Science.gov

Sample records for oncolytic viruses augments

  1. Targeting cancer stem cells with oncolytic virus

    PubMed Central

    Tong, Yin

    2014-01-01

    Cancer stem cells (CSCs) represent a distinct subpopulation of cancer cells which are shown to be relatively resistant to conventional anticancer therapies and have been correlated to disease recurrence. Oncolytic viruses utilize methods of cell killing that differ from traditional therapies and thus are able to elude the typical mechanisms that CSCs use to resist current chemotherapies and radiotherapies. Moreover, genetically engineered oncolytic viruses may further augment the oncolytic effects. Here we review the recent data regarding the ability of several oncolytic viruses to eradicate CSCs. PMID:27358866

  2. Evolution of oncolytic viruses.

    PubMed

    Sanjuán, Rafael; Grdzelishvili, Valery Z

    2015-08-01

    Owing to their replicative capacity, oncolytic viruses (OVs) can evolve under the action of natural selection. Reversion to virulence and recombination with wild-type strains may compromise OV safety, therefore requiring evolutionary risk assessment studies. On the other hand, evolution can be directed in the laboratory to create more potent and safer OVs. Previous work in the experimental evolution field provides a background for OV directed evolution, and has identified interesting exploitable features. While genetic engineering has greatly advanced the field of oncolytic virotherapy, this approach is sometimes curtailed by the complexity and diversity of virus-host interactions. Directed evolution provides an alternative approach that may help to obtain new OVs without prejudice toward the underlying molecular mechanisms involved. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Oncolytic virus therapy for cancer

    PubMed Central

    Goldufsky, Joe; Sivendran, Shanthi; Harcharik, Sara; Pan, Michael; Bernardo, Sebastian; Stern, Richard H; Friedlander, Philip; Ruby, Carl E; Saenger, Yvonne; Kaufman, Howard L

    2013-01-01

    The use of oncolytic viruses to treat cancer is based on the selection of tropic tumor viruses or the generation of replication selective vectors that can either directly kill infected tumor cells or increase their susceptibility to cell death and apoptosis through additional exposure to radiation or chemotherapy. In addition, viral vectors can be modified to promote more potent tumor cell death, improve the toxicity profile, and/or generate host antitumor immunity. A variety of viruses have been developed as oncolytic therapeutics, including adenovirus, vaccinia virus, herpesvirus, coxsackie A virus, Newcastle disease virus, and reovirus. The clinical development of oncolytic viral therapy has accelerated in the last few years, with several vectors entering clinical trials for a variety of cancers. In this review, current strategies to optimize the therapeutic effectiveness and safety of the major oncolytic viruses are discussed, and a summary of current clinical trials is provided. Further investigation is needed to characterize better the clinical impact of oncolytic viruses, but there are increasing data demonstrating the potential promise of this approach for the treatment of human and animal cancers. PMID:27512656

  4. Designing herpes viruses as oncolytics

    PubMed Central

    Peters, Cole; Rabkin, Samuel D

    2015-01-01

    Oncolytic herpes simplex virus (oHSV) was one of the first genetically-engineered oncolytic viruses. Because HSV is a natural human pathogen that can cause serious disease, it is incumbent that it can be genetically-engineered or significantly attenuated for safety. Here, we present a detailed explanation of the functions of HSV-1 genes frequently mutated to endow oncolytic activity. These genes are nonessential for growth in tissue culture cells but are important for growth in postmitotic cells, interfering with intrinsic antiviral and innate immune responses or causing pathology, functions dispensable for replication in cancer cells. Understanding the function of these genes leads to informed creation of new oHSVs with better therapeutic efficacy. Virus infection and replication can also be directed to cancer cells through tumor-selective receptor binding and transcriptional- or post-transcriptional miRNA-targeting, respectively. In addition to the direct effects of oHSV on infected cancer cells and tumors, oHSV can be “armed” with transgenes that are: reporters, to track virus replication and spread; cytotoxic, to kill uninfected tumor cells; immune modulatory, to stimulate antitumor immunity; or tumor microenvironment altering, to enhance virus spread or to inhibit tumor growth. In addition to HSV-1, other alphaherpesviruses are also discussed for their oncolytic activity. PMID:26462293

  5. "Armed" oncolytic herpes simplex viruses for brain tumor therapy.

    PubMed

    Todo, Tomoki

    2008-01-01

    Genetically engineered, conditionally replicating herpes simplex viruses type 1 (HSV-1) are promising therapeutic agents for brain tumors and other solid cancers. They can replicate in situ, spread and exhibit oncolytic activity via a direct cytocidal effect. One of the advantages of HSV-1 is the capacity to incorporate large and/or multiple transgenes within the viral genome. Oncolytic HSV-1 can therefore be "armed" to add certain functions. Recently, the field of armed oncolytic HSV-1 has drastically advanced, due to development of recombinant HSV-1 generation systems that utilize bacterial artificial chromosome and multiple DNA recombinases. Because antitumor immunity is induced in the course of oncolytic activities of HSV-1, transgenes encoding immunomodulatory molecules have been most frequently used for arming. Other armed oncolytic HSV-1 include those that express antiangiogenic factors, fusogenic membrane glycoproteins, suicide gene products, and proapoptotic proteins. Provided that the transgene product does not interfere with viral replication, such arming of oncolytic HSV-1 results in augmentation of antitumor efficacy. Immediate-early viral promoters are often used to control the arming transgenes, but strict-late viral promoters have been shown useful to restrict the expression in the late stage of viral replication when desirable. Some armed oncolytic HSV-1 have been created for the purpose of noninvasive in vivo imaging of viral infection and replication. Development of a wide variety of armed oncolytic HSV-1 will lead to an establishment of a new genre of therapy for brain tumors as well as other cancers.

  6. Virus, Oncolytic virus and Human Prostate Cancer.

    PubMed

    Liu, Guang Bin; Zhao, Liang; Zhang, Lifang; Zhao, Kong-Nan

    2016-12-15

    Prostate cancer (PCa), a disease, is characterized by abnormal cell growth in the prostate - a gland in the male reproductive system. PCa is one of the leading causes of cancer death among men of all races. Although older age and a family history of the disease have been recognized as the risk factors of PCa, the cause of this cancer remains unclear. Mounting evidence suggests that infections with various viruses are causally linked to PCa pathogenesis. Published studies have provided strong evidence that at least two viruses (RXMV and HPV) contribute to prostate tumourigenicity and impact on the survival of patients with malignant PCa. Traditional therapies including chemotherapy and radiotherapy are unable to distinguish cancer cells from normal cells, which are a significant drawback and leads to toxicities for PCa patients undergoing treatment. So far, few other options are available for treating patients with advanced PCa. Virotherapy is being developed to be a novel therapy for cancers, which uses oncotropic and oncolytic viruses with their abilities to find and destroy malignant cells in the body. For PCa treatment, oncolytic virotherapy appears to be much more attractive, which uses live viruses to selectively kill cancer cells. Oncolytic viruses can be genetically engineered to induce cancer cell lysis through virus replication and expression of cytotoxic proteins. As oncolytic viruses are a relatively new class of anti-cancer immunotherapy agents, several important barriers still exist on the road to the use of oncolytic viruses for PCa therapy. In this review, we first discuss the controversy of the contribution of virus infection to PCa, and subsequently summarize the development of oncolytic virotherapy for PCa in the past several years.

  7. Active immunotherapy: oncolytic virus therapy using HSV-1.

    PubMed

    Todo, Tomoki

    2012-01-01

    Conditionally replicating herpes simplex viruses Type 1 (HSV-1) are promising therapeutic agents for glioma. They can replicate in situ, spread and exhibit oncolytic activity via a direct cytocidal effect. In addition, specific antitumor immunity is effectively induced in the course of oncolytic activities. G47Δ is a genetically engineered HSV-1 with triple mutations that realized augmented viral replication in tumor cells, strong induction of antitumor immunity and enhanced safety in normal tissues. A clinical trial of G47Δ in patients with recurrent glioblastoma has started in 2009. One of the advantages of HSV-1 is its capacity to incorporate large and/or multiple transgenes within the viral genome. In preclinical studies, "arming" of an oncolytic HSV-1 with transgenes encoding immunomodulatory molecules, such as interleukin 12, has been shown to greatly augment the efficacy of oncolytic HSV-1 therapy. Oncolytic virus therapy using HSV-1 may be a useful treatment for glioma that can also function as an efficient in situ tumor vaccination.

  8. Oncolytic Myxoma Virus: The path to clinic

    PubMed Central

    Chan, Winnie M.; Rahman, Masmudur M.; McFadden, Grant

    2013-01-01

    Many common neoplasms are still noncurative with current standards of cancer therapy. More therapeutic modalities need to be developed to significantly prolong the lives of patients and eventually cure a wider spectrum of cancers. Oncolytic virotherapy is one of the promising new additions to clinical cancer therapeutics. Successful oncolytic virotherapy in the clinic will be those strategies that best combine tumor cell oncolysis with enhanced immune responses against tumor antigens. The current candidate oncolytic viruses all share the common property that they are relatively nonpathogenic to humans, yet they have the ability to replicate selectively in human cancer cells and induce cancer regression by direct oncolysis and/or induction of improved anti-tumor immune responses. Many candidate oncolytic viruses are in various stages of clinical and preclinical development. One such preclinical candidate is myxoma virus (MYXV), a member of the Poxviridae family that, in its natural setting, exhibits a very restricted host range and is only pathogenic to European rabbits. Despite its narrow host range in nature, MYXV has been shown to productively infect various classes of human cancer cells. Several preclinical in vivo modeling studies have demonstrated that MYXV is an attractive and safe candidate oncolytic virus, and hence, MYXV is currently being developed as a potential therapeutic for several cancers, such as pancreatic cancer, glioblastoma, ovarian cancer, melanoma, and hematologic malignancies. This review highlights the preclinical cancer models that have shown the most promise for translation of MYXV into human clinical trials. PMID:23726825

  9. Oncolytic myxoma virus: the path to clinic.

    PubMed

    Chan, Winnie M; Rahman, Masmudur M; McFadden, Grant

    2013-09-06

    Many common neoplasms are still noncurative with current standards of cancer therapy. More therapeutic modalities need to be developed to significantly prolong the lives of patients and eventually cure a wider spectrum of cancers. Oncolytic virotherapy is one of the promising new additions to clinical cancer therapeutics. Successful oncolytic virotherapy in the clinic will be those strategies that best combine tumor cell oncolysis with enhanced immune responses against tumor antigens. The current candidate oncolytic viruses all share the common property that they are relatively nonpathogenic to humans, yet they have the ability to replicate selectively in human cancer cells and induce cancer regression by direct oncolysis and/or induction of improved anti-tumor immune responses. Many candidate oncolytic viruses are in various stages of clinical and preclinical development. One such preclinical candidate is myxoma virus (MYXV), a member of the Poxviridae family that, in its natural setting, exhibits a very restricted host range and is only pathogenic to European rabbits. Despite its narrow host range in nature, MYXV has been shown to productively infect various classes of human cancer cells. Several preclinical in vivo modeling studies have demonstrated that MYXV is an attractive and safe candidate oncolytic virus, and hence, MYXV is currently being developed as a potential therapeutic for several cancers, such as pancreatic cancer, glioblastoma, ovarian cancer, melanoma, and hematologic malignancies. This review highlights the preclinical cancer models that have shown the most promise for translation of MYXV into human clinical trials.

  10. Theranostic Potential of Oncolytic Vaccinia Virus

    PubMed Central

    Rojas, Juan J; Thorne, Steve H

    2012-01-01

    Biological cancer therapies, such as oncolytic, or replication-selective viruses have advantages over traditional therapeutics as they can employ multiple different mechanisms to target and destroy cancers (including direct cell lysis, immune activation and vascular collapse). This has led to their rapid recent clinical development. However this also makes their pre-clinical and clinical study complex, as many parameters may affect their therapeutic potential and so defining reason for treatment failure or approaches that might enhance their therapeutic activity can be complicated. The ability to non-invasively image viral gene expression in vivo both in pre-clinical models and during clinical testing will considerably enhance the speed of oncolytic virus development as well as increasing the level and type of useful data produced from these studies. Further, subsequent to future clinical approval, imaging of reporter gene expression might be used to evaluate the likelihood of response to oncolytic viral therapy prior to changes in tumor burden. Here different reporter genes used in conjunction with oncolytic viral therapy are described, along with the imaging modalities used to measure their expression, while their applications both in pre-clinical and clinical testing are discussed. Possible future applications for reporter gene expression from oncolytic viruses in the phenotyping of tumors and the personalizing of treatment regimens are also discussed. PMID:22509200

  11. Oncolytic Virus: Regulatory Aspects from Quality Control to Clinical Studies.

    PubMed

    Yamaguchi, Teruhide; Uchida, Eriko

    2017-02-22

    Oncolytic viruses, which include both naturally occurring wild-type viruses/attenuated viruses and genetically modified viruses, have recently been developed for use in innovative cancer therapies. Genetically modified oncolytic viruses possess the unique ability to replicate conditionally as a unique gene therapy product. Since oncolytic viruses exhibit prolonged persistence in patients, viral shedding and transmission to third parties should be major concerns for clinical trials, along with the clinical safety and efficacy. Accordingly, studies are now underway to establish the safety and efficacy of oncolytic viruses.

  12. Advances in Oncolytic Virus Therapy for Glioma

    PubMed Central

    Haseley, Amy; Alvarez-Breckenridge, Christopher; Chaudhury, Abhik Ray; Kaur, Balveen

    2009-01-01

    The World Health Organization grossly classifies the various types of astrocytomas using a grade system with grade IV gliomas having the worst prognosis. Oncolytic virus therapy is a novel treatment option for GBM patients. Several patents describe various oncolytic viruses used in preclinical and clinical trials to evaluate safety and efficacy. These viruses are natural or genetically engineered from different viruses such as HSV-1, Adenovirus, Reovirus, and New Castle Disease Virus. While several anecdotal studies have indicated therapeutic advantage, recent clinical trials have revealed the safety of their usage, but demonstration of significant efficacy remains to be established. Oncolytic viruses are being redesigned with an interest in combating the tumor microenvironment in addition to defeating the cancerous cells. Several patents describe the inclusion of tumor microenvironment modulating genes within the viral backbone and in particular those which attack the tumor angiotome. The very innovative approaches being used to improve therapeutic efficacy include: design of viruses which can express cytokines to activate a systemic antitumor immune response, inclusion of angiostatic genes to combat tumor vasculature, and also enzymes capable of digesting tumor extra cellular matrix (ECM) to enhance viral spread through solid tumors. As increasingly more novel viruses are being tested and patented, the future battle against glioma looks promising. PMID:19149710

  13. Intelligent design: combination therapy with oncolytic viruses.

    PubMed

    Ottolino-Perry, Kathryn; Diallo, Jean-Simon; Lichty, Brian D; Bell, John C; McCart, J Andrea

    2010-02-01

    Metastatic cancer remains an incurable disease in the majority of cases and thus novel treatment strategies such as oncolytic virotherapy are rapidly advancing toward clinical use. In order to be successful, it is likely that some type of combination therapy will be necessary to have a meaningful impact on this disease. Although it may be tempting to simply combine an oncolytic virus with the existing standard radiation or chemotherapeutics, the long-term goal of such treatments must be to have a rational, potentially synergistic combination strategy that can be safely and easily used in the clinical setting. The combination of oncolytic virotherapy with existing radiotherapy and chemotherapy modalities is reviewed along with novel biologic therapies including immunotherapies, in order to help investigators make intelligent decisions during the clinical development of these products.

  14. Oncolytic virus therapy using genetically engineered herpes simplex viruses.

    PubMed

    Todo, Tomoki

    2008-01-01

    Genetically engineered, conditionally replicating herpes simplex viruses type 1 (HSV-1) are promising therapeutic agents for cancer. They can replicate in situ, spread, and exhibit oncolytic activity via a direct cytocidal effect. In addition, oncolytic HSV-1 can transfer and express foreign genes in host cells. The phase I clinical study with G207, a double-mutated HSV-1, in recurrent malignant glioma patients has shown that oncolytic HSV-1 can be safely administered into human brains. The therapeutic benefits of oncolytic HSV-1 depend on the extent of both intratumoral viral replication and induction of host antitumor immune responses. We develop new-generation oncolytic HSV-1 by enhancing these properties while retaining the safety features. G47delta was created from G207 by introducing another genetic mutation. Compared with G207, G47delta showed 1) better stimulation of human antitumor immune cells, 2) better growth properties leading to higher virus yields and increased cytopathic effect in vitro, 3) better antitumor efficacy in both immuno-competent and -incompetent animals, and 4) preserved safety in the brain of HSV-1-sensitive mice. Preparation is under way for a clinical trial using G47delta in progressive glioblastoma patients. G47delta is also suited as a backbone vector for expressing foreign molecules. Using bacterial artificial chromosome and two DNA recombinases, we have created an "armed" oncolytic HSV-1 generation system that allows insertion of transgene(s) into the genome of G47delta in a rapid and accurate manner. We found that expression of immunostimulatory molecules can significantly enhance the antitumor efficacy of G47delta. Based on these advances, we anticipate that oncolytic virus therapy using oncolytic HSV-1 will soon be established as an important modality of cancer treatment.

  15. Retargeting Strategies for Oncolytic Herpes Simplex Viruses.

    PubMed

    Campadelli-Fiume, Gabriella; Petrovic, Biljana; Leoni, Valerio; Gianni, Tatiana; Avitabile, Elisa; Casiraghi, Costanza; Gatta, Valentina

    2016-02-26

    Most of the oncolytic herpes simplex viruses (HSVs) exhibit a high safety profile achieved through attenuation. They carry defects in virulence proteins that antagonize host cell response to the virus, including innate response, apoptosis, authophagy, and depend on tumor cell proliferation. They grow robustly in cancer cells, provided that these are deficient in host cell responses, which is often the case. To overcome the attenuation limits, a strategy is to render the virus highly cancer-specific, e.g., by retargeting their tropism to cancer-specific receptors, and detargeting from natural receptors. The target we selected is HER-2, overexpressed in breast, ovarian and other cancers. Entry of wt-HSV requires the essential glycoproteins gD, gH/gL and gB. Here, we reviewed that oncolytic HSV retargeting was achieved through modifications in gD: the addition of a single-chain antibody (scFv) to HER-2 coupled with appropriate deletions to remove part of the natural receptors' binding sites. Recently, we showed that also gH/gL can be a retargeting tool. The insertion of an scFv to HER-2 at the gH N-terminus, coupled with deletions in gD, led to a recombinant capable to use HER-2 as the sole receptor. The retargeted oncolytic HSVs can be administered systemically by means of carrier cells-forcedly-infected mesenchymal stem cells. Altogether, the retargeted oncolytic HSVs are highly cancer-specific and their replication is not dependent on intrinsic defects of the tumor cells. They might be further modified to express immunomodulatory molecules.

  16. Retargeting Strategies for Oncolytic Herpes Simplex Viruses

    PubMed Central

    Campadelli-Fiume, Gabriella; Petrovic, Biljana; Leoni, Valerio; Gianni, Tatiana; Avitabile, Elisa; Casiraghi, Costanza; Gatta, Valentina

    2016-01-01

    Most of the oncolytic herpes simplex viruses (HSVs) exhibit a high safety profile achieved through attenuation. They carry defects in virulence proteins that antagonize host cell response to the virus, including innate response, apoptosis, authophagy, and depend on tumor cell proliferation. They grow robustly in cancer cells, provided that these are deficient in host cell responses, which is often the case. To overcome the attenuation limits, a strategy is to render the virus highly cancer-specific, e.g., by retargeting their tropism to cancer-specific receptors, and detargeting from natural receptors. The target we selected is HER-2, overexpressed in breast, ovarian and other cancers. Entry of wt-HSV requires the essential glycoproteins gD, gH/gL and gB. Here, we reviewed that oncolytic HSV retargeting was achieved through modifications in gD: the addition of a single-chain antibody (scFv) to HER-2 coupled with appropriate deletions to remove part of the natural receptors’ binding sites. Recently, we showed that also gH/gL can be a retargeting tool. The insertion of an scFv to HER-2 at the gH N-terminus, coupled with deletions in gD, led to a recombinant capable to use HER-2 as the sole receptor. The retargeted oncolytic HSVs can be administered systemically by means of carrier cells-forcedly-infected mesenchymal stem cells. Altogether, the retargeted oncolytic HSVs are highly cancer-specific and their replication is not dependent on intrinsic defects of the tumor cells. They might be further modified to express immunomodulatory molecules. PMID:26927159

  17. ODE models for oncolytic virus dynamics

    PubMed Central

    Komarova, Natalia L.; Wodarz, Dominik

    2010-01-01

    Replicating oncolytic viruses are able to infect and lyse cancer cells and spread through the tumor, while leaving normal cells largely unharmed. This makes them potentially useful in cancer therapy, and a variety of viruses have shown promising results in clinical trials. Nevertheless, consistent success remains elusive and the correlates of success have been the subject of investigation, both from an experimental and a mathematical point of view. Mathematical modeling of oncolytic virus therapy is often limited by the fact that the predicted dynamics depend strongly on particular mathematical terms in the model, the nature of which remain uncertain. We aim to address this issue in the context of ODE modeling, by formulating a general computational framework that is independent of particular mathematical expressions. By analyzing this framework, we find some new insights into the conditions for successful virus therapy. We find that depending on our assumptions about the virus spread, there can be two distinct types of dynamics. In models of the first type (the “fast spread” models), we predict that the viruses can eliminate the tumor if the viral replication rate is sufficiently high. The second type of models is characterized by a suboptimal spread (the “slow spread” models). For such models, the simulated treatment may fail, even for very high viral replication rates. Our methodology can be used to study the dynamics of many biological systems, and thus has implications beyond the study of virus therapy of cancers. PMID:20085772

  18. Trial Watch-Oncolytic viruses and cancer therapy.

    PubMed

    Pol, Jonathan; Buqué, Aitziber; Aranda, Fernando; Bloy, Norma; Cremer, Isabelle; Eggermont, Alexander; Erbs, Philippe; Fucikova, Jitka; Galon, Jérôme; Limacher, Jean-Marc; Preville, Xavier; Sautès-Fridman, Catherine; Spisek, Radek; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2016-02-01

    Oncolytic virotherapy relies on the administration of non-pathogenic viral strains that selectively infect and kill malignant cells while favoring the elicitation of a therapeutically relevant tumor-targeting immune response. During the past few years, great efforts have been dedicated to the development of oncolytic viruses with improved specificity and potency. Such an intense wave of investigation has culminated this year in the regulatory approval by the US Food and Drug Administration (FDA) of a genetically engineered oncolytic viral strain for use in melanoma patients. Here, we summarize recent preclinical and clinical advances in oncolytic virotherapy.

  19. Retargeting of Viruses to Generate Oncolytic Agents

    PubMed Central

    Verheije, M. H.; Rottier, P. J. M.

    2012-01-01

    Oncolytic virus therapy is based on the ability of viruses to effectively infect and kill tumor cells without destroying the normal tissues. While some viruses seem to have a natural preference for tumor cells, most viruses require the modification of their tropism to specifically enter and replicate in such cells. This review aims to describe the transductional targeting strategies currently employed to specifically redirect viruses towards surface receptors on tumor cells. Three major strategies can be distinguished; they involve (i) the incorporation of new targeting specificity into a viral surface protein, (ii) the incorporation of a scaffold into a viral surface protein to allow the attachment of targeting moieties, and (iii) the use of bispecific adapters to mediate targeting of a virus to a specified moiety on a tumor cell. Of each strategy key features, advantages and limitations are discussed and examples are given. Because of their potential to cause sustained, multiround infection—a desirable characteristic for eradicating tumors—particular attention is given to viruses engineered to become self-targeted by the genomic expression of a bispecific adapter protein. PMID:22312365

  20. Therapeutic potential of oncolytic Newcastle disease virus: a critical review

    PubMed Central

    Tayeb, Shay; Zakay-Rones, Zichria; Panet, Amos

    2015-01-01

    Newcastle disease virus (NDV) features a natural preference for replication in many tumor cells compared with normal cells. The observed antitumor effect of NDV appears to be a result of both selective killing of tumor cells and induction of immune responses. Genetic manipulations to change viral tropism and arming the virus with genes encoding for cytokines improved the oncolytic capacity of NDV. Several intracellular proteins in tumor cells, including antiapoptotic proteins (Livin) and oncogenic proteins (H-Ras), are relevant for the oncolytic activity of NDV. Defects in the interferon system, found in some tumor cells, also contribute to the oncolytic selectivity of NDV. Notwithstanding, NDV displays effective oncolytic activity in many tumor types, despite having intact interferon signaling. Taken together, several cellular systems appear to dictate the selective oncolytic activity of NDV. Some barriers, such as neutralizing antibodies elicited during NDV treatment and the extracellular matrix in tumor tissue appear to interfere with spread of NDV and reduce oncolysis. To further understand the oncolytic activity of NDV, we compared two NDV strains, ie, an attenuated virus (NDV-HUJ) and a pathogenic virus (NDV-MTH-68/H). Significant differences in amino acid sequence were noted in several viral proteins, including the fusion precursor (F0) glycoprotein, an important determinant of replication and pathogenicity. However, no difference in the oncolytic activity of the two strains was noted using human tumor tissues maintained as organ cultures or in mouse tumor models. To optimize virotherapy in clinical trials, we describe here a unique organ culture methodology, using a biopsy taken from a patient’s tumor before treatment for ex vivo infection with NDV to determine the oncolytic potential on an individual basis. In conclusion, oncolytic NDV is an excellent candidate for cancer therapy, but more knowledge is needed to ensure success in clinical trials. PMID

  1. Attenuated oncolytic Measles Virus strains as cancer therapeutics

    PubMed Central

    Msaouel, P.; Iankov, I.D.; Dispenzieri, A.; Galanis, E.

    2011-01-01

    Attenuated measles virus vaccine strains have emerged as a promising oncolytic vector platform, having shown significant anti-tumor activity against a broad range of malignant neoplasms. Measles virus strains derived from the attenuated Edmonston-B (MV-Edm) vaccine lineage have been shown to selectively infect, replicate in and lyse cancer cells while causing minimal cytopathic effect on normal tissues. This review summarizes the preclinical data that led to the rapid clinical translation of oncolytic measles vaccine strains and provides an overview of early clinical data using this oncolytic platform. Furthermore, novel approaches currently under development to further enhance the oncolytic efficacy of MV-Edm strains, including strategies to circumvent immunity or modulate immune system responses, combinatorial approaches with standard treatment modalities, virus retargeting as well as strategies for in vivo monitoring of viral replication are discussed. PMID:21740361

  2. Oncolytic Viruses: Therapeutics With an Identity Crisis.

    PubMed

    Breitbach, Caroline J; Lichty, Brian D; Bell, John C

    2016-07-01

    Oncolytic viruses (OV) are replicating viral therapeutics for the treatment of cancer and have been in laboratory development for about twenty years. Recently, the FDA approved Imlygic, a herpes virus based therapeutic for the treatment of melanoma and thus OVs have entered a new era where they are a weapon in the armament of the oncologist. OVs are unique therapeutics with multiple mechanisms of therapeutic activity. The exact path for their development and eventual uptake by pharmaceutical companies is somewhat clouded by an uncertain identity. Are they vaccines, tumour lysing therapeutics, inducers of innate immunity, gene therapy vectors, anti-vascular agents or all of the above? Should they be developed as stand-alone loco-regional therapeutics, systemically delivered tumour hunters or immune modulators best tested as combination therapeutics? We summarize data here supporting the idea, depending upon the virus, that OVs can be any or all of these things. Pursuing a "one-size fits all" approach is counter-productive to their clinical development and instead as a field we should build on the strengths of individual virus platforms.

  3. Oncolytic viruses as therapeutic cancer vaccines

    PubMed Central

    2013-01-01

    Oncolytic viruses (OVs) are tumor-selective, multi-mechanistic antitumor agents. They kill infected cancer and associated endothelial cells via direct oncolysis, and uninfected cells via tumor vasculature targeting and bystander effect. Multimodal immunogenic cell death (ICD) together with autophagy often induced by OVs not only presents potent danger signals to dendritic cells but also efficiently cross-present tumor-associated antigens from cancer cells to dendritic cells to T cells to induce adaptive antitumor immunity. With this favorable immune backdrop, genetic engineering of OVs and rational combinations further potentiate OVs as cancer vaccines. OVs armed with GM-CSF (such as T-VEC and Pexa-Vec) or other immunostimulatory genes, induce potent anti-tumor immunity in both animal models and human patients. Combination with other immunotherapy regimens improve overall therapeutic efficacy. Coadministration with a HDAC inhibitor inhibits innate immunity transiently to promote infection and spread of OVs, and significantly enhances anti-tumor immunity and improves the therapeutic index. Local administration or OV mediated-expression of ligands for Toll-like receptors can rescue the function of tumor-infiltrating CD8+ T cells inhibited by the immunosuppressive tumor microenvironment and thus enhances the antitumor effect. Combination with cyclophosphamide further induces ICD, depletes Treg, and thus potentiates antitumor immunity. In summary, OVs properly armed or in rational combinations are potent therapeutic cancer vaccines. PMID:24020520

  4. Oncolytic Seneca Valley Virus: past perspectives and future directions

    PubMed Central

    Burke, Michael J

    2016-01-01

    Seneca Valley Virus isolate 001 (SVV-001) is an oncolytic RNA virus of the Picornaviridae family. It is also the first picornavirus discovered of the novel genus Senecavirus. SVV-001 replicates through an RNA intermediate, bypassing a DNA phase, and is unable to integrate into the host genome. SVV-001 was originally discovered as a contaminant in the cell culture of fetal retinoblasts and has since been identified as a potent oncolytic virus against tumors of neuroendocrine origin. SVV-001 has a number of features that make it an attractive oncolytic virus, namely, its ability to target and penetrate solid tumors via intravenous administration, inability for insertional mutagenesis, and being a self-replicating RNA virus with selective tropism for cancer cells. SVV-001 has been studied in both pediatric and adult early phase studies reporting safety and some clinical efficacy, albeit primarily in adult tumors. This review summarizes the current knowledge of SVV-001 and what its future as an oncolytic virus may hold. PMID:27660749

  5. Oncolytic Seneca Valley Virus: past perspectives and future directions.

    PubMed

    Burke, Michael J

    2016-01-01

    Seneca Valley Virus isolate 001 (SVV-001) is an oncolytic RNA virus of the Picornaviridae family. It is also the first picornavirus discovered of the novel genus Senecavirus. SVV-001 replicates through an RNA intermediate, bypassing a DNA phase, and is unable to integrate into the host genome. SVV-001 was originally discovered as a contaminant in the cell culture of fetal retinoblasts and has since been identified as a potent oncolytic virus against tumors of neuroendocrine origin. SVV-001 has a number of features that make it an attractive oncolytic virus, namely, its ability to target and penetrate solid tumors via intravenous administration, inability for insertional mutagenesis, and being a self-replicating RNA virus with selective tropism for cancer cells. SVV-001 has been studied in both pediatric and adult early phase studies reporting safety and some clinical efficacy, albeit primarily in adult tumors. This review summarizes the current knowledge of SVV-001 and what its future as an oncolytic virus may hold.

  6. Myxoma virus suppresses proliferation of activated T lymphocytes yet permits oncolytic virus transfer to cancer cells

    PubMed Central

    Villa, Nancy Y.; Wasserfall, Clive H.; Meacham, Amy M.; Wise, Elizabeth; Chan, Winnie; Wingard, John R.; McFadden, Grant

    2015-01-01

    Allogeneic hematopoietic cell transplant (allo-HCT) can be curative for certain hematologic malignancies, but the risk of graft-versus-host disease (GVHD) is a major limitation for wider application. Ideally, strategies to improve allo-HCT would involve suppression of T lymphocytes that drive GVHD while sparing those that mediate graft-versus-malignancy (GVM). Recently, using a xenograft model, we serendipitously discovered that myxoma virus (MYXV) prevented GVHD while permitting GVM. In this study, we show that MYXV binds to resting, primary human T lymphocytes but will only proceed into active virus infection after the T cells receive activation signals. MYXV-infected T lymphocytes exhibited impaired proliferation after activation with reduced expression of interferon-γ, interleukin-2 (IL-2), and soluble IL-2Rα, but did not affect expression of IL-4 and IL-10. MYXV suppressed T-cell proliferation in 2 patterns (full vs partial) depending on the donor. In terms of GVM, we show that MYXV-infected activated human T lymphocytes effectively deliver live oncolytic virus to human multiple myeloma cells, thus augmenting GVM by transfer of active oncolytic virus to residual cancer cells. Given this dual capacity of reducing GVHD plus increasing the antineoplastic effectiveness of GVM, ex vivo virotherapy with MYXV may be a promising clinical adjunct to allo-HCT regimens. PMID:25904246

  7. Myxoma virus suppresses proliferation of activated T lymphocytes yet permits oncolytic virus transfer to cancer cells.

    PubMed

    Villa, Nancy Y; Wasserfall, Clive H; Meacham, Amy M; Wise, Elizabeth; Chan, Winnie; Wingard, John R; McFadden, Grant; Cogle, Christopher R

    2015-06-11

    Allogeneic hematopoietic cell transplant (allo-HCT) can be curative for certain hematologic malignancies, but the risk of graft-versus-host disease (GVHD) is a major limitation for wider application. Ideally, strategies to improve allo-HCT would involve suppression of T lymphocytes that drive GVHD while sparing those that mediate graft-versus-malignancy (GVM). Recently, using a xenograft model, we serendipitously discovered that myxoma virus (MYXV) prevented GVHD while permitting GVM. In this study, we show that MYXV binds to resting, primary human T lymphocytes but will only proceed into active virus infection after the T cells receive activation signals. MYXV-infected T lymphocytes exhibited impaired proliferation after activation with reduced expression of interferon-γ, interleukin-2 (IL-2), and soluble IL-2Rα, but did not affect expression of IL-4 and IL-10. MYXV suppressed T-cell proliferation in 2 patterns (full vs partial) depending on the donor. In terms of GVM, we show that MYXV-infected activated human T lymphocytes effectively deliver live oncolytic virus to human multiple myeloma cells, thus augmenting GVM by transfer of active oncolytic virus to residual cancer cells. Given this dual capacity of reducing GVHD plus increasing the antineoplastic effectiveness of GVM, ex vivo virotherapy with MYXV may be a promising clinical adjunct to allo-HCT regimens.

  8. Aptamer-facilitated Protection of Oncolytic Virus from Neutralizing Antibodies

    PubMed Central

    Muharemagic, Darija; Zamay, Anna; Ghobadloo, Shahrokh M; Evgin, Laura; Savitskaya, Anna; Bell, John C; Berezovski, Maxim V

    2014-01-01

    Oncolytic viruses promise to significantly improve current cancer treatments through their tumor-selective replication and multimodal attack against cancer cells. However, one of the biggest setbacks for oncolytic virus therapy is the intravenous delivery of the virus, as it can be cleared from the bloodstream by neutralizing antibodies before it reaches the tumor cells. We have selected DNA aptamers against an oncolytic virus, vesicular stomatitis virus, using a competitive binding approach, as well as against the antigen binding fragment (Fab) of antivesicular stomatitis virus polyclonal antibodies, in order to shield the virus from nAbs and enhance its in vivo survival. We used flow cytometry to identify these aptamers and evaluated their efficiency to shield vesicular stomatitis virus in a cell-based plaque forming assay. These oligonucleotides were then modified to obtain multivalent binders, which led to a decrease of viral aggregation, an increase in its infectivity and an increase in its stability in serum. The aptamers were also incubated in nondiluted serum, showing their effectiveness under conditions mimicking those in vivo. With this approach, we were able to increase viral infectivity by more than 70% in the presence of neutralizing antibodies. Thus, this method has the potential to enhance the delivery of vesicular stomatitis virus through the bloodstream without compromising the patient's immune system. PMID:24892725

  9. Big Data Offers Novel Insights for Oncolytic Virus Immunotherapy

    PubMed Central

    Swift, Stephanie L.; Stojdl, David F.

    2016-01-01

    Large-scale assays, such as microarrays, next-generation sequencing and various “omics” technologies, have explored multiple aspects of the immune response following virus infection, often from a public health perspective. Yet a lack of similar data exists for monitoring immune engagement during oncolytic virus immunotherapy (OVIT) in the cancer setting. Tracking immune signatures at the tumour site can create a snapshot or longitudinally analyse immune cell activation, infiltration and functionality within global populations or individual cells. Mapping immune changes over the course of oncolytic biotherapy—from initial infection to tumour stabilisation/regression through to long-term cure or escape/relapse—has the potential to generate important therapeutic insights around virus-host interactions. Further, correlating such immune signatures with specific tumour outcomes has significant value for guiding the development of novel oncolytic virus immunotherapy strategies. Here, we provide insights for OVIT from large-scale analyses of immune populations in the infection, vaccination and immunotherapy setting. We analyse several approaches to manipulating immune engagement during OVIT. We further explore immunocentric changes in the tumour tissue following immunotherapy, and compile several immune signatures of therapeutic success. Ultimately, we highlight clinically relevant large-scale approaches with the potential to strengthen future oncolytic strategies to optimally engage the immune system. PMID:26861383

  10. Big Data Offers Novel Insights for Oncolytic Virus Immunotherapy.

    PubMed

    Swift, Stephanie L; Stojdl, David F

    2016-02-05

    Large-scale assays, such as microarrays, next-generation sequencing and various "omics" technologies, have explored multiple aspects of the immune response following virus infection, often from a public health perspective. Yet a lack of similar data exists for monitoring immune engagement during oncolytic virus immunotherapy (OVIT) in the cancer setting. Tracking immune signatures at the tumour site can create a snapshot or longitudinally analyse immune cell activation, infiltration and functionality within global populations or individual cells. Mapping immune changes over the course of oncolytic biotherapy-from initial infection to tumour stabilisation/regression through to long-term cure or escape/relapse-has the potential to generate important therapeutic insights around virus-host interactions. Further, correlating such immune signatures with specific tumour outcomes has significant value for guiding the development of novel oncolytic virus immunotherapy strategies. Here, we provide insights for OVIT from large-scale analyses of immune populations in the infection, vaccination and immunotherapy setting. We analyse several approaches to manipulating immune engagement during OVIT. We further explore immunocentric changes in the tumour tissue following immunotherapy, and compile several immune signatures of therapeutic success. Ultimately, we highlight clinically relevant large-scale approaches with the potential to strengthen future oncolytic strategies to optimally engage the immune system.

  11. Complete Genome Sequence of the Oncolytic Sendai virus Strain Moscow

    PubMed Central

    Zainutdinov, Sergei S.; Tikunov, Artem Y.; Matveeva, Olga V.

    2016-01-01

    We report here the complete genome sequence of Sendai virus Moscow strain. Anecdotal evidence for the efficacy of oncolytic virotherapy exists for this strain. The RNA genome of the Moscow strain is 15,384 nucleotides in length and differs from the nearest strain, BB1, by 18 nucleotides and 11 amino acids. PMID:27516510

  12. Computational modeling approaches to the dynamics of oncolytic viruses

    PubMed Central

    Wodarz, Dominik

    2016-01-01

    Replicating oncolytic viruses represent a promising treatment approach against cancer, specifically targeting the tumor cells. Significant progress has been made through experimental and clinical studies. Besides these approaches, however, mathematical models can be useful when analyzing the dynamics of virus spread through tumors, because the interactions between a growing tumor and a replicating virus are complex and nonlinear, making them difficult to understand by experimentation alone. Mathematical models have provided significant biological insight into the field of virus dynamics, and similar approaches can be adopted to study oncolytic viruses. The review discusses this approach and highlights some of the challenges that need to be overcome in order to build mathematical and computation models that are clinically predictive. PMID:27001049

  13. Herpes Simplex Virus Oncolytic Therapy for Pediatric Malignancies

    PubMed Central

    Friedman, Gregory K; Pressey, Joseph G; Reddy, Alyssa T; Markert, James M; Gillespie, G Yancey

    2009-01-01

    Despite improving survival rates for children with cancer, a subset of patients exist with disease resistant to traditional therapies such as surgery, chemotherapy, and radiation. These patients require newer, targeted treatments used alone or in combination with more traditional approaches. Oncolytic herpes simplex virus (HSV) is one of these newer therapies that offer promise for several difficult to treat pediatric malignancies. The potential benefit of HSV therapy in pediatric solid tumors including brain tumors, neuroblastomas, and sarcomas is reviewed along with the many challenges that need to be addressed prior to moving oncolytic HSV therapy from the laboratory to the beside in the pediatric population. PMID:19367259

  14. Herpes simplex virus oncolytic therapy for pediatric malignancies.

    PubMed

    Friedman, Gregory K; Pressey, Joseph G; Reddy, Alyssa T; Markert, James M; Gillespie, G Yancey

    2009-07-01

    Despite improving survival rates for children with cancer, a subset of patients exist with disease resistant to traditional therapies such as surgery, chemotherapy, and radiation. These patients require newer, targeted treatments used alone or in combination with more traditional approaches. Oncolytic herpes simplex virus (HSV) is one of these newer therapies that offer promise for several difficult to treat pediatric malignancies. The potential benefit of HSV therapy in pediatric solid tumors including brain tumors, neuroblastomas, and sarcomas is reviewed along with the many challenges that need to be addressed prior to moving oncolytic HSV therapy from the laboratory to the beside in the pediatric population.

  15. Zika virus has oncolytic activity against glioblastoma stem cells.

    PubMed

    Zhu, Zhe; Gorman, Matthew J; McKenzie, Lisa D; Chai, Jiani N; Hubert, Christopher G; Prager, Briana C; Fernandez, Estefania; Richner, Justin M; Zhang, Rong; Shan, Chao; Tycksen, Eric; Wang, Xiuxing; Shi, Pei-Yong; Diamond, Michael S; Rich, Jeremy N; Chheda, Milan G

    2017-10-02

    Glioblastoma is a highly lethal brain cancer that frequently recurs in proximity to the original resection cavity. We explored the use of oncolytic virus therapy against glioblastoma with Zika virus (ZIKV), a flavivirus that induces cell death and differentiation of neural precursor cells in the developing fetus. ZIKV preferentially infected and killed glioblastoma stem cells (GSCs) relative to differentiated tumor progeny or normal neuronal cells. The effects against GSCs were not a general property of neurotropic flaviviruses, as West Nile virus indiscriminately killed both tumor and normal neural cells. ZIKV potently depleted patient-derived GSCs grown in culture and in organoids. Moreover, mice with glioblastoma survived substantially longer and at greater rates when the tumor was inoculated with a mouse-adapted strain of ZIKV. Our results suggest that ZIKV is an oncolytic virus that can preferentially target GSCs; thus, genetically modified strains that further optimize safety could have therapeutic efficacy for adult glioblastoma patients. © 2017 Zhu et al.

  16. Genetic Modification of Oncolytic Newcastle Disease Virus for Cancer Therapy.

    PubMed

    Cheng, Xing; Wang, Weijia; Xu, Qi; Harper, James; Carroll, Danielle; Galinski, Mark S; Suzich, JoAnn; Jin, Hong

    2016-06-01

    Clinical development of a mesogenic strain of Newcastle disease virus (NDV) as an oncolytic agent for cancer therapy has been hampered by its select agent status due to its pathogenicity in avian species. Using reverse genetics, we have generated a lead candidate oncolytic NDV based on the mesogenic NDV-73T strain that is no longer classified as a select agent for clinical development. This recombinant NDV has a modification at the fusion protein (F) cleavage site to reduce the efficiency of F protein cleavage and an insertion of a 198-nucleotide sequence into the HN-L intergenic region, resulting in reduced viral gene expression and replication in avian cells but not in mammalian cells. In mammalian cells, except for viral polymerase (L) gene expression, viral gene expression is not negatively impacted or increased by the HN-L intergenic insertion. Furthermore, the virus can be engineered to express a foreign gene while still retaining the ability to grow to high titers in cell culture. The recombinant NDV selectively replicates in and kills tumor cells and is able to drive potent tumor growth inhibition following intratumoral or intravenous administration in a mouse tumor model. The candidate is well positioned for clinical development as an oncolytic virus. Avian paramyxovirus type 1, NDV, has been an attractive oncolytic agent for cancer virotherapy. However, this virus can cause epidemic disease in poultry, and concerns about the potential environmental and economic impact of an NDV outbreak have precluded its clinical development. Here we describe generation and characterization of a highly potent oncolytic NDV variant that is unlikely to cause Newcastle disease in its avian host, representing an essential step toward moving NDV forward as an oncolytic agent. Several attenuation mechanisms have been genetically engineered into the recombinant NDV that reduce chicken pathogenicity to a level that is acceptable worldwide without impacting viral production in

  17. Oncolytic virotherapy for oral squamous cell carcinoma using replication-competent viruses.

    PubMed

    Saito, Kengo; Shirasawa, Hiroshi; Isegawa, Naohisa; Shiiba, Masashi; Uzawa, Katsuhiro; Tanzawa, Hideki

    2009-12-01

    Oncolytic virotherapy utilizes viruses that can selectively destroy cancer cells without harming normal tissues. Clinical trials of oncolytic viruses show that most oncolytic agents are well tolerated and safe. The virotherapeutic agents currently in use have limited potency when administered alone; however, combination therapy using virotherapeutic agents and conventional anticancer agents, such as chemotherapeutics, radiation, and gene therapy, exhibits encouraging levels of efficacy. Advances in recombinant DNA technology have allowed the development of viruses that are tumor-selective and armed with transgenes, increasing the application potential and efficacy of this novel anticancer therapy. Here, we review the development of oncolytic viruses and the clinical trials of oncolytic virotherapy for oral cancers. We discuss current issues and perspectives of this evolving anticancer therapy, highlighting the potential applications of a unique, naturally occurring oncolytic virus, Sindbis virus.

  18. Modelling Spread of Oncolytic Viruses in Heterogeneous Cell Populations

    NASA Astrophysics Data System (ADS)

    Ellis, Michael; Dobrovolny, Hana

    2014-03-01

    One of the most promising areas in current cancer research and treatment is the use of viruses to attack cancer cells. A number of oncolytic viruses have been identified to date that possess the ability to destroy or neutralize cancer cells while inflicting minimal damage upon healthy cells. Formulation of predictive models that correctly describe the evolution of infected tumor systems is critical to the successful application of oncolytic virus therapy. A number of different models have been proposed for analysis of the oncolytic virus-infected tumor system, with approaches ranging from traditional coupled differential equations such as the Lotka-Volterra predator-prey models, to contemporary modeling frameworks based on neural networks and cellular automata. Existing models are focused on tumor cells and the effects of virus infection, and offer the potential for improvement by including effects upon normal cells. We have recently extended the traditional framework to a 2-cell model addressing the full cellular system including tumor cells, normal cells, and the impacts of viral infection upon both populations. Analysis of the new framework reveals complex interaction between the populations and potential inability to simultaneously eliminate the virus and tumor populations.

  19. A Fusogenic Oncolytic Herpes Simplex Virus for Therapy of Advanced Ovarian Cancer

    DTIC Science & Technology

    2007-06-01

    AD_________________ Award Number: DAMD17-03-1-0434 TITLE: A Fusogenic Oncolytic Herpes Simplex ...TITLE AND SUBTITLE 5a. CONTRACT NUMBER A Fusogenic Oncolytic Herpes Simplex Virus for Therapy of Advanced Ovarian Cancer 5b. GRANT NUMBER...oncolytic herpes simplex virus (HSV) can significantly enhance the anti-tumor effect of the virus. Three specific aims have been proposed and they are: 1

  20. Measles to the Rescue: A Review of Oncolytic Measles Virus

    PubMed Central

    Aref, Sarah; Bailey, Katharine; Fielding, Adele

    2016-01-01

    Oncolytic virotherapeutic agents are likely to become serious contenders in cancer treatment. The vaccine strain of measles virus is an agent with an impressive range of oncolytic activity in pre-clinical trials with increasing evidence of safety and efficacy in early clinical trials. This paramyxovirus vaccine has a proven safety record and is amenable to careful genetic modification in the laboratory. Overexpression of the measles virus (MV) receptor CD46 in many tumour cells may direct the virus to preferentially enter transformed cells and there is increasing awareness of the importance of nectin-4 and signaling lymphocytic activation molecule (SLAM) in oncolysis. Successful attempts to retarget MV by inserting genes for tumour-specific ligands to antigens such as carcinoembryonic antigen (CEA), CD20, CD38, and by engineering the virus to express synthetic microRNA targeting sequences, and “blinding” the virus to the natural viral receptors are exciting measures to increase viral specificity and enhance the oncolytic effect. Sodium iodine symporter (NIS) can also be expressed by MV, which enables in vivo tracking of MV infection. Radiovirotherapy using MV-NIS, chemo-virotherapy to convert prodrugs to their toxic metabolites, and immune-virotherapy including incorporating antibodies against immune checkpoint inhibitors can also increase the oncolytic potential. Anti-viral host immune responses are a recognized barrier to the success of MV, and approaches such as transporting MV to the tumour sites by carrier cells, are showing promise. MV Clinical trials are producing encouraging preliminary results in ovarian cancer, myeloma and cutaneous non-Hodgkin lymphoma, and the outcome of currently open trials in glioblastoma multiforme, mesothelioma and squamous cell carcinoma are eagerly anticipated. PMID:27782084

  1. Oncolytic Measles Virus Strains as Novel Anticancer Agents

    PubMed Central

    Msaouel, Pavlos; Opyrchal, Mateusz; Domingo Musibay, Evidio; Galanis, Evanthia

    2013-01-01

    Introduction Replication-competent oncolytic measles virus (MV) strains preferentially infect and destroy a wide variety of cancer tissues. Clinical translation of engineered attenuated MV vaccine derivatives is demonstrating the therapeutic potential and negligible pathogenicity of these strains in humans. Areas covered The present review summarizes the mechanisms of MV tumor selectivity and cytopathic activity as well as the current data on the oncolytic efficacy and preclinical testing of MV strains. Investigational strategies to reprogram MV selectivity, escape antiviral immunity and modulate the immune system to enhance viral delivery and tumor oncolysis are also discussed. Expert Opinion Clinical viral kinetic data derived from non-invasive monitoring of reporter transgene expression will guide future protocols to enhance oncolytic MV efficacy. Anti-measles immunity is a major challenge of measles-based therapeutics and various strategies are being investigated to modulate immunity. These include the combination of MV therapy with immunosuppressive drugs such as cyclophosphamide, the use of cell carriers and the introduction of immunomodulatory transgenes and wild-type virulence genes. Available MV retargeting technologies can address safety considerations that may arise as more potent oncolytic MV vectors are being developed. PMID:23289598

  2. Oncolytic herpes viruses, chemotherapeutics, and other cancer drugs

    PubMed Central

    Braidwood, Lynne; Graham, Sheila V; Graham, Alex; Conner, Joe

    2013-01-01

    Oncolytic viruses are emerging as a potential new way of treating cancers. They are selectively replication-competent viruses that propagate only in actively dividing tumor cells but not in normal cells and, as a result, destroy the tumor cells by consequence of lytic infection. At least six different oncolytic herpes simplex viruses (oHSVs) have undergone clinical trials worldwide to date, and they have demonstrated an excellent safety profile and intimations of efficacy. The first pivotal Phase III trial with an oHSV, talimogene laherparepvec (T-Vec [OncoVexGM-CSF]), is almost complete, with extremely positive early results reported. Intuitively, therapeutically beneficial interactions between oHSV and chemotherapeutic and targeted therapeutic drugs would be limited as the virus requires actively dividing cells for maximum replication efficiency and most anticancer agents are cytotoxic or cytostatic. However, combinations of such agents display a range of responses, with antagonistic, additive, or, perhaps most surprisingly, synergistic enhancement of antitumor activity. When synergistic interactions in cancer cell killing are observed, chemotherapy dose reductions that achieve the same overall efficacy may be possible, resulting in a valuable reduction of adverse side effects. Therefore, the combination of an oHSV with “standard-of-care” drugs makes a logical and reasonable approach to improved therapy, and the addition of a targeted oncolytic therapy with “standard-of-care” drugs merits further investigation, both preclinically and in the clinic. Numerous publications report such studies of oncolytic HSV in combination with other drugs, and we review their findings here. Viral interactions with cellular hosts are complex and frequently involve intracellular signaling networks, thus creating diverse opportunities for synergistic or additive combinations with many anticancer drugs. We discuss potential mechanisms that may lead to synergistic interactions

  3. Oncolytic viruses & their specific targeting to tumour cells

    PubMed Central

    Singh, Prafull K.; Doley, Juwar; Kumar, G. Ravi; Sahoo, A.P.; Tiwari, Ashok K.

    2012-01-01

    Cancer is one of the major causes of death worldwide. In spite of achieving significant successes in medical sciences in the past few decades, the number of deaths due to cancer remains unchecked. The conventional chemotherapy and radiotherapy have limited therapeutic index and a plethora of treatment related side effects. This situation has provided an impetus for search of novel therapeutic strategies that can selectively destroy the tumour cells, leaving the normal cells unharmed. Viral oncotherapy is such a promising treatment modality that offers unique opportunity for tumour targeting. Numerous viruses with inherent anti-cancer activity have been identified and are in different phases of clinical trials. In the era of modern biotechnology and with better understanding of cancer biology and virology, it has become feasible to engineer the oncolytic viruses (OVs) to increase their tumour selectivity and enhance their oncolytic activity. In this review, the mechanisms by which oncolytic viruses kill the tumour cells have been discussed as also the development made in virotherapy for cancer treatment with emphasis on their tumour specific targeting. PMID:23168697

  4. Oncolytic Virus Therapy of Glioblastoma Multiforme – Concepts and Candidates

    PubMed Central

    Wollmann, Guido; Ozduman, Koray; van den Pol, Anthony N.

    2012-01-01

    Twenty years of oncolytic virus (OV) development have created a field that is driven by the potential promise of lasting impact on our cancer treatment repertoire. With the field constantly expanding – over 20 viruses have been recognized as potential OVs – new virus candidates continue to emerge even as established viruses reach clinical trials. They all share the defining commonalities of selective replication in tumors, subsequent tumor cell lysis, and dispersion within the tumor. Members from diverse virus classes with distinctly different biologies and host species have been identified. Of these viruses, 15 have been tested on human glioblastoma multiforme (GBM). So far, 20 clinical trials have been conducted or initiated using attenuated strains of 7 different oncolytic viruses against GBM. In this review, we present an overview of viruses that have been developed or considered for GBM treatment. We outline the principles of tumor targeting and selective viral replication, which include mechanisms of tumor-selective binding, and molecular elements usurping cellular biosynthetic machinery in transformed cells. Results from clinical trials have clearly established the proof of concept and have confirmed the general safety of OV application in the brain. The moderate clinical efficacy has not yet matched the promising preclinical lab results; next-generation OVs that are either “armed” with therapeutic genes or that are embedded in a multimodality treatment regimen should enhance the clinical results. PMID:22290260

  5. Current status of clinical trials assessing oncolytic virus therapy for urological cancers.

    PubMed

    Taguchi, Satoru; Fukuhara, Hiroshi; Homma, Yukio; Todo, Tomoki

    2017-03-21

    Oncolytic virus therapy has recently been recognized as a promising new option for cancer treatment. Oncolytic viruses replicate selectively in cancer cells, thus killing them without harming normal cells. Notably, T-VEC (talimogene laherparepvec, formerly called OncoVEX(GM)(-)(CSF) ), an oncolytic herpes simplex virus type 1, was approved by the US Food and Drug Administration for the treatment of inoperable melanoma in October 2015, and was subsequently approved in Europe and Australia in 2016. The efficacies of many types of oncolytic viruses against urological cancers have been investigated in preclinical studies during the past decade, and some have already been tested in clinical trials. For example, a phase I trial of the third-generation oncolytic Herpes simplex virus type 1, G47Δ, in patients with prostate cancer was completed in 2016. We summarize the current status of clinical trials of oncolytic virus therapy in patients with the three major urological cancers: prostate, bladder and renal cell cancers. In addition to Herpes simplex virus type 1, adenoviruses, reoviruses, vaccinia virus, Sendai virus and Newcastle disease virus have also been used as parental viruses in these trials. We believe that oncolytic virus therapy is likely to become an important and major treatment option for urological cancers in the near future.

  6. Oncolytic Viruses in the Treatment of Bladder Cancer

    PubMed Central

    Potts, Kyle G.; Hitt, Mary M.; Moore, Ronald B.

    2012-01-01

    Bladder carcinoma is the second most common malignancy of the urinary tract. Up to 85% of patients with bladder cancer are diagnosed with a tumor that is limited to the bladder mucosa (Ta, T1, and CIS). These stages are commonly termed as non-muscle-invasive bladder cancer (NMIBC). Although the treatment of NMIBC has greatly improved in recent years, there is a need for additional therapies when patients fail bacillus Calmette-Guérin (BCG) and chemotherapeutic agents. We propose that bladder cancer may be an ideal target for oncolytic viruses engineered to selectively replicate in and lyse tumor cells leaving normal cells unharmed. In support of this hypothesis, here we review current treatment strategies for bladder cancer and their shortcomings, as well as recent advancements in oncolytic viral therapy demonstrating encouraging safety profiles and antitumor activity. PMID:22899907

  7. Exploiting diversity: genetic approaches to creating highly potent and efficacious oncolytic viruses.

    PubMed

    Bauzon, Maxine; Hermiston, Terry W

    2008-08-01

    Oncolytic viruses possess several key attributes that make them a highly attractive treatment for cancer. They exhibit clinically validated synergy with chemotherapy and an ability to selectively destroy tumor cells to the exclusion of normal cells. Oncolytic viruses can replicate and, therefore, amplify their dose in a tumor-dependent manner. In addition, they can be genetically manipulated to include additional therapeutic factors to create a multimodal anticancer agent. These characteristics lead to the expectation that oncolytic viruses will serve as an additional tool in the treatment repertoire of clinical oncologists. In their clinical development to date, these agents were safe and well tolerated, but lacked efficacy as monotherapies. In this review, three genetic-based methods to increase the potency and efficacy of oncolytic viruses, in which human adenovirus is utilized as an example of a prototype oncolytic virus, are discussed.

  8. Cell carriers for oncolytic viruses: Fed Ex for cancer therapy.

    PubMed

    Willmon, Candice; Harrington, Kevin; Kottke, Timothy; Prestwich, Robin; Melcher, Alan; Vile, Richard

    2009-10-01

    Oncolytic viruses delivered directly into the circulation face many hazards that impede their localization to, and infection of, metastatic tumors. Such barriers to systemic delivery could be overcome if couriers, which confer both protection, and tumor localization, to their viral cargoes, could be found. Several preclincal studies have shown that viruses can be loaded into, or onto, different types of cells without losing the biological activity of either virus or cell carrier. Importantly, such loading can significantly protect the viruses from immune-mediated virus-neutralizing activities, including antiviral antibody. Moreover, an impressive portfolio of cellular vehicles, which have some degree of tropism for tumor cells themselves, or for the biological properties associated with the tumor stroma, is already available. Therefore, it will soon be possible to initiate clinical protocols to test the hypopthesis that cell-mediated delivery can permit efficient shipping of oncolytic viruses from the loading bay (the production laboratory) directly to the tumor in immune-competent patients with metastatic disease.

  9. Identification of Genetically Modified Maraba Virus as an Oncolytic Rhabdovirus

    PubMed Central

    Brun, Jan; McManus, Dan; Lefebvre, Charles; Hu, Kang; Falls, Theresa; Atkins, Harold; Bell, John C; McCart, J. Andrea; Mahoney, Douglas; Stojdl, David F

    2010-01-01

    To expand our current array of safe and potent oncolytic viruses, we screened a variety of wild-type (WT) rhabdoviruses against a panel of tumor cell lines. Our screen identified a number of viruses with varying degrees of killing activity. Maraba virus was the most potent of these strains. We built a recombinant system for the Maraba virus platform, engineered a series of attenuating mutations to expand its therapeutic index, and tested their potency in vitro and in vivo. A double mutant (MG1) strain containing both G protein (Q242R) and M protein (L123W) mutations attenuated Maraba virus in normal diploid cell lines, yet appeared to be hypervirulent in cancer cells. This selective attenuation was mediated through interferon (IFN)-dependent and -independent mechanisms. Finally, the Maraba MG1 strain had a 100-fold greater maximum tolerable dose (MTD) than WT Maraba in vivo and resulted in durable cures when systemically administered in syngeneic and xenograft models. In summary, we report a potent new oncolytic rhabdovirus platform with unique tumor-selective attenuating mutations. PMID:20551913

  10. Targeting Prostate Cancer for Gene Therapy Utilizing Lentivirus and Oncolytic VSV Virus

    DTIC Science & Technology

    2010-04-01

    specific fashion. Ad ditionally, mutated form of Vesicular Stomatitis Virus (VSV), an oncolytic virus capable of replicating in interferon (IFN) response...Our results indicated that direct injection of VSV (AV3) intra-prostaticaly lead to selective infection, replication, and overall i ncrease i n ap...ully re plication-competent a nd r apidly s pread through a nd ki ll cancerous cells. Vesicular Stomatitis Virus (VSV) is an oncolytic virus which

  11. CRISPR-Cas9 as a Powerful Tool for Efficient Creation of Oncolytic Viruses.

    PubMed

    Yuan, Ming; Webb, Eika; Lemoine, Nicholas Robert; Wang, Yaohe

    2016-03-07

    The development of oncolytic viruses has led to an emerging new class of cancer therapeutics. Although the safety profile has been encouraging, the transition of oncolytic viruses to the clinical setting has been a slow process due to modifications. Therefore, a new generation of more potent oncolytic viruses needs to be exploited, following our better understanding of the complex interactions between the tumor, its microenvironment, the virus, and the host immune response. The conventional method for creation of tumor-targeted oncolytic viruses is based on homologous recombination. However, the creation of new mutant oncolytic viruses with large genomes remains a challenge due to the multi-step process and low efficiency of homologous recombination. The CRISPR-associated endonuclease Cas9 has hugely advanced the potential to edit the genomes of various organisms due to the ability of Cas9 to target a specific genomic site by a single guide RNA. In this review, we discuss the CRISPR-Cas9 system as an efficient viral editing method for the creation of new oncolytic viruses, as well as its potential future applications in the development of oncolytic viruses. Further, this review discusses the potential of off-target effects as well as CRISPR-Cas9 as a tool for basic research into viral biology.

  12. CRISPR-Cas9 as a Powerful Tool for Efficient Creation of Oncolytic Viruses

    PubMed Central

    Yuan, Ming; Webb, Eika; Lemoine, Nicholas Robert; Wang, Yaohe

    2016-01-01

    The development of oncolytic viruses has led to an emerging new class of cancer therapeutics. Although the safety profile has been encouraging, the transition of oncolytic viruses to the clinical setting has been a slow process due to modifications. Therefore, a new generation of more potent oncolytic viruses needs to be exploited, following our better understanding of the complex interactions between the tumor, its microenvironment, the virus, and the host immune response. The conventional method for creation of tumor-targeted oncolytic viruses is based on homologous recombination. However, the creation of new mutant oncolytic viruses with large genomes remains a challenge due to the multi-step process and low efficiency of homologous recombination. The CRISPR-associated endonuclease Cas9 has hugely advanced the potential to edit the genomes of various organisms due to the ability of Cas9 to target a specific genomic site by a single guide RNA. In this review, we discuss the CRISPR-Cas9 system as an efficient viral editing method for the creation of new oncolytic viruses, as well as its potential future applications in the development of oncolytic viruses. Further, this review discusses the potential of off-target effects as well as CRISPR-Cas9 as a tool for basic research into viral biology. PMID:26959050

  13. Advances in the design and development of oncolytic measles viruses

    PubMed Central

    Hutzen, Brian; Raffel, Corey; Studebaker, Adam W

    2015-01-01

    A successful oncolytic virus is one that selectively propagates and destroys cancerous tissue without causing excessive damage to the normal surrounding tissue. Oncolytic measles virus (MV) is one such virus that exhibits this characteristic and thus has rapidly emerged as a potentially useful anticancer modality. Derivatives of the Edmonston MV vaccine strain possess a remarkable safety record in humans. Promising results in preclinical animal models and evidence of biological activity in early phase trials contribute to the enthusiasm. Genetic modifications have enabled MV to evolve from a vaccine agent to a potential anticancer therapy. Specifically, alterations of the MV genome have led to improved tumor selectivity and delivery, therapeutic potency, and immune system modulation. In this article, we will review the advancements that have been made in the design and development of MV that have led to its use as a cancer therapy. In addition, we will discuss the evidence supporting its use, as well as the challenges associated with MV as a potential cancer therapeutic. PMID:27512675

  14. Oncolytic virotherapy using herpes simplex virus: how far have we come?

    PubMed

    Sokolowski, Nicolas As; Rizos, Helen; Diefenbach, Russell J

    2015-01-01

    Oncolytic virotherapy exploits the properties of human viruses to naturally cytolysis of cancer cells. The human pathogen herpes simplex virus (HSV) has proven particularly amenable for use in oncolytic virotherapy. The relative safety of HSV coupled with extensive knowledge on how HSV interacts with the host has provided a platform for manipulating HSV to enhance the targeting and killing of human cancer cells. This has culminated in the approval of talimogene laherparepvec for the treatment of melanoma. This review focuses on the development of HSV as an oncolytic virus and where the field is likely to head in the future.

  15. Oncolytic Herpes Simplex Virus Vectors Fully Retargeted to Tumor-Associated Antigens.

    PubMed

    Uchida, Hiroaki; Hamada, Hirofumi; Nakano, Kenji; Kwon, Heechung; Tahara, Hideaki; Cohen, Justus B; Glorioso, Joseph C

    2017-02-05

    Oncolytic virotherapy is a novel therapeutic modality for malignant diseases that exploits selective viral replication in cancer cells. Herpes simplex virus (HSV) is a promising agent for oncolytic virotherapy due to its broad cell tropism and the identification of mutations that favor its replication in tumor over normal cells. However, these attenuating mutations also tend to limit the potency of current oncolytic HSV vectors that have entered clinical studies. As an alternative, vector retargeting to novel entry receptors has the potential to achieve tumor specificity at the stage of virus entry, eliminating the need for replication-attenuating mutations. Here we summarize the molecular mechanism of HSV entry and recent advances in the development of fully retargeted HSV vectors for oncolytic virotherapy. Retargeted HSV vectors offer an attractive platform for the creation of a new generation of oncolytic HSV with improved efficacy and specificity.

  16. Oncolytic Maraba Virus MG1 as a Treatment for Sarcoma.

    PubMed

    Le Boeuf, Fabrice; Selman, Mohammed; Son, Hwan Hee; Bergeron, Anabel; Chen, Andrew; Tsang, Jovian; Butterwick, Derek; Arulanandam, Rozanne; Forbes, Nicole E; Tzelepis, Fanny; Bell, John C; Werier, Joel; Abdelbary, Hesham; Diallo, Jean-Simon

    2017-09-15

    The poor prognosis of patients with advanced bone and soft-tissue sarcoma has not changed in the past several decades, highlighting the necessity for new therapeutic approaches. Immunotherapies, including oncolytic viral (OV) therapy, have shown great promise in a number of clinical trials for a variety of tumor types. However, the effective application of OV in treating sarcoma still remains to be demonstrated. Although few pre-clinical studies using distinct OVs have been performed and demonstrated therapeutic benefit in sarcoma models, a side-by-side comparison of clinically relevant OV platforms has not been performed. Four clinically relevant OV platforms (Reovirus, Vaccinia virus, Herpes-simplex virus and Rhabdovirus) were screened for their ability to infect and kill human and canine sarcoma cell lines in vitro, and human sarcoma specimens ex vivo. In vivo treatment efficacy was tested in a murine model. The rhabdovirus MG1 demonstrated the highest potency in vitro. Ex vivo, MG1 productively infected more than 80% of human sarcoma tissues tested, and treatment in vivo led to a significant increase in long-lasting cures in sarcoma-bearing mice. Importantly, MG1 treatment induced the generation of memory immune response that provided protection against a subsequent tumor challenge. This study opens the door for the use of MG1-based oncolytic immunotherapy strategies as treatment for sarcoma or as a component of a combined therapy. © 2017 UICC.

  17. Oncolytic Viruses and Their Application to Cancer Immunotherapy

    PubMed Central

    Chiocca, EA; Rabkin, SD

    2015-01-01

    Oncolytic viruses (OVs) selectively replicate in and kill cancer cells, and spread within the tumor, while not harming normal tissue. In addition to this direct oncolytic activity, OVs are also very effective at inducing immune responses to themselves and to the infected tumor cells. OVs encompass a broad diversity of DNA and RNA viruses that are naturally cancer-selective or can be genetically-engineered. OVs provide a diverse platform for immunotherapy; they act as in situ vaccines, and can be armed with immune modulatory transgenes or combined with other immunotherapies. However, the interactions of OVs with the immune system may affect therapeutic outcomes in opposing fashions: negatively by limiting virus replication and/or spread, or positively by inducing antitumor immune responses. Many aspects of the OV-tumor/host interaction are important in delineating the effectiveness of therapy; they include: (i) innate immune responses and the degree of inflammation induced, (ii) types of virus-induced cell death, (iii) inherent tumor physiology, such as infiltrating and resident immune cells, vascularity/hypoxia, lymphatics, and stromal architecture, and (iv) tumor cell phenotype, including alterations in IFN signaling, oncogenic pathways, cell surface immune markers (MHC, co-stimulatory, NK receptors), and the expression of immunosuppressive factors. Recent clinical trials with a variety of OVs, especially those expressing GM-CSF, have demonstrated efficacy and induction of antitumor immune responses in the absence of significant toxicity. Manipulating the balance between anti-virus and antitumor responses, often involving overlapping immune pathways, will be critical to the clinical success of OVs. PMID:24764576

  18. Oncolytic viruses on the cusp of success?: proceedings of the 9th International Conference on Oncolytic Virus Therapeutics

    PubMed Central

    Peters, Cole; Nigim, Fares; Chiocca, E Antonio; Rabkin, Samuel D

    2016-01-01

    Boston, Massachusetts, was the site of the 9th International Conference on Oncolytic Virus Therapeutics held 13–16 June 2015. An overarching theme of the meeting was the continued development of combinatorial treatment regimens to bolster the therapeutic potential of oncolytic viruses (OVs). Several talks focused on combining OVs with immune checkpoint inhibitors in a wide array of tumors, signaling an experimental and thematic shift toward driving immune activation to clear a tumor versus relying on direct viral oncolysis. An important aspect of the meeting was the variety of ongoing OV clinical trials. Topics ranged from basic virology to clinical trials and from academic research to intellectual property and biotechnology. There was much excitement due to the US Food and Drug Administration’s recent consideration of talimogene laherparepvec (T-VEC) for the treatment of advanced melanoma (T-VEC was approved in October, following the conference). Here, we summarize the meeting’s primary themes, which reflect the current state of the field.

  19. Oncolytic virus therapy: A new era of cancer treatment at dawn.

    PubMed

    Fukuhara, Hiroshi; Ino, Yasushi; Todo, Tomoki

    2016-10-01

    Oncolytic virus therapy is perhaps the next major breakthrough in cancer treatment following the success in immunotherapy using immune checkpoint inhibitors. Oncolytic viruses are defined as genetically engineered or naturally occurring viruses that selectively replicate in and kill cancer cells without harming the normal tissues. T-Vec (talimogene laherparepvec), a second-generation oncolytic herpes simplex virus type 1 (HSV-1) armed with GM-CSF, was recently approved as the first oncolytic virus drug in the USA and Europe. The phase III trial proved that local intralesional injections with T-Vec in advanced malignant melanoma patients can not only suppress the growth of injected tumors but also act systemically and prolong overall survival. Other oncolytic viruses that are closing in on drug approval in North America and Europe include vaccinia virus JX-594 (pexastimogene devacirepvec) for hepatocellular carcinoma, GM-CSF-expressing adenovirus CG0070 for bladder cancer, and Reolysin (pelareorep), a wild-type variant of reovirus, for head and neck cancer. In Japan, a phase II clinical trial of G47∆, a third-generation oncolytic HSV-1, is ongoing in glioblastoma patients. G47∆ was recently designated as a "Sakigake" breakthrough therapy drug in Japan. This new system by the Japanese government should provide G47∆ with priority reviews and a fast-track drug approval by the regulatory authorities. Whereas numerous oncolytic viruses have been subjected to clinical trials, the common feature that is expected to play a major role in prolonging the survival of cancer patients is an induction of specific antitumor immunity in the course of tumor-specific viral replication. It appears that it will not be long before oncolytic virus therapy becomes a standard therapeutic option for all cancer patients. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  20. Oncolytic viruses and their application to cancer immunotherapy.

    PubMed

    Chiocca, E Antonio; Rabkin, Samuel D

    2014-04-01

    Oncolytic viruses (OV) selectively replicate and kill cancer cells and spread within the tumor, while not harming normal tissue. In addition to this direct oncolytic activity, OVs are also very effective at inducing immune responses to themselves and to the infected tumor cells. OVs encompass a broad diversity of DNA and RNA viruses that are naturally cancer selective or can be genetically engineered. OVs provide a diverse platform for immunotherapy; they act as in situ vaccines and can be armed with immunomodulatory transgenes or combined with other immunotherapies. However, the interactions of OVs with the immune system may affect therapeutic outcomes in opposing fashions: negatively by limiting virus replication and/or spread, or positively by inducing antitumor immune responses. Many aspects of the OV-tumor/host interaction are important in delineating the effectiveness of therapy: (i) innate immune responses and the degree of inflammation induced; (ii) types of virus-induced cell death; (iii) inherent tumor physiology, such as infiltrating and resident immune cells, vascularity/hypoxia, lymphatics, and stromal architecture; and (iv) tumor cell phenotype, including alterations in IFN signaling, oncogenic pathways, cell surface immune markers [MHC, costimulatory, and natural killer (NK) receptors], and the expression of immunosuppressive factors. Recent clinical trials with a variety of OVs, especially those expressing granulocyte macrophage colony-stimulating factor (GM-CSF), have demonstrated efficacy and induction of antitumor immune responses in the absence of significant toxicity. Manipulating the balance between antivirus and antitumor responses, often involving overlapping immune pathways, will be critical to the clinical success of OVs.

  1. High-throughput screening to enhance oncolytic virus immunotherapy

    PubMed Central

    Allan, KJ; Stojdl, David F; Swift, SL

    2016-01-01

    High-throughput screens can rapidly scan and capture large amounts of information across multiple biological parameters. Although many screens have been designed to uncover potential new therapeutic targets capable of crippling viruses that cause disease, there have been relatively few directed at improving the efficacy of viruses that are used to treat disease. Oncolytic viruses (OVs) are biotherapeutic agents with an inherent specificity for treating malignant disease. Certain OV platforms – including those based on herpes simplex virus, reovirus, and vaccinia virus – have shown success against solid tumors in advanced clinical trials. Yet, many of these OVs have only undergone minimal engineering to solidify tumor specificity, with few extra modifications to manipulate additional factors. Several aspects of the interaction between an OV and a tumor-bearing host have clear value as targets to improve therapeutic outcomes. At the virus level, these include delivery to the tumor, infectivity, productivity, oncolysis, bystander killing, spread, and persistence. At the host level, these include engaging the immune system and manipulating the tumor microenvironment. Here, we review the chemical- and genome-based high-throughput screens that have been performed to manipulate such parameters during OV infection and analyze their impact on therapeutic efficacy. We further explore emerging themes that represent key areas of focus for future research. PMID:27579293

  2. Oncolytic Poxviruses

    PubMed Central

    Chan, Winnie M.; McFadden, Grant

    2015-01-01

    Current standard treatments of cancer can prolong survival of many cancer patients but usually do not effectively cure the disease. Oncolytic virotherapy is an emerging therapeutic for the treatment of cancer that exploits replication-competent viruses to selectively infect and destroy cancerous cells while sparing normal cells and tissues. Clinical and/or preclinical studies on oncolytic viruses have revealed that the candidate viruses being tested in trials are remarkably safe and offer potential for treating many classes of currently incurable cancers. Among these candidates are vaccinia and myxoma viruses, which belong to the family Poxviridae and possess promising oncolytic features. This article describes poxviruses that are being developed for oncolytic virotherapy and summarizes the outcomes of both clinical and preclinical studies. Additionally, studies demonstrating superior efficacy when poxvirus oncolytic virotherapy is combined with conventional therapies are described. PMID:25839047

  3. Changing Faces in Virology: The Dutch Shift from Oncogenic to Oncolytic Viruses

    PubMed Central

    Belcaid, Zineb; Lamfers, Martine L.M.; van Beusechem, Victor W.

    2014-01-01

    Abstract Viruses have two opposing faces. On the one hand, they can cause harm and disease. A virus may manifest directly as a contagious disease with a clinical pathology of varying significance. A viral infection can also have delayed consequences, and in rare cases may cause cellular transformation and cancer. On the other hand, viruses may provide hope: hope for an efficacious treatment of serious disease. Examples of the latter are the use of viruses as a vaccine, as transfer vector for therapeutic genes in a gene therapy setting, or, more directly, as therapeutic anticancer agent in an oncolytic-virus therapy setting. Already there is evidence for antitumor activity of oncolytic viruses. The antitumor efficacy seems linked to their capacity to induce a tumor-directed immune response. Here, we will provide an overview on the development of oncolytic viruses and their clinical evaluation from the Dutch perspective. PMID:25141764

  4. Changing faces in virology: the dutch shift from oncogenic to oncolytic viruses.

    PubMed

    Belcaid, Zineb; Lamfers, Martine L M; van Beusechem, Victor W; Hoeben, Rob C

    2014-10-01

    Viruses have two opposing faces. On the one hand, they can cause harm and disease. A virus may manifest directly as a contagious disease with a clinical pathology of varying significance. A viral infection can also have delayed consequences, and in rare cases may cause cellular transformation and cancer. On the other hand, viruses may provide hope: hope for an efficacious treatment of serious disease. Examples of the latter are the use of viruses as a vaccine, as transfer vector for therapeutic genes in a gene therapy setting, or, more directly, as therapeutic anticancer agent in an oncolytic-virus therapy setting. Already there is evidence for antitumor activity of oncolytic viruses. The antitumor efficacy seems linked to their capacity to induce a tumor-directed immune response. Here, we will provide an overview on the development of oncolytic viruses and their clinical evaluation from the Dutch perspective.

  5. [Oncolytic viruses as a new way of treatment of neoplastic diseases].

    PubMed

    Kukla, Urszula; Chronowska, Justyna; Łabuzek, Krzysztof; Okopień, Bogusław

    2015-08-01

    Despite the unceasing progression in chemotherapy, radiotherapy and surgery, neoplasms are still the second, after cardiovascular diseases, cause of death in the world. The creation of oncolytic viruses gives hope for increase of anticancer therapy effectiveness. Oncolytic viruses are the type of viruses that selectively infect and cause the lyse of tumor cells excluding normal cells. This mechanism allows to avoid the consequences of the possible replication of the virus, which having entered to the organism, replicates in organism's cells by using the DNA of host cells. The development of genetic engineering and molecular biology has enabled the creation of this kind of genetically modified viruses, which deprive them of their virulence. Currently, there are many clinical trials in progress including the use of oncolytic viruses in head and neck squamous cell carcinoma, thyroid cancer, colorectal cancer, liver cancer, melanoma and glioblastoma multiforme treatment. There are parallel studies in animals using the subsequent viruses. Oncolytic viruses treatment is generally well tolerated, without significant side effects. It is worth to point out that this method combined with chemotherapy and radiotherapy allows to reduce the use of therapeutic doses, which significantly reduces the toxicity of conventional treatment. Further clinical studies evaluating the efficacy and safety of oncolytic viruses will develop more effective and better tolerated therapeutic protocols in the future.

