drug resistance genes.

  6. The v-erbB oncogene confers enhanced cellular susceptibility to reovirus infection.

    PubMed

    Strong, J E; Lee, P W

    1996-01-01

    We have previously demonstrated that two mouse cell lines that are poorly infectible by reovirus become highly susceptible upon transfection with the gene encoding the epidermal growth factor receptor (EGFR) (J. E. Strong, D. Tang, and P. W. K. Lee, Virology 197:405-411, 1993). This enhancement of infection efficiency requires a functional EGFR, since such an enhancement is not observed in cells expressing a mutated (kinase-inactive) EGFR. The additional finding that reovirus is capable of directly binding to the N-terminal ectodomain of the EGFR (D. Tang, J. E. Strong, and P. W. K. Lee, Virology 197:412-414, 1993) has led us to question whether this interaction is required for the activation of a signalling cascade that somehow augments the ensuing infection process. In the present study, we address this question, using cells transfected with the v-erbB oncogene, which encodes a protein structurally related to the EGFR but lacking a large portion of the N-terminal ligand-binding domain. The v-erbB protein also possesses ligand-independent, constitutive tyrosine kinase activity. Control NIH 3T3 cells, which are poorly infectible by reovirus (serotype 3, strain Dearing), and NIH 3T3 cells transfected with the v-erbB oncogene (THC-11) were assayed for their susceptibilities to reovirus infection. Infectivity was determined by immunofluorescent detection of viral proteins, sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of radiolabeled cells, and plaque titration. All three assays demonstrated a drastically higher degree of susceptibility to infection in the THC-11 cell line. This enhanced susceptibility was found to be abrogated by treatment of the cells with genistein, an inhibitor of tyrosine protein kinases, but only partially by treatment with daidzein, an inactive analog of genistein. We propose that the mechanism of enhancement of infection efficiency conferred by EGFR and v-erbB is through the opportunistic utilization by the virus of an

  7. Discovery of a Selective Inhibitor of Oncogenic B-Raf Kinase With Potent Antimelanoma Activity

    SciTech Connect

    Tsai, J.; Lee, J.T.; Wang, W.; Zhang, J.; Cho, H.; Mamo, S.; Bremer, R.; Gillette, S.; Kong, J.; Haass, N.K.; Sproesser, K.; Li, L.; Smalley, K.S.M.; Fong, D.; Zhu, Y.-L.; Marimuthu, A.; Nguyen, H.; Lam, B.; Liu, J.; Cheung, I.; Rice, J.

    2009-05-26

    BRAF{sup V600E} is the most frequent oncogenic protein kinase mutation known. Furthermore, inhibitors targeting 'active' protein kinases have demonstrated significant utility in the therapeutic repertoire against cancer. Therefore, we pursued the development of specific kinase inhibitors targeting B-Raf, and the V600E allele in particular. By using a structure-guided discovery approach, a potent and selective inhibitor of active B-Raf has been discovered. PLX4720, a 7-azaindole derivative that inhibits B-Raf{sup V600E} with an IC{sub 50} of 13 nM, defines a class of kinase inhibitor with marked selectivity in both biochemical and cellular assays. PLX4720 preferentially inhibits the active B-Raf{sup V600E} kinase compared with a broad spectrum of other kinases, and potent cytotoxic effects are also exclusive to cells bearing the V600E allele. Consistent with the high degree of selectivity, ERK phosphorylation is potently inhibited by PLX4720 in B-Raf{sup V600E}-bearing tumor cell lines but not in cells lacking oncogenic B-Raf. In melanoma models, PLX4720 induces cell cycle arrest and apoptosis exclusively in B-Raf{sup V600E}-positive cells. In B-Raf{sup V600E}-dependent tumor xenograft models, orally dosed PLX4720 causes significant tumor growth delays, including tumor regressions, without evidence of toxicity. The work described here represents the entire discovery process, from initial identification through structural and biological studies in animal models to a promising therapeutic for testing in cancer patients bearing B-Raf{sup V600E}-driven tumors.

  8. Long-range gap junctional signaling controls oncogene-mediated tumorigenesis in Xenopus laevis embryos.

    PubMed

    Chernet, Brook T; Fields, Chris; Levin, Michael

    2014-01-01

    In addition to the immediate microenvironment, long-range signaling may be an important component of cancer. Molecular-genetic analyses have implicated gap junctions-key mediators of cell-cell communication-in carcinogenesis. We recently showed that the resting voltage potential of distant cell groups is a key determinant of metastatic transformation and tumor induction. Here, we show in the Xenopus laevis model that gap junctional communication (GJC) is a modulator of the long-range bioelectric signaling that regulates tumor formation. Genetic disruption of GJC taking place within tumors, within remote host tissues, or between the host and tumors significantly lowers the incidence of tumors induced by KRAS mutations. The most pronounced suppression of tumor incidence was observed upon GJC disruption taking place farther away from oncogene-expressing cells, revealing a role for GJC in distant cells in the control of tumor growth. In contrast, enhanced GJC communication through the overexpression of wild-type connexin Cx26 increased tumor incidence. Our data confirm a role for GJC in tumorigenesis, and reveal that this effect is non-local. Based on these results and on published data on movement of ions through GJs, we present a quantitative model linking the GJC coupling and bioelectrical state of cells to the ability of oncogenes to initiate tumorigenesis. When integrated with data on endogenous bioelectric signaling during left-right patterning, the model predicts differential tumor incidence outcomes depending on the spatial configurations of gap junction paths relative to tumor location and major anatomical body axes. Testing these predictions, we found that the strongest influence of GJ modulation on tumor suppression by hyperpolarization occurred along the embryonic left-right axis. Together, these data reveal new, long-range aspects of cancer control by the host's physiological parameters. PMID:25646081

  9. Genome and transcriptome delineation of two major oncogenic pathways governing invasive ductal breast cancer development

    PubMed Central

    Aswad, Luay; Yenamandra, Surya Pavan; Ow, Ghim Siong; Grinchuk, Oleg; Ivshina, Anna V.; Kuznetsov, Vladimir A.

