Numerical applications of the advective-diffusive codes for the inner magnetosphere
NASA Astrophysics Data System (ADS)
Aseev, N. A.; Shprits, Y. Y.; Drozdov, A. Y.; Kellerman, A. C.
2016-11-01
In this study we present analytical solutions for convection and diffusion equations. We gather here the analytical solutions for the one-dimensional convection equation, the two-dimensional convection problem, and the one- and two-dimensional diffusion equations. Using obtained analytical solutions, we test the four-dimensional Versatile Electron Radiation Belt code (the VERB-4D code), which solves the modified Fokker-Planck equation with additional convection terms. The ninth-order upwind numerical scheme for the one-dimensional convection equation shows much more accurate results than the results obtained with the third-order scheme. The universal limiter eliminates unphysical oscillations generated by high-order linear upwind schemes. Decrease in the space step leads to convergence of a numerical solution of the two-dimensional diffusion equation with mixed terms to the analytical solution. We compare the results of the third- and ninth-order schemes applied to magnetospheric convection modeling. The results show significant differences in electron fluxes near geostationary orbit when different numerical schemes are used.
ANALYTICAL SOLUTION TO SATURATED FLOW IN A FINITE STRATIFIED AQUIFER
An analytical solution for the flow of water in a saturated-stratified aquitard-aquifer-aquitard system of finite length is presented. The analytical solution assumes one-dimensional horizontal flow in the aquifer and two-dimensional flow in the aquitards. Several examples are gi...
Semi-Analytic Reconstruction of Flux in Finite Volume Formulations
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2006-01-01
Semi-analytic reconstruction uses the analytic solution to a second-order, steady, ordinary differential equation (ODE) to simultaneously evaluate the convective and diffusive flux at all interfaces of a finite volume formulation. The second-order ODE is itself a linearized approximation to the governing first- and second- order partial differential equation conservation laws. Thus, semi-analytic reconstruction defines a family of formulations for finite volume interface fluxes using analytic solutions to approximating equations. Limiters are not applied in a conventional sense; rather, diffusivity is adjusted in the vicinity of changes in sign of eigenvalues in order to achieve a sufficiently small cell Reynolds number in the analytic formulation across critical points. Several approaches for application of semi-analytic reconstruction for the solution of one-dimensional scalar equations are introduced. Results are compared with exact analytic solutions to Burger s Equation as well as a conventional, upwind discretization using Roe s method. One approach, the end-point wave speed (EPWS) approximation, is further developed for more complex applications. One-dimensional vector equations are tested on a quasi one-dimensional nozzle application. The EPWS algorithm has a more compact difference stencil than Roe s algorithm but reconstruction time is approximately a factor of four larger than for Roe. Though both are second-order accurate schemes, Roe s method approaches a grid converged solution with fewer grid points. Reconstruction of flux in the context of multi-dimensional, vector conservation laws including effects of thermochemical nonequilibrium in the Navier-Stokes equations is developed.
Analytical solutions for efficient interpretation of single-well push-pull tracer tests
Single-well push-pull tracer tests have been used to characterize the extent, fate, and transport of subsurface contamination. Analytical solutions provide one alternative for interpreting test results. In this work, an exact analytical solution to two-dimensional equations descr...
Li, Xue; Dong, Jiao
2018-01-01
The material considered in this study not only has a functionally graded characteristic but also exhibits different tensile and compressive moduli of elasticity. One-dimensional and two-dimensional mechanical models for a functionally graded beam with a bimodular effect were established first. By taking the grade function as an exponential expression, the analytical solutions of a bimodular functionally graded beam under pure bending and lateral-force bending were obtained. The regression from a two-dimensional solution to a one-dimensional solution is verified. The physical quantities in a bimodular functionally graded beam are compared with their counterparts in a classical problem and a functionally graded beam without a bimodular effect. The validity of the plane section assumption under pure bending and lateral-force bending is analyzed. Three typical cases that the tensile modulus is greater than, equal to, or less than the compressive modulus are discussed. The result indicates that due to the introduction of the bimodular functionally graded effect of the materials, the maximum tensile and compressive bending stresses may not take place at the bottom and top of the beam. The real location at which the maximum bending stress takes place is determined via the extreme condition for the analytical solution. PMID:29772835
Wexler, Eliezer J.
1992-01-01
Analytical solutions to the advective-dispersive solute-transport equation are useful in predicting the fate of solutes in ground water. Analytical solutions compiled from available literature or derived by the author are presented for a variety of boundary condition types and solute-source configurations in one-, two-, and three-dimensional systems having uniform ground-water flow. A set of user-oriented computer programs was created to evaluate these solutions and to display the results in tabular and computer-graphics format. These programs incorporate many features that enhance their accuracy, ease of use, and versatility. Documentation for the programs describes their operation and required input data, and presents the results of sample problems. Derivations of selected solutions, source codes for the computer programs, and samples of program input and output also are included.
Analytical solutions of the two-dimensional Dirac equation for a topological channel intersection
NASA Astrophysics Data System (ADS)
Anglin, J. R.; Schulz, A.
2017-01-01
Numerical simulations in a tight-binding model have shown that an intersection of topologically protected one-dimensional chiral channels can function as a beam splitter for noninteracting fermions on a two-dimensional lattice [Qiao, Jung, and MacDonald, Nano Lett. 11, 3453 (2011), 10.1021/nl201941f; Qiao et al., Phys. Rev. Lett. 112, 206601 (2014), 10.1103/PhysRevLett.112.206601]. Here we confirm this result analytically in the corresponding continuum k .p model, by solving the associated two-dimensional Dirac equation, in the presence of a "checkerboard" potential that provides a right-angled intersection between two zero-line modes. The method by which we obtain our analytical solutions is systematic and potentially generalizable to similar problems involving intersections of one-dimensional systems.
Exact Analytical Solutions for Elastodynamic Impact
2015-11-30
corroborated by derivation of exact discrete solutions from recursive equations for the impact problems. 15. SUBJECT TERMS One-dimensional impact; Elastic...wave propagation; Laplace transform; Floor function; Discrete solutions 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18...impact Elastic wave propagation Laplace transform Floor function Discrete solutionsWe consider the one-dimensional impact problem in which a semi
Wexler, Eliezer J.
1989-01-01
Analytical solutions to the advective-dispersive solute-transport equation are useful in predicting the fate of solutes in ground water. Analytical solutions compiled from available literature or derived by the author are presented in this report for a variety of boundary condition types and solute-source configurations in one-, two-, and three-dimensional systems with uniform ground-water flow. A set of user-oriented computer programs was created to evaluate these solutions and to display the results in tabular and computer-graphics format. These programs incorporate many features that enhance their accuracy, ease of use, and versatility. Documentation for the programs describes their operation and required input data, and presents the results of sample problems. Derivations of select solutions, source codes for the computer programs, and samples of program input and output also are included.
NASA Astrophysics Data System (ADS)
Bodin, Jacques
2015-03-01
In this study, new multi-dimensional time-domain random walk (TDRW) algorithms are derived from approximate one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) analytical solutions of the advection-dispersion equation and from exact 1-D, 2-D, and 3-D analytical solutions of the pure-diffusion equation. These algorithms enable the calculation of both the time required for a particle to travel a specified distance in a homogeneous medium and the mass recovery at the observation point, which may be incomplete due to 2-D or 3-D transverse dispersion or diffusion. The method is extended to heterogeneous media, represented as a piecewise collection of homogeneous media. The particle motion is then decomposed along a series of intermediate checkpoints located on the medium interface boundaries. The accuracy of the multi-dimensional TDRW method is verified against (i) exact analytical solutions of solute transport in homogeneous media and (ii) finite-difference simulations in a synthetic 2-D heterogeneous medium of simple geometry. The results demonstrate that the method is ideally suited to purely diffusive transport and to advection-dispersion transport problems dominated by advection. Conversely, the method is not recommended for highly dispersive transport problems because the accuracy of the advection-dispersion TDRW algorithms degrades rapidly for a low Péclet number, consistent with the accuracy limit of the approximate analytical solutions. The proposed approach provides a unified methodology for deriving multi-dimensional time-domain particle equations and may be applicable to other mathematical transport models, provided that appropriate analytical solutions are available.
NASA Astrophysics Data System (ADS)
Haitjema, Henk M.
1985-10-01
A technique is presented to incorporate three-dimensional flow in a Dupuit-Forchheimer model. The method is based on superposition of approximate analytic solutions to both two- and three-dimensional flow features in a confined aquifer of infinite extent. Three-dimensional solutions are used in the domain of interest, while farfield conditions are represented by two-dimensional solutions. Approximate three- dimensional solutions have been derived for a partially penetrating well and a shallow creek. Each of these solutions satisfies the condition that no flow occurs across the confining layers of the aquifer. Because of this condition, the flow at some distance of a three-dimensional feature becomes nearly horizontal. Consequently, remotely from a three-dimensional feature, its three-dimensional solution is replaced by a corresponding two-dimensional one. The latter solution is trivial as compared to its three-dimensional counterpart, and its use greatly enhances the computational efficiency of the model. As an example, the flow is modeled between a partially penetrating well and a shallow creek that occur in a regional aquifer system.
NASA Technical Reports Server (NTRS)
Pavish, D. L.; Spaulding, M. L.
1977-01-01
A computer coded Lagrangian marker particle in Eulerian finite difference cell solution to the three dimensional incompressible mass transport equation, Water Advective Particle in Cell Technique, WAPIC, was developed, verified against analytic solutions, and subsequently applied in the prediction of long term transport of a suspended sediment cloud resulting from an instantaneous dredge spoil release. Numerical results from WAPIC were verified against analytic solutions to the three dimensional incompressible mass transport equation for turbulent diffusion and advection of Gaussian dye releases in unbounded uniform and uniformly sheared uni-directional flow, and for steady-uniform plug channel flow. WAPIC was utilized to simulate an analytic solution for non-equilibrium sediment dropout from an initially vertically uniform particle distribution in one dimensional turbulent channel flow.
NASA Astrophysics Data System (ADS)
Yen, C. T.; Tiller, W. A.
1992-03-01
A one-dimensional mathematical analysis is made of the redistribution of solute which occurs during crystal growth from a convected melt. In this analysis, the important contribution from lateral melt convection to one-dimensional solute redistribution analysis is taken into consideration via an annihilation/creation term in the one-dimensional solute transport equation. Calculations of solute redistribution under steady-state conditions have been carried out analytically. It is found that this new solute redistribution model overcomes several weaknesses that occur when applying the Burton, Prim and Slichter solute segregation equation (1953) in real melt growth situations. It is also found that, with this correction, the diffusion coefficients for solute's in liquid silicon are now found to be in the same range as other liquid metal diffusion coefficients.
USDA-ARS?s Scientific Manuscript database
Analytical solutions of the advection-dispersion solute transport equation remain useful for a large number of applications in science and engineering. In this paper we extend the Duhamel theorem, originally established for diffusion type problems, to the case of advective-dispersive transport subj...
Analytically-derived sensitivities in one-dimensional models of solute transport in porous media
Knopman, D.S.
1987-01-01
Analytically-derived sensitivities are presented for parameters in one-dimensional models of solute transport in porous media. Sensitivities were derived by direct differentiation of closed form solutions for each of the odel, and by a time integral method for two of the models. Models are based on the advection-dispersion equation and include adsorption and first-order chemical decay. Boundary conditions considered are: a constant step input of solute, constant flux input of solute, and exponentially decaying input of solute at the upstream boundary. A zero flux is assumed at the downstream boundary. Initial conditions include a constant and spatially varying distribution of solute. One model simulates the mixing of solute in an observation well from individual layers in a multilayer aquifer system. Computer programs produce output files compatible with graphics software in which sensitivities are plotted as a function of either time or space. (USGS)
Analytical solutions for the dynamics of two trapped interacting ultracold atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Idziaszek, Zbigniew; Calarco, Tommaso; CNR-INFM BEC Center, I-38050 Povo
2006-08-15
We discuss exact solutions of the Schroedinger equation for the system of two ultracold atoms confined in an axially symmetric harmonic potential. We investigate different geometries of the trapping potential, in particular we study the properties of eigenenergies and eigenfunctions for quasi-one-dimensional and quasi-two-dimensional traps. We show that the quasi-one-dimensional and the quasi-two-dimensional regimes for two atoms can be already realized in the traps with moderately large (or small) ratios of the trapping frequencies in the axial and the transverse directions. Finally, we apply our theory to Feshbach resonances for trapped atoms. Introducing in our description an energy-dependent scattering lengthmore » we calculate analytically the eigenenergies for two trapped atoms in the presence of a Feshbach resonance.« less
Lump and lump-soliton solutions to the (2+1) -dimensional Ito equation
NASA Astrophysics Data System (ADS)
Yang, Jin-Yun; Ma, Wen-Xiu; Qin, Zhenyun
2017-06-01
Based on the Hirota bilinear form of the (2+1) -dimensional Ito equation, one class of lump solutions and two classes of interaction solutions between lumps and line solitons are generated through analysis and symbolic computations with Maple. Analyticity is naturally guaranteed for the presented lump and interaction solutions, and the interaction solutions reduce to lumps (or line solitons) while the hyperbolic-cosine (or the quadratic function) disappears. Three-dimensional plots and contour plots are made for two specific examples of the resulting interaction solutions.
Several numerical and analytical solutions of the radiative transfer equation (RTE) for plane albedo were compared for solar light reflection by sea water. The study incorporated the simplest case, that being a semi-infinite one-dimensional plane-parallel absorbing and scattering...
NASA Technical Reports Server (NTRS)
Siegel, R.; Goldstein, M. E.
1972-01-01
An analytical solution is obtained for flow and heat transfer in a three-dimensional porous medium. Coolant from a reservoir at constant pressure and temperature enters one portion of the boundary of the medium and exits through another portion of the boundary which is at a specified uniform temperature and uniform pressure. The variation with temperature of coolant density and viscosity are both taken into account. A general solution is found that provides the temperature distribution in the medium and the mass and heat fluxes along the portion of the surface through which the coolant is exiting.
Zhu, Zhenduo; Motta, Davide; Jackson, P. Ryan; Garcia, Marcelo H.
2017-01-01
In December 2009, during a piscicide treatment targeting the invasive Asian carp in the Chicago Sanitary and Ship Canal, Rhodamine WT dye was released to track and document the transport and dispersion of the piscicide. In this study, two modeling approaches are presented to reproduce the advection and dispersion of the dye tracer (and piscicide), a one-dimensional analytical solution and a three-dimensional numerical model. The two approaches were compared with field measurements of concentration and their applicability is discussed. Acoustic Doppler current profiler measurements were used to estimate the longitudinal dispersion coefficients at ten cross sections, which were taken as reference for calibrating the longitudinal dispersion coefficient in the one-dimensional analytical solution. While the analytical solution is fast, relatively simple, and can fairly accurately predict the core of the observed concentration time series at points downstream, it does not capture the tail of the breakthrough curves. These tails are well reproduced by the three-dimensional model, because it accounts for the effects of dead zones and a power plant which withdraws nearly 80 % of the water from the canal for cooling purposes before returning it back to the canal.
NASA Astrophysics Data System (ADS)
Li, He; Cui, Yun
2017-12-01
Nowadays, flexible electronic devices are increasingly used in direct contact with human skin to monitor the real-time health of human body. Based on the Fourier heat conduction equation and Pennes bio-heat transfer equation, this paper deduces the analytical solutions of one - dimensional heat transfer for flexible electronic devices integrated with human skin under the condition of a constant power. The influence of contact thermal resistance between devices and skin is considered as well. The corresponding finite element model is established to verify the correctness of analytical solutions. The results show that the finite element analysis agrees well with the analytical solution. With bigger thermal resistance, temperature increase of skin surface will decrease. This result can provide guidance for the design of flexible electronic devices to reduce the negative impact that exceeding temperature leave on human skin.
NASA Astrophysics Data System (ADS)
Voloshin, A. E.; Prostomolotov, A. I.; Verezub, N. A.
2016-11-01
The paper deals with the analysis of the accuracy of some one-dimensional (1D) analytical models of the axial distribution of impurities in the crystal grown from a melt. The models proposed by Burton-Prim-Slichter, Ostrogorsky-Muller and Garandet with co-authors are considered, these models are compared to the results of a two-dimensional (2D) numerical simulation. Stationary solutions as well as solutions for the initial transient regime obtained using these models are considered. The sources of errors are analyzed, a conclusion is made about the applicability of 1D analytical models for quantitative estimates of impurity incorporation into the crystal sample as well as for the solution of the inverse problems.
Kurylyk, Barret L.; McKenzie, Jeffrey M; MacQuarrie, Kerry T. B.; Voss, Clifford I.
2014-01-01
Numerous cold regions water flow and energy transport models have emerged in recent years. Dissimilarities often exist in their mathematical formulations and/or numerical solution techniques, but few analytical solutions exist for benchmarking flow and energy transport models that include pore water phase change. This paper presents a detailed derivation of the Lunardini solution, an approximate analytical solution for predicting soil thawing subject to conduction, advection, and phase change. Fifteen thawing scenarios are examined by considering differences in porosity, surface temperature, Darcy velocity, and initial temperature. The accuracy of the Lunardini solution is shown to be proportional to the Stefan number. The analytical solution results obtained for soil thawing scenarios with water flow and advection are compared to those obtained from the finite element model SUTRA. Three problems, two involving the Lunardini solution and one involving the classic Neumann solution, are recommended as standard benchmarks for future model development and testing.
Feynman Path Integral Approach to Electron Diffraction for One and Two Slits: Analytical Results
ERIC Educational Resources Information Center
Beau, Mathieu
2012-01-01
In this paper we present an analytic solution of the famous problem of diffraction and interference of electrons through one and two slits (for simplicity, only the one-dimensional case is considered). In addition to exact formulae, various approximations of the electron distribution are shown which facilitate the interpretation of the results.…
NASA Technical Reports Server (NTRS)
Hollis, Brian R.
1995-01-01
A FORTRAN computer code for the reduction and analysis of experimental heat transfer data has been developed. This code can be utilized to determine heat transfer rates from surface temperature measurements made using either thin-film resistance gages or coaxial surface thermocouples. Both an analytical and a numerical finite-volume heat transfer model are implemented in this code. The analytical solution is based on a one-dimensional, semi-infinite wall thickness model with the approximation of constant substrate thermal properties, which is empirically corrected for the effects of variable thermal properties. The finite-volume solution is based on a one-dimensional, implicit discretization. The finite-volume model directly incorporates the effects of variable substrate thermal properties and does not require the semi-finite wall thickness approximation used in the analytical model. This model also includes the option of a multiple-layer substrate. Fast, accurate results can be obtained using either method. This code has been used to reduce several sets of aerodynamic heating data, of which samples are included in this report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giunta, G.; Belouettar, S.
In this paper, the static response of three-dimensional beams made of functionally graded materials is investigated through a family of hierarchical one-dimensional finite elements. A wide variety of elements is proposed differing by the kinematic formulation and the number of nodes per elements along the beam axis. Elements’ stiffness matrix and load vector are derived in a unified nuclear form that does not depend upon the a priori expansion order over the cross-section nor the finite element approximation along the beam axis. Results are validated towards three-dimensional finite element models as well as equivalent Navier-type analytical solutions. The numerical investigationsmore » show that accurate and efficient solutions (when compared with full three-dimensional FEM solutions) can be obtained by the proposed family of hierarchical one-dimensional elements’ family.« less
NASA Astrophysics Data System (ADS)
Avilés, L.; Canfora, F.; Dimakis, N.; Hidalgo, D.
2017-12-01
We construct the first analytic examples of topologically nontrivial solutions of the (3 +1 )-dimensional U (1 ) gauged Skyrme model within a finite box in (3 +1 )-dimensional flat space-time. There are two types of gauged solitons. The first type corresponds to gauged Skyrmions living within a finite volume. The second corresponds to gauged time crystals (smooth solutions of the U (1 ) gauged Skyrme model whose periodic time dependence is protected by a winding number). The notion of electromagnetic duality can be extended for these two types of configurations in the sense that the electric and one of the magnetic components can be interchanged. These analytic solutions show very explicitly the Callan-Witten mechanism (according to which magnetic monopoles may "swallow" part of the topological charge of the Skyrmion) since the electromagnetic field contributes directly to the conserved topological charge of the gauged Skyrmions. As it happens in superconductors, the magnetic field is suppressed in the core of the gauged Skyrmions. On the other hand, the electric field is strongly suppresed in the core of gauged time crystals.
Multiexponential models of (1+1)-dimensional dilaton gravity and Toda-Liouville integrable models
NASA Astrophysics Data System (ADS)
de Alfaro, V.; Filippov, A. T.
2010-01-01
We study general properties of a class of two-dimensional dilaton gravity (DG) theories with potentials containing several exponential terms. We isolate and thoroughly study a subclass of such theories in which the equations of motion reduce to Toda and Liouville equations. We show that the equation parameters must satisfy a certain constraint, which we find and solve for the most general multiexponential model. It follows from the constraint that integrable Toda equations in DG theories generally cannot appear without accompanying Liouville equations. The most difficult problem in the two-dimensional Toda-Liouville (TL) DG is to solve the energy and momentum constraints. We discuss this problem using the simplest examples and identify the main obstacles to solving it analytically. We then consider a subclass of integrable two-dimensional theories where scalar matter fields satisfy the Toda equations and the two-dimensional metric is trivial. We consider the simplest case in some detail. In this example, we show how to obtain the general solution. We also show how to simply derive wavelike solutions of general TL systems. In the DG theory, these solutions describe nonlinear waves coupled to gravity and also static states and cosmologies. For static states and cosmologies, we propose and study a more general one-dimensional TL model typically emerging in one-dimensional reductions of higher-dimensional gravity and supergravity theories. We especially attend to making the analytic structure of the solutions of the Toda equations as simple and transparent as possible.
NASA Astrophysics Data System (ADS)
Pekşen, Ertan; Yas, Türker; Kıyak, Alper
2014-09-01
We examine the one-dimensional direct current method in anisotropic earth formation. We derive an analytic expression of a simple, two-layered anisotropic earth model. Further, we also consider a horizontally layered anisotropic earth response with respect to the digital filter method, which yields a quasi-analytic solution over anisotropic media. These analytic and quasi-analytic solutions are useful tests for numerical codes. A two-dimensional finite difference earth model in anisotropic media is presented in order to generate a synthetic data set for a simple one-dimensional earth. Further, we propose a particle swarm optimization method for estimating the model parameters of a layered anisotropic earth model such as horizontal and vertical resistivities, and thickness. The particle swarm optimization is a naturally inspired meta-heuristic algorithm. The proposed method finds model parameters quite successfully based on synthetic and field data. However, adding 5 % Gaussian noise to the synthetic data increases the ambiguity of the value of the model parameters. For this reason, the results should be controlled by a number of statistical tests. In this study, we use probability density function within 95 % confidence interval, parameter variation of each iteration and frequency distribution of the model parameters to reduce the ambiguity. The result is promising and the proposed method can be used for evaluating one-dimensional direct current data in anisotropic media.
NASA Technical Reports Server (NTRS)
Misiakos, K.; Lindholm, F. A.
1986-01-01
Several parameters of certain three-dimensional semiconductor devices including diodes, transistors, and solar cells can be determined without solving the actual boundary-value problem. The recombination current, transit time, and open-circuit voltage of planar diodes are emphasized here. The resulting analytical expressions enable determination of the surface recombination velocity of shallow planar diodes. The method involves introducing corresponding one-dimensional models having the same values of these parameters.
Travelling wave solutions of the homogeneous one-dimensional FREFLO model
NASA Astrophysics Data System (ADS)
Huang, B.; Hong, J. Y.; Jing, G. Q.; Niu, W.; Fang, L.
2018-01-01
Presently there is quite few analytical studies in traffic flows due to the non-linearity of the governing equations. In the present paper we introduce travelling wave solutions for the homogeneous one-dimensional FREFLO model, which are expressed in the form of series and describe the procedure that vehicles/pedestrians move with a negative velocity and decelerate until rest, then accelerate inversely to positive velocities. This method is expect to be extended to more complex situations in the future.
KAM Tori for 1D Nonlinear Wave Equationswith Periodic Boundary Conditions
NASA Astrophysics Data System (ADS)
Chierchia, Luigi; You, Jiangong
In this paper, one-dimensional (1D) nonlinear wave equations
Herzog, W; Binding, P
1993-11-01
It has been stated in the literature that static, nonlinear optimization approaches cannot predict coactivation of pairs of antagonistic muscles; however, numerical solutions of such approaches have predicted coactivation of pairs of one-joint and multijoint antagonists. Analytical support for either finding is not available in the literature for systems containing more than one degree of freedom. The purpose of this study was to investigate analytically the possibility of cocontraction of pairs of antagonistic muscles using a static nonlinear optimization approach for a multidegree-of-freedom, two-dimensional system. Analytical solutions were found using the Karush-Kuhn-Tucker conditions, which were necessary and sufficient for optimality in this problem. The results show that cocontraction of pairs of one-joint antagonistic muscles is not possible, whereas cocontraction of pairs of multijoint antagonists is. These findings suggest that cocontraction of pairs of antagonistic muscles may be an "efficient" way to accomplish many movement tasks.
Flow through three-dimensional arrangements of cylinders with alternating streamwise planar tilt
NASA Astrophysics Data System (ADS)
Sahraoui, M.; Marshall, H.; Kaviany, M.
1993-09-01
In this report, fluid flow through a three-dimensional model for the fibrous filters is examined. In this model, the three-dimensional Stokes equation with the appropriate periodic boundary conditions is solved using the finite volume method. In addition to the numerical solution, we attempt to model this flow analytically by using the two-dimensional extended analytic solution in each of the unit cells of the three-dimensional structure. Particle trajectories computed using the superimposed analytic solution of the flow field are closed to those computed using the numerical solution of the flow field. The numerical results show that the pressure drop is not affected significantly by the relative angle of rotation of the cylinders for the high porosity used in this study (epsilon = 0.8 and epsilon = 0.95). The numerical solution and the superimposed analytic solution are also compared in terms of the particle capture efficiency. The results show that the efficiency predictions using the two methods are within 10% for St = 0.01 and 5% for St = 100. As the the porosity decreases, the three-dimensional effect becomes more significant and a difference of 35% is obtained for epsilon = 0.8.
The possible equilibrium shapes of static pendant drops
NASA Astrophysics Data System (ADS)
Sumesh, P. T.; Govindarajan, Rama
2010-10-01
Analytical and numerical studies are carried out on the shapes of two-dimensional and axisymmetric pendant drops hanging under gravity from a solid surface. Drop shapes with both pinned and equilibrium contact angles are obtained naturally from a single boundary condition in the analytical energy optimization procedure. The numerical procedure also yields optimum energy shapes, satisfying Young's equation without the explicit imposition of a boundary condition at the plate. It is shown analytically that a static pendant two-dimensional drop can never be longer than 3.42 times the capillary length. A related finding is that a range of existing solutions for long two-dimensional drops correspond to unphysical drop shapes. Therefore, two-dimensional drops of small volume display only one static solution. In contrast, it is known that axisymmetric drops can display multiple solutions for a given volume. We demonstrate numerically that there is no limit to the height of multiple-lobed Kelvin drops, but the total volume is finite, with the volume of successive lobes forming a convergent series. The stability of such drops is in question, though. Drops of small volume can attain large heights. A bifurcation is found within the one-parameter space of Laplacian shapes, with a range of longer drops displaying a minimum in energy in the investigated space. Axisymmetric Kelvin drops exhibit an infinite number of bifurcations.
NASA Astrophysics Data System (ADS)
Parrish, K. E.; Zhang, J.; Teasdale, E.
2007-12-01
An exact analytical solution to the ordinary one-dimensional partial differential equation is derived for transient groundwater flow in a homogeneous, confined, horizontal aquifer using Laplace transformation. The theoretical analysis is based on the assumption that the aquifer is homogeneous and one-dimensional (horizontal); confined between impermeable formations on top and bottom; and of infinite horizontal extent and constant thickness. It is also assumed that there is only a single pumping well penetrating the entire aquifer; flow is everywhere horizontal within the aquifer to the well; the well is pumping with a constant discharge rate; the well diameter is infinitesimally small; and the hydraulic head is uniform throughout the aquifer before pumping. Similar to the Theis solution, this solution is suited to determine transmissivity and storativity for a two- dimensional, vertically confined aquifer, such as a long vertically fractured zone of high permeability within low permeable rocks or a long, high-permeability trench inside a low-permeability porous media. In addition, it can be used to analyze time-drawdown responses to pumping and injection in similar settings. The solution can also be used to approximate the groundwater flow for unconfined conditions if (1) the variation of transmissivity is negligible (groundwater table variation is small in comparison to the saturated thickness); and (2) the unsaturated flow is negligible. The errors associated with the use of the solution to unconfined conditions depend on the accuracies of the above two assumptions. The solution can also be used to assess the impacts of recharge from a seasonal river or irrigation canal on the groundwater system by assuming uniform, time- constant recharge along the river or canal. This paper presents the details for derivation of the analytical solution. The analytical solution is compared to numerical simulation results with example cases. Its accuracy is also assessed and discussed for confined and unconfined conditions.
Spatial Moment Equations for a Groundwater Plume with Degradation and Rate-Limited Sorption
In this note, we analytically derive the solution for the spatial moments of groundwater solute concentration distributions simulated by a one-dimensional model that assumes advective-dispersive transport with first-order degradation and rate-limited sorption. Sorption kinetics...
Diffusiophoresis in one-dimensional solute gradients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ault, Jesse T.; Warren, Patrick B.; Shin, Sangwoo
Here, the diffusiophoretic motion of suspended colloidal particles under one-dimensional solute gradients is solved using numerical and analytical techniques. Similarity solutions are developed for the injection and withdrawal dynamics of particles into semi-infinite pores. Furthermore, a method of characteristics formulation of the diffusion-free particle transport model is presented and integrated to realize particle trajectories. Analytical solutions are presented for the limit of small particle diffusiophoretic mobility Γ p relative to the solute diffusivity D s for particle motions in both semi-infinite and finite domains. Results confirm the build up of local maxima and minima in the propagating particle front dynamics.more » The method of characteristics is shown to successfully predict particle motions and the position of the particle front, although it fails to accurately predict suspended particle concentrations in the vicinity of sharp gradients, such as at the particle front peak seen in some injection cases, where particle diffusion inevitably plays an important role. Results inform the design of applications in which the use of applied solute gradients can greatly enhance particle injection into and withdrawal from pores.« less
NASA Astrophysics Data System (ADS)
Seadawy, Aly R.
2017-09-01
Nonlinear two-dimensional Kadomtsev-Petviashvili (KP) equation governs the behaviour of nonlinear waves in dusty plasmas with variable dust charge and two temperature ions. By using the reductive perturbation method, the two-dimensional dust-acoustic solitary waves (DASWs) in unmagnetized cold plasma consisting of dust fluid, ions and electrons lead to a KP equation. We derived the solitary travelling wave solutions of the two-dimensional nonlinear KP equation by implementing sech-tanh, sinh-cosh, extended direct algebraic and fraction direct algebraic methods. We found the electrostatic field potential and electric field in the form travelling wave solutions for two-dimensional nonlinear KP equation. The solutions for the KP equation obtained by using these methods can be demonstrated precisely and efficiency. As an illustration, we used the readymade package of Mathematica program 10.1 to solve the original problem. These solutions are in good agreement with the analytical one.
Interior radiances in optically deep absorbing media. I - Exact solutions for one-dimensional model.
NASA Technical Reports Server (NTRS)
Kattawar, G. W.; Plass, G. N.
1973-01-01
An exact analytic solution to the one-dimensional scattering problem with arbitrary single scattering albedo and arbitrary surface albedo is presented. Expressions are given for the emergent flux from a homogeneous layer, the internal flux within the layer, and the radiative heating. A comparison of these results with the values calculated from the matrix operator theory indicates an exceedingly high accuracy. A detailed study is made of the error in the matrix operator results and its dependence on the accuracy of the starting value.
NASA Technical Reports Server (NTRS)
Sulkanen, Martin E.; Borovsky, Joseph E.
1992-01-01
The study of relativistic plasma double layers is described through the solution of the one-dimensional, unmagnetized, steady-state Poisson-Vlasov equations and by means of one-dimensional, unmagnetized, particle-in-cell simulations. The thickness vs potential-drop scaling law is extended to relativistic potential drops and relativistic plasma temperatures. The transition in the scaling law for 'strong' double layers suggested by analytical two-beam models by Carlqvist (1982) is confirmed, and causality problems of standard double-layer simulation techniques applied to relativistic plasma systems are discussed.
Three numerical algorithms were compared to provide a solution of a radiative transfer equation (RTE) for plane albedo (hemispherical reflectance) in semi-infinite one-dimensional plane-parallel layer. Algorithms were based on the invariant imbedding method and two different var...
NASA Astrophysics Data System (ADS)
Voloshin, A. E.
2013-11-01
The well-known one-dimensional Burton-Prim-Slichter and Ostrogorsky-Müller analytical models obtained for the stationary mass transfer regime describe in a simple form the dependence of the effective impurity segregation coefficient on the ratio of the crystal growth and convective flow rates. Solutions for the initial transient regime are found in both models. It is shown that the formulas obtained make it possible to determine both the crystal growth rate and the convective mixing intensity on the basis of the analysis of impurity segregation in crystal.
One-dimensional model and solutions for creeping gas flows in the approximation of uniform pressure
NASA Astrophysics Data System (ADS)
Vedernikov, A.; Balapanov, D.
2016-11-01
A model, along with analytical and numerical solutions, is presented to describe a wide variety of one-dimensional slow flows of compressible heat-conductive fluids. The model is based on the approximation of uniform pressure valid for the flows, in which the sound propagation time is much shorter than the duration of any meaningful density variation in the system. The energy balance is described by the heat equation that is solved independently. This approach enables the explicit solution for the fluid velocity to be obtained. Interfacial and volumetric heat and mass sources as well as boundary motion are considered as possible sources of density variation in the fluid. A set of particular tasks is analyzed for different motion sources in planar, axial, and central symmetries in the quasistationary limit of heat conduction (i.e., for large Fourier number). The analytical solutions are in excellent agreement with corresponding numerical solutions of the whole system of the Navier-Stokes equations. This work deals with the ideal gas. The approach is also valid for other equations of state.
New analytical solutions to the two-phase water faucet problem
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2016-06-17
Here, the one-dimensional water faucet problem is one of the classical benchmark problems originally proposed by Ransom to study the two-fluid two-phase flow model. With certain simplifications, such as massless gas phase and no wall and interfacial frictions, analytical solutions had been previously obtained for the transient liquid velocity and void fraction distribution. The water faucet problem and its analytical solutions have been widely used for the purposes of code assessment, benchmark and numerical verifications. In our previous study, the Ransom’s solutions were used for the mesh convergence study of a high-resolution spatial discretization scheme. It was found that, atmore » the steady state, an anticipated second-order spatial accuracy could not be achieved, when compared to the existing Ransom’s analytical solutions. A further investigation showed that the existing analytical solutions do not actually satisfy the commonly used two-fluid single-pressure two-phase flow equations. In this work, we present a new set of analytical solutions of the water faucet problem at the steady state, considering the gas phase density’s effect on pressure distribution. This new set of analytical solutions are used for mesh convergence studies, from which anticipated second-order of accuracy is achieved for the 2nd order spatial discretization scheme. In addition, extended Ransom’s transient solutions for the gas phase velocity and pressure are derived, with the assumption of decoupled liquid and gas pressures. Numerical verifications on the extended Ransom’s solutions are also presented.« less
Gai, Litao; Bilige, Sudao; Jie, Yingmo
2016-01-01
In this paper, we successfully obtained the exact solutions and the approximate analytic solutions of the (2 + 1)-dimensional KP equation based on the Lie symmetry, the extended tanh method and the homotopy perturbation method. In first part, we obtained the symmetries of the (2 + 1)-dimensional KP equation based on the Wu-differential characteristic set algorithm and reduced it. In the second part, we constructed the abundant exact travelling wave solutions by using the extended tanh method. These solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions respectively. It should be noted that when the parameters are taken as special values, some solitary wave solutions are derived from the hyperbolic function solutions. Finally, we apply the homotopy perturbation method to obtain the approximate analytic solutions based on four kinds of initial conditions.
NASA Technical Reports Server (NTRS)
Brown, R. L.
1979-01-01
A local stability analysis is presented for both the analytic and numerical solutions of the initial value problem for a system of ordinary differential equations. It is shown that, using a proper choice of Liapunov function, a connected region of stable initial values of both the analytic solution and the one-leg k-step numerical solution can be approximated. Attention is given to the example of the two-dimensional problem involving the stability of the longitudinal equations of motion of a gliding jet aircraft.
Voss, Clifford I.; Simmons, Craig T.; Robinson, Neville I.
2010-01-01
This benchmark for three-dimensional (3D) numerical simulators of variable-density groundwater flow and solute or energy transport consists of matching simulation results with the semi-analytical solution for the transition from one steady-state convective mode to another in a porous box. Previous experimental and analytical studies of natural convective flow in an inclined porous layer have shown that there are a variety of convective modes possible depending on system parameters, geometry and inclination. In particular, there is a well-defined transition from the helicoidal mode consisting of downslope longitudinal rolls superimposed upon an upslope unicellular roll to a mode consisting of purely an upslope unicellular roll. Three-dimensional benchmarks for variable-density simulators are currently (2009) lacking and comparison of simulation results with this transition locus provides an unambiguous means to test the ability of such simulators to represent steady-state unstable 3D variable-density physics.
Meng, X Flora; Baetica, Ania-Ariadna; Singhal, Vipul; Murray, Richard M
2017-05-01
Noise is often indispensable to key cellular activities, such as gene expression, necessitating the use of stochastic models to capture its dynamics. The chemical master equation (CME) is a commonly used stochastic model of Kolmogorov forward equations that describe how the probability distribution of a chemically reacting system varies with time. Finding analytic solutions to the CME can have benefits, such as expediting simulations of multiscale biochemical reaction networks and aiding the design of distributional responses. However, analytic solutions are rarely known. A recent method of computing analytic stationary solutions relies on gluing simple state spaces together recursively at one or two states. We explore the capabilities of this method and introduce algorithms to derive analytic stationary solutions to the CME. We first formally characterize state spaces that can be constructed by performing single-state gluing of paths, cycles or both sequentially. We then study stochastic biochemical reaction networks that consist of reversible, elementary reactions with two-dimensional state spaces. We also discuss extending the method to infinite state spaces and designing the stationary behaviour of stochastic biochemical reaction networks. Finally, we illustrate the aforementioned ideas using examples that include two interconnected transcriptional components and biochemical reactions with two-dimensional state spaces. © 2017 The Author(s).
Baetica, Ania-Ariadna; Singhal, Vipul; Murray, Richard M.
2017-01-01
Noise is often indispensable to key cellular activities, such as gene expression, necessitating the use of stochastic models to capture its dynamics. The chemical master equation (CME) is a commonly used stochastic model of Kolmogorov forward equations that describe how the probability distribution of a chemically reacting system varies with time. Finding analytic solutions to the CME can have benefits, such as expediting simulations of multiscale biochemical reaction networks and aiding the design of distributional responses. However, analytic solutions are rarely known. A recent method of computing analytic stationary solutions relies on gluing simple state spaces together recursively at one or two states. We explore the capabilities of this method and introduce algorithms to derive analytic stationary solutions to the CME. We first formally characterize state spaces that can be constructed by performing single-state gluing of paths, cycles or both sequentially. We then study stochastic biochemical reaction networks that consist of reversible, elementary reactions with two-dimensional state spaces. We also discuss extending the method to infinite state spaces and designing the stationary behaviour of stochastic biochemical reaction networks. Finally, we illustrate the aforementioned ideas using examples that include two interconnected transcriptional components and biochemical reactions with two-dimensional state spaces. PMID:28566513
NASA Astrophysics Data System (ADS)
Lin, Fubiao; Meleshko, Sergey V.; Flood, Adrian E.
2018-06-01
The population balance equation (PBE) has received an unprecedented amount of attention in recent years from both academics and industrial practitioners because of its long history, widespread use in engineering, and applicability to a wide variety of particulate and discrete-phase processes. However it is typically impossible to obtain analytical solutions, although in almost every case a numerical solution of the PBEs can be obtained. In this article, the symmetries of PBEs with homogeneous coagulation kernels involving aggregation, breakage and growth processes and particle transport in one dimension are found by direct solving the determining equations. Using the optimal system of one and two-dimensional subalgebras, all invariant solutions and reduced equations are obtained. In particular, an explicit analytical physical solution is also presented.
The PAC-MAN model: Benchmark case for linear acoustics in computational physics
NASA Astrophysics Data System (ADS)
Ziegelwanger, Harald; Reiter, Paul
2017-10-01
Benchmark cases in the field of computational physics, on the one hand, have to contain a certain complexity to test numerical edge cases and, on the other hand, require the existence of an analytical solution, because an analytical solution allows the exact quantification of the accuracy of a numerical simulation method. This dilemma causes a need for analytical sound field formulations of complex acoustic problems. A well known example for such a benchmark case for harmonic linear acoustics is the ;Cat's Eye model;, which describes the three-dimensional sound field radiated from a sphere with a missing octant analytically. In this paper, a benchmark case for two-dimensional (2D) harmonic linear acoustic problems, viz., the ;PAC-MAN model;, is proposed. The PAC-MAN model describes the radiated and scattered sound field around an infinitely long cylinder with a cut out sector of variable angular width. While the analytical calculation of the 2D sound field allows different angular cut-out widths and arbitrarily positioned line sources, the computational cost associated with the solution of this problem is similar to a 1D problem because of a modal formulation of the sound field in the PAC-MAN model.
NASA Astrophysics Data System (ADS)
Sarıaydın, Selin; Yıldırım, Ahmet
2010-05-01
In this paper, we studied the solitary wave solutions of the (2+1)-dimensional Boussinesq equation utt -uxx-uyy-(u2)xx-uxxxx = 0 and the (3+1)-dimensional Kadomtsev-Petviashvili (KP) equation uxt -6ux 2 +6uuxx -uxxxx -uyy -uzz = 0. By using this method, an explicit numerical solution is calculated in the form of a convergent power series with easily computable components. To illustrate the application of this method numerical results are derived by using the calculated components of the homotopy perturbation series. The numerical solutions are compared with the known analytical solutions. Results derived from our method are shown graphically.
VERTPAK1. Code Verification Analytic Solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golis, M.J.
1983-04-01
VERTPAK1 is a package of analytical solutions used in verification of numerical codes that simulate fluid flow, rock deformation, and solute transport in fractured and unfractured porous media. VERTPAK1 contains the following: BAREN, an analytical solution developed by Barenblatt, Zhelton and Kochina (1960) for describing transient flow to a well penetrating a (double porosity) confined aquifer; GIBMAC, an analytical solution developed by McNamee and Gibson (1960) for describing consolidation of a semi-infinite soil medium subject to a strip (plane strain) or cylindrical (axisymmetric) loading; GRINRH, an analytical solution developed by Gringarten (1971) for describing transient flow to a partially penetratingmore » well in a confined aquifer containing a single horizontal fracture; GRINRV, an analytical solution developed by Gringarten, Ramey, and Raghavan (1974) for describing transient flow to a fully penetrating well in a confined aquifer containing a single vertical fracture; HART, an analytical solution given by Nowacki (1962) and implemented by HART (1981) for describing the elastic behavior of an infinite solid subject to a line heat source; LESTER, an analytical solution presented by Lester, Jansen, and Burkholder (1975) for describing one-dimensional transport of radionuclide chains through an adsorbing medium; STRELT, an analytical solution presented by Streltsova-Adams (1978) for describing transient flow to a fully penetrating well in a (double porosity) confined aquifer; and TANG, an analytical solution developed by Tang, Frind, and Sudicky (1981) for describing solute transport in a porous medium containing a single fracture.« less
Thermoelastic damping in thin microrings with two-dimensional heat conduction
NASA Astrophysics Data System (ADS)
Fang, Yuming; Li, Pu
2015-05-01
Accurate determination of thermoelastic damping (TED) is very challenging in the design of micro-resonators. Microrings are widely used in many micro-resonators. In the past, to model the TED effect on the microrings, some analytical models have been developed. However, in the previous works, the heat conduction within the microring is modeled by using the one-dimensional approach. The governing equation for heat conduction is solved only for the one-dimensional heat conduction along the radial thickness of the microring. This paper presents a simple analytical model for TED in microrings. The two-dimensional heat conduction over the thermoelastic temperature gradients along the radial thickness and the circumferential direction are considered in the present model. A two-dimensional heat conduction equation is developed. The solution of the equation is represented by the product of an assumed sine series along the radial thickness and an assumed trigonometric series along the circumferential direction. The analytical results obtained by the present 2-D model show a good agreement with the numerical (FEM) results. The limitations of the previous 1-D model are assessed.
Analytical solutions of Landau (1+1)-dimensional hydrodynamics
Wong, Cheuk-Yin; Sen, Abhisek; Gerhard, Jochen; ...
2014-12-17
To help guide our intuition, summarize important features, and point out essential elements, we review the analytical solutions of Landau (1+1)-dimensional hydrodynamics and exhibit the full evolution of the dynamics from the very beginning to subsequent times. Special emphasis is placed on the matching and the interplay between the Khalatnikov solution and the Riemann simple wave solution at the earliest times and in the edge regions at later times.
Analytical Solution of a Generalized Hirota-Satsuma Equation
NASA Astrophysics Data System (ADS)
Kassem, M.; Mabrouk, S.; Abd-el-Malek, M.
A modified version of generalized Hirota-Satsuma is here solved using a two parameter group transformation method. This problem in three dimensions was reduced by Estevez [1] to a two dimensional one through a Lie transformation method and left unsolved. In the present paper, through application of symmetry transformation the Lax pair has been reduced to a system of ordinary equations. Three transformations cases are investigated. The obtained analytical solutions are plotted and show a profile proper to deflagration processes, well described by Degasperis-Procesi equation.
Dispersion relations for 1D high-gain FELs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, S.D.; Litvinenko, V.N.
2010-08-23
We present analytical results for the one-dimensional dispersion relation for high-gain FELs. Using kappa-n distributions, we obtain analytical relations between the dispersion relations for various order kappa distributions. Since an exact solution exists for the kappa-1 (Lorentzian) distribution, this provides some insight into the number of modes on the way to the Gaussian distribution.
Probing quantum gravity through exactly soluble midi-superspaces I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashtekar, A.; Pierri, M.
1996-12-01
It is well-known that the Einstein-Rosen solutions to the 3+1- dimensional vacuum Einstein{close_quote}s equations are in one to one correspondence with solutions of 2+1-dimensional general relativity coupled to axi-symmetric, zero rest mass scalar fields. We first re-examine the quantization of this midi-superspace paying special attention to the asymptotically flat boundary conditions and to certain functional analytic subtleties associated with regularization. We then use the resulting quantum theory to analyze several conceptual and technical issues of quantum gravity. {copyright} {ital 1996 American Institute of Physics.}
Parallel solution of sparse one-dimensional dynamic programming problems
NASA Technical Reports Server (NTRS)
Nicol, David M.
1989-01-01
Parallel computation offers the potential for quickly solving large computational problems. However, it is often a non-trivial task to effectively use parallel computers. Solution methods must sometimes be reformulated to exploit parallelism; the reformulations are often more complex than their slower serial counterparts. We illustrate these points by studying the parallelization of sparse one-dimensional dynamic programming problems, those which do not obviously admit substantial parallelization. We propose a new method for parallelizing such problems, develop analytic models which help us to identify problems which parallelize well, and compare the performance of our algorithm with existing algorithms on a multiprocessor.
Approximate analytic solutions to 3D unconfined groundwater flow within regional 2D models
NASA Astrophysics Data System (ADS)
Luther, K.; Haitjema, H. M.
2000-04-01
We present methods for finding approximate analytic solutions to three-dimensional (3D) unconfined steady state groundwater flow near partially penetrating and horizontal wells, and for combining those solutions with regional two-dimensional (2D) models. The 3D solutions use distributed singularities (analytic elements) to enforce boundary conditions on the phreatic surface and seepage faces at vertical wells, and to maintain fixed-head boundary conditions, obtained from the 2D model, at the perimeter of the 3D model. The approximate 3D solutions are analytic (continuous and differentiable) everywhere, including on the phreatic surface itself. While continuity of flow is satisfied exactly in the infinite 3D flow domain, water balance errors can occur across the phreatic surface.
NASA Astrophysics Data System (ADS)
Bakker, Mark
2001-05-01
An analytic, approximate solution is derived for the modeling of three-dimensional flow to partially penetrating wells. The solution is written in terms of a correction on the solution for a fully penetrating well and is obtained by dividing the aquifer up, locally, in a number of aquifer layers. The resulting system of differential equations is solved by application of the theory for multiaquifer flow. The presented approach has three major benefits. First, the solution may be applied to any groundwater model that can simulate flow to a fully penetrating well; the solution may be superimposed onto the solution for the fully penetrating well to simulate the local three-dimensional drawdown and flow field. Second, the approach is applicable to isotropic, anisotropic, and stratified aquifers and to both confined and unconfined flow. Third, the solution extends over a small area around the well only; outside this area the three-dimensional effect of the partially penetrating well is negligible, and no correction to the fully penetrating well is needed. A number of comparisons are made to existing three-dimensional, analytic solutions, including radial confined and unconfined flow and a well in a uniform flow field. It is shown that a subdivision in three layers is accurate for many practical cases; very accurate solutions are obtained with more layers.
NASA Astrophysics Data System (ADS)
Heuzé, Thomas
2017-10-01
We present in this work two finite volume methods for the simulation of unidimensional impact problems, both for bars and plane waves, on elastic-plastic solid media within the small strain framework. First, an extension of Lax-Wendroff to elastic-plastic constitutive models with linear and nonlinear hardenings is presented. Second, a high order TVD method based on flux-difference splitting [1] and Superbee flux limiter [2] is coupled with an approximate elastic-plastic Riemann solver for nonlinear hardenings, and follows that of Fogarty [3] for linear ones. Thermomechanical coupling is accounted for through dissipation heating and thermal softening, and adiabatic conditions are assumed. This paper essentially focuses on one-dimensional problems since analytical solutions exist or can easily be developed. Accordingly, these two numerical methods are compared to analytical solutions and to the explicit finite element method on test cases involving discontinuous and continuous solutions. This allows to study in more details their respective performance during the loading, unloading and reloading stages. Particular emphasis is also paid to the accuracy of the computed plastic strains, some differences being found according to the numerical method used. Lax-Wendoff two-dimensional discretization of a one-dimensional problem is also appended at the end to demonstrate the extensibility of such numerical scheme to multidimensional problems.
Analytic study of solutions for a (3 + 1) -dimensional generalized KP equation
NASA Astrophysics Data System (ADS)
Gao, Hui; Cheng, Wenguang; Xu, Tianzhou; Wang, Gangwei
2018-03-01
The (3 + 1) -dimensional generalized KP (gKP) equation is an important nonlinear partial differential equation in theoretical and mathematical physics which can be used to describe nonlinear wave motion. Through the Hirota bilinear method, one-solition, two-solition and N-solition solutions are derived via symbolic computation. Two classes of lump solutions, rationally localized in all directions in space, to the dimensionally reduced cases in (2 + 1)-dimensions, are constructed by using a direct method based on the Hirota bilinear form of the equation. It implies that we can derive the lump solutions of the reduced gKP equation from positive quadratic function solutions to the aforementioned bilinear equation. Meanwhile, we get interaction solutions between a lump and a kink of the gKP equation. The lump appears from a kink and is swallowed by it with the change of time. This work offers a possibility which can enrich the variety of the dynamical features of solutions for higher-dimensional nonlinear evolution equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
Here, the one-dimensional water faucet problem is one of the classical benchmark problems originally proposed by Ransom to study the two-fluid two-phase flow model. With certain simplifications, such as massless gas phase and no wall and interfacial frictions, analytical solutions had been previously obtained for the transient liquid velocity and void fraction distribution. The water faucet problem and its analytical solutions have been widely used for the purposes of code assessment, benchmark and numerical verifications. In our previous study, the Ransom’s solutions were used for the mesh convergence study of a high-resolution spatial discretization scheme. It was found that, atmore » the steady state, an anticipated second-order spatial accuracy could not be achieved, when compared to the existing Ransom’s analytical solutions. A further investigation showed that the existing analytical solutions do not actually satisfy the commonly used two-fluid single-pressure two-phase flow equations. In this work, we present a new set of analytical solutions of the water faucet problem at the steady state, considering the gas phase density’s effect on pressure distribution. This new set of analytical solutions are used for mesh convergence studies, from which anticipated second-order of accuracy is achieved for the 2nd order spatial discretization scheme. In addition, extended Ransom’s transient solutions for the gas phase velocity and pressure are derived, with the assumption of decoupled liquid and gas pressures. Numerical verifications on the extended Ransom’s solutions are also presented.« less
Symmetry Reductions and Group-Invariant Radial Solutions to the n-Dimensional Wave Equation
NASA Astrophysics Data System (ADS)
Feng, Wei; Zhao, Songlin
2018-01-01
In this paper, we derive explicit group-invariant radial solutions to a class of wave equation via symmetry group method. The optimal systems of one-dimensional subalgebras for the corresponding radial wave equation are presented in terms of the known point symmetries. The reductions of the radial wave equation into second-order ordinary differential equations (ODEs) with respect to each symmetry in the optimal systems are shown. Then we solve the corresponding reduced ODEs explicitly in order to write out the group-invariant radial solutions for the wave equation. Finally, several analytical behaviours and smoothness of the resulting solutions are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutjahr, A.L.; Kincaid, C.T.; Mercer, J.W.
1987-04-01
The objective of this report is to summarize the various modeling approaches that were used to simulate solute transport in a variably saturated emission. In particular, the technical strengths and weaknesses of each approach are discussed, and conclusions and recommendations for future studies are made. Five models are considered: (1) one-dimensional analytical and semianalytical solutions of the classical deterministic convection-dispersion equation (van Genuchten, Parker, and Kool, this report ); (2) one-dimensional simulation using a continuous-time Markov process (Knighton and Wagenet, this report); (3) one-dimensional simulation using the time domain method and the frequency domain method (Duffy and Al-Hassan, this report);more » (4) one-dimensional numerical approach that combines a solution of the classical deterministic convection-dispersion equation with a chemical equilibrium speciation model (Cederberg, this report); and (5) three-dimensional numerical solution of the classical deterministic convection-dispersion equation (Huyakorn, Jones, Parker, Wadsworth, and White, this report). As part of the discussion, the input data and modeling results are summarized. The models were used in a data analysis mode, as opposed to a predictive mode. Thus, the following discussion will concentrate on the data analysis aspects of model use. Also, all the approaches were similar in that they were based on a convection-dispersion model of solute transport. Each discussion addresses the modeling approaches in the order listed above.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golis, M.J.
1983-04-01
VERTPAK1 is a package of analytical solutions used in verification of numerical codes that simulate fluid flow, rock deformation, and solute transport in fractured and unfractured porous media. VERTPAK1 contains the following: BAREN, an analytical solution developed by Barenblatt, Zhelton and Kochina (1960) for describing transient flow to a well penetrating a (double porosity) confined aquifer; GIBMAC, an analytical solution developed by McNamee and Gibson (1960) for describing consolidation of a semi-infinite soil medium subject to a strip (plane strain) or cylindrical (axisymmetric) loading; GRINRH, an analytical solution developed by Gringarten (1971) for describing transient flow to a partially penetratingmore » well in a confined aquifer containing a single horizontal fracture; GRINRV, an analytical solution developed by Gringarten, Ramey, and Raghavan (1974) for describing transient flow to a fully penetrating well in a confined aquifer containing a single vertical fracture; HART, an analytical solution given by Nowacki (1962) and implemented by HART (1981) for describing the elastic behavior of an infinite solid subject to a line heat source; LESTER, an analytical solution presented by Lester, Jansen, and Burkholder (1975) for describing one-dimensional transport of radionuclide chains through an adsorbing medium; STRELT, an analytical solution presented by Streltsova-Adams (1978) for describing transient flow to a fully penetrating well in a (double porosity) confined aquifer; and TANG, an analytical solution developed by Tang, Frind, and Sudicky (1981) for describing solute transport in a porous medium containing a single fracture.« less
Mathematical and field analysis of longitudinal reservoir infill
NASA Astrophysics Data System (ADS)
Ke, W. T.; Capart, H.
2016-12-01
In reservoirs, severe problems are caused by infilled sediment deposits. In long term, the sediment accumulation reduces the capacity of reservoir storage and flood control benefits. In the short term, the sediment deposits influence the intakes of water-supply and hydroelectricity generation. For the management of reservoir, it is important to understand the deposition process and then to predict the sedimentation in reservoir. To investigate the behaviors of sediment deposits, we propose a one-dimensional simplified theory derived by the Exner equation to predict the longitudinal sedimentation distribution in idealized reservoirs. The theory models the reservoir infill geomorphic actions for three scenarios: delta progradation, near-dam bottom deposition, and final infill. These yield three kinds of self-similar analytical solutions for the reservoir bed profiles, under different boundary conditions. Three analytical solutions are composed by error function, complementary error function, and imaginary error function, respectively. The theory is also computed by finite volume method to test the analytical solutions. The theoretical and numerical predictions are in good agreement with one-dimensional small-scale laboratory experiment. As the theory is simple to apply with analytical solutions and numerical computation, we propose some applications to simulate the long-profile evolution of field reservoirs and focus on the infill sediment deposit volume resulting the uplift of near-dam bottom elevation. These field reservoirs introduced here are Wushe Reservoir, Tsengwen Reservoir, Mudan Reservoir in Taiwan, Lago Dos Bocas in Puerto Rico, and Sakuma Dam in Japan.
Computing the optimal path in stochastic dynamical systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauver, Martha; Forgoston, Eric, E-mail: eric.forgoston@montclair.edu; Billings, Lora
2016-08-15
In stochastic systems, one is often interested in finding the optimal path that maximizes the probability of escape from a metastable state or of switching between metastable states. Even for simple systems, it may be impossible to find an analytic form of the optimal path, and in high-dimensional systems, this is almost always the case. In this article, we formulate a constructive methodology that is used to compute the optimal path numerically. The method utilizes finite-time Lyapunov exponents, statistical selection criteria, and a Newton-based iterative minimizing scheme. The method is applied to four examples. The first example is a two-dimensionalmore » system that describes a single population with internal noise. This model has an analytical solution for the optimal path. The numerical solution found using our computational method agrees well with the analytical result. The second example is a more complicated four-dimensional system where our numerical method must be used to find the optimal path. The third example, although a seemingly simple two-dimensional system, demonstrates the success of our method in finding the optimal path where other numerical methods are known to fail. In the fourth example, the optimal path lies in six-dimensional space and demonstrates the power of our method in computing paths in higher-dimensional spaces.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noguera, Norman, E-mail: norman.noguera@ucr.ac.cr; Rózga, Krzysztof, E-mail: krzysztof.rozga@upr.edu
In this work, one provides a justification of the condition that is usually imposed on the parameters of the hypergeometric equation, related to the solutions of the stationary Schrödinger equation for the harmonic oscillator in two-dimensional constant curvature spaces, in order to determine the solutions which are square-integrable. One proves that in case of negative curvature, it is a necessary condition of square integrability and in case of positive curvature, a necessary condition of regularity. The proof is based on the analytic continuation formulas for the hypergeometric function. It is observed also that the same is true in case ofmore » a slightly more general potential than the one for harmonic oscillator.« less
Statistical Estimation of Heterogeneities: A New Frontier in Well Testing
NASA Astrophysics Data System (ADS)
Neuman, S. P.; Guadagnini, A.; Illman, W. A.; Riva, M.; Vesselinov, V. V.
