Science.gov

Sample records for one-dimensional contaminant transport

  1. Estimation of transport parameters of phenolic compounds and inorganic contaminants through composite landfill liners using one-dimensional mass transport model

    SciTech Connect

    Varank, Gamze; Demir, Ahmet; Yetilmezsoy, Kaan; Bilgili, M. Sinan; Top, Selin; Sekman, Elif

    2011-11-15

    Highlights: > We conduct 1D advection-dispersion modeling to estimate transport parameters. > We examine fourteen phenolic compounds and three inorganic contaminants. > 2-MP, 2,4-DCP, 2,6-DCP, 2,4,5-TCP, 2,3,4,6-TeCP have the highest coefficients. > Dispersion coefficients of Cu are determined to be higher than Zn and Fe. > Transport of phenolics can be prevented by zeolite and bentonite in landfill liners. - Abstract: One-dimensional (1D) advection-dispersion transport modeling was conducted as a conceptual approach for the estimation of the transport parameters of fourteen different phenolic compounds (phenol, 2-CP, 2-MP, 3-MP, 4-MP, 2-NP, 4-NP, 2,4-DNP, 2,4-DCP, 2,6-DCP, 2,4,5-TCP, 2,4,6-TCP, 2,3,4,6-TeCP, PCP) and three different inorganic contaminants (Cu, Zn, Fe) migrating downward through the several liner systems. Four identical pilot-scale landfill reactors (0.25 m{sup 3}) with different composite liners (R1: 0.10 + 0.10 m of compacted clay liner (CCL), L{sub e} = 0.20 m, k{sub e} = 1 x 10{sup -8} m/s, R2: 0.002-m-thick damaged high-density polyethylene (HDPE) geomembrane overlying 0.10 + 0.10 m of CCL, L{sub e} = 0.20 m, k{sub e} = 1 x 10{sup -8} m/s, R3: 0.002-m-thick damaged HDPE geomembrane overlying a 0.02-m-thick bentonite layer encapsulated between 0.10 + 0.10 m CCL, L{sub e} = 0.22 m, k{sub e} = 1 x 10{sup -8} m/s, R4: 0.002-m-thick damaged HDPE geomembrane overlying a 0.02-m-thick zeolite layer encapsulated between 0.10 + 0.10 m CCL, L{sub e} = 0.22 m, k{sub e} = 4.24 x 10{sup -7} m/s) were simultaneously run for a period of about 540 days to investigate the nature of diffusive and advective transport of the selected organic and inorganic contaminants. The results of 1D transport model showed that the highest molecular diffusion coefficients, ranging from 4.77 x 10{sup -10} to 10.67 x 10{sup -10} m{sup 2}/s, were estimated for phenol (R4), 2-MP (R1), 2,4-DNP (R2), 2,4-DCP (R1), 2,6-DCP (R2), 2,4,5-TCP (R2) and 2,3,4,6-TeCP (R1). For all reactors

  2. Mixing Cell Model: A One-Dimensional Numerical Model for Assessment of Water Flow and Contaminant Transport in the Unsaturated Zone

    SciTech Connect

    A. S. Rood

    2009-04-01

    This report describes the Mixing Cell Model code, a one-dimensional model for water flow and solute transport in the unsaturated zone under steady-state or transient flow conditions. The model is based on the principles and assumptions underlying mixing cell model formulations. The unsaturated zone is discretized into a series of independent mixing cells. Each cell may have unique hydrologic, lithologic, and sorptive properties. Ordinary differential equations describe the material (water and solute) balance within each cell. Water flow equations are derived from the continuity equation assuming that unit-gradient conditions exist at all times in each cell. Pressure gradients are considered implicitly through model discretization. Unsaturated hydraulic conductivity and moisture contents are determined by the material-specific moisture characteristic curves. Solute transport processes include explicit treatment of advective processes, first-order chain decay, and linear sorption reactions. Dispersion is addressed through implicit and explicit dispersion. Implicit dispersion is an inherent feature of all mixing cell models and originates from the formulation of the problem in terms of mass balance around fully mixed volume elements. Expressions are provided that relate implicit dispersion to the physical dispersion of the system. Two FORTRAN codes were developed to solve the water flow and solute transport equations: (1) the Mixing-Cell Model for Flow (MCMF) solves transient water flow problems and (2) the Mixing Cell Model for Transport (MCMT) solves the solute transport problem. The transient water flow problem is typically solved first by estimating the water flux through each cell in the model domain as a function of time using the MCMF code. These data are stored in either ASCII or binary files that are later read by the solute transport code (MCMT). Code output includes solute pore water concentrations, water and solute inventories in each cell and at each

  3. Mixing Cell Model: A One-Dimensional Numerical Model for Assessment of Water Flow and Contaminant Transport in the Unsaturated Zone

    SciTech Connect

    A. S. Rood

    2005-03-01

    This report describes the Mixing Cell Model code, a one-dimensional model for water flow and solute transport in the unsaturated zone under steady-state or transient flow conditions. The model is based on the principles and assumptions underlying mixing cell model formulations. The unsaturated zone is discretized into a series of independent mixing cells. Each cell may have unique hydrologic, lithologic, and sorptive properties. Ordinary differential equations describe the material (water and solute) balance within each cell. Water flow equations are derived from the continuity equation assuming that unit-gradient conditions exist at all times in each cell. Pressure gradients are considered implicitly through model discretization. Unsaturated hydraulic conductivity and moisture contents are determined by the material-specific moisture characteristic curves. Solute transport processes include explicit treatment of advective processes, first-order chain decay, and linear sorption reactions. Dispersion is addressed through implicit and explicit dispersion. Implicit dispersion is an inherent feature of all mixing cell models and originates from the formulation of the problem in terms of mass balance around fully mixed volume elements. Expressions are provided that relate implicit dispersion to the physical dispersion of the system. Two FORTRAN codes were developed to solve the water flow and solute transport equations: (1) the Mixing-Cell Model for Flow (MCMF) solves transient water flow problems and (2) the Mixing Cell Model for Transport (MCMT) solves the solute transport problem. The transient water flow problem is typically solved first by estimating the water flux through each cell in the model domain as a function of time using the MCMF code. These data are stored in either ASCII or binary files that are later read by the solute transport code (MCMT). Code output includes solute pore water concentrations, water and solute inventories in each cell and at each

  4. Mixing Cell Model: A One-Dimensional Numerical Model for Assessment of Water Flow and Contaminant Transport in the Unsaturated Zone

    SciTech Connect

    A. S. Rood

    2010-10-01

    This report describes the Mixing Cell Model code, a one-dimensional model for water flow and solute transport in the unsaturated zone under steady-state or transient flow conditions. The model is based on the principles and assumptions underlying mixing cell model formulations. The unsaturated zone is discretized into a series of independent mixing cells. Each cell may have unique hydrologic, lithologic, and sorptive properties. Ordinary differential equations describe the material (water and solute) balance within each cell. Water flow equations are derived from the continuity equation assuming that unit-gradient conditions exist at all times in each cell. Pressure gradients are considered implicitly through model discretization. Unsaturated hydraulic conductivity and moisture contents are determined by the material-specific moisture characteristic curves. Solute transport processes include explicit treatment of advective processes, first-order chain decay, and linear sorption reactions. Dispersion is addressed through implicit and explicit dispersion. Implicit dispersion is an inherent feature of all mixing cell models and originates from the formulation of the problem in terms of mass balance around fully mixed volume elements. Expressions are provided that relate implicit dispersion to the physical dispersion of the system. Two FORTRAN codes were developed to solve the water flow and solute transport equations: (1) the Mixing-Cell Model for Flow (MCMF) solves transient water flow problems and (2) the Mixing Cell Model for Transport (MCMT) solves the solute transport problem. The transient water flow problem is typically solved first by estimating the water flux through each cell in the model domain as a function of time using the MCMF code. These data are stored in either ASCII or binary files that are later read by the solute transport code (MCMT). Code output includes solute pore water concentrations, water and solute inventories in each cell and at each

  5. Mixing Cell Model: A One-Dimensional Numerical Model for Assessment of Water Flow and Contaminant Transport in the Unsaturated Zone

    SciTech Connect

    Arthur S. Rood

    2005-03-30

    This report describes the Mixing Cell Model code, a one-dimensional model for water flow and solute transport in the unsaturated zone under steady-state or transient flow conditions. The model is based on the principles and assumptions underlying mixing cell model formulations. The unsaturated zone is discretized into a series of independent mixing cells. Each cell may have unique hydrologic, lithologic, and sorptive properties. Ordinary differential equations describe the material (water and solute) balance within each cell. Water flow equations are derived from the continuity equation assuming that unit-gradient conditions exist at all times in each cell. Pressure gradients are considered implicitly through model discretization. Unsaturated hydraulic conductivity and moisture contents are determined by the material-specific moisture characteristic curves. Solute transport processes include explicit treatment of advective processes, first-order chain decay, and linear sorption reactions. Dispersion is addressed through implicit and explicit dispersion. Implicit dispersion is an inherent feature of all mixing cell models and originates from the formulation of the problem in terms of mass balance around fully mixed volume elements. Expressions are provided that relate implicit dispersion to the physical dispersion of the system. Two FORTRAN codes were developed to solve the water flow and solute transport equations: (1) the Mixing-Cell Model for Flow (MCMF) solves transient water flow problems and (2) the Mixing Cell Model for Transport (MCMT) solves the solute transport problem. The transient water flow problem is typically solved first by estimating the water flux through each cell in the model domain as a function of time using the MCMF code. These data are stored in either ASCII or binary files that are later read by the solute transport code (MCMT). Code output includes solute pore water concentrations, water and solute inventories in each cell and at each

  6. Numerical Modeling of One-Dimensional Steady-State Flow and Contaminant Transport in a Horizontally Heterogeneous Unconfined Aquifer with an Uneven Base

    EPA Science Inventory

    Algorithms and a short description of the D1_Flow program for numerical modeling of one-dimensional steady-state flow in horizontally heterogeneous aquifers with uneven sloping bases are presented. The algorithms are based on the Dupuit-Forchheimer approximations. The program per...

  7. SIMPLE ONE-DIMENSIONAL TRANSPORT CODE FOR MAGNETIZED TARGET FUSION

    SciTech Connect

    STEFANO MIGLUIOLO - MIT

    1999-10-30

    A one-dimensional (in space) time-dependent simulation code is development to study the transport of energy and particles in a field reversed configuration (FRC) plasma that is undergoing radial contraction. This contraction is due to an imploding metallic liner, which is treated through a boundary condition.

  8. Duality and phase diagram of one-dimensional transport

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Somendra M.

    2007-02-01

    The idea of duality in one-dimensional nonequilibrium transport is introduced by generalizing the observations by Mukherji and Mishra. A general approach is developed for the classification and characterization of the steady state phase diagrams which are shown to be determined by the nature of the zeros of a set of coarse-grained functions that encode the microscopic dynamics. A new class of nonequilibrium multicritical points has been identified.

  9. Few-photon transport in quasi-one-dimensional geometries

    NASA Astrophysics Data System (ADS)

    Ralley, Kevin

    An analysis of some aspects of photon transport through cavities and emitters embedded in a one-dimensional geometries is presented. The concept of photon blockade is defined for few-photon states interacting with a single two-level atom and the strength of achievable blockade is calculated in this setting. A brief review of some promising schemes for achieving photon blockade from the literature is also provided. The conflict between linear and nonlinear optical processes is studied for a novel version of the famous Hong-Ou-Mandel effect in a photonic waveguide with a side-coupled two-level emitter.

  10. Users manual for a one-dimensional Lagrangian transport model

    USGS Publications Warehouse

    Schoellhamer, D.H.; Jobson, H.E.

    1986-01-01

    A Users Manual for the Lagrangian Transport Model (LTM) is presented. The LTM uses Lagrangian calculations that are based on a reference frame moving with the river flow. The Lagrangian reference frame eliminates the need to numerically solve the convective term of the convection-diffusion equation and provides significant numerical advantages over the more commonly used Eulerian reference frame. When properly applied, the LTM can simulate riverine transport and decay processes within the accuracy required by most water quality studies. The LTM is applicable to steady or unsteady one-dimensional unidirectional flows in fixed channels with tributary and lateral inflows. Application of the LTM is relatively simple and optional capabilities improve the model 's convenience. Appendices give file formats and three example LTM applications that include the incorporation of the QUAL II water quality model 's reaction kinetics into the LTM. (Author 's abstract)

  11. Quasi one dimensional transport in individual electrospun composite nanofibers

    SciTech Connect

    Avnon, A. Datsyuk, V.; Trotsenko, S.; Wang, B.; Zhou, S.

    2014-01-15

    We present results of transport measurements of individual suspended electrospun nanofibers Poly(methyl methacrylate)-multiwalled carbon nanotubes. The nanofiber is comprised of highly aligned consecutive multiwalled carbon nanotubes. We have confirmed that at the range temperature from room temperature down to ∼60 K, the conductance behaves as power-law of temperature with an exponent of α ∼ 2.9−10.2. The current also behaves as power law of voltage with an exponent of β ∼ 2.3−8.6. The power-law behavior is a footprint for one dimensional transport. The possible models of this confined system are discussed. Using the model of Luttinger liquid states in series, we calculated the exponent for tunneling into the bulk of a single multiwalled carbon nanotube α{sub bulk} ∼ 0.06 which agrees with theoretical predictions.

  12. Energy transport in one-dimensional disordered granular solids.

    PubMed

    Achilleos, V; Theocharis, G; Skokos, Ch

    2016-02-01

    We investigate the energy transport in one-dimensional disordered granular solids by extensive numerical simulations. In particular, we consider the case of a polydisperse granular chain composed of spherical beads of the same material and with radii taken from a random distribution. We start by examining the linear case, in which it is known that the energy transport strongly depends on the type of initial conditions. Thus, we consider two sets of initial conditions: an initial displacement and an initial momentum excitation of a single bead. After establishing the regime of sufficiently strong disorder, we focus our study on the role of nonlinearity for both sets of initial conditions. By increasing the initial excitation amplitudes we are able to identify three distinct dynamical regimes with different energy transport properties: a near linear, a weakly nonlinear, and a highly nonlinear regime. Although energy spreading is found to be increasing for higher nonlinearities, in the weakly nonlinear regime no clear asymptotic behavior of the spreading is found. In this regime, we additionally find that energy, initially trapped in a localized region, can be eventually detrapped and this has a direct influence on the fluctuations of the energy spreading. We also demonstrate that in the highly nonlinear regime, the differences in energy transport between the two sets of initial conditions vanish. Actually, in this regime the energy is almost ballistically transported through shocklike excitations.

  13. One-Dimensional Electron Transport Layers for Perovskite Solar Cells

    PubMed Central

    Thakur, Ujwal K.; Kisslinger, Ryan; Shankar, Karthik

    2017-01-01

    The electron diffusion length (Ln) is smaller than the hole diffusion length (Lp) in many halide perovskite semiconductors meaning that the use of ordered one-dimensional (1D) structures such as nanowires (NWs) and nanotubes (NTs) as electron transport layers (ETLs) is a promising method of achieving high performance halide perovskite solar cells (HPSCs). ETLs consisting of oriented and aligned NWs and NTs offer the potential not merely for improved directional charge transport but also for the enhanced absorption of incoming light and thermodynamically efficient management of photogenerated carrier populations. The ordered architecture of NW/NT arrays affords superior infiltration of a deposited material making them ideal for use in HPSCs. Photoconversion efficiencies (PCEs) as high as 18% have been demonstrated for HPSCs using 1D ETLs. Despite the advantages of 1D ETLs, there are still challenges that need to be overcome to achieve even higher PCEs, such as better methods to eliminate or passivate surface traps, improved understanding of the hetero-interface and optimization of the morphology (i.e., length, diameter, and spacing of NWs/NTs). This review introduces the general considerations of ETLs for HPSCs, deposition techniques used, and the current research and challenges in the field of 1D ETLs for perovskite solar cells. PMID:28468280

  14. One-Dimensional Electron Transport Layers for Perovskite Solar Cells.

    PubMed

    Thakur, Ujwal K; Kisslinger, Ryan; Shankar, Karthik

    2017-04-29

    The electron diffusion length (Ln) is smaller than the hole diffusion length (Lp) in many halide perovskite semiconductors meaning that the use of ordered one-dimensional (1D) structures such as nanowires (NWs) and nanotubes (NTs) as electron transport layers (ETLs) is a promising method of achieving high performance halide perovskite solar cells (HPSCs). ETLs consisting of oriented and aligned NWs and NTs offer the potential not merely for improved directional charge transport but also for the enhanced absorption of incoming light and thermodynamically efficient management of photogenerated carrier populations. The ordered architecture of NW/NT arrays affords superior infiltration of a deposited material making them ideal for use in HPSCs. Photoconversion efficiencies (PCEs) as high as 18% have been demonstrated for HPSCs using 1D ETLs. Despite the advantages of 1D ETLs, there are still challenges that need to be overcome to achieve even higher PCEs, such as better methods to eliminate or passivate surface traps, improved understanding of the hetero-interface and optimization of the morphology (i.e., length, diameter, and spacing of NWs/NTs). This review introduces the general considerations of ETLs for HPSCs, deposition techniques used, and the current research and challenges in the field of 1D ETLs for perovskite solar cells.

  15. Charge transport through one-dimensional Moiré crystals

    NASA Astrophysics Data System (ADS)

    Bonnet, Roméo; Lherbier, Aurélien; Barraud, Clément; Rocca, Maria Luisa Della; Lafarge, Philippe; Charlier, Jean-Christophe

    2016-01-01

    Moiré superlattices were generated in two-dimensional (2D) van der Waals heterostructures and have revealed intriguing electronic structures. The appearance of mini-Dirac cones within the conduction and valence bands of graphene is one of the most striking among the new quantum features. A Moiré superstructure emerges when at least two periodic sub-structures superimpose. 2D Moiré patterns have been particularly investigated in stacked hexagonal 2D atomic lattices like twisted graphene layers and graphene deposited on hexagonal boron-nitride. In this letter, we report both experimentally and theoretically evidence of superlattices physics in transport properties of one-dimensional (1D) Moiré crystals. Rolling-up few layers of graphene to form a multiwall carbon nanotube adds boundaries conditions that can be translated into interference fringes-like Moiré patterns along the circumference of the cylinder. Such a 1D Moiré crystal exhibits a complex 1D multiple bands structure with clear and robust interband quantum transitions due to the presence of mini-Dirac points and pseudo-gaps. Our devices consist in a very large diameter (>80 nm) multiwall carbon nanotubes of high quality, electrically connected by metallic electrodes acting as charge reservoirs. Conductance measurements reveal the presence of van Hove singularities assigned to 1D Moiré superlattice effect and illustrated by electronic structure calculations.

  16. Charge transport through one-dimensional Moiré crystals

    PubMed Central

    Bonnet, Roméo; Lherbier, Aurélien; Barraud, Clément; Rocca, Maria Luisa Della; Lafarge, Philippe; Charlier, Jean-Christophe

    2016-01-01

    Moiré superlattices were generated in two-dimensional (2D) van der Waals heterostructures and have revealed intriguing electronic structures. The appearance of mini-Dirac cones within the conduction and valence bands of graphene is one of the most striking among the new quantum features. A Moiré superstructure emerges when at least two periodic sub-structures superimpose. 2D Moiré patterns have been particularly investigated in stacked hexagonal 2D atomic lattices like twisted graphene layers and graphene deposited on hexagonal boron-nitride. In this letter, we report both experimentally and theoretically evidence of superlattices physics in transport properties of one-dimensional (1D) Moiré crystals. Rolling-up few layers of graphene to form a multiwall carbon nanotube adds boundaries conditions that can be translated into interference fringes-like Moiré patterns along the circumference of the cylinder. Such a 1D Moiré crystal exhibits a complex 1D multiple bands structure with clear and robust interband quantum transitions due to the presence of mini-Dirac points and pseudo-gaps. Our devices consist in a very large diameter (>80 nm) multiwall carbon nanotubes of high quality, electrically connected by metallic electrodes acting as charge reservoirs. Conductance measurements reveal the presence of van Hove singularities assigned to 1D Moiré superlattice effect and illustrated by electronic structure calculations. PMID:26786067

  17. Nonequilibrium electronic transport in a one-dimensional Mott insulator

    SciTech Connect

    Heidrich-Meisner, F.; Gonzalez, Ivan; Al-Hassanieh, K. A.; Feiguin, A. E.; Rozenberg, M. J.; Dagotto, Elbio R

    2010-01-01

    We calculate the nonequilibrium electronic transport properties of a one-dimensional interacting chain at half filling, coupled to noninteracting leads. The interacting chain is initially in a Mott insulator state that is driven out of equilibrium by applying a strong bias voltage between the leads. For bias voltages above a certain threshold we observe the breakdown of the Mott insulator state and the establishment of a steady-state elec- tronic current through the system. Based on extensive time-dependent density-matrix renormalization-group simulations, we show that this steady-state current always has the same functional dependence on voltage, independent of the microscopic details of the model and we relate the value of the threshold to the Lieb-Wu gap. We frame our results in terms of the Landau-Zener dielectric breakdown picture. Finally, we also discuss the real-time evolution of the current, and characterize the current-carrying state resulting from the breakdown of the Mott insulator by computing the double occupancy, the spin structure factor, and the entanglement entropy.

  18. Ballistic transport in one-dimensional random dimer photonic crystals

    NASA Astrophysics Data System (ADS)

    Cherid, Samira; Bentata, Samir; Zitouni, Ali; Djelti, Radouan; Aziz, Zoubir

    2014-04-01

    Using the transfer-matrix technique and the Kronig Penney model, we numerically and analytically investigate the effect of short-range correlated disorder in Random Dimer Model (RDM) on transmission properties of the light in one dimensional photonic crystals made of three different materials. Such systems consist of two different structures randomly distributed along the growth direction, with the additional constraint that one kind of these layers always appear in pairs. It is shown that the one dimensional random dimer photonic crystals support two types of extended modes. By shifting of the dimer resonance toward the host fundamental stationary resonance state, we demonstrate the existence of the ballistic response in these systems.

  19. Diffusion related isotopic fractionation effects with one-dimensional advective-dispersive transport.

    PubMed

    Xu, Bruce S; Lollar, Barbara Sherwood; Passeport, Elodie; Sleep, Brent E

    2016-04-15

    Aqueous phase diffusion-related isotope fractionation (DRIF) for carbon isotopes was investigated for common groundwater contaminants in systems in which transport could be considered to be one-dimensional. This paper focuses not only on theoretically observable DRIF effects in these systems but introduces the important concept of constraining "observable" DRIF based on constraints imposed by the scale of measurements in the field, and on standard limits of detection and analytical uncertainty. Specifically, constraints for the detection of DRIF were determined in terms of the diffusive fractionation factor, the initial concentration of contaminants (C0), the method detection limit (MDL) for isotopic analysis, the transport time, and the ratio of the longitudinal mechanical dispersion coefficient to effective molecular diffusion coefficient (Dmech/Deff). The results allow a determination of field conditions under which DRIF may be an important factor in the use of stable carbon isotope measurements for evaluation of contaminant transport and transformation for one-dimensional advective-dispersive transport. This study demonstrates that for diffusion-dominated transport of BTEX, MTBE, and chlorinated ethenes, DRIF effects are only detectable for the smaller molar mass compounds such as vinyl chloride for C0/MDL ratios of 50 or higher. Much larger C0/MDL ratios, corresponding to higher source concentrations or lower detection limits, are necessary for DRIF to be detectable for the higher molar mass compounds. The distance over which DRIF is observable for VC is small (less than 1m) for a relatively young diffusive plume (<100years), and DRIF will not easily be detected by using the conventional sampling approach with "typical" well spacing (at least several meters). With contaminant transport by advection, mechanical dispersion, and molecular diffusion this study suggests that in field sites where Dmech/Deff is larger than 10, DRIF effects will likely not be

  20. Characterization of Thermal Transport in One-dimensional Solid Materials

    PubMed Central

    Liu, Guoqing; Lin, Huan; Tang, Xiaoduan; Bergler, Kevin; Wang, Xinwei

    2014-01-01

    The TET (transient electro-thermal) technique is an effective approach developed to measure the thermal diffusivity of solid materials, including conductive, semi-conductive or nonconductive one-dimensional structures. This technique broadens the measurement scope of materials (conductive and nonconductive) and improves the accuracy and stability. If the sample (especially biomaterials, such as human head hair, spider silk, and silkworm silk) is not conductive, it will be coated with a gold layer to make it electronically conductive. The effect of parasitic conduction and radiative losses on the thermal diffusivity can be subtracted during data processing. Then the real thermal conductivity can be calculated with the given value of volume-based specific heat (ρcp), which can be obtained from calibration, noncontact photo-thermal technique or measuring the density and specific heat separately. In this work, human head hair samples are used to show how to set up the experiment, process the experimental data, and subtract the effect of parasitic conduction and radiative losses. PMID:24514072

  1. Thermal transport in disordered one-dimensional spin chains

    NASA Astrophysics Data System (ADS)

    Poboiko, Igor; Feigel'man, Mikhail

    2015-12-01

    We study a one-dimensional anisotropic XXZ Heisenberg spin-1/2 chain with weak random fields hizSiz by means of Jordan-Wigner transformation to spinless Luttinger liquid with disorder and bosonization technique. First, we reinvestigate the phase diagram of the system in terms of dimensionless disorder γ =

    /J2≪1 and anisotropy parameter Δ =Jz/Jx y , we find the range of these parameters where disorder is irrelevant in the infrared limit and spin-spin correlations are described by power laws, and compare it with previously obtained numerical and analytical results. Then we use the diagram technique in terms of plasmon excitations to study the low-temperature (T ≪J ) behavior of heat conductivity κ and spin conductivity σ in this power-law phase. The obtained Lorentz number L ≡κ /σ T differs from the value derived earlier by means of the memory function method. We argue also that in the studied region inelastic scattering is strong enough to suppress quantum interference in the low-temperature limit.

  2. Effects of chemical oxidants on perfluoroalkyl acid transport in one-dimensional porous media columns.

    PubMed

    McKenzie, Erica R; Siegrist, Robert L; McCray, John E; Higgins, Christopher P

    2015-02-03

    In situ chemical oxidation (ISCO) is a remediation approach that is often used to remediate soil and groundwater contaminated with fuels and chlorinated solvents. At many aqueous film-forming foam-impacted sites, perfluoroalkyl acids (PFAAs) can also be present at concentrations warranting concern. Laboratory experiments were completed using flow-through one-dimensional columns to improve our understanding of how ISCO (i.e., activated persulfate, permanganate, or catalyzed hydrogen peroxide) could affect the fate and transport of PFAAs in saturated porous media. While the resultant data suggest that standard ISCO is not a viable remediation strategy for PFAA decomposition, substantial changes in PFAA transport were observed upon and following the application of ISCO. In general, activated persulfate decreased PFAA transport, while permanganate and catalyzed hydrogen peroxide increased PFAA transport. PFAA sorption increased in the presence of increased aqueous polyvalent cation concentrations or decreased pH. The changes in contaminant mobility were greater than what would be predicted on the basis of aqueous chemistry considerations alone, suggesting that the application of ISCO results in changes to the porous media matrix (e.g., soil organic matter quality) that also influence transport. The application of ISCO is likely to result in changes in PFAA transport, where the direction (increased or decreased transport) and magnitude are dependent on PFAA characteristics, oxidant characteristics, and site-specific factors.

  3. Half-range acceleration for one-dimensional transport problems

    SciTech Connect

    Zika, M.R.; Larsen, E.W.

    1998-12-31

    Researchers have devoted considerable effort to developing acceleration techniques for transport iterations in highly diffusive problems. The advantages and disadvantages of source iteration, rebalance, diffusion synthetic acceleration (DSA), transport synthetic acceleration (TSA), and projection acceleration methods are documented in the literature and will not be discussed here except to note that no single method has proven to be applicable to all situations. Here, the authors describe a new acceleration method that is based solely on transport sweeps, is algebraically linear (and is therefore amenable to a Fourier analysis), and yields a theoretical spectral radius bounded by one-third for all cases. This method does not introduce spatial differencing difficulties (as is the case for DSA) nor does its theoretical performance degrade as a function of mesh and material properties (as is the case for TSA). Practical simulations of the new method agree with the theoretical predictions, except for scattering ratios very close to unity. At this time, they believe that the discrepancy is due to the effect of boundary conditions. This is discussed further.

  4. Charge transport through weakly open one-dimensional quantum wires

    NASA Astrophysics Data System (ADS)

    Kopnin, N. B.; Galperin, Y. M.; Vinokur, V. M.

    2009-01-01

    We consider resonant transmission through a gated finite-length quantum wire connected to leads via finite-transparency junctions, such that the escape time is much smaller than the energy relaxation time in the wire. The coherent electron transport is strongly modified by the Coulomb interaction. The low-temperature current-voltage (IV) curves show steplike dependence on the bias voltage determined by the distance between the quantum levels inside the conductor, the pattern being dependent on the ratio between the charging energy and level spacing. If the system is tuned close to the resonance condition by the gate voltage, the low-voltage IV curve is ohmic. At large Coulomb energy and low temperatures, the conductance is temperature independent for any relationship between temperature, level spacing, and coupling between the wire and the leads.

  5. Charge and energy transport in one-dimensional nanomaterials

    NASA Astrophysics Data System (ADS)

    Blaustein, Gail S.

    This dissertation is comprised of two parts: Charge transport in DNA hair-pins and light transport in linear arrays of dielectric spherical particles. Experimental results suggest specific charge (hole) migration kinetics for stilbene-capped DNA hair-pins of the form Sa(AT)nSd, where Sa and Sd denote the acceptor and donor stilbene respectively and (AT) n a bridge of adenine-thymine base pairs of length n = 1 -- 7. Kinetics equations are derived from experimental data for both charge separation and recombination. Counterion binding to the radicalized stilbene ions is considered a significant contributor to charge migration kinetics. In the second part, bound modes infinite linear chains of dielectric particles of various lengths and particle materials are investigated. Through a unique application of the multisphere Mie scattering formalism, numerical methods are developed to calculate eigen-optical modes for various arrays of particles. Eigenmodes with the highest quality factor are identified by the application of a modified version of the Newton-Raphson algorithm. Convergence is strong using this algorithm for linear chains of up to several hundred particles. By comparing the dipolar approach with the more complex approach utilizing a combination of both dipolar and quadrupolar approaches, the dipolar approach is shown to have an accuracy of approximately 99%. The quality factor increases with the cubed value of the number of particles in agreement with previously developed theory. The effects of disordering of particle sizes and inter-particle distances as well as interference of guiding modes in "traffic circle" waveguide configurations will be discussed.

  6. Analytical solution for one-dimensional advection-dispersion transport equation with distance-dependent coefficients

    NASA Astrophysics Data System (ADS)

    Pérez Guerrero, J. S.; Skaggs, T. H.

    2010-08-01

    SummaryMathematical models describing contaminant transport in heterogeneous porous media are often formulated as an advection-dispersion transport equation with distance-dependent transport coefficients. In this work, a general analytical solution is presented for the linear, one-dimensional advection-dispersion equation with distance-dependent coefficients. An integrating factor is employed to obtain a transport equation that has a self-adjoint differential operator, and a solution is found using the generalized integral transform technique (GITT). It is demonstrated that an analytical expression for the integrating factor exists for several transport equation formulations of practical importance in groundwater transport modeling. Unlike nearly all solutions available in the literature, the current solution is developed for a finite spatial domain. As an illustration, solutions for the particular case of a linearly increasing dispersivity are developed in detail and results are compared with solutions from the literature. Among other applications, the current analytical solution will be particularly useful for testing or benchmarking numerical transport codes because of the incorporation of a finite spatial domain.

  7. A one-dimensional heat-transport model for conduit flow in karst aquifers

    USGS Publications Warehouse

    Long, A.J.; Gilcrease, P.C.

    2009-01-01

    A one-dimensional heat-transport model for conduit flow in karst aquifers is presented as an alternative to two or three-dimensional distributed-parameter models, which are data intensive and require knowledge of conduit locations. This model can be applied for cases where water temperature in a well or spring receives all or part of its water from a phreatic conduit. Heat transport in the conduit is simulated by using a physically-based heat-transport equation that accounts for inflow of diffuse flow from smaller openings and fissures in the surrounding aquifer during periods of low recharge. Additional diffuse flow that is within the zone of influence of the well or spring but has not interacted with the conduit is accounted for with a binary mixing equation to proportion these different water sources. The estimation of this proportion through inverse modeling is useful for the assessment of contaminant vulnerability and well-head or spring protection. The model was applied to 7 months of continuous temperature data for a sinking stream that recharges a conduit and a pumped well open to the Madison aquifer in western South Dakota. The simulated conduit-flow fraction to the well ranged from 2% to 31% of total flow, and simulated conduit velocity ranged from 44 to 353 m/d.

  8. Robust unidirectional transport in a one-dimensional metacrystal with long-range hopping

    NASA Astrophysics Data System (ADS)

    Longhi, S.