    2015-01-01

    Invasive ductal carcinoma (IDC) is a major histo-morphologic type of breast cancer. Histological grading (HG) of IDC is widely adopted by oncologists as a prognostic factor. However, HG evaluation is highly subjective with only 50%–85% inter-observer agreements. Specifically, the subjectivity in the assignment of the intermediate grade (histologic grade 2, HG2) breast cancers (comprising ~50% of IDC cases) results in uncertain disease outcome prediction and sub-optimal systemic therapy. Despite several attempts to identify the mechanisms underlying the HG classification, their molecular bases are poorly understood. We performed integrative bioinformatics analysis of TCGA and several other cohorts (total 1246 patients). We identified a 22-gene tumor aggressiveness grading classifier (22g-TAG) that reflects global bifurcation in the IDC transcriptomes and reclassified patients with HG2 tumors into two genetically and clinically distinct subclasses: histological grade 1-like (HG1-like) and histological grade 3-like (HG3-like). The expression profiles and clinical outcomes of these subclasses were similar to the HG1 and HG3 tumors, respectively. We further reclassified IDC into low genetic grade (LGG = HG1+HG1-like) and high genetic grade (HGG = HG3-like+HG3) subclasses. For the HG1-like and HG3-like IDCs we found subclass-specific DNA alterations, somatic mutations, oncogenic pathways, cell cycle/mitosis and stem cell-like expression signatures that discriminate between these tumors. We found similar molecular patterns in the LGG and HGG tumor classes respectively. Our results suggest the existence of two genetically-predefined IDC classes, LGG and HGG, driven by distinct oncogenic pathways. They provide novel prognostic and therapeutic biomarkers and could open unique opportunities for personalized systemic therapies of IDC patients. PMID:26474389

  10. Oncogenic role and therapeutic target of leptin signaling in breast cancer and cancer stem cells

    PubMed Central

    Guo, Shanchun; Liu, Mingli; Wang, Guangdi; Torroella-Kouri, Marta; Gonzalez-Perez, Ruben R.

    2012-01-01

    Significant correlations between obesity and incidence of various cancers have been reported. Obesity, considered a mild inflammatory process, is characterized by a high level of secretion of several cytokines from adipose tissue. These molecules have disparate effects, which could be relevant to cancer development. Among the inflammatory molecules, leptin, mainly produced by adipose tissue and overexpressed with its receptor (Ob-R) in cancer cells is the most studied adipokine. Mutations of leptin or Ob-R genes associated with obesity or cancer are rarely found. However, leptin is an anti-apoptotic molecule in many cell types, and its central roles in obesity-related cancers are based on its pro-angiogenic, pro-inflammatory and mitogenic actions. Notably, these leptin actions are commonly reinforced through entangled crosstalk with multiple oncogenes, cytokines and growth factors. Leptin-induced signals comprise several pathways commonly triggered by many cytokines (i.e, canonical: JAK2/STAT; MAPK/ERK1/2 and PI-3K/AKT1 and, non-canonical signaling pathways: PKC, JNK and p38 MAP kinase). Each of these leptin-induced signals is essential to its biological effects on food intake, energy balance, adiposity, immune and endocrine systems, as well as oncogenesis. This review is mainly focused on the current knowledge of the oncogenic role of leptin in breast cancer. Additionally, leptin pro-angiogenic molecular mechanisms and its potential role in breast cancer stem cells will be reviewed. Strict biunivocal binding-affinity and activation of leptin/Ob-R complex makes it a unique molecular target for prevention and treatment of breast cancer, particularly in obesity contexts. PMID:22289780

  11. Inhibition of Protein Synthesis by Y Box-Binding Protein 1 Blocks Oncogenic Cell Transformation†

    PubMed Central

    Bader, Andreas G.; Vogt, Peter K.

    2005-01-01

    The multifunctional Y box-binding protein 1 (YB-1) is transcriptionally repressed by the oncogenic phosphoinositide 3-kinase (PI3K) pathway (with P3K as an oncogenic homolog of the catalytic subunit) and, when reexpressed with the retroviral vector RCAS, interferes with P3K- and Akt-induced transformation of chicken embryo fibroblasts. Retrovirally expressed YB-1 binds to the cap of mRNAs and inhibits cap-dependent and cap-independent translation. To determine the requirements for the inhibitory role of YB-1 in P3K-induced transformation, we conducted a mutational analysis, measuring YB-1-induced interference with transformation, subcellular localization, cap binding, mRNA binding, homodimerization, and inhibition of translation. The results show that (i) interference with transformation requires RNA binding and a C-terminal domain that is distinct from the cytoplasmic retention domain, (ii) interference with transformation is tightly correlated with inhibition of translation, and (iii) masking of mRNAs by YB-1 is not sufficient to block transformation or to inhibit translation. We identified a noncanonical nuclear localization signal (NLS) in the C-terminal half of YB-1. A mutant lacking the NLS retains its ability to interfere with transformation, indicating that a nuclear function is not required. These results suggest that YB-1 interferes with P3K-induced transformation by a specific inhibition of translation through its RNA-binding domain and a region in the C-terminal domain. Potential functions of the C-terminal region are discussed. PMID:15743808

  12. Long-range gap junctional signaling controls oncogene-mediated tumorigenesis in Xenopus laevis embryos

    PubMed Central

    Chernet, Brook T.; Fields, Chris; Levin, Michael

    2015-01-01

    In addition to the immediate microenvironment, long-range signaling may be an important component of cancer. Molecular-genetic analyses have implicated gap junctions—key mediators of cell-cell communication—in carcinogenesis. We recently showed that the resting voltage potential of distant cell groups is a key determinant of metastatic transformation and tumor induction. Here, we show in the Xenopus laevis model that gap junctional communication (GJC) is a modulator of the long-range bioelectric signaling that regulates tumor formation. Genetic disruption of GJC taking place within tumors, within remote host tissues, or between the host and tumors significantly lowers the incidence of tumors induced by KRAS mutations. The most pronounced suppression of tumor incidence was observed upon GJC disruption taking place farther away from oncogene-expressing cells, revealing a role for GJC in distant cells in the control of tumor growth. In contrast, enhanced GJC communication through the overexpression of wild-type connexin Cx26 increased tumor incidence. Our data confirm a role for GJC in tumorigenesis, and reveal that this effect is non-local. Based on these results and on published data on movement of ions through GJs, we present a quantitative model linking the GJC coupling and bioelectrical state of cells to the ability of oncogenes to initiate tumorigenesis. When integrated with data on endogenous bioelectric signaling during left-right patterning, the model predicts differential tumor incidence outcomes depending on the spatial configurations of gap junction paths relative to tumor location and major anatomical body axes. Testing these predictions, we found that the strongest influence of GJ modulation on tumor suppression by hyperpolarization occurred along the embryonic left-right axis. Together, these data reveal new, long-range aspects of cancer control by the host's physiological parameters. PMID:25646081