  6. Moving oncolytic viruses into the clinic: clinical-grade production, purification, and characterization of diverse oncolytic viruses.

    PubMed

    Ungerechts, Guy; Bossow, Sascha; Leuchs, Barbara; Holm, Per S; Rommelaere, Jean; Coffey, Matt; Coffin, Rob; Bell, John; Nettelbeck, Dirk M

    2016-01-01

    Oncolytic viruses (OVs) are unique anticancer agents based on their pleotropic modes of action, which include, besides viral tumor cell lysis, activation of antitumor immunity. A panel of diverse viruses, often genetically engineered, has advanced to clinical investigation, including phase 3 studies. This diversity of virotherapeutics not only offers interesting opportunities for the implementation of different therapeutic regimens but also poses challenges for clinical translation. Thus, manufacturing processes and regulatory approval paths need to be established for each OV individually. This review provides an overview of clinical-grade manufacturing procedures for OVs using six virus families as examples, and key challenges are discussed individually. For example, different virus features with respect to particle size, presence/absence of an envelope, and host species imply specific requirements for measures to ensure sterility, for handling, and for determination of appropriate animal models for toxicity testing, respectively. On the other hand, optimization of serum-free culture conditions, increasing virus yields, development of scalable purification strategies, and formulations guaranteeing long-term stability are challenges common to several if not all OVs. In light of the recent marketing approval of the first OV in the Western world, strategies for further upscaling OV manufacturing and optimizing product characterization will receive increasing attention.

  7. Moving oncolytic viruses into the clinic: clinical-grade production, purification, and characterization of diverse oncolytic viruses

    PubMed Central

    Ungerechts, Guy; Bossow, Sascha; Leuchs, Barbara; Holm, Per S; Rommelaere, Jean; Coffey, Matt; Coffin, Rob; Bell, John; Nettelbeck, Dirk M

    2016-01-01

    Oncolytic viruses (OVs) are unique anticancer agents based on their pleotropic modes of action, which include, besides viral tumor cell lysis, activation of antitumor immunity. A panel of diverse viruses, often genetically engineered, has advanced to clinical investigation, including phase 3 studies. This diversity of virotherapeutics not only offers interesting opportunities for the implementation of different therapeutic regimens but also poses challenges for clinical translation. Thus, manufacturing processes and regulatory approval paths need to be established for each OV individually. This review provides an overview of clinical-grade manufacturing procedures for OVs using six virus families as examples, and key challenges are discussed individually. For example, different virus features with respect to particle size, presence/absence of an envelope, and host species imply specific requirements for measures to ensure sterility, for handling, and for determination of appropriate animal models for toxicity testing, respectively. On the other hand, optimization of serum-free culture conditions, increasing virus yields, development of scalable purification strategies, and formulations guaranteeing long-term stability are challenges common to several if not all OVs. In light of the recent marketing approval of the first OV in the Western world, strategies for further upscaling OV manufacturing and optimizing product characterization will receive increasing attention. PMID:27088104

  8. Optimal Control Model of Tumor Treatment with Oncolytic Virus and MEK Inhibitor

    PubMed Central

    Jia, Chen; Chen, Ying

    2016-01-01

    Tumors are a serious threat to human health. The oncolytic virus is a kind of tumor killer virus which can infect and lyse cancer cells and spread through the tumor, while leaving normal cells largely unharmed. Mathematical models can help us to understand the tumor-virus dynamics and find better treatment strategies. This paper gives a new mathematical model of tumor therapy with oncolytic virus and MEK inhibitor. Stable analysis was given. Because mitogen-activated protein kinase (MEK) can not only lead to greater oncolytic virus infection into cancer cells, but also limit the replication of the virus, in order to provide the best dosage of MEK inhibitors and balance the positive and negative effect of the inhibitors, we put forward an optimal control problem of the inhibitor. The optimal strategies are given by theory and simulation. PMID:28097139

  9. Development of a selective biopharmaceutical from Herpes simplex virus type 1 glycoproteins E and I for blocking antibody mediated neutralization of oncolytic viruses.

    PubMed

    Bucurescu, Septimiu

    2010-12-01

    Future cancer therapies will be molecular cures. They will correct, block or destroy cancer cells by targeting molecular changes that lead to carcinogenesis. Destroying cancer cells can be done using oncolytic viruses. By blocking antibody mediated neutralization of oncolytic viruses, Herpes simplex virus type 1 glycoproteins E and I could be used in the adjuvant treatment of cancer for improving the chances of oncolytic viruses to kill cancer cells in vivo.

  10. Fusogenic oncolytic herpes simplex viruses as a potent and personalized cancer vaccine.

    PubMed

    Li, Qi-Xiang; Liu, Guohong; Zhang, Xiaoliu

    2012-07-01

    The recent FDA approval of Sipuleucel-T for the treatment of prostate cancer represents an important milestone of cancer immunotherapy, which, for the first time, validates the concept of bringing true clinical benefit to cancer patients by stimulating patients' own anti-tumor immunity. Among the different experimental cancer immunotherapies, oncolytic virotherapy may represent a low-cost yet potent and personalized cancer vaccine for the treatment of solid tumors. This review describes the constructions of several human herpes simplex virus (HSV)-derived oncolytic viruses as candidate cancer vaccines, which induce specific and potent anti-tumor immunity in pre-clinical models, and thus resulting in stronger overall anti-tumor efficacy as compared to oncolytic effect alone. This article also describes the approaches to enhance the antitumor immunity of oncolytic HSVs, and in particular, the key role played by integrating membrane-fusion activity into these viruses. Additionally, this article reviews the potential effect of certain chemotherapeutic agents (e.g. cyclophosphamide) in boosting antitumor immunity induced by oncolytic HSV, and the mechanisms behind it. In summary, all the preclinical and clinical data have suggested that HSV-based oncolytic virotherapies could likely be developed as a new generation of cancer vaccines for the treatment of solid tumors.

  11. Ultrasound-mediated oncolytic virus delivery and uptake for increased therapeutic efficacy: state of art

    PubMed Central

    Nande, Rounak; Howard, Candace M; Claudio, Pier Paolo

    2015-01-01

    The field of ultrasound (US) has changed significantly from medical imaging and diagnosis to treatment strategies. US contrast agents or microbubbles (MB) are currently being used as potential carriers for chemodrugs, small molecules, nucleic acids, small interfering ribonucleic acid, proteins, adenoviruses, and oncolytic viruses. Oncolytic viruses can selectively replicate within and destroy a cancer cell, thus making them a powerful therapeutic in treating late-stage or metastatic cancer. These viruses have been shown to have robust activity in clinical trials when injected directly into tumor nodules. However limitations in oncolytic virus’ effectiveness and its delivery approach have warranted exploration of ultrasound-mediated delivery. Gene therapy bearing adenoviruses or oncolytic viruses can be coupled with MBs and injected intravenously. Following application of US energy to the target region, the MBs cavitate, and the resulting shock wave enhances drug, gene, or adenovirus uptake. Though the underlying mechanism is yet to be fully understood, there is evidence to suggest that mechanical pore formation of cellular membranes allows for the temporary uptake of drugs. This delivery method circumvents the limitations due to stimulation of the immune system that prevented intravenous administration of viruses. This review provides insight into this intriguing new frontier on the delivery of oncolytic viruses to tumor sites. PMID:27512682

  12. Oncolytic viruses: emerging options for the treatment of breast cancer.

    PubMed

    Suryawanshi, Yogesh R; Zhang, Tiantian; Essani, Karim

    2017-03-01

    Breast cancer (BC) is the most common type of cancer among women and is the second most common cause of cancer-related deaths, following lung cancer. Severe toxicity associated with a long-term use of BC chemo- and radiotherapy makes it essential to look for newer therapeutics. Additionally, molecular heterogeneity at both intratumoral and intertumoral levels among BC subtypes is known to result in a differential response to standard therapeutics. Oncolytic viruses (OVs) have emerged as one of the most promising treatment options for BC. Many preclinical and clinical studies have shown that OVs are effective in treating BC, both as a single therapeutic agent and as a part of combination therapies. Combination therapies involving multimodal therapeutics including OVs are becoming popular as they allow to achieve the synergistic therapeutic effects, while minimizing the associated toxicities. Here, we review the OVs for BC therapy in preclinical studies and in clinical trials, both as a monotherapy and as part of a combination therapy. We also briefly discuss the potential therapeutic targets for BC, as these are likely to be critical for the development of new OVs.

  13. Oncolytic virotherapy.

    PubMed

    Russell, Stephen J; Peng, Kah-Whye; Bell, John C

    2012-07-10

    Oncolytic virotherapy is an emerging treatment modality that uses replication-competent viruses to destroy cancers. Recent advances include preclinical proof of feasibility for a single-shot virotherapy cure, identification of drugs that accelerate intratumoral virus propagation, strategies to maximize the immunotherapeutic action of oncolytic viruses and clinical confirmation of a critical viremic threshold for vascular delivery and intratumoral virus replication. The primary clinical milestone has been completion of accrual in a phase 3 trial of intratumoral herpes simplex virus therapy using talimogene laherparepvec for metastatic melanoma. Key challenges for the field are to select 'winners' from a burgeoning number of oncolytic platforms and engineered derivatives, to transiently suppress but then unleash the power of the immune system to maximize both virus spread and anticancer immunity, to develop more meaningful preclinical virotherapy models and to manufacture viruses with orders-of-magnitude higher yields than is currently possible.

  14. [Oncolytic viruses for genetic therapy of gastrointestinal tumors].

    PubMed

    Bitzer, M; Lauer, U M

    2003-07-01

    Gastroenterological oncology requires new strategies with new mechanisms of action and without cross-resistance to currently available treatment regimes. Virotherapy which is based on the employment of replication-competent viral vectors exhibiting strong oncolytic properties is such an approach currently under preclinical/clinical investigation. Techniques of molecular virology are required for further improvement of current vectors, particularly with respect to oncolytic activity, tumour selectivity, tumour spread capacity, and safety.

  15. Therapy of Experimental Nerve Sheath Tumors Using Oncolytic Viruses

    DTIC Science & Technology

    2005-06-01

    SUPPLEMENTARY NOTES 14. ABSTRACT Abstract follows. 15. SUBJECT TERMS Oncolytic HSV, angiogenesis, MPNST , mouse model 16. SECURITY CLASSIFICATION OF: 17...reliable tumor models for malignant peripheral nerve sheath tumors ( MPNST ). Several existing and novel oncolytic HSV vectors will then be tested on these...from G47A increases cytotoxicity in vitro to human endothelial cells and murine Nfl" MPNST cell lines. Inhibition of MPNST M2 tumor growth in vivo was

  16. Oncolytic virotherapy.

    PubMed

    Cervantes-García, Daniel; Ortiz-López, Rocío; Mayek-Pérez, Netzahualcoyotl; Rojas-Martínez, Augusto

    2008-01-01

    Current oncolytic virotherapy strategies are based in the accumulated understanding of the common molecular mechanisms displayed during cell transformation and viral infection, like cell cycle and apoptosis deregulations. Oncolytic virotherapy aims to achieve a strong cytolytic effect, highly restricted to transformed cells. Here, we describe the oncolytic virotherapy defined as the use of viruses like antitumor agents (wild and gene-modified oncolytic viruses) and the developed strategies to increase antitumor efficacy and safety. In addition, we discuss the advances and challenges concerning the use virotherapy in animal models and clinical trials. Some clinical trials of virotherapy have demonstrated promising results, particularly when combined with standard antineoplastic therapies. These preliminary accomplishments are opening the field for more research in several aspects, like vector modifications, pharmacodynamics, biosafety, new clinical applications, etc.

  17. Use of an Oncolytic Virus Secreting GM-CSF as Combined Oncolytic and Immunotherapy for Treatment of Colorectal and Hepatic Adenocarcinomas

    PubMed Central

    Malhotra, Sandeep; Kim, Teresa; Zager, Jonathan; Bennett, Joseph; Ebright, Michael; D’Angelica, Michael; Fong, Yuman

    2007-01-01

    Oncolytic cancer therapy using herpes simplex viruses (HSV) that have direct tumoricidal effects and cancer immunotherapy using the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) have each been effective in preclinical testing. NV1034 is a multi-mutated oncolytic HSV carrying the gene for murine GM-CSF that attempts to combine these two anticancer strategies. The purpose of this study was to compare NV1034 to NV1023, the parent HSV mutants lacking GM-CSF, in order to determine if such combined oncolytic and immunotherapy using a single vector has advantages over oncolytic therapy alone. In vitro, expression GM-CSF did not alter the infectivity, in vitro cytotoxicity, or replication of NV1034 compared to the non-cytokine secreting control. Tumors infected with NV1034 produced GM-CSF in picogram quantities. In vivo efficacy of the viruses against murine colorectal carcinoma CT26 and murine hepatoma Hepa l–6 was then tested in subcutaneous tumors in syngeneic Balb/c and C57 L/J mice respectively. In these immune competent models, NV1034 or NV1023 each demonstrated potent antitumor activity. Treatment with NV1034 had significantly better antitumor effect compared to treatment with NV1023. Furthermore, in mice depleted of CD4+ and CD8+ T-lymphocytes, there was no difference in the antitumor efficacy of these viruses. Viral vectors combining oncolytic and immunotherapy are promising agents in treatment of colorectal carcinoma and hepatoma. PMID:17383529

  18. Oncolytic vaccinia virus synergizes with irinotecan in colorectal cancer.

    PubMed

    Ottolino-Perry, Kathryn; Acuna, Sergio A; Angarita, Fernando A; Sellers, Clara; Zerhouni, Siham; Tang, Nan; McCart, J Andrea

    2015-10-01

    Metastatic colorectal cancer (CRC) is complex clinical challenge for which there are limited treatment options. Chemotherapy with or without surgery provides moderate improvements in overall survival and quality of life; nevertheless the 5-year survival remains below 30%. Oncolytic vaccinia virus (VV) shows strong anti-tumour activity in models of CRC, however transient delays in disease progression are insufficient to lead to long-term survival. Here we examined the efficacy of VV with oxaliplatin or SN-38 (active metabolite of irinotecan) in CRC cell lines in vitro and VV with irinotecan in an orthotopic model of metastatic CRC. Synergistic improvements in in vitro cell killing were observed in multiple cell lines. Combination therapy was well tolerated in tumour-bearing mice and the median survival was significantly increased relative to monotherapy despite a drug-dependent decrease in the mean tumour titer. Increased apoptosis following in vitro and in vivo combination therapy was observed. In vitro cell cycle analysis showed increases in S-phase cells following infection occurred in both infected and uninfected cell populations. This corresponded to a 4-fold greater increase in apoptosis in the uninfected compared to infected cells following combination therapy. Combination treatment strategies are among the best options for patients with advanced cancers. VV is currently under clinical investigation in patients with CRC and the data presented here suggest that its combination with irinotecan may provide benefit to a subset of CRC patients. Further, investigation of this combination is necessary to determine the tumour characteristics responsible for mediating synergy. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  19. Oncolytic viruses as immunotherapy: progress and remaining challenges

    PubMed Central

    Aurelian, Laure

    2016-01-01

    Oncolytic viruses (OVs) comprise an emerging cancer therapeutic modality whose activity involves both direct tumor cell lysis and the induction of immunogenic cell death (ICD). Cellular proteins released from the OV-lysed tumor cells, known as damage-associated molecular patterns and tumor-associated antigens, activate dendritic cells and elicit adaptive antitumor immunity. Interaction with the innate immune system and the development of long-lasting immune memory also contribute to OV-induced cell death. The degree to which the ICD component contributes to the clinical efficacy of OV therapy is still unclear. Modulation of a range of immune interactions may be beneficial or detrimental in nature and the interactions depend on the specific tumor, the site and extent of the disease, the immunosuppressive tumor microenvironment, the OV platform, the dose, time, and delivery conditions, as well as individual patient responses. To enhance the contribution of ICD, OVs have been engineered to express immunostimulatory genes and strategies have been developed to combine OV therapy with chemo- and immune-based therapeutic regimens. However, these approaches carry the risk that they may also be tolerogenic depending on their levels and the presence of other cytokines, their direct antiviral effects, and the timing and conditions of their expression. The contribution of autophagy to adaptive immunity, the ability of the OVs to kill cancer stem cells, and the patient’s baseline immune status are additional considerations. This review focuses on the complex and as yet poorly understood balancing act that dictates the outcome of OV therapy. We summarize current understanding of the OVs’ function in eliciting antitumor immunity and its relationship to therapeutic efficacy. Also discussed are the criteria involved in restraining antiviral immune responses and minimizing pathology while promoting antitumor immunity to override immune tolerance. PMID:27226725

  20. ONCOLYTIC HERPES SIMPLEX VIRUS 1 (HSV-1) VECTORS: INCREASING TREATMENT EFFICACY AND RANGE THROUGH STRATEGIC VIRUS DESIGN

    PubMed Central

    Carson, J.; Haddad, D.; Bressman, M.; Fong, Y.

    2012-01-01

    SUMMARY Viruses have long been considered potential anticancer treatments. Wild-type viruses have been tested as anticancer agents in clinical trials since the 1960s. The possibility of viral oncolysis as an alternate cancer therapy was transformed by the emergence of modern genetic engineering. The herpes simplex virus (HSV) family offers particular advantages for use as a viral oncolytic. The engineered vectors that make up oncolytic HSVs (oHSVs) have demonstrated remarkable safety in clinical trials, with some evidence of efficacy. The past decade has seen a focus on increasing the efficacy of oncolytic vectors by adding exogenous transgenes to enhance tumor destruction. The current paper describes the various strategies for engineering HSV for increased cancer tissue specificity and efficacy. Presented are the rationale, preclinical data and clinical data where available. This is meant to illustrate a basic framework for the development of a novel therapy meant to exploit the viral life cycle for the killing of cancer. PMID:22287818

  1. Neuroblastoma cell lines contain pluripotent tumor initiating cells that are susceptible to a targeted oncolytic virus.

    PubMed

    Mahller, Yonatan Y; Williams, Jon P; Baird, William H; Mitton, Bryan; Grossheim, Jonathan; Saeki, Yoshinaga; Cancelas, Jose A; Ratner, Nancy; Cripe, Timothy P

    2009-01-01

    Although disease remission can frequently be achieved for patients with neuroblastoma, relapse is common. The cancer stem cell theory suggests that rare tumorigenic cells, resistant to conventional therapy, are responsible for relapse. If true for neuroblastoma, improved cure rates may only be achieved via identification and therapeutic targeting of the neuroblastoma tumor initiating cell. Based on cues from normal stem cells, evidence for tumor populating progenitor cells has been found in a variety of cancers. Four of eight human neuroblastoma cell lines formed tumorspheres in neural stem cell media, and all contained some cells that expressed neurogenic stem cell markers including CD133, ABCG2, and nestin. Three lines tested could be induced into multi-lineage differentiation. LA-N-5 spheres were further studied and showed a verapamil-sensitive side population, relative resistance to doxorubicin, and CD133+ cells showed increased sphere formation and tumorigenicity. Oncolytic viruses, engineered to be clinically safe by genetic mutation, are emerging as next generation anticancer therapeutics. Because oncolytic viruses circumvent typical drug-resistance mechanisms, they may represent an effective therapy for chemotherapy-resistant tumor initiating cells. A Nestin-targeted oncolytic herpes simplex virus efficiently replicated within and killed neuroblastoma tumor initiating cells preventing their ability to form tumors in athymic nude mice. These results suggest that human neuroblastoma contains tumor initiating cells that may be effectively targeted by an oncolytic virus.

  2. Construction of recombinant Newcastle disease virus Italien strain for oncolytic virotherapy of tumors.

    PubMed

    Wei, Ding; Sun, Na; Nan, Gang; Wang, Yuan; Liu, Hong-Qi; Peeters, Ben; Chen, Zhi-Nan; Bian, Huijie

    2012-07-01

    Newcastle disease virus (NDV) is a naturally oncolytic virus that has been shown to be safe and effective for cancer therapy. Tumor virotherapy using NDV emerged in the 1950s and has advanced more recently by the increased availability of reverse genetics technology. In this study, we constructed a reverse genetics system based on the virulent and oncolytic NDV Italien strain, and generated two recombinant NDVs carrying a gene encoding either enhanced green fluorescent protein or firefly luciferase. We evaluated the replication and antitumor characteristics of these viruses in vitro and in vivo. Our data showed that the insertion of exogenous reporter genes did not affect NDV replication and sensitivity to type I interferon. The recombinant NDVs kept the property of tumor-selective replication both in vitro and in vivo and strongly induced syncytium formation leading to cell death. Moreover, the recombinant NDVs significantly prolonged the survival of tumor-bearing athymic mice (p=0.017) and suppressed the loss of body weight after intratumoral injection. Taken together, our study provides a novel platform to develop recombinant oncolytic viruses based on the NDV Italien strain and shows the efficiency of recombinant NDV Italien for oncolytic virotherapy of tumors.

  3. The immunoregulatory properties of oncolytic myxoma virus and their implications in therapeutics.

    PubMed

    Liu, Jia; Wennier, Sonia; McFadden, Grant

    2010-12-01

    Myxoma virus (MYXV) is a poxvirus with a strict rabbit-specific host-tropism for pathogenesis. The immunoregulatory factors encoded by MYXV can suppress some functions of immune effectors from other species. We review their mechanisms of action, implications in therapeutics and the potential to improve MYXV as an oncolytic agent in humans.

  4. Oncolytic viruses against cancer stem cells: A promising approach for gastrointestinal cancer.

    PubMed

    Huang, Fang; Wang, Bin-Rong; Wu, Ye-Qing; Wang, Fan-Chao; Zhang, Jian; Wang, Yi-Gang

    2016-09-21

    Gastrointestinal cancer has been one of the five most commonly diagnosed and leading causes of cancer mortality over the past few decades. Great progress in traditional therapies has been made, which prolonged survival in patients with early cancer, yet tumor relapse and drug resistance still occurred, which is explained by the cancer stem cell (CSC) theory. Oncolytic virotherapy has attracted increasing interest in cancer because of its ability to infect and lyse CSCs. This paper reviews the basic knowledge, CSC markers and therapeutics of gastrointestinal cancer (liver, gastric, colon and pancreatic cancer), as well as research advances and possible molecular mechanisms of various oncolytic viruses against gastrointestinal CSCs. This paper also summarizes the existing obstacles to oncolytic virotherapy and proposes several alternative suggestions to overcome the therapeutic limitations.

  5. Oncolytic viruses against cancer stem cells: A promising approach for gastrointestinal cancer

    PubMed Central

    Huang, Fang; Wang, Bin-Rong; Wu, Ye-Qing; Wang, Fan-Chao; Zhang, Jian; Wang, Yi-Gang

    2016-01-01

    Gastrointestinal cancer has been one of the five most commonly diagnosed and leading causes of cancer mortality over the past few decades. Great progress in traditional therapies has been made, which prolonged survival in patients with early cancer, yet tumor relapse and drug resistance still occurred, which is explained by the cancer stem cell (CSC) theory. Oncolytic virotherapy has attracted increasing interest in cancer because of its ability to infect and lyse CSCs. This paper reviews the basic knowledge, CSC markers and therapeutics of gastrointestinal cancer (liver, gastric, colon and pancreatic cancer), as well as research advances and possible molecular mechanisms of various oncolytic viruses against gastrointestinal CSCs. This paper also summarizes the existing obstacles to oncolytic virotherapy and proposes several alternative suggestions to overcome the therapeutic limitations. PMID:27672294

  6. Pediatric cancer gone viral. Part I: strategies for utilizing oncolytic herpes simplex virus-1 in children

    PubMed Central

    Cripe, Timothy P; Chen, Chun-Yu; Denton, Nicholas L; Haworth, Kellie B; Hutzen, Brian; Leddon, Jennifer L; Streby, Keri A; Wang, Pin-Yi; Markert, James M; Waters, Alicia M; Gillespie, George Yancey; Beierle, Elizabeth A; Friedman, Gregory K

    2015-01-01

    Progress for improving outcomes in pediatric patients with solid tumors remains slow. In addition, currently available therapies are fraught with numerous side effects, often causing significant life-long morbidity for long-term survivors. The use of viruses to kill tumor cells based on their increased vulnerability to infection is gaining traction, with several viruses moving through early and advanced phase clinical testing. The prospect of increased efficacy and decreased toxicity with these agents is thus attractive for pediatric cancer. In part I of this two-part review, we focus on strategies for utilizing oncolytic engineered herpes simplex virus (HSV) to target pediatric malignancies. We discuss mechanisms of action, routes of delivery, and the role of preexisting immunity on antitumor efficacy. Challenges to maximizing oncolytic HSV in children are examined, and we highlight how these may be overcome through various arming strategies. We review the preclinical and clinical evidence demonstrating safety of a variety of oncolytic HSVs. In Part II, we focus on the antitumor efficacy of oncolytic HSV in pediatric tumor types, pediatric clinical advances made to date, and future prospects for utilizing HSV in pediatric patients with solid tumors. PMID:26436135

  7. Silk-elastin-like protein polymer matrix for intraoperative delivery of an oncolytic vaccinia virus

    PubMed Central

    Price, Daniel L.; Li, Pingdong; Chen, Chun-Hao; Wong, Danni; Yu, Zhenkun; Chen, Nanhai G.; Yu, Yong A.; Szalay, Aladar A.; Cappello, Joseph; Fong, Yuman; Wong, Richard J.

    2016-01-01

    Background Oncolytic viral efficacy may be limited by the penetration of the virus into tumors. This may be enhanced by intraoperative application of virus immediately after surgical resection. Methods Oncolytic vaccinia virus GLV-1h68 was delivered in silk-elastin-like protein polymer (SELP) in vitro and in vivo in anaplastic thyroid carcinoma cell line 8505c in nude mice. Results GLV-1h68 in SELP infected and lysed anaplastic thyroid cancer cells in vitro equally as effectively as in phosphate-buffered saline (PBS), and at 1 week retains a thousand fold greater infectious plaque-forming units. In surgical resection models of residual tumor, GLV-1h68 in SELP improves tumor control and shows increased viral β-galactosidase expression as compared to PBS. Conclusion The use of SELP matrix for intraoperative oncolytic viral delivery protects infectious viral particles from degradation, facilitates sustained viral delivery and transgene expression, and improves tumor control. Such optimization of methods of oncolytic viral delivery may enhance therapeutic outcomes. PMID:25244076

  8. Pediatric cancer gone viral. Part I: strategies for utilizing oncolytic herpes simplex virus-1 in children.

    PubMed

    Cripe, Timothy P; Chen, Chun-Yu; Denton, Nicholas L; Haworth, Kellie B; Hutzen, Brian; Leddon, Jennifer L; Streby, Keri A; Wang, Pin-Yi; Markert, James M; Waters, Alicia M; Gillespie, George Yancey; Beierle, Elizabeth A; Friedman, Gregory K

    Progress for improving outcomes in pediatric patients with solid tumors remains slow. In addition, currently available therapies are fraught with numerous side effects, often causing significant life-long morbidity for long-term survivors. The use of viruses to kill tumor cells based on their increased vulnerability to infection is gaining traction, with several viruses moving through early and advanced phase clinical testing. The prospect of increased efficacy and decreased toxicity with these agents is thus attractive for pediatric cancer. In part I of this two-part review, we focus on strategies for utilizing oncolytic engineered herpes simplex virus (HSV) to target pediatric malignancies. We discuss mechanisms of action, routes of delivery, and the role of preexisting immunity on antitumor efficacy. Challenges to maximizing oncolytic HSV in children are examined, and we highlight how these may be overcome through various arming strategies. We review the preclinical and clinical evidence demonstrating safety of a variety of oncolytic HSVs. In Part II, we focus on the antitumor efficacy of oncolytic HSV in pediatric tumor types, pediatric clinical advances made to date, and future prospects for utilizing HSV in pediatric patients with solid tumors.

  9. Effect of Repeat Dosing of Engineered Oncolytic Herpes Simplex Virus on Preclinical Models of Rhabdomyosarcoma.

    PubMed

    Waters, Alicia M; Stafman, Laura L; Garner, Evan F; Mruthyunjayappa, Smitha; Stewart, Jerry E; Friedman, Gregory K; Coleman, Jennifer M; Markert, James M; Gillespie, G Yancey; Beierle, Elizabeth A

    2016-10-01

    Rhabdomyosarcoma (RMS), a tumor of skeletal muscle origin, is the most common sarcoma of childhood. Despite multidrug chemotherapy regimens, surgical intervention, and radiation treatment, outcomes remain poor, especially in advanced disease, and novel therapies are needed for the treatment of these aggressive malignancies. Genetically engineered oncolytic viruses, such as herpes simplex virus-1 (HSV), are currently being explored as treatments for pediatric tumors. M002, an oncolytic HSV, has both copies of the γ134.5 gene deleted, enabling replication in tumor cells but thwarting infection of normal, postmitotic cells. We hypothesized that M002 would infect human RMS tumor cells and lead to decreased tumor cell survival in vitro and impede tumor growth in vivo. In the current study, we demonstrated that M002 could infect, replicate in, and decrease cell survival in both embryonal (ERMS) and alveolar rhabdomyosarcoma (ARMS) cells. Additionally, M002 reduced xenograft tumor growth and increased animal survival in both ARMS and ERMS. Most importantly, we showed for the first time that repeated dosing of oncolytic virus coupled with low-dose radiation provided improved tumor response in RMS. These findings provide support for the clinical investigation of oncolytic HSV in pediatric RMS.

  10. Systemic therapy of spontaneous prostate cancer in transgenic mice with oncolytic herpes simplex viruses.

    PubMed

    Varghese, Susan; Rabkin, Samuel D; Nielsen, G Petur; MacGarvey, Usha; Liu, Renbin; Martuza, Robert L

    2007-10-01

    Oncolytic viruses are an innovative therapeutic strategy for cancer, wherein viral replication and cytotoxicity are selective for tumor cells. Here we show the efficacy of systemically administered oncolytic viruses for the treatment of spontaneously arising tumors, specifically the use of oncolytic herpes simplex viruses (HSV) administered i.v. to treat spontaneously developing primary and metastatic prostate cancer in the transgenic TRAMP mouse, which recapitulates human prostate cancer progression. Four administrations of systemically delivered NV1023 virus, an HSV-1/HSV-2 oncolytic recombinant, to TRAMP mice at 12 or 18 weeks of age (presence of prostate adenocarcinoma or metastatic disease, respectively) inhibited primary tumor growth and metastases to lymph nodes. Expression of interleukin 12 (IL-12) from NV1042 virus, a derivative of NV1023, was additionally effective, significantly reducing the frequency of development of prostate cancer and lung metastases, even when the mice were treated after the onset of metastasis at 18 weeks of age. NV1042-infected cells, as detected by 5-bromo-4-chloro-3-indolyl-beta-d-galactopyranoside staining for Lac Z expressed by the virus, were present in prostate tumors 1 week after the final virus injection and viral DNA was detected at 2 weeks after final virus injection by real-time PCR in primary and metastatic tumors but not in liver or blood. No toxicity was observed in any of the treated mice. The efficacy of the IL-12-expressing NV1042 virus in this aggressive prostate cancer model using a clinically relevant treatment paradigm merits its consideration for clinical studies.

  11. Mathematical modeling of tumor therapy with oncolytic viruses: effects of parametric heterogeneity on cell dynamics

    PubMed Central

    Karev, Georgy P; Novozhilov, Artem S; Koonin, Eugene V

    2006-01-01

    Background: One of the mechanisms that ensure cancer robustness is tumor heterogeneity, and its effects on tumor cells dynamics have to be taken into account when studying cancer progression. There is no unifying theoretical framework in mathematical modeling of carcinogenesis that would account for parametric heterogeneity. Results: Here we formulate a modeling approach that naturally takes stock of inherent cancer cell heterogeneity and illustrate it with a model of interaction between a tumor and an oncolytic virus. We show that several phenomena that are absent in homogeneous models, such as cancer recurrence, tumor dormancy, and others, appear in heterogeneous setting. We also demonstrate that, within the applied modeling framework, to overcome the adverse effect of tumor cell heterogeneity on the outcome of cancer treatment, a heterogeneous population of an oncolytic virus must be used. Heterogeneity in parameters of the model, such as tumor cell susceptibility to virus infection and the ability of an oncolytic virus to infect tumor cells, can lead to complex, irregular evolution of the tumor. Thus, quasi-chaotic behavior of the tumor-virus system can be caused not only by random perturbations but also by the heterogeneity of the tumor and the virus. Conclusion: The modeling approach described here reveals the importance of tumor cell and virus heterogeneity for the outcome of cancer therapy. It should be straightforward to apply these techniques to mathematical modeling of other types of anticancer therapy. Reviewers: Leonid Hanin (nominated by Arcady Mushegian), Natalia Komarova (nominated by Orly Alter), and David Krakauer. PMID:17018145

  12. The ex vivo purge of cancer cells using oncolytic viruses: recent advances and clinical implications.

    PubMed

    Tsang, Jovian J; Atkins, Harold L

    2015-01-01

    Hematological malignancies are treated with intensive high-dose chemotherapy, with or without radiation. This is followed by hematopoietic stem cell (HSC) transplantation (HSCT) to rescue or reconstitute hematopoiesis damaged by the anticancer therapy. Autologous HSC grafts may contain cancer cells and purging could further improve treatment outcomes. Similarly, allogeneic HSCT may be improved by selectively purging alloreactive effector cells from the graft rather than wholesale immune cell depletion. Viral agents that selectively replicate in specific cell populations are being studied in experimental models of cancer and immunological diseases and have potential applications in the context of HSC graft engineering. This review describes preclinical studies involving oncolytic virus strains of adenovirus, herpes simplex virus type 1, myxoma virus, and reovirus as ex vivo purging agents for HSC grafts, as well as in vitro and in vivo experimental studies using oncolytic coxsackievirus, measles virus, parvovirus, vaccinia virus, and vesicular stomatitis virus to eradicate hematopoietic malignancies. Alternative ex vivo oncolytic virus strategies are also outlined that aim to reduce the risk of relapse following autologous HSCT and mitigate morbidity and mortality due to graft-versus-host disease in allogeneic HSCT.

  13. The ex vivo purge of cancer cells using oncolytic viruses: recent advances and clinical implications

    PubMed Central

    Tsang, Jovian J; Atkins, Harold L

    2015-01-01

    Hematological malignancies are treated with intensive high-dose chemotherapy, with or without radiation. This is followed by hematopoietic stem cell (HSC) transplantation (HSCT) to rescue or reconstitute hematopoiesis damaged by the anticancer therapy. Autologous HSC grafts may contain cancer cells and purging could further improve treatment outcomes. Similarly, allogeneic HSCT may be improved by selectively purging alloreactive effector cells from the graft rather than wholesale immune cell depletion. Viral agents that selectively replicate in specific cell populations are being studied in experimental models of cancer and immunological diseases and have potential applications in the context of HSC graft engineering. This review describes preclinical studies involving oncolytic virus strains of adenovirus, herpes simplex virus type 1, myxoma virus, and reovirus as ex vivo purging agents for HSC grafts, as well as in vitro and in vivo experimental studies using oncolytic coxsackievirus, measles virus, parvovirus, vaccinia virus, and vesicular stomatitis virus to eradicate hematopoietic malignancies. Alternative ex vivo oncolytic virus strategies are also outlined that aim to reduce the risk of relapse following autologous HSCT and mitigate morbidity and mortality due to graft-versus-host disease in allogeneic HSCT. PMID:27512666

  14. A novel, polymer-coated oncolytic measles virus overcomes immune suppression and induces robust antitumor activity

    PubMed Central

    Nosaki, Kaname; Hamada, Katsuyuki; Takashima, Yuto; Sagara, Miyako; Matsumura, Yumiko; Miyamoto, Shohei; Hijikata, Yasuki; Okazaki, Toshihiko; Nakanishi, Yoichi; Tani, Kenzaburo

    2016-01-01

    Although various therapies are available to treat cancers, including surgery, chemotherapy, and radiotherapy, cancer has been the leading cause of death in Japan for the last 30 years, and new therapeutic modalities are urgently needed. As a new modality, there has recently been great interest in oncolytic virotherapy, with measles virus being a candidate virus expected to show strong antitumor effects. The efficacy of virotherapy, however, was strongly limited by the host immune response in previous clinical trials. To enhance and prolong the antitumor activity of virotherapy, we combined the use of two newly developed tools: the genetically engineered measles virus (MV-NPL) and the multilayer virus-coating method of layer-by-layer deposition of ionic polymers. We compared the oncolytic effects of this polymer-coated MV-NPL with the naked MV-NPL, both in vitro and in vivo. In the presence of anti-MV neutralizing antibodies, the polymer-coated virus showed more enhanced oncolytic activity than did the naked MV-NPL in vitro. We also examined antitumor activities in virus-treated mice. Complement-dependent cytotoxicity and antitumor activities were higher in mice treated with polymer-coated MV-NPL than in mice treated with the naked virus. This novel, polymer-coated MV-NPL is promising for clinical cancer therapy in the future. PMID:27847861

  15. A novel, polymer-coated oncolytic measles virus overcomes immune suppression and induces robust antitumor activity.

    PubMed

    Nosaki, Kaname; Hamada, Katsuyuki; Takashima, Yuto; Sagara, Miyako; Matsumura, Yumiko; Miyamoto, Shohei; Hijikata, Yasuki; Okazaki, Toshihiko; Nakanishi, Yoichi; Tani, Kenzaburo

    2016-01-01

    Although various therapies are available to treat cancers, including surgery, chemotherapy, and radiotherapy, cancer has been the leading cause of death in Japan for the last 30 years, and new therapeutic modalities are urgently needed. As a new modality, there has recently been great interest in oncolytic virotherapy, with measles virus being a candidate virus expected to show strong antitumor effects. The efficacy of virotherapy, however, was strongly limited by the host immune response in previous clinical trials. To enhance and prolong the antitumor activity of virotherapy, we combined the use of two newly developed tools: the genetically engineered measles virus (MV-NPL) and the multilayer virus-coating method of layer-by-layer deposition of ionic polymers. We compared the oncolytic effects of this polymer-coated MV-NPL with the naked MV-NPL, both in vitro and in vivo. In the presence of anti-MV neutralizing antibodies, the polymer-coated virus showed more enhanced oncolytic activity than did the naked MV-NPL in vitro. We also examined antitumor activities in virus-treated mice. Complement-dependent cytotoxicity and antitumor activities were higher in mice treated with polymer-coated MV-NPL than in mice treated with the naked virus. This novel, polymer-coated MV-NPL is promising for clinical cancer therapy in the future.

  16. Targeting Prostate Cancer for Gene Therapy Utilizing Lentivirus and Oncolytic VSV Virus

    DTIC Science & Technology

    2009-04-01

    Prostate cancer is the most commonly diagnosed non- skin carcinoma, and one of the leading causes of cancerrelated deaths in North American men. Presently...primary and metastatic cancer cells while sparing normal cells. Vesicular Stomatitis Virus (VSV) is an oncolytic virus which is able to replicate in...capable of selectively infecting and killing malignant prostate cells while sparing normal cells. This cancer-specific cell death was not due to

  17. Use of oncolytic viruses for the eradication of drug-resistant cancer cells

    PubMed Central

    Wodarz, Dominik

    2008-01-01

    Targeted therapy using small-molecule inhibitors is a promising new therapy approach against cancer, but drug-resistant mutants present an obstacle to success. Oncolytic virus therapy, where viruses replicate specifically in cancer cells and kill them, is another promising therapy approach against cancer. While encouraging results have been observed in clinical trials, consistent success has not been possible so far. Based on a computational framework, I report that even if oncolytic virus therapy fails to eradicate a cancer, it can have the potential to eradicate the sub-population of drug-resistant cancer cells. Once this has occurred, targeted drug therapy can be used to induce cancer remission. For this to work, a drug resistance mutation must confer a certain fitness cost to the cell, as has been documented in the literature. The reason for this finding is that in the presence of a shared virus, the faster growing (drug-sensitive) cell population produces an amount of virus that is too much for the slower growing (drug-resistant) cell population to survive. This is derived from a population dynamic principle known as apparent competition. Therefore, a sequential combination of oncolytic virus and targeted therapies can overcome major weaknesses of either approach alone. PMID:18664430

  18. Oncolytic viral purging of leukemic hematopoietic stem and progenitor cells with Myxoma virus

    PubMed Central

    Rahman, Masmudur M.; Madlambayan, Gerard J.; Cogle, Christopher R.; McFadden, Grant

    2010-01-01

    High-dose chemotherapy and radiation followed by autologous blood and marrow transplantation (ABMT) has been extensively used for the treatment of certain cancers that are refractory to standard therapeutic regimes. However, a major challenge with ABMT for patients with hematologic malignancies is disease relapse, mainly due to either contamination with cancerous hematopoietic stem and progenitor cells (HSPCs) within the autograft or the persistence of residual therapy-resistant disease niches within the patient. Oncolytic viruses represent a promising therapeutic approach to prevent cancer relapse by eliminating tumor-initiating cells that contaminate the autograft. Here we summarize an ex vivo “purging” strategy with oncolytic myxoma virus (MYXV) to remove cancer-initiating cells from patient autografts prior to transplantation. MYXV, a novel oncolytic poxvirus with potent anti-cancer properties in a variety of in vivo tumor models, can specifically eliminate cancerous stem and progenitor cells from samples obtained from acute myelogenous leukemia (AML) patients, while sparing normal CD34+ hematopoietic stem and progenitor cells capable of rescuing hematopoiesis following high dose conditioning. We propose that a broader subset of patients with intractable hematologic malignancies who have failed standard therapy could become eligible for ABMT when the treatment schema is coupled with ex vivo oncolytic therapy. PMID:20211576

  19. Oncolytic viral purging of leukemic hematopoietic stem and progenitor cells with Myxoma virus.

    PubMed

    Rahman, Masmudur M; Madlambayan, Gerard J; Cogle, Christopher R; McFadden, Grant

    2010-01-01

    High-dose chemotherapy and radiation followed by autologous blood and marrow transplantation (ABMT) has been used for the treatment of certain cancers that are refractory to standard therapeutic regimes. However, a major challenge with ABMT for patients with hematologic malignancies is disease relapse, mainly due to either contamination with cancerous hematopoietic stem and progenitor cells (HSPCs) within the autograft or the persistence of residual therapy-resistant disease niches within the patient. Oncolytic viruses represent a promising therapeutic approach to prevent cancer relapse by eliminating tumor-initiating cells that contaminate the autograft. Here we summarize an ex vivo "purging" strategy with oncolytic Myxoma virus (MYXV) to remove cancer-initiating cells from patient autografts prior to transplantation. MYXV, a novel oncolytic poxvirus with potent anti-cancer properties in a variety of in vivo tumor models, can specifically eliminate cancerous stem and progenitor cells from samples obtained from acute myelogenous leukemia (AML) patients, while sparing normal CD34+ hematopoietic stem and progenitor cells capable of rescuing hematopoiesis following high dose conditioning. We propose that a broader subset of patients with intractable hematologic malignancies who have failed standard therapy could become eligible for ABMT when the treatment schema is coupled with ex vivo oncolytic therapy.

  20. Perfusion Pressure Is a Critical Determinant of the Intratumoral Extravasation of Oncolytic Viruses

    PubMed Central

    Miller, Amber; Nace, Rebecca; Ayala-Breton C, Camilo; Steele, Michael; Bailey, Kent; Peng, Kah Whye; Russell, Stephen J

    2016-01-01

    Antitumor efficacy of oncolytic virotherapy is determined by the density and distribution of infectious centers within the tumor, which may be heavily influenced by the permeability and blood flow in tumor microvessels. Here, we investigated whether systemic perfusion pressure, a key driver of tumor blood flow, could influence the intratumoral extravasation of systemically administered oncolytic vesicular stomatitis virus (VSV) in myeloma tumor-bearing mice. Exercise was used to increase mean arterial pressure, and general anesthesia to decrease it. A recombinant VSV expressing the sodium iodide symporter (NIS), which concentrates radiotracers at sites of infection, was administered intravenously to exercising or anesthetized mice, and nuclear NIS reporter gene imaging was used to noninvasively track the density and spatial distribution of intratumoral infectious centers. Anesthesia resulted in decreased intratumoral infection density, while exercise increased the density and uniformity of infectious centers. Perfusion state also had a significant impact on the antitumor efficacy of the VSV therapy. In conclusion, quantitative dynamic radiohistologic imaging was used to noninvasively interrogate delivery of oncolytic virotherapy, highlighting the critical importance of perfusion pressure as a driver of intratumoral delivery and efficacy of oncolytic viruses. PMID:26647825

  1. Spatial and temporal epithelial ovarian cancer cell heterogeneity impacts Maraba virus oncolytic potential.

    PubMed

    Tong, Jessica G; Valdes, Yudith Ramos; Sivapragasam, Milani; Barrett, John W; Bell, John C; Stojdl, David; DiMattia, Gabriel E; Shepherd, Trevor G

    2017-08-30

    Epithelial ovarian cancer exhibits extensive interpatient and intratumoral heterogeneity, which can hinder successful treatment strategies. Herein, we investigated the efficacy of an emerging oncolytic, Maraba virus (MRBV), in an in vitro model of ovarian tumour heterogeneity. Four ovarian high-grade serous cancer (HGSC) cell lines were isolated and established from a single patient at four points during disease progression. Limiting-dilution subcloning generated seven additional subclone lines to assess intratumoral heterogeneity. MRBV entry and oncolytic efficacy were assessed among all 11 cell lines. Low-density receptor (LDLR) expression, conditioned media treatments and co-cultures were performed to determine factors impacting MRBV oncolysis. Temporal and intratumoral heterogeneity identified two subpopulations of cells: one that was highly sensitive to MRBV, and another set which exhibited 1000-fold reduced susceptibility to MRBV-mediated oncolysis. We explored both intracellular and extracellular mechanisms influencing sensitivity to MRBV and identified that LDLR can partially mediate MRBV infection. LDLR expression, however, was not the singular determinant of sensitivity to MRBV among the HGSC cell lines and subclones. We verified that there were no apparent extracellular factors, such as type I interferon responses, contributing to MRBV resistance. However, direct cell-cell contact by co-culture of MRBV-resistant subclones with sensitive cells restored virus infection and oncolytic killing of mixed population. Our data is the first to demonstrate differential efficacy of an oncolytic virus in the context of both spatial and temporal heterogeneity of HGSC cells and to evaluate whether it will constitute a barrier to effective viral oncolytic therapy.

  2. 4th European Seminars in Virology on Oncogenic and Oncolytic Viruses, in Bertinoro (Bologna), Italy.

    PubMed

    Reale, Alberto; Messa, Lorenzo; Vitiello, Adriana; Loregian, Arianna; Palù, Giorgio

    2017-10-01

    The 4th European Seminars in Virology (EuSeV), which was focused on oncogenic and oncolytic viruses, was held in Bertinoro (Bologna), Italy, from June 10 to 12, 2016. This article summarizes the plenary lectures and aims to illustrate the main topics discussed at 4th EuSeV, which brought together knowledge and expertise in the field of oncogenic and oncolytic viruses from all over the world. The meeting was divided in two parts, "Mechanisms of Viral Oncogenesis" and "Viral Oncolysis and Immunotherapy," which were both focused on dissecting the complex and multi-factorial interplay between cancer and human viruses and on exploring new anti-cancer strategies. J. Cell. Physiol. 232: 2641-2648, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Preclinical Evaluation of Oncolytic Vaccinia Virus for Therapy of Canine Soft Tissue Sarcoma

    PubMed Central

    Josupeit, Rafael; Rudolph, Stephan; Ehrig, Klaas; Donat, Ulrike; Weibel, Stephanie; Chen, Nanhai G.; Yu, Yong A.; Zhang, Qian; Heisig, Martin; Thamm, Douglas; Stritzker, Jochen; MacNeill, Amy; Szalay, Aladar A.

    2012-01-01

    Virotherapy using oncolytic vaccinia virus (VACV) strains is one promising new strategy for canine cancer therapy. In this study we describe the establishment of an in vivo model of canine soft tissue sarcoma (CSTS) using the new isolated cell line STSA-1 and the analysis of the virus-mediated oncolytic and immunological effects of two different Lister VACV LIVP1.1.1 and GLV-1h68 strains against CSTS. Cell culture data demonstrated that both tested VACV strains efficiently infected and destroyed cells of the canine soft tissue sarcoma line STSA-1. In addition, in our new canine sarcoma tumor xenograft mouse model, systemic administration of LIVP1.1.1 or GLV-1h68 viruses led to significant inhibition of tumor growth compared to control mice. Furthermore, LIVP1.1.1 mediated therapy resulted in almost complete tumor regression and resulted in long-term survival of sarcoma-bearing mice. The replication of the tested VACV strains in tumor tissues led to strong oncolytic effects accompanied by an intense intratumoral infiltration of host immune cells, mainly neutrophils. These findings suggest that the direct viral oncolysis of tumor cells and the virus-dependent activation of tumor-associated host immune cells could be crucial parts of anti-tumor mechanism in STSA-1 xenografts. In summary, the data showed that both tested vaccinia virus strains and especially LIVP1.1.1 have great potential for effective treatment of CSTS. PMID:22615950

  4. Directed Evolution Generates a Novel Oncolytic Virus for the Treatment of Colon Cancer

    PubMed Central

    Kuhn, Irene; Harden, Paul; Bauzon, Maxine; Chartier, Cecile; Nye, Julie; Thorne, Steve; Reid, Tony; Ni, Shaoheng; Lieber, Andre; Fisher, Kerry; Seymour, Len; Rubanyi, Gabor M.; Harkins, Richard N.; Hermiston, Terry W.

    2008-01-01

    Background Viral-mediated oncolysis is a novel cancer therapeutic approach with the potential to be more effective and less toxic than current therapies due to the agents selective growth and amplification in tumor cells. To date, these agents have been highly safe in patients but have generally fallen short of their expected therapeutic value as monotherapies. Consequently, new approaches to generating highly potent oncolytic viruses are needed. To address this need, we developed a new method that we term “Directed Evolution” for creating highly potent oncolytic viruses. Methodology/Principal Findings Taking the “Directed Evolution” approach, viral diversity was increased by pooling an array of serotypes, then passaging the pools under conditions that invite recombination between serotypes. These highly diverse viral pools were then placed under stringent directed selection to generate and identify highly potent agents. ColoAd1, a complex Ad3/Ad11p chimeric virus, was the initial oncolytic virus derived by this novel methodology. ColoAd1, the first described non-Ad5-based oncolytic Ad, is 2–3 logs more potent and selective than the parent serotypes or the most clinically advanced oncolytic Ad, ONYX-015, in vitro. ColoAd1's efficacy was further tested in vivo in a colon cancer liver metastasis xenograft model following intravenous injection and its ex vivo selectivity was demonstrated on surgically-derived human colorectal tumor tissues. Lastly, we demonstrated the ability to arm ColoAd1 with an exogenous gene establishing the potential to impact the treatment of cancer on multiple levels from a single agent. Conclusions/Significance Using the “Directed Evolution” methodology, we have generated ColoAd1, a novel chimeric oncolytic virus. In vitro, this virus demonstrated a >2 log increase in both potency and selectivity when compared to ONYX-015 on colon cancer cells. These results were further supported by in vivo and ex vivo studies. Furthermore

  5. Prime-boost using Separate Oncolytic Viruses in Combination with Checkpoint Blockade Improves Anti-tumor Therapy

    PubMed Central

    Ilett, Elizabeth; Kottke, Timothy; Thompson, Jill; Rajani, Karishma; Zaidi, Shane; Evgin, Laura; Coffey, Matt; Ralph, Christy; Diaz, Rosa; Pandha, Hardev; Harrington, Kevin; Selby, Peter; Bram, Richard; Melcher, Alan; Vile, Richard

    2017-01-01

    The anti-tumor effects associated with oncolytic virus therapy are mediated significantly through immune-mediated mechanisms which depends both on the type of virus and the route of delivery. Here, we show that intra-tumoral (i.t.) oncolysis by Reovirus induced the priming of a CD8+, Th1-type anti-tumor response. In contrast, systemically delivered VSV expressing a cDNA library of melanoma antigens (VSV-ASMEL) promoted a potent anti-tumor CD4+ Th17 response. Therefore, we hypothesised that combining the Reovirus-induced CD8+ T cell response, with the VSV-ASMEL CD4+ Th17 helper response, would produce enhanced anti-tumor activity. Consistent with this, priming with i.t. Reovirus, followed by an intra-venous VSV-ASMEL Th17 boost, significantly improved survival of mice bearing established subcutaneous (s.c.) B16 melanoma tumors. We also show that combination of either therapy alone with anti-PD-1 immune checkpoint blockade augmented both the Th1 response induced by systemically delivered Reovirus in combination with GM-CSF, and also the Th17 response induced by VSV-ASMEL. Significantly, anti-PD-1 also uncovered an anti-tumor Th1 response following VSV-ASMEL treatment that was not seen in the absence of checkpoint blockade. Finally, the combination of all three treatments (priming with systemically delivered Reovirus, followed by double boosting with systemic VSV-ASMEL and anti-PD-1) significantly enhanced survival, with long-term cures, compared to any individual, or double, combination therapies, associated with strong Th1 and Th17 responses to tumor antigens. Our data show that it is possible to generate fully systemic, highly effective anti-tumor immunovirotherapy by combining oncolytic viruses, along with immune checkpoint blockade, to induce complimentary mechanisms of anti-tumor immune responses. PMID:27779616

  6. Cellular factors promoting resistance to effective treatment of glioma with oncolytic myxoma virus.

    PubMed

    Zemp, Franz J; McKenzie, Brienne A; Lun, Xueqing; Reilly, Karlyne M; McFadden, Grant; Yong, V Wee; Forsyth, Peter A

    2014-12-15

    Oncolytic virus therapy is being evaluated in clinical trials for human glioma. While it is widely assumed that the immune response of the patient to the virus infection limits the utility of the therapy, investigations into the specific cell type(s) involved in this response have been performed using nonspecific pharmacologic inhibitors or allogeneic models with compromised immunity. To identify the immune cells that participate in clearing an oncolytic infection in glioma, we used flow cytometry and immunohistochemistry to immunophenotype an orthotopic glioma model in immunocompetent mice after Myxoma virus (MYXV) administration. These studies revealed a large resident microglia and macrophage population in untreated tumors, and robust monocyte, T-, and NK cell infiltration 3 days after MYXV infection. To determine the role on the clinical utility of MYXV therapy for glioma, we used a combination of knockout mouse strains and specific immunocyte ablation techniques. Collectively, our experiments identify an important role for tumor-resident myeloid cells and overlapping roles for recruited NK and T cells in the clearance and efficacy of oncolytic MYXV from gliomas. Using a cyclophosphamide regimen to achieve lymphoablation prior and during MYXV treatment, we prevented treatment-induced peripheral immunocyte recruitment and, surprisingly, largely ablated the tumor-resident macrophage population. Virotherapy of cyclophosphamide-treated animals resulted in sustained viral infection within the glioma as well as a substantial survival advantage. This study demonstrates that resistance to MYXV virotherapy in syngeneic glioma models involves a multifaceted cellular immune response that can be overcome with cyclophosphamide-mediated lymphoablation.

  7. Targeting pediatric cancer stem cells with oncolytic virotherapy.

    PubMed

    Friedman, Gregory K; Cassady, Kevin A; Beierle, Elizabeth A; Markert, James M; Gillespie, G Yancey

    2012-04-01

    Cancer stem cells (CSCs), also termed "cancer-initiating cells" or "cancer progenitor cells," which have the ability to self-renew, proliferate, and maintain the neoplastic clone, have recently been discovered in a wide variety of pediatric tumors. These CSCs are thought to be responsible for tumorigenesis and tumor maintenance, aggressiveness, and recurrence due to inherent resistance to current treatment modalities such as chemotherapy and radiation. Oncolytic virotherapy offers a novel, targeted approach for eradicating pediatric CSCs using mechanisms of cell killing that differ from conventional therapies. Moreover, oncolytic viruses have the ability to target specific features of CSCs such as cell-surface proteins, transcription factors, and the CSC microenvironment. Through genetic engineering, a wide variety of foreign genes may be expressed by oncolytic viruses to augment the oncolytic effect. We review the current data regarding the ability of several types of oncolytic viruses (herpes simplex virus-1, adenovirus, reovirus, Seneca Valley virus, vaccinia virus, Newcastle disease virus, myxoma virus, vesicular stomatitis virus) to target and kill both CSCs and tumor cells in pediatric tumors. We highlight advantages and limitations of each virus and potential ways in which next-generation engineered viruses may target resilient CSCs.

  8. Selective replication of oncolytic virus M1 results in a bystander killing effect that is potentiated by Smac mimetics.

    PubMed

    Cai, Jing; Lin, Yuan; Zhang, Haipeng; Liang, Jiankai; Tan, Yaqian; Cavenee, Webster K; Yan, Guangmei

    2017-06-27

    Oncolytic virotherapy is a treatment modality that uses native or genetically modified viruses that selectively replicate in and kill tumor cells. Viruses represent a type of pathogen-associated molecular pattern and thereby induce the up-regulation of dozens of cytokines via activating the host innate immune system. Second mitochondria-derived activator of caspases (Smac) mimetic compounds (SMCs), which antagonize the function of inhibitor of apoptosis proteins (IAPs) and induce apoptosis, sensitize tumor cells to multiple cytokines. Therefore, we sought to determine whether SMCs sensitize tumor cells to cytokines induced by the oncolytic M1 virus, thus enhancing a bystander killing effect. Here, we report that SMCs potentiate the oncolytic effect of M1 in vitro, in vivo, and ex vivo. This strengthened oncolytic efficacy resulted from the enhanced bystander killing effect caused by the M1 virus via cytokine induction. Through a microarray analysis and subsequent validation using recombinant cytokines, we identified IL-8, IL-1A, and TRAIL as the key cytokines in the bystander killing effect. Furthermore, SMCs increased the replication of M1, and the accumulation of virus protein induced irreversible endoplasmic reticulum stress- and c-Jun N-terminal kinase-mediated apoptosis. Nevertheless, the combined treatment with M1 and SMCs had little effect on normal and human primary cells. Because SMCs selectively and significantly enhance the bystander killing effect and the replication of oncolytic virus M1 specifically in cancer cells, this combined treatment may represent a promising therapeutic strategy.

  9. Antigen profiling analysis of vaccinia virus injected canine tumors: oncolytic virus efficiency predicted by boolean models.

    PubMed

    Cecil, Alexander; Gentschev, Ivaylo; Adelfinger, Marion; Nolte, Ingo; Dandekar, Thomas; Szalay, Aladar A

    2014-01-01

    Virotherapy on the basis of oncolytic vaccinia virus (VACV) strains is a novel approach for cancer therapy. In this study we describe for the first time the use of dynamic boolean modeling for tumor growth prediction of vaccinia virus GLV-1h68-injected canine tumors including canine mammary adenoma (ZMTH3), canine mammary carcinoma (MTH52c), canine prostate carcinoma (CT1258), and canine soft tissue sarcoma (STSA-1). Additionally, the STSA-1 xenografted mice were injected with either LIVP 1.1.1 or LIVP 5.1.1 vaccinia virus strains.   Antigen profiling data of the four different vaccinia virus-injected canine tumors were obtained, analyzed and used to calculate differences in the tumor growth signaling network by type and tumor type. Our model combines networks for apoptosis, MAPK, p53, WNT, Hedgehog, TK cell, Interferon, and Interleukin signaling networks. The in silico findings conform with in vivo findings of tumor growth. Boolean modeling describes tumor growth and remission semi-quantitatively with a good fit to the data obtained for all cancer type variants. At the same time it monitors all signaling activities as a basis for treatment planning according to antigen levels. Mitigation and elimination of VACV- susceptible tumor types as well as effects on the non-susceptible type CT1258 are predicted correctly. Thus the combination of Antigen profiling and semi-quantitative modeling optimizes the therapy already before its start.

  10. Using clinically approved cyclophosphamide regimens to control the humoral immune response to oncolytic viruses

    PubMed Central

    Peng, K-W; Myers, R; Greenslade, A; Mader, E; Greiner, S; Federspiel, MJ; Dispenzieri, A; Russell, SJ

    2013-01-01

    Oncolytic viruses can be neutralized in the bloodstream by antiviral antibodies whose titers increase progressively with each exposure, resulting in faster virus inactivation and further reductions in efficacy with each successive dose. A single dose of cyclophosphamide (CPA) at 370 mg m−2 was not sufficient to control the primary antiviral immune responses in mice, squirrel monkeys and humans. We therefore tested clinically approved multidose CPA regimens, which are known to kill proliferating lymphocytes, to determine if more intensive CPA therapy can more effectively suppress antiviral antibody responses during virotherapy. In virus-susceptible mice, primary antibody responses to intravenously (i.v.) administered oncolytic measles virus (MV) or vesicular stomatitis virus (VSV) were partially or completely suppressed, respectively, by oral (1 mg × 8 days) or systemic (3 mg × 4 days) CPA regimens initiated 1 day before virus. When MV- or VSV-immune mice were re-challenged with the respective viruses and concurrently treated with four daily systemic doses of CPA, their anamnestic antibody responses were completely suppressed and antiviral antibody titers fell significantly below pre-booster levels. We conclude that the CPA regimen of four daily doses at 370 mg m−2 should be evaluated clinically with i.v. virotherapy to control the antiviral antibody response and facilitate effective repeat dosing. PMID:22476202

  11. Using clinically approved cyclophosphamide regimens to control the humoral immune response to oncolytic viruses.

    PubMed

    Peng, K-W; Myers, R; Greenslade, A; Mader, E; Greiner, S; Federspiel, M J; Dispenzieri, A; Russell, S J

    2013-03-01

    Oncolytic viruses can be neutralized in the bloodstream by antiviral antibodies whose titers increase progressively with each exposure, resulting in faster virus inactivation and further reductions in efficacy with each successive dose. A single dose of cyclophosphamide (CPA) at 370 mg m(-2) was not sufficient to control the primary antiviral immune responses in mice, squirrel monkeys and humans. We therefore tested clinically approved multidose CPA regimens, which are known to kill proliferating lymphocytes, to determine if more intensive CPA therapy can more effectively suppress antiviral antibody responses during virotherapy. In virus-susceptible mice, primary antibody responses to intravenously (i.v.) administered oncolytic measles virus (MV) or vesicular stomatitis virus (VSV) were partially or completely suppressed, respectively, by oral (1 mg × 8 days) or systemic (3 mg × 4 days) CPA regimens initiated 1 day before virus. When MV- or VSV-immune mice were re-challenged with the respective viruses and concurrently treated with four daily systemic doses of CPA, their anamnestic antibody responses were completely suppressed and antiviral antibody titers fell significantly below pre-booster levels. We conclude that the CPA regimen of four daily doses at 370 mg m(-2) should be evaluated clinically with i.v. virotherapy to control the antiviral antibody response and facilitate effective repeat dosing.

  12. Transient fasting enhances replication of oncolytic herpes simplex virus in glioblastoma.

    PubMed

    Esaki, Shinichi; Rabkin, Samuel D; Martuza, Robert L; Wakimoto, Hiroaki

    2016-01-01

    Short-term nutritional restriction (fasting) has been shown to enhance the efficacy of chemotherapy by sensitizing cancer cells and protecting normal cells in a variety of cancer models, including glioblastoma (GBM). Cancer cells, unlike normal cells, respond to fasting by promoting oncogenic signaling and protein synthesis. We hypothesized that fasting would increase the replication of oncolytic herpes simplex virus (oHSV) in GBM. Patient-derived GBM cell lines were fasted by growth in glucose and fetal calf serum restricted culture medium. "Transient fasting", 24-hour fasting followed by 24-hour recovery in complete medium, increased late virus gene expression and G47Δ yields about 2-fold in GBM cells, but not in human astrocytes, and enhanced G47Δ killing of GBM cells. Mechanistically, "transient fasting" suppressed phosphorylation of the subunit of eukaryotic initiation factor 2α (eIF2α) and c-Jun N-terminal kinases (JNK) in GBM cells, but not in astrocytes. Pharmacological inhibition of JNK also increased G47Δ yield. In vivo, transient fasting (48-hour food restriction and 24-hour recovery) doubled luciferase activity after intratumoral G47Δ-US11fluc injection into orthotopic GBM xenografts. Thus, "transient fasting" increases G47Δ replication and oncolytic activity in human GBM cells. These results suggest that "transient fasting" may be effectively combined to enhance oncolytic HSV therapy of GBM.

  13. Oncolytic herpes simplex virus vectors and chemotherapy: are combinatorial strategies more effective for cancer?

    PubMed Central

    Kanai, Ryuichi; Wakimoto, Hiroaki; Cheema, Tooba; Rabkin, Samuel D

    2010-01-01

    Despite aggressive treatments, including chemotherapy and radiotherapy, cancers often recur owing to resistance to conventional therapies. Oncolytic viruses such as oncolytic herpes simplex virus (oHSV) represent an exciting biological approach to cancer therapy. A range of viral mutations has been engineered into HSV to engender oncolytic activity. While oHSV as a single agent has been tested in a number of cancer clinical trials, preclinical studies have demonstrated enhanced efficacy when it is combined with cytotoxic anticancer drugs. Among the strategies that will be discussed in this article are combinations with standard-of-care chemotherapeutics, expression of prodrug-activating enzymes to enhance chemotherapy and small-molecule inhibitors. The combination of oHSV and chemotherapy can achieve much more efficient cancer cell killing than either single agent alone, often through synergistic interactions. This can be clinically important not just for improving efficacy but also for permitting lower and less toxic chemotherapeutic doses. The viral mutations in an oHSV vector often determine the favorability of its interactions with chemotherapy, just as different cancer cells, due to genetic alterations, vary in their response to chemotherapy. As chemotherapeutics are often the standard of care, combining them with an investigational new drug, such as oHSV, is clinically easier than combining multiple novel agents. As has become clear for most cancer therapies, multimodal treatments are usually more effective. In this article, we will discuss the recent progress of these combinatorial strategies between virotherapy and chemotherapy and future directions. PMID:20373873

  14. A Strategy for Cultivation of Retargeted Oncolytic Herpes Simplex Viruses in Non-cancer Cells.

    PubMed

    Leoni, Valerio; Gatta, Valentina; Casiraghi, Costanza; Nicosia, Alfredo; Petrovic, Biljana; Campadelli-Fiume, Gabriella

    2017-05-15

    The oncolytic herpes simplex virus (HSV) that has been approved for clinical practice and those HSVs in clinical trials are attenuated viruses, often with the neurovirulence gene γ134.5 and additional genes deleted. One strategy to engineer nonattenuated oncolytic HSVs consists of retargeting the viral tropism to a cancer-specific receptor of choice, exemplified by HER2 (human epidermal growth factor receptor 2), which is present in breast, ovary, and other cancers, and in detargeting from the natural receptors. Because the HER2-retargeted HSVs strictly depend on this receptor for infection, the viruses employed in preclinical studies were cultivated in HER2-positive cancer cells. The production of clinical-grade viruses destined for humans should avoid the use of cancer cells. Here, we engineered the R-213 recombinant, by insertion of a 20-amino-acid (aa) short peptide (named GCN4) in the gH of R-LM113; this recombinant was retargeted to HER2 through insertion in gD of a single-chain antibody (scFv) to HER2. Next, we generated a Vero cell line expressing an artificial receptor (GCN4R) whose N terminus consists of an scFv to GCN4 and therefore is capable of interacting with GCN4 present in gH of R-213. R-213 replicated as well as R-LM113 in SK-OV-3 cells, implying that addition of the GCN4 peptide was not detrimental to gH. R-213 grew to relatively high titers in Vero-GCN4R cells, efficiently spread from cell to cell, and killed both Vero-GCN4R and SK-OV-3 cells, as expected for an oncolytic virus. Altogether, Vero-GCN4R cells represent an efficient system for cultivation of retargeted oncolytic HSVs in non-cancer cells.IMPORTANCE There is growing interest in viruses as oncolytic agents, which can be administered in combination with immunotherapeutic compounds, including immune checkpoint inhibitors. The oncolytic HSV approved for clinical practice and those in clinical trials are attenuated viruses. An alternative to attenuation is a cancer specificity achieved

  15. Myxoma virus oncolytic efficiency can be enhanced through chemical or genetic disruption of the actin cytoskeleton.

    PubMed

    Irwin, Chad R; Favis, Nicole A; Agopsowicz, Kate C; Hitt, Mary M; Evans, David H

    2013-01-01

    Myxoma virus (MYXV) is one of many animal viruses that exhibit oncolytic properties in transformed human cells. Compared to orthopoxviruses like vaccinia (VACV), MYXV spreads inefficiently, which could compromise its use in treating tumors and their associated metastases. The VACV F11 protein promotes virus exit and rapid spread by inhibiting Rho signalling, which results in a disruption of cortical actin. We have previously shown that although MYXV lacks an F11 homolog, the F11L gene can be introduced into MYXV promoting the spread of this Leporipoxvirus in natural host cells. Here we show that the F11-encoding (F11L(+)) MYXV strain replicates to higher levels in a number of human cancer cells. We also show that F11L(+) MYXV induces better tumor control and prolonged survival of mice bearing MDA-MB-231 cancer cells. Furthermore, we show that this virus also spreads more efficiently from the site of growth in one injected tumor, to a second untreated tumor. While we focused mostly on the use of a modified MYXV we were able to show that the effects of F11 on MYXV growth in cancer cells could be mimicked through the use of pharmacological inhibition or siRNA-mediated silencing of key regulators of cortical actin (RhoA, RhoC, mDia1, or LIMK2). These data suggest that it may be possible to increase the oncolytic efficacy of wild-type MYXV using chemical inhibitors of RhoA/C or their downstream targets. Furthermore, since all viruses must overcome barriers to exit posed by structures like cortical actin, these findings suggest that the oncolytic activity of other viruses may be enhanced through similar strategies.

  16. Myxoma Virus Oncolytic Efficiency Can Be Enhanced Through Chemical or Genetic Disruption of the Actin Cytoskeleton

    PubMed Central

    Irwin, Chad R.; Favis, Nicole A.; Agopsowicz, Kate C.; Hitt, Mary M.; Evans, David H.

    2013-01-01

    Myxoma virus (MYXV) is one of many animal viruses that exhibit oncolytic properties in transformed human cells. Compared to orthopoxviruses like vaccinia (VACV), MYXV spreads inefficiently, which could compromise its use in treating tumors and their associated metastases. The VACV F11 protein promotes virus exit and rapid spread by inhibiting Rho signalling, which results in a disruption of cortical actin. We have previously shown that although MYXV lacks an F11 homolog, the F11L gene can be introduced into MYXV promoting the spread of this Leporipoxvirus in natural host cells. Here we show that the F11-encoding (F11L+) MYXV strain replicates to higher levels in a number of human cancer cells. We also show that F11L+ MYXV induces better tumor control and prolonged survival of mice bearing MDA-MB-231 cancer cells. Furthermore, we show that this virus also spreads more efficiently from the site of growth in one injected tumor, to a second untreated tumor. While we focused mostly on the use of a modified MYXV we were able to show that the effects of F11 on MYXV growth in cancer cells could be mimicked through the use of pharmacological inhibition or siRNA-mediated silencing of key regulators of cortical actin (RhoA, RhoC, mDia1, or LIMK2). These data suggest that it may be possible to increase the oncolytic efficacy of wild-type MYXV using chemical inhibitors of RhoA/C or their downstream targets. Furthermore, since all viruses must overcome barriers to exit posed by structures like cortical actin, these findings suggest that the oncolytic activity of other viruses may be enhanced through similar strategies. PMID:24391902

  17. Turning killer into cure -- the story of oncolytic herpes simplex viruses.

    PubMed

    Zhang, Shaun Xiaoliu

    2015-11-01

    Viruses have the intrinsic capability to kill host cells. Even when the initial infection consists of only a few viruses, they can reproduce themselves in large quantities within a short time and quickly spread to nearby cells, causing substantial tissue damage. These same infectious properties become desirable if they can be converted into killer agents with specificity for malignant cells. Cancer virotherapy is doing exactly that by modifying viruses in ways that allow them to replicate in malignant cells but not in normal cells. Although relatively young, the field has seen significant progress in recent years. For example, the most recent phase III trial data on a herpes simplex virus (HSV)-based oncolytic virus (T-VEC) show substantial improvement in objective and durable responses over the control arm in melanoma patients, prompting speculation that a virotherapy may receive FDA approval for clinical use in the very near future. This review focuses on HSV-based oncolytic viruses, from their early history to their most recent development, with discussion of promising directions for further improvement.

  18. The potential application of a transcriptionally regulated oncolytic herpes simplex virus for human cancer therapy

    PubMed Central

    Miao, L; Fraefel, C; Sia, K C; Newman, J P; Mohamed-Bashir, S A; Ng, W H; Lam, P Y P

    2014-01-01

    Background: Emerging studies have shown the potential benefit of arming oncolytic viruses with therapeutic genes. However, most of these therapeutic genes are placed under the regulation of ubiquitous viral promoters. Our goal is to generate a safer yet potent oncolytic herpes simplex virus type-1 (HSV-1) for cancer therapy. Methods: Using bacterial artificial chromosome (BAC) recombineering, a cell cycle-regulatable luciferase transgene cassette was replaced with the infected cell protein 6 (ICP6) coding region (encoded for UL39 or large subunit of ribonucleotide reductase) of the HSV-1 genome. These recombinant viruses, YE-PC8, were further tested for its proliferation-dependent luciferase gene expression. Results: The ability of YE-PC8 to confer proliferation-dependent transgene expression was demonstrated by injecting similar amount of viruses into the tumour-bearing region of the brain and the contralateral normal brain parenchyma of the same mouse. The results showed enhanced levels of luciferase activities in the tumour region but not in the normal brain parenchyma. Similar findings were observed in YE-PC8-infected short-term human brain patient-derived glioma cells compared with normal human astrocytes. intratumoural injection of YE-PC8 viruses resulted in 77% and 80% of tumour regression in human glioma and human hepatocellular carcinoma xenografts, respectively. Conclusion: YE-PC8 viruses confer tumour selectivity in proliferating cells and may be developed further as a feasible approach to treat human cancers. PMID:24196790

  19. Angiogenesis inhibition using an oncolytic herpes simplex virus expressing endostatin in a murine lung cancer model.

    PubMed

    Goodwin, Jonathan M; Schmitt, Anthony D; McGinn, Christopher M; Fuchs, Bryan C; Kuruppu, Darshini; Tanabe, Kenneth K; Lanuti, Michael

    2012-03-01

    Herpes-mediated viral oncolysis alone is not sufficient to completely eradicate tumors. In this study we used a replication conditional, endostatin-expressing herpes simplex virus-1 mutant (HSV-Endo) in a murine lung cancer model. We hypothesized that the anti-angiogenic action of endostatin would improve upon the oncolytic effect of HSV-1. HSV-Endo was evaluated in a pulmonary metastases and orthotopic flank model, where there was significantly less tumor burden and reduced microvessel density compared to a control virus. Endostatin expression appears to improve the anti-tumor effect of HSV-1 in a lung cancer model.

  20. Complex Dynamics of Virus Spread from Low Infection Multiplicities: Implications for the Spread of Oncolytic Viruses

    PubMed Central

    Rodriguez-Brenes, Ignacio A.; Hofacre, Andrew; Fan, Hung; Wodarz, Dominik

    2017-01-01

    While virus growth dynamics have been well-characterized in several infections, data are typically collected once the virus population becomes easily detectable. Earlier dynamics, however, remain less understood. We recently reported unusual early dynamics in an experimental system using adenovirus infection of human embryonic kidney (293) cells. Under identical experimental conditions, inoculation at low infection multiplicities resulted in either robust spread, or in limited spread that eventually stalled, with both outcomes occurring with approximately equal frequencies. The reasons underlying these observations have not been understood. Here, we present further experimental data showing that inhibition of interferon-induced antiviral states in cells results in a significant increase in the percentage of robust infections that are observed, implicating a race between virus replication and the spread of the anti-viral state as a central mechanism. Analysis of a variety of computational models, however, reveals that this alone cannot explain the simultaneous occurrence of both viral growth outcomes under identical conditions, and that additional biological mechanisms have to be invoked to explain the data. One such mechanism is the ability of the virus to overcome the antiviral state through multiple infection of cells. If this is included in the model, two outcomes of viral spread are found to be simultaneously stable, depending on initial conditions. In stochastic versions of such models, the system can go by chance to either state from identical initial conditions, with the relative frequency of the outcomes depending on the strength of the interferon-based anti-viral response, consistent with the experiments. This demonstrates considerable complexity during the early phase of the infection that can influence the ability of a virus to become successfully established. Implications for the initial dynamics of oncolytic virus spread through tumors are discussed

  1. Complex Dynamics of Virus Spread from Low Infection Multiplicities: Implications for the Spread of Oncolytic Viruses.

    PubMed

    Rodriguez-Brenes, Ignacio A; Hofacre, Andrew; Fan, Hung; Wodarz, Dominik

    2017-01-01

    While virus growth dynamics have been well-characterized in several infections, data are typically collected once the virus population becomes easily detectable. Earlier dynamics, however, remain less understood. We recently reported unusual early dynamics in an experimental system using adenovirus infection of human embryonic kidney (293) cells. Under identical experimental conditions, inoculation at low infection multiplicities resulted in either robust spread, or in limited spread that eventually stalled, with both outcomes occurring with approximately equal frequencies. The reasons underlying these observations have not been understood. Here, we present further experimental data showing that inhibition of interferon-induced antiviral states in cells results in a significant increase in the percentage of robust infections that are observed, implicating a race between virus replication and the spread of the anti-viral state as a central mechanism. Analysis of a variety of computational models, however, reveals that this alone cannot explain the simultaneous occurrence of both viral growth outcomes under identical conditions, and that additional biological mechanisms have to be invoked to explain the data. One such mechanism is the ability of the virus to overcome the antiviral state through multiple infection of cells. If this is included in the model, two outcomes of viral spread are found to be simultaneously stable, depending on initial conditions. In stochastic versions of such models, the system can go by chance to either state from identical initial conditions, with the relative frequency of the outcomes depending on the strength of the interferon-based anti-viral response, consistent with the experiments. This demonstrates considerable complexity during the early phase of the infection that can influence the ability of a virus to become successfully established. Implications for the initial dynamics of oncolytic virus spread through tumors are discussed.

  2. Molecular Pathways: Mechanism of Action for Talimogene Laherparepvec, a New Oncolytic Virus Immunotherapy.

    PubMed

    Kohlhapp, Frederick J; Kaufman, Howard L

    2016-03-01

    Oncolytic viruses are native or engineered viruses that preferentially replicate in and lyse cancer cells. Selective tumor cell replication is thought to depend on infection of neoplastic cells, which harbor low levels of protein kinase R (PKR) and dysfunctional type I IFN signaling elements. These changes allow more efficient viral replication, and with selected deletion of specific viral genes, replication in normal cells with activated PKR may not be possible. Direct tumor cell lysis, release of soluble tumor antigens, and danger-associated molecular factors are all thought to help prime and promote tumor-specific immunity. Talimogene laherparepvec (T-VEC) is a genetically modified herpes simplex virus, type I and is the first oncolytic virus to demonstrate a clinical benefit in patients with melanoma. T-VEC has also been evaluated for the treatment of head and neck cancer, pancreatic cancer, and likely other types of cancer will be targeted in the near future. T-VEC has been modified for improved safety, tumor-selective replication, and induction of host immunity by deletion of several viral genes and expression of human granulocyte-macrophage colony stimulating factor. Although the mechanism of action for T-VEC is incompletely understood, the safety profile of T-VEC and ability to promote immune responses suggest future combination studies with other immunotherapy approaches including checkpoint blockade through PD-1, PD-L1, and CTLA-4 to be a high priority for clinical development. Oncolytic viruses also represent unique regulatory and biosafety challenges but offer a potential new class of agents for the treatment of cancer.