    2016-11-01

    In two- and three-dimensional structures, topologically protected chiral edge modes offer a powerful mean to realize robust light transport. However, little attention has been paid so far to robust one-way transport in one-dimensional systems. Here it is shown that unidirectional transport, which is immune to disorder and backscattering, can occur in certain one-dimensional metacrystals with long-range hopping without resorting to topological protection. Such metacrystals are described by an effective Hermitian Hamiltonian with broken time-reversal symmetry, and transport does not require adiabatic (Thouless) pumping. A simple implementation in optics of such one-dimensional metacrystals, based on transverse light dynamics in a self-imaging optical cavity with phase gratings, is suggested.

  9. One-Dimensional Perovskite Manganite Oxide Nanostructures: Recent Developments in Synthesis, Characterization, Transport Properties, and Applications.

    PubMed

    Li, Lei; Liang, Lizhi; Wu, Heng; Zhu, Xinhua

    2016-12-01

    One-dimensional nanostructures, including nanowires, nanorods, nanotubes, nanofibers, and nanobelts, have promising applications in mesoscopic physics and nanoscale devices. In contrast to other nanostructures, one-dimensional nanostructures can provide unique advantages in investigating the size and dimensionality dependence of the materials' physical properties, such as electrical, thermal, and mechanical performances, and in constructing nanoscale electronic and optoelectronic devices. Among the one-dimensional nanostructures, one-dimensional perovskite manganite nanostructures have been received much attention due to their unusual electron transport and magnetic properties, which are indispensable for the applications in microelectronic, magnetic, and spintronic devices. In the past two decades, much effort has been made to synthesize and characterize one-dimensional perovskite manganite nanostructures in the forms of nanorods, nanowires, nanotubes, and nanobelts. Various physical and chemical deposition techniques and growth mechanisms are explored and developed to control the morphology, identical shape, uniform size, crystalline structure, defects, and homogenous stoichiometry of the one-dimensional perovskite manganite nanostructures. This article provides a comprehensive review of the state-of-the-art research activities that focus on the rational synthesis, structural characterization, fundamental properties, and unique applications of one-dimensional perovskite manganite nanostructures in nanotechnology. It begins with the rational synthesis of one-dimensional perovskite manganite nanostructures and then summarizes their structural characterizations. Fundamental physical properties of one-dimensional perovskite manganite nanostructures are also highlighted, and a range of unique applications in information storages, field-effect transistors, and spintronic devices are discussed. Finally, we conclude this review with some perspectives/outlook and future

  10. One-dimensional transport equation models for sound energy propagation in long spaces: theory.

    PubMed

    Jing, Yun; Larsen, Edward W; Xiang, Ning

    2010-04-01

    In this paper, a three-dimensional transport equation model is developed to describe the sound energy propagation in a long space. Then this model is reduced to a one-dimensional model by approximating the solution using the method of weighted residuals. The one-dimensional transport equation model directly describes the sound energy propagation in the "long" dimension and deals with the sound energy in the "short" dimensions by prescribed functions. Also, the one-dimensional model consists of a coupled set of N transport equations. Only N=1 and N=2 are discussed in this paper. For larger N, although the accuracy could be improved, the calculation time is expected to significantly increase, which diminishes the advantage of the model in terms of its computational efficiency.

  11. ONE-DIMENSIONAL HYDRODYNAMIC/SEDIMENT TRANSPORT MODEL FOR STREAM NETWORKS: TECHNICAL REPORT

    EPA Science Inventory

    This technical report describes a new sediment transport model and the supporting post-processor, and sampling procedures for sediments in streams. Specifically, the following items are described herein:

    EFDC1D - This is a new one-dimensional hydrodynamic and sediment tr...

  12. ONE-DIMENSIONAL HYDRODYNAMIC/SEDIMENT TRANSPORT MODEL FOR STREAM NETWORKS: TECHNICAL REPORT

    EPA Science Inventory

    This technical report describes a new sediment transport model and the supporting post-processor, and sampling procedures for sediments in streams. Specifically, the following items are described herein:

    EFDC1D - This is a new one-dimensional hydrodynamic and sediment tr...

  13. Time-dependent radiation transport in a one-dimensional medium

    NASA Technical Reports Server (NTRS)

    Nagel, W.; Meszaros, P.

    1985-01-01

    An analytic solution of the time-dependent radiation transport problem in a one-dimensional, stationary and homogeneous medium of finite thickness is presented. The solution is found by the method of images, and is compared with an eigenfunction expansion. Previous conjectures about the structure of such an expansion are clarified. The Green's function of this problem is also expanded in scattering orders.

  14. Perturbative and iterative methods for photon transport in one-dimensional waveguides

    NASA Astrophysics Data System (ADS)

    Obi, Kenechukwu C.; Shen, Jung-Tsung

    2015-05-01

    The problems of photon transport in one-dimensional waveguides have recently attracted great attentions. We consider the case of single photons scattering off a Λ-type three-level quantum emitter, and discuss the perturbative treatments of the scattering processes in terms of Born approximation for the Lippmann-Schwinger formalism. We show that the iterative Born series of the scattering amplitudes converge to the exact results obtained by other approaches. The generalization of our work provides a foundational basis for efficient computational schemes for photon scattering problems in one-dimensional waveguides.

  15. A criterion for condensation in kinetically constrained one-dimensional transport models

    NASA Astrophysics Data System (ADS)

    Miedema, Daniel

    2014-03-01

    In transport, increasing the number of transporting particles not necessarily results in an increase of the throughput. When the density of a complex system increases, the current can decrease rapidly due to jamming effects. Jammed particles can form many clusters or one big cluster: a condensate in real space. We study condensation in one-dimensional transport models with a kinetic constraint. We find the conditions under which the arrested clusters can grow to a macroscopic condensate of arrested particles. We apply our finding to the well-known Nagel-Schreckenberg traffic flow model to analytically proof the existence of a condensate in a deterministic limit of this model, and verify this result with simulations. These results provide insight into dynamic arrest and dynamic phase separation in one-dimensional traffic and transport.

  16. Criterion for condensation in kinetically constrained one-dimensional transport models

    NASA Astrophysics Data System (ADS)

    Miedema, D. M.; de Wijn, A. S.; Schall, P.

    2014-06-01

    We study condensation in one-dimensional transport models with a kinetic constraint. The kinetic constraint results in clustering of immobile vehicles; these clusters can grow to macroscopic condensates, indicating the onset of dynamic phase separation between free-flowing and arrested traffic. We investigate analytically the conditions under which this occurs and derive a necessary and sufficient criterion for phase separation. This criterion is applied to the well-known Nagel-Schreckenberg model of traffic flow to analytically investigate the existence of dynamic condensates. We find that true condensates occur only when acceleration out of jammed traffic happens in a single time step, in the limit of strong overbraking. Our predictions are further verified with simulation results on the growth of arrested clusters. These results provide analytic understanding of dynamic arrest and dynamic phase separation in one-dimensional traffic and transport models.

  17. One-dimensional electronic transport at the organic charge-transfer interfaces under high pressures

    SciTech Connect

    Kang, N.; Auban-Senzier, P.; Li, C.; Poulard, C.; Pasquier, C. R.

    2014-05-12

    We have characterized the charge transport properties of the electronic state at the interface between tetrathiofulvalene and 7,7,8,8-tetracyanoquinodimethane organic crystals as a function of pressure. At low temperature and for all studied pressures, the conductance and the current through the interface exhibit a power-law dependence on both temperature and bias voltage which reveal features of quasi-one-dimensional character. The transport behavior as well as the pressure dependence of the power-law exponent is consistent with a one-dimensional Wigner crystal model. Our results demonstrate that organic heterointerfaces can provide an ideal platform for exploring the rich electronic phenomena in low-dimensional systems.

  18. Rapid water transportation through narrow one-dimensional channels by restricted hydrogen bonds.

    PubMed

    Ohba, Tomonori; Kaneko, Katsumi; Endo, Morinobu; Hata, Kenji; Kanoh, Hirofumi

    2013-01-29

    Water plays an important role in controlling chemical reactions and bioactivities. For example, water transportation through water channels in a biomembrane is a key factor in bioactivities. However, molecular-level mechanisms of water transportation are as yet unknown. Here, we investigate water transportation through narrow and wide one-dimensional (1D) channels on the basis of water-vapor adsorption rates and those determined by molecular dynamics simulations. We observed that water in narrow 1D channels was transported 3-5 times faster than that in wide 1D channels, although the narrow 1D channels provide fewer free nanospaces for water transportation. This rapid transportation is attributed to the formation of fewer hydrogen bonds between water molecules adsorbed in narrow 1D channels. The water-transportation mechanism provides the possibility of rapid communication through 1D channels and will be useful in controlling reactions and activities in water systems.

  19. Electron trapping and transport by supersonic solitons in one-dimensional systems

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J. S.

    1978-01-01

    A one-dimensional chain of ions or molecules and electrons described by a Froehlich-type Hamiltonian with quartic phonon anharmonicities is investigated. It is shown that the anharmonic lattice supports supersonic solitons which under favorable circumstances may trap electrons and transport them along the lattice. For a lattice constant/soliton spatial extent quotient of the order of 0.1, rough estimates give electron trapping energies in the meV range. They imply a useful temperature range, up to tens of degrees K, for observing the new effect. The activation energy of a lattice soliton is proportional to the molecular mass and is therefore quite high (about 1 eV) for typical quasi-one-dimensional organic systems.

  20. Electron trapping and transport by supersonic solitons in one-dimensional systems

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J. S.

    1978-01-01

    A one-dimensional chain of ions or molecules and electrons described by a Froehlich-type Hamiltonian with quartic phonon anharmonicities is investigated. It is shown that the anharmonic lattice supports supersonic solitons which under favorable circumstances may trap electrons and transport them along the lattice. For a lattice constant/soliton spatial extent quotient of the order of 0.1, rough estimates give electron trapping energies in the meV range. They imply a useful temperature range, up to tens of degrees K, for observing the new effect. The activation energy of a lattice soliton is proportional to the molecular mass and is therefore quite high (about 1 eV) for typical quasi-one-dimensional organic systems.

  1. An exact solution of solute transport by one-dimensional random velocity fields

    USGS Publications Warehouse

    Cvetkovic, V.D.; Dagan, G.; Shapiro, A.M.

    1991-01-01

    The problem of one-dimensional transport of passive solute by a random steady velocity field is investigated. This problem is representative of solute movement in porous media, for example, in vertical flow through a horizontally stratified formation of variable porosity with a constant flux at the soil surface. Relating moments of particle travel time and displacement, exact expressions for the advection and dispersion coefficients in the Focker-Planck equation are compared with the perturbation results for large distances. The first- and second-order approximations for the dispersion coefficient are robust for a lognormal velocity field. The mean Lagrangian velocity is the harmonic mean of the Eulerian velocity for large distances. This is an artifact of one-dimensional flow where the continuity equation provides for a divergence free fluid flux, rather than a divergence free fluid velocity. ?? 1991 Springer-Verlag.

  2. One-dimensional transport equation models for sound energy propagation in long spaces: simulations and experiments.

    PubMed

    Jing, Yun; Xiang, Ning

    2010-04-01

    In this paper, the accuracy and efficiency of the previously discussed one-dimensional transport equation models [Y. Jing et al., J. Acoust. Soc. Am. 127, 2312-2322 (2010)] are examined both numerically and experimentally. The finite element method is employed to solve the equations. Artificial diffusion is applied in the numerical implementation to suppress oscillations of the solution. The transport equation models are then compared with the ray-tracing based method for different scenarios. In general, they are in good agreement, and the transport equation models are substantially less time consuming. In addition, the two-group model is found to yield more accurate results than the one-group model for the tested cases. Lastly, acoustic experimental results obtained from a 1:10 long room scale-model are used to verify the transport equation models. The results suggest that the transport equation models are able to accurately model the sound field in a long space.

  3. Electronic structure and transport properties of quasi-one-dimensional carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Wu, Y. N.; Cheng, P.; Wu, M. J.; Zhu, H.; Xiang, Q.; Ni, J.

    2017-09-01

    Based on the density functional theory combined with the nonequilibrium Green's function, the influence of the wrinkle on the electronic structures and transport properties of quasi-one-dimensional carbon nanomaterials have been investigated, in which the wrinkled armchair graphene nanoribbons (wAGNRs) and the composite of AGNRs and single walled carbon nanotubes (SWCNTs) were considered with different connection of ripples. The wrinkle adjusts the electronic structures and transport properties of AGNRs. With the change of the strain, the wAGNRs for three width families reveal different electrical behavior. The band gap of AGNR(6) increases in the presence of the wrinkle, which is opposite to that of AGNR(5) and AGNR(7). The transport of AGNRs with the widths 6 or 7 has been modified by the wrinkle, especially by the number of isolated ripples, but it is insensitive to the strain. The nanojunctions constructed by AGNRs and SWCNTs can form the quantum wells, and some specific states are confined in wAGNRs. Although these nanojunctions exhibit the metallic, they have poor conductance due to the wrinkle. The filling of C20 into SWCNT has less influence on the electronic structure and transport of the junctions. The width and connection type of ripples have greatly influenced on the electronic structures and transport properties of quasi-one-dimensional nanomaterials.

  4. Electron transport measurement of graphene under one-dimensional local strain

    NASA Astrophysics Data System (ADS)

    Kanda, A.; Tomori, H.; Nukui, Y.; Toyota, Y.; Karube, H.; Nihei, S.; Ootuka, Y.; Tsukagoshi, K.; Hayashi, M.; Yoshioka, H.

    2012-02-01

    Introducing a nonuniform strain is a promising technique for controlling electron transport in graphene. Theories have predicted the formation of band gaps with properly designed strain; however, reports on experimental transport properties of strained graphene are quite limited. In this presentation, we report the measurement of electron transport in graphene under one-dimensional local strain. The local strain was introduced by inserting a one-dimensional dielectric nanorod between a graphene film and its substrate, using a technique reported in [1]. We found that the conductivity across the strained region decreases around the Dirac point in comparison with the unstrained graphene attached to the substrate, although the mobility far from the Dirac point is almost unchanged. The results cannot be explained by the change of the capacitance between the graphene film and the gate electrode, indicating that the strain affects the electron transport. The experimental results on strained and unstrained graphene devices from the same graphene film as well as the numerical results will be discussed. [4pt] [1] H. Tomori et al., Appl. Phys. Express 4, 075102 (2011).

  5. Summary of the LLNL one-dimensional transport-kinetics model of the troposphere and stratosphere: 1981

    SciTech Connect

    Wuebbles, D.J.

    1981-09-01

    Since the LLNL one-dimensional coupled transport and chemical kinetics model of the troposphere and stratosphere was originally developed in 1972 (Chang et al., 1974), there have been many changes to the model's representation of atmospheric physical and chemical processes. A brief description is given of the current LLNL one-dimensional coupled transport and chemical kinetics model of the troposphere and stratosphere.

  6. Coulomb blockade and transport in a chain of one-dimensional quantum dots.

    PubMed

    Fogler, Michael M; Malinin, Sergey V; Nattermann, Thomas

    2006-09-01

    A long one-dimensional wire with a finite density of strong random impurities is modeled as a chain of weakly coupled quantum dots. At low temperature T and applied voltage V its resistance is limited by breaks: randomly occurring clusters of quantum dots with a special length distribution pattern that inhibit the transport. Because of the interplay of interaction and disorder effects the resistance can exhibit T and V dependences that can be approximated by power laws. The corresponding two exponents differ greatly from each other and depend not only on the intrinsic electronic parameters but also on the impurity distribution statistics.

  7. Non-ohmic variable-range hopping transport in one-dimensional conductors.

    PubMed

    Fogler, M M; Kelley, R S

    2005-10-14

    We investigate theoretically the effect of a finite electric field on the resistivity of a disordered one-dimensional system in the variable-range hopping regime. We find that at low fields the transport is inhibited by rare fluctuations in the random distribution of localized states that create high-resistance breaks in the hopping network. As the field increases, the breaks become less resistive. In strong fields the breaks are overrun and the electron distribution function is driven far from equilibrium. The logarithm of the resistance initially shows a simple exponential drop with the field, followed by a logarithmic dependence, and finally, by an inverse square-root law.

  8. Photon transport in a one-dimensional nanophotonic waveguide QED system

    NASA Astrophysics Data System (ADS)

    Liao, Zeyang; Zeng, Xiaodong; Nha, Hyunchul; Zubairy, M. Suhail

    2016-06-01

    The waveguide quantum electrodynamics (QED) system may have important applications in quantum device and quantum information technology. In this article we review the methods being proposed to calculate photon transport in a one-dimensional (1D) waveguide coupled to quantum emitters. We first introduce the Bethe ansatz approach and the input-output formalism to calculate the stationary results of a single photon transport. Then we present a dynamical time-dependent theory to calculate the real-time evolution of the waveguide QED system. In the longtime limit, both the stationary theory and the dynamical calculation give the same results. Finally, we also briefly discuss the calculations of the multiphoton transport problems.

  9. Proceedings of the Advanced Seminar on one-dimensional, open-channel Flow and transport modeling

    USGS Publications Warehouse

    Schaffranek, Raymond W.

    1989-01-01

    In view of the increased use of mathematical/numerical simulation models, of the diversity of both model investigations and informational project objectives, and of the technical demands of complex model applications by U.S. Geological Survey personnel, an advanced seminar on one-dimensional open-channel flow and transport modeling was organized and held on June 15-18, 1987, at the National Space Technology Laboratory, Bay St. Louis, Mississippi. Principal emphasis in the Seminar was on one-dimensional flow and transport model-implementation techniques, operational practices, and application considerations. The purposes of the Seminar were to provide a forum for the exchange of information, knowledge, and experience among model users, as well as to identify immediate and future needs with respect to model development and enhancement, user support, training requirements, and technology transfer. The Seminar program consisted of a mix of topical and project presentations by Geological Survey personnel. This report is a compilation of short papers that summarize the presentations made at the Seminar.

  10. Single-photon nonreciprocal transport in one-dimensional coupled-resonator waveguides

    NASA Astrophysics Data System (ADS)

    Xu, Xun-Wei; Chen, Ai-Xi; Li, Yong; Liu, Yu-xi

    2017-06-01

    We study the transport of a single photon in two coupled one-dimensional semi-infinite coupled-resonator waveguides (CRWs), in which both end sides are coupled to a dissipative cavity. We demonstrate that a single photon can transfer from one semi-infinite CRW to the other nonreciprocally. Based on such nonreciprocity, we further construct a three-port single-photon circulator by a T-shaped waveguide, in which three semi-infinite CRWs are pairwise mutually coupled to each other. The single-photon nonreciprocal transport is induced by the breaking of the time-reversal symmetry and the optimal conditions for these phenomena are obtained analytically. The CRWs with broken time-reversal symmetry will open up a kind of quantum device with versatile applications in quantum networks.

  11. Theoretical characterization of charge transport in one-dimensional collinear arrays of organic conjugated molecules.

    PubMed

    Viani, Lucas; Olivier, Yoann; Athanasopoulos, Stavros; da Silva Filho, Demetrio A; Hulliger, Jürg; Brédas, Jean-Luc; Gierschner, Johannes; Cornil, Jérôme

    2010-04-06

    A great deal of interest has recently focused on host-guest systems consisting of one-dimensional collinear arrays of conjugated molecules encapsulated in the channels of organic or inorganic matrices. Such architectures allow for controlled charge and energy migration processes between the interacting guest molecules and are thus attractive in the field of organic electronics. In this context, we characterize here at a quantum-chemical level the molecular parameters governing charge transport in the hopping regime in 1D arrays built with different types of molecules. We investigate the influence of several parameters (such as the symmetry of the molecule, the presence of terminal substituents, and the molecular size) and define on that basis the molecular features required to maximize the charge carrier mobility within the channels. In particular, we demonstrate that a strong localization of the molecular orbitals in push-pull compounds is generally detrimental to the charge transport properties.

  12. Eigen decomposition solution to the one-dimensional time-dependent photon transport equation.

    PubMed

    Handapangoda, Chintha C; Pathirana, Pubudu N; Premaratne, Malin

    2011-02-14

    The time-dependent one-dimensional photon transport (radiative transfer) equation is widely used to model light propagation through turbid media with a slab geometry, in a vast number of disciplines. Several numerical and semi-analytical techniques are available to accurately solve this equation. In this work we propose a novel efficient solution technique based on eigen decomposition of the vectorized version of the photon transport equation. Using clever transformations, the four variable integro-differential equation is reduced to a set of first order ordinary differential equations using a combination of a spectral method and the discrete ordinates method. An eigen decomposition approach is then utilized to obtain the closed-form solution of this reduced set of ordinary differential equations.

  13. Single photon transport along a one-dimensional waveguide with a side manipulated cavity QED system.

    PubMed

    Yan, Cong-Hua; Wei, Lian-Fu

    2015-04-20

    An external mirror coupling to a cavity with a two-level atom inside is put forward to control the photon transport along a one-dimensional waveguide. Using a full quantum theory of photon transport in real space, it is shown that the Rabi splittings of the photonic transmission spectra can be controlled by the cavity-mirror couplings; the splittings could still be observed even when the cavity-atom system works in the weak coupling regime, and the transmission probability of the resonant photon can be modulated from 0 to 100%. Additionally, our numerical results show that the appearance of Fano resonance is related to the strengths of the cavity-mirror coupling and the dissipations of the system. An experimental demonstration of the proposal with the current photonic crystal waveguide technique is suggested.

  14. Photon Transport in One-Dimensional Incommensurately Epitaxial CsPbX 3 Arrays

    DOE PAGES

    Wang, Yiping; Sun, Xin; Shivanna, Ravichandran; ...

    2016-11-16

    One-dimensional nanoscale epitaxial arrays serve as a great model in studying fundamental physics and for emerging applications. With an increasing focus laid on the Cs-based inorganic halide perovskite out of its outstanding material stability, we have applied vapor phase epitaxy to grow well aligned horizontal CsPbX3 (X: Cl, Br, or I or their mixed) nanowire arrays in large scale on mica substrate. The as-grown nanowire features a triangular prism morphology with typical length ranging from a few tens of micrometers to a few millimeters. Structural analysis reveals that the wire arrays follow the symmetry of mica substrate through incommensurate epitaxy,more » paving a way for a universally applicable method to grow a broad family of halide perovskite materials. We have studied the unique photon transport in the one-dimensional structure in the all-inorganic Cs-based perovskite wires via temperature dependent and spatially resolved photoluminescence. Furthermore, epitaxy of well oriented wire arrays in halide perovskite would be a promising direction for enabling the circuit-level applications of halide perovskite in high-performance electro-optics and optoelectronics.« less

  15. Photon Transport in One-Dimensional Incommensurately Epitaxial CsPbX 3 Arrays

    SciTech Connect

    Wang, Yiping; Sun, Xin; Shivanna, Ravichandran; Yang, Yunbo; Chen, Zhizhong; Guo, Yuwei; Wang, Gwo-Ching; Wertz, Esther; Deschler, Felix; Cai, Zhonghou; Zhou, Hua; Lu, Toh-Ming; Shi, Jian

    2016-11-16

    One-dimensional nanoscale epitaxial arrays serve as a great model in studying fundamental physics and for emerging applications. With an increasing focus laid on the Cs-based inorganic halide perovskite out of its outstanding material stability, we have applied vapor phase epitaxy to grow well aligned horizontal CsPbX3 (X: Cl, Br, or I or their mixed) nanowire arrays in large scale on mica substrate. The as-grown nanowire features a triangular prism morphology with typical length ranging from a few tens of micrometers to a few millimeters. Structural analysis reveals that the wire arrays follow the symmetry of mica substrate through incommensurate epitaxy, paving a way for a universally applicable method to grow a broad family of halide perovskite materials. We have studied the unique photon transport in the one-dimensional structure in the all-inorganic Cs-based perovskite wires via temperature dependent and spatially resolved photoluminescence. Furthermore, epitaxy of well oriented wire arrays in halide perovskite would be a promising direction for enabling the circuit-level applications of halide perovskite in high-performance electro-optics and optoelectronics.

  16. Photon Transport in One-Dimensional Incommensurately Epitaxial CsPbX3 Arrays

    DOE PAGES

    Wang, Yiping; Sun, Xin; Shivanna, Ravichandran; ...

    2016-12-01

    One-dimensional nanoscale epitaxial arrays serve as a great model in studying fundamental physics and for emerging applications. With an increasing focus laid on the Cs-based inorganic halide perovskite out of its outstanding material stability, we have applied vapor phase epitaxy to grow well aligned horizontal CsPbX3 (X: Cl, Br, or I or their mixed) nanowire arrays in large scale on mica substrate. The as-grown nanowire features a triangular prism morphology with typical length ranging from a few tens of micrometers to a few millimeters. Structural analysis reveals that the wire arrays follow the symmetry of mica substrate through incommensurate epitaxy,more » paving a way for a universally applicable method to grow a broad family of halide perovskite materials. The unique photon transport in the one-dimensional structure has been studied in the all-inorganic Cs-based perovskite wires via temperature dependent and spatially resolved photoluminescence. Epitaxy of well oriented wire arrays in halide perovskite would be a promising direction for enabling the circuit-level applications of halide perovskite in high-performance electro-optics and optoelectronics.« less

  17. Ballistic one-dimensional transport in InAs nanowires monolithically integrated on silicon

    NASA Astrophysics Data System (ADS)

    Gooth, J.; Schaller, V.; Wirths, S.; Schmid, H.; Borg, M.; Bologna, N.; Karg, S.; Riel, H.

    2017-02-01

    We present the monolithic integration and electrical characterization of InAs nanowires (NWs) with the well-defined geometries and positions on Si as a platform for quantum transport studies. Hereby, one-dimensional (1D) ballistic transport with step-like 1D conductance quantization in units of 2e2/h is demonstrated for NWs with the widths between 28 nm and 58 nm and a height of 40 nm. The electric field control of up to four individual modes is achieved. Furthermore, the sub-band structure of the nanowires is investigated using bias spectroscopy. The splitting between the first and the second sub-band increases as the width of the NWs is reduced, whereas the degeneracy of the second sub-band can be tuned by the symmetry of the NW cross section, in accordance with a "particle in a box" model. The length-dependent studies reveal ballistic transport for up to 300 nm and quasi-ballistic transport with a mean free path of 470 nm for longer InAs NW channels at 30 K. We anticipate that the ballistic 1D transport in monolithically integrated InAs NWs presented here will form the basis for sophisticated quantum wire devices for the future integrated circuits with additional functionalities.

  18. One-dimensional potential of mean force underestimates activation barrier for transport across flexible lipid membranes

    NASA Astrophysics Data System (ADS)

    Kopelevich, Dmitry I.

    2013-10-01

    Transport of a fullerene-like nanoparticle across a lipid bilayer is investigated by coarse-grained molecular dynamics (MD) simulations. Potentials of mean force (PMF) acting on the nanoparticle in a flexible bilayer suspended in water and a bilayer restrained to a flat surface are computed by constrained MD simulations. The rate of the nanoparticle transport into the bilayer interior is predicted using one-dimensional Langevin models based on these PMFs. The predictions are compared with the transport rates obtained from a series of direct (unconstrained) MD simulations of the solute transport into the flexible bilayer. It is observed that the PMF acting on the solute in the flexible membrane underestimates the transport rate by more than an order of magnitude while the PMF acting on the solute in the restrained membrane yields an accurate estimate of the activation energy for transport into the flexible membrane. This paradox is explained by a coexistence of metastable membrane configurations for a range of the solute positions inside and near the flexible membrane. This leads to a significant reduction of the contribution of the transition state to the mean force acting on the solute. Restraining the membrane shape ensures that there is only one stable membrane configuration corresponding to each solute position and thus the transition state is adequately represented in the PMF. This mechanism is quite general and thus this phenomenon is expected to occur in a wide range of interfacial systems. A simple model for the free energy landscape of the coupled solute-membrane system is proposed and validated. This model explicitly accounts for effects of the membrane deformations on the solute transport and yields an accurate prediction of the activation energy for the solute transport.

  19. One-dimensional potential of mean force underestimates activation barrier for transport across flexible lipid membranes.

    PubMed

    Kopelevich, Dmitry I

    2013-10-07

    Transport of a fullerene-like nanoparticle across a lipid bilayer is investigated by coarse-grained molecular dynamics (MD) simulations. Potentials of mean force (PMF) acting on the nanoparticle in a flexible bilayer suspended in water and a bilayer restrained to a flat surface are computed by constrained MD simulations. The rate of the nanoparticle transport into the bilayer interior is predicted using one-dimensional Langevin models based on these PMFs. The predictions are compared with the transport rates obtained from a series of direct (unconstrained) MD simulations of the solute transport into the flexible bilayer. It is observed that the PMF acting on the solute in the flexible membrane underestimates the transport rate by more than an order of magnitude while the PMF acting on the solute in the restrained membrane yields an accurate estimate of the activation energy for transport into the flexible membrane. This paradox is explained by a coexistence of metastable membrane configurations for a range of the solute positions inside and near the flexible membrane. This leads to a significant reduction of the contribution of the transition state to the mean force acting on the solute. Restraining the membrane shape ensures that there is only one stable membrane configuration corresponding to each solute position and thus the transition state is adequately represented in the PMF. This mechanism is quite general and thus this phenomenon is expected to occur in a wide range of interfacial systems. A simple model for the free energy landscape of the coupled solute-membrane system is proposed and validated. This model explicitly accounts for effects of the membrane deformations on the solute transport and yields an accurate prediction of the activation energy for the solute transport.

  20. Electron transport characteristics of one-dimensional heterojunctions with multi-nitrogen-doped capped carbon nanotubes.

    PubMed

    Lee, Sang Uck; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2010-12-01

    We present a systematic analysis of electron transport characteristics for one-dimensional heterojunctions with two multi-nitrogen-doped (multi-N-doped) capped carbon nanotubes (CNTs) facing one another at different numbers of nitrogen atoms and conformations. Our results show that the modification of the molecular orbitals by the nitrogen dopants generates conducting channels in the designed heterojunctions inducing multi-switching behavior with sequential negative differential resistance (NDR). The NDR behavior significantly depends on the doping site and conformation of doped nitrogen atoms. Furthermore, we provide a clear interpretation for the NDR behavior by a rigid shift model of the HOMO- and LUMO-filtered energy levels in the left and right electrodes under the applied biases. We believe that our results will give an insight into the design and implementation of various electronic logic functions based on CNTs for applications in the field of nanoelectronics.

  1. Analytically-derived sensitivities in one-dimensional models of solute transport in porous media

    USGS Publications Warehouse

    Knopman, D.S.

    1987-01-01

    Analytically-derived sensitivities are presented for parameters in one-dimensional models of solute transport in porous media. Sensitivities were derived by direct differentiation of closed form solutions for each of the odel, and by a time integral method for two of the models. Models are based on the advection-dispersion equation and include adsorption and first-order chemical decay. Boundary conditions considered are: a constant step input of solute, constant flux input of solute, and exponentially decaying input of solute at the upstream boundary. A zero flux is assumed at the downstream boundary. Initial conditions include a constant and spatially varying distribution of solute. One model simulates the mixing of solute in an observation well from individual layers in a multilayer aquifer system. Computer programs produce output files compatible with graphics software in which sensitivities are plotted as a function of either time or space. (USGS)

  2. Anomalous quantum heat transport in a one-dimensional harmonic chain with random couplings.

    PubMed

    Yan, Yonghong; Zhao, Hui

    2012-07-11

    We investigate quantum heat transport in a one-dimensional harmonic system with random couplings. In the presence of randomness, phonon modes may normally be classified as ballistic, diffusive or localized. We show that these modes can roughly be characterized by the local nearest-neighbor level spacing distribution, similarly to their electronic counterparts. We also show that the thermal conductance G(th) through the system decays rapidly with the system size (G(th) ∼ L(-α)). The exponent α strongly depends on the system size and can change from α < 1 to α > 1 with increasing system size, indicating that the system undergoes a transition from a heat conductor to a heat insulator. This result could be useful in thermal control of low-dimensional systems.

  3. Degenerate Bogdanov-Takens bifurcations in a one-dimensional transport model of a fusion plasma

    NASA Astrophysics Data System (ADS)

    de Blank, H. J.; Kuznetsov, Yu. A.; Pekkér, M. J.; Veldman, D. W. M.

    2016-09-01

    Experiments in tokamaks (nuclear fusion reactors) have shown two modes of operation: L-mode and H-mode. Transitions between these two modes have been observed in three types: sharp, smooth and oscillatory. The same modes of operation and transitions between them have been observed in simplified transport models of the fusion plasma in one spatial dimension. We study the dynamics in such a one-dimensional transport model by numerical continuation techniques. To this end the MATLAB package CL_MATCONTL was extended with the continuation of (codimension-2) Bogdanov-Takens bifurcations in three parameters using subspace reduction techniques. During the continuation of (codimension-2) Bogdanov-Takens bifurcations in 3 parameters, generically degenerate Bogdanov-Takens bifurcations of codimension-3 are detected. However, when these techniques are applied to the transport model, we detect a degenerate Bogdanov-Takens bifurcation of codimension 4. The nearby 1- and 2-parameter slices are in agreement with the presence of this codimension-4 degenerate Bogdanov-Takens bifurcation, and all three types of L-H transitions can be recognized in these slices. The same codimension-4 situation is observed under variation of the additional parameters in the model, and under some modifications of the model.