2001-12-01
Well-testing methods have traditionally relied on analytical solutions of groundwater flow equations in relatively simple domains, consisting of one or at most a few units having uniform hydraulic properties. Recently, attention has been shifting toward methods and solutions that would allow one to characterize subsurface heterogeneities in greater detail. On one hand, geostatistical inverse methods are being used to assess the spatial variability of parameters, such as permeability and porosity, on the basis of multiple cross-hole pressure interference tests. On the other hand, analytical solutions are being developed to describe the mean and variance (first and second statistical moments) of flow to a well in a randomly heterogeneous medium. Geostatistical inverse interpretation of cross-hole tests yields a smoothed but detailed "tomographic" image of how parameters actually vary in three-dimensional space, together with corresponding measures of estimation uncertainty. Moment solutions may soon allow one to interpret well tests in terms of statistical parameters such as the mean and variance of log permeability, its spatial autocorrelation and statistical anisotropy. The idea of geostatistical cross-hole tomography is illustrated through pneumatic injection tests conducted in unsaturated fractured tuff at the Apache Leap Research Site near Superior, Arizona. The idea of using moment equations to interpret well-tests statistically is illustrated through a recently developed three-dimensional solution for steady state flow to a well in a bounded, randomly heterogeneous, statistically anisotropic aquifer.
Solitons in Bose-Einstein Condensates
NASA Astrophysics Data System (ADS)
Carr, Lincoln D.
2003-05-01
The stationary form, dynamical properties, and experimental criteria for creation of matter-wave bright and dark solitons, both singly and in trains, are studied numerically and analytically in the context of Bose-Einstein condensates [1]. The full set of stationary solutions in closed analytic form to the mean field model in the quasi-one-dimensional regime, which is a nonlinear Schrodinger equation equally relevant in nonlinear optics, is developed under periodic and box boundary conditions [2]. These solutions are extended numerically into the two and three dimensional regimes, where it is shown that dark solitons can be used to create vortex-anti-vortex pairs under realistic conditions. Specific experimental prescriptions for creating viable dark and bright solitons in the quasi-one-dimensional regime are provided. These analytic methods are then extended to treat the nonlinear Schrodinger equation with a generalized lattice potential, which models a Bose-Einstein condensate trapped in the potential generated by a standing light wave. A novel solution family is developed and stability criterion are presented. Experiments which successfully carried out these ideas are briefly discussed [3]. [1] Dissertation research completed at the University of Washington Physics Department under the advisorship of Prof. William P. Reinhardt. [2] L. D. Carr, C. W. Clark, and W. P. Reinhardt, Phys. Rev. A v. 62 p. 063610-1--10 and Phys. Rev. A v.62, p.063611-1--10 (2000). [3] L. Khaykovich, F. Schreck, T. Bourdel, J. Cubizolles, G. Ferrari, L. D. Carr, Y. Castin, and C. Salomon, Science v. 296, p.1290--1293 (2002).
NASA Astrophysics Data System (ADS)
Srinivasan, V.; Clement, T. P.
2008-02-01
Multi-species reactive transport equations coupled through sorption and sequential first-order reactions are commonly used to model sites contaminated with radioactive wastes, chlorinated solvents and nitrogenous species. Although researchers have been attempting to solve various forms of these reactive transport equations for over 50 years, a general closed-form analytical solution to this problem is not available in the published literature. In Part I of this two-part article, we derive a closed-form analytical solution to this problem for spatially-varying initial conditions. The proposed solution procedure employs a combination of Laplace and linear transform methods to uncouple and solve the system of partial differential equations. Two distinct solutions are derived for Dirichlet and Cauchy boundary conditions each with Bateman-type source terms. We organize and present the final solutions in a common format that represents the solutions to both boundary conditions. In addition, we provide the mathematical concepts for deriving the solution within a generic framework that can be used for solving similar transport problems.
NASA Astrophysics Data System (ADS)
Krasnitckii, S. A.; Kolomoetc, D. R.; Smirnov, A. M.; Gutkin, M. Yu
2017-03-01
We present an analytical solution to the boundary-value problem in the classical theory of elasticity for a core-shell nanowire with an eccentric parallelepipedal core of an arbitrary rectangular cross section. The core is subjected to one-dimensional cross dilatation eigenstrain. The misfit stresses are found in a concise and transparent closed form which is convenient for practical use in theoretical modeling of misfit relaxation processes.
The analytical solution for drug delivery system with nonhomogeneous moving boundary condition
NASA Astrophysics Data System (ADS)
Saudi, Muhamad Hakimi; Mahali, Shalela Mohd; Harun, Fatimah Noor
2017-08-01
This paper discusses the development and the analytical solution of a mathematical model based on drug release system from a swelling delivery device. The mathematical model is represented by a one-dimensional advection-diffusion equation with nonhomogeneous moving boundary condition. The solution procedures consist of three major steps. Firstly, the application of steady state solution method, which is used to transform the nonhomogeneous moving boundary condition to homogeneous boundary condition. Secondly, the application of the Landau transformation technique that gives a significant impact in removing the advection term in the system of equation and transforming the moving boundary condition to a fixed boundary condition. Thirdly, the used of separation of variables method to find the analytical solution for the resulted initial boundary value problem. The results show that the swelling rate of delivery device and drug release rate is influenced by value of growth factor r.
NASA Astrophysics Data System (ADS)
Qian, Ying-Jing; Yang, Xiao-Dong; Zhai, Guan-Qiao; Zhang, Wei
2017-08-01
Innovated by the nonlinear modes concept in the vibrational dynamics, the vertical periodic orbits around the triangular libration points are revisited for the Circular Restricted Three-body Problem. The ζ -component motion is treated as the dominant motion and the ξ and η -component motions are treated as the slave motions. The slave motions are in nature related to the dominant motion through the approximate nonlinear polynomial expansions with respect to the ζ -position and ζ -velocity during the one of the periodic orbital motions. By employing the relations among the three directions, the three-dimensional system can be transferred into one-dimensional problem. Then the approximate three-dimensional vertical periodic solution can be analytically obtained by solving the dominant motion only on ζ -direction. To demonstrate the effectiveness of the proposed method, an accuracy study was carried out to validate the polynomial expansion (PE) method. As one of the applications, the invariant nonlinear relations in polynomial expansion form are used as constraints to obtain numerical solutions by differential correction. The nonlinear relations among the directions provide an alternative point of view to explore the overall dynamics of periodic orbits around libration points with general rules.
He, Cairong; Wang, Tongke; Zhao, Zhixue; Hao, Yonghong; Yeh, Tian-Chyi J; Zhan, Hongbin
2017-11-01
Submarine groundwater discharge (SGD) has been recognized as a major pathway of groundwater flow to coastal oceanic environments. It could affect water quality and marine ecosystems due to pollutants and trace elements transported through groundwater. Relations between different characteristics of aquifers and SGD have been investigated extensively before, but the role of fractures in SGD still remains unknown. In order to better understand the mechanism of groundwater flow and solute transport through fractures in SGD, one-dimensional analytical solutions of groundwater hydraulic head and velocity through a synthetic horizontal fracture with periodic boundary conditions were derived using a Laplace transform technique. Then, numerical solutions of solute transport associated with the given groundwater velocity were developed using a finite-difference method. The results indicated that SGD associated with groundwater flow and solute transport was mainly controlled by sea level periodic fluctuations, which altered the hydraulic head and the hydraulic head gradient in the fracture. As a result, the velocity of groundwater flow associated with SGD also fluctuated periodically. We found that the pollutant concentration associated with SGD oscillated around a constant value, and could not reach a steady state. This was particularly true at locations close to the seashore. This finding of the role of fracture in SGD will assist pollution remediation and marine conservation in coastal regions. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
He, Cairong; Wang, Tongke; Zhao, Zhixue; Hao, Yonghong; Yeh, Tian-Chyi J.; Zhan, Hongbin
2017-11-01
Submarine groundwater discharge (SGD) has been recognized as a major pathway of groundwater flow to coastal oceanic environments. It could affect water quality and marine ecosystems due to pollutants and trace elements transported through groundwater. Relations between different characteristics of aquifers and SGD have been investigated extensively before, but the role of fractures in SGD still remains unknown. In order to better understand the mechanism of groundwater flow and solute transport through fractures in SGD, one-dimensional analytical solutions of groundwater hydraulic head and velocity through a synthetic horizontal fracture with periodic boundary conditions were derived using a Laplace transform technique. Then, numerical solutions of solute transport associated with the given groundwater velocity were developed using a finite-difference method. The results indicated that SGD associated with groundwater flow and solute transport was mainly controlled by sea level periodic fluctuations, which altered the hydraulic head and the hydraulic head gradient in the fracture. As a result, the velocity of groundwater flow associated with SGD also fluctuated periodically. We found that the pollutant concentration associated with SGD oscillated around a constant value, and could not reach a steady state. This was particularly true at locations close to the seashore. This finding of the role of fracture in SGD will assist pollution remediation and marine conservation in coastal regions.
Martirosyan, A; Saakian, David B
2011-08-01
We apply the Hamilton-Jacobi equation (HJE) formalism to solve the dynamics of the chemical master equation (CME). We found exact analytical expressions (in large system-size limit) for the probability distribution, including explicit expression for the dynamics of variance of distribution. We also give the solution for some simple cases of the model with time-dependent rates. We derived the results of the Van Kampen method from the HJE approach using a special ansatz. Using the Van Kampen method, we give a system of ordinary differential equations (ODEs) to define the variance in a two-dimensional case. We performed numerics for the CME with stationary noise. We give analytical criteria for the disappearance of bistability in the case of stationary noise in one-dimensional CMEs.
NASA Astrophysics Data System (ADS)
Burin, Alexander L.
2015-03-01
Many-body localization in a disordered system of interacting spins coupled by the long-range interaction 1 /Rα is investigated combining analytical theory considering resonant interactions and a finite-size scaling of exact numerical solutions with number of spins N . The numerical results for a one-dimensional system are consistent with the general expectations of analytical theory for a d -dimensional system including the absence of localization in the infinite system at α <2 d and a universal scaling of a critical energy disordering Wc∝N2/d -α d .
General minimal surface solution for gravitational instantons
NASA Astrophysics Data System (ADS)
Aliev, A. N.; Kalaycı, J.; Nutku, Y.
1997-07-01
We construct the general instanton metric obtained from Weierstrass' general local solution for minimal surfaces using the correspondence between minimal surfaces in three-dimensional Euclidean space and gravitational instantons admitting two Killing vectors. The resulting metric contains one arbitrary analytic function and we show that it can be transformed to the Gibbons-Hawking form of an instanton metric that was reported earlier.
NASA Astrophysics Data System (ADS)
Sanskrityayn, Abhishek; Suk, Heejun; Kumar, Naveen
2017-04-01
In this study, analytical solutions of one-dimensional pollutant transport originating from instantaneous and continuous point sources were developed in groundwater and riverine flow using both Green's Function Method (GFM) and pertinent coordinate transformation method. Dispersion coefficient and flow velocity are considered spatially and temporally dependent. The spatial dependence of the velocity is linear, non-homogeneous and that of dispersion coefficient is square of that of velocity, while the temporal dependence is considered linear, exponentially and asymptotically decelerating and accelerating. Our proposed analytical solutions are derived for three different situations depending on variations of dispersion coefficient and velocity, respectively which can represent real physical processes occurring in groundwater and riverine systems. First case refers to steady solute transport situation in steady flow in which dispersion coefficient and velocity are only spatially dependent. The second case represents transient solute transport in steady flow in which dispersion coefficient is spatially and temporally dependent while the velocity is spatially dependent. Finally, the third case indicates transient solute transport in unsteady flow in which both dispersion coefficient and velocity are spatially and temporally dependent. The present paper demonstrates the concentration distribution behavior from a point source in realistically occurring flow domains of hydrological systems including groundwater and riverine water in which the dispersivity of pollutant's mass is affected by heterogeneity of the medium as well as by other factors like velocity fluctuations, while velocity is influenced by water table slope and recharge rate. Such capabilities give the proposed method's superiority about application of various hydrological problems to be solved over other previously existing analytical solutions. Especially, to author's knowledge, any other solution doesn't exist for both spatially and temporally variations of dispersion coefficient and velocity. In this study, the existing analytical solutions from previous widely known studies are used for comparison as validation tools to verify the proposed analytical solution as well as the numerical code of the Two-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals (2DFATMIC) code and the developed 1D finite difference code (FDM). All such solutions show perfect match with the respective proposed solutions.
Analytical solutions to non-Fickian subsurface dispersion in uniform groundwater flow
Zou, S.; Xia, J.; Koussis, Antonis D.
1996-01-01
Analytical solutions are obtained by the Fourier transform technique for the one-, two-, and three-dimensional transport of a conservative solute injected instantaneously in a uniform groundwater flow. These solutions account for dispersive non-linearity caused by the heterogeneity of the hydraulic properties of aquifer systems and can be used as building blocks to construct solutions by convolution (principle of superposition) for source conditions other than slug injection. The dispersivity is assumed to vary parabolically with time and is thus constant for the entire system at any given time. Two approaches for estimating time-dependent dispersion parameters are developed for two-dimensional plumes. They both require minimal field tracer test data and, therefore, represent useful tools for assessing real-world aquifer contamination sites. The first approach requires mapped plume-area measurements at two specific times after the tracer injection. The second approach requires concentration-versus-time data from two sampling wells through which the plume passes. Detailed examples and comparisons with other procedures show that the methods presented herein are sufficiently accurate and easier to use than other available methods.
NASA Astrophysics Data System (ADS)
Chen, Po-Chia; Chuang, Mo-Hsiung; Tan, Yih-Chi
2014-05-01
In recent years the urban and industrial developments near the coastal area are rapid and therefore the associated population grows dramatically. More and more water demand for human activities, agriculture irrigation, and aquaculture relies on heavy pumping in coastal area. The decline of groundwater table may result in the problems of seawater intrusion and/or land subsidence. Since the 1950s, numerous studies focused on the effect of tidal fluctuation on the groundwater flow in the coastal area. Many studies concentrated on the developments of one-dimensional (1D) and two-dimensional (2D) analytical solutions describing the tide-induced head fluctuations. For example, Jacob (1950) derived an analytical solution of 1D groundwater flow in a confined aquifer with a boundary condition subject to sinusoidal oscillation. Jiao and Tang (1999) derived a 1D analytical solution of a leaky confined aquifer by considered a constant groundwater head in the overlying unconfined aquifer. Jeng et al. (2002) studied the tidal propagation in a coupled unconfined and confined costal aquifer system. Sun (1997) presented a 2D solution for groundwater response to tidal loading in an estuary. Tang and Jiao (2001) derived a 2D analytical solution in a leaky confined aquifer system near open tidal water. This study aims at developing a general analytical solution describing the head fluctuations in a 2D estuarine aquifer system consisted of an unconfined aquifer, a confined aquifer, and an aquitard between them. Both the confined and unconfined aquifers are considered to be anisotropic. The predicted head fluctuations from this solution will compare with the simulation results from the MODFLOW program. In addition, the solutions mentioned above will be shown to be special cases of the present solution. Some hypothetical cases regarding the head fluctuation in costal aquifers will be made to investigate the dynamic effects of water table fluctuation, hydrogeological conditions, and characteristics of soil on the groundwater level fluctuations in the 2D estuarine leaky aquifer system.
Numerical solutions for heat flow in adhesive lap joints
NASA Technical Reports Server (NTRS)
Howell, P. A.; Winfree, William P.
1992-01-01
The present formulation for the modeling of heat transfer in thin, adhesively bonded lap joints precludes difficulties associated with large aspect ratio grids required by standard FEM formulations. This quasi-static formulation also reduces the problem dimensionality (by one), thereby minimizing computational requirements. The solutions obtained are found to be in good agreement with both analytical solutions and solutions from standard FEM programs. The approach is noted to yield a more accurate representation of heat-flux changes between layers due to a disbond.
NASA Astrophysics Data System (ADS)
Bing, Xue; Yicai, Ji
2018-06-01
In order to understand directly and analyze accurately the detected magnetotelluric (MT) data on anisotropic infinite faults, two-dimensional partial differential equations of MT fields are used to establish a model of anisotropic infinite faults using the Fourier transform method. A multi-fault model is developed to expand the one-fault model. The transverse electric mode and transverse magnetic mode analytic solutions are derived using two-infinite-fault models. The infinite integral terms of the quasi-analytic solutions are discussed. The dual-fault model is computed using the finite element method to verify the correctness of the solutions. The MT responses of isotropic and anisotropic media are calculated to analyze the response functions by different anisotropic conductivity structures. The thickness and conductivity of the media, influencing MT responses, are discussed. The analytic principles are also given. The analysis results are significant to how MT responses are perceived and to the data interpretation of the complex anisotropic infinite faults.
The impact of capillary backpressure on spontaneous counter-current imbibition in porous media
NASA Astrophysics Data System (ADS)
Foley, Amir Y.; Nooruddin, Hasan A.; Blunt, Martin J.
2017-09-01
We investigate the impact of capillary backpressure on spontaneous counter-current imbibition. For such displacements in strongly water-wet systems, the non-wetting phase is forced out through the inlet boundary as the wetting phase imbibes into the rock, creating a finite capillary backpressure. Under the assumption that capillary backpressure depends on the water saturation applied at the inlet boundary of the porous medium, its impact is determined using the continuum modelling approach by varying the imposed inlet saturation in the analytical solution. We present analytical solutions for the one-dimensional incompressible horizontal displacement of a non-wetting phase by a wetting phase in a porous medium. There exists an inlet saturation value above which any change in capillary backpressure has a negligible impact on the solutions. Above this threshold value, imbibition rates and front positions are largely invariant. A method for identifying this inlet saturation is proposed using an analytical procedure and we explore how varying multiphase flow properties affects the analytical solutions and this threshold saturation. We show the value of this analytical approach through the analysis of previously published experimental data.
Chandrasekhar equations for infinite dimensional systems
NASA Technical Reports Server (NTRS)
Ito, K.; Powers, R. K.
1985-01-01
Chandrasekhar equations are derived for linear time invariant systems defined on Hilbert spaces using a functional analytic technique. An important consequence of this is that the solution to the evolutional Riccati equation is strongly differentiable in time and one can define a strong solution of the Riccati differential equation. A detailed discussion on the linear quadratic optimal control problem for hereditary differential systems is also included.
Petrov, Pavel S; Sturm, Frédéric
2016-03-01
A problem of sound propagation in a shallow-water waveguide with a weakly sloping penetrable bottom is considered. The adiabatic mode parabolic equations are used to approximate the solution of the three-dimensional (3D) Helmholtz equation by modal decomposition of the acoustic pressure field. The mode amplitudes satisfy parabolic equations that admit analytical solutions in the special case of the 3D wedge. Using the analytical formula for modal amplitudes, an explicit and remarkably simple expression for the acoustic pressure in the wedge is obtained. The proposed solution is validated by the comparison with a solution of the 3D penetrable wedge problem obtained using a fully 3D parabolic equation that includes a leading-order cross term correction.
Dynamic one-dimensional modeling of secondary settling tanks and system robustness evaluation.
Li, Ben; Stenstrom, M K
2014-01-01
One-dimensional secondary settling tank models are widely used in current engineering practice for design and optimization, and usually can be expressed as a nonlinear hyperbolic or nonlinear strongly degenerate parabolic partial differential equation (PDE). Reliable numerical methods are needed to produce approximate solutions that converge to the exact analytical solutions. In this study, we introduced a reliable numerical technique, the Yee-Roe-Davis (YRD) method as the governing PDE solver, and compared its reliability with the prevalent Stenstrom-Vitasovic-Takács (SVT) method by assessing their simulation results at various operating conditions. The YRD method also produced a similar solution to the previously developed Method G and Enquist-Osher method. The YRD and SVT methods were also used for a time-to-failure evaluation, and the results show that the choice of numerical method can greatly impact the solution. Reliable numerical methods, such as the YRD method, are strongly recommended.
Some exact velocity profiles for granular flow in converging hoppers
NASA Astrophysics Data System (ADS)
Cox, Grant M.; Hill, James M.
2005-01-01
Gravity flow of granular materials through hoppers occurs in many industrial processes. For an ideal cohesionless granular material, which satisfies the Coulomb-Mohr yield condition, the number of known analytical solutions is limited. However, for the special case of the angle of internal friction δ equal to ninety degrees, there exist exact parametric solutions for the governing coupled ordinary differential equations for both two-dimensional wedges and three-dimensional cones, both of which involve two arbitrary constants of integration. These solutions are the only known analytical solutions of this generality. Here, we utilize the double-shearing theory of granular materials to determine the velocity field corresponding to these exact parametric solutions for the two problems of gravity flow through converging wedge and conical hoppers. An independent numerical solution for other angles of internal friction is shown to coincide with the analytical solution.
Three-Dimensional Flow Generated by a Partially Penetrating Well in a Two-Aquifer System
NASA Astrophysics Data System (ADS)
Sepulveda, N.
2007-12-01
An analytical solution is presented for three-dimensional (3D) flow in a confined aquifer and the overlying storative semiconfining layer and unconfined aquifer. The equation describing flow caused by a partially penetrating production well is solved analytically to provide a method to accurately determine the hydraulic parameters in the confined aquifer, semiconfining layer, and unconfined aquifer from aquifer-test data. Previous solutions for a partially penetrating well did not account for 3D flow or storativity in the semiconfining unit. The 3D and two- dimensional (2D) flow solutions in the semiconfining layer are compared for various hydraulic conductivity ratios between the aquifer and the semiconfining layer. Analysis of the drawdown data from an aquifer test in central Florida showed that the 3D solution in the semiconfining layer provides a more unique identification of the hydraulic parameters than the 2D solution. The analytical solution could be used to analyze, with higher accuracy, the effect that pumping water from the lower aquifer in a two-aquifer system has on wetlands.
Devos, Christophe; Ochiai, Nobuo; Sasamoto, Kikuo; Sandra, Pat; David, Frank
2012-09-14
Suspected fragrance allergens were determined in cosmetic products using a combination of full evaporation-dynamic headspace (FEDHS) with selectable one-dimensional/two-dimensional GC-MS. The full evaporation dynamic headspace approach allows the non-discriminating extraction and injection of both apolar and polar fragrance compounds, without contamination of the analytical system by high molecular weight non-volatile matrix compounds. The method can be applied to all classes of cosmetic samples, including water containing matrices such as shower gels or body creams. In combination with selectable (1)D/(2)D GC-MS, consisting of a dedicated heart-cutting GC-MS configuration using capillary flow technology (CFT) and low thermal mass GC (LTM-GC), a highly flexible and easy-to-use analytical solution is offered. Depending on the complexity of the perfume fraction, analyses can be performed in one-dimensional GC-MS mode or in heart-cutting two-dimensional GC-MS mode, without the need of hardware reconfiguration. The two-dimensional mode with independent temperature control of the first and second dimension column is especially useful to confirm the presence of detected allergen compounds when mass spectral deconvolution is not possible. Copyright © 2012 Elsevier B.V. All rights reserved.
Analytical methods to predict liquid congealing in ram air heat exchangers during cold operation
NASA Astrophysics Data System (ADS)
Coleman, Kenneth; Kosson, Robert
1989-07-01
Ram air heat exchangers used to cool liquids such as lube oils or Ethylene-Glycol/water solutions can be subject to congealing in very cold ambients, resulting in a loss of cooling capability. Two-dimensional, transient analytical models have been developed to explore this phenomenon with both continuous and staggered fin cores. Staggered fin predictions are compared to flight test data from the E-2C Allison T56 engine lube oil system during winter conditions. For simpler calculations, a viscosity ratio correction was introduced and found to provide reasonable cold ambient performance predictions for the staggered fin core, using a one-dimensional approach.
Development and application of a gradient method for solving differential games
NASA Technical Reports Server (NTRS)
Roberts, D. A.; Montgomery, R. C.
1971-01-01
A technique for solving n-dimensional games is developed and applied to two pursuit-evasion games. The first is a two-dimensional game similar to the homicidal chauffeur but modified to resemble an airplane-helicopter engagement. The second is a five-dimensional game of two airplanes at constant altitude and with thrust and turning controls. The performance function to be optimized by the pursuer and evader was the distance between the evader and a given target point in front of the pursuer. The analytic solution to the first game reveals that both unique and nonunique solutions exist. A comparison between the gradient results and the analytic solution shows a dependence on the nominal controls in regions where nonunique solutions exist. In the unique solution region, the results from the two methods agree closely. The results for the five-dimensional two-airplane game are also shown to be dependent on the nominal controls selected and indicate that initial conditions are in a region of nonunique solutions.
NASA Astrophysics Data System (ADS)
Mieles, John; Zhan, Hongbin
2012-06-01
The permeable reactive barrier (PRB) remediation technology has proven to be more cost-effective than conventional pump-and-treat systems, and has demonstrated the ability to rapidly reduce the concentrations of specific chemicals of concern (COCs) by up to several orders of magnitude in some scenarios. This study derives new steady-state analytical solutions to multispecies reactive transport in a PRB-aquifer (dual domain) system. The advantage of the dual domain model is that it can account for the potential existence of natural degradation in the aquifer, when designing the required PRB thickness. The study focuses primarily on the steady-state analytical solutions of the tetrachloroethene (PCE) serial degradation pathway and secondly on the analytical solutions of the parallel degradation pathway. The solutions in this study can also be applied to other types of dual domain systems with distinct flow and transport properties. The steady-state analytical solutions are shown to be accurate and the numerical program RT3D is selected for comparison. The results of this study are novel in that the solutions provide improved modeling flexibility including: 1) every species can have unique first-order reaction rates and unique retardation factors, and 2) daughter species can be modeled with their individual input concentrations or solely as byproducts of the parent species. The steady-state analytical solutions exhibit a limitation that occurs when interspecies reaction rate factors equal each other, which result in undefined solutions. Excel spreadsheet programs were created to facilitate prompt application of the steady-state analytical solutions, for both the serial and parallel degradation pathways.
Finite analytic numerical solution of heat transfer and flow past a square channel cavity
NASA Technical Reports Server (NTRS)
Chen, C.-J.; Obasih, K.
1982-01-01
A numerical solution of flow and heat transfer characteristics is obtained by the finite analytic method for a two dimensional laminar channel flow over a two-dimensional square cavity. The finite analytic method utilizes the local analytic solution in a small element of the problem region to form the algebraic equation relating an interior nodal value with its surrounding nodal values. Stable and rapidly converged solutions were obtained for Reynolds numbers ranging to 1000 and Prandtl number to 10. Streamfunction, vorticity and temperature profiles are solved. Local and mean Nusselt number are given. It is found that the separation streamlines between the cavity and channel flow are concave into the cavity at low Reynolds number and convex at high Reynolds number (Re greater than 100) and for square cavity the mean Nusselt number may be approximately correlated with Peclet number as Nu(m) = 0.365 Pe exp 0.2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binotti, M.; Zhu, G.; Gray, A.
An analytical approach, as an extension of one newly developed method -- First-principle OPTical Intercept Calculation (FirstOPTIC) -- is proposed to treat the geometrical impact of three-dimensional (3-D) effects on parabolic trough optical performance. The mathematical steps of this analytical approach are presented and implemented numerically as part of the suite of FirstOPTIC code. In addition, the new code has been carefully validated against ray-tracing simulation results and available numerical solutions. This new analytical approach to treating 3-D effects will facilitate further understanding and analysis of the optical performance of trough collectors as a function of incidence angle.
NASA Astrophysics Data System (ADS)
Chuang, Mo-Hsiung; Hung, Chi-Tung; -Yen Lin, Wen; Ma, Kuo-chen
2017-04-01
In recent years, cities and industries in the vicinity of the estuarine region have developed rapidly, resulting in a sharp increase in the population concerned. The increasing demand for human activities, agriculture irrigation, and aquaculture relies on massive pumping of water in estuarine area. Since the 1950s, numerous studies have focused on the effects of tidal fluctuations on groundwater flow in the estuarine area. Tide-induced head fluctuation in a two-dimensional estuarine aquifer system is complicated and rather important in dealing with many groundwater management or remediation problems. The conceptual model of the aquifer system considered is multi-layered with estuarine bank and the leaky aquifer extend finite distance under the estuary. The solution of the model describing the groundwater head distribution in such an estuarine aquifer system and subject to the tidal fluctuation effects from estuarine river is developed based on the method of separation of variables along with river boundary. The solutions by Sun (Sun H. A two-dimensional analytical solution of groundwater response to tidal loading in an estuary, Water Resour. Res. 1997; 33:1429-35) as well as Tang and Jiao (Tang Z. and J. J. Jiao, A two-dimensional analytical solution for groundwater flow in a leaky confined aquifer system near open tidal water, Hydrological Processes, 2001; 15: 573-585) can be shown to be special cases of the present solution. On the basis of the analytical solution, the groundwater head distribution in response to estuarine boundary is examined and the influences of leakage, hydraulic parameters, and loading effect on the groundwater head fluctuation due to tide are investigated and discussed. KEYWORDS: analytical model, estuarine river, groundwater fluctuation, leaky aquifer.
Topology versus Anderson localization: Nonperturbative solutions in one dimension
NASA Astrophysics Data System (ADS)
Altland, Alexander; Bagrets, Dmitry; Kamenev, Alex
2015-02-01
We present an analytic theory of quantum criticality in quasi-one-dimensional topological Anderson insulators. We describe these systems in terms of two parameters (g ,χ ) representing localization and topological properties, respectively. Certain critical values of χ (half-integer for Z classes, or zero for Z2 classes) define phase boundaries between distinct topological sectors. Upon increasing system size, the two parameters exhibit flow similar to the celebrated two-parameter flow of the integer quantum Hall insulator. However, unlike the quantum Hall system, an exact analytical description of the entire phase diagram can be given in terms of the transfer-matrix solution of corresponding supersymmetric nonlinear sigma models. In Z2 classes we uncover a hidden supersymmetry, present at the quantum critical point.
Analytical solutions for efficient interpretation of single-well push-pull tracer tests
NASA Astrophysics Data System (ADS)
Huang, Junqi; Christ, John A.; Goltz, Mark N.
2010-08-01
Single-well push-pull tracer tests have been used to characterize the extent, fate, and transport of subsurface contamination. Analytical solutions provide one alternative for interpreting test results. In this work, an exact analytical solution to two-dimensional equations describing the governing processes acting on a dissolved compound during a modified push-pull test (advection, longitudinal and transverse dispersion, first-order decay, and rate-limited sorption/partitioning in steady, divergent, and convergent flow fields) is developed. The coupling of this solution with inverse modeling to estimate aquifer parameters provides an efficient methodology for subsurface characterization. Synthetic data for single-well push-pull tests are employed to demonstrate the utility of the solution for determining (1) estimates of aquifer longitudinal and transverse dispersivities, (2) sorption distribution coefficients and rate constants, and (3) non-aqueous phase liquid (NAPL) saturations. Employment of the solution to estimate NAPL saturations based on partitioning and non-partitioning tracers is designed to overcome limitations of previous efforts by including rate-limited mass transfer. This solution provides a new tool for use by practitioners when interpreting single-well push-pull test results.
Qiu, Chenchen; Li, Yande
2017-01-01
China is a country with vast territory, but economic development and population growth have reduced the usable land resources in recent years. Therefore, reclamation by pumping and filling is carried out in eastern coastal regions of China in order to meet the needs of urbanization. However, large areas of reclaimed land need rapid drainage consolidation treatment. Based on past researches on how to improve the treatment efficiency of soft clay using vacuum preloading combined with electro-osmosis, a two-dimensional drainage plane model was proposed according to the Terzaghi and Esrig consolidation theory. However, the analytical solution using two-dimensional plane model was never involved. Current analytical solutions can’t have a thorough theoretical analysis of practical engineering and give relevant guidance. Considering the smearing effect and the rectangle arrangement pattern, an analytical solution is derived to describe the behavior of pore-water and the consolidation process by using EKG (electro-kinetic geo synthetics) materials. The functions of EKG materials include drainage, electric conduction and corrosion resistance. Comparison with test results is carried out to verify the analytical solution. It is found that the measured value is larger than the applied vacuum degree because of the stacking effect of the vacuum preloading and electro-osmosis. The trends of the mean measured value and the mean analytical value processes are comparable. Therefore, the consolidation model can accurately assess the change in pore-water pressure and the consolidation process during vacuum preloading combined with electro-osmosis. PMID:28771496
An analytical solution to the one-dimensional heat conduction-convection equation in soil
USDA-ARS?s Scientific Manuscript database
Heat transfer in soil occurs by conduction and convection. Infiltrating water affects soil temperature distributions, and measuring soil temperature distributions below infiltrating water can provide a signal for the flux of water. In earlier work a sine wave function (hereinafter referred to as the...
NASA Astrophysics Data System (ADS)
Boyraz, Uǧur; Melek Kazezyılmaz-Alhan, Cevza
2017-04-01
Groundwater is a vital element of hydrologic cycle and the analytical & numerical solutions of different forms of groundwater flow equations play an important role in understanding the hydrological behavior of subsurface water. The interaction between groundwater and surface water bodies can be determined using these solutions. In this study, new hypothetical approaches are implemented to groundwater flow system in order to contribute to the studies on surface water/groundwater interactions. A time dependent problem is considered in a 2-dimensional stream-wetland-aquifer system. The sloped stream boundary is used to represent the interaction between stream and aquifer. The rest of the aquifer boundaries are assumed as no-flux boundary. In addition, a wetland is considered as a surface water body which lies over the whole aquifer. The effect of the interaction between the wetland and the aquifer is taken into account with a source/sink term in the groundwater flow equation and the interaction flow is calculated by using Darcy's approach. A semi-analytical solution is developed for the 2-dimensional groundwater flow equation in 5 steps. First, Laplace and Fourier cosine transforms are employed to obtain the general solution in Fourier and Laplace domain. Then, the initial and boundary conditions are applied to obtain the particular solution. Finally, inverse Fourier transform is carried out analytically and inverse Laplace transform is carried out numerically to obtain the final solution in space and time domain, respectively. In order to verify the semi-analytical solution, an explicit finite difference algorithm is developed and analytical and numerical solutions are compared for synthetic examples. The comparison of the analytical and numerical solutions shows that the analytical solution gives accurate results.
NASA Astrophysics Data System (ADS)
Kokkotas, K. D.; Konoplya, R. A.; Zhidenko, A.
2017-09-01
Higher derivative extensions of Einstein gravity are important within the string theory approach to gravity and as alternative and effective theories of gravity. H. Lü, A. Perkins, C. Pope, and K. Stelle [Phys. Rev. Lett. 114, 171601 (2015), 10.1103/PhysRevLett.114.171601] found a numerical solution describing a spherically symmetric non-Schwarzschild asymptotically flat black hole in Einstein gravity with added higher derivative terms. Using the general and quickly convergent parametrization in terms of the continued fractions, we represent this numerical solution in the analytical form, which is accurate not only near the event horizon or far from the black hole, but in the whole space. Thereby, the obtained analytical form of the metric allows one to study easily all the further properties of the black hole, such as thermodynamics, Hawking radiation, particle motion, accretion, perturbations, stability, quasinormal spectrum, etc. Thus, the found analytical approximate representation can serve in the same way as an exact solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganapol, B.D.; Kornreich, D.E.
Because of the requirement of accountability and quality control in the scientific world, a demand for high-quality analytical benchmark calculations has arisen in the neutron transport community. The intent of these benchmarks is to provide a numerical standard to which production neutron transport codes may be compared in order to verify proper operation. The overall investigation as modified in the second year renewal application includes the following three primary tasks. Task 1 on two dimensional neutron transport is divided into (a) single medium searchlight problem (SLP) and (b) two-adjacent half-space SLP. Task 2 on three-dimensional neutron transport covers (a) pointmore » source in arbitrary geometry, (b) single medium SLP, and (c) two-adjacent half-space SLP. Task 3 on code verification, includes deterministic and probabilistic codes. The primary aim of the proposed investigation was to provide a suite of comprehensive two- and three-dimensional analytical benchmarks for neutron transport theory applications. This objective has been achieved. The suite of benchmarks in infinite media and the three-dimensional SLP are a relatively comprehensive set of one-group benchmarks for isotropically scattering media. Because of time and resource limitations, the extensions of the benchmarks to include multi-group and anisotropic scattering are not included here. Presently, however, enormous advances in the solution for the planar Green`s function in an anisotropically scattering medium have been made and will eventually be implemented in the two- and three-dimensional solutions considered under this grant. Of particular note in this work are the numerical results for the three-dimensional SLP, which have never before been presented. The results presented were made possible only because of the tremendous advances in computing power that have occurred during the past decade.« less
Finite-analytic numerical solution of heat transfer in two-dimensional cavity flow
NASA Technical Reports Server (NTRS)
Chen, C.-J.; Naseri-Neshat, H.; Ho, K.-S.
1981-01-01
Heat transfer in cavity flow is numerically analyzed by a new numerical method called the finite-analytic method. The basic idea of the finite-analytic method is the incorporation of local analytic solutions in the numerical solutions of linear or nonlinear partial differential equations. In the present investigation, the local analytic solutions for temperature, stream function, and vorticity distributions are derived. When the local analytic solution is evaluated at a given nodal point, it gives an algebraic relationship between a nodal value in a subregion and its neighboring nodal points. A system of algebraic equations is solved to provide the numerical solution of the problem. The finite-analytic method is used to solve heat transfer in the cavity flow at high Reynolds number (1000) for Prandtl numbers of 0.1, 1, and 10.
NASA Astrophysics Data System (ADS)
Yu, Ming-Xiao; Tian, Bo; Chai, Jun; Yin, Hui-Min; Du, Zhong
2017-10-01
In this paper, we investigate a nonlinear fiber described by a (2+1)-dimensional complex Ginzburg-Landau equation with the chromatic dispersion, optical filtering, nonlinear and linear gain. Bäcklund transformation in the bilinear form is constructed. With the modified bilinear method, analytic soliton solutions are obtained. For the soliton, the amplitude can decrease or increase when the absolute value of the nonlinear or linear gain is enlarged, and the width can be compressed or amplified when the absolute value of the chromatic dispersion or optical filtering is enhanced. We study the stability of the numerical solutions numerically by applying the increasing amplitude, embedding the white noise and adding the Gaussian pulse to the initial values based on the analytic solutions, which shows that the numerical solutions are stable, not influenced by the finite initial perturbations.
Freak oscillation in a dusty plasma.
Zhang, Heng; Yang, Yang; Hong, Xue-Ren; Qi, Xin; Duan, Wen-Shan; Yang, Lei
2017-05-01
The freak oscillation in one-dimensional dusty plasma is studied numerically by particle-in-cell method. Using a perturbation method, the basic set of fluid equations is reduced to a nonlinear Schrödinger equation (NLSE). The rational solution of the NLSE is presented, which is proposed as an effective tool for studying the rogue waves in dusty plasma. Additionally, the application scope of the analytical solution of the rogue wave described by the NLSE is given.
Electron Tomography: A Three-Dimensional Analytic Tool for Hard and Soft Materials Research.
Ercius, Peter; Alaidi, Osama; Rames, Matthew J; Ren, Gang
2015-10-14
Three-dimensional (3D) structural analysis is essential to understand the relationship between the structure and function of an object. Many analytical techniques, such as X-ray diffraction, neutron spectroscopy, and electron microscopy imaging, are used to provide structural information. Transmission electron microscopy (TEM), one of the most popular analytic tools, has been widely used for structural analysis in both physical and biological sciences for many decades, in which 3D objects are projected into two-dimensional (2D) images. In many cases, 2D-projection images are insufficient to understand the relationship between the 3D structure and the function of nanoscale objects. Electron tomography (ET) is a technique that retrieves 3D structural information from a tilt series of 2D projections, and is gradually becoming a mature technology with sub-nanometer resolution. Distinct methods to overcome sample-based limitations have been separately developed in both physical and biological science, although they share some basic concepts of ET. This review discusses the common basis for 3D characterization, and specifies difficulties and solutions regarding both hard and soft materials research. It is hoped that novel solutions based on current state-of-the-art techniques for advanced applications in hybrid matter systems can be motivated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electron Tomography: A Three-Dimensional Analytic Tool for Hard and Soft Materials Research
Alaidi, Osama; Rames, Matthew J.
2016-01-01
Three-dimensional (3D) structural analysis is essential to understand the relationship between the structure and function of an object. Many analytical techniques, such as X-ray diffraction, neutron spectroscopy, and electron microscopy imaging, are used to provide structural information. Transmission electron microscopy (TEM), one of the most popular analytic tools, has been widely used for structural analysis in both physical and biological sciences for many decades, in which 3D objects are projected into two-dimensional (2D) images. In many cases, 2D-projection images are insufficient to understand the relationship between the 3D structure and the function of nanoscale objects. Electron tomography (ET) is a technique that retrieves 3D structural information from a tilt series of 2D projections, and is gradually becoming a mature technology with sub-nanometer resolution. Distinct methods to overcome sample-based limitations have been separately developed in both physical and biological science, although they share some basic concepts of ET. This review discusses the common basis for 3D characterization, and specifies difficulties and solutions regarding both hard and soft materials research. It is hoped that novel solutions based on current state-of-the-art techniques for advanced applications in hybrid matter systems can be motivated. PMID:26087941
Exact semiclassical expansions for one-dimensional quantum oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delabaere, E.; Dillinger, H.; Pham, F.
1997-12-01
A set of rules is given for dealing with WKB expansions in the one-dimensional analytic case, whereby such expansions are not considered as approximations but as exact encodings of wave functions, thus allowing for analytic continuation with respect to whichever parameters the potential function depends on, with an exact control of small exponential effects. These rules, which include also the case when there are double turning points, are illustrated on various examples, and applied to the study of bound state or resonance spectra. In the case of simple oscillators, it is thus shown that the Rayleigh{endash}Schr{umlt o}dinger series is Borelmore » resummable, yielding the exact energy levels. In the case of the symmetrical anharmonic oscillator, one gets a simple and rigorous justification of the Zinn-Justin quantization condition, and of its solution in terms of {open_quotes}multi-instanton expansions.{close_quotes} {copyright} {ital 1997 American Institute of Physics.}« less
An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snider, D.M.; O`Rourke, P.J.; Andrews, M.J.
1997-06-01
A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles,more » with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.« less
Transient well flow in leaky multiple-aquifer systems
NASA Astrophysics Data System (ADS)
Hemker, C. J.
1985-10-01
A previously developed eigenvalue analysis approach to groundwater flow in leaky multiple aquifers is used to derive exact solutions for transient well flow problems in leaky and confined systems comprising any number of aquifers. Equations are presented for the drawdown distribution in systems of infinite extent, caused by wells penetrating one or more of the aquifers completely and discharging each layer at a constant rate. Since the solution obtained may be regarded as a combined analytical-numerical technique, a type of one-dimensional modelling can be applied to find approximate solutions for several complicating conditions. Numerical evaluations are presented as time-drawdown curves and include effects of storage in the aquitard, unconfined conditions, partially penetrating wells and stratified aquifers. The outcome of calculations for relatively simple systems compares very well with published corresponding results. The proposed multilayer solution can be a valuable tool in aquifer test evaluation, as it provides the analytical expression required to enable the application of existing computer methods to the determination of aquifer characteristics.
Continuum modeling of catastrophic collisions
NASA Technical Reports Server (NTRS)
Ryan, Eileen V.; Aspaug, Erik; Melosh, H. J.
1991-01-01
A two dimensional hydrocode based on 2-D SALE was modified to include strength effects and fragmentation equations for fracture resulting from tensile stress in one dimension. Output from this code includes a complete fragmentation summary for each cell of the modeled object: fragment size (mass) distribution, vector velocities of particles, peak values of pressure and tensile stress, and peak strain rates associated with fragmentation. Contour plots showing pressure and temperature at given times within the object are also produced. By invoking axial symmetry, three dimensional events can be modeled such as zero impact parameter collisions between asteroids. The code was tested against the one dimensional model and the analytical solution for a linearly increasing tensile stress under constant strain rate.
Regularity of Solutions of the Nonlinear Sigma Model with Gravitino
NASA Astrophysics Data System (ADS)
Jost, Jürgen; Keßler, Enno; Tolksdorf, Jürgen; Wu, Ruijun; Zhu, Miaomiao
2018-02-01
We propose a geometric setup to study analytic aspects of a variant of the super symmetric two-dimensional nonlinear sigma model. This functional extends the functional of Dirac-harmonic maps by gravitino fields. The system of Euler-Lagrange equations of the two-dimensional nonlinear sigma model with gravitino is calculated explicitly. The gravitino terms pose additional analytic difficulties to show smoothness of its weak solutions which are overcome using Rivière's regularity theory and Riesz potential theory.
Kroniger, Konstantin; Banerjee, Tirtha; De Roo, Frederik; ...
2017-10-06
A two-dimensional analytical model for describing the mean flow behavior inside a vegetation canopy after a leading edge in neutral conditions was developed and tested by means of large eddy simulations (LES) employing the LES code PALM. The analytical model is developed for the region directly after the canopy edge, the adjustment region, where one-dimensional canopy models fail due to the sharp change in roughness. The derivation of this adjustment region model is based on an analytic solution of the two-dimensional Reynolds averaged Navier–Stokes equation in neutral conditions for a canopy with constant plant area density (PAD). The main assumptionsmore » for solving the governing equations are separability of the velocity components concerning the spatial variables and the neglection of the Reynolds stress gradients. These two assumptions are verified by means of LES. To determine the emerging model parameters, a simultaneous fitting scheme was applied to the velocity and pressure data of a reference LES simulation. Furthermore a sensitivity analysis of the adjustment region model, equipped with the previously calculated parameters, was performed varying the three relevant length, the canopy height ( h), the canopy length and the adjustment length ( Lc), in additional LES. Even if the model parameters are, in general, functions of h/ Lc, it was found out that the model is capable of predicting the flow quantities in various cases, when using constant parameters. Subsequently the adjustment region model is combined with the one-dimensional model of Massman, which is applicable for the interior of the canopy, to attain an analytical model capable of describing the mean flow for the full canopy domain. As a result, the model is tested against an analytical model based on a linearization approach.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroniger, Konstantin; Banerjee, Tirtha; De Roo, Frederik
A two-dimensional analytical model for describing the mean flow behavior inside a vegetation canopy after a leading edge in neutral conditions was developed and tested by means of large eddy simulations (LES) employing the LES code PALM. The analytical model is developed for the region directly after the canopy edge, the adjustment region, where one-dimensional canopy models fail due to the sharp change in roughness. The derivation of this adjustment region model is based on an analytic solution of the two-dimensional Reynolds averaged Navier–Stokes equation in neutral conditions for a canopy with constant plant area density (PAD). The main assumptionsmore » for solving the governing equations are separability of the velocity components concerning the spatial variables and the neglection of the Reynolds stress gradients. These two assumptions are verified by means of LES. To determine the emerging model parameters, a simultaneous fitting scheme was applied to the velocity and pressure data of a reference LES simulation. Furthermore a sensitivity analysis of the adjustment region model, equipped with the previously calculated parameters, was performed varying the three relevant length, the canopy height ( h), the canopy length and the adjustment length ( Lc), in additional LES. Even if the model parameters are, in general, functions of h/ Lc, it was found out that the model is capable of predicting the flow quantities in various cases, when using constant parameters. Subsequently the adjustment region model is combined with the one-dimensional model of Massman, which is applicable for the interior of the canopy, to attain an analytical model capable of describing the mean flow for the full canopy domain. As a result, the model is tested against an analytical model based on a linearization approach.« less
NASA Astrophysics Data System (ADS)
Wang, Yao; Chen, Mei-Dan; Li, Xian; Li, Biao
2017-05-01
Through Hirota bilinear transformation and symbolic computation with Maple, a class of lump solutions, rationally localised in all directions in the space, to a reduced generalised (3+1)-dimensional shallow water wave (SWW) equation are prensented. The resulting lump solutions all contain six parameters, two of which are free due to the translation invariance of the SWW equation and the other four of which must satisfy a nonzero determinant condition guaranteeing analyticity and rational localisation of the solutions. Then we derived the interaction solutions for lump solutions and one stripe soliton and the result shows that the particular lump solutions with specific values of the involved parameters will be drowned or swallowed by the stripe soliton. Furthermore, we extend this method to a more general combination of positive quadratic function and hyperbolic functions. Especially, it is interesting that a rogue wave is found to be aroused by the interaction between lump solutions and a pair of resonance stripe solitons. By choosing the values of the parameters, the dynamic properties of lump solutions, interaction solutions for lump solutions and one stripe soliton and interaction solutions for lump solutions and a pair of resonance solitons, are shown by dynamic graphs.
Olson, Gordon L.
2015-09-24
One-dimensional models for the transport of radiation through binary stochastic media do not work in multi-dimensions. In addition, authors have attempted to modify or extend the 1D models to work in multidimensions without success. Analytic one-dimensional models are successful in 1D only when assuming greatly simplified physics. State of the art theories for stochastic media radiation transport do not address multi-dimensions and temperature-dependent physics coefficients. Here, the concept of effective opacities and effective heat capacities is found to well represent the ensemble averaged transport solutions in cases with gray or multigroup temperature-dependent opacities and constant or temperature-dependent heat capacities. Inmore » every case analyzed here, effective physics coefficients fit the transport solutions over a useful range of parameter space. The transport equation is solved with the spherical harmonics method with angle orders of n=1 and 5. Although the details depend on what order of solution is used, the general results are similar, independent of angular order.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, Gordon L.
One-dimensional models for the transport of radiation through binary stochastic media do not work in multi-dimensions. In addition, authors have attempted to modify or extend the 1D models to work in multidimensions without success. Analytic one-dimensional models are successful in 1D only when assuming greatly simplified physics. State of the art theories for stochastic media radiation transport do not address multi-dimensions and temperature-dependent physics coefficients. Here, the concept of effective opacities and effective heat capacities is found to well represent the ensemble averaged transport solutions in cases with gray or multigroup temperature-dependent opacities and constant or temperature-dependent heat capacities. Inmore » every case analyzed here, effective physics coefficients fit the transport solutions over a useful range of parameter space. The transport equation is solved with the spherical harmonics method with angle orders of n=1 and 5. Although the details depend on what order of solution is used, the general results are similar, independent of angular order.« less
On the equilibrium charge density at tilt grain boundaries
NASA Astrophysics Data System (ADS)
Srikant, V.; Clarke, D. R.
1998-05-01
The equilibrium charge density and free energy of tilt grain boundaries as a function of their misorientation is computed using a Monte Carlo simulation that takes into account both the electrostatic and configurational energies associated with charges at the grain boundary. The computed equilibrium charge density increases with the grain-boundary angle and approaches a saturation value. The equilibrium charge density at large-angle grain boundaries compares well with experimental values for large-angle tilt boundaries in GaAs. The computed grain-boundary electrostatic energy is in agreement with the analytical solution to a one-dimensional Poisson equation at high donor densities but indicates that the analytical solution overestimates the electrostatic energy at lower donor densities.
Kartal, Mehmet E.
2013-01-01
The contour method is one of the most prevalent destructive techniques for residual stress measurement. Up to now, the method has involved the use of the finite-element (FE) method to determine the residual stresses from the experimental measurements. This paper presents analytical solutions, obtained for a semi-infinite strip and a finite rectangle, which can be used to calculate the residual stresses directly from the measured data; thereby, eliminating the need for an FE approach. The technique is then used to determine the residual stresses in a variable-polarity plasma-arc welded plate and the results show good agreement with independent neutron diffraction measurements. PMID:24204187
Lu, Ning; Ge, Shemin
1996-01-01
By including the constant flow of heat and fluid in the horizontal direction, we develop an analytical solution for the vertical temperature distribution within the semiconfining layer of a typical aquifer system. The solution is an extension of the previous one-dimensional theory by Bredehoeft and Papadopulos [1965]. It provides a quantitative tool for analyzing the uncertainty of the horizontal heat and fluid flow. The analytical results demonstrate that horizontal flow of heat and fluid, if at values much smaller than those of the vertical, has a negligible effect on the vertical temperature distribution but becomes significant when it is comparable to the vertical.
Analytical theory of two-dimensional ring dark soliton in nonlocal nonlinear media
NASA Astrophysics Data System (ADS)
Chen, Wei; Wang, Qi; Shi, Jielong; Shen, Ming
2017-11-01
Completely stable two-dimensional ring dark soliton in nonlocal media with an arbitrary degree of nonlocality are investigated. The exact solution of the ring dark solitons is obtained with the variational method and a cylindrical nonlocal response function. The analytical results are confirmed by directly numerical simulations. We also analytically and numerically study the expansion dynamics of the gray ring dark solitons in detail.
On the localisation of four-dimensional brane-world black holes: II. The general case
NASA Astrophysics Data System (ADS)
Kanti, P.; Pappas, N.; Pappas, T.
2016-01-01
We perform a comprehensive analysis of a number of scalar field theories in an attempt to find analytically five-dimensional, localised-on-the-brane, black-hole solutions. Extending a previous analysis, we assume a generalised Vaidya ansatz for the five-dimensional metric tensor that allows for a time-dependent, non-trivial profile of the mass function in terms of the bulk coordinate and a deviation from the over-restricting Schwarzschild-type solution on the brane. In order to support such a solution, we study a variety of theories including single or multiple scalar fields, with canonical or non-canonical kinetic terms, minimally or non-minimally coupled to gravity. We demonstrate that for such a metric ansatz and for a carefully chosen energy-momentum tensor which is non-isotropic in five dimensions, solutions that have the form of a Schwarzschild-(anti)de Sitter or Reissner-Nordstrom type of solution do emerge. However, the resulting profile of the mass function along the bulk coordinate, when allowed, is not the correct one for eliminating bulk singularities.
Some exact solutions for maximally symmetric topological defects in Anti de Sitter space
NASA Astrophysics Data System (ADS)
Alvarez, Orlando; Haddad, Matthew
2018-03-01
We obtain exact analytical solutions for a class of SO( l) Higgs field theories in a non-dynamic background n-dimensional anti de Sitter space. These finite transverse energy solutions are maximally symmetric p-dimensional topological defects where n = ( p + 1) + l. The radius of curvature of anti de Sitter space provides an extra length scale that allows us to study the equations of motion in a limit where the masses of the Higgs field and the massive vector bosons are both vanishing. We call this the double BPS limit. In anti de Sitter space, the equations of motion depend on both p and l. The exact analytical solutions are expressed in terms of standard special functions. The known exact analytical solutions are for kink-like defects ( p = 0 , 1 , 2 , . . . ; l = 1), vortex-like defects ( p = 1 , 2 , 3; l = 2), and the 't Hooft-Polyakov monopole ( p = 0; l = 3). A bonus is that the double BPS limit automatically gives a maximally symmetric classical glueball type solution. In certain cases where we did not find an analytic solution, we present numerical solutions to the equations of motion. The asymptotically exponentially increasing volume with distance of anti de Sitter space imposes different constraints than those found in the study of defects in Minkowski space.
Cosmological bouncing solutions in extended teleparallel gravity theories
NASA Astrophysics Data System (ADS)
de la Cruz-Dombriz, Álvaro; Farrugia, Gabriel; Said, Jackson Levi; Gómez, Diego Sáez-Chillón
2018-05-01
In the context of extended teleparallel gravity theories with a 3 +1 -dimensional Gauss-Bonnet analog term, we address the possibility of these theories reproducing several well-known cosmological bouncing scenarios in a four-dimensional Friedmann-Lemaître-Robertson-Walker geometry. We study which types of gravitational Lagrangians are capable of reconstructing bouncing solutions provided by analytical expressions for symmetric, oscillatory, superbounce, matter bounce, and singular bounce. Some of the Lagrangians discovered are analytical at the origin, having both Minkowski and Schwarzschild vacuum solutions. All these results open up the possibility for such theories to be competitive candidates of extended theories of gravity in cosmological scales.
Numerical Tests and Properties of Waves in Radiating Fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, B M; Klein, R I
2009-09-03
We discuss the properties of an analytical solution for waves in radiating fluids, with a view towards its implementation as a quantitative test of radiation hydrodynamics codes. A homogeneous radiating fluid in local thermodynamic equilibrium is periodically driven at the boundary of a one-dimensional domain, and the solution describes the propagation of the waves thus excited. Two modes are excited for a given driving frequency, generally referred to as a radiative acoustic wave and a radiative diffusion wave. While the analytical solution is well known, several features are highlighted here that require care during its numerical implementation. We compare themore » solution in a wide range of parameter space to a numerical integration with a Lagrangian radiation hydrodynamics code. Our most significant observation is that flux-limited diffusion does not preserve causality for waves on a homogeneous background.« less
An experimental and analytical investigation on the response of GR/EP composite I-frames
NASA Technical Reports Server (NTRS)
Moas, E., Jr.; Boitnott, R. L.; Griffin, O. H., Jr.
1991-01-01
Six-foot diameter, semicircular graphite/epoxy specimens representative of generic aircraft frames were loaded quasi-statically to determine their load response and failure mechanisms for large deflections that occur in an airplane crash. These frame-skin specimens consisted of a cylindrical skin section cocured with a semicircular I-frame. Various frame laminate stacking sequences and geometries were evaluated by statically loading the specimen until multiple failures occurred. Two analytical methods were compared for modeling the frame-skin specimens: a two-dimensional branched-shell finite element analysis and a one-dimensional, closed-form, curved beam solution derived using an energy method. Excellent correlation was obtained between experimental results and the finite element predictions of the linear response of the frames prior to the initial failure. The beam solution was used for rapid parameter and design studies, and was found to be stiff in comparison with the finite element analysis. The specimens were found to be useful for evaluating composite frame designs.
Exact solution for a non-Markovian dissipative quantum dynamics.
Ferialdi, Luca; Bassi, Angelo
2012-04-27
We provide the exact analytic solution of the stochastic Schrödinger equation describing a harmonic oscillator interacting with a non-Markovian and dissipative environment. This result represents an arrival point in the study of non-Markovian dynamics via stochastic differential equations. It is also one of the few exactly solvable models for infinite-dimensional systems. We compute the Green's function; in the case of a free particle and with an exponentially correlated noise, we discuss the evolution of Gaussian wave functions.
Analysis of combustion instability in liquid fuel rocket motors. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Wong, K. W.
1979-01-01
The development of an analytical technique used in the solution of nonlinear velocity-sensitive combustion instability problems is presented. The Galerkin method was used and proved successful. The pressure wave forms exhibit a strong second harmonic distortion and a variety of behaviors are possible depending on the nature of the combustion process and the parametric values involved. A one dimensional model provides insight into the problem by allowing a comparison of Galerkin solutions with more exact finite difference computations.