  3. Mutations in the glycoprotein of vesicular stomatitis virus affect cytopathogenicity: potential for oncolytic virotherapy.

    PubMed

    Janelle, Valérie; Brassard, Frédérick; Lapierre, Pascal; Lamarre, Alain; Poliquin, Laurent

    2011-07-01

    Vesicular stomatitis virus (VSV) has been widely used to characterize cellular processes, viral resistance, and cytopathogenicity. Recently, VSV has also been used for oncolytic virotherapy due to its capacity to selectively lyse tumor cells. Mutants of the matrix (M) protein of VSV have generally been preferred to the wild-type virus for oncolysis because of their ability to induce type I interferon (IFN) despite causing weaker cytopathic effects. However, due to the large variability of tumor types, it is quite clear that various approaches and combinations of multiple oncolytic viruses will be needed to effectively treat most cancers. With this in mind, our work focused on characterizing the cytopathogenic profiles of four replicative envelope glycoprotein (G) VSV mutants. In contrast to the prototypic M mutant, VSV G mutants are as efficient as wild-type virus at inhibiting cellular transcription and host protein translation. Despite being highly cytopathic, the mutant G(6R) triggers type I interferon secretion as efficiently as the M mutant. Importantly, most VSV G mutants are more effective at killing B16 and MC57 tumor cells in vitro than the M mutant or wild-type virus through apoptosis induction. Taken together, our results demonstrate that VSV G mutants retain the high cytopathogenicity of wild-type VSV, with G(6R) inducing type I IFN secretion at levels similar to that of the M mutant. VSV G protein mutants could therefore prove to be highly valuable for the development of novel oncolytic virotherapy strategies that are both safe and efficient for the treatment of various types of cancer.

  4. Systemic therapy with oncolytic myxoma virus cures established residual multiple myeloma in mice

    PubMed Central

    Bartee, Eric; Bartee, Mee Y; Bogen, Bjarne; Yu, Xue-Zhong

    2016-01-01

    Multiple myeloma is an incurable malignancy of plasma B-cells. Traditional chemotherapeutic regimes often induce initial tumor regression; however, virtually all patients eventually succumb to relapse caused by either reintroduction of disease during autologous transplant or expansion of chemotherapy resistant minimal residual disease. It has been previously demonstrated that an oncolytic virus known as myxoma can completely prevent myeloma relapse caused by reintroduction of malignant cells during autologous transplant. The ability of this virus to treat established residual disease in vivo, however, remained unknown. Here we demonstrate that intravenous administration of myxoma virus into mice bearing disseminated myeloma results in the elimination of 70–90% of malignant cells within 24 hours. This rapid debulking was dependent on direct contact of myxoma virus with residual myeloma and did not occur through destruction of the hematopoietic bone marrow niche. Importantly, systemic myxoma therapy also induced potent antimyeloma CD8+ T cell responses which localized to the bone marrow and were capable of completely eradicating established myeloma in some animals. These results demonstrate that oncolytic myxoma virus is not only effective at preventing relapse caused by reinfusion of tumor cells during stem cell transplant, but is also potentially curative for patients bearing established minimal residual disease. PMID:27933316

  5. Polymeric Cups for Cavitation-mediated Delivery of Oncolytic Vaccinia Virus

    PubMed Central

    Myers, Rachel; Coviello, Christian; Erbs, Philippe; Foloppe, Johann; Rowe, Cliff; Kwan, James; Crake, Calum; Finn, Seán; Jackson, Edward; Balloul, Jean-Marc; Story, Colin; Coussios, Constantin; Carlisle, Robert

    2016-01-01

    Oncolytic viruses (OV) could become the most powerful and selective cancer therapies. However, the limited transport of OV into and throughout tumors following intravenous injection means their clinical administration is often restricted to direct intratumoral dosing. Application of physical stimuli, such as focused ultrasound, offers a means of achieving enhanced mass transport. In particular, shockwaves and microstreaming resulting from the instigation of an ultrasound-induced event known as inertial cavitation can propel OV hundreds of microns. We have recently developed a polymeric cup formulation which, when delivered intravenously, provides the nuclei for instigation of sustained inertial cavitation events within tumors. Here we report that exposure of tumors to focused ultrasound after intravenous coinjection of cups and oncolytic vaccinia virus , leads to substantial and significant increases in activity. When cavitation was instigated within SKOV-3 or HepG2 xenografts, reporter gene expression from vaccinia virus was enhanced 1,000-fold (P < 0.0001) or 10,000-fold (P < 0.001), respectively. Similar increases in the number of vaccinia virus genomes recovered from tumors were also observed. In survival studies, the application of cup mediated cavitation to a vaccinia virus expressing a prodrug converting enzyme provided significant (P < 0.05) retardation of tumor growth. This technology could improve the clinical utility of all biological therapeutics including OV. PMID:27375160

  6. To Infection and Beyond: The Multi-Pronged Anti-Cancer Mechanisms of Oncolytic Viruses.

    PubMed

    Cassady, Kevin A; Haworth, Kellie B; Jackson, Josh; Markert, James M; Cripe, Timothy P

    2016-02-04

    Over the past 1-2 decades we have witnessed a resurgence of efforts to therapeutically exploit the attributes of lytic viruses to infect and kill tumor cells while sparing normal cells. We now appreciate that the utility of viruses for treating cancer extends far beyond lytic cell death. Viruses are also capable of eliciting humoral and cellular innate and adaptive immune responses that may be directed not only at virus-infected cells but also at uninfected cancer cells. Here we review our current understanding of this bystander effect, and divide the mechanisms into lytic, cytokine, innate cellular, and adaptive phases. Knowing the key pathways and molecular players during virus infection in the context of the cancer microenvironment will be critical to devise strategies to maximize the therapeutic effects of oncolytic viroimmunotherapy.

  7. Oncolytic and immunologic cancer therapy with GM-CSF-armed vaccinia virus of Tian Tan strain Guang9.

    PubMed

    Deng, Lili; Fan, Jun; Guo, Mingming; Huang, Biao

    2016-03-28

    Targeted oncolytic vaccinia viruses are being developed as a novel strategy in cancer therapy. Arming vaccinia viruses with immunostimulatory cytokines can enhance antitumor efficacy. Such engineered oncolytic viruses, like JX-594, a Wyeth strain vaccinia virus modified with human granulocyte-macrophage colony-stimulating factor (GM-CSF), have shown promising results and have proceeded rapidly in clinical trials. However, the oncolytic potential of the Chinese vaccine strain Tian Tan (VTT) has not been explored. In this study, we constructed a targeted oncolytic vaccinia virus of Tian Tan strain Guang9 (VG9) expressing murine GM-CSF (VG9-GMCSF) and evaluated the antitumor effect of this recombinant vaccinia virus in a murine melanoma model. In vitro, viral replication and cytotoxicity of VG9-GMCSF was as potent as VG9; in vivo, VG9-GMCSF significantly inhibited the growth of subcutaneously implanted melanoma tumors, prolonged the survival of tumor-bearing mice, and produced an antitumor cytotoxic response. Such antitumor effect may be due to the lytic nature of virus as well as the stimulation of immune activity by GM-CSF production. Our results indicate that VG9-GMCSF induces strong tumoricidal activity, providing a potential therapeutic strategy for combating cancer.

  8. Combinatorial treatment with oncolytic adenovirus and helper-dependent adenovirus augments adenoviral cancer gene therapy

    PubMed Central

    Farzad, Lisa; Cerullo, Vincenzo; Yagyu, Shigeki; Bertin, Terry; Hemminki, Akseli; Rooney, Cliona; Lee, Brendan; Suzuki, Masataka

    2014-01-01

    Oncolytic adenoviruses (Onc.Ads) produce significant antitumor effects but as single agents they rarely eliminate tumors. Investigators have therefore incorporated sequences into these vectors that encode immunomodulatory molecules to enhance antitumor immunity. Successful implementation of this strategy requires multiple tumor immune inhibitory mechanisms to be overcome, and insertion of the corresponding multiple functional genes reduces the titer and replication of Onc.Ads, compromising their direct ant-tumor effects. By contrast, helper-dependent (HD) Ads are devoid of viral coding sequences, allowing inclusion of multiple transgenes. HDAds, however, lack replicative capacity. Since HDAds encode the adenoviral packaging signal, we hypothesized that the coadministration of Onc.Ad with HDAd would allow to be amplified and packaged during replication of Onc.Ad in transduced cancer cells. This combination could provide immunostimulation without losing oncolytic activity. We now show that coinfection of Onc.Ad with HDAd subsequently replicates HDAd vector DNA in trans in human cancer cell lines in vitro and in vivo, amplifying the transgenes the HDAd encode. This combinatorial treatment significantly suppresses the tumor growth compared to treatment with a single agent in an immunocompetent mouse model. Hence, combinatorial treatment of Onc.Ad with HDAd should overcome the inherent limitations of each agent and provide a highly immunogenic oncolytic therapy. PMID:27119096

  9. Exponential enhancement of oncolytic vesicular stomatitis virus potency by vector-mediated suppression of inflammatory responses in vivo.

    PubMed

    Altomonte, Jennifer; Wu, Lan; Chen, Li; Meseck, Marcia; Ebert, Oliver; García-Sastre, Adolfo; Fallon, John; Woo, Savio L C

    2008-01-01

    Oncolytic virotherapy is a promising strategy for treatment of malignancy, although its effectiveness is hampered by host antiviral inflammatory responses. The efficacy of treatment of oncolytic vesicular stomatitis virus (VSV) in rats bearing multifocal hepatocellular carcinoma (HCC) can be substantially elevated by antibody-mediated depletion of natural killer (NK) cells. In order to test the hypothesis that the oncotyic potency of VSV can be exponentially elevated by evasion of inflammatory responses in vivo, we constructed a recombinant VSV vector expressing equine herpes virus-1 glycoprotein G, which is a broad-spectrum viral chemokine binding protein (rVSV-gG). Infusion of rVSV-gG via the hepatic artery into immune-competent rats bearing syngeneic and multifocal HCC in their livers, resulted in a reduction of NK and NKT cells in the tumors and a 1-log enhancement in intratumoral virus titer in comparison with a reference rVSV vector. The treatment led to increased tumor necrosis and substantially prolonged animal survival without toxicities. These results indicate that rVSV-gG has the potential to be developed as an effective and safe oncolytic agent to treat patients with advanced HCC. Furthermore, the novel concept that oncolytic potency can be substantially enhanced by vector-mediated suppression of host antiviral inflammatory responses could have general applicability in the field of oncolytic virotherapy for cancer.

  10. Oncolytic virotherapy for ovarian carcinomatosis using a replication-selective vaccinia virus armed with a yeast cytosine deaminase gene.

    PubMed

    Chalikonda, S; Kivlen, M H; O'Malley, M E; Eric Dong, X D; McCart, J A; Gorry, M C; Yin, X-Y; Brown, C K; Zeh, H J; Guo, Z S; Bartlett, D L

    2008-02-01

    In this study, we assessed the ability of a highly tumor-selective oncolytic vaccinia virus armed with a yeast cytosine deaminase gene to infect and lyse human and murine ovarian tumors both in vitro and in vivo. The virus vvDD-CD could infect, replicate in and effectively lyse both human and mouse ovarian cancer cells in vitro. In two different treatment schedules involving either murine MOSEC or human A2780 ovarian carcinomatosis models, regional delivery of vvDD-CD selectively targeted tumor cells and ovarian tissue, effectively delaying the development of either tumor or ascites and leading to significant survival advantages. Oncolytic virotherapy using vvDD-CD in combination with the prodrug 5-fluorocytosine conferred an additional long-term survival advantage upon tumor-bearing immunocompetent mice. These findings demonstrate that a tumor-selective oncolytic vaccinia combined with gene-directed enzyme prodrug therapy is a highly effective strategy for treating advanced ovarian cancers in both syngeneic mouse and human xenograft models. Given the biological safety, tumor selectivity and oncolytic potency of this armed oncolytic virus, this dual therapy merits further investigation as a promising new treatment for metastatic ovarian cancer.

  11. Clinical testing of engineered oncolytic measles virus strains in the treatment of cancer: An overview

    PubMed Central

    Msaouel, Pavlos; Dispenzieri, Angela; Galanis, Evanthia

    2009-01-01

    Viruses have adapted through millennia of evolution to effectively invade and lyse cells through diverse mechanisms. Strains of the attenuated measles virus Edmonston (MV-Edm) vaccine lineage can preferentially infect and destroy cancerous cells while sparing the surrounding tissues. This specificity is predominantly due to overexpression of the measles virus receptor CD46 in tumor cells. To facilitate in vivo monitoring of viral gene expression and replication, these oncolytic strains have been engineered to either express soluble marker peptides, such as the human carcinoembryonic antigen (CEA; MV-CEA virus), or genes that facilitate imaging and therapy, such as the human thyroidal sodium iodide symporter (NIS) gene (MV-NIS). Preclinical efficacy and safety data for engineered oncolytic MV-Edm derivatives that led to their clinical translation are discussed in this review, and an overview of the early experience in three ongoing clinical trials of patients with ovarian cancer, glioblastoma multiforme and multiple myeloma is provided. The information obtained from these ongoing trials will guide the future clinical application and further development of MV strains as anticancer agents. PMID:19169959

  12. Clinical trials involving the oncolytic virus, reovirus: ready for prime time?

    PubMed

    Black, Allison J; Morris, Don G

    2012-09-01

    The use of oncolytic viruses as a potential cancer therapeutic has been studied extensively over the past 15 years and is now in Phase III human clinical testing. One of the most promising of the viruses is the nonattenuated reovirus type-3 Dearing (RT3D; Reolysin(®), Oncolytics Biotech Inc., AB, Canada). The virus is a laboratory strain of a ubiquitous common environmental virus commonly infecting the respiratory and GI tracts of humans without major sequelae. The Phase I/II clinical trial conducted by Karapanagiotou et al. involved dose escalation of Reolysin to 3 × 10(10) tissue culture infectious dose 50 (TCID(50)) daily for 5 days in combination with paclitaxel (175 mg/m(2)) and carboplatin (area under the curve 5) given on day 1 every 3 weeks. Maximum tolerated dose was not reached in the dose-escalation phase and was only limited by manufacturing concentration limitation. Efficacy was suggested in this heavily pretreated head and neck cancer predominate patient population with a 26.9% response rate (seven out of 26 evaluable patients) of the 34 patients intended to treat. Although this was not a randomized trial, the fact that many of the patients (83%) had already received a platinum agent and subsequently progressed and then responded is of interest.

  13. Oncotarget Strategies For Herpes Simplex Virus-1.

    PubMed

    Zhang, Lumin; Tatsuya, Tsurumi; Nishiyama, Yukihiro

    2016-01-01

    The high level of manipulability of viral genome has set up HSV-1 to be an ideal viral vector for oncolytic virotherapy. In the past two decades, several oncolytic HSV-1 viruses have been successfully developed and assessed in animal studies. Accumulated evidences show that oncolytic HSV- 1 can efficiently infect many tumor cells and augment anti-tumor effect by induction of systemic innate and adaptive immune responses. Inspiring results have been accomplished in several phase I clinical trials for glioma, head and neck squeous cells carcinoma and Melanoma using oncolytic HSV- 1 viruses. More recently, oncovey, one of oncolytic HSV-1 viruses has been approved by FDA for the comprehensive evolution of its anti-tumor effects in phase III clinical trials. These promising studies encourage more efforts to be devoted to craft the new generation of oncolytic HSV-1. Herein, we will review and summarize the basic strategies to construct oncolytic HSV-1 viruses and their applications in cancer therapy.

  14. Cellular factors promoting resistance to effective treatment of glioma with oncolytic Myxoma virus

    PubMed Central

    Zemp, Franz J.; McKenzie, Brienne A.; Lun, Xueqing; Reilly, Karlyne M.; McFadden, Grant; Yong, V. Wee; Forsyth, Peter A.

    2014-01-01

    Oncolytic virus therapy is being evaluated in clinical trials for human glioma. While it is widely assumed that the patient's immune response to the virus infection limits the therapy's utility, investigations into the specific cell type(s) involved in this response have been performed using non-specific pharmacological inhibitors or allogeneic models with compromised immunity. To identify the immune cells that participate in clearing an oncolytic infection in glioma, we used flow cytometry and immunohistochemistry to immunophenotype an orthotopic glioma model in immunocompetent mice after Myxoma virus (MYXV) administration. These studies revealed a large resident microglia and macrophage population in untreated tumours, and robust monocyte, T and NK cell infiltration 3 days following MYXV infection. To determine the role on the clinical utility of MYXV therapy for glioma, we used a combination of knockout mouse strains and specific immunocyte ablation techniques. Collectively, our experiments identify an important role for tumour-resident myeloid cells and overlapping roles for recruited NK and T cells in the clearance and efficacy of oncolytic MYXV from gliomas. Using a cyclophosphamide regimen to achieve lymphoablation prior and during MYXV treatment, we prevented treatment-induced peripheral immunocyte recruitment and, surprisingly, largely ablated the tumour-resident macrophage population. Virotherapy of CPA-treated animals resulted in sustained viral infection within the glioma as well as a substantial survival advantage. This study demonstrates that resistance to MYXV virotherapy in syngeneic glioma models involves a multi-faceted cellular immune response that can be overcome with CPA-mediated lymphoablation. PMID:25336188

  15. Antiangiogenic Arming of an Oncolytic Vaccinia Virus Enhances Antitumor Efficacy in Renal Cell Cancer Models▿ †

    PubMed Central

    Guse, Kilian; Sloniecka, Marta; Diaconu, Iulia; Ottolino-Perry, Kathryn; Tang, Nan; Ng, Calvin; Le Boeuf, Fabrice; Bell, John C.; McCart, J. Andrea; Ristimäki, Ari; Pesonen, Sari; Cerullo, Vincenzo; Hemminki, Akseli

    2010-01-01

    Oncolytic vaccinia viruses have shown compelling results in preclinical cancer models and promising preliminary safety and antitumor activity in early clinical trials. However, to facilitate systemic application it would be useful to improve tumor targeting and antitumor efficacy further. Here we report the generation of vvdd-VEGFR-1-Ig, a targeted and armed oncolytic vaccinia virus. Tumor targeting was achieved by deletion of genes for thymidine kinase and vaccinia virus growth factor, which are necessary for replication in normal but not in cancer cells. Given the high vascularization typical of kidney cancers, we armed the virus with the soluble vascular endothelial growth factor (VEGF) receptor 1 protein for an antiangiogenic effect. Systemic application of high doses of vvdd-VEGFR-1-Ig resulted in cytokine induction in an immunocompromised mouse model. Upon histopathological analysis, splenic extramedullary hematopoiesis was seen in all virus-injected mice and was more pronounced in the vvdd-VEGFR-1-Ig group. Analysis of the innate immune response after intravenous virus injection revealed high transient and dose-dependent cytokine elevations. When medium and low doses were used for intratumoral or intravenous injection, vvdd-VEGFR-1-Ig exhibited a stronger antitumor effect than the unarmed control. Furthermore, expression of VEGFR-1-Ig was confirmed, and a concurrent antiangiogenic effect was seen. In an immunocompetent model, systemic vvdd-VEGFR-1-Ig exhibited superior antitumor efficacy compared to the unarmed control virus. In conclusion, the targeted and armed vvdd-VEGFR-1-Ig has promising anticancer activity in renal cell cancer models. Extramedullary hematopoiesis may be a sensitive indicator of vaccinia virus effects in mice. PMID:19906926

  16. Pediatric cancer gone viral. Part II: potential clinical application of oncolytic herpes simplex virus-1 in children.

    PubMed

    Friedman, Gregory K; Beierle, Elizabeth A; Gillespie, George Yancey; Markert, James M; Waters, Alicia M; Chen, Chun-Yu; Denton, Nicholas L; Haworth, Kellie B; Hutzen, Brian; Leddon, Jennifer L; Streby, Keri A; Wang, Pin-Yi; Cripe, Timothy P

    Oncolytic engineered herpes simplex viruses (HSVs) possess many biologic and functional attributes that support their use in clinical trials in children with solid tumors. Tumor cells, in an effort to escape regulatory mechanisms that would impair their growth and progression, have removed many mechanisms that would have protected them from virus infection and eventual virus-mediated destruction. Viruses engineered to exploit this weakness, like mutant HSV, can be safely employed as tumor cell killers, since normal cells retain these antiviral strategies. Many preclinical studies and early phase trials in adults demonstrated that oncolytic HSV can be safely used and are highly effective in killing tumor cells that comprise pediatric malignancies, without generating the toxic side effects of nondiscriminatory chemotherapy or radiation therapy. A variety of engineered viruses have been developed and tested in numerous preclinical models of pediatric cancers and initial trials in patients are underway. In Part II of this review series, we examine the preclinical evidence to support the further advancement of oncolytic HSV in the pediatric population. We discuss clinical advances made to date in this emerging era of oncolytic virotherapy.

  17. Oncolytic virotherapy.

    PubMed

    Sze, Daniel Y; Reid, Tony R; Rose, Steven C

    2013-08-01

    Oncolytic virotherapy is an emerging technology that uses engineered viruses to treat malignancies. Viruses can be designed with biological specificity to infect cancerous cells preferentially, and to replicate in these cells exclusively. Malignant cells may be killed directly by overwhelming viral infection and lysis, which releases additional viral particles to infect neighboring cells and distant metastases. Viral infections may also activate the immune system, unmask stealthy tumor antigens, and aid the immune system to recognize and attack neoplasms. Delivery of live virus particles is potentially complex, and may require the expertise of the interventional community.

  18. Linked Tumor-Selective Virus Replication and Transgene Expression from E3-Containing Oncolytic Adenoviruses†

    PubMed Central

    Zhu, Mingzhu; Bristol, J. Andrew; Xie, Yuefeng; Mina, Mervat; Ji, Hong; Forry-Schaudies, Suzanne; Ennist, David L.

    2005-01-01

    Historically, the adenoviral E3 region was found to be nonessential for viral replication in vitro. In addition, adenoviruses whose genome was more than approximately 105% the size of the native genome were inefficiently packaged. These profound observations were used experimentally to insert transgenes into the adenoviral backbone. More recently, however, the reintroduction of the E3 region into oncolytic adenoviruses has been found to positively influence antitumor efficacy in preclinical models and clinical trials. In the studies reported here, the granulocyte-macrophage colony-stimulating factor (GM-CSF) cDNA sequence has been substituted for the E3-gp19 gene in oncolytic adenoviruses that otherwise retained the E3 region. Five viruses that differed slightly in the method of transgene insertion were generated and compared to Ar6pAE2fGmF (E2F/GM/ΔE3), a previously described E3-deleted oncolytic adenovirus encoding GM-CSF. In all of the viruses, the human E2F-1 promoter regulated E1A expression and GM-CSF expression was under the control of the adenoviral E3 promoter and the packaging signal was relocated immediately upstream from the right terminal repeat. The E3-gp19-deleted viruses had similar cytolytic properties, as measured in vitro by cytotoxicity assays, but differed markedly in their capacity to express and secrete GM-CSF. Ar15pAE2fGmF (E2F/GM/E3b), the virus that produced the highest levels of GM-CSF and retained the native GM-CSF leader sequence, was selected for further analysis. The E2F/GM/E3b and E2F/GM/ΔE3 viruses exhibited similar cytotoxic activity and GM-CSF production in several tumor cell lines in vitro. However, when compared in vivo in nude mouse xenograft tumor models, E2F/GM/E3b spread through tumors to a greater extent, resulted in higher peak GM-CSF and total exposure levels in both tumor and serum, and was more efficacious than the E3-deleted virus. Using the matched WI-38 (parental) and WI-38-VA13 (simian virus 40 large T antigen

  19. Towards Predictive Computational Models of Oncolytic Virus Therapy: Basis for Experimental Validation and Model Selection

    PubMed Central

    Wodarz, Dominik; Komarova, Natalia

    2009-01-01

    Oncolytic viruses are viruses that specifically infect cancer cells and kill them, while leaving healthy cells largely intact. Their ability to spread through the tumor makes them an attractive therapy approach. While promising results have been observed in clinical trials, solid success remains elusive since we lack understanding of the basic principles that govern the dynamical interactions between the virus and the cancer. In this respect, computational models can help experimental research at optimizing treatment regimes. Although preliminary mathematical work has been performed, this suffers from the fact that individual models are largely arbitrary and based on biologically uncertain assumptions. Here, we present a general framework to study the dynamics of oncolytic viruses that is independent of uncertain and arbitrary mathematical formulations. We find two categories of dynamics, depending on the assumptions about spatial constraints that govern that spread of the virus from cell to cell. If infected cells are mixed among uninfected cells, there exists a viral replication rate threshold beyond which tumor control is the only outcome. On the other hand, if infected cells are clustered together (e.g. in a solid tumor), then we observe more complicated dynamics in which the outcome of therapy might go either way, depending on the initial number of cells and viruses. We fit our models to previously published experimental data and discuss aspects of model validation, selection, and experimental design. This framework can be used as a basis for model selection and validation in the context of future, more detailed experimental studies. It can further serve as the basis for future, more complex models that take into account other clinically relevant factors such as immune responses. PMID:19180240

  20. Development of an oncolytic Herpes Simplex Virus using a tumor-specific HIF-responsive promoter

    PubMed Central

    Longo, Sharon L.; Griffith, Christopher; Glass, Aaron; Shillitoe, Edward J.; Post, Dawn E.

    2010-01-01

    We exploited the differential activation of hypoxia-inducible factor (HIF)-dependent gene expression in tumors versus normal tissue for the design of a targeted oncolytic Herpes simplex virus type-1 (HSV-1). A gene that is essential for viral replication, ICP4, was placed under the regulation of a HIF-responsive promoter and then introduced into the thymidine kinase locus (UL23) of HSV d120 which contains partial deletions in the two endogenous ICP4 genes. Recombinant HIF-HSV were isolated and their derivation from d120 was verified by expression of a truncated, nonfunctional form of ICP4 protein. Disruption of the UL23 locus was confirmed by loss of thymidine kinase expression and resistance to acyclovir. Unexpectedly, HIF-HSV expressed ICP4 and induced tumor cell lysis at similar levels under normoxia and hypoxia. The lack of HIF-dependent ICP4 transgene expression by HIF-HSV was due to two factors that have not previously been reported- reversion of the ICP4 gene region to its wild-type configuration and increased HIF-transcriptional activity under normoxia when cells were infected with any strain of HSV-1. The findings that an oncolytic HSV-1 is genetically unstable and can activate a tumor-related promoter in a non-specific manner have important implications for any proposed use of this virus in cancer therapy. PMID:20930860

  1. Retargeting Oncolytic Vesicular Stomatitis Virus to Human T-Cell Lymphotropic Virus Type 1-Associated Adult T-Cell Leukemia.

    PubMed

    Betancourt, Dillon; Ramos, Juan Carlos; Barber, Glen N

    2015-12-01

    Adult T cell leukemia/lymphoma (ATL) is an aggressive cancer of CD4/CD25(+) T lymphocytes, the etiological agent of which is human T-cell lymphotropic virus type 1 (HTLV-1). ATL is highly refractory to current therapies, making the development of new treatments a high priority. Oncolytic viruses such as vesicular stomatitis virus (VSV) are being considered as anticancer agents since they readily infect transformed cells compared to normal cells, the former appearing to exhibit defective innate immune responses. Here, we have evaluated the efficacy and safety of a recombinant VSV that has been retargeted to specifically infect and replicate in transformed CD4(+) cells. This was achieved by replacing the single VSV glycoprotein (G) with human immunodeficiency virus type 1 (HIV-1) gp160 to create a hybrid fusion protein, gp160G. The resultant virus, VSV-gp160G, was found to only target cells expressing CD4 and retained robust oncolytic activity against HTLV-1 actuated ATL cells. VSV-gp160G was further noted to be highly attenuated and did not replicate efficiently in or induce significant cell death of primary CD4(+) T cells. Accordingly, VSV-gp160G did not elicit any evidence of neurotoxicity even in severely immunocompromised animals such as NOD/Shi-scid, IL-2Rγ-c-null (NSG) mice. Importantly, VSV-gp160G effectively exerted potent oncolytic activity in patient-derived ATL transplanted into NSG mice and facilitated a significant survival benefit. Our data indicate that VSV-gp160G exerts potent oncolytic efficacy against CD4(+) malignant cells and either alone or in conjunction with established therapies may provide an effective treatment in patients displaying ATL. Adult T cell leukemia (ATL) is a serious form of cancer with a high mortality rate. HTLV-1 infection is the etiological agent of ATL and, unfortunately, most patients succumb to the disease within a few years. Current treatment options have failed to significantly improve survival rate. In this study, we

  2. Retargeting Oncolytic Vesicular Stomatitis Virus to Human T-Cell Lymphotropic Virus Type 1-Associated Adult T-Cell Leukemia

    PubMed Central

    Betancourt, Dillon; Ramos, Juan Carlos

    2015-01-01

    ABSTRACT Adult T cell leukemia/lymphoma (ATL) is an aggressive cancer of CD4/CD25+ T lymphocytes, the etiological agent of which is human T-cell lymphotropic virus type 1 (HTLV-1). ATL is highly refractory to current therapies, making the development of new treatments a high priority. Oncolytic viruses such as vesicular stomatitis virus (VSV) are being considered as anticancer agents since they readily infect transformed cells compared to normal cells, the former appearing to exhibit defective innate immune responses. Here, we have evaluated the efficacy and safety of a recombinant VSV that has been retargeted to specifically infect and replicate in transformed CD4+ cells. This was achieved by replacing the single VSV glycoprotein (G) with human immunodeficiency virus type 1 (HIV-1) gp160 to create a hybrid fusion protein, gp160G. The resultant virus, VSV-gp160G, was found to only target cells expressing CD4 and retained robust oncolytic activity against HTLV-1 actuated ATL cells. VSV-gp160G was further noted to be highly attenuated and did not replicate efficiently in or induce significant cell death of primary CD4+ T cells. Accordingly, VSV-gp160G did not elicit any evidence of neurotoxicity even in severely immunocompromised animals such as NOD/Shi-scid, IL-2Rγ-c-null (NSG) mice. Importantly, VSV-gp160G effectively exerted potent oncolytic activity in patient-derived ATL transplanted into NSG mice and facilitated a significant survival benefit. Our data indicate that VSV-gp160G exerts potent oncolytic efficacy against CD4+ malignant cells and either alone or in conjunction with established therapies may provide an effective treatment in patients displaying ATL. IMPORTANCE Adult T cell leukemia (ATL) is a serious form of cancer with a high mortality rate. HTLV-1 infection is the etiological agent of ATL and, unfortunately, most patients succumb to the disease within a few years. Current treatment options have failed to significantly improve survival rate. In

  3. High CD46 receptor density determines preferential killing of tumor cells by oncolytic measles virus.

    PubMed

    Anderson, Bambi D; Nakamura, Takafumi; Russell, Stephen J; Peng, Kah-Whye

    2004-07-15

    Live attenuated Edmonston B strain of measles virus (MV-Edm) is a potent and specific oncolytic agent, but the mechanism underlying its tumor selectivity is unknown. The virus causes cytopathic effects (CPEs) of extensive syncytial formation in tumor cells but minimal damage or cell killing in normal cells. The CPE is dependent on expression of viral proteins and the presence of CD46, the major cellular receptor of MV-Edm. Using a virally encoded soluble marker peptide to provide a quantitative readout of the level of viral gene expression, we determined that tumor cells and normal cells expressed comparable levels of viral proteins. CD46 mediates virus attachment, entry, and virus-induced cell-to-cell fusion. Using engineered cells expressing a range of CD46 densities, we determined that whereas virus entry increased progressively with CD46 density, cell fusion was minimal at low receptor densities but increased dramatically above a threshold density of CD46 receptors. It is well established that tumor cells express abundant CD46 receptors on their surfaces compared with their normal counterparts. Thus, at low CD46 densities typical of normal cells, infection occurs, but intercellular fusion is negligible. At higher densities typical of tumor cells, infection leads to extensive cell fusion. Intercellular fusion also results in enhancement of viral gene expression through recruitment of neighboring uninfected cells into the syncytium, further amplifying the CPE. Discrimination between high and low CD46 receptor density provides a compelling basis for the oncolytic specificity of MV-Edm and establishes MV-Edm as a promising CD46-targeted cancer therapeutic agent.

  4. Replication-competent, oncolytic herpes simplex virus type 1 mutants induce a bystander effect following ganciclovir treatment.

    PubMed

    Luo, Chenhong; Mori, Isamu; Goshima, Fumi; Ushijima, Yoko; Nawa, Akihiro; Kimura, Hiroshi; Nishiyama, Yukihiro

    2007-10-01

    Cells expressing herpes simplex virus (HSV) thymidine kinase (tk) are killed by ganciclovir (GCV). Adjacent cells without HSV-tk also die, a phenomenon known as the 'bystander effect'. However, there is no evidence that replication-competent HSV induces a bystander effect in the presence of GCV. Therefore, we investigated the bystander effect in HEp-2 cells infected with replication-competent, oncolytic HSV-1 mutants, hrR3 and HF10. In cells infected at a multiplicity of infection (MOI) of 3, GCV did not induce apoptosis. At low MOIs of 0.3 and 0.03, however, a number of adjacent, uninfected cells apoptosed following GCV treatment. Irrespective of GCV treatment, HEp-2 cells expressed minimal levels of connexin 43 (Cx43). However, Cx43 expression was enhanced by GCV in response to infection with HF10 at an MOI of 0.3, but not at an MOI of 3. Expression of other proteins involved in gap junctions, including Cx26 and Cx40, was not augmented under these conditions. The PKA and PI3K signal transduction pathways are likely involved in enhanced Cx43 expression as inhibitors of these pathways prevented Cx43 upregulation. These results suggest that infection with replication-competent HSV-1 induces the bystander effect in cells treated with GCV because of efficient intercellular transport of active GCV through abundant gap junctions. Copyright 2007 John Wiley & Sons, Ltd.

  5. Combination of Paclitaxel and MG1 oncolytic virus as a successful strategy for breast cancer treatment.

    PubMed

    Bourgeois-Daigneault, Marie-Claude; St-Germain, Lauren Elizabeth; Roy, Dominic Guy; Pelin, Adrian; Aitken, Amelia Sadie; Arulanandam, Rozanne; Falls, Theresa; Garcia, Vanessa; Diallo, Jean-Simon; Bell, John Cameron

    2016-08-08

    Breast cancer is the most common malignant disease amongst Western women. The lack of treatment options for patients with chemotherapy-resistant or recurrent cancers is pushing the field toward the rapid development of novel therapies. The use of oncolytic viruses is a promising approach for the treatment of disseminated diseases like breast cancer, with the first candidate recently approved by the Food and Drug Administration for use in patients. In this report, we demonstrate the compatibility of oncolytic virotherapy and chemotherapy using various murine breast cancer models. This one-two punch has been explored in the past by several groups with different viruses and drugs and was shown to be a successful approach. Our strategy is to combine Paclitaxel, one of the most common drugs used to treat patients with breast cancer, and the oncolytic Rhabdovirus Maraba-MG1, a clinical trial candidate in a study currently recruiting patients with late-stage metastatic cancer. We used the EMT6, 4 T1 and E0771 murine breast cancer models to evaluate in vitro and in vivo the effects of co-treatment with MG1 and Paclitaxel. Treatment-induced cytotoxicity was assessed and plaque assays, flow cytometry, microscopy and immunocytochemistry analysis were performed to quantify virus production and transgene expression. Orthotopically implanted tumors were measured during and after treatment to evaluate efficacy and Kaplan-Meier survival curves were generated. Our data demonstrate not only the compatibility of the treatments, but also their synergistic cytopathic activity. With Paclitaxel, EMT6 and 4 T1 tumors demonstrated increased virus production both in vitro and in vivo. Our results also show that Paclitaxel does not impair the safety profile of the virus treatment. Importantly, when combined, MG1 and the drug controlled tumor growth and prolonged survival. The combination of MG1 and Paclitaxel improved efficacy in all of the breast cancer models we tested and thus is a

  6. Oncolytic herpes simplex virus expressing yeast cytosine deaminase: relationship between viral replication, transgene expression, prodrug bioactivation.

    PubMed

    Yamada, S; Kuroda, T; Fuchs, B C; He, X; Supko, J G; Schmitt, A; McGinn, C M; Lanuti, M; Tanabe, K K

    2012-03-01

    Yeast cytosine deaminase (yCD) is a well-characterized prodrug/enzyme system that converts 5-fluorocytosine (5-FC) to 5-fluorouracil (5-FU), and has been combined with oncolytic viruses. However, in vivo studies of the interactions between 5-FC bioactivation and viral replication have not been previously reported, nor have the kinetics of transgene expression and the pharmacokinetics of 5-FC and 5-FU. We constructed a replication-conditional Herpes simplex virus 1 (HSV-1) expressing yCD and examined cytotoxicity when 5-FC was initiated at different times after viral infection, and observed that earlier 5-FC administration led to greater cytotoxicity than later 5-FC administration in vitro and in vivo. In animal models, 12 days of 5-FC administration was superior to 6 days, but dosing beyond 12 days did not further enhance efficacy. Consistent with the dosing-schedule results, both viral genomic DNA copy number and viral titers were observed to peak on Day 3 after viral injection and gradually decrease thereafter. The virus is replication-conditional and was detected in tumors for as long as 2 weeks after viral injection. The maximum relative extent of yCD conversion of 5-FC to 5-FU in tumors was observed on Day 6 after viral injection and it decreased progressively thereafter. The observation that 5-FU generation within tumors did not lead to appreciable levels of systemic 5-FU (<10 ng ml⁻¹) is important and has not been previously reported. The approaches used in these studies of the relationship between the viral replication kinetics, transgene expression, prodrug administration and anti-tumor efficacy are useful in the design of clinical trials of armed, oncolytic viruses.

  7. Oncolytic herpes simplex virus kills stem-like tumor-initiating colon cancer cells

    PubMed Central

    Warner, Susanne G; Haddad, Dana; Au, Joyce; Carson, Joshua S; O’Leary, Michael P; Lewis, Christina; Monette, Sebastien; Fong, Yuman

    2016-01-01

    Stem-like tumor-initiating cells (TICs) are implicated in cancer progression and recurrence, and can be identified by sphere-formation and tumorigenicity assays. Oncolytic viruses infect, replicate in, and kill a variety of cancer cells. In this study, we seek proof of principle that TICs are susceptible to viral infection. HCT8 human colon cancer cells were subjected to serum-free culture to generate TIC tumorspheres. Parent cells and TICs were infected with HSV-1 subtype NV1066. Cytotoxicity, viral replication, and Akt1 expression were assessed. TIC tumorigenicity was confirmed and NV1066 efficacy was assessed in vivo. NV1066 infection was highly cytotoxic to both parent HCT8 cells and TICs. In both populations, cell-kill of >80% was achieved within 3 days of infection at a multiplicity of infection (MOI) of 1.0. However, the parent cells required 2-log greater viral replication to achieve the same cytotoxicity. TICs overexpressed Akt1 in vitro and formed flank tumors from as little as 100 cells, growing earlier, faster, larger, and with greater histologic atypia than tumors from parent cells. Treatment of TIC-induced tumors with NV1066 yielded tumor regression and slowed tumor growth. We conclude that colon TICs are selected for by serum-free culture, overexpress Akt1, and are susceptible to oncolytic viral infection. PMID:27347556

  8. Analysis of genetically engineered oncolytic herpes simplex viruses in human prostate cancer organotypic cultures.

    PubMed

    Passer, B J; Wu, C-l; Wu, S; Rabkin, S D; Martuza, R L

    2009-12-01

    Oncolytic herpes simplex viruses type 1 (oHSVs) such as G47Delta and G207 are genetically engineered for selective replication competence in cancer cells. Several factors can influence the overall effectiveness of oHSV tropism, including HSV-1 receptor expression, extracellular matrix milieu and cellular permissiveness. We have taken advantage of human prostate organ cultures derived from radical prostatectomies to investigate oHSV tropism. In this study, we show that both G47Delta and G207 specifically replicate in epithelial cells of the prostatic glands but not in the surrounding stroma. In contrast, both the epithelial and stromal cell compartments were readily infected by wild-type HSV-1. Analysis of oHSV replication in prostate surgical specimens 3 days post infection showed that G47Delta generated approximately 30-fold more viral progeny than did G207. This correlated with the enhanced expression of G47Delta-derived glycoprotein gB protein levels as compared with G207. In benign prostate tissues, G207 and G47Delta titers were notably reduced, whereas strain F titers were maintained at similar levels compared with prostate cancer specimens. Overall, our results show that these oncolytic herpes vectors show both target specificity and replication competence in human prostate cancer specimens and point to the utility of using human prostate organ cultures in assessing oHSV tropism and cellular specificity.

  9. Preclinical evaluation of engineered oncolytic herpes simplex virus for the treatment of pediatric solid tumors.

    PubMed

    Megison, Michael L; Gillory, Lauren A; Stewart, Jerry E; Nabers, Hugh C; Mroczek-Musulman, Elizabeth; Waters, Alicia M; Coleman, Jennifer M; Kelly, Virginia; Markert, James M; Gillespie, G Yancey; Friedman, Gregory K; Beierle, Elizabeth A

    2014-01-01

    Recently, investigators showed that mice with syngeneic murine gliomas that were treated with a neuroattenuated oncolytic herpes simplex virus-1 (oHSV), M002, had a significant increase in survival. M002 has deletions in both copies of the γ134.5 gene, enabling replication in tumor cells but precluding infection of normal cells. Previous studies have shown antitumor effects of other oHSV against a number of adult tumors including hepatocellular carcinoma and renal cell carcinoma. The purpose of the current study was to investigate the oncolytic potential of M002 against difficult to treat pediatric liver and kidney tumors. We showed that the oHSV, M002, infected, replicated, and decreased cell survival in hepatoblastoma, malignant rhabdoid kidney tumor, and renal sarcoma cell lines. In addition, we showed that in murine xenografts, treatment with M002 significantly increased survival and decreased tumor growth. Finally, these studies showed that the primary entry protein for oHSV, CD111 (nectin-1) was present in human hepatoblastoma and malignant rhabdoid kidney tumor specimens. We concluded that M002 effectively targeted these rare aggressive tumor types and that M002 may have potential for use in children with unresponsive or relapsed pediatric solid tumors.

  10. Oncolytic Activity of Avian Influenza Virus in Human Pancreatic Ductal Adenocarcinoma Cell Lines

    PubMed Central

    Pizzuto, Matteo S.; Silic-Benussi, Micol; Pavone, Silvia; Ciminale, Vincenzo; Capua, Ilaria

    2014-01-01

    ABSTRACT Pancreatic ductal adenocarcinoma (PDA) is the most lethal form of human cancer, with dismal survival rates due to late-stage diagnoses and a lack of efficacious therapies. Building on the observation that avian influenza A viruses (IAVs) have a tropism for the pancreas in vivo, the present study was aimed at testing the efficacy of IAVs as oncolytic agents for killing human PDA cell lines. Receptor characterization confirmed that human PDA cell lines express the alpha-2,3- and the alpha-2,6-linked glycan receptor for avian and human IAVs, respectively. PDA cell lines were sensitive to infection by human and avian IAV isolates, which is consistent with this finding. Growth kinetic experiments showed preferential virus replication in PDA cells over that in a nontransformed pancreatic ductal cell line. Finally, at early time points posttreatment, infection with IAVs caused higher levels of apoptosis in PDA cells than gemcitabine and cisplatin, which are the cornerstone of current therapies for PDA. In the BxPC-3 PDA cell line, apoptosis resulted from the engagement of the intrinsic mitochondrial pathway. Importantly, IAVs did not induce apoptosis in nontransformed pancreatic ductal HPDE6 cells. Using a model based on the growth of a PDA cell line as a xenograft in SCID mice, we also show that a slightly pathogenic avian IAV significantly inhibited tumor growth following intratumoral injection. Taken together, these results are the first to suggest that IAVs may hold promise as future agents of oncolytic virotherapy against pancreatic ductal adenocarcinomas. IMPORTANCE Despite intensive studies aimed at designing new therapeutic approaches, PDA still retains the most dismal prognosis among human cancers. In the present study, we provide the first evidence indicating that avian IAVs of low pathogenicity display a tropism for human PDA cells, resulting in viral RNA replication and a potent induction of apoptosis in vitro and antitumor effects in vivo. These

  11. Complex spatial dynamics of oncolytic viruses in vitro: mathematical and experimental approaches.

    PubMed

    Wodarz, Dominik; Hofacre, Andrew; Lau, John W; Sun, Zhiying; Fan, Hung; Komarova, Natalia L

    2012-01-01

    Oncolytic viruses replicate selectively in tumor cells and can serve as targeted treatment agents. While promising results have been observed in clinical trials, consistent success of therapy remains elusive. The dynamics of virus spread through tumor cell populations has been studied both experimentally and computationally. However, a basic understanding of the principles underlying virus spread in spatially structured target cell populations has yet to be obtained. This paper studies such dynamics, using a newly constructed recombinant adenovirus type-5 (Ad5) that expresses enhanced jellyfish green fluorescent protein (EGFP), AdEGFPuci, and grows on human 293 embryonic kidney epithelial cells, allowing us to track cell numbers and spatial patterns over time. The cells are arranged in a two-dimensional setting and allow virus spread to occur only to target cells within the local neighborhood. Despite the simplicity of the setup, complex dynamics are observed. Experiments gave rise to three spatial patterns that we call "hollow ring structure", "filled ring structure", and "disperse pattern". An agent-based, stochastic computational model is used to simulate and interpret the experiments. The model can reproduce the experimentally observed patterns, and identifies key parameters that determine which pattern of virus growth arises. The model is further used to study the long-term outcome of the dynamics for the different growth patterns, and to investigate conditions under which the virus population eliminates the target cells. We find that both the filled ring structure and disperse pattern of initial expansion are indicative of treatment failure, where target cells persist in the long run. The hollow ring structure is associated with either target cell extinction or low-level persistence, both of which can be viewed as treatment success. Interestingly, it is found that equilibrium properties of ordinary differential equations describing the dynamics in local

  12. Chimeric antigen receptor–engineered T cells as oncolytic virus carriers

    PubMed Central

    VanSeggelen, Heather; Tantalo, Daniela GM; Afsahi, Arya; Hammill, Joanne A; Bramson, Jonathan L

    2015-01-01

    The use of engineered T cells in adoptive transfer therapies has shown significant promise in treating hematological cancers. However, successes treating solid tumors are much less prevalent. Oncolytic viruses (OVs) have the capacity to induce specific lysis of tumor cells and indirectly impact tumor growth via vascular shutdown. These viruses bear natural abilities to associate with lymphocytes upon systemic administration, but therapeutic doses must be very high in order to evade antibodies and other components of the immune system. As T cells readily circulate through the body, using these cells to deliver OVs directly to tumors may provide an ideal combination. Our studies demonstrate that loading chimeric antigen receptor–engineered T cells with low doses of virus does not impact receptor expression or function in either murine or human T cells. Engineered T cells can deposit virus onto a variety of tumor targets, which can enhance the tumoricidal activity of the combination treatment. This concept appears to be broadly applicable, as we observed similar results using murine or human T cells, loaded with either RNA or DNA viruses. Overall, loading of engineered T cells with OVs represents a novel combination therapy that may increase the efficacy of both treatments. PMID:27119109

  13. Vesicular stomatitis virus as a flexible platform for oncolytic virotherapy against cancer.

    PubMed

    Hastie, Eric; Grdzelishvili, Valery Z

    2012-12-01

    Oncolytic virus (OV) therapy is an emerging anti-cancer approach that utilizes viruses to preferentially infect and kill cancer cells, while not harming healthy cells. Vesicular stomatitis virus (VSV) is a prototypic non-segmented, negative-strand RNA virus with inherent OV qualities. Antiviral responses induced by type I interferon pathways are believed to be impaired in most cancer cells, making them more susceptible to VSV than normal cells. Several other factors make VSV a promising OV candidate for clinical use, including its well-studied biology, a small, easily manipulated genome, relative independence of a receptor or cell cycle, cytoplasmic replication without risk of host-cell transformation, and lack of pre-existing immunity in humans. Moreover, various VSV-based recombinant viruses have been engineered via reverse genetics to improve oncoselectivity, safety, oncotoxicity and stimulation of tumour-specific immunity. Alternative delivery methods are also being studied to minimize premature immune clearance of VSV. OV treatment as a monotherapy is being explored, although many studies have employed VSV in combination with radiotherapy, chemotherapy or other OVs. Preclinical studies with various cancers have demonstrated that VSV is a promising OV; as a result, a human clinical trial using VSV is currently in progress.

  14. Enhanced lysis by bispecific oncolytic measles viruses simultaneously using HER2/neu or EpCAM as target receptors

    PubMed Central

    Hanauer, Jan RH; Gottschlich, Lisa; Riehl, Dennis; Rusch, Tillmann; Koch, Vivian; Friedrich, Katrin; Hutzler, Stefan; Prüfer, Steffen; Friedel, Thorsten; Hanschmann, Kay-Martin; Münch, Robert C; Jost, Christian; Plückthun, Andreas; Cichutek, Klaus; Buchholz, Christian J; Mühlebach, Michael D

    2016-01-01

    To target oncolytic measles viruses (MV) to tumors, we exploit the binding specificity of designed ankyrin repeat proteins (DARPins). These DARPin-MVs have high tumor selectivity while maintaining excellent oncolytic potency. Stability, small size, and efficacy of DARPins allowed the generation of MVs simultaneously targeted to tumor marker HER2/neu and cancer stem cell (CSC) marker EpCAM. For optimization, the linker connecting both DARPins was varied in flexibility and length. Flexibility had no impact on fusion helper activity whereas length had. MVs with bispecific MV-H are genetically stable and revealed the desired double-target specificity. In vitro, the cytolytic activity of bispecific MVs was superior or comparable to mono-targeted viruses depending on the target cells. In vivo, therapeutic efficacy of the bispecific viruses was validated in an orthotopic ovarian carcinoma model revealing an effective reduction of tumor mass. Finally, the power of bispecific targeting was demonstrated on cocultures of different tumor cells thereby mimicking tumor heterogeneity in vitro, more closely reflecting real tumors. Here, bispecific excelled monospecific viruses in efficacy. DARPin-based targeting domains thus allow the generation of efficacious oncolytic viruses with double specificity, with the potential to handle intratumoral variation of antigen expression and to simultaneously target CSCs and the bulk tumor mass. PMID:27119117

  15. Naturally Existing Oncolytic Virus M1 Is Nonpathogenic for the Nonhuman Primates After Multiple Rounds of Repeated Intravenous Injections.

    PubMed

    Zhang, Haipeng; Lin, Yuan; Li, Kai; Liang, Jiankai; Xiao, Xiao; Cai, Jing; Tan, Yaqian; Xing, Fan; Mai, Jialuo; Li, Yuan; Chen, Wenli; Sheng, Longxiang; Gu, Jiayu; Zhu, Wenbo; Yin, Wei; Qiu, Pengxin; Su, Xingwen; Lu, Bingzheng; Tian, Xuyan; Liu, Jinhui; Lu, Wanjun; Dou, Yunling; Huang, Yijun; Hu, Bing; Kang, Zhuang; Gao, Guangping; Mao, Zixu; Cheng, Shi-Yuan; Lu, Ling; Bai, Xue-Tao; Gong, Shoufang; Yan, Guangmei; Hu, Jun

    2016-09-01

    Cancers figure among the leading causes of morbidity and mortality worldwide. The number of new cases is expected to rise by about 70% over the next 2 decades. Development of novel therapeutic agents is urgently needed for clinical cancer therapy. Alphavirus M1 is a Getah-like virus isolated from China with a genome of positive single-strand RNA. We have previously identified that alphavirus M1 is a naturally existing oncolytic virus with significant anticancer activity against different kinds of cancer (e.g., liver cancer, bladder cancer, and colon cancer). To support the incoming clinical trial of intravenous administration of alphavirus M1 to cancer patients, we assessed the safety of M1 in adult nonhuman primates. We previously presented the genome sequencing data of the cynomolgus macaques (Macaca fascicularis), which was demonstrated as an ideal animal species for virus infection study. Therefore, we chose cynomolgus macaques of either sex for the present safety study of oncolytic virus M1. In the first round of administration, five experimental macaques were intravenously injected with six times of oncolytic virus M1 (1 × 10(9) pfu/dose) in 1 week, compared with five vehicle-injected control animals. The last two rounds of injections were further completed in the following months in the same way as the first round. Body weight, temperature, complete blood count, clinical biochemistries, cytokine profiles, lymphocytes subsets, neutralizing antibody, and clinical symptoms were closely monitored at different time points. Magnetic resonance imaging was also performed to assess the possibility of encephalitis or arthritis. As a result, no clinical, biochemical, immunological, or medical imaging or other pathological evidence of toxicity was found during the whole process of the study. Our results in cynomolgus macaques suggested the safety of intravenous administration of oncolytic virus M1 in cancer patients in the future.

  16. Pharmacological Modulation of Anti-Tumor Immunity Induced by Oncolytic Viruses

    PubMed Central

    Forbes, Nicole E.; Krishnan, Ramya; Diallo, Jean-Simon

    2014-01-01

    Oncolytic viruses (OVs) not only kill cancer cells by direct lysis but also generate a significant anti-tumor immune response that allows for prolonged cancer control and in some cases cures. How to best stimulate this effect is a subject of intense investigation in the OV field. While pharmacological manipulation of the cellular innate anti-viral immune response has been shown by several groups to improve viral oncolysis and spread, it is increasingly clear that pharmacological agents can also impact the anti-tumor immune response generated by OVs and related tumor vaccination strategies. This review covers recent progress in using pharmacological agents to improve the activity of OVs and their ability to generate robust anti-tumor immune responses. PMID:25101247

  17. Adeno-Associated Virus Enhances Wild-Type and Oncolytic Adenovirus Spread

    PubMed Central

    Laborda, Eduardo; Puig-Saus, Cristina; Cascalló, Manel; Chillón, Miguel

    2013-01-01

    Abstract The contamination of adenovirus (Ad) stocks with adeno-associated viruses (AAV) is usually unnoticed, and it has been associated with lower Ad yields upon large-scale production. During Ad propagation, AAV contamination needs to be detected routinely by polymerase chain reaction without symptomatic suspicion. In this study, we describe that the coinfection of either Ad wild type 5 or oncolytic Ad with AAV results in a large-plaque phenotype associated with an accelerated release of Ad from coinfected cells. This accelerated release was accompanied with the expected decrease in Ad yields in two out of three cell lines tested. Despite this lower Ad yield, coinfection with AAV accelerated cell death and enhanced the cytotoxicity mediated by Ad propagation. Intratumoral coinjection of Ad and AAV in two xenograft tumor models improved antitumor activity and mouse survival. Therefore, we conclude that accidental or intentional AAV coinfection has important implications for Ad-mediated virotherapy. PMID:24020980

  18. Treatment strategies for combining immunostimulatory oncolytic virus therapeutics with dendritic cell injections.

    PubMed

    Wares, Joanna R; Crivelli, Joseph J; Yun, Chae-Ok; Choi, Il-Kyu; Gevertz, Jana L; Kim, Peter S

    2015-12-01

    Oncolytic viruses (OVs) are used to treat cancer, as they selectively replicate inside of and lyse tumor cells. The efficacy of this process is limited and new OVs are being designed to mediate tumor cell release of cytokines and co-stimulatory molecules, which attract cytotoxic T cells to target tumor cells, thus increasing the tumor-killing effects of OVs. To further promote treatment efficacy, OVs can be combined with other treatments, such as was done by Huang et al., who showed that combining OV injections with dendritic cell (DC) injections was a more effective treatment than either treatment alone. To further investigate this combination, we built a mathematical model consisting of a system of ordinary differential equations and fit the model to the hierarchical data provided from Huang et al. We used the model to determine the effect of varying doses of OV and DC injections and to test alternative treatment strategies. We found that the DC dose given in Huang et al. was near a bifurcation point and that a slightly larger dose could cause complete eradication of the tumor. Further, the model results suggest that it is more effective to treat a tumor with immunostimulatory oncolytic viruses first and then follow-up with a sequence of DCs than to alternate OV and DC injections. This protocol, which was not considered in the experiments of Huang et al., allows the infection to initially thrive before the immune response is enhanced. Taken together, our work shows how the ordering, temporal spacing, and dosage of OV and DC can be chosen to maximize efficacy and to potentially eliminate tumors altogether.

  19. Viral warfare! Front-line defence and arming the immune system against cancer using oncolytic vaccinia and other viruses.

    PubMed

    Dave, R V; Jebar, A H S; Jennings, V A; Adair, R A; West, E J; Errington-Mais, F; Toogood, G J; Melcher, A A

    2014-08-01

    Despite mankind's many achievements, we are yet to find a cure for cancer. We are now approaching a new era which recognises the promise of harnessing the immune system for anti-cancer therapy. Pathogens have been implicated for decades as potential anti-cancer agents, but implementation into clinical therapy has been plagued with significant drawbacks. Newer 'designer' agents have addressed some of these concerns, in particular, a new breed of oncolytic virus: JX-594, a genetically engineered pox virus, is showing promise. To review the current literature on the use of oncolytic viruses in the treatment of cancer; both by direct oncolysis and stimulation of the immune system. The review will provide a background and historical progression for the surgeon on tumour immunology, and the interplay between oncolytic viruses, immune cells, inflammation on tumourigenesis. A literature review was performed using the Medline database. Viral therapeutics hold promise as a novel treatment modality for the treatment of disseminated malignancy. It provides a multi-pronged attack against tumour burden; direct tumour cell lysis, exposure of tumour-associated antigens (TAA), induction of immune danger signals, and recognition by immune effector cells. Copyright © 2014 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.

  20. Prostate-Specific and Tumor-Specific Targeting of an Oncolytic HSV-1 Amplicon/Helper Virus for Prostate Cancer Treatment

    DTIC Science & Technology

    2009-11-01

    Targeting of an Oncolytic HSV - 1 Amplicon/Helper Virus for Prostate Cancer Treatment PRINCIPAL INVESTIGATOR: Cleo Lee CONTRACTING...5a. CONTRACT NUMBER Prostate-Specific and Tumor-Specific Targeting of an Oncolytic HSV - 1 Amplicon/Helper Virus for Prostate Cancer Treatment...untranslated region (3’UTR) of a herpes simplex virus- 1 ( HSV - 1 ) essential viral gene, ICP4, to create CMV-ICP4-143T and CMV-ICP4-145T amplicon viruses. Our

  1. Intravenously injected Newcastle disease virus in non-human primates is safe to use for oncolytic virotherapy.

    PubMed

    Buijs, P R A; van Amerongen, G; van Nieuwkoop, S; Bestebroer, T M; van Run, P R W A; Kuiken, T; Fouchier, R A M; van Eijck, C H J; van den Hoogen, B G

    2014-11-01

    Newcastle disease virus (NDV) is an avian paramyxovirus with oncolytic potential. Detailed preclinical information regarding the safety of oncolytic NDV is scarce. In this study, we evaluated the toxicity, biodistribution and shedding of intravenously injected oncolytic NDVs in non-human primates (Macaca fascicularis). Two animals were injected with escalating doses of a non-recombinant vaccine strain, a recombinant lentogenic strain or a recombinant mesogenic strain. To study transmission, naive animals were co-housed with the injected animals. Injection with NDV did not lead to severe illness in the animals or abnormalities in hematologic or biochemistry measurements. Injected animals shed low amounts of virus, but this did not lead to seroconversion of the contact animals. Postmortem evaluation demonstrated no pathological changes or evidence of virus replication. This study demonstrates that NDV generated in embryonated chicken eggs is safe for intravenous administration to non-human primates. In addition, our study confirmed results from a previous report that naïve primate and human sera are able to neutralize egg-generated NDV. We discuss the implications of these results for our study and the use of NDV for virotherapy.

  2. Prevention of EBV lymphoma development by oncolytic myxoma virus in a murine xenograft model of post-transplant lymphoproliferative disease

    SciTech Connect

    Kim, Manbok; Rahman, Masmudur M.; Cogle, Christopher R.

    2015-07-10

    Epstein–Barr virus (EBV) has been associated with a variety of epithelial and hematologic malignancies, including B-, T- and NK cell-lymphomas, Hodgkin's disease (HD), post-transplant lymphoproliferative diseases (LPDs), nasopharyngeal and gastric carcinomas, smooth muscle tumors, and HIV-associated lymphomas. Currently, treatment options for EBV-associated malignancies are limited. We have previously shown that myxoma virus specifically targets various human solid tumors and leukemia cells in a variety of animal models, while sparing normal human or murine tissues. Since transplant recipients of bone marrow or solid organs often develop EBV-associated post-transplant LPDs and lymphoma, myxoma virus may be of utility to prevent EBV-associated malignancies in immunocompromised transplant patients where treatment options are frequently limited. In this report, we demonstrate the safety and efficacy of myxoma virus purging as a prophylactic strategy for preventing post-transplant EBV-transformed human lymphomas, using a highly immunosuppressed mouse xenotransplantation model. This provides support for developing myxoma virus as a potential oncolytic therapy for preventing EBV-associated LPDs following transplantation of bone marrow or solid organ allografts. - Highlights: • Myxoma virus effectively infects and purges EBV lymphoma cells in vivo. • Oncolytic myxoma virus effectively eradicates oncogenic EBV tumorigenesis. • Ex vivo pre-treatment of myxoma virus can be effective as a preventive treatment modality for post-transplant lymphoproliferative diseases.

  3. Oncolytic reovirus induces intracellular redistribution of Ras to promote apoptosis and progeny virus release.

    PubMed

    Garant, K A; Shmulevitz, M; Pan, L; Daigle, R M; Ahn, D-G; Gujar, S A; Lee, P W K

    2016-02-11

    Reovirus is a naturally oncolytic virus that preferentially replicates in Ras-transformed cells and is currently undergoing clinical trials as a cancer therapeutic. Ras transformation promotes reovirus oncolysis by enhancing virion disassembly during entry, viral progeny production, and virus release through apoptosis; however, the mechanism behind the latter is not well understood. Here, we show that reovirus alters the intracellular location of oncogenic Ras to induce apoptosis of H-RasV12-transformed fibroblasts. Reovirus infection decreases Ras palmitoylation levels and causes accumulation of Ras in the Golgi through Golgi fragmentation. With the Golgi being the site of Ras palmitoylation, treatment of target cells with the palmitoylation inhibitor, 2-bromopalmitate (2BP), prompts a greater accumulation of H-RasV12 in the Golgi, and a dose-dependent increase in progeny virus release and subsequent spread. Conversely, tethering H-RasV12 to the plasma membrane (thereby preventing its movement to the Golgi) allows for efficient virus production, but results in basal levels of reovirus-induced cell death. Analysis of Ras downstream signaling reveals that cells expressing cycling H-RasV12 have elevated levels of phosphorylated JNK (c-Jun N-terminal kinase), and that Ras retained at the Golgi body by 2BP increases activation of the MEKK1/MKK4/JNK signaling pathway to promote cell death. Collectively, our data suggest that reovirus induces Golgi fragmentation of target cells, and the subsequent accumulation of oncogenic Ras in the Golgi body initiates apoptotic signaling events required for virus release and spread.

  4. Dendritic Cells in Oncolytic Virus-Based Anti-Cancer Therapy

    PubMed Central

    Kim, Youra; Clements, Derek R.; Sterea, Andra M.; Jang, Hyun Woo; Gujar, Shashi A.; Lee, Patrick W. K.

    2015-01-01

    Dendritic cells (DCs) are specialized antigen-presenting cells that have a notable role in the initiation and regulation of innate and adaptive immune responses. In the context of cancer, appropriately activated DCs can induce anti-tumor immunity by activating innate immune cells and tumor-specific lymphocytes that target cancer cells. However, the tumor microenvironment (TME) imposes different mechanisms that facilitate the impairment of DC functions, such as inefficient antigen presentation or polarization into immunosuppressive DCs. These tumor-associated DCs thus fail to initiate tumor-specific immunity, and indirectly support tumor progression. Hence, there is increasing interest in identifying interventions that can overturn DC impairment within the TME. Many reports thus far have studied oncolytic viruses (OVs), viruses that preferentially target and kill cancer cells, for their capacity to enhance DC-mediated anti-tumor effects. Herein, we describe the general characteristics of DCs, focusing on their role in innate and adaptive immunity in the context of the TME. We also examine how DC-OV interaction affects DC recruitment, OV delivery, and anti-tumor immunity activation. Understanding these roles of DCs in the TME and OV infection is critical in devising strategies to further harness the anti-tumor effects of both DCs and OVs, ultimately enhancing the efficacy of OV-based oncotherapy. PMID:26690204

  5. Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy

    PubMed Central

    Liu, Zuqiang; Ravindranathan, Roshni; Kalinski, Pawel; Guo, Z. Sheng; Bartlett, David L.

    2017-01-01

    Both anti-PD1/PD-L1 therapy and oncolytic virotherapy have demonstrated promise, yet have exhibited efficacy in only a small fraction of cancer patients. Here we hypothesized that an oncolytic poxvirus would attract T cells into the tumour, and induce PD-L1 expression in cancer and immune cells, leading to more susceptible targets for anti-PD-L1 immunotherapy. Our results demonstrate in colon and ovarian cancer models that an oncolytic vaccinia virus attracts effector T cells and induces PD-L1 expression on both cancer and immune cells in the tumour. The dual therapy reduces PD-L1+ cells and facilitates non-redundant tumour infiltration of effector CD8+, CD4+ T cells, with increased IFN-γ, ICOS, granzyme B and perforin expression. Furthermore, the treatment reduces the virus-induced PD-L1+ DC, MDSC, TAM and Treg, as well as co-inhibitory molecules-double-positive, severely exhausted PD-1+CD8+ T cells, leading to reduced tumour burden and improved survival. This combinatorial therapy may be applicable to a much wider population of cancer patients. PMID:28345650

  6. Oncolytic vaccinia virus as a vector for therapeutic sodium iodide symporter gene therapy in prostate cancer.

    PubMed

    Mansfield, D C; Kyula, J N; Rosenfelder, N; Chao-Chu, J; Kramer-Marek, G; Khan, A A; Roulstone, V; McLaughlin, M; Melcher, A A; Vile, R G; Pandha, H S; Khoo, V; Harrington, K J

    2016-04-01

    Oncolytic strains of vaccinia virus are currently in clinical development with clear evidence of safety and promising signs of efficacy. Addition of therapeutic genes to the viral genome may increase the therapeutic efficacy of vaccinia. We evaluated the therapeutic potential of vaccinia virus expressing the sodium iodide symporter (NIS) in prostate cancer models, combining oncolysis, external beam radiotherapy and NIS-mediated radioiodide therapy. The NIS-expressing vaccinia virus (VV-NIS), GLV-1h153, was tested in in vitro analyzes of viral cell killing, combination with radiotherapy, NIS expression, cellular radioiodide uptake and apoptotic cell death in PC3, DU145, LNCaP and WPMY-1 human prostate cell lines. In vivo experiments were carried out in PC3 xenografts in CD1 nude mice to assess NIS expression and tumor radioiodide uptake. In addition, the therapeutic benefit of radioiodide treatment in combination with viral oncolysis and external beam radiotherapy was measured. In vitro viral cell killing of prostate cancers was dose- and time-dependent and was through apoptotic mechanisms. Importantly, combined virus therapy and iodizing radiation did not adversely affect oncolysis. NIS gene expression in infected cells was functional and mediated uptake of radioiodide both in vitro and in vivo. Therapy experiments with both xenograft and immunocompetent Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) mouse models showed that the addition of radioiodide to VV-NIS-infected tumors was more effective than each single-agent therapy, restricting tumor growth and increasing survival. In conclusion, VV-NIS is effective in prostate cancer models. This treatment modality would be an attractive complement to existing clinical radiotherapy practice.

  7. Oncolytic vaccinia virus as a vector for therapeutic sodium iodide symporter gene therapy in prostate cancer

    PubMed Central

    Mansfield, D C; Kyula, J N; Rosenfelder, N; Chao-Chu, J; Kramer-Marek, G; Khan, A A; Roulstone, V; McLaughlin, M; Melcher, A A; Vile, R G; Pandha, H S; Khoo, V; Harrington, K J

    2016-01-01

    Oncolytic strains of vaccinia virus are currently in clinical development with clear evidence of safety and promising signs of efficacy. Addition of therapeutic genes to the viral genome may increase the therapeutic efficacy of vaccinia. We evaluated the therapeutic potential of vaccinia virus expressing the sodium iodide symporter (NIS) in prostate cancer models, combining oncolysis, external beam radiotherapy and NIS-mediated radioiodide therapy. The NIS-expressing vaccinia virus (VV-NIS), GLV-1h153, was tested in in vitro analyzes of viral cell killing, combination with radiotherapy, NIS expression, cellular radioiodide uptake and apoptotic cell death in PC3, DU145, LNCaP and WPMY-1 human prostate cell lines. In vivo experiments were carried out in PC3 xenografts in CD1 nude mice to assess NIS expression and tumor radioiodide uptake. In addition, the therapeutic benefit of radioiodide treatment in combination with viral oncolysis and external beam radiotherapy was measured. In vitro viral cell killing of prostate cancers was dose- and time-dependent and was through apoptotic mechanisms. Importantly, combined virus therapy and iodizing radiation did not adversely affect oncolysis. NIS gene expression in infected cells was functional and mediated uptake of radioiodide both in vitro and in vivo. Therapy experiments with both xenograft and immunocompetent Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) mouse models showed that the addition of radioiodide to VV-NIS-infected tumors was more effective than each single-agent therapy, restricting tumor growth and increasing survival. In conclusion, VV-NIS is effective in prostate cancer models. This treatment modality would be an attractive complement to existing clinical radiotherapy practice. PMID:26814609

  8. Evaluation of a New Recombinant Oncolytic Vaccinia Virus Strain GLV-5b451 for Feline Mammary Carcinoma Therapy

    PubMed Central

    Weibel, Stephanie; Langbein-Laugwitz, Johanna; Härtl, Barbara; Escobar, Hugo Murua; Nolte, Ingo; Chen, Nanhai G.; Aguilar, Richard J.; Yu, Yong A.; Zhang, Qian; Frentzen, Alexa; Szalay, Aladar A.

    2014-01-01

    Virotherapy on the basis of oncolytic vaccinia virus (VACV) infection is a promising approach for cancer therapy. In this study we describe the establishment of a new preclinical model of feline mammary carcinoma (FMC) using a recently established cancer cell line, DT09/06. In addition, we evaluated a recombinant vaccinia virus strain, GLV-5b451, expressing the anti-vascular endothelial growth factor (VEGF) single-chain antibody (scAb) GLAF-2 as an oncolytic agent against FMC. Cell culture data demonstrate that GLV-5b451 virus efficiently infected, replicated in and destroyed DT09/06 cancer cells. In the selected xenografts of FMC, a single systemic administration of GLV-5b451 led to significant inhibition of tumor growth in comparison to untreated tumor-bearing mice. Furthermore, tumor-specific virus infection led to overproduction of functional scAb GLAF-2, which caused drastic reduction of intratumoral VEGF levels and inhibition of angiogenesis. In summary, here we have shown, for the first time, that the vaccinia virus strains and especially GLV-5b451 have great potential for effective treatment of FMC in animal model. PMID:25093734

  9. Engineering of double recombinant vaccinia virus with enhanced oncolytic potential for solid tumor virotherapy

    PubMed Central

    Kochneva, Galina; Sivolobova, Galina; Tkacheva, Anastasiya; Grazhdantseva, Antonina; Troitskaya, Olga; Nushtaeva, Anna; Tkachenko, Anastasiya; Kuligina, Elena; Richter, Vladimir; Koval, Olga

    2016-01-01

    Vaccinia virus (VACV) oncolytic therapy has been successful in a number of tumor models. In this study our goal was to generate a double recombinant vaccinia virus (VV-GMCSF-Lact) with enhanced antitumor activity that expresses exogenous proteins: the antitumor protein lactaptin and human granulocyte-macrophage colony-stimulating factor (GM-CSF). Lactaptin has previously been demonstrated to act as a tumor suppressor in mouse hepatoma as well as MDA-MB-231 human adenocarcinoma cells grafted into SCID mice. VV-GMCSF-Lact was engineered from Lister strain (L-IVP) vaccinia virus and has deletions of the viral thymidine kinase and vaccinia growth factor genes. Cell culture experiments revealed that engineered VV-GMCSF-Lact induced the death of cultured cancer cells more efficiently than recombinant VACV coding only GM-CSF (VV-GMCSF-dGF). Normal human MCF-10A cells were resistant to both recombinants up to 10 PFU/cell. The selectivity index for breast cancer cells measured in pair cultures MCF-7/MCF-10A was 200 for recombinant VV-GMCSF-Lact coding lactaptin and 100 for VV-GMCSF-dGF. Using flow cytometry we demonstrated that both recombinants induced apoptosis in treated cells but that the rate in the cells with active caspase −3 and −7 was higher after treatment with VV-GMCSF-Lact than with VV-GMCSF-dGF. Tumor growth inhibition and survival outcomes after VV-GMCSF-Lact treatment were estimated using immunodeficient and immunocompetent mice models. We observed that VV-GMCSF-Lact efficiently delays the growth of sensitive and chemoresistant tumors. These results demonstrate that recombinant VACVs coding an apoptosis-inducing protein have good therapeutic potential against chemoresistant tumors. Our data will also stimulate further investigation of coding lactaptin double recombinant VACV in clinical settings. PMID:27708236

  10. Novel biomarkers of resistance of pancreatic cancer cells to oncolytic vesicular stomatitis virus

    PubMed Central

    Steuerwald, Nury; Grdzelishvili, Valery Z.

    2016-01-01

    Vesicular stomatitis virus (VSV) based recombinant viruses (such as VSV-ΔM51) are effective oncolytic viruses (OVs) against a majority of pancreatic ductal adenocarcinoma (PDAC) cell lines. However, some PDAC cell lines are highly resistant to VSV-ΔM51. We recently showed that treatment of VSV-resistant PDAC cells with ruxolitinib (JAK1/2 inhibitor) or TPCA-1 (IKK-β inhibitor) breaks their resistance to VSV-ΔM51. Here we compared the global effect of ruxolitinib or TPCA-1 treatment on cellular gene expression in PDAC cell lines highly resistant to VSV-ΔM51. Our study identified a distinct subset of 22 interferon-stimulated genes (ISGs) downregulated by both ruxolitinib and TPCA-1. Further RNA and protein analyses demonstrated that 4 of these genes (MX1, EPSTI1, XAF1, and GBP1) are constitutively co-expressed in VSV-resistant, but not in VSV-permissive PDACs, thus serving as potential biomarkers to predict OV therapy success. Moreover, shRNA-mediated knockdown of one of such ISG, MX1, showed a positive effect on VSV-ΔM51 replication in resistant PDAC cells, suggesting that at least some of the identified ISGs contribute to resistance of PDACs to VSV-ΔM51. As certain oncogene and tumor suppressor gene variants are often associated with increased tropism of OVs to cancer cells, we also analyzed genomic DNA in a set of PDAC cell lines for frequently occurring cancer associated mutations. While no clear correlation was found between such mutations and resistance of PDACs to VSV-ΔM51, the analysis generated valuable genotypic data for future studies. PMID:27533247

  11. N-acetylcysteine amide augments the therapeutic effect of neural stem cell-based antiglioma oncolytic virotherapy.

    PubMed

    Kim, Chung Kwon; Ahmed, Atique U; Auffinger, Brenda; Ulasov, Ilya V; Tobias, Alex L; Moon, Kyung-Sub; Lesniak, Maciej S

    2013-11-01

    Current research has evaluated the intrinsic tumor-tropic properties of stem cell carriers for targeted anticancer therapy. Our laboratory has been extensively studying in the preclinical setting, the role of neural stem cells (NSCs) as delivery vehicles of CRAd-S-pk7, a gliomatropic oncolytic adenovirus (OV). However, the mediated toxicity of therapeutic payloads, such as oncolytic adenoviruses, toward cell carriers has significantly limited this targeted delivery approach. Following this rationale, in this study, we assessed the role of a novel antioxidant thiol, N-acetylcysteine amide (NACA), to prevent OV-mediated toxicity toward NSC carriers in an orthotropic glioma xenograft mouse model. Our results show that the combination of NACA and CRAd-S-pk7 not only increases the viability of these cell carriers by preventing reactive oxygen species (ROS)-induced apoptosis of NSCs, but also improves the production of viral progeny in HB1.F3.CD NSCs. In an intracranial xenograft mouse model, the combination treatment of NACA and NSCs loaded with CRAd-S-pk7 showed enhanced CRAd-S-pk7 production and distribution in malignant tissues, which improves the therapeutic efficacy of NSC-based targeted antiglioma oncolytic virotherapy. These data demonstrate that the combination of NACA and NSCs loaded with CRAd-S-pk7 may be a desirable strategy to improve the therapeutic efficacy of antiglioma oncolytic virotherapy.

  12. N-acetylcysteine Amide Augments the Therapeutic Effect of Neural Stem Cell-Based Antiglioma Oncolytic Virotherapy

    PubMed Central

    Kim, Chung Kwon; Ahmed, Atique U; Auffinger, Brenda; Ulasov, Ilya V; Tobias, Alex L; Moon, Kyung-Sub; Lesniak, Maciej S

    2013-01-01

    Current research has evaluated the intrinsic tumor-tropic properties of stem cell carriers for targeted anticancer therapy. Our laboratory has been extensively studying in the preclinical setting, the role of neural stem cells (NSCs) as delivery vehicles of CRAd-S-pk7, a gliomatropic oncolytic adenovirus (OV). However, the mediated toxicity of therapeutic payloads, such as oncolytic adenoviruses, toward cell carriers has significantly limited this targeted delivery approach. Following this rationale, in this study, we assessed the role of a novel antioxidant thiol, N-acetylcysteine amide (NACA), to prevent OV-mediated toxicity toward NSC carriers in an orthotropic glioma xenograft mouse model. Our results show that the combination of NACA and CRAd-S-pk7 not only increases the viability of these cell carriers by preventing reactive oxygen species (ROS)-induced apoptosis of NSCs, but also improves the production of viral progeny in HB1.F3.CD NSCs. In an intracranial xenograft mouse model, the combination treatment of NACA and NSCs loaded with CRAd-S-pk7 showed enhanced CRAd-S-pk7 production and distribution in malignant tissues, which improves the therapeutic efficacy of NSC-based targeted antiglioma oncolytic virotherapy. These data demonstrate that the combination of NACA and NSCs loaded with CRAd-S-pk7 may be a desirable strategy to improve the therapeutic efficacy of antiglioma oncolytic virotherapy. PMID:23883863

  13. Intratumoral modulation of the inducible co-stimulator ICOS by recombinant oncolytic virus promotes systemic anti-tumour immunity

    PubMed Central

    Zamarin, Dmitriy; Holmgaard, Rikke B.; Ricca, Jacob; Plitt, Tamar; Palese, Peter; Sharma, Padmanee; Merghoub, Taha; Wolchok, Jedd D.; Allison, James P.