  4. A comprehensive one-dimensional numerical model for solute transport in rivers

    NASA Astrophysics Data System (ADS)

    Barati Moghaddam, Maryam; Mazaheri, Mehdi; MohammadVali Samani, Jamal

    2017-01-01

    One of the mechanisms that greatly affect the pollutant transport in rivers, especially in mountain streams, is the effect of transient storage zones. The main effect of these zones is to retain pollutants temporarily and then release them gradually. Transient storage zones indirectly influence all phenomena related to mass transport in rivers. This paper presents the TOASTS (third-order accuracy simulation of transient storage) model to simulate 1-D pollutant transport in rivers with irregular cross-sections under unsteady flow and transient storage zones. The proposed model was verified versus some analytical solutions and a 2-D hydrodynamic model. In addition, in order to demonstrate the model applicability, two hypothetical examples were designed and four sets of well-established frequently cited tracer study data were used. These cases cover different processes governing transport, cross-section types and flow regimes. The results of the TOASTS model, in comparison with two common contaminant transport models, shows better accuracy and numerical stability.

  5. Adsorption and Transport of Methane Molecules through One-Dimensional Channels in Dipeptide-Based Materials

    NASA Astrophysics Data System (ADS)

    Paradiso, Daniele; Perelli Cippo, Enrico; Gorini, Giuseppe; Rossi, Giorgio; Larese, John Z.

    The development of new materials for use in energy and environmental applications is of great interest, in particular in the areas of gas separation and carbon capture, where molecular transport plays a significant role. The dipeptides are organic molecules that offer an attractive possibility in such areas, because they form open hexagonal crystalline structures (space group P61) with quasi one-dimensional channels of tunable pore diameters in the range 3-6 Å. These molecular crystals exhibit selective adsorption, as well as, water and gas transport properties: these are believed to result from collective vibrations of the crystal structure that are coupled to the motions of the guest molecules within the channels. Current studies focus on characterizing the system methane and L-Isoleucyl-L-Valine (IV): this was initially done with high-resolution adsorption isotherms; then, high-resolution Inelastic Neutron Scattering measurements at the Spallation Neutron Source (BASIS spectrometer) revealed clear rotational tunneling peaks, offering details to unravel the potential energy surface of the system, as well as, evidences that channels flexibility and dynamical motion of the molecules have influence on the dipeptides adsorption properties.

  6. A transport based one-dimensional perturbation code for reactivity calculations in metal systems

    SciTech Connect

    Wenz, Tracy Renee

    1995-02-01

    A one-dimensional reactivity calculation code is developed using first order perturbation theory. The reactivity equation is based on the multi-group transport equation using the discrete ordinates method for angular dependence. In addition to the first order perturbation approximations, the reactivity code uses only the isotropic scattering data, but cross section libraries with higher order scattering data can still be used with this code. The reactivity code obtains all the flux, cross section, and geometry data from the standard interface files created by ONEDANT, a discrete ordinates transport code. Comparisons between calculated and experimental reactivities were done with the central reactivity worth data for Lady Godiva, a bare uranium metal assembly. Good agreement is found for isotopes that do not violate the assumptions in the first order approximation. In general for cases where there are large discrepancies, the discretized cross section data is not accurately representing certain resonance regions that coincide with dominant flux groups in the Godiva assembly. Comparing reactivities calculated with first order perturbation theory and a straight Δk/k calculation shows agreement within 10% indicating the perturbation of the calculated fluxes is small enough for first order perturbation theory to be applicable in the modeled system. Computation time comparisons between reactivities calculated with first order perturbation theory and straight {Delta}k/k calculations indicate considerable time can be saved performing a calculation with a perturbation code particularly as the complexity of the modeled problems increase.

  7. Thermal transport in one-dimensional superlattice and quasicrystal chains: Fullerene phononic crystal

    NASA Astrophysics Data System (ADS)

    Li, Jian; Zheng, Dong-qin; Zhong, Wei-rong

    2015-10-01

    In order to investigate the thermal transport in one-dimensional (1D) superlattice and quasicrystal chains, the simple harmonic-oscillator model and the C60 chains model, are studied through non-equilibrium molecular dynamics simulation. In the simple harmonic-oscillator model, we construct a simple periodic harmonic-oscillator chain by using two different stiffness coefficients alternatively. It is found that its thermal conductivity is smaller than in non-periodic chains, no matter which stiffness coefficient is used in the non-periodic chains. In order to test if this is true in a real material structure, a superlattice C60 chain is constructed by connecting perfect and defective C60 alternatively. The calculation outcome of the C60 chains coincides with the results of the simple harmonic-oscillator model, that the thermal conductivity of the superlattice C60 chain is smaller than that of perfect and defective crystal C60 chains. Besides this, we also studied the thermal transport properties of the quasicrystal C60 chain, which consists of a random defective C60 molecular structure. It is found that the thermal conductivity of the quasicrystal structure is far less than that of the crystal and superlattice chains. The phonon spectra of the perfect, defective and superlattice C60 chain are provided to give corresponding supports. Our results also propose a controllable method for the thermal management in nanoscale materials.

  8. One-Dimensional Transport with Equilibrium Chemistry (OTEQ) - A Reactive Transport Model for Streams and Rivers

    USGS Publications Warehouse

    Runkel, Robert L.

    2010-01-01

    OTEQ is a mathematical simulation model used to characterize the fate and transport of waterborne solutes in streams and rivers. The model is formed by coupling a solute transport model with a chemical equilibrium submodel. The solute transport model is based on OTIS, a model that considers the physical processes of advection, dispersion, lateral inflow, and transient storage. The equilibrium submodel is based on MINTEQ, a model that considers the speciation and complexation of aqueous species, acid-base reactions, precipitation/dissolution, and sorption. Within OTEQ, reactions in the water column may result in the formation of solid phases (precipitates and sorbed species) that are subject to downstream transport and settling processes. Solid phases on the streambed may also interact with the water column through dissolution and sorption/desorption reactions. Consideration of both mobile (waterborne) and immobile (streambed) solid phases requires a unique set of governing differential equations and solution techniques that are developed herein. The partial differential equations describing physical transport and the algebraic equations describing chemical equilibria are coupled using the sequential iteration approach. The model's ability to simulate pH, precipitation/dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between instream chemistry and hydrologic transport at the field scale. This report details the development and application of OTEQ. Sections of the report describe model theory, input/output specifications, model applications, and installation instructions. OTEQ may be obtained over the Internet at http://water.usgs.gov/software/OTEQ.

  9. One-dimensional numerical modeling of sediment transport and bed deformation in open channels

    NASA Astrophysics Data System (ADS)

    El Kadi Abderrezzak, Kamal; Paquier, André

    2009-05-01

    A one-dimensional numerical model for simulating unsteady flow and sediment transport in open channels is presented and tested. The flow hydrodynamics is represented by the shallow water equations, and the bed morphodynamics is represented by the Exner equation and an additional equation describing the nonequilibrium sediment transport. Sediment size distribution is represented by the median grain diameter and the standard deviation, instead of the usual modeling with multiple particle size classes. Various methods for computing bed elevation changes at a cross section due to erosion or deposition of sediment are proposed and tested, including an innovative approach that relates the spatial pattern of erosion and deposition rates to boundary shear stress distribution, which is calculated by the Merged Perpendicular Method. An explicit finite difference scheme is employed for solving the water and sediment governing equations. The pertinence of the model is examined for two hypothetical cases. The model is then tested on one set of laboratory experiments on bed degradation under steady flow, showing excellent model data fit, and indicating that incorporating a nonequilibrium sediment transport equation into the model structure is an important element in reproducing the bed degradation process. Finally, the model is applied to simulate the morphological changes taking place in the Ha!Ha! River (Quebec) after the failure of the Ha!Ha! Dyke on July 1996. Relevant results can be obtained in terms of changes in longitudinal bed profile and cross-sectional geometry as well as water levels, although some discrepancies are obtained between the simulated and surveyed cross-sectional geometries, mainly because bank failure and channel widening are not modeled.

  10. A one-dimensional mixed porohyperelastic transport swelling finite element model with growth

    PubMed Central

    Harper, J.L.; Simon, B.R.; Vande Geest, J.P.

    2013-01-01

    A one-dimensional, large-strain, mixed porohyperelastic transport and swelling (MPHETS) finite element model was developed in MATLAB and incorporated with a well-known growth model for soft tissues to allow the model to grow (increase in length) or shrink (decrease in length) at constant material density. By using the finite element model to determine the deformation and stress state, it is possible to implement different growth laws in the program in the future to simulate how soft tissues grow and behave when exposed to various stimuli (e.g. mechanical, chemical, or electrical). The essential assumptions needed to use the MPHETS model with growth are clearly identified and explained in this paper. The primary assumption in this work, however, is that the stress upon which growth acts is the stress in the solid skeleton, i.e. the effective stress, Seff. It is shown that significantly different amounts of growth are experienced for the same loading conditions when using a porohyperelastic model as compared to a purely solid model. In one particular example, approximately 51% less total growth occurred in the MPHETS model than in the solid model even though both problems were subjected to the same external loading. This work represents a first step in developing more sophisticated models capable of capturing the complex mechanical and biochemical environment in growing and remodeling tissues. PMID:23778062

  11. One-dimensional solute transport in stratified sands at short travel distances.

    PubMed

    Al-Tabbaa, A; Ayotamuno, J M; Martin, R J

    2000-03-13

    This paper presents laboratory-scale experimental observations on the migration of a non-reactive pollutant, sodium chloride, through stratified sands at short travel distances under one-dimensional flow conditions. Sand stratifications, perpendicular, parallel and inclined to the main flow direction, were used and contrary to most other published research work, flow was forced through the stratifications at a constant mean pore water velocity. The paper therefore examines the isolated effects of the different dispersion properties and particle size distribution of the sands used on their dispersion behaviour in different stratification configurations under the specified flow conditions. The initial part of the work on homogeneous sands produced differences in the dispersion which was found to be particle size distribution- and volume-dependent. For the stratified configurations and for the same volume of soil, the results showed different dispersion behaviour at the outflow position depending on the type of stratification and the sequence of the sands within each stratification. The paper presented a picture of the effect of various soils and flow conditions imposed on the transport of the solute and provided useful data on the profile of solute concentration for remediation purposes.

  12. Single-photon transport through an atomic chain coupled to a one-dimensional nanophotonic waveguide

    NASA Astrophysics Data System (ADS)

    Liao, Zeyang; Zeng, Xiaodong; Zhu, Shi-Yao; Zubairy, M. Suhail

    2015-08-01

    We study the dynamics of a single-photon pulse traveling through a linear atomic chain coupled to a one-dimensional (1D) single mode photonic waveguide. We derive a time-dependent dynamical theory for this collective many-body system which allows us to study the real time evolution of the photon transport and the atomic excitations. Our analytical result is consistent with previous numerical calculations when there is only one atom. For an atomic chain, the collective interaction between the atoms mediated by the waveguide mode can significantly change the dynamics of the system. The reflectivity of a photon can be tuned by changing the ratio of coupling strength and the photon linewidth or by changing the number of atoms in the chain. The reflectivity of a single-photon pulse with finite bandwidth can even approach 100 % . The spectrum of the reflected and transmitted photon can also be significantly different from the single-atom case. Many interesting physical phenomena can occur in this system such as the photonic band-gap effects, quantum entanglement generation, Fano-like interference, and superradiant effects. For engineering, this system may serve as a single-photon frequency filter, single-photon modulation, and may find important applications in quantum information.

  13. Dynamics, kinetics, and transport properties of the one-dimensional mass-disordered harmonic lattice.

    PubMed

    Likhachev, Vladimir N; Vinogradov, George A; Astakhova, Tatyana Yu; Yakovenko, Andrey E

    2006-01-01

    In the present paper we thoroughly investigated the dynamics, kinetics, and the transport properties of the one-dimensional (1D) mass-disordered lattice of harmonic oscillators with the number of particles N < or =5000. The thermostat is simulated by the Langevin sources. Our method is adequate to any 1D lattice with linear equations of motion. Two accurate methods to calculate the temporal behavior of pair correlation functions were developed. The feature of the considered disordered model is an existence of localized states with great relaxation times tau to their stationary states. The exponential growth tau proportional variant exp(N) is observed. A method which allows us to extend the range of computed relaxation times up to tau approximately =(10)300 is suggested. The stationary state is unique. The thermal conduction x has the nonmonotonic character versus N: for the number of particles N < 300 the thermal conduction increases as x proportional variant ln N and reaches the maximal value at N approximately =300. At larger values the decreasing asymptotic is observed: x proportional variant N -alpha, and alpha approximately 0.27. An influence of parameters on the calculated properties was analyzed. Mathematical problems associated with the computation of very large times of establishing the stationary states were extensively studied.

  14. Electronic transport properties in random one-dimensional chains containing mesoscopic-ring defects

    NASA Astrophysics Data System (ADS)

    Huang, X.

    1999-11-01

    We study the electronic transport properties in one-dimensional systems with two kinds of mesoscopic ring defects: squarelike mesoscopic ring (SMR) defects and siamese-twins-like mescoscopic ring (STMR) defects. By using the transfer-matrix method, the resonant energies (where the transmission coefficient T=1) are derived successfully for both system. For the one SMR defect system, two resonant energies are found as a function of the magnetic flux Φ threading the ring defect, while for the latter case, two magnetic-flux-dependent and one magnetic-flux-independent resonant energies are predicted in the system, furthermore, if Φ takes some specific values, one of the Φ-dependent resonant energies may be the same as the Φ-independent resonant energy. The word ``resonant'' is used to describe this situation. When a finite concentration of SMR or STMR defects are randomly embedded in a perfect chain, the numerical results confirm all the analytical predictions. Finally, for the ``resonant'' case, we show numerically a rather wide perfect transmission region which is almost ten times as wide as that of the ``unresonant'' case.

  15. Quasi one-dimensional transport in doped polythiophene and polythiophene thin film transistors

    NASA Astrophysics Data System (ADS)

    Yuen, Jonathan Dsu-Bei

    Conducting and semiconducting polymers are important materials in the development of printed, mechanically flexible, large area electronics for various applications, such as flat panel displays and photovoltaic cells. The development of conjugated polymers of high mobility for thin-film transistor active layers, in particular, has been very rapid, starting with early mobilities of around 10-4cm2/Vs to a recent report of 1cm 2/Vs in transistors with an active layer of poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT). Metallic behavior has a long history in the field of conjugated polymers and recently, even "true" metallic transport has been observed with drho/dT > 0. Thus, development of such high-mobility polymers also raises the possibility that similar behavior will also occur in such materials. A suitable candidate is PBTTT, which is a high performance, rigid-rod conjugated polymer that possesses a thermally-induced liquid crystalline phase where the polymer chains pack into stacked structures, forming two-dimensional layered terraces which extend laterally over hundreds of nanometers, contributing greatly to its high mobility. In this work, the electrical properties of PBTTT are studied under high charge densities both as the active layer in transistors and in electrochemically doped films, in order to determine the mechanism that governs its transport. This thesis will first describe the process of experimental setup and optimization required to produce high performance transistors and doped films; data derived from this is analyzed and correlated to suitable models that may describe charge behavior in these samples. We show that the data obtained using a wide range of parameters (temperature, gate-induced carrier density, source-drain voltage and doping level) scale onto the universal curve predicted for transport in a systems with electronic structure described by the Luttinger Liquid model, a one-dimensional "metallic" system where

  16. Exact solution of three-dimensional transport problems using one-dimensional models. [in semiconductor devices

    NASA Technical Reports Server (NTRS)

    Misiakos, K.; Lindholm, F. A.

    1986-01-01

    Several parameters of certain three-dimensional semiconductor devices including diodes, transistors, and solar cells can be determined without solving the actual boundary-value problem. The recombination current, transit time, and open-circuit voltage of planar diodes are emphasized here. The resulting analytical expressions enable determination of the surface recombination velocity of shallow planar diodes. The method involves introducing corresponding one-dimensional models having the same values of these parameters.

  17. Absolutely continuous spectrum and ballistic transport in a one-dimensional quasiperiodic system

    NASA Astrophysics Data System (ADS)

    Pal, Biplab; Chakrabarti, Arunava

    2013-02-01

    We analyse a quasiperiodic arrangement of four atomic sites sitting at the vertices of a diamond shaped plaquette and single isolated sites, occupying a one dimensional backbone following a Fibonacci quasicrystal pattern. We work within a tight binding formalism. It is shown that, even with this simple deviation from pure one dimension, a definite relation between the numerical values of the system parameters will render all the single particle states completely extended. The spectrum will be absolutely continuous with the transmission completely ballistic throughout the band, completely violating the Cantor set character of the usual Fibonacci quasiperiodic chains.

  18. Thermal transport in a one-dimensional Z2 spin liquid

    NASA Astrophysics Data System (ADS)

    Metavitsiadis, Alexandros; Brenig, Wolfram

    2017-07-01

    We study the dynamical thermal conductivity of the Kitaev spin model on a two-leg ladder. In contrast to the majority of conventional one-dimensional spin systems, we show the ladder to exhibit no ballistic channel and a zero-frequency pseudogap. This is a direct consequence of the fractionalization of spins into mobile Majorana matter and a static Z2 gauge field, which acts as an emergent thermally activated disorder. Our finding rests on complementary calculations of the current correlation function, comprising a phenomenological mean-field treatment of thermal gauge fluctuations, a complete summation over all gauge sectors, as well as exact diagonalization of the original spin model. The results will also be contrasted against the conductivity discarding gauge fluctuations.

  19. Nonuniversal transport exponents in quasi-one-dimensional systems with a power-law distribution of conductances

    NASA Astrophysics Data System (ADS)

    Havlin, Shlomo; Bunde, Armin; Weissman, Haim; Aharony, Amnon

    1987-01-01

    We study transport in quasi-one-dimensional systems consisting of n connected parallel chains of length L with a power-law distribution of bond conductivities P(σ)~σ-α α<1, σ<=1. When the transverse bonds are perfect conductors, we find that the conventional law for the transport exponents in one-dimensional systems is not universal but depends sensitively on n. For n finite, there exists a critical value of α, αc=1-1/n. For α<=αc, the resistivity exponent ζ¯ and the diffusion exponent dw stick at their classical values ζ¯=1 and dw=2. For α>αc, both exponents vary continuously with n: ζ¯=1/n(1-α) and dw=1+1/n(1-α). These values represent lower bounds if the transverse bonds have the same power-law distribution. In the case of n=1, the transport exponents accept their well-known one-dimensional values. In the two-dimensional limit n~L, we obtain ζ¯=0 and dw=2, irrespective of α. .AE

  20. An analytical solution for one-dimensional contaminant diffusion through multi-layered system and its applications

    NASA Astrophysics Data System (ADS)

    Chen, Yunmin; Xie, Haijian; Ke, Han; Chen, Renpeng

    2009-09-01

    An analytical solution for one-dimensional contaminant diffusion through multi-layered media is derived regarding the change of the concentration of contaminants at the top boundary with time. The model accounts for the arbitrary initial conditions and the conditions of zero concentration and zero mass flux on the bottom boundary. The average degree of diffusion of the layered system is introduced on the basis of the solution. The results obtained by the presented analytical solutions agree well with those obtained by the numerical methods presented in the literature papers. The application of the analytical solution to the problem of landfill liner design is illustrated by considering a composite liner consisting of geomembrane and compacted clay liner. The results show that the 100-year mass flux of benzene at the bottom of the composite liner is 45 times higher than that of acetone for the same composite liner. The half-life of the contaminant has a great influence on the solute flux of benzene diffused into the underlying aquifer. Results also indicates that an additional 2.9-5.0 m of the conventional (untreated) compacted clay liner under the geomembrane is required to achieve the same level of protection as provided by 0.60 m of the Hexadecyltrimethylammonium (HDTMA)-treated compacted clay liners in conjunction with the geomembrane. Applications of the solution are also presented in the context of a contaminated two-layered media to demonstrate that different boundary and initial conditions can greatly affect the decontamination rate of the problem. The method is relatively simple to apply and can be used for performing equivalency analysis of landfill liners, preliminary design of groundwater remediation system, evaluating experimental results, and verifying more complex numerical models.

  1. Heat and particle transport in a one-dimensional hard-point gas model with on-site potential

    SciTech Connect

    Wang, Lei

    2015-05-15

    Heat and particle transport in a one-dimensional hard-point gas of elastically colliding particles are studied. In the nonequal mass case, due to the presence of on-site potential, the heat conduction of the model obeys the Fourier law and all the transport coefficients asymptotically approach constants in the thermodynamic limit. The thermoelectric figure of merit ZT increases slowly with the system length L and is proportional to the height of the potential barriers H in high H regime. These findings may serve as a guide for future theoretical and experimental studies.

  2. Ballistic transport in the one-dimensional Hubbard model: The hydrodynamic approach

    NASA Astrophysics Data System (ADS)

    Ilievski, Enej; De Nardis, Jacopo

    2017-08-01

    We outline a general formalism of hydrodynamics for quantum systems with multiple particle species which undergo completely elastic scattering. In the thermodynamic limit, the complete kinematic data of the problem consist of the particle content, the dispersion relations, and a universal dressing transformation which accounts for interparticle interactions. We consider quantum integrable models and we focus on the one-dimensional fermionic Hubbard model. By linearizing hydrodynamic equations, we provide exact closed-form expressions for Drude weights, generalized static charge susceptibilities, and charge-current correlators valid on the hydrodynamic scale, represented as integral kernels operating diagonally in the space of mode numbers of thermodynamic excitations. We find that, on hydrodynamic scales, Drude weights manifestly display Onsager reciprocal relations even for generic (i.e., noncanonical) equilibrium states, and establish a generalized detailed balance condition for a general quantum integrable model. We present exact analytic expressions for the general Drude weights in the Hubbard model, and explain how to reconcile different approaches for computing Drude weights from the previous literature.

  3. Finite-temperature charge transport in the one-dimensional Hubbard model

    NASA Astrophysics Data System (ADS)

    Jin, F.; Steinigeweg, R.; Heidrich-Meisner, F.; Michielsen, K.; De Raedt, H.

    2015-11-01

    We study the charge conductivity of the one-dimensional repulsive Hubbard model at finite temperature using the method of dynamical quantum typicality, focusing at half filling. This numerical approach allows us to obtain current autocorrelation functions from systems with as many as 18 sites, way beyond the range of standard exact diagonalization. Our data clearly suggest that the charge Drude weight vanishes with a power law as a function of system size. The low-frequency dependence of the conductivity is consistent with a finite dc value and thus with diffusion, despite large finite-size effects. Furthermore, we consider the mass-imbalanced Hubbard model for which the charge Drude weight decays exponentially with system size, as expected for a nonintegrable model. We analyze the conductivity and diffusion constant as a function of the mass imbalance and we observe that the conductivity of the lighter component decreases exponentially fast with the mass-imbalance ratio. While in the extreme limit of immobile heavy particles, the Falicov-Kimball model, there is an effective Anderson-localization mechanism leading to a vanishing conductivity of the lighter species, we resolve finite conductivities for an inverse mass ratio of η ≳0.25 .

  4. A One-group, One-dimensional Transport Benchmark in Cylindrical Geometry

    SciTech Connect

    Barry Ganapol; Abderrafi M. Ougouag

    2006-06-01

    A 1-D, 1-group computational benchmark in cylndrical geometry is described. This neutron transport benchmark is useful for evaluating reactor concepts that possess azimuthal symmetry such as a pebble-bed reactor.

  5. Electronic transport properties of one dimensional lithium nanowire using density functional theory

    SciTech Connect

    Thakur, Anil; Kumar, Arun; Chandel, Surjeet; Ahluwalia, P. K.

    2015-05-15

    Single nanowire electrode devices are a unique platform for studying as energy storage devices. Lithium nanowire is of much importance in lithium ion batteries and therefore has received a great deal of attention in past few years. In this paper we investigated structural and electronic transport properties of Li nanowire using density functional theory (DFT) with SIESTA code. Electronic transport properties of Li nanowire are investigated theoretically. The calculations are performed in two steps: first an optimized geometry for Li nanowire is obtained using DFT calculations, and then the transport relations are obtained using NEGF approach. SIESTA and TranSIESTA simulation codes are used in the calculations correspondingly. The electrodes are chosen to be the same as the central region where transport is studied, eliminating current quantization effects due to contacts and focusing the electronic transport study to the intrinsic structure of the material. By varying chemical potential in the electrode regions, an I-V curve is traced which is in agreement with the predicted behavior. Agreement of bulk properties of Li with experimental values make the study of electronic and transport properties in lithium nanowires interesting because they are promising candidates as bridging pieces in nanoelectronics. Transmission coefficient and V-I characteristic of Li nano wire indicates that Li nanowire can be used as an electrode device.

  6. Electronic transport properties of one dimensional lithium nanowire using density functional theory

    NASA Astrophysics Data System (ADS)

    Thakur, Anil; Kumar, Arun; Chandel, Surjeet; Ahluwalia, P. K.

    2015-05-01

    Single nanowire electrode devices are a unique platform for studying as energy storage devices. Lithium nanowire is of much importance in lithium ion batteries and therefore has received a great deal of attention in past few years. In this paper we investigated structural and electronic transport properties of Li nanowire using density functional theory (DFT) with SIESTA code. Electronic transport properties of Li nanowire are investigated theoretically. The calculations are performed in two steps: first an optimized geometry for Li nanowire is obtained using DFT calculations, and then the transport relations are obtained using NEGF approach. SIESTA and TranSIESTA simulation codes are used in the calculations correspondingly. The electrodes are chosen to be the same as the central region where transport is studied, eliminating current quantization effects due to contacts and focusing the electronic transport study to the intrinsic structure of the material. By varying chemical potential in the electrode regions, an I-V curve is traced which is in agreement with the predicted behavior. Agreement of bulk properties of Li with experimental values make the study of electronic and transport properties in lithium nanowires interesting because they are promising candidates as bridging pieces in nanoelectronics. Transmission coefficient and V-I characteristic of Li nano wire indicates that Li nanowire can be used as an electrode device.

  7. Benchmarking a Visual-Basic based multi-component one-dimensional reactive transport modeling tool

    NASA Astrophysics Data System (ADS)

    Torlapati, Jagadish; Prabhakar Clement, T.

    2013-01-01

    We present the details of a comprehensive numerical modeling tool, RT1D, which can be used for simulating biochemical and geochemical reactive transport problems. The code can be run within the standard Microsoft EXCEL Visual Basic platform, and it does not require any additional software tools. The code can be easily adapted by others for simulating different types of laboratory-scale reactive transport experiments. We illustrate the capabilities of the tool by solving five benchmark problems with varying levels of reaction complexity. These literature-derived benchmarks are used to highlight the versatility of the code for solving a variety of practical reactive transport problems. The benchmarks are described in detail to provide a comprehensive database, which can be used by model developers to test other numerical codes. The VBA code presented in the study is a practical tool that can be used by laboratory researchers for analyzing both batch and column datasets within an EXCEL platform.

  8. Analytical solutions for one-dimensional colloid transport in saturated fractures

    NASA Astrophysics Data System (ADS)

    Abdel-Salam, Assem; Chrysikopoulos, Constantinos V.

    Closed-form analytical solutions for colloid transport in single rock fractures with and without colloid penetration into the rock matrix are derived for constant concentration as well as constant flux boundary conditions. A single fracture is idealized as two semi-infinite parallel plates. It is assumed that colloidal particles undergo irreversible deposition onto fracture surfaces and may penetrate into the rock matrix, and deposit irreversibly onto rock matrix solid surfaces. The solutions are obtained by taking Laplace transforms to the governing transport equations and boundary conditions with respect to time and space. For the case of no colloid penetration into the rock matrix, the solutions are expressed in terms of exponentials and complimentary error functions; whereas, for the case of colloid penetration into the rock matrix, the solutions are expressed in terms of convolution integrals and modified Bessel functions. The impact of the model parameters on colloid transport is examined. The results from several simulations indicate that liquid-phase as well as deposited colloid concentrations in the fracture are sensitive to the fracture surface deposition coefficient, the fracture aperture, and the Brownian diffusion coefficient for colloidal particles penetrating the rock matrix. Furthermore, it is shown that the differences between the two boundary conditions investigated are minimized at dominant advective transport conditions. The constant concentration condition overestimates liquid-phase colloid concentrations, whereas the constant flux condition leads to conservation of mass.

  9. Bifurcation theory of a one-dimensional transport model for the L-H transition

    SciTech Connect

    Weymiens, W.; Blank, H. J. de; Hogeweij, G. M. D.

    2013-08-15

    Transitions between low and high-confinement (L-H transitions) in magnetically confined plasmas can appear as three qualitatively different types: sharp, smooth, and oscillatory. Bifurcation analysis unravels these possible transition types and how they are situated in parameter space. In this paper the bifurcation analysis is applied to a 1-dimensional model for the radial transport of energy and density near the edge of magnetically confined plasmas. This phenomenological L-H transition model describes the reduction of the turbulent transport by E×B-flow shear self-consistently with the evolution of the radial electric field. Therewith, the exact parameter space, including the threshold values of the control parameters, of the possible L-H transitions in the model is determined. Furthermore, a generalised equal area rule is derived to describe the evolution of the transport barrier in space and time self-consistently. Applying this newly developed rule to the model analysed in this paper reveals a naturally occurring transition to an extra wide transport barrier that may correspond to the improved confinement known as the very-high-confinement mode.

  10. One dimensional heavy ion beam transport: Energy independent model. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Farhat, Hamidullah

    1990-01-01

    Attempts are made to model the transport problem for heavy ion beams in various targets, employing the current level of understanding of the physics of high-charge and energy (HZE) particle interaction with matter are made. An energy independent transport model, with the most simplified assumptions and proper parameters is presented. The first and essential assumption in this case (energy independent transport) is the high energy characterization of the incident beam. The energy independent equation is solved and application is made to high energy neon (NE-20) and iron (FE-56) beams in water. The numerical solutions is given and compared to a numerical solution to determine the accuracy of the model. The lower limit energy for neon and iron to be high energy beams is calculated due to Barkas and Burger theory by LBLFRG computer program. The calculated values in the density range of interest (50 g/sq cm) of water are: 833.43 MeV/nuc for neon and 1597.68 MeV/nuc for iron. The analytical solutions of the energy independent transport equation gives the flux of different collision terms. The fluxes of individual collision terms are given and the total fluxes are shown in graphs relative to different thicknesses of water. The values for fluxes are calculated by the ANASTP computer code.

  11. One dimensional heavy ion beam transport: Energy independent model. M. S. Thesis

    SciTech Connect

    Farhat, H.

    1990-04-01

    Attempts are made to model the transport problem for heavy ion beams in various targets, employing the current level of understanding of the physics of high-charge and energy (HZE) particle interaction with matter are made. An energy independent transport model, with the most simplified assumptions and proper parameters is presented. The first and essential assumption in this case (energy independent transport) is the high energy characterization of the incident beam. The energy independent equation is solved and application is made to high energy neon (NE-20) and iron (FE-56) beams in water. The numerical solutions is given and compared to a numerical solution to determine the accuracy of the model. The lower limit energy for neon and iron to be high energy beams is calculated due to Barkas and Burger theory by LBLFRG computer program. The calculated values in the density range of interest (50 g/sq cm) of water are: 833.43 MeV/nuc for neon and 1597.68 MeV/nuc for iron. The analytical solutions of the energy independent transport equation gives the flux of different collision terms. The fluxes of individual collision terms are given and the total fluxes are shown in graphs relative to different thicknesses of water. The values for fluxes are calculated by the ANASTP computer code.

  12. Low-temperature electronic transport in one-dimensional hybrid systems: Metal cluster embedded carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Soldano, Caterina

    The investigation of the electronic and magnetotransport properties at low temperature in individual MWNT with embedded clusters are here presented. The majority of studies of transport in MWNT reported in literature has been carried out on arc-discharge grown tubes, generally considered "clean" and defect-free. In this project, individual MWNT grown in alumina template are used; these tubes are highly disordered compared for example to arc-discharge ones, conditions that dramatically will impact the charge transport. As-fabricated devices are in general highly resistive. A large decrease in the value of the device resistance can be achieved through a controlled and fast high-bias sweep method (HBT) across the sample. Scanning electron microscopy analysis shows that this method induces a metal (platinum) decoration of the MWNT surface as a consequence of the large amount of Joule heating developed during the sweep. Temperature dependence study (5transport mechanism takes place through tunneling between adjacent graphene flakes. Platinum-decorated devices show a Luttinger liquid behavior in the high temperature regime and a large suppression of the conductance at low temperature due to e-e interactions. Transport properties are studied in light of a recently proposed model for disordered multi-channel quantum wires. DFT calculations show that the enhancement in conductance can be explained in term of enhanced density of states around the Fermi energy due to presence of platinum on the wall. Magneto-transport measurements carried out up to a value of magnetic field up to |5|T show a clear dependence from the energy (i.e. applied bias). A nearly symmetric and monotonically increasing positive magneto-conductance is observed in the

  13. One-dimensional transport in hybrid metal-semiconductor nanotube systems

    NASA Astrophysics Data System (ADS)

    Gelin, M. F.; Bondarev, I. V.