A novel analytical description of periodic volume coil geometries in MRI
NASA Astrophysics Data System (ADS)
Koh, D.; Felder, J.; Shah, N. J.
2018-03-01
MRI volume coils can be represented by equivalent lumped element circuits and for a variety of these circuit configurations analytical design equations have been presented. The unification of several volume coil topologies results in a two-dimensional gridded equivalent lumped element circuit which compromises the birdcage resonator, its multiple endring derivative but also novel structures like the capacitive coupled ring resonator. The theory section analyzes a general two-dimensional circuit by noting that its current distribution can be decomposed into a longitudinal and an azimuthal dependency. This can be exploited to compare the current distribution with a transfer function of filter circuits along one direction. The resonances of the transfer function coincide with the resonance of the volume resonator and the simple analytical solution can be used as a design equation. The proposed framework is verified experimentally against a novel capacitive coupled ring structure which was derived from the general circuit formulation and is proven to exhibit a dominant homogeneous mode. In conclusion, a unified analytical framework is presented that allows determining the resonance frequency of any volume resonator that can be represented by a two dimensional meshed equivalent circuit.
NASA Astrophysics Data System (ADS)
Deng, Gao-Fu; Gao, Yi-Tian; Gao, Xin-Yi
2018-07-01
In this paper, an extended (3+1)-dimensional Jimbo-Miwa equation with time-dependent coefficients is investigated, which comes from the second member of the Kadomtsev-Petviashvili hierarchy and is shown to be conditionally integrable. Bilinear form, Bäcklund transformation, Lax pair and infinitely-many conservation laws are derived via the binary Bell polynomials and symbolic computation. With the help of the bilinear form, one-, two- and three-soliton solutions are obtained via the Hirota method, one-periodic wave solutions are constructed via the Riemann theta function. Additionally, propagation and interaction of the solitons are investigated analytically and graphically, from which we find that the interaction between the solitons is elastic and the time-dependent coefficients can affect the soliton velocities, but the soliton amplitudes remain unchanged. One-periodic waves approach the one-solitary waves with the amplitudes vanishing and can be viewed as a superposition of the overlapping solitary waves, placed one period apart.
Loss compensation symmetry in dimers made of gain and lossy nanoparticles
NASA Astrophysics Data System (ADS)
Klimov, V. V.; Zabkov, I. V.; Guzatov, D. V.; Vinogradov, A. P.
2018-03-01
The eigenmodes in a two-dimensional dimer made of gain and lossy nanoparticles have been investigated within an exact analytical approach. It has been shown that there are eigenmodes for which all Joule losses are exactly compensated by the gain. Among such solutions there are solutions with a new type of symmetry, which we refer to as loss compensation symmetry, as well as well-known parity-time (PT) symmetric solutions. Unlike PT symmetric ones, the modes with loss compensation symmetry allow one to achieve full loss compensation with significantly less gain that in the case of PT symmetry. This effect paves the way to new loss compensation methods in optics.
An experimental study of wall-injected flows in a rectangular cylinder
NASA Astrophysics Data System (ADS)
Perrotta, A.; Romano, G. P.; Favini, B.
2018-01-01
An experimental investigation of the flow inside a rectangular cylinder with air injected continuously along the wall is performed. This kind of flow is a two-dimensional approximation of what happens inside a solid rocket motor, where the lateral grain burns expelling exhaust gas or in processes with air filtration or devices to attain uniform flows. We propose a brief derivation of some analytical solutions and a comparison between these solutions and experimental data, which are obtained using the particle image velocimetry technique, to provide a global reconstruction of the flowfield. The flow, which enters orthogonal to the injecting wall, turns suddenly its direction being pushed towards the exit of the chamber. Under the incompressible and inviscid flow hypothesis, two analytical solutions are reported and compared. The first one, known as Hart-McClure solution, is irrotational and the injection velocity is non-perpendicular to the injecting wall. The other one, due to Taylor and Culick, has non-zero vorticity and constant, vertical injection velocity. The comparison with laminar solutions is useful to assess whether transition to turbulence is reached and how the disturbance thrown in by the porous injection influences and modifies those solutions.
Three-dimensional analytical solutions of the atmospheric diffusion equation with multiple sources and height-dependent wind speed and eddy diffusivities are derived in a systematic fashion. For homogeneous Neumann (total reflection), Dirichlet (total adsorpti...
Three-dimensional analytical solutions of the atmospheric diffusion equation with multiple sources and height-dependent wind speed and eddy diffusivities are derived in a systematic fashion. For homogeneous Neumann (total reflection), Dirichlet (total adsorpti...
Revisiting the positive DC corona discharge theory: Beyond Peek's and Townsend's law
NASA Astrophysics Data System (ADS)
Monrolin, Nicolas; Praud, Olivier; Plouraboué, Franck
2018-06-01
The classical positive Corona Discharge theory in a cylindrical axisymmetric configuration is revisited in order to find analytically the influence of gas properties and thermodynamic conditions on the corona current. The matched asymptotic expansion of Durbin and Turyn [J. Phys. D: Appl. Phys. 20, 1490-1495 (1987)] of a simplified but self-consistent problem is performed and explicit analytical solutions are derived. The mathematical derivation enables us to express a new positive DC corona current-voltage characteristic, choosing either a dimensionless or dimensional formulation. In dimensional variables, the current voltage law and the corona inception voltage explicitly depend on the electrode size and physical gas properties such as ionization and photoionization parameters. The analytical predictions are successfully confronted with experiments and Peek's and Townsend's laws. An analytical expression of the corona inception voltage φ o n is proposed, which depends on the known values of physical parameters without adjustable parameters. As a proof of consistency, the classical Townsend current-voltage law I = C φ ( φ - φ o n ) is retrieved by linearizing the non-dimensional analytical solution. A brief parametric study showcases the interest in this analytical current model, especially for exploring small corona wires or considering various thermodynamic conditions.
On the motion of viscous fluids in the presence of diffusion
NASA Astrophysics Data System (ADS)
Secchi, Paolo
1988-01-01
The flow of a viscous incompressible two-component fluid with Fick's-law diffusion is investigated analytically. The existence of a unique global solution for small values of the diffusion coefficient (lambda) is proved for two-dimensional flow. The two- and three-dimensional solutions are also shown to converge toward the solutions of the Navier-Stokes equations for inhomogeneous fluids as lambda approaches zero.
NASA Astrophysics Data System (ADS)
Sakhel, Asaad R.; Sakhel, Roger R.
2018-02-01
We examine the dynamics of a one-dimensional harmonically trapped Bose-Einstein condensate (BEC), induced by the addition of a dimple trap whose depth oscillates with time. For this purpose, the Lagrangian variational method (LVM) is applied to provide the required analytical equations. The goal is to provide an analytical explanation for the quasiperiodic oscillations of the BEC size at resonance, that is additional to the one given by Adhikari (J Phys B At Mol Opt Phys 36:1109, 2003). It is shown that LVM is able to reproduce instabilities in the dynamics along the same lines outlined by Lellouch et al. (Phys Rev X 7:021015, 2017). Moreover, it is found that at resonance the energy dynamics display ordered oscillations, whereas at off-resonance they tend to be chaotic. Further, by using the Poincare-Lindstedt method to solve the LVM equation of motion, the resulting solution is able to reproduce the quasiperiodic oscillations of the BEC.
Electron distribution function in a laser plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalal, M.; Stoll, I.
1983-01-01
An accurate analytic solution of the Vlasov equation in the one-dimensional case is given for plasma electrons in the potential electric field of a monochromatic high-frequency wave of arbitrary amplitude and spatial modulation allowing for a self-consistent field. The phase velocity of the plasma waves is assumed to be appreciably higher than the electron thermal velocity (the case of nonresonant diffusion).
Modal Ring Method for the Scattering of Electromagnetic Waves
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Kreider, Kevin L.
1993-01-01
The modal ring method for electromagnetic scattering from perfectly electric conducting (PEC) symmetrical bodies is presented. The scattering body is represented by a line of finite elements (triangular) on its outer surface. The infinite computational region surrounding the body is represented analytically by an eigenfunction expansion. The modal ring method effectively reduces the two dimensional scattering problem to a one-dimensional problem similar to the method of moments. The modal element method is capable of handling very high frequency scattering because it has a highly banded solution matrix.
Three-dimensional eddy current solution of a polyphase machine test model (abstract)
NASA Astrophysics Data System (ADS)
Pahner, Uwe; Belmans, Ronnie; Ostovic, Vlado
1994-05-01
This abstract describes a three-dimensional (3D) finite element solution of a test model that has been reported in the literature. The model is a basis for calculating the current redistribution effects in the end windings of turbogenerators. The aim of the study is to see whether the analytical results of the test model can be found using a general purpose finite element package, thus indicating that the finite element model is accurate enough to treat real end winding problems. The real end winding problems cannot be solved analytically, as the geometry is far too complicated. The model consists of a polyphase coil set, containing 44 individual coils. This set generates a two pole mmf distribution on a cylindrical surface. The rotating field causes eddy currents to flow in the inner massive and conducting rotor. In the analytical solution a perfect sinusoidal mmf distribution is put forward. The finite element model contains 85824 tetrahedra and 16451 nodes. A complex single scalar potential representation is used in the nonconducting parts. The computation time required was 3 h and 42 min. The flux plots show that the field distribution is acceptable. Furthermore, the induced currents are calculated and compared with the values found from the analytical solution. The distribution of the eddy currents is very close to the distribution of the analytical solution. The most important results are the losses, both local and global. The value of the overall losses is less than 2% away from those of the analytical solution. Also the local distribution of the losses is at any given point less than 7% away from the analytical solution. The deviations of the results are acceptable and are partially due to the fact that the sinusoidal mmf distribution was not modeled perfectly in the finite element method.
Lump-type solutions for the (4+1)-dimensional Fokas equation via symbolic computations
NASA Astrophysics Data System (ADS)
Cheng, Li; Zhang, Yi
2017-09-01
Based on the Hirota bilinear form, two classes of lump-type solutions of the (4+1)-dimensional nonlinear Fokas equation, rationally localized in almost all directions in the space are obtained through a direct symbolic computation with Maple. The resulting lump-type solutions contain free parameters. To guarantee the analyticity and rational localization of the solutions, the involved parameters need to satisfy certain constraints. A few particular lump-type solutions with special choices of the involved parameters are given.
Soliton and kink jams in traffic flow with open boundaries.
Muramatsu, M; Nagatani, T
1999-07-01
Soliton density wave is investigated numerically and analytically in the optimal velocity model (a car-following model) of a one-dimensional traffic flow with open boundaries. Soliton density wave is distinguished from the kink density wave. It is shown that the soliton density wave appears only at the threshold of occurrence of traffic jams. The Korteweg-de Vries (KdV) equation is derived from the optimal velocity model by the use of the nonlinear analysis. It is found that the traffic soliton appears only near the neutral stability line. The soliton solution is analytically obtained from the perturbed KdV equation. It is shown that the soliton solution obtained from the nonlinear analysis is consistent with that of the numerical simulation.
Analytical Solution for Flow to a Partially Penetrating Well with Storage in a Confined Aquifer
NASA Astrophysics Data System (ADS)
Vesselinov, V. V.; Mishra, P. K.; Neuman, S. P.
2009-12-01
Analytical solutions for radial flow toward a pumping well are commonly applied to analyze pumping tests conducted in confined aquifers. However, the existing analytical solutions are not capable to simultaneously take into account aquifer anisotropy, partial penetration, and wellbore storage capacity of pumping well. Ignoring these effects may have important impact on the estimated aquifer properties. We present a new analytical solution for three-dimensional, axially symmetric flow to a pumping well in confined aquifer that accouts for aquifer anisotropy, partial penetration and wellbore storage capacity of pumping well. Our analytical reduces to that of Papadopulos et.al. [1967] when the pumping well is fully penetrating, Hantush [1964] when the pumping well has no wellbore storage, and Theis [1935] when both conditions are fulfilled. The solution is evaluated through numerical inversion of its Laplace transform. We use our new solution to analyze data from synthetic and real pumping tests.
Rybicki, F J; Hrovat, M I; Patz, S
2000-09-01
We have proposed a two-dimensional PERiodic-Linear (PERL) magnetic encoding field geometry B(x,y) = g(y)y cos(q(x)x) and a magnetic resonance imaging pulse sequence which incorporates two fields to image a two-dimensional spin density: a standard linear gradient in the x dimension, and the PERL field. Because of its periodicity, the PERL field produces a signal where the phase of the two dimensions is functionally different. The x dimension is encoded linearly, but the y dimension appears as the argument of a sinusoidal phase term. Thus, the time-domain signal and image spin density are not related by a two-dimensional Fourier transform. They are related by a one-dimensional Fourier transform in the x dimension and a new Bessel function integral transform (the PERL transform) in the y dimension. The inverse of the PERL transform provides a reconstruction algorithm for the y dimension of the spin density from the signal space. To date, the inverse transform has been computed numerically by a Bessel function expansion over its basis functions. This numerical solution used a finite sum to approximate an infinite summation and thus introduced a truncation error. This work analytically determines the basis functions for the PERL transform and incorporates them into the reconstruction algorithm. The improved algorithm is demonstrated by (1) direct comparison between the numerically and analytically computed basis functions, and (2) reconstruction of a known spin density. The new solution for the basis functions also lends proof of the system function for the PERL transform under specific conditions.
Modeling variably saturated subsurface solute transport with MODFLOW-UZF and MT3DMS
Morway, Eric D.; Niswonger, Richard G.; Langevin, Christian D.; Bailey, Ryan T.; Healy, Richard W.
2013-01-01
The MT3DMS groundwater solute transport model was modified to simulate solute transport in the unsaturated zone by incorporating the unsaturated-zone flow (UZF1) package developed for MODFLOW. The modified MT3DMS code uses a volume-averaged approach in which Lagrangian-based UZF1 fluid fluxes and storage changes are mapped onto a fixed grid. Referred to as UZF-MT3DMS, the linked model was tested against published benchmarks solved analytically as well as against other published codes, most frequently the U.S. Geological Survey's Variably-Saturated Two-Dimensional Flow and Transport Model. Results from a suite of test cases demonstrate that the modified code accurately simulates solute advection, dispersion, and reaction in the unsaturated zone. Two- and three-dimensional simulations also were investigated to ensure unsaturated-saturated zone interaction was simulated correctly. Because the UZF1 solution is analytical, large-scale flow and transport investigations can be performed free from the computational and data burdens required by numerical solutions to Richards' equation. Results demonstrate that significant simulation runtime savings can be achieved with UZF-MT3DMS, an important development when hundreds or thousands of model runs are required during parameter estimation and uncertainty analysis. Three-dimensional variably saturated flow and transport simulations revealed UZF-MT3DMS to have runtimes that are less than one tenth of the time required by models that rely on Richards' equation. Given its accuracy and efficiency, and the wide-spread use of both MODFLOW and MT3DMS, the added capability of unsaturated-zone transport in this familiar modeling framework stands to benefit a broad user-ship.
Modeling variably saturated subsurface solute transport with MODFLOW-UZF and MT3DMS.
Morway, Eric D; Niswonger, Richard G; Langevin, Christian D; Bailey, Ryan T; Healy, Richard W
2013-03-01
The MT3DMS groundwater solute transport model was modified to simulate solute transport in the unsaturated zone by incorporating the unsaturated-zone flow (UZF1) package developed for MODFLOW. The modified MT3DMS code uses a volume-averaged approach in which Lagrangian-based UZF1 fluid fluxes and storage changes are mapped onto a fixed grid. Referred to as UZF-MT3DMS, the linked model was tested against published benchmarks solved analytically as well as against other published codes, most frequently the U.S. Geological Survey's Variably-Saturated Two-Dimensional Flow and Transport Model. Results from a suite of test cases demonstrate that the modified code accurately simulates solute advection, dispersion, and reaction in the unsaturated zone. Two- and three-dimensional simulations also were investigated to ensure unsaturated-saturated zone interaction was simulated correctly. Because the UZF1 solution is analytical, large-scale flow and transport investigations can be performed free from the computational and data burdens required by numerical solutions to Richards' equation. Results demonstrate that significant simulation runtime savings can be achieved with UZF-MT3DMS, an important development when hundreds or thousands of model runs are required during parameter estimation and uncertainty analysis. Three-dimensional variably saturated flow and transport simulations revealed UZF-MT3DMS to have runtimes that are less than one tenth of the time required by models that rely on Richards' equation. Given its accuracy and efficiency, and the wide-spread use of both MODFLOW and MT3DMS, the added capability of unsaturated-zone transport in this familiar modeling framework stands to benefit a broad user-ship. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.
Weak solutions of the three-dimensional vorticity equation with vortex singularities
NASA Technical Reports Server (NTRS)
Winckelmans, G.; Leonard, A.
1988-01-01
The extension of the concept of vortex singularities, developed by Saffman and Meiron (1986) for the case of two-dimensional point vortices in an incompressible vortical flow, to the three-dimensional case of vortex sticks (vortons) is investigated analytically. The derivation of the governing equations is explained, and it is demonstrated that the formulation obtained conserves total vorticity and is a weak solution of the vorticity equation, making it an appropriate means for representing three-dimensional vortical flows with limited numbers of vortex singularities.
Xu, Zhiliang; Chen, Xu-Yan; Liu, Yingjie
2014-01-01
We present a new formulation of the Runge-Kutta discontinuous Galerkin (RKDG) method [9, 8, 7, 6] for solving conservation Laws with increased CFL numbers. The new formulation requires the computed RKDG solution in a cell to satisfy additional conservation constraint in adjacent cells and does not increase the complexity or change the compactness of the RKDG method. Numerical computations for solving one-dimensional and two-dimensional scalar and systems of nonlinear hyperbolic conservation laws are performed with approximate solutions represented by piecewise quadratic and cubic polynomials, respectively. The hierarchical reconstruction [17, 33] is applied as a limiter to eliminate spurious oscillations in discontinuous solutions. From both numerical experiments and the analytic estimate of the CFL number of the newly formulated method, we find that: 1) this new formulation improves the CFL number over the original RKDG formulation by at least three times or more and thus reduces the overall computational cost; and 2) the new formulation essentially does not compromise the resolution of the numerical solutions of shock wave problems compared with ones computed by the RKDG method. PMID:25414520
Regarding on the prototype solutions for the nonlinear fractional-order biological population model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baskonus, Haci Mehmet, E-mail: hmbaskonus@gmail.com; Bulut, Hasan
2016-06-08
In this study, we have submitted to literature a method newly extended which is called as Improved Bernoulli sub-equation function method based on the Bernoulli Sub-ODE method. The proposed analytical scheme has been expressed with steps. We have obtained some new analytical solutions to the nonlinear fractional-order biological population model by using this technique. Two and three dimensional surfaces of analytical solutions have been drawn by wolfram Mathematica 9. Finally, a conclusion has been submitted by mentioning important acquisitions founded in this study.
Maximal analytic extension and hidden symmetries of the dipole black ring
NASA Astrophysics Data System (ADS)
Armas, Jay
2011-12-01
We construct analytic extensions across the Killing horizons of non-extremal and extremal dipole black rings in Einstein-Maxwell’s theory using different methods. We show that these extensions are non-globally hyperbolic, have multiple asymptotically flat regions and, in the non-extremal case, are also maximal and timelike complete. Moreover, we find that in both cases, the causal structure of the maximally extended spacetime resembles that of the four-dimensional Reissner-Nordström black hole. Furthermore, motivated by the physical interpretation of one of these extensions, we find a separable solution to the Hamilton-Jacobi equation corresponding to zero energy null geodesics and relate it to the existence of a conformal Killing tensor and a conformal Killing-Yano tensor in a specific dimensionally reduced spacetime.
NASA Astrophysics Data System (ADS)
Li, F. X.; Rajapakse, R. K. N. D.
2007-03-01
Saturated domain orientation textures of three types of pseudocubic (tetragonal, rhombohedral, and orthorhombic) ferroelectric ceramics after complete electric and uniaxial tension (compression) poling is studied analytically in this paper. A one-dimensional orientation distribution function (ODF) of the domain polar vectors is explicitly derived from the uniform inverse pole figures of the poling field axes on a stereographic projection with respect to the fixed crystallite coordinates. The analytical ODF is used to obtain the analytical solutions of saturated polarization and strain after electric/mechanical poling. Based on the closed form solution of the saturated domain orientation textures, the resultant intrinsic electromechanical properties of ferroelectric ceramics, which depend only on the ODF and properties of the corresponding single crystals, are obtained. The results show how the macroscopic symmetries of ferroelectric crystals change from 4mm (tetragonal), 3m (rhombohedral), and mm2 (orthorhombic) single crystals to a ∞mm (transversely isotropic) completely poled ceramic.
NASA Astrophysics Data System (ADS)
Fring, Andreas; Frith, Thomas
2018-06-01
We provide exact analytical solutions for a two-dimensional explicitly time-dependent non-Hermitian quantum system. While the time-independent variant of the model studied is in the broken PT-symmetric phase for the entire range of the model parameters, and has therefore a partially complex energy eigenspectrum, its time-dependent version has real energy expectation values at all times. In our solution procedure we compare the two equivalent approaches of directly solving the time-dependent Dyson equation with one employing the Lewis–Riesenfeld method of invariants. We conclude that the latter approach simplifies the solution procedure due to the fact that the invariants of the non-Hermitian and Hermitian system are related to each other in a pseudo-Hermitian fashion, which in turn does not hold for their corresponding time-dependent Hamiltonians. Thus constructing invariants and subsequently using the pseudo-Hermiticity relation between them allows to compute the Dyson map and to solve the Dyson equation indirectly. In this way one can bypass to solve nonlinear differential equations, such as the dissipative Ermakov–Pinney equation emerging in our and many other systems.
A deterministic particle method for one-dimensional reaction-diffusion equations
NASA Technical Reports Server (NTRS)
Mascagni, Michael
1995-01-01
We derive a deterministic particle method for the solution of nonlinear reaction-diffusion equations in one spatial dimension. This deterministic method is an analog of a Monte Carlo method for the solution of these problems that has been previously investigated by the author. The deterministic method leads to the consideration of a system of ordinary differential equations for the positions of suitably defined particles. We then consider the time explicit and implicit methods for this system of ordinary differential equations and we study a Picard and Newton iteration for the solution of the implicit system. Next we solve numerically this system and study the discretization error both analytically and numerically. Numerical computation shows that this deterministic method is automatically adaptive to large gradients in the solution.
NASA Astrophysics Data System (ADS)
Lau, Chun Sing
This thesis studies two types of problems in financial derivatives pricing. The first type is the free boundary problem, which can be formulated as a partial differential equation (PDE) subject to a set of free boundary condition. Although the functional form of the free boundary condition is given explicitly, the location of the free boundary is unknown and can only be determined implicitly by imposing continuity conditions on the solution. Two specific problems are studied in details, namely the valuation of fixed-rate mortgages and CEV American options. The second type is the multi-dimensional problem, which involves multiple correlated stochastic variables and their governing PDE. One typical problem we focus on is the valuation of basket-spread options, whose underlying asset prices are driven by correlated geometric Brownian motions (GBMs). Analytic approximate solutions are derived for each of these three problems. For each of the two free boundary problems, we propose a parametric moving boundary to approximate the unknown free boundary, so that the original problem transforms into a moving boundary problem which can be solved analytically. The governing parameter of the moving boundary is determined by imposing the first derivative continuity condition on the solution. The analytic form of the solution allows the price and the hedging parameters to be computed very efficiently. When compared against the benchmark finite-difference method, the computational time is significantly reduced without compromising the accuracy. The multi-stage scheme further allows the approximate results to systematically converge to the benchmark results as one recasts the moving boundary into a piecewise smooth continuous function. For the multi-dimensional problem, we generalize the Kirk (1995) approximate two-asset spread option formula to the case of multi-asset basket-spread option. Since the final formula is in closed form, all the hedging parameters can also be derived in closed form. Numerical examples demonstrate that the pricing and hedging errors are in general less than 1% relative to the benchmark prices obtained by numerical integration or Monte Carlo simulation. By exploiting an explicit relationship between the option price and the underlying probability distribution, we further derive an approximate distribution function for the general basket-spread variable. It can be used to approximate the transition probability distribution of any linear combination of correlated GBMs. Finally, an implicit perturbation is applied to reduce the pricing errors by factors of up to 100. When compared against the existing methods, the basket-spread option formula coupled with the implicit perturbation turns out to be one of the most robust and accurate approximation methods.
On the three-dimensional instability of strained vortices
NASA Technical Reports Server (NTRS)
Waleffe, Fabian
1990-01-01
The three-dimensional (3-D) instability of a two-dimensional (2-D) flow with elliptical streamlines has been proposed as a generic mechanism for the breakdown of many 2-D flows. A physical interpretation for the mechanism is presented together with an analytical treatment of the problem. It is shown that the stability of an elliptical flow is governed by an Ince equation. An analytical representation for a localized solution is given and establishes a direct link with previous computations and experiments.
NASA Astrophysics Data System (ADS)
Bizoń, Piotr; Chmaj, Tadeusz; Szpak, Nikodem
2011-10-01
We study dynamics near the threshold for blowup in the focusing nonlinear Klein-Gordon equation utt - uxx + u - |u|2αu = 0 on the line. Using mixed numerical and analytical methods we find that solutions starting from even initial data, fine-tuned to the threshold, are trapped by the static solution S for intermediate times. The details of trapping are shown to depend on the power α, namely, we observe fast convergence to S for α > 1, slow convergence for α = 1, and very slow (if any) convergence for 0 < α < 1. Our findings are complementary with respect to the recent rigorous analysis of the same problem (for α > 2) by Krieger, Nakanishi, and Schlag ["Global dynamics above from the ground state energy for the one-dimensional NLKG equation," preprint arXiv:1011.1776 [math.AP
Approximate Analytical Solutions for Hypersonic Flow Over Slender Power Law Bodies
NASA Technical Reports Server (NTRS)
Mirels, Harold
1959-01-01
Approximate analytical solutions are presented for two-dimensional and axisymmetric hypersonic flow over slender power law bodies. Both zero order (M approaches infinity) and first order (small but nonvanishing values of 1/(M(Delta)(sup 2) solutions are presented, where M is free-stream Mach number and Delta is a characteristic slope. These solutions are compared with exact numerical integration of the equations of motion and appear to be accurate particularly when the shock is relatively close to the body.
General solution of the Dirac equation for quasi-two-dimensional electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eremko, Alexander, E-mail: eremko@bitp.kiev.ua; Brizhik, Larissa, E-mail: brizhik@bitp.kiev.ua; Loktev, Vadim, E-mail: vloktev@bitp.kiev.ua
2016-06-15
The general solution of the Dirac equation for quasi-two-dimensional electrons confined in an asymmetric quantum well, is found. The energy spectrum of such a system is exactly calculated using special unitary operator and is shown to depend on the electron spin polarization. This solution contains free parameters, whose variation continuously transforms one known particular solution into another. As an example, two different cases are considered in detail: electron in a deep and in a strongly asymmetric shallow quantum well. The effective mass renormalized by relativistic corrections and Bychkov–Rashba coefficients are analytically obtained for both cases. It is demonstrated that themore » general solution transforms to the particular solutions, found previously (Eremko et al., 2015) with the use of spin invariants. The general solution allows to establish conditions at which a specific (accompanied or non-accompanied by Rashba splitting) spin state can be realized. These results can prompt the ways to control the spin degree of freedom via the synthesis of spintronic heterostructures with the required properties.« less
Analytic regularization of uniform cubic B-spline deformation fields.
Shackleford, James A; Yang, Qi; Lourenço, Ana M; Shusharina, Nadya; Kandasamy, Nagarajan; Sharp, Gregory C
2012-01-01
Image registration is inherently ill-posed, and lacks a unique solution. In the context of medical applications, it is desirable to avoid solutions that describe physically unsound deformations within the patient anatomy. Among the accepted methods of regularizing non-rigid image registration to provide solutions applicable to medical practice is the penalty of thin-plate bending energy. In this paper, we develop an exact, analytic method for computing the bending energy of a three-dimensional B-spline deformation field as a quadratic matrix operation on the spline coefficient values. Results presented on ten thoracic case studies indicate the analytic solution is between 61-1371x faster than a numerical central differencing solution.
The zig-zag walk with scattering and absorption on the real half line and in a lattice model
NASA Astrophysics Data System (ADS)
Wuttke, Joachim
2014-05-01
The Darwin-Hamilton equations, describing one-dimensional transport with scattering and absorption, are expanded into a recursion. The solution involves ballot numbers. The recurrence probability as function of scattering order is given by Catalan numbers. To reproduce this analytical result in a lattice model, a novel relation between Narayana and Catalan numbers is derived.
Lie group classification of first-order delay ordinary differential equations
NASA Astrophysics Data System (ADS)
Dorodnitsyn, Vladimir A.; Kozlov, Roman; Meleshko, Sergey V.; Winternitz, Pavel
2018-05-01
A group classification of first-order delay ordinary differential equations (DODEs) accompanied by an equation for the delay parameter (delay relation) is presented. A subset of such systems (delay ordinary differential systems or DODSs), which consists of linear DODEs and solution-independent delay relations, have infinite-dimensional symmetry algebras—as do nonlinear ones that are linearizable by an invertible transformation of variables. Genuinely nonlinear DODSs have symmetry algebras of dimension n, . It is shown how exact analytical solutions of invariant DODSs can be obtained using symmetry reduction.
A Comparison of Some Difference Schemes for a Parabolic Problem of Zero-Coupon Bond Pricing
NASA Astrophysics Data System (ADS)
Chernogorova, Tatiana; Vulkov, Lubin
2009-11-01
This paper describes a comparison of some numerical methods for solving a convection-diffusion equation subjected by dynamical boundary conditions which arises in the zero-coupon bond pricing. The one-dimensional convection-diffusion equation is solved by using difference schemes with weights including standard difference schemes as the monotone Samarskii's scheme, FTCS and Crank-Nicolson methods. The schemes are free of spurious oscillations and satisfy the positivity and maximum principle as demanded for the financial and diffusive solution. Numerical results are compared with analytical solutions.
(Compactified) black branes in four dimensional f(R)-gravity
NASA Astrophysics Data System (ADS)
Dimakis, N.; Giacomini, Alex; Paliathanasis, Andronikos
2018-02-01
A new family of analytical solutions in a four dimensional static spacetime is presented for f (R) -gravity. In contrast to General Relativity, we find that a non trivial black brane/string solution is supported in vacuum power law f (R) -gravity for appropriate values of the parameters characterizing the model and when axisymmetry is introduced in the line element. For the aforementioned solution, we perform a brief investigation over its basic thermodynamic quantities.
Bernstein-Greene-Kruskal Modes in a Three-Dimensional Plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, C.S.; Bhattacharjee, A.
2005-12-09
Bernstein-Greene-Kruskal modes in a three-dimensional (3D) unmagnetized plasma are constructed. It is shown that 3D solutions that depend only on energy do not exist. However, 3D solutions that depend on energy and additional constants of motion (such as angular momentum) do exist. Exact analytical as well as numerical solutions are constructed assuming spherical symmetry, and their properties are contrasted with those of 1D solutions. Possible extensions to solutions with cylindrical symmetry with or without a finite magnetic guide field are discussed.
A two-dimensional analytical model of vapor intrusion involving vertical heterogeneity.
Yao, Yijun; Verginelli, Iason; Suuberg, Eric M
2017-05-01
In this work, we present an analytical chlorinated vapor intrusion (CVI) model that can estimate source-to-indoor air concentration attenuation by simulating two-dimensional (2-D) vapor concentration profile in vertically heterogeneous soils overlying a homogenous vapor source. The analytical solution describing the 2-D soil gas transport was obtained by applying a modified Schwarz-Christoffel mapping method. A partial field validation showed that the developed model provides results (especially in terms of indoor emission rates) in line with the measured data from a case involving a building overlying a layered soil. In further testing, it was found that the new analytical model can very closely replicate the results of three-dimensional (3-D) numerical models at steady state in scenarios involving layered soils overlying homogenous groundwater sources. By contrast, by adopting a two-layer approach (capillary fringe and vadose zone) as employed in the EPA implementation of the Johnson and Ettinger model, the spatially and temporally averaged indoor concentrations in the case of groundwater sources can be higher than the ones estimated by the numerical model up to two orders of magnitude. In short, the model proposed in this work can represent an easy-to-use tool that can simulate the subsurface soil gas concentration in layered soils overlying a homogenous vapor source while keeping the simplicity of an analytical approach that requires much less computational effort.
NASA Technical Reports Server (NTRS)
Chio, S. R.; Gyekenyesi, J. P.
1999-01-01
A two-dimensional, numerical analysis of slow crack growth (SCG) was performed for brittle materials with finite thickness subjected to constant stress-rate ("dynamic fatigue") loading in flexure. The numerical solution showed that the conventional, simple, one-dimensional analytical solution can be used with a maximum error of about 5% in determining the SCG parameters of a brittle material with the conditions of a normalized thickness (a ratio of specimen thickness to initial crack size) T > 3.3 and of a SCG parameter n > 10. The change in crack shape from semicircular to elliptical configurations was significant particularly at both low stress rate and low T, attributed to predominant difference in stress intensity factor along the crack front. The numerical solution of SCG parameters was supported within the experimental range by the data obtained from constant stress-rate flexural testing for soda-lime glass microslides at ambient temperature.
NASA Astrophysics Data System (ADS)
Naine, Tarun Bharath; Gundawar, Manoj Kumar
2017-09-01
We demonstrate a very powerful correlation between the discrete probability of distances of neighboring cells and thermal wave propagation rate, for a system of cells spread on a one-dimensional chain. A gamma distribution is employed to model the distances of neighboring cells. In the absence of an analytical solution and the differences in ignition times of adjacent reaction cells following non-Markovian statistics, invariably the solution for thermal wave propagation rate for a one-dimensional system with randomly distributed cells is obtained by numerical simulations. However, such simulations which are based on Monte-Carlo methods require several iterations of calculations for different realizations of distribution of adjacent cells. For several one-dimensional systems, differing in the value of shaping parameter of the gamma distribution, we show that the average reaction front propagation rates obtained by a discrete probability between two limits, shows excellent agreement with those obtained numerically. With the upper limit at 1.3, the lower limit depends on the non-dimensional ignition temperature. Additionally, this approach also facilitates the prediction of burning limits of heterogeneous thermal mixtures. The proposed method completely eliminates the need for laborious, time intensive numerical calculations where the thermal wave propagation rates can now be calculated based only on macroscopic entity of discrete probability.
Shape determination and control for large space structures
NASA Technical Reports Server (NTRS)
Weeks, C. J.
1981-01-01
An integral operator approach is used to derive solutions to static shape determination and control problems associated with large space structures. Problem assumptions include a linear self-adjoint system model, observations and control forces at discrete points, and performance criteria for the comparison of estimates or control forms. Results are illustrated by simulations in the one dimensional case with a flexible beam model, and in the multidimensional case with a finite model of a large space antenna. Modal expansions for terms in the solution algorithms are presented, using modes from the static or associated dynamic mode. These expansions provide approximated solutions in the event that a used form analytical solution to the system boundary value problem is not available.
NASA Astrophysics Data System (ADS)
Ouyang, Chaojun; He, Siming; Xu, Qiang; Luo, Yu; Zhang, Wencheng
2013-03-01
A two-dimensional mountainous mass flow dynamic procedure solver (Massflow-2D) using the MacCormack-TVD finite difference scheme is proposed. The solver is implemented in Matlab on structured meshes with variable computational domain. To verify the model, a variety of numerical test scenarios, namely, the classical one-dimensional and two-dimensional dam break, the landslide in Hong Kong in 1993 and the Nora debris flow in the Italian Alps in 2000, are executed, and the model outputs are compared with published results. It is established that the model predictions agree well with both the analytical solution as well as the field observations.
NASA Technical Reports Server (NTRS)
Kubota, H.
1976-01-01
A simplified analytical method for calculation of thermal response within a transpiration-cooled porous heat shield material in an intense radiative-convective heating environment is presented. The essential assumptions of the radiative and convective transfer processes in the heat shield matrix are the two-temperature approximation and the specified radiative-convective heatings of the front surface. Sample calculations for porous silica with CO2 injection are presented for some typical parameters of mass injection rate, porosity, and material thickness. The effect of these parameters on the cooling system is discussed.
Controlling rogue waves in inhomogeneous Bose-Einstein condensates.
Loomba, Shally; Kaur, Harleen; Gupta, Rama; Kumar, C N; Raju, Thokala Soloman
2014-05-01
We present the exact rogue wave solutions of the quasi-one-dimensional inhomogeneous Gross-Pitaevskii equation by using similarity transformation. Then, by employing the exact analytical solutions we have studied the controllable behavior of rogue waves in the Bose-Einstein condensates context for the experimentally relevant systems. Additionally, we have also investigated the nonlinear tunneling of rogue waves through a conventional hyperbolic barrier and periodic barrier. We have found that, for the conventional nonlinearity barrier case, rogue waves are localized in space and time and get amplified near the barrier, while for the dispersion barrier case rogue waves are localized in space and propagating in time and their amplitude is reduced at the barrier location. In the case of the periodic barrier, the interesting dynamical features of rogue waves are obtained and analyzed analytically.
Stationary and moving solitons in spin-orbit-coupled spin-1 Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Li, Yu-E.; Xue, Ju-Kui
2018-04-01
We investigate the matter-wave solitons in a spin-orbit-coupled spin-1 Bose-Einstein condensate using a multiscale perturbation method. Beginning with the one-dimensional spin-orbit-coupled threecomponent Gross-Pitaevskii equations, we derive a single nonlinear Schrödinger equation, which allows determination of the analytical soliton solutions of the system. Stationary and moving solitons in the system are derived. In particular, a parameter space for different existing soliton types is provided. It is shown that there exist only dark or bright solitons when the spin-orbit coupling is weak, with the solitons depending on the atomic interactions. However, when the spin-orbit coupling is strong, both dark and bright solitons exist, being determined by the Raman coupling. Our analytical solutions are confirmed by direct numerical simulations.
NASA Technical Reports Server (NTRS)
Usab, William J., Jr.; Jiang, Yi-Tsann
1991-01-01
The objective of the present research is to develop a general solution adaptive scheme for the accurate prediction of inviscid quasi-three-dimensional flow in advanced compressor and turbine designs. The adaptive solution scheme combines an explicit finite-volume time-marching scheme for unstructured triangular meshes and an advancing front triangular mesh scheme with a remeshing procedure for adapting the mesh as the solution evolves. The unstructured flow solver has been tested on a series of two-dimensional airfoil configurations including a three-element analytic test case presented here. Mesh adapted quasi-three-dimensional Euler solutions are presented for three spanwise stations of the NASA rotor 67 transonic fan. Computed solutions are compared with available experimental data.
NASA Technical Reports Server (NTRS)
Bandyopadhyay, Alak; Majumdar, Alok
2007-01-01
The present paper describes the verification and validation of a quasi one-dimensional pressure based finite volume algorithm, implemented in Generalized Fluid System Simulation Program (GFSSP), for predicting compressible flow with friction, heat transfer and area change. The numerical predictions were compared with two classical solutions of compressible flow, i.e. Fanno and Rayleigh flow. Fanno flow provides an analytical solution of compressible flow in a long slender pipe where incoming subsonic flow can be choked due to friction. On the other hand, Raleigh flow provides analytical solution of frictionless compressible flow with heat transfer where incoming subsonic flow can be choked at the outlet boundary with heat addition to the control volume. Nonuniform grid distribution improves the accuracy of numerical prediction. A benchmark numerical solution of compressible flow in a converging-diverging nozzle with friction and heat transfer has been developed to verify GFSSP's numerical predictions. The numerical predictions compare favorably in all cases.
Modal ring method for the scattering of sound
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Kreider, Kevin L.
1993-01-01
The modal element method for acoustic scattering can be simplified when the scattering body is rigid. In this simplified method, called the modal ring method, the scattering body is represented by a ring of triangular finite elements forming the outer surface. The acoustic pressure is calculated at the element nodes. The pressure in the infinite computational region surrounding the body is represented analytically by an eigenfunction expansion. The two solution forms are coupled by the continuity of pressure and velocity on the body surface. The modal ring method effectively reduces the two-dimensional scattering problem to a one-dimensional problem capable of handling very high frequency scattering. In contrast to the boundary element method or the method of moments, which perform a similar reduction in problem dimension, the model line method has the added advantage of having a highly banded solution matrix requiring considerably less computer storage. The method shows excellent agreement with analytic results for scattering from rigid circular cylinders over a wide frequency range (1 is equal to or less than ka is less than or equal to 100) in the near and far fields.
Approximate analytic expression for the Skyrmions crystal
NASA Astrophysics Data System (ADS)
Grandi, Nicolás; Sturla, Mauricio
2018-01-01
We find approximate solutions for the two-dimensional nonlinear Σ-model with Dzyalioshinkii-Moriya term, representing magnetic Skyrmions. They are built in an analytic form, by pasting different approximate solutions found in different regions of space. We verify that our construction reproduces the phenomenology known from numerical solutions and Monte Carlo simulations, giving rise to a Skyrmion lattice at an intermediate range of magnetic field, flanked by spiral and spin-polarized phases for low and high magnetic fields, respectively.
Front and pulse solutions for the complex Ginzburg-Landau equation with higher-order terms.
Tian, Huiping; Li, Zhonghao; Tian, Jinping; Zhou, Guosheng
2002-12-01
We investigate one-dimensional complex Ginzburg-Landau equation with higher-order terms and discuss their influences on the multiplicity of solutions. An exact analytic front solution is presented. By stability analysis for the original partial differential equation, we derive its necessary stability condition for amplitude perturbations. This condition together with the exact front solution determine the region of parameter space where the uniformly translating front solution can exist. In addition, stable pulses, chaotic pulses, and attenuation pulses appear generally if the parameters are out of the range. Finally, applying these analysis into the optical transmission system numerically we find that the stable transmission of optical pulses can be achieved if the parameters are appropriately chosen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoang-Do, Ngoc-Tram; Hoang, Van-Hung; Le, Van-Hoang
2013-05-15
The Feranchuk-Komarov operator method is developed by combining with the Levi-Civita transformation in order to construct analytical solutions of the Schroedinger equation for a two-dimensional exciton in a uniform magnetic field of arbitrary strength. As a result, analytical expressions for the energy of the ground and excited states are obtained with a very high precision of up to four decimal places. Especially, the precision is uniformly stable for the whole range of the magnetic field. This advantage appears due to the consideration of the asymptotic behaviour of the wave-functions in strong magnetic field. The results could be used for variousmore » physical analyses and the method used here could also be applied to other atomic systems.« less
Song, Hongjun; Wang, Yi; Pant, Kapil
2011-01-01
This article presents a three-dimensional analytical model to investigate cross-stream diffusion transport in rectangular microchannels with arbitrary aspect ratios under pressure-driven flow. The Fourier series solution to the three-dimensional convection–diffusion equation is obtained using a double integral transformation method and associated eigensystem calculation. A phase diagram derived from the dimensional analysis is presented to thoroughly interrogate the characteristics in various transport regimes and examine the validity of the model. The analytical model is verified against both experimental and numerical models in terms of the concentration profile, diffusion scaling law, and mixing efficiency with excellent agreement (with <0.5% relative error). Quantitative comparison against other prior analytical models in extensive parameter space is also performed, which demonstrates that the present model accommodates much broader transport regimes with significantly enhanced applicability. PMID:22247719
Song, Hongjun; Wang, Yi; Pant, Kapil
2012-01-01
This article presents a three-dimensional analytical model to investigate cross-stream diffusion transport in rectangular microchannels with arbitrary aspect ratios under pressure-driven flow. The Fourier series solution to the three-dimensional convection-diffusion equation is obtained using a double integral transformation method and associated eigensystem calculation. A phase diagram derived from the dimensional analysis is presented to thoroughly interrogate the characteristics in various transport regimes and examine the validity of the model. The analytical model is verified against both experimental and numerical models in terms of the concentration profile, diffusion scaling law, and mixing efficiency with excellent agreement (with <0.5% relative error). Quantitative comparison against other prior analytical models in extensive parameter space is also performed, which demonstrates that the present model accommodates much broader transport regimes with significantly enhanced applicability.
A convergent series expansion for hyperbolic systems of conservation laws
NASA Technical Reports Server (NTRS)
Harabetian, E.
1985-01-01
The discontinuities piecewise analytic initial value problem for a wide class of conservation laws is considered which includes the full three-dimensional Euler equations. The initial interaction at an arbitrary curved surface is resolved in time by a convergent series. Among other features the solution exhibits shock, contact, and expansion waves as well as sound waves propagating on characteristic surfaces. The expansion waves correspond to he one-dimensional rarefactions but have a more complicated structure. The sound waves are generated in place of zero strength shocks, and they are caused by mismatches in derivatives.
Methods for analysis of cracks in three-dimensional solids
NASA Technical Reports Server (NTRS)
Raju, I. S.; Newman, J. C., Jr.
1984-01-01
Analytical and numerical methods evaluating the stress-intensity factors for three-dimensional cracks in solids are presented, with reference to fatigue failure in aerospace structures. The exact solutions for embedded elliptical and circular cracks in infinite solids, and the approximate methods, including the finite-element, the boundary-integral equation, the line-spring models, and the mixed methods are discussed. Among the mixed methods, the superposition of analytical and finite element methods, the stress-difference, the discretization-error, the alternating, and the finite element-alternating methods are reviewed. Comparison of the stress-intensity factor solutions for some three-dimensional crack configurations showed good agreement. Thus, the choice of a particular method in evaluating the stress-intensity factor is limited only to the availability of resources and computer programs.
NASA Astrophysics Data System (ADS)
Li, Chong; Yuan, Juyun; Yu, Haitao; Yuan, Yong
2018-01-01
Discrete models such as the lumped parameter model and the finite element model are widely used in the solution of soil amplification of earthquakes. However, neither of the models will accurately estimate the natural frequencies of soil deposit, nor simulate a damping of frequency independence. This research develops a new discrete model for one-dimensional viscoelastic response analysis of layered soil deposit based on the mode equivalence method. The new discrete model is a one-dimensional equivalent multi-degree-of-freedom (MDOF) system characterized by a series of concentrated masses, springs and dashpots with a special configuration. The dynamic response of the equivalent MDOF system is analytically derived and the physical parameters are formulated in terms of modal properties. The equivalent MDOF system is verified through a comparison of amplification functions with the available theoretical solutions. The appropriate number of degrees of freedom (DOFs) in the equivalent MDOF system is estimated. A comparative study of the equivalent MDOF system with the existing discrete models is performed. It is shown that the proposed equivalent MDOF system can exactly present the natural frequencies and the hysteretic damping of soil deposits and provide more accurate results with fewer DOFs.
A finite-element method for large-amplitude, two-dimensional panel flutter at hypersonic speeds
NASA Technical Reports Server (NTRS)
Mei, Chuh; Gray, Carl E.
1989-01-01
The nonlinear flutter behavior of a two-dimensional panel in hypersonic flow is investigated analytically. An FEM formulation based unsteady third-order piston theory (Ashley and Zartarian, 1956; McIntosh, 1970) and taking nonlinear structural and aerodynamic phenomena into account is derived; the solution procedure is outlined; and typical results are presented in extensive tables and graphs. A 12-element finite-element solution obtained using an alternative method for linearizing the assumed limit-cycle time function is shown to give predictions in good agreement with classical analytical results for large-amplitude vibration in a vacuum and large-amplitude panel flutter, using linear aerodynamics.
Improved finite element methodology for integrated thermal structural analysis
NASA Technical Reports Server (NTRS)
Dechaumphai, P.; Thornton, E. A.
1982-01-01
An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analysis is presented. New thermal finite elements which yield exact nodal and element temperatures for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.
Study of microvascular non-Newtonian blood flow modulated by electroosmosis.
Tripathi, Dharmendra; Yadav, Ashu; Anwar Bég, O; Kumar, Rakesh
2018-05-01
An analytical study of microvascular non-Newtonian blood flow is conducted incorporating the electro-osmosis phenomenon. Blood is considered as a Bingham rheological aqueous ionic solution. An externally applied static axial electrical field is imposed on the system. The Poisson-Boltzmann equation for electrical potential distribution is implemented to accommodate the electrical double layer in the microvascular regime. With long wavelength, lubrication and Debye-Hückel approximations, the boundary value problem is rendered non-dimensional. Analytical solutions are derived for the axial velocity, volumetric flow rate, pressure gradient, volumetric flow rate, averaged volumetric flow rate along one time period, pressure rise along one wavelength and stream function. A plug swidth is featured in the solutions. Via symbolic software (Mathematica), graphical plots are generated for the influence of Bingham plug flow width parameter, electrical Debye length and Helmholtz-Smoluchowski velocity (maximum electro-osmotic velocity) on the key hydrodynamic variables. This study reveals that blood flow rate accelerates with decreasing the plug width (i.e. viscoplastic nature of fluids) and also with increasing the Debye length parameter. Copyright © 2018 Elsevier Inc. All rights reserved.
Modelling the aggregation process of cellular slime mold by the chemical attraction.
Atangana, Abdon; Vermeulen, P D
2014-01-01
We put into exercise a comparatively innovative analytical modus operandi, the homotopy decomposition method (HDM), for solving a system of nonlinear partial differential equations arising in an attractor one-dimensional Keller-Segel dynamics system. Numerical solutions are given and some properties show evidence of biologically practical reliance on the parameter values. The reliability of HDM and the reduction in computations give HDM a wider applicability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cruz, Hans, E-mail: hans@ciencias.unam.mx; Schuch, Dieter; Castaños, Octavio, E-mail: ocasta@nucleares.unam.mx
2015-09-15
The sensitivity of the evolution of quantum uncertainties to the choice of the initial conditions is shown via a complex nonlinear Riccati equation leading to a reformulation of quantum dynamics. This sensitivity is demonstrated for systems with exact analytic solutions with the form of Gaussian wave packets. In particular, one-dimensional conservative systems with at most quadratic Hamiltonians are studied.
NASA Astrophysics Data System (ADS)
Seadawy, Aly R.
2017-01-01
The propagation of three-dimensional nonlinear irrotational flow of an inviscid and incompressible fluid of the long waves in dispersive shallow-water approximation is analyzed. The problem formulation of the long waves in dispersive shallow-water approximation lead to fifth-order Kadomtsev-Petviashvili (KP) dynamical equation by applying the reductive perturbation theory. By using an extended auxiliary equation method, the solitary travelling-wave solutions of the two-dimensional nonlinear fifth-order KP dynamical equation are derived. An analytical as well as a numerical solution of the two-dimensional nonlinear KP equation are obtained and analyzed with the effects of external pressure flow.
Analytic solutions for Long's equation and its generalization
NASA Astrophysics Data System (ADS)
Humi, Mayer
2017-12-01
Two-dimensional, steady-state, stratified, isothermal atmospheric flow over topography is governed by Long's equation. Numerical solutions of this equation were derived and used by several authors. In particular, these solutions were applied extensively to analyze the experimental observations of gravity waves. In the first part of this paper we derive an extension of this equation to non-isothermal flows. Then we devise a transformation that simplifies this equation. We show that this simplified equation admits solitonic-type solutions in addition to regular gravity waves. These new analytical solutions provide new insights into the propagation and amplitude of gravity waves over topography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprenger, Lisa, E-mail: Lisa.Sprenger@tu-dresden.de; Lange, Adrian; Odenbach, Stefan
2013-12-15
Ferrofluids are colloidal suspensions consisting of magnetic nanoparticles dispersed in a carrier liquid. Their thermodiffusive behaviour is rather strong compared to molecular binary mixtures, leading to a Soret coefficient (S{sub T}) of 0.16 K{sup −1}. Former experiments with dilute magnetic fluids have been done with thermogravitational columns or horizontal thermodiffusion cells by different research groups. Considering the horizontal thermodiffusion cell, a former analytical approach has been used to solve the phenomenological diffusion equation in one dimension assuming a constant concentration gradient over the cell's height. The current experimental work is based on the horizontal separation cell and emphasises the comparison ofmore » the concentration development in different concentrated magnetic fluids and at different temperature gradients. The ferrofluid investigated is the kerosene-based EMG905 (Ferrotec) to be compared with the APG513A (Ferrotec), both containing magnetite nanoparticles. The experiments prove that the separation process linearly depends on the temperature gradient and that a constant concentration gradient develops in the setup due to the separation. Analytical one dimensional and numerical three dimensional approaches to solve the diffusion equation are derived to be compared with the solution used so far for dilute fluids to see if formerly made assumptions also hold for higher concentrated fluids. Both, the analytical and numerical solutions, either in a phenomenological or a thermodynamic description, are able to reproduce the separation signal gained from the experiments. The Soret coefficient can then be determined to 0.184 K{sup −1} in the analytical case and 0.29 K{sup −1} in the numerical case. Former theoretical approaches for dilute magnetic fluids underestimate the strength of the separation in the case of a concentrated ferrofluid.« less
Self-similar solutions to isothermal shock problems
NASA Astrophysics Data System (ADS)
Deschner, Stephan C.; Illenseer, Tobias F.; Duschl, Wolfgang J.
We investigate exact solutions for isothermal shock problems in different one-dimensional geometries. These solutions are given as analytical expressions if possible, or are computed using standard numerical methods for solving ordinary differential equations. We test the numerical solutions against the analytical expressions to verify the correctness of all numerical algorithms. We use similarity methods to derive a system of ordinary differential equations (ODE) yielding exact solutions for power law density distributions as initial conditions. Further, the system of ODEs accounts for implosion problems (IP) as well as explosion problems (EP) by changing the initial or boundary conditions, respectively. Taking genuinely isothermal approximations into account leads to additional insights of EPs in contrast to earlier models. We neglect a constant initial energy contribution but introduce a parameter to adjust the initial mass distribution of the system. Moreover, we show that due to this parameter a constant initial density is not allowed for isothermal EPs. Reasonable restrictions for this parameter are given. Both, the (genuinely) isothermal implosion as well as the explosion problem are solved for the first time.
NASA Technical Reports Server (NTRS)
Weatherill, W. H.; Ehlers, F. E.; Sebastian, J. D.
1975-01-01
Analytical and empirical studies of a finite difference method for the solution of the transonic flow about an harmonically oscillating wing are presented along with a discussion of the development of a pilot program for three-dimensional flow. In addition, some two- and three-dimensional examples are presented.
NASA Technical Reports Server (NTRS)
Busemann, A.; Vinh, N. X.; Culp, R. D.
1976-01-01
The problem of determining the trajectories, partially or wholly contained in the atmosphere of a spherical, nonrotating planet, is considered. The exact equations of motion for three-dimensional, aerodynamically affected flight are derived. Modified Chapman variables are introduced and the equations are transformed into a set suitable for analytic integration using asymptotic expansions. The trajectory is solved in two regions: the outer region, where the force may be considered a gravitational field with aerodynamic perturbations, and the inner region, where the force is predominantly aerodynamic, with gravity as a perturbation. The two solutions are matched directly. A composite solution, valid everywhere, is constructed by additive composition. This approach of directly matched asymptotic expansions applied to the exact equations of motion couched in terms of modified Chapman variables yields an analytical solution which should prove to be a powerful tool for aerodynamic orbit calculations.
Magnetic Field Line Random Walk in Arbitrarily Stretched Isotropic Turbulence
NASA Astrophysics Data System (ADS)
Wongpan, P.; Ruffolo, D.; Matthaeus, W. H.; Rowlands, G.
2006-12-01
Many types of space and laboratory plasmas involve turbulent fluctuations with an approximately uniform mean magnetic field B_0, and the field line random walk plays an important role in guiding particle motions. Much of the relevant literature concerns isotropic turbulence, and has mostly been perturbative, i.e., for small fluctuations, or based on numerical simulations for specific conditions. On the other hand, solar wind turbulence is apparently anisotropic, and has been modeled as a sum of idealized two-dimensional and one dimensional (slab) components, but with the deficiency of containing no oblique wave vectors. In the present work, we address the above issues with non-perturbative analytic calculations of diffusive field line random walks for unpolarized, arbitrarily stretched isotropic turbulence, including the limits of nearly one-dimensional (highly stretched) and nearly two-dimensional (highly squashed) turbulence. We develop implicit analytic formulae for the diffusion coefficients D_x and D_z, two coupled integral equations in which D_x and D_z appear inside 3-dimensional integrals over all k-space, are solved numerically with the aid of Mathematica routines for specific cases. We can vary the parameters B0 and β, the stretching along z for constant turbulent energy. Furthermore, we obtain analytic closed-form solutions in all extreme cases. We obtain 0.54 < D_z/D_x < 2, indicating an approximately isotropic random walk even for very anisotropic (unpolarized) turbulence, a surprising result. For a given β, the diffusion coefficient vs. B0 can be described by a Padé approximant. We find quasilinear behavior at high B0 and percolative behavior at low B_0. Partially supported by a Sritrangthong Scholarship from the Faculty of Science, Mahidol University; the Thailand Research Fund; NASA Grant NNG05GG83G; and Thailand's Commission for Higher Education.
Interactions of bright and dark solitons with localized PT-symmetric potentials.
Karjanto, N; Hanif, W; Malomed, B A; Susanto, H
2015-02-01
We study collisions of moving nonlinear-Schrödinger solitons with a PT-symmetric dipole embedded into the one-dimensional self-focusing or defocusing medium. Accurate analytical results are produced for bright solitons, and, in a more qualitative form, for dark ones. In the former case, an essential aspect of the approximation is that it must take into regard the intrinsic chirp of the soliton, thus going beyond the framework of the simplest quasi-particle description of the soliton's dynamics. Critical velocities separating reflection and transmission of the incident bright solitons are found by means of numerical simulations, and in the approximate semi-analytical form. An exact solution for the dark soliton pinned by the complex PT-symmetric dipole is produced too.
Thermodynamics of Newman-Unti-Tamburino charged spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, Robert; Department of Physics, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1; Stelea, Cristian
We discuss and compare at length the results of two methods used recently to describe the thermodynamics of Taub-Newman-Unti-Tamburino (NUT) solutions in a de Sitter background. In the first approach (C approach), one deals with an analytically continued version of the metric while in the second approach (R approach), the discussion is carried out using the unmodified metric with Lorentzian signature. No analytic continuation is performed on the coordinates and/or the parameters that appear in the metric. We find that the results of both these approaches are completely equivalent modulo analytic continuation and we provide the exact prescription that relatesmore » the results in both methods. The extension of these results to the AdS/flat cases aims to give a physical interpretation of the thermodynamics of NUT-charged spacetimes in the Lorentzian sector. We also briefly discuss the higher-dimensional spaces and note that, analogous with the absence of hyperbolic NUTs in AdS backgrounds, there are no spherical Taub-NUT-dS solutions.« less
Lump Solutions for the (3+1)-Dimensional Kadomtsev-Petviashvili Equation
NASA Astrophysics Data System (ADS)
Liu, De-Yin; Tian, Bo; Xie, Xi-Yang
2016-12-01
In this article, we investigate the lump solutions for the Kadomtsev-Petviashvili equation in (3+1) dimensions that describe the dynamics of plasmas or fluids. Via the symbolic computation, lump solutions for the (3+1)-dimensional Kadomtsev-Petviashvili equation are derived based on the bilinear forms. The conditions to guarantee analyticity and rational localisation of the lump solutions are presented. The lump solutions contain eight parameters, two of which are totally free, and the other six of which need to satisfy the presented conditions. Plots with particular choices of the involved parameters are made to show the lump solutions and their energy distributions.