    2017-01-01

    Emerging data suggest that locoregional cancer therapeutic approaches with oncolytic viruses can lead to systemic anti-tumour immunity, although the appropriate targets for intratumoral immunomodulation using this strategy are not known. Here we find that intratumoral therapy with Newcastle disease virus (NDV), in addition to the activation of innate immunity, upregulates the expression of T-cell co-stimulatory receptors, with the inducible co-stimulator (ICOS) being most notable. To explore ICOS as a direct target in the tumour, we engineered a recombinant NDV-expressing ICOS ligand (NDV-ICOSL). In the bilateral flank tumour models, intratumoral administration of NDV-ICOSL results in enhanced infiltration with activated T cells in both virus-injected and distant tumours, and leads to effective rejection of both tumours when used in combination with systemic CTLA-4 blockade. These findings highlight that intratumoral immunomodulation with an oncolytic virus expressing a rationally selected ligand can be an effective strategy to drive systemic efficacy of immune checkpoint blockade. PMID:28194010

  14. Myxoma virus sensitizes cancer cells to gemcitabine and is an effective oncolytic virotherapeutic in models of disseminated pancreatic cancer.

    PubMed

    Wennier, Sonia Tusell; Liu, Jia; Li, Shoudong; Rahman, Masmudur M; Mona, Mahmoud; McFadden, Grant

    2012-04-01

    Myxoma virus (MYXV) is a novel oncolytic virus that has been shown to replicate in pancreatic cancer cells, but its efficacy in animal models of pancreatic cancer has not been determined. The efficacy of MYXV as monotherapy or in combination with gemcitabine was evaluated in intraperitoneal dissemination (IPD) models of pancreatic cancer. The effects of an intact immune system on the efficacy of MYXV therapy was tested by comparing immunodeficient versus immunocompetent murine models and combination therapy with gemcitabine was also evaluated. In cell culture, MYXV replication was robust in a broad range of pancreatic cancer cells and also showed increased oncolysis in combination with gemcitabine. In animal models, MYXV treatment conferred survival benefits over control or gemcitabine-treated cohorts regardless of the cell line or animal model used. MYXV monotherapy was most effective in an immunocompetent IPD model, and resulted in 60% long-term survivors. In Pan02 engrafted immunocompetent IPD models, sequential treatment in which MYXV was administered first, followed by gemcitabine, was the most effective and resulted in 100% long-term survivors. MYXV is an effective oncolytic virus for pancreatic cancer and can be combined with gemcitabine to enhance survival, particularly in the presence of an intact host immune system.

  15. Sensitivity of human pleural mesothelioma to oncolytic measles virus depends on defects of the type I interferon response

    PubMed Central

    Achard, Carole; Boisgerault, Nicolas; Delaunay, Tiphaine; Roulois, David; Nedellec, Steven; Royer, Pierre-Joseph; Pain, Mallory; Combredet, Chantal; Mesel-Lemoine, Mariana; Cellerin, Laurent; Magnan, Antoine; Tangy, Frédéric; Grégoire, Marc; Fonteneau, Jean-François

    2015-01-01

    Attenuated measles virus (MV) is currently being evaluated as an oncolytic virus in clinical trials and could represent a new therapeutic approach for malignant pleural mesothelioma (MPM). Herein, we screened the sensitivity to MV infection and replication of twenty-two human MPM cell lines and some healthy primary cells. We show that MV replicates in fifteen of the twenty-two MPM cell lines. Despite overexpression of CD46 by a majority of MPM cell lines compared to healthy cells, we found that the sensitivity to MV replication did not correlate with this overexpression. We then evaluated the antiviral type I interferon (IFN) responses of MPM cell lines and healthy cells. We found that healthy cells and the seven insensitive MPM cell lines developed a type I IFN response in presence of the virus, thereby inhibiting replication. In contrast, eleven of the fifteen sensitive MPM cell lines were unable to develop a complete type I IFN response in presence of MV. Finally, we show that addition of type I IFN onto MV sensitive tumor cell lines inhibits replication. These results demonstrate that defects in type I IFN response are frequent in MPM and that MV takes advantage of these defects to exert oncolytic activity. PMID:26539644

  16. Safety and biodistribution of a double-deleted oncolytic vaccinia virus encoding CD40 ligand in laboratory Beagles

    PubMed Central

    Autio, Karoliina; Knuuttila, Anna; Kipar, Anja; Pesonen, Sari; Guse, Kilian; Parviainen, Suvi; Rajamäki, Minna; Laitinen-Vapaavuori, Outi; Vähä-Koskela, Markus; Kanerva, Anna; Hemminki, Akseli

    2014-01-01

    We evaluated adverse events, biodistribution and shedding of oncolytic vaccinia virus encoding CD40 ligand in two Beagles, in preparation for a phase 1 trial in canine cancer patients. Dog 1 received one dose of vaccinia virus and was euthanized 24 hours afterwards, while dog 2 received virus four times once weekly and was euthanized 7 days after that. Dogs were monitored for adverse events and underwent a detailed postmortem examination. Blood, saliva, urine, feces, and organs were collected for virus detection. Dog 1 had mild fever and lethargy while dog 2 experienced a possible seizure 5.5 hours after first virus administration. Viral DNA declined quickly in the blood after virus administration in both dogs but was still detectable 1 week later by quantitative polymerase chain reaction. Only samples taken directly after virus infusion contained infectious virus. Small amounts of viral DNA, but no infectious virus, were detected in a few saliva and urine samples. Necropsies did not reveal any relevant pathological changes and virus DNA was detected mainly in the spleen. The dogs in the study did not have cancer, and thus adverse events could be more common and viral load higher in dogs with tumors which allow viral amplification. PMID:27119092

  17. Using a magnetic field to redirect an oncolytic adenovirus complexed with iron oxide augments gene therapy efficacy.

    PubMed

    Choi, Joung-Woo; Park, Ji Won; Na, Youjin; Jung, Soo-Jung; Hwang, June Kyu; Choi, Dongho; Lee, Kyeong Geun; Yun, Chae-Ok

    2015-10-01

    Adenovirus (Ad) is a widely used vector for cancer gene therapy but its therapeutic efficacy is limited by low coxsackievirus and adenovirus receptor (CAR) expression in tumors and non-specifically targeted infection. Ad infectivity and specificity can be markedly improved by creating Ad-magnetic nanoparticles cluster complexes and directing their migration with an external magnetic field (MGF). We electrostatically complexed GFP-expressing, replication-incompetent Ad (dAd) with PEGylated and cross-linked iron oxide nanoparticles (PCION), generating dAd-PCION complexes. The dAd-PCION showed increased transduction efficiency, independent of CAR expression, in the absence or presence of an MGF. Cancer cell killing and intracellular oncolytic Ad (HmT)-PCION replication significantly increased with MGF exposure. Site-directed, magnetically-targeted delivery of the HmT-PCION elicited significantly greater therapeutic efficacy versus treatment with naked HmT or HmT-PCION without MGF in CAR-negative MCF7 tumors. Immunohistochemical tumor analysis showed increased oncolytic Ad replication in tumors following infection by HmT-PCION using an MGF. Whole-body bioluminescence imaging of tumor-bearing mice showed a 450-fold increased tumor-to-liver ratio for HmT-PCION with, versus without, MGF. These results demonstrate the feasibility and potential of external MGF-responsive PCION-coated oncolytic Ads as smart hybrid vectors for cancer gene therapy.

  18. Cell-based delivery of oncolytic viruses: a new strategic alliance for a biological strike against cancer.

    PubMed

    Power, Anthony T; Bell, John C

    2007-04-01

    Recent years have seen tremendous advances in the development of exquisitely targeted replicating virotherapeutics that can safely destroy malignant cells. Despite this promise, clinical advancement of this powerful and unique approach has been hindered by vulnerability to host defenses and inefficient systemic delivery. However, it now appears that delivery of oncolytic viruses within carrier cells may offer one solution to this critical problem. In this review, we compare the advantages and limitations of the numerous cell lineages that have been investigated as delivery platforms for viral therapeutics, and discuss examples showing how combined cell-virus biotherapeutics can be used to achieve synergistic gains in antitumor activity. Finally, we highlight avenues for future preclinical research that might be taken in order to refine cell-virus biotherapeutics in preparation for human trials.

  19. [Current state of oncolytic virotherapy in Japan].

    PubMed

    Nakamori, Mikihito; Yamaue, Hiroki

    2013-05-01

    Oncolytic virotherapy is an emerging treatment strategy that uses replication-competent viruses to destroy cancers. Recent advances include preclinical proof of feasibility for a single-shot virotherapy cure, identification of drugs that accelerate intratumoral virus propagation, and strategies to maximize the immunotherapeutic action of oncolytic viruses. The primary clinical milestone has been completion of accrual in a phase 3 trial of intratumoral herpes simplex virus therapy using OncoVEX for metastatic melanoma. In Japan, clinical treatments such as oncolytic adenoviruses(OBP-301)for esophageal cancer and oncolytic herpes simplex viruses(G47b)for brain cancer have accelerated considerably. We hope that a steady stream of new oncolytic viruses will enter the clinical arena in our country.

  20. In Vivo Safety, Biodistribution and Antitumor Effects of uPAR Retargeted Oncolytic Measles Virus in Syngeneic Cancer Models

    PubMed Central

    Jing, Yuqi; Zaias, Julia; Duncan, Robert; Russell, Stephen J.; Merchan, Jaime R.

    2014-01-01

    The urokinase receptor (uPAR) is a clinically relevant target for novel biological therapies. We have previously rescued oncolytic measles viruses fully retargeted against human (MV-h-uPA) or murine (MV-m-uPA) uPAR. Here, we investigated the in vivo effects of systemic administration of MV-m-uPA in immunocompetent cancer models. MV-m-uPA induced in vitro cytotoxicity and replicated in a receptor dependent manner in murine mammary (4T1), and colon (MC-38 and CT-26) cancer cells. Intravenous administration of MV-m-uPA to 4T1 tumor bearing mice was not associated with significant clinical or laboratory toxicity. Higher MV-N RNA copy numbers were detected in primary tumors, and viable viral particles were recovered from tumor bearing tissues only. Non-tumor bearing organs did not show histological signs of viral induced toxicity. Serum anti-MV antibodies were detected at day 14 of treatment. Immunohistochemistry and immunofluorescence studies confirmed successful tumor targeting and demonstrated enhanced MV-m-uPA induced tumor cell apoptosis in treated, compared to control mice. Significant antitumor effects and prolonged survival were observed after systemic administration of MV-m-uPA in colon (CT-26) and mammary (4T1) cancer models. The above results demonstrate safety and feasibility of uPAR targeting by an oncolytic virus, and confirm significant antitumor effects in highly aggressive syngeneic immunocompetent cancer models. PMID:24430235

  1. IL-12 Expressing oncolytic herpes simplex virus promotes anti-tumor activity and immunologic control of metastatic ovarian cancer in mice.

    PubMed

    Thomas, Eric D; Meza-Perez, Selene; Bevis, Kerri S; Randall, Troy D; Gillespie, G Yancey; Langford, Catherine; Alvarez, Ronald D

    2016-10-27

    Despite advances in surgical aggressiveness and conventional chemotherapy, ovarian cancer remains the most lethal cause of gynecologic cancer mortality; consequently there is a need for new therapeutic agents and innovative treatment paradigms for the treatment of ovarian cancer. Several studies have demonstrated that ovarian cancer is an immunogenic disease and immunotherapy represents a promising and novel approach that has not been completely evaluated in ovarian cancer. Our objective was to evaluate the anti-tumor activity of an oncolytic herpes simplex virus "armed" with murine interleukin-12 and its ability to elicit tumor-specific immune responses. We evaluated the ability of interleukin-12-expressing and control oncolytic herpes simplex virus to kill murine and human ovarian cancer cell lines in vitro. We also administered interleukin-12-expressing oncolytic herpes simplex virus to the peritoneal cavity of mice that had developed spontaneous, metastatic ovarian cancer and determined overall survival and tumor burden at 95 days. We used flow cytometry to quantify the tumor antigen-specific CD8(+) T cell response in the omentum and peritoneal cavity. All ovarian cancer cell lines demonstrated susceptibility to oncolytic herpes simplex virus in vitro. Compared to controls, mice treated with interleukin-12-expressing oncolytic herpes simplex virus demonstrated a more robust tumor antigen-specific CD8(+) T-cell immune response in the omentum (471.6 cells vs 33.1 cells; p = 0.02) and peritoneal cavity (962.3 cells vs 179.5 cells; p = 0.05). Compared to controls, mice treated with interleukin-12-expressing oncolytic herpes simplex virus were more likely to control ovarian cancer metastases (81.2 % vs 18.2 %; p = 0.008) and had a significantly longer overall survival (p = 0.02). Finally, five of 6 mice treated with interleukin-12-expressing oHSV had no evidence of metastatic tumor when euthanized at 6 months, compared to two of 4 mice treated

  2. Herpes virus oncolytic therapy reverses tumor immune dysfunction and facilitates tumor antigen presentation.

    PubMed

    Benencia, Fabian; Courrèges, Maria C; Fraser, Nigel W; Coukos, George

    2008-08-01

    We have previously shown that intratumor administration of HSV-1716 (an ICP34.5 null mutant) resulted in significant reduction of tumor growth and a significant survival advantage in a murine model of ovarian cancer. Herewith we report that oncolytic HSV-1716 generates vaccination effects in the same model. Upon HSV-1716 infection, mouse ovarian tumor cells showed high levels of expression viral glycoproteins B and D and were highly phagocyted by dendritic cells (DCs). Interestingly, increased phagocytosis of tumor-infected cells by DCs was impaired by heparin, and anti-HSV glycoproteins B and D, indicating that viral infection enhances adhesive interactions between DCs and tumor apoptotic bodies. Moreover, HSV-1716 infected cells expressed high levels of heat shock proteins 70 and GRP94, molecules that have been reported to induce maturation of DCs, increase cross-presentation of antigens and promote antitumor immune response. After phagocytosis of tumor-infected cells, DCs acquired a mature status in vitro and in vivo, upregulated the expression of costimulatory molecule and increased migration towards MIP-3beta. Furthermore, HSV-1716 oncolytic treatment markedly reduced vascular endothelial growth factor (VEGF) levels in tumor-bearing animals thus abrogating tumor immunosuppressive milieu. These mechanisms may account for the highly enhanced antitumoral immune responses observed in HSV-1716 treated animals. Oncolytic treatment induced a significantly higher frequency of tumor-reactive IFNgamma producing cells, and induced a robust tumor infiltration by T cells. These results indicate that oncolytic therapy with HSV-1716 facilitates antitumor immune responses.

  3. A Fusogenic Oncolytic Herpes Simplex Virus for Therapy of Advanced Ovarian Cancer

    DTIC Science & Technology

    2006-06-01

    therapy of solid tumors such as ovarian cancer, two obstacles need to be overcome before the therapeutic potential of virotherapy could be fully... virotherapy could be fully materialized. Firstly, the potency of oncolytic HSVs needs to be improved. During the first two years of this funded

  4. Oncolytic polio virotherapy of cancer.

    PubMed

    Brown, Michael C; Dobrikova, Elena Y; Dobrikov, Mikhail I; Walton, Ross W; Gemberling, Sarah L; Nair, Smita K; Desjardins, Annick; Sampson, John H; Friedman, Henry S; Friedman, Allan H; Tyler, Douglas S; Bigner, Darell D; Gromeier, Matthias

    2014-11-01

    Recently, the century-old idea of targeting cancer with viruses (oncolytic viruses) has come of age, and promise has been documented in early stage and several late-stage clinical trials in a variety of cancers. Although originally prized for their direct tumor cytotoxicity (oncolytic virotherapy), recently, the proinflammatory and immunogenic effects of viral tumor infection (oncolytic immunotherapy) have come into focus. Indeed, a capacity for eliciting broad, sustained antineoplastic effects stemming from combined direct viral cytotoxicity, innate antiviral activation, stromal proinflammatory stimulation, and recruitment of adaptive immune effector responses is the greatest asset of oncolytic viruses. However, it also is the source for enormous mechanistic complexity that must be considered for successful clinical translation. Because of fundamentally different relationships with their hosts (malignant or not), diverse replication strategies, and distinct modes of tumor cytotoxicity/killing, oncolytic viruses should not be referred to collectively. These agents must be evaluated based on their individual merits. In this review, the authors highlight key mechanistic principles of cancer treatment with the polio:rhinovirus chimera PVSRIPO and their implications for oncolytic immunotherapy in the clinic.

  5. Choindroitinase ABC I-mediated enhancement of oncolytic virus spread and anti tumor efficacy: a mathematical model.

    PubMed

    Kim, Yangjin; Lee, Hyun Geun; Dmitrieva, Nina; Kim, Junseok; Kaur, Balveen; Friedman, Avner

    2014-01-01

    Oncolytic viruses are genetically engineered viruses that are designed to kill cancer cells while doing minimal damage to normal healthy tissue. After being injected into a tumor, they infect cancer cells, multiply inside them, and when a cancer cell is killed they move on to spread and infect other cancer cells. Chondroitinase ABC (Chase-ABC) is a bacterial enzyme that can remove a major glioma ECM component, chondroitin sulfate glycosoamino glycans from proteoglycans without any deleterious effects in vivo. It has been shown that Chase-ABC treatment is able to promote the spread of the viruses, increasing the efficacy of the viral treatment. In this paper we develop a mathematical model to investigate the effect of the Chase-ABC on the treatment of glioma by oncolytic viruses (OV). We show that the model's predictions agree with experimental results for a spherical glioma. We then use the model to test various treatment options in the heterogeneous microenvironment of the brain. The model predicts that separate injections of OV, one into the center of the tumor and another outside the tumor will result in better outcome than if the total injection is outside the tumor. In particular, the injection of the ECM-degrading enzyme (Chase-ABC) on the periphery of the main tumor core need to be administered in an optimal strategy in order to infect and eradicate the infiltrating glioma cells outside the tumor core in addition to proliferative cells in the bulk of tumor core. The model also predicts that the size of tumor satellites and distance between the primary tumor and multifocal/satellite lesions may be an important factor for the efficacy of the viral therapy with Chase treatment.

  6. Integrating the biological characteristics of oncolytic viruses and immune cells can optimize therapeutic benefits of cell-based delivery.

    PubMed

    Thorne, S H; Contag, C H

    2008-05-01

    Despite significant advances in the development of tumor-selective agents, strategies for effective delivery of these agents across biological barriers to cells within the tumor microenvironment has been limiting. One tactical approach to overcoming biological barriers is to use cells as delivery vehicles, and a variety of different cell types have been investigated with a range of agents. In addition to transporting agents with targeted delivery, cells can also produce their own tumoricidal effect, conceal a payload from an immune response, amplify a selective agent at the target site and facilitate an antitumor immune response. We have reported a therapeutic combination consisting of cytokine induced killer cells and an oncolytic vaccinia virus with many of these features that led to therapeutic synergy in animal models of human cancer. The synergy was due to the interaction of the two agents to enhance the antitumor benefits of each individual component. As both of these agents display broad tumor-targeting potential and possess unique tumor killing mechanisms, together they were able to recognize and destroy a far greater number of malignant cells within the heterogeneous tumor than either agent alone. Effective cancer therapy will require recognition and elimination of the root of the disease, the cancer stem cell, and the combination of CIK cells and oncolytic vaccinia viruses has this potential. To create effective tumor-selective agents the viruses are modified to take advantage of the unique biology of the cancer cell. Similarly, if we are to develop targeted therapies that are sufficiently multifaceted to eliminate cancer cells at all stages of disease, we should integrate the virus into the unique biology of the cell delivery vehicle.

  7. ET-46ONCOLYTIC VIRAL THERAPY FOR MALIGNANT GLIOMAS USING MYXOMA VIRUS DELETED FOR ANTI-APOPTOTIC M11L GENE

    PubMed Central

    Pisklakova, Alexandra; McKenzie, Brienne; Kenchappa, Rajappa; McFadden, Grant; Forsyth, Peter

    2014-01-01

    Brain Tumour Initiating Cells (BTICs) are stem-like cells hypothesized to mediate recurrence in high-grade gliomas. Myxoma virus (MyxV) is a promising oncolytic virus, which is highly effective in conventional long term resistant glioma cell lines and less effective in BTICs. We hypothesized that one possible factor limiting efficacy in BTICs is that cell death following infection with MyxV is inhibited by virally encoded anti-apoptotic proteins, such as the Bcl-2 structural homologue, M011L. To test this we evaluated and compared the efficacy of wtMYXV versus the viral construct MyxV-M011L-KO (in which the anti-apoptotic protein M11L has been deleted) in BTICs. We found that WT-MyxV does not induce significant level of apoptosis in infected BTICs, but that MyxV-M011L-KO induces dramatically more apoptosisas shown by caspase activation, PARP cleavage, and Cytochrome C release from the mitochondria M11L from the WT-MyxV localized to the mitochondrial membrane and prevented the association of Bax with the mitochondrial membrane. Finally, silencing of Bax using specific siRNAs significantly blocked the induction of apoptosis and cell death that occurs after infection with mutant MyxV-M011L-KO virus. Therefore MyxV-M011L-KO, which is has the anti-apoptotic virally derived gene M11L, dramatically improves the oncolytic efficacy in BTICs and this is dependent on the presence of the pro-apoptotic host protein, Bax. This is the first demonstration, that the MyxV mutant, genetically modified to promote apoptosis in tumor initiating cells, is significantly more efficacious than the wildtype virus. Strategies, such as this one, that promotes apoptosis in tumor initiating cells might be particularly effective.

  8. Choindroitinase ABC I-Mediated Enhancement of Oncolytic Virus Spread and Anti Tumor Efficacy: A Mathematical Model

    PubMed Central

    Kim, Yangjin; Lee, Hyun Geun; Dmitrieva, Nina; Kim, Junseok; Kaur, Balveen; Friedman, Avner

    2014-01-01

    Oncolytic viruses are genetically engineered viruses that are designed to kill cancer cells while doing minimal damage to normal healthy tissue. After being injected into a tumor, they infect cancer cells, multiply inside them, and when a cancer cell is killed they move on to spread and infect other cancer cells. Chondroitinase ABC (Chase-ABC) is a bacterial enzyme that can remove a major glioma ECM component, chondroitin sulfate glycosoamino glycans from proteoglycans without any deleterious effects in vivo. It has been shown that Chase-ABC treatment is able to promote the spread of the viruses, increasing the efficacy of the viral treatment. In this paper we develop a mathematical model to investigate the effect of the Chase-ABC on the treatment of glioma by oncolytic viruses (OV). We show that the model's predictions agree with experimental results for a spherical glioma. We then use the model to test various treatment options in the heterogeneous microenvironment of the brain. The model predicts that separate injections of OV, one into the center of the tumor and another outside the tumor will result in better outcome than if the total injection is outside the tumor. In particular, the injection of the ECM-degrading enzyme (Chase-ABC) on the periphery of the main tumor core need to be administered in an optimal strategy in order to infect and eradicate the infiltrating glioma cells outside the tumor core in addition to proliferative cells in the bulk of tumor core. The model also predicts that the size of tumor satellites and distance between the primary tumor and multifocal/satellite lesions may be an important factor for the efficacy of the viral therapy with Chase treatment. PMID:25047810

  9. Combination vascular delivery of herpes simplex oncolytic viruses and amplicon mediated cytokine gene transfer is effective therapy for experimental liver cancer.

    PubMed Central

    Zager, J. S.; Delman, K. A.; Malhotra, S.; Ebright, M. I.; Bennett, J. J.; Kates, T.; Halterman, M.; Federoff, H.; Fong, Y.

    2001-01-01

    BACKGROUND: Herpes simplex type I (HSV)-based vectors have been used experimentally for suicide gene therapy, immunomodulatory gene delivery, and direct oncolytic therapy. The current study utilizes the novel concept of regional delivery of an oncolytic virus in combination with or serving as the helper virus for packaging herpes-based amplicon vectors carrying a cytokine transgene, with the goal of identifying if this combination is more efficacious than either modality alone. MATERIALS AND METHODS: A replication competent oncolytic HSV (G207) and a replication incompetent HSV amplicon carrying the gene for the immunomodulatory cytokine IL-2 (HSV-IL2) were tested in murine syngeneic colorectal carcinoma and in rat hepatocellular carcinoma models. Liver tumors were treated with vascular delivery of (1) phosphate-buffered saline (PBS), (2) G207, (3) HSV-IL2, (4) G207 and HSV-IL2 mixed in combination (mG207/HSV- IL2), and (5) G207 as the helper virus for packaging the construct HSV-IL2 (pG207/HSV-IL2). RESULTS: Tumor burden was significantly reduced in all treatment groups in both rats and mice treated with high-dose G207, HSV-IL2, or both (p < 0.02). When a low dose of virus was used in mice, anti-tumor efficacy was improved by use of G207 and HSV-IL2 in combination or with HSV-IL2 packaged by G207 (p < 0.001). This improvement was abolished when CD4(+) and CD8(+) lymphocytes were depleted, implying that the enhanced anti-tumor response to low-dose combined therapy is immune mediated. CONCLUSIONS: Vascular regional delivery of oncolytic and amplicon HSV vectors can be used to induce improved anti-tumor efficacy by combining oncolytic and immunostimulatory strategies. PMID:11591892

  10. Expression of RNA interference triggers from an oncolytic herpes simplex virus results in specific silencing in tumour cells in vitro and tumours in vivo

    PubMed Central

    2010-01-01

    Background Delivery of small interfering RNA (siRNA) to tumours remains a major obstacle for the development of RNA interference (RNAi)-based therapeutics. Following the promising pre-clinical and clinical results with the oncolytic herpes simplex virus (HSV) OncoVEXGM-CSF, we aimed to express RNAi triggers from oncolytic HSV, which although has the potential to improve treatment by silencing tumour-related genes, was not considered possible due to the highly oncolytic properties of HSV. Methods To evaluate RNAi-mediated silencing from an oncolytic HSV backbone, we developed novel replicating HSV vectors expressing short-hairpin RNA (shRNA) or artificial microRNA (miRNA) against the reporter genes green fluorescent protein (eGFP) and β-galactosidase (lacZ). These vectors were tested in non-tumour cell lines in vitro and tumour cells that are moderately susceptible to HSV infection both in vitro and in mice xenografts in vivo. Silencing was assessed at the protein level by fluorescent microscopy, x-gal staining, enzyme activity assay, and western blotting. Results Our results demonstrate that it is possible to express shRNA and artificial miRNA from an oncolytic HSV backbone, which had not been previously investigated. Furthermore, oncolytic HSV-mediated delivery of RNAi triggers resulted in effective and specific silencing of targeted genes in tumour cells in vitro and tumours in vivo, with the viruses expressing artificial miRNA being comprehensibly more effective. Conclusions This preliminary data provide the first demonstration of oncolytic HSV-mediated expression of shRNA or artificial miRNA and silencing of targeted genes in tumour cells in vitro and in vivo. The vectors developed in this study are being adapted to silence tumour-related genes in an ongoing study that aims to improve the effectiveness of oncolytic HSV treatment in tumours that are moderately susceptible to HSV infection and thus, potentially improve response rates seen in human clinical

  11. Antitumor effects of oncolytic herpes simplex virus type 2 against colorectal cancer in vitro and in vivo

    PubMed Central

    Yin, Lei; Zhao, Chunhong; Han, Jixia; Li, Zengjun; Zhen, Yanan; Xiao, Ruixue; Xu, Zhongfa; Sun, Yanlai

    2017-01-01

    Background The incidence of colorectal cancer (CRC) is on the rise. Furthermore, late-stage diagnoses and limited efficacious treatment options make CRC a complex clinical challenge. Therefore, a new therapeutic regimen with a completely novel therapeutic mechanism is necessary for CRC. In the present study, the therapeutic efficacy of oncolytic herpes simplex virus type 2 (oHSV2) in CRC was assessed in vitro and in vivo. oHSV2 is an oncolytic agent derived from herpes simplex virus type 2 that encodes granulocyte-macrophage colony-stimulating factor. Materials and methods We investigated the cytopathic effects of oHSV2 in CRC cell lines using the MTT assay. Then, cell cycle progression and apoptosis of oHSV2 were examined by flow cytometry. We generated a model of CRC with mouse CRC cell CT26 in BALB/c mice. The antitumor effects and adaptive immune response of oHSV2 were assessed in tumor-bearing mice. The therapeutic efficacy of oHSV2 was compared with the traditional chemotherapeutic agent, 5-fluorouracil. Results The in vitro data showed that oHSV2 infected the CRC cell lines successfully and that the tumor cells formed a significant number of syncytiae postinfection. The oHSV2 killed cancer cells independent of the cell cycle and mainly caused tumor cells necrosis. The in vivo results showed that oHSV2 significantly inhibited tumor growth and prolonged survival of tumor-bearing mice without weight loss. With virus replication, oHSV2 not only resulted in a reduction of myeloid-derived suppressor cells and regulatory T cells in the spleen, but also increased the number of mature dendritic cells in tumor-draining lymph nodes and the effective CD4+T and CD8+T-cells in the tumor microenvironment. Conclusion Our study provides the first evidence that oHSV2 induces cell death in CRC in vitro and in vivo. These findings indicate that oHSV2 is an effective therapeutic cancer candidate that causes an oncolytic effect and recruits adaptive immune responses for an

  12. Response to intra-arterial oncolytic virotherapy with the herpes virus NV1020 evaluated by [18F]fluorodeoxyglucose positron emission tomography and computed tomography.

    PubMed

    Sze, Daniel Y; Iagaru, Andrei H; Gambhir, Sanjiv S; De Haan, Hans A; Reid, Tony R

    2012-01-01

    Oncolytic virotherapy poses unique challenges to the evaluation of tumor response. We hypothesized that the addition of [(18)F]fluorodeoxyglucose (FDG) positron emission tomography (PET) to standard computed tomography (CT) evaluation would improve diagnostic and prognostic power of the measurement of tumor response to oncolytic virotherapy. A phase I/II trial was conducted to investigate treatment of hepatic metastases from colorectal carcinoma using intra-arterial administration of the oncolytic herpes virus NV1020. Both contrast-enhanced CT and FDG PET were obtained on each patient at each time point. Quantitative FDG PET and CT responses were correlated with each other and with clinical outcome metrics. A majority of patients showed initial post-viral infusion increases in tumor size (69%) or in standardized uptake value (SUV) (80%) large enough to qualify as progressive disease. Most showed subsequent decreases in tumor size (64%) or SUV (83%) enough to be reclassified as partial response or stable disease. Late PET and CT imaging results correlated well with each other and with clinical outcomes, but results from early in the treatment scheme did not correlate with each other, with later results, or with clinical outcomes. The addition of FDG PET to the evaluation of tumor response to the oncolytic virus NV1020 did not provide useful diagnostic or prognostic data. More sophisticated molecular imaging will need to be developed to monitor the effects of this novel class of antineoplastic agents.

  13. Replication efficiency of oncolytic vaccinia virus in cell cultures prognosticates the virulence and antitumor efficacy in mice

    PubMed Central

    2011-01-01

    Background We have shown that insertion of the three vaccinia virus (VACV) promoter-driven foreign gene expression cassettes encoding Renilla luciferase-Aequorea GFP fusion protein, β-galactosidase, and β-glucuronidase into the F14.5L, J2R, and A56R loci of the VACV LIVP genome, respectively, results in a highly attenuated mutant strain GLV-1h68. This strain shows tumor-specific replication and is capable of eradicating tumors with little or no virulence in mice. This study aimed to distinguish the contribution of added VACV promoter-driven transcriptional units as inserts from the effects of insertional inactivation of three viral genes, and to determine the correlation between replication efficiency of oncolytic vaccinia virus in cell cultures and the virulence and antitumor efficacy in mice Methods A series of recombinant VACV strains was generated by replacing one, two, or all three of the expression cassettes in GLV-1h68 with short non-coding DNA sequences. The replication efficiency and tumor cell killing capacity of these newly generated VACV strains were compared with those of the parent virus GLV-1h68 in cell cultures. The virus replication efficiency in tumors and antitumor efficacy as well as the virulence were evaluated in nu/nu (nude) mice bearing human breast tumor xenografts. Results we found that virus replication efficiency increased with removal of each of the expression cassettes. The increase in virus replication efficiency was proportionate to the strength of removed VACV promoters linked to foreign genes. The replication efficiency of the new VACV strains paralleled their cytotoxicity in cell cultures. The increased replication efficiency in tumor xenografts resulted in enhanced antitumor efficacy in nude mice. Similarly, the enhanced virus replication efficiency was indicative of increased virulence in nude mice. Conclusions These data demonstrated that insertion of VACV promoter-driven transcriptional units into the viral genome for the

  14. Potent efficacy signals from systemically administered oncolytic herpes simplex virus (HSV1716) in hepatocellular carcinoma xenograft models.

    PubMed

    Braidwood, Lynne; Learmonth, Kirsty; Graham, Alex; Conner, Joe

    2014-01-01

    Oncolytic herpes simplex virus (HSV1716), lacking the neurovirulence factor ICP34.5, has highly selective replication competence for cancer cells and has been used in clinical studies of glioma, melanoma, head and neck squamous cell carcinoma, pediatric non-central nervous system solid tumors, and malignant pleural mesothelioma. To date, 88 patients have received HSV1716 and the virus is well tolerated, with selective replication in tumor cells and no spread to surrounding normal tissue. We assessed the potential value of HSV1716 in preclinical studies with two human hepatocellular carcinoma cell lines, HuH7 and HepG2-luc. HSV1716 displayed excellent replication kinetics in vitro in HepG2-luc cells, a cell line engineered to express luciferase, and virus-mediated cell killing correlated with loss of light emissions from the cells. In vivo, the HepG2-luc cells readily formed light-emitting xenografts that were easily visualized by an in vivo imaging system and efficiently eliminated by HSV1716 oncolysis after intratumoral injection. HSV1716 also demonstrated strong efficacy signals in subcutaneous HuH7 xenografts in nude mice after intravenous administration of virus. In the HuH7 model, the intravenously injected virus replicated prolifically immediately after efficient tumor localization, resulting in highly significant reductions in tumor growth and enhanced survival. Our preclinical results demonstrate excellent tumor uptake of HSV1716, with prolific replication and potent oncolysis. These observations warrant a clinical study of HSV1716 in hepatocellular carcinoma.

  15. A Potent Oncolytic Herpes Simplex Virus for the Therapy of Advanced Prostate

    DTIC Science & Technology

    2006-07-01

    preliminary data we have collected. We anticipate that we will finish these experiments within the one year of no- cost -extension. Liposome...hitchhike strategy may be a useful way for carrier cell-medicated delivery of oncolytic HSVs for the treatment of metastatic prostate cancer. KEY...are confident that the remaining tasks of this project will be finished during the one-year no- cost -extension period. REFERENCES 1. Herrlinger U

  16. Mesenchymal stem cell carriers protect oncolytic measles viruses from antibody neutralization in an orthotopic ovarian cancer therapy model

    PubMed Central

    Mader, Emily K; Maeyama, Yoshihiro; Lin, Yi; Butler, Greg W; Russell, Holly M; Galanis, Evanthia; Russell, Stephen J; Dietz, Allan B; Peng, Kah-Whye

    2009-01-01

    Purpose Pre-existing antiviral antibodies in cancer patients can quickly neutralize oncolytic measles virus (MV) and decrease its anti-tumor potency. In contrast to `naked' viruses, cell-associated viruses are protected from antibody neutralization. Hence, we hypothesized that measles virotherapy of ovarian cancer in measles immune mice might be superior if MV infected mesenchymal stem cell (MSC) carriers are used. Experimental Design Antimeasles antibodies titers in ovarian cancer patients were determined. The protection of MV by MSC from antimeasles antibodies, the in vivo biodistribution profiles and tumor infiltration capability of MSC were determined. Measles naïve or immune tumor-bearing mice were treated with naked virus or MSC-associated virus and mice survivals were compared. Results MSC transferred MV infection to target cells via cell-to-cell heterofusion and induced syncytia formation in the presence of high titers of antimeasles antibody; at levels which completely inactivated naked virus. Athymic mice bearing intraperitoneal human SKOV3ip.1 ovarian tumor xenografts passively immunized with measles immune human serum were treated with saline, naked MV or MV infected MSC. Bioluminescent and fluorescent imaging data indicated that intraperitoneally administered MSC localized to peritoneal tumors, infiltrated into the tumor parenchyma and transferred virus infection to tumors in measles naïve and passively immunized mice. Survival of the measles immune mice was significantly enhanced by treatment with MV-infected MSC. In contrast, survivals of passively immunized mice were not prolonged by treatment with naked virus or uninfected MSC. Conclusions MSC should be used as carriers of MV for intraperitoneal virotherapy in measles-immune ovarian cancer patients. PMID:19934299

  17. A classical PKA inhibitor increases the oncolytic effect of M1 virus via activation of exchange protein directly activated by cAMP 1

    PubMed Central

    Zhang, Haipeng; Xiao, Xiao; Tan, Yaqian; Cai, Jing; Zhu, Wenbo; Xing, Fan; Hu, Jun; Yan, Guangmei

    2016-01-01

    Oncolytic virotherapy is an emerging and promising treatment modality that uses replicating viruses as selective antitumor agents. Here, we report that a classical protein kinase A (PKA) inhibitor, H89, synergizes with oncolytic virus M1 in various cancer cells through activation of Epac1 (exchange protein directly activated by cAMP 1). H89 substantially increases viral replication in refractory cancer cells, leading to unresolvable Endoplasmic Reticulum stress, and cell apoptosis. Microarray analysis indicates that H89 blunts antiviral response in refractory cancer cells through retarding the nuclear translocation of NF-κB. Importantly, in vivo studies show significant antitumor effects during M1/H89 combination treatment. Overall, this study reveals a previously unappreciated role for H89 and demonstrates that activation of the Epac1 activity can improve the responsiveness of biotherapeutic agents for cancer. PMID:27374176

  18. Oncolytic virotherapy in veterinary medicine: current status and future prospects for canine patients.

    PubMed

    Patil, Sandeep S; Gentschev, Ivaylo; Nolte, Ingo; Ogilvie, Gregory; Szalay, Aladar A

    2012-01-04

    Oncolytic viruses refer to those that are able to eliminate malignancies by direct targeting and lysis of cancer cells, leaving non-cancerous tissues unharmed. Several oncolytic viruses including adenovirus strains, canine distemper virus and vaccinia virus strains have been used for canine cancer therapy in preclinical studies. However, in contrast to human studies, clinical trials with oncolytic viruses for canine cancer patients have not been reported. An 'ideal' virus has yet to be identified. This review is focused on the prospective use of oncolytic viruses in the treatment of canine tumors - a knowledge that will undoubtedly contribute to the development of oncolytic viral agents for canine cancer therapy in the future.

  19. Oncolytic virotherapy reaches adolescence.

    PubMed

    Hammill, Adrienne M; Conner, Joseph; Cripe, Timothy P

    2010-12-15

    Lytic viruses kill cells as a consequence of their normal replication life cycle. The idea of harnessing viruses to kill cancer cells arose over a century ago, before viruses were even discovered, from medical case reports of infections associated with cancer remissions. Since then, there has been no shortage of hype, hope, or fear regarding the prospect of oncolytic virotherapy for cancer. Early developments in the field included encouraging antitumor efficacy both in animal studies in the 1920s-1940s and in human clinical trials in the 1950s-1970s. Despite its long-standing history, oncolytic virotherapy was an idea ahead of its time. Without needed advances in molecular biology, virology, immunology, and clinical research ethics, early clinical trials resulted in infectious complications and were fraught with controversial research conduct, so that enthusiasm in the medical community waned. Oncolytic virotherapy is now experiencing a major growth spurt, having sustained numerous laboratory advances and undergone multiple encouraging adult clinical trials, and is now witnessing the emergence of pediatric trials. Here we review the history and salient biology of the field, including preclinical and clinical data, with a special emphasis on those agents now being tested in pediatric cancer patients.

  20. Oncolytic virotherapy of breast cancer.

    PubMed

    Hartkopf, Andreas D; Fehm, Tanja; Wallwiener, Diethelm; Lauer, Ulrich M

    2011-10-01

    The use of replication competent viruses that selectively target and destroy cancer cells has rapidly evolved over the past decade and numerous innovative oncolytic viruses have been created. Many of these promising anti-cancer agents have recently entered into clinical trials (including those on breast cancer) and demonstrated encouraging safety and efficacy. Virotherapeutic strategies are thus of considerable interest to combat breast cancer in both (i) the primary disease situation in which relapse should be avoided as good as possible and (ii) in the metastatic situation which remains incurable to date. Here, we summarize data from preclinical and clinical trials using oncolytic virotherapy to treat breast cancer. This includes strategies to specifically target breast cancer cells, to arm oncolytic viruses with additional therapeutic transgenes and an outlining of future challenges when translating these promising therapeutics "from bench to bedside".

  1. Gene expression profiling of hematologic malignant cell lines resistant to oncolytic virus treatment

    PubMed Central

    Lee, Nam Hee; Kim, Mikyung; Oh, Sung Yong; Kim, Seong-Geun; Kwon, Hyuk-Chan; Hwang, Tae-Ho

    2017-01-01

    Pexa-Vec (pexastimogene devacirpvec; JX-594) has emerged as an attractive tool in oncolytic virotherapy. Pexa-Vec demonstrates oncolytic and immunotherapeutic mechanisms of action. But the determinants of resistance to Pexa-Vec are mostly unknown. We treated hemoatologic malignant cells with Pexa-Vec and examined the gene-expression pattern of sensitive and resistant cells. Human myeloid malignant cell lines (RPMI-8226, IM-9, K562, THP-1) and lymphoid cancer cell lines (MOLT4, CCRF-CEM, Ramos, U937) were treated with Pexa-Vec. Pexa-Vec was cytotoxic on myeloid cell lines in a dose-dependent manner, and fluorescent imaging and qPCR revealed that Pexa-Vec expression was low in RAMOS than IM-9 after 24 hrs and 48 hrs of infection. Gene expression profiles between two groups were analyzed by microarray. Genes with at least 2-fold increase or decrease in their expression were identified. A total of 660 genes were up-regulated and 776 genes were down-regulated in lymphoid cancer cell lines. The up- and down-regulated genes were categorized into 319 functional gene clusters. We identified the top 10 up-regulated genes in lymphoid cells. Among them three human genes (LEF1, STAMBPL1, and SLFN11) strongly correlated with viral replication. Up-regulation of PVRIG, LPP, CECR1, Arhgef6, IRX3, IGFBP2, CD1d were related to resistant to Pexa-Vec. In conclusion, lymphoid malignant cells are resistant to Pexa-Vec and displayed up-regulated genes associated with resistance to oncolytic viral therapy. These data provide potential targets to overcome resistance, and suggest that molecular assays may be useful in selecting patients for further clinical trials with Pexa-Vec. PMID:27901484

  2. Oncolytic Virotherapy of Canine and Feline Cancer

    PubMed Central

    Gentschev, Ivaylo; Patil, Sandeep S.; Petrov, Ivan; Cappello, Joseph; Adelfinger, Marion; Szalay, Aladar A.

    2014-01-01

    Cancer is the leading cause of disease-related death in companion animals such as dogs and cats. Despite recent progress in the diagnosis and treatment of advanced canine and feline cancer, overall patient treatment outcome has not been substantially improved. Virotherapy using oncolytic viruses is one promising new strategy for cancer therapy. Oncolytic viruses (OVs) preferentially infect and lyse cancer cells, without causing excessive damage to surrounding healthy tissue, and initiate tumor-specific immunity. The current review describes the use of different oncolytic viruses for cancer therapy and their application to canine and feline cancer. PMID:24841386

  3. Oncolytic virotherapy of canine and feline cancer.

    PubMed

    Gentschev, Ivaylo; Patil, Sandeep S; Petrov, Ivan; Cappello, Joseph; Adelfinger, Marion; Szalay, Aladar A

    2014-05-16

    Cancer is the leading cause of disease-related death in companion animals such as dogs and cats. Despite recent progress in the diagnosis and treatment of advanced canine and feline cancer, overall patient treatment outcome has not been substantially improved. Virotherapy using oncolytic viruses is one promising new strategy for cancer therapy. Oncolytic viruses (OVs) preferentially infect and lyse cancer cells, without causing excessive damage to surrounding healthy tissue, and initiate tumor-specific immunity. The current review describes the use of different oncolytic viruses for cancer therapy and their application to canine and feline cancer.

  4. Emerging role of Natural killer cells in oncolytic virotherapy.

    PubMed

    Bhat, Rauf; Rommelaere, Jean

    2015-01-01

    Natural killer (NK) cells constitute a subtype of lymphocytes that initiate innate immune responses against tumors and virus-infected cells. The ability of NK cells to kill target cells or to produce cytokines depends on the balance between signals from activating and inhibitory cell-surface receptors. Therapies with NK cells involve activation of endogenous NK cells and/or exogenous transfer by hematopoietic stem cell transplantation/adoptive cell therapy. To exploit the diverse functional abilities of NK cells for cancer immunotherapy, it is important to understand NK cell biology and the underlying regulatory mechanisms. The state of immune suppression prevalent in malignancies creates the need for innovative therapies. Oncolytic viruses are novel anticancer agents showing selective tropism for tumor cells and lacking pathogenicity in humans, but the use of oncolytic virotherapy (OVT) presents multiple challenges. An increasing body of evidence suggests that the host immune response may critically influence the outcome of OVT. Classically, the immune system is thought to limit the efficacy of therapy through virus clearance mediated by innate immune effectors or through adaptive antiviral immune responses eliminating infected cells. Effective strategies do need to be designed in OVT to circumvent the early antiviral activity of NK cells and to augment late NK-cell-mediated antitumor responses. The intrinsic immunostimulating capacity of oncolytic viruses and the possibility of engineering them to express heterologous immunostimulatory molecules (eg, cytokines) support the use of these agents to enhance antitumor immune responses besides inducing direct oncolytic effects. OVT has indeed shown promising therapeutic outcomes in various clinical trials. Here, we review the biology of NK cells, strategies involving NK cells for achieving cancer therapy, and, more particularly, the emerging role of NK cells in OVT.

  5. Emerging role of Natural killer cells in oncolytic virotherapy

    PubMed Central

    Bhat, Rauf; Rommelaere, Jean

    2015-01-01

    Natural killer (NK) cells constitute a subtype of lymphocytes that initiate innate immune responses against tumors and virus-infected cells. The ability of NK cells to kill target cells or to produce cytokines depends on the balance between signals from activating and inhibitory cell-surface receptors. Therapies with NK cells involve activation of endogenous NK cells and/or exogenous transfer by hematopoietic stem cell transplantation/adoptive cell therapy. To exploit the diverse functional abilities of NK cells for cancer immunotherapy, it is important to understand NK cell biology and the underlying regulatory mechanisms. The state of immune suppression prevalent in malignancies creates the need for innovative therapies. Oncolytic viruses are novel anticancer agents showing selective tropism for tumor cells and lacking pathogenicity in humans, but the use of oncolytic virotherapy (OVT) presents multiple challenges. An increasing body of evidence suggests that the host immune response may critically influence the outcome of OVT. Classically, the immune system is thought to limit the efficacy of therapy through virus clearance mediated by innate immune effectors or through adaptive antiviral immune responses eliminating infected cells. Effective strategies do need to be designed in OVT to circumvent the early antiviral activity of NK cells and to augment late NK-cell-mediated antitumor responses. The intrinsic immunostimulating capacity of oncolytic viruses and the possibility of engineering them to express heterologous immunostimulatory molecules (eg, cytokines) support the use of these agents to enhance antitumor immune responses besides inducing direct oncolytic effects. OVT has indeed shown promising therapeutic outcomes in various clinical trials. Here, we review the biology of NK cells, strategies involving NK cells for achieving cancer therapy, and, more particularly, the emerging role of NK cells in OVT. PMID:27471713

  6. A hyperfusogenic F protein enhances the oncolytic potency of a paramyxovirus simian virus 5 P/V mutant without compromising sensitivity to type I interferon.

    PubMed

    Gainey, Maria D; Manuse, Mary J; Parks, Griffith D

    2008-10-01

    Viral fusogenic membrane proteins have been proposed as tools to increase the potency of oncolytic viruses, but there is a need for mechanisms to control the spread of fusogenic viruses in normal versus tumor cells. We have previously shown that a mutant of the paramyxovirus simian virus 5 (SV5) that harbors mutations in the P/V gene from the canine parainfluenza virus (P/V-CPI(-)) is a potent inducer of type I interferon (IFN) and apoptosis and is restricted for spread through normal but not tumor cells in vitro. Here, we have used the cytopathic P/V-CPI(-) as a backbone vector to test the hypothesis that a virus expressing a hyperfusogenic glycoprotein will be a more effective oncolytic vector but will retain sensitivity to IFN. A P/V mutant virus expressing an F protein with a glycine-to-alanine substitution in the fusion peptide (P/V-CPI(-)-G3A) was more fusogenic than the parental P/V-CPI(-) mutant. In two model prostate tumor cell lines which are defective in IFN production (LNCaP and DU145), the hyperfusogenic P/V-CPI(-)-G3A mutant had normal growth properties at low multiplicities of infection and was more effective than the parental P/V-CPI(-) mutant at cell killing in vitro. However, in PC3 cells which produce and respond to IFN, the hyperfusogenic P/V-CPI(-)-G3A mutant was attenuated for growth and spread. Killing of PC3 cells was equivalent between the parental P/V-CPI(-) mutant and the hyperfusogenic P/V-CPI(-)-G3A mutant. In a nude mouse model using LNCaP cells, the hyperfusogenic P/V-CPI(-)-G3A mutant was more effective than P/V-CPI(-) at reducing tumor burden. In the case of DU145 tumors, the two vectors based on P/V-CPI(-) were equally effective at limiting tumor growth. Together, our results provide proof of principle that a cytopathic SV5 P/V mutant can serve as an oncolytic virus and that the oncolytic effectiveness of P/V mutants can be enhanced by a fusogenic membrane protein without compromising sensitivity to IFN. The potential advantages of

  7. Selective purging of human multiple myeloma cells from autologous stem cell transplant grafts using oncolytic myxoma virus

    PubMed Central

    Bartee, Eric; Chan, Winnie S.; Moreb, Jan S.; Cogle, Christopher R.; McFadden, Grant

    2012-01-01

    Autologous stem cell transplantation (ASCT) and novel therapies have improved overall survival of patients with multiple myeloma; however, most patients relapse and eventually succumb to their disease. Evidence indicates that residual cancer cells contaminate autologous grafts and may contribute to early relapses after ASCT. Here, we demonstrate that ex vivo treatment with an oncolytic poxvirus called myxoma virus results in specific elimination of human myeloma cells by inducing rapid cellular apoptosis while fully sparing normal hematopoietic stem and progenitor cells (HSPCs). The specificity of this elimination is based on strong binding of the virus to myeloma cells coupled with an inability of the virus to bind or infect CD34+ HSPCs. These two features allow myxoma to readily identify and distinguish even low levels of myeloma cells in complex mixtures. This ex vivo MYXV treatment also effectively inhibits systemic in vivo engraftment of human myeloma cells into immunodeficient mice and results in efficient elimination of primary CD138+ myeloma cells contaminating patient hematopoietic cell products. We conclude that ex vivo myxoma treatment represents a safe and effective method to selectively eliminate myeloma cells from hematopoietic autografts prior to reinfusion. PMID:22516053

  8. Role of cysteine-rich 61 protein (CCN1) in macrophage-mediated oncolytic herpes simplex virus clearance.

    PubMed

    Thorne, Amy Haseley; Meisen, Walter H; Russell, Luke; Yoo, Ji Young; Bolyard, Chelsea M; Lathia, Justin D; Rich, Jeremy; Puduvalli, Vinay K; Mao, Hsiaoyin; Yu, Jianhua; Caligiuri, Michael A; Tridandapani, Susheela; Kaur, Balveen

    2014-09-01

    Glioblastoma is a devastating disease, and there is an urgent need to develop novel therapies, such as oncolytic HSV1 (OV) to effectively target tumor cells. OV therapy depends on tumor-specific replication leading to destruction of neoplastic tissues. Host responses that curtail virus replication limit its efficacy in vivo. We have previously shown that cysteine-rich 61 protein (CCN1) activates a type 1 IFN antiviral defense response in glioblastoma cells. Incorporating TCGA data, we found CCN1 expression to be a negative prognostic factor for glioblastoma patients. Based on this, we used neutralizing antibodies against CCN1 to investigate its effect on OV therapy. Use of an anti-CCN1 antibody in mice bearing glioblastomas treated with OV led to enhanced virus expression along with reduced immune cell infiltration. OV-induced CCN1 increases macrophage migration toward infected glioblastoma cells by directly binding macrophages and also by enhancing the proinflammatory activation of macrophages inducing MCP-1 expression in glioblastoma cells. Activation of macrophages by CCN1 also increases viral clearance. Neutralization of integrin αMβ2 reversed CCN1-induced macrophage activation and migration, and reduced MCP-1 expression by glioblastoma cells. Our findings reveal that CCN1 plays a novel role in pathogen clearance; increasing macrophage infiltration and activation resulting in increased virus clearance in tumors.

  9. Targeting gallbladder cancer: oncolytic virotherapy with myxoma virus is enhanced by rapamycin in vitro and further improved by hyaluronan in vivo

    PubMed Central

    2014-01-01

    Background Gallbladder carcinoma (GBC) is highly lethal, and effective treatment will require synergistic anti-tumor management. The study is aimed at investigating the oncolytic value of myxoma virus (MYXV) infection against GBC and optimizing MYXV oncolytic efficiency. Methods We examined the permissiveness of GBC cell lines to MYXV infection and compared the effects of MYXV on cell viability among GBC and control permissive glioma cells in vitro and in vivo after MYXV + rapamycin (Rap) treatment, which is known to enhance cell permissiveness to MYXV by upregulating p-Akt levels. We also assessed MYXV + hyaluronan (HA) therapy efficiency by examinating Akt activation status, MMP-9 expression, cell viability, and collagen distribution. We further compared hydraulic conductivity, tumor area, and survival of tumor-bearing mice between the MYXV + Rap and MYXV + HA therapeutic regimens. Results MYXV + Rap treatment could considerably increase the oncolytic ability of MYXV against GBC cell lines in vitro but not against GBC xenografts in vivo. We found higher levels of collagen IV in GBC tumors than in glioma tumors. Diffusion analysis demonstrated that collagen IV could physically hinder MYXV intratumoral distribution. HA–CD44 interplay was found to activate the Akt signaling pathway, which increases oncolytic rates. HA was also found to enhance the MMP-9 secretion, which contributes to collagen IV degradation. Conclusions Unlike MYXV + Rap, MYXV + HA therapy significantly enhanced the anti-tumor effects of MYXV in vivo and prolonged survival of GBC tumor-bearing mice. HA may optimize the oncolytic effects of MYXV on GBC via the HA–CD44 interaction which can promote viral infection and diffusion. PMID:24725816

  10. Isolation of more potent oncolytic paramyxovirus by bioselection.

    PubMed

    Beier, R; Hermiston, T; Mumberg, D

    2013-01-01

    Newcastle disease virus (NDV) is an oncolytic paramyxovirus with a nonsegmented single-stranded RNA genome. In this report, a recombinant oncolytic NDV was passaged in human tumor xenografts and reisolated and characterized after two rounds of bioselection. Several isolates could be recovered that differed from the parental virus with respect to virus spread in tumor cells and the ability to form syncytia in human tumor cells. Three isolates were identified that demonstrated superior oncolytic potency compared with the parental virus as measured by increased oncolytic potency in confluent tumor cell monolayers, in tumor cell spheroids and in a mouse xenograft tumor model. The surface proteins F and HN were sequence analyzed and characterized for fusogenicity. The present study demonstrates that in vivo NDV bioselection can enable the isolation of novel, oncolytic NDV and thus represents a powerful methodology for the development of highly potent oncolytic viruses.

  11. Oncolytic virus carrying shRNA targeting SATB1 inhibits prostate cancer growth and metastasis.

    PubMed

    Mao, Li-jun; Zhang, Jie; Liu, Ning; Fan, Li; Yang, Dong-rong; Xue, Bo-xin; Shan, Yu-xi; Zheng, Jun-nian

    2015-11-01

    Recent studies suggest that SATB1 is a promising therapeutic target for prostate cancer. To develop novel SATB1-based therapeutic agents for prostate cancer, in this study, we aimed to construct ZD55-SATB1, an oncolytic adenovirus ZD55 carrying shRNA targeting SATB1, and investigate its effects on the inhibition of prostate cancer growth and metastasis. ZD55-SATB1 was constructed and used to infect human prostate cancer cell lines DU145 and LNCaP. The inhibitory effect of ZD55-SATB1 on SATB1 expression was evaluated by reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis. The cytotoxicity of ZD55-SATB1 was detected by MTT assay. Cell invasion was detected by Matrigel invasion assay. The in vivo antitumor activities of ZD55-SATB1 were evaluated in xenograft mouse model. We found that ZD55-SATB1 selectively replicated and significantly reduced SATB1 expression in DU145 and LNCaP cells. ZD55-SATB1 effectively inhibited the viability and invasion of DU145 and LNCaP cells in vitro and inhibited prostate cancer growth and metastasis in xenograft nude mice. In conclusion, replicative oncolytic adenovirus armed with SATB1 shRNA exhibits effective antitumor effect in human prostate cancer. Our study provides the basis for the development of ZD55-SATB1 for the treatment of prostate cancer.

  12. Isolated limb perfusion with melphalan, tumour necrosis factor-alpha and oncolytic vaccinia virus improves tumour targeting and prolongs survival in a rat model of advanced extremity sarcoma.

    PubMed

    Pencavel, Tim D; Wilkinson, Michelle J; Mansfield, David C; Khan, Aadil A; Seth, Rohit; Karapanagiotou, Eleni M; Roulstone, Victoria; Aguilar, Richard J; Chen, Nanhai G; Szalay, Aladar A; Hayes, Andrew J; Harrington, Kevin J

    2015-02-15

    Isolated limb perfusion (ILP) is a treatment for advanced extremity sarcoma and in-transit melanoma. Advancing this procedure by investigating the addition of novel agents, such as cancer-selective oncolytic viruses, may improve both the therapeutic efficacy of ILP and the tumour-targeted delivery of oncolytic virotherapy. Standard in vitro assays were used to characterise single agent and combinatorial activities of melphalan, tumour necrosis factor-alpha (TNF-α) and Lister strain vaccinia virus (GLV-1h68) against BN175 rat sarcoma cells. An orthotopic model of advanced extremity sarcoma was used to evaluate survival of animals after ILP with combinations of TNF-α, melphalan and GLV-1h68. We investigated the efficiency of viral tumour delivery by ILP compared to intravenous therapy, the locoregional and systemic biodistribution of virus after ILP, and the effect of mode of administration on antibody response. The combination of melphalan and GLV-1h68 was synergistic in vitro. The addition of virus to standard ILP regimens was well tolerated and demonstrated superior tumour targeting compared to intravenous administration. Triple therapy (melphalan/TNF-α/GLV-1h68) resulted in increased tumour growth delay and enhanced survival compared to other treatment regimens. Live virus was recovered in large amounts from perfused regions, but in smaller amounts from systemic organs. The addition of oncolytic vaccinia virus to existing TNF-α/melphalan-based ILP strategies results in survival advantage in an immunocompetent rat model of advanced extremity sarcoma. Virus administered by ILP has superior tumour targeting compared to intravenous delivery. Further evaluation and clinical translation of this approach is warranted.

  13. Institutional Animal Care and Use Committee Considerations Regarding the Use of Virus-Induced Carcinogenesis and Oncolytic Viral Models.

    PubMed

    Lewis, Stephanie D; Hickman-Davis, Judy M; Bergdall, Valerie K

    2016-01-01

    The use of virus-induced carcinogenesis and oncologic experimental animal models is essential in understanding the mechanisms of cancer development to advance prevention, diagnosis, and treatment methods. The Institutional Animal Care and Use Committee (IACUC) is responsible for both the complex philosophical and practical considerations associated with animal models of cancer. Animal models of cancer carry their own unique issues that require special consideration from the IACUC. Many of the considerations to be discussed apply to cancer models in general; specific issues related to viral carcinogenesis or oncolytic viruses will be specifically discussed as they arise. Responsible animal use integrates good science, humane care, and regulatory compliance. To meet those standards, the IACUC, in conjunction with the research investigator and attending veterinarian, must address a wide range of issues, including animal model selection, cancer model selection, humane end point considerations, experimental considerations, postapproval monitoring, reporting requirements, and animal management and personnel safety considerations. © The Author 2016. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. A Herpes Oncolytic Virus Can Be Delivered Via the Vasculature to Produce Biologic Changes in Human Colorectal Cancer

    PubMed Central

    Fong, Yuman; Kim, Teresa; Bhargava, Amit; Schwartz, Larry; Brown, Karen; Brody, Lynn; Covey, Anne; Karrasch, Matthias; Getrajdman, George; Mescheder, Axel; Jarnagin, William; Kemeny, Nancy

    2008-01-01

    Genetically engineered herpes simplex viruses (HSVs) can selectively infect and replicate in cancer cells, and are candidates for use as oncolytic therapy. This long-term report of a phase I trial examines vascular administration of HSV as therapy for cancer. Twelve subjects with metastatic colorectal cancer within the liver failing first-line chemotherapy were treated in four cohorts with a single dose (3 × 106 to 1 × 108 particles) of NV1020, a multimutated, replication-competent HSV. After hepatic arterial administration, subjects were observed for 4 weeks before starting intra-arterial chemotherapy. All patients exhibited progression of disease before HSV injection. During observation, levels of the tumor marker carcinoembryonic antigen (CEA) decreased (median % drop = 24%; range 13–74%; P < 0.02). One of three individuals at the 108 level showed a 39% radiologic decrease in tumor size by cross-section and 75% by volume. HSV infection was documented from liver tumor biopsies. After beginning regional chemotherapy, all patients demonstrated a further decrease in CEA (median 96%; range 50–98%; P < 0.008) and a radiologic partial response. Median survival for this group was 25 months. During follow-up, no signs of virus reactivation were found. Multimutated HSV can be delivered safely into the human bloodstream to produce selective infection of tumor tissues and biologic effects. PMID:19018254

  15. Preclinical Pharmacology and Toxicology of Intravenous MV-NIS, an Oncolytic Measles Virus Administered With or Without Cyclophosphamide

    PubMed Central

    Myers, RM; Greiner, SM; Harvey, ME; Griesmann, G; Kuffel, MJ; Buhrow, SA; Reid, JM; Federspiel, M; Ames, MM; Dingli, D; Schweikart, K; Welch, A; Dispenzieri, A; Peng, K-W; Russell, SJ

    2009-01-01

    MV-NIS is an oncolytic measles virus encoding the human thyroidal sodium iodide symporter (NIS). Here, we report the results of preclinical pharmacology and toxicology studies conducted in support of our clinical protocol “Phase I Trial of Systemic Administration of Edmonston Strain of Measles Virus, Genetically Engineered to Express NIS, with or without Cyclophosphamide, in Patients with Recurrent or Refractory Multiple Myeloma.” Dose–response studies in the KAS-6/1 myeloma xenograft model demonstrated a minimum effective dose of 4 × 106 TCID50 (tissue culture infectious dose 50)/kg. Toxicity studies in measles-naive squirrel monkeys and measles-susceptible transgenic mice were negative at intravenous doses up to 108 and 4 × 108 TCID50/kg, respectively. Abundant viral mRNA, maximal on day 8, was detected in cheek swabs of squirrel monkeys, more so after pretreatment with cyclophosphamide. On the basis of these data, the safe starting dose of MV-NIS for our clinical protocol was set at 1 – 2 × 104 TCID50/kg (106 TCID50 per patient). PMID:17971816

  16. Safe and Effective Treatment of Experimental Neuroblastoma and Glioblastoma Using Systemically Delivered Triple MicroRNA-Detargeted Oncolytic Semliki Forest Virus.

    PubMed

    Ramachandran, Mohanraj; Yu, Di; Dyczynski, Matheus; Baskaran, Sathishkumar; Zhang, Lei; Lulla, Aleksei; Lulla, Valeria; Saul, Sirle; Nelander, Sven; Dimberg, Anna; Merits, Andres; Leja-Jarblad, Justyna; Essand, Magnus

    2017-03-15

    Background: Glioblastoma multiforme and high-risk neuroblastoma are cancers with poor outcome. Immunotherapy in the form of neurotropic oncolytic viruses is a promising therapeutic approach for these malignancies. Here we evaluate the oncolytic capacity of the neurovirulent and partly IFNβ-resistant Semliki Forest virus (SFV)-4 in glioblastoma multiformes and neuroblastomas. To reduce neurovirulence we constructed SFV4miRT, which is attenuated in normal central nervous system (CNS) cells through insertion of microRNA target sequences for miR124, miR125, miR134.Methods: Oncolytic activity of SFV4miRT was examined in mouse neuroblastoma and glioblastoma multiforme cell lines and in patient-derived human glioblastoma cell cultures (HGCC). In vivo neurovirulence and therapeutic efficacy was evaluated in two syngeneic orthotopic glioma models (CT-2A, GL261) and a syngeneic subcutaneous neuroblastoma model (NXS2). The role of IFNβ in inhibiting therapeutic efficacy was investigated.Results: The introduction of miRNA target sequences reduced neurovirulence of SFV4 in terms of attenuated replication in mouse CNS cells and ability to cause encephalitis when administered intravenously. A single intravenous injection of SFV4miRT prolonged survival and cured four of eight mice (50%) with NXS2 and three of 11 mice (27%) with CT-2A, but not for GL261 tumor-bearing mice. In vivo therapeutic efficacy in different tumor models inversely correlated to secretion of IFNβ by respective cells upon SFV4 infection in vitro Similarly, killing efficacy of HGCC lines inversely correlated to IFNβ response and interferon-α/β receptor-1 expression.Conclusions: SFV4miRT has reduced neurovirulence, while retaining its oncolytic capacity. SFV4miRT is an excellent candidate for treatment of glioblastoma multiforme and neuroblastoma with low IFN-β secretion. Clin Cancer Res; 23(6); 1519-30. ©2016 AACR.

  17. Oncolytic targeting of androgen-sensitive prostate tumor by the respiratory syncytial virus (RSV): consequences of deficient interferon-dependent antiviral defense

    PubMed Central

    2011-01-01

    Background Oncolytic virotherapy for cancer treatment utilizes viruses for selective infection and death of cancer cells without any adverse effect on normal cells. We previously reported that the human respiratory syncytial virus (RSV) is a novel oncolytic virus against androgen-independent PC-3 human prostate cancer cells. The present study extends the result to androgen-dependent prostate cancer, and explores the underlying mechanism that triggers RSV-induced oncolysis of prostate cancer cells. Methods The oncolytic effect of RSV on androgen-sensitive LNCaP human prostate cancer cells and on androgen-independent RM1 murine prostate cancer cells was studied in vitro in culture and in vivo in a xenograft or allograft tumor model. In vitro, cell viability, infectivity and apoptosis were monitored by MTT assay, viral plaque assay and annexin V staining, respectively. In vivo studies involved virus administration to prostate tumors grown in immune compromised nude mice and in syngeneic immune competent C57BL/6J mice. Anti-tumorogenic oncolytic activity was monitored by measuring tumor volume, imaging bioluminescent tumors in live animals and performing histopathological analysis and TUNEL assay with tumors Results We show that RSV imposes a potent oncolytic effect on LNCaP prostate cancer cells. RSV infectivity was markedly higher in LNCaP cells compared to the non-tumorigenic RWPE-1 human prostate cells. The enhanced viral burden led to LNCaP cell apoptosis and growth inhibition of LNCaP xenograft tumors in nude mice. A functional host immune response did not interfere with RSV-induced oncolysis, since growth of xenograft tumors in syngeneic C57BL/6J mice from murine RM1 cells was inhibited upon RSV administration. LNCaP cells failed to activate the type-I interferon (IFNα/β)-induced transcription factor STAT-1, which is required for antiviral gene expression, although these cells could produce IFN in response to RSV infection. The essential role of IFN in

  18. Combination treatment with oncolytic Vaccinia virus and cyclophosphamide results in synergistic antitumor effects in human lung adenocarcinoma bearing mice

    PubMed Central

    2014-01-01

    Background The capacity of the recombinant Vaccinia virus GLV-1h68 as a single agent to efficiently treat different human or canine cancers has been shown in several preclinical studies. Currently, its human safety and efficacy are investigated in phase I/II clinical trials. In this study we set out to evaluate the oncolytic activity of GLV-1h68 in the human lung adenocarcinoma cell line PC14PE6-RFP in cell cultures and analyzed the antitumor potency of a combined treatment strategy consisting of GLV-1h68 and cyclophosphamide (CPA) in a mouse model of PC14PE6-RFP lung adenocarcinoma. Methods PC14PE6-RFP cells were treated in cell culture with GLV-1h68. Viral replication and cell survival were determined by plaque assays and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, respectively. Subcutaneously implanted PC14PE6-RFP xenografts were treated by systemic injection of GLV-1h68, CPA or a combination of both. Tumor growth and viral biodistribution were monitored and immune-related antigen profiling of tumor lysates was performed. Results GLV-1h68 efficiently infected, replicated in and lysed human PC14PE6-RFP cells in cell cultures. PC14PE6-RFP tumors were efficiently colonized by GLV-1h68 leading to much delayed tumor growth in PC14PE6-RFP tumor-bearing nude mice. Combination treatment with GLV-1h68 and CPA significantly improved the antitumor efficacy of GLV-1h68 and led to an increased viral distribution within the tumors. Pro-inflammatory cytokines and chemokines were distinctly elevated in tumors of GLV-1h68-treated mice. Factors expressed by endothelial cells or present in the blood were decreased after combination treatment. A complete loss in the hemorrhagic phenotype of the PC14PE6-RFP tumors and a decrease in the number of blood vessels after combination treatment could be observed. Conclusions CPA and GLV-1h68 have synergistic antitumor effects on PC14PE6-RFP xenografts. We strongly suppose that in the PC14PE6-RFP model the

  19. Oncolytic virotherapy for urological cancers.

    PubMed

    Delwar, Zahid; Zhang, Kaixin; Rennie, Paul S; Jia, William

    2016-06-01

    Oncolytic virotherapy is a cancer treatment in which replication-competent viruses are used that specifically infect, replicate in and lyse malignant tumour cells, while minimizing harm to normal cells. Anecdotal evidence of the effectiveness of this strategy has existed since the late nineteenth century, but advances and innovations in biotechnological methods in the 1980s and 1990s led to a renewed interest in this type of therapy. Multiple clinical trials investigating the use of agents constructed from a wide range of viruses have since been performed, and several of these enrolled patients with urological malignancies. Data from these clinical trials and from preclinical studies revealed a number of challenges to the effectiveness of oncolytic virotherapy that have prompted the development of further sophisticated strategies. Urological cancers have a range of distinctive features, such as specific genetic mutations and cell surface markers, which enable improving both effectiveness and safety of oncolytic virus treatments. The strategies employed in creating advanced oncolytic agents include alteration of the virus tropism, regulating transcription and translation of viral genes, combination with chemotherapy, radiotherapy or gene therapy, arming viruses with factors that stimulate the immune response against tumour cells and delivery technologies to ensure that the viral agent reaches its target tissue.

  20. In vitro screen of a small molecule inhibitor drug library identifies multiple compounds that synergize with oncolytic myxoma virus against human brain tumor-initiating cells

    PubMed Central

    McKenzie, Brienne A.; Zemp, Franz J.; Pisklakova, Alexandra; Narendran, Aru; McFadden, Grant; Lun, Xueqing; Kenchappa, Rajappa S.; Kurz, Ebba U.; Forsyth, Peter A.

    2015-01-01

    Background Brain tumor-initiating cells (BTICs) are stem-like cells hypothesized to form a disease reservoir that mediates tumor recurrence in high-grade gliomas. Oncolytic virotherapy uses replication-competent viruses to target and kill malignant cells and has been evaluated in clinic for glioma therapy with limited results. Myxoma virus (MyxV) is a safe and highly effective oncolytic virus (OV) in conventional glioma models but, as seen with other OVs, is only modestly effective for patient-derived BTICs. The objective of this study was to determine whether MyxV treatment against human BTICs could be improved by combining chemotherapeutics and virotherapy. Methods A 73-compound library of drug candidates in clinical use or preclinical development was screened to identify compounds that sensitize human BTICs to MyxV treatment in vitro, and synergy was evaluated mathematically in lead compounds using Chou-Talalay analyses. The effects of combination therapy on viral gene expression and viral replication were also assessed. Results Eleven compounds that enhance MyxV efficacy were identified, and 6 were shown to synergize with the virus using Chou-Talalay analyses. Four of the synergistic compounds were shown to significantly increase viral gene expression, indicating a potential mechanism for synergy. Three highly synergistic compounds (axitinib, a VEGFR inhibitor; rofecoxib, a cyclooxygenase-2 inhibitor; and pemetrexed, a folate anti-metabolite) belong to classes of compounds that have not been previously shown to synergize with oncolytic viruses in vitro. Conclusions This study has identified multiple novel drug candidates that synergistically improve MyxV efficacy in a preclinical BTIC glioma model. PMID:25605818

  1. Ultrasound-induced cavitation enhances the delivery and therapeutic efficacy of an oncolytic virus in an in vitro model.

    PubMed

    Bazan-Peregrino, Miriam; Arvanitis, Costas D; Rifai, Bassel; Seymour, Leonard W; Coussios, Constantin-C

    2012-01-30

    We investigated whether ultrasound-induced cavitation at 0.5 MHz could improve the extravasation and distribution of a potent breast cancer-selective oncolytic adenovirus, AdEHE2F-Luc, to tumour regions that are remote from blood vessels. We developed a novel tumour-mimicking model consisting of a gel matrix containing human breast cancer cells traversed by a fluid channel simulating a tumour blood vessel, through which the virus and microbubbles could be made to flow. Ultrasonic pressures were chosen to maximize either broadband emissions, associated with inertial cavitation, or ultraharmonic emissions, associated with stable cavitation, while varying duty cycle to keep the total acoustic energy delivered constant for comparison across exposures. None of the exposure conditions tested affected cell viability in the absence of the adenovirus. When AdEHE2F-Luc was delivered via the vessel, inertial cavitation increased transgene expression in tumour cells by up to 200 times. This increase was not observed in the absence of Coxsackie and Adenovirus Receptor cell expression, discounting sonoporation as the mechanism of action. In the presence of inertial cavitation, AdEHE2F-Luc distribution was greatly improved in the matrix surrounding the vessel, particularly in the direction of the ultrasound beam; this enabled AdEHE2F-Luc to kill up to 80% of cancer cells within the ultrasound focal volume in the gel 24 hours after delivery, compared to 0% in the absence of cavitation.

  2. Armed Oncolytic Virus Enhances Immune Functions of Chimeric Antigen Receptor-Modified T Cells in Solid Tumors

    PubMed Central

    Nishio, Nobuhiro; Diaconu, Iulia; Liu, Hao; Cerullo, Vincenzo; Caruana, Ignazio; Hoyos, Valentina; Bouchier-Hayes, Lisa; Savoldo, Barbara; Dotti, Gianpietro

    2014-01-01

    The clinical efficacy of chimeric antigen receptor (CAR)-redirected T cells remains marginal in solid tumors compared to leukemias. Failures have been attributed to insufficient T-cell migration and to the highly immunosuppressive milieu of solid tumors. To overcome these obstacles, we have combined CAR-T cells with an oncolytic virus (OV) armed with the chemokine RANTES and the cytokine IL-15, reasoning that the modified OV will have both a direct lytic effect on infected malignant cells and facilitate migration and survival of CAR-T cells. Using neuroblastoma (NB) as a tumor model we found that the adenovirus Ad5Δ24 exerted a potent, dose-dependent, cytotoxic effect on tumor cells, while CAR-T cells specific for the tumor antigen GD2 (GD2.CAR-T cells) were not damaged. When used in combination, Ad5Δ24 directly accelerated the caspase pathways in tumor cells exposed to CAR-T cells, while the intratumoral release of both RANTES and IL-15 attracted CAR-T cells and promoted their local survival, respectively, increasing the overall survival of tumor bearing mice. These preclinical data support the use of this innovative biological platform of immunotherapy for solid tumors. PMID:25060519

  3. Phase 1 Study of Intratumoral Pexa-Vec (JX-594), an Oncolytic and Immunotherapeutic Vaccinia Virus, in Pediatric Cancer Patients

    PubMed Central

    Cripe, Timothy P; Ngo, Minhtran C; Geller, James I; Louis, Chrystal U; Currier, Mark A; Racadio, John M; Towbin, Alexander J; Rooney, Cliona M; Pelusio, Adina; Moon, Anne; Hwang, Tae-Ho; Burke, James M; Bell, John C; Kirn, David H; Breitbach, Caroline J

    2015-01-01

    Pexa-Vec (pexastimogene devacirepvec, JX-594) is an oncolytic and immunotherapeutic vaccinia virus designed to destroy cancer cells through viral lysis and induction of granulocyte-macrophage colony-stimulating factor (GM-CSF)-driven tumor-specific immunity. Pexa-Vec has undergone phase 1 and 2 testing alone and in combination with other therapies in adult patients, via both intratumoral and intravenous administration routes. We sought to determine the safety of intratumoral administration in pediatric patients. In a dose-escalation study using either 106 or 107 plaque-forming units per kilogram, we performed one-time injections in up to three tumor sites in five pediatric patients and two injections in one patient. Ages at study entry ranged from 4 to 21 years, and their cancer diagnoses included neuroblastoma, hepatocellular carcinoma, and Ewing sarcoma. All toxicities were ≤ grade 3. The most common side effects were sinus fever and sinus tachycardia. All three patients at the higher dose developed asymptomatic grade 1 treatment-related skin pustules that resolved within 3–4 weeks. One patient showed imaging evidence suggestive of antitumor biological activity. The two patients tested for cellular immunoreactivity to vaccinia antigens showed strong responses. Overall, our study suggests Pexa-Vec is safe to administer to pediatric patients by intratumoral administration and could be studied further in this patient population. PMID:25531693

  4. Oncolytic vaccinia virus combined with radiotherapy induces apoptotic cell death in sarcoma cells by down-regulating the inhibitors of apoptosis

    PubMed Central

    Wilkinson, Michelle J.; Smith, Henry G.; McEntee, Gráinne; Kyula-Currie, Joan; Mansfield, David C.; Khan, Aadil A.; Roulstone, Victoria

    2016-01-01

    Advanced extremity melanoma and sarcoma present a significant therapeutic challenge, requiring multimodality therapy to treat or even palliate disease. These aggressive tumours are relatively chemo-resistant, therefore new treatment approaches are urgently required. We have previously reported on the efficacy of oncolytic virotherapy (OV) delivered by isolated limb perfusion. In this report, we have improved therapeutic outcomes by combining OV with radiotherapy. In vitro, the combination of oncolytic vaccinia virus (GLV-1h68) and radiotherapy demonstrated synergistic cytotoxicity. This effect was not due to increased viral replication, but mediated through induction of intrinsic apoptosis. GLV-1h68 therapy downregulated the anti-apoptotic BCL-2 proteins (MCL-1 and BCL-XL) and the downstream inhibitors of apoptosis, resulting in cleavage of effector caspases 3 and 7. In an in vivo ILP model, the combination of OV and radiotherapy significantly delayed tumour growth and prolonged survival compared to single agent therapy. These data suggest that the virally-mediated down-regulation of anti-apoptotic proteins may increase the sensitivity of tumour cells to the cytotoxic effects of ionizing radiation. Oncolytic virotherapy represents an exciting candidate for clinical development when delivered by ILP. Its ability to overcome anti-apoptotic signals within tumour cells points the way to further development in combination with conventional anti-cancer therapies. PMID:27783991

  5. A combinational therapy of EGFR-CAR NK cells and oncolytic herpes simplex virus 1 for breast cancer brain metastases.

    PubMed

    Chen, Xilin; Han, Jianfeng; Chu, Jianhong; Zhang, Lingling; Zhang, Jianying; Chen, Charlie; Chen, Luxi; Wang, Youwei; Wang, Hongwei; Yi, Long; Elder, J Bradley; Wang, Qi-En; He, Xiaoming; Kaur, Balveen; Chiocca, E Antonio; Yu, Jianhua

    2016-05-10

    Breast cancer brain metastases (BCBMs) are common in patients with metastatic breast cancer and indicate a poor prognosis. These tumors are especially resistant to currently available treatments due to multiple factors. However, the combination of chimeric antigen receptor (CAR)-modified immune cells and oncolytic herpes simplex virus (oHSV) has not yet been explored in this context. In this study, NK-92 cells and primary NK cells were engineered to express the second generation of EGFR-CAR. The efficacies of anti-BCBMs of EGFR-CAR NK cells, oHSV-1, and their combination were tested in vitro and in a breast cancer intracranial mouse model. In vitro, compared with mock-transduced NK-92 cells or primary NK cells, EGFR-CAR-engineered NK-92 cells and primary NK cells displayed enhanced cytotoxicity and IFN-γ production when co-cultured with breast cancer cell lines MDA-MB-231, MDA-MB-468, and MCF-7. oHSV-1 alone was also capable of lysing and destroying these cells. However, a higher cytolytic effect of EGFR-CAR NK-92 cells was observed when combined with oHSV-1 compared to the monotherapies. In the mice intracranially pre-inoculated with EGFR-expressing MDA-MB-231 cells, intratumoral administration of either EGFR-CAR-transduced NK-92 cells or oHSV-1 mitigated tumor growth. Notably, the combination of EGFR-CAR NK-92 cells with oHSV-1 resulted in more efficient killing of MDA-MB-231 tumor cells and significantly longer survival of tumor-bearing mice when compared to monotherapies. These results demonstrate that regional administration of EGFR-CAR NK-92 cells combined with oHSV-1 therapy is a potentially promising strategy to treat BCBMs.