    2016-03-01

    We develop an electron transport theory for the hybrid system of a semiconducting carbon nanotube that encapsulates a one-atom-thick metallic wire. The theory predicts Fano resonances in electron transport through the system, whereby the interaction of electrons on the wire with nanotube plasmon generated near fields blocks some of the wire transmission channels to open up the new coherent plasmon-mediated channel in the nanotube forbidden gap outside the wire transmission band. Such a channel makes the entire hybrid system transparent in the energy domain where neither wire nor nanotube is individually transparent. This effect can be used to control and optimize charge transfer in hybrid nanodevices built on metal-semiconductor nanotube systems.

  14. One-dimensional deterministic transport in neurons measured by dispersion-relation phase spectroscopy

    PubMed Central

    Wang, Ru; Wang, Zhuo; Leigh, Joe; Sobh, Nahil; Millet, Larry; Gillette, Martha U.; Levine, Alex J.; Popescu, Gabriel

    2011-01-01

    We studied the active transport of intracellular components along neuron processes with a new method developed in our laboratory, dispersion-relation phase spectroscopy. This method is able to quantitatively map spatially the heterogeneous dynamics of the concentration field of the cargos at submicron resolution without the need for tracking individual components. The results in terms of density correlation function reveal that the decay rate is linear in wavenumber, which is consistent with a narrow Lorentzian distribution of cargo velocity. PMID:21862838

  15. Confining interparticle potential makes both heat transport and energy diffusion anomalous in one-dimensional phononic systems

    NASA Astrophysics Data System (ADS)

    Kosevich, Yuriy A.; Savin, Alexander V.

    2016-10-01

    We provide molecular dynamics simulation of heat transport and energy diffusion in one-dimensional molecular chains with different interparticle pair potentials at zero and non-zero temperature. We model the thermal conductivity (TC) and energy diffusion (ED) in the chain of coupled rotators and in the Lennard-Jones chain either without or with the confining parabolic interparticle potential. The considered chains without the confining potential have normal TC and ED at non-zero temperature, while the corresponding chains with the confining potential are characterized by anomalous (diverging with the system length) TC and superdiffusion of energy. Similar effect is produced by the anharmonic quartic confining pair potential. We confirm in such a way that, surprisingly, the confining pair potential makes both heat transport and energy diffusion anomalous in one-dimensional phononic systems. We show that the normal TC is always accompanied by the normal ED in the thermalized anharmonic chains, while the superdiffusion of energy occurs in the thermalized chains with only anomalous heat transport.

  16. Revealing origin of quasi-one dimensional current transport in defect rich two dimensional materials

    SciTech Connect

    Lotz, Mikkel R.; Boll, Mads; Bøggild, Peter; Petersen, Dirch H.; Hansen, Ole; Kjær, Daniel

    2014-08-04

    The presence of defects in graphene have for a long time been recognized as a bottleneck for its utilization in electronic and mechanical devices. We recently showed that micro four-point probes may be used to evaluate if a graphene film is truly 2D or if defects in proximity of the probe will lead to a non-uniform current flow characteristic of lower dimensionality. In this work, simulations based on a finite element method together with a Monte Carlo approach are used to establish the transition from 2D to quasi-1D current transport, when applying a micro four-point probe to measure on 2D conductors with an increasing amount of line-shaped defects. Clear 2D and 1D signatures are observed at low and high defect densities, respectively, and current density plots reveal the presence of current channels or branches in defect configurations yielding 1D current transport. A strong correlation is found between the density filling factor and the simulation yield, the fraction of cases with 1D transport and the mean sheet conductance. The upper transition limit is shown to agree with the percolation threshold for sticks. Finally, the conductance of a square sample evaluated with macroscopic edge contacts is compared to the micro four-point probe conductance measurements and we find that the micro four-point probe tends to measure a slightly higher conductance in samples containing defects.

  17. One-dimensional subsurface transport of a nonaqueous phase liquid containing sparingly water soluble organics: A front-tracking model

    SciTech Connect

    Ryan, P.A.; Cohen, Y. )

    1991-07-01

    A one-dimensional multiphase mass transport model for the migration of a nonaqueous phase liquid (NAPL) containing sparingly water soluble organics in the unsaturated soil zone is described. The multiphase NAPL transport (MUNT) model consists of a two-phase immiscible flow model linked to a four-phase chemical transport model. The immiscible flow model incorporates a front-tracking algorithm to determine the front of the invading NAPL as a function of penetration time. The NAPL penetration toward groundwater is shown to be a function of four dimensionless groups: NAPL capillary number, the ratio of the NAPL Reynolds number to the NAPL Froude number, and the ratio of the defending phase to NAPL phase densities and viscosities. Simulations for the migration of organic chemicals show that their concentration in the air and aqueous phases past the front can be significant.

  18. Transition between one-dimensional and zero-dimensional spin transport studied by Hanle precession

    NASA Astrophysics Data System (ADS)

    Wojtaszek, M.; Vera-Marun, I. J.; van Wees, B. J.

    2014-06-01

    The precession of electron spins in a perpendicular magnetic field, the so-called Hanle effect, provides an unique insight into spin properties of a nonmagnetic material. In practice, the spin signal is fitted to the analytic solution of the spin Bloch equation, which accounts for diffusion, relaxation, and precession effects on spin. The analytic formula, however, is derived for an infinite length of the 1D spin channel. This is usually not satisfied in the real devices. The finite size of the channel length ldev leads to confinement of spins and increase of spin accumulation. Moreover, reflection of spins from the channel ends leads to spin interference, altering the characteristic precession line shape. In this work we study the influence of finite ldev on the Hanle line shape and show when it can lead to a twofold discrepancy in the extracted spin coefficients. We propose the extension of the Hanle analytic formula to include the geometrical aspects of the real device and get an excellent agreement with a finite-element model of spin precession, where this geometry is explicitly set. We also demonstrate that in the limit of a channel length shorter than the spin relaxation length λs, the spin diffusion is negligible and a 0D spin transport description with the Lorentzian precession dependence applies. We provide a universal criterion for which transport description, 0D or 1D, to apply depending on the ratio ldev/λs and the corresponding accuracy of such a choice.

  19. User's manual for ONEDANT: a code package for one-dimensional, diffusion-accelerated, neutral-particle transport

    SciTech Connect

    O'Dell, R.D.; Brinkley, F.W. Jr.; Marr, D.R.

    1982-02-01

    ONEDANT is designed for the CDC-7600, but the program has been implemented and run on the IBM-370/190 and CRAY-I computers. ONEDANT solves the one-dimensional multigroup transport equation in plane, cylindrical, spherical, and two-angle plane geometries. Both regular and adjoint, inhomogeneous and homogeneous (k/sub eff/ and eigenvalue search) problems subject to vacuum, reflective, periodic, white, albedo, or inhomogeneous boundary flux conditions are solved. General anisotropic scattering is allowed and anisotropic inhomogeneous sources are permitted. ONEDANT numerically solves the one-dimensional, multigroup form of the neutral-particle, steady-state form of the Boltzmann transport equation. The discrete-ordinates approximation is used for treating the angular variation of the particle distribution and the diamond-difference scheme is used for phase space discretization. Negative fluxes are eliminated by a local set-to-zero-and-correct algorithm. A standard inner (within-group) iteration, outer (energy-group-dependent source) iteration technique is used. Both inner and outer iterations are accelerated using the diffusion synthetic acceleration method. (WHK)

  20. Quantum ballistic transport by interacting two-electron states in quasi-one-dimensional channels

    SciTech Connect

    Huang, Danhong; Gumbs, Godfrey; Abranyos, Yonatan; Pepper, Michael; Kumar, Sanjeev

    2015-11-15

    For quantum ballistic transport of electrons through a short conduction channel, the role of Coulomb interaction may significantly modify the energy levels of two-electron states at low temperatures as the channel becomes wide. In this regime, the Coulomb effect on the two-electron states is calculated and found to lead to four split energy levels, including two anticrossing-level and two crossing-level states. Moreover, due to the interplay of anticrossing and crossing effects, our calculations reveal that the ground two-electron state will switch from one anticrossing state (strong confinement) to a crossing state (intermediate confinement) as the channel width gradually increases and then back to the original anticrossing state (weak confinement) as the channel width becomes larger than a threshold value. This switching behavior leaves a footprint in the ballistic conductance as well as in the diffusion thermoelectric power of electrons. Such a switching is related to the triple spin degeneracy as well as to the Coulomb repulsion in the central region of the channel, which separates two electrons away and pushes them to different channel edges. The conductance reoccurrence region expands from the weak to the intermediate confinement regime with increasing electron density.

  1. Double path integral method for obtaining the mobility of the one-dimensional charge transport in molecular chain.

    PubMed

    Yoo-Kong, Sikarin; Liewrian, Watchara

    2015-12-01

    We report on a theoretical investigation concerning the polaronic effect on the transport properties of a charge carrier in a one-dimensional molecular chain. Our technique is based on the Feynman's path integral approach. Analytical expressions for the frequency-dependent mobility and effective mass of the carrier are obtained as functions of electron-phonon coupling. The result exhibits the crossover from a nearly free particle to a heavily trapped particle. We find that the mobility depends on temperature and decreases exponentially with increasing temperature at low temperature. It exhibits large polaronic-like behaviour in the case of weak electron-phonon coupling. These results agree with the phase transition (A.S. Mishchenko et al., Phys. Rev. Lett. 114, 146401 (2015)) of transport phenomena related to polaron motion in the molecular chain.

  2. Energy transport mechanism in the form of proton soliton in a one-dimensional hydrogen-bonded polypeptide chain.

    PubMed

    Kavitha, L; Priya, R; Ayyappan, N; Gopi, D; Jayanthi, S

    2016-01-01

    The dynamics of protons in a one-dimensional hydrogen-bonded (HB) polypeptide chain (PC) is investigated theoretically. A new Hamiltonian is formulated with the inclusion of higher-order molecular interactions between peptide groups (PGs). The wave function of the excitation state of a single particle is replaced by a new wave function of a two-quanta quasi-coherent state. The dynamics is governed by a higher-order nonlinear Schrödinger equation and the energy transport is performed by the proton soliton. A nonlinear multiple-scale perturbation analysis has been performed and the evolution of soliton parameters such as velocity and amplitude is explored numerically. The proton soliton is thermally stable and very robust against these perturbations. The energy transport by the proton soliton is more appropriate to understand the mechanism of energy transfer in biological processes such as muscle contraction, DNA replication, and neuro-electric pulse transfer on biomembranes.

  3. Length-dependent thermal transport in one-dimensional self-assembly of planar π-conjugated molecules

    NASA Astrophysics Data System (ADS)

    Tang, Hao; Xiong, Yucheng; Zu, Fengshuo; Zhao, Yang; Wang, Xiaomeng; Fu, Qiang; Jie, Jiansheng; Yang, Juekuan; Xu, Dongyan

    2016-06-01

    This work reports a thermal transport study in quasi-one-dimensional organic nanostructures self-assembled from conjugated planar molecules via π-π interactions. Thermal resistances of single crystalline copper phthalocyanine (CuPc) and perylenetetracarboxylic diimide (PTCDI) nanoribbons are measured via a suspended thermal bridge method. We experimentally observed the deviation from the linear length dependence for the thermal resistance of single crystalline β-phase CuPc nanoribbons, indicating possible subdiffusion thermal transport. Interestingly, a gradual transition to the linear length dependence is observed with the increase of the lateral dimensions of CuPc nanoribbons. The measured thermal resistance of single crystalline CuPc nanoribbons shows an increasing trend with temperature. However, the trend of temperature dependence of thermal resistance is reversed after electron irradiation, i.e., decreasing with temperature, indicating that the single crystalline CuPc nanoribbons become `amorphous'. Similar behavior is also observed for PTCDI nanoribbons after electron irradiation, proving that the electron beam can induce amorphization of single crystalline self-assembled nanostructures of planar π-conjugated molecules. The measured thermal resistance of the `amorphous' CuPc nanoribbon demonstrates a roughly linear dependence on the nanoribbon length, suggesting that normal diffusion dominates thermal transport.This work reports a thermal transport study in quasi-one-dimensional organic nanostructures self-assembled from conjugated planar molecules via π-π interactions. Thermal resistances of single crystalline copper phthalocyanine (CuPc) and perylenetetracarboxylic diimide (PTCDI) nanoribbons are measured via a suspended thermal bridge method. We experimentally observed the deviation from the linear length dependence for the thermal resistance of single crystalline β-phase CuPc nanoribbons, indicating possible subdiffusion thermal transport

  4. Anisotropic transport in the quasi-one-dimensional semiconductor Li{sub 0.33}MoO{sub 3}

    SciTech Connect

    Moshfeghyeganeh, S.; Cote, A. N.; Cohn, J. L.; Neumeier, J. J.

    2016-03-07

    Transport measurements (electrical resistivity, Seebeck coefficient, and thermal conductivity) in the temperature range 80–500 K are presented for single crystals of the quasi-one-dimensional (Q1D) semiconductor Li{sub 0.33}MoO{sub 3}. Opposite signs are observed for the Seebeck coefficient along the trinclinic a and c axes, with S{sub c} − S{sub a} ≃ 250 μV/K near room temperature and ≃100 μV/K at 380 K. The thermal conductivity at room temperature in the a-c planes was ∼2 W/m K and ∼10 times smaller along b*. A weak structural anomaly at T{sub s} ≈ 355 K, identified in the temperature-dependent lattice constants, coincides with anomalies in the electrical properties. Analysis of the electronic transport at T > T{sub s} favors an intrinsic semiconductor picture for transport along the most conducting Q1D axis and small-polaronic transport along the other directions, providing insight into the origin of the Seebeck anisotropy.

  5. Length-dependent thermal transport in one-dimensional self-assembly of planar π-conjugated molecules.

    PubMed

    Tang, Hao; Xiong, Yucheng; Zu, Fengshuo; Zhao, Yang; Wang, Xiaomeng; Fu, Qiang; Jie, Jiansheng; Yang, Juekuan; Xu, Dongyan

    2016-06-09

    This work reports a thermal transport study in quasi-one-dimensional organic nanostructures self-assembled from conjugated planar molecules via π-π interactions. Thermal resistances of single crystalline copper phthalocyanine (CuPc) and perylenetetracarboxylic diimide (PTCDI) nanoribbons are measured via a suspended thermal bridge method. We experimentally observed the deviation from the linear length dependence for the thermal resistance of single crystalline β-phase CuPc nanoribbons, indicating possible subdiffusion thermal transport. Interestingly, a gradual transition to the linear length dependence is observed with the increase of the lateral dimensions of CuPc nanoribbons. The measured thermal resistance of single crystalline CuPc nanoribbons shows an increasing trend with temperature. However, the trend of temperature dependence of thermal resistance is reversed after electron irradiation, i.e., decreasing with temperature, indicating that the single crystalline CuPc nanoribbons become 'amorphous'. Similar behavior is also observed for PTCDI nanoribbons after electron irradiation, proving that the electron beam can induce amorphization of single crystalline self-assembled nanostructures of planar π-conjugated molecules. The measured thermal resistance of the 'amorphous' CuPc nanoribbon demonstrates a roughly linear dependence on the nanoribbon length, suggesting that normal diffusion dominates thermal transport.

  6. User's Guide for Mixed-Size Sediment Transport Model for Networks of One-Dimensional Open Channels

    USGS Publications Warehouse

    Bennett, James P.

    2001-01-01

    This user's guide describes a mathematical model for predicting the transport of mixed sizes of sediment by flow in networks of one-dimensional open channels. The simulation package is useful for general sediment routing problems, prediction of erosion and deposition following dam removal, and scour in channels at road embankment crossings or other artificial structures. The model treats input hydrographs as stepwise steady-state, and the flow computation algorithm automatically switches between sub- and supercritical flow as dictated by channel geometry and discharge. A variety of boundary conditions including weirs and rating curves may be applied both external and internal to the flow network. The model may be used to compute flow around islands and through multiple openings in embankments, but the network must be 'simple' in the sense that the flow directions in all channels can be specified before simulation commences. The location and shape of channel banks are user specified, and all bedelevation changes take place between these banks and above a user-specified bedrock elevation. Computation of sediment-transport emphasizes the sand-size range (0.0625-2.0 millimeter) but the user may select any desired range of particle diameters including silt and finer (<0.0625 millimeter). As part of data input, the user may set the original bed-sediment composition of any number of layers of known thickness. The model computes the time evolution of total transport and the size composition of bed- and suspended-load sand through any cross section of interest. It also tracks bed -surface elevation and size composition. The model is written in the FORTRAN programming language for implementation on personal computers using the WINDOWS operating system and, along with certain graphical output display capability, is accessed from a graphical user interface (GUI). The GUI provides a framework for selecting input files and parameters of a number of components of the sediment-transport

  7. A one dimensional model study of the mechanism of halogen liberation and vertical transport in the polar troposphere

    NASA Astrophysics Data System (ADS)

    Lehrer, E.; Hönninger, G.; Platt, U.

    2004-12-01

    Sudden depletions of tropospheric ozone during spring were reported from the Arctic and also from Antarctic coastal sites. Field studies showed that those depletion events are caused by reactive halogen species, especially bromine compounds. However the source and seasonal variation of reactive halogen species is still not completely understood. There are several indications that the halogen mobilisation from the sea ice surface of the polar oceans may be the most important source for the necessary halogens. Here we present a one dimensional model study aimed at determining the primary source of reactive halogens. The model includes gas phase and heterogeneous bromine and chlorine chemistry as well as vertical transport between the surface and the top of the boundary layer. The autocatalytic Br release by photochemical processes (bromine explosion) and subsequent rapid bromine catalysed ozone depletion is well reproduced in the model and the major source of reactive bromine appears to be the sea ice surface. The sea salt aerosol alone is not sufficient to yield the high levels of reactive bromine in the gas phase necessary for fast ozone depletion. However, the aerosol efficiently "recycles" less reactive bromine species (e.g. HBr) and feeds them back into the ozone destruction cycle. Isolation of the boundary layer air from the free troposphere by a strong temperature inversion was found to be critical for boundary layer ozone depletion to happen. The combination of strong surface inversions and presence of sunlight occurs only during polar spring.

  8. Charge ordering and nonlinear electrical transport in quasi-one-dimensional organic chains with strong electrostatic interchain interactions

    NASA Astrophysics Data System (ADS)

    Okamoto, Kentaro; Tanaka, Toshiyuki; Fujita, Wataru; Awaga, Kunio; Inabe, Tamotsu

    2007-08-01

    We here examine the electrical and magnetic properties of the isostructural NT3•MCl4 ( NT=naphtho [2,1- d :6,5- d' ]bis([1,2,3] dithiazole and M=Ga and Fe). The crystal structure of NT3•MCl4 consists of one-dimensional π -stacking chains of NT with strong interchain interactions caused by electrostatic Sδ+•••Nδ- contacts. This structure includes four NT molecules with significant differences in molecular structure and charge, exhibiting a characteristic charge ordering, namely, three-dimensional alternation of charge-rich (or -intermediate) and -poor molecules. NT3•GaCl4 and NT3•FeCl4 are found to be semiconductors with σRT˜0.5Scm-1 and to exhibit a nonlinear electrical transport at room temperature with a very low threshold field of 80Vcm-1 for the negative differential resistance. This threshold field significantly increases with a decrease in temperature. The X -band electron paramagnetic resonance (EPR) spectra of NT3•GaCl4 consist of a single-line absorption ascribable to that of the NT+ cation. When the sample is exposed to a current at room temperature, this signal exhibits a drastic decrease in intensity with little change in linewidth. This is attributed to the inhomogeneous formation of EPR-silent conducting pathways for the nonlinear transport. The temperature dependence of the EPR spin susceptibility χs of NT3•GaCl4 suggests a transition toward a spin-gap state below 20K ; χs exhibits a Bonner-Fisher-type temperature dependence above 20K , but gradually collapses to zero below this temperature.

  9. One-Dimensional Transport with Inflow and Storage (OTIS): A Solute Transport Model for Streams and Rivers

    USGS Publications Warehouse

    Runkel, Robert L.

    1998-01-01

    OTIS is a mathematical simulation model used to characterize the fate and transport of water-borne solutes in streams and rivers. The governing equation underlying the model is the advection-dispersion equation with additional terms to account for transient storage, lateral inflow, first-order decay, and sorption. This equation and the associated equations describing transient storage and sorption are solved using a Crank-Nicolson finite-difference solution. OTIS may be used in conjunction with data from field-scale tracer experiments to quantify the hydrologic parameters affecting solute transport. This application typically involves a trial-and-error approach wherein parameter estimates are adjusted to obtain an acceptable match between simulated and observed tracer concentrations. Additional applications include analyses of nonconservative solutes that are subject to sorption processes or first-order decay. OTIS-P, a modified version of OTIS, couples the solution of the governing equation with a nonlinear regression package. OTIS-P determines an optimal set of parameter estimates that minimize the squared differences between the simulated and observed concentrations, thereby automating the parameter estimation process. This report details the development and application of OTIS and OTIS-P. Sections of the report describe model theory, input/output specifications, sample applications, and installation instructions.

  10. EFDC1D - A ONE DIMENSIONAL HYDRODYNAMIC AND SEDIMENT TRANSPORT MODEL FOR RIVER AND STREAM NETWORKS: MODEL THEORY AND USERS GUIDE

    EPA Science Inventory

    This technical report describes the new one-dimensional (1D) hydrodynamic and sediment transport model EFDC1D. This model that can be applied to stream networks. The model code and two sample data sets are included on the distribution CD. EFDC1D can simulate bi-directional unstea...

  11. EFDC1D - A ONE DIMENSIONAL HYDRODYNAMIC AND SEDIMENT TRANSPORT MODEL FOR RIVER AND STREAM NETWORKS: MODEL THEORY AND USERS GUIDE

    EPA Science Inventory

    This technical report describes the new one-dimensional (1D) hydrodynamic and sediment transport model EFDC1D. This model that can be applied to stream networks. The model code and two sample data sets are included on the distribution CD. EFDC1D can simulate bi-directional unstea...

  12. Documentation of a One-Dimensional, Time-Varying Contaminant Transport and Fate Model for Streams

    DTIC Science & Technology

    2007-01-01

    two-film theory ( Chapra 1997) as modified for the influence of water flow and wind as described in Appendix A. Mass transfer rate of dissolved... Chapra 1997). The upstream boundary also uses a pipe condi- tion where advective flow is allowed into the first segment, but diffusion is not allowed...diffusion are allowed across the boundary. A Neumann condition is used to specify the derivative of the concentration at the downstream boundary ( Chapra

  13. Analytical solutions of the one-dimensional advection-dispersion solute transport equation subject to time-dependent boundary conditions

    USDA-ARS?s Scientific Manuscript database

    Analytical solutions of the advection-dispersion solute transport equation remain useful for a large number of applications in science and engineering. In this paper we extend the Duhamel theorem, originally established for diffusion type problems, to the case of advective-dispersive transport subj...

  14. Realizing one-dimensional quantum and high-frequency transport features in aligned single-walled carbon nanotube ropes

    NASA Astrophysics Data System (ADS)

    Ncube, Siphephile; Chimowa, George; Chiguvare, Zivayi; Bhattacharyya, Somnath

    2014-07-01

    The superiority of the electronic transport properties of single-walled carbon nanotube (SWNT) ropes over SWNT mats is verified from low temperature and frequency-dependent transport. The overall change of resistance versus in nanotube mats shows that 3D variable range hopping is the dominant conduction mechanism within the 2-300 K range. The magneto-resistance (MR) is found to be predominantly negative with a parabolic nature, which can also be described by the hopping model. Although the positive upturn of the MR at low temperatures establishes the contribution from quantum interference, the inherent quantum transport in individual tubes is suppressed at elevated temperatures. Therefore, to minimize multi-channel effects from inter-tube interactions and other defects, two-terminal devices were fabricated from aligned SWNT (extracted from a mat) for low temperature transport as well as high-frequency measurements. In contrast to the mat, the aligned ropes exhibit step-like features in the differential conductance within the 80-300 K temperature range. The effects of plasmon propagation, unique to one dimension, were identified in electronic transport as a non-universal power-law dependence of the differential conductance on temperature and source-drain voltage. The complex impedance showed high power transmission capabilities up to 65 GHz as well as oscillations in the frequency range up to 30 GHz. The measurements suggest that aligned SWNT ropes have a realistic potential for high-speed device applications.

  15. Realizing one-dimensional quantum and high-frequency transport features in aligned single-walled carbon nanotube ropes

    SciTech Connect

    Ncube, Siphephile; Chimowa, George; Chiguvare, Zivayi; Bhattacharyya, Somnath

    2014-07-14

    The superiority of the electronic transport properties of single-walled carbon nanotube (SWNT) ropes over SWNT mats is verified from low temperature and frequency-dependent transport. The overall change of resistance versus in nanotube mats shows that 3D variable range hopping is the dominant conduction mechanism within the 2–300 K range. The magneto-resistance (MR) is found to be predominantly negative with a parabolic nature, which can also be described by the hopping model. Although the positive upturn of the MR at low temperatures establishes the contribution from quantum interference, the inherent quantum transport in individual tubes is suppressed at elevated temperatures. Therefore, to minimize multi-channel effects from inter-tube interactions and other defects, two-terminal devices were fabricated from aligned SWNT (extracted from a mat) for low temperature transport as well as high-frequency measurements. In contrast to the mat, the aligned ropes exhibit step-like features in the differential conductance within the 80–300 K temperature range. The effects of plasmon propagation, unique to one dimension, were identified in electronic transport as a non-universal power-law dependence of the differential conductance on temperature and source-drain voltage. The complex impedance showed high power transmission capabilities up to 65 GHz as well as oscillations in the frequency range up to 30 GHz. The measurements suggest that aligned SWNT ropes have a realistic potential for high-speed device applications.

  16. Calculation of the response of cylindrical targets to collimated beams of particles using one-dimensional adjoint transport techniques. [LMFBR

    SciTech Connect

    Dupree, S. A.

    1980-06-01

    The use of adjoint techniques to determine the interaction of externally incident collimated beams of particles with cylindrical targets is a convenient means of examining a class of problems important in radiation transport studies. The theory relevant to such applications is derived, and a simple example involving a fissioning target is discussed. Results from both discrete ordinates and Monte Carlo transport-code calculations are presented, and comparisons are made with results obtained from forward calculations. The accuracy of the discrete ordinates adjoint results depends on the order of angular quadrature used in the calculation. Reasonable accuracy by using EQN quadratures can be expected from order S/sub 16/ or higher.

  17. Semi-analytical Solution of One-dimensional Multispecies Reactive Transport in a Permeable Reactive Barrier-aquifer System

    NASA Astrophysics Data System (ADS)

    Mieles, J. M.; Zhan, H.

    2010-12-01

    Permeable reactive barriers (PRBs) have been accepted by the EPA as an effective groundwater remediation technology. Effective implementation of this in-situ technology requires accurate site characterization to identify the chemicals of concern (COCs) present, their interactions (if any), and their required residence time in the PRB to achieve regulatory concentrations at the point of compliance (POC). Therefore, minimizing performance uncertainties in the design phase is key. Among these uncertainties determining the required PRB thickness is the most important and has been examined in other studies. Less attention, however, has been devoted to developing a practical yet rigorous tool for modeling multi-species reactive transport in the barrier-aquifer system. In this study Park and Zhan’s [2009] mass conservative semi-analytical solution - developed to calculate the required PRB thickness based on the decay of one species - is expanded to four reactive species. For example, the expanded solution could be used to model the degradation pathway from tetrachloroethylene (PCE) to vinyl chloride (VC). The solution is presented in two forms: The steady-state solution programmed into Excel can quickly assist designers in determining the required PRB thickness so that all COCs involved in the degradation pathway achieve regulatory limits at the POC. The second form is the transient solution which is solved by numerically inverting the Laplace transform. The semi-analytical solution presented in this study has several advantages over prior solutions. For example, the influent and effluent boundary conditions of the PRB are mass conservative and both dispersion and decay rate differences between the PRB and aquifer are considered. In addition, the transient solution allows for different retardation factors to be considered in both transport media and for each species.

  18. One-dimensional turbulence

    SciTech Connect

    Kerstein, A.R.

    1996-12-31

    One-Dimensional Turbulence is a new turbulence modeling strategy involving an unsteady simulation implemented in one spatial dimension. In one dimension, fine scale viscous and molecular-diffusive processes can be resolved affordably in simulations at high turbulence intensity. The mechanistic distinction between advective and molecular processes is thereby preserved, in contrast to turbulence models presently employed. A stochastic process consisting of mapping {open_quote}events{close_quote} applied to a one-dimensional velocity profile represents turbulent advection. The local event rate for given eddy size is proportional to the velocity difference across the eddy. These properties cause an imposed shear to induce an eddy cascade analogous in many respects to the eddy cascade in turbulent flow. Many scaling and fluctuation properties of self-preserving flows, and of passive scalars introduced into these flows, are reproduced.

  19. One dimensional electron gas at the LaAlO3/SrTiO3 interface and its transport properties

    NASA Astrophysics Data System (ADS)

    Hong, D. S.; Zhang, H.; Zhang, H. R.; Zhang, J.; Wang, S. F.; Chen, Y. S.; Shen, B. G.; Sun, J. R.

    2016-10-01

    Quasi-one-dimensional electron gases (q1DEGs) have been obtained by fabricating LaAlO3 nanowires, using the technique of electrostatic spinning plus post annealing, above TiO2-terminated SrTiO3 substrate. The q1DEG exhibits an electronic transport behavior of variable range hopping with the one dimension characteristic. Visible light illumination produces a strong effect on transport process, depressing the resistance of the q1DEG by a factor up to 8. As expected, gating effect is weak at relative high temperatures, ˜3.2% at 150 K and 1.5% at 300 K under a back gate of 200 V. Aided by light illumination, however, the gating effect is 35-fold amplified, and the resistance increases under not only negative gates but also positive gates, different from the normal gating effect without illumination. Possible explanations for these phenomena are given.

  20. FRACVAL: Validation (nonlinear least squares method) of the solution of one-dimensional transport of decaying species in a discrete planar fracture with rock matrix diffusion

    SciTech Connect

    Gureghian, A.B.

    1990-08-01

    Analytical solutions based on the Laplace transforms are presented for the one-dimensional, transient, advective-dispersive transport of a reacting radionuclide through a discrete planar fracture with constant aperture subject to diffusion in the surrounding rock matrix where both regions of solute migration display residual concentrations. The dispersion-free solutions, which are of closed form, are also reported. The solution assumes that the ground-water flow regime is under steady-state and isothermal conditions and that the rock matrix is homogeneous, isotropic, and saturated with stagnant water. The verification of the solution was performed by means of related analytical solutions dealing with particular aspects of the transport problem under investigation on the one hand, and a numerical solution capable of handling the complete problem on the other. The integrals encountered in the general solution are evaluated by means of a composite Gauss-Legendre quadrature scheme. 9 refs., 8 figs., 32 tabs.

  1. An efficient nonequilibrium Green's function formalism combined with density functional theory approach for calculating electron transport properties of molecular devices with quasi-one-dimensional electrodes.

    PubMed

    Qian, Zekan; Li, Rui; Hou, Shimin; Xue, Zengquan; Sanvito, Stefano

    2007-11-21

    An efficient self-consistent approach combining the nonequilibrium Green's function formalism with density functional theory is developed to calculate electron transport properties of molecular devices with quasi-one-dimensional (1D) electrodes. Two problems associated with the low dimensionality of the 1D electrodes, i.e., the nonequilibrium state and the uncertain boundary conditions for the electrostatic potential, are circumvented by introducing the reflectionless boundary conditions at the electrode-contact interfaces and the zero electric field boundary conditions at the electrode-molecule interfaces. Three prototypical systems, respectively, an ideal ballistic conductor, a high resistance tunnel junction, and a molecular device, are investigated to illustrate the accuracy and efficiency of our approach.

  2. Determination of neutron flux distribution by using ANISN, a one-dimensional discrete S sub n ordinates transport code with anisotropic scattering

    NASA Technical Reports Server (NTRS)

    Ghorai, S. K.

    1983-01-01

    The purpose of this project was to use a one-dimensional discrete coordinates transport code called ANISN in order to determine the energy-angle-spatial distribution of neutrons in a 6-feet cube rock box which houses a D-T neutron generator at its center. The project was two-fold. The first phase of the project involved adaptation of the ANISN code written for an IBM 360/75/91 computer to the UNIVAC system at JSC. The second phase of the project was to use the code with proper geometry, source function and rock material composition in order to determine the neutron flux distribution around the rock box when a 14.1 MeV neutron generator placed at its center is activated.

  3. Rationalizing long-lived photo-excited carriers in photocatalyst (La5Ti2CuS5O7) in terms of one-dimensional carrier transport

    NASA Astrophysics Data System (ADS)

    Suzuki, Yohichi; Singh, Rupashree Balia; Matsuzaki, Hiroyuki; Furube, Akihiro; Ma, Guijun; Hisatomi, Takashi; Domen, Kazunari; Seki, Kazuhiko

    2016-09-01

    The semiconductor La5Ti2CuS5O7 (LTC) is a potential photocatalyst capable of operating under visible light irradiation and behaves both as a photocathode and anode when embedded onto metal layers. Time-resolved diffuse reflectance (TRDR) measurements were carried out on LTC powder and LTC deposited on Au as the back contact using the particle-transfer method. Results of TRDR measurements of powdered LTC indicated the existence of long-lived photo-excited carriers, and suggested the existence of a mechanism for preventing carrier loss in LTC. Prior research has reported that LTC has a rod-shaped crystal structure and that electrons and holes are transported through different, spatially separated channels. Based on this, we introduced a one-dimensional carrier transport model. By analyzing TRDR data, we extracted material parameters such as the diffusion coefficient of LTC. Theoretical results indicated that a micron-sized LTC particle would be preferable if carriers trapped at the top-surface do contribute to photocatalytic gas generation.