NASA Astrophysics Data System (ADS)
Zabihi, F.; Saffarian, M.
2016-07-01
The aim of this article is to obtain the numerical solution of the two-dimensional KdV-Burgers equation. We construct the solution by using a different approach, that is based on using collocation points. The solution is based on using the thin plate splines radial basis function, which builds an approximated solution with discretizing the time and the space to small steps. We use a predictor-corrector scheme to avoid solving the nonlinear system. The results of numerical experiments are compared with analytical solutions to confirm the accuracy and efficiency of the presented scheme.
A cubic spline approximation for problems in fluid mechanics
NASA Technical Reports Server (NTRS)
Rubin, S. G.; Graves, R. A., Jr.
1975-01-01
A cubic spline approximation is presented which is suited for many fluid-mechanics problems. This procedure provides a high degree of accuracy, even with a nonuniform mesh, and leads to an accurate treatment of derivative boundary conditions. The truncation errors and stability limitations of several implicit and explicit integration schemes are presented. For two-dimensional flows, a spline-alternating-direction-implicit method is evaluated. The spline procedure is assessed, and results are presented for the one-dimensional nonlinear Burgers' equation, as well as the two-dimensional diffusion equation and the vorticity-stream function system describing the viscous flow in a driven cavity. Comparisons are made with analytic solutions for the first two problems and with finite-difference calculations for the cavity flow.
NASA Astrophysics Data System (ADS)
Vvedenskii, N. V.; Kostin, V. A.; Laryushin, I. D.; Silaev, A. A.
2016-05-01
We have studied the processes of excitation of low-frequency residual currents in a plasma produced through ionisation of gases by two-colour laser pulses in laser-plasma schemes for THz generation. We have developed an analytical approach that allows one to find residual currents in the case when one of the components of a two-colour pulse is weak enough. The derived analytical expressions show that the effective generation of the residual current (and hence the effective THz generation) is possible if the ratio of the frequencies in the two-colour laser pulse is close to a rational fraction with a not very big odd sum of the numerator and denominator. The results of numerical calculations (including those based on the solution of the three-dimensional time-dependent Schrödinger equation) agree well with the analytical results.
NASA Astrophysics Data System (ADS)
Minezawa, Noriyuki; Kato, Shigeki
2007-02-01
The authors present an implementation of the three-dimensional reference interaction site model self-consistent-field (3D-RISM-SCF) method. First, they introduce a robust and efficient algorithm for solving the 3D-RISM equation. The algorithm is a hybrid of the Newton-Raphson and Picard methods. The Jacobian matrix is analytically expressed in a computationally useful form. Second, they discuss the solute-solvent electrostatic interaction. For the solute to solvent route, the electrostatic potential (ESP) map on a 3D grid is constructed directly from the electron density. The charge fitting procedure is not required to determine the ESP. For the solvent to solute route, the ESP acting on the solute molecule is derived from the solvent charge distribution obtained by solving the 3D-RISM equation. Matrix elements of the solute-solvent interaction are evaluated by the direct numerical integration. A remarkable reduction in the computational time is observed in both routes. Finally, the authors implement the first derivatives of the free energy with respect to the solute nuclear coordinates. They apply the present method to "solute" water and formaldehyde in aqueous solvent using the simple point charge model, and the results are compared with those from other methods: the six-dimensional molecular Ornstein-Zernike SCF, the one-dimensional site-site RISM-SCF, and the polarizable continuum model. The authors also calculate the solvatochromic shifts of acetone, benzonitrile, and nitrobenzene using the present method and compare them with the experimental and other theoretical results.
Minezawa, Noriyuki; Kato, Shigeki
2007-02-07
The authors present an implementation of the three-dimensional reference interaction site model self-consistent-field (3D-RISM-SCF) method. First, they introduce a robust and efficient algorithm for solving the 3D-RISM equation. The algorithm is a hybrid of the Newton-Raphson and Picard methods. The Jacobian matrix is analytically expressed in a computationally useful form. Second, they discuss the solute-solvent electrostatic interaction. For the solute to solvent route, the electrostatic potential (ESP) map on a 3D grid is constructed directly from the electron density. The charge fitting procedure is not required to determine the ESP. For the solvent to solute route, the ESP acting on the solute molecule is derived from the solvent charge distribution obtained by solving the 3D-RISM equation. Matrix elements of the solute-solvent interaction are evaluated by the direct numerical integration. A remarkable reduction in the computational time is observed in both routes. Finally, the authors implement the first derivatives of the free energy with respect to the solute nuclear coordinates. They apply the present method to "solute" water and formaldehyde in aqueous solvent using the simple point charge model, and the results are compared with those from other methods: the six-dimensional molecular Ornstein-Zernike SCF, the one-dimensional site-site RISM-SCF, and the polarizable continuum model. The authors also calculate the solvatochromic shifts of acetone, benzonitrile, and nitrobenzene using the present method and compare them with the experimental and other theoretical results.
Singh, Brajesh K; Srivastava, Vineet K
2015-04-01
The main goal of this paper is to present a new approximate series solution of the multi-dimensional (heat-like) diffusion equation with time-fractional derivative in Caputo form using a semi-analytical approach: fractional-order reduced differential transform method (FRDTM). The efficiency of FRDTM is confirmed by considering four test problems of the multi-dimensional time fractional-order diffusion equation. FRDTM is a very efficient, effective and powerful mathematical tool which provides exact or very close approximate solutions for a wide range of real-world problems arising in engineering and natural sciences, modelled in terms of differential equations.
Singh, Brajesh K.; Srivastava, Vineet K.
2015-01-01
The main goal of this paper is to present a new approximate series solution of the multi-dimensional (heat-like) diffusion equation with time-fractional derivative in Caputo form using a semi-analytical approach: fractional-order reduced differential transform method (FRDTM). The efficiency of FRDTM is confirmed by considering four test problems of the multi-dimensional time fractional-order diffusion equation. FRDTM is a very efficient, effective and powerful mathematical tool which provides exact or very close approximate solutions for a wide range of real-world problems arising in engineering and natural sciences, modelled in terms of differential equations. PMID:26064639
NASA Technical Reports Server (NTRS)
Solomon, S. C.
1980-01-01
The measurability of changes in plate driving or resistive forces associated with plate boundary earthquakes by laser rangefinding or VLBI is considered with emphasis on those aspects of plate forces that can be characterized by such measurements. Topics covered include: (1) analytic solutions for two dimensional stress diffusion in a plate following earthquake faulting on a finite fault; (2) two dimensional finite-element solutions for the global state of stress at the Earth's surface for possible plate driving forces; and (3) finite-element solutions for three dimensional stress diffusion in a viscoelastic Earth following earthquake faulting.
Numerical modelling and experimental analysis of acoustic emission
NASA Astrophysics Data System (ADS)
Gerasimov, S. I.; Sych, T. V.
2018-05-01
In the present paper, the authors report on the application of non-destructive acoustic waves technologies to determine the structural integrity of engineering components. In particular, a finite element (FE) system COSMOS/M is used to investigate propagation characteristics of ultrasonic waves in linear, plane and three-dimensional structures without and with geometric concentrators. In addition, the FE results obtained are compared to the analytical and experimental ones. The study illustrates the efficient use of the FE method to model guided wave propagation problems and demonstrates the FE method’s potential to solve problems when an analytical solution is not possible due to “complicated” geometry.
Modeling and Analysis of Large Amplitude Flight Maneuvers
NASA Technical Reports Server (NTRS)
Anderson, Mark R.
2004-01-01
Analytical methods for stability analysis of large amplitude aircraft motion have been slow to develop because many nonlinear system stability assessment methods are restricted to a state-space dimension of less than three. The proffered approach is to create regional cell-to-cell maps for strategically located two-dimensional subspaces within the higher-dimensional model statespace. These regional solutions capture nonlinear behavior better than linearized point solutions. They also avoid the computational difficulties that emerge when attempting to create a cell map for the entire state-space. Example stability results are presented for a general aviation aircraft and a micro-aerial vehicle configuration. The analytical results are consistent with characteristics that were discovered during previous flight-testing.
NASA Astrophysics Data System (ADS)
Macías-Díaz, J. E.
In the present manuscript, we introduce a finite-difference scheme to approximate solutions of the two-dimensional version of Fisher's equation from population dynamics, which is a model for which the existence of traveling-wave fronts bounded within (0,1) is a well-known fact. The method presented here is a nonstandard technique which, in the linear regime, approximates the solutions of the original model with a consistency of second order in space and first order in time. The theory of M-matrices is employed here in order to elucidate conditions under which the method is able to preserve the positivity and the boundedness of solutions. In fact, our main result establishes relatively flexible conditions under which the preservation of the positivity and the boundedness of new approximations is guaranteed. Some simulations of the propagation of a traveling-wave solution confirm the analytical results derived in this work; moreover, the experiments evince a good agreement between the numerical result and the analytical solutions.
On the relationship between kinetic and fluid formalisms for convection in the inner magnetosphere
NASA Astrophysics Data System (ADS)
Song, Yang; Sazykin, Stanislav; Wolf, Richard A.
2008-08-01
In the inner magnetosphere, the plasma flows are mostly slow compared to thermal or Alfvén speeds, but the convection is far away from the ideal magnetohydrodynamic regime since the gradient/curvature drifts become significant. Both kinetic (Wolf, 1983) and two-fluid (Peymirat and Fontaine, 1994; Heinemann, 1999) formalisms have been used to describe plasma dynamics, but it is not fully understood how they relate to each other. We explore the relations among kinetic, fluid, and recently developed "average" (Liu, 2006) models in an attempt to find the simplest yet realistic way to describe the convection. First, we prove analytically that the model of (Liu, 2006), when closed with the assumption of a Maxwellian distribution, is equivalent to the fluid model of (Heinemann, 1999). Second, we analyze the transport of both one-dimensional and two-dimensional Gaussian-shaped blob of hot plasma. For the kinetic case, it is known that the time evolution of such a blob is gradual spreading in time. For the fluid case, Heinemann and Wolf (2001a, 2001b) showed that in a one-dimensional idealized case, the blob separates into two drifting at different speeds. We present a fully nonlinear solution of this case, confirming this behavior but demonstrating what appears to be a shocklike steepening of the faster drifting secondary blob. A new, more realistic two-dimensional example using the dipole geometry with a uniform electric field confirms the one-dimensional solutions. Implications for the numerical simulations of magnetospheric dynamics are discussed.
The Kadomtsev-Petviashvili equation under rapid forcing
NASA Astrophysics Data System (ADS)
Moroz, Irene M.
1997-06-01
We consider the initial value problem for the forced Kadomtsev-Petviashvili equation (KP) when the forcing is assumed to be fast compared to the evolution of the unforced equation. This suggests the introduction of two time scales. Solutions to the forced KP are sought by expanding the dependent variable in powers of a small parameter, which is inversely related to the forcing time scale. The unforced system describes weakly nonlinear, weakly dispersive, weakly two-dimensional wave propagation and is studied in two forms, depending upon whether gravity dominates surface tension or vice versa. We focus on the effect that the forcing has on the one-lump solution to the KPI equation (where surface tension dominates) and on the one- and two-line soliton solutions to the KPII equation (when gravity dominates). Solutions to second order in the expansion are computed analytically for some specific choices of the forcing function, which are related to the choice of initial data.
Granular material flow in two-dimensional hoppers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brennen, C.; Pearce, J.C.
To aid in improving the transport of granular media for industrial purposes, the California Institute of Technology presents a comparison of experimental data with analytical results for the flow of dry granular media (such as coal) through a two-dimensional or wedge-shaped hopper. The analytical solution, which is based on the constitutive postulates (suggested by A.W. Jenike and R.T. Shield) of intergrain Coulomb friction and isotropy, produces results that are in good agreement with the experimental measurements.
Boukazouha, F; Poulin-Vittrant, G; Tran-Huu-Hue, L P; Bavencoffe, M; Boubenider, F; Rguiti, M; Lethiecq, M
2015-07-01
This article is dedicated to the study of Piezoelectric Transformers (PTs), which offer promising solutions to the increasing need for integrated power electronics modules within autonomous systems. The advantages offered by such transformers include: immunity to electromagnetic disturbances; ease of miniaturisation for example, using conventional micro fabrication processes; and enhanced performance in terms of voltage gain and power efficiency. Central to the adequate description of such transformers is the need for complex analytical modeling tools, especially if one is attempting to include combined contributions due to (i) mechanical phenomena owing to the different propagation modes which differ at the primary and secondary sides of the PT; and (ii) electrical phenomena such as the voltage gain and power efficiency, which depend on the electrical load. The present work demonstrates an original one-dimensional (1D) analytical model, dedicated to a Rosen-type PT and simulation results are successively compared against that of a three-dimensional (3D) Finite Element Analysis (COMSOL Multiphysics software) and experimental results. The Rosen-type PT studied here is based on a single layer soft PZT (P191) with corresponding dimensions 18 mm × 3 mm × 1.5 mm, which operated at the second harmonic of 176 kHz. Detailed simulational and experimental results show that the presented 1D model predicts experimental measurements to within less than 10% error of the voltage gain at the second and third resonance frequency modes. Adjustment of the analytical model parameters is found to decrease errors relative to experimental voltage gain to within 1%, whilst a 2.5% error on the output admittance magnitude at the second resonance mode were obtained. Relying on the unique assumption of one-dimensionality, the present analytical model appears as a useful tool for Rosen-type PT design and behavior understanding. Copyright © 2015 Elsevier B.V. All rights reserved.
Electromagnetic-field amplification in finite one-dimensional photonic crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorelik, V. S.; Kapaev, V. V., E-mail: kapaev@sci.lebedev.ru
2016-09-15
The electromagnetic-field distribution in a finite one-dimensional photonic crystal is studied using the numerical solution of Maxwell’s equations by the transfer-matrix method. The dependence of the transmission coefficient T on the period d (or the wavelength λ) has the characteristic form with M–1 (M is the number of periods in the structure) maxima with T = 1 in the allowed band of an infinite crystal and zero values in the forbidden band. The field-modulus distribution E(x) in the structure for parameters that correspond to the transmission maxima closest to the boundaries of forbidden bands has maxima at the center ofmore » the structure; the value at the maximum considerably exceeds the incident-field strength. For the number of periods M ~ 50, more than an order of magnitude increase in the field amplification is observed. The numerical results are interpreted with an analytic theory constructed by representing the solution in the form of a linear combination of counterpropagating Floquet modes in a periodic structure.« less
NASA Astrophysics Data System (ADS)
Gavrilov, S. N.; Krivtsov, A. M.; Tsvetkov, D. V.
2018-05-01
We consider unsteady heat transfer in a one-dimensional harmonic crystal surrounded by a viscous environment and subjected to an external heat supply. The basic equations for the crystal particles are stated in the form of a system of stochastic differential equations. We perform a continualization procedure and derive an infinite set of linear partial differential equations for covariance variables. An exact analytic solution describing unsteady ballistic heat transfer in the crystal is obtained. It is shown that the stationary spatial profile of the kinetic temperature caused by a point source of heat supply of constant intensity is described by the Macdonald function of zero order. A comparison with the results obtained in the framework of the classical heat equation is presented. We expect that the results obtained in the paper can be verified by experiments with laser excitation of low-dimensional nanostructures.
The Modified Hartmann Potential Effects on γ-rigid Bohr Hamiltonian
NASA Astrophysics Data System (ADS)
Suparmi, A.; Cari, C.; Nur Pratiwi, Beta
2018-04-01
In this paper, we present the solution of Bohr Hamiltonian in the case of γ-rigid for the modified Hartmann potential. The modified Hartmann potential was formed from the original Hartmann potential, consists of β function and θ function. By using the separation method, the three-dimensional Bohr Hamiltonian equation was reduced into three one-dimensional Schrodinger-like equation which was solved analytically. The results for the wavefunction were shown in mathematically, while for the binding energy was solved numerically. The numerical binding energy for the presence of the modified Hartmann potential is lower than the binding energy value in the absence of modified Hartmann potential effect.
Lump solutions with interaction phenomena in the (2+1)-dimensional Ito equation
NASA Astrophysics Data System (ADS)
Zou, Li; Yu, Zong-Bing; Tian, Shou-Fu; Feng, Lian-Li; Li, Jin
2018-03-01
In this paper, we consider the (2+1)-dimensional Ito equation, which was introduced by Ito. By considering the Hirota’s bilinear method, and using the positive quadratic function, we obtain some lump solutions of the Ito equation. In order to ensure rational localization and analyticity of these lump solutions, some sufficient and necessary conditions are provided on the parameters that appeared in the solutions. Furthermore, the interaction solutions between lump solutions and the stripe solitons are discussed by combining positive quadratic function with exponential function. Finally, the dynamic properties of these solutions are shown via the way of graphical analysis by selecting appropriate values of the parameters.
Cox, Peter; Gherghetta, Tony
2015-02-02
Here, we study the properties of the dilaton in a soft-wall background using two solutions of the Einstein equations. These solutions contain an asymptotically AdS metric with a nontrivial scalar profile that causes both the spontaneous breaking of conformal invariance and the generation of a mass gap in the particle spectrum. We first present an analytic solution, using the superpotential method, that describes a CFT spontaneously broken by a finite dimensional operator in which a light dilaton mode appears in the spectrum. This represents a tuning in the vanishing of the quartic coupling in the effective potential that could bemore » naturally realised from an underlying supersymmetry. Instead, by considering a generalised analytic scalar bulk potential that quickly transitions at the condensate scale from a walking coupling in the UV to an order-one β-function in the IR, we obtain a naturally light dilaton. This provides a simple example for obtaining a naturally light dilaton from nearly-marginal CFT deformations in the more realistic case of a soft-wall background.« less
NASA Astrophysics Data System (ADS)
Santucci, F.; Santini, P. M.
2016-10-01
We study the generalization of the dispersionless Kadomtsev-Petviashvili (dKP) equation in n+1 dimensions and with nonlinearity of degree m+1, a model equation describing the propagation of weakly nonlinear, quasi one-dimensional waves in the absence of dispersion and dissipation, and arising in several physical contexts, like acoustics, plasma physics, hydrodynamics and nonlinear optics. In 2 + 1 dimensions and with quadratic nonlinearity, this equation is integrable through a novel inverse scattering transform, and it has been recently shown to be a prototype model equation in the description of the two-dimensional wave breaking of localized initial data. In higher dimensions and with higher nonlinearity, the generalized dKP equations are not integrable, but their invariance under motions on the paraboloid allows one to construct in this paper a family of exact solutions describing waves constant on their paraboloidal wave front and breaking simultaneously in all points of it, developing after breaking either multivaluedness or single-valued discontinuous profiles (shocks). Then such exact solutions are used to build the longtime behavior of the solutions of the Cauchy problem, for small and localized initial data, showing that wave breaking of small initial data takes place in the longtime regime if and only if m(n-1)≤slant 2. Lastly, the analytic aspects of such wave breaking are investigated in detail in terms of the small initial data, in both cases in which the solution becomes multivalued after breaking or it develops a shock. These results, contained in the 2012 master’s thesis of one of the authors (FS) [1], generalize those obtained in [2] for the dKP equation in n+1 dimensions with quadratic nonlinearity, and are obtained following the same strategy.
Insight solutions are correct more often than analytic solutions
Salvi, Carola; Bricolo, Emanuela; Kounios, John; Bowden, Edward; Beeman, Mark
2016-01-01
How accurate are insights compared to analytical solutions? In four experiments, we investigated how participants’ solving strategies influenced their solution accuracies across different types of problems, including one that was linguistic, one that was visual and two that were mixed visual-linguistic. In each experiment, participants’ self-judged insight solutions were, on average, more accurate than their analytic ones. We hypothesised that insight solutions have superior accuracy because they emerge into consciousness in an all-or-nothing fashion when the unconscious solving process is complete, whereas analytic solutions can be guesses based on conscious, prematurely terminated, processing. This hypothesis is supported by the finding that participants’ analytic solutions included relatively more incorrect responses (i.e., errors of commission) than timeouts (i.e., errors of omission) compared to their insight responses. PMID:27667960
Analytical Dimensional Reduction of a Fuel Optimal Powered Descent Subproblem
NASA Technical Reports Server (NTRS)
Rea, Jeremy R.; Bishop, Robert H.
2010-01-01
Current renewed interest in exploration of the moon, Mars, and other planetary objects is driving technology development in many fields of space system design. In particular, there is a desire to land both robotic and human missions on the moon and elsewhere. The landing guidance system must be able to deliver the vehicle to a desired soft landing while meeting several constraints necessary for the safety of the vehicle. Due to performance limitations of current launch vehicles, it is desired to minimize the amount of fuel used. In addition, the landing site may change in real-time in order to avoid previously undetected hazards which become apparent during the landing maneuver. This complicated maneuver can be broken into simpler subproblems that bound the full problem. One such subproblem is to find a minimum-fuel landing solution that meets constraints on the initial state, final state, and bounded thrust acceleration magnitude. With the assumptions of constant gravity and negligible atmosphere, the form of the optimal steering law is known, and the equations of motion can be integrated analytically, resulting in a system of five equations in five unknowns. It is shown that this system of equations can be reduced analytically to two equations in two unknowns. With an additional assumption of constant thrust acceleration magnitude, this system can be reduced further to one equation in one unknown. It is shown that these unknowns can be bounded analytically. An algorithm is developed to quickly and reliably solve the resulting one-dimensional bounded search, and it is used as a real-time guidance applied to a lunar landing test case.
2014-01-01
In the current practice, to determine the safety factor of a slope with two-dimensional circular potential failure surface, one of the searching methods for the critical slip surface is Genetic Algorithm (GA), while the method to calculate the slope safety factor is Fellenius' slices method. However GA needs to be validated with more numeric tests, while Fellenius' slices method is just an approximate method like finite element method. This paper proposed a new method to determine the minimum slope safety factor which is the determination of slope safety factor with analytical solution and searching critical slip surface with Genetic-Traversal Random Method. The analytical solution is more accurate than Fellenius' slices method. The Genetic-Traversal Random Method uses random pick to utilize mutation. A computer automatic search program is developed for the Genetic-Traversal Random Method. After comparison with other methods like slope/w software, results indicate that the Genetic-Traversal Random Search Method can give very low safety factor which is about half of the other methods. However the obtained minimum safety factor with Genetic-Traversal Random Search Method is very close to the lower bound solutions of slope safety factor given by the Ansys software. PMID:24782679
Reck, Kasper; Thomsen, Erik V; Hansen, Ole
2011-01-31
The scalar wave equation, or Helmholtz equation, describes within a certain approximation the electromagnetic field distribution in a given system. In this paper we show how to solve the Helmholtz equation in complex geometries using conformal mapping and the homotopy perturbation method. The solution of the mapped Helmholtz equation is found by solving an infinite series of Poisson equations using two dimensional Fourier series. The solution is entirely based on analytical expressions and is not mesh dependent. The analytical results are compared to a numerical (finite element method) solution.
Numerical analysis of singular solutions of two-dimensional problems of asymmetric elasticity
NASA Astrophysics Data System (ADS)
Korepanov, V. V.; Matveenko, V. P.; Fedorov, A. Yu.; Shardakov, I. N.
2013-07-01
An algorithm for the numerical analysis of singular solutions of two-dimensional problems of asymmetric elasticity is considered. The algorithm is based on separation of a power-law dependence from the finite-element solution in a neighborhood of singular points in the domain under study, where singular solutions are possible. The obtained power-law dependencies allow one to conclude whether the stresses have singularities and what the character of these singularities is. The algorithm was tested for problems of classical elasticity by comparing the stress singularity exponents obtained by the proposed method and from known analytic solutions. Problems with various cases of singular points, namely, body surface points at which either the smoothness of the surface is violated, or the type of boundary conditions is changed, or distinct materials are in contact, are considered as applications. The stress singularity exponents obtained by using the models of classical and asymmetric elasticity are compared. It is shown that, in the case of cracks, the stress singularity exponents are the same for the elasticity models under study, but for other cases of singular points, the stress singularity exponents obtained on the basis of asymmetric elasticity have insignificant quantitative distinctions from the solutions of the classical elasticity.
Transient well flow in layered aquifer systems: the uniform well-face drawdown solution
NASA Astrophysics Data System (ADS)
Hemker, C. J.
1999-11-01
Previously a hybrid analytical-numerical solution for the general problem of computing transient well flow in vertically heterogeneous aquifers was proposed by the author. The radial component of flow was treated analytically, while the finite-difference technique was used for the vertical flow component only. In the present work the hybrid solution has been modified by replacing the previously assumed uniform well-face gradient (UWG) boundary condition in such a way that the drawdown remains uniform along the well screen. The resulting uniform well-face drawdown (UWD) solution also includes the effects of a finite diameter well, wellbore storage and a thin skin, while partial penetration and vertical heterogeneity are accommodated by the one-dimensional discretization. Solutions are proposed for well flow caused by constant, variable and slug discharges. The model was verified by comparing wellbore drawdowns and well-face flux distributions with published numerical solutions. Differences between UWG and UWD well flow will occur in all situations with vertical flow components near the well, which is demonstrated by considering: (1) partially penetrating wells in confined aquifers, (2) fully penetrating wells in unconfined aquifers with delayed response and (3) layered aquifers and leaky multiaquifer systems. The presented solution can be a powerful tool for solving many well-hydraulic problems, including well tests, flowmeter tests, slug tests and pumping tests. A computer program for the analysis of pumping tests, based on the hybrid analytical-numerical technique and UWG or UWD conditions, is available from the author.
NASA Astrophysics Data System (ADS)
Reis, C.; Clain, S.; Figueiredo, J.; Baptista, M. A.; Miranda, J. M. A.
2015-12-01
Numerical tools turn to be very important for scenario evaluations of hazardous phenomena such as tsunami. Nevertheless, the predictions highly depends on the numerical tool quality and the design of efficient numerical schemes still receives important attention to provide robust and accurate solutions. In this study we propose a comparative study between the efficiency of two volume finite numerical codes with second-order discretization implemented with different method to solve the non-conservative shallow water equations, the MUSCL (Monotonic Upstream-Centered Scheme for Conservation Laws) and the MOOD methods (Multi-dimensional Optimal Order Detection) which optimize the accuracy of the approximation in function of the solution local smoothness. The MUSCL is based on a priori criteria where the limiting procedure is performed before updated the solution to the next time-step leading to non-necessary accuracy reduction. On the contrary, the new MOOD technique uses a posteriori detectors to prevent the solution from oscillating in the vicinity of the discontinuities. Indeed, a candidate solution is computed and corrections are performed only for the cells where non-physical oscillations are detected. Using a simple one-dimensional analytical benchmark, 'Single wave on a sloping beach', we show that the classical 1D shallow-water system can be accurately solved with the finite volume method equipped with the MOOD technique and provide better approximation with sharper shock and less numerical diffusion. For the code validation, we also use the Tohoku-Oki 2011 tsunami and reproduce two DART records, demonstrating that the quality of the solution may deeply interfere with the scenario one can assess. This work is funded by the Portugal-France research agreement, through the research project GEONUM FCT-ANR/MAT-NAN/0122/2012.Numerical tools turn to be very important for scenario evaluations of hazardous phenomena such as tsunami. Nevertheless, the predictions highly depends on the numerical tool quality and the design of efficient numerical schemes still receives important attention to provide robust and accurate solutions. In this study we propose a comparative study between the efficiency of two volume finite numerical codes with second-order discretization implemented with different method to solve the non-conservative shallow water equations, the MUSCL (Monotonic Upstream-Centered Scheme for Conservation Laws) and the MOOD methods (Multi-dimensional Optimal Order Detection) which optimize the accuracy of the approximation in function of the solution local smoothness. The MUSCL is based on a priori criteria where the limiting procedure is performed before updated the solution to the next time-step leading to non-necessary accuracy reduction. On the contrary, the new MOOD technique uses a posteriori detectors to prevent the solution from oscillating in the vicinity of the discontinuities. Indeed, a candidate solution is computed and corrections are performed only for the cells where non-physical oscillations are detected. Using a simple one-dimensional analytical benchmark, 'Single wave on a sloping beach', we show that the classical 1D shallow-water system can be accurately solved with the finite volume method equipped with the MOOD technique and provide better approximation with sharper shock and less numerical diffusion. For the code validation, we also use the Tohoku-Oki 2011 tsunami and reproduce two DART records, demonstrating that the quality of the solution may deeply interfere with the scenario one can assess. This work is funded by the Portugal-France research agreement, through the research project GEONUM FCT-ANR/MAT-NAN/0122/2012.
NASA Astrophysics Data System (ADS)
Greco, Angelo; Cao, Dongpu; Jiang, Xi; Yang, Hong
2014-07-01
A simplified one-dimensional transient computational model of a prismatic lithium-ion battery cell is developed using thermal circuit approach in conjunction with the thermal model of the heat pipe. The proposed model is compared to an analytical solution based on variable separation as well as three-dimensional (3D) computational fluid dynamics (CFD) simulations. The three approaches, i.e. the 1D computational model, analytical solution, and 3D CFD simulations, yielded nearly identical results for the thermal behaviours. Therefore the 1D model is considered to be sufficient to predict the temperature distribution of lithium-ion battery thermal management using heat pipes. Moreover, a maximum temperature of 27.6 °C was predicted for the design of the heat pipe setup in a distributed configuration, while a maximum temperature of 51.5 °C was predicted when forced convection was applied to the same configuration. The higher surface contact of the heat pipes allows a better cooling management compared to forced convection cooling. Accordingly, heat pipes can be used to achieve effective thermal management of a battery pack with confined surface areas.
Xue, Song; He, Ning; Long, Zhiqiang
2012-01-01
The long stator track for high speed maglev trains has a tooth-slot structure. The sensor obtains precise relative position information for the traction system by detecting the long stator tooth-slot structure based on nondestructive detection technology. The magnetic field modeling of the sensor is a typical three-dimensional (3-D) electromagnetic problem with complex boundary conditions, and is studied semi-analytically in this paper. A second-order vector potential (SOVP) is introduced to simplify the vector field problem to a scalar field one, the solution of which can be expressed in terms of series expansions according to Multipole Theory (MT) and the New Equivalent Source (NES) method. The coefficients of the expansions are determined by the least squares method based on the boundary conditions. Then, the solution is compared to the simulation result through Finite Element Analysis (FEA). The comparison results show that the semi-analytical solution agrees approximately with the numerical solution. Finally, based on electromagnetic modeling, a difference coil structure is designed to improve the sensitivity and accuracy of the sensor.
Xue, Song; He, Ning; Long, Zhiqiang
2012-01-01
The long stator track for high speed maglev trains has a tooth-slot structure. The sensor obtains precise relative position information for the traction system by detecting the long stator tooth-slot structure based on nondestructive detection technology. The magnetic field modeling of the sensor is a typical three-dimensional (3-D) electromagnetic problem with complex boundary conditions, and is studied semi-analytically in this paper. A second-order vector potential (SOVP) is introduced to simplify the vector field problem to a scalar field one, the solution of which can be expressed in terms of series expansions according to Multipole Theory (MT) and the New Equivalent Source (NES) method. The coefficients of the expansions are determined by the least squares method based on the boundary conditions. Then, the solution is compared to the simulation result through Finite Element Analysis (FEA). The comparison results show that the semi-analytical solution agrees approximately with the numerical solution. Finally, based on electromagnetic modeling, a difference coil structure is designed to improve the sensitivity and accuracy of the sensor. PMID:22778652
Lump Solutions and Interaction Phenomenon for (2+1)-Dimensional Sawada-Kotera Equation
NASA Astrophysics Data System (ADS)
Huang, Li-Li; Chen, Yong
2017-05-01
In this paper, a class of lump solutions to the (2+1)-dimensional Sawada-Kotera equation is studied by searching for positive quadratic function solutions to the associated bilinear equation. To guarantee rational localization and analyticity of the lumps, some sufficient and necessary conditions are presented on the parameters involved in the solutions. Then, a completely non-elastic interaction between a lump and a stripe of the (2+1)-dimensional Sawada-Kotera equation is obtained, which shows a lump solution is drowned or swallowed by a stripe soliton. Finally, 2-dimensional curves, 3-dimensional plots and density plots with particular choices of the involved parameters are presented to show the dynamic characteristics of the obtained lump and interaction solutions. Supported by the Global Change Research Program of China under Grant No. 2015CB953904, National Natural Science Foundation of China under Grant Nos. 11675054 and 11435005, Outstanding Doctoral Dissertation Cultivation Plan of Action under Grant No. YB2016039, and Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things under Grant No. ZF1213
An Analytical Solution for Transient Thermal Response of an Insulated Structure
NASA Technical Reports Server (NTRS)
Blosser, Max L.
2012-01-01
An analytical solution was derived for the transient response of an insulated aerospace vehicle structure subjected to a simplified heat pulse. This simplified problem approximates the thermal response of a thermal protection system of an atmospheric entry vehicle. The exact analytical solution is solely a function of two non-dimensional parameters. A simpler function of these two parameters was developed to approximate the maximum structural temperature over a wide range of parameter values. Techniques were developed to choose constant, effective properties to represent the relevant temperature and pressure-dependent properties for the insulator and structure. A technique was also developed to map a time-varying surface temperature history to an equivalent square heat pulse. Using these techniques, the maximum structural temperature rise was calculated using the analytical solutions and shown to typically agree with finite element simulations within 10 to 20 percent over the relevant range of parameters studied.
Poppe, Leszek; Jordan, John B; Rogers, Gary; Schnier, Paul D
2015-06-02
An important aspect in the analytical characterization of protein therapeutics is the comprehensive characterization of higher order structure (HOS). Nuclear magnetic resonance (NMR) is arguably the most sensitive method for fingerprinting HOS of a protein in solution. Traditionally, (1)H-(15)N or (1)H-(13)C correlation spectra are used as a "structural fingerprint" of HOS. Here, we demonstrate that protein fingerprint by line shape enhancement (PROFILE), a 1D (1)H NMR spectroscopy fingerprinting approach, is superior to traditional two-dimensional methods using monoclonal antibody samples and a heavily glycosylated protein therapeutic (Epoetin Alfa). PROFILE generates a high resolution structural fingerprint of a therapeutic protein in a fraction of the time required for a 2D NMR experiment. The cross-correlation analysis of PROFILE spectra allows one to distinguish contributions from HOS vs protein heterogeneity, which is difficult to accomplish by 2D NMR. We demonstrate that the major analytical limitation of two-dimensional methods is poor selectivity, which renders these approaches problematic for the purpose of fingerprinting large biological macromolecules.
NASA Astrophysics Data System (ADS)
Huang, Junqi; Goltz, Mark N.
2005-11-01
The potential for using pairs of so-called horizontal flow treatment wells (HFTWs) to effect in situ capture and treatment of contaminated groundwater has recently been demonstrated. To apply this new technology, design engineers need to be able to simulate the relatively complex groundwater flow patterns that result from HFTW operation. In this work, a three-dimensional analytical solution for steady flow in a homogeneous, anisotropic, contaminated aquifer is developed to efficiently calculate the interflow of water circulating between a pair of HFTWs and map the spatial extent of contaminated groundwater flowing from upgradient that is captured. The solution is constructed by superposing the solutions for the flow fields resulting from operation of partially penetrating wells. The solution is used to investigate the flow resulting from operation of an HFTW well pair and to quantify how aquifer anisotropy, well placement, and pumping rate impact capture zone width and interflow. The analytical modeling method presented here provides a fast and accurate technique for representing the flow field resulting from operation of HFTW systems, and represents a tool that can be useful in designing in situ groundwater contamination treatment systems.
Reactive Transport in a Pipe in Soluble Rock: a Theoretical and Experimental Study
NASA Astrophysics Data System (ADS)
Li, W.; Opolot, M.; Sousa, R.; Einstein, H. H.
2015-12-01
Reactive transport processes within the dominant underground flow pathways such as fractures can lead to the widening or narrowing of rock fractures, potentially altering the flow and transport processes in the fractures. A flow-through experiment was designed to study the reactive transport process in a pipe in soluble rock to serve as a simplified representation of a fracture in soluble rock. Assumptions were made to formulate the problem as three coupled, one-dimensional partial differential equations: one for the flow, one for the transport and one for the radius change due to dissolution. Analytical and numerical solutions were developed to predict the effluent concentration and the change in pipe radius. The positive feedback of the radius increase is captured by the experiment and the numerical model. A comparison between the experiment and the simulation results demonstrates the validity of the analytical and numerical models.
NASA Astrophysics Data System (ADS)
Chen, Jui-Sheng; Li, Loretta Y.; Lai, Keng-Hsin; Liang, Ching-Ping
2017-11-01
A novel solution method is presented which leads to an analytical model for the advective-dispersive transport in a semi-infinite domain involving a wide spectrum of boundary inputs, initial distributions, and zero-order productions. The novel solution method applies the Laplace transform in combination with the generalized integral transform technique (GITT) to obtain the generalized analytical solution. Based on this generalized analytical expression, we derive a comprehensive set of special-case solutions for some time-dependent boundary distributions and zero-order productions, described by the Dirac delta, constant, Heaviside, exponentially-decaying, or periodically sinusoidal functions as well as some position-dependent initial conditions and zero-order productions specified by the Dirac delta, constant, Heaviside, or exponentially-decaying functions. The developed solutions are tested against an analytical solution from the literature. The excellent agreement between the analytical solutions confirms that the new model can serve as an effective tool for investigating transport behaviors under different scenarios. Several examples of applications, are given to explore transport behaviors which are rarely noted in the literature. The results show that the concentration waves resulting from the periodically sinusoidal input are sensitive to dispersion coefficient. The implication of this new finding is that a tracer test with a periodic input may provide additional information when for identifying the dispersion coefficients. Moreover, the solution strategy presented in this study can be extended to derive analytical models for handling more complicated problems of solute transport in multi-dimensional media subjected to sequential decay chain reactions, for which analytical solutions are not currently available.
New Patterns of the Two-Dimensional Rogue Waves: (2+1)-Dimensional Maccari System
NASA Astrophysics Data System (ADS)
Wang, Gai-Hua; Wang, Li-Hong; Rao, Ji-Guang; He, Jing-Song
2017-06-01
The ocean rogue wave is one kind of puzzled destructive phenomenon that has not been understood thoroughly so far. The two-dimensional nature of this wave has inspired the vast endeavors on the recognizing new patterns of the rogue waves based on the dynamical equations with two-spatial variables and one-temporal variable, which is a very crucial step to prevent this disaster event at the earliest stage. Along this issue, we present twelve new patterns of the two-dimensional rogue waves, which are reduced from a rational and explicit formula of the solutions for a (2+1)-dimensional Maccari system. The extreme points (lines) of the first-order lumps (rogue waves) are discussed according to their analytical formulas. For the lower-order rogue waves, we show clearly in formula that parameter b 2 plays a significant role to control these patterns. Supported by the National Natural Science Foundation of China under Grant No. 11671219, the K. C. Wong Magna Fund in Ningbo University, Gai-Hua Wang is also supported by the Scientific Research Foundation of Graduate School of Ningbo University
Arrays of strongly coupled atoms in a one-dimensional waveguide
NASA Astrophysics Data System (ADS)
Ruostekoski, Janne; Javanainen, Juha
2017-09-01
We study the cooperative optical coupling between regularly spaced atoms in a one-dimensional waveguide using decompositions to subradiant and super-radiant collective excitation eigenmodes, direct numerical solutions, and analytical transfer-matrix methods. We illustrate how the spectrum of transmitted light through the waveguide, including the emergence of narrow Fano resonances, can be understood by the resonance features of the eigenmodes. We describe a method based on super-radiant and subradiant modes to engineer the optical response of the waveguide and to store light. The stopping of light is obtained by transferring an atomic excitation to a subradiant collective mode with the zero radiative resonance linewidth by controlling the level shift of an atom in the waveguide. Moreover, we obtain an exact analytic solution for the transmitted light through the waveguide for the case of a regular lattice of atoms and provide a simple description of how the light transmission may present large resonance shifts when the lattice spacing is close, but not exactly equal, to half of the wavelength of the light. Experimental imperfections such as fluctuations of the positions of the atoms and loss of light from the waveguide are easily quantified in the numerical simulations, which produce the natural result that the optical response of the atomic array tends toward the response of a gas with random atomic positions.
An analytical solution of groundwater level fluctuation in a U-shaped leaky coastal aquifer
NASA Astrophysics Data System (ADS)
Huang, Fu-Kuo; Chuang, Mo-Hsiung; Wang, Shu-chuan
2017-04-01
Tide-induced groundwater level fluctuations in coastal aquifers have attracted much attention in past years, especially for the issues associated with the impact of the coastline shape, multi-layered leaky aquifer system, and anisotropy of aquifers. In this study, a homogeneous but anisotropic multi-layered leaky aquifer system with U-shaped coastline is considered, where the subsurface system consisting of an unconfined aquifer, a leaky confined aquifer, and a semi-permeable layer between them. The analytical solution of the model obtained herein may be considered as an extended work of two solutions; one was developed by Huang et al. (Huang et al. Tide-induced groundwater level fluctuation in a U-shaped coastal aquifer, J. Hydrol. 2015; 530: 291-305) for two-dimensional interacting tidal waves bounded by three water-land boundaries while the other was by Li and Jiao (Li and Jiao. Tidal groundwater level fluctuations in L-shaped leaky coastal aquifer system, J. Hydrol. 2002; 268: 234-243) for two-dimensional interacting tidal waves of leaky coastal aquifer system adjacent to a cross-shore estuary. In this research, the effects of leakage and storativity of the semi-permeable layer on the amplitude and phase shift of the tidal head fluctuation, and the influence of anisotropy of the aquifer are all examined for the U-shaped leaky coastal aquifer. Some existing solutions in literatures can be regarded as the special cases of the present solution if the aquifer system is isotropic and non-leaky. The results obtained will be beneficial to coastal development and management for water resources.
Detrending moving average algorithm for multifractals
NASA Astrophysics Data System (ADS)
Gu, Gao-Feng; Zhou, Wei-Xing
2010-07-01
The detrending moving average (DMA) algorithm is a widely used technique to quantify the long-term correlations of nonstationary time series and the long-range correlations of fractal surfaces, which contains a parameter θ determining the position of the detrending window. We develop multifractal detrending moving average (MFDMA) algorithms for the analysis of one-dimensional multifractal measures and higher-dimensional multifractals, which is a generalization of the DMA method. The performance of the one-dimensional and two-dimensional MFDMA methods is investigated using synthetic multifractal measures with analytical solutions for backward (θ=0) , centered (θ=0.5) , and forward (θ=1) detrending windows. We find that the estimated multifractal scaling exponent τ(q) and the singularity spectrum f(α) are in good agreement with the theoretical values. In addition, the backward MFDMA method has the best performance, which provides the most accurate estimates of the scaling exponents with lowest error bars, while the centered MFDMA method has the worse performance. It is found that the backward MFDMA algorithm also outperforms the multifractal detrended fluctuation analysis. The one-dimensional backward MFDMA method is applied to analyzing the time series of Shanghai Stock Exchange Composite Index and its multifractal nature is confirmed.
Phase-space finite elements in a least-squares solution of the transport equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drumm, C.; Fan, W.; Pautz, S.
2013-07-01
The linear Boltzmann transport equation is solved using a least-squares finite element approximation in the space, angular and energy phase-space variables. The method is applied to both neutral particle transport and also to charged particle transport in the presence of an electric field, where the angular and energy derivative terms are handled with the energy/angular finite elements approximation, in a manner analogous to the way the spatial streaming term is handled. For multi-dimensional problems, a novel approach is used for the angular finite elements: mapping the surface of a unit sphere to a two-dimensional planar region and using a meshingmore » tool to generate a mesh. In this manner, much of the spatial finite-elements machinery can be easily adapted to handle the angular variable. The energy variable and the angular variable for one-dimensional problems make use of edge/beam elements, also building upon the spatial finite elements capabilities. The methods described here can make use of either continuous or discontinuous finite elements in space, angle and/or energy, with the use of continuous finite elements resulting in a smaller problem size and the use of discontinuous finite elements resulting in more accurate solutions for certain types of problems. The work described in this paper makes use of continuous finite elements, so that the resulting linear system is symmetric positive definite and can be solved with a highly efficient parallel preconditioned conjugate gradients algorithm. The phase-space finite elements capability has been built into the Sceptre code and applied to several test problems, including a simple one-dimensional problem with an analytic solution available, a two-dimensional problem with an isolated source term, showing how the method essentially eliminates ray effects encountered with discrete ordinates, and a simple one-dimensional charged-particle transport problem in the presence of an electric field. (authors)« less
NASA Technical Reports Server (NTRS)
Schallhorn, Paul; Majumdar, Alok
2012-01-01
This paper describes a finite volume based numerical algorithm that allows multi-dimensional computation of fluid flow within a system level network flow analysis. There are several thermo-fluid engineering problems where higher fidelity solutions are needed that are not within the capacity of system level codes. The proposed algorithm will allow NASA's Generalized Fluid System Simulation Program (GFSSP) to perform multi-dimensional flow calculation within the framework of GFSSP s typical system level flow network consisting of fluid nodes and branches. The paper presents several classical two-dimensional fluid dynamics problems that have been solved by GFSSP's multi-dimensional flow solver. The numerical solutions are compared with the analytical and benchmark solution of Poiseulle, Couette and flow in a driven cavity.
Forward and back diffusion through argillaceous formations
NASA Astrophysics Data System (ADS)
Yang, Minjune; Annable, Michael D.; Jawitz, James W.
2017-05-01
The exchange of solutes between aquifers and lower-permeability argillaceous formations is of considerable interest for solute and contaminant fate and transport. We present a synthesis of analytical solutions for solute diffusion between aquifers and single aquitard systems, validated in well-controlled experiments, and applied to several data sets from laboratory and field-scale problems with diffusion time and length scales ranging from 10-2 to 108 years and 10-2 to 102 m. One-dimensional diffusion models were applied using the method of images to consider the general cases of a finite aquitard bounded by two aquifers at the top and bottom, or a semiinfinite aquitard bounded by an aquifer. The simpler semiinfinite equations are appropriate for all domains with dimensionless relative diffusion length, ZD < 0.7. At dimensionless length scales above this threshold, application of semiinfinite equations to aquitards of finite thickness leads to increasing errors and solutions based on the method of images are required. Measured resident solute concentration profiles in aquitards and flux-averaged solute concentrations in surrounding aquifers were accurately modeled by appropriately accounting for generalized dynamic aquifer-aquitard boundary conditions, including concentration gradient reversals. Dimensionless diffusion length scales were used to illustrate the transferability of these relatively simple models to physical systems with dimensions that spanned 10 orders of magnitude. The results of this study offer guidance on the application of a simplified analytical approach to environmentally important layered problems with one or two diffusion interfaces.
A probabilistic model of a porous heat exchanger
NASA Technical Reports Server (NTRS)
Agrawal, O. P.; Lin, X. A.
1995-01-01
This paper presents a probabilistic one-dimensional finite element model for heat transfer processes in porous heat exchangers. The Galerkin approach is used to develop the finite element matrices. Some of the submatrices are asymmetric due to the presence of the flow term. The Neumann expansion is used to write the temperature distribution as a series of random variables, and the expectation operator is applied to obtain the mean and deviation statistics. To demonstrate the feasibility of the formulation, a one-dimensional model of heat transfer phenomenon in superfluid flow through a porous media is considered. Results of this formulation agree well with the Monte-Carlo simulations and the analytical solutions. Although the numerical experiments are confined to parametric random variables, a formulation is presented to account for the random spatial variations.
Two-dimensional analytic weighting functions for limb scattering
NASA Astrophysics Data System (ADS)
Zawada, D. J.; Bourassa, A. E.; Degenstein, D. A.
2017-10-01
Through the inversion of limb scatter measurements it is possible to obtain vertical profiles of trace species in the atmosphere. Many of these inversion methods require what is often referred to as weighting functions, or derivatives of the radiance with respect to concentrations of trace species in the atmosphere. Several radiative transfer models have implemented analytic methods to calculate weighting functions, alleviating the computational burden of traditional numerical perturbation methods. Here we describe the implementation of analytic two-dimensional weighting functions, where derivatives are calculated relative to atmospheric constituents in a two-dimensional grid of altitude and angle along the line of sight direction, in the SASKTRAN-HR radiative transfer model. Two-dimensional weighting functions are required for two-dimensional inversions of limb scatter measurements. Examples are presented where the analytic two-dimensional weighting functions are calculated with an underlying one-dimensional atmosphere. It is shown that the analytic weighting functions are more accurate than ones calculated with a single scatter approximation, and are orders of magnitude faster than a typical perturbation method. Evidence is presented that weighting functions for stratospheric aerosols calculated under a single scatter approximation may not be suitable for use in retrieval algorithms under solar backscatter conditions.
Evaluating four-loop conformal Feynman integrals by D-dimensional differential equations
NASA Astrophysics Data System (ADS)
Eden, Burkhard; Smirnov, Vladimir A.
2016-10-01
We evaluate a four-loop conformal integral, i.e. an integral over four four-dimensional coordinates, by turning to its dimensionally regularized version and applying differential equations for the set of the corresponding 213 master integrals. To solve these linear differential equations we follow the strategy suggested by Henn and switch to a uniformly transcendental basis of master integrals. We find a solution to these equations up to weight eight in terms of multiple polylogarithms. Further, we present an analytical result for the given four-loop conformal integral considered in four-dimensional space-time in terms of single-valued harmonic polylogarithms. As a by-product, we obtain analytical results for all the other 212 master integrals within dimensional regularization, i.e. considered in D dimensions.
Simulations of Viscous Accretion Flow around Black Holes in a Two-dimensional Cylindrical Geometry
NASA Astrophysics Data System (ADS)
Lee, Seong-Jae; Chattopadhyay, Indranil; Kumar, Rajiv; Hyung, Siek; Ryu, Dongsu
2016-11-01
We simulate shock-free and shocked viscous accretion flows onto a black hole in a two-dimensional cylindrical geometry, where initial conditions were chosen from analytical solutions. The simulation code used the Lagrangian total variation diminishing plus remap routine, which enabled us to attain high accuracy in capturing shocks and to handle the angular momentum distribution correctly. The inviscid shock-free accretion disk solution produced a thick disk structure, while the viscous shock-free solution attained a Bondi-like structure, but in either case, no jet activity nor any quasi-periodic oscillation (QPO)-like activity developed. The steady-state shocked solution in the inviscid as well as in the viscous regime matched theoretical predictions well. However, increasing viscosity renders the accretion shock unstable. Large-amplitude shock oscillation is accompanied by intermittent, transient inner multiple shocks. This oscillation of the inner part of the disk is interpreted as the source of QPO in hard X-rays observed in micro-quasars. Strong shock oscillation induces strong episodic jet emission. The jets also show the existence of shocks, which are produced as one shell hits the preceding one. The periodicities of the jets and shock oscillation are similar; the jets for the higher viscosity parameter appear to be stronger and faster.
SIMULATIONS OF VISCOUS ACCRETION FLOW AROUND BLACK HOLES IN A TWO-DIMENSIONAL CYLINDRICAL GEOMETRY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seong-Jae; Hyung, Siek; Chattopadhyay, Indranil
2016-11-01
We simulate shock-free and shocked viscous accretion flows onto a black hole in a two-dimensional cylindrical geometry, where initial conditions were chosen from analytical solutions. The simulation code used the Lagrangian total variation diminishing plus remap routine, which enabled us to attain high accuracy in capturing shocks and to handle the angular momentum distribution correctly. The inviscid shock-free accretion disk solution produced a thick disk structure, while the viscous shock-free solution attained a Bondi-like structure, but in either case, no jet activity nor any quasi-periodic oscillation (QPO)-like activity developed. The steady-state shocked solution in the inviscid as well as inmore » the viscous regime matched theoretical predictions well. However, increasing viscosity renders the accretion shock unstable. Large-amplitude shock oscillation is accompanied by intermittent, transient inner multiple shocks. This oscillation of the inner part of the disk is interpreted as the source of QPO in hard X-rays observed in micro-quasars. Strong shock oscillation induces strong episodic jet emission. The jets also show the existence of shocks, which are produced as one shell hits the preceding one. The periodicities of the jets and shock oscillation are similar; the jets for the higher viscosity parameter appear to be stronger and faster.« less
NASA Astrophysics Data System (ADS)
Jorris, Timothy R.
2007-12-01
To support the Air Force's Global Reach concept, a Common Aero Vehicle is being designed to support the Global Strike mission. "Waypoints" are specified for reconnaissance or multiple payload deployments and "no-fly zones" are specified for geopolitical restrictions or threat avoidance. Due to time critical targets and multiple scenario analysis, an autonomous solution is preferred over a time-intensive, manually iterative one. Thus, a real-time or near real-time autonomous trajectory optimization technique is presented to minimize the flight time, satisfy terminal and intermediate constraints, and remain within the specified vehicle heating and control limitations. This research uses the Hypersonic Cruise Vehicle (HCV) as a simplified two-dimensional platform to compare multiple solution techniques. The solution techniques include a unique geometric approach developed herein, a derived analytical dynamic optimization technique, and a rapidly emerging collocation numerical approach. This up-and-coming numerical technique is a direct solution method involving discretization then dualization, with pseudospectral methods and nonlinear programming used to converge to the optimal solution. This numerical approach is applied to the Common Aero Vehicle (CAV) as the test platform for the full three-dimensional reentry trajectory optimization problem. The culmination of this research is the verification of the optimality of this proposed numerical technique, as shown for both the two-dimensional and three-dimensional models. Additionally, user implementation strategies are presented to improve accuracy and enhance solution convergence. Thus, the contributions of this research are the geometric approach, the user implementation strategies, and the determination and verification of a numerical solution technique for the optimal reentry trajectory problem that minimizes time to target while satisfying vehicle dynamics and control limitation, and heating, waypoint, and no-fly zone constraints.
Semianalytical Solutions for Transport in Aquifer and Fractured Clay Matrix System
A three-dimensional mathematical model that describes transport of contaminant in a horizontal aquifer with simultaneous diffusion into a fractured clay formation is proposed. A group of analytical solutions is derived based on specific initial and boundary conditions as well as ...
NASA Astrophysics Data System (ADS)
Li, Xiaoli; Zeng, Zhi; Shen, Jingling; Zhang, Cunlin; Zhao, Yuejin
2018-03-01
Logarithmic peak second derivative (LPSD) method is the most popular method for depth prediction in pulsed thermography. It is widely accepted that this method is independent of defect size. The theoretical model for LPSD method is based on the one-dimensional solution of heat conduction without considering the effect of defect size. When a decay term considering defect aspect ratio is introduced into the solution to correct the three-dimensional thermal diffusion effect, we found that LPSD method is affected by defect size by analytical model. Furthermore, we constructed the relation between the characteristic time of LPSD method and defect aspect ratio, which was verified with the experimental results of stainless steel and glass fiber reinforced plate (GFRP) samples. We also proposed an improved LPSD method for depth prediction when the effect of defect size was considered, and the rectification results of stainless steel and GFRP samples were presented and discussed.
Multigrid methods for a semilinear PDE in the theory of pseudoplastic fluids
NASA Technical Reports Server (NTRS)
Henson, Van Emden; Shaker, A. W.
1993-01-01
We show that by certain transformations the boundary layer equations for the class of non-Newtonian fluids named pseudoplastic can be generalized in the form the vector differential operator(u) + p(x)u(exp -lambda) = 0, where x is a member of the set Omega and Omega is a subset of R(exp n), n is greater than or equal to 1 under the classical conditions for steady flow over a semi-infinite flat plate. We provide a survey of the existence, uniqueness, and analyticity of the solutions for this problem. We also establish numerical solutions in one- and two-dimensional regions using multigrid methods.
Stratified Shear Flows In Pipe Geometries
NASA Astrophysics Data System (ADS)
Harabin, George; Camassa, Roberto; McLaughlin, Richard; UNC Joint Fluids Lab Team Team
2015-11-01
Exact and series solutions to the full Navier-Stokes equations coupled to the advection diffusion equation are investigated in tilted three-dimensional pipe geometries. Analytic techniques for studying the three-dimensional problem provide a means for tackling interesting questions such as the optimal domain for mass transport, and provide new avenues for experimental investigation of diffusion driven flows. Both static and time dependent solutions will be discussed. NSF RTG DMS-0943851, NSF RTG ARC-1025523, NSF DMS-1009750.
Electron Tomography: A Three-Dimensional Analytic Tool for Hard and Soft Materials Research
Ercius, Peter; Alaidi, Osama; Rames, Matthew J.; ...
2015-06-18
Three-dimensional (3D) structural analysis is essential to understand the relationship between the structure and function of an object. Many analytical techniques, such as X-ray diffraction, neutron spectroscopy, and electron microscopy imaging, are used to provide structural information. Transmission electron microscopy (TEM), one of the most popular analytic tools, has been widely used for structural analysis in both physical and biological sciences for many decades, in which 3D objects are projected into two-dimensional (2D) images. In many cases, 2D-projection images are insufficient to understand the relationship between the 3D structure and the function of nanoscale objects. Electron tomography (ET) is amore » technique that retrieves 3D structural information from a tilt series of 2D projections, and is gradually becoming a mature technology with sub-nanometer resolution. Distinct methods to overcome sample-based limitations have been separately developed in both physical and biological science, although they share some basic concepts of ET. Here, this review discusses the common basis for 3D characterization, and specifies difficulties and solutions regarding both hard and soft materials research. It is hoped that novel solutions based on current state-of-the-art techniques for advanced applications in hybrid matter systems can be motivated. Electron tomography produces quantitative 3D reconstructions for biological and physical sciences from sets of 2D projections acquired at different tilting angles in a transmission electron microscope. Finally, state-of-the-art techniques capable of producing 3D representations such as Pt-Pd core-shell nanoparticles and IgG1 antibody molecules are reviewed.« less
Solution landscapes in nematic microfluidics
NASA Astrophysics Data System (ADS)
Crespo, M.; Majumdar, A.; Ramos, A. M.; Griffiths, I. M.
2017-08-01
We study the static equilibria of a simplified Leslie-Ericksen model for a unidirectional uniaxial nematic flow in a prototype microfluidic channel, as a function of the pressure gradient G and inverse anchoring strength, B. We numerically find multiple static equilibria for admissible pairs (G , B) and classify them according to their winding numbers and stability. The case G = 0 is analytically tractable and we numerically study how the solution landscape is transformed as G increases. We study the one-dimensional dynamical model, the sensitivity of the dynamic solutions to initial conditions and the rate of change of G and B. We provide a physically interesting example of how the time delay between the applications of G and B can determine the selection of the final steady state.
Steady State Transportation Cooling in Porous Media Under Local, Non-Thermal Equilibrium Fluid Flow
NASA Technical Reports Server (NTRS)
Rodriquez, Alvaro Che
2002-01-01
An analytical solution to the steady-state fluid temperature for 1-D (one dimensional) transpiration cooling has been derived. Transpiration cooling has potential use in the aerospace industry for protection against high heating environments for re-entry vehicles. Literature for analytical treatments of transpiration cooling has been largely confined to the assumption of thermal equilibrium between the porous matrix and fluid. In the present analysis, the fundamental fluid and matrix equations are coupled through a volumetric heat transfer coefficient and investigated in non-thermal equilibrium. The effects of varying the thermal conductivity of the solid matrix and the heat transfer coefficient are investigated. The results are also compared to existing experimental data.