  6. A combinational therapy of EGFR-CAR NK cells and oncolytic herpes simplex virus 1 for breast cancer brain metastases

    PubMed Central

    Zhang, Jianying; Chen, Charlie; Chen, Luxi; Wang, Youwei; Wang, Hongwei; Yi, Long; Elder, J. Bradley; Wang, Qi-En; He, Xiaoming; Kaur, Balveen; Chiocca, E. Antonio; Yu, Jianhua

    2016-01-01

    Breast cancer brain metastases (BCBMs) are common in patients with metastatic breast cancer and indicate a poor prognosis. These tumors are especially resistant to currently available treatments due to multiple factors. However, the combination of chimeric antigen receptor (CAR)-modified immune cells and oncolytic herpes simplex virus (oHSV) has not yet been explored in this context. In this study, NK-92 cells and primary NK cells were engineered to express the second generation of EGFR-CAR. The efficacies of anti-BCBMs of EGFR-CAR NK cells, oHSV-1, and their combination were tested in vitro and in a breast cancer intracranial mouse model. In vitro, compared with mock-transduced NK-92 cells or primary NK cells, EGFR-CAR-engineered NK-92 cells and primary NK cells displayed enhanced cytotoxicity and IFN-γ production when co-cultured with breast cancer cell lines MDA-MB-231, MDA-MB-468, and MCF-7. oHSV-1 alone was also capable of lysing and destroying these cells. However, a higher cytolytic effect of EGFR-CAR NK-92 cells was observed when combined with oHSV-1 compared to the monotherapies. In the mice intracranially pre-inoculated with EGFR-expressing MDA-MB-231 cells, intratumoral administration of either EGFR-CAR-transduced NK-92 cells or oHSV-1 mitigated tumor growth. Notably, the combination of EGFR-CAR NK-92 cells with oHSV-1 resulted in more efficient killing of MDA-MB-231 tumor cells and significantly longer survival of tumor-bearing mice when compared to monotherapies. These results demonstrate that regional administration of EGFR-CAR NK-92 cells combined with oHSV-1 therapy is a potentially promising strategy to treat BCBMs. PMID:27050072

  7. The oncolytic herpes simplex virus vector, G47Δ, effectively targets tamoxifen-resistant breast cancer cells.

    PubMed

    Fan, Jingjing; Jiang, Hua; Cheng, Lin; Liu, Renbin

    2016-03-01

    The aim of the present study was to establish a tamoxifen-resistant cell line (MCF-7/TAM-R) and to investigate the therapeutic effect of G47Δ on this cell line both in vitro and in vivo. In the present study, the MCF-7/TAM-R monoclonal subline was established after exposing MCF-7 cells to tamoxifen for 21 days. Then, it was compared with a wild-type MCF-7 subline (MCF-7W), which was not treated with tamoxifen. Cell proliferation, viability, cell cycle and apoptosis analyses were carried out to examine the characteristics of the MCF-7/TAM-R cells. Both in vitro and in vivo toxicity studies were conducted to investigate the therapeutic effect of G47Δ on the MCF-7/TAM-R cells. Compared to the MCF-7W cells, we found that the MCF-7/TAM-R cells exhibited a higher proliferation ability (P<0.05) and a stronger resistance to the cytotoxic effects induced by 4-hydroxytamoxifen (4-OHT) (P<0.05). G47Δ demonstrated a high cytotoxic effect on both the MCF-7/TAM-R and MCF-7W cell lines. After being infected with G47Δ at an MOI of 0.01, >90% of the MCF-7/TAM-R and MCF-7W cells died on day 5. G47Δ induced cell cycle arrest in the G2/M phase. Furthermore, G47Δ inhibited tumor growth in subcutaneous tumor models of both MCF-7/TAM-R and MCF-7W. Thus, we conclude that G47Δ, a third generation oncolytic herpes simplex virus, is highly sensitive and safe in targeting tamoxifen-resistant breast cancer cells both in vitro and in vivo.

  8. Oncolytic virotherapy for ovarian cancer.

    PubMed

    Li, Shoudong; Tong, Jessica; Rahman, Masmudur M; Shepherd, Trevor G; McFadden, Grant

    2012-08-01

    In the past two decades, more than 20 viruses with selective tropism for tumor cells have been developed as oncolytic viruses (OVs) for treatments of a variety of malignancies. Of these viruses, eleven have been tested in human ovarian cancer models in preclinical studies. So far, nine phase I or II clinical trials have been conducted or initiated using four different types of OVs in patients with recurrent ovarian cancers. In this article, we summarize the different OVs that are being assessed as therapeutics for ovarian cancer. We also present an overview of recent advances in identification of key genetic or immune-response pathways involved in tumorigenesis of ovarian cancer, which provides a better understanding of the tumor specificities and oncolytic properties of OVs. In addition, we discuss how next-generation OVs could be genetically modified or integrated into multimodality regimens to improve clinical outcomes based on recent advances in ovarian cancer biology.

  9. Oncolytic virotherapy for ovarian cancer

    PubMed Central

    Li, Shoudong; Tong, Jessica; Rahman, Masmudur M; Shepherd, Trevor G; McFadden, Grant

    2012-01-01

    In the past two decades, more than 20 viruses with selective tropism for tumor cells have been developed as oncolytic viruses (OVs) for treatments of a variety of malignancies. Of these viruses, eleven have been tested in human ovarian cancer models in preclinical studies. So far, nine phase I or II clinical trials have been conducted or initiated using four different types of OVs in patients with recurrent ovarian cancers. In this article, we summarize the different OVs that are being assessed as therapeutics for ovarian cancer. We also present an overview of recent advances in identification of key genetic or immune-response pathways involved in tumorigenesis of ovarian cancer, which provides a better understanding of the tumor specificities and oncolytic properties of OVs. In addition, we discuss how next-generation OVs could be genetically modified or integrated into multimodality regimens to improve clinical outcomes based on recent advances in ovarian cancer biology. PMID:25977900

  10. Oncolytic virotherapy with an armed vaccinia virus in an orthotopic model of renal carcinoma is associated with modification of the tumor microenvironment.

    PubMed

    Fend, Laetitia; Remy-Ziller, Christelle; Foloppe, Johann; Kempf, Juliette; Cochin, Sandrine; Barraud, Luc; Accart, Nathalie; Erbs, Philippe; Fournel, Sylvie; Préville, Xavier

    2016-02-01

    Oncolytic virotherapy is an emergent promising therapeutic approach for the treatment of cancer. We have constructed a vaccinia virus (WR strain) deleted for thymidine kinase (TK) and ribonucleotide reductase (RR) genes that expressed the fusion suicide gene FCU1 derived from the yeast cytosine deaminase and uracil phosphoribosyltransferase genes. We evaluated this construct (VV-FCU1) in the orthotopic model of renal carcinoma (RenCa). Systemic administration of VV-FCU1 resulted in orthotopic tumor growth inhibition, despite temporary expression of viral proteins. VV-FCU1 treatment was associated with an infiltration of tumors by CD8(+) T lymphocytes and a decrease in the proportion of infiltrating Tregs, thus modifying the ratio of CD8(+)/CD4(+) Treg in favor of CD8(+)cytotoxic T cells. We demonstrated that VV-FCU1 treatment prolonged survival of animals implanted with RenCa cells in kidney. Depletion of CD8(+) T cells abolished the therapeutic effect of VV-FCU1 while depletion of CD4(+) T cells enhanced its protective activity. Administration of the prodrug 5-fluorocytosine (5-FC) resulted in a sustained control of tumor growth but did not extend survival. This study shows the importance of CD4(+) and CD8(+) T cells in vaccinia virus-mediated oncolytic virotherapy and suggests that this approach may be evaluated for the treatment of human renal cell carcinoma.

  11. Complete genome sequence analysis of Seneca Valley virus-001, a novel oncolytic picornavirus.

    PubMed

    Hales, Laura M; Knowles, Nick J; Reddy, P Seshidar; Xu, Ling; Hay, Carl; Hallenbeck, Paul L

    2008-05-01

    The complete genome sequence of Seneca Valley virus-001 (SVV-001), a small RNA virus, was determined and was shown to have typical picornavirus features. The 7280 nt long genome was predicted to contain a 5' untranslated region (UTR) of 666 nt, followed by a single long open reading frame consisting of 6543 nt, which encodes a 2181 aa polyprotein. This polyprotein could potentially be cleaved into 12 polypeptides in the standard picornavirus L-4-3-4 layout. A 3' UTR of 71 nt was followed by a poly(A) tail of unknown length. Comparisons with other picornaviruses showed that the P1, 2C, 3C and 3D polypeptides of SVV-001 were related most closely to those of the cardioviruses, although they were not related as closely to those of encephalomyocarditis virus and Theiler's murine encephalomyelitis virus as the latter were to each other. Most other regions of the polyprotein differed considerably from those of all other known picornaviruses. SVV-001 contains elements of an internal ribosome entry site reminiscent of that found in hepatitis C virus and a number of genetically diverse picornaviruses. SVV-001 is a novel picornavirus and it is proposed that it be classified as the prototype species in a novel genus named 'Senecavirus'.

  12. The combined effects of oncolytic reovirus plus Newcastle disease virus and reovirus plus parvovirus on U87 and U373 cells in vitro and in vivo.

    PubMed

    Alkassar, Muhannad; Gärtner, Barbara; Roemer, Klaus; Graesser, Friedrich; Rommelaere, Jean; Kaestner, Lars; Haeckel, Isabelle; Graf, Norbert

    2011-09-01

    Previous results had documented oncolytic capacity of reovirus, parvovirus and Newcastle disease virus (NDV) on several tumor cell types. To test whether combinations of these viruses may increase this capacity, human U87- and U373-glioblastoma cells, in vitro or xenografted into immuno-compromised mice, were subjected to simultaneous double infections and analyzed. Our results show that reovirus (serotype-3) plus NDV (Hitcher-B1) and reovirus plus parvovirus-H1 lead to a significant increase in tumor cell killing in vitro in both cell lines (Kruskal-Wallis test, P < 0.01) and in vivo. Immunofluorescence and flow cytometry analyses demonstrated the simultaneous replication of the viruses in nearly all cells (>95%) after combined infection. These data thus indicate that a synergistic anti-tumor effect can be achieved by the combined infection with oncolytic viruses.

  13. Immune Suppression during Oncolytic Virotherapy for High-Grade Glioma; Yes or No?

    PubMed

    Koks, Carolien A E; De Vleeschouwer, Steven; Graf, Norbert; Van Gool, Stefaan W

    2015-01-01

    Oncolytic viruses have been seriously considered for glioma therapy over the last 20 years. The oncolytic activity of several oncolytic strains has been demonstrated against human glioma cell lines and in in vivo xenotransplant models. So far, four of these stains have additionally completed the first phase I/II trials in relapsed glioma patients. Though safety and feasibility have been demonstrated, therapeutic efficacy in these initial trials, when described, was only minor. The role of the immune system in oncolytic virotherapy for glioma remained much less studied until recent years. When investigated, the immune system, adept at controlling viral infections, is often hypothesized to be a strong hurdle to successful oncolytic virotherapy. Several preclinical studies have therefore aimed to improve oncolytic virotherapy efficacy by combining it with immune suppression or evasion strategies. More recently however, a new paradigm has developed in the oncolytic virotherapy field stating that oncolytic virus-mediated tumor cell death can be accompanied by elicitation of potent activation of innate and adaptive anti-tumor immunity that greatly improves the efficacy of certain oncolytic strains. Therefore, it seems the three-way interaction between oncolytic virus, tumor and immune system is critical to the outcome of antitumor therapy. In this review we discuss the studies which have investigated how the immune system and oncolytic viruses interact in models of glioma. The novel insights generated here hold important implications for future research and should be incorporated into the design of novel clinical trials.

  14. Structure of Seneca Valley Virus-001: An Oncolytic Picornavirus Representing a New Genus

    SciTech Connect

    Venkataraman, Sangita; Reddy, Seshidhar P.; Loo, Jackie; Idamakanti, Neeraja; Hallenbeck, Paul L.; Reddy, Vijay S.

    2008-10-17

    The crystal structure of Seneca Valley Virus-001 (SVV-001), the representative member of a new genus, Senecavirus, is reported at 2.3{angstrom} resolution. SVV-001 is the first naturally occurring nonpathogenic picornavirus shown to mediate selective cytotoxicity towards tumor cells with neuroendocrine cancer features. The nonsegmented (+) ssRNA genome of SVV-001 shares closest sequence similarity with the genomes of the members of Cardiovirus. The overall tertiary structure of VP1-VP4 subunits is conserved with the exception of loops, especially those of VP1 that show large deviations relative to the members of the cardioviruses. The surface loops of VP1 and VP2 are predicted to mediate cell tropism of SVV-001. In addition, the organization of the packaged nucleic acid density indicates that certain regions of VP2 and VP4 interact closely with the packaged nucleic acid.

  15. Structure of Seneca Valley Virus-001: an oncolytic picornavirus representing a new genus.

    PubMed

    Venkataraman, Sangita; Reddy, Seshidhar P; Loo, Jackie; Idamakanti, Neeraja; Hallenbeck, Paul L; Reddy, Vijay S

    2008-10-08

    The crystal structure of Seneca Valley Virus-001 (SVV-001), the representative member of a new genus, Senecavirus, is reported at 2.3A resolution. SVV-001 is the first naturally occurring nonpathogenic picornavirus shown to mediate selective cytotoxicity towards tumor cells with neuroendocrine cancer features. The nonsegmented (+) ssRNA genome of SVV-001 shares closest sequence similarity with the genomes of the members of Cardiovirus. The overall tertiary structure of VP1-VP4 subunits is conserved with the exception of loops, especially those of VP1 that show large deviations relative to the members of the cardioviruses. The surface loops of VP1 and VP2 are predicted to mediate cell tropism of SVV-001. In addition, the organization of the packaged nucleic acid density indicates that certain regions of VP2 and VP4 interact closely with the packaged nucleic acid.

  16. Targeted oncolytic herpes simplex virus type 1 eradicates experimental pancreatic tumors.

    PubMed

    Gayral, Marion; Lulka, Hubert; Hanoun, Naima; Biollay, Coline; Sèlves, Janick; Vignolle-Vidoni, Alix; Berthommé, Hervé; Trempat, Pascal; Epstein, Alberto L; Buscail, Louis; Béjot, Jean-Luc; Cordelier, Pierre

    2015-02-01

    As many other cancers, pancreatic ductal adenocarcinoma (PDAC) progression is associated with a series of hallmark changes for cancer cells to secure their own growth success. Yet, these very changes render cancer cells highly sensitive to viral infection. A promising strategy may rely on and exploit viral replication for tumor destruction, whereby infection of tumor cells by a replication-conditional virus may lead to cell destruction and simultaneous release of progeny particles that can spread and infect adjacent tumor cells, while sparing healthy tissues. In the present study, we used Myb34.5, a second-generation replication-conditional herpes simplex virus type 1 (HSV-1) mutant in which ICP6 gene expression is defective and expression of the HSV-1 γ134.5 gene is regulated by the cellular B-myb promoter. We found that B-myb is present in experimental PDAC and tumors, and is overexpressed in patients' tumors, as compared with normal adjacent pancreas. Myb34.5 replicates to high level in human PDAC cell lines and is associated with cell death by apoptosis. In experimental models of PDAC, mice receiving intratumoral Myb34.5 injections appeared healthy and tumor progression was inhibited, with evidence of tumor necrosis, hemorrhage, viral replication, and cancer cell death by apoptosis. Combining standard-of-care chemotherapy with Myb34.5 successfully led to a very impressive antitumoral effect that is rarely achieved in this experimental model, and resulted in a greater reduction in tumor growth than chemotherapy alone. These promising results warrant further evaluation in early phase clinical trial for patients diagnosed with PDAC for whom no effective treatment is available.

  17. An HSV-2 based oncolytic virus can function as an attractant to guide migration of adoptively transferred T cells to tumor sites.

    PubMed

    Fu, Xinping; Rivera, Armando; Tao, Lihua; Zhang, Xiaoliu

    2015-01-20

    Adoptive T-cell therapy has shown promises for cancer treatment. However, for treating solid tumors, there is a need for improving the ability of the adoptively transferred T cells to home to tumor sites. We explored the possibility of using an oncolytic virus derived from HSV-2, which can actively pull T effector cells to the site of infection, as a local attractant for migration of adoptively transferred T cells. Our data show that intratumoral administration of this virus can indeed attract active migration of the adoptively transferred T cells to the treated tumor. Moreover, once attracted to the tumor site by the virus, T cells persisted in there significantly longer than in mock-treated tumor. Chemokine profiling identified significant elevation of CXCL9 and CXCL10, as well as several other chemokines belonging to the inflammatory chemokine family in the virus-treated tumors. These chemokines initially guided the T-cell migration to and then maintained their persistence in the tumor site, leading to a significantly enhanced therapeutic effect. Our data suggests that this virotherapy may be combined with adoptive T-cell therapy to potentiate its therapeutic effect against solid tumors that are otherwise difficult to manage with the treatment alone.

  18. Resistance to oncolytic myxoma virus therapy in nf1(-/-)/trp53(-/-) syngeneic mouse glioma models is independent of anti-viral type-I interferon.

    PubMed

    Zemp, Franz J; McKenzie, Brienne A; Lun, Xueqing; Maxwell, Lori; Reilly, Karlyne M; McFadden, Grant; Yong, V Wee; Forsyth, Peter A

    2013-01-01

    Despite promising preclinical studies, oncolytic viral therapy for malignant gliomas has resulted in variable, but underwhelming results in clinical evaluations. Of concern are the low levels of tumour infection and viral replication within the tumour. This discrepancy between the laboratory and the clinic could result from the disparity of xenograft versus syngeneic models in determining in vivo viral infection, replication and treatment efficacy. Here we describe a panel of primary mouse glioma lines derived from Nf1 (+/-) Trp53 (+/-) mice in the C57Bl/6J background for use in the preclinical testing of the oncolytic virus Myxoma (MYXV). These lines show a range of susceptibility to MYXV replication in vitro, but all succumb to viral-mediated cell death. Two of these lines orthotopically grafted produced aggressive gliomas. Intracranial injection of MYXV failed to result in sustained viral replication or treatment efficacy, with minimal tumour infection that was completely resolved by 7 days post-infection. We hypothesized that the stromal production of Type-I interferons (IFNα/β) could explain the resistance seen in these models; however, we found that neither the cell lines in vitro nor the tumours in vivo produce any IFNα/β in response to MYXV infection. To confirm IFNα/β did not play a role in this resistance, we ablated the ability of tumours to respond to IFNα/β via IRF9 knockdown, and generated identical results. Our studies demonstrate that these syngeneic cell lines are relevant preclinical models for testing experimental glioma treatments, and show that IFNα/β is not responsible for the MYXV treatment resistance seen in syngeneic glioma models.

  19. Oncolytic measles virus induces tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated cytotoxicity by human myeloid and plasmacytoid dendritic cells

    PubMed Central

    Achard, Carole; Guillerme, Jean-Baptiste; Bruni, Daniela; Boisgerault, Nicolas; Combredet, Chantal; Tangy, Frédéric; Jouvenet, Nolwenn; Grégoire, Marc; Fonteneau, Jean-François

    2017-01-01

    ABSTRACT Attenuated measles virus (MV) is currently being evaluated in clinical trials as an oncolytic therapeutic agent. Originally used for its lytic activity against tumor cells, it is now admitted that the effectiveness of MV also lies in its ability to initiate antitumor immune responses through the activation of dendritic cells (DCs). In this study, we investigated the capacity of oncolytic MV to convert human blood myeloid CD1c+ DCs and plasmacytoid DCs (pDCs) into cytotoxic effectors. We found that MV induces the expression of the cytotoxic protein TNF-related apoptosis-inducing ligand (TRAIL) on the surface of DCs. We demonstrate that the secretion of interferon-α (IFN-α) by DCs in response to MV is responsible for this TRAIL expression. Several types of PRRs (pattern recognition receptors) have been implicated in MV genome recognition, including RLRs (RIG-I-like receptors) and TLRs (Toll-like receptors). We showed that CD1c+ DCs secrete modest amounts of IFN-α and express TRAIL in an RLR-dependent manner upon exposure to MV. In pDCs, MV is recognized by RLRs and also by TLR7, leading to the secretion of high amounts of IFN-α and TRAIL expression. Finally, we showed that MV-stimulated DCs induce TRAIL-mediated cell death of Jurkat cells, confirming their acquisition of cytotoxic functions. Our results demonstrate that MV can activate cytotoxic myeloid CD1c+ DCs and pDCs, which may participate to the antitumor immune response. PMID:28197384

  20. Oncolytic Immunotherapy for Treatment of Cancer.

    PubMed

    Tsun, A; Miao, X N; Wang, C M; Yu, D C

    2016-01-01

    Immunotherapy entails the treatment of disease by modulation of the immune system. As detailed in the previous chapters, the different modes of achieving immune modulation are many, including the use of small/large molecules, cellular therapy, and radiation. Oncolytic viruses that can specifically attack, replicate within, and destroy tumors represent one of the most promising classes of agents for cancer immunotherapy (recently termed as oncolytic immunotherapy). The notion of oncolytic immunotherapy is considered as the way in which virus-induced tumor cell death (known as immunogenic cancer cell death (ICD)) allows the immune system to recognize tumor cells and provide long-lasting antitumor immunity. Both immune responses toward the virus and ICD together contribute toward successful antitumor efficacy. What is now becoming increasingly clear is that monotherapies, through any of the modalities detailed in this book, are neither sufficient in eradicating tumors nor in providing long-lasting antitumor immune responses and that combination therapies may deliver enhanced efficacy. After the rise of the genetic engineering era, it has been possible to engineer viruses to harbor combination-like characteristics to enhance their potency in cancer immunotherapy. This chapter provides a historical background on oncolytic virotherapy and its future application in cancer immunotherapy, especially as a combination therapy with other treatment modalities.

  1. Oncolytic virotherapy for human malignant mesothelioma: recent advances

    PubMed Central

    Boisgerault, Nicolas; Achard, Carole; Delaunay, Tiphaine; Cellerin, Laurent; Tangy, Frédéric; Grégoire, Marc; Fonteneau, Jean-François

    2015-01-01

    Cancer virotherapy is an attractive alternative to conventional treatments because it offers a wide range of antitumor effects due to 1) the diversity of the oncolytic viruses that are now available and 2) their multifaceted activities against both tumor cells and tumor vessels, in addition to their ability to induce antitumor immune responses. In this review, we summarize preclinical and clinical data regarding the targeting of malignant mesothelioma (MM) by oncolytic viruses. We also discuss the potential of other oncolytic viruses that have already shown antitumor effects against several malignancies in advanced clinical trials but are yet to be tested against MM cells. Finally, we review how the activation of the immune system and combinations with other types of anticancer treatments could support the development of oncolytic virotherapy for the treatment of MM. PMID:27512676

  2. Interferon-mediated Tumor Resistance to Oncolytic Virotherapy.

    PubMed

    Ebrahimi, Safieh; Ghorbani, Elnaz; Khazaei, Majid; Avan, Amir; Ryzhikov, Mikhail; Azadmanesh, Keyhan; Hassanian, Seyed Mahdi

    2017-01-30

    Interferons (INFs) elicit antiviral responses in tumor cells upon binding to cell surface receptors. Oncolytic virotherapy (OV) is an effective antitumor therapeutic approach which in combination with standard radiotherapy or chemotherapy regimens potentiates treatment responses in cancer patients. However, oncolytic viruses are susceptible to the IFN-induced antiviral state in the tumor microenvironment. A number of studies have therefore investigated the effects of combined therapy of IFN signaling pharmacological inhibitors with oncolytic viruses, which result in improved virus replication and oncolysis. This review summarizes the current knowledge of the mechanisms of interferon-mediated tumor resistance to oncolytic virotherapy and provides new insights regarding the effectiveness of combinatorial treatment strategies to attenuate INF-induced OV resistance for greater clinical significance in the treatment of cancer patients. This article is protected by copyright. All rights reserved.

  3. Oncolytic virotherapy for human malignant mesothelioma: recent advances.

    PubMed

    Boisgerault, Nicolas; Achard, Carole; Delaunay, Tiphaine; Cellerin, Laurent; Tangy, Frédéric; Grégoire, Marc; Fonteneau, Jean-François

    2015-01-01

    Cancer virotherapy is an attractive alternative to conventional treatments because it offers a wide range of antitumor effects due to 1) the diversity of the oncolytic viruses that are now available and 2) their multifaceted activities against both tumor cells and tumor vessels, in addition to their ability to induce antitumor immune responses. In this review, we summarize preclinical and clinical data regarding the targeting of malignant mesothelioma (MM) by oncolytic viruses. We also discuss the potential of other oncolytic viruses that have already shown antitumor effects against several malignancies in advanced clinical trials but are yet to be tested against MM cells. Finally, we review how the activation of the immune system and combinations with other types of anticancer treatments could support the development of oncolytic virotherapy for the treatment of MM.

  4. Modeling oncolytic virotherapy: is complete tumor-tropism too much of a good thing?

    PubMed

    Okamoto, Kenichi W; Amarasekare, Priyanga; Petty, Ian T D

    2014-10-07

    The specific targeting of tumor cells by replication-competent oncolytic viruses is considered indispensable for realizing the potential of oncolytic virotherapy. Yet off-target infections by oncolytic viruses may increase virus production, further reducing tumor load. This ability may be critical when tumor-cell scarcity or the onset of an adaptive immune response constrain viral anti-tumoral efficacy. Here we develop a mathematical framework for assessing whether oncolytic viruses with reduced tumor-specificity can more effectively eliminate tumors while keeping losses to normal cell populations low. We find viruses that infect some normal cells can potentially balance the competing goals of tumor elimination and minimizing the effects on normal cell populations. Particularly when infected tissues can be regenerated, moderating rather than completely eliminating the ability of oncolytic viruses to infect and lyse normal cells could improve cancer treatment, with potentially fewer side-effects than conventional treatments such as chemotherapy.

  5. Vesicular stomatitis virus expressing interferon-β is oncolytic and promotes antitumor immune responses in a syngeneic murine model of non-small cell lung cancer.

    PubMed

    Patel, Manish R; Jacobson, Blake A; Ji, Yan; Drees, Jeremy; Tang, Shaogeng; Xiong, Kerry; Wang, Hengbing; Prigge, Jennifer E; Dash, Alexander S; Kratzke, Andrea K; Mesev, Emily; Etchison, Ryan; Federspiel, Mark J; Russell, Stephen J; Kratzke, Robert A

    2015-10-20

    Vesicular stomatitis virus (VSV) is a potent oncolytic virus for many tumors. VSV that produces interferon-β (VSV-IFNβ) is now in early clinical testing for solid tumors. Here, the preclinical activity of VSV and VSV-IFNβ against non-small cell lung cancer (NSCLC) is reported. NSCLC cell lines were treated in vitro with VSV expressing green fluorescence protein (VSV-GFP) and VSV-IFNβ. VSV-GFP and VSV-IFNβ were active against NSCLC cells. JAK/STAT inhibition with ruxolitinib re-sensitized resistant H838 cells to VSV-IFNβ mediated oncolysis. Intratumoral injections of VSV-GFP and VSV-IFNβ reduced tumor growth and weight in H2009 nude mouse xenografts (p < 0.01). A similar trend was observed in A549 xenografts. Syngeneic LM2 lung tumors grown in flanks of A/J mice were injected with VSV-IFNβ intratumorally. Treatment of LM2 tumors with VSV-IFNβ resulted in tumor regression, prolonged survival (p < 0.0001), and cure of 30% of mice. Intratumoral injection of VSV-IFNβ resulted in decreased tumor-infiltrating regulatory T cells (Treg) and increased CD8+ T cells. Tumor cell expression of PDL-1 was increased after VSV-IFNβ treatment. VSV-IFNβ has potent antitumor effects and promotes systemic antitumor immunity. These data support further clinical investigation of VSV-IFNβ for NSCLC.

  6. Preclinical Testing Oncolytic Vaccinia Virus Strain GLV-5b451 Expressing an Anti-VEGF Single-Chain Antibody for Canine Cancer Therapy.

    PubMed

    Adelfinger, Marion; Bessler, Simon; Frentzen, Alexa; Cecil, Alexander; Langbein-Laugwitz, Johanna; Gentschev, Ivaylo; Szalay, Aladar A

    2015-07-20

    Virotherapy on the basis of oncolytic vaccinia virus (VACV) strains is a novel approach for canine cancer therapy. Here we describe, for the first time, the characterization and the use of VACV strain GLV-5b451 expressing the anti-vascular endothelial growth factor (VEGF) single-chain antibody (scAb) GLAF-2 as therapeutic agent against different canine cancers. Cell culture data demonstrated that GLV-5b451 efficiently infected and destroyed all four tested canine cancer cell lines including: mammary carcinoma (MTH52c), mammary adenoma (ZMTH3), prostate carcinoma (CT1258), and soft tissue sarcoma (STSA-1). The GLV-5b451 virus-mediated production of GLAF-2 antibody was observed in all four cancer cell lines. In addition, this antibody specifically recognized canine VEGF. Finally, in canine soft tissue sarcoma (CSTS) xenografted mice, a single systemic administration of GLV-5b451 was found to be safe and led to anti-tumor effects resulting in the significant reduction and substantial long-term inhibition of tumor growth. A CD31-based immuno-staining showed significantly decreased neo-angiogenesis in GLV-5b451-treated tumors compared to the controls. In summary, these findings indicate that GLV-5b451 has potential for use as a therapeutic agent in the treatment of CSTS.

  7. Preclinical Testing Oncolytic Vaccinia Virus Strain GLV-5b451 Expressing an Anti-VEGF Single-Chain Antibody for Canine Cancer Therapy

    PubMed Central

    Adelfinger, Marion; Bessler, Simon; Frentzen, Alexa; Cecil, Alexander; Langbein-Laugwitz, Johanna; Gentschev, Ivaylo; Szalay, Aladar A.

    2015-01-01

    Virotherapy on the basis of oncolytic vaccinia virus (VACV) strains is a novel approach for canine cancer therapy. Here we describe, for the first time, the characterization and the use of VACV strain GLV-5b451 expressing the anti-vascular endothelial growth factor (VEGF) single-chain antibody (scAb) GLAF-2 as therapeutic agent against different canine cancers. Cell culture data demonstrated that GLV-5b451 efficiently infected and destroyed all four tested canine cancer cell lines including: mammary carcinoma (MTH52c), mammary adenoma (ZMTH3), prostate carcinoma (CT1258), and soft tissue sarcoma (STSA-1). The GLV-5b451 virus-mediated production of GLAF-2 antibody was observed in all four cancer cell lines. In addition, this antibody specifically recognized canine VEGF. Finally, in canine soft tissue sarcoma (CSTS) xenografted mice, a single systemic administration of GLV-5b451 was found to be safe and led to anti-tumor effects resulting in the significant reduction and substantial long-term inhibition of tumor growth. A CD31-based immuno-staining showed significantly decreased neo-angiogenesis in GLV-5b451-treated tumors compared to the controls. In summary, these findings indicate that GLV-5b451 has potential for use as a therapeutic agent in the treatment of CSTS. PMID:26205404

  8. Oncolytic virotherapy: the questions and the promise.

    PubMed

    Aurelian, Laure

    2013-01-01

    Oncolytic virotherapy is a new strategy to reduce tumor burden through selective virus replication in rapidly proliferating cells. Oncolytic viruses are members of at least ten virus families, each with its advantages and disadvantages. Here, I briefly review the recent advances and key challenges, as exemplified by the best-studied platforms. Recent advances include preclinical proof of feasibility, clinical evidence of tolerability and effectiveness, and the development of new strategies to improve efficacy. These include engineered tumor selectivity and expression of antitumorigenic genes that could function independently of virus replication, identification of combinatorial therapies that accelerate intratumoral virus propagation, and modification of immune responses and vascular delivery for treatment of metastatic disease. Key challenges are to select "winners" from the distinct oncolytic platforms that can stimulate anti-cancer immunity without affecting virus replication and can lyse cancer stem cells, which are most likely responsible for tumor maintenance, aggressiveness, and recurrence. Preventing the emergence of resistant tumor cells during virotherapy through the activation of multiple death pathways, the development of a better understanding of the mechanisms of cancer stem-cell lysis, and the development of more meaningful preclinical animal models are additional challenges for the next-generation of engineered viruses.

  9. Safety Study: Intraventricular Injection of a Modified Oncolytic Measles Virus into Measles-Immune, hCD46-Transgenic, IFNαRko Mice.

    PubMed

    Lal, Sangeet; Peng, Kah-Whye; Steele, Michael B; Jenks, Nathan; Ma, Hong; Kohanbash, Gary; Phillips, Joanna J; Raffel, Corey

    2016-12-01

    The modified Edmonston vaccine strain of measles virus (MV) has shown potent oncolytic efficacy against various tumor types and is being investigated in clinical trials. Our laboratory showed that MV effectively kills medulloblastoma tumor cells in both localized disease and when tumor cells are disseminated through cerebrospinal fluid (CSF). Although the safety of repeated intracerebral injection of modified MV in rhesus macaques has been established, the safety of administering MV into CSF has not been adequately investigated. In this study, we assessed the safety of MV-NIS (MV modified to express the human sodium iodide symporter protein) injected into the CSF of measles-immunized and measles virus-susceptible transgenic (CD46, IFNαRko) mice. Treated animals were administered a single intraventricular injection of 1 × 10(5) or 1 × 10(6) TCID50 (50% tissue culture infective dose) of MV-NIS. Detailed clinical observation was performed over a 90-day period. Clinically, we did not observe any measles-related toxic effects or behavioral abnormality in animals of any treated cohort. The complete blood count and blood chemistry analysis results were found to be within normal range for all the cohorts. Histologic examination of brains and spinal cords revealed inflammatory changes, mostly related to the needle track; these resolved by day 21 postinjection. To assess viral biodistribution, quantitative RT-PCR to detect the measles virus N-protein was performed on blood and brain samples. Viral RNA was not detectable in the blood as soon as 2 days after injection, and virus cleared from the brain by 45 days postadministration in all treatment cohorts. In conclusion, our data suggest that a single injection of modified MV into the CSF is safe and can be used in future therapeutic applications.

  10. Oncolytic Virotherapy Targeting Lung Cancer Drug Resistance

    DTIC Science & Technology

    2013-08-01

    vesicular stomatitis virus (VSV) can exert a dual antitumor effect by triggering direct tumor lysis and eliciting tumor specific immunity. VSV can also...tumors, and the levels of infiltrating leukocytes were similar across the VSV-treated tumors. Altogether the data indicate that VSV-based therapy is...effective against a cisplatin-resistant lung tumor model. 15. SUBJECT TERMS Drug resistance, oncolytic virotherapy, vesicular stomatitis virus, lung

  11. Phase I Trial of Intravenous Oncolytic Vaccinia Virus (GL-ONC1) with Cisplatin and Radiotherapy in Patients with Locoregionally Advanced Head and Neck Carcinoma.

    PubMed

    Mell, Loren K; Brumund, Kevin T; Daniels, Gregory A; Advani, Sunil J; Zakeri, Kaveh; Wright, Mary E; Onyeama, Sara-Jane; Weisman, Robert A; Sanghvi, Parag R; Martin, Peter J; Szalay, Aladar A

    2017-10-01

    Purpose: Preclinical models have shown that the effectiveness of GL-ONC1, a modified oncolytic vaccinia virus, is enhanced by radiation and chemotherapy. The purpose of this study was to determine the safety of GL-ONC1 when delivered intravenously with chemoradiotherapy to patients with primary, nonmetastatic head and neck cancer.Experimental Design: Patients with locoregionally advanced unresected, nonmetastatic carcinoma of the head/neck, excluding stage III-IVA p16-positive oropharyngeal cancers, were treated with escalating doses and cycles of intravenous GL-ONC1, along with radiotherapy and chemotherapy. The primary aims were to define the MTD and dose-limiting toxicities, and to recommend a dose for phase II trials.Results: Between May 2012 and December 2014, 19 patients were enrolled. The most frequent adverse reactions included grade 1-2 rigors, fever, fatigue, and rash. Grade 3 adverse reactions included hypotension, mucositis, nausea, and vomiting. In 2 patients, the rash was confirmed as viral in origin by fluorescence imaging and viral plaque assay. In 4 patients, viral presence in tumor was confirmed on midtreatment biopsy by quantitative PCR. In 1 patient, live virus was confirmed in a tongue tumor 7 days after receiving the first dose of virus. The MTD was not reached. With median follow-up of 30 months, 1-year (2-year) progression-free survival and overall survival were 74.4% (64.1%) and 84.6% (69.2%), respectively.Conclusions: Delivery of GL-ONC1 is safe and feasible in patients with locoregionally advanced head/neck cancer undergoing standard chemoradiotherapy. A phase II study is warranted to further investigate this novel treatment strategy. Clin Cancer Res; 23(19); 5696-702. ©2017 AACR. ©2017 American Association for Cancer Research.

  12. Safety Studies on Intrahepatic or Intratumoral Injection of Oncolytic Vesicular Stomatitis Virus Expressing Interferon-β in Rodents and Nonhuman Primates

    PubMed Central

    Jenks, Nathan; Myers, Rae; Greiner, Suzanne M.; Thompson, Jill; Mader, Emily K.; Greenslade, Andrew; Griesmann, Guy E.; Federspiel, Mark J.; Rakela, Jorge; Borad, Mitesh J.; Vile, Richard G.; Barber, Glen N.; Meier, Thomas R.; Blanco, Michael C.; Carlson, Stephanie K.; Russell, Stephen J.

    2010-01-01

    Abstract Toxicology studies were performed in rats and rhesus macaques to establish a safe starting dose for intratumoral injection of an oncolytic vesicular stomatitis virus expressing human interferon-β (VSV-hIFNβ) in patients with hepatocellular carcinoma (HCC). No adverse events were observed after administration of 7.59 × 109 TCID50 (50% tissue culture infective dose) of VSV-hIFNβ into the left lateral hepatic lobe of Harlan Sprague Dawley rats. Plasma alanine aminotransferase and alkaline phosphatase levels increased and platelet counts decreased in the virus-treated animals on days 1 and 2 but returned to pretreatment levels by day 4. VSV-hIFNβ was also injected into normal livers or an intrahepatic McA-RH7777 HCC xenograft established in Buffalo rats. Buffalo rats were more sensitive to neurotoxic effects of VSV; the no observable adverse event level (NOAEL) of VSV-hIFNβ in Buffalo rats was 107 TCID50. Higher doses were associated with fatal neurotoxicity and infectious virus was recovered from tumor and brain. Compared with VSV-hIFNβ, toxicity of VSV-rIFNβ (recombinant VSV expressing rat IFN-β) was greatly diminished in Buffalo rats (NOAEL, >1010 TCID50). Two groups of two adult male rhesus macaques received 109 or 1010 TCID50 of VSV-hIFNβ injected directly into the left hepatic lobe under computed tomographic guidance. No neurological signs were observed at any time point. No abnormalities (hematology, clinical chemistry, body weights, behavior) were seen and all macaques developed neutralizing anti-VSV antibodies. Plasma interleukin-6, tumor necrosis factor-α, and hIFN-β remained below detection levels by ELISA. On the basis of these studies, we will be proposing a cautious approach to dose escalation in a phase I clinical trial among patients with HCC. PMID:19911974

  13. Boosting oncolytic adenovirus potency with magnetic nanoparticles and magnetic force.

    PubMed

    Tresilwised, Nittaya; Pithayanukul, Pimolpan; Mykhaylyk, Olga; Holm, Per Sonne; Holzmüller, Regina; Anton, Martina; Thalhammer, Stefan; Adigüzel, Denis; Döblinger, Markus; Plank, Christian

    2010-08-02

    Oncolytic adenoviruses rank among the most promising innovative agents in cancer therapy. We examined the potential of boosting the efficacy of the oncolytic adenovirus dl520 by associating it with magnetic nanoparticles and magnetic-field-guided infection in multidrug-resistant (MDR) cancer cells in vitro and upon intratumoral injection in vivo. The virus was complexed by self-assembly with core-shell nanoparticles having a magnetite core of about 10 nm and stabilized by a shell containing 68 mass % lithium 3-[2-(perfluoroalkyl)ethylthio]propionate) and 32 mass % 25 kDa branched polyethylenimine. Optimized virus binding, sufficiently stable in 50% fetal calf serum, was found at nanoparticle-to-virus ratios of 5 fg of Fe per physical virus particle (VP) and above. As estimated from magnetophoretic mobility measurements, 3,600 to 4,500 magnetite nanocrystallites were associated per virus particle. Ultrastructural analysis by electron and atomic force microscopy showed structurally intact viruses surrounded by magnetic particles that occasionally bridged several virus particles. Viral uptake into cells at a given virus dose was enhanced 10-fold compared to nonmagnetic virus when infections were carried out under the influence of a magnetic field. Increased virus internalization resulted in a 10-fold enhancement of the oncolytic potency in terms of the dose required for killing 50% of the target cells (IC(50) value) and an enhancement of 4 orders of magnitude in virus progeny formation at equal input virus doses compared to nonmagnetic viruses. Furthermore, the full oncolytic effect developed within two days postinfection compared with six days in a nonmagnetic virus as a reference. Plotting target cell viability versus internalized virus particles for magnetic and nonmagnetic virus showed that the inherent oncolytic productivity of the virus remained unchanged upon association with magnetic nanoparticles. Hence, we conclude that the mechanism of boosting the

  14. Glioma stem cells targeted by oncolytic virus carrying endostatin-angiostatin fusion gene and the expression of its exogenous gene in vitro.

    PubMed

    Zhu, Guidong; Su, Wei; Jin, Guishan; Xu, Fujian; Hao, Shuyu; Guan, Fangxia; Jia, William; Liu, Fusheng

    2011-05-16

    The development of the cancer stem cell (CSCs) niche theory has provided a new target for the treatment of gliomas. Gene therapy using oncolytic viral vectors has shown great potential for the therapeutic targeting of CSCs. To explore whether a viral vector carrying an exogenous Endo-Angio fusion gene (VAE) can infect and kill glioma stem cells (GSCs), as well as inhibit their vascular niche in vitro, we have collected surgical specimens of human high-grade glioma (world health organization, WHO Classes III-VI) from which we isolated and cultured GSCs under conditions originally designed for the selective expansion of neural stem cells. Our results demonstrate the following: (1) Four lines of GSCs (isolated from 20 surgical specimens) could grow in suspension, were multipotent, had the ability to self-renew and expressed the neural stem cell markers, CD133 and nestin. (2) VAE could infect GSCs and significantly inhibit their viability. (3) The Endo-Angio fusion gene was expressed in GSCs 48 h after VAE infection and could inhibit the proliferation of human brain microvascular endothelial cells (HBMEC). (4) Residual viable cells lose the ability of self-renewal and adherent differentiation. In conclusion, VAE can significantly inhibit the activity of GSCs in vitro and the expression of exogenous Endo-Angio fusion gene can inhibit HBMEC proliferation. VAE can be used as a novel virus-gene therapy strategy for glioma. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. A novel immunocompetent murine model for replicating oncolytic adenoviral therapy

    PubMed Central

    Zhang, L; Hedjran, F; Larson, C; Perez, G L; Reid, T

    2015-01-01

    Oncolytic adenoviruses are under investigation as a promising novel strategy for cancer immunotherapeutics. Unfortunately, there is no immunocompetent mouse cancer model to test oncolytic adenovirus because murine cancer cells are generally unable to produce infectious viral progeny from human adenoviruses. We find that the murine K-ras-induced lung adenocarcinoma cell line ADS-12 supports adenoviral infection and generates infectious viral progeny. ADS-12 cells express the coxsackie and adenovirus receptor and infected ADS-12 cells express the viral protein E1A. We find that our previously described oncolytic virus, adenovirus TAV-255 (AdTAV-255), kills ADS-12 cells in a dose- and time-dependent manner. We investigated ADS-12 cells as an in-vivo model system for replicating oncolytic adenoviruses. Subcutaneous injection of ADS-12 cells into immunocompetent 129 mice led to tumor formation in all injected mice. Intratumoral injection of AdTAV-255 in established tumors causes a significant reduction in tumor growth. This model system represents the first fully immunocompetent mouse model for cancer treatment with replicating oncolytic adenoviruses, and therefore will be useful to study the therapeutic effect of oncolytic adenoviruses in general and particularly immunostimulatory viruses designed to evoke an antitumor immune response. PMID:25525035

  16. The Continued Promise and Many Disappointments of Oncolytic Virotherapy in Gastrointestinal Malignancies.

    PubMed

    Ahn, Daniel H; Bekaii-Saab, Tanios

    2017-03-04

    Oncolytic virotherapy represents a novel therapeutic strategy in the treatment of gastrointestinal malignancies. Oncolytic viruses, including genetically engineered and naturally occurring viruses, can selectively replicate in and induce tumor cell apoptosis without harming normal tissues, thus offering a promising tool in the armamentarium for cancer therapy. While this approach has garnered much interest over the past several decades, there has not been significant headway across various tumor types. The recent approval of talimogene laherparepvec, a second-generation oncolytic herpes simplex virus type-1, for the treatment of metastatic melanoma, confirms the therapeutic potential of oncolytic viral therapy. Herein, we will highlight and review the role of oncolytic viral therapy in gastrointestinal malignancies while discussing its limitations and potential alternative mechanisms to improve its treatment efficacy.

  17. Molecular imaging of oncolytic viral therapy

    PubMed Central

    Haddad, Dana; Fong, Yuman

    2015-01-01

    Oncolytic viruses have made their mark on the cancer world as a potential therapeutic option, with the possible advantages of reduced side effects and strengthened treatment efficacy due to higher tumor selectivity. Results have been so promising, that oncolytic viral treatments have now been approved for clinical trials in several countries. However, clinical studies may benefit from the ability to noninvasively and serially identify sites of viral targeting via molecular imaging in order to provide safety, efficacy, and toxicity information. Furthermore, molecular imaging of oncolytic viral therapy may provide a more sensitive and specific diagnostic technique to detect tumor origin and, more importantly, presence of metastases. Several strategies have been investigated for molecular imaging of viral replication broadly categorized into optical and deep tissue imaging, utilizing several reporter genes encoding for fluorescence proteins, conditional enzymes, and membrane protein and transporters. Various imaging methods facilitate molecular imaging, including computer tomography, magnetic resonance imaging, positron emission tomography, single photon emission CT, gamma-scintigraphy, and photoacoustic imaging. In addition, several molecular probes are used for medical imaging, which act as targeting moieties or signaling agents. This review will explore the preclinical and clinical use of in vivo molecular imaging of replication-competent oncolytic viral therapy. PMID:27119098

  18. Prostate Cancer-Specific and Potent Antitumor Effect of a DD3-Controlled Oncolytic Virus Harboring the PTEN Gene

    PubMed Central

    Ding, Miao; Cao, Xin; Xu, Hai-neng; Fan, Jun-kai; Huang, Hong-ling; Yang, Dong-qin; Li, Yu-hua; Wang, Jian; Li, Runsheng; Liu, Xin-Yuan

    2012-01-01

    Prostate cancer is a major health problem for men in Western societies. Here we report a Prostate Cancer-Specific Targeting Gene-Viro-Therapy (CTGVT-PCa), in which PTEN was inserted into a DD3-controlled oncolytic viral vector (OV) to form Ad.DD3.E1A.E1B(Δ55)-(PTEN) or, briefly, Ad.DD3.D55-PTEN. The woodchuck post-transcriptional element (WPRE) was also introduced at the downstream of the E1A coding sequence, resulting in much higher expression of the E1A gene. DD3 is one of the most prostate cancer-specific genes and has been used as a clinical bio-diagnostic marker. PTEN is frequently inactivated in primary prostate cancers, which is crucial for prostate cancer progression. Therefore, the Ad.DD3.D55-PTEN has prostate cancer specific and potent antitumor effect. The tumor growth rate was almost completely inhibited with the final tumor volume after Ad.DD3.D55-PTEN treatment less than the initial volume at the beginning of Ad.DD3.D55-PTEN treatment, which shows the powerful antitumor effect of Ad.DD3.D55-PTEN on prostate cancer tumor growth. The CTGVT-PCa construct reported here killed all of the prostate cancer cell lines tested, such as DU145, 22RV1 and CL1, but had a reduced or no killing effect on all the non-prostate cancer cell lines tested. The mechanism of action of Ad.DD3.D55-PTEN was due to the induction of apoptosis, as detected by TUNEL assays and flow cytometry. The apoptosis was mediated by mitochondria-dependent and -independent pathways, as determined by caspase assays and mitochondrial membrane potential. PMID:22509396

  19. Oncolytic Virotherapy for the Treatment of Malignant Glioma.

    PubMed

    Foreman, Paul M; Friedman, Gregory K; Cassady, Kevin A; Markert, James M

    2017-03-06

    Malignant glioma is the most common primary brain tumor and carries a grim prognosis, with a median survival of just over 14 months. Given the poor outcomes with standard-of-care treatments, novel treatment strategies are needed. The concept of virotherapy for the treatment of malignant tumors dates back more than a century and can be divided into replication-competent oncolytic viruses and replication-deficient viral vectors. Oncolytic viruses are designed to selectively target, infect, and replicate in tumor cells, while sparing surrounding normal brain. A host of oncolytic viruses has been evaluated in early phase human trials with promising safety results, but none has progressed to phase III trials. Despite the 25 years that has passed since the initial publication of genetically engineered oncolytic viruses for the treatment of glioma, much remains to be learned about the use of this therapy, including its mechanism of action, optimal treatment paradigm, appropriate targets, and integration with adjuvant agents. Oncolytic viral therapy for glioma remains promising and will undoubtedly impact the future of patient care.

  20. Luciferase imaging for evaluation of oncolytic adenovirus replication in vivo.

    PubMed

    Guse, K; Dias, J D; Bauerschmitz, G J; Hakkarainen, T; Aavik, E; Ranki, T; Pisto, T; Särkioja, M; Desmond, R A; Kanerva, A; Hemminki, A

    2007-06-01

    Oncolytic viruses kill cancer cells by tumor-selective replication. Clinical data have established the safety of the approach but also the need of improvements in potency. Efficacy of oncolysis is linked to effective infection of target cells and subsequent productive replication. Other variables include intratumoral barriers, access to target cells, uptake by non-target organs and immune response. Each of these aspects relates to the location and degree of virus replication. Unfortunately, detection of in vivo replication has been difficult, labor intensive and costly and therefore not much studied. We hypothesized that by coinfection of a luciferase expressing E1-deleted virus with an oncolytic virus, both viruses would replicate when present in the same cell. Photon emission due to conversion of D-Luciferin is sensitive and penetrates tissues well. Importantly, killing of animals is not required and each animal can be imaged repeatedly. Two different murine xenograft models were used and intratumoral coinjections of luciferase encoding virus were performed with eight different oncolytic adenoviruses. In both models, we found significant correlation between photon emission and infectious virus production. This suggests that the system can be used for non-invasive quantitation of the amplitude, persistence and dynamics of oncolytic virus replication in vivo, which could be helpful for the development of more effective and safe agents.

  1. Intratumoral oncolytic adenoviral treatment modulates the glioma microenvironment and facilitates systemic tumor-antigen-specific T cell therapy

    PubMed Central

    Qiao, Jian; Dey, Mahua; Chang, Alan L; Kim, Julius W; Miska, Jason; Ling, Alex; M Nettlebeck, Dirk; Han, Yu; Zhang, Lingjiao; Lesniak, Maciej S

    2015-01-01

    Glioblastoma multiforme (GBM) is the most aggressive form of primary brain tumor and is associated with poor survival. Virotherapy is a promising candidate for the development of effective, novel treatments for GBM. Recent studies have underscored the potential of virotherapy in enhancing antitumor immunity despite the fact that its mechanisms remain largely unknown. Here, using a syngeneic GBM mouse model, we report that intratumoral virotherapy significantly modulates the tumor microenvironment. We found that intratumoral administration of an oncolytic adenovirus, AdCMVdelta24, decreased tumor-infiltrating CD4+ Foxp3+ regulatory T cells (Tregs) and increased IFNγ-producing CD8+ T cells in treated tumors, even in late stage disease in which a highly immunosuppressive tumor microenvironment is considered to be a significant barrier to immunotherapy. Importantly, intratumoral AdCMVdelta24 treatment augmented systemically transferred tumor-antigen-specific T cell therapy. Furthermore, mechanistic studies showed (1) downregulation of Foxp3 in Tregs that were incubated with media conditioned by virus-infected tumor cells, (2) downregulation of indoleamine 2,3 dioxygenase 1 (IDO) in glioma cells upon infection by AdCMVdelta24, and (3) reprograming of Tregs from an immunosuppressive to a stimulatory state. Taken together, our findings demonstrate the potency of intratumoral oncolytic adenoviral treatment in enhancing antitumor immunity through the regulation of multiple aspects of immune suppression in the context of glioma, supporting further clinical development of oncolytic adenovirus-based immune therapies for malignant brain cancer. PMID:26405578

  2. Oncolytic recombinant vesicular stomatitis virus (VSV) is nonpathogenic and non-transmissible in pigs, a natural host of VSV

    USDA-ARS?s Scientific Manuscript database

    Vesicular stomatitis virus (VSV) is a negative stranded RNA virus that naturally causes disease in agricultural livestock including horses, cattle and pigs. The two main identified VSV strains are the New Jersey (VSNJV) and Indiana (VSIV) strains. VSV is a rapidly replicating, potently immunogenic v...

  3. Pediatric medulloblastoma xenografts including molecular subgroup 3 and CD133+ and CD15+ cells are sensitive to killing by oncolytic herpes simplex viruses

    PubMed Central

    Friedman, Gregory K.; Moore, Blake P.; Nan, Li; Kelly, Virginia M.; Etminan, Tina; Langford, Catherine P.; Xu, Hui; Han, Xiaosi; Markert, James M.; Beierle, Elizabeth A.; Gillespie, G. Yancey

    2016-01-01

    Background Childhood medulloblastoma is associated with significant morbidity and mortality that is compounded by neurotoxicity for the developing brain caused by current therapies, including surgery, craniospinal radiation, and chemotherapy. Innate therapeutic resistance of some aggressive pediatric medulloblastoma has been attributed to a subpopulation of cells, termed cancer-initiating cells or cancer stemlike cells (CSCs), marked by the surface protein CD133 or CD15. Brain tumors characteristically contain areas of pathophysiologic hypoxia, which has been shown to drive the CSC phenotype leading to heightened invasiveness, angiogenesis, and metastasis. Novel therapies that target medulloblastoma CSCs are needed to improve outcomes and decrease toxicity. We hypothesized that oncolytic engineered herpes simplex virus (oHSV) therapy could effectively infect and kill pediatric medulloblastoma cells, including CSCs marked by CD133 or CD15. Methods Using 4 human pediatric medulloblastoma xenografts, including 3 molecular subgroup 3 tumors, which portend worse patient outcomes, we determined the expression of CD133, CD15, and the primary HSV-1 entry molecule nectin-1 (CD111) by fluorescence activated cell sorting (FACS) analysis. Infectability and cytotoxicity of clinically relevant oHSVs (G207 and M002) were determined in vitro and in vivo by FACS, immunofluorescent staining, cytotoxicity assays, and murine survival studies. Results We demonstrate that hypoxia increased the CD133+ cell fraction, while having the opposite effect on CD15 expression. We established that all 4 xenografts, including the CSCs, expressed CD111 and were highly sensitive to killing by G207 or M002. Conclusions Pediatric medulloblastoma, including Group 3 tumors, may be an excellent target for oHSV virotherapy, and a clinical trial in medulloblastoma is warranted. PMID:26188016

  4. Adapted ECHO-7 virus Rigvir immunotherapy (oncolytic virotherapy) prolongs survival in melanoma patients after surgical excision of the tumour in a retrospective study.

    PubMed

    Doniņa, Simona; Strēle, Ieva; Proboka, Guna; Auziņš, Jurgis; Alberts, Pēteris; Jonsson, Björn; Venskus, Dite; Muceniece, Aina

    2015-10-01

    An oncolytic, nonpathogenic ECHO-7 virus adapted for melanoma that has not been genetically modified (Rigvir) is approved and registered for virotherapy, an active and specific immunotherapy, in Latvia since 2004. The present retrospective study was carried out to determine the effectiveness of Rigvir in substage IB, IIA, IIB and IIC melanoma patients on time to progression and overall survival. White patients (N=79) who had undergone surgical excision of the primary melanoma tumour were included in this study. All patients were free from disease after surgery and classified into substages IB, IIA, IIB and IIC. Circulating levels of clinical chemistry parameters were recorded. Survival was analysed by Cox regression. Rigvir significantly (P<0.05) prolonged survival in substage IB-IIC melanoma patients following surgery compared with patients who were under observation (according to current guidelines). The hazard ratio for patients under observation versus treated with Rigvir was statistically significantly different: hazard ratio 6.27 for all, 4.39 for substage IIA-IIB-IIC and 6.57 for substage IIB-IIC patients. The follow-up period was not statistically different between both treatment groups. These results indicate that the patients treated with Rigvir had a 4.39-6.57-fold lower mortality than those under observation. In this study, there was no untoward side effect or discontinuation of Rigvir treatment. Safety assessment of adverse events graded according to NCI CTCAE did not show any value above grade 2 in Rigvir-treated patients. In conclusion, Rigvir significantly prolongs survival in early-stage melanoma patients without any side effect.

  5. Adapted ECHO-7 virus Rigvir immunotherapy (oncolytic virotherapy) prolongs survival in melanoma patients after surgical excision of the tumour in a retrospective study

    PubMed Central

    Doniņa, Simona; Strēle, Ieva; Proboka, Guna; Auziņš, Jurgis; Jonsson, Björn; Venskus, Dite; Muceniece, Aina

    2015-01-01

    An oncolytic, nonpathogenic ECHO-7 virus adapted for melanoma that has not been genetically modified (Rigvir) is approved and registered for virotherapy, an active and specific immunotherapy, in Latvia since 2004. The present retrospective study was carried out to determine the effectiveness of Rigvir in substage IB, IIA, IIB and IIC melanoma patients on time to progression and overall survival. White patients (N=79) who had undergone surgical excision of the primary melanoma tumour were included in this study. All patients were free from disease after surgery and classified into substages IB, IIA, IIB and IIC. Circulating levels of clinical chemistry parameters were recorded. Survival was analysed by Cox regression. Rigvir significantly (P<0.05) prolonged survival in substage IB–IIC melanoma patients following surgery compared with patients who were under observation (according to current guidelines). The hazard ratio for patients under observation versus treated with Rigvir was statistically significantly different: hazard ratio 6.27 for all, 4.39 for substage IIA–IIB–IIC and 6.57 for substage IIB–IIC patients. The follow-up period was not statistically different between both treatment groups. These results indicate that the patients treated with Rigvir had a 4.39–6.57-fold lower mortality than those under observation. In this study, there was no untoward side effect or discontinuation of Rigvir treatment. Safety assessment of adverse events graded according to NCI CTCAE did not show any value above grade 2 in Rigvir-treated patients. In conclusion, Rigvir significantly prolongs survival in early-stage melanoma patients without any side effect. PMID:26193376

  6. The oncolytic virus dl922-947 reduces IL-8/CXCL8 and MCP-1/CCL2 expression and impairs angiogenesis and macrophage infiltration in anaplastic thyroid carcinoma

    PubMed Central

    Vastolo, Viviana; Di Somma, Sarah; Scamardella, Eloise; Gigantino, Vincenzo; Franco, Renato; Marone, Gianni; Portella, Giuseppe

    2016-01-01

    Anaplastic thyroid carcinoma (ATC) is one of the most aggressive human solid tumor and current treatments are ineffective in increasing patients' survival. Thus, the development of new therapeutic approaches for ATC is needed. We have previously shown that the oncolytic adenovirus dl922-947 induces ATC cell death in vitro and tumor regression in vivo. However, the impact of dl922-947 on the pro-tumorigenic ATC microenvironment is still unknown. Since viruses are able to regulate cytokine and chemokine production from infected cells, we sought to investigate whether dl922-947 virotherapy has such effect on ATC cells, thereby modulating ATC microenvironment. dl922-947 decreased IL-8/CXCL8 and MCP-1/CCL2 production by the ATC cell lines 8505-c and BHT101-5. These results correlated with dl922-947-mediated reduction of NF-κB p65 binding to IL8 promoter in 8505-c and BHT101-5 cells and CCL2 promoter in 8505-c cells. IL-8 stimulates cancer cell proliferation, survival and invasion, and also angiogenesis. dl922-947-mediated reduction of IL-8 impaired ATC cell motility in vitro and ATC-induced angiogenesis in vitro and in vivo. We also show that dl922-947-mediated reduction of the monocyte-attracting chemokine CCL2 decreased monocyte chemotaxis in vitro and tumor macrophage density in vivo. Interestingly, dl922-947 treatment induced the switch of tumor macrophages toward a pro-inflammatory M1 phenotype, likely by increasing the expression of the pro-inflammatory cytokine interferon-γ. Altogether, we demonstrate that dl922-947 treatment re-shape the pro-tumorigenic ATC microenvironment by modulating cancer-cell intrinsic factors and the immune response. An in-depth knowledge of dl922-947-mediated effects on ATC microenvironment may help to refine ATC virotherapy in the context of cancer immunotherapy. PMID:26625205

  7. Oncolytic Virotherapy for Hematological Malignancies

    PubMed Central

    Bais, Swarna; Bartee, Eric; Rahman, Masmudur M.; McFadden, Grant; Cogle, Christopher R.

    2012-01-01

    Hematological malignancies such as leukemias, lymphomas, multiple myeloma (MM), and the myelodysplastic syndromes (MDSs) primarily affect adults and are difficult to treat. For high-risk disease, hematopoietic stem cell transplant (HCT) can be used. However, in the setting of autologous HCT, relapse due to contamination of the autograft with cancer cells remains a major challenge. Ex vivo manipulations of the autograft to purge cancer cells using chemotherapies and toxins have been attempted. Because these past strategies lack specificity for malignant cells and often impair the normal hematopoietic stem and progenitor cells, prior efforts to ex vivo purge autografts have resulted in prolonged cytopenias and graft failure. The ideal ex vivo purging agent would selectively target the contaminating cancer cells while spare normal stem and progenitor cells and would be applied quickly without toxicities to the recipient. One agent which meets these criteria is oncolytic viruses. This paper details experimental progress with reovirus, myxoma virus, measles virus, vesicular stomatitis virus, coxsackievirus, and vaccinia virus as well as requirements for translation of these results to the clinic. PMID:22312362

  8. Oncolytic Herpes Simplex Viral Therapy: A Stride toward Selective Targeting of Cancer Cells.

    PubMed

    Sanchala, Dhaval S; Bhatt, Lokesh K; Prabhavalkar, Kedar S

    2017-01-01

    Oncolytic viral therapy, which makes use of replication-competent lytic viruses, has emerged as a promising modality to treat malignancies. It has shown meaningful outcomes in both solid tumor and hematologic malignancies. Advancements during the last decade, mainly genetic engineering of oncolytic viruses have resulted in improved specificity and efficacy of oncolytic viruses in cancer therapeutics. Oncolytic viral therapy for treating cancer with herpes simplex virus-1 has been of particular interest owing to its range of benefits like: (a) large genome and power to infiltrate in the tumor, (b) easy access to manipulation with the flexibility to insert multiple transgenes, (c) infecting majority of the malignant cell types with quick replication in the infected cells and (d) as Anti-HSV agent to terminate HSV replication. This review provides an exhaustive list of oncolytic herpes simplex virus-1 along with their genetic alterations. It also encompasses the major developments in oncolytic herpes simplex-1 viral therapy and outlines the limitations and drawbacks of oncolytic herpes simplex viral therapy.

  9. Combining HDAC inhibitors with oncolytic virotherapy for cancer therapy.

    PubMed

    Nakashima, Hiroshi; Nguyen, Tran; Chiocca, Ennio Antonio

    2015-01-01

    Histone deacetylase (HDAC) enzymes play a critical role in the epigenetic regulation of cellular functions and signaling pathways in many cancers. HDAC inhibitors (HDACi) have been validated for single use or in combination with other drugs in oncologic therapeutics. An even more novel combination therapy with HDACi is to use them with an oncolytic virus. HDACi may lead to an amplification of tumor-specific lytic effects by facilitating increased cycles of viral replication, but there may also be direct anticancer effects of the drug by itself. Here, we review the molecular mechanisms of anti-cancer effects of the combination of oncolytic viruses with HDACi.

  10. Phase I/II study of oncolytic herpes simplex virus NV1020 in patients with extensively pretreated refractory colorectal cancer metastatic to the liver.

    PubMed

    Geevarghese, Sunil K; Geller, David A; de Haan, Hans A; Hörer, Markus; Knoll, Anette E; Mescheder, Axel; Nemunaitis, John; Reid, Tony R; Sze, Daniel Y; Tanabe, Kenneth K; Tawfik, Hoda

    2010-09-01

    This multicenter phase I/II study evaluated the safety, pharmacokinetics, and antitumor effects of repeated doses of NV1020, a genetically engineered oncolytic herpes simplex virus, in patients with advanced metastatic colorectal cancer (mCRC). Patients with liver-dominant mCRC received four fixed NV1020 doses via weekly hepatic artery infusion, followed by two or more cycles of conventional chemotherapy. Phase I included cohorts receiving 3 × 10(6), 1 × 10(7), 3 × 10(7), and 1 × 10(8) plaque-forming units (PFU)/dose to determine the optimal biological dose (OBD) for phase II. Blind independent computed tomography scan review was based on RECIST (response evaluation criteria in solid tumors) to assess hepatic tumor response. Phase I and II enrolled 13 and 19 patients, respectively. Patients experienced transient mild-moderate febrile reactions after each NV1020 infusion. Grade 3/4 virus-related toxicity was limited to transient lymphopenia in two patients. NV1020 shedding was not detected. Simultaneous cytokine and grade 1 coagulation perturbations were dose-limiting at 1 × 10(8) PFU/dose, considered the OBD. All 22 OBD patients had previously received 5-fluorouracil; most had received oxaliplatin or irinotecan (50% had both), many with at least one targeted agent. After NV1020 administration, 50% showed stable disease. The best overall tumor control rate after chemotherapy was 68% (1 partial response, 14 stable disease); this did not correlate with baseline variables or chemotherapy. Median time to progression was 6.4 months (95% confidence interval: 2, 8.9); median overall survival was 11.8 months (95% confidence interval: 8.3, 20.7). One-year survival was 47.2%. We conclude that NV1020 stabilizes liver metastases with minimal toxicity in mCRC. It may resensitize metastases to salvage chemotherapy and extend overall survival. A randomized phase II/III trial now appears justified.

  11. Vectorization in an oncolytic vaccinia virus of an antibody, a Fab and a scFv against programmed cell death -1 (PD-1) allows their intratumoral delivery and an improved tumor-growth inhibition

    PubMed Central

    Kleinpeter, Patricia; Fend, Laetitia; Thioudellet, Christine; Geist, Michel; Sfrontato, Nathalie; Koerper, Véronique; Fahrner, Catherine; Schmitt, Doris; Gantzer, Murielle; Remy-Ziller, Christelle; Brandely, Renée; Villeval, Dominique; Rittner, Karola; Silvestre, Nathalie; Erbs, Philippe; Zitvogel, Laurence; Quéméneur, Eric; Préville, Xavier; Marchand, Jean-Baptiste

    2016-01-01

    ABSTRACT We report here the successful vectorization of a hamster monoclonal IgG (namely J43) recognizing the murine Programmed cell death-1 (mPD-1) in Western Reserve (WR) oncolytic vaccinia virus. Three forms of mPD-1 binders have been inserted into the virus: whole antibody (mAb), Fragment antigen-binding (Fab) or single-chain variable fragment (scFv). MAb, Fab and scFv were produced and assembled with the expected patterns in supernatants of cells infected by the recombinant viruses. The three purified mPD-1 binders were able to block the binding of mPD-1 ligand to mPD-1 in vitro. Moreover, mAb was detected in tumor and in serum of C57BL/6 mice when the recombinant WR-mAb was injected intratumorally (IT) in B16F10 and MCA 205 tumors. The concentration of circulating mAb detected after IT injection was up to 1,900-fold higher than the level obtained after a subcutaneous (SC) injection (i.e., without tumor) confirming the virus tropism for tumoral cells and/or microenvironment. Moreover, the overall tumoral accumulation of the mAb was higher and lasted longer after IT injection of WR-mAb1, than after IT administration of 10 µg of J43. The IT injection of viruses induced a massive infiltration of immune cells including activated lymphocytes (CD8+ and CD4+). Interestingly, in the MCA 205 tumor model, WR-mAb1 and WR-scFv induced a therapeutic control of tumor growth similar to unarmed WR combined to systemically administered J43 and superior to that obtained with an unarmed WR. These results pave the way for next generation of oncolytic vaccinia armed with immunomodulatory therapeutic proteins such as mAbs. PMID:27853644

  12. Oncolytic virotherapy for pediatric malignancies: future prospects.

    PubMed

    Waters, Alicia M; Friedman, Gregory K; Ring, Eric K; Beierle, Elizabeth A

    2016-01-01

    Pediatric solid tumors remain a major health concern, with nearly 16,000 children diagnosed each year. Of those, ~2,000 succumb to their disease, and survivors often suffer from lifelong disability secondary to toxic effects of current treatments. Countless multimodality treatment regimens are being explored to make advances against this deadly disease. One targeted treatment approach is oncolytic virotherapy. Conditionally replicating viruses can infect tumor cells while leaving normal cells unharmed. Four viruses have been advanced to pediatric clinical trials, including herpes simplex virus-1, Seneca Valley virus, reovirus, and vaccinia virus. In this review, we discuss the mechanism of action of each virus, pediatric preclinical studies conducted to date, past and ongoing pediatric clinical trials, and potential future direction for these novel viral therapeutics.

  13. Oncolytic virotherapy for pediatric malignancies: future prospects

    PubMed Central

    Waters, Alicia M; Friedman, Gregory K; Ring, Eric K; Beierle, Elizabeth A

    2016-01-01

    Pediatric solid tumors remain a major health concern, with nearly 16,000 children diagnosed each year. Of those, ~2,000 succumb to their disease, and survivors often suffer from lifelong disability secondary to toxic effects of current treatments. Countless multimodality treatment regimens are being explored to make advances against this deadly disease. One targeted treatment approach is oncolytic virotherapy. Conditionally replicating viruses can infect tumor cells while leaving normal cells unharmed. Four viruses have been advanced to pediatric clinical trials, including herpes simplex virus-1, Seneca Valley virus, reovirus, and vaccinia virus. In this review, we discuss the mechanism of action of each virus, pediatric preclinical studies conducted to date, past and ongoing pediatric clinical trials, and potential future direction for these novel viral therapeutics. PMID:27579298

  14. Oncolytic vaccine virus harbouring the IL-24 gene suppresses the growth of lung cancer by inducing apoptosis.

    PubMed

    Lv, Chunwei; Su, Qunshu; Liang, Yupei; Hu, Jinqing; Yuan, Sujing

    2016-07-15

    Lung cancer has an especially high incidence rate worldwide, and its resistance to cell death and chemotherapeutic drugs increases its intractability. The vaccinia virus has been shown to destroy neoplasm within a short time and disseminate rapidly and extensively as an enveloped virion throughout the circulatory system, and this virus has also demonstrated a strong ability to overexpress exogenous genes. Interleukin-24 (IL-24/mda-7) is an important cytokine that belongs to the activating caspase family and facilitates the inhibition of STAT3 when a cell enters the apoptosis pathway. In this study, we constructed a cancer-targeted vaccinia virus carrying the IL-24 gene knocked in the region of the viral thymidine kinase (TK) gene (VV-IL-24). Our results showed that VV-IL-24 efficiently infected and destroyed lung cancer cells via caspase-dependent apoptosis and decreased the expression of STAT3. In vivo, VV-IL-24 expressed IL-24 at a high level in the transplanted tumour, reduced STAT3 activity, and eventually led to apoptosis. In conclusion, we demonstrated that vv-IL-24 has the potential for use as a new human lung cancer treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Delivery of oncolytic adenovirus into the nucleus of tumorigenic cells by tumor microparticles for virotherapy.

    PubMed

    Ran, Li; Tan, Xiaohua; Li, Yanchun; Zhang, Huafeng; Ma, Ruihua; Ji, Tiantian; Dong, Wenqian; Tong, Tong; Liu, Yuying; Chen, Degao; Yin, Xiaonan; Liang, Xiaoyu; Tang, Ke; Ma, Jingwei; Zhang, Yi; Cao, Xuetao; Hu, Zhuowei; Qin, Xiaofeng; Huang, Bo

    2016-05-01

    Oncolytic viruses have been utilized for the treatment of various cancers. However, delivery of the viral particles to tumor cells remains a major challenge. Microparticles (MP) are vesicle forms of plasma membrane fragments of 0.1-1 μm in size that are shed by cells. We have previously shown the delivery of chemotherapeutic drugs using tumor cell-derived MPs (T-MP). Here we report that T-MPs can be utilized as a unique carrier system to deliver oncolytic adenoviruses to human tumors, leading to highly efficient cytolysis of tumor cells needed for in vivo treatment efficacy. This T-MP-mediated oncolytic virotherapy approach holds multiple advantages, including: 1) delivery of oncolytic adenovirus by T-MPs is able to avoid the antiviral effect of host antibodies; 2) delivery of oncolytic adenovirus by T-MPs is not limited by virus-specific receptor that mediates the entry of virus into tumor cells; 3) T-MPs are apt at delivering oncolytic adenoviruses to the nucleus of tumor cells as well as to stem-like tumor-repopulating cells for the desired purpose of killing them. These findings highlight a novel oncolytic adenovirus delivery system with highly promising clinical applications.

  16. Cancer immunotherapy via combining oncolytic virotherapy with chemotherapy: recent advances.

    PubMed

    Simpson, Guy R; Relph, Kate; Harrington, Kevin; Melcher, Alan; Pandha, Hardev

    2016-01-01

    Oncolytic viruses are multifunctional anticancer agents with huge clinical potential, and have recently passed the randomized Phase III clinical trial hurdle. Both wild-type and engineered viruses have been selected for targeting of specific cancers, to elicit cytotoxicity, and also to generate antitumor immunity. Single-agent oncolytic virotherapy treatments have resulted in modest effects in the clinic. There is increasing interest in their combination with cytotoxic agents, radiotherapy and immune-checkpoint inhibitors. Similarly to oncolytic viruses, the benefits of chemotherapeutic agents may be that they induce systemic antitumor immunity through the induction of immunogenic cell death of cancer cells. Combining these two treatment modalities has to date resulted in significant potential in vitro and in vivo synergies through various mechanisms without any apparent additional toxicities. Chemotherapy has been and will continue to be integral to the management of advanced cancers. This review therefore focuses on the potential for a number of common cytotoxic agents to be combined with clinically relevant oncolytic viruses. In many cases, this combined approach has already advanced to the clinical trial arena.

  17. Novel oncolytic viral therapies in patients with thoracic malignancies

    PubMed Central

    Ahmad, Zeeshan; Kratzke, Robert A

    2017-01-01

    Oncolytic virotherapy is the use of replication-competent viruses to treat malignancies. The potential of oncolytic virotherapy as an approach to cancer therapy is based on historical evidence that certain viral infections can cause spontaneous remission of both hematologic and solid tumor malignancies. Oncolytic virotherapy may eliminate cancer cells through either direct oncolysis of infected tumor cells or indirect immune-mediated oncolysis of uninfected tumor cells. Recent advances in oncolytic virotherapy include the development of a wide variety of genetically attenuated RNA viruses with precise cellular tropism and the identification of cell-surface receptors that facilitate viral transfer to the tissue of interest. Current research is also focused on targeting metastatic disease by sustaining the release of progeny viruses from infected tumor cells and understanding indirect tumor cell killing through immune-mediated mechanisms of virotherapy. The purpose of this review is to critically evaluate recent evidence on the clinical development of tissue-specific viruses capable of targeting tumor cells and eliciting secondary immune responses in lung cancers and mesothelioma. PMID:28053943

  18. Urokinase-Targeted Fusion by Oncolytic Sendai Virus Eradicates Orthotopic Glioblastomas by Pronounced Synergy With Interferon-β Gene

    PubMed Central

    Hasegawa, Yuzo; Kinoh, Hiroaki; Iwadate, Yasuo; Onimaru, Mitsuho; Ueda, Yasuji; Harada, Yui; Saito, Satoru; Furuya, Aki; Saegusa, Takashi; Morodomi, Yosuke; Hasegawa, Mamoru; Saito, Shigeyoshi; Aoki, Ichio; Saeki, Naokatsu; Yonemitsu, Yoshikazu

    2010-01-01

    Glioblastoma multiforme (GM), the most frequent primary malignant brain tumor, is highly invasive due to the expression of proteases, including urokinase-type plasminogen activator (uPA). Here, we show the potential of our new and powerful recombinant Sendai virus (rSeV) showing uPA-specific cell-to-cell fusion activity [rSeV/dMFct14 (uPA2), named “BioKnife”] for GM treatment, an effect that was synergistically enhanced by arming BioKnife with the interferon-β (IFN-β) gene. BioKnife killed human GM cell lines efficiently in a uPA-dependent fashion, and this killing was prevented by PA inhibitor-1. Rat gliosarcoma 9L cells expressing both uPA and its functional receptor uPAR (9L-L/R) exhibited high uPA activity on the cellular surface and were highly susceptible to BioKnife. Although parent 9L cells (9L-P) were resistant to BioKnife and to BioKnife expressing IFN-β (BioKnife-IFNβ), cell–cell fusion of 9L-L/R strongly facilitated the expression of IFN-β, and in turn, IFN-β significantly accelerated the fusion activity of BioKnife. A similar synergy was seen in a rat orthotopic brain GM model with 9L-L/R in vivo; therefore, these results suggest that BioKnife-IFNβ may have significant potential to improve the survival of GM patients in a clinical setting. PMID:20606645

  19. Unlocking the promise of oncolytic virotherapy in glioma: combination with chemotherapy to enhance efficacy.

    PubMed

    Spencer, Drew A; Young, Jacob S; Kanojia, Deepak; Kim, Julius W; Polster, Sean P; Murphy, Jason P; Lesniak, Maciej S

    2015-01-01

    Malignant glioma is a relentless burden to both patients and clinicians, and calls for innovation to overcome the limitations in current management. Glioma therapy using viruses has been investigated to accentuate the nature of a virus, killing a host tumor cell during its replication. As virus mediated approaches progress with promising therapeutic advantages, combination therapy with chemotherapy and oncolytic viruses has emerged as a more synergistic and possibly efficacious therapy. Here, we will review malignant glioma as well as prior experience with oncolytic viruses, chemotherapy and combination of the two, examining how the combination can be optimized in the future.