  4. Software for fitting and simulating fate and transport of dense colloids and biocolloids in one-dimensional porous media: Re-introducing ColloidFit.

    NASA Astrophysics Data System (ADS)

    Katzourakis, Vasileios; Chrysikopoulos, Constantinos

    2016-04-01

    The present work re-introduces ColloidFit, which is an autonomous, modular, multipurpose fitting software for dense colloid and biocolloid transport phenomena in porous media. The initial version of ColloidFit, introduced by Sim and Chrysikopoulos (1995), was substantially improved and combined with a relatively intuitive and easy to use graphical user interface. The re-introduced ColloidFit can simulate the migration of suspended colloid or biocolloid particles in one-dimensional, water saturated, homogeneous porous media with uniform flow, accounting for non-equilibrium attachment onto the solid matrix, as well as gravitational effects. Furthermore, the improved ColloidFit software employs a variety of non-equilibrium, linear and nonlinear models for the simulation of colloid attachment onto a solid matrix under batch experimental conditions. The re-introduced ColloidFit uses the state of the art fitting software "Pest" to estimate unknown model parameter values, together with their 95% confidence intervals. Pest is a model-independent parameter estimation software capable of adjusting model parameters, so that discrepancies between model-generated data and the corresponding experimental measurements are reduced to a user preselected minimum. The fitting process is graphed and displayed in real time. The user is allowed to overview every step of the fitting progress, and if needed to change the initial parameter values. The re-introduced ColloidFit software is expected to make the fitting process of colloid and biocolloid transport data, just a simple task.

  5. One-Dimensional Reactive Transport Modeling of CO2 Storage Systems - Change in Cap Rock Porosity Triggered by Pressure and Temperature Dependent CO2-Water-Rock Interactions

    NASA Astrophysics Data System (ADS)

    Hemme, C.; van Berk, W.

    2015-12-01

    In carbon capture and storage (CCS) systems supercritical CO2 is injected into a reservoir and dissolves in the reservoir brine. Subsequently, CO2(aq) diffuses into the cap rock to regions of lower total pressure and temperature and triggers CO2-water-rock interactions that are coupled with mass transport and result in precipitation and/or dissolution of minerals along the CO2 migration path. Such hydrogeochemical interactions change porosities and are responsible for the improvement or deterioration of the long term integrity of the system. This study presents a semi-generic hydrogeochemical model based on chemical equilibrium thermodynamics, data from several CO2 storage systems, and plausible assumptions regarding non-available data. One-dimensional reactive transport modeling is performed by using the U.S.G.S. PHREEQC code (3.1.4-8929; phreeqc.dat database) to identify and quantify the loss or gain of total porosity affected by hydrogeochemical reactions driven by diffusive mass transport exposed to pressure and temperature gradients. A fine spatial and temporal discretization, the use of non-reactive tracers, and a broad variety of modeling scenarios enable the calculation of the relevant timescale for simulations of long-term storage of CO2 and the consideration of the pressure dependent mass action law constants along the CO2 migration path. Modeling results show that the relevant timescale for simulations of long-term storage of CO2 is in the range of 106 years, and that pressure/temperature conditions, heterogeneities (veins and fractures) and the mineralogical composition of the cap rock have the strongest influence on the increase in cap rock porosity (maximum increase from initial 5 % to 7.5 %). Critical parameter combinations - total pressure effects are crucial - could put long-term integrity at risks. Nevertheless, a wide range of conditions and parameter combinations for safe CO2 storage is identified by other modeling scenarios.

  6. User's guide to PHREEQC (Version 2) : a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations

    USGS Publications Warehouse

    Parkhurst, David L.; Appelo, C.A.J.

    1999-01-01

    PHREEQC version 2 is a computer program written in the C programming language that is designed to perform a wide variety of low-temperature aqueous geochemical calculations. PHREEQC is based on an ion-association aqueous model and has capabilities for (1) speciation and saturation-index calculations; (2) batch-reaction and one-dimensional (1D) transport calculations involving reversible reactions, which include aqueous, mineral, gas, solid-solution, surface-complexation, and ion-exchange equilibria, and irreversible reactions, which include specified mole transfers of reactants, kinetically controlled reactions, mixing of solutions, and temperature changes; and (3) inverse modeling, which finds sets of mineral and gas mole transfers that account for differences in composition between waters, within specified compositional uncertainty limits.New features in PHREEQC version 2 relative to version 1 include capabilities to simulate dispersion (or diffusion) and stagnant zones in 1D-transport calculations, to model kinetic reactions with user-defined rate expressions, to model the formation or dissolution of ideal, multicomponent or nonideal, binary solid solutions, to model fixed-volume gas phases in addition to fixed-pressure gas phases, to allow the number of surface or exchange sites to vary with the dissolution or precipitation of minerals or kinetic reactants, to include isotope mole balances in inverse modeling calculations, to automatically use multiple sets of convergence parameters, to print user-defined quantities to the primary output file and (or) to a file suitable for importation into a spreadsheet, and to define solution compositions in a format more compatible with spreadsheet programs. This report presents the equations that are the basis for chemical equilibrium, kinetic, transport, and inverse-modeling calculations in PHREEQC; describes the input for the program; and presents examples that demonstrate most of the program's capabilities.

  7. One-Dimensionality and Whiteness

    ERIC Educational Resources Information Center

    Calderon, Dolores

    2006-01-01

    This article is a theoretical discussion that links Marcuse's concept of one-dimensional society and the Great Refusal with critical race theory in order to achieve a more robust interrogation of whiteness. The author argues that in the context of the United States, the one-dimensionality that Marcuse condemns in "One-Dimensional Man" is best…

  8. One-Dimensionality and Whiteness

    ERIC Educational Resources Information Center

    Calderon, Dolores

    2006-01-01

    This article is a theoretical discussion that links Marcuse's concept of one-dimensional society and the Great Refusal with critical race theory in order to achieve a more robust interrogation of whiteness. The author argues that in the context of the United States, the one-dimensionality that Marcuse condemns in "One-Dimensional Man" is best…

  9. Effects of non-local electron transport in one-dimensional and two-dimensional simulations of shock-ignited inertial confinement fusion targets

    SciTech Connect

    Marocchino, A.; Atzeni, S.; Schiavi, A.

    2014-01-15

    In some regions of a laser driven inertial fusion target, the electron mean-free path can become comparable to or even longer than the electron temperature gradient scale-length. This can be particularly important in shock-ignited (SI) targets, where the laser-spike heated corona reaches temperatures of several keV. In this case, thermal conduction cannot be described by a simple local conductivity model and a Fick's law. Fluid codes usually employ flux-limited conduction models, which preserve causality, but lose important features of the thermal flow. A more accurate thermal flow modeling requires convolution-like non-local operators. In order to improve the simulation of SI targets, the non-local electron transport operator proposed by Schurtz-Nicolaï-Busquet [G. P. Schurtz et al., Phys. Plasmas 7, 4238 (2000)] has been implemented in the DUED fluid code. Both one-dimensional (1D) and two-dimensional (2D) simulations of SI targets have been performed. 1D simulations of the ablation phase highlight that while the shock profile and timing might be mocked up with a flux-limiter; the electron temperature profiles exhibit a relatively different behavior with no major effects on the final gain. The spike, instead, can only roughly be reproduced with a fixed flux-limiter value. 1D target gain is however unaffected, provided some minor tuning of laser pulses. 2D simulations show that the use of a non-local thermal conduction model does not affect the robustness to mispositioning of targets driven by quasi-uniform laser irradiation. 2D simulations performed with only two final polar intense spikes yield encouraging results and support further studies.

  10. Mass transport contamination study

    NASA Technical Reports Server (NTRS)

    Robertson, S. J.

    1972-01-01

    A theoretical analysis was performed to determine the effects of outgassing and waste dumping on the contamination field around an orbiting spacecraft. The spacecraft was assumed to be spherical in shape with the mass flow emitting uniformly from the spherical surface at a constant rate and in a D'Lambertian spatial distribution. The outflow of gases were assumed to be neutrally charged and of a single species with a molecular weight characteristic of a composite of the actual species involved in the mass flow. The theoretical analysis showed that, for outgassing only, less than 1.5 percent of the outgas products will return to the Skylab spacecraft as a result of intermolecular collisions. When the total mass flow from the spacecraft, including waste dumps and reaction control motor firings, was considered, it was estimated that about 30 percent will return to the spacecraft.

  11. Salt-front movement in the Hudson River estuary, New York : simulations by one-dimensional flow and solute-transport models

    USGS Publications Warehouse

    de Vries, M. Peter; Weiss, L.A.

    2001-01-01

    The Hudson River is being considered for use as a supplemental source of water supply for New York City during droughts. One proposal entails withdrawal of Hudson River water from locations near Newburgh, Chelsea, or Kingston, but the extent to which this could cause the salt front to advance upstream to points where it could adversely affect community water supplies is unknown. The U.S. Geological Survey (USGS) one-dimensional Branch-Network Dynamic Flow model (BRANCH) was used in conjunction with the USGS one-dimensional Branched Lagrangian Solute-Transport Model (BLTM) to simulate the effect of five water-withdrawal scenarios on the salt-front location. The modeled reach contains 132 miles of the lower Hudson River between the Federal Dam at Troy and Hastings-on-Hudson (near New York City). The BRANCH model was calibrated and verified to 19 tidal-cycle discharge measurements made at 11 locations by conventional and acoustic Doppler current-profiler methods. Maximum measured instantaneous tidal flow ranged from 20,000 ft3/s (cubic feet per second) at Albany to 368,000 ft3/s at Tellers Point; daily-mean flow at Green Island near Troy ranged from 3,030 ft3/s to 45,000 ft3/s during the flow measurements. Successive ebb- and flood-flow volumes were measured and compared with computed volumes; daily-mean bias was -1.6 percent (range from -21.0 to +23.7 percent; 13.5 percent mean absolute error). Daily-mean deviation between simulated and measured stage at eight locations (from Bowline Point to Albany) over the 19 tidal-cycle measurements averaged +0.06 ft (range from -0.31 to +0.40 ft; 0.21 ft root mean square error, RMSE). These results indicate that the model can accurately simulate flow in the Hudson River under a wide range of flow, tide, and meteorological conditions. The BLTM was used to simulate chloride transport in the 61-mi reach from Turkey Point to Bowline Point under two seasonal conditions in 1990.one representing spring conditions of high inflow and low

  12. Salt-front movement in the Hudson River estuary, New York—Simulations by one-dimensional flow and solute-transport models

    USGS Publications Warehouse

    de Vries, M. Peter; Weiss, Lawrence A.

    2001-01-01

    The Hudson River is being considered for use as a supplemental source of water supply for New York City during droughts. One proposal entails withdrawal of Hudson River water from locations near Newburgh, Chelsea, or Kingston, but the extent to which this could cause the salt front to advance upstream to points where it could adversely affect community water supplies is unknown. The U.S. Geological Survey (USGS) one-dimensional Branch-Network Dynamic Flow model (BRANCH) was used in conjunction with the USGS one-dimensional Branched Lagrangian Solute-Transport Model (BLTM) to simulate the effect of five water-withdrawal scenarios on the salt-front location.The modeled reach contains 132 miles of the lower Hudson River between the Federal Dam at Troy and Hastings-on-Hudson (near New York City). The BRANCH model was calibrated and verified to 19 tidal-cycle discharge measurements made at 11 locations by conventional and acoustic Doppler current-profiler methods. Maximum measured instantaneous tidal flow ranged from 20,000 ft3/s (cubic feet per second) at Albany to 368,000 ft3/s at Tellers Point; daily-mean flow at Green Island near Troy ranged from 3,030 ft3/s to 45,000 ft3/s during the flow measurements. Successive ebb- and flood-flow volumes were measured and compared with computed volumes; daily-mean bias was -1.6 percent (range from -21.0 to +23.7 percent; 13.5 percent mean absolute error). Daily-mean deviation between simulated and measured stage at eight locations (from Bowline Point to Albany) over the 19 tidal-cycle measurements averaged +0.06 ft (range from -0.31 to +0.40 ft; 0.21 ft root mean square error, RMSE). These results indicate that the model can accurately simulate flow in the Hudson River under a wide range of flow, tide, and meteorological conditions.The BLTM was used to simulate chloride transport in the 61-mi reach from Turkey Point to Bowline Point under two seasonal conditions in 1990.one representing spring conditions of high inflow and low

  13. Description of input and examples for PHREEQC version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations

    USGS Publications Warehouse

    Parkhurst, David L.; Appelo, C.A.J.

    2013-01-01

    PHREEQC version 3 is a computer program written in the C and C++ programming languages that is designed to perform a wide variety of aqueous geochemical calculations. PHREEQC implements several types of aqueous models: two ion-association aqueous models (the Lawrence Livermore National Laboratory model and WATEQ4F), a Pitzer specific-ion-interaction aqueous model, and the SIT (Specific ion Interaction Theory) aqueous model. Using any of these aqueous models, PHREEQC has capabilities for (1) speciation and saturation-index calculations; (2) batch-reaction and one-dimensional (1D) transport calculations with reversible and irreversible reactions, which include aqueous, mineral, gas, solid-solution, surface-complexation, and ion-exchange equilibria, and specified mole transfers of reactants, kinetically controlled reactions, mixing of solutions, and pressure and temperature changes; and (3) inverse modeling, which finds sets of mineral and gas mole transfers that account for differences in composition between waters within specified compositional uncertainty limits. Many new modeling features were added to PHREEQC version 3 relative to version 2. The Pitzer aqueous model (pitzer.dat database, with keyword PITZER) can be used for high-salinity waters that are beyond the range of application for the Debye-Hückel theory. The Peng-Robinson equation of state has been implemented for calculating the solubility of gases at high pressure. Specific volumes of aqueous species are calculated as a function of the dielectric properties of water and the ionic strength of the solution, which allows calculation of pressure effects on chemical reactions and the density of a solution. The specific conductance and the density of a solution are calculated and printed in the output file. In addition to Runge-Kutta integration, a stiff ordinary differential equation solver (CVODE) has been included for kinetic calculations with multiple rates that occur at widely different time scales

  14. Contaminant transport in Massachusetts Bay

    USGS Publications Warehouse

    Butman, Bradford

    Construction of a new treatment plant and outfall to clean up Boston Harbor is currently one of the world's largest public works projects, costing about $4 billion. There is concern about the long-term impact of contaminants on Massachusetts Bay and adjacent Gulf of Maine because these areas are used extensively for transportation, recreation, fishing, and tourism, as well as waste disposal. Public concern also focuses on Stellwagen Bank, located on the eastern side of Massachusetts Bay, which is an important habitat for endangered whales. Contaminants reach Massachusetts Bay not only from Boston Harbor, but from other coastal communities on the Gulf of Maine, as well as from the atmosphere. Knowledge of the pathways, mechanisms, and rates at which pollutants are transported throughout these coastal environments is needed to address a wide range of management questions.

  15. Dynamics of single photon transport in a one-dimensional waveguide two-point coupled with a Jaynes-Cummings system

    PubMed Central

    Wang, Yuwen; Zhang, Yongyou; Zhang, Qingyun; Zou, Bingsuo; Schwingenschlogl, Udo

    2016-01-01

    We study the dynamics of an ultrafast single photon pulse in a one-dimensional waveguide two-point coupled with a Jaynes-Cummings system. We find that for any single photon input the transmissivity depends periodically on the separation between the two coupling points. For a pulse containing many plane wave components it is almost impossible to suppress transmission, especially when the width of the pulse is less than 20 times the period. In contrast to plane wave input, the waveform of the pulse can be modified by controlling the coupling between the waveguide and Jaynes-Cummings system. Tailoring of the waveform is important for single photon manipulation in quantum informatics. PMID:27653770

  16. Ambipolar transport in the field-suppressed superconducting state of quasi-one-dimensional Li0.9Mo6O17

    NASA Astrophysics Data System (ADS)

    Cohn, Joshua L.; Dos Santos, Carlos A. M.; Neumeier, John J.

    We present resistivity, Hall, Seebeck, and Nernst coefficient measurements in the range 0 . 4 K <= T <= 20 K on single crystals of the quasi-one-dimensional (Q1D) metal, Li0.9Mo6O17 with current along the Q1D metallic chains. At temperatures below the nominal superconducting transition temperature (Tc = 2 K), a transition from hole-like (μ0 H < 1 T) to electron-like (μ0 H >= 2 T) behavior is evidenced in the magnetotransport coefficients. Possible insights from these results into the nature of the mysterious density-wave ordera,b responsible for the upturn in resistivity below ~ 25 K will be discussed. a. Work supported by the U.S. Department of Energy, Office of Basic Energy Sciences (DE-FG02-12ER46888, Univ. Miami), the National Science Foundation (DMR-0907036, Mont. St. Univ.), and in Lorena by the CNPq (308162/2013-7) and FAPESP (2009/54001-2).

  17. Modelling contaminant transport for pumping wells in riverbank filtration systems.

    PubMed

    Mustafa, Shaymaa; Bahar, Arifah; Aziz, Zainal Abdul; Suratman, Saim

    2016-01-01

    Analytical study of the influence of both the pumping well discharge rate and pumping time on contaminant transport and attenuation is significant for hydrological and environmental science applications. This article provides an analytical solution for investigating the influence of both pumping time and travelling time together for one-dimensional contaminant transport in riverbank filtration systems by using the Green's function approach. The basic aim of the model is to understand how the pumping time and pumping rate, which control the travelling time, can affect the contaminant concentration in riverbank filtration systems. Results of analytical solutions are compared with the results obtained using a MODFLOW numerical model. Graphically, it is found that both analytical and numerical solutions have almost the same behaviour. Additionally, the graphs indicate that any increase in the pumping rate or simulation pumping time should increase the contamination in groundwater. The results from the proposed analytical model are well matched with the data collected from a riverbank filtration site in France. After this validation, the model is then applied to the first pilot project of a riverbank filtration system conducted in Malaysia. Sensitivity analysis results highlight the importance of degradation rates of contaminants on groundwater quality, for which higher utilization rates lead to the faster consumption of pollutants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. MODELING CONTAMINANT TRANSPORT THROUGH SUBSURFACE SYSTEMS

    EPA Science Inventory

    Modeling of contaminant transport through soil to groundwater to a receptor requires that consideration be given to the many processes which control the transport and fate of chemical constituents in the subsurface environment. These processes include volatilization, degradation,...

  19. Analytical solutions for benchmarking cold regions subsurface water flow and energy transport models: One-dimensional soil thaw with conduction and advection

    NASA Astrophysics Data System (ADS)

    Kurylyk, Barret L.; McKenzie, Jeffrey M.; MacQuarrie, Kerry T. B.; Voss, Clifford I.

    2014-08-01

    Numerous cold regions water flow and energy transport models have emerged in recent years. Dissimilarities often exist in their mathematical formulations and/or numerical solution techniques, but few analytical solutions exist for benchmarking flow and energy transport models that include pore water phase change. This paper presents a detailed derivation of the Lunardini solution, an approximate analytical solution for predicting soil thawing subject to conduction, advection, and phase change. Fifteen thawing scenarios are examined by considering differences in porosity, surface temperature, Darcy velocity, and initial temperature. The accuracy of the Lunardini solution is shown to be proportional to the Stefan number. The analytical solution results obtained for soil thawing scenarios with water flow and advection are compared to those obtained from the finite element model SUTRA. Three problems, two involving the Lunardini solution and one involving the classic Neumann solution, are recommended as standard benchmarks for future model development and testing.

  20. Analytical solutions for benchmarking cold regions subsurface water flow and energy transport models: one-dimensional soil thaw with conduction and advection

    USGS Publications Warehouse

    Kurylyk, Barret L.; McKenzie, Jeffrey M; MacQuarrie, Kerry T. B.; Voss, Clifford I.

    2014-01-01

    Numerous cold regions water flow and energy transport models have emerged in recent years. Dissimilarities often exist in their mathematical formulations and/or numerical solution techniques, but few analytical solutions exist for benchmarking flow and energy transport models that include pore water phase change. This paper presents a detailed derivation of the Lunardini solution, an approximate analytical solution for predicting soil thawing subject to conduction, advection, and phase change. Fifteen thawing scenarios are examined by considering differences in porosity, surface temperature, Darcy velocity, and initial temperature. The accuracy of the Lunardini solution is shown to be proportional to the Stefan number. The analytical solution results obtained for soil thawing scenarios with water flow and advection are compared to those obtained from the finite element model SUTRA. Three problems, two involving the Lunardini solution and one involving the classic Neumann solution, are recommended as standard benchmarks for future model development and testing.

  1. One-dimensional Quantum Fluids

    NASA Astrophysics Data System (ADS)

    Gervais, Guillaume

    2015-03-01

    Fifty year ago, Joachim Mazdak Luttinger generalized the Tomonaga theory of interactions in a one-dimensional metal and show that the prior restrictions imposed by Tomonaga were not necessary. This model is now known as the Tomonaga- Luttinger liquid model (TLL) and most remarkably it does have mathematically exact solutions. In the case of electrons, it predicts that the spin and charge sector should separate, with each of them propagating with their own velocities. While there has been many attempts (some with great success) to observe TLL behaviour in clean quantum wires designed on an ultra-clean semiconductor platform, overall the Luttinger physics is experimentally still in its infancy. For instance, little is known regarding the 1D physics in a strongly-interacting neutral system, whether from the point-of-view of TLL theory or even localization physics. Helium-4, the paradigm superfluid, and Helium-3, the paradigm Fermi liquid, should in principleboth become Luttinger liquids if taken to the one-dimensional limit. In the bosonic case, this is supported by large-scale Quantum Monte Carlo simulations which found that a lengthscale of ~ 2 nm is sufficient for the system to crossover to the 1D regime and display universal Luttinger scaling. At McGill University, an experiment has been constructed to measure the liquid helium mass flow through a single nanopore. The technique consists of drilling a single nanopore in a SiN membrane using a TEM, and then applying a pressure gradient across the membrane. Previously published data in 45nm diameter hole determined the superfluid critical velocity to be close to the limit set by the Feynman vortex rings model. More recent work performed on nanopores with radii as small as 3 nm (and a length of 30nm) show the critical exponent for superfluid velocity to significantly deviate from its bulk value, 2/3. This is an important hint for the crossing over to the one-dimensional state in a strongly-correlated bosonic liquid.

  2. Nonlinear transport of the Wigner crystal in symmetric and asymmetric FET-like structures. Nonlinear transport of the Wigner crystal on superfluid 4He in quasi-one-dimensional channels with symmetric and asymmetric constrictions

    NASA Astrophysics Data System (ADS)

    Vasylenko, Anna A.; Misko, Vyacheslav R.

    2015-04-01

    When floating on a two-dimensional surface of superfluid 4He, electrons arrange themselves in two-dimensional crystalline structure known as Wigner crystal. In channels, the boundaries interfere the crystalline order and in case of very narrow channels one observes a quasi-one-dimensional (quasi-1D) Wigner crystal formed by just a few rows of electrons and, ultimately, one row in the "quantum wire" regime. Recently, the "quantum wire" regime was accessed experimentally [D.G. Rees, H. Totsuji, K. Kono, Phys. Rev. Lett. 108, 176801 (2012)] resulting in unusual transport phenomena such as, e.g., oscillations in the electron conductance. Using molecular dynamics simulations, we study the nonlinear transport of electrons in channels with various types of constrictions: single and multiple symmetric and asymmetric geometrical constrictions with varying width and length, and saddle-point-type potentials with varying gate voltage. In particular, we analyze the average particle velocity of the particles and the corresponding electron current versus the driving force or the gate voltage. We have revealed a significant difference in the dynamics for long and short constrictions: The oscillations of the average velocity of the particles for the systems with short constrictions exhibit a clear correlation with the transitions between the states with different numbers of rows of particles; on the other hand, for the systems with longer constrictions these oscillations are suppressed. The obtained results qualitatively agree with the experimental observations. Next, we propose a FET-like structure that consists of a channel with asymmetric constrictions. We show that applying a transverse bias results either in increase of the average particle velocity or in its suppression thus allowing a flexible control tool over the electron transport. The advantage of the asymmetric FET is that it does not have a gate and it allows an easy control of relatively large electron flow

  3. Modeling Facilitated Contaminant Transport by Mobile Bacteria

    NASA Astrophysics Data System (ADS)

    Corapcioglu, M. Yavuz; Kim, Seunghyun

    1995-01-01

    Introduction of exogenous biocolloids such as genetically engineered bacteria in a bioremediation operation can enhance the transport of contaminants in groundwater by reducing the retardation effects. Because of their colloidal size and favorable surface conditions, bacteria are efficient contaminant carriers. In cases where contaminants have a low mobility in porous media because of their high partition with solid matrix, facilitated contaminant transport by mobile bacteria can create high contaminant fluxes. When metabolically active mobile bacteria are present in a subsurface environment, the system can be treated as consisting of three phases: water phase, bacterial phase, and stationary solid matrix phase. In this work a mathematical model based on mass balance equations is developed to describe the facilitated transport and fate of a contaminant and bacteria in a porous medium. Bacterial partition between the bulk solution and the stationary solid matrix and contaminant partition among three phases are represented by expressions in terms of measurable quantities. Solutions were obtained to provide estimates of contaminant and bacterial concentrations. A dimensional analysis of the transport model was utilized to estimate model parameters from the experimental data and to assess the effect of several parameters on model behavior. The model results matched favorably with experimental data of Jenkins and Lion (1993). The presence of mobile bacteria enhances the contaminant transport. However, bacterial consumption of the contaminant, which serves as a bacterial nutrient, can attenuate the contaminant mobility. The work presented in this paper is the first three-phase model to include the effects of substrate metabolism on the fate of groundwater contaminants.

  4. Verification tests for contaminant transport codes

    SciTech Connect

    Rowe, R.K.; Nadarajah, P.

    1996-12-31

    The importance of verifying contaminant transport codes and the techniques that may be used in this verification process are discussed. Commonly used contaminant transport codes are characterized as belonging to one of several types or classes of solution, such as analytic, finite layer, boundary element, finite difference and finite element. Both the level of approximation and the solution methodology should be verified for each contaminant transport code. One powerful method that may be used in contaminant transport code verification is cross-checking (benchmarking) with other codes. This technique is used to check the results of codes from one solution class with the results of codes from another solution class. In this paper cross-checking is performed for three classes of solution; these are, analytic, finite layer, and finite element.

  5. One-dimensional edge transport on the surface of cylindrical Bi{sub x}Te{sub 3−y}Se{sub y} nanowires in transverse magnetic fields

    SciTech Connect

    Bäßler, Svenja Hamdou, Bacel; Sergelius, Philip; Michel, Ann-Kathrin; Zierold, Robert; Gooth, Johannes; Reith, Heiko; Nielsch, Kornelius

    2015-11-02

    The geometry of topological insulators (TIs) has a major impact on the magnetoelectric band structure of their surface states. Here, we investigate the surface states of cylindrical TI bismuth telluride selenide nanowires with three different diameters, by parallel and transverse magnetoresistance (MR) measurements. In parallel configuration, we observe Aharonov-Bohm oscillations as well as weak antilocalization, indicating two-dimensional TI surface states. In transverse magnetic fields, we observed MR oscillations that are non-linear against the reciprocal of the magnetic field and thus cannot be explained by two- or three-dimensional states. Instead, our transport data analysis reveals that these MR oscillations are the consequence of one-dimensional edge channels at the nanowire surface that form due to the projection of the external magnetic field on the cylindrically curved surface plane in high magnetic fields. Our observation provides an exotic class of surface states that might be used for electronic and spintronic devices.

  6. Contamination transport modeling with CTSP (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Brieda, Lubos

    2016-09-01

    CTSP (Contamination Transport Simulation Program) is a simulation program for performing detailed molecular and particulate contaminant transport analyses using complex, CAD-generated geometries. CTSP concurrently traces many simulation macroparticles, allowing it to compute contaminant partial pressures. The code uses a detailed surface model that supports multiple trapped gases and a multi-component surface layer. The molecular residence time is computed by considering surface temperature and activation energies. This paper describes the implemented algorithms and demonstrates the code with several test cases. These include outgassing in a vacuum chamber, spacecraft venting, particulate transport in an air flow, and redistribution of paint flakes on an orbiting satellite. The paper is concluded by summarizing the on-going effort to parallelize the code and utilize GPUs, and to add support for electrostatic return modeling by computing space potential using Green's functions.

  7. Sensitivity and uncertainty analyses applied to one-dimensional radionuclide transport in a layered fractured rock: MULTFRAC --Analytic solutions and local sensitivities; Phase 2, Iterative performance assessment: Volume 1

    SciTech Connect

    Gureghian, A.B.; Wu, Y.T.; Sagar, B.; Codell, R.A.

    1992-12-01

    Exact analytical solutions based on the Laplace transforms are derived for describing the one-dimensional space-time-dependent, advective transport of a decaying species in a layered, saturated rock system intersected by a planar fracture of varying aperture. These solutions, which account for advection in fracture, molecular diffusion into the rock matrix, adsorption in both fracture and matrix, and radioactive decay, predict the concentrations in both fracture and rock matrix and the cumulative mass in the fracture. The solute migration domain in both fracture and rock is assumed to be semi-infinite with non-zero initial conditions. The concentration of each nuclide at the source is allowed to decay either continuously or according to some periodical fluctuations where both are subjected to either a step or band release mode. Two numerical examples related to the transport of Np-237 and Cm-245 in a five-layered system of fractured rock were used to verify these solutions with several well established evaluation methods of Laplace inversion integrals in the real and complex domain. In addition, with respect to the model parameters, a comparison of the analytically derived local sensitivities for the concentration and cumulative mass of Np-237 in the fracture with the ones obtained through a finite-difference method of approximation is also reported.

  8. Nonequilibrium NAPL dissolution and solute transport: Influence on aquifer remediation and post remedial contaminant rebound

    SciTech Connect

    1995-03-01

    The rate of ground-water pumping can affect the efficiency of contaminant transport. High pore-water velocities affect remedial pumping efficiency by limiting the solute concentration in the extracted ground water. The two separate processes potentially involved are solute transport and residual NAPL dissolution. In both cases, the contact time between mobile ground water and immobile contaminant phases (i.e., sorbed contaminants or residual NAPL) is reduced by a higher pore-water velocity. The relative chemical equilibrium established can result in a reduced solute concentration due to mass transfer limitations. This effect is often described as nonequilibrium contaminant transport and is thought to be due to a molecular diffusion rate-limited effect. Several methods are described to apply the nonequilibrium concepts of both contaminant transport processes to zero-dimensional and one-dimensional models. Two spreadsheet-based analytical computer programs are provided and application of the models are demonstrated by simulating several case examples. The two computer models are practical management tools which cannot only estimate the volume of extracted water and remedial pumping times required, but they also have the unique capability to simulate solute contaminant rebound resulting from a drop in the ground-water velocity.

  9. Anomalous heat conduction in a one-dimensional ideal gas.

    PubMed

    Casati, Giulio; Prosen, Tomaz

    2003-01-01

    We provide firm convincing evidence that the energy transport in a one-dimensional gas of elastically colliding free particles of unequal masses is anomalous, i.e., the Fourier law does not hold. Our conclusions are confirmed by a theoretical and numerical analysis based on a Green-Kubo-type approach specialized to momentum-conserving lattices.

  10. Second virial coefficient of one dimensional gas

    SciTech Connect

    Mijatovic, M.

    1982-08-01

    The second virial coefficient of a one dimensional gas is calculated using the expressions for the scattering amplitude. The scattering amplitude is chosen in the form of rational function of wave vector.

  11. One-Dimensional Czedli-Type Islands

    ERIC Educational Resources Information Center

    Horvath, Eszter K.; Mader, Attila; Tepavcevic, Andreja

    2011-01-01

    The notion of an island has surfaced in recent algebra and coding theory research. Discrete versions provide interesting combinatorial problems. This paper presents the one-dimensional case with finitely many heights, a topic convenient for student research.

  12. One-Dimensional Czedli-Type Islands

    ERIC Educational Resources Information Center

    Horvath, Eszter K.; Mader, Attila; Tepavcevic, Andreja

    2011-01-01

    The notion of an island has surfaced in recent algebra and coding theory research. Discrete versions provide interesting combinatorial problems. This paper presents the one-dimensional case with finitely many heights, a topic convenient for student research.

  13. Factorizations of one-dimensional classical systems

    SciTech Connect

    Kuru, Senguel; Negro, Javier

    2008-02-15

    A class of one-dimensional classical systems is characterized from an algebraic point of view. The Hamiltonians of these systems are factorized in terms of two functions that together with the Hamiltonian itself close a Poisson algebra. These two functions lead directly to two time-dependent integrals of motion from which the phase motions are derived algebraically. The systems so obtained constitute the classical analogues of the well known factorizable one-dimensional quantum mechanical systems.

  14. One dimensional representations in quantum optics

    NASA Technical Reports Server (NTRS)

    Janszky, J.; Adam, P.; Foldesi, I.; Vinogradov, An. V.