  13. Oncogenic Intra-p53 Family Member Interactions in Human Cancers

    PubMed Central

    Ferraiuolo, Maria; Di Agostino, Silvia; Blandino, Giovanni; Strano, Sabrina

    2016-01-01

    The p53 gene family members p53, p73, and p63 display several isoforms derived from the presence of internal promoters and alternative splicing events. They are structural homologs but hold peculiar functional properties. p53, p73, and p63 are tumor suppressor genes that promote differentiation, senescence, and apoptosis. p53, unlike p73 and p63, is frequently mutated in cancer often displaying oncogenic “gain of function” activities correlated with the induction of proliferation, invasion, chemoresistance, and genomic instability in cancer cells. These oncogenic functions are promoted either by the aberrant transcriptional cooperation of mutant p53 (mutp53) with transcription cofactors (e.g., NF-Y, E2F1, Vitamin D Receptor, Ets-1, NF-kB and YAP) or by the interaction with the p53 family members, p73 and p63, determining their functional inactivation. The instauration of these aberrant transcriptional networks leads to increased cell growth, low activation of DNA damage response pathways (DNA damage response and DNA double-strand breaks response), enhanced invasion, and high chemoresistance to different conventional chemotherapeutic treatments. Several studies have clearly shown that different cancers harboring mutant p53 proteins exhibit a poor prognosis when compared to those carrying wild-type p53 (wt-p53) protein. The interference of mutantp53/p73 and/or mutantp53/p63 interactions, thereby restoring p53, p73, and p63 tumor suppression functions, could be among the potential therapeutic strategies for the treatment of mutant p53 human cancers. PMID:27066457

  14. BRAF inhibitor resistance mediated by the AKT pathway in an oncogenic BRAF mouse melanoma model.

    PubMed

    Perna, Daniele; Karreth, Florian A; Rust, Alistair G; Perez-Mancera, Pedro A; Rashid, Mamunur; Iorio, Francesco; Alifrangis, Constantine; Arends, Mark J; Bosenberg, Marcus W; Bollag, Gideon; Tuveson, David A; Adams, David J

    2015-02-10

    BRAF (v-raf murine sarcoma viral oncogene homolog B) inhibitors elicit a transient anti-tumor response in ∼ 80% of BRAF(V600)-mutant melanoma patients that almost uniformly precedes the emergence of resistance. Here we used a mouse model of melanoma in which melanocyte-specific expression of Braf(V618E) (analogous to the human BRAF(V600E) mutation) led to the development of skin hyperpigmentation and nevi, as well as melanoma formation with incomplete penetrance. Sleeping Beauty insertional mutagenesis in this model led to accelerated and fully penetrant melanomagenesis and synchronous tumor formation. Treatment of Braf(V618E) transposon mice with the BRAF inhibitor PLX4720 resulted in tumor regression followed by relapse. Analysis of transposon insertions identified eight genes including Braf, Mitf, and ERas (ES-cell expressed Ras) as candidate resistance genes. Expression of ERAS in human melanoma cell lines conferred resistance to PLX4720 and induced hyperphosphorylation of AKT (v-akt murine thymoma viral oncogene homolog 1), a phenotype reverted by combinatorial treatment with PLX4720 and the AKT inhibitor MK2206. We show that ERAS expression elicits a prosurvival signal associated with phosphorylation/inactivation of BAD, and that the resistance of hepatocyte growth factor-treated human melanoma cells to PLX4720 can be reverted by treatment with the BAD-like BH3 mimetic ABT-737. Thus, we define a role for the AKT/BAD pathway in resistance to BRAF inhibition and illustrate an in vivo approach for finding drug resistance genes. PMID:25624498

  15. Eukaryotic Elongation Factor 2 Kinase Activity Is Controlled by Multiple Inputs from Oncogenic Signaling

    PubMed Central

    Wang, Xuemin; Regufe da Mota, Sergio; Liu, Rui; Moore, Claire E.; Xie, Jianling; Lanucara, Francesco; Agarwala, Usha; Pyr dit Ruys, Sébastien; Vertommen, Didier; Rider, Mark H.; Eyers, Claire E.

    2014-01-01

    Eukaryotic elongation factor 2 kinase (eEF2K), an atypical calmodulin-dependent protein kinase, phosphorylates and inhibits eEF2, slowing down translation elongation. eEF2K contains an N-terminal catalytic domain, a C-terminal α-helical region and a linker containing several regulatory phosphorylation sites. eEF2K is expressed at high levels in certain cancers, where it may act to help cell survival, e.g., during nutrient starvation. However, it is a negative regulator of protein synthesis and thus cell growth, suggesting that cancer cells may possess mechanisms to inhibit eEF2K under good growth conditions, to allow protein synthesis to proceed. We show here that the mTORC1 pathway and the oncogenic Ras/Raf/MEK/extracellular signal-regulated kinase (ERK) pathway cooperate to restrict eEF2K activity. We identify multiple sites in eEF2K whose phosphorylation is regulated by mTORC1 and/or ERK, including new ones in the linker region. We demonstrate that certain sites are phosphorylated directly by mTOR or ERK. Our data reveal that glycogen synthase kinase 3 signaling also regulates eEF2 phosphorylation. In addition, we show that phosphorylation sites remote from the N-terminal calmodulin-binding motif regulate the phosphorylation of N-terminal sites that control CaM binding. Mutations in the former sites, which occur in cancer cells, cause the activation of eEF2K. eEF2K is thus regulated by a network of oncogenic signaling pathways. PMID:25182533