  20. Developing Novel Oncolytic Adenoviruses through Bioselection

    PubMed Central

    Yan, Wen; Kitzes, Galila; Dormishian, Farid; Hawkins, Lynda; Sampson-Johannes, Adam; Watanabe, Josh; Holt, Jenny; Lee, Vivian; Dubensky, Thomas; Fattaey, Ali; Hermiston, Terry; Balmain, Allan; Shen, Yuqiao

    2003-01-01

    Mutants of human adenovirus 5 (Ad5) with enhanced oncolytic activity were isolated by using a procedure termed bioselection. Two mutants, ONYX-201 and ONYX-203, were plaque purified from a pool of randomly mutagenized Ad5 that was repeatedly passaged in the human colorectal cancer cell line HT29, and they were subsequently characterized. ONYX-201 and ONYX-203 replicated more rapidly in HT29 cells than wild-type Ad5, and they lysed HT29 cells up to 1,000-fold more efficiently. The difference was most profound when cells were infected at a relatively low multiplicity of infection, presumably due to the compounding effects of multiple rounds of infection. This enhanced cytolytic activity was observed not only in HT29 cells but also in many other human cancer cell lines tested. In contrast, the cytotoxicity of the bioselected mutants in a number of normal primary human cells was similar to that of wild-type Ad5, thus enhancing the therapeutic index (cytotoxicity in tumor cells versus that in normal cells) of these oncolytic agents. Both ONYX-201 and -203 contain seven single-base-pair mutations when compared with Ad5, four of which were common between ONYX-201 and -203. The mutation at nucleotide 8350, shared by both mutant viruses, was shown to be essential for the observed phenotypes. This mutation was mapped to the i-leader region of the major late transcription unit, resulting in the truncation of 21 amino acids from the C terminus of the i-leader protein. This work demonstrates that bioselection is a powerful tool for developing novel tumor-selective oncolytic viruses. Other potential applications of this technology are discussed. PMID:12552003

  1. Stem Cell-Based Cell Carrier for Targeted Oncolytic Virotherapy: Translational Opportunity and Open Questions.

    PubMed

    Kim, Janice; Hall, Robert R; Lesniak, Maciej S; Ahmed, Atique U

    2015-11-27

    Oncolytic virotherapy for cancer is an innovative therapeutic option where the ability of a virus to promote cell lysis is harnessed and reprogrammed to selectively destroy cancer cells. Such treatment modalities exhibited antitumor activity in preclinical and clinical settings and appear to be well tolerated when tested in clinical trials. However, the clinical success of oncolytic virotherapy has been significantly hampered due to the inability to target systematic metastasis. This is partly due to the inability of the therapeutic virus to survive in the patient circulation, in order to target tumors at distant sites. An early study from various laboratories demonstrated that cells infected with oncolytic virus can protect the therapeutic payload form the host immune system as well as function as factories for virus production and enhance the therapeutic efficacy of oncolytic virus. While a variety of cell lineages possessed potential as cell carriers, copious investigation has established stem cells as a very attractive cell carrier system in oncolytic virotherapy. The ideal cell carrier desire to be susceptible to viral infection as well as support viral infection, maintain immunosuppressive properties to shield the loaded viruses from the host immune system, and most importantly possess an intrinsic tumor homing ability to deliver loaded viruses directly to the site of the metastasis-all qualities stem cells exhibit. In this review, we summarize the recent work in the development of stem cell-based carrier for oncolytic virotherapy, discuss the advantages and disadvantages of a variety of cell carriers, especially focusing on why stem cells have emerged as the leading candidate, and finally propose a future direction for stem cell-based targeted oncolytic virotherapy that involves its establishment as a viable treatment option for cancer patients in the clinical setting.

  2. Stem Cell-Based Cell Carrier for Targeted Oncolytic Virotherapy: Translational Opportunity and Open Questions

    PubMed Central

    Kim, Janice; Hall, Robert R.; Lesniak, Maciej S.; Ahmed, Atique U.

    2015-01-01

    Oncolytic virotherapy for cancer is an innovative therapeutic option where the ability of a virus to promote cell lysis is harnessed and reprogrammed to selectively destroy cancer cells. Such treatment modalities exhibited antitumor activity in preclinical and clinical settings and appear to be well tolerated when tested in clinical trials. However, the clinical success of oncolytic virotherapy has been significantly hampered due to the inability to target systematic metastasis. This is partly due to the inability of the therapeutic virus to survive in the patient circulation, in order to target tumors at distant sites. An early study from various laboratories demonstrated that cells infected with oncolytic virus can protect the therapeutic payload form the host immune system as well as function as factories for virus production and enhance the therapeutic efficacy of oncolytic virus. While a variety of cell lineages possessed potential as cell carriers, copious investigation has established stem cells as a very attractive cell carrier system in oncolytic virotherapy. The ideal cell carrier desire to be susceptible to viral infection as well as support viral infection, maintain immunosuppressive properties to shield the loaded viruses from the host immune system, and most importantly possess an intrinsic tumor homing ability to deliver loaded viruses directly to the site of the metastasis—all qualities stem cells exhibit. In this review, we summarize the recent work in the development of stem cell-based carrier for oncolytic virotherapy, discuss the advantages and disadvantages of a variety of cell carriers, especially focusing on why stem cells have emerged as the leading candidate, and finally propose a future direction for stem cell-based targeted oncolytic virotherapy that involves its establishment as a viable treatment option for cancer patients in the clinical setting. PMID:26633462

  3. Resistance to Oncolytic Myxoma Virus Therapy in Nf1−/−/Trp53−/− Syngeneic Mouse Glioma Models Is Independent of Anti-Viral Type-I Interferon

    PubMed Central

    Zemp, Franz J.; McKenzie, Brienne A.; Lun, Xueqing; Maxwell, Lori; Reilly, Karlyne M.; McFadden, Grant; Yong, V. Wee; Forsyth, Peter A.

    2013-01-01

    Despite promising preclinical studies, oncolytic viral therapy for malignant gliomas has resulted in variable, but underwhelming results in clinical evaluations. Of concern are the low levels of tumour infection and viral replication within the tumour. This discrepancy between the laboratory and the clinic could result from the disparity of xenograft versus syngeneic models in determining in vivo viral infection, replication and treatment efficacy. Here we describe a panel of primary mouse glioma lines derived from Nf1+/−Trp53+/− mice in the C57Bl/6J background for use in the preclinical testing of the oncolytic virus Myxoma (MYXV). These lines show a range of susceptibility to MYXV replication in vitro, but all succumb to viral-mediated cell death. Two of these lines orthotopically grafted produced aggressive gliomas. Intracranial injection of MYXV failed to result in sustained viral replication or treatment efficacy, with minimal tumour infection that was completely resolved by 7 days post-infection. We hypothesized that the stromal production of Type-I interferons (IFNα/β) could explain the resistance seen in these models; however, we found that neither the cell lines in vitro nor the tumours in vivo produce any IFNα/β in response to MYXV infection. To confirm IFNα/β did not play a role in this resistance, we ablated the ability of tumours to respond to IFNα/β via IRF9 knockdown, and generated identical results. Our studies demonstrate that these syngeneic cell lines are relevant preclinical models for testing experimental glioma treatments, and show that IFNα/β is not responsible for the MYXV treatment resistance seen in syngeneic glioma models. PMID:23762429

  4. The use of the NIS reporter gene for optimizing oncolytic virotherapy

    PubMed Central

    Miller, Amber; Russell, Stephen J

    2016-01-01

    Introduction: Oncolytic viruses are experimental cancer therapies being translated to the clinic. They are unique in their ability to amplify within the body, therefore requiring careful monitoring of viral replication and biodistribution. Traditional monitoring strategies fail to recapitulate the dynamic nature of oncolytic virotherapy. Consequently, clinically relevant, noninvasive, high resolution strategies are needed to effectively track virotherapy in real time. Areas covered: The expression of the sodium iodide symporter (NIS) reporter gene is tightly coupled to viral genome replication and mediates radioisotope concentration, allowing noninvasive molecular nuclear imaging of active viral infection with high resolution. This provides insight into replication kinetics, biodistribution, the impact of vector design, administration, and dosing on therapeutic outcomes, and highlights the heterogeneity of spatial distribution and temporal evolution of infection. NIS-mediated imaging in clinical trials confirms the feasibility of this technology to noninvasively and longitudinally observe oncolytic virus infection, replication, and distribution. Expert opinion: NIS-mediated imaging provides detailed functional and molecular information on the evolution of oncolytic virus infection in living animals. The use of NIS reporter gene imaging has rapidly advanced to provide unparalleled insight into the spatial and temporal context of oncolytic infection which will be integral to optimization of oncolytic treatment strategies. PMID:26457362

  5. Targeting tumor vasculature through oncolytic virotherapy: recent advances.

    PubMed

    Toro Bejarano, Marcela; Merchan, Jaime R

    2015-01-01

    The oncolytic virotherapy field has made significant advances in the last decade, with a rapidly increasing number of early- and late-stage clinical trials, some of them showing safety and promising therapeutic efficacy. Targeting tumor vasculature by oncolytic viruses (OVs) is an attractive strategy that offers several advantages over nontargeted viruses, including improved tumor viral entry, direct antivascular effects, and enhanced antitumor efficacy. Current understanding of the biological mechanisms of tumor neovascularization, novel vascular targets, and mechanisms of resistance has allowed the development of oncolytic viral vectors designed to target tumor neovessels. While some OVs (such as vaccinia and vesicular stomatitis virus) can intrinsically target tumor vasculature and induce vascular disruption, the majority of reported vascular-targeted viruses are the result of genetic manipulation of their viral genomes. Such strategies include transcriptional or transductional endothelial targeting, "armed" viruses able to downregulate angiogenic factors, or to express antiangiogenic molecules. The above strategies have shown preclinical safety and improved antitumor efficacy, either alone, or in combination with standard or targeted agents. This review focuses on the recent efforts toward the development of vascular-targeted OVs for cancer treatment and provides a translational/clinical perspective into the future development of new generation biological agents for human cancers.

  6. Moxibustion activates host defense against herpes simplex virus type I through augmentation of cytokine production.

    PubMed

    Takayama, Yuko; Itoi, Manami; Hamahashi, Takashi; Tsukamoto, Noriyuki; Mori, Kazuya; Morishita, Daisuke; Wada, Kumiko; Amagai, Takashi

    2010-09-01

    Moxibustion is a technique used in traditional oriental medicine, the aim of which is to cure and/or prevent illness by activating a person's ability for self-healing. In this study, we assessed how moxibustion would affect the immune system and whether it would augment protective immunity. Mice were treated with moxibustion at Zusanli (ST36) acupoints; we analyzed mortality and cytokine activity in sera after infection with herpes simplex virus type 1 (HSV-1), and cytokine gene expression in the skin and the spleen without a virus challenge. Our study demonstrates that pretreatment of BALB/c mice with moxibustion resulted in a marked increase in the survival rate after infection with lethal doses of HSV-1, and elevated serum levels of IL-1β and IFN-γ on days 1 and 6 post-infection with HSV-1. Semi-quantitative RT-PCR assay showed that moxibustion treatment augmented the expression of IL-1α, IL-1β, IL-6, universal-IFN-α, MIP-1α, and TNF-α mRNA in the skin, and IL-1α, IL-1β, IL-12p40, IL-15, u-IFN-α, MIP-1α, and TNF-α mRNA in the spleen. Moreover, moxibustion induces augmentation of natural killer cell activity. Collectively, our study demonstrates that moxibustion activates protective responses against HSV-1 infection through the activation of cytokine production including IFN, and of NK cells.

  7. Advanced new strategies for metastatic cancer treatment by therapeutic stem cells and oncolytic virotherapy

    PubMed Central

    Park, Geon-Tae; Choi, Kyung-Chul

    2016-01-01

    The field of therapeutic stem cell and oncolytic virotherapy for cancer treatment has rapidly expanded over the past decade. Oncolytic viruses constitute a promising new class of anticancer agent because of their ability to selectively infect and destroy tumor cells. Engineering of viruses to express anticancer genes and specific cancer targeting molecules has led to the use of these systems as a novel platform of metastatic cancer therapy. In addition, stem cells have a cancer specific migratory capacity, which is available for metastatic cancer targeting. Prodrug activating enzyme or anticancer cytokine expressing stem cells successfully inhibited the proliferation of cancer cells. Preclinical models have clearly demonstrated anticancer activity of these two platforms against a number of different cancer types and metastatic cancer. Several systems using therapeutic stem cells or oncolytic virus have entered clinical trials, and promising results have led to late stage clinical development. Consequently, metastatic cancer therapies using stem cells and oncolytic viruses are extremely promising. The following review will focus on the metastatic cancer targeting mechanism of therapeutic stem cells and oncolytic viruses, and potential challenges ahead for advancing the field. PMID:27494901

  8. Infectivity-selective Oncolytic Adenovirus Developed by High-throughput Screening of Adenovirus-formatted Library

    PubMed Central

    Miura, Yoshiaki; Yamasaki, Satoshi; Davydova, Julia; Brown, Eric; Aoki, Kazunori; Vickers, Selwyn; Yamamoto, Masato

    2013-01-01

    Adenovirus (Ad) is a potent gene-delivery vehicle and has frequently been used for designing oncolytic viruses. However, lack of selectivity on infection has hampered the achievement of sufficient in vivo efficiency. Here, we developed a novel oncolytic virus system, infectivity-selective oncolytic adenovirus (ISOAd), via direct high-throughput screening of a high-diversity targeting-ligand library in adenoviral format. Through our newly designed rescue virus system, the high-diversity Ad library carrying the random seven amino acid sequences ligand-library in the AB-loop of its fiber-knob region (5 × 109 diversity) was successfully generated. During the screening of this library with the cells expressing the target molecule (mesothelin, MSLN), the AB-loop sequence of the virus clones converged to one dominant sequence and a novel MSLN-targeting sequence was isolated. The virus with the isolated motif showed selective infectivity to MSLN-positive cells in vitro. In vivo, it exhibited a selective and potent antitumor effect resulted from the viral replication in MSLN-positive xenografts. The ISOAd is a novel class of oncolytic Ad, which has selectivity at the step of transduction. The selectivity at the stage of infection can open new perspectives in oncolytic Ad therapy for various diseases. PMID:23032977

  9. Advanced new strategies for metastatic cancer treatment by therapeutic stem cells and oncolytic virotherapy.

    PubMed

    Park, Geon-Tae; Choi, Kyung-Chul

    2016-09-06

    The field of therapeutic stem cell and oncolytic virotherapy for cancer treatment has rapidly expanded over the past decade. Oncolytic viruses constitute a promising new class of anticancer agent because of their ability to selectively infect and destroy tumor cells. Engineering of viruses to express anticancer genes and specific cancer targeting molecules has led to the use of these systems as a novel platform of metastatic cancer therapy. In addition, stem cells have a cancer specific migratory capacity, which is available for metastatic cancer targeting. Prodrug activating enzyme or anticancer cytokine expressing stem cells successfully inhibited the proliferation of cancer cells. Preclinical models have clearly demonstrated anticancer activity of these two platforms against a number of different cancer types and metastatic cancer. Several systems using therapeutic stem cells or oncolytic virus have entered clinical trials, and promising results have led to late stage clinical development. Consequently, metastatic cancer therapies using stem cells and oncolytic viruses are extremely promising. The following review will focus on the metastatic cancer targeting mechanism of therapeutic stem cells and oncolytic viruses, and potential challenges ahead for advancing the field.

  10. Suppression of antiviral innate immunity by sunitinib enhances oncolytic virotherapy.

    PubMed

    Jha, Babal K; Dong, Beihua; Nguyen, Carvell T; Polyakova, Irina; Silverman, Robert H

    2013-09-01

    The use of lytic viruses to preferentially infect and eliminate cancer cells while sparing normal cells is a promising experimental therapeutic approach for treating cancer. However, the efficacy of oncolytic virotherapy is often limited by two innate immunity pathways, the protein kinase PKR and the 2'-5'-oligoadenylate (OAS)/RNase L systems, which are widely present in many but not all tumor cell types. Previously, we reported that the anticancer drug, sunitinib, an inhibitor of VEGF-R and PDGF-R, has off-target effects against both PKR and RNase L. Here we show that combining sunitinib treatments with infection by an oncolytic virus, vesicular stomatitis virus (VSV), led to the elimination of prostate, breast, and kidney malignant tumors in mice. In contrast, either virus or sunitinib alone slowed tumor progression but did not eliminate tumors. In prostate tumors excised from treated mice, sunitinib decreased levels of the phosphorylated form of translation initiation factor, eIF2-α, a substrate of PKR, by 10-fold while increasing median viral titers by 23-fold. The sunitinib/VSV regimen caused complete and sustained tumor regression in both immunodeficient and immunocompetent animals. Results indicate that transient inhibition of innate immunity with sunitinib enhances oncolytic virotherapy allowing the recovery of tumor-bearing animals.

  11. Evidence for differential viral oncolytic efficacy in an in vitro model of epithelial ovarian cancer metastasis

    PubMed Central

    Tong, Jessica G; Valdes, Yudith Ramos; Barrett, John W; Bell, John C; Stojdl, David; McFadden, Grant; McCart, J Andrea; DiMattia, Gabriel E; Shepherd, Trevor G

    2015-01-01

    Epithelial ovarian cancer is unique among most carcinomas in that metastasis occurs by direct dissemination of malignant cells traversing throughout the intraperitoneal fluid. Accordingly, we test new therapeutic strategies using an in vitro three-dimensional spheroid suspension culture model that mimics key steps of this metastatic process. In the present study, we sought to uncover the differential oncolytic efficacy among three different viruses—Myxoma virus, double-deleted vaccinia virus, and Maraba virus—using three ovarian cancer cell lines in our metastasis model system. Herein, we demonstrate that Maraba virus effectively infects, replicates, and kills epithelial ovarian cancer (EOC) cells in proliferating adherent cells and with slightly slower kinetics in tumor spheroids. Myxoma virus and vaccinia viruses infect and kill adherent cells to a much lesser extent than Maraba virus, and their oncolytic potential is almost completely attenuated in spheroids. Myxoma virus and vaccinia are able to infect and spread throughout spheroids, but are blocked in the final stages of the lytic cycle, and oncolytic-mediated cell killing is reactivated upon spheroid reattachment. Alternatively, Maraba virus has a remarkably reduced ability to initially enter spheroid cells, yet rapidly infects and spreads throughout spheroids generating significant cell killing effects. We show that low-density lipoprotein receptor expression in ovarian cancer spheroids is reduced and this controls efficient Maraba virus binding and entry into infected cells. Taken together, these results are the first to implicate the potential impact of differential viral oncolytic properties at key steps of ovarian cancer metastasis. PMID:27119108

  12. Oncolytic adenoviruses: A thorny path to glioma cure

    PubMed Central

    Ulasov, I.V.; Borovjagin, A.V.; Schroeder, B.A.; Baryshnikov, A.Y.

    2014-01-01

    Glioblastoma Multiforme (GBM) is a rapidly progressing brain tumor. Despite the relatively low percentage of cancer patients with glioma diagnoses, recent statistics indicate that the number of glioma patients may have increased over the past decade. Current therapeutic options for glioma patients include tumor resection, chemotherapy, and concomitant radiation therapy with an average survival of approximately 16 months. The rapid progression of gliomas has spurred the development of novel treatment options, such as cancer gene therapy and oncolytic virotherapy. Preclinical testing of oncolytic adenoviruses using glioma models revealed both positive and negative sides of the virotherapy approach. Here we present a detailed overview of the glioma virotherapy field and discuss auxiliary therapeutic strategies with the potential for augmenting clinical efficacy of GBM virotherapy treatment. PMID:25685829

  13. Combining oncolytic virotherapy and cytotoxic therapies to fight cancer.

    PubMed

    Fillat, Cristina; Maliandi, Maria Victoria; Mato-Berciano, Ana; Alemany, Ramon

    2014-01-01

    Oncolytic viruses (OV) are promising anti-cancer agents, capable of selectively replicating in tumour cells and killing them. Chemotherapy, on the other hand, remains the backbone of current cancer treatment, although it is limited by a narrow therapeutic index, significant toxicity, and frequent acquired resistance. There is an increasing body of evidence on a variety of chemotherapeutic agents that have been shown to be synergic with OV and result in increased response rates in preclinical studies. Several possible mechanisms have been proposed to mediate the enhanced anti-tumour activity of such combination treatment. Moreover, it has been shown how prodrug- activating enzymes armed oncolytic viruses promote synergy with prodrugs. In the present review we summarise the current knowledge concerning the benefits of the combination of OV and cytotoxic drug treatment and discuss the translational opportunities such therapeutic synergies have in the fight against cancer.

  14. Going viral: a review of replication-selective oncolytic adenoviruses

    PubMed Central

    Larson, Christopher; Oronsky, Bryan; Scicinski, Jan; Fanger, Gary R.; Stirn, Meaghan; Oronsky, Arnold; Reid, Tony R.

    2015-01-01

    Oncolytic viruses have had a tumultuous course, from the initial anecdotal reports of patients having antineoplastic effects after natural viral infections a century ago to the development of current cutting-edge therapies in clinical trials. Adenoviruses have long been the workhorse of virotherapy, and we review both the scientific and the not-so-scientific forces that have shaped the development of these therapeutics from wild-type viral pathogens, turning an old foe into a new friend. After a brief review of the mechanics of viral replication and how it has been modified to engineer tumor selectivity, we give particular attention to ONYX-015, the forerunner of virotherapy with extensive clinical testing that pioneered the field. The findings from those as well as other oncolytic trials have shaped how we now view these viruses, which our immune system has evolved to vigorously attack, as promising immunotherapy agents. PMID:26280277

  15. Healing after death: antitumor immunity induced by oncolytic adenoviral therapy

    PubMed Central

    Jiang, Hong; Fueyo, Juan

    2014-01-01

    We recently evaluated the capacity of Delta-24-RGD oncolytic adenovirus to trigger an antitumor immune response in a syngeneic mouse glioma model. This virotherapy elicited immunity against both tumor-associated antigens and viral antigens. An immunogenic cell death accompanied by pathogen- or damage- associated patterns (PAMPs and DAMPs) induced by the virus may be responsible for the adenoviral-mediated antitumor effect. PMID:25954598

  16. Systemic Oncolytic Cytokine HSV Therapy of Prostate Cancer

    DTIC Science & Technology

    2007-05-01

    the development of prostatic intraepithelial neoplasia (PIN) by 8 weeks of age, prostate carcinoma by 12 weeks, and metastatic cancer in peri-aortic...multifocally in the spontaneously arising prostate cancers . 18 Importantly, the spontaneously arising tumors are continually progressing to more malignant ...Parato, KA, Senger, D, Forsyth, PA, and Bell, JC Recent progress in the battle between oncolytic viruses and tumours . Nat Rev Cancer , 2005; 5(12

  17. Tumor localized secretion of soluble PD1 enhances oncolytic virotherapy.

    PubMed

    Bartee, Mee Y; Dunlap, Katherine M; Bartee, Eric

    2017-03-17

    Oncolytic virotherapy represents an attractive option for the treatment of a variety of aggressive or refractory tumors. While this therapy is effective at rapidly debulking directly injected tumor masses, achieving complete eradication of established disease has proven difficult. One method to overcome this challenge is to use oncolytic viruses to induce secondary anti-tumor immune responses. Unfortunately, while the initial induction of these immune responses is typically robust, their subsequent efficacy is often inhibited through a variety of immunoregulatory mechanisms, including the PD1/PDL1 T-cell checkpoint pathway. To overcome this inhibition, we generated a novel recombinant myxoma virus (vPD1) which inhibits the PD1/PDL1 pathway specifically within the tumor microenvironment by secreting a soluble form of PD1 from infected cells. This virus both induced and maintained anti-tumor CD8+ T-cell responses within directly treated tumors and proved safer and more effective than combination therapy using unmodified myxoma and systemic αPD1 antibodies. Localized vPD1 treatment combined with systemic elimination of regulatory T cells had potent synergistic effects against metastatic disease that was already established in secondary solid organs. These results demonstrate that tumor-localized inhibition of the PD1/PDL1 pathway can significantly improve outcomes during oncolytic virotherapy. Furthermore, they establish a feasible path to translate these findings against clinically relevant disease.

  18. Oncolytic virotherapy including Rigvir and standard therapies in malignant melanoma

    PubMed Central

    Babiker, Hani M; Riaz, Irbaz Bin; Husnain, Muhammad; Borad, Mitesh J

    2017-01-01

    The treatment of metastatic melanoma has evolved from an era where interferon and chemotherapy were the mainstay of treatments to an era where immunotherapy has become the frontline. Ipilimumab (IgG1 CTLA-4 inhibitor), nivolumab (IgG4 PD-1 inhibitor), pembrolizumab (IgG4 PD-1 inhibitor) and nivolumab combined with ipilimumab have become first-line therapies in patients with metastatic melanoma. In addition, the high prevalence of BRAF mutations in melanoma has led to the discovery and approval of targeted molecules, such as vemurafenib (BRAF kinase inhibitor) and trametinib (MEK inhibitor), as they yielded improved responses and survival in malignant melanoma patients. This is certainly a burgeoning time in immunotherapy drug development, and the aforementioned efforts along with the recent US Food and Drug Administration approval of talimogene laherparepvec (T-VEC), a recombinant oncolytic herpes virus, have paved the way to exploring the role of additional oncolytic viruses, such as the echovirus Rigvir, as new and innovative treatment modalities in patients with melanoma. Herein, we discuss the current standard of care treatment in melanoma with an emphasis on immunotherapy and oncolytic viruses in development. PMID:28224120

  19. Oncolytic virotherapy including Rigvir and standard therapies in malignant melanoma.

    PubMed

    Babiker, Hani M; Riaz, Irbaz Bin; Husnain, Muhammad; Borad, Mitesh J

    2017-01-01

    The treatment of metastatic melanoma has evolved from an era where interferon and chemotherapy were the mainstay of treatments to an era where immunotherapy has become the frontline. Ipilimumab (IgG1 CTLA-4 inhibitor), nivolumab (IgG4 PD-1 inhibitor), pembrolizumab (IgG4 PD-1 inhibitor) and nivolumab combined with ipilimumab have become first-line therapies in patients with metastatic melanoma. In addition, the high prevalence of BRAF mutations in melanoma has led to the discovery and approval of targeted molecules, such as vemurafenib (BRAF kinase inhibitor) and trametinib (MEK inhibitor), as they yielded improved responses and survival in malignant melanoma patients. This is certainly a burgeoning time in immunotherapy drug development, and the aforementioned efforts along with the recent US Food and Drug Administration approval of talimogene laherparepvec (T-VEC), a recombinant oncolytic herpes virus, have paved the way to exploring the role of additional oncolytic viruses, such as the echovirus Rigvir, as new and innovative treatment modalities in patients with melanoma. Herein, we discuss the current standard of care treatment in melanoma with an emphasis on immunotherapy and oncolytic viruses in development.

  20. On the potential of oncolytic virotherapy for the treatment of canine cancers.

    PubMed

    MacNeill, Amy L

    2015-01-01

    Over 6 million dogs are diagnosed with cancer in the USA each year. Treatment options for many of these patients are limited. It is important that the veterinary and scientific communities begin to explore novel treatment protocols for dogs with cancer. Oncolytic viral therapy is a promising treatment option that may prove to be relatively inexpensive and effective against several types of cancer. The efficacy of oncolytic virus therapies has been clearly demonstrated in murine cancer models, but the positive outcomes observed in mice are not always seen in human cancer patients. These therapies should be thoroughly evaluated in dogs with spontaneously arising cancers to provide needed information about the potential effectiveness of virus treatment for human cancers and to promote the health of our companion animals. This article provides a review of the results of oncolytic virus treatment of canine cancers.

  1. On the potential of oncolytic virotherapy for the treatment of canine cancers

    PubMed Central

    MacNeill, Amy L

    2015-01-01

    Over 6 million dogs are diagnosed with cancer in the USA each year. Treatment options for many of these patients are limited. It is important that the veterinary and scientific communities begin to explore novel treatment protocols for dogs with cancer. Oncolytic viral therapy is a promising treatment option that may prove to be relatively inexpensive and effective against several types of cancer. The efficacy of oncolytic virus therapies has been clearly demonstrated in murine cancer models, but the positive outcomes observed in mice are not always seen in human cancer patients. These therapies should be thoroughly evaluated in dogs with spontaneously arising cancers to provide needed information about the potential effectiveness of virus treatment for human cancers and to promote the health of our companion animals. This article provides a review of the results of oncolytic virus treatment of canine cancers. PMID:27512674

  2. Defining Effective Combinations of Immune Checkpoint Blockade and Oncolytic Virotherapy

    PubMed Central

    Rojas, Juan J; Sampath, Padma; Hou, Weizhou; Thorne, Steve H

    2015-01-01

    Purpose Recent data from randomized clinical trials with oncolytic viral therapies and with cancer immunotherapies have finally recapitulated the promise these platforms demonstrated in pre-clinical models. Perhaps the greatest advance with oncolytic virotherapy has been the appreciation of the importance of activation of the immune response in therapeutic activity. Meanwhile, the understanding that blockade of immune checkpoints (with antibodies that block the binding of PD1 to PDL1 or CTLA4 to B7-2) is critical for an effective anti-tumor immune response has revitalized the field of immunotherapy. The combination of immune activation using an oncolytic virus and blockade of immune checkpoints is therefore a logical next step. Experimental Design Here we explore such combinations and demonstrate their potential to produce enhanced responses in mouse tumor models. Different combinations and regimens were explored in immunocompetent mouse models of renal and colorectal cancer. Bioluminescence imaging and immune assays were used to determine the mechanisms mediating synergistic or antagonistic combinations. Results Interaction between immune checkpoint inhibitors and oncolytic virotherapy was found to be complex, with correct selection of viral strain, antibody and timing of the combination being critical for synergistic effects. Indeed, some combinations produced antagonistic effects and loss of therapeutic activity. A period of oncolytic viral replication and directed targeting of the immune response against the tumor were required for the most beneficial effects, with CD8+ and NK, but not CD4+ cells mediating the effects. Conclusions These considerations will be critical in the design of the inevitable clinical translation of these combination approaches. PMID:26187615

  3. Effects of nanoparticle coatings on the activity of oncolytic adenovirus-magnetic nanoparticle complexes.

    PubMed

    Tresilwised, Nittaya; Pithayanukul, Pimolpan; Holm, Per Sonne; Schillinger, Ulrike; Plank, Christian; Mykhaylyk, Olga

    2012-01-01

    Limitations to adenovirus infectivity can be overcome by association with magnetic nanoparticles and enforced infection by magnetic field influence. Here we examined three core-shell-type iron oxide magnetic nanoparticles differing in their surface coatings, particle sizes and magnetic properties for their ability to enhance the oncolytic potency of adenovirus Ad520 and to stabilize it against the inhibitory effects of serum or a neutralizing antibody. It was found that the physicochemical properties of magnetic nanoparticles are critical determinants of the properties which govern the oncolytic productivities of their complexes with Ad520. Although high serum concentration during infection or a neutralizing antibody had strong inhibitory influence on the uptake or oncolytic productivity of the naked virus, one particle type was identified which conferred high protection against both inhibitory factors while enhancing the oncolytic productivity of the internalized virus. This particle type equipped with a silica coating and adsorbed polyethylenimine, displaying a high magnetic moment and high saturation magnetization, mediated a 50% reduction of tumor growth rate versus control upon intratumoral injection of its complex with Ad520 and magnetic field influence, whereas Ad520 alone was inefficient. The correlations between physical properties of the magnetic particles or virus complexes and oncolytic potency are described herein.

  4. MicroRNA-Detargeted Mengovirus for Oncolytic Virotherapy

    PubMed Central

    Ruiz, Autumn J.; Hadac, Elizabeth M.; Nace, Rebecca A.

    2016-01-01

    ABSTRACT Mengovirus, a member of the Picornaviridae family, has a broad cell tropism and can cause encephalitis and myocarditis in multiple mammalian species. Attenuation has been achieved by shortening the polycytidine tract in the 5′ noncoding region (NCR). A poly(C)-truncated strain of mengovirus, vMC24, resulted in significant tumor regression in immunocompetent BALB/c mice bearing syngeneic MPC-11 plasmacytomas, but the associated toxicities were unacceptable. To enhance its safety profile, microRNA target sequences complementary to miR-124 or miR-125 (enriched in nervous tissue), miR-133 and miR-208 (enriched in cardiac tissue), or miR-142 (control; enriched in hematopoietic tissues) were inserted into the vMC24 NCRs. The microRNA-detargeted viruses showed reduced replication and cell killing specifically in cells expressing the cognate microRNAs, but certain insertions additionally were associated with nonspecific suppression of viral fitness in vivo. In vivo toxicity testing confirmed that miR-124 targets within the 5′ NCR suppressed virus replication in the central nervous system while miR-133 and miR-208 targets in the 3′ NCR suppressed viral replication in cardiac tissue. A dual-detargeted virus named vMC24-NC, with miR-124 targets in the 5′ NCR and miR-133 plus miR-208 targets in the 3′ NCR, showed the suppression of replication in both nervous and cardiac tissues but retained full oncolytic potency when administered by intratumoral (106 50% tissue culture infectious doses [TCID50]) or intravenous (107 to 108 TCID50) injection into BALB/c mice bearing MPC-11 plasmacytomas. Overall survival of vMC24-NC-treated tumor-bearing mice was significantly improved compared to that of nontreated mice. MicroRNA-detargeted mengoviruses offer a promising oncolytic virotherapy platform that merits further development for clinical translation. IMPORTANCE The clinical potential of oncolytic virotherapy for cancer treatment has been well demonstrated

  5. Questing for an optimal, universal viral agent for oncolytic virotherapy

    NASA Astrophysics Data System (ADS)

    Paiva, L. R.; Martins, M. L.; Ferreira, S. C.

    2011-10-01

    One of the most promising strategies to treat cancer is attacking it with viruses designed to exploit specific altered pathways. Here, the effects of oncolytic virotherapy on tumors having compact, papillary, and disconnected morphologies are investigated through computer simulations of a multiscale model coupling macroscopic reaction-diffusion equations for the nutrients with microscopic stochastic rules for the actions of individual cells and viruses. The interaction among viruses and tumor cells involves cell infection, intracellular virus replication, and the release of new viruses in the tissue after cell lysis. The evolution over time of both the viral load and cancer cell population, as well as the probabilities for tumor eradication, were evaluated for a range of multiplicities of infection, viral entries, and burst sizes. It was found that in immunosuppressed hosts, the antitumor efficacy of a virus is primarily determined by its entry efficiency, its replicative capacity within the tumor, and its ability to spread over the tissue. However, the optimal traits for oncolytic viruses depend critically on the tumor growth dynamics and do not necessarily include rapid replication, cytolysis, or spreading, currently assumed as necessary conditions for a successful therapeutic outcome. Our findings have potential implications on the design of new vectors for the viral therapy of cancer.

  6. Questing for an optimal, universal viral agent for oncolytic virotherapy.

    PubMed

    Paiva, L R; Martins, M L; Ferreira, S C

    2011-10-01

    One of the most promising strategies to treat cancer is attacking it with viruses designed to exploit specific altered pathways. Here, the effects of oncolytic virotherapy on tumors having compact, papillary, and disconnected morphologies are investigated through computer simulations of a multiscale model coupling macroscopic reaction-diffusion equations for the nutrients with microscopic stochastic rules for the actions of individual cells and viruses. The interaction among viruses and tumor cells involves cell infection, intracellular virus replication, and the release of new viruses in the tissue after cell lysis. The evolution over time of both the viral load and cancer cell population, as well as the probabilities for tumor eradication, were evaluated for a range of multiplicities of infection, viral entries, and burst sizes. It was found that in immunosuppressed hosts, the antitumor efficacy of a virus is primarily determined by its entry efficiency, its replicative capacity within the tumor, and its ability to spread over the tissue. However, the optimal traits for oncolytic viruses depend critically on the tumor growth dynamics and do not necessarily include rapid replication, cytolysis, or spreading, currently assumed as necessary conditions for a successful therapeutic outcome. Our findings have potential implications on the design of new vectors for the viral therapy of cancer.

  7. Phase 1b Trial of Biweekly Intravenous Pexa-Vec (JX-594), an Oncolytic and Immunotherapeutic Vaccinia Virus in Colorectal Cancer

    PubMed Central

    Park, Se Hoon; Breitbach, Caroline J; Lee, Jeeyun; Park, Joon Oh; Lim, Ho Yeong; Kang, Won Ki; Moon, Anne; Mun, Jae-Hee; Sommermann, Erica M; Maruri Avidal, Liliana; Patt, Rick; Pelusio, Adina; Burke, James; Hwang, Tae-Ho; Kirn, David; Park, Young Suk

    2015-01-01

    Fifteen patients with treatment-refractory colorectal cancer were enrolled on a phase 1b study of Pexa-Vec (pexastimogene devacirepvec; JX-594), an oncolytic and immunotherapeutic vaccinia designed to selectively replicate in cancer cells. Pexa-Vec was administered intravenously every 14 days, at dose levels of 1 × 106, 1 × 107, or 3 × 107 plaque-forming units (pfu)/kg. The primary endpoint was to determine the maximum tolerated dose. Secondary endpoints were pharmacokinetics and pharmacodynamics as well as antitumor activity. Patients were heavily pretreated (mean 4.5 lines of therapy). All patients received at least two Pexa-Vec doses (median = 4; range = 2–4). No dose-limiting toxicities were reported, and the maximum tolerated dose was not reached. The most common adverse events were grade 1/2 flu-like symptoms, generally lasting <24 hours. During the first and last cycles, genome pharmacokinetics were unchanged. Infectious pfu could be detected in plasma up to 2 hours after cycle 1 and up to 30 minutes after cycle 4 (when antivaccinia antibody titers are known to have peaked). Ten patients (67%) had radiographically stable disease. Given the acceptable safety profile of multiple intravenous Pexa-Vec infusions in patients with treatment-refractory colorectal cancer, further trials evaluating efficacy of intravenous Pexa-Vec, as monotherapy or in combination with chemotherapeutic agents, is warranted in this patient population. PMID:26073886

  8. Oncolytic Replication of E1b-Deleted Adenoviruses

    PubMed Central

    Cheng, Pei-Hsin; Wechman, Stephen L.; McMasters, Kelly M.; Zhou, Heshan Sam

    2015-01-01

    Various viruses have been studied and developed for oncolytic virotherapies. In virotherapy, a relatively small amount of viruses used in an intratumoral injection preferentially replicate in and lyse cancer cells, leading to the release of amplified viral particles that spread the infection to the surrounding tumor cells and reduce the tumor mass. Adenoviruses (Ads) are most commonly used for oncolytic virotherapy due to their infection efficacy, high titer production, safety, easy genetic modification, and well-studied replication characteristics. Ads with deletion of E1b55K preferentially replicate in and destroy cancer cells and have been used in multiple clinical trials. H101, one of the E1b55K-deleted Ads, has been used for the treatment of late-stage cancers as the first approved virotherapy agent. However, the mechanism of selective replication of E1b-deleted Ads in cancer cells is still not well characterized. This review will focus on three potential molecular mechanisms of oncolytic replication of E1b55K-deleted Ads. These mechanisms are based upon the functions of the viral E1B55K protein that are associated with p53 inhibition, late viral mRNA export, and cell cycle disruption. PMID:26561828

  9. 11R-P53 and GM-CSF Expressing Oncolytic Adenovirus Target Cancer Stem Cells with Enhanced Synergistic Activity

    PubMed Central

    Lv, Sai-qun; Ye, Zhen-long; Liu, Pin-yi; Huang, Yao; Li, Lin-fang; Liu, Hui; Zhu, Hai-li; Jin, Hua-jun; Qian, Qi-jun

    2017-01-01

    Targeting cancer stem cells with oncolytic virus (OV) holds great potential for thorough elimination of cancer cells. Based on our previous studies, we here established 11R-P53 and mGM-CSF carrying oncolytic adenovirus (OAV) SG655-mGMP and investigated its therapeutic effect on hepatocellular carcinoma stem cells Hep3B-C and teratoma stem cells ECCG5. Firstly, the augmenting effect of 11R in our construct was tested and confirmed by examining the expression of EGFP with Fluorescence and FCM assays after transfecting Hep3B-C and ECCG5 cells with OVA SG7605-EGFP and SG7605-11R-EGFP. Secondly, the expressions of 11R-P53 and GM-CSF in Hep3B-C and ECCG5 cells after transfection with OAV SG655-mGMP were detected by Western blot and Elisa assays, respectively. Thirdly, the enhanced growth inhibitory and augmented apoptosis inducing effects of OAV SG655-mGMP on Hep3B-C and ECCG5 cells were tested with FCM assays by comparing with the control, wild type 5 adenovirus, 11R-P53 carrying OVA in vitro. Lastly, the in vivo therapeutic effect of OAV SG655-mGMP toward ECCG5 cell-formed xenografts was studied by measuring tumor volumes post different treatments with PBS, OAV SG655-11R-P53, OAV SG655-mGM-CSF and OAV SG655-mGMP. Treatment with OAV SG655-mGMP induced significant xenograft growth inhibition, inflammation factor AIF1 expression and immune cells infiltration. Therefore, our OAV SG655-mGMP provides a novel platform to arm OVs to target cancer stem cells. PMID:28243324

  10. Cutting Edge: Innate Immune Augmenting Vesicular Stomatitis Virus Expressing Zika Virus Proteins Confers Protective Immunity.

    PubMed

    Betancourt, Dillon; de Queiroz, Nina M G P; Xia, Tianli; Ahn, Jeonghyun; Barber, Glen N

    2017-04-15

    Zika virus (ZIKV) has become a serious public health concern because of its link to brain damage in developing human fetuses. Recombinant vesicular stomatitis virus (rVSV) was shown to be a highly effective and safe vector for the delivery of foreign immunogens for vaccine purposes. In this study, we generated rVSVs (wild-type and attenuated VSV with mutated matrix protein [VSVm] versions) that express either the full length ZIKV envelope protein (ZENV) alone or include the ZENV precursor to the membrane protein upstream of the envelope protein, and our rVSV-ZIKV constructs showed efficient immunogenicity in murine models. We also demonstrated maternal protective immunity in challenged newborn mice born to female mice vaccinated with VSVm-ZENV containing the transmembrane domain. Our data indicate that rVSVm may be a suitable strategy for the design of effective vaccines against ZIKV.

  11. Co-transcribed 3' host sequences augment expression of integrated hepatitis B virus DNA.

    PubMed Central

    von Loringhoven, A F; Koch, S; Hofschneider, P H; Koshy, R

    1985-01-01

    We have previously reported the cloning and structural analysis of integrated hepatitis B virus DNA copies from the human hepatoma cell line PLC/PRF/5. Here we show that the cloned DNA fragments of 10.7 kb and 10.5 kb contain intact coding sequences for HBsAg since Ltk- cells transfected with these DNAs secrete considerable amounts of HBsAg. We show for the 10.7-kb fragment that multiple readthrough messages composed of viral as well as cellular sequences are transcribed. These RNAs differ only in their 3' sequences. Furthermore, the 10.7-kb insert leads to a substantial increase in HBsAg produced compared with HBV DNA and with the 10.5-kb insert. We provide evidence that the different 3' sequences on the HBsAg transcripts account for the augmentation of expression. Images Fig. 2. Fig. 3. Fig. 5. PMID:2990895

  12. Ad5/48 hexon oncolytic virus expressing sTGFβRIIFc produces reduced hepatic and systemic toxicities and inhibits prostate cancer bone metastases.

    PubMed

    Xu, Weidong; Zhang, Zhenwei; Yang, Yuefeng; Hu, Zebin; Wang, Chi-Hsiung; Morgan, Melanie; Wu, Ying; Hutten, Ryan; Xiao, Xianghui; Stock, Stuart; Guise, Theresa; Prabhakar, Bellur S; Brendler, Charles; Seth, Prem

    2014-08-01

    We are interested in developing oncolytic adenoviruses for the treatment of prostate cancer (PCa) bone metastases. A key limitation of Adenovirus 5 (Ad5) is that upon systemic administration, it produces major liver and systemic toxicities. To address this issue, a chimaeric Ad5/48 adenovirus mHAd.sTβRFc was created. Seven hypervariable regions of Ad5 hexon present in Ad5-based Ad.sTβRFc expressing soluble transforming growth factor beta receptor II-Fc fusion protein (sTGβRIIFc), were replaced by those of Ad48. mHAd.sTβRFc, like Ad.sTβRFc, was replication competent in the human PCa cells, and produced high levels of sTGβRIIFc expression. Compared to Ad.sTβRFc, the systemic delivery of mHAd.sTβRFc in nude mice resulted in much reduced systemic toxicity, and reduced liver sequestration. Ad.sTβRFc produced significant liver necrosis, and increases in alanine transaminase, aspartate transaminase, lactate dehydrogenase, tumor necrosis factor-α, and interleukin-6 levels, while mHAd.sTβRFc produced much reduced responses of these markers. Intravenous delivery of Ad.sTβRFc or mHAd.sTβRFc (5 × 10(10) viral particles/mouse) in nude mice bearing PC-3-luc PCa bone metastases produced inhibition of bone metastases. Moreover, a larger dose of the mHAd.sTβRFc (4 × 10(11) viral particles /mouse) was also effective in inhibiting bone metastases. Thus, mHAd.sTβRFc could be developed for the treatment of PCa bone metastases.

  13. Myeloma Xenograft Destruction by a Nonviral Vector Delivering Oncolytic Infectious Nucleic Acid

    PubMed Central

    Hadac, Elizabeth M; Kelly, Elizabeth J; Russell, Stephen J

    2011-01-01

    The feasibility of using a nonviral vector formulation to initiate an oncolytic viral infection has not been previously demonstrated. We therefore sought to determine whether infectious nucleic acid (INA) could be used in place of virus particles to initiate an oncolytic picornavirus infection in vivo. Infectious RNA encoding coxsackievirus A21 (CVA21) was transcribed from plasmid DNA using T7 polymerase. Within 48 hours of injecting this RNA into KAS6/1 myeloma xenografts, high titers of infectious CVA21 virions were detected in the bloodstream. Tumors regressed rapidly thereafter and mice developed signs of myositis. At euthanasia, CVA21 was recovered from regressing tumors and from skeletal muscles. Treatment outcomes were comparable following intratumoral injection of naked RNA or fully infectious CVA21 virus. Dose–response studies showed that an effective oncolytic infection could be established by intratumoral injection of 1 µg of infectious RNA. The oncolytic infection could also be initiated by intravenous injection of infectious RNA. Our study demonstrates that INA is a highly promising alternative drug formulation for oncolytic virotherapy. PMID:21505425

  14. Immunosuppression Enhances Oncolytic Adenovirus Replication and Antitumor Efficacy in the Syrian Hamster Model

    PubMed Central

    Thomas, Maria A; Spencer, Jacqueline F; Toth, Karoly; Sagartz, John E; Phillips, Nancy J; Wold, William SM

    2012-01-01

    We recently described an immunocompetent Syrian hamster model for oncolytic adenoviruses (Ads) that permits virus replication in tumor cells as well as some normal tissues. This model allows exploration of interactions between the virus, tumor, normal organs, and host immune system that could not be examined in the immunodeficient or nonpermissive animal models previously used in the oncolytic Ad field. Here we asked whether the immune response to oncolytic Ad enhances or limits antitumor efficacy. We first determined that cyclophosphamide (CP) is a potent immunosuppressive agent in the Syrian hamster and that CP alone had no effect on tumor growth. Importantly, we found that the antitumor efficacy of oncolytic Ads was significantly enhanced in immunosuppressed animals. In animals that received virus therapy plus immunosuppression, significant differences were observed in tumor histology, and in many cases little viable tumor remained. Notably, we also determined that immunosuppression allowed intratumoral virus levels to remain elevated for prolonged periods. Although favorable tumor responses can be achieved in immunocompetent animals, the rate of virus clearance from the tumor may lead to varied antitumor efficacy. Immunosuppression, therefore, allows sustained Ad replication and oncolysis, which leads to substantially improved suppression of tumor growth. PMID:18665155

  15. Immunosuppression enhances oncolytic adenovirus replication and antitumor efficacy in the Syrian hamster model.

    PubMed

    Thomas, Maria A; Spencer, Jacqueline F; Toth, Karoly; Sagartz, John E; Phillips, Nancy J; Wold, William S M

    2008-10-01

    We recently described an immunocompetent Syrian hamster model for oncolytic adenoviruses (Ads) that permits virus replication in tumor cells as well as some normal tissues. This model allows exploration of interactions between the virus, tumor, normal organs, and host immune system that could not be examined in the immunodeficient or nonpermissive animal models previously used in the oncolytic Ad field. Here we asked whether the immune response to oncolytic Ad enhances or limits antitumor efficacy. We first determined that cyclophosphamide (CP) is a potent immunosuppressive agent in the Syrian hamster and that CP alone had no effect on tumor growth. Importantly, we found that the antitumor efficacy of oncolytic Ads was significantly enhanced in immunosuppressed animals. In animals that received virus therapy plus immunosuppression, significant differences were observed in tumor histology, and in many cases little viable tumor remained. Notably, we also determined that immunosuppression allowed intratumoral virus levels to remain elevated for prolonged periods. Although favorable tumor responses can be achieved in immunocompetent animals, the rate of virus clearance from the tumor may lead to varied antitumor efficacy. Immunosuppression, therefore, allows sustained Ad replication and oncolysis, which leads to substantially improved suppression of tumor growth.

  16. Patient-derived mesenchymal stem cells as delivery vehicles for oncolytic virotherapy: novel state-of-the-art technology.

    PubMed

    Ramírez, Manuel; García-Castro, Javier; Melen, Gustavo J; González-Murillo, África; Franco-Luzón, Lidia

    2015-01-01

    Oncolytic virotherapy is gaining interest in the clinic as a new weapon against cancer. In vivo administration of oncolytic viruses showed important limitations that decrease their effectiveness very significantly: the antiviral immune response causes the elimination of the therapeutic effect, and the poor natural ability of oncolytic viruses to infect micrometastatic lesions significantly minimizes the effective dose of virus. This review will focus on updating the technical and scientific foundations of one of the strategies developed to overcome these limitations, ie, using cells as vehicles for oncolytic viruses. Among many candidates, a special type of adult stem cell, mesenchymal stem cells (MSCs), have already been used in the clinic as cell vehicles for oncolytic viruses, partly due to the fact that these cells are actively being evaluated for other indications. MSC carrier cells are used as Trojan horses loaded with oncoviruses, are administered systemically, and release their cargos at the right places. MSCs are equipped with an array of molecules involved in cell arrest in the capillaries (integrins and selectins), migration toward specific parenchymal locations within tissues (chemokine receptors), and invasion and degradation of the extracellular matrix (proteases). In addition to anatomical targeting capacity, MSCs have a well-recognized role in modulating immune responses by affecting cells of the innate (antigen-presenting cells, natural killer cells) and adaptive immune system (effector and regulatory lymphocytes). Therefore, carrier MSCs may also modulate the immune responses taking place after therapy, ie, the antiviral and the antitumor immune responses.

  17. Combining oncolytic HSV-1 with immunogenic cell death-inducing drug mitoxantrone breaks cancer immune tolerance and improves therapeutic efficacy.

    PubMed

    Workenhe, Samuel T; Pol, Jonathan G; Lichty, Brian D; Cummings, Derek T; Mossman, Karen L

    2013-11-01

    Although antitumor activity of herpes simplex virus 1 (HSV-1) ICP0 null oncolytic vectors has been validated in murine breast cancer models, oncolytic virus treatment alone is insufficient to break immune tolerance. Thus, we investigated enhancing efficacy through combination therapy with the immunogenic cell death-inducing chemotherapeutic drug, mitoxantrone. Despite a lack of enhanced cytotoxicity in vitro, HSV-1 ICP0 null oncolytic virus KM100 with 5 μmol/L mitoxantrone provided significant survival benefit to BALB/c mice bearing Her2/neu TUBO-derived tumors. This protection was mediated by increased intratumoral infiltration of neutrophils and tumor antigen-specific CD8(+) T cells. Depletion studies verified that CD8-, CD4-, and Ly6G-expressing cells are essential for enhanced efficacy of the combination therapy. Moreover, the addition of mitoxantrone to KM100 oncolytic virus treatment broke immune tolerance in BALB-neuT mice bearing TUBO-derived tumors. This study suggests that oncolytic viruses in combination with immunogenic cell death-inducing chemotherapeutics enhance the immunogenicity of the tumor-associated antigens, breaking immunologic tolerance established toward these antigens.

  18. Copper chelation enhances antitumor efficacy and systemic delivery of oncolytic HSV.

    PubMed

    Yoo, Ji Young; Pradarelli, Jason; Haseley, Amy; Wojton, Jeffrey; Kaka, Azeem; Bratasz, Anna; Alvarez-Breckenridge, Christopher A; Yu, Jun-Ge; Powell, Kimerly; Mazar, Andrew P; Teknos, Theodoros N; Chiocca, E Antonio; Glorioso, Joseph C; Old, Matthew; Kaur, Balveen

    2012-09-15

    Copper in serum supports angiogenesis and inhibits replication of wild-type HSV-1. Copper chelation is currently being investigated as an antiangiogenic and antineoplastic agent in patients diagnosed with cancer. Herpes simplex virus-derived oncolytic viruses (oHSV) are being evaluated for safety and efficacy in patients, but several host barriers limit their efficacy. Here, we tested whether copper inhibits oHSV infection and replication and whether copper chelation would augment therapeutic efficacy of oHSV. Subcutaneous and intracranial tumor-bearing mice were treated with oHSV ± ATN-224 to evaluate tumor burden and survival. Virus replication and cell killing was measured in the presence or absence of the copper chelating agent ATN-224 and in the presence or absence of copper in vitro. Microvessel density and changes in perfusion were evaluated by immunohistochemistry and dynamic contrast enhanced MRI (DCE-MRI). Serum stability of oHSV was measured in mice fed with ATN-224. Tumor-bearing mice were injected intravenously with oHSV; tumor burden and amount of virus in tumor tissue were evaluated. Combination of systemic ATN-224 and oHSV significantly reduced tumor growth and prolonged animal survival. Immunohistochemistry and DCE-MRI imaging confirmed that ATN-224 reduced oHSV-induced blood vessel density and vascular leakage. Copper at physiologically relevant concentrations inhibited oHSV replication and glioma cell killing, and this effect was rescued by ATN-224. ATN-224 increased serum stability of oHSV and enhanced the efficacy of systemic delivery. This study shows that combining ATN-224 with oHSV significantly increased serum stability of oHSV and greatly enhanced its replication and antitumor efficacy. ©2012 AACR.

  19. Oncolytic virotherapy for head and neck cancer: current research and future developments

    PubMed Central

    Malhotra, Akshiv; Sendilnathan, Arun; Old, Matthew O; Wise-Draper, Trisha M

    2015-01-01

    Head and neck cancer (HNC) is the sixth most common malignancy worldwide. Despite recent advancements in surgical, chemotherapy, and radiation treatments, HNC remains a highly morbid and fatal disease. Unlike many other cancers, local control rather than systemic control is important for HNC survival. Therefore, novel local therapy in addition to systemic therapy is urgently needed. Oncolytic virotherapy holds promise in this regard as viruses can be injected intratumorally as well as intravenously with excellent safety profiles. This review will discuss the recent advancements in oncolytic virotherapy, highlighting some of the most promising candidates and modifications to date. PMID:27512673

  20. Oncolytic virotherapy for head and neck cancer: current research and future developments.

    PubMed

    Malhotra, Akshiv; Sendilnathan, Arun; Old, Matthew O; Wise-Draper, Trisha M

    2015-01-01

    Head and neck cancer (HNC) is the sixth most common malignancy worldwide. Despite recent advancements in surgical, chemotherapy, and radiation treatments, HNC remains a highly morbid and fatal disease. Unlike many other cancers, local control rather than systemic control is important for HNC survival. Therefore, novel local therapy in addition to systemic therapy is urgently needed. Oncolytic virotherapy holds promise in this regard as viruses can be injected intratumorally as well as intravenously with excellent safety profiles. This review will discuss the recent advancements in oncolytic virotherapy, highlighting some of the most promising candidates and modifications to date.

  1. Yeast virus-derived stimulator of the innate immune system augments the efficacy of virus vector-based immunotherapy.

    PubMed

    Claudepierre, Marie-Christine; Hortelano, Julie; Schaedler, Emmanuelle; Kleinpeter, Patricia; Geist, Michel; Remy-Ziller, Christelle; Brandely, Renée; Tosch, Caroline; Laruelle, Laurence; Jawhari, Anass; Menguy, Thierry; Marchand, Jean-Baptiste; Romby, Pascale; Schultz, Patrick; Hartmann, Gunther; Rooke, Ronald; Bonnefoy, Jean-Yves; Preville, Xavier; Rittner, Karola

    2014-05-01

    To identify novel stimulators of the innate immune system, we constructed a panel of eight HEK293 cell lines double positive for human Toll-like receptors (TLRs) and an NF-κB-inducible reporter gene. Screening of a large variety of compounds and cellular extracts detected a TLR3-activating compound in a microsomal yeast extract. Fractionation of this extract identified an RNA molecule of 4.6 kb, named nucleic acid band 2 (NAB2), that was sufficient to confer the activation of TLR3. Digests with single- and double-strand-specific RNases showed the double-strand nature of this RNA, and its sequence was found to be identical to that of the genome of the double-stranded RNA (dsRNA) L-BC virus of Saccharomyces cerevisiae. A large-scale process of production and purification of this RNA was established on the basis of chemical cell lysis and dsRNA-specific chromatography. NAB2 complexed with the cationic lipid Lipofectin but neither NAB2 nor Lipofectin alone induced the secretion of interleukin-12(p70) [IL-12(p70)], alpha interferon, gamma interferon-induced protein 10, macrophage inflammatory protein 1β, or IL-6 in human monocyte-derived dendritic cells. While NAB2 activated TLR3, Lipofectin-stabilized NAB2 also signaled via the cytoplasmic sensor for RNA recognition MDA-5. A significant increase of RMA-MUC1 tumor rejection and survival was observed in C57BL/6 mice after prophylactic vaccination with MUC1-encoding modified vaccinia virus Ankara (MVA) and NAB2-Lipofectin. This combination of immunotherapies strongly increased at the injection sites the percentage of infiltrating natural killer (NK) cells and plasmacytoid dendritic cells (pDCs), cell types which can modulate innate and adaptive immune responses. Virus-based cancer vaccines offer a good alternative to the treatment of cancer but could be improved. Starting from a screening approach, we have identified and characterized an unexplored biological molecule with immunomodulatory characteristics which augments

  2. Yeast Virus-Derived Stimulator of the Innate Immune System Augments the Efficacy of Virus Vector-Based Immunotherapy

    PubMed Central

    Claudepierre, Marie-Christine; Hortelano, Julie; Schaedler, Emmanuelle; Kleinpeter, Patricia; Geist, Michel; Remy-Ziller, Christelle; Brandely, Renée; Tosch, Caroline; Laruelle, Laurence; Jawhari, Anass; Menguy, Thierry; Marchand, Jean-Baptiste; Romby, Pascale; Schultz, Patrick; Hartmann, Gunther; Rooke, Ronald; Bonnefoy, Jean-Yves; Preville, Xavier

    2014-01-01

    characteristics which augments the efficacy of an MVA-based immunotherapeutic agent. The immune modulator consists of the purified dsRNA genome isolated from a commercially used yeast strain, NAB2, mixed with a cationic lipid, Lipofectin. NAB2-Lipofectin stimulates the immune system via TLR3 and MDA-5. When it was injected at the MVA vaccination site, the immune modulator increased survival in a preclinical tumor model. We could demonstrate that NAB2-Lipofectin augments the MVA-induced infiltration of natural killer and plasmacytoid dendritic cells. We suggest indirect mechanisms of activation of these cell types by the influence of NAB2-Lipofectin on innate and adaptive immunity. Detailed analysis of cell migration at the vaccine injection site and the appropriate choice of an immune modulator should be considered to achieve the rational improvement of virus vector-based vaccination by immune modulators. PMID:24574403

  3. Oncolytic virotherapy needs trials, not access programs.

    PubMed

    Harrington, Kevin J

    2013-05-15

    Oncolytic virotherapy is a novel treatment for cancer that exerts direct lytic and indirect immune-mediated antitumor effects. A Finnish research team has reported on an advanced therapy access program for oncolytic adenovirus. The strengths and weaknesses of this approach are highlighted with a view to informing future study conduct.

  4. Mosquito saliva induced cutaneous events augment Chikungunya virus replication and disease progression.

    PubMed

    Agarwal, Ankita; Joshi, Gaurav; Nagar, Durga P; Sharma, Ajay K; Sukumaran, D; Pant, Satish C; Parida, Man Mohan; Dash, Paban Kumar

    2016-06-01

    Chikungunya virus (CHIKV) is transmitted when infected mosquito probes the host skin. While probing, mosquito saliva is expectorated into host skin along with virus which contains cocktail of molecules having anti-hemostatic and immunomodulatory properties. As mosquito saliva is a critical factor during natural arboviral infection, therefore we investigated mosquito saliva induced cutaneous events that modulate CHIKV infection. The effect of mosquito saliva on CHIKV infection was examined through inoculation of suckling mice subcutaneously with either CHIKV alone or uninfected mosquito bite followed by CHIKV. Histopathological evaluation of skin revealed infiltration of transmigrated inflammatory cells. Dermal blood vessels were hyperemic and adnexa showed degenerating lesions. Severe hemorrhage was observed in dermis and hypodermis in mosquito bite+CHIKV group compared to CHIKV group. Analysis of cytokines in skin showed significant downregulation of inflammatory genes like TLR-3, IL-2, IFN-γ, TNF-α and IFN-β in mosquito bite+CHIKV group compared to CHIKV group. In contrast, significant upregulation of anti-inflammatory genes like IL-4 and IL-10 was observed. These early events might have been responsible for increased dissemination of CHIKV to serum and peripheral organs as demonstrated through >10-fold higher viremia, antigen localization, cellular infiltration and degenerative changes. Thus mosquito saliva induced early cellular infiltration and associated cytokines augment CHIKV pathogenesis in a mouse model. This mosquito improved CHIKV mouse model simulates the realistic conditions that occur naturally during infected mosquito bite to a host. It will lead to better understanding of CHIKV pathobiology and promote the evaluation of novel medical countermeasures against emerging CHIKV. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Interleukin 12 Secretion Enhances Antitumor Efficacy of Oncolytic Herpes Simplex Viral Therapy for Colorectal Cancer

    PubMed Central

    Bennett, Joseph J.; Malhotra, Sandeep; Wong, Richard J.; Delman, Keith; Zager, Jonathan; St-Louis, Maryse; Johnson, Paul; Fong, Yuman

    2001-01-01

    Objective To assess the strategy of combining oncolytic herpes simplex virus (HSV) therapy with immunomodulatory therapy as treatment for experimental colon cancer. The oncolytic HSV recombinant NV1023 and the interleukin 12 (IL-12)-secreting oncolytic NV1042 virus were evaluated in vitro and in vivo with respect to antitumor efficacy. Summary Background Data Genetically engineered, replication-conditional, attenuated HSVs have shown oncolytic activity against a wide variety of solid malignancies. Other strategies for treating cancer have involved immunomodulation and cytokine gene transfer using viral vectors. This study has combined both of these strategies by inserting the murine IL-12 gene into a replication-competent HSV. This approach allows oncolytic therapy to replicate selectively within and lyse tumor cells while providing the host immune system with the cytokine stimulus necessary to recruit and activate inflammatory cells needed to enhance the antitumor effect. Methods NV1023 is a multimutant HSV based on the wild-type HSV-1 F strain. NV1042 was created by insertion of the mIL-12 gene into NV1023. Cytotoxicity and viral proliferation of both NV1023 and NV1042 within murine CT26 colorectal cancer cells were first shown. Cells infected with NV1042 were then shown to produce significant levels of IL-12. Using an experimental flank model of colon cancer, mice were treated with both high and low doses of NV1023 or NV1042 and were followed up for both cure and reduction in tumor burden. Results Both viruses could replicate within and kill CT26 cells in vitro, with 100% cytotoxicity achieved after infection by either virus. Only NV1042 could produce mIL-12. Therapy using high viral doses to treat animals in vivo showed equal efficacy between NV1023 and NV1042, with five of seven cures for each virus. When viral doses were lowered, only the cytokine-producing NV1042 virus could reduce tumor burden and cure animals of their disease. Conclusions Both NV1023 and

  6. AUGMENTATION OF THE VIRULENCE OF MURINE COXSACKIE-VIRUS B-3 MYOCARDIOPATHY BY EXERCISE

    PubMed Central

    Gatmaitan, Bienvenido G.; Chason, Jacob L.; Lerner, A. Martin

    1970-01-01

    Coxsackievirus B-3 myocardiopathy was induced in weanling mice by intraperitoneal and intracerebral inoculations of the Nancy strain. Acute mortality was 5.5%. The cardiomyopathy is characterized by an early phase lasting about 9 days with myocardial necrosis, associated inflammation, and healing by fibrosis and calcification involving 25 to 50% of the contractile fibers in each affected mouse. Infectious coxsackievirus may be recovered from the heart during this phase. Continuing myocardial inflammatory lesions follow during the later phase, but infectious virus is no longer present. When mice were forced to swim in a preheated pool (33°C) during both phases of their myocardiopathy, virulence was strikingly augmented. Fully half of the mice died of congestive failure, the majority while swimming. Hearts were dilated, hypertrophied, and grossly necrotic. The myocardium was transformed to a completely necrotic, inflammatory, calcifying mass. At the peak of the infectious phase, myocardial replication of coxsackievirus was increased 530 times in nurslings which had been forced to swim. Myositis in hind limbs was more frequent, and inflammatory lesions in perirenal and pericardial fat were more severe in the mice which were forced to swim. When swimming was begun on the 9th day after infection, the virulence and lethality (13.8%) of infection were moderately increased. PMID:4246139

  7. Augmentation of the virulence of murine coxsackie-virus B-3 myocardiopathy by exercise.

    PubMed

    Gatmaitan, B G; Chason, J L; Lerner, A M

    1970-06-01

    Coxsackievirus B-3 myocardiopathy was induced in weanling mice by intraperitoneal and intracerebral inoculations of the Nancy strain. Acute mortality was 5.5%. The cardiomyopathy is characterized by an early phase lasting about 9 days with myocardial necrosis, associated inflammation, and healing by fibrosis and calcification involving 25 to 50% of the contractile fibers in each affected mouse. Infectious coxsackievirus may be recovered from the heart during this phase. Continuing myocardial inflammatory lesions follow during the later phase, but infectious virus is no longer present. When mice were forced to swim in a preheated pool (33 degrees C) during both phases of their myocardiopathy, virulence was strikingly augmented. Fully half of the mice died of congestive failure, the majority while swimming. Hearts were dilated, hypertrophied, and grossly necrotic. The myocardium was transformed to a completely necrotic, inflammatory, calcifying mass. At the peak of the infectious phase, myocardial replication of coxsackievirus was increased 530 times in nurslings which had been forced to swim. Myositis in hind limbs was more frequent, and inflammatory lesions in perirenal and pericardial fat were more severe in the mice which were forced to swim. When swimming was begun on the 9th day after infection, the virulence and lethality (13.8%) of infection were moderately increased.

  8. Synthetic riboswitches for external regulation of genes transferred by replication-deficient and oncolytic adenoviruses

    PubMed Central

    Ketzer, Patrick; Haas, Simon F.; Engelhardt, Sarah; Hartig, Jörg S.; Nettelbeck, Dirk M.

    2012-01-01

    Therapeutic gene transfer by replication-defective viral vectors or, for cancer treatment, by replication-competent oncolytic viruses shows high promise for treatment of major diseases. To ensure safety, timing or dosing in patients, external control of therapeutic gene expression is desirable or even required. In this study, we explored the potential of artificial aptazymes, ligand-dependent self-cleaving ribozymes, as an innovative tool for regulation of therapeutic gene expression. Importantly, aptazymes act on RNA intrinsically, independent of regulatory protein–nucleic acid interactions and stoichiometry, are non-immunogenic and of small size. These are key advantages compared with the widely used inducible promoters, which were also reported to lose regulation at high copy numbers, e.g. after replication of oncolytic viruses. We characterized aptazymes in therapeutic gene transfer utilizing adenovectors (AdVs), adeno-associated vectors (AAVs) and oncolytic adenoviruses (OAds), which are all in advanced clinical testing. Our results show similar aptazyme-mediated regulation of gene expression by plasmids, AdVs, AAVs and OAds. Insertion into the 5′-, 3′- or both untranslated regions of several transgenes resulted in ligand-responsive gene expression. Notably, aptazyme regulation was retained during OAd replication and spread. In conclusion, our study demonstrates the fidelity of aptazymes in viral vectors and oncolytic viruses and highlights the potency of riboswitches for medical applications. PMID:22885302

  9. VEGF blockade enables oncolytic cancer virotherapy in part by modulating intratumoral myeloid cells.

    PubMed

    Currier, Mark A; Eshun, Francis K; Sholl, Allyson; Chernoguz, Artur; Crawford, Kelly; Divanovic, Senad; Boon, Louis; Goins, William F; Frischer, Jason S; Collins, Margaret H; Leddon, Jennifer L; Baird, William H; Haseley, Amy; Streby, Keri A; Wang, Pin-Yi; Hendrickson, Brett W; Brekken, Rolf A; Kaur, Balveen; Hildeman, David; Cripe, Timothy P

    2013-05-01

    Understanding the host response to oncolytic viruses is important to maximize their antitumor efficacy. Despite robust cytotoxicity and high virus production of an oncolytic herpes simplex virus (oHSV) in cultured human sarcoma cells, intratumoral (ITu) virus injection resulted in only mild antitumor effects in some xenograft models, prompting us to characterize the host inflammatory response. Virotherapy induced an acute neutrophilic infiltrate, a relative decrease of ITu macrophages, and a myeloid cell-dependent upregulation of host-derived vascular endothelial growth factor (VEGF). Anti-VEGF antibodies, bevacizumab and r84, the latter of which binds VEGF and selectively inhibits binding to VEGF receptor-2 (VEGFR2) but not VEGFR1, enhanced the antitumor effects of virotherapy, in part due to decreased angiogenesis but not increased virus production. Neither antibody affected neutrophilic infiltration but both partially mitigated virus-induced depletion of macrophages. Enhancement of virotherapy-mediated antitumor effects by anti-VEGF antibodies could largely be recapitulated by systemic depletion of CD11b(+) cells. These data suggest the combined effect of oHSV virotherapy and anti-VEGF antibodies is in part due to modulation of a host inflammatory reaction to virus. Our data provide strong preclinical support for combined oHSV and anti-VEGF antibody therapy and suggest that understanding and counteracting the innate host response may help enable the full antitumor potential of oncolytic virotherapy.

  10. Meeting product development challenges in manufacturing clinical grade oncolytic adenoviruses.

    PubMed

    Working, Peter K; Lin, Andy; Borellini, Flavia

    2005-11-21

    Oncolytic adenoviruses have been considered for use as anticancer therapy for decades, and numerous means of conferring tumor selectivity have been developed. As with any new therapy, the trip from the laboratory bench to the clinic has revealed a number of significant development hurdles. Viral therapies are subject to specific regulations and must meet a variety of well-defined criteria for purity, potency, stability, and product characterization prior to their use in the clinic. Published regulatory guidelines, although developed specifically for biotechnology-derived products, are applicable to the production of oncolytic adenoviruses and other cell-based products, and they should be consulted early during development. Most importantly, both the manufacturing process and the development of characterization and release assays should be science-driven, use the best available science and technology, and must consider the unique nature of the product: a living, and mutatable, virus. Potentially significant impacts on product quality and safety stem from the possibility of genetic instability related to over-engineering the viruses (as evidenced by their recombination and/or occasional reversion to wild-type virus during manufacturing). This report provides examples of some of the critical components affecting the development and production of clinical grade material and summarizes the significant progress made in recent years.

  11. Oncolytic virotherapy and immunogenic cancer cell death: sharpening the sword for improved cancer treatment strategies.

    PubMed

    Workenhe, Samuel T; Mossman, Karen L

    2014-02-01

    Oncolytic viruses are novel immunotherapeutics with increasingly promising outcomes in cancer patient clinical trials. Preclinical and clinical studies have uncovered the importance of virus-induced activation of antitumor immune responses for optimal therapeutic efficacy. Recently, several classes of chemotherapeutics have been shown to cause immunogenic cancer cell death characterized by the release of immunomodulatory molecules that activate antigen-presenting cells and thus trigger the induction of more potent anticancer adaptive immune responses. In preclinical models, several oncolytic viruses induce immunogenic cell death, which is associated with increased cross-priming of tumor-associated antigens. In this review, we discuss the recent advances in immunogenic cancer cell death as induced by chemotherapeutic treatments, including the roles of relevant danger-associated molecular patterns and signaling pathways, and highlighting the significance of the endoplasmic reticulum (ER) stress response. As virtually all viruses modulate both ER stress and cell death responses, we provide perspectives on future research directions that can be explored to optimize oncolytic viruses, alone or in combination with targeted drug therapies, as potent immunogenic cancer cell death-inducing agents. We propose that such optimized virus-drug synergistic strategies will improve the therapeutic outcomes for many currently intractable cancers.

  12. Remission of disseminated cancer after systemic oncolytic virotherapy.

    PubMed

    Russell, Stephen J; Federspiel, Mark J; Peng, Kah-Whye; Tong, Caili; Dingli, David; Morice, William G; Lowe, Val; O'Connor, Michael K; Kyle, Robert A; Leung, Nelson; Buadi, Francis K; Rajkumar, S Vincent; Gertz, Morie A; Lacy, Martha Q; Dispenzieri, Angela

    2014-07-01

    MV-NIS is an engineered measles virus that is selectively destructive to myeloma plasma cells and can be monitored by noninvasive radioiodine imaging of NIS gene expression. Two measles-seronegative patients with relapsing drug-refractory myeloma and multiple glucose-avid plasmacytomas were treated by intravenous infusion of 10(11) TCID50 (50% tissue culture infectious dose) infectious units of MV-NIS. Both patients responded to therapy with M protein reduction and resolution of bone marrow plasmacytosis. Further, one patient experienced durable complete remission at all disease sites. Tumor targeting was clearly documented by NIS-mediated radioiodine uptake in virus-infected plasmacytomas. Toxicities resolved within the first week after therapy. Oncolytic viruses offer a promising new modality for the targeted infection and destruction of disseminated cancer.

  13. Chronic Activation of Innate Immunity Correlates With Poor Prognosis in Cancer Patients Treated With Oncolytic Adenovirus.

    PubMed

    Taipale, Kristian; Liikanen, Ilkka; Juhila, Juuso; Turkki, Riku; Tähtinen, Siri; Kankainen, Matti; Vassilev, Lotta; Ristimäki, Ari; Koski, Anniina; Kanerva, Anna; Diaconu, Iulia; Cerullo, Vincenzo; Vähä-Koskela, Markus; Oksanen, Minna; Linder, Nina; Joensuu, Timo; Lundin, Johan; Hemminki, Akseli

    2016-02-01

    Despite many clinical trials conducted with oncolytic viruses, the exact tumor-level mechanisms affecting therapeutic efficacy have not been established. Currently there are no biomarkers available that would predict the clinical outcome to any oncolytic virus. To assess the baseline immunological phenotype and find potential prognostic biomarkers, we monitored mRNA expression levels in 31 tumor biopsy or fluid samples from 27 patients treated with oncolytic adenovirus. Additionally, protein expression was studied from 19 biopsies using immunohistochemical staining. We found highly significant changes in several signaling pathways and genes associated with immune responses, such as B-cell receptor signaling (P < 0.001), granulocyte macrophage colony-stimulating factor (GM-CSF) signaling (P < 0.001), and leukocyte extravasation signaling (P < 0.001), in patients surviving a shorter time than their controls. In immunohistochemical analysis, markers CD4 and CD163 were significantly elevated (P = 0.020 and P = 0.016 respectively), in patients with shorter than expected survival. Interestingly, T-cell exhaustion marker TIM-3 was also found to be significantly upregulated (P = 0.006) in patients with poor prognosis. Collectively, these data suggest that activation of several functions of the innate immunity before treatment is associated with inferior survival in patients treated with oncolytic adenovirus. Conversely, lack of chronic innate inflammation at baseline may predict improved treatment outcome, as suggested by good overall prognosis.

  14. Oncolytic Virotherapy as Emerging Immunotherapeutic Modality: Potential of Parvovirus H-1

    PubMed Central

    Moehler, Markus; Goepfert, Katrin; Heinrich, Bernd; Breitbach, Caroline J.; Delic, Maike; Galle, Peter Robert; Rommelaere, Jean

    2014-01-01

    Human tumors develop multiple strategies to evade recognition and efficient suppression by the immune system. Therefore, a variety of immunotherapeutic strategies have been developed to reactivate and reorganize the human immune system. The recent development of new antibodies against immune check points may help to overcome the immune silencing induced by human tumors. Some of these antibodies have already been approved for treatment of various solid tumor entities. Interestingly, targeting antibodies may be combined with standard chemotherapy or radiation protocols. Furthermore, recent evidence indicates that intratumoral or intravenous injections of replicative oncolytic viruses such as herpes simplex-, pox-, parvo-, or adenoviruses may also reactivate the human immune system. By generating tumor cell lysates in situ, oncolytic viruses overcome cellular tumor resistance mechanisms and induce immunogenic tumor cell death resulting in the recognition of newly released tumor antigens. This is in particular the case of the oncolytic parvovirus H-1 (H-1PV), which is able to kill human tumor cells and stimulate an anti-tumor immune response through increased presentation of tumor-associated antigens, maturation of dendritic cells, and release of pro-inflammatory cytokines. Current research and clinical studies aim to assess the potential of oncolytic virotherapy and its combination with immunotherapeutic agents or conventional treatments to further induce effective antitumoral immune responses. PMID:24822170

  15. Oncolytic virotherapy as emerging immunotherapeutic modality: potential of parvovirus h-1.

    PubMed

    Moehler, Markus; Goepfert, Katrin; Heinrich, Bernd; Breitbach, Caroline J; Delic, Maike; Galle, Peter Robert; Rommelaere, Jean

    2014-01-01

    Human tumors develop multiple strategies to evade recognition and efficient suppression by the immune system. Therefore, a variety of immunotherapeutic strategies have been developed to reactivate and reorganize the human immune system. The recent development of new antibodies against immune check points may help to overcome the immune silencing induced by human tumors. Some of these antibodies have already been approved for treatment of various solid tumor entities. Interestingly, targeting antibodies may be combined with standard chemotherapy or radiation protocols. Furthermore, recent evidence indicates that intratumoral or intravenous injections of replicative oncolytic viruses such as herpes simplex-, pox-, parvo-, or adenoviruses may also reactivate the human immune system. By generating tumor cell lysates in situ, oncolytic viruses overcome cellular tumor resistance mechanisms and induce immunogenic tumor cell death resulting in the recognition of newly released tumor antigens. This is in particular the case of the oncolytic parvovirus H-1 (H-1PV), which is able to kill human tumor cells and stimulate an anti-tumor immune response through increased presentation of tumor-associated antigens, maturation of dendritic cells, and release of pro-inflammatory cytokines. Current research and clinical studies aim to assess the potential of oncolytic virotherapy and its combination with immunotherapeutic agents or conventional treatments to further induce effective antitumoral immune responses.