    1993-01-01

    The possibility of representing the quantum states of a harmonic oscillator not on the whole alpha-plane but on its one dimensional manifolds is considered. It is shown that a simple Gaussian distribution along a straight line describes a quadrature squeezed state while a similar Gaussian distribution along a circle leads to the amplitude squeezed state. The connection between the one dimensional representations and the usual Glauber representation is discussed.

  15. Quantum state transfer in a disordered one-dimensional lattice

    NASA Astrophysics Data System (ADS)

    Ashhab, S.

    2015-12-01

    We investigate the effect of disorder on the transfer of quantum states across a one-dimensional lattice with varying levels of control resources. We find that the application of properly designed control signals, even when applied only to the two ends of the lattice, allows perfect state transfer up to disorder strengths that would not allow a generic quantum state to propagate the length of the lattice. At sufficiently large disorder strengths, however, the local control signals fail to send the quantum state from one end of the system to the other end. Our results shed light on the interplay between disorder and controlled transport in one-dimensional systems.

  16. Flow and contaminant transport in fractured rocks

    SciTech Connect

    Bear, J.; Tsang, C.F.; Marsily, G. de

    1993-12-31

    This book is a compilation of nine articles dealing with various aspect of flow in fractured media. Articles range from radionuclide waste to multiphase flow in petroleum reservoirs to practical field test methods. Each chapter contains copious figures to aid the reader, but is also a detailed in-depth analysis of some major flow problem. The subjects covered are as follows: an introduction to flow and transport models; solute transport in fractured rock with application to radioactive waste repositories; solute transport models through fractured networks; theoretical view of stochastic models of fracture systems; numerical models of tracers; multiphase flow models in fractured systems and petroleum reservoirs; unsaturated flow modeling; comparative analysis of various flow modeling techniques in fractured media; and, a summary of field methods for measuring transfers of mass, heat, contaminant, momentum, and electrical charge in fractured media.

  17. Potential for plastics to transport hydrophobic contaminants.

    PubMed

    Teuten, Emma L; Rowland, Steven J; Galloway, Tamara S; Thompson, Richard C

    2007-11-15

    Plastic debris litters marine and terrestrial habitats worldwide. It is ingested by numerous species of animals, causing deleterious physical effects. High concentrations of hydrophobic organic contaminants have also been measured on plastic debris collected from the environment, but the fate of these contaminants is poorly understood. Here, we examine the uptake and subsequent release of phenanthrene by three plastics. Equilibrium distribution coefficients for sorption of phenanthrene from seawater onto the plastics varied by more than an order of magnitude (polyethylene > polypropylene > polyvinyl chloride (PVC)). In all cases, sorption to plastics greatly exceeded sorption to two natural sediments. Desorption rates of phenanthrene from the plastics or sediments back into solution spanned several orders of magnitude. As expected, desorption occurred more rapidly from the sediments than from the plastics. Using the equilibrium partitioning method, the effects of adding very small quantities of plastic with sorbed phenanthrene to sediment inhabited by the lugworm (Arenicola marina) were evaluated. We estimate that the addition of as little as 1 microg of contaminated polyethylene to a gram of sediment would give a significant increase in phenanthrene accumulation by A. marina. Thus, plastics may be important agents in the transport of hydrophobic contaminants to sediment-dwelling organisms.

  18. One-dimensional Gromov minimal filling problem

    NASA Astrophysics Data System (ADS)

    Ivanov, Alexandr O.; Tuzhilin, Alexey A.

    2012-05-01

    The paper is devoted to a new branch in the theory of one-dimensional variational problems with branching extremals, the investigation of one-dimensional minimal fillings introduced by the authors. On the one hand, this problem is a one-dimensional version of a generalization of Gromov's minimal fillings problem to the case of stratified manifolds. On the other hand, this problem is interesting in itself and also can be considered as a generalization of another classical problem, the Steiner problem on the construction of a shortest network connecting a given set of terminals. Besides the statement of the problem, we discuss several properties of the minimal fillings and state several conjectures. Bibliography: 38 titles.

  19. Can contaminant transport models predict breakthrough?

    USGS Publications Warehouse

    Peng, Wei-Shyuan; Hampton, Duane R.; Konikow, Leonard F.; Kambham, Kiran; Benegar, Jeffery J.

    2000-01-01

    A solute breakthrough curve measured during a two-well tracer test was successfully predicted in 1986 using specialized contaminant transport models. Water was injected into a confined, unconsolidated sand aquifer and pumped out 125 feet (38.3 m) away at the same steady rate. The injected water was spiked with bromide for over three days; the outflow concentration was monitored for a month. Based on previous tests, the horizontal hydraulic conductivity of the thick aquifer varied by a factor of seven among 12 layers. Assuming stratified flow with small dispersivities, two research groups accurately predicted breakthrough with three-dimensional (12-layer) models using curvilinear elements following the arc-shaped flowlines in this test. Can contaminant transport models commonly used in industry, that use rectangular blocks, also reproduce this breakthrough curve? The two-well test was simulated with four MODFLOW-based models, MT3D (FD and HMOC options), MODFLOWT, MOC3D, and MODFLOW-SURFACT. Using the same 12 layers and small dispersivity used in the successful 1986 simulations, these models fit almost as accurately as the models using curvilinear blocks. Subtle variations in the curves illustrate differences among the codes. Sensitivities of the results to number and size of grid blocks, number of layers, boundary conditions, and values of dispersivity and porosity are briefly presented. The fit between calculated and measured breakthrough curves degenerated as the number of layers and/or grid blocks decreased, reflecting a loss of model predictive power as the level of characterization lessened. Therefore, the breakthrough curve for most field sites can be predicted only qualitatively due to limited characterization of the hydrogeology and contaminant source strength.

  20. One-Dimensional Wavefront Sensor Analysis

    SciTech Connect

    Neal, Daniel R.

    1996-04-25

    This software analyzes one-dimensional wavefront sensor data acquired with any of several data acquisition systems. It analyzes the data to determine centroids, wavefront slopes and overall wavefront error. The data can be displayed in many formats, with plots of various parameters vs time and position, including computer generated movies. Data can also be exported for use by other programs.

  1. One-Dimensional Oscillator in a Box

    ERIC Educational Resources Information Center

    Amore, Paolo; Fernandez, Francisco M.

    2010-01-01

    We discuss a quantum-mechanical model of two particles that interact by means of a harmonic potential and are confined to a one-dimensional box with impenetrable walls. We apply perturbation theory to the cases of different and equal masses and analyse the symmetry of the states in the latter case. We compare the approximate perturbation results…

  2. One-Dimensional Oscillator in a Box

    ERIC Educational Resources Information Center

    Amore, Paolo; Fernandez, Francisco M.

    2010-01-01

    We discuss a quantum-mechanical model of two particles that interact by means of a harmonic potential and are confined to a one-dimensional box with impenetrable walls. We apply perturbation theory to the cases of different and equal masses and analyse the symmetry of the states in the latter case. We compare the approximate perturbation results…

  3. One-dimensional differential Hardy inequality.

    PubMed

    Kalybay, Aigerim

    2017-01-01

    We establish necessary and sufficient conditions for the one-dimensional differential Hardy inequality to hold, including the overdetermined case. The solution is given in terms different from those of the known results. Moreover, the least constant for this inequality is estimated.

  4. One-Dimensional Fluids with Positive Potentials

    NASA Astrophysics Data System (ADS)

    Fantoni, Riccardo

    2017-03-01

    We study a class of one-dimensional classical fluids with penetrable particles interacting through positive, purely repulsive, pair-potentials. Starting from some lower bounds to the total potential energy, we draw results on the thermodynamic limit of the given model.

  5. Packaging and transportation of radioactively contaminated lead

    SciTech Connect

    Gleason, Eugene; Holden, Gerard

    2007-07-01

    Under the management of the Nuclear Decommissioning Authority (NDA) the government of the United Kingdom has launched an ambitious program to remediate the nation's nuclear waste legacy. Over a twenty-five year period NDA plans to decommission several first generation nuclear power plants and other radioactive facilities. The use innovative, safe 'fit for purpose' technologies will be a major part of this complex program. This paper will present a case study of a recently completed project undertaken in support of the nuclear decommissioning activities at the Sellafield site in the United Kingdom. The focus is on an innovative application of new packaging technology developed for the safe transportation of radioactively contaminated lead objects. Several companies collaborated on the project and contributed to its safe and successful conclusion. These companies include British Nuclear Group, Gravatom Engineering, W. F. Bowker Transport, Atlantic Container Lines, MHF Logistical Solutions and Energy Solutions. New containers and a new innovative inter-modal packaging system to transport the radioactive lead were developed and demonstrated during the project. The project also demonstrated the potential contribution of international nuclear recycling activities as a safe, economic and feasible technical option for nuclear decommissioning in the United Kingdom. (authors)

  6. One-dimensional quantum pump simulated by cold atoms

    NASA Astrophysics Data System (ADS)

    Xiao, Yun-Chang; Zhu, Ming-Han; Liu, Zheng-Qin

    2015-05-01

    Quantum pump set up in one-dimensional (1D) channel was proposed by the cold atom simulation. The target pumping system is driven by the double time-dependent potentials. We investigated that the system can be achieved via the study of the cold atoms simulation. And by using the Floquet scattering method and the related transport theories in the mesoscopic systems, simulations of the pumping processes were presented in detail.

  7. Transient One-dimensional Pipe Flow Analyzer

    SciTech Connect

    1986-04-08

    TOPAZ-SNLL, the Transient One- dimensional Pipe flow AnalyZer code, is a user-friendly computer program for modeling the heat transfer, fluid mechanics, and thermodynamics of multi-species gas transfer in arbitrary arrangements of pipes, valves, vessels, and flow branches. Although the flow conservation equations are assumed to be one-dimensional and transient, multidimensional features of internal fluid flow and heat transfer may be accounted for using the available quasi-steady flow correlations (e.g., Moody friction factor correlation and various form loss and heat transfer correlations). Users may also model the effects of moving system boundaries such as pistons, diaphragms, and bladders. The features of fully compressible flow are modeled, including the propagation of shocks and rarefaction waves, as well as the establishment of multiple choke points along the flow path.

  8. One-dimensional opal photonic crystals

    NASA Astrophysics Data System (ADS)

    Kapitonov, A. M.

    2008-12-01

    One-dimensional opals are 1D self-assembled close packed colloidal crystals consisting of monodisperse colloidal globules. Polystyrene globules with sizes in the 1.9-10 μm range sit on a flat substrate and touch two neighbors in diametrally opposite contact points. These opals are quasi-1D photonic crystals. Optical modes, including whispering gallery modes of individual globules, coupled collective modes, and nanojet-induced modes, are visualized in 1D opals.

  9. COLLOIDAL CONSIDERATIONS IN GROUNDWATER SAMPLING AND CONTAMINANT TRANSPORT PREDICTIONS

    EPA Science Inventory

    The association of contaminants with suspended colloidal material in groundwater is a possible transport mechanism and a complicating factor for accurate estimations of the aqueous geochemistry of subsurface systems. esearch to date indicates colloidal facilitated transport of co...

  10. Universality of anomalous one-dimensional heat conductivity

    NASA Astrophysics Data System (ADS)

    Lepri, Stefano; Livi, Roberto; Politi, Antonio

    2003-12-01

    In one and two dimensions, transport coefficients may diverge in the thermodynamic limit due to long-time correlation of the corresponding currents. The effective asymptotic behavior is addressed with reference to the problem of heat transport in one-dimensional crystals, modeled by chains of classical nonlinear oscillators. Extensive accurate equilibrium and nonequilibrium numerical simulations confirm that the finite-size thermal conductivity diverges with system size L as κ∝Lα. However, the exponent α deviates systematically from the theoretical prediction α=1/3 proposed in a recent paper [O. Narayan and S. Ramaswamy, Phys. Rev. Lett. 89, 200601 (2002)].

  11. Computer model of one-dimensional equilibrium controlled sorption processes

    USGS Publications Warehouse

    Grove, D.B.; Stollenwerk, K.G.

    1984-01-01

    A numerical solution to the one-dimensional solute-transport equation with equilibrium-controlled sorption and a first-order irreversible-rate reaction is presented. The computer code is written in FORTRAN language, with a variety of options for input and output for user ease. Sorption reactions include Langmuir, Freundlich, and ion-exchange, with or without equal valance. General equations describing transport and reaction processes are solved by finite-difference methods, with nonlinearities accounted for by iteration. Complete documentation of the code, with examples, is included. (USGS)

  12. Perched-Water Analysis Related to Deep Vadose Zone Contaminant Transport and Impact to Groundwater

    SciTech Connect

    Oostrom, Martinus; Truex, Michael J.; Carroll, KC; Chronister, Glen B.

    2013-11-15

    Perched-water conditions have been observed in the vadose zone above a fine-grained zone that is located just a few meters above the water table beneath the B-complex at the Hanford Site. The perched water, containing elevated concentrations of uranium and technetium-99, is important to consider in evaluating the future flux of contaminated water into the groundwater. A study was conducted to examine the perched-water conditions and quantitatively evaluate 1) factors that control perching behavior, 2) contaminant flux toward groundwater, and, 3) associated groundwater impact. Based on the current vertical transport pathways and large areal extent of the perched system, the evaluation was conducted using a one-dimensional (1-D) analysis. Steady-state scoping calculations showed that the perching-layer hydraulic conductivity is likely to be up to two orders of magnitude less than the base case value obtained from Hanford site literature. Numerical flow and transport simulations provided both steady-state and transient system estimates of water and contaminant behavior and were used to further refine the range of conditions consistent with current observations of perched water height and to provide estimates of future water and contaminant flux to groundwater. With a recharge rate of 6 cm/yr, representative of current disturbed surface conditions, contaminant flux from the perched water occurs over a time interval of tens of years. However, if the recharge rate is 0.35 cm/yr, representative of returning recharge to pre-Hanford Site levels, the contaminant flux into the groundwater is spread over hundreds of years. It was also demonstrated that removal of perched water by pumping would reduce the flux of water (and associated contaminants) to the groundwater, thereby impacting the long-term rate of contaminant movement to the groundwater.

  13. Feed gas contaminant removal in ion transport membrane systems

    DOEpatents

    Underwood, Richard Paul [Allentown, PA; Makitka, III, Alexander; Carolan, Michael Francis [Allentown, PA

    2012-04-03

    An oxygen ion transport membrane process wherein a heated oxygen-containing gas having one or more contaminants is contacted with a reactive solid material to remove the one or more contaminants. The reactive solid material is provided as a deposit on a support. The one or more contaminant compounds in the heated oxygen-containing gas react with the reactive solid material. The contaminant-depleted oxygen-containing gas is contacted with a membrane, and oxygen is transported through the membrane to provide transported oxygen.

  14. A one-dimensional tunable magnetic metamaterial.

    PubMed

    Butz, S; Jung, P; Filippenko, L V; Koshelets, V P; Ustinov, A V

    2013-09-23

    We present experimental data on a one-dimensional super-conducting metamaterial that is tunable over a broad frequency band. The basic building block of this magnetic thin-film medium is a single-junction (rf-) superconducting quantum interference device (SQUID). Due to the nonlinear inductance of such an element, its resonance frequency is tunable in situ by applying a dc magnetic field. We demonstrate that this results in tunable effective parameters of our metamaterial consisting of 54 rf-SQUIDs. In order to obtain the effective magnetic permeability μr,eff from the measured data, we employ a technique that uses only the complex transmission coefficient S₂₁.

  15. Electrodeposition of one-dimensional nanostructures.

    PubMed

    She, Guangwei; Mu, Lixuan; Shi, Wensheng

    2009-01-01

    Electrodeposition is a simple and flexible method for the synthesis of one-dimensional (1D) nanostructures and has attracted more and more attention in recent years. 1D nanostructures of metals, semiconductors and polymers have been successfully fabricated by electrodeposition. Templates were often used in the electrochemical process to realize the 1D growth. On the other hand, some materials with intrinsic anisotropic crystal structures can also be prepared by the template-free electrochemical method. In this paper, we review the recent patents progress and offer some prospects of future directions in electrodeposition of 1D nanostructures.

  16. One-dimensional circular diffraction patterns

    NASA Astrophysics Data System (ADS)

    Daimon, Hiroshi; Ino, Shozo

    1989-11-01

    Circular diffraction patterns from a bulk crystal have been found in MEED patterns by using a newly developed two-dimensional spherical mirror analyzer. From the analysis of the energy dependence of their radii and from the fact that they are not associated with the tangential Kikuchi lines, the circles were interpreted by the concept of one-dimensional diffraction along the crystallographic axes. The hemi-circular patterns, which have been observed in RHEED patterns near superstructural spots from a surface structure, were also explained by this concept.

  17. One-dimensional hypersonic phononic crystals.

    PubMed

    Gomopoulos, N; Maschke, D; Koh, C Y; Thomas, E L; Tremel, W; Butt, H-J; Fytas, G

    2010-03-10

    We report experimental observation of a normal incidence phononic band gap in one-dimensional periodic (SiO(2)/poly(methyl methacrylate)) multilayer film at gigahertz frequencies using Brillouin spectroscopy. The band gap to midgap ratio of 0.30 occurs for elastic wave propagation along the periodicity direction, whereas for inplane propagation the system displays an effective medium behavior. The phononic properties are well captured by numerical simulations. The porosity in the silica layers presents a structural scaffold for the introduction of secondary active media for potential coupling between phonons and other excitations, such as photons and electrons.

  18. One-dimensional ZnO nanostructures.

    PubMed

    Jayadevan, K P; Tseng, T Y

    2012-06-01

    The wide-gap semiconductor ZnO with nanostructures such as nanoparticle, nanorod, nanowire, nanobelt, nanotube has high potential for a variety of applications. This article reviews the fundamentals of one-dimensional ZnO nanostructures, including processing, structure, property, application and their processing-microstructure-property correlation. Various fabrication methods of the ZnO nanostructures including vapor-liquid-solid process, vapor-solid growth, solution growth, solvothermal growth, template-assisted growth and self-assembly are introduced. The characterization and properties of the ZnO nanostructures are described. The possible applications of these nanostructures are also discussed.

  19. Electronic structure of one-dimensional cuprates

    NASA Astrophysics Data System (ADS)

    Maiti, K.; Sarma, D. D.; Mizokawa, T.; Fujimori, A.

    1998-01-01

    We have investigated the electronic structures of one-dimensional antiferromagnetic insulators Ca2CuO3 and Sr2CuO3 combining electron spectroscopic measurements and various calculations. While calculations based on a local-spin-density approach for the real magnetic structures fail to yield an insulating state, from our experiments we estimate the intrinsic band gaps in these materials to be about 1.7 eV (Ca2CuO3) and 1.5 eV (Sr2CuO3). Analysis of the core-level and the valence-band spectra in terms of model many-body Hamiltonians show that the charge-transfer energy Δ for these one-dimensional systems is significantly smaller than other cuprates, such as the high-Tc oxides (two-dimensional) and CuO (three-dimensional). Such a small Δ suggests the presence of the bare upper Hubbard band within the oxygen p bandwidth and thus provides an example of a correlated covalent insulator.

  20. The one-dimensional hydrogen atom revisited

    NASA Astrophysics Data System (ADS)

    Palma, G.; Raff, U.

    2006-09-01

    The one-dimensional Schrodinger hydrogen atom is an interesting mathematical and physical problem for the study of bound states, eigenfunctions, and quantum-degeneracy issues. This one-dimensional physical system has given rise to some intriguing controversy for more than four decades. Presently, still no definite consensus seems to have been reached. We reanalyzed this apparently controversial problem, approaching it from a Fourier-transform representation method combined with some fundamental (basic) ideas found in self-adjoint extensions of symmetric operators. In disagreement with some previous claims, we found that the complete Balmer energy spectrum is obtained together with an odd-parity set of eigenfunctions. Closed-form solutions in both coordinate and momentum spaces were obtained. No twofold degeneracy was observed as predicted by the degeneracy theorem in one dimension, though it does not necessarily have to hold for potentials with singularities. No ground state with infinite energy exists since the corresponding eigenfunction does not satisfy the Schrodinger equation at the origin.

  1. Specificities of one-dimensional dissipative magnetohydrodynamics

    SciTech Connect

    Popov, P. V.

    2016-11-15

    One-dimensional dynamics of a plane slab of cold (β ≪ 1) isothermal plasma accelerated by a magnetic field is studied in terms of the MHD equations with a finite constant conductivity. The passage to the limit β → 0 is analyzed in detail. It is shown that, at β = 0, the character of the solution depends substantially on the boundary condition for the electric field at the inner plasma boundary. The relationship between the boundary condition for the pressure at β > 0 and the conditions for the electric field at β = 0 is found. The stability of the solution against one-dimensional longitudinal perturbations is analyzed. It is shown that, in the limit β → 0, the stationary solution is unstable if the time during which the acoustic wave propagates across the slab is longer than the time of magnetic field diffusion. The growth rate and threshold of instability are determined, and results of numerical simulation of its nonlinear stage are presented.

  2. Superfluid helium-4 in one dimensional channel

    NASA Astrophysics Data System (ADS)

    Kim, Duk Y.; Banavar, Samhita; Chan, Moses H. W.; Hayes, John; Sazio, Pier

    2013-03-01

    Superfluidity, as superconductivity, cannot exist in a strict one-dimensional system. However, the experiments employing porous media showed that superfluid helium can flow through the pores of nanometer size. Here we report a study of the flow of liquid helium through a single hollow glass fiber of 4 cm in length with an open id of 150 nm between 1.6 and 2.3 K. We found the superfluid transition temperature was suppressed in the hollow cylinder and that there is no flow above the transition. Critical velocity at temperature below the transition temperature was determined. Our results bear some similarity to that found by Savard et. al. studying the flow of helium through a nanohole in a silicon nitrite membrane. Experimental study at Penn State is supported by NSF Grants No. DMR 1103159.

  3. Three one-dimensional structural heating programs

    NASA Technical Reports Server (NTRS)

    Wing, L. D.

    1978-01-01

    Two computer programs for calculating profiles in a ten-element structure consisting of up to ten materials are presented, along with a third program for calculating the mean temperature for a payload container placed in an orbiting vehicle cargo bay. The three programs are related by the sharing of a common analytical technique; the energy balance is based upon one-dimensional heat transfer. The first program, NQLDW112, assumes a non-ablating surface. NQLDW117 is very similar but allows the outermost element to ablate. NQLDW040 calculates an average temperature profile through an idealized model of the real payload cannister and contents in the cargo bay of an orbiting vehicle.

  4. One-dimensional frequency-based spectroscopy.

    PubMed

    Cygan, Agata; Wcisło, Piotr; Wójtewicz, Szymon; Masłowski, Piotr; Hodges, Joseph T; Ciuryło, Roman; Lisak, Daniel

    2015-06-01

    Recent developments in optical metrology have tremendously improved the precision and accuracy of the horizontal (frequency) axis in measured spectra. However, the vertical (typically absorbance) axis is usually based on intensity measurements that are subject to instrumental errors which limit the spectrum accuracy. Here we report a one-dimensional spectroscopy that uses only the measured frequencies of high-finesse cavity modes to provide complete information about the dispersive properties of the spectrum. Because this technique depends solely on the measurement of frequencies or their differences, it is insensitive to systematic errors in the detection of light intensity and has the potential to become the most accurate of all absorptive and dispersive spectroscopic methods. The experimental results are compared to measurements by two other high-precision cavity-enhanced spectroscopy methods. We expect that the proposed technique will have significant impact in fields such as fundamental physics, gas metrology and environmental remote sensing.

  5. One-dimensional spinon spin currents

    NASA Astrophysics Data System (ADS)

    Hirobe, Daichi; Sato, Masahiro; Kawamata, Takayuki; Shiomi, Yuki; Uchida, Ken-Ichi; Iguchi, Ryo; Koike, Yoji; Maekawa, Sadamichi; Saitoh, Eiji

    2017-01-01

    Quantum spin fluctuation in a low-dimensional or frustrated magnet breaks magnetic ordering while keeping spin correlation. Such fluctuation has been a central topic in magnetism because of its relevance to high-Tc superconductivity and topological states. However, utilizing such spin states has been quite difficult. In a one-dimensional spin-1/2 chain, a particle-like excitation called a spinon is known to be responsible for spin fluctuation in a paramagnetic state. Spinons behave as a Tomonaga-Luttinger liquid at low energy, and the spin system is often called a quantum spin chain. Here we show that a quantum spin chain generates and carries spin current, which is attributed to spinon spin current. This is demonstrated by observing an anisotropic negative spin Seebeck effect along the spin chains in Sr2CuO3. The results show that spin current can flow even in an atomic channel owing to long-range spin fluctuation.

  6. Macroscopic Quantum Tunneling in One Dimensional Superconductor

    NASA Astrophysics Data System (ADS)

    Chang, Yongmin

    Macroscopic quantum tunneling (MQT) in a one dimensional superconductor is discussed based on the microscopic model near the critical temperature. By means of a functional integral approach, a formula for the total decay rate, which is the sum of the thermal activation and quantum mechanical tunneling rate, is derived. The Bounce solution in the imaginary time formalism gives rise to the exponent in the tunneling rate. From the study of fluctuations from the bounce path, the pre-exponential factor has been evaluated. The theory for the tunneling rate is consistent with experimental results for temperatures at which the thermal activation theory fails. As the temperature approaches to the critical temperature, thermal activation over a free energy barrier which separates metastable states is dominant and the theory shows good agreement with experiment over the whole temperature region.

  7. One-Dimensional Photonic Crystal Superprisms

    NASA Technical Reports Server (NTRS)

    Ting, David

    2005-01-01

    Theoretical calculations indicate that it should be possible for one-dimensional (1D) photonic crystals (see figure) to exhibit giant dispersions known as the superprism effect. Previously, three-dimensional (3D) photonic crystal superprisms have demonstrated strong wavelength dispersion - about 500 times that of conventional prisms and diffraction gratings. Unlike diffraction gratings, superprisms do not exhibit zero-order transmission or higher-order diffraction, thereby eliminating cross-talk problems. However, the fabrication of these 3D photonic crystals requires complex electron-beam substrate patterning and multilayer thin-film sputtering processes. The proposed 1D superprism is much simpler in structural complexity and, therefore, easier to design and fabricate. Like their 3D counterparts, the 1D superprisms can exhibit giant dispersions over small spectral bands that can be tailored by judicious structure design and tuned by varying incident beam direction. Potential applications include miniature gas-sensing devices.

  8. Collapsing of chaos in one dimensional maps

    NASA Astrophysics Data System (ADS)

    Yuan, Guocheng; Yorke, James A.

    2000-02-01

    In their numerical investigation of the family of one dimensional maps f l(x)=1-2∣x∣ l, where l>2 , Diamond et al. [P. Diamond et al., Physica D 86 (1999) 559-571] have observed the surprising numerical phenomenon that a large fraction of initial conditions chosen at random eventually wind up at -1, a repelling fixed point. This is a numerical artifact because the continuous maps are chaotic and almost every (true) trajectory can be shown to be dense in [-1,1]. The goal of this paper is to extend and resolve this obvious contradiction. We model the numerical simulation with a randomly selected map. While they used 27 bit precision in computing f l, we prove for our model that this numerical artifact persists for an arbitrary high numerical prevision. The fraction of initial points eventually winding up at -1 remains bounded away from 0 for every numerical precision.

  9. One-dimensional Vlasov-Maxwell equilibria

    NASA Astrophysics Data System (ADS)

    Greene, John M.

    1993-06-01

    The purpose of this paper is to show that the Vlasov equilibrium of a plasma of charged particles in an electromagnetic field is closely related to a fluid equilibrium, where only a few moments of the velocity distribution of the plasma are considered. In this fluid equilibrium the electric field should be calculated from Ohm's law, rather than the Poisson equation. In practice, only one-dimensional equilibria are treated, because the symmetry makes this case tractable. The emphasis here is on gaining a better understanding of the subject, but an alternate way of doing the calculations is suggested. It is shown that particle distributions can be found that are consistent with any reasonable electromagnetic field profile.

  10. FACILITATED TRANSPORT OF INORGANIC CONTAMINANTS IN GROUNDWATER: PART II. COLLOIDAL TRANSPORT

    EPA Science Inventory

    This project consisted of both field and laboratory components. Field studies evaluated routine sampling procedures for determination of aqueous inorganicgeochemistry and assessment of contaminant transport by colloidal mobility. Research at three different metal-contaminated sit...

  11. FACILITATED TRANSPORT OF INORGANIC CONTAMINANTS IN GROUNDWATER: PART II. COLLOIDAL TRANSPORT

    EPA Science Inventory

    This project consisted of both field and laboratory components. Field studies evaluated routine sampling procedures for determination of aqueous inorganicgeochemistry and assessment of contaminant transport by colloidal mobility. Research at three different metal-contaminated sit...

  12. Characterizing the Transport of a Novel, Engineered Nanoparticle for Use in Remediation of Hydrophobic Contaminants

    NASA Astrophysics Data System (ADS)

    Sanders, J. E.; Miller, G. R.

    2015-12-01

    Magnetic shell crosslinked knedel-like nanoparticles (MSCKs) were originally engineered to aid in the cleanup of oil spills. These polymeric particles are spherical and approximately 70 nm in diameter. MSCKs have a hydrophobic shell and hydrophilic core which encapsulates suspended iron oxide nanoparticles, rendering them magnetic. MSCKs operate like discrete surfactant packets: increasing the mobility and apparent solubility of hydrophobic species, but do so within the confines of discrete particles which can then be recovered by filtration or magnetic removal. MSCKs accomplish this via sequestration of hydrophobic species from through the hydrophilic shell and into the hydrophobic core where hydrocarbon contaminants are entropically stabilized. In batch reactor testing, MSCKs have been shown to sequester crude oil up to ten times their mass (1000 mg of oil per 100 mg of MSCKs). This study examines the transport characteristics and contaminant sequestration capabilities of MSCKs in saturated porous media, in order to establish their potential for use in groundwater remediation. Baseline MSCK transport parameters were determined via one dimensional impulse column experiments. MSCKs were readily transported in saturated sand, with an average recovery rate of 99%. In the presence of 10% clay particles, recovery was reduced to 68%. MSCKs were able to completely sequester an aqueous phase pollutant (8.7 mg/L m-xylene), although it further reduced their recovery rate to 61% in sand and 53% in clay. The presence of a free phase contaminant (5% of pore space occupied by mineral oil) reduced MSCKs recovery in sand to 53%. The MSCKs recovered in the effluent had sequestered the mineral at ratios far below their capability (3-10 mg of oil per 100 mg of MSCKs). Overall, this study indicated that MSCKs show a number of promising attributes for use in remediation. However, further manipulation of their chemical and morphological properties is needed, with the objective of

  13. Preliminary study of niobium alloy contamination by transport through helium

    NASA Technical Reports Server (NTRS)

    Scheuermann, C. M.; Moore, T. J.; Wheeler, D. R.

    1987-01-01

    Transport of gaseous contaminants through the working fluid to or from sensitive refractory alloys is theoretically possible during long time operation of Brayton and Stirling space power generation systems which use a gas as the working fluid. A test was designed which could give an answer to whether transport of contaminants through the working fluid was a potential major problem. The findings of that preliminary study are summarized.

  14. One-dimensional quantum spin heterojunction as a thermal switch

    NASA Astrophysics Data System (ADS)

    Yang, Chuan-Jing; Jin, Li-Hui; Gong, Wei-Jiang

    2016-03-01

    We study the thermal transport through a quantum spin-1 2 heterojunction, which consists of a finite-size chain with two-site anisotropic XY interaction and three-site XZX+YZY interaction coupled at its ends to two semi-infinite isotropic XY chains. By performing the Jordan-Wigner transformation, the original spin Hamiltonian is mapped onto a fermionic Hamiltonian. Then, the fermionic structure is discussed, and the heat current as a function of structural parameters is evaluated. It is found that the magnetic fields applied at respective chains play different roles in adjusting the heat current in this heterojunction. Moreover, the interplay between the anisotropy of the XY interaction and the three-site spin interaction assists to further control the thermal transport. In view of the numerical results, we propose this heterojunction to be an alternate candidate for manipulating the heat current in one-dimensional (1D) systems.

  15. One-dimensional boron nanostructures: Prediction, synthesis, characterizations, and applications.

    PubMed

    Tian, Jifa; Xu, Zhichuan; Shen, Chengmin; Liu, Fei; Xu, Ningsheng; Gao, Hong-Jun

    2010-08-01

    One-dimensional (1D) boron nanostructures are very potential for nanoscale electronic devices since their physical properties including electric transport and field emission have been found very promising as compared to other well-developed 1D nanomaterials. In this article, we review the current progress that has been made on 1D boron nanostructures in terms of theoretical prediction, synthetic techniques, characterizations and potential applications. To date, the synthesis of 1D boron nanostructures has been well-developed. The popular structures include nanowires, nanobelts, and nanocones. Some of these 1D nanostructures exhibited improved electric transport properties over bulk boron materials as well as promising field emission properties. By current experimental findings, 1D boron nanostructures are promising to be one of core materials for future nanodevices. More efforts are expected to be made in future on the controlled growth of 1D boron nanostructures and tailoring their physical properties.