Active ideal sedimentation: exact two-dimensional steady states.
Hermann, Sophie; Schmidt, Matthias
2018-02-28
We consider an ideal gas of active Brownian particles that undergo self-propelled motion and both translational and rotational diffusion under the influence of gravity. We solve analytically the corresponding Smoluchowski equation in two space dimensions for steady states. The resulting one-body density is given as a series, where each term is a product of an orientation-dependent Mathieu function and a height-dependent exponential. A lower hard wall is implemented as a no-flux boundary condition. Numerical evaluation of the suitably truncated analytical solution shows the formation of two different spatial regimes upon increasing Peclet number. These regimes differ in their mean particle orientation and in their variation of the orientation-averaged density with height.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xibing; Dong, Longjun, E-mail: csudlj@163.com; Australian Centre for Geomechanics, The University of Western Australia, Crawley, 6009
This paper presents an efficient closed-form solution (ECS) for acoustic emission(AE) source location in three-dimensional structures using time difference of arrival (TDOA) measurements from N receivers, N ≥ 6. The nonlinear location equations of TDOA are simplified to linear equations. The unique analytical solution of AE sources for unknown velocity system is obtained by solving the linear equations. The proposed ECS method successfully solved the problems of location errors resulting from measured deviations of velocity as well as the existence and multiplicity of solutions induced by calculations of square roots in existed close-form methods.
NASA Astrophysics Data System (ADS)
Wilson, F.; Neukirch, T.
2018-01-01
We present new analytical three-dimensional solutions of the magnetohydrostatic equations, which are applicable to the co-rotating frame of reference outside a rigidly rotating cylindrical body, and have potential applications to planetary magnetospheres and stellar coronae. We consider the case with centrifugal force only, and use a transformation method in which the governing equation for the "pseudo-potential" (from which the magnetic field can be calculated) becomes the Laplace partial differential equation. The new solutions extend the set of previously found solutions to those of a "fractional multipole" nature, and offer wider possibilities for modelling than before. We consider some special cases, and present example solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibarra-Sierra, V.G.; Sandoval-Santana, J.C.; Cardoso, J.L.
We discuss the one-dimensional, time-dependent general quadratic Hamiltonian and the bi-dimensional charged particle in time-dependent electromagnetic fields through the Lie algebraic approach. Such method consists in finding a set of generators that form a closed Lie algebra in terms of which it is possible to express a quantum Hamiltonian and therefore the evolution operator. The evolution operator is then the starting point to obtain the propagator as well as the explicit form of the Heisenberg picture position and momentum operators. First, the set of generators forming a closed Lie algebra is identified for the general quadratic Hamiltonian. This algebra ismore » later extended to study the Hamiltonian of a charged particle in electromagnetic fields exploiting the similarities between the terms of these two Hamiltonians. These results are applied to the solution of five different examples: the linear potential which is used to introduce the Lie algebraic method, a radio frequency ion trap, a Kanai–Caldirola-like forced harmonic oscillator, a charged particle in a time dependent magnetic field, and a charged particle in constant magnetic field and oscillating electric field. In particular we present exact analytical expressions that are fitting for the study of a rotating quadrupole field ion trap and magneto-transport in two-dimensional semiconductor heterostructures illuminated by microwave radiation. In these examples we show that this powerful method is suitable to treat quadratic Hamiltonians with time dependent coefficients quite efficiently yielding closed analytical expressions for the propagator and the Heisenberg picture position and momentum operators. -- Highlights: •We deal with the general quadratic Hamiltonian and a particle in electromagnetic fields. •The evolution operator is worked out through the Lie algebraic approach. •We also obtain the propagator and Heisenberg picture position and momentum operators. •Analytical expressions for a rotating quadrupole field ion trap are presented. •Exact solutions for magneto-transport in variable electromagnetic fields are shown.« less
Simon, Laurent; Ospina, Juan
2016-07-25
Three-dimensional solute transport was investigated for a spherical device with a release hole. The governing equation was derived using the Fick's second law. A mixed Neumann-Dirichlet condition was imposed at the boundary to represent diffusion through a small region on the surface of the device. The cumulative percentage of drug released was calculated in the Laplace domain and represented by the first term of an infinite series of Legendre and modified Bessel functions of the first kind. Application of the Zakian algorithm yielded the time-domain closed-form expression. The first-order solution closely matched a numerical solution generated by Mathematica(®). The proposed method allowed computation of the characteristic time. A larger surface pore resulted in a smaller effective time constant. The agreement between the numerical solution and the semi-analytical method improved noticeably as the size of the orifice increased. It took four time constants for the device to release approximately ninety-eight of its drug content. Copyright © 2016 Elsevier B.V. All rights reserved.
Semianalytical solutions for transport in aquifer and fractured clay matrix system
NASA Astrophysics Data System (ADS)
Huang, Junqi; Goltz, Mark N.
2015-09-01
A three-dimensional mathematical model that describes transport of contaminant in a horizontal aquifer with simultaneous diffusion into a fractured clay formation is proposed. A group of semianalytical solutions is derived based on specific initial and boundary conditions as well as various source functions. The analytical model solutions are evaluated by numerical Laplace inverse transformation and analytical Fourier inverse transformation. The model solutions can be used to study the fate and transport in a three-dimensional spatial domain in which a nonaqueous phase liquid exists as a pool atop a fractured low-permeability clay layer. The nonaqueous phase liquid gradually dissolves into the groundwater flowing past the pool, while simultaneously diffusing into the fractured clay formation below the aquifer. Mass transfer of the contaminant into the clay formation is demonstrated to be significantly enhanced by the existence of the fractures, even though the volume of fractures is relatively small compared to the volume of the clay matrix. The model solution is a useful tool in assessing contaminant attenuation processes in a confined aquifer underlain by a fractured clay formation.
One-dimensional backreacting holographic superconductors with exponential nonlinear electrodynamics
NASA Astrophysics Data System (ADS)
Ghotbabadi, B. Binaei; Zangeneh, M. Kord; Sheykhi, A.
2018-05-01
In this paper, we investigate the effects of nonlinear exponential electrodynamics as well as backreaction on the properties of one-dimensional s-wave holographic superconductors. We continue our study both analytically and numerically. In analytical study, we employ the Sturm-Liouville method while in numerical approach we perform the shooting method. We obtain a relation between the critical temperature and chemical potential analytically. Our results show a good agreement between analytical and numerical methods. We observe that the increase in the strength of both nonlinearity and backreaction parameters causes the formation of condensation in the black hole background harder and critical temperature lower. These results are consistent with those obtained for two dimensional s-wave holographic superconductors.
Hip-hop solutions of the 2N-body problem
NASA Astrophysics Data System (ADS)
Barrabés, Esther; Cors, Josep Maria; Pinyol, Conxita; Soler, Jaume
2006-05-01
Hip-hop solutions of the 2N-body problem with equal masses are shown to exist using an analytic continuation argument. These solutions are close to planar regular 2N-gon relative equilibria with small vertical oscillations. For fixed N, an infinity of these solutions are three-dimensional choreographies, with all the bodies moving along the same closed curve in the inertial frame.
NASA Technical Reports Server (NTRS)
Luke, K. L.; Cheng, L.-J.
1986-01-01
Heavily doped emitter and junction regions of silicon solar cells are investigated by means of the electron-beam-induced-current (EBIC) technique. Although the experimental EBIC data are collected under three-dimensional conditions, it is analytically demonstrated with two numerical examples that the solutions obtained with one-dimensional numerical modeling are adequate. EBIC data for bare and oxide-covered emitter surfaces are compared with theory. The improvement in collection efficiency when an emitter surface is covered with a 100-A SiO2 film varies with beam energy; for a cell with a junction depth of 0.35 microns, the improvement is about 54 percent at 2 keV.
Meromorphic solutions of recurrence relations and DRA method for multicomponent master integrals
NASA Astrophysics Data System (ADS)
Lee, Roman N.; Mingulov, Kirill T.
2018-04-01
We formulate a method to find the meromorphic solutions of higher-order recurrence relations in the form of the sum over poles with coefficients defined recursively. Several explicit examples of the application of this technique are given. The main advantage of the described approach is that the analytical properties of the solutions are very clear (the position of poles is explicit, the behavior at infinity can be easily determined). These are exactly the properties that are required for the application of the multiloop calculation method based on dimensional recurrence relations and analyticity (the DRA method).
NASA Astrophysics Data System (ADS)
Chen, Shanzhen; Jiang, Xiaoyun
2012-08-01
In this paper, analytical solutions to time-fractional partial differential equations in a multi-layer annulus are presented. The final solutions are obtained in terms of Mittag-Leffler function by using the finite integral transform technique and Laplace transform technique. In addition, the classical diffusion equation (α=1), the Helmholtz equation (α→0) and the wave equation (α=2) are discussed as special cases. Finally, an illustrative example problem for the three-layer semi-circular annular region is solved and numerical results are presented graphically for various kind of order of fractional derivative.
NASA Astrophysics Data System (ADS)
Endress, E.; Weigelt, S.; Reents, G.; Bayerl, T. M.
2005-01-01
Measurements of very slow diffusive processes in membranes, like the diffusion of integral membrane proteins, by fluorescence recovery after photo bleaching (FRAP) are hampered by bleaching of the probe during the read out of the fluorescence recovery. In the limit of long observation time (very slow diffusion as in the case of large membrane proteins), this bleaching may cause errors to the recovery function and thus provides error-prone diffusion coefficients. In this work we present a new approach to a two-dimensional closed form analytical solution of the reaction-diffusion equation, based on the addition of a dissipative term to the conventional diffusion equation. The calculation was done assuming (i) a Gaussian laser beam profile for bleaching the spot and (ii) that the fluorescence intensity profile emerging from the spot can be approximated by a two-dimensional Gaussian. The detection scheme derived from the analytical solution allows for diffusion measurements without the constraint of observation bleaching. Recovery curves of experimental FRAP data obtained under non-negligible read-out bleaching for native membranes (rabbit endoplasmic reticulum) on a planar solid support showed excellent agreement with the analytical solution and allowed the calculation of the lipid diffusion coefficient.
Analytical approximation for the Einstein-dilaton-Gauss-Bonnet black hole metric
NASA Astrophysics Data System (ADS)
Kokkotas, K. D.; Konoplya, R. A.; Zhidenko, A.
2017-09-01
We construct an analytical approximation for the numerical black hole metric of P. Kanti et al. [Phys. Rev. D 54, 5049 (1996), 10.1103/PhysRevD.54.5049] in the four-dimensional Einstein-dilaton-Gauss-Bonnet (EdGB) theory. The continued fraction expansion in terms of a compactified radial coordinate, used here, converges slowly when the dilaton coupling approaches its extremal values, but for a black hole far from the extremal state, the analytical formula has a maximal relative error of a fraction of one percent already within the third order of the continued fraction expansion. The suggested analytical representation of the numerical black hole metric is relatively compact and a good approximation in the whole space outside the black hole event horizon. Therefore, it can serve in the same way as an exact solution when analyzing particles' motion, perturbations, quasinormal modes, Hawking radiation, accreting disks, and many other problems in the vicinity of a black hole. In addition, we construct the approximate analytical expression for the dilaton field.
Linear perturbations of a Schwarzschild blackhole by thin disc - convergence
NASA Astrophysics Data System (ADS)
Čížek, P.; Semerák, O.
2012-07-01
In order to find the perturbation of a Schwarzschild space-time due to a rotating thin disc, we try to adjust the method used by [4] in the case of perturbation by a one-dimensional ring. This involves solution of stationary axisymmetric Einstein's equations in terms of spherical-harmonic expansions whose convergence however turned out questionable in numerical examples. Here we show, analytically, that the series are almost everywhere convergent, but in some regions the convergence is not absolute.
Theory of ion-matrix-sheath dynamics
NASA Astrophysics Data System (ADS)
Kos, L.; Tskhakaya, D. D.
2018-01-01
The time evolution of a one-dimensional, uni-polar ion sheath (an "ion matrix sheath") is investigated. The analytical solutions for the ion-fluid and Poisson's equations are found for an arbitrary time dependence of the wall-applied negative potential. In the case that the wall potential is large and remains constant after its ramp-up application, the explicit time dependencies of the sheath's parameters during the initial stage of the process are given. The characteristic rate of approaching the stationary state, satisfying the Child-Langmuir law, is determined.
Computation of the radiation amplitude of oscillons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fodor, Gyula; Forgacs, Peter; LMPT, CNRS-UMR 6083, Universite de Tours, Parc de Grandmont, 37200 Tours
2009-03-15
The radiation loss of small-amplitude oscillons (very long-living, spatially localized, time-dependent solutions) in one-dimensional scalar field theories is computed in the small-amplitude expansion analytically using matched asymptotic series expansions and Borel summation. The amplitude of the radiation is beyond all orders in perturbation theory and the method used has been developed by Segur and Kruskal in Phys. Rev. Lett. 58, 747 (1987). Our results are in good agreement with those of long-time numerical simulations of oscillons.
Rapid computation of directional wellbore drawdown in a confined aquifer via Poisson resummation
NASA Astrophysics Data System (ADS)
Blumenthal, Benjamin J.; Zhan, Hongbin
2016-08-01
We have derived a rapidly computed analytical solution for drawdown caused by a partially or fully penetrating directional wellbore (vertical, horizontal, or slant) via Green's function method. The mathematical model assumes an anisotropic, homogeneous, confined, box-shaped aquifer. Any dimension of the box can have one of six possible boundary conditions: 1) both sides no-flux; 2) one side no-flux - one side constant-head; 3) both sides constant-head; 4) one side no-flux; 5) one side constant-head; 6) free boundary conditions. The solution has been optimized for rapid computation via Poisson Resummation, derivation of convergence rates, and numerical optimization of integration techniques. Upon application of the Poisson Resummation method, we were able to derive two sets of solutions with inverse convergence rates, namely an early-time rapidly convergent series (solution-A) and a late-time rapidly convergent series (solution-B). From this work we were able to link Green's function method (solution-B) back to image well theory (solution-A). We then derived an equation defining when the convergence rate between solution-A and solution-B is the same, which we termed the switch time. Utilizing the more rapidly convergent solution at the appropriate time, we obtained rapid convergence at all times. We have also shown that one may simplify each of the three infinite series for the three-dimensional solution to 11 terms and still maintain a maximum relative error of less than 10-14.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ori, Amos
2010-11-15
Callan, Giddings, Harvey, and Strominger (CGHS) previously introduced a two-dimensional semiclassical model of gravity coupled to a dilaton and to matter fields. Their model yields a system of field equations which may describe the formation of a black hole in gravitational collapse as well as its subsequent evaporation. Here we present an approximate analytical solution to the semiclassical CGHS field equations. This solution is constructed using the recently introduced formalism of flux-conserving hyperbolic systems. We also explore the asymptotic behavior at the horizon of the evaporating black hole.
Estimation on nonlinear damping in second order distributed parameter systems
NASA Technical Reports Server (NTRS)
Banks, H. T.; Reich, Simeon; Rosen, I. G.
1989-01-01
An approximation and convergence theory for the identification of nonlinear damping in abstract wave equations is developed. It is assumed that the unknown dissipation mechanism to be identified can be described by a maximal monotone operator acting on the generalized velocity. The stiffness is assumed to be linear and symmetric. Functional analytic techniques are used to establish that solutions to a sequence of finite dimensional (Galerkin) approximating identification problems in some sense approximate a solution to the original infinite dimensional inverse problem.
Adaptive finite element methods for two-dimensional problems in computational fracture mechanics
NASA Technical Reports Server (NTRS)
Min, J. B.; Bass, J. M.; Spradley, L. W.
1994-01-01
Some recent results obtained using solution-adaptive finite element methods in two-dimensional problems in linear elastic fracture mechanics are presented. The focus is on the basic issue of adaptive finite element methods for validating the new methodology by computing demonstration problems and comparing the stress intensity factors to analytical results.
Low-dimensional manifold of actin polymerization dynamics
NASA Astrophysics Data System (ADS)
Floyd, Carlos; Jarzynski, Christopher; Papoian, Garegin
2017-12-01
Actin filaments are critical components of the eukaryotic cytoskeleton, playing important roles in a number of cellular functions, such as cell migration, organelle transport, and mechanosensation. They are helical polymers with a well-defined polarity, composed of globular subunits that bind nucleotides in one of three hydrolysis states (ATP, ADP-Pi, or ADP). Mean-field models of the dynamics of actin polymerization have succeeded in, among other things, determining the nucleotide profile of an average filament and resolving the mechanisms of accessory proteins. However, these models require numerical solution of a high-dimensional system of nonlinear ordinary differential equations. By truncating a set of recursion equations, the Brooks-Carlsson (BC) model reduces dimensionality to 11, but it still remains nonlinear and does not admit an analytical solution, hence, significantly hindering understanding of its resulting dynamics. In this work, by taking advantage of the fast timescales of the hydrolysis states of the filament tips, we propose two model reduction schemes: the quasi steady-state approximation model is five-dimensional and nonlinear, whereas the constant tip (CT) model is five-dimensional and linear, resulting from the approximation that the tip states are not dynamic variables. We provide an exact solution of the CT model and use it to shed light on the dynamical behaviors of the full BC model, highlighting the relative ordering of the timescales of various collective processes, and explaining some unusual dependence of the steady-state behavior on initial conditions.
Verification and benchmark testing of the NUFT computer code
NASA Astrophysics Data System (ADS)
Lee, K. H.; Nitao, J. J.; Kulshrestha, A.
1993-10-01
This interim report presents results of work completed in the ongoing verification and benchmark testing of the NUFT (Nonisothermal Unsaturated-saturated Flow and Transport) computer code. NUFT is a suite of multiphase, multicomponent models for numerical solution of thermal and isothermal flow and transport in porous media, with application to subsurface contaminant transport problems. The code simulates the coupled transport of heat, fluids, and chemical components, including volatile organic compounds. Grid systems may be cartesian or cylindrical, with one-, two-, or fully three-dimensional configurations possible. In this initial phase of testing, the NUFT code was used to solve seven one-dimensional unsaturated flow and heat transfer problems. Three verification and four benchmarking problems were solved. In the verification testing, excellent agreement was observed between NUFT results and the analytical or quasianalytical solutions. In the benchmark testing, results of code intercomparison were very satisfactory. From these testing results, it is concluded that the NUFT code is ready for application to field and laboratory problems similar to those addressed here. Multidimensional problems, including those dealing with chemical transport, will be addressed in a subsequent report.
Khan, Farman U; Qamar, Shamsul
2017-05-01
A set of analytical solutions are presented for a model describing the transport of a solute in a fixed-bed reactor of cylindrical geometry subjected to the first (Dirichlet) and third (Danckwerts) type inlet boundary conditions. Linear sorption kinetic process and first-order decay are considered. Cylindrical geometry allows the use of large columns to investigate dispersion, adsorption/desorption and reaction kinetic mechanisms. The finite Hankel and Laplace transform techniques are adopted to solve the model equations. For further analysis, statistical temporal moments are derived from the Laplace-transformed solutions. The developed analytical solutions are compared with the numerical solutions of high-resolution finite volume scheme. Different case studies are presented and discussed for a series of numerical values corresponding to a wide range of mass transfer and reaction kinetics. A good agreement was observed in the analytical and numerical concentration profiles and moments. The developed solutions are efficient tools for analyzing numerical algorithms, sensitivity analysis and simultaneous determination of the longitudinal and transverse dispersion coefficients from a laboratory-scale radial column experiment. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Miller, Steven
1998-03-01
A generic stochastic method is presented that rapidly evaluates numerical bulk flux solutions to the one-dimensional integrodifferential radiative transport equation, for coherent irradiance of optically anisotropic suspensions of nonspheroidal bioparticles, such as blood. As Fermat rays or geodesics enter the suspension, they evolve into a bundle of random paths or trajectories due to scattering by the suspended bioparticles. Overall, this can be interpreted as a bundle of Markov trajectories traced out by a "gas" of Brownian-like point photons being scattered and absorbed by the homogeneous distribution of uncorrelated cells in suspension. By considering the cumulative vectorial intersections of a statistical bundle of random trajectories through sets of interior data planes in the space containing the medium, the effective equivalent information content and behavior of the (generally unknown) analytical flux solutions of the radiative transfer equation rapidly emerges. The fluxes match the analytical diffuse flux solutions in the diffusion limit, which verifies the accuracy of the algorithm. The method is not constrained by the diffusion limit and gives correct solutions for conditions where diffuse solutions are not viable. Unlike conventional Monte Carlo and numerical techniques adapted from neutron transport or nuclear reactor problems that compute scalar quantities, this vectorial technique is fast, easily implemented, adaptable, and viable for a wide class of biophotonic scenarios. By comparison, other analytical or numerical techniques generally become unwieldy, lack viability, or are more difficult to utilize and adapt. Illustrative calculations are presented for blood medias at monochromatic wavelengths in the visible spectrum.
Viscous, resistive MHD stability computed by spectral techniques
NASA Technical Reports Server (NTRS)
Dahlburg, R. B.; Zang, T. A.; Montgomery, D.; Hussaini, M. Y.
1983-01-01
Expansions in Chebyshev polynomials are used to study the linear stability of one dimensional magnetohydrodynamic (MHD) quasi-equilibria, in the presence of finite resistivity and viscosity. The method is modeled on the one used by Orszag in accurate computation of solutions of the Orr-Sommerfeld equation. Two Reynolds like numbers involving Alfven speeds, length scales, kinematic viscosity, and magnetic diffusivity govern the stability boundaries, which are determined by the geometric mean of the two Reynolds like numbers. Marginal stability curves, growth rates versus Reynolds like numbers, and growth rates versus parallel wave numbers are exhibited. A numerical result which appears general is that instability was found to be associated with inflection points in the current profile, though no general analytical proof has emerged. It is possible that nonlinear subcritical three dimensional instabilities may exist, similar to those in Poiseuille and Couette flow.
Ye, Yong-Jun; Dai, Xin-Tao; Ding, De-Xin; Zhao, Ya-Li
2016-12-01
In this study, a one-dimensional steady-state mathematical model of radon transport in fragmented uranium ore was established according to Fick's law and radon transfer theory in an air-water interface. The model was utilized to obtain an analytical solution for radon concentration in the air-water, two-phase system under steady state conditions, as well as a corresponding radon exhalation rate calculation formula. We also designed a one-dimensional experimental apparatus for simulating radon diffusion migration in the uranium ore with various water levels to verify the mathematical model. The predicted results were in close agreement with the measured results, suggesting that the proposed model can be readily used to determine radon concentrations and exhalation rates in fragmented uranium ore with varying water levels. Copyright © 2016. Published by Elsevier Ltd.
Kinks in higher derivative scalar field theory
NASA Astrophysics Data System (ADS)
Zhong, Yuan; Guo, Rong-Zhen; Fu, Chun-E.; Liu, Yu-Xiao
2018-07-01
We study static kink configurations in a type of two-dimensional higher derivative scalar field theory whose Lagrangian contains second-order derivative terms of the field. The linear fluctuation around arbitrary static kink solutions is analyzed. We find that, the linear spectrum can be described by a supersymmetric quantum mechanics problem, and the criteria for stable static solutions can be given analytically. We also construct a superpotential formalism for finding analytical static kink solutions. Using this formalism we first reproduce some existed solutions and then offer a new solution. The properties of our solution is studied and compared with those preexisted. We also show the possibility in constructing twinlike model in the higher derivative theory, and give the consistency conditions for twinlike models corresponding to the canonical scalar field theory.
A small-plane heat source method for measuring the thermal conductivities of anisotropic materials
NASA Astrophysics Data System (ADS)
Cheng, Liang; Yue, Kai; Wang, Jun; Zhang, Xinxin
2017-07-01
A new small-plane heat source method was proposed in this study to simultaneously measure the in-plane and cross-plane thermal conductivities of anisotropic insulating materials. In this method the size of the heat source element is smaller than the sample size and the boundary condition is thermal insulation due to no heat flux at the edge of the sample during the experiment. A three-dimensional model in a rectangular coordinate system was established to exactly describe the heat transfer process of the measurement system. Using the Laplace transform, variable separation, and Laplace inverse transform methods, the analytical solution of the temperature rise of the sample was derived. The temperature rises calculated by the analytical solution agree well with the results of numerical calculation. The result of the sensitivity analysis shows that the sensitivity coefficients of the estimated thermal conductivities are high and uncorrelated to each other. At room temperature and in a high-temperature environment, experimental measurements of anisotropic silica aerogel were carried out using the traditional one-dimensional plane heat source method and the proposed method, respectively. The results demonstrate that the measurement method developed in this study is effective and feasible for simultaneously obtaining the in-plane and cross-plane thermal conductivities of the anisotropic materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cari, C., E-mail: cari@staff.uns.ac.id; Suparmi, A., E-mail: soeparmi@staff.uns.ac.id; Yunianto, M., E-mail: muhtaryunianto@staff.uns.ac.id
2016-02-08
The analytical solution of Ddimensional Dirac equation for Coulombic potential is investigated using Nikiforov-Uvarov method. The D dimensional relativistic energy spectra are obtained from relativistic energy eigenvalue equation by using Mat Lab software.The corresponding D dimensional radial wave functions are formulated in the form of generalized Jacobi and Laguerre Polynomials. In the non-relativistic limit, the relativistic energy equation reduces to the non-relativistic energy which will be applied to determine some thermodynamical properties of the system. The thermodynamical properties of the system are expressed in terms of error function and imaginary error function.
A two-dimensional solution of the FW-H equation for rectilinear motion of sources
NASA Astrophysics Data System (ADS)
Bozorgi, Alireza; Siozos-Rousoulis, Leonidas; Nourbakhsh, Seyyed Ahmad; Ghorbaniasl, Ghader
2017-02-01
In this paper, a subsonic solution of the two-dimensional Ffowcs Williams and Hawkings (FW-H) equation is presented for calculation of noise generated by sources moving with constant velocity in a medium at rest or in a moving medium. The solution is represented in the frequency domain and is valid for observers located far from the noise sources. In order to verify the validity of the derived formula, three test cases are considered, namely a monopole, a dipole, and a quadrupole source in a medium at rest or in motion. The calculated results well coincide with the analytical solutions, validating the applicability of the formula to rectilinear subsonic motion problems.
A unified theory for laminated plates
NASA Astrophysics Data System (ADS)
Guiamatsia Tafeuvoukeng, Irene
A literature survey on plate and beam theories show how the advent of the finite element method and the variational method circa 1940 have been a great stimulant for the research in this field. The initial thin plate formulation has been incrementally expanded to treat the isotropic thick plate, the anisotropic single layer, and then laminated plates. It appears however that current formulations still fall into one of two categories: (1) The formulation is tailored for a specific laminate and/or loading case; (2) or the formulation is too complicated to be of practical relevance. In this work a new unifying approach to laminated plate formulation is presented. All laminated plates, including sandwich panels, subjected to any surface load and with any boundary conditions are treated within a single model. In addition, the fundamental behavior of the plate as a two-dimensional structural element is explained. The novel idea is the introduction of fundamental state solutions, which are analytical far field stress and strain solutions of the laminated plate subjected to a set of hierarchical primary loads, the fundamental loads. These loads are carefully selected to form a basis of the load space, and corresponding solutions are superposed to obtain extremely accurate predictions of the three dimensional solution. six,y,z =aklx,y sikl z where i = 1,..., 6; 1=1,...,l max is a substate of the kth fundamental state k=1,2,3,... Typically, a fundamental state solution is expressed as a through-thickness function (z), while the amplitudes of each fundamental load are found from two dimensional finite element solution as a function of in-plane coordinates (x,y). Three major contributions are produced in this work: (1) A complete calibration of the plate as a two-dimensional structure is performed with pure bending and constant shear fundamental states. (2) There are four independent ways to apply a constant shear resultant on a plate, as opposed to one for a beam. This makes it impossible to define a unique 2 x 2 transverse shear stiffness matrix. Therefore the traditional problem of the shear correction factor loses all relevance. It is however shown that an explicit transverse constitutive relation can be obtained for isotropic-layered laminates or single-layers. (3) Higher accuracy, three-dimensional solutions are obtained using a two-dimensional finite element model with a complexity level (degrees of freedom) similar to the Reissner-Mindlin plate. The proof of concept is realized using Pagano solution for rectangular plates under sinusoidal load, for a sandwich panel. Additional comparisons are also performed for four and six-layer symmetric and antisymmetric laminates, between the new plate theory results and full three-dimensional finite element solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suparmi, A., E-mail: soeparmi@staff.uns.ac.id; Cari, C., E-mail: cari@staff.uns.ac.id; Pratiwi, B. N., E-mail: namakubetanurpratiwi@gmail.com
2016-02-08
The analytical solution of D-dimensional Dirac equation for hyperbolic tangent potential is investigated using Nikiforov-Uvarov method. In the case of spin symmetry the D dimensional Dirac equation reduces to the D dimensional Schrodinger equation. The D dimensional relativistic energy spectra are obtained from D dimensional relativistic energy eigen value equation by using Mat Lab software. The corresponding D dimensional radial wave functions are formulated in the form of generalized Jacobi polynomials. The thermodynamically properties of materials are generated from the non-relativistic energy eigen-values in the classical limit. In the non-relativistic limit, the relativistic energy equation reduces to the non-relativistic energy.more » The thermal quantities of the system, partition function and specific heat, are expressed in terms of error function and imaginary error function which are numerically calculated using Mat Lab software.« less
NASA Astrophysics Data System (ADS)
Iverson, Richard M.; Denlinger, Roger P.
2001-01-01
Rock avalanches, debris flows, and related phenomena consist of grain-fluid mixtures that move across three-dimensional terrain. In all these phenomena the same basic forces govern motion, but differing mixture compositions, initial conditions, and boundary conditions yield varied dynamics and deposits. To predict motion of diverse grain-fluid masses from initiation to deposition, we develop a depth-averaged, three-dimensional mathematical model that accounts explicitly for solid- and fluid-phase forces and interactions. Model input consists of initial conditions, path topography, basal and internal friction angles of solid grains, viscosity of pore fluid, mixture density, and a mixture diffusivity that controls pore pressure dissipation. Because these properties are constrained by independent measurements, the model requires little or no calibration and yields readily testable predictions. In the limit of vanishing Coulomb friction due to persistent high fluid pressure the model equations describe motion of viscous floods, and in the limit of vanishing fluid stress they describe one-phase granular avalanches. Analysis of intermediate phenomena such as debris flows and pyroclastic flows requires use of the full mixture equations, which can simulate interaction of high-friction surge fronts with more-fluid debris that follows. Special numerical methods (described in the companion paper) are necessary to solve the full equations, but exact analytical solutions of simplified equations provide critical insight. An analytical solution for translational motion of a Coulomb mixture accelerating from rest and descending a uniform slope demonstrates that steady flow can occur only asymptotically. A solution for the asymptotic limit of steady flow in a rectangular channel explains why shear may be concentrated in narrow marginal bands that border a plug of translating debris. Solutions for static equilibrium of source areas describe conditions of incipient slope instability, and other static solutions show that nonuniform distributions of pore fluid pressure produce bluntly tapered vertical profiles at the margins of deposits. Simplified equations and solutions may apply in additional situations identified by a scaling analysis. Assessment of dimensionless scaling parameters also reveals that miniature laboratory experiments poorly simulate the dynamics of full-scale flows in which fluid effects are significant. Therefore large geophysical flows can exhibit dynamics not evident at laboratory scales.
NASA Technical Reports Server (NTRS)
Moas, Eduardo; Boitnott, Richard L.; Griffin, O. Hayden, Jr.
1994-01-01
Six-foot diameter, semicircular graphite/epoxy specimens representative of generic aircraft frames were loaded quasi-statistically to determine their load response and failure mechanisms for large deflections that occur in airplanes crashes. These frame/skin specimens consisted of a cylindrical skin section co-cured with a semicircular I-frame. The skin provided the necessary lateral stiffness to keep deformations in the plane of the frame in order to realistically represent deformations as they occur in actual fuselage structures. Various frame laminate stacking sequences and geometries were evaluated by statically loading the specimen until multiple failures occurred. Two analytical methods were compared for modeling the frame/skin specimens: a two-dimensional shell finite element analysis and a one-dimensional, closed-form, curved beam solution derived using an energy method. Flange effectivities were included in the beam analysis to account for the curling phenomenon that occurs in thin flanges of curved beams. Good correlation was obtained between experimental results and the analytical predictions of the linear response of the frames prior to the initial failure. The specimens were found to be useful for evaluating composite frame designs.
The application of the principles of invariance to the radiative transfer equation in plant canopies
NASA Technical Reports Server (NTRS)
Ganapol, B. D.; Myneni, R. B.
1992-01-01
Solutions of the radiative transfer equation describing photon interactions with vegetation canopies are important in remote sensing since they provide the canopy reflectance distribution required in the interpretation of satellite acquired information. The general one-dimensional two-angle transport problem for a finite copy of arbitrary leaf angle distribution is considered. Analytical solutions are obtained in terms of generalized Chandrasekhar's X- and Y-functions by invoking the principles of invariance. A critical step in the formulation involves the decomposition of the integral of the scattering phase function into a product of known functions of the incident and scattered photon directions. Several simplified cases previously considered in the literature are derived from the generalized solution. Various symmetries obeyed by the scattering operator and reciprocity relations are formally proved.
NASA Astrophysics Data System (ADS)
Liao, Qinzhuo; Zhang, Dongxiao; Tchelepi, Hamdi
2017-06-01
In numerical modeling of subsurface flow and transport problems, formation properties may not be deterministically characterized, which leads to uncertainty in simulation results. In this study, we propose a sparse grid collocation method, which adopts nested quadrature rules with delay and transformation to quantify the uncertainty of model solutions. We show that the nested Kronrod-Patterson-Hermite quadrature is more efficient than the unnested Gauss-Hermite quadrature. We compare the convergence rates of various quadrature rules including the domain truncation and domain mapping approaches. To further improve accuracy and efficiency, we present a delayed process in selecting quadrature nodes and a transformed process for approximating unsmooth or discontinuous solutions. The proposed method is tested by an analytical function and in one-dimensional single-phase and two-phase flow problems with different spatial variances and correlation lengths. An additional example is given to demonstrate its applicability to three-dimensional black-oil models. It is found from these examples that the proposed method provides a promising approach for obtaining satisfactory estimation of the solution statistics and is much more efficient than the Monte-Carlo simulations.
NASA Technical Reports Server (NTRS)
Cole, G. L.; Willoh, R. G.
1975-01-01
A linearized mathematical analysis is presented for determining the response of normal shock position and subsonic duct pressures to flow-field perturbations upstream of the normal shock in mixed-compression supersonic inlets. The inlet duct cross-sectional area variation is approximated by constant-area sections; this approximation results in one-dimensional wave equations. A movable normal shock separates the supersonic and subsonic flow regions, and a choked exit is assumed for the inlet exit condition. The analysis leads to a closed-form matrix solution for the shock position and pressure transfer functions. Analytical frequency response results are compared with experimental data and a method of characteristics solution.
NASA Technical Reports Server (NTRS)
Ehlers, F. E.; Sebastian, J. D.; Weatherill, W. H.
1979-01-01
Analytical and empirical studies of a finite difference method for the solution of the transonic flow about harmonically oscillating wings and airfoils are presented. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady equations for small disturbances. Since sinusoidal motion is assumed, the unsteady equation is independent of time. Three finite difference investigations are discussed including a new operator for mesh points with supersonic flow, the effects on relaxation solution convergence of adding a viscosity term to the original differential equation, and an alternate and relatively simple downstream boundary condition. A method is developed which uses a finite difference procedure over a limited inner region and an approximate analytical procedure for the remaining outer region. Two investigations concerned with three-dimensional flow are presented. The first is the development of an oblique coordinate system for swept and tapered wings. The second derives the additional terms required to make row relaxation solutions converge when mixed flow is present. A finite span flutter analysis procedure is described using the two-dimensional unsteady transonic program with a full three-dimensional steady velocity potential.
Knopman, Debra S.; Voss, Clifford I.
1987-01-01
The spatial and temporal variability of sensitivities has a significant impact on parameter estimation and sampling design for studies of solute transport in porous media. Physical insight into the behavior of sensitivities is offered through an analysis of analytically derived sensitivities for the one-dimensional form of the advection-dispersion equation. When parameters are estimated in regression models of one-dimensional transport, the spatial and temporal variability in sensitivities influences variance and covariance of parameter estimates. Several principles account for the observed influence of sensitivities on parameter uncertainty. (1) Information about a physical parameter may be most accurately gained at points in space and time with a high sensitivity to the parameter. (2) As the distance of observation points from the upstream boundary increases, maximum sensitivity to velocity during passage of the solute front increases and the consequent estimate of velocity tends to have lower variance. (3) The frequency of sampling must be “in phase” with the S shape of the dispersion sensitivity curve to yield the most information on dispersion. (4) The sensitivity to the dispersion coefficient is usually at least an order of magnitude less than the sensitivity to velocity. (5) The assumed probability distribution of random error in observations of solute concentration determines the form of the sensitivities. (6) If variance in random error in observations is large, trends in sensitivities of observation points may be obscured by noise and thus have limited value in predicting variance in parameter estimates among designs. (7) Designs that minimize the variance of one parameter may not necessarily minimize the variance of other parameters. (8) The time and space interval over which an observation point is sensitive to a given parameter depends on the actual values of the parameters in the underlying physical system.
Analytical theory of the hydrophobic effect of solutes in water.
Urbic, Tomaz; Dill, Ken A
2017-09-01
We develop an analytical statistical-mechanical model for hydrophobic solvation in water. In this three-dimensional Mercedes-Benz-like model, two neighboring waters have three possible interaction states: a radial van der Waals interaction, a tetrahedral orientation-dependent hydrogen-bonding interaction, or no interaction. Nonpolar solutes are modeled as van der Waals particles of different radii. The model is sufficiently simple that we can calculate the partition function and thermal and volumetric properties of solvation versus temperature, pressure, and solute radius. Predictions are in good agreement with results of Monte Carlo simulations. And their trends agree with experiments on hydrophobic solute insertion. The theory shows that first-shell waters are more highly structured than bulk waters, because of hydrogen bonding, and that that structure melts out faster with temperature than it does in bulk waters. Because the theory is analytical, it can explore a broad range of solvation properties and anomalies of water, at minimal computational expense.
Analytical theory of the hydrophobic effect of solutes in water
NASA Astrophysics Data System (ADS)
Urbic, Tomaz; Dill, Ken A.
2017-09-01
We develop an analytical statistical-mechanical model for hydrophobic solvation in water. In this three-dimensional Mercedes-Benz-like model, two neighboring waters have three possible interaction states: a radial van der Waals interaction, a tetrahedral orientation-dependent hydrogen-bonding interaction, or no interaction. Nonpolar solutes are modeled as van der Waals particles of different radii. The model is sufficiently simple that we can calculate the partition function and thermal and volumetric properties of solvation versus temperature, pressure, and solute radius. Predictions are in good agreement with results of Monte Carlo simulations. And their trends agree with experiments on hydrophobic solute insertion. The theory shows that first-shell waters are more highly structured than bulk waters, because of hydrogen bonding, and that that structure melts out faster with temperature than it does in bulk waters. Because the theory is analytical, it can explore a broad range of solvation properties and anomalies of water, at minimal computational expense.
Approximate analysis of thermal convection in a crystal-growth cell for Spacelab 3
NASA Technical Reports Server (NTRS)
Dressler, R. F.
1982-01-01
The transient and steady thermal convection in microgravity is described. The approach is applicable to many three dimensional flows in containers of various shapes with various thermal gradients imposed. The method employs known analytical solutions to two dimensional thermal flows in simpler geometries, and does not require recourse to numerical calculations by computer.
NASA Astrophysics Data System (ADS)
Siripatana, Chairat; Thongpan, Hathaikarn; Promraksa, Arwut
2017-03-01
This article explores a volumetric approach in formulating differential equations for a class of engineering flow problems involving component transfer within or between two phases. In contrast to conventional formulation which is based on linear velocities, this work proposed a slightly different approach based on volumetric flow-rate which is essentially constant in many industrial processes. In effect, many multi-dimensional flow problems found industrially can be simplified into multi-component or multi-phase but one-dimensional flow problems. The formulation is largely generic, covering counter-current, concurrent or batch, fixed and fluidized bed arrangement. It was also intended to use for start-up, shut-down, control and steady state simulation. Since many realistic and industrial operation are dynamic with variable velocity and porosity in relation to position, analytical solutions are rare and limited to only very simple cases. Thus we also provide a numerical solution using Crank-Nicolson finite difference scheme. This solution is inherently stable as tested against a few cases published in the literature. However, it is anticipated that, for unconfined flow or non-constant flow-rate, traditional formulation should be applied.
Pair creation of higher dimensional black holes on a de Sitter background
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dias, Oscar J.C.; Lemos, Jose P.S.; CENTRA, Departamento de Fisica, F.C.T., Universidade do Algarve, Campus de Gambelas, 8005-139 Faro
We study in detail the quantum process in which a pair of black holes is created in a higher D-dimensional de Sitter (dS) background. The energy to materialize and accelerate the pair comes from the positive cosmological constant. The instantons that describe the process are obtained from the Tangherlini black hole solutions. Our pair creation rates reduce to the pair creation rate for Reissner-Nordstroem-dS solutions when D=4. Pair creation of black holes in the dS background becomes less suppressed when the dimension of the spacetime increases. The dS space is the only background in which we can discuss analytically themore » pair creation process of higher dimensional black holes, since the C-metric and the Ernst solutions, which describe, respectively, a pair accelerated by a string and by an electromagnetic field, are not known yet in a higher dimensional spacetime.« less
Development of a particle method of characteristics (PMOC) for one-dimensional shock waves
NASA Astrophysics Data System (ADS)
Hwang, Y.-H.
2018-03-01
In the present study, a particle method of characteristics is put forward to simulate the evolution of one-dimensional shock waves in barotropic gaseous, closed-conduit, open-channel, and two-phase flows. All these flow phenomena can be described with the same set of governing equations. The proposed scheme is established based on the characteristic equations and formulated by assigning the computational particles to move along the characteristic curves. Both the right- and left-running characteristics are traced and represented by their associated computational particles. It inherits the computational merits from the conventional method of characteristics (MOC) and moving particle method, but without their individual deficiencies. In addition, special particles with dual states deduced to the enforcement of the Rankine-Hugoniot relation are deliberately imposed to emulate the shock structure. Numerical tests are carried out by solving some benchmark problems, and the computational results are compared with available analytical solutions. From the derivation procedure and obtained computational results, it is concluded that the proposed PMOC will be a useful tool to replicate one-dimensional shock waves.
NASA Astrophysics Data System (ADS)
Soler, Josep M.
2001-12-01
In this study, the potential effects of coupled transport phenomena on radionuclide transport in the vicinity of a repository for vitrified high-level radioactive waste (HLW) and spent nuclear fuel (SF) hosted by the Opalinus Clay in Switzerland, at times equal to or greater than the expected lifetime of the waste canisters (about 1000 years), are addressed. The solute fluxes associated with advection, chemical diffusion, thermal and chemical osmosis, hyperfiltration and thermal diffusion have been incorporated into a simple one-dimensional transport equation. The analytical solution of this equation, with appropriate parameters, shows that thermal osmosis is the only coupled transport mechanism that could, on its own, have a strong effect on repository performance. Based on the results from the analytical model, two-dimensional finite-difference models incorporating advection and thermal osmosis, and taking conservation of fluid mass into account, have been formulated. The results show that, under the conditions in the vicinity of the repository at the time scales of interest, and due to the constraints imposed by conservation of fluid mass, the advective component of flow will oppose and cancel the thermal-osmotic component. The overall conclusion is that coupled phenomena will only have a very minor impact on radionuclide transport in the Opalinus Clay, in terms of fluid and solute fluxes, at least under the conditions prevailing at times equal to or greater than the expected lifetime of the waste canisters (about 1000 years).
Two-dimensional convolute integers for analytical instrumentation
NASA Technical Reports Server (NTRS)
Edwards, T. R.
1982-01-01
As new analytical instruments and techniques emerge with increased dimensionality, a corresponding need is seen for data processing logic which can appropriately address the data. Two-dimensional measurements reveal enhanced unknown mixture analysis capability as a result of the greater spectral information content over two one-dimensional methods taken separately. It is noted that two-dimensional convolute integers are merely an extension of the work by Savitzky and Golay (1964). It is shown that these low-pass, high-pass and band-pass digital filters are truly two-dimensional and that they can be applied in a manner identical with their one-dimensional counterpart, that is, a weighted nearest-neighbor, moving average with zero phase shifting, convoluted integer (universal number) weighting coefficients.
Methods for analysis of cracks in three-dimensional solids
NASA Technical Reports Server (NTRS)
Raju, I. S.; Newman, J. C., Jr.
1984-01-01
Various analytical and numerical methods used to evaluate the stress intensity factors for cracks in three-dimensional (3-D) solids are reviewed. Classical exact solutions and many of the approximate methods used in 3-D analyses of cracks are reviewed. The exact solutions for embedded elliptic cracks in infinite solids are discussed. The approximate methods reviewed are the finite element methods, the boundary integral equation (BIE) method, the mixed methods (superposition of analytical and finite element method, stress difference method, discretization-error method, alternating method, finite element-alternating method), and the line-spring model. The finite element method with singularity elements is the most widely used method. The BIE method only needs modeling of the surfaces of the solid and so is gaining popularity. The line-spring model appears to be the quickest way to obtain good estimates of the stress intensity factors. The finite element-alternating method appears to yield the most accurate solution at the minimum cost.
The study of the Boltzmann equation of solid-gas two-phase flow with three-dimensional BGK model
NASA Astrophysics Data System (ADS)
Liu, Chang-jiang; Pang, Song; Xu, Qiang; He, Ling; Yang, Shao-peng; Qing, Yun-jie
2018-06-01
The motion of many solid-gas two-phase flows can be described by the Boltzmann equation. In order to simplify the Boltzmann equation, the convective-diffusion term is reserved and the collision term is replaced by the three-dimensional Bharnagar-Gross-Krook (BGK) model. Then the simplified Boltzmann equation is solved by homotopy perturbation method (HPM), and its approximate analytical solution is obtained. Through the analyzing, it is proved that the analytical solution satisfies all the constraint conditions, and its formation is in accord with the formation of the solution that is obtained by traditional Chapman-Enskog method, and the solving process of HPM is much more simple and convenient. This preliminarily shows the effectiveness and rapidness of HPM to solve the Boltzmann equation. The results obtained herein provide some theoretical basis for the further study of dynamic model of solid-gas two-phase flows, such as the sturzstrom of high-speed distant landslide caused by microseism and the sand storm caused by strong breeze.
Three-Dimensional Field Solutions for Multi-Pole Cylindrical Halbach Arrays in an Axial Orientation
NASA Technical Reports Server (NTRS)
Thompson, William K.
2006-01-01
This article presents three-dimensional B field solutions for the cylindrical Halbach array in an axial orientation. This arrangement has applications in the design of axial motors and passive axial magnetic bearings and couplers. The analytical model described here assumes ideal magnets with fixed and uniform magnetization. The field component functions are expressed as sums of 2-D definite integrals that are easily computed by a number of mathematical analysis software packages. The analysis is verified with sample calculations and the results are compared to equivalent results from traditional finite-element analysis (FEA). The field solutions are then approximated for use in flux linkage and induced EMF calculations in nearby stator windings by expressing the field variance with angular displacement as pure sinusoidal function whose amplitude depends on radial and axial position. The primary advantage of numerical implementation of the analytical approach presented in the article is that it lends itself more readily to parametric analysis and design tradeoffs than traditional FEA models.
NASA Astrophysics Data System (ADS)
Tsivilskiy, I. V.; Nagulin, K. Yu.; Gilmutdinov, A. Kh.
2016-02-01
A full three-dimensional nonstationary numerical model of graphite electrothermal atomizers of various types is developed. The model is based on solution of a heat equation within solid walls of the atomizer with a radiative heat transfer and numerical solution of a full set of Navier-Stokes equations with an energy equation for a gas. Governing equations for the behavior of a discrete phase, i.e., atomic particles suspended in a gas (including gas-phase processes of evaporation and condensation), are derived from the formal equations molecular kinetics by numerical solution of the Hertz-Langmuir equation. The following atomizers test the model: a Varian standard heated electrothermal vaporizer (ETV), a Perkin Elmer standard THGA transversely heated graphite tube with integrated platform (THGA), and the original double-stage tube-helix atomizer (DSTHA). The experimental verification of computer calculations is carried out by a method of shadow spectral visualization of the spatial distributions of atomic and molecular vapors in an analytical space of an atomizer.
Study of coupled nonlinear partial differential equations for finding exact analytical solutions.
Khan, Kamruzzaman; Akbar, M Ali; Koppelaar, H
2015-07-01
Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced (G'/G)-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd-Sokolov-Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics.
NASA Astrophysics Data System (ADS)
Tran, A. B.; Vu, M. N.; Nguyen, S. T.; Dong, T. Q.; Le-Nguyen, K.
2018-02-01
This paper presents analytical solutions to heat transfer problems around a crack and derive an adaptive model for effective thermal conductivity of cracked materials based on singular integral equation approach. Potential solution of heat diffusion through two-dimensional cracked media, where crack filled by air behaves as insulator to heat flow, is obtained in a singular integral equation form. It is demonstrated that the temperature field can be described as a function of temperature and rate of heat flow on the boundary and the temperature jump across the cracks. Numerical resolution of this boundary integral equation allows determining heat conduction and effective thermal conductivity of cracked media. Moreover, writing this boundary integral equation for an infinite medium embedding a single crack under a far-field condition allows deriving the closed-form solution of temperature discontinuity on the crack and particularly the closed-form solution of temperature field around the crack. These formulas are then used to establish analytical effective medium estimates. Finally, the comparison between the developed numerical and analytical solutions allows developing an adaptive model for effective thermal conductivity of cracked media. This model takes into account both the interaction between cracks and the percolation threshold.
A boundary element alternating method for two-dimensional mixed-mode fracture problems
NASA Technical Reports Server (NTRS)
Raju, I. S.; Krishnamurthy, T.
1992-01-01
A boundary element alternating method, denoted herein as BEAM, is presented for two dimensional fracture problems. This is an iterative method which alternates between two solutions. An analytical solution for arbitrary polynomial normal and tangential pressure distributions applied to the crack faces of an embedded crack in an infinite plate is used as the fundamental solution in the alternating method. A boundary element method for an uncracked finite plate is the second solution. For problems of edge cracks a technique of utilizing finite elements with BEAM is presented to overcome the inherent singularity in boundary element stress calculation near the boundaries. Several computational aspects that make the algorithm efficient are presented. Finally, the BEAM is applied to a variety of two dimensional crack problems with different configurations and loadings to assess the validity of the method. The method gives accurate stress intensity factors with minimal computing effort.
Fambri, Francesco; Dumbser, Michael; Casulli, Vincenzo
2014-11-01
Blood flow in arterial systems can be described by the three-dimensional Navier-Stokes equations within a time-dependent spatial domain that accounts for the elasticity of the arterial walls. In this article, blood is treated as an incompressible Newtonian fluid that flows through compliant vessels of general cross section. A three-dimensional semi-implicit finite difference and finite volume model is derived so that numerical stability is obtained at a low computational cost on a staggered grid. The key idea of the method consists in a splitting of the pressure into a hydrostatic and a non-hydrostatic part, where first a small quasi-one-dimensional nonlinear system is solved for the hydrostatic pressure and only in a second step the fully three-dimensional non-hydrostatic pressure is computed from a three-dimensional nonlinear system as a correction to the hydrostatic one. The resulting algorithm is robust, efficient, locally and globally mass conservative, and applies to hydrostatic and non-hydrostatic flows in one, two and three space dimensions. These features are illustrated on nontrivial test cases for flows in tubes with circular or elliptical cross section where the exact analytical solution is known. Test cases of steady and pulsatile flows in uniformly curved rigid and elastic tubes are presented. Wherever possible, axial velocity development and secondary flows are shown and compared with previously published results. Copyright © 2014 John Wiley & Sons, Ltd.
D'Amico, María Belén; Calandrini, Guillermo L
2015-11-01
Analytical solutions of the period-four orbits exhibited by a classical family of n-dimensional quadratic maps are presented. Exact expressions are obtained by applying harmonic balance and Gröbner bases to a single-input single-output representation of the system. A detailed study of a generalized scalar quadratic map and a well-known delayed logistic model is included for illustration. In the former example, conditions for the existence of bistability phenomenon are also introduced.
Analytical solution of the optimal three dimensional reentry problem using Chapman's exact equations
NASA Technical Reports Server (NTRS)
Vinh, N. X.; Busemann, A.; Culp, R. D.
1974-01-01
This paper presents the general solution for the optimal three dimensional aerodynamic control of a lifting vehicle entering a planetary atmosphere. A set of dimensionless variables is introduced, and the resulting exact equations of motion have the distinctive advantage that they are completely free of the physical characteristics of the vehicle. Furthermore, a general lift-drag polar is used to define the aerodynamic control. Hence, the results obtained apply to any type of vehicle of arbitrary weight, dimensions and shape, having an arbitrary polar and entering any planetary atmosphere.
Percolation and epidemics in a two-dimensional small world
NASA Astrophysics Data System (ADS)
Newman, M. E.; Jensen, I.; Ziff, R. M.
2002-02-01
Percolation on two-dimensional small-world networks has been proposed as a model for the spread of plant diseases. In this paper we give an analytic solution of this model using a combination of generating function methods and high-order series expansion. Our solution gives accurate predictions for quantities such as the position of the percolation threshold and the typical size of disease outbreaks as a function of the density of ``shortcuts'' in the small-world network. Our results agree with scaling hypotheses and numerical simulations for the same model.
NASA Astrophysics Data System (ADS)
D'Amico, María Belén; Calandrini, Guillermo L.
2015-11-01
Analytical solutions of the period-four orbits exhibited by a classical family of n-dimensional quadratic maps are presented. Exact expressions are obtained by applying harmonic balance and Gröbner bases to a single-input single-output representation of the system. A detailed study of a generalized scalar quadratic map and a well-known delayed logistic model is included for illustration. In the former example, conditions for the existence of bistability phenomenon are also introduced.
Higher-n triangular dilatonic black holes
NASA Astrophysics Data System (ADS)
Zadora, Anton; Gal'tsov, Dmitri V.; Chen, Chiang-Mei
2018-04-01
Dilaton gravity with the form fields is known to possess dyon solutions with two horizons for the discrete "triangular" values of the dilaton coupling constant a =√{ n (n + 1) / 2 }. This sequence first obtained numerically and then explained analytically as consequence of the regularity of the dilaton, should have some higher-dimensional and/or group theoretical origin. Meanwhile, this origin was explained earlier only for n = 1 , 2 in which cases the solutions were known analytically. We extend this explanation to n = 3 , 5 presenting analytical triangular solutions for the theory with different dilaton couplings a , b in electric and magnetic sectors in which case the quantization condition reads ab = n (n + 1) / 2. The solutions are derived via the Toda chains for B2 and G2 Lie algebras. They are found in the closed form in general D space-time dimensions. Solutions satisfy the entropy product rules indicating on the microscopic origin of their entropy and have negative binding energy in the extremal case.
The analytical solution of the problem of a shock focusing in a gas for one-dimensional case
NASA Astrophysics Data System (ADS)
Shestakovskaya, E. S.; Magazov, F. G.
2018-03-01
The analytical solution of the problem of an imploding shock wave in the vessel with an impermeable wall is constructed for the cases of planar, cylindrical and spherical symmetry. The negative velocity is set at the vessel boundary. The velocity of cold ideal gas is zero. At the initial time the shock spreads from this point into the center of symmetry. The boundary moves under the particular law which conforms to the movement of the shock. In Euler variables it moves but in Lagrangian variables its trajectory is a vertical line. Equations that determine the structure of the gas flow between the shock front and the boundary as a function of time and the Lagrangian coordinate as well as the dependence of the entropy on the shock wave velocity are obtained. Self-similar coefficients and corresponding critical values of self-similar coordinates were found for a wide range of adiabatic index. The problem is solved for Lagrangian coordinates.
NASA Technical Reports Server (NTRS)
Cothran, E. K.
1982-01-01
The computer program written in support of one dimensional analytical approach to thermal modeling of Bridgman type crystal growth is presented. The program listing and flow charts are included, along with the complete thermal model. Sample problems include detailed comments on input and output to aid the first time user.
Dry and wet granular shock waves.
Zaburdaev, V Yu; Herminghaus, S
2007-03-01
The formation of a shock wave in one-dimensional granular gases is considered, for both the dry and the wet cases, and the results are compared with the analytical shock wave solution in a sticky gas. Numerical simulations show that the behavior of the shock wave in both cases tends asymptotically to the sticky limit. In the inelastic gas (dry case) there is a very close correspondence to the sticky gas, with one big cluster growing in the center of the shock wave, and a step-like stationary velocity profile. In the wet case, the shock wave has a nonzero width which is marked by two symmetric heavy clusters performing breathing oscillations with slowly increasing amplitude. All three models have the same asymptotic energy dissipation law, which is important in the context of the free cooling scenario. For the early stage of the shock formation and asymptotic oscillations we provide analytical results as well.
NASA Technical Reports Server (NTRS)
Williams, Craig Hamilton
1995-01-01
A simple, analytic approximation is derived to calculate trip time and performance for propulsion systems of very high specific impulse (50,000 to 200,000 seconds) and very high specific power (10 to 1000 kW/kg) for human interplanetary space missions. The approach assumed field-free space, constant thrust/constant specific power, and near straight line (radial) trajectories between the planets. Closed form, one dimensional equations of motion for two-burn rendezvous and four-burn round trip missions are derived as a function of specific impulse, specific power, and propellant mass ratio. The equations are coupled to an optimizing parameter that maximizes performance and minimizes trip time. Data generated for hypothetical one-way and round trip human missions to Jupiter were found to be within 1% and 6% accuracy of integrated solutions respectively, verifying that for these systems, credible analysis does not require computationally intensive numerical techniques.
Numerical solution of the full potential equation using a chimera grid approach
NASA Technical Reports Server (NTRS)
Holst, Terry L.
1995-01-01
A numerical scheme utilizing a chimera zonal grid approach for solving the full potential equation in two spatial dimensions is described. Within each grid zone a fully-implicit approximate factorization scheme is used to advance the solution one interaction. This is followed by the explicit advance of all common zonal grid boundaries using a bilinear interpolation of the velocity potential. The presentation is highlighted with numerical results simulating the flow about a two-dimensional, nonlifting, circular cylinder. For this problem, the flow domain is divided into two parts: an inner portion covered by a polar grid and an outer portion covered by a Cartesian grid. Both incompressible and compressible (transonic) flow solutions are included. Comparisons made with an analytic solution as well as single grid results indicate that the chimera zonal grid approach is a viable technique for solving the full potential equation.