  16. Molecular pathways: multimodal cancer-killing mechanisms employed by oncolytic vesiculoviruses.

    PubMed

    Mahoney, Douglas J; Stojdl, David F

    2013-02-15

    Cancer is a heterogeneous disease that, for the most part, is not effectively managed with existing therapies. Oncolytic viruses are an attractive class of experimental cancer medicine because, unlike conventional chemotherapeutic and molecularly targeted drugs, they orchestrate tumor cell death in multiple ways simultaneously. In this review, we discuss the numerous cancer-killing "pathways" marshalled by oncolytic vesiculoviruses. From directly infecting and lysing malignant cells, to engaging the host's innate and adaptive anticancer immune responses, to inducing vascular collapse within a tumor, oncolytic vesiculovirus therapy commandeers a coordinated, multipronged assault on cancer that is curative in numerous preclinical models. And as our appreciation of these mechanisms has progressed, so has our capacity to engineer improved outcomes. Notably, efforts to polarize the host's immune system toward the tumor and away from the virus have been particularly effective in immunocompetent murine models, and hold tremendous therapeutic promise for human patients. With a first-in-man phase I trial recently initiated in the United States, the clinical significance of oncolytic vesiculorivus therapy, after nearly 15 years of development, may soon come into focus. ©2012 AACR.

  17. Eliminating established tumor in nu/nu nude mice by a TRAIL-armed oncolytic adenovirus

    PubMed Central

    Dong, Fengqin; Wang, Li; Davis, John J.; Hu, Wenxian; Zhang, Lidong; Guo, Wei; Teraishi, Fuminori; Ji, Lin; Fang, Bingliang

    2006-01-01

    Purpose The tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL) and oncolytic viruses have recently been investigated extensively for cancer therapy. However, preclinical and clinical studies have revealed that their clinical application is hampered by either weak anticancer activity or systemic toxicity. We examined whether the weaknesses of the two strategies can be overcome by integrating the TRAIL gene into an oncolytic vector. Experimental Design We constructed a TRAIL-expressing oncolytic adenovector designated Ad/TRAIL-E1. The expression of both the TRAIL and viral E1A genes is under the control of a synthetic promoter consisting of sequences from the human telomerase reverse transcriptase promoter and a minimal cytomegalovirus early promoter. The transgene expression, apoptosis induction, viral replication, antitumor activity and toxicity of Ad/TRAIL-E1 were determined in vitro and in vivo in comparison with control vectors. Results Ad/TRAIL-E1 elicited enhanced viral replication and/or stronger oncolytic effect in vitro in various human cancer cell lines than a TRAIL-expressing replication-defective adenovector or an oncolytic adenovector expressing green fluorescent protein. Intralesional administration of Ad/TRAIL-E1 eliminated all subcutaneous xenograft tumors established from a human non-small cell lung cancer cell line, H1299, on nu/nu nude mice, resulting in long-term tumor-free survival. Furthermore, we found no treatment-related toxicity. Conclusions Viral replication and antitumor activity of oncolytic adenovirus can be enhanced by the TRAIL gene and Ad/TRAIL-E1 could become a potent therapeutic agent for cancer therapy. PMID:16951242

  18. [Oncolytic virotherapy for human solid tumors].

    PubMed

    Fujiwara, Toshiyoshi

    2009-05-01

    Replication-selective tumor-specific viruses present a novel approach for treatment of neoplastic disease. Telomerase activation is considered to be a critical step in carcinogenesis, and its activity correlates closely with human telomerase reverse transcriptase(hTERT)expression. We constructed an attenuated adenovirus 5 vector(Telomelysin, OBP-301), in which the hTERT promoter element drives expression of E1 genes. Telomelysin replicated efficiently and induced marked cell killing in a panel of human cancer cell lines, whereas replication as well as cytotoxicity was highly attenuated in normal human cells lacking telomerase activity. We further modified the E3 region of OBP-301 to contain green fluorescent protein(GFP)gene for monitoring viral replication(TelomeScan, OBP-401). When TelomeScan was intratumorally injected into human tumors orthotopically implanted into the rectum in mice, para-aortic lymph node metastasis could be visualized at laparotomy with a three-chip color cooled charged-coupled device camera. This article reviews recent highlights in this rapidly evolving field of cancer therapeutic and diagnostic approaches using telomerase-specific oncolytic adenoviruses.

  19. Functional genomic screening to enhance oncolytic virotherapy.

    PubMed

    Mahoney, D J; Stojdl, D F

    2013-02-05

    Functional genomic screening has emerged as a powerful approach for understanding complex biological phenomena. Of the available tools, genome-wide RNA interference (RNAi) technology is unquestionably the most incisive, as it directly probes gene function. Recent applications of RNAi screening have been impressive. Notable amongst these are its use in elucidated mechanism(s) for signal transduction, various aspects of cell biology, tumourigenesis and metastasis, resistance to cancer therapeutics, and the host's response to a pathogen. Herein we discuss how recent RNAi screening efforts have helped turn our attention to the targetability of non-oncogene support pathways for cancer treatment, with a particular focus on a recent study that identified a non-oncogene addiction to the ER stress response as a synergist target for oncolytic virus therapy (OVT). Moreover, we give our thoughts on the future of RNAi screening as a tool to enhance OVT and describe recent technical improvements that are poised to make genome-scale RNAi experiments more sensitive, less noisy, more applicable in vivo, and more easily validated in clinically relevant animal models.

  20. Genetic delivery of an immunoRNase by an oncolytic adenovirus enhances anticancer activity.

    PubMed

    Fernández-Ulibarri, Inés; Hammer, Katharina; Arndt, Michaela A E; Kaufmann, Johanna K; Dorer, Dominik; Engelhardt, Sarah; Kontermann, Roland E; Hess, Jochen; Allgayer, Heike; Krauss, Jürgen; Nettelbeck, Dirk M

    2015-05-01

    Antibody therapy of solid cancers is well established, but suffers from unsatisfactory tumor penetration of large immunoglobulins or from low serum retention of antibody fragments. Oncolytic viruses are in advanced clinical development showing excellent safety, but suboptimal potency due to limited virus spread within tumors. Here, by developing an immunoRNase-encoding oncolytic adenovirus, we combine viral oncolysis with intratumoral genetic delivery of a small antibody-fusion protein for targeted bystander killing of tumor cells (viro-antibody therapy). Specifically, we explore genetic delivery of a small immunoRNase consisting of an EGFR-binding scFv antibody fragment fused to the RNase Onconase (ONC(EGFR)) that induces tumor cell death by RNA degradation after cellular internalization. Onconase is a frog RNase that combines lack of immunogenicity and excellent safety in patients with high tumor killing potency due to its resistance to the human cytosolic RNase inhibitor. We show that ONC(EGFR) expression by oncolytic adenoviruses is feasible with an optimized, replication-dependent gene expression strategy. Virus-encoded ONC(EGFR) induces potent and EGFR-dependent bystander killing of tumor cells. Importantly, the ONC(EGFR)-encoding oncolytic adenovirus showed dramatically increased cytotoxicity specifically to EGFR-positive tumor cells in vitro and significantly enhanced therapeutic activity in a mouse xenograft tumor model. The latter demonstrates that ONC(EGFR) is expressed at levels sufficient to trigger tumor cell killing in vivo. The established ONC(EGFR)-encoding oncolytic adenovirus represents a novel agent for treatment of EGFR-positive tumors. This viro-antibody therapy platform can be further developed for targeted/personalized cancer therapy by exploiting antibody diversity to target further established or emerging tumor markers or combinations thereof. © 2014 UICC.

  1. Oncolytic viral therapy with a combination of HF10, a herpes simplex virus type 1 variant and granulocyte-macrophage colony-stimulating factor for murine ovarian cancer.

    PubMed

    Goshima, Fumi; Esaki, Shinichi; Luo, Chenhong; Kamakura, Maki; Kimura, Hiroshi; Nishiyama, Yukihiro

    2014-06-15

    Ovarian cancer is the most frequent cause of gynecological cancer-related mortality as a majority of patients are diagnosed at an advanced stage with intraperitoneal dissemination because of the absence of initial symptoms. Granulocyte-macrophage colony-stimulating factor (GM-CSF) plays an important role in the maturation of specialized antigen-presenting cells. In this study, we utilized a herpes simplex virus (HSV) amplicon expressing murine GM-CSF combined with HF10 (mGM-CSF amplicon), a highly attenuated HSV type 1 strain functioning as a helper virus to strengthen anti-tumor immune response, for the treatment of ovarian cancer with intraperitoneal dissemination. A mouse ovarian cancer cell line, OV2944-HM-1 (HM-1), was intraperitoneally injected, following which HF10 only or the mGM-CSF amplicon was injected intraperitoneally three times. HF10 injection prolonged survival and decreased intraperitoneal dissemination, but to a lesser extent than the mGM-CSF amplicon. Although HF10 replication was not observed in HM-1 cells, expression of VP5, a late gene coding the major capsid protein of HSV, was detected. Moreover, mGM-CSF production was detected in transfected HM-1 cells. Immunohistochemical staining revealed the infiltration of CD4- and CD8-positive cells into the peritoneal tumor(s). A significantly increased CD4+ T cell concentration was observed in the spleen. Murine splenic cells after each treatment were stimulated with HM-1 cells, and the strongest immune response was observed in the mice that received mGM-CSF amplicon injections. These results suggested that the mGM-CSF amplicon is a promising agent for the treatment of advanced ovarian cancer with intraperitoneal dissemination. © 2013 UICC.

  2. Polymeric oncolytic adenovirus for cancer gene therapy

    PubMed Central

    Choi, Joung-Woo; Lee, Young Sook; Yun, Chae-Ok; Kim, Sung Wan

    2015-01-01

    Oncolytic adenovirus (Ad) vectors present a promising modality to treat cancer. Many clinical trials have been done with either naked oncolytic Ad or combination with chemotherapies. However, the systemic injection of oncolytic Ad in clinical applications is restricted due to significant liver toxicity and immunogenicity. To overcome these issues, Ad has been engineered physically or chemically with numerous polymers for shielding the Ad surface, accomplishing extended blood circulation time and reduced immunogenicity as well as hepatotoxicity. In this review, we describe and classify the characteristics of polymer modified oncolytic Ad following each strategy for cancer treatment. Furthermore, this review concludes with the highlights of various polymer-coated Ads and their prospects, and directions for future research. PMID:26453806

  3. VSV oncolytic virotherapy in the B16 model depends upon intact MyD88 signaling.

    PubMed

    Wongthida, Phonphimon; Diaz, Rosa M; Galivo, Feorillo; Kottke, Timothy; Thompson, Jill; Melcher, Alan; Vile, Richard

    2011-01-01

    We show here, for the first time to our knowledge, that the antitumor therapy of oncolytic vesicular stomatitis virus (VSV) in the B16ova model depends upon signaling through myeloid differentiation primary response gene 88 (MyD88) in host cells. VSV-mediated therapy of B16ova tumors was abolished in MyD88(-/-) mice despite generation of antigen-specific T cell responses similar to those in immune-competent mice. Mice defective in only toll-like receptor 4 (TLR4), TLR7, or interleukin 1 (IL-1) signaling retained VSV-induced therapy, suggesting that multiple, redundant pathways of innate immune activation by the virus contribute to antitumor immune reactivity. Lack of MyD88 signaling was associated with decreased expression of proinflammatory cytokines and neutrophil infiltration in response to intratumoral virus, as well as decreased infiltration of draining lymph nodes (LN) with plasmacytoid dendritic cells (pDCs) (CD11b(-)GR1(+)B220(+)) and myeloid-derived suppressor cells (CD11b(+)GR1(+)F4/80(+)). MyD88 signaling in response to VSV was also closely associated with a type I interferon (IFN) response. This inhibited virus replication within the tumor but also protected the host from viral dissemination from the tumor. Therefore, the innate immune response to oncolytic viruses can be, simultaneously, protherapeutic, antioncolytic, and systemically protective. These paradoxically conflicting roles need to be carefully considered in future strategies designed to improve the efficacy of oncolytic virotherapy.

  4. Immunological effects of low-dose cyclophosphamide in cancer patients treated with oncolytic adenovirus.

    PubMed

    Cerullo, Vincenzo; Diaconu, Iulia; Kangasniemi, Lotta; Rajecki, Maria; Escutenaire, Sophie; Koski, Anniina; Romano, Valentina; Rouvinen, Noora; Tuuminen, Tamara; Laasonen, Leena; Partanen, Kaarina; Kauppinen, Satu; Joensuu, Timo; Oksanen, Minna; Holm, Sirkka-Liisa; Haavisto, Elina; Karioja-Kallio, Aila; Kanerva, Anna; Pesonen, Sari; Arstila, Petteri T; Hemminki, Akseli

    2011-09-01

    Patients with advanced solid tumors refractory to and progressing after conventional therapies were treated with three different regimens of low-dose cyclophosphamide (CP) in combination with oncolytic adenovirus. CP was given with oral metronomic dosing (50 mg/day, N = 21), intravenously (single 1,000 mg dose, N = 7) or both (N = 7). Virus was injected intratumorally. Controls (N = 8) received virus without CP. Treatments were well tolerated and safe regardless of schedule. Antibody formation and virus replication were not affected by CP. Metronomic CP (oral and oral + intravenous schedules) decreased regulatory T cells (T(regs)) without compromising induction of antitumor or antiviral T-cell responses. Oncolytic adenovirus given together with metronomic CP increased cytotoxic T cells and induced Th1 type immunity on a systemic level in most patients. All CP regimens resulted in higher rates of disease control than virus only (all P < 0.0001) and the best progression-free (PFS) and overall survival (OS) was seen in the oral + intravenous group. One year PFS and OS were 53 and 42% (P = 0.0016 and P < 0.02 versus virus only), respectively, both which are unusually high for chemotherapy refractory patients. We conclude that low-dose CP results in immunological effects appealing for oncolytic virotherapy. While these first-in-human data suggest good safety, intriguing efficacy and extended survival, the results should be confirmed in a randomized trial.

  5. Inhibition of protein deacetylation augments herpes simplex virus type 1-activated transcription of host fucosyltransferase genes associated with virus-induced sLex expression.

    PubMed

    Nordén, Rickard; Nyström, Kristina; Olofsson, Sigvard

    2010-03-01

    Herpes simplex virus type 1 induces expression of the selectin ligand sialyl Lewis X in infected cells by activating transcription of three normally silent host glycosyltransferase genes, FUT3, FUT5, and FUT6, a process that is initiated by binding of viral RNA to cellular protein kinase R. We investigated the involvement of protein deacetylation and promoter methylation in viral activation of host FUT genes by analysing the effects of appropriate inhibitors on the transcription rates of the FUT genes in virus-infected cells. The histone deacetylase inhibitor trichostatin A augmented the viral activation of FUT transcription, whereas inhibition of DNA methylation did not affect transcription of these genes. The trichostatin A enhancement did not involve interference with expression of viral late genes or viral DNA replication. Thus, the virus-activated FUT genes are at least partially suppressed by deacetylation of histones or other regulatory proteins in uninfected HEL cells, whereas promoter methylation is a less important factor.

  6. Fc-gamma receptor polymorphisms as predictive and prognostic factors in patients receiving oncolytic adenovirus treatment

    PubMed Central

    2013-01-01

    Background Oncolytic viruses have shown potential as cancer therapeutics, but not all patients seem to benefit from therapy. Polymorphisms in Fc gamma receptors (FcgRs) lead to altered binding affinity of IgG between the receptor allotypes and therefore contribute to differences in immune defense mechanisms. Associations have been identified between FcgR polymorphisms and responsiveness to different immunotherapies. Taken together with the increasing understanding that immunological factors might determine the efficacy of oncolytic virotherapy we studied whether FcgR polymorphisms would have prognostic and/or predictive significance in the context of oncolytic adenovirus treatments. Methods 235 patients with advanced solid tumors were genotyped for two FcgR polymorphisms, FcgRIIa-H131R (rs1801274) and FcgRIIIa-V158F (rs396991), using TaqMan based qPCR. The genotypes were correlated with patient survival and tumor imaging data. Results In patients treated with oncolytic adenoviruses, overall survival was significantly shorter if the patient had an FcgRIIIa-VV/ FcgRIIa-HR (VVHR) genotype combination (P = 0,032). In contrast, patients with FFHR and FFRR genotypes had significantly longer overall survival (P = 0,004 and P = 0,006, respectively) if they were treated with GM-CSF-armed adenovirus in comparison to other viruses. Treatment of these patients with unarmed virus correlated with shorter survival (P < 0,0005 and P = 0,016, respectively). Treating FFHH individuals with CD40L-armed virus resulted in longer survival than treatment with other viruses (P = 0,047). Conclusions Our data are compatible with the hypothesis that individual differences in effector cell functions, such as NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC) and tumor antigen presentation by APCs caused by polymorphisms in FcgRs could play role in the effectiveness of oncolytic virotherapies. If confirmed in larger populations, FcgR polymorphisms could

  7. Application of interferon modulators to overcome partial resistance of human ovarian cancers to VSV-GP oncolytic viral therapy

    PubMed Central

    Dold, Catherine; Rodriguez Urbiola, Carles; Wollmann, Guido; Egerer, Lisa; Muik, Alexander; Bellmann, Lydia; Fiegl, Heidelinde; Marth, Christian; Kimpel, Janine; von Laer, Dorothee

    2016-01-01

    Previously, we described an oncolytic vesicular stomatitis virus variant pseudotyped with the nonneurotropic glycoprotein of the lymphocytic choriomeningitis virus, VSV-GP, which was highly effective in glioblastoma. Here, we tested its potency for the treatment of ovarian cancer, a leading cause of death from gynecological malignancies. Effective oncolytic activity of VSV-GP could be demonstrated in ovarian cancer cell lines and xenografts in mice; however, remission was temporary in most mice. Analysis of the innate immune response revealed that ovarian cancer cell lines were able to respond to and produce type I interferon, inducing an antiviral state upon virus infection. This is in stark contrast to published data for other cancer cell lines, which were mostly found to be interferon incompetent. We showed that in vitro this antiviral state could be reverted by combining VSV-GP with the JAK1/2-inhibitor ruxolitinib. In addition, for the first time, we report the in vivo enhancement of oncolytic virus treatment by ruxolitinib, both in subcutaneous as well as in orthotopic xenograft mouse models, without causing significant additional toxicity. In conclusion, VSV-GP has the potential to be a potent and safe oncolytic virus to treat ovarian cancer, especially when combined with an inhibitor of the interferon response. PMID:27738655

  8. Targeting CXCL12/CXCR4 signaling with oncolytic virotherapy disrupts tumor vasculature and inhibits breast cancer metastases.

    PubMed

    Gil, Margaret; Seshadri, Mukund; Komorowski, Marcin P; Abrams, Scott I; Kozbor, Danuta

    2013-04-02

    Oncolytic viruses hold promise for the treatment of cancer, but their interaction with the tumor microenvironment needs to be elucidated for optimal tumor cell killing. Because the CXCR4 receptor for the stromal cell-derived factor-1 (SDF-1/CXCL12) chemokine is one of the key stimuli involved in signaling interactions between tumor cells and their stromal microenvironment, we used oncolytic virotherapy with a CXCR4 antagonist to target the CXCL12/CXCR4 signaling axis in a triple-negative 4T1 breast carcinoma in syngeneic mice. We show here that CXCR4 antagonist expression from an oncolytic vaccinia virus delivered intravenously to mice with orthotopic tumors attains higher intratumoral concentration than its soluble counterpart and exhibits increased efficacy over that mediated by oncolysis alone. A systemic delivery of the armed virus after resection of the primary tumor was efficacious in inhibiting the development of spontaneous metastasis and increased overall tumor-free survival. Inhibition of tumor growth with the armed virus was associated with destruction of tumor vasculature, reductions in expression of CXCL12 and VEGF, and decrease in intratumoral numbers of bone marrow-derived endothelial and myeloid cells. These changes led to induction of antitumor antibody responses and resistance to tumor rechallenge. Engineering an oncolytic virus armed with a CXCR4 antagonist represents an innovative strategy that targets multiple elements within the tumor microenvironment. As such, this approach could have a significant therapeutic impact against primary and metastatic breast cancer.

  9. Crimean-Congo Hemorrhagic Fever Virus Nucleocapsid Protein Augments mRNA Translation.

    PubMed

    Jeeva, Subbiah; Cheng, Erdong; Ganaie, Safder S; Mir, Mohammad A

    2017-08-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne Nairovirus of the Bunyaviridae family, causing severe illness with high mortality rates in humans. Here, we demonstrate that CCHFV nucleocapsid protein (CCHFV-NP) augments mRNA translation. CCHFV-NP binds to the viral mRNA 5' untranslated region (UTR) with high affinity. It facilitates the translation of reporter mRNA both in vivo and in vitro with the assistance of the viral mRNA 5' UTR. CCHFV-NP equally favors the translation of both capped and uncapped mRNAs, demonstrating the independence of this translation strategy on the 5' cap. Unlike the canonical host translation machinery, inhibition of eIF4F complex, an amalgam of three initiation factors, eIF4A, eIF4G, and eIF4E, by the chemical inhibitor 4E1RCat did not impact the CCHFV-NP-mediated translation mechanism. However, the proteolytic degradation of eIF4G alone by the human rhinovirus 2A protease abrogated this translation strategy. Our results demonstrate that eIF4F complex formation is not required but eIF4G plays a critical role in this translation mechanism. Our results suggest that CCHFV has adopted a unique translation mechanism to facilitate the translation of viral mRNAs in the host cell cytoplasm where cellular transcripts are competing for the same translation apparatus.IMPORTANCE Crimean-Congo hemorrhagic fever, a highly contagious viral disease endemic to more than 30 countries, has limited treatment options. Our results demonstrate that NP favors the translation of a reporter mRNA harboring the viral mRNA 5' UTR. It is highly likely that CCHFV uses an NP-mediated translation strategy for the rapid synthesis of viral proteins during the course of infection. Shutdown of this translation mechanism might selectively impact viral protein synthesis, suggesting that an NP-mediated translation strategy is a target for therapeutic intervention against this viral disease. Copyright © 2017 American Society for Microbiology.

  10. Characterization of an oncolytic adenovirus vector constructed to target the cMet receptor

    PubMed Central

    Sakr, Hany I; Coleman, David T; Cardelli, James A; Mathis, J Michael

    2015-01-01

    The cMet receptor is a homodimer with tyrosine kinase activity. Upon stimulation with its ligand, hepatocyte growth factor (HGF), the receptor mediates wide physiologic actions. The HGF-cMet signaling pathway is dysregulated in many cancers, which makes cMet an important target for novel therapeutic interventions. Oncolytic adenoviruses (Ads) have been used for the past three decades as a promising therapeutic approach for a wide array of neoplastic diseases. To date, achieving cancer-specific replication of oncolytic Ads has been accomplished by either viral genome deletions or by incorporating tumor selective promoters. To achieve novel specificity of oncolytic Ad infection of cancer cells that overexpress cMet, we inserted the HGF NK2 sequence, corresponding to a competitive antagonist of HGF binding to the cMet receptor, into the Ad serotype 5 (Ad5) fiber gene. The resulting vector, Ad5-pIX-RFP-FF/NK2, was rescued, amplified in HEK293 cells, and characterized. Binding specificity and viral infectivity were tested in various cancer cell lines that express varying levels of cMet and hCAR (the Ad5 receptor). We found that Ad5-pIX-RFP-FF/NK2 demonstrated binding specificity to the cMet receptor. In addition, there was enhanced viral infectivity and virus replication compared with a non-targeted Ad vector. Although NK2 weakly induces cMet receptor activation, our results showed no receptor phosphorylation in the context of an oncolytic Ad virus. In summary, these results suggest that an oncolytic Ad retargeted to the cMet receptor is a promising vector for developing a novel cancer therapeutic agent. PMID:26866014

  11. Tumor Selectivity of Oncolytic Parvoviruses: From in vitro and Animal Models to Cancer Patients

    PubMed Central

    Angelova, Assia L.; Geletneky, Karsten; Nüesch, Jürg P. F.; Rommelaere, Jean

    2015-01-01

    Oncolytic virotherapy of cancer is among the innovative modalities being under development and especially promising for targeting tumors, which are resistant to conventional treatments. Presently, at least a dozen of viruses, belonging to nine different virus families, are being tested within the frames of various clinical studies in cancer patients. Continuously growing preclinical evidence showing that the autonomous rat parvovirus H-1 (H-1PV) is able to kill tumor cells that resist conventional treatments and to achieve a complete cure of various human tumors in animal models argues for its inclusion in the arsenal of oncolytic viruses with an especially promising bench to bedside translation potential. Oncolytic parvovirus safe administration to humans relies on the intrinsic preference of these agents for quickly proliferating, metabolically, and biochemically disturbed tumor versus normal cells (tumor selectivity or oncotropism). The present review summarizes and discusses (i) preclinical evidence of H-1PV innocuousness for normal cells and healthy tissues in vitro and in animals, respectively, (ii) toxicological assessments of H-1PV mono- or combined therapy in tumor-bearing virus-permissive animal models, as well as (iii) historical results of experimental infection of human cancer patients with H-1PV. Altogether, these data argue against a risk of H-1PV inducing significant toxic effects in human patients. This highly favorable safety profile allowed the translation of H-1PV preclinical research into a Phase I/IIa clinical trial being currently in progress. PMID:25954743

  12. Combination of oncolytic adenovirus and dacarbazine attenuates antitumor ability against uveal melanoma cells via cell cycle block.

    PubMed

    Cun, Biyun; Song, Xin; Jia, Renbing; Zhao, Xiaoping; Wang, Haibo; Ge, Shengfang; Fan, Xianqun

    2012-01-15

    Uveal melanoma is the most common primary intraocular malignancy in adults; however, current therapeutic modalities, including chemotherapy, have not been successful. Oncolytic viruses serve as an emerging gene therapy tool for cancer treatment because they specifically kill tumor cells while sparing normal cells. The oncolytic virus H101 has been approved by the Chinese State Food and Drug Administration for the treatment of certain malignancies. Unfortunately, the monotherapy of adenovirus has demonstrated limited efficacy in a clinical setting. Thus, novel treatment strategies in which an oncolytic virus is combined with existing chemicals are advancing toward potential clinical use. In this study, we chose the combination of oncolytic virus H101 and the alkylating agent dacarbazine (DTIC) to treat uveal melanoma cells in vitro. Our results demonstrated that the combination exerted a synergistic antitumor effect without enhanced toxicity to normal cells via a type of cell cycle block other than the induction of apoptosis. Further investigation is warranted to elucidate the specific underlying mechanisms of this co-treatment therapy. Our study suggests the viro-chemo combination therapy is feasible and is a potentially promising approach for the treatment of uveal melanoma.

  13. Gluteal Augmentation With Intramuscular Implants in Patients With Human Immunodeficiency Virus With Lipoatrophy Related to the Use of Antiretroviral Therapy.

    PubMed

    Andrade, Guilherme Augusto; Coltro, Pedro Soler; Barros, Mário Eduardo; Müller Neto, Bruno Francisco; Lima, Renan Victor; Farina, Jayme Adriano

    2017-06-09

    Lipodystrophy syndrome associated with highly active antiretroviral therapy (HAART) may lead to low self-esteem and poor compliance with the drug treatment on patients infected with human immunodeficiency virus (HIV), which is a matter of concern for the health system. The aim of this study was to evaluate patients with HIV submitted to gluteal augmentation with intramuscular silicone implants to correct gluteal lipoatrophy related to the use of HAART. This is a retrospective evaluation of 10 patients submitted to gluteal augmentation with intramuscular silicone implant for correction of gluteal lipoatrophy related to the use of HAART, operated between 2012 and 2015. Postoperative complications and the degree of patient's satisfaction were analyzed. There were 3 postoperative complications including 1 case of surgical wound dehiscence and 2 cases of seroma. Six months after surgery, 8 patients had an excellent degree of satisfaction, and 2 patients had a good degree of satisfaction related to the procedure. Although this intervention does not offer functional advantages, it improves the body contour, increases patients' self-esteem, and helps them to accept their body image. These advantages can lead to higher compliance with prolonged HAART. Gluteal augmentation with intramuscular silicone implant can be a viable option to treat patients with HIV with gluteal lipoatrophy related to the use of HAART. The patients were satisfied with the outcomes of the procedure, and there were only minor self-limited postoperative complications.

  14. Mathematical model for radial expansion and conflation of intratumoral infectious centers predicts curative oncolytic virotherapy parameters.

    PubMed

    Bailey, Kent; Kirk, Amber; Naik, Shruthi; Nace, Rebecca; Steele, Michael B; Suksanpaisan, Lukkana; Li, Xing; Federspiel, Mark J; Peng, Kah-Whye; Kirk, David; Russell, Stephen J

    2013-01-01

    Simple, inductive mathematical models of oncolytic virotherapy are needed to guide protocol design and improve treatment outcomes. Analysis of plasmacytomas regressing after a single intravenous dose of oncolytic vesicular stomatitis virus in myeloma animal models revealed that intratumoral virus spread was spatially constrained, occurring almost exclusively through radial expansion of randomly distributed infectious centers. From these experimental observations we developed a simple model to calculate the probability of survival for any cell within a treated tumor. The model predicted that small changes to the density of initially infected cells or to the average maximum radius of infected centers would have a major impact on treatment outcome, and this was confirmed experimentally. The new model provides a useful and flexible tool for virotherapy protocol optimization.

  15. Chapter eight--Oncolytic adenoviruses for cancer immunotherapy: data from mice, hamsters, and humans.

    PubMed

    Cerullo, Vincenzo; Koski, Anniina; Vähä-Koskela, Markus; Hemminki, Akseli

    2012-01-01

    Adenovirus is one of the most commonly used vectors for gene therapy and two products have already been approved for treatment of cancer in China (Gendicine(R) and Oncorine(R)). An intriguing aspect of oncolytic adenoviruses is that by their very nature they potently stimulate multiple arms of the immune system. Thus, combined tumor killing via oncolysis and inherent immunostimulatory properties in fact make these viruses in situ tumor vaccines. When further engineered to express cytokines, chemokines, tumor-associated antigens, or other immunomodulatory elements, they have been shown in various preclinical models to induce antigen-specific effector and memory responses, resulting both in full therapeutic cures and even induction of life-long tumor immunity. Here, we review the state of the art of oncolytic adenovirus, in the context of their capability to stimulate innate and adaptive arms of the immune system and finally how we can modify these viruses to direct the immune response toward cancer.

  16. CD4+ T cells clear virus but augment disease in mice infected with respiratory syncytial virus. Comparison with the effects of CD8+ T cells.

    PubMed Central

    Alwan, W H; Record, F M; Openshaw, P J

    1992-01-01

    Respiratory syncytial (RS) virus-specific T cell lines were derived from the spleens of BALB/c mice primed by intranasal infection with RS virus. The lines were expanded by repeated antigenic stimulation in vitro, and separated into CD4+ and CD8+ T cell-enriched fractions by immunomagnetic adhesion. The effects of passive transfer of these fractions into RS virus infected mice were observed. The most severe immunopathological changes were seen in mice receiving CD4+ cells. Transfer of CD4+, CD8+ or both cell fractions caused RS virus-infected mice to become ill and lose weight. Both cell lines caused an increase in the severity of lung pathology (as monitored by bronchoalveolar lavage) with the appearance of lung haemorrhage and polymorphonuclear cell efflux. In addition, recipients of CD4+ cells developed striking pulmonary eosinophilia. In CD4+ cell recipients, 5 x 10(5) cells were sufficient to decrease lung virus titre, whereas 2 x 10(6) CD8+ cells were needed to produce a similar effect. The unseparated T cell line and the CD4+ cell fraction secreted significant amounts of IL-3, IL-4 and IL-5 (P less than 0.001). High levels of IL-2 were produced only by the unseparated T cell line. The CD8+ cell fraction secreted IL-3 only. The results show that, cell-for-cell, CD4+ cells are more anti-viral and more immunopathogenic than CD8+ cells in RS virus infected mice. Such effects may have contributed to the augmented disease seen in some infants vaccinated against RS virus. PMID:1351433

  17. Oncolytic virotherapy for treatment of breast cancer, including triple-negative breast cancer.

    PubMed

    Bramante, Simona; Koski, Anniina; Liikanen, Ilkka; Vassilev, Lotta; Oksanen, Minna; Siurala, Mikko; Heiskanen, Raita; Hakonen, Tiina; Joensuu, Timo; Kanerva, Anna; Pesonen, Sari; Hemminki, Akseli

    2016-02-01

    Breast cancer is a heterogeneous disease, characterized by several distinct biological subtypes, among which triple-negative breast cancer (TNBC) is one associated with a poor prognosis. Oncolytic virus replication is an immunogenic phenomenon, and viruses can be armed with immunostimulatory molecules to boost virus triggered antitumoral immune responses. Cyclophosphamide (CP) is a chemotherapy drug that is associated with cytotoxicity and immunosuppression at higher doses, whereas immunostimulatory and anti-angiogenic properties are observed at low continuous dosage. Therefore, the combination of oncolytic immuno-virotherapy with low-dose CP is an appealing approach. We investigated the potency of oncolytic adenovirus Ad5/3-D24-GMCSF on a TNBC cell line and in vivo in an orthotopic xenograft mouse model, in combination with low-dose CP or its main active metabolite 4-hydroperoxycyclophosphamide (4-HP-CP). Furthermore, we summarized the breast cancer-specific human data on this virus from the Advanced Therapy Access Program (ATAP). Low-dose CP increased the efficacy of Ad5/3-D24-GMCSF in vitro and in a TNBC mouse model. In ATAP, treatments appeared safe and well-tolerated. Thirteen out of 16 breast cancer patients treated were evaluable for possible benefits with modified RECIST 1.1 criteria: 1 patient had a minor response, 2 had stable disease (SD), and 10 had progressive disease (PD). One patient is alive at 1,771 d after treatment. Ad5/3-D24-GMCSF in combination with low-dose CP showed promising efficacy in preclinical studies and possible antitumor activity in breast cancer patients refractory to other forms of therapy. This preliminary data supports continuing the clinical development of oncolytic adenoviruses for treatment of breast cancer, including TNBC.

  18. Oncolytic virotherapy for treatment of breast cancer, including triple-negative breast cancer

    PubMed Central

    Bramante, Simona; Koski, Anniina; Liikanen, Ilkka; Vassilev, Lotta; Oksanen, Minna; Siurala, Mikko; Heiskanen, Raita; Hakonen, Tiina; Joensuu, Timo; Kanerva, Anna; Pesonen, Sari; Hemminki, Akseli

    2016-01-01

    ABSTRACT Breast cancer is a heterogeneous disease, characterized by several distinct biological subtypes, among which triple-negative breast cancer (TNBC) is one associated with a poor prognosis. Oncolytic virus replication is an immunogenic phenomenon, and viruses can be armed with immunostimulatory molecules to boost virus triggered antitumoral immune responses. Cyclophosphamide (CP) is a chemotherapy drug that is associated with cytotoxicity and immunosuppression at higher doses, whereas immunostimulatory and anti-angiogenic properties are observed at low continuous dosage. Therefore, the combination of oncolytic immuno-virotherapy with low-dose CP is an appealing approach. We investigated the potency of oncolytic adenovirus Ad5/3-D24-GMCSF on a TNBC cell line and in vivo in an orthotopic xenograft mouse model, in combination with low-dose CP or its main active metabolite 4-hydroperoxycyclophosphamide (4-HP-CP). Furthermore, we summarized the breast cancer-specific human data on this virus from the Advanced Therapy Access Program (ATAP). Low-dose CP increased the efficacy of Ad5/3-D24-GMCSF in vitro and in a TNBC mouse model. In ATAP, treatments appeared safe and well-tolerated. Thirteen out of 16 breast cancer patients treated were evaluable for possible benefits with modified RECIST 1.1 criteria: 1 patient had a minor response, 2 had stable disease (SD), and 10 had progressive disease (PD). One patient is alive at 1,771 d after treatment. Ad5/3-D24-GMCSF in combination with low-dose CP showed promising efficacy in preclinical studies and possible antitumor activity in breast cancer patients refractory to other forms of therapy. This preliminary data supports continuing the clinical development of oncolytic adenoviruses for treatment of breast cancer, including TNBC. PMID:27057453

  19. Robust Oncolytic Virotherapy Induces Tumor Lysis Syndrome and Associated Toxicities in the MPC-11 Plasmacytoma Model.

    PubMed

    Zhang, Lianwen; Steele, Michael B; Jenks, Nathan; Grell, Jacquelyn; Behrens, Marshall; Nace, Rebecca; Naik, Shruthi; Federspiel, Mark J; Russell, Stephen J; Peng, Kah-Whye

    2016-12-01

    Tumor-selective oncolytic vesicular stomatitis viruses (VSVs) are being evaluated in clinical trials. Here, we report that the MPC-11 murine plasmacytoma model is so extraordinarily susceptible to oncolytic VSVs that a low dose of virus leads to extensive intratumoral viral replication, sustained viremia, intravascular coagulation, and a rapidly fatal tumor lysis syndrome (TLS). Rapid softening, shrinkage and hemorrhagic necrosis of flank tumors was noted within 1-2 days after virus administration, leading to hyperkalemia, hyperphosphatemia, hypocalcemia, hyperuricemia, increase in plasma cell free DNA, lymphopenia, consumptive coagulopathy, increase in fibrinogen degradation products, decreased liver function tests, dehydration, weight loss, and euthanasia or death after 5-8 days. Secondary viremia was observed but viral replication in normal host tissues was not detected. Toxicity could be mitigated by using VSVs with slowed replication kinetics, and was less marked in animals with smaller flank tumors. The MPC-11 tumor represents an interesting model to further study the complex interplay of robust intratumoral viral replication, tumor lysis, and associated toxicities in cases where tumors are highly responsive to oncolytic virotherapy.

  20. Adaptive antiviral immunity is a determinant of the therapeutic success of oncolytic virotherapy.

    PubMed

    Sobol, Paul T; Boudreau, Jeanette E; Stephenson, Kyle; Wan, Yonghong; Lichty, Brian D; Mossman, Karen L

    2011-02-01

    Oncolytic virotherapy, the selective killing of tumor cells by oncolytic viruses (OVs), has emerged as a promising avenue of anticancer research. We have previously shown that KM100, a Herpes simplex virus type-1 (HSV) deficient for infected cell protein 0 (ICP0), possesses substantial oncolytic properties in vitro and has antitumor efficacy in vivo, in part by inducing antitumor immunity. Here, we illustrate through T-cell immunodepletion studies in nontolerized tumor-associated antigen models of breast cancer that KM100 treatment promotes antiviral and antitumor CD8(+) cytotoxic T-cell responses necessary for complete tumor regression. In tolerized tumor-associated antigen models of breast cancer, antiviral CD8(+) cytotoxic T-cell responses against infected tumor cells correlated with the induction of significant tumoristasis in the absence of tumor-associated antigen-specific CD8(+) cytotoxic T-cells. To enhance oncolysis, we tested a more cytopathic ICP0-null HSV and a vesicular stomatitis virus M protein mutant and found that despite improved in vitro replication, oncolysis in vivo did not improve. These studies illustrate that the in vitro cytolytic properties of OVs are poor prognostic indicators of in vivo antitumor activity, and underscore the importance of adaptive antiviral CD8(+) cytotoxic T-cells in effective cancer virotherapy.

  1. Oncolytic Adenovirus Loaded with L-carnosine as Novel Strategy to Enhance the Antitumor Activity.

    PubMed

    Garofalo, Mariangela; Iovine, Barbara; Kuryk, Lukasz; Capasso, Cristian; Hirvinen, Mari; Vitale, Andrea; Yliperttula, Marjo; Bevilacqua, Maria Assunta; Cerullo, Vincenzo

    2016-04-01

    Oncolytic viruses are able to specifically replicate, infect, and kill only cancer cells. Their combination with chemotherapeutic drugs has shown promising results due to the synergistic action of virus and drugs; the combinatorial therapy is considered a potential clinically relevant approach for cancer. In this study, we optimized a strategy to absorb peptides on the viral capsid, based on electrostatic interaction, and used this strategy to deliver an active antitumor drug. We used L-carnosine, a naturally occurring histidine dipeptide with a significant antiproliferative activity. An ad hoc modified, positively charged L-carnosine was combined with the capsid of an oncolytic adenovirus to generate an electrostatic virus-carnosine complex. This complex showed enhanced antitumor efficacy in vitro and in vivo in different tumor models. In HCT-116 colorectal and A549 lung cancer cell lines, the complex showed higher transduction ratio and infectious titer compared with an uncoated oncolytic adenovirus. The in vivo efficacy of the complex was tested in lung and colon cancer xenograft models, showing a significant reduction in tumor growth. Importantly, we investigated the molecular mechanisms underlying the effects of complex on tumor growth reduction. We found that complex induces apoptosis in both cell lines, by using two different mechanisms, enhancing viral replication and affecting the expression of Hsp27. Our system could be used in future studies also for delivery of other bioactive drugs. Mol Cancer Ther; 15(4); 651-60. ©2016 AACR. ©2016 American Association for Cancer Research.

  2. Bacterial glucuronidase as general marker for oncolytic virotherapy or other biological therapies

    PubMed Central

    2011-01-01

    Background Oncolytic viral tumor therapy is an emerging field in the fight against cancer with rising numbers of clinical trials and the first clinically approved product (Adenovirus for the treatment of Head and Neck Cancer in China) in this field. Yet, until recently no general (bio)marker or reporter gene was described that could be used to evaluate successful tumor colonization and/or transgene expression in other biological therapies. Methods Here, a bacterial glucuronidase (GusA) encoded by biological therapeutics (e.g. oncolytic viruses) was used as reporter system. Results Using fluorogenic probes that were specifically activated by glucuronidase we could show 1) preferential activation in tumors, 2) renal excretion of the activated fluorescent compounds and 3) reproducible detection of GusA in the serum of oncolytic vaccinia virus treated, tumor bearing mice in several tumor models. Time course studies revealed that reliable differentiation between tumor bearing and healthy mice can be done as early as 9 days post injection of the virus. Regarding the sensitivity of the newly developed assay system, we could show that a single infected tumor cell could be reliably detected in this assay. Conclusion GusA therefore has the potential to be used as a general marker in the preclinical and clinical evaluation of (novel) biological therapies as well as being useful for the detection of rare cells such as circulating tumor cells. PMID:21989091

  3. Biodistribution Analysis of Oncolytic Adenoviruses in Patient Autopsy Samples Reveals Vascular Transduction of Noninjected Tumors and Tissues

    PubMed Central

    Koski, Anniina; Bramante, Simona; Kipar, Anja; Oksanen, Minna; Juhila, Juuso; Vassilev, Lotta; Joensuu, Timo; Kanerva, Anna; Hemminki, Akseli

    2015-01-01

    In clinical trials with oncolytic adenoviruses, there has been no mortality associated with treatment vectors. Likewise, in the Advanced Therapy Access Program (ATAP), where 290 patients were treated with 10 different viruses, no vector-related mortality was observed. However, as the patient population who received adenovirus treatments in ATAP represented heavily pretreated patients, often with very advanced disease, some patients died relatively soon after receiving their virus treatment mandating autopsy to investigate cause of death. Eleven such autopsies were performed and confirmed disease progression as the cause of death in each case. The regulatory requirement for investigating the safety of advanced therapy medical products presented a unique opportunity to study tissue samples collected as a routine part of the autopsies. Oncolytic adenoviral DNA was recovered in a wide range of tissues, including injected and noninjected tumors and various normal tissues, demonstrating the ability of the vector to disseminate through the vascular route. Furthermore, we recovered and cultured viable virus from samples of noninjected brain metastases of an intravenously treated patient, confirming that oncolytic adenovirus can reach tumors through the intravascular route. Data presented here give mechanistic insight into mode of action and biodistribution of oncolytic adenoviruses in cancer patients. PMID:26156245

  4. Dual tumor targeting with pH-sensitive and bioreducible polymer-complexed oncolytic adenovirus.

    PubMed

    Moon, Chang Yoon; Choi, Joung-Woo; Kasala, Dayananda; Jung, Soo-Jung; Kim, Sung Wan; Yun, Chae-Ok

    2015-02-01

    Oncolytic adenoviruses (Ads) have shown great promise in cancer gene therapy but their efficacy has been compromised by potent immunological, biochemical, and specific tumor-targeting limitations. To take full advantage of the innate cancer-specific killing potency of oncolytic Ads but also exploit the subtleties of the tumor microenvironment, we have generated a pH-sensitive and bio-reducible polymer (PPCBA)-coated oncolytic Ad. Ad-PPCBA complexes showed higher cellular uptake at pH 6.0 than pH 7.4 in both high and low coxsackie and adenovirus receptor-(CAR)-expressing cells, thereby demonstrating Ad-PPCBA's ability to target the low pH hypoxic tumor microenvironment and overcome CAR dependence for target cell uptake. Endocytic mechanism studies indicated that Ad-PPCBA internalization is mediated by macropinocytosis instead of the CAR-dependent endocytic pathway that internalizes naked Ad. VEGF-specific shRNA-expressing oncolytic Ad complexed with PPCBA (RdB/shVEGF-PPCBA) elicited much more potent suppression of U87 human brain cancer cell VEGF gene expression in vitro, and human breast cancer MCF7 cell/Matrigel plug vascularization in a mouse model, when cancer cells had been previously infected at pH 6.0 versus pH 7.4. Moreover, intratumorally and intravenously injected RdB/shVEGF-PPCBA nanocomplexes elicited significantly higher therapeutic efficacy than naked virus in U87-tumor mouse xenograft models, reducing IL-6, ALT, and AST serum levels. These data demonstrated PPCBA's biocompatibility and capability to shield the Ad surface to prevent innate immune response against Ad after both intratumoral and systemic administration. Taken together, these results demonstrate that smart, tumor-specific, oncolytic Ad-PPCBA complexes can be exploited to treat both primary and metastatic tumors.

  5. Overcoming Barriers in Oncolytic Virotherapy with HDAC Inhibitors and Immune Checkpoint Blockade

    PubMed Central

    Marchini, Antonio; Scott, Eleanor M.; Rommelaere, Jean

    2016-01-01

    Oncolytic viruses (OVs) target and destroy cancer cells while sparing their normal counterparts. These viruses have been evaluated in numerous studies at both pre-clinical and clinical levels and the recent Food and Drug Administration (FDA) approval of an oncolytic herpesvirus-based treatment raises optimism that OVs will become a therapeutic option for cancer patients. However, to improve clinical outcome, there is a need to increase OV efficacy. In addition to killing cancer cells directly through lysis, OVs can stimulate the induction of anti-tumour immune responses. The host immune system thus represents a “double-edged sword” for oncolytic virotherapy: on the one hand, a robust anti-viral response will limit OV replication and spread; on the other hand, the immune-mediated component of OV therapy may be its most important anti-cancer mechanism. Although the relative contribution of direct viral oncolysis and indirect, immune-mediated oncosuppression to overall OV efficacy is unclear, it is likely that an initial period of vigorous OV multiplication and lytic activity will most optimally set the stage for subsequent adaptive anti-tumour immunity. In this review, we consider the use of histone deacetylase (HDAC) inhibitors as a means of boosting virus replication and lessening the negative impact of innate immunity on the direct oncolytic effect. We also discuss an alternative approach, aimed at potentiating OV-elicited anti-tumour immunity through the blockade of immune checkpoints. We conclude by proposing a two-phase combinatorial strategy in which initial OV replication and spread is maximised through transient HDAC inhibition, with anti-tumour immune responses subsequently enhanced by immune checkpoint blockade. PMID:26751469

  6. Overcoming Barriers in Oncolytic Virotherapy with HDAC Inhibitors and Immune Checkpoint Blockade.

    PubMed

    Marchini, Antonio; Scott, Eleanor M; Rommelaere, Jean

    2016-01-06

    Oncolytic viruses (OVs) target and destroy cancer cells while sparing their normal counterparts. These viruses have been evaluated in numerous studies at both pre-clinical and clinical levels and the recent Food and Drug Administration (FDA) approval of an oncolytic herpesvirus-based treatment raises optimism that OVs will become a therapeutic option for cancer patients. However, to improve clinical outcome, there is a need to increase OV efficacy. In addition to killing cancer cells directly through lysis, OVs can stimulate the induction of anti-tumour immune responses. The host immune system thus represents a "double-edged sword" for oncolytic virotherapy: on the one hand, a robust anti-viral response will limit OV replication and spread; on the other hand, the immune-mediated component of OV therapy may be its most important anti-cancer mechanism. Although the relative contribution of direct viral oncolysis and indirect, immune-mediated oncosuppression to overall OV efficacy is unclear, it is likely that an initial period of vigorous OV multiplication and lytic activity will most optimally set the stage for subsequent adaptive anti-tumour immunity. In this review, we consider the use of histone deacetylase (HDAC) inhibitors as a means of boosting virus replication and lessening the negative impact of innate immunity on the direct oncolytic effect. We also discuss an alternative approach, aimed at potentiating OV-elicited anti-tumour immunity through the blockade of immune checkpoints. We conclude by proposing a two-phase combinatorial strategy in which initial OV replication and spread is maximised through transient HDAC inhibition, with anti-tumour immune responses subsequently enhanced by immune checkpoint blockade.

  7. Development of an Oncolytic Adenovirus with Enhanced Spread Ability through Repeated UV Irradiation and Cancer Selection

    PubMed Central

    Wechman, Stephen L.; Rao, Xiao-Mei; Cheng, Pei-Hsin; Gomez-Gutierrez, Jorge G.; McMasters, Kelly M.; Zhou, H. Sam

    2016-01-01

    Oncolytic adenoviruses (Ads) have been shown to be safe and have great potential for the treatment of solid tumors. However, the therapeutic efficacy of Ads is antagonized by limited spread within solid tumors. To develop Ads with enhanced spread, viral particles of an E1-wildtype Ad5 dl309 was repeatedly treated with UV type C irradiation and selected for the efficient replication and release from cancer cells. After 72 cycles of treatment and cancer selection, AdUV was isolated. This vector has displayed many favorable characteristics for oncolytic therapy. AdUV was shown to lyse cancer cells more effectively than both E1-deleted and E1-wildtype Ads. This enhanced cancer cell lysis appeared to be related to increased AdUV replication in and release from infected cancer cells. AdUV-treated A549 cells displayed greater expression of the autophagy marker LC3-II during oncolysis and formed larger viral plaques upon cancer cell monolayers, indicating increased virus spread among cancer cells. This study indicates the potential of this approach of irradiation of entire viral particles for the development of oncolytic viruses with designated therapeutic properties. PMID:27314377

  8. Oncolytic Adenovirus With Temozolomide Induces Autophagy and Antitumor Immune Responses in Cancer Patients

    PubMed Central

    Liikanen, Ilkka; Ahtiainen, Laura; Hirvinen, Mari LM; Bramante, Simona; Cerullo, Vincenzo; Nokisalmi, Petri; Hemminki, Otto; Diaconu, Iulia; Pesonen, Sari; Koski, Anniina; Kangasniemi, Lotta; Pesonen, Saila K; Oksanen, Minna; Laasonen, Leena; Partanen, Kaarina; Joensuu, Timo; Zhao, Fang; Kanerva, Anna; Hemminki, Akseli

    2013-01-01

    Oncolytic adenoviruses and certain chemotherapeutics can induce autophagy and immunogenic cancer cell death. We hypothesized that the combination of oncolytic adenovirus with low-dose temozolomide (TMZ) is safe, effective, and capable of inducing antitumor immune responses. Metronomic low-dose cyclophosphamide (CP) was added to selectively reduce regulatory T-cells. Preclinically, combination therapy inhibited tumor growth, increased autophagy, and triggered immunogenic cell death as indicated by elevated calreticulin, adenosine triphosphate (ATP) release, and nuclear protein high-mobility group box-1 (HMGB1) secretion. A total of 41 combination treatments given to 17 chemotherapy-refractory cancer patients were well tolerated. We observed anti- and proinflammatory cytokine release, evidence of virus replication, and induction of neutralizing antibodies. Tumor cells showed increased autophagy post-treatment. Release of HMGB1 into serum—a possible indicator of immune response—increased in 60% of treatments, and seemed to correlate with tumor-specific T-cell responses, observed in 10/15 cases overall (P = 0.0833). Evidence of antitumor efficacy was seen in 67% of evaluable treatments with a trend for increased survival over matched controls treated with virus only. In summary, the combination of oncolytic adenovirus with low-dose TMZ and metronomic CP increased tumor cell autophagy, elicited antitumor immune responses, and showed promising safety and efficacy. PMID:23546299

  9. Predictive and Prognostic Clinical Variables in Cancer Patients Treated With Adenoviral Oncolytic Immunotherapy.

    PubMed

    Taipale, Kristian; Liikanen, Ilkka; Koski, Anniina; Heiskanen, Raita; Kanerva, Anna; Hemminki, Otto; Oksanen, Minna; Grönberg-Vähä-Koskela, Susanna; Hemminki, Kari; Joensuu, Timo; Hemminki, Akseli

    2016-08-01

    The development of oncolytic viruses has recently made great progress towards being available to cancer patients. With the breakthrough into clinics, it is crucial to analyze the existing clinical experience and use it as a basis for treatment improvements. Here, we report clinical data from 290 patients treated with oncolytic adenovirus. Using clinical variables and treatment characteristics, we constructed statistical models with regard to treatment response and overall survival (OS). Additionally, we investigated effects of neutralizing antibodies, tumor burden, and peripheral blood leucocyte counts on these outcomes. We found the absence of liver metastases to correlate with an improved rate of disease control (P = 0.021). In multivariate evaluation, patients treated with viruses coding for immunostimulatory granulocyte macrophage colony-stimulating factor were linked to better prognosis (hazard ratio (HR) 0.378, P < 0.001), as well as women with any cancer type (HR 0.694, P = 0.017). In multivariate analysis for imaging response, patients treated via intraperitoneal injection were more likely to achieve disease control (odds ratio (OR) 3.246, P = 0.027). Patients with low neutrophil-to-lymphocyte ratio before treatment had significantly longer OS (P < 0.001). These findings could explain some of the variation seen in treatment outcomes after virotherapy. Furthermore, the results offer hypotheses for treatment optimization and patient selection in oncolytic adenovirus immunotherapy.

  10. Progress in oncolytic virotherapy for the treatment of thyroid malignant neoplasm.

    PubMed

    Guan, Mingxu; Romano, Gaetano; Coroniti, Roberta; Henderson, Earl E

    2014-11-01

    Thyroid malignant neoplasm develops from follicular or parafollicular thyroid cells. A higher proportion of anaplastic thyroid cancer has an adverse prognosis. New drugs are being used in clinical treatment. However, for advanced thyroid malignant neoplasm such as anaplastic thyroid carcinoma, the major impediment to successful control of the disease is the absence of effective therapies. Oncolytic virotherapy has significantly progressed as therapeutics in recent years. The advance is that oncolytic viruses can be designed with biological specificity to infect, replicate and lyse tumor cells. Significant advances in virotherapy have being achieved to improve the accessibility, safety and efficacy of the treatment. Therefore, it is necessary to summarize and bring together the main areas covered by these investigations for the virotherapy of thyroid malignant neoplasm. We provide an overview of the progress in virotherapy research and clinical trials, which employ virotherapy for thyroid malignant neoplasm as well as the future prospect for virotherapy of thyroid malignant neoplasms.

  11. Recent Patents in Oncolytic Virotherapy.

    PubMed

    Ahmad, Tauqeer; Venkataraman, Srividhya; AbouHaidar, Mounir; Hefferon, Kathleen L

    2016-01-01

    Recent innovative and advanced developments in the diagnosis and treatment of human diseases as well as enhanced in-depth understanding of virus molecular biology have opened novel avenues with respect to the patent landscape. Included are viruses utilized in the development of anticancer agents, agents that are employed against the spread of infectious viral diseases, RNA silencing agents and virus-derived expression vectors that can be used for over-expression of therapeutic proteins or as gene therapy vehicles. The current review describes several recent patents pertaining to virus sequences and their medical and biotechnological applications.

  12. Epithelial Junction Opener Improves Oncolytic Adenovirus Therapy in Mouse Tumor Models

    PubMed Central

    Yumul, Roma; Richter, Maximilian; Lu, Zhuo-Zhuang; Saydaminova, Kamola; Wang, Hongjie; Wang, Chung-Huei Katherine; Carter, Darrick; Lieber, André

    2016-01-01

    A central resistance mechanism in solid tumors is the maintenance of epithelial junctions between malignant cells that prevent drug penetration into the tumor. Human adenoviruses (Ads) have evolved mechanisms to breach epithelial barriers. For example, during Ad serotype 3 (Ad3) infection of epithelial tumor cells, massive amounts of subviral penton-dodecahedral particles (PtDd) are produced and released from infected cells to trigger the transient opening of epithelial junctions, thus facilitating lateral virus spread. We show here that an Ad3 mutant that is disabled for PtDd production is significantly less effective in killing of epithelial human xenograft tumors than the wild-type Ad3 virus. Intratumoral spread and therapeutic effect of the Ad3 mutant was enhanced by co-administration of a small recombinant protein (JO; produced in Escherichia coli) that incorporated the minimal junction opening domains of PtDd. We then demonstrated that co-administration of JO with replication-competent Ads that do not produce PtDd (Ad5, Ad35) resulted in greater attenuation of tumor growth than virus injection alone. Furthermore, we genetically modified a conditionally replicating Ad5-based oncolytic Ad (Ad5Δ24) to express a secreted form of JO upon replication in tumor cells. The JO-expressing virus had a significantly greater antitumor effect than the unmodified AdΔ24 version. Our findings indicate that epithelial junctions limit the efficacy of oncolytic Ads and that this problem can be address by co-injection or expression of JO. JO has also the potential for improving cancer therapy with other types of oncolytic viruses. PMID:26993072

  13. The mechanisms of genetically modified vaccinia viruses for the treatment of cancer.

    PubMed

    Jefferson, Artrish; Cadet, Valerie E; Hielscher, Abigail

    2015-09-01

    The use of oncolytic viruses for the treatment of cancer is an emerging field of cancer research and therapy. Oncolytic viruses are designed to induce tumor specific immunity while replicating selectively within cancer cells to cause lysis of the tumor cells. While there are several forms of oncolytic viruses, the use of vaccinia viruses for oncolysis may be more beneficial than other forms of oncolytic viruses. For example, vaccinia viruses have been shown to exert their anti-tumor effects through genetic engineering strategies which enhance their therapeutic efficacy. This paper will address some of the most common forms of genetically modified vaccinia viruses and will explore the mechanisms whereby they selectively target, enter and destroy cancer cells. Furthermore, this review will highlight how vaccinia viruses activate host immune responses against cancer cells and will address clinical trials evaluating the tumor-directed and killing efficacy of these viruses against solid tumors.

  14. Bugs and Drugs: Oncolytic Virotherapy in Combination with Chemotherapy

    PubMed Central

    Wennier, Sonia Tusell; Liu, Jia; McFadden, Grant

    2015-01-01

    Single agent therapies are rarely successful in treating cancer, particularly at metastatic or end stages, and survival rates with monotherapies alone are generally poor. The combination of multiple therapies to treat cancer has already driven significant improvements in the standard of care treatments for many types of cancers. The first combination treatments exploited for cancer therapy involved the use of several cytotoxic chemotherapy agents. Later, with the development of more targeted agents, the use of novel, less toxic drugs, in combination with the more classic cytotoxic drugs has proven advantageous for certain cancer types. Recently, the combination of oncolytic virotherapy with chemotherapy has shown that the use of these two therapies with very distinct anti-tumor mechanisms may also lead to synergistic interactions that ultimately result in increased therapeutic effects not achievable by either therapy alone. The mechanisms of synergy between oncolytic viruses (OVs) and chemotherapeutic agents are just starting to be elucidated. It is evident, however, that the success of these OV-drug combinations depends greatly on the particular O V, the drug(s) selected, and the cancer type targeted. This review summarizes the different OV-drug combinations investigated to date, including the use of second generation armed OVs, which have been studied with the specific purpose of generating synergistic interactions with particular chemotherapy agents. The known mechanisms of synergy between these OV-drug combinations are also summarized. The importance of further investigating these mechanisms of synergy will be critical in order to maximize the therapeutic efficacy of OV-drug combination therapies in the future. PMID:21740354

  15. Bugs and drugs: oncolytic virotherapy in combination with chemotherapy.

    PubMed

    Wennier, Sonia Tusell; Liu, Jia; McFadden, Grant

    2012-07-01

    Single agent therapies are rarely successful in treating cancer, particularly at metastatic or end stages, and survival rates with monotherapies alone are generally poor. The combination of multiple therapies to treat cancer has already driven significant improvements in the standard of care treatments for many types of cancers. The first combination treatments exploited for cancer therapy involved the use of several cytotoxic chemotherapy agents. Later, with the development of more targeted agents, the use of novel, less toxic drugs, in combination with the more classic cytotoxic drugs has proven advantageous for certain cancer types. Recently, the combination of oncolytic virotherapy with chemotherapy has shown that the use of these two therapies with very distinct anti-tumor mechanisms may also lead to synergistic interactions that ultimately result in increased therapeutic effects not achievable by either therapy alone. The mechanisms of synergy between oncolytic viruses (OVs) and chemotherapeutic agents are just starting to be elucidated. It is evident, however, that the success of these OV-drug combinations depends greatly on the particular OV, the drug(s) selected, and the cancer type targeted. This review summarizes the different OV-drug combinations investigated to date, including the use of second generation armed OVs, which have been studied with the specific purpose of generating synergistic interactions with particular chemotherapy agents. The known mechanisms of synergy between these OV-drug combinations are also summarized. The importance of further investigating these mechanisms of synergy will be critical in order to maximize the therapeutic efficacy of OV-drug combination therapies in the future.

  16. Oncolytic parvoviruses: from basic virology to clinical applications.

    PubMed

    Marchini, Antonio; Bonifati, Serena; Scott, Eleanor M; Angelova, Assia L; Rommelaere, Jean

    2015-01-29

    Accumulated evidence gathered over recent decades demonstrated that some members of the Parvoviridae family, in particular the rodent protoparvoviruses H-1PV, the minute virus of mice and LuIII have natural anticancer activity while being nonpathogenic to humans. These studies have laid the foundations for the launch of a first phase I/IIa clinical trial, in which the rat H-1 parvovirus is presently undergoing evaluation for its safety and first signs of efficacy in patients with glioblastoma multiforme. After a brief overview of the biology of parvoviruses, this review focuses on the studies which unraveled the antineoplastic properties of these agents and supported their clinical use as anticancer therapeutics. Furthermore, the development of novel parvovirus-based anticancer strategies with enhanced specificity and efficacy is discussed, in particular the development of second and third generation vectors and the combination of parvoviruses with other anticancer agents. Lastly, we address the key challenges that remain towards a more rational and efficient use of oncolytic parvoviruses in clinical settings, and discuss how a better understanding of the virus life-cycle and of the cellular factors involved in virus infection, replication and cytotoxicity may promote the further development of parvovirus-based anticancer therapies, open new prospects for treatment and hopefully improve clinical outcome.

  17. ORFV: A Novel Oncolytic and Immune Stimulating Parapoxvirus Therapeutic

    PubMed Central

    Rintoul, Julia L; Lemay, Chantal G; Tai, Lee-Hwa; Stanford, Marianne M; Falls, Theresa J; de Souza, Christiano T; Bridle, Byram W; Daneshmand, Manijeh; Ohashi, Pamela S; Wan, Yonghong; Lichty, Brian D; Mercer, Andrew A; Auer, Rebecca C; Atkins, Harold L; Bell, John C

    2012-01-01

    Replicating viruses for the treatment of cancer have a number of advantages over traditional therapeutic modalities. They are highly targeted, self-amplifying, and have the added potential to act as both gene-therapy delivery vehicles and oncolytic agents. Parapoxvirus ovis or Orf virus (ORFV) is the prototypic species of the Parapoxvirus genus, causing a benign disease in its natural ungulate host. ORFV possesses a number of unique properties that make it an ideal viral backbone for the development of a cancer therapeutic: it is safe in humans, has the ability to cause repeat infections even in the presence of antibody, and it induces a potent Th-1-dominated immune response. Here, we show that live replicating ORFV induces an antitumor immune response in multiple syngeneic mouse models of cancer that is mediated largely by the potent activation of both cytokine-secreting, and tumoricidal natural killer (NK) cells. We have also highlighted the clinical potential of the virus by demonstration of human cancer cell oncolysis including efficacy in an A549 xenograft model of cancer. PMID:22273579

  18. The Practical Consideration of Poliovirus as an Oncolytic Virotherapy

    PubMed Central

    Denniston, Elizabeth; Crewdson, Hannah; Rucinsky, Nicole; Stegman, Andrew; Remenar, Diana; Moio, Katherine; Clark, Brianne; Higginbotham, Alexandra; Keffer, Ross; Brammer, Sarah; Horzempa, Joseph

    2017-01-01

    The inauguration of novel treatment strategies into the clinical setting faces a number of hurdles. In addition to treatment efficacy and safety, acceptance by doctors and patients is paramount to the success of novel therapies. Although viruses are the cause of numerous infectious diseases, these acellular entities have been harnessed over the years to benefit mankind. Recently, a recombinant Poliovirus-Rhinovirus Chimera (PVSRIPO) has shown promise for the treatment of glioblastoma in clinical trials as well as other cancer types in animal models. In this literature review, we discuss the use of PVSRIPO as an oncolytic virotherapy. In addition to being a potential treatment for glioblastoma, this recombinant virus could possibly be used against other cancers because many tumor cells express the PVSRIPO receptor antigens (CD155) and have a limited ability to control viral replication. Moreover, virus-induced immune responses contribute to the efficacy of PVSRIPO. Given the current trajectory of this experimental therapy, the possibility exists that PVSRIPO will soon be a viable treatment option for various cancer types. While many healthcare providers and cancer patients likely welcome this new viral based treatment, history has taught us that some may be skeptical and avoid its use because of the viral composition of this therapy. PMID:28203321

  19. Immunocompetent syngeneic cotton rat tumor models for the assessment of replication-competent oncolytic adenovirus

    SciTech Connect

    Steel, Jason C.; Morrison, Brian J.; Mannan, Poonam; Abu-Asab, Mones S.; Wildner, Oliver; Miles, Brian K.; Yim, Kevin C.; Ramanan, Vijay; Prince, Gregory A.; Morris, John C.

    2007-12-05

    Oncolytic adenoviruses as a treatment for cancer have demonstrated limited clinical activity. Contributing to this may be the relevance of preclinical animal models used to study these agents. Syngeneic mouse tumor models are generally non-permissive for adenoviral replication, whereas human tumor xenograft models exhibit attenuated immune responses to the vector. The cotton rat (Sigmodon hispidus) is susceptible to human adenovirus infection, permissive for viral replication and exhibits similar inflammatory pathology to humans with adenovirus replicating in the lungs, respiratory passages and cornea. We evaluated three transplantable tumorigenic cotton rat cell lines, CCRT, LCRT and VCRT as models for the study of oncolytic adenoviruses. All three cells lines were readily infected with adenovirus type-5-based vectors and exhibited high levels of transgene expression. The cell lines supported viral replication demonstrated by the induction of cytopathogenic effect (CPE) in tissue culture, increase in virus particle numbers and assembly of virions seen on transmission electron microscopy. In vivo, LCRT and VCRT tumors demonstrated delayed growth after injection with replicating adenovirus. No in vivo antitumor activity was seen in CCRT tumors despite in vitro oncolysis. Adenovirus was also rapidly cleared from the CCRT tumors compared to LCRT and VCRT tumors. The effect observed with the different cotton rat tumor cell lines mimics the variable results of human clinical trials highlighting the potential relevance of this model for assessing the activity and toxicity of oncolytic adenoviruses.

  20. Chemotherapy and Oncolytic Virotherapy: Advanced Tactics in the War against Cancer

    PubMed Central

    Nguyen, Andrew; Ho, Louisa; Wan, Yonghong

    2014-01-01

    Cancer is a traitorous archenemy that threatens our survival. Its ability to evade detection and adapt to various cancer therapies means that it is a moving target that becomes increasingly difficult to attack. Through technological advancements, we have developed sophisticated weapons to fight off tumor growth and invasion. However, if we are to stand a chance in this war against cancer, advanced tactics will be required to maximize the use of our available resources. Oncolytic viruses (OVs) are multi-functional cancer-fighters that can be engineered to suit many different strategies; in particular, their retooling can facilitate increased capacity for direct tumor killing (oncolytic virotherapy) and elicit adaptive antitumor immune responses (oncolytic immunotherapy). However, administration of these modified OVs alone, rarely induces successful regression of established tumors. This may be attributed to host antiviral immunity that acts to eliminate viral particles, as well as the capacity for tumors to adapt to therapeutic selective pressure. It has been shown that various chemotherapeutic drugs with distinct functional properties can potentiate the antitumor efficacy of OVs. In this review, we summarize the chemotherapeutic combinatorial strategies used to optimize virally induced destruction of tumors. With a particular focus on pharmaceutical immunomodulators, we discuss how specific therapeutic contexts may alter the effects of these synergistic combinations and their implications for future clinical use. PMID:24967214

  1. Chemotherapy and Oncolytic Virotherapy: Advanced Tactics in the War against Cancer.

    PubMed

    Nguyen, Andrew; Ho, Louisa; Wan, Yonghong

    2014-01-01

    Cancer is a traitorous archenemy that threatens our survival. Its ability to evade detection and adapt to various cancer therapies means that it is a moving target that becomes increasingly difficult to attack. Through technological advancements, we have developed sophisticated weapons to fight off tumor growth and invasion. However, if we are to stand a chance in this war against cancer, advanced tactics will be required to maximize the use of our available resources. Oncolytic viruses (OVs) are multi-functional cancer-fighters that can be engineered to suit many different strategies; in particular, their retooling can facilitate increased capacity for direct tumor killing (oncolytic virotherapy) and elicit adaptive antitumor immune responses (oncolytic immunotherapy). However, administration of these modified OVs alone, rarely induces successful regression of established tumors. This may be attributed to host antiviral immunity that acts to eliminate viral particles, as well as the capacity for tumors to adapt to therapeutic selective pressure. It has been shown that various chemotherapeutic drugs with distinct functional properties can potentiate the antitumor efficacy of OVs. In this review, we summarize the chemotherapeutic combinatorial strategies used to optimize virally induced destruction of tumors. With a particular focus on pharmaceutical immunomodulators, we discuss how specific therapeutic contexts may alter the effects of these synergistic combinations and their implications for future clinical use.

  2. Thyroid malignant neoplasm-associated biomarkers as targets for oncolytic virotherapy.

    PubMed

    Guan, Mingxu; Ma, Yanping; Shah, Sahil Rajesh; Romano, Gaetano

    2016-01-01

    Biomarkers associated with thyroid malignant neoplasm (TMN) have been widely applied in clinical diagnosis and in research oncological programs. The identification of novel TMN biomarkers has greatly improved the efficacy of clinical diagnosis. A more accurate diagnosis may lead to better clinical outcomes and effective treatments. However, the major deficiency of conventional chemotherapy and radiotherapy is lack of specificity. Due to the macrokinetic interactions, adverse side effects will occur, including chemotherapy and radiotherapy resistance. Therefore, a new treatment is urgently needed. As an alternative approach, oncolytic virotherapy may represent an opportunity for treatment strategies that can more specifically target tumor cells. In most cases, viral entry requires the expression of specific receptors on the surface of the host cell. Currently, molecular virologists and gene therapists are working on engineering oncolytic viruses with altered tropism for the specific targeting of malignant cells. This review focuses on the strategy of biomarkers for the production of novel TMN oncolytic therapeutics, which may improve the specificity of targeting of tumor cells and limit adverse effects in patients.

  3. Long-term treatment with the oncolytic ECHO-7 virus Rigvir of a melanoma stage IV M1c patient, a small cell lung cancer stage IIIA patient, and a histiocytic sarcoma stage IV patient-three case reports.

    PubMed

    Alberts, Pēteris; Olmane, Evija; Brokāne, Linda; Krastiņa, Zanda; Romanovska, Māra; Kupčs, Kārlis; Isajevs, Sergejs; Proboka, Guna; Erdmanis, Romualds; Nazarovs, Jurijs; Venskus, Dite

    2016-10-01

    Oncolytic virotherapy is a recent addition to cancer treatment. Here, we describe positive treatment outcomes in three patients using Rigvir virotherapy. One of the patients is diagnosed with melanoma stage IV M1c, one with small cell lung cancer stage IIIA, and one with histiocytic sarcoma stage IV. The diagnoses of all patients are verified by histology or cytology. All patients started Rigvir treatment within a few months after being diagnosed and are currently continuing Rigvir treatment. The degree of regression of the disease has been determined by computed tomography. Safety assessment of adverse events graded according to NCI CTCAE did not show any value above grade 1 during Rigvir(®) treatment. Using current standard treatments, the survival of patients with the present diagnoses is low. In contrast, the patients described here were diagnosed 3.5, 7.0, and 6.6 years ago, and their condition has improved and been stabile for over 1.5, 6.5, and 4 years, respectively. These observations suggest that virotherapy using Rigvir can successfully be used in long-term treatment of patients with melanoma stage IV M1c, small cell lung cancer stage IIIA, and histiocytic sarcoma stage IV and therefore could be included in prospective clinical studies. © 2016 International Virotherapy Center. APMIS published by John Wiley & Sons Ltd.

  4. Isolated limb perfusion with biochemotherapy and oncolytic virotherapy combines with radiotherapy and surgery to overcome treatment resistance in an animal model of extremity soft tissue sarcoma.

    PubMed

    Wilkinson, Michelle J; Smith, Henry G; Pencavel, Timothy D; Mansfield, David C; Kyula-Currie, Joan; Khan, Aadil A; McEntee, Gráinne; Roulstone, Victoria; Hayes, Andrew J; Harrington, Kevin J

    2016-09-15

    The management of locally advanced or recurrent extremity sarcoma often necessitates multimodal therapy to preserve a limb, of which isolated limb perfusion (ILP) is a key component. However, with standard chemotherapeutic agents used in ILP, the duration of response is limited. Novel agents or treatment combinations are urgently needed to improve outcomes. Previous work in an animal model has demonstrated the efficacy of oncolytic virotherapy when delivered by ILP and, in this study, we report further improvements from combining ILP-delivered oncolytic virotherapy with radiation and surgical resection. In vitro, the combination of radiation with an oncolytic vaccinia virus (GLV-1h68) and melphalan demonstrated increased cytotoxicity in a panel of sarcoma cell lines. The effects were mediated through activation of the intrinsic apoptotic pathway. In vivo, combinations of radiation, oncolytic virotherapy and standard ILP resulted in delayed tumour growth and prolonged survival when compared with standard ILP alone. However, local disease control could only be secured when such treatment was combined with surgical resection, the timing of which was crucial in determining outcome. Combinations of oncolytic virotherapy with surgical resection and radiation have direct clinical relevance in extremity sarcoma and represent an exciting prospect for improving outcomes in this pathology. © 2016 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf UICC.

  5. Isolated limb perfusion with biochemotherapy and oncolytic virotherapy combines with radiotherapy and surgery to overcome treatment resistance in an animal model of extremity soft tissue sarcoma

    PubMed Central

    Wilkinson, Michelle J.; Smith, Henry G.; Pencavel, Timothy D.; Mansfield, David C.; Kyula‐Currie, Joan; Khan, Aadil A.; McEntee, Gráinne; Roulstone, Victoria; Hayes, Andrew J.

    2016-01-01

    The management of locally advanced or recurrent extremity sarcoma often necessitates multimodal therapy to preserve a limb, of which isolated limb perfusion (ILP) is a key component. However, with standard chemotherapeutic agents used in ILP, the duration of response is limited. Novel agents or treatment combinations are urgently needed to improve outcomes. Previous work in an animal model has demonstrated the efficacy of oncolytic virotherapy when delivered by ILP and, in this study, we report further improvements from combining ILP‐delivered oncolytic virotherapy with radiation and surgical resection. In vitro, the combination of radiation with an oncolytic vaccinia virus (GLV‐1h68) and melphalan demonstrated increased cytotoxicity in a panel of sarcoma cell lines. The effects were mediated through activation of the intrinsic apoptotic pathway. In vivo, combinations of radiation, oncolytic virotherapy and standard ILP resulted in delayed tumour growth and prolonged survival when compared with standard ILP alone. However, local disease control could only be secured when such treatment was combined with surgical resection, the timing of which was crucial in determining outcome. Combinations of oncolytic virotherapy with surgical resection and radiation have direct clinical relevance in extremity sarcoma and represent an exciting prospect for improving outcomes in this pathology. PMID:27116656

  6. Respiratory syncytial virus predisposes mice to augmented allergic airway responses via IL-13-mediated mechanisms.

    PubMed

    Lukacs, N W; Tekkanat, K K; Berlin, A; Hogaboam, C M; Miller, A; Evanoff, H; Lincoln, P; Maassab, H

    2001-07-15

    The development of severe childhood asthma may be influenced by several factors including environmental and infectious stimuli. The causal relationship between infectious viral responses, such as respiratory syncytial virus (RSV), and severe asthma during early childhood is unclear. In these studies, the ability for an initial RSV infection to exacerbate and promote a more severe asthmatic-type response was investigated by combining established murine models of disease. We examined the ability of RSV to induce exacerbation of allergic disease over a relatively long period, leading to development of severe airway responses including airway inflammation and hyperreactivity. The preferential production of IL-13 during a primary RSV infection appears to play a critical role for the exacerbation of cockroach allergen-induced disease. The depletion of IL-13 during RSV infections inhibited the exacerbation and acceleration of severe allergen-induced airway hyperreactivity. This was indicated by decreases in airway hyperreactivity and changes in lung chemokine production. These data suggest that the airway responses during asthma can be greatly affected by a previous RSV infection, even when infection occurs before allergen sensitization. Overall, infection of the airways with RSV can induce an IL-13-dependent change in airway function and promotes an environment that contributes to the development of severe allergic asthmatic responses.