  16. Retention of oncogenicity by a Marek's disease virus mutant lacking six unique short region genes.

    PubMed

    Parcells, M S; Anderson, A S; Morgan, T W

    1995-12-01

    We previously reported the construction of Marek's disease virus (MDV) strains having mutations in various genes that map to the unique short (US) region of the viral genome (J.L. Cantello, A.S. Anderson, A. Francesconi, and R.W. Morgan, J. Virol. 65:1584-1588, 1991; M.S. Parcells, A.S. Anderson, and R.W. Morgan, Virus Genes 9:5-13, 1994; M.S. Parcells, A.S. Anderson, and R.W. Morgan, J. Virol. 68:8239-8253, 1994). These strains were constructed by using a high-passage-level serotype 1 MDV strain which grew well in chicken embryo fibroblasts. Despite the growth of the parent and mutant viruses in cell culture, in vivo studies were limited by poor growth of these strains in chickens. One of the mutants studied lacked 4.5 kbp of US region DNA and contained the lacZ gene of Escherichia coli inserted at the site of the deletion. The deletion removed MDV homologs to the US1, US2, and US10 genes of herpes simplex virus type 1 as well as three MDV-specific open reading frames. We now report the construction of a mutant MDV containing a similar deletion in the US region of the highly oncogenic RB1B strain. This mutant, RB1B delta 4.5lac, had a growth impairment in established chicken embryo fibroblasts similar to that described previously for MDVs lacking a functional US1 gene. In chickens, RB1B delta 4.5lac showed decreased early cytolytic infection, mortality, tumor incidence, and horizontal transmission. Several lymphoblastoid cell lines were established from RB1B delta 4.5lac-induced tumors, and virus reactivated from these cell lines was LacZ+. These results indicate that the deleted genes are nonessential for the transformation of chicken T cells or for the establishment and maintenance of latency. On the basis of the growth impairment observed for RB1B delta 4.5lac in cell culture and in vivo, we conclude that deletion of these genes affects the lytic replication of MDV. This is the first MDV mutant constructed in the RB1B oncogenic strain, and the methodology

  17. Rarity of CDK4 germline mutations in familial melanoma.

    PubMed

    Goldstein, A M; Chidambaram, A; Halpern, A; Holly, E A; Guerry IV, D; Sagebiel, R; Elder, D E; Tucker, M A

    2002-02-01

    To date, two genes have been implicated in melanoma pathogenesis. The first, CDKN2A, is a tumour suppressor gene with germline mutations detected in 20% of melanoma-prone families. The second, CDK4, is an oncogene with co-segregating germline mutations detected in only three kindreds worldwide. We examined 16 American melanoma-prone families for mutations in all coding exons of CDK4 and screened additional members of two previously reported families with the Arg24Cys germline CDK4 mutation to evaluate the penetrance of the mutation. No new CDK4 mutations were identified. In the two Arg24Cys families, the penetrance was estimated to be 63%. Overall, 12 out of 12 invasive melanoma patients, none out of one in situ melanoma patient, five out of 13 dysplastic naevi patients, two out of 15 unaffected family members, and none out of 10 spouses carried the Arg24Cys mutation. Dysplastic naevi did not strongly co-segregate with the Arg24Cys mutation. Thus the phenotype observed in melanoma-prone CDK4 families appears to be more complex than just the CDK4 mutation. Both genetic and environmental factors are likely to contribute to the occurrence of melanoma and dysplastic naevi in these families. In summary, although CDK4 is a melanoma susceptibility gene, it plays a minor role in hereditary melanoma.

  18. Mutation-induced protein interaction kinetics changes affect apoptotic network dynamic properties and facilitate oncogenesis

    PubMed Central

    Zhao, Linjie; Sun, Tanlin; Pei, Jianfeng; Ouyang, Qi

    2015-01-01

    It has been a consensus in cancer research that cancer is a disease caused primarily by genomic alterations, especially somatic mutations. However, the mechanism of mutation-induced oncogenesis is not fully understood. Here, we used the mitochondrial apoptotic pathway as a case study and performed a systematic analysis of integrating pathway dynamics with protein interaction kinetics to quantitatively investigate the causal molecular mechanism of mutation-induced oncogenesis. A mathematical model of the regulatory network was constructed to establish the functional role of dynamic bifurcation in the apoptotic process. The oncogenic mutation enrichment of each of the protein functional domains involved was found strongly correlated with the parameter sensitivity of the bifurcation point. We further dissected the causal mechanism underlying this correlation by evaluating the mutational influence on protein interaction kinetics using molecular dynamics simulation. We analyzed 29 matched mutant–wild-type and 16 matched SNP—wild-type protein systems. We found that the binding kinetics changes reflected by the changes of free energy changes induced by protein interaction mutations, which induce variations in the sensitive parameters of the bifurcation point, were a major cause of apoptosis pathway dysfunction, and mutations involved in sensitive interaction domains show high oncogenic potential. Our analysis provided a molecular basis for connecting protein mutations, protein interaction kinetics, network dynamics properties, and physiological function of a regulatory network. These insights provide a framework for coupling mutation genotype to tumorigenesis phenotype and help elucidate the logic of cancer initiation. PMID:26170328

  19. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes

    PubMed Central

    Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A.; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki

    2016-01-01

    Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes. PMID:27225414

  20. Mutation-induced protein interaction kinetics changes affect apoptotic network dynamic properties and facilitate oncogenesis.