Numerical Modeling of Ablation Heat Transfer
NASA Technical Reports Server (NTRS)
Ewing, Mark E.; Laker, Travis S.; Walker, David T.
2013-01-01
A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.
Soliton and periodic solutions for time-dependent coefficient non-linear equation
NASA Astrophysics Data System (ADS)
Guner, Ozkan
2016-01-01
In this article, we establish exact solutions for the generalized (3+1)-dimensional variable coefficient Kadomtsev-Petviashvili (GVCKP) equation. Using solitary wave ansatz in terms of ? functions and the modified sine-cosine method, we find exact analytical bright soliton solutions and exact periodic solutions for the considered model. The physical parameters in the soliton solutions are obtained as function of the dependent model coefficients. The effectiveness and reliability of the method are shown by its application to the GVCKP equation.
Linear and Nonlinear Analysis of Magnetic Bearing Bandwidth Due to Eddy Current Limitations
NASA Technical Reports Server (NTRS)
Kenny, Andrew; Palazzolo, Alan
2000-01-01
Finite element analysis was used to study the bandwidth of alloy hyperco50a and silicon iron laminated rotors and stators in magnetic bearings. A three dimensional model was made of a heteropolar bearing in which all the flux circulated in the plane of the rotor and stator laminate. A three dimensional model of a plate similar to the region of a pole near the gap was also studied with a very fine mesh. Nonlinear time transient solutions for the net flux carried by the plate were compared to steady state time harmonic solutions. Both linear and quasi-nonlinear steady state time harmonic solutions were calculated and compared. The finite element solutions for power loss and flux bandwidth were compared to those determined from classical analytical solutions to Maxwell's equations.
NASA Astrophysics Data System (ADS)
Abdul, M.; Farooq, U.; Akbar, Jehan; Saif, F.
2018-06-01
We transform the semi-classical laser equation for single mode homogeneously broadened lasers to a one-dimensional nonlinear map by using the discrete dynamical approach. The obtained mapping, referred to as laser logistic mapping (LLM), characteristically exhibits convergent, cyclic and chaotic behavior depending on the control parameter. Thus, the so obtained LLM explains stable, bistable, multi-stable, and chaotic solutions for output field intensity. The onset of bistability takes place at a critical value of the effective gain coefficient. The obtained analytical results are confirmed through numerical calculations.
NASA Technical Reports Server (NTRS)
Hunter, Craig A.
1995-01-01
An analytical/numerical method has been developed to predict the static thrust performance of non-axisymmetric, two-dimensional convergent-divergent exhaust nozzles. Thermodynamic nozzle performance effects due to over- and underexpansion are modeled using one-dimensional compressible flow theory. Boundary layer development and skin friction losses are calculated using an approximate integral momentum method based on the classic karman-Polhausen solution. Angularity effects are included with these two models in a computational Nozzle Performance Analysis Code, NPAC. In four different case studies, results from NPAC are compared to experimental data obtained from subscale nozzle testing to demonstrate the capabilities and limitations of the NPAC method. In several cases, the NPAC prediction matched experimental gross thrust efficiency data to within 0.1 percent at a design NPR, and to within 0.5 percent at off-design conditions.
NASA Technical Reports Server (NTRS)
Cho, S. Y.; Yetter, R. A.; Dryer, F. L.
1992-01-01
Various chemically reacting flow problems highlighting chemical and physical fundamentals rather than flow geometry are presently investigated by means of a comprehensive mathematical model that incorporates multicomponent molecular diffusion, complex chemistry, and heterogeneous processes, in the interest of obtaining sensitivity-related information. The sensitivity equations were decoupled from those of the model, and then integrated one time-step behind the integration of the model equations, and analytical Jacobian matrices were applied to improve the accuracy of sensitivity coefficients that are calculated together with model solutions.
Numerical simulation of dark envelope soliton in plasma
NASA Astrophysics Data System (ADS)
Wang, Fang-Ping; Han, Juan-fang; Zhang, Jie; Gao, Dong-Ning; Li, Zhong-Zheng; Duan, Wen-Shan; Zhang, Heng
2018-03-01
One-dimensional (1-D) particle-in-cell simulation is used to study the propagation of dark envelop solitons described by the nonlinear Schrödinger equation (NLSE) in electron-ion plasmas. The rational solution of the NLSE is presented, which is proposed as an effective tool for studying the dark envelope soliton in plasma. It is demonstrated by our numerical simulation that there is dark envelope soliton in electron-ion plasmas. The numerical results are in good agreements with the analytical ones from the NLSE which is obtained from the reductive perturbation method. The limitation of the amplitude of dark envelop solitons in plasma is noticed.
NASA Technical Reports Server (NTRS)
Rosen, I. G.
1988-01-01
An abstract approximation and convergence theory for the closed-loop solution of discrete-time linear-quadratic regulator problems for parabolic systems with unbounded input is developed. Under relatively mild stabilizability and detectability assumptions, functional analytic, operator techniques are used to demonstrate the norm convergence of Galerkin-based approximations to the optimal feedback control gains. The application of the general theory to a class of abstract boundary control systems is considered. Two examples, one involving the Neumann boundary control of a one-dimensional heat equation, and the other, the vibration control of a cantilevered viscoelastic beam via shear input at the free end, are discussed.
Steering particles by breaking symmetries
NASA Astrophysics Data System (ADS)
Bet, Bram; Samin, Sela; Georgiev, Rumen; Burak Eral, Huseyin; van Roij, René
2018-06-01
We derive general equations of motions for highly-confined particles that perform quasi-two-dimensional motion in Hele-Shaw channels, which we solve analytically, aiming to derive design principles for self-steering particles. Based on symmetry properties of a particle, its equations of motion can be simplified, where we retrieve an earlier-known equation of motion for the orientation of dimer particles consisting of disks (Uspal et al 2013 Nat. Commun. 4), but now in full generality. Subsequently, these solutions are compared with particle trajectories that are obtained numerically. For mirror-symmetric particles, excellent agreement between the analytical and numerical solutions is found. For particles lacking mirror symmetry, the analytic solutions provide means to classify the motion based on particle geometry, while we find that taking the side-wall interactions into account is important to accurately describe the trajectories.
Solution-adaptive finite element method in computational fracture mechanics
NASA Technical Reports Server (NTRS)
Min, J. B.; Bass, J. M.; Spradley, L. W.
1993-01-01
Some recent results obtained using solution-adaptive finite element method in linear elastic two-dimensional fracture mechanics problems are presented. The focus is on the basic issue of adaptive finite element method for validating the applications of new methodology to fracture mechanics problems by computing demonstration problems and comparing the stress intensity factors to analytical results.
Temperature Rise in a Two-Layer Structure Induced by a Rotating or Dithering Laser Beam
2012-01-01
References [1] G. Araya and G. Gutierrez, Analytical solution for a transient, three-dimensional temperature dis- tribution due to a moving laser...beam, Int. J. Heat and Mass Transfer 49 ( 2006 ), 4124-4131. [2] R. Bellman, R.E. Marshak, and G.M. Wing, Laplace transform solution of two-medium neutron
Study of coupled nonlinear partial differential equations for finding exact analytical solutions
Khan, Kamruzzaman; Akbar, M. Ali; Koppelaar, H.
2015-01-01
Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced (G′/G)-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd–Sokolov–Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics. PMID:26587256
NASA Astrophysics Data System (ADS)
Sedghi, Mohammad Mahdi; Samani, Nozar; Sleep, Brent
2009-06-01
The Laplace domain solutions have been obtained for three-dimensional groundwater flow to a well in confined and unconfined wedge-shaped aquifers. The solutions take into account partial penetration effects, instantaneous drainage or delayed yield, vertical anisotropy and the water table boundary condition. As a basis, the Laplace domain solutions for drawdown created by a point source in uniform, anisotropic confined and unconfined wedge-shaped aquifers are first derived. Then, by the principle of superposition the point source solutions are extended to the cases of partially and fully penetrating wells. Unlike the previous solution for the confined aquifer that contains improper integrals arising from the Hankel transform [Yeh HD, Chang YC. New analytical solutions for groundwater flow in wedge-shaped aquifers with various topographic boundary conditions. Adv Water Resour 2006;26:471-80], numerical evaluation of our solution is relatively easy using well known numerical Laplace inversion methods. The effects of wedge angle, pumping well location and observation point location on drawdown and the effects of partial penetration, screen location and delay index on the wedge boundary hydraulic gradient in unconfined aquifers have also been investigated. The results are presented in the form of dimensionless drawdown-time and boundary gradient-time type curves. The curves are useful for parameter identification, calculation of stream depletion rates and the assessment of water budgets in river basins.
Analytical Methods of Decoupling the Automotive Engine Torque Roll Axis
NASA Astrophysics Data System (ADS)
JEONG, TAESEOK; SINGH, RAJENDRA
2000-06-01
This paper analytically examines the multi-dimensional mounting schemes of an automotive engine-gearbox system when excited by oscillating torques. In particular, the issue of torque roll axis decoupling is analyzed in significant detail since it is poorly understood. New dynamic decoupling axioms are presented an d compared with the conventional elastic axis mounting and focalization methods. A linear time-invariant system assumption is made in addition to a proportionally damped system. Only rigid-body modes of the powertrain are considered and the chassis elements are assumed to be rigid. Several simplified physical systems are considered and new closed-form solutions for symmetric and asymmetric engine-mounting systems are developed. These clearly explain the design concepts for the 4-point mounting scheme. Our analytical solutions match with the existing design formulations that are only applicable to symmetric geometries. Spectra for all six rigid-body motions are predicted using the alternate decoupling methods and the closed-form solutions are verified. Also, our method is validated by comparing modal solutions with prior experimental and analytical studies. Parametric design studies are carried out to illustrate the methodology. Chief contributions of this research include the development of new or refined analytical models and closed-form solutions along with improved design strategies for the torque roll axis decoupling.
NASA Astrophysics Data System (ADS)
Batu, Vedat
2012-01-01
SummaryA new generalized three-dimensional analytical solution is developed for a partially-penetrating vertical rectangular parallelepiped well screen in a confined aquifer by solving the three-dimensional transient ground water flow differential equation in x- y- z Cartesian coordinates system for drawdown by taking into account the three principal hydraulic conductivities ( Kx, Ky, and Kz) along the x- y- z coordinate directions. The fully penetrating screen case becomes equivalent to the single vertical fracture case of Gringarten and Ramey (1973). It is shown that the new solution and Gringarten and Ramey solution (1973) match very well. Similarly, it is shown that this new solution for a horizontally tiny fully penetrating parallelepiped rectangular parallelepiped screen case match very well with Theis (1935) solution. Moreover, it is also shown that the horizontally tiny partially-penetrating parallelepiped rectangular well screen case of this new solution match very well with Hantush (1964) solution. This new analytical solution can also cover a partially-penetrating horizontal well by representing its screen interval with vertically tiny rectangular parallelepiped. Also the solution takes into account both the vertical anisotropy ( azx = Kz/ Kx) as well as the horizontal anisotropy ( ayx = Ky/ Kx) and has potential application areas to analyze pumping test drawdown data from partially-penetrating vertical and horizontal wells by representing them as tiny rectangular parallelepiped as well as line sources. The solution has also potential application areas for a partially-penetrating parallelepiped rectangular vertical fracture. With this new solution, the horizontal anisotropy ( ayx = Ky/ Kx) in addition to the vertical anisotropy ( azx = Kz/ Kx) can also be determined using observed drawdown data. Most importantly, with this solution, to the knowledge of the author, it has been shown the first time in the literature that some well-known well hydraulics problems can also be solved in Cartesian coordinates with some additional advantages other than the conventional cylindrical coordinates method.
An analytical solution for transient flow of Bingham viscoplastic materials in rock fractures
Amadei, B.; Savage, W.Z.
2001-01-01
We present below an analytical solution to model the one-dimensional transient flow of a Bingham viscoplastic material in a fracture with parallel walls (smooth or rough) that is subjected to an applied pressure gradient. The solution models the acceleration and the deceleration of the material as the pressure gradient changes with time. Two cases are considered: A pressure gradient applied over a finite time interval and an applied pressure gradient that is constant over time. The solution is expressed in dimensionless form and can therefore be used for a wide range of Bingham viscoplastic materials. The solution is also capable of capturing the transition that takes place in a fracture between viscoplastic flow and rigid plug flow. Also, it shows the development of a rigid central layer in fractures, the extent of which depends on the fluid properties (viscosity and yield stress), the magnitude of the pressure gradient, and the fracture aperture and surface roughness. Finally, it is shown that when a pressure gradient is applied and kept constant, the solution for the fracture flow rate converges over time to a steady-state solution that can be defined as a modified cubic law. In this case, the fracture transmissivity is found to be a non-linear function of the head gradient. This solution provides a tool for a better understanding of the flow of Bingham materials in rock fractures, interfaces, and cracks. ?? 2001 Elsevier Science Ltd. All rights reserved.
Black holes in a cubic Galileon universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babichev, E.; Charmousis, C.; Lehébel, A.
2016-09-01
We find and study the properties of black hole solutions for a subclass of Horndeski theory including the cubic Galileon term. The theory under study has shift symmetry but not reflection symmetry for the scalar field. The Galileon is assumed to have linear time dependence characterized by a velocity parameter. We give analytic 3-dimensional solutions that are akin to the BTZ solutions but with a non-trivial scalar field that modifies the effective cosmological constant. We then study the 4-dimensional asymptotically flat and de Sitter solutions. The latter present three different branches according to their effective cosmological constant. For two ofmore » these branches, we find families of black hole solutions, parametrized by the velocity of the scalar field. These spherically symmetric solutions, obtained numerically, are different from GR solutions close to the black hole event horizon, while they have the same de-Sitter asymptotic behavior. The velocity parameter represents black hole primary hair.« less
NASA Astrophysics Data System (ADS)
Rabinskiy, L. N.; Zhavoronok, S. I.
2018-04-01
The transient interaction of acoustic media and elastic shells is considered on the basis of the transition function approach. The three-dimensional hyperbolic initial boundary-value problem is reduced to a two-dimensional problem of shell theory with integral operators approximating the acoustic medium effect on the shell dynamics. The kernels of these integral operators are determined by the elementary solution of the problem of acoustic waves diffraction at a rigid obstacle with the same boundary shape as the wetted shell surface. The closed-form elementary solution for arbitrary convex obstacles can be obtained at the initial interaction stages on the background of the so-called “thin layer hypothesis”. Thus, the shell–wave interaction model defined by integro-differential dynamic equations with analytically determined kernels of integral operators becomes hence two-dimensional but nonlocal in time. On the other hand, the initial interaction stage results in localized dynamic loadings and consequently in complex strain and stress states that require higher-order shell theories. Here the modified theory of I.N.Vekua–A.A.Amosov-type is formulated in terms of analytical continuum dynamics. The shell model is constructed on a two-dimensional manifold within a set of field variables, Lagrangian density, and constraint equations following from the boundary conditions “shifted” from the shell faces to its base surface. Such an approach allows one to construct consistent low-order shell models within a unified formal hierarchy. The equations of the N th-order shell theory are singularly perturbed and contain second-order partial derivatives with respect to time and surface coordinates whereas the numerical integration of systems of first-order equations is more efficient. Such systems can be obtained as Hamilton–de Donder–Weyl-type equations for the Lagrangian dynamical system. The Hamiltonian formulation of the elementary N th-order shell theory is here briefly described.
NASA Technical Reports Server (NTRS)
Rogers, Stuart E.
1990-01-01
The current work is initiated in an effort to obtain an efficient, accurate, and robust algorithm for the numerical solution of the incompressible Navier-Stokes equations in two- and three-dimensional generalized curvilinear coordinates for both steady-state and time-dependent flow problems. This is accomplished with the use of the method of artificial compressibility and a high-order flux-difference splitting technique for the differencing of the convective terms. Time accuracy is obtained in the numerical solutions by subiterating the equations in psuedo-time for each physical time step. The system of equations is solved with a line-relaxation scheme which allows the use of very large pseudo-time steps leading to fast convergence for steady-state problems as well as for the subiterations of time-dependent problems. Numerous laminar test flow problems are computed and presented with a comparison against analytically known solutions or experimental results. These include the flow in a driven cavity, the flow over a backward-facing step, the steady and unsteady flow over a circular cylinder, flow over an oscillating plate, flow through a one-dimensional inviscid channel with oscillating back pressure, the steady-state flow through a square duct with a 90 degree bend, and the flow through an artificial heart configuration with moving boundaries. An adequate comparison with the analytical or experimental results is obtained in all cases. Numerical comparisons of the upwind differencing with central differencing plus artificial dissipation indicates that the upwind differencing provides a much more robust algorithm, which requires significantly less computing time. The time-dependent problems require on the order of 10 to 20 subiterations, indicating that the elliptical nature of the problem does require a substantial amount of computing effort.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomizawa, Shinya; Nozawa, Masato
2006-06-15
We study vacuum solutions of five-dimensional Einstein equations generated by the inverse scattering method. We reproduce the black ring solution which was found by Emparan and Reall by taking the Euclidean Levi-Civita metric plus one-dimensional flat space as a seed. This transformation consists of two successive processes; the first step is to perform the three-solitonic transformation of the Euclidean Levi-Civita metric with one-dimensional flat space as a seed. The resulting metric is the Euclidean C-metric with extra one-dimensional flat space. The second is to perform the two-solitonic transformation by taking it as a new seed. Our result may serve asmore » a stepping stone to find new exact solutions in higher dimensions.« less
Analytical approximation and numerical simulations for periodic travelling water waves
NASA Astrophysics Data System (ADS)
Kalimeris, Konstantinos
2017-12-01
We present recent analytical and numerical results for two-dimensional periodic travelling water waves with constant vorticity. The analytical approach is based on novel asymptotic expansions. We obtain numerical results in two different ways: the first is based on the solution of a constrained optimization problem, and the second is realized as a numerical continuation algorithm. Both methods are applied on some examples of non-constant vorticity. This article is part of the theme issue 'Nonlinear water waves'.
Nonlinear truncation error analysis of finite difference schemes for the Euler equations
NASA Technical Reports Server (NTRS)
Klopfer, G. H.; Mcrae, D. S.
1983-01-01
It is pointed out that, in general, dissipative finite difference integration schemes have been found to be quite robust when applied to the Euler equations of gas dynamics. The present investigation considers a modified equation analysis of both implicit and explicit finite difference techniques as applied to the Euler equations. The analysis is used to identify those error terms which contribute most to the observed solution errors. A technique for analytically removing the dominant error terms is demonstrated, resulting in a greatly improved solution for the explicit Lax-Wendroff schemes. It is shown that the nonlinear truncation errors are quite large and distributed quite differently for each of the three conservation equations as applied to a one-dimensional shock tube problem.
Electro-magneto interaction in fractional Green-Naghdi thermoelastic solid with a cylindrical cavity
NASA Astrophysics Data System (ADS)
Ezzat, M. A.; El-Bary, A. A.
2018-01-01
A unified mathematical model of Green-Naghdi's thermoelasticty theories (GN), based on fractional time-derivative of heat transfer is constructed. The model is applied to solve a one-dimensional problem of a perfect conducting unbounded body with a cylindrical cavity subjected to sinusoidal pulse heating in the presence of an axial uniform magnetic field. Laplace transform techniques are used to get the general analytical solutions in Laplace domain, and the inverse Laplace transforms based on Fourier expansion techniques are numerically implemented to obtain the numerical solutions in time domain. Comparisons are made with the results predicted by the two theories. The effects of the fractional derivative parameter on thermoelastic fields for different theories are discussed.
Black holes by analytic continuation
NASA Astrophysics Data System (ADS)
Amati, D.; Russo, J. G.
1997-07-01
In the context of a two-dimensional exactly solvable model, the dynamics of quantum black holes is obtained by analytically continuing the description of the regime where no black hole is formed. The resulting spectrum of outgoing radiation departs from the one predicted by the Hawking model in the region where the outgoing modes arise from the horizon with Planck-order frequencies. This occurs early in the evaporation process, and the resulting physical picture is unconventional. The theory predicts that black holes will only radiate out an energy of Planck mass order, stabilizing after a transitory period. The continuation from a regime without black hole formation-accessible in the 1+1 gravity theory considered-is implicit in an S-matrix approach and suggests in this way a possible solution to the problem of information loss.
Strong gravitational lensing—a probe for extra dimensions and Kalb-Ramond field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Sumanta; SenGupta, Soumitra, E-mail: sumantac.physics@gmail.com, E-mail: tpssg@iacs.res.in
2017-07-01
Strong field gravitational lensing in the context of both higher spacetime dimensions and in presence of Kalb-Ramond field have been studied. After developing proper analytical tools to analyze the problem we consider gravitational lensing in three distinct black hole spacetimes—(a) four dimensional black hole in presence of Kalb-Ramond field, (b) brane world black holes with Kalb-Ramond field and finally (c) black hole solution in f ( T ) gravity. In all the three situations we have depicted the behavior of three observables: the asymptotic position approached by the relativistic images, the angular separation and magnitude difference between the outermost imagesmore » with others packed inner ones, both numerically and analytically. Difference between these scenarios have also been discussed along with possible observational signatures.« less
Quantum Effects at a Proton Relaxation at Low Temperatures
NASA Astrophysics Data System (ADS)
Kalytka, V. A.; Korovkin, M. V.
2016-11-01
Quantum effects during migratory polarization in multi-well crystals (including multi-well silicates and crystalline hydrates) are investigated in a variable electric field at low temperatures by direct quantum-mechanical calculations. Based on analytical solution of the quantum Liouville kinetic equation in the linear approximation for the polarizing field, the non-stationary density matrix is calculated for an ensemble of non-interacting protons moving in the field of one-dimensional multi-well crystal potential relief of rectangular shape. An expression for the complex dielectric constant convenient for a comparison with experiment and calculation of relaxer parameters is derived using the nonequilibrium polarization density matrix. The density matrix apparatus can be used for analytical investigation of the quantum mechanism of spontaneous polarization of a ferroelectric material (KDP and DKDP).
NASA Technical Reports Server (NTRS)
Pierzga, M. J.; Wood, J. R.
1984-01-01
An experimental investigation of the three dimensional flow field through a low aspect ratio, transonic, axial flow fan rotor has been conducted using an advanced laser anemometer (LA) system. Laser velocimeter measurements of the rotor flow field at the design operating speed and over a range of through flow conditions are compared to analytical solutions. The numerical technique used herein yields the solution to the full, three dimensional, unsteady Euler equations using an explicit time marching, finite volume approach. The numerical analysis, when coupled with a simplified boundary layer calculation, generally yields good agreement with the experimental data. The test rotor has an aspect ratio of 1.56, a design total pressure ratio of 1.629 and a tip relative Mach number of 1.38. The high spatial resolution of the LA data matrix (9 radial by 30 axial by 50 blade to blade) permits details of the transonic flow field such as shock location, turning distribution and blade loading levels to be investigated and compared to analytical results.
Response of a shell structure subject to distributed harmonic excitation
NASA Astrophysics Data System (ADS)
Cao, Rui; Bolton, J. Stuart
2016-09-01
Previously, a coupled, two-dimensional structural-acoustic ring model was constructed to simulate the dynamic and acoustical behavior of pneumatic tires. Analytical forced solutions were obtained and were experimentally verified through laser velocimeter measurement made using automobile tires. However, the two-dimensional ring model is incapable of representing higher order, in-plane modal motion in either the circumferential or axial directions. Therefore, in this paper, a three-dimensional pressurized circular shell model is proposed to study the in-plane shearing motion and the effect of different forcing conditions. Closed form analytical solutions were obtained for both free and forced vibrations of the shell under simply supported boundary conditions. Dispersion relations were calculated and different wave types were identified by their different speeds. Shell surface mobility results under various input distributions were also studied and compared. Spatial Fourier series decompositions were also performed on the spatial mobility results to give the forced dispersion relations, which illustrate clearly the influence of input force spatial distribution. Such a model has practical application in identifying the sources of noise and vibration problems in automotive tires.
Geometrically induced nonlinear dynamics in one-dimensional lattices
NASA Astrophysics Data System (ADS)
Hamilton, Merle D.; de Alcantara Bonfim, O. F.
2006-03-01
We present a lattice model consisting of a single one-dimensional chain, where the masses are interconnected by linear springs and allowed to move in a horizontal direction only, as in a monorail. In the transverse direction each mass is also attached to two other linear springs, one on each side of the mass. The ends of these springs are kept at fixed positions. The nonlinearity in the model arises from the geometric constraints imposed on the motion of the masses, as well as from the configuration of the springs, where in the transverse direction the springs are either in the extended or compressed state depending on the position of the masses. Under these conditions we show that solitary waves are present in the system. In the long wavelength limit an analytic solution for these nonlinear waves is found. Numerical integrations of the equations of motion in the full system are also performed to analyze the conditions for the existence and stability of the nonlinear waves.
Application of the finite element groundwater model FEWA to the engineered test facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, P.M.; Davis, E.C.
1985-09-01
A finite element model for water transport through porous media (FEWA) has been applied to the unconfined aquifer at the Oak Ridge National Laboratory Solid Waste Storage Area 6 Engineered Test Facility (ETF). The model was developed in 1983 as part of the Shallow Land Burial Technology - Humid Task (ONL-WL14) and was previously verified using several general hydrologic problems for which an analytic solution exists. Model application and calibration, as described in this report, consisted of modeling the ETF water table for three specialized cases: a one-dimensional steady-state simulation, a one-dimensional transient simulation, and a two-dimensional transient simulation. Inmore » the one-dimensional steady-state simulation, the FEWA output accurately predicted the water table during a long period in which there were no man-induced or natural perturbations to the system. The input parameters of most importance for this case were hydraulic conductivity and aquifer bottom elevation. In the two transient cases, the FEWA output has matched observed water table responses to a single rainfall event occurring in February 1983, yielding a calibrated finite element model that is useful for further study of additional precipitation events as well as contaminant transport at the experimental site.« less
Singular-Arc Time-Optimal Trajectory of Aircraft in Two-Dimensional Wind Field
NASA Technical Reports Server (NTRS)
Nguyen, Nhan
2006-01-01
This paper presents a study of a minimum time-to-climb trajectory analysis for aircraft flying in a two-dimensional altitude dependent wind field. The time optimal control problem possesses a singular control structure when the lift coefficient is taken as a control variable. A singular arc analysis is performed to obtain an optimal control solution on the singular arc. Using a time-scale separation with the flight path angle treated as a fast state, the dimensionality of the optimal control solution is reduced by eliminating the lift coefficient control. A further singular arc analysis is used to decompose the original optimal control solution into the flight path angle solution and a trajectory solution as a function of the airspeed and altitude. The optimal control solutions for the initial and final climb segments are computed using a shooting method with known starting values on the singular arc The numerical results of the shooting method show that the optimal flight path angle on the initial and final climb segments are constant. The analytical approach provides a rapid means for analyzing a time optimal trajectory for aircraft performance.
Analytical solutions for the profile of two-dimensional droplets with finite-length precursor films
NASA Astrophysics Data System (ADS)
Perazzo, Carlos Alberto; Mac Intyre, J. R.; Gomba, J. M.
2017-12-01
By means of the lubrication approximation we obtain the full family of static bidimensional profiles of a liquid resting on a substrate under partial-wetting conditions imposed by a disjoining-conjoining pressure. We show that for a set of quite general disjoining-conjoining pressure potentials, the free surface can adopt only five nontrivial static patterns; in particular, we find solutions when the height goes to zero which describe satisfactorily the complete free surface for a finite amount of fluid deposited on a substrate. To test the extension of the applicability of our solutions, we compare them with those obtained when the lubrication approximations are not employed and under conditions where the lubrication hypothesis are not strictly valid, and also with axisymmetric solutions. For a given disjoining-conjoining potential, we report a new analytical solution that accounts for all the five possible solutions.
Singularities in the classical Rayleigh-Taylor flow - Formation and subsequent motion
NASA Technical Reports Server (NTRS)
Tanveer, S.
1993-01-01
The creation and subsequent motion of singularities of solution to classical Rayleigh-Taylor flow (two dimensional inviscid, incompressible fluid over a vacuum) are discussed. For a specific set of initial conditions, we give analytical evidence to suggest the instantaneous formation of one or more singularities at specific points in the unphysical plane, whose locations depend sensitively on small changes in initial conditions in the physical domain. One-half power singularities are created in accordance with an earlier conjecture; however, depending on initial conditions, other forms of singularities are also possible. For a specific initial condition, we follow a numerical procedure in the unphysical plane to compute the motion of a one-half singularity. This computation confirms our previous conjecture that the approach of a one-half singularity towards the physical domain corresponds to the development of a spike at the physical interface. Under some assumptions that appear to be consistent with numerical calculations, we present analytical evidence to suggest that a singularity of the one-half type cannot impinge the physical domain in finite time.
Singularities in the classical Rayleigh-Taylor flow: Formation and subsequent motion
NASA Technical Reports Server (NTRS)
Tanveer, S.
1992-01-01
The creation and subsequent motion of singularities of solution to classical Rayleigh-Taylor flow (two dimensional inviscid, incompressible fluid over a vacuum) are discussed. For a specific set of initial conditions, we give analytical evidence to suggest the instantaneous formation of one or more singularities at specific points in the unphysical plane, whose locations depend sensitively on small changes in initial conditions in the physical domain. One-half power singularities are created in accordance with an earlier conjecture; however, depending on initial conditions, other forms of singularities are also possible. For a specific initial condition, we follow a numerical procedure in the unphysical plane to compute the motion of a one-half singularity. This computation confirms our previous conjecture that the approach of a one-half singularity towards the physical domain corresponds to the development of a spike at the physical interface. Under some assumptions that appear to be consistent with numerical calculations, we present analytical evidence to suggest that a singularity of the one-half type cannot impinge the physical domain in finite time.
NASA Astrophysics Data System (ADS)
Kwiatkowski, G.; Leble, S.
2014-03-01
Analytical form of quantum corrections to quasi-periodic solution of Sine-Gordon model and periodic solution of phi4 model is obtained through zeta function regularisation with account of all rest variables of a d-dimensional theory. Qualitative dependence of quantum corrections on parameters of the classical systems is also evaluated for a much broader class of potentials u(x) = b2f(bx) + C with b and C as arbitrary real constants.
NASA Technical Reports Server (NTRS)
Yarrow, Maurice; Vastano, John A.; Lomax, Harvard
1992-01-01
Generic shapes are subjected to pulsed plane waves of arbitrary shape. The resulting scattered electromagnetic fields are determined analytically. These fields are then computed efficiently at field locations for which numerically determined EM fields are required. Of particular interest are the pulsed waveform shapes typically utilized by radar systems. The results can be used to validate the accuracy of finite difference time domain Maxwell's equations solvers. A two-dimensional solver which is second- and fourth-order accurate in space and fourth-order accurate in time is examined. Dielectric media properties are modeled by a ramping technique which simplifies the associated gridding of body shapes. The attributes of the ramping technique are evaluated by comparison with the analytic solutions.
Clifford coherent state transforms on spheres
NASA Astrophysics Data System (ADS)
Dang, Pei; Mourão, José; Nunes, João P.; Qian, Tao
2018-01-01
We introduce a one-parameter family of transforms, U(m)t , t > 0, from the Hilbert space of Clifford algebra valued square integrable functions on the m-dimensional sphere, L2(Sm , dσm) ⊗Cm+1, to the Hilbert spaces, ML2(R m + 1 ∖ { 0 } , dμt) , of solutions of the Euclidean Dirac equation on R m + 1 ∖ { 0 } which are square integrable with respect to appropriate measures, dμt. We prove that these transforms are unitary isomorphisms of the Hilbert spaces and are extensions of the Segal-Bargman coherent state transform, U(1) :L2(S1 , dσ1) ⟶ HL2(C ∖ { 0 } , dμ) , to higher dimensional spheres in the context of Clifford analysis. In Clifford analysis it is natural to replace the analytic continuation from Sm to SCm as in (Hall, 1994; Stenzel, 1999; Hall and Mitchell, 2002) by the Cauchy-Kowalewski extension from Sm to R m + 1 ∖ { 0 } . One then obtains a unitary isomorphism from an L2-Hilbert space to a Hilbert space of solutions of the Dirac equation, that is to a Hilbert space of monogenic functions.
An analytical solution to assess the SH seismoelectric response of the vadose zone
NASA Astrophysics Data System (ADS)
Monachesi, L. B.; Zyserman, F. I.; Jouniaux, L.
2018-03-01
We derive an analytical solution of the seismoelectric conversions generated in the vadose zone, when this region is crossed by a pure shear horizontal (SH) wave. Seismoelectric conversions are induced by electrokinetic effects linked to relative motions between fluid and porous media. The considered model assumes a one-dimensional soil constituted by a single layer on top of a half space in contact at the water table, and a shearing force located at the earth's surface as the wave source. The water table is an interface expected to induce a seismoelectric interfacial response (IR). The top layer represents a porous rock which porous space is partially saturated by water and air, while the half-space is completely saturated with water, representing the saturated zone. The analytical expressions for the coseismic fields and the interface responses, both electric and magnetic, are derived by solving Pride's equations with proper boundary conditions. An approximate analytical expression of the solution is also obtained, which is very simple and applicable in a fairly broad set of situations. Hypothetical scenarios are proposed to study and analyse the dependence of the electromagnetic fields on various parameters of the medium. An analysis of the approximate solution is also made together with a comparison to the exact solution. The main result of the present analysis is that the amplitude of the interface response generated at the water table is found to be proportional to the jump in the electric current density, which in turn depends on the saturation contrast, poro-mechanical and electrical properties of the medium and on the amplitude of the solid displacement produced by the source. This result is in agreement with the one numerically obtained by the authors, which has been published in a recent work. We also predict the existence of an interface response located at the surface, and that the electric interface response is several orders of magnitude bigger than the electric coseismic field, whereas it is the opposite using compressional waves as shown by theoretical and experimental results. This fact should encourage the performance of field and laboratory tests to check the viability of SHTE seismoelectrics as a near surface prospecting/monitoring tool.
A two-state hysteresis model from high-dimensional friction
Biswas, Saurabh; Chatterjee, Anindya
2015-01-01
In prior work (Biswas & Chatterjee 2014 Proc. R. Soc. A 470, 20130817 (doi:10.1098/rspa.2013.0817)), we developed a six-state hysteresis model from a high-dimensional frictional system. Here, we use a more intuitively appealing frictional system that resembles one studied earlier by Iwan. The basis functions now have simple analytical description. The number of states required decreases further, from six to the theoretical minimum of two. The number of fitted parameters is reduced by an order of magnitude, to just six. An explicit and faster numerical solution method is developed. Parameter fitting to match different specified hysteresis loops is demonstrated. In summary, a new two-state model of hysteresis is presented that is ready for practical implementation. Essential Matlab code is provided. PMID:26587279
Resolving hyporheic and groundwater components of streambed water flux
Bhaskar, Aditi S.; Harvey, Judson W.; Henry, Eric J.
2012-01-01
Hyporheic and groundwater fluxes typically occur together in permeable sediments beneath flowing stream water. However, streambed water fluxes quantified using the thermal method are usually interpreted as representing either groundwater or hyporheic fluxes. Our purpose was to improve understanding of co-occurring groundwater and hyporheic fluxes using streambed temperature measurements and analysis of one-dimensional heat transport in shallow streambeds. First, we examined how changes in hyporheic and groundwater fluxes affect their relative magnitudes by reevaluating previously published simulations. These indicated that flux magnitudes are largely independent until a threshold is crossed, past which hyporheic fluxes are diminished by much larger (1000-fold) groundwater fluxes. We tested accurate quantification of co-occurring fluxes using one-dimensional approaches that are appropriate for analyzing streambed temperature data collected at field sites. The thermal analytical method, which uses an analytical solution to the one-dimensional heat transport equation, was used to analyze results from a numerical heat transport model, in which hyporheic flow was represented as increased thermal dispersion at shallow depths. We found that co-occurring groundwater and hyporheic fluxes can be quantified in streambeds, although not always accurately. For example, using a temperature time series collected in a sandy streambed, we found that hyporheic and groundwater flow could both be detected when thermal dispersion due to hyporheic flow was significant compared to thermal conduction. We provide guidance for when thermal data can be used to quantify both hyporheic and groundwater fluxes, and we show that neglecting thermal dispersion may affect accuracy and interpretation of estimated streambed water fluxes.
NASA Technical Reports Server (NTRS)
Longuski, James M.; Mcronald, Angus D.
1988-01-01
In previous work the problem of injecting the Galileo and Ulysses spacecraft from low earth orbit into their respective interplanetary trajectories has been discussed for the single stage (Centaur) vehicle. The central issue, in the event of spherically distributed injection errors, is what happens to the vehicle? The difficulties addressed in this paper involve the multi-stage problem since both Galileo and Ulysses will be utilizing the two-stage IUS system. Ulysses will also include a third stage: the PAM-S. The solution is expressed in terms of probabilities for total percentage of escape, orbit decay and reentry trajectories. Analytic solutions are found for Hill's Equations of Relative Motion (more recently called Clohessy-Wiltshire Equations) for multi-stage injections. These solutions are interpreted geometrically on the injection sphere. The analytic-geometric models compare well with numerical solutions, provide insight into the behavior of trajectories mapped on the injection sphere and simplify the numerical two-dimensional search for trajectory families.
An analytical method for the inverse Cauchy problem of Lame equation in a rectangle
NASA Astrophysics Data System (ADS)
Grigor’ev, Yu
2018-04-01
In this paper, we present an analytical computational method for the inverse Cauchy problem of Lame equation in the elasticity theory. A rectangular domain is frequently used in engineering structures and we only consider the analytical solution in a two-dimensional rectangle, wherein a missing boundary condition is recovered from the full measurement of stresses and displacements on an accessible boundary. The essence of the method consists in solving three independent Cauchy problems for the Laplace and Poisson equations. For each of them, the Fourier series is used to formulate a first-kind Fredholm integral equation for the unknown function of data. Then, we use a Lavrentiev regularization method, and the termwise separable property of kernel function allows us to obtain a closed-form regularized solution. As a result, for the displacement components, we obtain solutions in the form of a sum of series with three regularization parameters. The uniform convergence and error estimation of the regularized solutions are proved.
Group invariant solution for a pre-existing fracture driven by a power-law fluid in permeable rock
NASA Astrophysics Data System (ADS)
Fareo, A. G.; Mason, D. P.
2016-06-01
Group invariant analytical and numerical solutions for the evolution of a two-dimensional fracture with nonzero initial length in permeable rock and driven by an incompressible non-Newtonian fluid of power-law rheology are obtained. The effect of fluid leak-off on the evolution of the power-law fluid fracture is investigated.
NASA Astrophysics Data System (ADS)
Li, Chuan-Yao; Huang, Hai-Jun; Tang, Tie-Qiao
2017-05-01
In this paper, we investigate the effects of staggered shifts on the user equilibrium (UE) state in a single-entry traffic corridor with no late arrivals from the analytical and numerical perspective. The LWR (Lighthill-Whitham-Richards) model and the Greenshields' velocity-density function are used to describe the dynamic properties of traffic flow. Propositions for the properties of flow patterns in UE, and the quasi-analytic solutions for three possible situations in UE are deduced. Numerical tests are carried out to testify the analytical results, where the three-dimensional evolution diagram of traffic flow illustrates that shock and rarefaction wave exist in UE and the space-time diagram indicates that UE solutions satisfy the propagation properties of traffic flow. In addition, the cost curves show that the UE solutions satisfy the UE trip-timing condition.
NASA Astrophysics Data System (ADS)
Volchkov, Yu. M.
2017-09-01
This paper describes the modified bending equations of layered orthotropic plates in the first approximation. The approximation of the solution of the equation of the three-dimensional theory of elasticity by the Legendre polynomial segments is used to obtain differential equations of the elastic layer. For the approximation of equilibrium equations and boundary conditions of three-dimensional theory of elasticity, several approximations of each desired function (stresses and displacements) are used. The stresses at the internal points of the plate are determined from the defining equations for the orthotropic material, averaged with respect to the plate thickness. The construction of the bending equations of layered plates for each layer is carried out with the help of the elastic layer equations and the conjugation conditions on the boundaries between layers, which are conditions for the continuity of normal stresses and displacements. The numerical solution of the problem of bending of the rectangular layered plate obtained with the help of modified equations is compared with an analytical solution. It is determined that the maximum error in determining the stresses does not exceed 3 %.
DOE Office of Scientific and Technical Information (OSTI.GOV)
A.A. Bingham; R.M. Ferrer; A.M. ougouag
2009-09-01
An accurate and computationally efficient two or three-dimensional neutron diffusion model will be necessary for the development, safety parameters computation, and fuel cycle analysis of a prismatic Very High Temperature Reactor (VHTR) design under Next Generation Nuclear Plant Project (NGNP). For this purpose, an analytical nodal Green’s function solution for the transverse integrated neutron diffusion equation is developed in two and three-dimensional hexagonal geometry. This scheme is incorporated into HEXPEDITE, a code first developed by Fitzpatrick and Ougouag. HEXPEDITE neglects non-physical discontinuity terms that arise in the transverse leakage due to the transverse integration procedure application to hexagonal geometry andmore » cannot account for the effects of burnable poisons across nodal boundaries. The test code being developed for this document accounts for these terms by maintaining an inventory of neutrons by using the nodal balance equation as a constraint of the neutron flux equation. The method developed in this report is intended to restore neutron conservation and increase the accuracy of the code by adding these terms to the transverse integrated flux solution and applying the nodal Green’s function solution to the resulting equation to derive a semi-analytical solution.« less
NASA Astrophysics Data System (ADS)
Frauendiener, Jörg; Hennig, Jörg
2018-03-01
We extend earlier numerical and analytical considerations of the conformally invariant wave equation on a Schwarzschild background from the case of spherically symmetric solutions, discussed in Frauendiener and Hennig (2017 Class. Quantum Grav. 34 045005), to the case of general, nonsymmetric solutions. A key element of our approach is the modern standard representation of spacelike infinity as a cylinder. With a decomposition into spherical harmonics, we reduce the four-dimensional wave equation to a family of two-dimensional equations. These equations can be used to study the behaviour at the cylinder, where the solutions turn out to have, in general, logarithmic singularities at infinitely many orders. We derive regularity conditions that may be imposed on the initial data, in order to avoid the first singular terms. We then demonstrate that the fully pseudospectral time evolution scheme can be applied to this problem leading to a highly accurate numerical reconstruction of the nonsymmetric solutions. We are particularly interested in the behaviour of the solutions at future null infinity, and we numerically show that the singularities spread to null infinity from the critical set, where the cylinder approaches null infinity. The observed numerical behaviour is consistent with similar logarithmic singularities found analytically on the critical set. Finally, we demonstrate that even solutions with singularities at low orders can be obtained with high accuracy by virtue of a coordinate transformation that converts solutions with logarithmic singularities into smooth solutions.
NASA Astrophysics Data System (ADS)
Tiofack, C. G. L.; Ndzana, F., II; Mohamadou, A.; Kofane, T. C.
2018-03-01
We investigate the existence and stability of solitons in parity-time (PT )-symmetric optical media characterized by a generic complex hyperbolic refractive index distribution and fourth-order diffraction (FOD). For the linear case, we demonstrate numerically that the FOD parameter can alter the PT -breaking points. For nonlinear cases, the exact analytical expressions of the localized modes are obtained both in one- and two-dimensional nonlinear Schrödinger equations with self-focusing and self-defocusing Kerr nonlinearity. The effect of FOD on the stability structure of these localized modes is discussed with the help of linear stability analysis followed by the direct numerical simulation of the governing equation. Examples of stable and unstable solutions are given. The transverse power flow density associated with these localized modes is also discussed. It is found that the relative strength of the FOD coefficient can utterly change the direction of the power flow, which may be used to control the energy exchange among gain or loss regions.
Van Theemsche, Achim; Deconinck, Johan; Van den Bossche, Bart; Bortels, Leslie
2002-10-01
A new more general numerical model for the simulation of electrokinetic flow in rectangular microchannels is presented. The model is based on the dilute solution model and the Navier-Stokes equations and has been implemented in a finite-element-based C++ code. The model includes the ion distribution in the Helmholtz double layer and considers only one single electrical' potential field variable throughout the domain. On a charged surface(s) the surface charge density, which is proportional to the local electrical field, is imposed. The zeta potential results, then, from this boundary condition and depends on concentrations, temperature, ion valence, molecular diffusion coefficients, and geometric conditions. Validation cases show that the model predicts accurately known analytical results, also for geometries having dimensions comparable to the Debye length. As a final study, the electro-osmotic flow in a controlled cross channel is investigated.
NASA Astrophysics Data System (ADS)
Krapez, J.-C.
2018-07-01
This work deals with the exact analytical modeling of transfer phenomena in heterogeneous materials exhibiting one-dimensional continuous variations of their properties. Regarding heat transfer, it has recently been shown that by applying a Liouville transformation and multiple Darboux transformations, infinite sequences of solvable profiles of thermal effusivity can be constructed together with the associated temperature (exact) solutions, all in closed-form expressions (vs. the diffusion-time variable and with a growing number of parameters). In addition, a particular class of profiles, the so-called {sech}( {\\hat{ξ }} ) -type profiles, exhibit high agility and at the same time parsimony. In this paper we delve further into the description of these solvable profiles and their properties. Most importantly, their quadrupole formulation is provided, enabling smooth synthetic profiles of effusivity of arbitrary complexity to be built, and allowing the corresponding temperature dynamic response to be obtained very easily thereafter. Examples are given with increasing variability of the effusivity and an increasing number of elementary profiles. These highly flexible profiles are equally relevant to providing an exact analytical solution to wave propagation problems in 1D graded media (i.e., Maxwell's equations, the acoustic equation, the telegraph equation, etc.). From now on, whether it be for diffusion-like or wave-like problems, when the leading properties present (possibly piecewise-) continuously heterogeneous profiles, the classical staircase model can be advantageously replaced by a "high-level" quadrupole model consisting of one or more {sech}( {\\hat{ξ }} ) -type profiles, which makes the latter a true Swiss-Army knife for analytical modeling.
Exact analytic solution of position-dependent mass Schrödinger equation
NASA Astrophysics Data System (ADS)
Rajbongshi, Hangshadhar
2018-03-01
Exact analytic solution of position-dependent mass Schrödinger equation is generated by using extended transformation, a method of mapping a known system into a new system equipped with energy eigenvalues and corresponding wave functions. First order transformation is performed on D-dimensional radial Schrödinger equation with constant mass by taking trigonometric Pöschl-Teller potential as known system. The exactly solvable potentials with position-dependent mass generated for different choices of mass functions through first order transformation are also taken as known systems in the second order transformation performed on D-dimensional radial position-dependent mass Schrödinger equation. The solutions are fitted for "Zhu and Kroemer" ordering of ambiguity. All the wave functions corresponding to nonzero energy eigenvalues are normalizable. The new findings are that the normalizability condition of the wave functions remains independent of mass functions, and some of the generated potentials show a family relationship among themselves where power law potentials also get related to non-power law potentials and vice versa through the transformation.
Three species one-dimensional kinetic model for weakly ionized plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, J., E-mail: jorge.gonzalez@upm.es; Donoso, J. M.; Tierno, S. P.
2016-06-15
A three species one-dimensional kinetic model is presented for a spatially homogeneous weakly ionized plasma subjected to the action of a time varying electric field. Planar geometry is assumed, which means that the plasma evolves in the privileged direction of the field. The energy transmitted to the electric charges is channelized to the neutrals thanks to collisions, a mechanism that influences the plasma dynamics. Charge-charge interactions have been designed as a one-dimensional collision term equivalent to the Landau operator used for fully ionized plasmas. Charge-neutral collisions are modelled by a conservative drift-diffusion operator in the Dougherty's form. The resulting setmore » of coupled integro-differential equations is solved with the stable and robust propagator integral method. This semi–analytical method feasibility accounts for non–linear effects without appealing to linearisation or simplifications, providing conservative physically meaningful solutions even for initial or emerging sharp velocity distribution function profiles. It is found that charge-neutral collisions exert a significant effect since a quite different plasma evolution arises if compared to the collisionless limit. In addition, substantial differences in the system motion are found for constant and temperature dependent collision frequencies cases.« less
Recursive-operator method in vibration problems for rod systems
NASA Astrophysics Data System (ADS)
Rozhkova, E. V.
2009-12-01
Using linear differential equations with constant coefficients describing one-dimensional dynamical processes as an example, we show that the solutions of these equations and systems are related to the solution of the corresponding numerical recursion relations and one does not have to compute the roots of the corresponding characteristic equations. The arbitrary functions occurring in the general solution of the homogeneous equations are determined by the initial and boundary conditions or are chosen from various classes of analytic functions. The solutions of the inhomogeneous equations are constructed in the form of integro-differential series acting on the right-hand side of the equation, and the coefficients of the series are determined from the same recursion relations. The convergence of formal solutions as series of a more general recursive-operator construction was proved in [1]. In the special case where the solutions of the equation can be represented in separated variables, the power series can be effectively summed, i.e., expressed in terms of elementary functions, and coincide with the known solutions. In this case, to determine the natural vibration frequencies, one obtains algebraic rather than transcendental equations, which permits exactly determining the imaginary and complex roots of these equations without using the graphic method [2, pp. 448-449]. The correctness of the obtained formulas (differentiation formulas, explicit expressions for the series coefficients, etc.) can be verified directly by appropriate substitutions; therefore, we do not prove them here.
Liu, Wei; Zhang, Jing; Li, Xiliang
2018-01-01
In this paper, we investigate two types of nonlocal soliton equations with the parity-time (PT) symmetry, namely, a two dimensional nonlocal nonlinear Schrödinger (NLS) equation and a coupled nonlocal Klein-Gordon equation. Solitons and periodic line waves as exact solutions of these two nonlocal equations are derived by employing the Hirota's bilinear method. Like the nonlocal NLS equation, these solutions may have singularities. However, by suitable constraints of parameters, nonsingular breather solutions are generated. Besides, by taking a long wave limit of these obtained soliton solutions, rogue wave solutions and semi-rational solutions are derived. For the two dimensional NLS equation, rogue wave solutions are line rogue waves, which arise from a constant background with a line profile and then disappear into the same background. The semi-rational solutions shows intriguing dynamical behaviours: line rogue wave and line breather arise from a constant background together and then disappear into the constant background again uniformly. For the coupled nonlocal Klein-Gordon equation, rogue waves are localized in both space and time, semi-rational solutions are composed of rogue waves, breathers and periodic line waves. These solutions are demonstrated analytically to exist for special classes of nonlocal equations relevant to optical waveguides.
Zhang, Jing; Li, Xiliang
2018-01-01
In this paper, we investigate two types of nonlocal soliton equations with the parity-time (PT) symmetry, namely, a two dimensional nonlocal nonlinear Schrödinger (NLS) equation and a coupled nonlocal Klein-Gordon equation. Solitons and periodic line waves as exact solutions of these two nonlocal equations are derived by employing the Hirota’s bilinear method. Like the nonlocal NLS equation, these solutions may have singularities. However, by suitable constraints of parameters, nonsingular breather solutions are generated. Besides, by taking a long wave limit of these obtained soliton solutions, rogue wave solutions and semi-rational solutions are derived. For the two dimensional NLS equation, rogue wave solutions are line rogue waves, which arise from a constant background with a line profile and then disappear into the same background. The semi-rational solutions shows intriguing dynamical behaviours: line rogue wave and line breather arise from a constant background together and then disappear into the constant background again uniformly. For the coupled nonlocal Klein-Gordon equation, rogue waves are localized in both space and time, semi-rational solutions are composed of rogue waves, breathers and periodic line waves. These solutions are demonstrated analytically to exist for special classes of nonlocal equations relevant to optical waveguides. PMID:29432495
Exact solution for the Poisson field in a semi-infinite strip.
Cohen, Yossi; Rothman, Daniel H
2017-04-01
The Poisson equation is associated with many physical processes. Yet exact analytic solutions for the two-dimensional Poisson field are scarce. Here we derive an analytic solution for the Poisson equation with constant forcing in a semi-infinite strip. We provide a method that can be used to solve the field in other intricate geometries. We show that the Poisson flux reveals an inverse square-root singularity at a tip of a slit, and identify a characteristic length scale in which a small perturbation, in a form of a new slit, is screened by the field. We suggest that this length scale expresses itself as a characteristic spacing between tips in real Poisson networks that grow in response to fluxes at tips.
NASA Astrophysics Data System (ADS)
Tarasenko, Alexander
2018-01-01
Diffusion of particles adsorbed on a homogeneous one-dimensional lattice is investigated using a theoretical approach and MC simulations. The analytical dependencies calculated in the framework of approach are tested using the numerical data. The perfect coincidence of the data obtained by these different methods demonstrates that the correctness of the approach based on the theory of the non-equilibrium statistical operator.
NASA Astrophysics Data System (ADS)
Ginn, T. R.
2018-01-01
The challenge of determining mixing extent of solutions undergoing advective-dispersive-diffusive transport is well known. In particular, reaction extent between displacing and displaced solutes depends on mixing at the pore scale, that is, generally smaller than continuum scale quantification that relies on dispersive fluxes. Here a novel mobile-mobile mass transfer approach is developed to distinguish diffusive mixing from dispersive spreading in one-dimensional transport involving small-scale velocity variations with some correlation, such as occurs in hydrodynamic dispersion, in which short-range ballistic transports give rise to dispersed but not mixed segregation zones, termed here ballisticules. When considering transport of a single solution, this approach distinguishes self-diffusive mixing from spreading, and in the case of displacement of one solution by another, each containing a participant reactant of an irreversible bimolecular reaction, this results in time-delayed diffusive mixing of reactants. The approach generates models for both kinetically controlled and equilibrium irreversible reaction cases, while honoring independently measured reaction rates and dispersivities. The mathematical solution for the equilibrium case is a simple analytical expression. The approach is applied to published experimental data on bimolecular reactions for homogeneous porous media under postasymptotic dispersive conditions with good results.
Wave propagation in media having negative permittivity and permeability.
Ziolkowski, R W; Heyman, E
2001-11-01
Wave propagation in a double negative (DNG) medium, i.e., a medium having negative permittivity and negative permeability, is studied both analytically and numerically. The choices of the square root that leads to the index of refraction and the wave impedance in a DNG medium are determined by imposing analyticity in the complex frequency domain, and the corresponding wave properties associated with each choice are presented. These monochromatic concepts are then tested critically via a one-dimensional finite difference time domain (FDTD) simulation of the propagation of a causal, pulsed plane wave in a matched, lossy Drude model DNG medium. The causal responses of different spectral regimes of the medium with positive or negative refractive indices are studied by varying the carrier frequency of narrowband pulse excitations. The smooth transition of the phenomena associated with a DNG medium from its early-time nondispersive behavior to its late-time monochromatic response is explored with wideband pulse excitations. These FDTD results show conclusively that the square root choice leading to a negative index of refraction and positive wave impedance is the correct one, and that this choice is consistent with the overall causality of the response. An analytical, exact frequency domain solution to the scattering of a wave from a DNG slab is also given and is used to characterize several physical effects. This solution is independent of the choice of the square roots for the index of refraction and the wave impedance, and thus avoids any controversy that may arise in connection with the signs of these constituents. The DNG slab solution is used to critically examine the perfect lens concept suggested recently by Pendry. It is shown that the perfect lens effect exists only under the special case of a DNG medium with epsilon(omega)=mu(omega)=-1 that is both lossless and nondispersive. Otherwise, the closed form solutions for the field structure reveal that the DNG slab converts an incident spherical wave into a localized beam field whose parameters depend on the values of epsilon and mu. This beam field is characterized with a paraxial approximation of the exact DNG slab solution. These monochromatic concepts are again explored numerically via a causal two-dimensional FDTD simulation of the scattering of a pulsed cylindrical wave by a matched, lossy Drude model DNG slab. These FDTD results demonstrate conclusively that the monochromatic electromagnetic power flow through the DNG slab is channeled into beams rather then being focused and, hence, the Pendry perfect lens effect is not realizable with any realistic metamaterial.
Bergues Pupo, Ana E; Reyes, Juan Bory; Bergues Cabrales, Luis E; Bergues Cabrales, Jesús M
2011-09-24
Electrotherapy is a relatively well established and efficient method of tumor treatment. In this paper we focus on analytical and numerical calculations of the potential and electric field distributions inside a tumor tissue in a two-dimensional model (2D-model) generated by means of electrode arrays with shapes of different conic sections (ellipse, parabola and hyperbola). Analytical calculations of the potential and electric field distributions based on 2D-models for different electrode arrays are performed by solving the Laplace equation, meanwhile the numerical solution is solved by means of finite element method in two dimensions. Both analytical and numerical solutions reveal significant differences between the electric field distributions generated by electrode arrays with shapes of circle and different conic sections (elliptic, parabolic and hyperbolic). Electrode arrays with circular, elliptical and hyperbolic shapes have the advantage of concentrating the electric field lines in the tumor. The mathematical approach presented in this study provides a useful tool for the design of electrode arrays with different shapes of conic sections by means of the use of the unifying principle. At the same time, we verify the good correspondence between the analytical and numerical solutions for the potential and electric field distributions generated by the electrode array with different conic sections.
Computing the Evans function via solving a linear boundary value ODE
NASA Astrophysics Data System (ADS)
Wahl, Colin; Nguyen, Rose; Ventura, Nathaniel; Barker, Blake; Sandstede, Bjorn
2015-11-01
Determining the stability of traveling wave solutions to partial differential equations can oftentimes be computationally intensive but of great importance to understanding the effects of perturbations on the physical systems (chemical reactions, hydrodynamics, etc.) they model. For waves in one spatial dimension, one may linearize around the wave and form an Evans function - an analytic Wronskian-like function which has zeros that correspond in multiplicity to the eigenvalues of the linearized system. If eigenvalues with a positive real part do not exist, the traveling wave will be stable. Two methods exist for calculating the Evans function numerically: the exterior-product method and the method of continuous orthogonalization. The first is numerically expensive, and the second reformulates the originally linear system as a nonlinear system. We develop a new algorithm for computing the Evans function through appropriate linear boundary-value problems. This algorithm is cheaper than the previous methods, and we prove that it preserves analyticity of the Evans function. We also provide error estimates and implement it on some classical one- and two-dimensional systems, one being the Swift-Hohenberg equation in a channel, to show the advantages.
A theoretical framework for analyzing the effect of external change on tidal dynamics in estuaries
NASA Astrophysics Data System (ADS)
CAI, H.; Savenije, H.; Toffolon, M.