  7. Impact of tumor microenvironment on oncolytic viral therapy

    PubMed Central

    Wojton, Jeffrey; Kaur, Balveen

    2010-01-01

    Interactions between tumor cells and their microenvironment have been shown to play a very significant role in the initiation, progression, and invasiveness of cancer. These tumor-stromal interactions are capable of altering the delivery and effectiveness of therapeutics into the tumor and are also known to influence future resistance and re-growth after treatment. Here we review recent advances in the understanding of the tumor microenvironment and its response to oncolytic viral therapy. The multifaceted environmental response to viral therapy can influence viral infection, replication, and propagation within the tumor. Recent studies have unveiled the complicated temporal changes in the tumor vasculature post OV treatment, and their impact on tumor biology. Similarly, the secreted extracellular matrix in solid tumors can affect both infection and spread of the therapeutic virus. Together, these complex changes in the tumor microenvironment also modulate the activation of the innate antiviral host immune response, leading to quick and efficient viral clearance. In order to combat these detrimental responses, viruses have been combined with pharmacological adjuvants and “armed” with therapeutic genes in order to suppress the pernicious environmental conditions following therapy. In this review we will discuss the impact of the tumor environment on viral therapy and examine some of the recent literature investigating methods of modulating this environment to enhance oncolysis. PMID:20399700

  8. Treatment of melanoma with a serotype 5/3 chimeric oncolytic adenovirus coding for GM-CSF: Results in vitro, in rodents and in humans.

    PubMed

    Bramante, Simona; Kaufmann, Johanna K; Veckman, Ville; Liikanen, Ilkka; Nettelbeck, Dirk M; Hemminki, Otto; Vassilev, Lotta; Cerullo, Vincenzo; Oksanen, Minna; Heiskanen, Raita; Joensuu, Timo; Kanerva, Anna; Pesonen, Sari; Matikainen, Sampsa; Vähä-Koskela, Markus; Koski, Anniina; Hemminki, Akseli

    2015-10-01

    Metastatic melanoma is refractory to irradiation and chemotherapy, but amenable to immunological approaches such as immune-checkpoint-inhibiting antibodies or adoptive cell therapies. Oncolytic virus replication is an immunogenic phenomenon, and viruses can be armed with immunostimulatory molecules. Therefore, oncolytic immuno-virotherapy of malignant melanoma is an appealing approach, which was recently validated by a positive phase 3 trial. We investigated the potency of oncolytic adenovirus Ad5/3-D24-GMCSF on a panel of melanoma cell lines and animal models, and summarized the melanoma-specific human data from the Advanced Therapy Access Program (ATAP). The virus effectively eradicated human melanoma cells in vitro and subcutaneous SK-MEL-28 melanoma xenografts in nude mice when combined with low-dose cyclophosphamide. Furthermore, virally-expressed granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulated the differentiation of human monocytes into macrophages. In contrast to human cells, RPMI 1846 hamster melanoma cells exhibited no response to oncolytic viruses and the chimeric 5/3 fiber failed to increase the efficacy of transduction, suggesting limited utility of the hamster model in the context of viruses with this capsid. In ATAP, treatments appeared safe and well-tolerated. Four out of nine melanoma patients treated were evaluable for possible therapy benefit with modified RECIST criteria: one patient had minor response, two had stable disease, and one had progressive disease. Two patients were alive at 559 and 2,149 days after treatment. Ad5/3-D24-GMCSF showed promising efficacy in preclinical studies and possible antitumor activity in melanoma patients refractory to other forms of therapy. This data supports continuing the clinical development of oncolytic adenoviruses for treatment of malignant melanoma.

  9. MicroRNA-Mediated Suppression of Oncolytic Adenovirus Replication in Human Liver

    PubMed Central

    Ylösmäki, Erkko; Lavilla-Alonso, Sergio; Jäämaa, Sari; Vähä-Koskela, Markus; af Hällström, Taija; Hemminki, Akseli; Arola, Johanna; Mäkisalo, Heikki; Saksela, Kalle

    2013-01-01

    MicroRNAs (miRNAs) are important and ubiquitous regulators of gene expression that can suppress their target genes by translational inhibition as well as mRNA destruction. Cell type-specific miRNA expression patterns have been successfully exploited for targeting the expression of experimental and therapeutic gene constructs, for example to reduce pathogenic effects of cancer virotherapy in normal tissues. In order to avoid liver damage associated with systemic or intrahepatic delivery of oncolytic adenoviruses we have introduced the concept of suppressing adenovirus replication in hepatic cells by inserting target elements for the liver-specific miR122 into the viral genome. Here we show using ex vivo cultured tissue specimens that six perfectly complementary miR122 target sites in the 3′ untranslated region of the viral E1A gene are sufficient in the absence of any other genetic modifications to prevent productive replication of serotype 5 adenovirus (Ad5) in normal human liver. This modification did not compromise the replicative capacity of the modified virus in cancer tissue derived from a colon carcinoma liver metastasis or its oncolytic potency in a human lung cancer xenograft mouse model. Unlike wild-type Ad5, the modified virus did not result in increased serum levels of liver enzymes in infected mice. These results provide a strong preclinical proof of concept for the use of miR122 target sites for reducing the risk of liver damage caused by oncolytic adenoviruses, and suggest that ectopic miR122 target elements should be considered as an additional safety measure included in any therapeutic virus or viral vector posing potential hazard to the liver. PMID:23349911

  10. MicroRNA-mediated suppression of oncolytic adenovirus replication in human liver.

    PubMed

    Ylösmäki, Erkko; Lavilla-Alonso, Sergio; Jäämaa, Sari; Vähä-Koskela, Markus; af Hällström, Taija; Hemminki, Akseli; Arola, Johanna; Mäkisalo, Heikki; Saksela, Kalle

    2013-01-01

    MicroRNAs (miRNAs) are important and ubiquitous regulators of gene expression that can suppress their target genes by translational inhibition as well as mRNA destruction. Cell type-specific miRNA expression patterns have been successfully exploited for targeting the expression of experimental and therapeutic gene constructs, for example to reduce pathogenic effects of cancer virotherapy in normal tissues. In order to avoid liver damage associated with systemic or intrahepatic delivery of oncolytic adenoviruses we have introduced the concept of suppressing adenovirus replication in hepatic cells by inserting target elements for the liver-specific miR122 into the viral genome. Here we show using ex vivo cultured tissue specimens that six perfectly complementary miR122 target sites in the 3' untranslated region of the viral E1A gene are sufficient in the absence of any other genetic modifications to prevent productive replication of serotype 5 adenovirus (Ad5) in normal human liver. This modification did not compromise the replicative capacity of the modified virus in cancer tissue derived from a colon carcinoma liver metastasis or its oncolytic potency in a human lung cancer xenograft mouse model. Unlike wild-type Ad5, the modified virus did not result in increased serum levels of liver enzymes in infected mice. These results provide a strong preclinical proof of concept for the use of miR122 target sites for reducing the risk of liver damage caused by oncolytic adenoviruses, and suggest that ectopic miR122 target elements should be considered as an additional safety measure included in any therapeutic virus or viral vector posing potential hazard to the liver.

  11. PET imaging of oncolytic VSV expressing the mutant HSV-1 thymidine kinase transgene in a preclinical HCC rat model.

    PubMed

    Muñoz-Álvarez, Kim A; Altomonte, Jennifer; Laitinen, Iina; Ziegler, Sibylle; Steiger, Katja; Esposito, Irene; Schmid, Roland M; Ebert, Oliver

    2015-04-01

    Hepatocellular carcinoma (HCC) is the most predominant form of liver cancer and the third leading cause of cancer-related death worldwide. Due to the relative ineffectiveness of conventional HCC therapies, oncolytic viruses have emerged as novel alternative treatment agents. Our previous studies have demonstrated significant prolongation of survival in advanced HCC in rats after oncolytic vesicular stomatitis virus (VSV) treatment. In this study, we aimed to establish a reporter system to reliably and sensitively image VSV in a clinically relevant model of HCC for clinical translation. To this end, an orthotopic, unifocal HCC model in immune-competent Buffalo rats was employed to test a recombinant VSV vector encoding for an enhanced version of the herpes simplex virus 1 (HSV-1) thymidine kinase (sr39tk) reporter, which would allow the indirect detection of VSV via positron emission tomography (PET). The resulting data revealed specific tracer uptake in VSV-HSV1-sr39tk-treated tumors. Further characterization of the VSV-HSV1-sr39tk vector demonstrated its optimal detection time-point after application and its detection limit via PET. In conclusion, oncolytic VSV expressing the HSV1-sr39tk reporter gene allows for highly sensitive in vivo imaging via PET. Therefore, this imaging system may be directly translatable and beneficial in further clinical applications.

  12. Attenuation of the recombinant human parainfluenza virus type 3 cp45 candidate vaccine virus is augmented by importation of the respiratory syncytial virus cpts530 L polymerase mutation.

    PubMed

    Skiadopoulos, M H; Surman, S R; St Claire, M; Elkins, W R; Collins, P L; Murphy, B R

    1999-07-20

    A phenylalanine to leucine mutation at position 521 in the L polymerase of cpts530, a live-attenuated respiratory syncytial virus (RSV) cold-passaged (cp), temperature-sensitive (ts) candidate vaccine, specifies the ts and attenuation (att) phenotypes. Sequence alignment of this region in the L proteins of several distantly related paramyxoviruses revealed that this phenylalanine is conserved. Using reverse genetics, the analogous phenylalanine at position 456 in the L protein of wild-type PIV3 was mutagenized to leucine (F456L). The resulting virus, designated r456(L), was ts (40 degrees C shut-off temperature of plaque formation), and its replication in the upper, but not the lower, respiratory tract of hamsters was 10-fold reduced compared with that of the recombinant wild-type PIV3 (rwt). Thus the phenylalanine to leucine mutation specified a similar level of temperature sensitivity and attenuation in two distantly related paramyxoviruses. We next sought to determine whether the addition of this mutation to the L protein of two rPIV3 candidate vaccine viruses, one bearing the three cp45 ts missense mutations in the L protein (rcp45(L)) and the other bearing all 15 cp45 mutations (rcp45), would further attenuate the viruses in vivo. Each rcp45 derivative to which the F456L mutation was added exhibited an increased level of temperature sensitivity. Furthermore rcp45(L)-456 and rcp45-456 were 100- to 1000-fold more restricted in replication in hamsters than their rcp45(L) and rcp45 parents. Despite the high level of restriction of replication in hamsters, immunization with rcp45-456 induced a moderate level of resistance to replication of PIV3 challenge virus. In contrast to the highly restricted replication observed in hamsters, rcp45-456 was only fivefold more restricted in the respiratory tract of chimpanzees than rcp45 and induced a comparable, moderate to high level of PIV3-specific serum antibodies. rcp45 and rcp45-456 viruses isolated from chimpanzees

  13. Oncolytic virotherapy for malignant glioma: translating laboratory insights into clinical practice.

    PubMed

    Auffinger, Brenda; Ahmed, Atique U; Lesniak, Maciej S

    2013-01-01

    Glioblastoma multiforme, one of the most common and aggressive brain tumors in adults, is highly resistant to currently available therapies and often recurs. Due to its poor prognosis and difficult management, there is an urgent need for the development and translation of new anti-glioma therapeutic approaches into the clinic. In this context, oncolytic virotherapy arises as an exciting treatment option for glioma patients. These natural or genetically engineered viruses are able to effectively infect cancer cells, inducing a specific anti-tumor cytotoxic effect. In addition, some viruses have been redesigned to modulate glioma microenvironment, to express cytokines to boost a systemic anti-glioma immune response and to incorporate angiostatic genes to decrease glioma vasculature. Although recent clinical trials have confirmed the safety of oncolytic virotherapies in the brain, their moderate clinical efficacy has not yet matched the encouraging preclinical laboratory results. In this review, we will discuss the leading anti-glioma virotherapy approaches that are presently under preclinical and clinical evaluation. We will also review different delivery methods, in vivo virus behavior, fate, replication, intratumoral spread, activation of anti-tumor immune response, and targeting of glioma stem cells. We will focus on the advantages and limitations of each therapeutic approach and how to overcome these hurdles to effectively translate exciting laboratory results into promising clinical trials.

  14. Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy.

    PubMed

    Zamarin, Dmitriy; Holmgaard, Rikke B; Subudhi, Sumit K; Park, Joon Seok; Mansour, Mena; Palese, Peter; Merghoub, Taha; Wolchok, Jedd D; Allison, James P

    2014-03-05

    Preexisting lymphocytic infiltration of tumors is associated with superior prognostic outcomes in a variety of cancers. Recent studies also suggest that lymphocytic responses may identify patients more likely to benefit from therapies targeting immune checkpoints, suggesting that therapeutic efficacy of immune checkpoint blockade can be enhanced through strategies that induce tumor inflammation. To achieve this effect, we explored the immunotherapeutic potential of oncolytic Newcastle disease virus (NDV). We find that localized intratumoral therapy of B16 melanoma with NDV induces inflammatory responses, leading to lymphocytic infiltrates and antitumor effect in distant (nonvirally injected) tumors without distant virus spread. The inflammatory effect coincided with distant tumor infiltration with tumor-specific CD4(+) and CD8(+) T cells, which was dependent on the identity of the virus-injected tumor. Combination therapy with localized NDV and systemic CTLA-4 blockade led to rejection of preestablished distant tumors and protection from tumor rechallenge in poorly immunogenic tumor models, irrespective of tumor cell line sensitivity to NDV-mediated lysis. Therapeutic effect was associated with marked distant tumor infiltration with activated CD8(+) and CD4(+) effector but not regulatory T cells, and was dependent on CD8(+) cells, natural killer cells, and type I interferon. Our findings demonstrate that localized therapy with oncolytic NDV induces inflammatory immune infiltrates in distant tumors, making them susceptible to systemic therapy with immunomodulatory antibodies, which provides a strong rationale for investigation of such combination therapies in the clinic.

  15. Enhanced antitumor effect of combining TRAIL and MnSOD mediated by CEA-controlled oncolytic adenovirus in lung cancer.

    PubMed

    Zhang, R; Zhang, X; Ma, B; Xiao, B; Huang, F; Huang, P; Ying, C; Liu, T; Wang, Y

    2016-06-01

    Lung cancer, especially adenocarcinoma, is one of the leading causes of death in the world. Carcinoembryonic antigen (CEA), a superb non-small-cell lung cancer marker candidate, showed a beneficial effect in cancer therapy with oncolytic adenovirus in recent studies. Cancer-targeting dual gene-virotherapy delivers two therapeutic genes, linked by a connexon, in the replication-deficient vector instead of one gene so that they can work in common. In this study, we constructed a tumor-specific oncolytic adenovirus, CD55-TRAIL-IETD-MnSOD. The virus has the fusion protein complementary DNAs for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and for manganese superoxide dismutase (MnSOD) complementary DNA linked through a 4-amino acid caspase-8 cleavage site (IETD), and uses a CEA promoter to control virus E1A express. This is the first work to use a CEA promoter-regulated oncolytic adenovirus carrying two therapeutic genes for cancer research. Its targeting and anticancer capacity was evaluated by in vitro and in vivo experiments. The results indicated that CD55-TRAIL-IETD-MnSOD caused more cell apoptosis than CD55-TRAIL or CD55-MnSOD alone, or their combination in vitro, with low cytotoxicity of normal cells. In the A549 tumor xenograft model in nude mice, data showed that CD55-TRAIL-IETD-MnSOD could effectively suppress tumor growth than single gene groups, with no histological damage in liver, spleen or kidney tissues. Thus, the CEA-regulated dual-gene oncolytic virus CD55-TRAIL-IETD-MnSOD may be a novel potential therapy for lung cancer.

  16. Serotype chimeric oncolytic adenovirus coding for GM-CSF for treatment of sarcoma in rodents and humans.

    PubMed

    Bramante, Simona; Koski, Anniina; Kipar, Anja; Diaconu, Iulia; Liikanen, Ilkka; Hemminki, Otto; Vassilev, Lotta; Parviainen, Suvi; Cerullo, Vincenzo; Pesonen, Saila K; Oksanen, Minna; Heiskanen, Raita; Rouvinen-Lagerström, Noora; Merisalo-Soikkeli, Maiju; Hakonen, Tiina; Joensuu, Timo; Kanerva, Anna; Pesonen, Sari; Hemminki, Akseli

    2014-08-01

    Sarcomas are a relatively rare cancer, but often incurable at the late metastatic stage. Oncolytic immunotherapy has gained attention over the past years, and a wide range of oncolytic viruses have been delivered via intratumoral injection with positive safety and promising efficacy data. Here, we report preclinical and clinical results from treatment of sarcoma with oncolytic adenovirus Ad5/3-D24-GMCSF (CGTG-102). Ad5/3-D24-GMCSF is a serotype chimeric oncolytic adenovirus coding for human granulocyte-macrophage colony-stimulating factor (GM-CSF). The efficacy of Ad5/3-D24-GMCSF was evaluated on a panel of soft-tissue sarcoma (STS) cell lines and in two animal models. Sarcoma specific human data were also collected from the Advanced Therapy Access Program (ATAP), in preparation for further clinical development. Efficacy was seen in both in vitro and in vivo STS models. Fifteen patients with treatment-refractory STS (13/15) or primary bone sarcoma (2/15) were treated in ATAP, and treatments appeared safe and well-tolerated. A total of 12 radiological RECIST response evaluations were performed, and two cases of minor response, six cases of stable disease and four cases of progressive disease were detected in patients progressing prior to virus treatment. Overall, the median survival time post treatment was 170 days. One patient is still alive at 1,459 days post virus treatment. In summary, Ad5/3-D24-GMCSF appears promising for the treatment of advanced STS; a clinical trial for treatment of refractory injectable solid tumors including STS is ongoing.

  17. Intravesical treatment of advanced urothelial bladder cancers with oncolytic HSV-1 co-regulated by differentially expressed microRNAs.

    PubMed

    Zhang, K-X; Matsui, Y; Lee, C; Osamu, O; Skinner, L; Wang, J; So, A; Rennie, P S; Jia, W W

    2016-05-01

    Urothelial bladder cancer is the most common malignancy of the urinary tract. Although most cases are initially diagnosed as non-muscle-invasive, more than 80% of patients will develop recurrent or metastatic tumors. No effective therapy exists currently for late-stage metastatic tumors. By intravesical application, local administration of oncolytic Herpes Simplex virus (oHSV-1) can provide a promising new therapy for this disease. However, its inherent neurotoxicity has been a perceived limitation for such application. In this study, we present a novel microRNA-regulatory approach to reduce HSV-1-induced neurotoxicity by suppressing viral replication in neurons while maintaining oncolytic selectivity toward urothelial tumors. Specifically, we designed a recombinant virus that utilizes differentially expressed endogenous microR143 (non-cancerous, ubiquitous) and microR124 (neural-specific) to regulate expression of ICP-4, a gene essential for HSV-1 replication. We found that expression of ICP-4 must be controlled by a combination of both miR143 and miR124 to achieve the most effective attenuation in HSV-1-induced toxicity while retaining maximal oncolytic capacity. These results suggest that interaction between miR143 and miR124 may be required to successfully regulate HSV-1 replication. Our resent study is the first proof-in-principle that miRNA combination can be exploited to fine-tune the replication of HSV-1 to treat human cancers.

  18. PARP inhibitor olaparib increases the oncolytic activity of dl922-947 in in vitro and in vivo model of anaplastic thyroid carcinoma.

    PubMed

    Passaro, Carmela; Volpe, Massimiliano; Botta, Ginevra; Scamardella, Eloise; Perruolo, Giuseppe; Gillespie, David; Libertini, Silvana; Portella, Giuseppe

    2015-01-01

    PARP inhibitors are mostly effective as anticancer drugs in association with DNA damaging agents. We have previously shown that the oncolytic adenovirus dl922-947 induces extensive DNA damage, therefore we hypothesized a synergistic antitumoral effect of the PARP inhibitor olaparib in association with dl922-947. Anaplastic thyroid carcinoma was chosen as model since it is a particularly aggressive tumor and, because of its localized growth, it is suitable for intratumoral treatment with oncolytic viruses. Here, we show that dl922-947 infection induces PARP activation, and we confirm in vitro and in vivo that PARP inhibition increases dl922-947 replication and oncolytic activity. In vitro, the combination with olaparib exacerbates the appearance of cell death markers, such as Annexin V positivity, caspase 3 cleavage, cytochrome C release and propidium iodide permeability. In vivo, we also observed a better viral distribution upon PARP inhibition. Changes in CD31 levels suggest a direct effect of olaparib on tumor vascularization and on the viral distribution within the tumor mass. The observation that PARP inhibition enhances the effects of dl922-947 is highly promising not only for the treatment of anaplastic thyroid carcinoma but, in general, for the treatment of other tumors that could benefit from the use of oncolytic viruses. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  19. Current Good Manufacturing Practice Production of an Oncolytic Recombinant Vesicular Stomatitis Viral Vector for Cancer Treatment

    PubMed Central

    Meseck, M.; Derecho, I.; Lopez, P.; Knoblauch, C.; McMahon, R.; Anderson, J.; Dunphy, N.; Quezada, V.; Khan, R.; Huang, P.; Dang, W.; Luo, M.; Hsu, D.; Woo, S.L.C.; Couture, L.

    2011-01-01

    Abstract Vesicular stomatitis virus (VSV) is an oncolytic virus currently being investigated as a promising tool to treat cancer because of its ability to selectively replicate in cancer cells. To enhance the oncolytic property of the nonpathologic laboratory strain of VSV, we generated a recombinant vector [rVSV(MΔ51)-M3] expressing murine gammaherpesvirus M3, a secreted viral chemokine-binding protein that binds to a broad range of mammalian chemokines with high affinity. As previously reported, when rVSV(MΔ51)-M3 was used in an orthotopic model of hepatocellular carcinoma (HCC) in rats, it suppressed inflammatory cell migration to the virus-infected tumor site, which allowed for enhanced intratumoral virus replication leading to increased tumor necrosis and substantially prolonged survival. These encouraging results led to the development of this vector for clinical translation in patients with HCC. However, a scalable current Good Manufacturing Practice (cGMP)-compliant manufacturing process has not been described for this vector. To produce the quantities of high-titer virus required for clinical trials, a process that is amenable to GMP manufacturing and scale-up was developed. We describe here a large-scale (50-liter) vector production process capable of achieving crude titers on the order of 109 plaque-forming units (PFU)/ml under cGMP. This process was used to generate a master virus seed stock and a clinical lot of the clinical trial agent under cGMP with an infectious viral titer of approximately 2 × 1010 PFU/ml (total yield, 1 × 1013 PFU). The lot has passed all U.S. Food and Drug Administration-mandated release testing and will be used in a phase 1 clinical translational trial in patients with advanced HCC. PMID:21083425

  20. Current good manufacturing practice production of an oncolytic recombinant vesicular stomatitis viral vector for cancer treatment.

    PubMed

    Ausubel, L J; Meseck, M; Derecho, I; Lopez, P; Knoblauch, C; McMahon, R; Anderson, J; Dunphy, N; Quezada, V; Khan, R; Huang, P; Dang, W; Luo, M; Hsu, D; Woo, S L C; Couture, L

    2011-04-01

    Vesicular stomatitis virus (VSV) is an oncolytic virus currently being investigated as a promising tool to treat cancer because of its ability to selectively replicate in cancer cells. To enhance the oncolytic property of the nonpathologic laboratory strain of VSV, we generated a recombinant vector [rVSV(MΔ51)-M3] expressing murine gammaherpesvirus M3, a secreted viral chemokine-binding protein that binds to a broad range of mammalian chemokines with high affinity. As previously reported, when rVSV(MΔ51)-M3 was used in an orthotopic model of hepatocellular carcinoma (HCC) in rats, it suppressed inflammatory cell migration to the virus-infected tumor site, which allowed for enhanced intratumoral virus replication leading to increased tumor necrosis and substantially prolonged survival. These encouraging results led to the development of this vector for clinical translation in patients with HCC. However, a scalable current Good Manufacturing Practice (cGMP)-compliant manufacturing process has not been described for this vector. To produce the quantities of high-titer virus required for clinical trials, a process that is amenable to GMP manufacturing and scale-up was developed. We describe here a large-scale (50-liter) vector production process capable of achieving crude titers on the order of 10(9) plaque-forming units (PFU)/ml under cGMP. This process was used to generate a master virus seed stock and a clinical lot of the clinical trial agent under cGMP with an infectious viral titer of approximately 2 × 10(10) PFU/ml (total yield, 1 × 10(13) PFU). The lot has passed all U.S. Food and Drug Administration-mandated release testing and will be used in a phase 1 clinical translational trial in patients with advanced HCC.

  1. Anti-Tumor Activity of a miR-199-dependent Oncolytic Adenovirus

    PubMed Central

    Callegari, Elisa; Elamin, Bahaeldin K.; D’Abundo, Lucilla; Falzoni, Simonetta; Donvito, Giovanna; Moshiri, Farzaneh; Milazzo, Maddalena; Altavilla, Giuseppe; Giacomelli, Luciano; Fornari, Francesca; Hemminki, Akseli; Di Virgilio, Francesco; Gramantieri, Laura; Negrini, Massimo; Sabbioni, Silvia

    2013-01-01

    The down-regulation of miR-199 occurs in nearly all primary hepatocellular carcinomas (HCCs) and HCC cell lines in comparison with normal liver. We exploited this miR-199 differential expression to develop a conditionally replication-competent oncolytic adenovirus, Ad-199T, and achieve tumor-specific viral expression and replication. To this aim, we introduced four copies of miR-199 target sites within the 3’ UTR of E1A gene, essential for viral replication. As consequence, E1A expression from Ad-199T virus was tightly regulated both at RNA and protein levels in HCC derived cell lines, and replication controlled by the level of miR-199 expression. Various approaches were used to asses in vivo properties of Ad-199T. Ad-199T replication was inhibited in normal, miR-199 positive, liver parenchyma, thus resulting in reduced hepatotoxicity. Conversely, the intrahepatic delivery of Ad-199T in newborn mice led to virus replication and fast removal of implanted HepG2 liver cancer cells. The ability of Ad-199T to control tumor growth was also shown in a subcutaneous xenograft model in nude mice and in HCCs arising in immune-competent mice. In summary, we developed a novel oncolytic adenovirus, Ad-199T, which could demonstrate a therapeutic potential against liver cancer without causing significant hepatotoxicity. PMID:24069256

  2. Precise Scheduling of Chemotherapy Primes VEGF-producing Tumors for Successful Systemic Oncolytic Virotherapy

    PubMed Central

    Kottke, Timothy; Chester, John; Ilett, Elizabeth; Thompson, Jill; Diaz, Rosa; Coffey, Matt; Selby, Peter; Nuovo, Gerard; Pulido, Jose; Mukhopadhyay, Debabrata; Pandha, Hardev; Harrington, Kevin; Melcher, Alan; Vile, Richard

    2011-01-01

    We have previously reported that a burst of vascular endothelial growth factor (VEGF) signaling to tumor-associated endothelium induces a proviral state, during which systemically delivered oncolytic reovirus can replicate in endothelium, thereby inducing immune-mediated vascular collapse and significant antitumor therapy. Using chimeric receptors, we show here that induction of the proviral state proceeds through VEGFR2, but not VEGFR1, signaling in endothelial cells. In contrast, innate immune activation by reovirus-exposed endothelial cells was predominantly through VEGFR1. By screening conventional chemotherapies for their ability to induce similar effects in combination with reovirus both in vitro and in vivo, we observed that the proviral state could also be induced in endothelial cells exposed to VEGF during rebound from paclitaxel-mediated inhibition of VEGF signaling. We translated these in vitro findings in vivo by careful scheduling of paclitaxel chemotherapy with systemic virotherapy, neither of which alone had therapeutic effects against B16 tumors. Systemic availability of reovirus during endothelial cell recovery from paclitaxel treatment allowed for endothelial replication of the virus, immune-mediated therapy, and tumor cures. Therefore, careful scheduling of combination viro- and chemotherapies, which preclinical testing suggests are individually ineffective against tumor cells, can lead to rational new clinical protocols for systemic treatments with oncolytic viruses. PMID:21792179

  3. Precise scheduling of chemotherapy primes VEGF-producing tumors for successful systemic oncolytic virotherapy.

    PubMed

    Kottke, Timothy; Chester, John; Ilett, Elizabeth; Thompson, Jill; Diaz, Rosa; Coffey, Matt; Selby, Peter; Nuovo, Gerard; Pulido, Jose; Mukhopadhyay, Debabrata; Pandha, Hardev; Harrington, Kevin; Melcher, Alan; Vile, Richard

    2011-10-01

    We have previously reported that a burst of vascular endothelial growth factor (VEGF) signaling to tumor-associated endothelium induces a proviral state, during which systemically delivered oncolytic reovirus can replicate in endothelium, thereby inducing immune-mediated vascular collapse and significant antitumor therapy. Using chimeric receptors, we show here that induction of the proviral state proceeds through VEGFR2, but not VEGFR1, signaling in endothelial cells. In contrast, innate immune activation by reovirus-exposed endothelial cells was predominantly through VEGFR1. By screening conventional chemotherapies for their ability to induce similar effects in combination with reovirus both in vitro and in vivo, we observed that the proviral state could also be induced in endothelial cells exposed to VEGF during rebound from paclitaxel-mediated inhibition of VEGF signaling. We translated these in vitro findings in vivo by careful scheduling of paclitaxel chemotherapy with systemic virotherapy, neither of which alone had therapeutic effects against B16 tumors. Systemic availability of reovirus during endothelial cell recovery from paclitaxel treatment allowed for endothelial replication of the virus, immune-mediated therapy, and tumor cures. Therefore, careful scheduling of combination viro- and chemotherapies, which preclinical testing suggests are individually ineffective against tumor cells, can lead to rational new clinical protocols for systemic treatments with oncolytic viruses.

  4. Immunological effects of a tumor necrosis factor alpha-armed oncolytic adenovirus.

    PubMed

    Hirvinen, Mari; Rajecki, Maria; Kapanen, Mika; Parviainen, Suvi; Rouvinen-Lagerström, Noora; Diaconu, Iulia; Nokisalmi, Petri; Tenhunen, Mikko; Hemminki, Akseli; Cerullo, Vincenzo

    2015-03-01

    For long it has been recognized that tumor necrosis factor alpha (TNFa) has anticancer characteristics, and its use as a cancer therapeutic was proposed already in the 1980s. However, its systemic toxicity has limited its usability. Oncolytic viruses, selectively cancer-killing viruses, have shown great potency, and one of their most useful aspects is their ability to produce high amounts of transgene products locally, resulting in high local versus systemic concentrations. Therefore, the overall magnitude of tumor cell killing results from the combination of oncolysis, transgene-mediated direct effect such as TNFa-mediated apoptosis, and, perhaps most significantly, from activation of the host immune system against the tumor. We generated a novel chimeric oncolytic adenovirus expressing human TNFa, Ad5/3-D24-hTNFa, whose efficacy and immunogenicity were tested in vitro and in vivo. The hTNFa-expressing adenovirus showed increased cancer-eradicating potency, which was shown to be because of elevated apoptosis and necrosis rates and induction of various immune responses. Interestingly, we saw increase in immunogenic cell death markers in Ad5/3-d24-hTNFa-treated cells. Moreover, tumors treated with Ad5/3-D24-hTNFa displayed enhanced presence of OVA-specific cytotoxic T cells. We thus can conclude that tumor eradication and antitumor immune responses mediated by Ad5/3-d24-hTNFa offer a new potential drug candidate for cancer therapy.

  5. Acute Myeloid Leukemia Targeting by Myxoma Virus In Vivo Depends on Cell Binding But Not Permissiveness to Infection In Vitro

    PubMed Central

    Madlambayan, Gerard J.; Bartee, Eric; Kim, Manbok; Rahman, Masmudur M.; Meacham, Amy; Scott, Edward W.; McFadden, Grant; Cogle, Christopher R.

    2012-01-01

    Some oncolytic viruses, such as myxoma virus (MYXV), can selectively target malignant hematopoietic cells, while sparing normal hematopoietic cells. This capacity for discrimination creates an opportunity to use oncolytic viruses as ex vivo purging agents of autologous hematopoietic cell grafts in patients with hematologic malignancies. However, the mechanisms by which oncolytic viruses select malignant hematopoietic cells are poorly understood. In this study, we investigated how MYXV specifically targets human AML cells. MYXV prevented chloroma formation and bone marrow engraftment of two human AML cell lines, KG-1 and THP-1. The reduction in human leukemia engraftment after ex vivo MYXV treatment was dose-dependent and required a minimum MOI of 3. Both AML cell lines demonstrated MYXV binding to leukemia cell membranes following co-incubation: however, evidence of productive MYXV infection was observed only in THP-1 cells. This observation, that KG-1 can be targeted in vivo even in the absence of in vitro permissive viral infection, contrasts with the current understanding of oncolytic virotherapy, which assumes that virus infection and productive replication is a requirement. Preventing MYXV binding to AML cells with heparin abrogated the purging capacity of MYXV, indicating that binding of infectious virus particles is a necessary step for effective viral oncolysis. Our results challenge the current dogma of oncolytic virotherapy and show that in vitro permissiveness to an oncolytic virus is not necessarily an accurate predictor of oncolytic potency in vivo. PMID:22341701

  6. Acute myeloid leukemia targeting by myxoma virus in vivo depends on cell binding but not permissiveness to infection in vitro.

    PubMed

    Madlambayan, Gerard J; Bartee, Eric; Kim, Manbok; Rahman, Masmudur M; Meacham, Amy; Scott, Edward W; McFadden, Grant; Cogle, Christopher R

    2012-05-01

    Some oncolytic viruses, such as myxoma virus (MYXV), can selectively target malignant hematopoietic cells, while sparing normal hematopoietic cells. This capacity for discrimination creates an opportunity to use oncolytic viruses as ex vivo purging agents of autologous hematopoietic cell grafts in patients with hematologic malignancies. However, the mechanisms by which oncolytic viruses select malignant hematopoietic cells are poorly understood. In this study, we investigated how MYXV specifically targets human AML cells. MYXV prevented chloroma formation and bone marrow engraftment of two human AML cell lines, KG-1 and THP-1. The reduction in human leukemia engraftment after ex vivo MYXV treatment was dose-dependent and required a minimum MOI of 3. Both AML cell lines demonstrated MYXV binding to leukemia cell membranes following co-incubation: however, evidence of productive MYXV infection was observed only in THP-1 cells. This observation, that KG-1 can be targeted in vivo even in the absence of in vitro permissive viral infection, contrasts with the current understanding of oncolytic virotherapy, which assumes that virus infection and productive replication is a requirement. Preventing MYXV binding to AML cells with heparin abrogated the purging capacity of MYXV, indicating that binding of infectious virus particles is a necessary step for effective viral oncolysis. Our results challenge the current dogma of oncolytic virotherapy and show that in vitro permissiveness to an oncolytic virus is not necessarily an accurate predictor of oncolytic potency in vivo.

  7. Oncolytic Adenovirus: Strategies and Insights for Vector Design and Immuno-Oncolytic Applications

    PubMed Central

    Uusi-Kerttula, Hanni; Hulin-Curtis, Sarah; Davies, James; Parker, Alan L.

    2015-01-01

    Adenoviruses (Ad) are commonly used both experimentally and clinically, including oncolytic virotherapy applications. In the clinical area, efficacy is frequently hampered by the high rates of neutralizing immunity, estimated as high as 90% in some populations that promote vector clearance and limit bioavailability for tumor targeting following systemic delivery. Active tumor targeting is also hampered by the ubiquitous nature of the Ad5 receptor, hCAR, as well as the lack of highly tumor-selective targeting ligands and suitable targeting strategies. Furthermore, significant off-target interactions between the viral vector and cellular and proteinaceous components of the bloodstream have been documented that promote uptake into non-target cells and determine dose-limiting toxicities. Novel strategies are therefore needed to overcome the obstacles that prevent efficacious Ad deployment for wider clinical applications. The use of less seroprevalent Ad serotypes, non-human serotypes, capsid pseudotyping, chemical shielding and genetic masking by heterologous peptide incorporation are all potential strategies to achieve efficient vector escape from humoral immune recognition. Conversely, selective vector arming with immunostimulatory agents can be utilized to enhance their oncolytic potential by activation of cancer-specific immune responses against the malignant tissues. This review presents recent advantages and pitfalls occurring in the field of adenoviral oncolytic therapies. PMID:26610547

  8. Essentials of oral oncolytics: developing a nursing reference.

    PubMed

    Matthews, Jennifer; Caprera, Patricia Holland

    2014-10-01

    A convenience sample of oncology clinicians from 17 practices throughout the northeastern United States participated in roundtable discussions. Discussions about oral adherence were initiated in multiple practices, and attendees were asked to describe what resources they currently use and what resources are lacking. A need for a new tool for oral adherence in oncology was identified during roundtable discussions. Essential information about oral oncolytics in a user-friendly format that is rapidly accessible and organized would be an ideal nursing resource. Review of the literature demonstrated a lack of usable tools, with one exception that was outdated. Desire for an oral oncolytic resource was consistently mentioned. Additional suggestions for the resource included severe drug reactions, initial dosing and dosing adjustments, and how the drug should be taken. The clinicians wanted the information to be organized in a condensed chart that remains current as approvals continue. A condensed resource, the Essentials of Oral Oncolytics Guide (EOOG), was developed to address this need and includes guidelines for starting oral oncolytics, scheduling of patient monitoring, and pertinent need-to-know aspects of each oral oncolytic. The EOOG includes newly approved oral oncolytics and new indications as of December 2013.

  9. Antiviral and antitumor T-cell immunity in patients treated with GM-CSF-coding oncolytic adenovirus.

    PubMed

    Kanerva, Anna; Nokisalmi, Petri; Diaconu, Iulia; Koski, Anniina; Cerullo, Vincenzo; Liikanen, Ilkka; Tähtinen, Siri; Oksanen, Minna; Heiskanen, Raita; Pesonen, Saila; Joensuu, Timo; Alanko, Tuomo; Partanen, Kaarina; Laasonen, Leena; Kairemo, Kalevi; Pesonen, Sari; Kangasniemi, Lotta; Hemminki, Akseli

    2013-05-15

    Multiple injections of oncolytic adenovirus could enhance immunologic response. In the first part of this article, the focus was on immunologic aspects. Sixty patients previously naïve to oncolytic virus and who had white blood cells available were treated. Thirty-nine of 60 were assessed after a single virus administration, whereas 21 of 60 received a "serial treatment" consisting of three injections within 10 weeks. In the second part, we focused on 115 patients treated with a granulocyte macrophage colony-stimulating factor (GM-CSF)-coding capsid chimeric adenovirus, CGTG-102. Following serial treatment, both increase and decrease in antitumor T cells in blood were seen more frequently, findings which are compatible with induction of T-cell immunity and trafficking of T cells to tumors, respectively. Safety was good in both groups. In 115 patients treated with CGTG-102 (Ad5/3-D24-GMCSF), median overall survival was 111 days following single and 277 days after serial treatment in nonrandomized comparison. Switching the virus capsid for avoiding neutralizing antibodies in a serial treatment featuring three different viruses did not impact safety or efficacy. A correlation between antiviral and antitumor T cells was seen (P = 0.001), suggesting that viral oncolysis can result in epitope spreading and breaking of tumor-associated immunologic tolerance. Alternatively, some patients may be more susceptible to induction of T-cell immunity and/or trafficking. These results provide the first human data linking antiviral immunity with antitumor immunity, implying that oncolytic viruses could have an important role in cancer immunotherapy. ©2013 AACR

  10. Beyond oncolytic virotherapy: replication-competent retrovirus vectors for selective and stable transduction of tumors.

    PubMed

    Dalba, Charlotte; Klatzmann, David; Logg, Christopher R; Kasahara, Noriyuki

    2005-12-01

    As cancer gene therapy employing replication-defective vectors has met with limited clinical success, there is renewed interest in using replication-competent viruses for oncolytic virotherapy. In preclinical and clinical studies, various attenuated vaccine strains and engineered virus vectors are currently being tested for their ability to achieve tumor-selective cell killing. However, significant improvements are still required in tumor selectivity, cytolytic potency, and modulating immune responses to achieve anti-tumor effects without prematurely terminating virus spread. Recently, we have developed murine leukemia virus (MLV)-based replication-competent retrovirus (RCR) vectors for highly efficient, selective, and persistent gene transfer to cancer cells, and found that such vectors may offer significant advantages as oncolytic agents. In a variety of preclinical models, RCR vectors can achieve efficient and persistent gene delivery as the virus replicates throughout an entire tumor mass after inoculation with initial multiplicities of infection as low as 0.001. When engineered to deliver suicide genes, RCR vectors achieve highly efficient and synchronized cell killing triggered by pro-drug administration, both in culture and in tumor models in vivo. Further strategies are being explored to enhance the packaging capacity, efficiency, and specificity of this vector system through the development of semi-replicative RCR vectors, adenovirus-RCR hybrids, and incorporation of tumor targeting mechanisms via modification of binding tropism and transcriptional regulation. In addition, the ability of these vectors to achieve stable transgene expression in infected tumor cells may allow therapeutic applications that move beyond oncolysis per se.

  11. Imaging of viral thymidine kinase gene expression by replicating oncolytic adenovirus and prediction of therapeutic efficacy.

    PubMed

    Kim, Eun-Jung; Yoo, Ji Young; Choi, Young-Hwan; Ahn, Keun-Jae; Lee, Jong-Doo; Yun, Chae-Ok; Yun, Mijin

    2008-10-31

    We have used a genetically attenuated adenoviral vector which expresses HSVtk to assess the possible additive role of suicidal gene therapy for enhanced oncolytic effect of the virus. Expression of TK was measured using a radiotracer-based molecular counting and imaging system. Replication-competent recombinant adenoviral vector (Ad-DeltaE1B19/55) was used in this study, whereas replication-incompetent adenovirus (Ad-DeltaE1A) was generated as a control. Both Ad-DeltaE1B19/55-TK and Ad-DeltaE1A-TK comprise the HSVtk gene inserted into the E3 region of the viruses. YCC-2 cells were infected with the viruses and incubated with 2'-deoxy-2'-fluoro-beta-D-arabinofuranosyl-5-iodouracil (I-131 FIAU) to measure amount of radioactivity. The cytotoxicity of the viruses was determined, and gamma ray imaging of HSVtk gene was performed. MTT assay was also performed after GCV treatment. On gamma counter-analyses, counts/ minute (cpm)/microg of protein showed MOIs dependency with DeltaE1B19/55-TK infection. On MTT assay, Ad-DeltaE1B19/55-TK led to more efficient cell killing than Ad-DeltaE1A-TK. On plate imaging by gamma camera, both Ad-DeltaE1B19/55-TK and Ad-DeltaE1A-TK infected cells showed increased I-131 FIAU uptake in a MOI dependent pattern, and with GCV treatment, cell viability of DeltaE1B19/55-TK infection was remarkably reduced compared to that of Ad-DeltaE1A-TK infection. Replicating Ad-DeltaE1B19/55-TK showed more efficient TK expression even in the presence of higher-cancer cell killing effects compared to non-replicating Ad-DeltaE1A-TK. Therefore, GCV treatment still possessed an additive role to oncolytic effect of Ad-DeltaE1B19/55-TK. The expression of TK by oncolytic viruses could rapidly be screened using a radiotracer-based counting and imaging technique.

  12. Evaluation of PCR testing of ethanol-fixed nasal swab specimens as an augmented surveillance strategy for influenza virus and adenovirus identification.

    PubMed

    Krafft, A E; Russell, K L; Hawksworth, A W; McCall, S; Irvine, M; Daum, L T; Connoly, J L; Reid, A H; Gaydos, J C; Taubenberger, J K

    2005-04-01

    Viral culture isolation has been widely accepted as the "gold standard" for laboratory confirmation of viral infection; however, it requires ultralow temperature specimen storage. Storage of specimens in ethanol at room temperature could expand our ability to conduct active surveillance and retrospective screenings of viruses with rapid and inexpensive real-time PCR tests, including isolates from remote regions where freezing specimens for culture is not feasible. Molecular methods allow for rapid identification of viral pathogens without the need to maintain viability. We hypothesized that ethanol, while inactivating viruses, can preserve DNA and RNA for PCR-based methods. To evaluate the use of ethanol-stored specimens for augmenting surveillance for detection of influenza viruses A and B and adenoviruses (AdV), paired nasal swab specimens were collected from 384 recruits with febrile respiratory illness at Fort Jackson, S.C., in a 2-year study. One swab was stored at ambient temperature in 100% ethanol for up to 6 months, and the other swab was stored at -70 degrees C in viral medium. For viral detection, frozen specimens were cultured for a variety of respiratory viruses, and ethanol-fixed specimens were tested with TaqMan (TM) probe and LightCycler SYBR green (SG) melting curve assays with at least two different PCR targets for each virus. The sensitivities of the TM and SG assays on specimens stored in ethanol for 1 month were 75% and 58% for influenza A, 89% and 67% for influenza B, and 93 to 98% and 57% for AdV, respectively. Lower specificities of the real-time assays corresponded to the increased detection of PCR-positive but culture-negative specimens. Influenza virus RNA was detected as well or better after 6 months of storage in ethanol.

  13. STAT1 Interaction with E3-14.7K in Monocytes Affects the Efficacy of Oncolytic Adenovirus

    PubMed Central

    Spurrell, Emma; Gangeswaran, Rathi; Wang, Pengju; Cao, Fengyu; Gao, Dongling; Feng, Baisui; Wold, William; Tollefson, Ann

    2014-01-01

    Oncolytic viruses based on adenovirus type 5 (Ad5) have been developed as a new class of therapeutic agents for cancers that are resistant to conventional therapies. Clinical experience shows that these agents are safe, but virotherapy alone has not achieved long-term cure in cancer patients. The vast majority of oncolytic adenoviruses used in clinical trials to date have deletion of the E3B genes. It has been demonstrated that the antitumor potency of the E3B-deleted mutant (dl309) is inferior to adenovirus with E3B genes intact. Tumors treated with dl309 show markedly greater macrophage infiltration than E3B-intact adenovirus. However, the functional mechanisms for this were not previously known. Here, we demonstrate that deletion of E3B genes increases production of chemokines by monocytes after adenovirus infection and increases monocyte migration. The E3B 14,700-Da protein (E3B-14.7K) inhibits STAT1 function by preventing its phosphorylation and nuclear translocation. The STAT1 inhibitor, fludarabine, rescues the effect of E3B-14.7K deletion by downregulating target chemokine expression in human and murine monocytes and results in an enhanced antitumor efficacy with dl309 in vivo. These findings have important implications for clinical use of E3B-deleted oncolytic adenovirus and other E3B-deleted adenovirus vector-based therapy. PMID:24335311

  14. Oncolytic adenovirus expressing soluble TGFβ receptor II-Fc-mediated inhibition of established bone metastases: a safe and effective systemic therapeutic approach for breast cancer.

    PubMed

    Hu, Zebin; Gerseny, Helen; Zhang, Zhenwei; Chen, Yun-Ju; Berg, Arthur; Zhang, Zhiling; Stock, Stuart; Seth, Prem

    2011-09-01

    In recent years, oncolytic adenoviruses have shown some promise as a novel class of antitumor agents. However, their utility in targeting bone metastases is relatively less studied. We have examined whether the systemic therapy of oncolytic adenoviruses expressing the soluble form of transforming growth factor-β (TGFβ) receptor II fused with human immunoglobulin G1 can be developed for the treatment of established breast cancer bone metastases. MDA-MB-231-luc2 human breast cancer cells were injected in the left heart ventricle of nude mice to establish bone metastasis. Mice with hind limb tumors were administered (on days 8 and 11) oncolytic adenoviruses-Ad.sTβRFc or mhTERTAd.sTβRFc. Skeletal tumor growth was monitored weekly by bioluminescence imaging (BLI) and radiography. At the termination time on day 28, hind limb bones were analyzed for tumor burden, synchrotron micro-computed tomography, and osteoclast activation. Intravenous delivery of Ad.sTβRFc and mhTERTAd.sTβRFc induced significant inhibition of tumor growth, reduction of tumor burden, osteoclast activation, and increased animals' survival. Oncolytic adenoviruses were safer than dl309, a wild-type virus. A slight elevation of liver enzyme activity was observed after Ad.sTβRFc administration; this subsided with time. Based on these studies, we believe that Ad.sTβRFc and mhTERTAd.sTβRFc can be developed as a safe and effective approach for the treatment of established bone metastasis.

  15. Nectin-1 is a marker of thyroid cancer sensitivity to herpes oncolytic therapy.

    PubMed

    Huang, Yu-Yao; Yu, Zhenkun; Lin, Shu-Fu; Li, Sen; Fong, Yuman; Wong, Richard J

    2007-05-01

    The prognosis for patients diagnosed with anaplastic thyroid cancer is dismal, with a median survival time of only 6 months. Novel therapies are needed for these and other thyroid cancers that are refractory to conventional therapy. Our goals were to assess the ability of an attenuated, replication-competent, oncolytic herpes virus (NV1023) to enter and lyse human thyroid cancers and determine whether herpes simplex virus receptor expression is a determinant of NV1023 efficacy. A panel of 12 human thyroid cancer cell lines including anaplastic, medullary, follicular, and papillary cancers were exposed to NV1023 and assessed for susceptibility to viral entry and oncolysis. The expression of herpes simplex virus glycoprotein D receptors nectin-1 and herpes virus entry mediator was assessed by quantitative fluorescence-activated cell sorter and correlated with NV1023 entry and oncolysis. There was significant variation in the ability of NV1023 to enter thyroid cancer cells as measured by lacZ expression. Thyroid cancer nectin-1 expression correlated strongly with NV1023 entry. Nectin-1 transfections and antibody receptor blocking studies validated the importance of nectin-1 for NV1023 entry. Follicular cancers were least sensitive to NV1023 oncolysis. All anaplastic, medullary, and papillary cancers tested exhibited greater than 85% cytotoxicity 7 d after exposure to NV1023 at multiplicity of infection 1, although oncolysis was variable at multiplicity of infection 0.01. Significant correlations between nectin-1 expression and NV1023 oncolysis were identified using Pearson's coefficients. NV1023 causes significant cytotoxicity of anaplastic, medullary, and papillary thyroid cancers. Nectin-1 is a novel marker of thyroid cancer sensitivity to herpes oncolytic therapy that might guide patient selection for therapy.

  16. Inclusion of modified heteroclite RNAs as a novel means to augment live attenuated porcine reproductive and respiratory syndrome virus vaccines

    USDA-ARS?s Scientific Manuscript database

    One of the leading causes of economic loss in the global pork industry is the swine pathogen porcine reproductive and respiratory syndrome virus (PRRSV). It is a positive sense single-stranded RNA virus which emerged in the late 1980’s in North America and Europe, with highly pathogenic strains emer...

  17. Augmentation of immune responses to SARS coronavirus by a combination of DNA and whole killed virus vaccines.

    PubMed

    Zakhartchouk, Alexander N; Liu, Qiang; Petric, Martin; Babiuk, Lorne A

    2005-08-15

    We studied the immunogenicity of a DNA SARS-vaccine, a whole killed virus, or a whole killed and DNA vaccine combination. The DNA vaccine contained a plasmid encoding the SARS coronavirus (SARS-CoV) S protein under the control of the human CMV promoter and intron A. The whole killed virus vaccine was comprised of SARS-CoV, propagated in Vero-E6 cells, with subsequent beta-propilactone inactivation and formulated with aluminum hydroxide adjuvant. Mice immunized twice with the DNA vaccine and once with the whole killed virus elicited higher antibody responses than mice immunized three times with the DNA vaccine or once with the whole killed virus vaccine. Mice immunized twice with the whole killed virus vaccine elicited higher antibody responses than mice immunized three times with the DNA vaccine or once with the whole killed virus vaccine. However, a combination of the vaccines induced T-helper type 1 (Th1) immune responses while the whole killed virus vaccine induced T helper type 2 (Th2) immune response. These results demonstrate that combination of the DNA vaccine and the whole killed virus vaccine can be used to enhance the magnitude and change the bias of the immune responses to SARS-CoV.

  18. Generation of an adenovirus-parvovirus chimera with enhanced oncolytic potential.

    PubMed

    El-Andaloussi, Nazim; Bonifati, Serena; Kaufmann, Johanna K; Mailly, Laurent; Daeffler, Laurent; Deryckère, François; Nettelbeck, Dirk M; Rommelaere, Jean; Marchini, Antonio

    2012-10-01

    In this study, our goal was to generate a chimeric adenovirus-parvovirus (Ad-PV) vector that combines the high-titer and efficient gene transfer of adenovirus with the anticancer potential of rodent parvovirus. To this end, the entire oncolytic PV genome was inserted into a replication-defective E1- and E3-deleted Ad5 vector genome. As we found that parvoviral NS expression inhibited Ad-PV chimera production, we engineered the parvoviral P4 early promoter, which governs NS expression, by inserting into its sequence tetracycline operator elements. As a result of these modifications, P4-driven expression was blocked in the packaging T-REx-293 cells, which constitutively express the tetracycline repressor, allowing high-yield chimera production. The chimera effectively delivered the PV genome into cancer cells, from which fully infectious replication-competent parvovirus particles were generated. Remarkably, the Ad-PV chimera exerted stronger cytotoxic activities against various cancer cell lines, compared with the PV and Ad parental viruses, while being still innocuous to a panel of tested healthy primary human cells. This Ad-PV chimera represents a novel versatile anticancer agent which can be subjected to further genetic manipulations in order to reinforce its enhanced oncolytic capacity through arming with transgenes or retargeting into tumor cells.

  19. Novel therapeutic strategies in human malignancy: combining immunotherapy and oncolytic virotherapy.

    PubMed

    Sampath, Padma; Thorne, Steve H

    2015-01-01

    Results from randomized clinical trials over the last several years have finally begun to demonstrate the potential of oncolytic viral therapies to treat a variety of cancers. One reason for these successes has been the realization that this platform is most effective when considered primarily as an immunotherapy. Cancer immunotherapy has also made dramatic strides recently with antibodies capable of blocking immune checkpoint inhibitors and adoptive T-cell therapies, notably CAR T-cells, leading a panel of novel and highly clinically effective therapies. It is clear therefore that an understanding of how and when these complementary approaches can most effectively be combined offers the real hope of moving beyond simply treating the disease and toward starting to talk about curative therapies. In this review we discuss approaches to combining these therapeutic platforms, both through engineering the viral vectors to more beneficially interact with the host immune response during therapy, as well as through the direct combinations of different therapeutics. This primarily, but not exclusively focuses on strains of oncolytic vaccinia virus. Some of the results reported to date, primarily in pre-clinical models but also in early clinical trials, are dramatic and hold great promise for the future development of similar therapies and their translation into cancer therapies.

  20. Cancer-targeted oncolytic adenoviruses for modulation of the immune system.

    PubMed

    Cerullo, Vincenzo; Capasso, Cristian; Vähä-Koskela, Markus; Hemminki, Otto; Hemminki, Akseli

    2017-05-02

    Adenovirus is one of the most commonly used vectors for gene therapy and it is the first approved virus-derived drug for treatment of cancer. As an oncolytic agent, it can induce lysis of infected cells, but it can also engage the immune system, promoting activation and maturation of antigen-presenting cells (APCs). In essence, oncolysis combined with the associated immunostimulatory actions result in a "personalized in situ vaccine" for each patient. In order to take full advantage of these features, we should try to understand how adenovirus interacts with the immune system, what are the receptors involved in triggering subsequent signals and which kind of responses they elicit. Tackling these questions will give us further insight in how to manipulate adenovirus-mediated immune responses for enhancement of anti-tumor efficacy. In this review, we first highlight how oncolytic adenovirus interacts with the innate immune system and its receptors such as Toll-like receptors, nucleotide-binding and oligomerization domain (NOD)-like receptors and other immune sensors. Then we describe the effect of these interactions on the adaptive immune system and its cells, especially B and T lymphocytes. Finally, we summarize the most significant preclinical and clinical results in the field of gene therapy where researchers have engineered adenovirus to manipulate the host immune system by expressing cytokines and signaling mediators. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Experimental virotherapy of chemoresistant pancreatic carcinoma using infectivity-enhanced fiber-mosaic oncolytic adenovirus

    PubMed Central

    Kaliberov, Sergey A.; Kaliberova, Lyudmila N.; Buchsbaum, Donald J.; Curiel, David T.

    2014-01-01

    Pancreatic cancer is a significant clinical problem and novel therapeutic approaches are desperately needed. Recent advances in conditionally replicative adenovirus-based (CRAd) oncolytic virus design allow the application of CRAd vectors as a therapeutic strategy to efficiently target and eradicate chemoresistant pancreatic cancer cells thereby improving the efficacy of pancreatic cancer treatment. The goal of this study was to construct and validate the efficacy of an infectivity-enhanced, liver-untargeted, tumor-specific CRAd vector. A panel of CRAds has been derived which embody the C-X-C chemokine receptor type 4 promoter for conditional replication, two fiber complex mosaicism for targeting expansion, and hexon hypervariable region 7 (HVR7) modification for liver untargeting. We evaluated CRAds for cancer virotherapy using a human pancreatic tumor xenograft model. Employment of the fiber mosaic approach improved CRAd replication in pancreatic tumor xenografts. Substitution of the HVR7 of the Ad5 hexon for Ad serotype 3 hexon resulted in decreased liver tropism of systemically administrated CRAd. Obtained data demonstrated that employment of complex mosaicism increased efficacy of the combination of oncolytic virotherapy with chemotherapy in a human pancreatic tumor xenograft model. PMID:24903014

  2. Generation of an Adenovirus-Parvovirus Chimera with Enhanced Oncolytic Potential

    PubMed Central

    El-Andaloussi, Nazim; Bonifati, Serena; Kaufmann, Johanna K.; Mailly, Laurent; Daeffler, Laurent; Deryckère, François; Nettelbeck, Dirk M.; Rommelaere, Jean

    2012-01-01

    In this study, our goal was to generate a chimeric adenovirus-parvovirus (Ad-PV) vector that combines the high-titer and efficient gene transfer of adenovirus with the anticancer potential of rodent parvovirus. To this end, the entire oncolytic PV genome was inserted into a replication-defective E1- and E3-deleted Ad5 vector genome. As we found that parvoviral NS expression inhibited Ad-PV chimera production, we engineered the parvoviral P4 early promoter, which governs NS expression, by inserting into its sequence tetracycline operator elements. As a result of these modifications, P4-driven expression was blocked in the packaging T-REx-293 cells, which constitutively express the tetracycline repressor, allowing high-yield chimera production. The chimera effectively delivered the PV genome into cancer cells, from which fully infectious replication-competent parvovirus particles were generated. Remarkably, the Ad-PV chimera exerted stronger cytotoxic activities against various cancer cell lines, compared with the PV and Ad parental viruses, while being still innocuous to a panel of tested healthy primary human cells. This Ad-PV chimera represents a novel versatile anticancer agent which can be subjected to further genetic manipulations in order to reinforce its enhanced oncolytic capacity through arming with transgenes or retargeting into tumor cells. PMID:22787235

  3. Phase 1 Study of Intravenous Oncolytic Poxvirus (vvDD) in Patients With Advanced Solid Cancers

    PubMed Central

    Downs-Canner, Stephanie; Guo, Zong Sheng; Ravindranathan, Roshni; Breitbach, Caroline J; O'Malley, Mark E; Jones, Heather L; Moon, Anne; McCart, Judith Andrea; Shuai, Yongli; Zeh, Herbert J; Bartlett, David L

    2016-01-01

    We have conducted a phase 1 study of intravenous vvDD, a Western Reserve strain oncolytic vaccinia virus, on 11 patients with standard treatment-refractory advanced colorectal or other solid cancers. The primary endpoints were maximum tolerated dose and associated toxicity while secondary endpoints were pharmacokinetics, pharmacodynamics, immune responses, and antitumor activity. No dose-limiting toxicities and treatment related severe adverse events were observed. The most common adverse events were grades 1/2 flu-like symptoms. Virus genomes were detectable in the blood 15–30 minutes after virus administration in a dose-dependent manner. There was evidence of a prolonged virus replication in tumor tissues in two patients, but no evidence of virus replication in non-tumor tissues, except a healed injury site and an oral thrush. Over 100-fold of anti-viral antibodies were induced in patients' sera. A strong induction of inflammatory and Th1, but not Th2 cytokines, suggested a potent Th1-mediated immunity against the virus and possibly the cancer. One patient showed a mixed response on PET-CT with resolution of some liver metastases, and another patient with cutaneous melanoma demonstrated clinical regression of some lesions. Given the confirmed safety, further trials evaluating intravenous vvDD in combination with therapeutic transgenes, immune checkpoint blockade or complement inhibitors, are warranted. PMID:27203445

  4. Tunneling nanotubes: an alternate route for propagation of the bystander effect following oncolytic viral infection

    PubMed Central

    Ady, Justin; Thayanithy, Venugopal; Mojica, Kelly; Wong, Phillip; Carson, Joshua; Rao, Prassanna; Fong, Yuman; Lou, Emil

    2016-01-01

    Tunneling nanotubes (TNTs) are ultrafine, filamentous actin-based cytoplasmic extensions which form spontaneously to connect cells at short and long-range distances. We have previously described long-range intercellular communication via TNTs connecting mesothelioma cells in vitro and demonstrated TNTs in intact tumors from patients with mesothelioma. Here, we investigate the ability of TNTs to mediate a viral thymidine kinase based bystander effect after oncolytic viral infection and administration of the nucleoside analog ganciclovir. Using confocal microscopy we assessed the ability of TNTs to propagate enhanced green fluorescent protein (eGFP), which is encoded by the herpes simplex virus NV1066, from infected to uninfected recipient cells. Using time-lapse imaging, we observed eGFP expressed in infected cells being transferred via TNTs to noninfected cells; additionally, increasing fluorescent activity in recipient cells indicated cell-to-cell transmission of the eGFP-expressing NV1066 virus had also occurred. TNTs mediated cell death as a form of direct cell-to-cell transfer following viral thymidine kinase mediated activation of ganciclovir, inducing a unique long-range form of the bystander effect through transmission of activated ganciclovir to nonvirus-infected cells. Thus, we provide proof-of-principle demonstration of a previously unknown and alternative mechanism for inducing apoptosis in noninfected recipient cells. The conceptual advance of this work is that TNTs can be harnessed for delivery of oncolytic viruses and of viral thymidine kinase activated drugs to amplify the bystander effect between cancer cells over long distances in stroma-rich tumor microenvironments. PMID:27933314

  5. Overexpression of Cyclin A Inhibits Augmentation of Recombinant Adeno-Associated Virus Transduction by the Adenovirus E4orf6 Protein

    PubMed Central

    Grifman, Mirta; Chen, Nancie N.; Gao, Guang-ping; Cathomen, Toni; Wilson, James M.; Weitzman, Matthew D.

    1999-01-01

    The 34-kDa product of adenovirus E4 region open reading frame 6 (E4orf6) dramatically enhances transduction by recombinant adeno-associated virus vectors (rAAV). This is achieved by promoting the conversion of incoming single-stranded viral genomes into transcriptionally competent duplex molecules. The molecular mechanism for enhancing second-strand synthesis is not fully understood. In this study, we analyzed the cellular consequences of E4orf6 expression and the requirements for efficient rAAV transduction mediated by E4orf6. Expression of E4orf6 in 293 cells led to an inhibition of cell cycle progression and an accumulation of cells in S phase. This was preceded by specific degradation of cyclin A and p53, while the levels of other proteins involved in cell cycle control remained unchanged. In addition, the kinase activity of cdc2 was inhibited. We further showed that p53 expression is not necessary or inhibitory for augmentation of rAAV transduction by E4orf6. However, overexpression of cyclin A inhibited E4orf6-mediated enhancement of rAAV transduction. A cyclin A mutant incapable of recruiting protein substrates for cdk2 was unable to inhibit E4orf6-mediated augmentation. In addition, we created an E4orf6 mutant that is selectively defective in rAAV augmentation of transduction. Based on these findings, we suggest that cyclin A degradation represents a viral mechanism to disrupt cell cycle progression, resulting in enhanced viral transduction. Understanding the cellular pathways used during transduction will increase the utility of rAAV vectors in a wide range of gene therapy applications. PMID:10559315

  6. New viruses for cancer therapy: meeting clinical needs

    PubMed Central

    Miest, Tanner S.; Cattaneo, Roberto

    2014-01-01

    Early-stage clinical trials of oncolytic virotherapy have reported the safety of several virus platforms, and viruses from three families have progressed to advanced efficacy trials. In addition, preclinical studies have established proof-of-principle for many new genetic engineering strategies. Thus, the virotherapy field now has available a diverse collection of viruses that are equipped to address unmet clinical needs owing to improved systemic administration, greater tumour specificity and enhanced oncolytic efficacy. The current key challenge for the field is to develop viruses that replicate with greater efficiency within tumours while achieving therapeutic synergy with currently available treatments. PMID:24292552

  7. Vaccinia virus, a promising new therapeutic agent for pancreatic cancer.

    PubMed

    Al Yaghchi, Chadwan; Zhang, Zhongxian; Alusi, Ghassan; Lemoine, Nicholas R; Wang, Yaohe

    2015-01-01

    The poor prognosis of pancreatic cancer patients signifies a need for radically new therapeutic strategies. Tumor-targeted oncolytic viruses have emerged as attractive therapeutic candidates for cancer treatment due to their inherent ability to specifically target and lyse tumor cells as well as induce antitumor effects by multiple action mechanisms. Vaccinia virus has several inherent features that make it particularly suitable for use as an oncolytic agent. In this review, we will discuss the potential of vaccinia virus in the management of pancreatic cancer in light of our increased understanding of cellular and immunological mechanisms involved in the disease process as well as our extending knowledge in the biology of vaccinia virus.

  8. Augmentation of virus secretion by the human immunodeficiency virus type 1 Vpu protein is cell type independent and occurs in cultured human primary macrophages and lymphocytes.

    PubMed Central

    Schubert, U; Clouse, K A; Strebel, K

    1995-01-01

    The human immunodeficiency virus type 1-specific Vpu protein is a small integral membrane phosphoprotein that induces degradation of the virus receptor CD4 in the endoplasmic reticulum and, independently, increases the release of progeny virions from infected cells. To address the importance of Vpu for virus replication in primary human cells such as peripheral blood mononuclear cells (PBMC) and monocyte-derived macrophages (MDM), we used three different sets of monocyte-tropic molecular clones of human immunodeficiency virus type 1: a primary isolate, AD8+, and two chimeric variants of the T-cell-tropic isolate NL4-3 carrying the env determinants of either AD8+ or SF162 monocyte-tropic primary isolates. Isogenic variants of these chimeric viruses were constructed to express either wild-type Vpu or various mutants of Vpu. The effects of these mutations in the vpu gene on virus particle secretion from infected MDM or PBMC were assessed by determination of the release of virion-associated reverse transcriptase into culture supernatants, Western blot (immunoblot) analysis of pelleted virions, and steady-state or pulse-chase metabolic labeling. Wild-type Vpu increased virus release four- to sixfold in MDM and two- to threefold in PBMC, while nonphosphorylated Vpu and a C-terminal truncation mutant of Vpu were partially active on virus release in primary cells. These results demonstrate that Vpu regulates virus release in primary lymphocyte and macrophage cultures in a similar manner and to a similar extent to those previously observed in HeLa cells or CD4+ T-cell lines. Thus, our findings provide evidence that Vpu functions in a variety of human cells, both primary cells and continuous cell lines, and mutations in Vpu affect its biological activity independent of the cell type and virus isolate used. PMID:7494279

  9. A pRb-responsive, RGD-modified, and Hyaluronidase-armed Canine Oncolytic Adenovirus for Application in Veterinary Oncology

    PubMed Central

    Laborda, Eduardo; Puig-Saus, Cristina; Rodriguez-García, Alba; Moreno, Rafael; Cascalló, Manel; Pastor, Josep; Alemany, Ramon

    2014-01-01

    Human and canine cancer share similarities such as genetic and molecular aspects, biological complexity, tumor epidemiology, and targeted therapeutic treatment. Lack of good animal models for human adenovirotherapy has spurred the use of canine adenovirus 2-based oncolytic viruses. We have constructed a canine oncolytic virus that mimics the characteristics of our previously published human adenovirus ICOVIR17: expression of E1a controlled by E2F sites, deletion of the pRb-binding site of E1a, insertion of an RGD integrin-binding motif at the fiber Knob, and expression of hyaluronidase under the major late promoter/IIIa protein splicing acceptor control. Preclinical studies showed selectivity, increased cytotoxicity, and strong hyaluronidase activity. Intratumoral treatment of canine osteosarcoma and melanoma xenografts in mice resulted in inhibition of tumor growth and prolonged survival. Moreover, we treated six dogs with different tumor types, including one adenoma, two osteosarcomas, one mastocitoma, one fibrosarcoma, and one neuroendocrine hepatic carcinoma. No virus-associated adverse effects were observed, but toxicity associated to tumor lysis, including disseminated intravascular coagulation and systemic failure, was found in one case. Two partial responses and two stable diseases warrant additional clinical testing. PMID:24448161

  10. Chemovirotherapy: combining chemotherapeutic treatment with oncolytic virotherapy.

    PubMed

    Binz, Eike; Lauer, Ulrich M

    2015-01-01

    Oncolytic virotherapy has made significant progress in recent years, however, widespread approval of virotherapeutics is still limited. Primarily, this is due to the fact that currently available virotherapeutics are mostly tested in monotherapeutic clinical trials exclusively (ie, not in combination with other therapies) and so far have achieved only small and often clinically insignificant responses. Given that the predominantly immunotherapeutic mechanism of virotherapeutics is somewhat time-dependent and rapidly growing tumors therefore exhibit only minor chances of being captured in time, scenarios with combination partners are postulated to be more effective. Combinatory settings would help to achieve a rapid stabilization or even reduction of onset tumor masses while providing enough time (numerous months) for achieving immuno(viro)therapeutic success. For this reason, combination strategies of virotherapy with highly genotoxic regimens, such as chemotherapy, are of major interest. A number of clinical trials bringing the concepts of chemotherapy and virotherapy together have previously been undertaken, but optimal scheduling of chemovirotherapy (maximizing the anti-tumor effect while minimizing the risk of overlapping toxicity) still constitutes a major challenge. Therefore, an overview of published as well as ongoing Phase I-III trials should improve our understanding of current challenges and future developments in this field.

  11. Combined Therapy of Oncolytic Adenovirus and Temozolomide Enhances Lung Cancer Virotherapy In Vitro and In Vivo

    PubMed Central

    Gomez-Gutierrez, Jorge G.; Nitz, Jonathan; Sharma, Rajesh; Wechman, Stephen L.; Riedinger, Eric; Martinez-Jaramillo, Elvis; Zhou, Heshan Sam; McMasters, Kelly M.

    2015-01-01

    Oncolytic adenoviruses (OAds) are very promising for the treatment of lung cancer. However, OAd-based monotherapeutics have not been effective during clinical trials. Therefore, the effectiveness of virotherapy must be enhanced by combining OAds with other therapies. In this study, the therapeutic potential of OAd in combination with temozolomide (TMZ) was evaluated in lung cancer cells in vitro and in vivo. The combination of OAd and TMZ therapy synergistically enhanced cancer cell death; this enhanced cancer cell death may be explained via three related mechanisms: apoptosis, virus replication, and autophagy. Autophagy inhibition partially protected cancer cells from this combined therapy. This combination significantly suppressed the growth of subcutaneous H441 lung cancer xenograft tumors in athymic nude mice. In this study, we have provided an experimental rationale to test OAds in combination with TMZ in a lung cancer clinical trial. PMID:26561948

  12. Viral Oncolytic Therapeutics for Neoplastic Meningitis

    DTIC Science & Technology

    2013-07-01

    Oncol. 2005 May 20;23(15):3605-13. 2. Nakamura H, Kasuya H, Mullen JT, et al. Regulation of Herpes simplex virus g134.5 expression and oncolysis of...diffuse liver metastases by Myb34.5. J Clin Invest 2002;109:871–82. 3. Kuruppu D, Tanabe KK. Viral oncolysis by herpes simplex virus and other viruses...emission tomography of herpes simplex virus 1 oncolysis. Cancer Research. 2007; 67(7): 3295.

  13. Experimental coronavirus retinopathy (ECOR): retinal degeneration susceptible mice have an augmented interferon and chemokine (CXCL9, CXCL10) response early after virus infection.

    PubMed

    Detrick, Barbara; Lee, Maria Teresa; Chin, Marian S; Hooper, Laura C; Chan, Chi-Chao; Hooks, John J

    2008-01-01

    Mouse hepatitis virus induces a biphasic disease in BALB/c mice that consists of an acute retinitis followed by progression to a chronic retinal degeneration with autoimmune reactivity. Retinal degeneration resistant CD-1 mice do not develop the late phase. What host factors contribute to the distinct responses to the virus are unknown. Herein, we show that IFN-alpha, IFN-beta and IFN-gamma act in concert as part of the innate immune response to the retinal infection. At day 2, high serum levels of IFN-gamma, CXCL9 and CXCL10, were detected in BALB/c mice. Moreover, elevated levels of CXCL9 and CXCL10 gene expression were detected in retinal tissue. Although IFN-gamma and the chemokines were detected in CD-1 mice, they were at significantly lower levels compared to BALB/c mice. These augmented innate responses observed correlated with the development of autoimmune reactivity and retinal degeneration and thus may contribute to the pathogenic processes.

  14. Chemical Modification with High Molecular Weight Polyethylene Glycol Reduces Transduction of Hepatocytes and Increases Efficacy of Intravenously Delivered Oncolytic Adenovirus

    PubMed Central

    Doronin, Konstantin; Shashkova, Elena V.; May, Shannon M.; Hofherr, Sean E.

    2009-01-01

    Abstract Oncolytic adenoviruses are anticancer agents that replicate within tumors and spread to uninfected tumor cells, amplifying the anticancer effect of initial transduction. We tested whether coating the viral particle with polyethylene glycol (PEG) could reduce transduction of hepatocytes and hepatotoxicity after systemic (intravenous) administration of oncolytic adenovirus serotype 5 (Ad5). Conjugating Ad5 with high molecular weight 20-kDa PEG but not with 5-kDa PEG reduced hepatocyte transduction and hepatotoxicity after intravenous injection. PEGylation with 20-kDa PEG was as efficient at detargeting adenovirus from Kupffer cells and hepatocytes as virus predosing and warfarin. Bioluminescence imaging of virus distribution in two xenograft tumor models in nude mice demonstrated that PEGylation with 20-kDa PEG reduced liver infection 19- to 90-fold. Tumor transduction levels were similar for vectors PEGylated with 20-kDa PEG and unPEGylated vectors. Anticancer efficacy after a single intravenous injection was retained at the level of unmodified vector in large established prostate carcinoma xenografts, resulting in complete elimination of tumors in all animals and long-term tumor-free survival. Anticancer efficacy after a single intravenous injection was increased in large established hepatocellular carcinoma xenografts, resulting in significant prolongation of survival as compared with unmodified vector. The increase in efficacy was comparable to that obtained with predosing and warfarin pretreatment, significantly extending the median of survival. Shielding adenovirus with 20-kDa PEG may be a useful approach to improve the therapeutic window of oncolytic adenovirus after systemic delivery to primary and metastatic tumor sites. PMID:19469693

  15. Serum HMGB1 is a predictive and prognostic biomarker for oncolytic immunotherapy

    PubMed Central

    Liikanen, Ilkka; Koski, Anniina; Merisalo-Soikkeli, Maiju; Hemminki, Otto; Oksanen, Minna; Kairemo, Kalevi; Joensuu, Timo; Kanerva, Anna; Hemminki, Akseli

    2015-01-01

    With the emergence of effective immunotherapeutics, which nevertheless harbor the potential for toxicity and are expensive to use, biomarkers are urgently needed for identification of cancer patients who respond to treatment. In this clinical-epidemiological study of 202 cancer patients treated with oncolytic adenoviruses, we address the biomarker value of serum high-mobility group box 1 (HMGB1) protein. Overall survival and imaging responses were studied as primary endpoints and adjusted for confounding factors in two multivariate analyses (Cox and logistic regression). Mechanistic studies included assessment of circulating tumor-specific T-cells by ELISPOT, virus replication by quantitative PCR, and inflammatory cytokines by cytometric bead array. Patients with low HMGB1 baseline levels (below median concentration) showed significantly improved survival (p = 0.008, Log-Rank test) and radiological disease control rate (49.2% vs. 30.0%, p = 0.038, χ2 test) as compared to high-baseline patients. In multivariate analyses, the low HMGB1 baseline status was a strong prognostic (HR 0.638, 95% CI 0.462–0.881) and the best predictive factor for disease control (OR 2.618, 95% CI 1.004–6.827). Indicative of an immune-mediated mechanism, antitumor T-cell activity in blood and response to immunogenic-transgene coding viruses associated with improved outcome only in HMGB1-low patients. Our results suggest that serum HMGB1 baseline is a useful prognostic and predictive biomarker for oncolytic immunotherapy with adenoviruses, setting the stage for prospective clinical studies. PMID:25949903

  16. Studies on the Interaction of Tumor-Derived HD5 Alpha Defensins with Adenoviruses and Implications for Oncolytic Adenovirus Therapy.

    PubMed

    Vragniau, Charles; Hübner, Jens-Martin; Beidler, Peter; Gil, Sucheol; Saydaminova, Kamola; Lu, Zhuo-Zhuang; Yumul, Roma; Wang, Hongjie; Richter, Maximilian; Sova, Pavel; Drescher, Charles; Fender, Pascal; Lieber, André

    2017-03-15

    Defensins are small antimicrobial peptides capable of neutralizing human adenovirus (HAdV) in vitro by binding capsid proteins and blocking endosomal escape of virus. In humans, the alpha defensin HD5 is produced by specialized epithelial cells of the gastrointestinal and genito-urinary tracts. Here, we demonstrate, using patient biopsy specimens, that HD5 is also expressed as an active, secreted peptide by epithelial ovarian and lung cancer cells in situ This finding prompted us to study the role of HD5 in infection and spread of replication-competent, oncolytic HAdV type 3 (HAdV3). HAdV3 produces large amounts of penton-dodecahedra (PtDd), virus-like particles, during replication. We have previously shown that PtDd are involved in opening epithelial junctions, thus facilitating lateral spread of de novo-produced virions. Here, we describe a second function of PtDd, namely, the blocking of HD5. A central tool to prove that viral PtDd neutralize HD5 and support spread of progeny virus was an HAdV3 mutant virus in which formation of PtDd was disabled (mut-Ad3GFP, where GFP is green fluorescent protein). We demonstrated that viral spread of mut-Ad3GFP was blocked by synthetic HD5 whereas that of the wild-type (wt) form (wt-Ad3GFP) was only minimally impacted. In human colon cancer Caco-2 cells, induction of cellular HD5 expression by fibroblast growth factor 9 (FGF9) significantly inhibited viral spread and progeny virus production of mut-Ad3GFP but not of wt-Ad3GFP. Finally, the ectopic expression of HD5 in tumor cells diminished the in vivo oncolytic activity of mut-Ad3GFP but not of wt-Ad3GFP. These data suggest a new mechanism of HAdV3 to overcome innate antiviral host responses. Our study has implications for oncolytic adenovirus therapy.IMPORTANCE Previously, it has been reported that human defensin HD5 inactivates specific human adenoviruses by binding to capsid proteins and blocking endosomal escape of virus. The central new findings described in our

  17. The strength of the T cell response against a surrogate tumor antigen induced by oncolytic VSV therapy does not correlate with tumor control.

    PubMed

    Janelle, Valérie; Langlois, Marie-Pierre; Lapierre, Pascal; Charpentier, Tania; Poliquin, Laurent; Lamarre, Alain

    2014-06-01

    Cancer therapy using oncolytic viruses has gained interest in the last decade. Vesicular stomatitis virus is an attractive candidate for this alternative treatment approach. The importance of the immune response against tumor antigens in virotherapy efficacy is now well recognized, however, its relative contribution versus the intrinsic oncolytic capacity of viruses has been difficult to evaluate. To start addressing this question, we compared glycoprotein and matrix mutants of vesicular stomatitis virus (VSV), showing different oncolytic potentials for B16/B16gp33 melanoma tumor cells in vitro, with the wild-type