  16. Transmission resonances anomaly in one-dimensional disordered quantum systems

    NASA Astrophysics Data System (ADS)

    Eisenbach, A.; Bliokh, Y.; Freilkher, V.; Kaveh, M.; Berkovits, R.

    2016-07-01

    Connections between the electronic eigenstates and conductivity of one-dimensional (1D) disordered systems is studied in the framework of the tight-binding model. We show that for weak disorder only part of the states exhibit resonant transmission and contribute to the conductivity. The rest of the eigenvalues are not associated with peaks in transmission and the amplitudes of their wave functions do not exhibit a significant maxima within the sample. Moreover, unlike ordinary states, the lifetimes of these "hidden" modes either remain constant or even decrease (depending on the coupling with the leads) as the disorder becomes stronger. In a wide range of the disorder strengths, the averaged ratio of the number of transmission peaks to the total number of the eigenstates is independent of the degree of disorder and is close to the value √{2 /5 }, which was derived analytically in the weak-scattering approximation. These results are in perfect analogy to the spectral and transport properties of light in one-dimensional randomly inhomogeneous media [Y. P. Bliokh et al., New J. Phys. 17, 113009 (2015), 10.1088/1367-2630/17/11/113009], which provides strong grounds to believe that the existence of hidden, nonconducting modes is a general phenomenon inherent to 1D open random systems, and their fraction of the total density of states is the same for quantum particles and classical waves.

  17. A reactive transport model for mercury fate in contaminated soil--sensitivity analysis.

    PubMed

    Leterme, Bertrand; Jacques, Diederik

    2015-11-01

    We present a sensitivity analysis of a reactive transport model of mercury (Hg) fate in contaminated soil systems. The one-dimensional model, presented in Leterme et al. (2014), couples water flow in variably saturated conditions with Hg physico-chemical reactions. The sensitivity of Hg leaching and volatilisation to parameter uncertainty is examined using the elementary effect method. A test case is built using a hypothetical 1-m depth sandy soil and a 50-year time series of daily precipitation and evapotranspiration. Hg anthropogenic contamination is simulated in the topsoil by separately considering three different sources: cinnabar, non-aqueous phase liquid and aqueous mercuric chloride. The model sensitivity to a set of 13 input parameters is assessed, using three different model outputs (volatilized Hg, leached Hg, Hg still present in the contaminated soil horizon). Results show that dissolved organic matter (DOM) concentration in soil solution and the binding constant to DOM thiol groups are critical parameters, as well as parameters related to Hg sorption to humic and fulvic acids in solid organic matter. Initial Hg concentration is also identified as a sensitive parameter. The sensitivity analysis also brings out non-monotonic model behaviour for certain parameters.

  18. Simulating higher-dimensional geometries in GADRAS using approximate one-dimensional solutions.

    SciTech Connect

    Thoreson, Gregory G.; Mitchell, Dean J; Harding, Lee T.

    2013-02-01

    The Gamma Detector Response and Analysis Software (GADRAS) software package is capable of simulating the radiation transport physics for one-dimensional models. Spherical shells are naturally one-dimensional, and have been the focus of development and benchmarking. However, some objects are not spherical in shape, such as cylinders and boxes. These are not one-dimensional. Simulating the radiation transport in two or three dimensions is unattractive because of the extra computation time required. To maintain computational efficiency, higher-dimensional geometries require approximations to simulate them in one-dimension. This report summarizes the theory behind these approximations, tests the theory against other simulations, and compares the results to experimental data. Based on the results, it is recommended that GADRAS users always attempt to approximate reality using spherical shells. However, if fissile material is present, it is imperative that the shape of the one-dimensional model matches the fissile material, including the use of slab and cylinder geometry.

  19. One-dimensional Electron Gases at Oxide Interfaces

    NASA Astrophysics Data System (ADS)

    Cao, Yanwei; Zhong, Zhicheng; Shafer, P.; Liu, Xiaoran; Kareev, M.; Middey, S.; Meyers, D.; Arenholz, E.; Chakhalian, Jak

    Emergence of two-dimensional electron gases (2DEG) at the oxide interfaces of two dissimilar insulators is a remarkable manifestation of interface engineering. With continuously reduced dimensionality, it arises an interesting question: could one-dimensional electron gases (1DEG) be designed at oxide interfaces? So far there is no report on this. Here, we report on the formation of 1DEG at the carefully engineered titanate heterostructures. Combined resonant soft X-ray linear dichroism with electrical transport and the first-principles calculations have confirmed the formation of 1DEG driven by the interfacial symmetry breaking. Our findings provide a route to engineer new electronic and magnetic states. This work was supported by Gordon and Betty Moore Foundation, DODARO, DOE, and the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy.

  20. Transport of trace contaminants through porous media

    NASA Technical Reports Server (NTRS)

    Madey, R.

    1975-01-01

    Research accomplishments in the following areas are discussed: (1) the calibration of the gas chromatograph for acetaldehyde and ethanol; (2) the development of data reduction and analysis methods; (3) the generation and analysis of experimental data for the transport of 100 ppm acetaldehyde through a cylindrical bed packed with activated carbon granules; (4) the generation and analysis of experimental data for the transport of 100 ppm ethanol through a cylindrical bed packed with activated carbon granules; and (5) a comparison of the volume adsorption capacity of activated carbon for 100 ppm concentrations of acetaldehyde, ethanol, and acetone. Activities in progress and planned activities are reviewed.

  1. Preliminary study of niobium alloy contamination by transport through helium

    NASA Technical Reports Server (NTRS)

    Scheuermann, Coulson M.; Moore, Thomas J.; Wheeler, Donald R.

    1987-01-01

    Preliminary tests were conducted to determine if interstitial element transport through a circulating helium working fluid was a potential problem in Brayton and Stirling space power systems. Test specimens exposed to a thermal gradient for up to 3000-hr included Nb-1%Zr, a Sm-Co alloy (referred to as SmCo in this paper), Hiperco 50 steel, and alumina to simulate various engine components of the Brayton and Stirling systems. Results indicate that helium transport of interstitial contaminants can be minimized over a 7-yr life with a monometallic Nb-1%Zr design. Exposure with other materials indicated a potential for interstitial contaminant transport. Determination of contamination kinetics and the effects on structural integrity will require additional testing.

  2. Effects of vegetation on contaminant transport in surface flows

    SciTech Connect

    Green, R.; Govindaraju, R.S.; Erickson, L.E.; Roig, L.

    1996-12-31

    It is well known that vegetation reduces off-site contamination that would result from surface flows. A significant portion of heavy metal contamination occurs at abandoned mine sites due to sediment movement. The effects of vegetation on sediment transport and surface runoff are reviewed, with an emphasis on factors that can reduce or prevent the movement of such metals in mine tailings. Several mathematical models for sediment transport in surface flows are briefly discussed, including advantages and limitations of the Universal Soil-Loss Equation and CREAMS model. Reported experimental and field data on contaminant transport in surface flows are reviewed and evaluated, as well as studies in treating the bioavailability of heavy metals in attempts to reduce metal phytotoxicity or decreasing the potential for entrance of the metals into the food chain via vegetation. Pollutants of concern include lead, zinc, and cadmium. 55 refs.

  3. Simultaneous parameter estimation and contaminant source characterization for coupled groundwater flow and contaminant transport modelling

    USGS Publications Warehouse

    Wagner, B.J.

    1992-01-01

    Parameter estimation and contaminant source characterization are key steps in the development of a coupled groundwater flow and contaminant transport simulation model. Here a methodologyfor simultaneous model parameter estimation and source characterization is presented. The parameter estimation/source characterization inverse model combines groundwater flow and contaminant transport simulation with non-linear maximum likelihood estimation to determine optimal estimates of the unknown model parameters and source characteristics based on measurements of hydraulic head and contaminant concentration. First-order uncertainty analysis provides a means for assessing the reliability of the maximum likelihood estimates and evaluating the accuracy and reliability of the flow and transport model predictions. A series of hypothetical examples is presented to demonstrate the ability of the inverse model to solve the combined parameter estimation/source characterization inverse problem. Hydraulic conductivities, effective porosity, longitudinal and transverse dispersivities, boundary flux, and contaminant flux at the source are estimated for a two-dimensional groundwater system. In addition, characterization of the history of contaminant disposal or location of the contaminant source is demonstrated. Finally, the problem of estimating the statistical parameters that describe the errors associated with the head and concentration data is addressed. A stage-wise estimation procedure is used to jointly estimate these statistical parameters along with the unknown model parameters and source characteristics. ?? 1992.

  4. Outgassing study of spacecraft materials and contaminant transport simulations

    NASA Astrophysics Data System (ADS)

    Wong, Chung M.; Labatete-Goeppinger, Aura C.; Fowler, Jesse D.; Easton, Myriam P.; Liu, De-Ling

    2016-09-01

    Contamination control plays an important role in sustaining spacecraft performance. One spacecraft degradation mechanism involves long-term on-orbit molecular outgassing from spacecraft materials. The outgassed molecules may accumulate on thermal control surfaces and/or optics, causing degradation. In this study, we performed outgassing measurements of multiple spacecraft materials, including adhesives, Nylon Velcro, and other assembly materials through a modified ASTM E595 test method. The modified ASTM E595 test had the source and receiver temperature remained at 125°C and 25°C, respectively, but with prolonged outgassing periods of two weeks. The condensable contaminants were analyzed by Fourier Transform Infrared Spectroscopy (FTIR) and Gas Chromatography/Mass Spectrometry (GC/MS) to determine their spectral transmission and chemical composition. The FTIR spectra showed several spacecraft materials, primarily adhesives and potting materials, exhibiting slight absorption from contaminants consisting of hydroxyl groups and carboxylic acids. To gain insight into molecular contaminant transport, simulations were conducted to characterize contaminant accumulation inside a hypothetical space system cavity. The simulation indicated that contaminant molecules bouncing inside the hypothetical payload cavity can lead to deposition on colder surfaces, even though large openings are available to provide venting pathways for escaping to space. The newly established molecular contaminant transport simulation capability holds the promise of providing quantitative guidance for future spacecraft and its venting design.

  5. The effect of a zero-concentration sink on contaminant transport and remedial-action designs for the Weldon Spring quarry, Weldon Spring, Missouri

    SciTech Connect

    Tomasko, D.

    1990-04-01

    One-dimensional analytical expressions are developed to simulate two processes in a homogeneous porous medium: contaminant transport through a porous medium that has a zero-concentration sink located at a finite distance from a step-function source; and contaminant transport through a porous medium that has an initial steady-state distribution corresponding to a constant strength source and zero-concentration sink separated by a finite distance. The governing equations are cast in dimensionless form, making use of the flow system's Peclet number. Evaluation of the analytical expressions is accomplished by numerical inversion of Laplace-space concentrations using either a full Fourier series approach with acceleration, or the Stehfest algorithm. The analytical expressions are used to evaluate possible contaminant conditions at the Weldon Spring quarry near Weldon Spring, Missouri. The following results have been found: contaminant concentrations should be at or near steady-state conditions; the spatial distribution of contaminants should be a function of the flow system's Peclet number; contaminant concentrations near the Femme Osage Slough should approach zero; contaminant concentrations near the quarry during dewatering and bulk-waste removal should monotonically decrease with time; and the spatial distribution of contaminants during remedial activities should be relatively flat, especially near the dewatering pumps. Future work will entail evaluating existing radionuclide or chemical concentration data to determine the applicability of the proposed contaminant transport model and to improve the hydrogeological conceptualization of the quarry area and vicinity. 20 refs., 27 figs.

  6. Modelling of passive contaminant transport in river sediments

    SciTech Connect

    Savant-Malhiet, S.A.

    1988-01-01

    Contaminant transport from riverine sediments was investigated via physical and mathematical models. This dissertation focused on evaluation of potential abiotic transport processes which affect the movement of contaminants across the sediment-water interface. Only non-dispersive transport of passive contaminants was considered allowing the research to focus on the movement of the sediment pore water which carries the contaminants. The abiotic processes studied include the advection by flow of sediment pore water and the movement and turnover of sediment through erosion by the overlying river flow. Pore water flow driven by a mean hydraulic gradient between the river and its associated ground-water aquifier and driven by the local pressure variations associated with the uneven surface of the river sediments was considered. Mathematical models of the transport mechanisms considered are presented and used to compare the importance of each. The preliminary results indicate the potential importance of a heretofore largely unexamined mechanism, advective transport by the local pressure variations over the uneven bed sediment.

  7. The Recursion Method Applied to One-Dimensional Spin Systems

    NASA Astrophysics Data System (ADS)

    Viswanath, V. S.

    The recursion method is used for the study of the dynamics of quantum spin models at zero and infinite temperatures. Two alternative formulations of the recursion method are described in detail. Application of either formulation to quantum many-body systems yields a set of continued-fraction coefficients. Several new calculational techniques for the analysis of these continued-fraction coefficients developed during the course of my research are presented. The efficacy and accuracy of these techniques are demonstrated by applications to the few situations were exact nontrivial results are available. For the s = 1/2 XXZ model on a linear chain, new and reliable quantitative information has been obtained on the type of ordering in the ground-state, on the size of gaps in the dynamically relevant excitation spectrum, on the bandwidths of dominant structures in spectral densities, on the exponents of infrared singularities in the same functions, and on the detailed shape of spectral-weight distributions. Zero temperature dynamic structure factors for the one-dimensional spin-s XYZ model in a magnetic field have been calculated for systems with s = 1/2, 1, 3/2. The line shapes and peak positions have been shown to differ considerably from the corresponding spin-wave results. Time-dependent spin autocorrelation functions and their spectral densities for the semi-infinite one -dimensional s = 1/2 XY model at infinite temperature have been determined in part by rigorous calculations in the fermion representation and in part by the recursion method in the spin representation. The study of boundary effects yields valuable new insight into the dynamical processes which govern the transport of spin fluctuations in that model. The exact results also provide a benchmark against which the results of the recursion method have been compared and calibrated.

  8. The effects of a perturbed source on contaminant transport near the Weldon Spring quarry

    SciTech Connect

    Tomasko, D.

    1989-03-01

    The effects of a perturbed contamination source at the Weldon Spring quarry in St. Charles County, Missouri, on downstream solute concentrations were investigated using one-dimensional analytical solutions to an advection-dispersion equation developed for both constant-strength and multiple-stepped source functions. A sensitivity study using parameter base-case values and ranges consistent with the geologic conceptualization of the quarry area indicates that the parameters having the greatest effect on predicted concentrations are the distance from the quarry to the point of interest, the average linear groundwater velocity, the contaminant retardation coefficient, and the amplitude and duration of the source perturbation caused by response action activities. Use of base-case parameter value and realistic values for the amplitude and duration of the source perturbation produced a small effect on solute concentrations near the western extremity of the nearby municipal well field, as well as small uncertainties in the predicted results for the assumed model. The effect of simplifying assumptions made in deriving the analytic solution is unknown: use of a multidimensional flow and transport model and additional field work are needed to validate the model. 13 refs., 18 figs.

  9. CONTAMINANT TRANSPORT IN PARALLEL FRACTURED MEDIA: SUDICKY AND FRIND REVISITED

    EPA Science Inventory

    This paper is concerned with a modified, nondimensional form of the parallel fracture, contaminant transport model of Sudicky and Frind (1982). The modifications include the boundary condition at the fracture wall, expressed by a parameter, and the power-law relationship between...

  10. CONTAMINANT TRANSPORT IN PARALLEL FRACTURED MEDIA: SUDICKY AND FRIND REVISITED

    EPA Science Inventory

    This paper is concerned with a modified, nondimensional form of the parallel fracture, contaminant transport model of Sudicky and Frind (1982). The modifications include the boundary condition at the fracture wall, expressed by a parameter , and the power-law relationship betwe...

  11. CONTAMINANT TRANSPORT IN PARALLEL FRACTURED MEDIA: SUDICKY AND FRIND REVISITED

    EPA Science Inventory

    This paper is concerned with a modified, nondimensional form of the parallel fracture, contaminant transport model of Sudicky and Frind (1982). The modifications include the boundary condition at the fracture wall, expressed by a parameter , and the power-law relationship betwe...

  12. CONTAMINANT TRANSPORT IN PARALLEL FRACTURED MEDIA: SUDICKY AND FRIND REVISITED

    EPA Science Inventory

    This paper is concerned with a modified, nondimensional form of the parallel fracture, contaminant transport model of Sudicky and Frind (1982). The modifications include the boundary condition at the fracture wall, expressed by a parameter, and the power-law relationship between...

  13. Transportation cask contamination weeping: A program leading to prevention

    SciTech Connect

    Bennett, P. C.; Doughty, D. H.; Chambers, W. B.

    1991-01-01

    This paper describes the problem of cask contamination weeping, and efforts to understand the phenomenon and to eliminate its occurrence during spent nuclear fuel transport. The paper analyses of field experience and scoping experiments, and concentrates on current modelling and experimental validation efforts. The weeping'' phenomenon associated with spent fuel transportation casks (also known as sweating'') is believed to be due to the conversion of fixed contamination on the external surface of the cask to a removable form. Spent fuel transportation casks are loaded under water at nuclear power plants in a spent fuel storage pool, exposing the cask surfaces to contamination by radionuclides present in the pool water including {sup 137}Cs, {sup 134}Cs, and {sup 60}Co. The external surfaces of loaded casks are routinely surveyed for removable contamination and decontaminated to 1/10 of the US and IAEA regulatory limits prior to being released for shipment (49CFR 1983, IAEA 1989). However, 3% to 8% of US spent fuel casks have arrived at final destinations with removable surface contamination in excess of that allowed by regulation, though many preshipment surveys have shown contaminant levels to be within allowable limits (Grella 1987). Attempts to reduce the incidence of weeping have met with limited success and resulted in time-consuming operational constraints and procedures that significantly increase cask processing times and occupational exposures at loading facilities. As the US Department of Energy (DOE) moves toward a high volume spent fuel transportation campaign beginning in 1998, the elimination of weeping occurrence and minimization of operational constraints has received increased attention.

  14. Reductive dissolution and reactive solute transport in a sewage-contaminated glacial outwash aquifer

    USGS Publications Warehouse

    Lee, R.W.; Bennett, P.C.

    1998-01-01

    Contamination of shallow ground water by sewage effluent typically contains reduced chemical species that consume dissolved oxygen, developing either a low oxygen geochemical environment or an anaerobic geochemical environment. Based on the load of reduced chemical species discharged to shallow ground water and the amounts of reactants in the aquifer matrix, it should be possible to determine chemical processes in the aquifer and compare observed results to predicted ones. At the Otis Air Base research site (Cape Cod, Massachusetts) where sewage effluent has infiltrated the shallow aquifer since 1936, bacterially mediated processes such as nitrification, denitrification, manganese reduction, and iron reduction have been observed in the contaminant plume. In specific areas of the plume, dissolved manganese and iron have increased significantly where local geochemical conditions are favorable for reduction and transport of these constituents from the aquifer matrix. Dissolved manganese and iron concentrations ranged from 0.02 to 7.3 mg/L, and 0.001 to 13.0 mg/L, respectively, for 21 samples collected from 1988 to 1989. Reduction of manganese and iron is linked to microbial oxidation of sewage carbon, producing bicarbonate and the dissolved metal ions as by-products. Calculated production and flux of CO2 through the unsaturated zone from manganese reduction in the aquifer was 0.035 g/m2/d (12% of measured CO2 flux during winter). Manganese is limited in the aquifer, however. A one-dimensional, reaction-coupled transport model developed for the mildly reducing conditions in the sewage plume nearest the source beds showed that reduction, transport, and removal of manganese from the aquifer sediments should result in iron reduction where manganese has been depleted.

  15. Contaminant Transport Through Subsurface Material from the DOE Hanford Reservation

    SciTech Connect

    Pace, M.N.; Mayes, M.A.; Jardine, P.M.; Fendorf, S.E.; Nehlhorn, T.L.; Yin, X.P.; Ladd, J.; Teerlink, J.; Zachara, J.M.

    2003-03-26

    Accelerated migration of contaminants in the vadose zone has been observed beneath tank farms at the U.S. Department of Energy's Hanford Reservation. This paper focuses on the geochemical processes controlling the fate and transport of contaminants in the sediments beneath the Hanford tank farms. Laboratory scale batch sorption experiments and saturated transport experiments were conducted using reactive tracers U(VI), Sr, Cs, Co and Cr(VI) to investigate geochemical processes controlling the rates and mechanisms of sorption to Hanford subsurface material. Results indicate that the rate of sorption is influenced by changes in solution chemistry such as ionic strength, pH and presence of competing cations. Sediment characteristics such as mineralogy, iron content and cation/anion exchange capacity coupled with the dynamics of flow impact the number of sites available for sorption. Investigative approaches using a combination of batch and transport experiments will contribute to the conceptual and Hanford vadose zone.

  16. THE IMPACT OF GROUND WATER-SURFACE WATER INTERACTIONS ON CONTAMINANT TRANSPORT AT CONTAMINATED SITES

    EPA Science Inventory

    The purpose of this document is to provide an overview of the dynamics of chemical processes that govern contaminant transport and speciation during water exchange across the GW/SW transition zone. A conceptual model of the GW/SW transition zone is defined to serve as a starting...

  17. Monitoring Potential Transport of Radioactive Contaminants in Shallow Ephemeral Channels

    SciTech Connect

    Miller, Julianne J.; Mizell, Steve A.; Nikolich, George; Campbell, Scott A.

    2012-02-01

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 550, Area 8 Smoky Contamination Area (CA), during precipitation runoff events. CAU 550 includes Corrective Action Sites (CASs) 08-23-03, 08-23-04, 08-23-06, and 08-23-07; these CASs are associated with tests designated Ceres, Smoky, Oberon, and Titania, respectively.

  18. IMPACT OF REDOX DISEQUILIBRIA ON CONTAMINANT TRANSPORT AND REMEDIATION IN SUBSURFACE SYSTEMS

    EPA Science Inventory

    Partitioning to mineral surfaces exerts significant control on inorganic contaminant transport in subsurface systems. Remedial technologies for in-situ treatment of subsurface contamination are frequently designed to optimize the efficiency of contaminant partitioning to solid s...

  19. IMPACT OF REDOX DISEQUILIBRIA ON CONTAMINANT TRANSPORT AND REMEDIATION IN SUBSURFACE SYSTEMS

    EPA Science Inventory

    Partitioning to mineral surfaces exerts significant control on inorganic contaminant transport in subsurface systems. Remedial technologies for in-situ treatment of subsurface contamination are frequently designed to optimize the efficiency of contaminant partitioning to solid s...

  20. Antiresonance induced by symmetry-broken contacts in quasi-one-dimensional lattices

    NASA Astrophysics Data System (ADS)

    Ryu, Jung-Wan; Myoung, Nojoon; Park, Hee Chul

    2017-09-01

    We report the effect of symmetry-broken contacts on quantum transport in quasi-one-dimensional lattices. In contrast to one-dimensional (1D) chains, transport in quasi-one-dimensional lattices, which are made up of a finite number of 1D chain layers, is strongly influenced by contacts. Contact symmetry depends on whether the contacts maintain or break the parity symmetry between the layers. With balanced on-site potential, a flatband can be detected by asymmetric contacts, but not by symmetric contacts. In the case of asymmetric contacts with imbalanced on-site potential, transmission is suppressed at certain energies. We elucidate these energies of transmission suppression related to antiresonance using reduced lattice models and Feynman paths. These results provide a nondestructive measurement of flatband energy, which is difficult to detect.

  1. Reentrant phase coherence in a quasi-one-dimensional superconductor

    NASA Astrophysics Data System (ADS)

    Ansermet, Diane; Petrovic, Alexander P.; He, Shikun; Chernyshov, Dmitri; Hoesch, Moritz; Salloum, Diala; Gougeon, Patrick; Potel, Michel; Boeri, Lilia; Andersen, Ole K.; Panagopoulos, Christos

    Short coherence lengths characteristic of low-dimensional superconductors are related to high critical fields or temperatures. Fatally, such materials are often sensitive to disorder and suffer from phase fluctuations in the order parameter which diverge with temperature T, magnetic field H or current I. To solve synthesis and fluctuation problems, we propose to build superconductors from inhomogeneous composites of nanofilaments. Single crystals of quasi-one-dimensional Na2-δMo6Se6 featuring Na vacancy disorder (δ ~ 0 . 2) behave as percolative networks of superconducting nanowires. Long range order is established via transverse coupling between individual filaments, yet phase coherence is unstable to fluctuations and localization in the zero-(T, H, I) limit. A region of reentrant phase coherence develops upon raising (T, H, I) and is attributed to an enhancement of the transverse coupling due to electron delocalization. The observed reentrance in the electronic transport coincides with a peak in the Josephson energy EJ at non-zero (T, H, I). Na2-δMo6Se6 is a blueprint for a new generation of low dimensional superconductors with resilience to phase fluctuations at high (T, H, I). This work was supported by the National Research Foundation, Singapore, through Grant NRF-CRP4-2008-04.

  2. Simulation of contaminated sediment transport in White Oak Creek basin

    SciTech Connect

    Bao, Y.; Clapp, R.B.; Brenkert, A.L.; Moore, T.D.; Fontaine, T.A.

    1995-12-31

    This paper presents a systematic approach to management of the contaminated sediments in the White Oak Creek watershed at Oak Ridge National Laboratory near Oak Ridge, Tennessee. The primary contaminant of concern is radioactive cesium-137 ({sup 137}Cs), which binds to soil and sediment particles. The key components in the approach include an intensive sampling and monitoring system for flood events; modeling of hydrological processes, sediment transport, and contaminant flux movement; and a decision framework with a detailed human health risk analysis. Emphasis is placed on modeling of watershed rainfall-runoff and contaminated sediment transport during flooding periods using the Hydrologic Simulation Program- Fortran (HSPF) model. Because a large number of parameters are required in HSPF modeling, the major effort in the modeling process is the calibration of model parameters to make simulation results and measured values agree as closely as possible. An optimization model incorporating the concepts of an expert system was developed to improve calibration results and efficiency. Over a five-year simulation period, the simulated flows match the observed values well. Simulated total amount of sediment loads at various locations during storms match with the observed values within a factor of 1.5. Simulated annual releases of {sup 137}Cs off-site locations match the data within a factor of 2 for the five-year period. The comprehensive modeling approach can provide a valuable tool for decision makers to quantitatively analyze sediment erosion, deposition, and transport; exposure risk related to radionuclides in contaminated sediment; and various management strategies.

  3. Mass transfer model of nanoparticle-facilitated contaminant transport in saturated porous media.

    PubMed

    Johari, Wan Lutfi Wan; Diamessis, Peter J; Lion, Leonard W

    2010-02-01

    A one-dimensional model has been evaluated for transport of hydrophobic contaminants, such as polycyclic aromatic hydrocarbon (PAH) compounds, facilitated by synthetic amphiphilic polyurethane (APU) nanoparticles in porous media. APU particles synthesized from poly(ethylene glycol)-modified urethane acrylate (PMUA) precursor chains have been shown to enhance the desorption rate and mobility of phenanthrene (PHEN) in soil. A reversible process governed by attachment and detachment rates was considered to describe the PMUA binding in soil in addition to PMUA transport through advection and dispersion. Ultimately, an irreversible second-order PMUA attachment rate in which the fractional soil saturation capacity with PMUA was a rate control was found to be adequate to describe the retention of PMUA particles. A gamma-distributed site model (GS) was used to describe the spectrum of physical/chemical constraints for PHEN transfer from solid to aqueous phases. Instantaneous equilibrium was assumed for PMUA-PHEN interactions. The coupled model for PMUA and PHEN behavior successfully described the enhanced elution profile of PHEN by PMUA. Sensitivity analysis was performed to analyze the significance of model parameters on model predictions. The adjustable parameter alpha in the gamma-distribution shapes the contaminant desorption distribution profile as well as elution and breakthrough curves. Model simulations show the use of PMUA can be also expected to improve the release rate of PHEN in soils with higher organic carbon content. The percentage removal of PHEN mass over time is shown to be influenced by the concentration of PMUA added and this information can be used to optimize cost and time require to accomplish a desired remediation goal. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Phytoremediation: modeling plant uptake and contaminant transport in the soil plant atmosphere continuum

    NASA Astrophysics Data System (ADS)

    Ouyang, Ying

    2002-09-01

    Phytoremediation is an emerging technology that uses plants and their associated rhizospheric microorganisms to remove, degrade, detoxify, or contain contaminants located in the soil, sediments, groundwater, surface water, and even the atmosphere. This study investigates phytoremediation of 1,4-dioxane from a contaminated sandy soil by a poplar cutting, which is associated with water flow in the soil as well as water movement and 1,4-dioxane translocation in the xylem and phloem systems. An existing one-dimensional mathematical model for coupled transport of water, heat, and solutes in the soil-plant-atmosphere continuum (CTSPAC) is modified for the purpose of this study. The model is calibrated with the laboratory experimental measurements prior to its applications. A simulation scenario is then performed to investigate phytoremediation of 1,4-dioxane by a poplar cutting in response to daily water flow and 1,4-dioxane transport for a simulation period of 7 days. Simulation shows that 1,4-dioxane concentration is high in leaves and low in roots with the stem in between. However, 1,4-dioxane mass in the stem (60%) is higher than that of leaves (28%) and roots (12%). This occurs because the stem volume used in this study is larger than those of leaves and roots. The simulation further reveals that about 30% of the soil 1,4-dioxane is removed within 7 days, resulting mainly from root uptake. A plot of the 1,4-dioxane concentrations in plant compartments as a function of time shows that the highest concentration in leaves is about 2600 μg/cm 3 and the lowest concentration in roots is about 350 μg/cm 3 at the end of the simulation. Results indicate that leaves are an important compartment for 1,4-dioxane accumulation and transpiration. This study suggests that the modified CTSPAC model could be a useful tool for phytoremediation estimations.

  5. Modeling subsurface contaminant reactions and transport at the watershed scale

    SciTech Connect

    Gwo, J.P.; Jardine, P.M.; D`Azevedo, E.F.; Wilson, G.V.

    1997-12-01

    The objectives of this research are: (1) to numerically examine the multiscale effects of physical and chemical mass transfer processes on watershed scale, variably saturated subsurface contaminant transport, and (2) to conduct numerical simulations on watershed scale reactive solute transport and evaluate their implications to uncertainty characterization and cost benefit analysis. Concurrent physical and chemical nonequilibrium caused by inter aggregate gradients of pressure head and solute concentration and intra-aggregate geochemical and microbiological processes, respectively, may arise at various scales and flowpaths. To this date, experimental investigations of these complex processes at watershed scale remain a challenge and numerical studies are often needed for guidance of water resources management and decision making. This research integrates the knowledge bases developed during previous experimental and numerical investigations at a proposed waste disposal site at the Oak Ridge National Laboratory to study the concurrent effects of physical and chemical nonequilibrium. Comparison of numerical results with field data indicates that: (1) multiregion, preferential flow and solute transport exist under partially saturated condition and can be confirmed theoretically, and that (2) mass transfer between pore regions is an important process influencing contaminant movement in the subsurface. Simulations of watershed scale, multi species reactive solute transport suggest that dominance of geochemistry and hydrodynamics may occur simultaneously at different locales and influence the movement of one species relative to another. Execution times on the simulations of the reactive solute transport model also indicate that the model is ready to assist the selection of important parameters for site characterization.

  6. One-dimensional Pt induced chains on Si(337)

    NASA Astrophysics Data System (ADS)

    McChesney, Jessica; Bostwick, A.; Rotenberg, E.; Lapeyre, Gerald

    2006-03-01

    The use of high index Si surfaces as templates for the formation of adsorbate induced one-dimensional chain structures have attracted considerable interest. These systems have been used as a test bed in which to study low-dimension physics and components of nanoelectronics. In addition to the Ag and Au induced chains reported to form on the Si(337) surface, Pt also produces one-dimensional chains. Angle-resolved photoemission spectroscopy was used to investigate the electronic structure of these new Pt chains. The valence band mapping confirms the one-dimensional nature of these chains as seen in LEED. Supported by ONR and DOE.

  7. Torsional Detwinning Domino in Nanotwinned One-Dimensional Nanostructures.

    PubMed

    Zhou, Haofei; Li, Xiaoyan; Wang, Ying; Liu, Zishun; Yang, Wei; Gao, Huajian

    2015-09-09

    How to maintain sustained deformation in one-dimensional nanostructures without localized failure is an important question for many applications of nanotechnology. Here we report a phenomenon of torsional detwinning domino that leads to giant rotational deformation without localized failure in nanotwinned one-dimensional metallic nanostructures. This mechanism is demonstrated in nanotwinned Cu nanorods via molecular dynamics simulations, where coherent twin boundaries are transformed into twist boundaries and then dissolved one by one, resulting in practically unlimited rotational deformation. This finding represents a fundamental advance in our understanding of deformation mechanisms in one-dimensional metallic nanostructures.

  8. Prediction methodology for contaminant transport from rangeland watersheds

    SciTech Connect

    Devaurs, M.A.; Springer, E.P.; Lane, L.J.; Langhorst, G.J.