2013-12-01
The most densely populated areas of the world are usually located in coastal areas near estuaries. As a result, estuaries are often subject to intense human interventions, such as dredging for navigation, dam construction and fresh water withdrawal etc., which in some areas has led to serious deterioration of invaluable ecosystems. Hence it is important to understand the influence of such interventions on tidal dynamics in these areas. In this study, we present one consistent theoretical framework for tidal hydrodynamics, which can be used as a rapid assessment technique that assist policy maker and managers to make considered decisions for the protection and management of estuarine environment when assessing the effect of human interventions in estuaries. Analytical solutions to the one-dimensional St. Venant equations for the tidal hydrodynamics in convergent unbounded estuaries with negligible river discharge can be cast in the form of a set of four implicit dimensionless equations for phase lag, velocity amplitude, damping, and wave celerity, as a function of two localized parameters describing friction and convergence. This method allows for the comparison of the different analytical approaches by rewriting the different solutions in the same format. In this study, classical and more recent formulations are compared, showing the differences and similarities associated to their specific simplifications. The envelope method, which is based on the consideration of the dynamics at high water and low water, can be used to derive damping equations that use different friction approximations. This results in as many analytical solutions, and thereby allows one to build a consistent theoretical framework. Analysis of the asymptotic behaviour of the equations shows that an equilibrium tidal amplitude exits reflecting the balance between friction and channel convergence. The framework is subsequently extended to take into account the effect of river discharge. Hence, the analytical solutions are applicable even in the upstream part of an estuary, where the influence of river discharge is remarkable. The proposed analytical solutions are transparent and practical, allowing a quantitative and qualitative assessment of human interventions (e.g., dredging, flow reduction) on tidal dynamics. Moreover, they are rapid assessment techniques that enable the users to set up a simple model and to understand the functioning of the system with a minimum of information required. The analytical model is illustrated in three large-scale estuaries with significant influence by human activities, i.e., the Scheldt estuary in the Netherlands, the Modaomen and the Yangtze estuaries in China. In these estuaries, the correspondence with observations is good, which suggests that the proposed model is a useful, yet realistic and reliable instrument for quick detection of the effect of human interventions on tidal dynamics and subsequent environmental issues, such as salt intrusion.
NASA Technical Reports Server (NTRS)
Weatherill, W. H.; Ehlers, F. E.; Yip, E.; Sebastian, J. D.
1980-01-01
Analytical and empirical studies of a finite difference method for the solution of the transonic flow about harmonically oscillating wings and airfoils are presented. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady equations for small disturbances. The steady velocity potential is obtained first from the well-known nonlinear equation for steady transonic flow. The unsteady velocity potential is then obtained from a linear differential equation in complex form with spatially varying coefficients. Since sinusoidal motion is assumed, the unsteady equation is independent of time. An out-of-core direct solution procedure was developed and applied to two-dimensional sections. Results are presented for a section of vanishing thickness in subsonic flow and an NACA 64A006 airfoil in supersonic flow. Good correlation is obtained in the first case at values of Mach number and reduced frequency of direct interest in flutter analyses. Reasonable results are obtained in the second case. Comparisons of two-dimensional finite difference solutions with exact analytic solutions indicate that the accuracy of the difference solution is dependent on the boundary conditions used on the outer boundaries. Homogeneous boundary conditions on the mesh edges that yield complex eigenvalues give the most accurate finite difference solutions. The plane outgoing wave boundary conditions meet these requirements.
Stress fields around two pores in an elastic body: exact quadrature domain solutions.
Crowdy, Darren
2015-08-08
Analytical solutions are given for the stress fields, in both compression and far-field shear, in a two-dimensional elastic body containing two interacting non-circular pores. The two complex potentials governing the solutions are found by using a conformal mapping from a pre-image annulus with those potentials expressed in terms of the Schottky-Klein prime function for the annulus. Solutions for a three-parameter family of elastic bodies with two equal symmetric pores are presented and the compressibility of a special family of pore pairs is studied in detail. The methodology extends to two unequal pores. The importance for boundary value problems of plane elasticity of a special class of planar domains known as quadrature domains is also elucidated. This observation provides the route to generalization of the mathematical approach here to finding analytical solutions for the stress fields in bodies containing any finite number of pores.
Transcritical flow of a Bose-Einstein condensate through a penetrable barrier
NASA Astrophysics Data System (ADS)
Leszczyszyn, A. M.; El, G. A.; Gladush, Yu. G.; Kamchatnov, A. M.
2009-06-01
The problem of the transcritical flow of a Bose-Einstein condensate through a wide repulsive penetrable barrier is studied analytically using the combination of the locally steady “hydraulic” solution of the one-dimensional Gross-Pitaevskii equation and the solutions of the Whitham modulation equations describing the resolution of the upstream and downstream discontinuities through dispersive shocks. It is shown that within the physically reasonable range of parameters, the downstream dispersive shock is attached to the barrier and effectively represents the train of very slow dark solitons, which can be observed in experiments. The rate of the soliton emission, the amplitudes of the solitons in the train, and the drag force are determined in terms of the Bose-Einstein condensate oncoming flow velocity and the strength of the potential barrier. Good agreement with direct numerical solutions is demonstrated. Connection with recent experiments is discussed.
Water's hydrogen bonds in the hydrophobic effect: a simple model.
Xu, Huafeng; Dill, Ken A
2005-12-15
We propose a simple analytical model to account for water's hydrogen bonds in the hydrophobic effect. It is based on computing a mean-field partition function for a water molecule in the first solvation shell around a solute molecule. The model treats the orientational restrictions from hydrogen bonding, and utilizes quantities that can be obtained from bulk water simulations. We illustrate the principles in a 2-dimensional Mercedes-Benz-like model. Our model gives good predictions for the heat capacity of hydrophobic solvation, reproduces the solvation energies and entropies at different temperatures with only one fitting parameter, and accounts for the solute size dependence of the hydrophobic effect. Our model supports the view that water's hydrogen bonding propensity determines the temperature dependence of the hydrophobic effect. It explains the puzzling experimental observation that dissolving a nonpolar solute in hot water has positive entropy.
NASA Astrophysics Data System (ADS)
Chen, Lin-Jie; Ma, Chang-Feng
2010-01-01
This paper proposes a lattice Boltzmann model with an amending function for one-dimensional nonlinear partial differential equations (NPDEs) in the form ut + αuux + βunux + γuxx + δuxxx + ζuxxxx = 0. This model is different from existing models because it lets the time step be equivalent to the square of the space step and derives higher accuracy and nonlinear terms in NPDEs. With the Chapman-Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The numerical results agree well with the analytical solutions.
NASA Technical Reports Server (NTRS)
Nitsche, Ludwig C.; Nitsche, Johannes M.; Brenner, Howard
1988-01-01
The sedimentation and diffusion of a nonneutrally buoyant Brownian particle in vertical fluid-filled cylinder of finite length which is instantaneously inverted at regular intervals are investigated analytically. A one-dimensional convective-diffusive equation is derived to describe the temporal and spatial evolution of the probability density; a periodicity condition is formulated; the applicability of Fredholm theory is established; and the parameter-space regions are determined within which the existence and uniqueness of solutions are guaranteed. Numerical results for sample problems are presented graphically and briefly characterized.
Four-dimensional black holes in Einsteinian cubic gravity
NASA Astrophysics Data System (ADS)
Bueno, Pablo; Cano, Pablo A.
2016-12-01
We construct static and spherically symmetric generalizations of the Schwarzschild- and Reissner-Nordström-(anti-)de Sitter [RN-(A)dS] black-hole solutions in four-dimensional Einsteinian cubic gravity (ECG). The solutions are characterized by a single function which satisfies a nonlinear second-order differential equation. Interestingly, we are able to compute independently the Hawking temperature T , the Wald entropy S and the Abbott-Deser mass M of the solutions analytically as functions of the horizon radius and the ECG coupling constant λ . Using these we show that the first law of black-hole mechanics is exactly satisfied. Some of the solutions have positive specific heat, which makes them thermodynamically stable, even in the uncharged and asymptotically flat case. Further, we claim that, up to cubic order in curvature, ECG is the most general four-dimensional theory of gravity which allows for nontrivial generalizations of Schwarzschild- and RN-(A)dS characterized by a single function which reduce to the usual Einstein gravity solutions when the corresponding higher-order couplings are set to zero.
Chemical Transport in a Fissured Rock: Verification of a Numerical Model
NASA Astrophysics Data System (ADS)
Rasmuson, A.; Narasimhan, T. N.; Neretnieks, I.
1982-10-01
Numerical models for simulating chemical transport in fissured rocks constitute powerful tools for evaluating the acceptability of geological nuclear waste repositories. Due to the very long-term, high toxicity of some nuclear waste products, the models are required to predict, in certain cases, the spatial and temporal distribution of chemical concentration less than 0.001% of the concentration released from the repository. Whether numerical models can provide such accuracies is a major question addressed in the present work. To this end we have verified a numerical model, TRUMP, which solves the advective diffusion equation in general three dimensions, with or without decay and source terms. The method is based on an integrated finite difference approach. The model was verified against known analytic solution of the one-dimensional advection-diffusion problem, as well as the problem of advection-diffusion in a system of parallel fractures separated by spherical particles. The studies show that as long as the magnitude of advectance is equal to or less than that of conductance for the closed surface bounding any volume element in the region (that is, numerical Peclet number <2), the numerical method can indeed match the analytic solution within errors of ±10-3% or less. The realistic input parameters used in the sample calculations suggest that such a range of Peclet numbers is indeed likely to characterize deep groundwater systems in granitic and ancient argillaceous systems. Thus TRUMP in its present form does provide a viable tool for use in nuclear waste evaluation studies. A sensitivity analysis based on the analytic solution suggests that the errors in prediction introduced due to uncertainties in input parameters are likely to be larger than the computational inaccuracies introduced by the numerical model. Currently, a disadvantage in the TRUMP model is that the iterative method of solving the set of simultaneous equations is rather slow when time constants vary widely over the flow region. Although the iterative solution may be very desirable for large three-dimensional problems in order to minimize computer storage, it seems desirable to use a direct solver technique in conjunction with the mixed explicit-implicit approach whenever possible. Work in this direction is in progress.
Prediction of pressure and flow transients in a gaseous bipropellant reaction control rocket engine
NASA Technical Reports Server (NTRS)
Markowsky, J. J.; Mcmanus, H. N., Jr.
1974-01-01
An analytic model is developed to predict pressure and flow transients in a gaseous hydrogen-oxygen reaction control rocket engine feed system. The one-dimensional equations of momentum and continuity are reduced by the method of characteristics from partial derivatives to a set of total derivatives which describe the state properties along the feedline. System components, e.g., valves, manifolds, and injectors are represented by pseudo steady-state relations at discrete junctions in the system. Solutions were effected by a FORTRAN IV program on an IBM 360/65. The results indicate the relative effect of manifold volume, combustion lag time, feedline pressure fluctuations, propellant temperature, and feedline length on the chamber pressure transient. The analytical combustion model is verified by good correlation between predicted and observed chamber pressure transients. The developed model enables a rocket designer to vary the design parameters analytically to obtain stable combustion for a particular mode of operation which is prescribed by mission objectives.
NASA Astrophysics Data System (ADS)
Wang, Yao; Yang, Zailin; Zhang, Jianwei; Yang, Yong
2017-10-01
Based on the governing equations and the equivalent models, we propose an equivalent transformation relationships between a plane wave in a one-dimensional medium and a spherical wave in globular geometry with radially inhomogeneous properties. These equivalent relationships can help us to obtain the analytical solutions of the elastodynamic issues in an inhomogeneous medium. The physical essence of the presented equivalent transformations is the equivalent relationships between the geometry and the material properties. It indicates that the spherical wave problem in globular geometry can be transformed into the plane wave problem in the bar with variable property fields, and its inverse transformation is valid as well. Four different examples of wave motion problems in the inhomogeneous media are solved based on the presented equivalent relationships. We obtain two basic analytical solution forms in Examples I and II, investigate the reflection behavior of inhomogeneous half-space in Example III, and exhibit a special inhomogeneity in Example IV, which can keep the traveling spherical wave in constant amplitude. This study implies that our idea makes solving the associated problem easier.
NASA Astrophysics Data System (ADS)
Chequer, L.; Russell, T.; Behr, A.; Genolet, L.; Kowollik, P.; Badalyan, A.; Zeinijahromi, A.; Bedrikovetsky, P.
2018-02-01
Permeability decline associated with the migration of natural reservoir fines impairs the well index of injection and production wells in aquifers and oilfields. In this study, we perform laboratory corefloods using aqueous solutions with different salinities in engineered rocks with different kaolinite content, yielding fines migration and permeability alteration. Unusual permeability growth has been observed at high salinities in rocks with low kaolinite concentrations. This has been attributed to permeability increase during particle detachment and re-attachment of already mobilised fines by electrostatic attraction to the rock in stagnant zones of the porous space. We refine the traditional model for fines migration by adding mathematical expressions for the particle re-attachment rate, particle detachment with delay relative to salinity decrease, and the attached-concentration-dependency of permeability. A one-dimensional flow problem that accounts for those three effects allows for an exact analytical solution. The modified model captures the observed effect of permeability increase at high water salinities in rocks with low kaolinite concentrations. The developed model matches the coreflooding data with high accuracy, and the obtained model coefficients vary within their usual intervals.
Radiative interactions in multi-dimensional chemically reacting flows using Monte Carlo simulations
NASA Technical Reports Server (NTRS)
Liu, Jiwen; Tiwari, Surendra N.
1994-01-01
The Monte Carlo method (MCM) is applied to analyze radiative heat transfer in nongray gases. The nongray model employed is based on the statistical narrow band model with an exponential-tailed inverse intensity distribution. The amount and transfer of the emitted radiative energy in a finite volume element within a medium are considered in an exact manner. The spectral correlation between transmittances of two different segments of the same path in a medium makes the statistical relationship different from the conventional relationship, which only provides the non-correlated results for nongray methods is discussed. Validation of the Monte Carlo formulations is conducted by comparing results of this method of other solutions. In order to further establish the validity of the MCM, a relatively simple problem of radiative interactions in laminar parallel plate flows is considered. One-dimensional correlated Monte Carlo formulations are applied to investigate radiative heat transfer. The nongray Monte Carlo solutions are also obtained for the same problem and they also essentially match the available analytical solutions. the exact correlated and non-correlated Monte Carlo formulations are very complicated for multi-dimensional systems. However, by introducing the assumption of an infinitesimal volume element, the approximate correlated and non-correlated formulations are obtained which are much simpler than the exact formulations. Consideration of different problems and comparison of different solutions reveal that the approximate and exact correlated solutions agree very well, and so do the approximate and exact non-correlated solutions. However, the two non-correlated solutions have no physical meaning because they significantly differ from the correlated solutions. An accurate prediction of radiative heat transfer in any nongray and multi-dimensional system is possible by using the approximate correlated formulations. Radiative interactions are investigated in chemically reacting compressible flows of premixed hydrogen and air in an expanding nozzle. The governing equations are based on the fully elliptic Navier-Stokes equations. Chemical reaction mechanisms were described by a finite rate chemistry model. The correlated Monte Carlo method developed earlier was employed to simulate multi-dimensional radiative heat transfer. Results obtained demonstrate that radiative effects on the flowfield are minimal but radiative effects on the wall heat transfer are significant. Extensive parametric studies are conducted to investigate the effects of equivalence ratio, wall temperature, inlet flow temperature, and nozzle size on the radiative and conductive wall fluxes.
Simplified computational methods for elastic and elastic-plastic fracture problems
NASA Technical Reports Server (NTRS)
Atluri, Satya N.
1992-01-01
An overview is given of some of the recent (1984-1991) developments in computational/analytical methods in the mechanics of fractures. Topics covered include analytical solutions for elliptical or circular cracks embedded in isotropic or transversely isotropic solids, with crack faces being subjected to arbitrary tractions; finite element or boundary element alternating methods for two or three dimensional crack problems; a 'direct stiffness' method for stiffened panels with flexible fasteners and with multiple cracks; multiple site damage near a row of fastener holes; an analysis of cracks with bonded repair patches; methods for the generation of weight functions for two and three dimensional crack problems; and domain-integral methods for elastic-plastic or inelastic crack mechanics.
NASA Astrophysics Data System (ADS)
Sarmah, Ratan; Tiwari, Shubham
2018-03-01
An analytical solution is developed for predicting two-dimensional transient seepage into ditch drainage network receiving water from a non-uniform steady ponding field from the surface of the soil under the influence of source/sink in the flow domain. The flow domain is assumed to be saturated, homogeneous and anisotropic in nature and have finite extends in horizontal and vertical directions. The drains are assumed to be standing vertical and penetrating up to impervious layer. The water levels in the drains are unequal and invariant with time. The flow field is also assumed to be under the continuous influence of time-space dependent arbitrary source/sink term. The correctness of the proposed model is checked by developing a numerical code and also with the existing analytical solution for the simplified case. The study highlights the significance of source/sink influence in the subsurface flow. With the imposition of the source and sink term in the flow domain, the pathline and travel time of water particles started deviating from their original position and above that the side and top discharge to the drains were also observed to have a strong influence of the source/sink terms. The travel time and pathline of water particles are also observed to have a dependency on the height of water in the ditches and on the location of source/sink activation area.
Weatherill, D.; Simmons, C.T.; Voss, C.I.; Robinson, N.I.
2004-01-01
This study proposes the use of several problems of unstable steady state convection with variable fluid density in a porous layer of infinite horizontal extent as two-dimensional (2-D) test cases for density-dependent groundwater flow and solute transport simulators. Unlike existing density-dependent model benchmarks, these problems have well-defined stability criteria that are determined analytically. These analytical stability indicators can be compared with numerical model results to test the ability of a code to accurately simulate buoyancy driven flow and diffusion. The basic analytical solution is for a horizontally infinite fluid-filled porous layer in which fluid density decreases with depth. The proposed test problems include unstable convection in an infinite horizontal box, in a finite horizontal box, and in an infinite inclined box. A dimensionless Rayleigh number incorporating properties of the fluid and the porous media determines the stability of the layer in each case. Testing the ability of numerical codes to match both the critical Rayleigh number at which convection occurs and the wavelength of convection cells is an addition to the benchmark problems currently in use. The proposed test problems are modelled in 2-D using the SUTRA [SUTRA-A model for saturated-unsaturated variable-density ground-water flow with solute or energy transport. US Geological Survey Water-Resources Investigations Report, 02-4231, 2002. 250 p] density-dependent groundwater flow and solute transport code. For the case of an infinite horizontal box, SUTRA results show a distinct change from stable to unstable behaviour around the theoretical critical Rayleigh number of 4??2 and the simulated wavelength of unstable convection agrees with that predicted by the analytical solution. The effects of finite layer aspect ratio and inclination on stability indicators are also tested and numerical results are in excellent agreement with theoretical stability criteria and with numerical results previously reported in traditional fluid mechanics literature. ?? 2004 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Turc, Catalin; Anand, Akash; Bruno, Oscar; Chaubell, Julian
2011-01-01
We present a computational methodology (a novel Nystrom approach based on use of a non-overlapping patch technique and Chebyshev discretizations) for efficient solution of problems of acoustic and electromagnetic scattering by open surfaces. Our integral equation formulations (1) Incorporate, as ansatz, the singular nature of open-surface integral-equation solutions, and (2) For the Electric Field Integral Equation (EFIE), use analytical regularizes that effectively reduce the number of iterations required by iterative linear-algebra solution based on Krylov-subspace iterative solvers.
Two-dimensional NMR spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrar, T.C.
1987-06-01
This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t/sub 0/; an evolution period, t/sub 1/; and a detection period, t/sub 2/.
Dynamic growth of mixed-mode shear cracks
Andrews, D.J.
1994-01-01
A pure mode II (in-plane) shear crack cannot propagate spontaneously at a speed between the Rayleigh and S-wave speeds, but a three-dimensional (3D) or two-dimensional (2D) mixed-mode shear crack can propagate in this range, being driven by the mode III (antiplane) component. Two different analytic solutions have been proposed for the mode II component in this case. The first is the solution valid for crack speed less than the Rayleigh speed. When applied above the Rayleigh speed, it predicts a negative stress intensity factor, which implies that energy is generated at the crack tip. Burridge proposed a second solution, which is continuous at the crack tip, but has a singularity in slip velocity at the Rayleigh wave. Spontaneous propagation of a mixed-mode rupture has been calculated with a slip-weakening friction law, in which the slip velocity vector is colinear with the total traction vector. Spontaneous trans-Rayleigh rupture speed has been found. The solution depends on the absolute stress level. The solution for the in-plane component appears to be a superposition of smeared-out versions of the two analytic solutions. The proportion of the first solution increases with increasing absolute stress. The amplitude of the negative in-plane traction pulse is less than the absolute final sliding traction, so that total in-plane traction does not reverse. The azimuth of the slip velocity vector varies rapidly between the onset of slip and the arrival of the Rayleigh wave. The variation is larger at smaller absolute stress.
NASA Astrophysics Data System (ADS)
Liang, Ching-Ping; Hsu, Shao-Yiu; Chen, Jui-Sheng
2016-09-01
It is recommended that an in-situ infiltration tracer test is considered for simultaneously determining the longitudinal and transverse dispersion coefficients in soil. Analytical solutions have been derived for two-dimensional advective-dispersive transport in a radial geometry in the literature which can be used for interpreting the result of such a tracer test. However, these solutions were developed for a transport domain with an unbounded-radial extent and an infinite thickness of vadose zone which might not be realistically manifested in the actual solute transport during a field infiltration tracer test. Especially, the assumption of infinite thickness of vadose zone should be invalid for infiltration tracer tests conducted in soil with a shallow groundwater table. This paper describes an analytical model for interpreting the results of an infiltration tracer test based on improving the transport domain with a bounded-radial extent and a finite thickness of vadose zone. The analytical model is obtained with the successive application of appropriate integral transforms and their corresponding inverse transforms. A comparison of the newly derived analytical solution against the previous analytical solutions in which two distinct sets of radial extent and thickness of vadose zone are considered is conducted to determine the influence of the radial and exit boundary conditions on the solute transport. The results shows that both the radial and exit boundary conditions substantially affect the trailing segment of the breakthrough curves for a soil medium with large dispersion coefficients. Previous solutions derived for a transport domain with an unbounded-radial and an infinite thickness of vadose zone boundary conditions give lower concentration predictions compared with the proposed solution at late times. Moreover, the differences between two solutions are amplified when the observation positions are near the groundwater table. In addition, we compare our solution against the approximate solutions that derived from the previous analytical solution and has been suggested to serve as fast tools for simultaneously estimating the longitudinal and transverse dispersion coefficients. The results indicate that the approximate solutions offer predictions that are markedly distinct from our solution for the entire range of dispersion coefficient values. Thus, it is not appropriate to use the approximate solution for interpreting the results of an infiltration tracer test.
NASA Technical Reports Server (NTRS)
Moitra, A.
1982-01-01
An implicit finite-difference algorithm is developed for the numerical solution of the incompressible three dimensional Navier-Stokes equations in the non-conservative primitive-variable formulation. The flow field about an airfoil spanning a wind-tunnel is computed. The coordinate system is generated by an extension of the two dimensional body-fitted coordinate generation techniques of Thompson, as well as that of Sorenson, into three dimensions. Two dimensional grids are stacked along a spanwise coordinate defined by a simple analytical function. A Poisson pressure equation for advancing the pressure in time is arrived at by performing a divergence operation on the momentum equations. The pressure at each time-step is calculated on the assumption that continuity be unconditionally satisfied. An eddy viscosity coefficient, computed according to the algebraic turbulence formulation of Baldwin and Lomax, simulates the effects of turbulence.
A Numerical Approximation Framework for the Stochastic Linear Quadratic Regulator on Hilbert Spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levajković, Tijana, E-mail: tijana.levajkovic@uibk.ac.at, E-mail: t.levajkovic@sf.bg.ac.rs; Mena, Hermann, E-mail: hermann.mena@uibk.ac.at; Tuffaha, Amjad, E-mail: atufaha@aus.edu
We present an approximation framework for computing the solution of the stochastic linear quadratic control problem on Hilbert spaces. We focus on the finite horizon case and the related differential Riccati equations (DREs). Our approximation framework is concerned with the so-called “singular estimate control systems” (Lasiecka in Optimal control problems and Riccati equations for systems with unbounded controls and partially analytic generators: applications to boundary and point control problems, 2004) which model certain coupled systems of parabolic/hyperbolic mixed partial differential equations with boundary or point control. We prove that the solutions of the approximate finite-dimensional DREs converge to the solutionmore » of the infinite-dimensional DRE. In addition, we prove that the optimal state and control of the approximate finite-dimensional problem converge to the optimal state and control of the corresponding infinite-dimensional problem.« less
Bright and dark N-soliton solutions for the (2 + 1)-dimensional Maccari system
NASA Astrophysics Data System (ADS)
Liu, Lei; Tian, Bo; Yuan, Yu-Qiang; Sun, Yan
2018-02-01
Under investigation in this paper is the (2 + 1) -dimensional Maccari system, which is related to the Kadomtsev-Petviashvili (KP) equation. Bright and dark N -soliton solutions in terms of the Gramian are obtained via the KP hierarchy reduction. Oblique and parallel interactions between the bright solitons and between the dark solitons are studied analytically and graphically. We find that there are elastic and inelastic interactions for the bright solitons, but there are only elastic interactions for the dark solitons. Resonance, breather, attraction and repulsion structures are presented. It is expected that these soliton interactions have potential applications in fluid dynamics, nonlinear optics and plasma physics.
Nonlinear low-frequency electrostatic wave dynamics in a two-dimensional quantum plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Samiran, E-mail: sran_g@yahoo.com; Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in
2016-08-15
The problem of two-dimensional arbitrary amplitude low-frequency electrostatic oscillation in a quasi-neutral quantum plasma is solved exactly by elementary means. In such quantum plasmas we have treated electrons quantum mechanically and ions classically. The exact analytical solution of the nonlinear system exhibits the formation of dark and black solitons. Numerical simulation also predicts the possible periodic solution of the nonlinear system. Nonlinear analysis reveals that the system does have a bifurcation at a critical Mach number that depends on the angle of propagation of the wave. The small-amplitude limit leads to the formation of weakly nonlinear Kadomstev–Petviashvili solitons.
Application of Laser Ranging and VLBI Data to a Study of Plate Tectonic Driving Forces
NASA Technical Reports Server (NTRS)
Solomon, S. C.
1980-01-01
The conditions under which changes in plate driving or resistive forces associated with plate boundary earthquakes are measurable with laser ranging or very long base interferometry were investigated. Aspects of plate forces that can be characterized by such measurements were identified. Analytic solutions for two dimensional stress diffusion in a viscoelastic plate following earthquake faulting on a finite fault, finite element solutions for three dimensional stress diffusion in a viscoelastic Earth following earthquake faulting, and quantitative constraints from modeling of global intraplate stress on the magnitude of deviatoric stress in the lithosphere are among the topics discussed.
Solving time-dependent two-dimensional eddy current problems
NASA Technical Reports Server (NTRS)
Lee, Min Eig; Hariharan, S. I.; Ida, Nathan
1988-01-01
Results of transient eddy current calculations are reported. For simplicity, a two-dimensional transverse magnetic field which is incident on an infinitely long conductor is considered. The conductor is assumed to be a good but not perfect conductor. The resulting problem is an interface initial boundary value problem with the boundary of the conductor being the interface. A finite difference method is used to march the solution explicitly in time. The method is shown. Treatment of appropriate radiation conditions is given special consideration. Results are validated with approximate analytic solutions. Two stringent test cases of high and low frequency incident waves are considered to validate the results.
NASA Astrophysics Data System (ADS)
Shin, Kyung-Hun; Park, Hyung-Il; Kim, Kwan-Ho; Jang, Seok-Myeong; Choi, Jang-Young
2017-05-01
The shape of the magnet is essential to the performance of a slotless permanent magnet linear synchronous machine (PMLSM) because it is directly related to desirable machine performance. This paper presents a reduction in the thrust ripple of a PMLSM through the use of arc-shaped magnets based on electromagnetic field theory. The magnetic field solutions were obtained by considering end effect using a magnetic vector potential and two-dimensional Cartesian coordinate system. The analytical solution of each subdomain (PM, air-gap, coil, and end region) is derived, and the field solution is obtained by applying the boundary and interface conditions between the subdomains. In particular, an analytical method was derived for the instantaneous thrust and thrust ripple reduction of a PMLSM with arc-shaped magnets. In order to demonstrate the validity of the analytical results, the back electromotive force results of a finite element analysis and experiment on the manufactured prototype model were compared. The optimal point for thrust ripple minimization is suggested.
A semi-analytical study of positive corona discharge in wire-plane electrode configuration
NASA Astrophysics Data System (ADS)
Yanallah, K.; Pontiga, F.; Chen, J. H.
2013-08-01
Wire-to-plane positive corona discharge in air has been studied using an analytical model of two species (electrons and positive ions). The spatial distributions of electric field and charged species are obtained by integrating Gauss's law and the continuity equations of species along the Laplacian field lines. The experimental values of corona current intensity and applied voltage, together with Warburg's law, have been used to formulate the boundary condition for the electron density on the corona wire. To test the accuracy of the model, the approximate electric field distribution has been compared with the exact numerical solution obtained from a finite element analysis. A parametrical study of wire-to-plane corona discharge has then been undertaken using the approximate semi-analytical solutions. Thus, the spatial distributions of electric field and charged particles have been computed for different values of the gas pressure, wire radius and electrode separation. Also, the two dimensional distribution of ozone density has been obtained using a simplified plasma chemistry model. The approximate semi-analytical solutions can be evaluated in a negligible computational time, yet provide precise estimates of corona discharge variables.
Knopman, Debra S.; Voss, Clifford I.
1988-01-01
Sensitivities of solute concentration to parameters associated with first-order chemical decay, boundary conditions, initial conditions, and multilayer transport are examined in one-dimensional analytical models of transient solute transport in porous media. A sensitivity is a change in solute concentration resulting from a change in a model parameter. Sensitivity analysis is important because minimum information required in regression on chemical data for the estimation of model parameters by regression is expressed in terms of sensitivities. Nonlinear regression models of solute transport were tested on sets of noiseless observations from known models that exceeded the minimum sensitivity information requirements. Results demonstrate that the regression models consistently converged to the correct parameters when the initial sets of parameter values substantially deviated from the correct parameters. On the basis of the sensitivity analysis, several statements may be made about design of sampling for parameter estimation for the models examined: (1) estimation of parameters associated with solute transport in the individual layers of a multilayer system is possible even when solute concentrations in the individual layers are mixed in an observation well; (2) when estimating parameters in a decaying upstream boundary condition, observations are best made late in the passage of the front near a time chosen by adding the inverse of an hypothesized value of the source decay parameter to the estimated mean travel time at a given downstream location; (3) estimation of a first-order chemical decay parameter requires observations to be made late in the passage of the front, preferably near a location corresponding to a travel time of √2 times the half-life of the solute; and (4) estimation of a parameter relating to spatial variability in an initial condition requires observations to be made early in time relative to passage of the solute front.
Effective spin physics in two-dimensional cavity QED arrays
NASA Astrophysics Data System (ADS)
Minář, Jiří; Güneş Söyler, Şebnem; Rotondo, Pietro; Lesanovsky, Igor
2017-06-01
We investigate a strongly correlated system of light and matter in two-dimensional cavity arrays. We formulate a multimode Tavis-Cummings (TC) Hamiltonian for two-level atoms coupled to cavity modes and driven by an external laser field which reduces to an effective spin Hamiltonian in the dispersive regime. In one-dimension we provide an exact analytical solution. In two-dimensions, we perform mean-field study and large scale quantum Monte Carlo simulations of both the TC and the effective spin models. We discuss the phase diagram and the parameter regime which gives rise to frustrated interactions between the spins. We provide a quantitative description of the phase transitions and correlation properties featured by the system and we discuss graph-theoretical properties of the ground states in terms of graph colourings using Pólya’s enumeration theorem.
Kevrekidis, P. G.; Malomed, Boris A.; Saxena, Avadh; ...
2015-04-07
We consider a two-dimensional (2D) generalization of a recently proposed model [Phys. Rev. E 88, 032905 (2013)], which gives rise to bright discrete solitons supported by the defocusing nonlinearity whose local strength grows from the center to the periphery. We explore the 2D model starting from the anticontinuum (AC) limit of vanishing coupling. In this limit, we can construct a wide variety of solutions including not only single-site excitations, but also dipole and quadrupole ones. Additionally, two separate families of solutions are explored: the usual “extended” unstaggered bright solitons, in which all sites are excited in the AC limit, withmore » the same sign across the lattice (they represent the most robust states supported by the lattice, their 1D counterparts being those considered as 1D bright solitons in the above-mentioned work), and the vortex cross, which is specific to the 2D setting. For all the existing states, we explore their stability (also analytically, when possible). As a result, typical scenarios of instability development are exhibited through direct simulations.« less
Exact analytic flux distributions for two-dimensional solar concentrators.
Fraidenraich, Naum; Henrique de Oliveira Pedrosa Filho, Manoel; Vilela, Olga C; Gordon, Jeffrey M
2013-07-01
A new approach for representing and evaluating the flux density distribution on the absorbers of two-dimensional imaging solar concentrators is presented. The formalism accommodates any realistic solar radiance and concentrator optical error distribution. The solutions obviate the need for raytracing, and are physically transparent. Examples illustrating the method's versatility are presented for parabolic trough mirrors with both planar and tubular absorbers, Fresnel reflectors with tubular absorbers, and V-trough mirrors with planar absorbers.
Kanezaki, Akio; Hirata, Akimasa; Watanabe, Soichi; Shirai, Hiroshi
2010-08-21
The present study describes theoretical parametric analysis of the steady-state temperature elevation in one-dimensional three-layer (skin, fat and muscle) and one-layer (skin only) models due to millimeter-wave exposure. The motivation of this fundamental investigation is that some variability of warmth sensation in the human skin has been reported. An analytical solution for a bioheat equation was derived by using the Laplace transform for the one-dimensional human models. Approximate expressions were obtained to investigate the dependence of temperature elevation on different thermal and tissue thickness parameters. It was shown that the temperature elevation on the body surface decreases monotonically with the blood perfusion rate, heat conductivity and heat transfer from the body to air. Also revealed were the conditions where maximum and minimum surface temperature elevations were observed for different thermal and tissue thickness parameters. The surface temperature elevation in the three-layer model is 1.3-2.8 times greater than that in the one-layer model. The main reason for this difference is attributed to the adiabatic nature of the fat layer. By considering the variation range of thermal and tissue thickness parameters which causes the maximum and minimum temperature elevations, the dominant parameter influencing the surface temperature elevation was found to be the heat transfer coefficient between the body surface and air.
NASA Astrophysics Data System (ADS)
Kalay, Ziya
2012-06-01
Despite the apparent need to study reversible reactions between molecules confined to a two-dimensional space such as the cell membrane, exact Green’s functions for this case have not been reported. Here we present exact analytical Green’s functions for a Brownian particle reversibly reacting with a fixed reaction center in a finite two-dimensional circular region with reflecting or absorbing boundaries, considering either a spherically symmetric initial distribution or a particle that is initially bound. We show that Green’s function can be used to predict the effect of measurement uncertainties on the outcome of single-particle/molecule-tracking experiments in which molecular interactions are investigated. Hence, we bridge the gap between previously known solutions in one dimension (Agmon 1984 J. Chem. Phys. 81 2811) and three dimensions (Kim and Shin 1999 Phys. Rev. Lett. 82 1578), and provide an example of how the knowledge of Green’s function can be used to predict experimentally accessible quantities.
Impact of transverse and longitudinal dispersion on first-order degradation rate constant estimation
NASA Astrophysics Data System (ADS)
Stenback, Greg A.; Ong, Say Kee; Rogers, Shane W.; Kjartanson, Bruce H.
2004-09-01
A two-dimensional analytical model is employed for estimating the first-order degradation rate constant of hydrophobic organic compounds (HOCs) in contaminated groundwater under steady-state conditions. The model may utilize all aqueous concentration data collected downgradient of a source area, but does not require that any data be collected along the plume centerline. Using a least squares fit of the model to aqueous concentrations measured in monitoring wells, degradation rate constants were estimated at a former manufactured gas plant (FMGP) site in the Midwest U.S. The estimated degradation rate constants are 0.0014, 0.0034, 0.0031, 0.0019, and 0.0053 day -1 for acenaphthene, naphthalene, benzene, ethylbenzene, and toluene, respectively. These estimated rate constants were as low as one-half those estimated with the one-dimensional (centerline) approach of Buscheck and Alcantar [Buscheck, T.E., Alcantar, C.M., 1995. Regression techniques and analytical solutions to demonstrate intrinsic bioremediation. In: Hinchee, R.E., Wilson, J.T., Downey, D.C. (Eds.), Intrinsic Bioremediation, Battelle Press, Columbus, OH, pp. 109-116] which does not account for transverse dispersivity. Varying the transverse and longitudinal dispersivity values over one order of magnitude for toluene data obtained from the FMGP site resulted in nearly a threefold variation in the estimated degradation rate constant—highlighting the importance of reliable estimates of the dispersion coefficients for obtaining reasonable estimates of the degradation rate constants. These results have significant implications for decision making and site management where overestimation of a degradation rate may result in remediation times and bioconversion factors that exceed expectations. For a complex source area or non-steady-state plume, a superposition of analytical models that incorporate longitudinal and transverse dispersion and time may be used at sites where the centerline method would not be applicable.
Localization in finite vibroimpact chains: Discrete breathers and multibreathers.
Grinberg, Itay; Gendelman, Oleg V
2016-09-01
We explore the dynamics of strongly localized periodic solutions (discrete solitons or discrete breathers) in a finite one-dimensional chain of oscillators. Localization patterns with both single and multiple localization sites (breathers and multibreathers) are considered. The model involves parabolic on-site potential with rigid constraints (the displacement domain of each particle is finite) and a linear nearest-neighbor coupling. When the particle approaches the constraint, it undergoes an inelastic impact according to Newton's impact model. The rigid nonideal impact constraints are the only source of nonlinearity and damping in the system. We demonstrate that this vibro-impact model allows derivation of exact analytic solutions for the breathers and multibreathers with an arbitrary set of localization sites, both in conservative and in forced-damped settings. Periodic boundary conditions are considered; exact solutions for other types of boundary conditions are also available. Local character of the nonlinearity permits explicit derivation of a monodromy matrix for the breather solutions. Consequently, the stability of the derived breather and multibreather solutions can be efficiently studied in the framework of simple methods of linear algebra, and with rather moderate computational efforts. One reveals that that the finiteness of the chain fragment and possible proximity of the localization sites strongly affect both the existence and the stability patterns of these localized solutions.
An extension of the Laplace transform to Schwartz distributions
NASA Technical Reports Server (NTRS)
Price, D. R.
1974-01-01
A characterization of the Laplace transform is developed which extends the transform to the Schwartz distributions. The class of distributions includes the impulse functions and other singular functions which occur as solutions to ordinary and partial differential equations. The standard theorems on analyticity, uniqueness, and invertibility of the transform are proved by using the characterization as the definition of the Laplace transform. The definition uses sequences of linear transformations on the space of distributions which extends the Laplace transform to another class of generalized functions, the Mikusinski operators. It is shown that the sequential definition of the transform is equivalent to Schwartz' extension of the ordinary Laplace transform to distributions but, in contrast to Schwartz' definition, does not use the distributional Fourier transform. Several theorems concerning the particular linear transformations used to define the Laplace transforms are proved. All the results proved in one dimension are extended to the n-dimensional case, but proofs are presented only for those situations that require methods different from their one-dimensional analogs.
Briggs, Brandi N; Stender, Michael E; Muljadi, Patrick M; Donnelly, Meghan A; Winn, Virginia D; Ferguson, Virginia L
2015-06-25
Clinical practice requires improved techniques to assess human cervical tissue properties, especially at the internal os, or orifice, of the uterine cervix. Ultrasound elastography (UE) holds promise for non-invasively monitoring cervical stiffness throughout pregnancy. However, this technique provides qualitative strain images that cannot be linked to a material property (e.g., Young's modulus) without knowledge of the contact pressure under a rounded transvaginal transducer probe and correction for the resulting non-uniform strain dissipation. One technique to standardize elastogram images incorporates a material of known properties and uses one-dimensional, uniaxial Hooke's law to calculate Young's modulus within the compressed material half-space. However, this method does not account for strain dissipation and the strains that evolve in three-dimensional space. We demonstrate that an analytical approach based on 3D Hertzian contact mechanics provides a reasonable first approximation to correct for UE strain dissipation underneath a round transvaginal transducer probe and thus improves UE-derived estimates of tissue modulus. We validate the proposed analytical solution and evaluate sources of error using a finite element model. As compared to 1D uniaxial Hooke's law, the Hertzian contact-based solution yields significantly improved Young's modulus predictions in three homogeneous gelatin tissue phantoms possessing different moduli. We also demonstrate the feasibility of using this technique to image human cervical tissue, where UE-derived moduli estimations for the uterine cervix anterior lip agreed well with published, experimentally obtained values. Overall, UE with an attached reference standard and a Hertzian contact-based correction holds promise for improving quantitative estimates of cervical tissue modulus. Copyright © 2015 Elsevier Ltd. All rights reserved.
Exact Solution of the Two-Dimensional Problem on an Impact Ideal-Liquid Jet
NASA Astrophysics Data System (ADS)
Belik, V. D.
2018-05-01
The two-dimensional problem on the collision of a potential ideal-liquid jet, outflowing from a reservoir through a nozzle, with an infinite plane obstacle was considered for the case where the distance between the nozzle exit section and the obstacle is finite. An exact solution of this problem has been found using methods of the complex-variable function theory. Simple analytical expressions for the complex velocity of the liquid, its flow rate, and the force of action of the jet on the obstacle have been obtained. The velocity distributions of the liquid at the nozzle exit section, in the region of spreading of the jet, and at the obstacle have been constructed for different distances between the nozzle exit section and the obstacle. Analytical expressions for the thickness of the boundary layer and the Nusselt number at the point of stagnation of the jet have been obtained. A number of distributions of the local friction coefficient and the Nusselt number of the indicated jet are presented.
Two-dimensional fracture analysis of piezoelectric material based on the scaled boundary node method
NASA Astrophysics Data System (ADS)
Shen-Shen, Chen; Juan, Wang; Qing-Hua, Li
2016-04-01
A scaled boundary node method (SBNM) is developed for two-dimensional fracture analysis of piezoelectric material, which allows the stress and electric displacement intensity factors to be calculated directly and accurately. As a boundary-type meshless method, the SBNM employs the moving Kriging (MK) interpolation technique to an approximate unknown field in the circumferential direction and therefore only a set of scattered nodes are required to discretize the boundary. As the shape functions satisfy Kronecker delta property, no special techniques are required to impose the essential boundary conditions. In the radial direction, the SBNM seeks analytical solutions by making use of analytical techniques available to solve ordinary differential equations. Numerical examples are investigated and satisfactory solutions are obtained, which validates the accuracy and simplicity of the proposed approach. Project supported by the National Natural Science Foundation of China (Grant Nos. 11462006 and 21466012), the Foundation of Jiangxi Provincial Educational Committee, China (Grant No. KJLD14041), and the Foundation of East China Jiaotong University, China (Grant No. 09130020).
Dynamic behaviour of thin composite plates for different boundary conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprintu, Iuliana, E-mail: sprintui@yahoo.com, E-mail: rotaruconstantin@yahoo.com; Rotaru, Constantin, E-mail: sprintui@yahoo.com, E-mail: rotaruconstantin@yahoo.com
2014-12-10
In the context of composite materials technology, which is increasingly present in industry, this article covers a topic of great interest and theoretical and practical importance. Given the complex design of fiber-reinforced materials and their heterogeneous nature, mathematical modeling of the mechanical response under different external stresses is very difficult to address in the absence of simplifying assumptions. In most structural applications, composite structures can be idealized as beams, plates, or shells. The analysis is reduced from a three-dimensional elasticity problem to a oneor two-dimensional problem, based on certain simplifying assumptions that can be made because the structure is thin.more » This paper aims to validate a mathematical model illustrating how thin rectangular orthotropic plates respond to the actual load. Thus, from the theory of thin plates, new analytical solutions are proposed corresponding to orthotropic rectangular plates having different boundary conditions. The proposed analytical solutions are considered both for solving equation orthotropic rectangular plates and for modal analysis.« less
Self-Similar Compressible Free Vortices
NASA Technical Reports Server (NTRS)
vonEllenrieder, Karl
1998-01-01
Lie group methods are used to find both exact and numerical similarity solutions for compressible perturbations to all incompressible, two-dimensional, axisymmetric vortex reference flow. The reference flow vorticity satisfies an eigenvalue problem for which the solutions are a set of two-dimensional, self-similar, incompressible vortices. These solutions are augmented by deriving a conserved quantity for each eigenvalue, and identifying a Lie group which leaves the reference flow equations invariant. The partial differential equations governing the compressible perturbations to these reference flows are also invariant under the action of the same group. The similarity variables found with this group are used to determine the decay rates of the velocities and thermodynamic variables in the self-similar flows, and to reduce the governing partial differential equations to a set of ordinary differential equations. The ODE's are solved analytically and numerically for a Taylor vortex reference flow, and numerically for an Oseen vortex reference flow. The solutions are used to examine the dependencies of the temperature, density, entropy, dissipation and radial velocity on the Prandtl number. Also, experimental data on compressible free vortex flow are compared to the analytical results, the evolution of vortices from initial states which are not self-similar is discussed, and the energy transfer in a slightly-compressible vortex is considered.
NASA Astrophysics Data System (ADS)
Jankovic, I.; Barnes, R. J.; Soule, R.
2001-12-01
The analytic element method is used to model local three-dimensional flow in the vicinity of partially penetrating wells. The flow domain is bounded by an impermeable horizontal base, a phreatic surface with recharge and a cylindrical lateral boundary. The analytic element solution for this problem contains (1) a fictitious source technique to satisfy the head and the discharge conditions along the phreatic surface, (2) a fictitious source technique to satisfy specified head conditions along the cylindrical boundary, (3) a method of imaging to satisfy the no-flow condition across the impermeable base, (4) the classical analytic solution for a well and (5) spheroidal harmonics to account for the influence of the inhomogeneities in hydraulic conductivity. Temporal variations of the flow system due to time-dependent recharge and pumping are represented by combining the analytic element method with a finite difference method: analytic element method is used to represent spatial changes in head and discharge, while the finite difference method represents temporal variations. The solution provides a very detailed description of local groundwater flow with an arbitrary number of wells of any orientation and an arbitrary number of ellipsoidal inhomogeneities of any size and conductivity. These inhomogeneities may be used to model local hydrogeologic features (such as gravel packs and clay lenses) that significantly influence the flow in the vicinity of partially penetrating wells. Several options for specifying head values along the lateral domain boundary are available. These options allow for inclusion of the model into steady and transient regional groundwater models. The head values along the lateral domain boundary may be specified directly (as time series). The head values along the lateral boundary may also be assigned by specifying the water-table gradient and a head value at a single point (as time series). A case study is included to demonstrate the application of the model in local modeling of the groundwater flow. Transient three-dimensional capture zones are delineated for a site on Prairie Island, MN. Prairie Island is located on the Mississippi River 40 miles south of the Twin Cities metropolitan area. The case study focuses on a well that has been known to contain viral DNA. The objective of the study was to assess the potential for pathogen migration toward the well.
Method and apparatus for simultaneous spectroelectrochemical analysis
Chatterjee, Sayandev; Bryan, Samuel A; Schroll, Cynthia A; Heineman, William R
2013-11-19
An apparatus and method of simultaneous spectroelectrochemical analysis is disclosed. A transparent surface is provided. An analyte solution on the transparent surface is contacted with a working electrode and at least one other electrode. Light from a light source is focused on either a surface of the working electrode or the analyte solution. The light reflected from either the surface of the working electrode or the analyte solution is detected. The potential of the working electrode is adjusted, and spectroscopic changes of the analyte solution that occur with changes in thermodynamic potentials are monitored.
Least-squares Legendre spectral element solutions to sound propagation problems.
Lin, W H
2001-02-01
This paper presents a novel algorithm and numerical results of sound wave propagation. The method is based on a least-squares Legendre spectral element approach for spatial discretization and the Crank-Nicolson [Proc. Cambridge Philos. Soc. 43, 50-67 (1947)] and Adams-Bashforth [D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications (CBMS-NSF Monograph, Siam 1977)] schemes for temporal discretization to solve the linearized acoustic field equations for sound propagation. Two types of NASA Computational Aeroacoustics (CAA) Workshop benchmark problems [ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics, edited by J. C. Hardin, J. R. Ristorcelli, and C. K. W. Tam, NASA Conference Publication 3300, 1995a] are considered: a narrow Gaussian sound wave propagating in a one-dimensional space without flows, and the reflection of a two-dimensional acoustic pulse off a rigid wall in the presence of a uniform flow of Mach 0.5 in a semi-infinite space. The first problem was used to examine the numerical dispersion and dissipation characteristics of the proposed algorithm. The second problem was to demonstrate the capability of the algorithm in treating sound propagation in a flow. Comparisons were made of the computed results with analytical results and results obtained by other methods. It is shown that all results computed by the present method are in good agreement with the analytical solutions and results of the first problem agree very well with those predicted by other schemes.
Aquifer response to stream-stage and recharge variations. I. Analytical step-response functions
Moench, A.F.; Barlow, P.M.
2000-01-01
Laplace transform step-response functions are presented for various homogeneous confined and leaky aquifer types and for anisotropic, homogeneous unconfined aquifers interacting with perennial streams. Flow is one-dimensional, perpendicular to the stream in the confined and leaky aquifers, and two-dimensional in a plane perpendicular to the stream in the water-table aquifers. The stream is assumed to penetrate the full thickness of the aquifer. The aquifers may be semi-infinite or finite in width and may or may not be bounded at the stream by a semipervious streambank. The solutions are presented in a unified manner so that mathematical relations among the various aquifer configurations are clearly demonstrated. The Laplace transform solutions are inverted numerically to obtain the real-time step-response functions for use in the convolution (or superposition) integral. To maintain linearity in the case of unconfined aquifers, fluctuations in the elevation of the water table are assumed to be small relative to the saturated thickness, and vertical flow into or out of the zone above the water table is assumed to occur instantaneously. Effects of hysteresis in the moisture distribution above the water table are therefore neglected. Graphical comparisons of the new solutions are made with known closed-form solutions.Laplace transform step-response functions are presented for various homogeneous confined and leaky aquifer types and for anisotropic, homogeneous unconfined aquifers interacting with perennial streams. Flow is one-dimensional, perpendicular to the stream in the confined and leaky aquifers, and two-dimensional in a plane perpendicular to the stream in the water-table aquifers. The stream is assumed to penetrate the full thickness of the aquifer. The aquifers may be semi-infinite or finite in width and may or may not be bounded at the stream by a semipervious streambank. The solutions are presented in a unified manner so that mathematical relations among the various aquifer configurations are clearly demonstrated. The Laplace transform solutions are inverted numerically to obtain the real-time step-response functions for use in the convolution (or superposition) integral. To maintain linearity in the case of unconfined aquifers, fluctuations in the elevation of the water table are assumed to be small relative to the saturated thickness, and vertical flow into or out of the zone above the water table is assumed to occur instantaneously. Effects of hysteresis in the moisture distribution above the water table are therefore neglected. Graphical comparisons of the new solutions are made with known closed-form solutions.
Yan, Zhenya; Konotop, V V
2009-09-01
It is shown that using the similarity transformations, a set of three-dimensional p-q nonlinear Schrödinger (NLS) equations with inhomogeneous coefficients can be reduced to one-dimensional stationary NLS equation with constant or varying coefficients, thus allowing for obtaining exact localized and periodic wave solutions. In the suggested reduction the original coordinates in the (1+3) space are mapped into a set of one-parametric coordinate surfaces, whose parameter plays the role of the coordinate of the one-dimensional equation. We describe the algorithm of finding solutions and concentrate on power (linear and nonlinear) potentials presenting a number of case examples. Generalizations of the method are also discussed.
One-dimensional Analytical Modelling of Floating Seed Dispersal in Tidal Channels
NASA Astrophysics Data System (ADS)
Shi, W.; Purnama, A.; Shao, D.; Cui, B.; Gao, W.
2017-12-01
Seed dispersal is a primary factor influencing plant community development, and thus plays a critical role in maintaining wetland ecosystem functioning. However, compared with fluvial seed dispersal of riparian plants, dispersal of saltmarsh plant seeds in tidal channels is much less studied due to its complex behavior, and relevant mathematical modelling is particularly lacking. In this study, we developed a one-dimensional advection-dispersion model to explore the patterns of tidal seed dispersal. Oscillatory tidal current and water depth were assumed to represent the tidal effects. An exponential decay coefficient λ was introduced to account for seed deposition and retention. Analytical solution in integral form was derived using Green's function and further evaluated using numerical integration. The developed model was applied to simulate Spartina densiflora seed dispersal in a tidal channel located at the Mad River Slough in North Humboldt Bay, California, USA, to demonstrate its practical applicability. Model predictions agree satisfactorily with field observation and simulation results from Delft3D numerical model. Sensitivity analyses were also conducted to evaluate the effects of varying calibrated parameters on model predictions. The range of the seed dispersion as well as the distribution of the seed concentration were further analyzed through statistical parameters such as centroid displacement and variance of the seed cloud together with seed concentration contours. Implications of the modelling results on tidal marsh restoration and protection, e.g., revegetation through seed addition, were also discussed through scenario analysis. The developed analytical model provides a useful tool for ecological management of tidal marshes.
Sakkaravarthi, K; Kanna, T; Vijayajayanthi, M; Lakshmanan, M
2014-11-01
We consider a general multicomponent (2+1)-dimensional long-wave-short-wave resonance interaction (LSRI) system with arbitrary nonlinearity coefficients, which describes the nonlinear resonance interaction of multiple short waves with a long wave in two spatial dimensions. The general multicomponent LSRI system is shown to be integrable by performing the Painlevé analysis. Then we construct the exact bright multisoliton solutions by applying the Hirota's bilinearization method and study the propagation and collision dynamics of bright solitons in detail. Particularly, we investigate the head-on and overtaking collisions of bright solitons and explore two types of energy-sharing collisions as well as standard elastic collision. We have also corroborated the obtained analytical one-soliton solution by direct numerical simulation. Also, we discuss the formation and dynamics of resonant solitons. Interestingly, we demonstrate the formation of resonant solitons admitting breather-like (localized periodic pulse train) structure and also large amplitude localized structures akin to rogue waves coexisting with solitons. For completeness, we have also obtained dark one- and two-soliton solutions and studied their dynamics briefly.
NASA Astrophysics Data System (ADS)
Zhou, Wenzhen; Gong, Yanjun; Wang, Mingjun; Gong, Lei
2016-10-01
technology. Laser one-dimensional range profile can reflect the characteristics of the target shape and surface material. These techniques were motivated by applications of laser radar to target discrimination in ballistic missile defense. The radar equation of pulse laser about cone is given in this paper. This paper demonstrates the analytical model of laser one-dimensional range profile of cone based on the radar equation of the pulse laser. Simulations results of laser one-dimensional range profiles of some cones are given. Laser one-dimensional range profiles of cone, whose surface material with diffuse lambertian reflectance, is given in this paper. Laser one-dimensional range profiles of cone, whose surface mater with diffuse materials whose retroreflectance can be modeled closely with an exponential term that decays with increasing incidence angles, is given in this paper. Laser one-dimensional range profiles of different pulse width of cone is given in this paper. The influences of surface material, pulse width, attitude on the one-dimensional range are analyzed. The laser two-dimensional range profile is two-dimensional scattering imaging of pulse laser of target. The two-dimensional range profile of roughness target can provide range resolved information. An analytical model of two-dimensional laser range profile of cone is proposed. The simulations of two-dimensional laser range profiles of some cones are given. Laser two-dimensional range profiles of cone, whose surface mater with diffuse lambertian reflectance, is given in this paper. Laser two-dimensional range profiles of cone, whose surface mater with diffuse materials whose retroreflectance can be modeled closely with an exponential term that decays with increasing incidence angles, is given in this paper. The influence of pulse width, surface material on laser two-dimensional range profile is analyzed. Laser one-dimensional range profile and laser two-dimensional range profile are called as laser range profile (LRP).
Saturated-unsaturated flow in a compressible leaky-unconfined aquifer
NASA Astrophysics Data System (ADS)
Mishra, Phoolendra K.; Vesselinov, Velimir V.; Kuhlman, Kristopher L.
2012-06-01
An analytical solution is developed for three-dimensional flow towards a partially penetrating large-diameter well in an unconfined aquifer bounded below by a leaky aquitard of finite or semi-infinite extent. The analytical solution is derived using Laplace and Hankel transforms, then inverted numerically. Existing solutions for flow in leaky unconfined aquifers neglect the unsaturated zone following an assumption of instantaneous drainage due to Neuman. We extend the theory of leakage in unconfined aquifers by (1) including water flow and storage in the unsaturated zone above the water table, and (2) allowing the finite-diameter pumping well to partially penetrate the aquifer. The investigation of model-predicted results shows that aquitard leakage leads to significant departure from the unconfined solution without leakage. The investigation of dimensionless time-drawdown relationships shows that the aquitard drawdown also depends on unsaturated zone properties and the pumping-well wellbore storage effects.
Radial flow towards well in leaky unconfined aquifer
NASA Astrophysics Data System (ADS)
Mishra, P. K.; Kuhlman, K. L.
2012-12-01
An analytical solution is developed for three-dimensional flow towards a partially penetrating large- diameter well in an unconfined aquifer bounded below by a leaky aquitard of finite or semi-infinite extent. The analytical solution is derived using Laplace and Hankel transforms, then inverted numerically. Existing solutions for flow in leaky unconfined aquifers neglect the unsaturated zone following an assumption of instantaneous drainage due to Neuman. We extend the theory of leakage in unconfined aquifers by (1) including water flow and storage in the unsaturated zone above the water table, and (2) allowing the finite-diameter pumping well to partially penetrate the aquifer. The investigation of model-predicted results shows that aquitard leakage leads to significant departure from the unconfined solution without leakage. The investigation of dimensionless time-drawdown relationships shows that the aquitard drawdown also depends on unsaturated zone properties and the pumping-well wellbore storage effects.
On the effects of tidal interaction on thin accretion disks: An analytic study
NASA Technical Reports Server (NTRS)
Dgani, R.; Livio, M.; Regev, O.
1994-01-01
We calculate tidal effects on two-dimensional thin accretion disks in binary systems. We apply a perturbation expansion to obtain an analytic solution of the tidally induced waves. We obtain spiral waves that are stronger at the inner parts of the disks, in addition to a local disturbance which scales like the strength of the local tidal force. Our results agree with recent calculations of the linear response of the disk to tidal interaction.
An initial investigation into methods of computing transonic aerodynamic sensitivity coefficients
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1991-01-01
The three dimensional quasi-analytical sensitivity analysis and the ancillary driver programs are developed needed to carry out the studies and perform comparisons. The code is essentially contained in one unified package which includes the following: (1) a three dimensional transonic wing analysis program (ZEBRA); (2) a quasi-analytical portion which determines the matrix elements in the quasi-analytical equations; (3) a method for computing the sensitivity coefficients from the resulting quasi-analytical equations; (4) a package to determine for comparison purposes sensitivity coefficients via the finite difference approach; and (5) a graphics package.
Magnetized, mass-loaded, rotating accretion flows
NASA Astrophysics Data System (ADS)
Toniazzo, T.; Hartquist, T. W.; Durisen, R. H.