    PubMed

    Zhao, Linjie; Sun, Tanlin; Pei, Jianfeng; Ouyang, Qi

    2015-07-28

    It has been a consensus in cancer research that cancer is a disease caused primarily by genomic alterations, especially somatic mutations. However, the mechanism of mutation-induced oncogenesis is not fully understood. Here, we used the mitochondrial apoptotic pathway as a case study and performed a systematic analysis of integrating pathway dynamics with protein interaction kinetics to quantitatively investigate the causal molecular mechanism of mutation-induced oncogenesis. A mathematical model of the regulatory network was constructed to establish the functional role of dynamic bifurcation in the apoptotic process. The oncogenic mutation enrichment of each of the protein functional domains involved was found strongly correlated with the parameter sensitivity of the bifurcation point. We further dissected the causal mechanism underlying this correlation by evaluating the mutational influence on protein interaction kinetics using molecular dynamics simulation. We analyzed 29 matched mutant-wild-type and 16 matched SNP--wild-type protein systems. We found that the binding kinetics changes reflected by the changes of free energy changes induced by protein interaction mutations, which induce variations in the sensitive parameters of the bifurcation point, were a major cause of apoptosis pathway dysfunction, and mutations involved in sensitive interaction domains show high oncogenic potential. Our analysis provided a molecular basis for connecting protein mutations, protein interaction kinetics, network dynamics properties, and physiological function of a regulatory network. These insights provide a framework for coupling mutation genotype to tumorigenesis phenotype and help elucidate the logic of cancer initiation.

  1. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes.

    PubMed

    Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki

    2016-01-01

    Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes. PMID:27225414

  2. Functional implications of mitochondrial reactive oxygen species generated by oncogenic viruses

    PubMed Central

    Choi, Young Bong; Harhaj, Edward William

    2014-01-01

    Between 15–20% of human cancers are associated with infection by oncogenic viruses. Oncogenic viruses, including HPV, HBV, HCV and HTLV-1, target mitochondria to influence cell proliferation and survival. Oncogenic viral gene products also trigger the production of reactive oxygen species which can elicit oxidative DNA damage and potentiate oncogenic host signaling pathways. Viral oncogenes may also subvert mitochondria quality control mechanisms such as mitophagy and metabolic adaptation pathways to promote virus replication. Here, we will review recent progress on viral regulation of mitophagy and metabolic adaptation and their roles in viral oncogenesis. PMID:25580106

  3. The potential role of PHF6 as an oncogene: a genotranscriptomic/proteomic meta-analysis.

    PubMed

    Hajjari, Mohammadreza; Salavaty, Abbas; Crea, Francesco; Kee Shin, Young

    2016-04-01

    Epigenetic complexes control various pathways within the cells. Their abnormalities can be involved in the initiation and the progression of different types of cancer. Nucleosome remodeling and deacetylase (NuRD) is an epigenetic complex that comprises several subunits such as PHF6. Although PHF6 is reported as a tumor suppressor in some of the hematopoietic malignancies, its function is still challenging in other cancers. Our study aimed at investigating the role of PHF6 in different types of cancer. We conducted a meta-analysis of PHF6 in human cancers at genomic, transcriptomic, and proteomic levels. For this purpose, we acquired the data from several databases, and tried to statistically integrate and analyze the data in order to find the potential role of PHF6 in different tumors. The results demonstrated that although PHF6 has been previously known as a tumor suppressor gene, it was remarkably overexpressed in many cancer types such as breast and colorectal cancers. Notably, PHF6 was under-expressed in a few types of cancer, including esophageal tumors. Moreover, the results indicated that although the mutation rate of PHF6 is relatively low, it is mutated in some tumor types.  In addition, our data for 40 epigenetic genes showed that missense and nonsense mutations were associated with overexpression and under-expression, respectively. Our results suggest that PHF6 may function as an oncogenic factor in several types of cancer. We also hypothesize that PHF6 may also play its role in a tissue-specific manner. Our findings suggest further investigations regarding the exact role of PHF6 in tumor types.

  4. The potential role of PHF6 as an oncogene: a genotranscriptomic/proteomic meta-analysis.

    PubMed

    Hajjari, Mohammadreza; Salavaty, Abbas; Crea, Francesco; Kee Shin, Young

    2016-04-01

    Epigenetic complexes control various pathways within the cells. Their abnormalities can be involved in the initiation and the progression of different types of cancer. Nucleosome remodeling and deacetylase (NuRD) is an epigenetic complex that comprises several subunits such as PHF6. Although PHF6 is reported as a tumor suppressor in some of the hematopoietic malignancies, its function is still challenging in other cancers. Our study aimed at investigating the role of PHF6 in different types of cancer. We conducted a meta-analysis of PHF6 in human cancers at genomic, transcriptomic, and proteomic levels. For this purpose, we acquired the data from several databases, and tried to statistically integrate and analyze the data in order to find the potential role of PHF6 in different tumors. The results demonstrated that although PHF6 has been previously known as a tumor suppressor gene, it was remarkably overexpressed in many cancer types such as breast and colorectal cancers. Notably, PHF6 was under-expressed in a few types of cancer, including esophageal tumors. Moreover, the results indicated that although the mutation rate of PHF6 is relatively low, it is mutated in some tumor types.  In addition, our data for 40 epigenetic genes showed that missense and nonsense mutations were associated with overexpression and under-expression, respectively. Our results suggest that PHF6 may function as an oncogenic factor in several types of cancer. We also hypothesize that PHF6 may also play its role in a tissue-specific manner. Our findings suggest further investigations regarding the exact role of PHF6 in tumor types. PMID:26561469

  5. Expression of ras oncogenes in cultured human cells alters the transcriptional and posttranscriptional regulation of cytokine genes.