2001-03-01
We present a semi-analytical investigation of a simple one-dimensional, steady-state model for a mass-loaded, rotating, magnetized, hydrodynamical flow. Our approach is analogous to one used in early studies of magnetized winds. The model represents the infall towards a central point mass of the gas generated in a cluster of stars surrounding it, as is likely to occur in some active nuclei and starburst galaxies. We describe the properties of the different classes of infall solutions. We find that the flow becomes faster than the fast-mode speed, and hence decoupled from the centre, only for a limited range of parameter values, and when magnetic stresses are ineffective. Such flow is slowed as it approaches a centrifugal barrier, implying the existence of an accretion disc. When the flow does not become super-fast and the magnetic torque is insufficient, no steady solution extending inward to the centre exists. Finally, with a larger magnetic torque, solutions representing steady sub-Alfvénic flows are found, which can resemble spherical hydrodynamical infall. Such solutions, if applicable, would imply that rotation is not important and that any accretion disc formed would be of very limited size.
A Large Class of Exact Solutions to the One-Dimensional Schrodinger Equation
ERIC Educational Resources Information Center
Karaoglu, Bekir
2007-01-01
A remarkable property of a large class of functions is exploited to generate exact solutions to the one-dimensional Schrodinger equation. The method is simple and easy to implement. (Contains 1 table and 1 figure.)
NASA Astrophysics Data System (ADS)
Yi, Dake; Wang, TzuChiang
2018-06-01
In the paper, a new procedure is proposed to investigate three-dimensional fracture problems of a thin elastic plate with a long through-the-thickness crack under remote uniform tensile loading. The new procedure includes a new analytical method and high accurate finite element simulations. In the part of theoretical analysis, three-dimensional Maxwell stress functions are employed in order to derive three-dimensional crack tip fields. Based on the theoretical analysis, an equation which can describe the relationship among the three-dimensional J-integral J( z), the stress intensity factor K( z) and the tri-axial stress constraint level T z ( z) is derived first. In the part of finite element simulations, a fine mesh including 153360 elements is constructed to compute the stress field near the crack front, J( z) and T z ( z). Numerical results show that in the plane very close to the free surface, the K field solution is still valid for in-plane stresses. Comparison with the numerical results shows that the analytical results are valid.
2011-01-01
Background Electrotherapy is a relatively well established and efficient method of tumor treatment. In this paper we focus on analytical and numerical calculations of the potential and electric field distributions inside a tumor tissue in a two-dimensional model (2D-model) generated by means of electrode arrays with shapes of different conic sections (ellipse, parabola and hyperbola). Methods Analytical calculations of the potential and electric field distributions based on 2D-models for different electrode arrays are performed by solving the Laplace equation, meanwhile the numerical solution is solved by means of finite element method in two dimensions. Results Both analytical and numerical solutions reveal significant differences between the electric field distributions generated by electrode arrays with shapes of circle and different conic sections (elliptic, parabolic and hyperbolic). Electrode arrays with circular, elliptical and hyperbolic shapes have the advantage of concentrating the electric field lines in the tumor. Conclusion The mathematical approach presented in this study provides a useful tool for the design of electrode arrays with different shapes of conic sections by means of the use of the unifying principle. At the same time, we verify the good correspondence between the analytical and numerical solutions for the potential and electric field distributions generated by the electrode array with different conic sections. PMID:21943385
Parsec-Scale Obscuring Accretion Disk with Large-Scale Magnetic Field in AGNs
NASA Technical Reports Server (NTRS)
Dorodnitsyn, A.; Kallman, T.
2017-01-01
A magnetic field dragged from the galactic disk, along with inflowing gas, can provide vertical support to the geometrically and optically thick pc (parsec) -scale torus in AGNs (Active Galactic Nuclei). Using the Soloviev solution initially developed for Tokamaks, we derive an analytical model for a rotating torus that is supported and confined by a magnetic field. We further perform three-dimensional magneto-hydrodynamic simulations of X-ray irradiated, pc-scale, magnetized tori. We follow the time evolution and compare models that adopt initial conditions derived from our analytic model with simulations in which the initial magnetic flux is entirely contained within the gas torus. Numerical simulations demonstrate that the initial conditions based on the analytic solution produce a longer-lived torus that produces obscuration that is generally consistent with observed constraints.
Parsec-scale Obscuring Accretion Disk with Large-scale Magnetic Field in AGNs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorodnitsyn, A.; Kallman, T.
A magnetic field dragged from the galactic disk, along with inflowing gas, can provide vertical support to the geometrically and optically thick pc-scale torus in AGNs. Using the Soloviev solution initially developed for Tokamaks, we derive an analytical model for a rotating torus that is supported and confined by a magnetic field. We further perform three-dimensional magneto-hydrodynamic simulations of X-ray irradiated, pc-scale, magnetized tori. We follow the time evolution and compare models that adopt initial conditions derived from our analytic model with simulations in which the initial magnetic flux is entirely contained within the gas torus. Numerical simulations demonstrate thatmore » the initial conditions based on the analytic solution produce a longer-lived torus that produces obscuration that is generally consistent with observed constraints.« less
Nonlinear energy transport in one-dimensional lattices
NASA Astrophysics Data System (ADS)
Vuppuluri, P.; Hamilton, M.; de Alcantara Bonfim, O. F.
2007-03-01
We present a simple lattice model consisting of a one-dimensional chain, where the masses are interconnected by linear springs and allowed to move in the horizontal direction only, as in a monorail. In the transverse direction each mass is also attached to two other springs, one on each side of the mass. The ends of these springs are kept at fixed positions. The nonlinearity in the model arises from the geometric constraints imposed on the motion of the masses, as well as from the configuration of the springs. In the transverse directions the springs are either in the extended or compressed state depending on the position of the mass. Under these conditions we show that solitary waves are present in the system. In the long wavelength limit an analytical solution for these nonlinear waves is found. Numeric integrations of the equations of motion in the full system are also performed to analyze the conditions for the existence and stability of the nonlinear waves. Nonlinear supratransmission is examined and shown to exist in the model and an explanation of its mechanism is presented.
NASA Astrophysics Data System (ADS)
Calini, A.; Schober, C. M.
2013-09-01
In this article we present the results of a broad numerical investigation on the stability of breather-type solutions of the nonlinear Schrödinger (NLS) equation, specifically the one- and two-mode breathers for an unstable plane wave, which are frequently used to model rogue waves. The numerical experiments involve large ensembles of perturbed initial data for six typical random perturbations. Ensemble estimates of the "closeness", A(t), of the perturbed solution to an element of the respective unperturbed family indicate that the only neutrally stable breathers are the ones of maximal dimension, that is: given an unstable background with N unstable modes, the only neutrally stable breathers are the N-dimensional ones (obtained as a superimposition of N simple breathers via iterated Backlund transformations). Conversely, breathers which are not fully saturated are sensitive to noisy environments and are unstable. Interestingly, A(t) is smallest for the coalesced two-mode breather indicating the coalesced case may be the most robust two-mode breather in a laboratory setting. The numerical simulations confirm and provide a realistic realization of the stability behavior established analytically by the authors.
Two-dimensional supersonic nonlinear Schrödinger flow past an extended obstacle
NASA Astrophysics Data System (ADS)
El, G. A.; Kamchatnov, A. M.; Khodorovskii, V. V.; Annibale, E. S.; Gammal, A.
2009-10-01
Supersonic flow of a superfluid past a slender impenetrable macroscopic obstacle is studied in the framework of the two-dimensional (2D) defocusing nonlinear Schrödinger (NLS) equation. This problem is of fundamental importance as a dispersive analog of the corresponding classical gas-dynamics problem. Assuming the oncoming flow speed is sufficiently high, we asymptotically reduce the original boundary-value problem for a steady flow past a slender body to the one-dimensional dispersive piston problem described by the nonstationary NLS equation, in which the role of time is played by the stretched x coordinate and the piston motion curve is defined by the spatial body profile. Two steady oblique spatial dispersive shock waves (DSWs) spreading from the pointed ends of the body are generated in both half planes. These are described analytically by constructing appropriate exact solutions of the Whitham modulation equations for the front DSW and by using a generalized Bohr-Sommerfeld quantization rule for the oblique dark soliton fan in the rear DSW. We propose an extension of the traditional modulation description of DSWs to include the linear “ship-wave” pattern forming outside the nonlinear modulation region of the front DSW. Our analytic results are supported by direct 2D unsteady numerical simulations and are relevant to recent experiments on Bose-Einstein condensates freely expanding past obstacles.
NASA Astrophysics Data System (ADS)
Zhao, Zhonglong; Han, Bo
2017-10-01
In this paper, the Lie symmetry analysis method is employed to investigate the Lie point symmetries and the one-parameter transformation groups of a (2 + 1)-dimensional Boiti-Leon-Pempinelli system. By using Ibragimov's method, the optimal system of one-dimensional subalgebras of this system is constructed. Truncated Painlevé analysis is used for deriving the Bäcklund transformation. The method of constructing lump-type solutions of integrable equations by means of Bäcklund transformation is first presented. Meanwhile, the lump-type solutions of the (2 + 1)-dimensional Boiti-Leon-Pempinelli system are obtained. The lump-type wave is one kind of rogue wave. The fusion-type N-solitary wave solutions are also constructed. In addition, this system is integrable in terms of the consistent Riccati expansion method.
Unsteady flows in rotor-stator cascades
NASA Astrophysics Data System (ADS)
Lee, Yu-Tai; Bein, Thomas W.; Feng, Jin Z.; Merkle, Charles L.
1991-03-01
A time-accurate potential-flow calculation method has been developed for unsteady incompressible flows through two-dimensional multi-blade-row linear cascades. The method represents the boundary surfaces by distributing piecewise linear-vortex and constant-source singularities on discrete panels. A local coordinate is assigned to each independently moving object. Blade-shed vorticity is traced at each time step. The unsteady Kutta condition applied is nonlinear and requires zero blade trailing-edge loading at each time. Its influence on the solutions depends on the blade trailing-edge shapes. Steady biplane and cascade solutions are presented and compared to exact solutions and experimental data. Unsteady solutions are validated with the Wagner function for an airfoil moving impulsively from rest and the Theodorsen function for an oscillating airfoil. The shed vortex motion and its interaction with blades are calculated and compared to an analytic solution. For multi-blade-row cascade, the potential effect between blade rows is predicted using steady and quasi unsteady calculations. The accuracy of the predictions is demonstrated using experimental results for a one-stage turbine stator-rotor.
Modulated amplitude waves in collisionally inhomogeneous Bose Einstein condensates
NASA Astrophysics Data System (ADS)
Porter, Mason A.; Kevrekidis, P. G.; Malomed, Boris A.; Frantzeskakis, D. J.
2007-05-01
We investigate the dynamics of an effectively one-dimensional Bose-Einstein condensate (BEC) with scattering length a subjected to a spatially periodic modulation, a=a(x)=a(x+L). This “collisionally inhomogeneous” BEC is described by a Gross-Pitaevskii (GP) equation whose nonlinearity coefficient is a periodic function of x. We transform this equation into a GP equation with a constant coefficient and an additional effective potential and study a class of extended wave solutions of the transformed equation. For weak underlying inhomogeneity, the effective potential takes a form resembling a superlattice, and the amplitude dynamics of the solutions of the constant-coefficient GP equation obey a nonlinear generalization of the Ince equation. In the small-amplitude limit, we use averaging to construct analytical solutions for modulated amplitude waves (MAWs), whose stability we subsequently examine using both numerical simulations of the original GP equation and fixed-point computations with the MAWs as numerically exact solutions. We show that “on-site” solutions, whose maxima correspond to maxima of a(x), are more robust and likely to be observed than their “off-site” counterparts.
Pairing phase diagram of three holes in the generalized Hubbard model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Navarro, O.; Espinosa, J.E.
Investigations of high-{Tc} superconductors suggest that the electronic correlation may play a significant role in the formation of pairs. Although the main interest is on the physic of two-dimensional highly correlated electron systems, the one-dimensional models related to high temperature superconductivity are very popular due to the conjecture that properties of the 1D and 2D variants of certain models have common aspects. Within the models for correlated electron systems, that attempt to capture the essential physics of high-temperature superconductors and parent compounds, the Hubbard model is one of the simplest. Here, the pairing problem of a three electrons system hasmore » been studied by using a real-space method and the generalized Hubbard Hamiltonian. This method includes the correlated hopping interactions as an extension of the previously proposed mapping method, and is based on mapping the correlated many body problem onto an equivalent site- and bond-impurity tight-binding one in a higher dimensional space, where the problem was solved in a non-perturbative way. In a linear chain, the authors analyzed the pairing phase diagram of three correlated holes for different values of the Hamiltonian parameters. For some value of the hopping parameters they obtain an analytical solution for all kind of interactions.« less
A reduced-order model from high-dimensional frictional hysteresis
Biswas, Saurabh; Chatterjee, Anindya
2014-01-01
Hysteresis in material behaviour includes both signum nonlinearities as well as high dimensionality. Available models for component-level hysteretic behaviour are empirical. Here, we derive a low-order model for rate-independent hysteresis from a high-dimensional massless frictional system. The original system, being given in terms of signs of velocities, is first solved incrementally using a linear complementarity problem formulation. From this numerical solution, to develop a reduced-order model, basis vectors are chosen using the singular value decomposition. The slip direction in generalized coordinates is identified as the minimizer of a dissipation-related function. That function includes terms for frictional dissipation through signum nonlinearities at many friction sites. Luckily, it allows a convenient analytical approximation. Upon solution of the approximated minimization problem, the slip direction is found. A final evolution equation for a few states is then obtained that gives a good match with the full solution. The model obtained here may lead to new insights into hysteresis as well as better empirical modelling thereof. PMID:24910522
Iverson, R.M.; Denlinger, R.P.
2001-01-01
Rock avalanches, debris flows, and related phenomena consist of grain-fluid mixtures that move across three-dimensional terrain. In all these phenomena the same basic forces, govern motion, but differing mixture compositions, initial conditions, and boundary conditions yield varied dynamics and deposits. To predict motion of diverse grain-fluid masses from initiation to deposition, we develop a depth-averaged, threedimensional mathematical model that accounts explicitly for solid- and fluid-phase forces and interactions. Model input consists of initial conditions, path topography, basal and internal friction angles of solid grains, viscosity of pore fluid, mixture density, and a mixture diffusivity that controls pore pressure dissipation. Because these properties are constrained by independent measurements, the model requires little or no calibration and yields readily testable predictions. In the limit of vanishing Coulomb friction due to persistent high fluid pressure the model equations describe motion of viscous floods, and in the limit of vanishing fluid stress they describe one-phase granular avalanches. Analysis of intermediate phenomena such as debris flows and pyroclastic flows requires use of the full mixture equations, which can simulate interaction of high-friction surge fronts with more-fluid debris that follows. Special numerical methods (described in the companion paper) are necessary to solve the full equations, but exact analytical solutions of simplified equations provide critical insight. An analytical solution for translational motion of a Coulomb mixture accelerating from rest and descending a uniform slope demonstrates that steady flow can occur only asymptotically. A solution for the asymptotic limit of steady flow in a rectangular channel explains why shear may be concentrated in narrow marginal bands that border a plug of translating debris. Solutions for static equilibrium of source areas describe conditions of incipient slope instability, and other static solutions show that nonuniform distributions of pore fluid pressure produce bluntly tapered vertical profiles at the margins of deposits. Simplified equations and solutions may apply in additional situations identified by a scaling analysis. Assessment of dimensionless scaling parameters also reveals that miniature laboratory experiments poorly simulate the dynamics of full-scale flows in which fluid effects are significant. Therefore large geophysical flows can exhibit dynamics not evident at laboratory scales.
FeynArts model file for MSSM transition counterterms from DREG to DRED
NASA Astrophysics Data System (ADS)
Stöckinger, Dominik; Varšo, Philipp
2012-02-01
The FeynArts model file MSSMdreg2dred implements MSSM transition counterterms which can convert one-loop Green functions from dimensional regularization to dimensional reduction. They correspond to a slight extension of the well-known Martin/Vaughn counterterms, specialized to the MSSM, and can serve also as supersymmetry-restoring counterterms. The paper provides full analytic results for the counterterms and gives one- and two-loop usage examples. The model file can simplify combining MS¯-parton distribution functions with supersymmetric renormalization or avoiding the renormalization of ɛ-scalars in dimensional reduction. Program summaryProgram title:MSSMdreg2dred.mod Catalogue identifier: AEKR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: LGPL-License [1] No. of lines in distributed program, including test data, etc.: 7600 No. of bytes in distributed program, including test data, etc.: 197 629 Distribution format: tar.gz Programming language: Mathematica, FeynArts Computer: Any, capable of running Mathematica and FeynArts Operating system: Any, with running Mathematica, FeynArts installation Classification: 4.4, 5, 11.1 Subprograms used: Cat Id Title Reference ADOW_v1_0 FeynArts CPC 140 (2001) 418 Nature of problem: The computation of one-loop Feynman diagrams in the minimal supersymmetric standard model (MSSM) requires regularization. Two schemes, dimensional regularization and dimensional reduction are both common but have different pros and cons. In order to combine the advantages of both schemes one would like to easily convert existing results from one scheme into the other. Solution method: Finite counterterms are constructed which correspond precisely to the one-loop scheme differences for the MSSM. They are provided as a FeynArts [2] model file. Using this model file together with FeynArts, the (ultra-violet) regularization of any MSSM one-loop Green function is switched automatically from dimensional regularization to dimensional reduction. In particular the counterterms serve as supersymmetry-restoring counterterms for dimensional regularization. Restrictions: The counterterms are restricted to the one-loop level and the MSSM. Running time: A few seconds to generate typical Feynman graphs with FeynArts.
NASA Astrophysics Data System (ADS)
Hu, Wen-Qiang; Gao, Yi-Tian; Jia, Shu-Liang; Huang, Qian-Min; Lan, Zhong-Zhou
2016-11-01
In this paper, a (2 + 1)-dimensional B-type Kadomtsev-Petviashvili equation is investigated, which has been presented as a model for the shallow water wave in fluids or the electrostatic wave potential in plasmas. By virtue of the binary Bell polynomials, the bilinear form of this equation is obtained. With the aid of the bilinear form, N -soliton solutions are obtained by the Hirota method, periodic wave solutions are constructed via the Riemann theta function, and breather wave solutions are obtained according to the extended homoclinic test approach. Travelling waves are constructed by the polynomial expansion method as well. Then, the relations between soliton solutions and periodic wave solutions are strictly established, which implies the asymptotic behaviors of the periodic waves under a limited procedure. Furthermore, we obtain some new solutions of this equation by the standard extended homoclinic test approach. Finally, we give a generalized form of this equation, and find that similar analytical solutions can be obtained from the generalized equation with arbitrary coefficients.
The general Lie group and similarity solutions for the one-dimensional Vlasov-Maxwell equations
NASA Technical Reports Server (NTRS)
Roberts, D.
1985-01-01
The general Lie point transformation group and the associated reduced differential equations and similarity forms for the solutions are derived here for the coupled (nonlinear) Vlasov-Maxwell equations in one spatial dimension. The case of one species in a background is shown to admit a larger group than the multispecies case. Previous exact solutions are shown to be special cases of the above solutions, and many of the new solutions are found to constrain the form of the distribution function much more than, for example, the BGK solutions do. The individual generators of the Lie group are used to find the possible subgroups. Finally, a simple physical argument is given to show that the asymptotic solution for a one-species, one-dimensional plasma is one of the general similarity solutions.
d'Errico, Michele; Sammarco, Paolo; Vairo, Giuseppe
2015-09-01
Pharmacokinetics induced by drug eluting stents (DES) in coronary walls is modeled by means of a one-dimensional multi-layered model, accounting for vessel curvature and non-homogeneous properties of the arterial tissues. The model includes diffusion mechanisms, advection effects related to plasma filtration through the walls, and bio-chemical drug reactions. A non-classical Sturm-Liouville problem with discontinuous coefficients is derived, whose closed-form analytical solution is obtained via an eigenfunction expansion. Soundness and consistency of the proposed approach are shown by numerical computations based on possible clinical treatments involving both hydrophilic and hydrophobic drugs. The influence of the main model parameters on drug delivery mechanisms is analyzed, highlighting the effects induced by vessel curvature and yielding comparative indications and useful insights into the concurring mechanisms governing the pharmacokinetics. Copyright © 2015. Published by Elsevier Inc.
Diagnostics of seeded RF plasmas: An experimental study related to the gaseous core reactor
NASA Technical Reports Server (NTRS)
Thompson, S. D.; Clement, J. D.; Williams, J. R.
1974-01-01
Measurements of the temperature profiles in an RF argon plasma were made over magnetic field intensities ranging from 20 amp turns/cm to 80 amp turns/cm. The results were compared with a one-dimensional numerical treatment of the governing equations and with an approximate closed form analytical solution that neglected radiation losses. The average measured temperatures in the plasma compared well with the numerical treatment, though the experimental profile showed less of an off center temperature peak than predicted by theory. This may be a result of the complex turbulent flow pattern present in the experimental torch and not modeled in the numerical treatment. The radiation term cannot be neglected for argon at the power levels investigated. The closed form analytical approximation that neglected radiation led to temperature predictions on the order of 1000 K to 2000 K higher than measured or predicted by the numerical treatment which considered radiation losses.
Free and Forced Vibrations of Thick-Walled Anisotropic Cylindrical Shells
NASA Astrophysics Data System (ADS)
Marchuk, A. V.; Gnedash, S. V.; Levkovskii, S. A.
2017-03-01
Two approaches to studying the free and forced axisymmetric vibrations of cylindrical shell are proposed. They are based on the three-dimensional theory of elasticity and division of the original cylindrical shell with concentric cross-sectional circles into several coaxial cylindrical shells. One approach uses linear polynomials to approximate functions defined in plan and across the thickness. The other approach also uses linear polynomials to approximate functions defined in plan, but their variation with thickness is described by the analytical solution of a system of differential equations. Both approaches have approximation and arithmetic errors. When determining the natural frequencies by the semi-analytical finite-element method in combination with the divide and conqure method, it is convenient to find the initial frequencies by the finite-element method. The behavior of the shell during free and forced vibrations is analyzed in the case where the loading area is half the shell thickness
NASA Astrophysics Data System (ADS)
Camacho Suarez, V. V.; Shucksmith, J.; Schellart, A.
2016-12-01
Analytical and numerical models can be used to represent the advection-dispersion processes governing the transport of pollutants in rivers (Fan et al., 2015; Van Genuchten et al., 2013). Simplifications, assumptions and parameter estimations in these models result in various uncertainties within the modelling process and estimations of pollutant concentrations. In this study, we explore both: 1) the structural uncertainty due to the one dimensional simplification of the Advection Dispersion Equation (ADE) and 2) the parameter uncertainty due to the semi empirical estimation of the longitudinal dispersion coefficient. The relative significance of these uncertainties has not previously been examined. By analysing both the relative structural uncertainty of analytical solutions of the ADE, and the parameter uncertainty due to the longitudinal dispersion coefficient via a Monte Carlo analysis, an evaluation of the dominant uncertainties for a case study in the river Chillan, Chile is presented over a range of spatial scales.
Quantitative Examination of Corrosion Damage by Means of Thermal Response Measurements
NASA Technical Reports Server (NTRS)
Rajic, Nik
1998-01-01
Two computational methods are presented that enable a characterization of corrosion damage to be performed from thermal response measurements derived from a standard flash thermographic inspection. The first is based upon a one dimensional analytical solution to the heat diffusion equation and presumes the lateral extent of damage is large compared to the residual structural thickness, such that lateral heat diffusion effects can be considered insignificant. The second proposed method, based on a finite element optimization scheme, addresses the more general case where these conditions are not met. Results from an experimental application are given to illustrate the precision, robustness and practical efficacy of both methods.
Cavity master equation for the continuous time dynamics of discrete-spin models.
Aurell, E; Del Ferraro, G; Domínguez, E; Mulet, R
2017-05-01
We present an alternate method to close the master equation representing the continuous time dynamics of interacting Ising spins. The method makes use of the theory of random point processes to derive a master equation for local conditional probabilities. We analytically test our solution studying two known cases, the dynamics of the mean-field ferromagnet and the dynamics of the one-dimensional Ising system. We present numerical results comparing our predictions with Monte Carlo simulations in three different models on random graphs with finite connectivity: the Ising ferromagnet, the random field Ising model, and the Viana-Bray spin-glass model.
Cavity master equation for the continuous time dynamics of discrete-spin models
NASA Astrophysics Data System (ADS)
Aurell, E.; Del Ferraro, G.; Domínguez, E.; Mulet, R.
2017-05-01
We present an alternate method to close the master equation representing the continuous time dynamics of interacting Ising spins. The method makes use of the theory of random point processes to derive a master equation for local conditional probabilities. We analytically test our solution studying two known cases, the dynamics of the mean-field ferromagnet and the dynamics of the one-dimensional Ising system. We present numerical results comparing our predictions with Monte Carlo simulations in three different models on random graphs with finite connectivity: the Ising ferromagnet, the random field Ising model, and the Viana-Bray spin-glass model.
Large Deformation Behavior of Long Shallow Cylindrical Composite Panels
NASA Technical Reports Server (NTRS)
Carper, Douglas M.; Hyer, Michael W.; Johnson, Eric R.
1991-01-01
An exact solution is presented for the large deformation response of a simply supported orthotropic cylindrical panel subjected to a uniform line load along a cylinder generator. The cross section of the cylinder is circular and deformations up to the fully snapped through position are investigated. The orthotropic axes are parallel to the generator and circumferential directions. The governing equations are derived using laminated plate theory, nonlinear strain-displacement relations, and applying variational principles. The response is investigated for the case of a panel loaded exactly at midspan and for a panel with the load offset from midspan. The mathematical formulation is one dimensional in the circumferential coordinate. Solutions are obtained in closed-form. An experimental apparatus was designed to load the panels. Experimental results of displacement controlled tests performed on graphite-epoxy curved panels are compared with analytical predictions.
Time-periodic solutions of the Benjamin-Ono equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambrose , D.M.; Wilkening, Jon
2008-04-01
We present a spectrally accurate numerical method for finding non-trivial time-periodic solutions of non-linear partial differential equations. The method is based on minimizing a functional (of the initial condition and the period) that is positive unless the solution is periodic, in which case it is zero. We solve an adjoint PDE to compute the gradient of this functional with respect to the initial condition. We include additional terms in the functional to specify the free parameters, which, in the case of the Benjamin-Ono equation, are the mean, a spatial phase, a temporal phase and the real part of one ofmore » the Fourier modes at t = 0. We use our method to study global paths of non-trivial time-periodic solutions connecting stationary and traveling waves of the Benjamin-Ono equation. As a starting guess for each path, we compute periodic solutions of the linearized problem by solving an infinite dimensional eigenvalue problem in closed form. We then use our numerical method to continue these solutions beyond the realm of linear theory until another traveling wave is reached (or until the solution blows up). By experimentation with data fitting, we identify the analytical form of the solutions on the path connecting the one-hump stationary solution to the two-hump traveling wave. We then derive exact formulas for these solutions by explicitly solving the system of ODE's governing the evolution of solitons using the ansatz suggested by the numerical simulations.« less
NASA Astrophysics Data System (ADS)
Luce, Charles H.; Tonina, Daniele; Applebee, Ralph; DeWeese, Timothy
2017-11-01
Two common refrains about using the one-dimensional advection diffusion equation to estimate fluid fluxes and thermal conductivity from temperature time series in streambeds are that the solution assumes that (1) the surface boundary condition is a sine wave or nearly so, and (2) there is no gradient in mean temperature with depth. Although the mathematical posing of the problem in the original solution to the problem might lead one to believe these constraints exist, the perception that they are a source of error is a fallacy. Here we develop a mathematical proof demonstrating the equivalence of the solution as developed based on an arbitrary (Fourier integral) surface temperature forcing when evaluated at a single given frequency versus that derived considering a single frequency from the beginning. The implication is that any single frequency can be used in the frequency-domain solutions to estimate thermal diffusivity and 1-D fluid flux in streambeds, even if the forcing has multiple frequencies. This means that diurnal variations with asymmetric shapes or gradients in the mean temperature with depth are not actually assumptions, and deviations from them should not cause errors in estimates. Given this clarification, we further explore the potential for using information at multiple frequencies to augment the information derived from time series of temperature.
Homoclinic orbits in three-dimensional Shilnikov-type chaotic systems
NASA Astrophysics Data System (ADS)
Feng, Jing-Jing; Zhang, Qi-Chang; Wang, Wei; Hao, Shu-Ying
2013-09-01
In this paper, the Padé approximant and analytic solution in the neighborhood of the initial value are introduced into the process of constructing the Shilnikov type homoclinic trajectories in three-dimensional nonlinear dynamical systems. The PID controller system with quadratic and cubic nonlinearities, the simplified solar-wind-driven-magnetosphere-ionosphere system, and the human DNA sequence system are considered. With the aid of presenting a new condition, the solutions of solving the boundary-value problems which are formulated for the trajectory and evaluating the initial amplitude values become available. At the same time, the value of the bifurcation parameter is obtained directly, which is almost consistent with the numerical result.
The three-dimensional compressible flow in a radial inflow turbine scroll
NASA Technical Reports Server (NTRS)
Hamed, A.; Tabakoff, W.; Malak, M.
1984-01-01
This work presents the results of an analytical study and an experimental investigation of the three-dimensional flow in a turbine scroll. The finite element method is used in the iterative numerical solution of the locally linearized governing equations for the three-dimensional velocity potential field. The results of the numerical computations are compared with the experimental measurements in the scroll cross sections, which were obtained using laser Doppler velocimetry and hot wire techniques. The results of the computations show a variation in the flow conditions around the rotor periphery which was found to depend on the scroll geometry.
Three-Dimensional Analytical Modeling of Diffusion-Limited Solute Transport.
1986-07-01
displace- ment through an aggregated oxisol , Soil Sci. Soc. Am. J., 46, 471-476. Nkedi-Kizza, P., J. W. Biggar, H. M. Selim, M. Th. van Genuchten, P. J...aggregated oxisol , Water Resources Research, 20(8), 1123-1130. National Research Council (NRC), 1984. Groundwater Contamination, Panel on Groundwater
Dissipative MHD solutions for resonant Alfven waves in 1-dimensional magnetic flux tubes
NASA Technical Reports Server (NTRS)
Goossens, Marcel; Ruderman, Michail S.; Hollweg, Joseph V.
1995-01-01
The present paper extends the analysis by Sakurai, Goossens, and Hollweg (1991) on resonant Alfven waves in nonuniform magnetic flux tubes. It proves that the fundamental conservation law for resonant Alfven waves found in ideal MHD by Sakurai, Goossens, and Hollweg remains valid in dissipative MHD. This guarantees that the jump conditions of Sakurai, Goossens, and Hollweg, that connect the ideal MHD solutions for xi(sub r), and P' across the dissipative layer, are correct. In addition, the present paper replaces the complicated dissipative MHD solutions obtained by Sakurai, Goossens, and Hollweg for xi(sub r), and P' in terms of double integrals of Hankel functions of complex argument of order 1/3 with compact analytical solutions that allow a straight- forward mathematical and physical interpretation. Finally, it presents an analytical dissipative MHD solution for the component of the Lagrangian displacement in the magnetic surfaces perpen- dicular to the magnetic field lines xi(sub perpendicular) which enables us to determine the dominant dynamics of resonant Alfven waves in dissipative MHD.
NASA Astrophysics Data System (ADS)
Tourret, D.; Karma, A.; Clarke, A. J.; Gibbs, P. J.; Imhoff, S. D.
2015-06-01
We present a three-dimensional (3D) extension of a previously proposed multi-scale Dendritic Needle Network (DNN) approach for the growth of complex dendritic microstructures. Using a new formulation of the DNN dynamics equations for dendritic paraboloid-branches of a given thickness, one can directly extend the DNN approach to 3D modeling. We validate this new formulation against known scaling laws and analytical solutions that describe the early transient and steady-state growth regimes, respectively. Finally, we compare the predictions of the model to in situ X-ray imaging of Al-Cu alloy solidification experiments. The comparison shows a very good quantitative agreement between 3D simulations and thin sample experiments. It also highlights the importance of full 3D modeling to accurately predict the primary dendrite arm spacing that is significantly over-estimated by 2D simulations.
Tourret, D.; Karma, A.; Clarke, A. J.; ...
2015-06-11
We present a three-dimensional (3D) extension of a previously proposed multi-scale Dendritic Needle Network (DNN) approach for the growth of complex dendritic microstructures. Using a new formulation of the DNN dynamics equations for dendritic paraboloid-branches of a given thickness, one can directly extend the DNN approach to 3D modeling. We validate this new formulation against known scaling laws and analytical solutions that describe the early transient and steady-state growth regimes, respectively. Finally, we compare the predictions of the model to in situ X-ray imaging of Al-Cu alloy solidification experiments. The comparison shows a very good quantitative agreement between 3D simulationsmore » and thin sample experiments. It also highlights the importance of full 3D modeling to accurately predict the primary dendrite arm spacing that is significantly over-estimated by 2D simulations.« less
NASA Astrophysics Data System (ADS)
Kevrekidis, P. G.; Wang, Wenlong; Carretero-González, R.; Frantzeskakis, D. J.
2018-06-01
In the present work, we develop an adiabatic invariant approach for the evolution of quasi-one-dimensional (stripe) solitons embedded in a two-dimensional Bose-Einstein condensate. The results of the theory are obtained both for the one-component case of dark soliton stripes, as well as for the considerably more involved case of the two-component dark-bright (alias "filled dark") soliton stripes. In both cases, analytical predictions regarding the stability and dynamics of these structures are obtained. One of our main findings is the determination of the instability modes of the waves as a function of the parameters of the system (such as the trap strength and the chemical potential). Our analytical predictions are favorably compared with results of direct numerical simulations.
A Quantum Dot with Spin-Orbit Interaction--Analytical Solution
ERIC Educational Resources Information Center
Basu, B.; Roy, B.
2009-01-01
The practical applicability of a semiconductor quantum dot with spin-orbit interaction gives an impetus to study analytical solutions to one- and two-electron quantum dots with or without a magnetic field.
Vlasov-Maxwell and Vlasov-Poisson equations as models of a one-dimensional electron plasma
NASA Technical Reports Server (NTRS)
Klimas, A. J.; Cooper, J.
1983-01-01
The Vlasov-Maxwell and Vlasov-Poisson systems of equations for a one-dimensional electron plasma are defined and discussed. A method for transforming a solution of one system which is periodic over a bounded or unbounded spatial interval to a similar solution of the other is constructed.
Modeling quasi-static poroelastic propagation using an asymptotic approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasco, D.W.
2007-11-01
Since the formulation of poroelasticity (Biot(1941)) and its reformulation (Rice & Cleary(1976)), there have been many efforts to solve the coupled system of equations. Perhaps because of the complexity of the governing equations, most of the work has been directed towards finding numerical solutions. For example, Lewis and co-workers published early papers (Lewis & Schrefler(1978); Lewis et al.(1991)Lewis, Schrefler, & Simoni) concerned with finite-element methods for computing consolidation, subsidence, and examining the importance of coupling. Other early work dealt with flow in a deformable fractured medium (Narasimhan & Witherspoon 1976); Noorishad et al.(1984)Noorishad, Tsang, & Witherspoon. This effort eventually evolvedmore » into a general numerical approach for modeling fluid flow and deformation (Rutqvist et al.(2002)Rutqvist, Wu, Tsang, & Bodvarsson). As a result of this and other work, numerous coupled, computer-based algorithms have emerged, typically falling into one of three categories: one-way coupling, loose coupling, and full coupling (Minkoff et al.(2003)Minkoff, Stone, Bryant, Peszynska, & Wheeler). In one-way coupling the fluid flow is modeled using a conventional numerical simulator and the resulting change in fluid pressures simply drives the deformation. In loosely coupled modeling distinct geomechanical and fluid flow simulators are run for a sequence of time steps and at the conclusion of each step information is passed between the simulators. In full coupling, the fluid flow and geomechanics equations are solved simultaneously at each time step (Lewis & Sukirman(1993); Lewis & Ghafouri(1997); Gutierrez & Lewis(2002)). One disadvantage of a purely numerical approach to solving the governing equations of poroelasticity is that it is not clear how the various parameters interact and influence the solution. Analytic solutions have an advantage in that respect; the relationship between the medium and fluid properties is clear from the form of the solution. Unfortunately, analytic solutions are only available for highly idealized conditions, such as a uniform (Rudnicki(1986)) or one-dimensional (Simon et al.(1984)Simon, Zienkiewicz, & Paul; Gajo & Mongiovi(1995); Wang & Kumpel(2003)) medium. In this paper I derive an asymptotic, semi-analytic solution for coupled deformation and flow. The approach is similar to trajectory- or ray-based methods used to model elastic and electromagnetic wave propagation (Aki & Richards(1980); Kline & Kay(1979); Kravtsov & Orlov(1990); Keller & Lewis(1995)) and, more recently, diffusive propagation (Virieux et al.(1994)Virieux, Flores-Luna, & Gibert; Vasco et al.(2000)Vasco, Karasaki, & Keers; Shapiro et al.(2002)Shapiro, Rothert, Rath, & Rindschwentner; Vasco(2007)). The asymptotic solution is valid in the presence of smoothly-varying, heterogeneous flow properties. The situation I am modeling is that of a formation with heterogeneous flow properties and uniform mechanical properties. The boundaries of the layer may vary arbitrary and can define discontinuities in both flow and mechanical properties. Thus, using the techniques presented here, it is possible to model a stack of irregular layers with differing mechanical properties. Within each layer the hydraulic conductivity and porosity can vary smoothly but with an arbitrarily large magnitude. The advantages of this approach are that it produces explicit, semi-analytic expressions for the arrival time and amplitude of the Biot slow and fast waves, expressions which are valid in a medium with heterogeneous properties. As shown here, the semi-analytic expressions provide insight into the nature of pressure and deformation signals recorded at an observation point. Finally, the technique requires considerably fewer computer resources than does a fully numerical treatment.« less
Numerical solution of potential flow about arbitrary 2-dimensional multiple bodies
NASA Technical Reports Server (NTRS)
Thompson, J. F.; Thames, F. C.
1982-01-01
A procedure for the finite-difference numerical solution of the lifting potential flow about any number of arbitrarily shaped bodies is given. The solution is based on a technique of automatic numerical generation of a curvilinear coordinate system having coordinate lines coincident with the contours of all bodies in the field, regardless of their shapes and number. The effects of all numerical parameters involved are analyzed and appropriate values are recommended. Comparisons with analytic solutions for single Karman-Trefftz airfoils and a circular cylinder pair show excellent agreement. The technique of application of the boundary-fitted coordinate systems to the numerical solution of partial differential equations is illustrated.
A comprehensive one-dimensional numerical model for solute transport in rivers
NASA Astrophysics Data System (ADS)
Barati Moghaddam, Maryam; Mazaheri, Mehdi; MohammadVali Samani, Jamal
2017-01-01
One of the mechanisms that greatly affect the pollutant transport in rivers, especially in mountain streams, is the effect of transient storage zones. The main effect of these zones is to retain pollutants temporarily and then release them gradually. Transient storage zones indirectly influence all phenomena related to mass transport in rivers. This paper presents the TOASTS (third-order accuracy simulation of transient storage) model to simulate 1-D pollutant transport in rivers with irregular cross-sections under unsteady flow and transient storage zones. The proposed model was verified versus some analytical solutions and a 2-D hydrodynamic model. In addition, in order to demonstrate the model applicability, two hypothetical examples were designed and four sets of well-established frequently cited tracer study data were used. These cases cover different processes governing transport, cross-section types and flow regimes. The results of the TOASTS model, in comparison with two common contaminant transport models, shows better accuracy and numerical stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamann, F., E-mail: franck.hamann@cea.fr; Combis, P.; Videau, L.
The one-dimensional magnetohydrodynamics of a plasma cylindrical liner is addressed in the case of a two components magnetic field. The azimuthal component is responsible for the implosion of the liner and the axial field is compressed inside the liner. A complete set of analytical profiles for the magnetic field components, the density, and the local velocity are proposed at the scale of the liner thickness. Numerical simulations are also presented to test the validity of the analytical formulas.
NASA Technical Reports Server (NTRS)
Hersh, A. S.
1979-01-01
The influence of a mean vortical flow on the connection between the standing wave pattern in a rectangular three dimensional waveguide and the corresponding duct axial impedance was determined analytically. The solution was derived using a perturbation scheme valid for low mean flow Mach numbers and plane wave sound frequencies. The results show that deviations of the standing wave pattern due to refraction by the mean flow gradients are small.
A simple three dimensional wide-angle beam propagation method
NASA Astrophysics Data System (ADS)
Ma, Changbao; van Keuren, Edward
2006-05-01
The development of three dimensional (3-D) waveguide structures for chip scale planar lightwave circuits (PLCs) is hampered by the lack of effective 3-D wide-angle (WA) beam propagation methods (BPMs). We present a simple 3-D wide-angle beam propagation method (WA-BPM) using Hoekstra’s scheme along with a new 3-D wave equation splitting method. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation and comparing them with analytical solutions.
A simple three dimensional wide-angle beam propagation method.
Ma, Changbao; Van Keuren, Edward
2006-05-29
The development of three dimensional (3-D) waveguide structures for chip scale planar lightwave circuits (PLCs) is hampered by the lack of effective 3-D wide-angle (WA) beam propagation methods (BPMs). We present a simple 3-D wide-angle beam propagation method (WA-BPM) using Hoekstra's scheme along with a new 3-D wave equation splitting method. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation and comparing them with analytical solutions.
Two-dimensional numerical simulation of a Stirling engine heat exchanger
NASA Technical Reports Server (NTRS)
Ibrahim, Mounir B.; Tew, Roy C.; Dudenhoefer, James E.
1989-01-01
The first phase of an effort to develop multidimensional models of Stirling engine components is described; the ultimate goal is to model an entire engine working space. More specifically, parallel plate and tubular heat exchanger models with emphasis on the central part of the channel (i.e., ignoring hydrodynamic and thermal end effects) are described. The model assumes: laminar, incompressible flow with constant thermophysical properties. In addition, a constant axial temperature gradient is imposed. The governing equations, describing the model, were solved using Crank-Nicloson finite-difference scheme. Model predictions were compared with analytical solutions for oscillating/reversing flow and heat transfer in order to check numerical accuracy. Excellent agreement was obtained for the model predictions with analytical solutions available for both flow in circular tubes and between parallel plates. Also the heat transfer computational results are in good agreement with the heat transfer analytical results for parallel plates.
Effective aperture of X-ray compound refractive lenses.
Kohn, V G
2017-05-01
A new definition of the effective aperture of the X-ray compound refractive lens (CRL) is proposed. Both linear (one-dimensional) and circular (two-dimensional) CRLs are considered. It is shown that for a strongly absorbing CRL the real aperture does not influence the focusing properties and the effective aperture is determined by absorption. However, there are three ways to determine the effective aperture in terms of transparent CRLs. In the papers by Kohn [(2002). JETP Lett. 76, 600-603; (2003). J. Exp. Theor. Phys. 97, 204-215; (2009). J. Surface Investig. 3, 358-364; (2012). J. Synchrotron Rad. 19, 84-92; Kohn et al. (2003). Opt. Commun. 216, 247-260; (2003). J. Phys. IV Fr, 104, 217-220], the FWHM of the X-ray beam intensity just behind the CRL was used. In the papers by Lengeler et al. [(1999). J. Synchrotron Rad. 6, 1153-1167; (1998). J. Appl. Phys. 84, 5855-5861], the maximum intensity value at the focus was used. Numerically, these two definitions differ by 50%. The new definition is based on the integral intensity of the beam behind the CRL over the real aperture. The integral intensity is the most physical value and is independent of distance. The new definition gives a value that is greater than that of the Kohn definition by 6% and less than that of the Lengeler definition by 41%. A new approximation for the aperture function of a two-dimensional CRL is proposed which allows one to calculate the two-dimensional CRL through the one-dimensional CRL and to obtain an analytical solution for a complex system of many CRLs.
NASA Astrophysics Data System (ADS)
Trauth, N.; Schmidt, C.; Munz, M.
2016-12-01
Heat as a natural tracer to quantify water fluxes between groundwater and surface water has evolved to a standard hydrological method. Typically, time series of temperatures in the surface water and in the sediment are observed and are subsequently evaluated by a vertical 1D representation of heat transport by advection and dispersion. Several analytical solutions as well as their implementation into user-friendly software exist in order to estimate water fluxes from the observed temperatures. Analytical solutions can be easily implemented but assumptions on the boundary conditions have to be made a priori, e.g. sinusoidal upper temperature boundary. Numerical models offer more flexibility and can handle temperature data which is characterized by irregular variations such as storm-event induced temperature changes and thus cannot readily be incorporated in analytical solutions. This also reduced the effort of data preprocessing such as the extraction of the diurnal temperature variation. We developed a software to estimate water FLUXes Based On Temperatures- FLUX-BOT. FLUX-BOT is a numerical code written in MATLAB which is intended to calculate vertical water fluxes in saturated sediments, based on the inversion of measured temperature time series observed at multiple depths. It applies a cell-centered Crank-Nicolson implicit finite difference scheme to solve the one-dimensional heat advection-conduction equation. Besides its core inverse numerical routines, FLUX-BOT includes functions visualizing the results and functions for performing uncertainty analysis. We provide applications of FLUX-BOT to generic as well as to measured temperature data to demonstrate its performance.
On the membrane approximation in isothermal film casting
NASA Astrophysics Data System (ADS)
Hagen, Thomas
2014-08-01
In this work, a one-dimensional model for isothermal film casting is studied. Film casting is an important engineering process to manufacture thin films and sheets from a highly viscous polymer melt. The model equations account for variations in film width and film thickness, and arise from thinness and kinematic assumptions for the free liquid film. The first aspect of our study is a rigorous discussion of the existence and uniqueness of stationary solutions. This objective is approached via the argument principle, exploiting the homotopy invariance of a family of analytic functions. As our second objective, we analyze the linearization of the governing equations about stationary solutions. It is shown that solutions for the associated boundary-initial value problem are given by a strongly continuous semigroup of bounded linear operators. To reach this result, we cast the relevant Cauchy problem in a more accessible form. These transformed equations allow us insight into the regularity of the semigroup, thus yielding the validity of the spectral mapping theorem for the semigroup and the spectrally determined growth property.
Solutions to the 1d Klein Gordon equation with cut-off Coulomb potentials
NASA Astrophysics Data System (ADS)
Hall, Richard L.
2007-12-01
In a recent paper by Barton [G. Barton, J. Phys. A: Math. Gen. 40 (2007) 1011], the 1-dimensional Klein Gordon equation was solved analytically for the non-singular Coulomb-like potential V(|x|)=-α/(|x|+a). In the present Letter, these results are completely confirmed by a numerical formulation that also allows a solution for an alternative cut-off Coulomb potential V(|x|)=-α/|x|, |x|>a, and otherwise V(|x|)=-α/a.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maeda, Hideki; Department of Physics, International Christian University, 3-10-2 Osawa, Mitaka-shi, Tokyo 181-8585; Graduate School of Science and Engineering, Waseda University, Tokyo 169-8555
We use a combination of numerical and analytical methods, exploiting the equations derived in a preceding paper, to classify all spherically symmetric self-similar solutions which are asymptotically Friedmann at large distances and contain a perfect fluid with equation of state p=({gamma}-1){mu} with 0<{gamma}<2/3. The expansion of the Friedmann universe is accelerated in this case. We find a one-parameter family of self-similar solutions representing a black hole embedded in a Friedmann background. This suggests that, in contrast to the positive pressure case, black holes in a universe with dark energy can grow as fast as the Hubble horizon if they aremore » not too large. There are also self-similar solutions which contain a central naked singularity with negative mass and solutions which represent a Friedmann universe connected to either another Friedmann universe or some other cosmological model. The latter are interpreted as self-similar cosmological white hole or wormhole solutions. The throats of these wormholes are defined as two-dimensional spheres with minimal area on a spacelike hypersurface and they are all nontraversable because of the absence of a past null infinity.« less
Perturbatively deformed defects in Pöschl-Teller-driven scenarios for quantum mechanics
NASA Astrophysics Data System (ADS)
Bernardini, Alex E.; da Rocha, Roldão
2016-07-01
Pöschl-Teller-driven solutions for quantum mechanical fluctuations are triggered off by single scalar field theories obtained through a systematic perturbative procedure for generating deformed defects. The analytical properties concerning the quantum fluctuations in one-dimension, zero-mode states, first- and second-excited states, and energy density profiles are all obtained from deformed topological and non-topological structures supported by real scalar fields. Results are firstly derived from an integrated λϕ4 theory, with corresponding generalizations applied to starting λχ4 and sine-Gordon theories. By focusing our calculations on structures supported by the λϕ4 theory, the outcome of our study suggests an exact quantitative correspondence to Pöschl-Teller-driven systems. Embedded into the perturbative quantum mechanics framework, such a correspondence turns into a helpful tool for computing excited states and continuous mode solutions, as well as their associated energy spectrum, for quantum fluctuations of perturbatively deformed structures. Perturbative deformations create distinct physical scenarios in the context of exactly solvable quantum systems and may also work as an analytical support for describing novel braneworld universes embedded into a 5-dimensional gravity bulk.
A procedure to achieve fine control in MW processing of foods
NASA Astrophysics Data System (ADS)
Cuccurullo, G.; Cinquanta, L.; Sorrentino, G.
2007-01-01
A two-dimensional analytical model for predicting the unsteady temperature field in a cylindrical shaped body affected by spatially varying heat generation is presented. The dimensionless problem is solved analytically by using both partial solutions and the variation of parameters techniques. Having in mind industrial microwave heating for food pasteurization, the easy-to-handle solution is used to confirm the intrinsic lack of spatial uniformity of such a treatment in comparison to the traditional one. From an experimental point of view, a batch pasteurization treatment was realized to compare the effect of two different control techniques both based on IR thermography readout: the former assured a classical PID control, while the latter was based on a "shadowing" technique, consisting in covering portions of the sample which are hot enough with a mobile metallic screen. A measure of the effectiveness of the two control techniques was obtained by evaluating the thermal death curves of a strain Lactobacillus plantarum submitted to pasteurization temperatures. Preliminary results showed meaningful increases in the microwave thermal inactivation of the L. plantarum and similar significant decreases in thermal inactivation time with respect to the traditional pasteurization thermal treatment.
NASA Astrophysics Data System (ADS)
Woo, Mino; Wörner, Martin; Tischer, Steffen; Deutschmann, Olaf
2018-03-01
The multicomponent model and the effective diffusivity model are well established diffusion models for numerical simulation of single-phase flows consisting of several components but are seldom used for two-phase flows so far. In this paper, a specific numerical model for interfacial mass transfer by means of a continuous single-field concentration formulation is combined with the multicomponent model and effective diffusivity model and is validated for multicomponent mass transfer. For this purpose, several test cases for one-dimensional physical or reactive mass transfer of ternary mixtures are considered. The numerical results are compared with analytical or numerical solutions of the Maxell-Stefan equations and/or experimental data. The composition-dependent elements of the diffusivity matrix of the multicomponent and effective diffusivity model are found to substantially differ for non-dilute conditions. The species mole fraction or concentration profiles computed with both diffusion models are, however, for all test cases very similar and in good agreement with the analytical/numerical solutions or measurements. For practical computations, the effective diffusivity model is recommended due to its simplicity and lower computational costs.
Exact analytical solution of a classical Josephson tunnel junction problem
NASA Astrophysics Data System (ADS)
Kuplevakhsky, S. V.; Glukhov, A. M.
2010-10-01
We give an exact and complete analytical solution of the classical problem of a Josephson tunnel junction of arbitrary length W ɛ(0,∞) in the presence of external magnetic fields and transport currents. Contrary to a wide-spread belief, the exact analytical solution unambiguously proves that there is no qualitative difference between so-called "small" (W≪1) and "large" junctions (W≫1). Another unexpected physical implication of the exact analytical solution is the existence (in the current-carrying state) of unquantized Josephson vortices carrying fractional flux and located near one of the edges of the junction. We also refine the mathematical definition of critical transport current.
NASA Astrophysics Data System (ADS)
Sun, HongGuang; Liu, Xiaoting; Zhang, Yong; Pang, Guofei; Garrard, Rhiannon
2017-09-01
Fractional-order diffusion equations (FDEs) extend classical diffusion equations by quantifying anomalous diffusion frequently observed in heterogeneous media. Real-world diffusion can be multi-dimensional, requiring efficient numerical solvers that can handle long-term memory embedded in mass transport. To address this challenge, a semi-discrete Kansa method is developed to approximate the two-dimensional spatiotemporal FDE, where the Kansa approach first discretizes the FDE, then the Gauss-Jacobi quadrature rule solves the corresponding matrix, and finally the Mittag-Leffler function provides an analytical solution for the resultant time-fractional ordinary differential equation. Numerical experiments are then conducted to check how the accuracy and convergence rate of the numerical solution are affected by the distribution mode and number of spatial discretization nodes. Applications further show that the numerical method can efficiently solve two-dimensional spatiotemporal FDE models with either a continuous or discrete mixing measure. Hence this study provides an efficient and fast computational method for modeling super-diffusive, sub-diffusive, and mixed diffusive processes in large, two-dimensional domains with irregular shapes.
NASA Astrophysics Data System (ADS)
Sedghi, Mohammad M.; Samani, Nozar; Barry, D. A.
2018-04-01
Semi-analytical solutions are presented for flow to a well in an extensive homogeneous and anisotropic unconfined-fractured aquifer system separated by an aquitard. The pumping well is of infinitesimal radius and screened in either the overlying unconfined aquifer or the underlying fractured aquifer. An existing linearization method was used to determine the watertable drainage. The solution was obtained via Laplace and Hankel transforms, with results calculated by numerical inversion. The main findings are presented in the form of non-dimensional drawdown-time curves, as well as scaled sensitivity-dimensionless time curves. The new solution permits determination of the influence of fractures, matrix blocks and watertable drainage parameters on the aquifer drawdown. The effect of the aquitard on the drawdown response of the overlying unconfined aquifer and the underlying fractured aquifer was also explored. The results permit estimation of the unconfined and fractured aquifer hydraulic parameters via type-curve matching or coupling of the solution with a parameter estimation code. The solution can also be used to determine aquifer hydraulic properties from an optimal pumping test set up and duration.
Fundamental Solution For The Self-healing Fracture Pulse
NASA Astrophysics Data System (ADS)
Nielsen, S.; Madariaga, R.
We find the analytical solution for a fundamental fracture mode in the form of a self- similar, self-healing pulse. The existence of such a fracture mode was strongly sug- gested by recent numerical findings but, to our knwledge, no formal proof had been proposed up to date. We present a two dimensional, anti-plane solution for fixed rup- ture and healing velocities, that satisfies both wave equation and stress conditions; we argue that such a solution is plausible even in the absence of rate-weakening in the friction, as an alternative to the classic crack solution. In practice, the impulsive mode rather than the expanding crack mode is selected depending on details of fracture initiation, and is therafter self-maintained. We discuss stress concentration, fracture energy, rupture velocity and compare them to the case of a crack. The analytical study is complemented by various numerical examples and comparisons. On more general grounds, we argue that an infinity of marginally stable fracture modes may exist other than the crack solution or the impulseive fracture described here.
Bifurcations of periodic motion in a three-degree-of-freedom vibro-impact system with clearance
NASA Astrophysics Data System (ADS)
Liu, Yongbao; Wang, Qiang; Xu, Huidong
2017-07-01
The smooth bifurcation and grazing non-smooth bifurcation of periodic motion of a three-degree-of-freedom vibro-impact system with clearance are studied in this paper. Firstly, a periodic solution of vibro-impact system is solved and a six-dimensional Poincaré map is established. Then, for the six-dimensional Poincaré map, the analytic expressions of all eigenvalues of Jacobi matrix with respect to parameters are unavailable. This implies that with application of the classical critical criterion described by the properties of eigenvalues, we have to numerically compute eigenvalues point by point and check their properties to search for the bifurcation points. Such the numerical calculation is a laborious job in the process of determining bifurcation points. To overcome the difficulty that originates from the classical bifurcation criteria, the explicit critical criteria without using eigenvalues calculation of high-dimensional map are applied to determine bifurcation points of Co-dimension-one period doubling bifurcation and Co-dimension-one Neimark-Sacker bifurcation and Co-dimension-two Flip-Neimark-Sacker bifurcation, and then local dynamical behaviors of these bifurcations are analyzed. Moreover, the directions of period doubling bifurcation and Neimark-Sacker bifurcation are analyzed by center manifold reduction theory and normal form approach. Finally, the existence of the grazing periodic motion of the vibro-impact system is analyzed and the grazing bifurcation point is obtained, the discontinuous grazing bifurcation behavior is studied based on the compound normal form map near the grazing point, the discontinuous jumping phenomenon and co-existing multiple solutions near the grazing bifurcation point are revealed.
Electrolyte diodes with weak acids and bases. I. Theory and an approximate analytical solution.
Iván, Kristóf; Simon, Péter L; Wittmann, Mária; Noszticzius, Zoltán
2005-10-22
Until now acid-base diodes and transistors applied strong mineral acids and bases exclusively. In this work properties of electrolyte diodes with weak electrolytes are studied and compared with those of diodes with strong ones to show the advantages of weak acids and bases in these applications. The theoretical model is a one dimensional piece of gel containing fixed ionizable groups and connecting reservoirs of an acid and a base. The electric current flowing through the gel is measured as a function of the applied voltage. The steady-state current-voltage characteristic (CVC) of such a gel looks like that of a diode under these conditions. Results of our theoretical, numerical, and experimental investigations are reported in two parts. In this first, theoretical part governing equations necessary to calculate the steady-state CVC of a reverse-biased electrolyte diode are presented together with an approximate analytical solution of this reaction-diffusion-ionic migration problem. The applied approximations are quasielectroneutrality and quasiequilibrium. It is shown that the gel can be divided into an alkaline and an acidic zone separated by a middle weakly acidic region. As a further approximation it is assumed that the ionization of the fixed acidic groups is complete in the alkaline zone and that it is completely suppressed in the acidic one. The general solution given here describes the CVC and the potential and ionic concentration profiles of diodes applying either strong or weak electrolytes. It is proven that previous formulas valid for a strong acid-strong base diode can be regarded as a special case of the more general formulas presented here.
A theoretical study of mixing downstream of transverse injection into a supersonic boundary layer
NASA Technical Reports Server (NTRS)
Baker, A. J.; Zelazny, S. W.
1972-01-01
A theoretical and analytical study was made of mixing downstream of transverse hydrogen injection, from single and multiple orifices, into a Mach 4 air boundary layer over a flat plate. Numerical solutions to the governing three-dimensional, elliptic boundary layer equations were obtained using a general purpose computer program. Founded upon a finite element solution algorithm. A prototype three-dimensional turbulent transport model was developed using mixing length theory in the wall region and the mass defect concept in the outer region. Excellent agreement between the computed flow field and experimental data for a jet/freestream dynamic pressure ratio of unity was obtained in the centerplane region of the single-jet configuration. Poorer agreement off centerplane suggests an inadequacy of the extrapolated two-dimensional turbulence model. Considerable improvement in off-centerplane computational agreement occured for a multi-jet configuration, using the same turbulent transport model.