    PubMed Central

    Demetri, G D; Ernst, T J; Pratt, E S; Zenzie, B W; Rheinwald, J G; Griffin, J D

    1990-01-01

    Autonomous production of cytokines such as the hematopoietic colony-stimulating factors (CSFs), IL-1, or IL-6 has been demonstrated in numerous human and murine neoplasms, and may be involved in the pathogenesis of several paraneoplastic syndromes such as leukocytosis, fever, and hypercalcemia. Because of the high frequency with which mutations in ras protooncogenes have been detected in human tumors, as well as evidence linking ras gene products to activation of certain cellular functions, we investigated whether ras mutations might influence the regulation of cytokine genes. Normal human fibroblasts transfected with a mutant val12 H-ras oncogene expressed increased levels of mRNA transcripts encoding granulocyte-CSF (G-CSF), granulocyte-macrophage-CSF (GM-CSF), and IL-1 beta compared with controls. Human mesothelioma cells transfected with a mutant asp12 N-ras oncogene exhibited similar alterations in cytokine gene expression. Estimates of transcriptional activity by nuclear run-on analysis revealed a selective increase in transcription only for the IL-1 gene. Analysis of mRNA half-life demonstrated a marked increase in the stability of numerous cytokine transcripts, including G-CSF, GM-CSF, IL-1, and IL-6. The addition of anti-IL-1 neutralizing antibody to cultures of cells expressing ras mutants did not block the expression of any of the cytokines examined, suggesting that the baseline expression of GM-CSF, G-CSF, and IL-6 was not a secondary event due to the increased transcription of IL-1. These results indicate that mutations in ras genes may alter expression of several cytokine genes through both transcriptional and posttranscriptional mechanisms. Images PMID:2212010

  6. Regulation of oncogene-induced cell cycle exit and senescence by chromatin modifiers

    PubMed Central

    David, Gregory

    2012-01-01

    Oncogene activation leads to dramatic changes in numerous biological pathways controlling cellular division, and results in the initiation of a transcriptional program that promotes transformation. Conversely, it also triggers an irreversible cell cycle exit called cellular senescence, which allows the organism to counteract the potentially detrimental uncontrolled proliferation of damaged cells. Therefore, a tight transcriptional control is required at the onset of oncogenic signal, coordinating both positive and negative regulation of gene expression. Not surprisingly, numerous chromatin modifiers contribute to the cellular response to oncogenic stress. While these chromatin modifiers were initially thought of as mere mediators of the cellular response to oncogenic stress, recent studies have uncovered a direct and specific regulation of chromatin modifiers by oncogenic signals. We review here the diverse functions of chromatin modifiers in the cellular response to oncogenic stress, and discuss the implications of these findings on the regulation of cell cycle progression and proliferation by activated oncogenes. PMID:22825329

  7. Overcoming resistance to first/second generation epidermal growth factor receptor tyrosine kinase inhibitors and ALK inhibitors in oncogene-addicted advanced non-small cell lung cancer

    PubMed Central

    Romanidou, Ourania; Landi, Lorenza; Cappuzzo, Federico; Califano, Raffaele

    2016-01-01

    Epidermal growth factor receptor (EGFR) activating mutations and anaplastic lymphoma kinase (ALK) gene rearrangement in advanced non-small cell lung cancer (NSCLC) represent the two oncogenic events with an impact on current clinical practice. EGFR tyrosine kinase inhibitors (TKIs) and crizotinib are the standard of care for the treatment of EGFR mutant and ALK gene rearranged advanced NSCLC patients. Unfortunately, despite initial clinical benefit, acquired resistance to EGFR-TKIs or crizotinib usually develops after an average of 10–12 months of treatment. The aim of this review is to describe the mechanisms of resistance to first/second generation EGFR-TKIs and crizotinib. In particular, we focus on strategies to overcome resistance due to secondary EGFR T790M mutation and mutations of the ALK domain. PMID:27239236

  8. Malignant transformation of diploid human fibroblasts by transfection of oncogenes

    SciTech Connect

    McCormick, J.J.

    1992-01-01

    This document consist of brief reports prepared by postdoctoral students supported by the project, each describing his accomplishments under the grant. Topics include (1) Malignant Transformation of MSU-1. 1 Cells by Gamma Radiation, (2) Correlation between Levels of ras Expression and Presence of Transformed Phenotypes Including Tumorigenicity, Using a Modulatable Promoter, (3) Relation between Specific rad Oncogene Expression, (4) Correlation of Genetic Changes in Fibroblastic Tumors with Malignancies, (5)Transformation of MSU-1.1 Cells by sis Oncogene, (6) Malignant Transformation of MSU-1.0 Cells, (7) Correlation of Urokinase Plasminogen Activation (mu-PA) with Malignant Phenotype, (8)Two Dimensional Gel Electrophoresis Studies of the Proteins of the Major Cell Strains of the MSU-1 Family of Cells, and (9) Correlation between Proteinase Activity Levels and Malignancy.

  9. SUMOylated IRF-1 shows oncogenic potential by mimicking IRF-2

    SciTech Connect

    Park, Sun-Mi; Chae, Myounghee; Kim, Bo-Kyoung; Seo, Taegun; Jang, Ik-Soon; Choi, Jong-Soon; Kim, Il-Chul; Lee, Je-Ho; Park, Junsoo

    2010-01-01

    Interferon regulatory factor-1 (IRF-1) is an interferon-induced transcriptional activator that suppresses tumors by impeding cell proliferation. Recently, we demonstrated that the level of SUMOylated IRF-1 is elevated in tumor cells, and that SUMOylation of IRF-1 attenuates its tumor-suppressive function. Here we report that SUMOylated IRF-1 mimics IRF-2, an antagonistic repressor, and shows oncogenic potential. To demonstrate the role of SUMOylated IRF-1 in tumorigenesis, we used SUMO-IRF-1 recombinant protein. Stable expression of SUMO-IRF-1 in NIH3T3 cells resulted in focus formation and anchorage-independent growth in soft agar. Inoculation of SUMO-IRF-1-transfected cells into athymic nude mice resulted in tumor formation and infiltration of adipose tissues. Finally, we demonstrated that SUMO-IRF-1 transforms NIH3T3 cells in a dose-dependent manner suggesting that SUMOylated IRF-1 may act as an oncogenic protein in tumor cells.

  10. The oncogenic action of ionizing radiation on rat skin

    SciTech Connect

    Burns, F.J.; Garte, S.J.

    1990-01-01

    An extensive experiment involving approximately 400 rats exposed to the neon ion beam at the Bevalac in Berkeley, CA and to electrons is nearing completion. Progress is described in three areas corresponding to the specific aims of the proposal: (1) carcinogenesis and DNA strand breaks in rat skin following exposure by the neon ions or electrons; (2) oncogene activation in radiation-induced rat skin cancers; (3) DNA strand breaks in the epidermis as a function of radiation penetration. 59 refs., 4 tabs.

  11. Oncogenic association of specific human papillomavirus types with cervical neoplasia.

    PubMed

    Lorincz, A T; Temple, G F; Kurman, R J; Jenson, A B; Lancaster, W D

    1987-10-01

    Molecular hybridization analysis of human papillomavirus (HPV) DNA from 190 cervical biopsy specimens from women in the United States, Brazil, and Peru revealed viral sequences in 2 (9%) of 23 biopsy specimens of normal mature squamous epithelium, 7 (44%) of 16 biopsy specimens of metaplastic squamous epithelia, 60 (77%) of 78 cervical intraepithelial neoplasia (CIN), 57 (89%) of 64 invasive squamous carcinomas, and 8 (89%) of 9 endocervical adenocarcinomas. HPV typing by DNA hybridization revealed HPV 6 and HPV 11 sequences in metaplastic squamous epithelia, CIN I, and CIN II, but not in CIN III lesions or invasive carcinomas. HPV 16 was detected in metaplastic epithelium and in nearly half of the invasive squamous carcinomas and adenocarcinomas. It was present in 31% of CIN lesions, increasing in frequency with the severity of CIN from 20% of CIN I to 50% of CIN III. HPV 16 showed a striking difference in geographic distribution, being detected in 36% of the carcinomas from the United States compared to 64% of the carcinomas from Brazil and Peru. HPV 18 was found in metaplastic epithelia and in 17% of carcinomas but in only 1% of CIN lesions. HPV 31 was not found in metaplastic epithelium but was present in 6% of carcinomas and in 18% of CIN lesions. In addition, a group of uncharacterized HPVs, not corresponding to any of the probes used, was found in 5% of normal and metaplastic epithelia and in 18% of CIN and 19% of invasive cancers. These results suggest that individual HPV types that infect the cervix have varying degrees of oncogenic association. HPV 6 and HPV 11 appear to have very little oncogenic association, HPV 31 has low oncogenic association, and HPV 16 and HPV 18 have high oncogenic association. PMID:2821311

  12. Oncogene regulation of tumor suppressor genes in tumorigenesis.

    PubMed

    Sung, Jimmy; Turner, Joel; McCarthy, Susan; Enkemann, Steve; Li, Chan Gong; Yan, Perally; Huang, Timothy; Yeatman, Timothy J

    2005-02-01

    We attempted to demonstrate whether there is an epigenetic link between oncogenes and tumor suppression genes in tumorigenesis. We designed a high throughput model to identify a candidate group of tumor suppressor genes potentially regulated by oncogenes. Gene expression profiling of mock-transfected versus v-src-transfected 3Y1 rat fibroblasts identified significant overexpression of DNA methyltransferase 1, the enzyme responsible for aberrant genome methylation, in v-src-transfected fibroblasts. Secondary microarray analyses identified a number of candidate tumor suppressor genes that were down-regulated by v-src but were also re-expressed following treatment with 5-aza-2'-deoxycytidine, a potent demethylating agent. This candidate group included both tumor suppressor genes that are known to be silenced by DNA hypermethylation and those that have not been previously identified with promoter hypermethylation. To further validate our model, we identified tsg, a tumor suppressor gene that was shown to be down-regulated by v-src and found to harbor dense promoter hypermethylation. Our model demonstrates a cooperative relationship between oncogenes and tumor suppressor genes mediated through promoter hypermethylation.

  13. Therapeutic opportunities involving cellular oncogenes: novel approaches fostered by biotechnology.

    PubMed

    Huber, B E

    1989-01-01

    Biotechnological processes are having a major impact on many industrial sectors, including the pharmaceutical industry. The contributions of recombinant DNA and hybridoma technologies to modern therapeutics include production of natural and unnatural peptides, subunit vaccines, monoclonal antibodies and nucleic acid hybridization probes for in vitro and in vivo diagnostics and biological imaging, therapeutic monoclonal antibodies as tissue-specific delivery systems or as agents to confer passive immunity, production of therapeutic targets for rational drug design, and the use of cloned enzymes as stereospecific catalysts in large-scale production of small medicinal molecules. Biotechnological advances have led to the identification of a discrete set of genes, oncogenes, which may be essential contributing factors for a great variety and number of human cancers. In addition, biotechnological innovations are fostering the exploitation of oncogenes as novel therapeutic targets for cancer diagnosis, prognosis, and treatment. Because oncogenes are activated in transformation by either qualitative or quantitative mechanisms, however, different biotechnology-based therapeutic approaches are required for each class.

  14. PRG3 induces Ras-dependent oncogenic cooperation in gliomas

    PubMed Central

    Yakubov, Eduard; Chen, Daishi; Broggini, Thomas; Sehm, Tina; Majernik, Gökce Hatipoglu; Hock, Stefan W.; Schwarz, Marc; Engelhorn, Tobias; Doerfler, Arnd; Buchfelder, Michael; Eyupoglu, Ilker Y.; Savaskan, Nicolai E.

    2016-01-01

    Malignant gliomas are one of the most devastating cancers in humans. One characteristic hallmark of malignant gliomas is their cellular heterogeneity with frequent genetic lesions and disturbed gene expression levels conferring selective growth advantage. Here, we report on the neuronal-associated growth promoting gene PRG3 executing oncogenic cooperation in gliomas. We have identified perturbed PRG3 levels in human malignant brain tumors displaying either elevated or down-regulated PRG3 levels compared to non-transformed specimens. Further, imbalanced PRG3 levels in gliomas foster Ras-driven oncogenic amplification with increased proliferation and cell migration although angiogenesis was unaffected. Hence, PRG3 interacts with RasGEF1 (RasGRF1/CDC25), undergoes Ras-induced challenges, whereas deletion of the C-terminal domain of PRG3 (PRG3ΔCT) inhibits Ras. Moreover PRG3 silencing makes gliomas resistant to Ras inhibition. In vivo disequilibrated PRG3 gliomas show aggravated proliferation, invasion, and deteriorate clinical outcome. Thus, our data show that the interference with PRG3 homeostasis amplifies oncogenic properties and foster the malignancy potential in gliomas. PMID:27058420

  15. Activation of oncogenes by radon progeny and x-rays

    SciTech Connect

    Ling, C.C.

    1990-01-01

    The overall goal of this proposal is to study the carcinogenic effect of both high and low LET radiation at the molecular level, utilizing techniques developed in molecular biology, cancer cell biology and radiation biology. The underlying assumption is that malignant transformation of normal cells is a multistep process requiring two or more molecular events in the genomic DNA. We hypothesize that radiation may induce such events in one or more steps of the multistep process. We will use in vitro models of transformation that reproduce the stepwise progression of normal cells toward the transformed phenotype and ask whether radiation can provide the necessary activating function at discrete steps along this path. Our strategy involves transfecting into normal primary cells a variety of cloned oncogenes that are known to supply only some of the functions necessary for full transformation. These partially transformed'' cells will be the targets for irradiation by x-rays and alpha particles. The results will provide the basis for assessing the ability of ionizing radiation to activate oncogenic functions that complement'' the oncogene already present in the transfected cells and produce the fully transformed phenotype. Progress is described. 121 refs.

  16. PVT1: a rising star among oncogenic long noncoding RNAs.

    PubMed

    Colombo, Teresa; Farina, Lorenzo; Macino, Giuseppe; Paci, Paola

    2015-01-01

    It is becoming increasingly clear that short and long noncoding RNAs critically participate in the regulation of cell growth, differentiation, and (mis)function. However, while the functional characterization of short non-coding RNAs has been reaching maturity, there is still a paucity of well characterized long noncoding RNAs, even though large studies in recent years are rapidly increasing the number of annotated ones. The long noncoding RNA PVT1 is encoded by a gene that has been long known since it resides in the well-known cancer risk region 8q24. However, a couple of accidental concurrent conditions have slowed down the study of this gene, that is, a preconception on the primacy of the protein-coding over noncoding RNAs and the prevalent interest in its neighbor MYC oncogene. Recent studies have brought PVT1 under the spotlight suggesting interesting models of functioning, such as competing endogenous RNA activity and regulation of protein stability of important oncogenes, primarily of the MYC oncogene. Despite some advancements in modelling the PVT1 role in cancer, there are many questions that remain unanswered concerning the precise molecular mechanisms underlying its functioning. PMID:25883951

  17. PVT1: A Rising Star among Oncogenic Long Noncoding RNAs

    PubMed Central

    Colombo, Teresa; Farina, Lorenzo; Macino, Giuseppe; Paci, Paola

    2015-01-01

    It is becoming increasingly clear that short and long noncoding RNAs critically participate in the regulation of cell growth, differentiation, and (mis)function. However, while the functional characterization of short non-coding RNAs has been reaching maturity, there is still a paucity of well characterized long noncoding RNAs, even though large studies in recent years are rapidly increasing the number of annotated ones. The long noncoding RNA PVT1 is encoded by a gene that has been long known since it resides in the well-known cancer risk region 8q24. However, a couple of accidental concurrent conditions have slowed down the study of this gene, that is, a preconception on the primacy of the protein-coding over noncoding RNAs and the prevalent interest in its neighbor MYC oncogene. Recent studies have brought PVT1 under the spotlight suggesting interesting models of functioning, such as competing endogenous RNA activity and regulation of protein stability of important oncogenes, primarily of the MYC oncogene. Despite some advancements in modelling the PVT1 role in cancer, there are many questions that remain unanswered concerning the precise molecular mechanisms underlying its functioning. PMID:25883951

  18. Utilizing signature-score to identify oncogenic pathways of cholangiocarcinoma

    PubMed Central

    Hsiao, Tzu-Hung; Chen, Hung-I Harry; Lu, Jo-Yang; Lin, Pei-Ying; Keller, Charles; Comerford, Sarah; Tomlinson, Gail E.; Chen, Yidong

    2013-01-01

    Extracting maximal information from gene signature sets (GSSs) via microarray-based transcriptional profiling involves assigning function to up and down regulated genes. Here we present a novel sample scoring method called Signature-score (S-score) which can be used to quantify the expression pattern of tumor samples from previously identified gene signature sets. A simulation result demonstrated an improved accuracy and robustness by S-score method comparing with other scoring methods. By applying the S-score method to cholangiocarcinoma (CAC), an aggressive hepatic cancer that arises from bile ducts cells, we identified enriched oncogenic pathways in two large CAC data sets. Thirteen pathways were enriched in CAC compared with normal liver and bile duct. Moreover, using S-score, we were able to dissect correlations between CAC-associated oncogenic pathways and Gene Ontology function. Two major oncogenic clusters and associated functions were identified. Cluster 1, which included beta-catenin and Ras, showed a positive correlation with the cell cycle, while cluster 2, which included TGF-beta, cytokeratin 19 and EpCAM was inversely correlated with immune function. We also used S-score to identify pathways that are differentially expressed in CAC and hepatocellular carcinoma (HCC), the more common subtype of liver cancer. Our results demonstrate the utility and effectiveness of S-score in assigning functional roles to tumor-associated gene signature sets and in identifying potential therapeutic targets for specific liver cancer subtypes. PMID:23905013

  19. Processing, secretion, and biological properties of a novel growth factor of the fibroblast growth factor family with oncogenic potential.

    PubMed Central

    Delli-Bovi, P; Curatola, A M; Newman, K M; Sato, Y; Moscatelli, D; Hewick, R M; Rifkin, D B; Basilico, C

    1988-01-01

    We recently reported that the protein encoded in a novel human oncogene isolated from Kaposi sarcoma DNA was a growth factor with significant homology to basic and acidic fibroblast growth factors (FGFs). To study the properties of this growth factor (referred to as K-FGF) and the mechanism by which the K-fgf oncogene transforms cells, we have studied the production and processing of K-FGF in COS-1 cells transfected with a plasmid encoding the K-fgf cDNA. The results show that, unlike basic and acidic FGFs, the K-FGF protein is cleaved after a signal peptide, glycosyla