    1988-01-01

    Weather on arid and semiarid lands can be extremely variable. Runoff is generally emphermeral, and high intensity, short-duration rainfall events are the major stimulus for runoff events. Transport of sediment and associated contaminants occurs with these infrequent events. Incorporation of variability in weather into any prediction technology is essential to provide accurate representations of climate-induced uncertainty in predictions of hydrologic response. The objective of this study is to investigate a method for including short-term climatic variations in analyses for contaminant transport from rangeland watersheds in arid/semiarid regions. Short term is defined here as a twenty to fifty time frame and it is assumed that lone term climatic fluctuations are not observed during this time. Also, most weather records are available for this time period; predictions of greater length are extrapolations of existing records unless corroborative data for longer term trends are collected. Predictions are being made with condensable uncertainty in the weather inputs even if the models for water, sediment, and contaminant transport are perfectly unknown. This study will incorporate uncertainty in weather inputs into the prediction process and address the ramifications of this uncertainty. Uncertainty introduced by improper model or parameter specification is only briefly addressed.

  9. One-dimensional simulation of temperature and moisture in atmospheric and soil boundary layers

    NASA Technical Reports Server (NTRS)

    Bornstein, R. D.; Santhanam, K.

    1981-01-01

    Meteorologists are interested in modeling the vertical flow of heat and moisture through the soil in order to better simulate the vertical and temporal variations of the atmospheric boundary layer. The one dimensional planetary boundary layer model of is modified by the addition of transport equations to be solved by a finite difference technique to predict soil moisture.

  10. An investigation of dopping profile for a one dimensional heterostructure

    NASA Astrophysics Data System (ADS)

    Huang, Zhaohui

    2005-03-01

    A one-dimensional junction is formed by joining two silicon nanowires whose surfaces are terminated with capping groups of different electronegativity and polarizability. If this heterostructure is doped (with e.g. phosphorous) on the side with the higher bandgap, the system becomes a modulation doped heterostructure with novel one-dimensional electrostatics. We use density functional theory calculations in the pseudopotential approximation, plus empirical model calculations, to investigate doping profiles in this new class of nanostructures.

  11. Modeling and testing of reactive contaminant transport in drinking water pipes: chlorine response and implications for online contaminant detection.

    PubMed

    Jeffrey Yang, Y; Goodrich, James A; Clark, Robert M; Li, Sylvana Y

    2008-03-01

    A modified one-dimensional Danckwerts convection-dispersion-reaction (CDR) model is numerically simulated to explain the observed chlorine residual loss for a "slug" of reactive contaminants instantaneously introduced into a drinking water pipe of assumed no or negligible wall demand. In response to longitudinal dispersion, a contaminant propagates into the bulk phase where it reacts with disinfectants in the water. This process generates a U-shaped pattern of chlorine residual loss in a time-series concentration plot. Numerical modeling indicates that the residual loss curve geometry (i.e., slope, depth, and width) is a function of several variables such as axial Péclet number, reaction rate constants, molar fraction of the fast- and slow-reacting contaminants, and the quasi-steady-state chlorine decay inside the "slug" which serves as a boundary condition of the CDR model. Longitudinal dispersion becomes dominant for less reactive contaminants. Pilot-scale pipe flow experiments for a non-reactive sodium fluoride tracer and the fast-reacting aldicarb, a pesticide, were conducted under turbulent flow conditions (Re=9020 and 25,000). Both the experimental results and the CDR modeling are in agreement showing a close relationship among the aldicarb contaminant "slug", chlorine residual loss and its variations, and a concentration increase of chloride as the final reaction product. Based on these findings, the residual loss curve and its geometry are useful tools to identify the presence of a contaminant "slug" and infer its reactive properties in adaptive contaminant detections.

  12. One dimensional time-to-explode (ODTX) in HMX spheres

    SciTech Connect

    Breshears, D.

    1997-06-02

    In a series of papers researchers at Lawrence Livermore National Laboratory (LLNL) have reported measurements of the time to explosion in spheres of various high explosives following a rapid, uniform increase in the surface temperature of the sphere. Due to the spherical symmetry, the time-dependent properties of the explosive (temperature, chemical composition, etc.) are functions of the radial spatial coordinate only; thus the name one-dimensional time-to-explosion (ODTX). The LLNL researchers also report an evolving series of computational modeling results for the ODTX experiments, culminating in those obtained using a sophisticated heat transfer code incorporating accurate descriptions of chemical reaction. Although the chemical reaction mechanism used to describe HMX decomposition is quite simple, the computational results agree very well with the experimental data. In addition to reproducing the magnitude and temperature dependence of the measured times to explosion, the computational results also agree with the results of post reaction visual inspection. The ODTX experiments offer a near-ideal example of a transport process (heat transfer in this case) tightly coupled with chemical reaction. The LLNL computational model clearly captures the important features of the ODTX experiments. An obvious question of interest is to what extent the model and/or its individual components (specifically the chemical reaction mechanism) are applicable to other experimental scenarios. Valid exploration of this question requires accurate understanding of (1) the experimental scenario addressed by the LLNL model and (2) details of the application of the model. The author reports here recent work addressing points (1) and (2).

  13. Transport of soluble and unsoluble contaminants in compound vortex

    NASA Astrophysics Data System (ADS)

    Stepanova, Eugenia

    2010-05-01

    Transport of solvable substances by separate vortices and vortex flows is studied regularly in environmental and laboratory conditions. The compound vortex is generated in the cylindrical container by the rotating disk. It is possible to observe strongly pronounced area - a vortex core by means of dye injection into the centre of surface trough. Inside the fluid the dye gathers in the central cylindrical area. On a free surface contaminants are located in separate compact areas - in bounded areas near the vertical axis of compound vortex and spiral arms. The separate tinted and clear water areas are observed for a long time in scales of activator rotation period. Parameters of flow patterns geometry are measured in wide range of basic flow conditions. Strong effect of unsoluble contaminant on general flow dynamics in the container is found. Registered flow patterns are compared with environmental observations.

  14. Attenuation of Selected Emerging Contaminants During River Transport

    NASA Astrophysics Data System (ADS)

    Reinhard, M.; Gross, B.; Hadeler, A.

    2002-12-01

    The ubiquitous occurrence of emerging (non-regulated) contaminants in the aquatic environment is of concern because some of these chemicals are biologically active at low concentrations and a potential threat to wildlife and human health.. Emerging contaminants include a diverse range of chemicals, including pharmaceuticals, natural and synthetic hormones and industrial surfactants, such as alkylphenol ethoxylates (APEO) and their metabolites. To address the ecotoxicological impact of these chemicals, it is necessary to know their sources, removal efficiencies during wastewater treatment, and their behavior in the environment. In this study, the fate of selected emerging contaminants in the Santa Ana River (SAR) in Southern California was investigated. The SAR originates in the San Bernardino Mountains and flows 80 miles into the Pacific Ocean. The SAR flow stems mainly from storm runoff, wastewater treatment effluents and several other minor sources. During the dry season, SAR flow is dominated by effluent from public wastewater treatment plants. Input into the SAR was studied by analyzing samples from four major treatment plants that employ different tertiary treatment processes. To assess the fate during river water transport and during wetland treatment, samples from six sites along the river were analyzed. Effluent samples were analyzed every two months, river water every four months. River samples were taken considering the flow velocity, which is approximately 1 mile per hour. The analytical method involves solid-phase extraction using C-18 cartridges and extraction of three fractions. Samples were analyzed with and without further derivatization using GC/MS and GC/MS/MS. Results indicate significant contaminant removal during river transport, presumably by photochemical oxidation. Within a distance of nine miles, pharmaceuticals, plasticizers, flame retardants, APEOs and metabolites were attenuated with removal rates ranging from 76% for a flame retardant

  15. Some topological states in one-dimensional cold atomic systems

    SciTech Connect

    Mei, Feng; Zhang, Dan-Wei; Zhu, Shi-Liang

    2015-07-15

    Ultracold atoms trapped in optical lattices nowadays have been widely used to mimic various models from condensed-matter physics. Recently, many great experimental progresses have been achieved for producing artificial magnetic field and spin–orbit coupling in cold atomic systems, which turn these systems into a new platform for simulating topological states. In this paper, we give a review focusing on quantum simulation of topologically protected soliton modes and topological insulators in one-dimensional cold atomic system. Firstly, the recent achievements towards quantum simulation of one-dimensional models with topological non-trivial states are reviewed, including the celebrated Jackiw–Rebbi model and Su–Schrieffer–Heeger model. Then, we will introduce a dimensional reduction method for systematically constructing high dimensional topological states in lower dimensional models and review its applications on simulating two-dimensional topological insulators in one-dimensional optical superlattices.

  16. One-dimensional rainbow technique using Fourier domain filtering.

    PubMed

    Wu, Yingchun; Promvongsa, Jantarat; Wu, Xuecheng; Cen, Kefa; Grehan, Gerard; Saengkaew, Sawitree

    2015-11-16

    Rainbow refractometry can measure the refractive index and the size of a droplet simultaneously. The refractive index measurement is extracted from the absolute rainbow scattering angle. Accordingly, the angular calibration is vital for accurate measurements. A new optical design of the one-dimensional rainbow technique is proposed by using a one-dimensional spatial filter in the Fourier domain. The relationship between the scattering angle and the CCD pixel of a recorded rainbow image can be accurately determined by a simple calibration. Moreover, only the light perpendicularly incident on the lens in the angle (φ) direction is selected, which exactly matches the classical inversion algorithm used in rainbow refractometry. Both standard and global one-dimensional rainbow techniques are implemented with the proposed optical design, and are successfully applied to measure the refractive index and the size of a line of n-heptane droplets.

  17. Few-body route to one-dimensional quantum liquids

    NASA Astrophysics Data System (ADS)

    Valiente, Manuel; Öhberg, Patrik

    2016-11-01

    Gapless many-body quantum systems in one spatial dimension are universally described by the Luttinger liquid effective theory at low energies. Essentially, only two parameters enter the effective low-energy description, namely, the speed of sound and the Luttinger parameter. These are highly system dependent and their calculation requires accurate nonperturbative solutions of the many-body problem. Here we present a simple theoretical method that only uses collisional information to extract the low-energy properties of spinless one-dimensional systems. Our results are in remarkable agreement with available results for integrable models and from large-scale Monte Carlo simulations of one-dimensional helium and hydrogen isotopes. Moreover, we estimate theoretically the critical point for spinodal decomposition in one-dimensional 4He and show that the exponent governing the divergence of the Luttinger parameter near the critical point is exactly 1/2, in excellent agreement with Monte Carlo simulations.

  18. Quantum solution for the one-dimensional Coulomb problem

    SciTech Connect

    Nunez-Yepez, H. N.; Salas-Brito, A. L.; Solis, Didier A.

    2011-06-15

    The one-dimensional hydrogen atom has been a much studied system with a wide range of applications. Since the pioneering work of Loudon [R. Loudon, Am. J. Phys. 27, 649 (1959).], a number of different features related to the nature of the eigenfunctions have been found. However, many of the claims made throughout the years in this regard are not correct--such as the existence of only odd eigenstates or of an infinite binding-energy ground state. We explicitly show that the one-dimensional hydrogen atom does not admit a ground state of infinite binding energy and that the one-dimensional Coulomb potential is not its own supersymmetric partner. Furthermore, we argue that at the root of many such false claims lies the omission of a superselection rule that effectively separates the right side from the left side of the singularity of the Coulomb potential.

  19. Assessing conceptual models for subsurface reactive transport of inorganic contaminants

    USGS Publications Warehouse

    Davis, James A.; Yabusaki, Steven B.; Steefel, Carl; Zachara, John M.; Curtis, Gary P.; Redden, George D.; Criscenti, Louise J.; Honeyman, Bruce D.

    2004-01-01

    In many subsurface situations where human health and environmental quality are at risk (e.g., contaminant hydrogeology petroleum extraction, carbon sequestration, etc.),scientists and engineers are being asked by federal agency decision-makers to predict the fate of chemical species under conditions where both reactions and transport are processes of first-order importance.In 2002, a working group (WG) was formed by representatives of the U.S. Geological Survey, Environmental Protection Agency, Department of Energy Nuclear Regulatory Commission, Department of Agriculture, and Army Engineer Research and Development Center to assess the role of reactive transport modeling (RTM) in addressing these situations. Specifically the goals of the WG are to (1) evaluate the state of the art in conceptual model development and parameterization for RTM, as applied to soil,vadose zone, and groundwater systems, and (2) prioritize research directions that would enhance the practical utility of RTM.

  20. Subsurface Flow and Contaminant Transport Documentation and User's Guide

    SciTech Connect

    Aleman, S.E.

    1999-07-28

    This report documents a finite element code designed to model subsurface flow and contaminant transport, named FACT. FACT is a transient three-dimensional, finite element code designed to simulate isothermal groundwater flow, moisture movement, and solute transport in variably saturated and fully saturated subsurface porous media. The code is designed specifically to handle complex multi-layer and/or heterogeneous aquifer systems in an efficient manner and accommodates a wide range of boundary conditions. Additionally, 1-D and 2-D (in Cartesian coordinates) problems are handled in FACT by simply limiting the number of elements in a particular direction(s) to one. The governing equations in FACT are formulated only in Cartesian coordinates.

  1. Contaminant transport in soil with depth-dependent reaction coefficients and time-dependent boundary conditions.

    PubMed

    Gao, Guangyao; Fu, Bojie; Zhan, Hongbin; Ma, Ying

    2013-05-01

    Predicting the fate and movement of contaminant in soils and groundwater is essential to assess and reduce the risk of soil contamination and groundwater pollution. Reaction processes of contaminant often decreased monotonously with depth. Time-dependent input sources usually occurred at the inlet of natural or human-made system such as radioactive waste disposal site. This study presented a one-dimensional convection-dispersion equation (CDE) for contaminant transport in soils with depth-dependent reaction coefficients and time-dependent inlet boundary conditions, and derived its analytical solution. The adsorption coefficient and degradation rate were represented as sigmoidal functions of soil depth. Solute breakthrough curves (BTCs) and concentration profiles obtained from CDE with depth-dependent and constant reaction coefficients were compared, and a constant effective reaction coefficient, which was calculated by arithmetically averaging the depth-dependent reaction coefficient, was proposed to reflect the lumped depth-dependent reaction effect. With the effective adsorption coefficient and degradation rate, CDE could produce similar BTCs and concentration profiles as those from CDE with depth-dependent reactions in soils with moderate chemical heterogeneity. In contrast, the predicted concentrations of CDE with fitted reaction coefficients at a certain depth departed significantly from those of CDE with depth-dependent reactions. Parametric analysis was performed to illustrate the effects of sinusoidally and exponentially decaying input functions on solute BTCs. The BTCs and concentration profiles obtained from the solutions for finite and semi-infinite domain were compared to investigate the effects of effluent boundary condition. The finite solution produced higher concentrations at the increasing limb of the BTCs and possessed a higher peak concentration than the semi-infinite solution which had a slightly long tail. Furthermore, the finite solution gave

  2. Viscous Dissipation in One-Dimensional Quantum Liquids

    NASA Astrophysics Data System (ADS)

    Matveev, K. A.; Pustilnik, M.

    2017-07-01

    We develop a theory of viscous dissipation in one-dimensional single-component quantum liquids at low temperatures. Such liquids are characterized by a single viscosity coefficient, the bulk viscosity. We show that for a generic interaction between the constituent particles this viscosity diverges in the zero-temperature limit. In the special case of integrable models, the viscosity is infinite at any temperature, which can be interpreted as a breakdown of the hydrodynamic description. Our consideration is applicable to all single-component Galilean-invariant one-dimensional quantum liquids, regardless of the statistics of the constituent particles and the interaction strength.

  3. Random registry shifts in quasi-one-dimensional adsorbate systems

    SciTech Connect

    Schafer, J.; Erwin, S.C.; Hansmann, M.; Song, Z.; Rotenberg, E.; Kevan, S.D.; Hellberg, C.S.; Horn, K.

    2003-02-18

    The apparent contradiction of one-dimensional adsorbate chains on Si(111) having a 3x2 unit cell and yet a 3x1 diffraction pattern is resolved for the example of Ba/Si(111)-(3x2). Random registry shifts between adsorbate chains are observed in tunneling microscopy, with very short interchain correlation lengths. Fourier analysis provides a natural explanation for a pseudo-(3x1) diffraction pattern. Within density-functional theory such registry shifts can occur with essentially negligible energy cost, leading to entropy-driven, virtually perfect disorder. Substrate states of high symmetry and one-dimensional character are inferred to promote this phenomenon.

  4. Random registry shifts in quasi-one-dimensional adsorbate systems

    NASA Astrophysics Data System (ADS)

    Schäfer, J.; Erwin, S. C.; Hansmann, M.; Song, Z.; Rotenberg, E.; Kevan, S. D.; Hellberg, C. S.; Horn, K.

    2003-02-01

    The apparent contradiction of one-dimensional adsorbate chains on Si(111) having a 3×2 unit cell and yet a 3×1 diffraction pattern is resolved for the example of Ba/Si(111)-(3×2). Random registry shifts between adsorbate chains are observed in tunneling microscopy, with very short interchain correlation lengths. Fourier analysis provides a natural explanation for a pseudo-(3×1) diffraction pattern. Within density-functional theory such registry shifts can occur with essentially negligible energy cost, leading to entropy-driven, virtually perfect disorder. Substrate states of high symmetry and one-dimensional character are inferred to promote this phenomenon.

  5. Spiral growth of one dimensional titania nanostructures using anodic oxidation.

    PubMed

    Karakoti, A S; Filmalter, R; Bera, D; Kuchibhatla, Satyanarayana V N T; Vincent, A; Seal, S

    2006-07-01

    One dimensional spiral titania nanostructures were obtained by anodization of pure titanium from fluoride containing solutions of phosphoric acid. The formation of nanotubes was found to be dependant on current density. Field Emission Scanning Electron Microscopy (FESEM) shows the diameter of tubes around 70-100 nm which is consistent with the High Resolution Transmission Electron Micrographs (HRTEM) and Atomic Force Microscopy (AFM) images. HRTEM showed the one dimensional growth as spiral in nature which was also supported by AFM images. This anisotropic growth is compared with the possible growth mechanisms.

  6. Viscous Dissipation in One-Dimensional Quantum Liquids

    DOE PAGES

    Matveev, K. A.; Pustilnik, M.

    2017-07-20

    We develop a theory of viscous dissipation in one-dimensional single-component quantum liquids at low temperatures. Such liquids are characterized by a single viscosity coefficient, the bulk viscosity. We show that for a generic interaction between the constituent particles this viscosity diverges in the zerotemperature limit. In the special case of integrable models, the viscosity is infinite at any temperature, which can be interpreted as a breakdown of the hydrodynamic description. In conclusion, our consideration is applicable to all single-component Galilean- invariant one-dimensional quantum liquids, regardless of the statistics of the constituent particles and the interaction strength.

  7. Solitons in a one-dimensional Wigner crystal

    SciTech Connect

    Pustilnik, M.; Matveev, K. A.

    2015-04-16

    In one-dimensional quantum systems with strong long-range repulsion particles arrange in a quasi-periodic chain, the Wigner crystal. Here, we demonstrate that besides the familiar phonons, such one-dimensional Wigner crystal supports an additional mode of elementary excitations, which can be identified with solitons in the classical limit. Furthermore, we compute the corresponding excitation spectrum and argue that the solitons have a parametrically small decay rate at low energies. Finally, we discuss implications of our results for the behavior of the dynamic structure factor.

  8. Generation of long-term record of contaminant transport

    SciTech Connect

    Solo-Gabriele, H.M.

    1998-07-01

    A long-term record (1900--1993) of streamflow, sediment, and metal transport was simulated for an urbanized watershed, the Aberjona River watershed, located near Boston, Mass. The approach is an innovative procedure that includes the use of a watershed-specific contaminant transport model. The input to the program is hourly precipitation; the output is hourly streamflow, sediment, and metal fluxes. Hourly precipitation was available for part of the record. For time periods for which only daily precipitation data were available, the data were disaggregated into hourly values. The effects of urbanization on streamflow were simulated by adjusting the timing of river flood routing and the area contributing to different flow components. Variations in industrial water withdrawals were also considered. Sediment core data were utilized to estimate changes in source metal concentrations in time. The long-term record that was generated confirms that urbanization can account for a flashier river response including larger peaks in streamflow and sediment transport. Metal transport was affected by changes in metal source characteristics as well as hydrologic factors.

  9. Benchmarking of a Markov multizone model of contaminant transport.

    PubMed

    Jones, Rachael M; Nicas, Mark

    2014-10-01

    A Markov chain model previously applied to the simulation of advection and diffusion process of gaseous contaminants is extended to three-dimensional transport of particulates in indoor environments. The model framework and assumptions are described. The performance of the Markov model is benchmarked against simple conventional models of contaminant transport. The Markov model is able to replicate elutriation predictions of particle deposition with distance from a point source, and the stirred settling of respirable particles. Comparisons with turbulent eddy diffusion models indicate that the Markov model exhibits numerical diffusion in the first seconds after release, but over time accurately predicts mean lateral dispersion. The Markov model exhibits some instability with grid length aspect when turbulence is incorporated by way of the turbulent diffusion coefficient, and advection is present. However, the magnitude of prediction error may be tolerable for some applications and can be avoided by incorporating turbulence by way of fluctuating velocity (e.g. turbulence intensity). © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  10. Analysis of Contaminant Transport through the Vadose and Saturated Zones for Source Screening

    NASA Astrophysics Data System (ADS)

    Bedekar, V.; Neville, C. J.; Tonkin, M. J.

    2010-12-01

    At complex sites there may be many potential source areas. Screening level analyses are useful to identify which of the source areas should be the focus of detailed investigation and analysis. A screening tool has been developed to evaluate the threat posed by waste sites on groundwater quality. This tool implements analytical solutions to simulate contaminant transport through the vadose and saturated zones and predict time-varying concentrations at potential groundwater receptors. The screening tool is developed within a user friendly, Microsoft ExcelTM based interface; however, care has been taken to implement rigorous solutions. The screening tool considers the following mechanisms: (a) Partitioning of soil contamination in to an equivalent dissolved concentration. For a time-invariant source, the solution is generalized from [3] for sorption and decay. For a time-varying source, the solution represents a special, degenerate, case of a solution implemented in ATRANS [2]; (b) One-dimensional (1D) transport of the dissolved contamination through the vadose zone considering 1D dispersion, equilibrium sorption, and first order transformation reactions. Steady state infiltration and moisture content are assumed; (c) Blending (mixing) of ambient water quality in the saturated zone with the contaminated water leaching from the vadose zone; and (d) Three-dimensional (3D) transport through the saturated zone using the formulation provided in [2], considering advection, dispersion, sorption, and first-order transformation reactions. The solution is derived using integral transform methods, following approaches adopted in [1] and [4]. Independent verification showed that the analytical techniques implemented in this study generate solutions that closely approximate those obtained using sophisticated numerical approaches, with a systematic over-estimate of the likely impact to groundwater that (predictably) stems from the use of a 1D approximation in the vadose zone. As a

  11. Evaluating BTEX concentration in soil using a simple one-dimensional vado zone model: application to a new fuel station in Valencia (Spain)

    NASA Astrophysics Data System (ADS)

    Rodrigo-Ilarri, Javier; Rodrigo-Clavero, María-Elena

    2017-04-01

    Specific studies of the impact of fuel spills on the vadose zone are currently required when trying to obtain the environmental permits for new fuel stations. The development of One-Dimensional mathematical models of fate and transport of BTEX on the vadose zone can therefore be used to understand the behavior of the pollutants under different scenarios. VLEACH - a simple One-Dimensional Finite Different Vadose Zone Leaching Model - uses an numerical approximation of the Millington Equation, a theoretical based model for gaseous diffusion in porous media. This equation has been widely used in the fields of soil physics and hydrology to calculate the gaseous or vapor diffusion in porous media. The model describes the movement of organic contaminants within and between three different phases: (1) as a solute dissolved in water, (2) as a gas in the vapor phase, and (3) as an absorbed compound in the soil phase. Initially, the equilibrium distribution of contaminant mass between liquid, gas and sorbed phases is calculated. Transport processes are then simulated. Liquid advective transport is calculated based on values defined by the user for infiltration and soil water content. The contaminant in the vapor phase migrates into or out of adjacent cells based on the calculated concentration gradients that exist between adjacent cells. After the mass is exchanged between the cells, the total mass in each cell is recalculated and re-equilibrated between the different phases. At the end of the simulation, (1) an overall area-weighted groundwater impact for the entire modeled area and (2) the concentration profile of BTEX on the vadose zone are calculated. This work shows the results obtained when applying VLEACH to analyze the contamination scenario caused by a BTEX spill coming from a set of future underground storage tanks located on a new fuel station in Aldaia (Valencia region - Spain).

  12. Importance of unsaturated zone parameters for contaminant transport

    NASA Astrophysics Data System (ADS)

    Eggen, G.; French, H. K.; Bloem, E.

    2010-12-01

    In areas with winter frost the use of deicing chemicals on airplanes, runways and taxiways is necessary in order to secure aircraft traffic during wintertime. In Norway the main airport, OSL, is located on top of a glaciofluvial ice contact delta which today comprises Norway’s largest rain fed unconfined aquifer. This implies that OSL acts upon strict regulations to prevent contamination of groundwater and surface waters and disturbance of the ground water balance of the aquifer. In order to handle melt water containing de-icing chemicals, the airport authorities rely on the unsaturated zone as a filter for degradation of the deicing chemicals before reaching the ground water level. This is especially a challenge during the snow melt in the spring time as a large volume of melt water containing deicing chemicals which has accumulated during the winter infiltrates the soil profile. For proper aquifer management it is important to predict flow rate and contaminant transport through the unsaturated zone. Computer modeling is a valuable tool for assessing the flow and transport of solutes through the soil profile. There are two major challenges associated with sound predictions of flow and transport in the unsaturated zone, describing the correct unsaturated zone properties and determining the infiltration rates. Construction and management procedures at the airport implied extensive construction work affecting the soil physical properties as well as the infiltration pattern. To assess the effect of natural and anthropogenic induced subsurface variability, variation of soil physical parameters and different infiltration rates, transport of solutes through the unsaturated soil profile was simulated with SUTRA 2.1 (Saturated-Unsaturated-TRAnsport finite element code). The parameters and variables describing soil physical properties were estimated based on soil samples and infiltration rates from meteorological data and local snow measurements. Sensitivity analyses of

  13. Strong correlations and topological order in one-dimensional systems

    NASA Astrophysics Data System (ADS)

    De Gottardi, Wade Wells

    This thesis presents theoretical studies of strongly correlated systems as well as topologically ordered systems in 1D. Non-Fermi liquid behavior characteristic of interacting 1D electron systems is investigated with an emphasis on experimentally relevant setups and observables. The existence of end Majorana fermions in a 1D p-wave superconductor subject to periodic, incommensurate and disordered potentials is studied. The Tomonaga-Luttinger liquid (TLL), a model of interacting electrons in one spatial dimension, is considered in the context of two systems of experimental interest. First, a study of the electronic properties of single-walled armchair carbon nanotubes in the presence of transverse electric and magnetic fields is presented. As a result of their effect on the band structure and electron wave functions, fields alter the nature of the (effective) Coulomb interaction in tubes. In particular, it is found that fields couple to nanotube bands (or valleys), a quantum degree of freedom inherited from the underlying graphene lattice. As revealed by a detailed TLL calculation, it is predicted that fields induce electrons to disperse into their spin, band, and charge components. Fields also provide a means of tuning the shell-filling behavior associated with short tubes. The phenomenon of charge fractionalization is investigated in a one-dimensional ring. TLL theory predicts that momentum-resolved electrons injected into the ring will fractionalize into clockwise- and counterclockwise-moving quasiparticles. As a complement to transport measurements in quantum wires connected to leads, non-invasive measures involving the magnetic field profiles around the ring are proposed. Topological aspects of 1D p-wave superconductors are explored. The intimate connection between non-trivial topology (fermions) and spontaneous symmetry breaking (spins) in one-dimension is investigated. Building on this connection, a spin ladder system endowed with vortex degrees of freedom is

  14. One-dimensional fast migration of vacancy clusters in metals

    SciTech Connect

    Matsukawa, Yoshitaka; Zinkle, Steven J

    2007-01-01

    The migration of point defects, e.g. crystal lattice vacancies and self-interstitial atoms (SIAs), typically occurs through three-dimensional (3-D) random walk. However, when vacancies and SIAs agglomerate with like defects forming clusters, the migration mode may change. Recently, atomic-scale computer simulations using molecular dynamics (MD) codes have reported that nanometer-sized two-dimensional (2-D) clusters of SIAs exhibit one-dimensional (1-D) fast migration1-7. The 1-D migration mode transports the entire cluster containing several tens of SIAs with a mobility comparable to single SIAs3. This anisotropic migration of SIA clusters can have a significant impact on the evolution of a material fs neutron-irradiation damage microstructure, which dominates the material fs lifetime in nuclear reactor environments8-9. This is also proposed to be a key physical mechanism for the self-organization of nanometer-sized sessile vacancy cluster arrays10-13. Given these findings for SIA clusters, a fundamental question is whether the 1-D migration mode is also possible for 2-D clusters of vacancies. Preceding MD results predicted that 1-D migration of vacancy clusters is possible in body-centered cubic (bcc) iron, but not in face-centered cubic (fcc) copper2. Previous experimental studies have reported 1-D migration of SIA clusters14, but there have been no observations of 1-D vacancy cluster migration. Here we present the first experimental transmission electron microscopy (TEM) dynamic observation demonstrating the 1-D migration of vacancy clusters in fcc gold. It was found that the mobility of the vacancy clusters via the 1-D migration is much higher than single vacancies via 3-D random walk and comparable to single SIAs via 3-D random walk. Hence, the mobility of the glissile clusters is not associated with the character of their constituent point defects. Dynamic conversion of a planar vacancy loop into a 3-D stacking fault tetrahedron geometry was also observed.

  15. Lie symmetry algebra of one-dimensional nonconservative dynamical systems

    NASA Astrophysics Data System (ADS)

    Liu, Cui-Mei; Wu, Run-Heng; Fu, Jing-Li

    2007-09-01

    Lie symmetry algebra of linear nonconservative dynamical systems is studied in this paper. By using 1-1 mapping, the Lie point and Lie contact symmetry algebras are obtained from two independent solutions of the one-dimensional linear equations of motion.

  16. Zero-n gap in one dimensional photonic crystal

    SciTech Connect

    Chobey, Mahesh K. Suthar, B.

    2016-05-06

    We study a one-dimensional (1-D) photonic crystal composed of Double Positive (DPS) and Double Negative (DNG) material. This structure shows omnidirectional photonic bandgap, which is insensitive with angle of incidence and polarization. To study the effect of structural parameters on the photonic band structure, we have calculated photonic band gap at various thicknesses of DPS and DNG.

  17. Toward precise solution of one-dimensional velocity inverse problems

    SciTech Connect

    Gray, S.; Hagin, F.

    1980-01-01

    A family of one-dimensional inverse problems are considered with the goal of reconstructing velocity profiles to reasonably high accuracy. The travel-time variable change is used together with an iteration scheme to produce an effective algorithm for computation. Under modest assumptions the scheme is shown to be convergent.

  18. Approximate Approaches to the One-Dimensional Finite Potential Well

    ERIC Educational Resources Information Center

    Singh, Shilpi; Pathak, Praveen; Singh, Vijay A.

    2011-01-01

    The one-dimensional finite well is a textbook problem. We propose approximate approaches to obtain the energy levels of the well. The finite well is also encountered in semiconductor heterostructures where the carrier mass inside the well (m[subscript i]) is taken to be distinct from mass outside (m[subscript o]). A relevant parameter is the mass…

  19. The Long Decay Model of One-Dimensional Projectile Motion

    ERIC Educational Resources Information Center

    Lattery, Mark Joseph

    2008-01-01

    This article introduces a research study on student model formation and development in introductory mechanics. As a point of entry, I present a detailed analysis of the Long Decay Model of one-dimensional projectile motion. This model has been articulated by Galileo ("in De Motu") and by contemporary students. Implications for instruction are…

  20. One-Dimensional Ising Model with "k"-Spin Interactions

    ERIC Educational Resources Information Center

    Fan, Yale

    2011-01-01

    We examine a generalization of the one-dimensional Ising model involving interactions among neighbourhoods of "k" adjacent spins. The model is solved by exploiting a connection to an interesting computational problem that we call ""k"-SAT on a ring", and is shown to be equivalent to the nearest-neighbour Ising model in the absence of an external…

  1. Approximate Approaches to the One-Dimensional Finite Potential Well

    ERIC Educational Resources Information Center

    Singh, Shilpi; Pathak, Praveen; Singh, Vijay A.

    2011-01-01

    The one-dimensional finite well is a textbook problem. We propose approximate approaches to obtain the energy levels of the well. The finite well is also encountered in semiconductor heterostructures where the carrier mass inside the well (m[subscript i]) is taken to be distinct from mass outside (m[subscript o]). A relevant parameter is the mass…

  2. The Long Decay Model of One-Dimensional Projectile Motion

    ERIC Educational Resources Information Center

    Lattery, Mark Joseph

    2008-01-01

    This article introduces a research study on student model formation and development in introductory mechanics. As a point of entry, I present a detailed analysis of the Long Decay Model of one-dimensional projectile motion. This model has been articulated by Galileo ("in De Motu") and by contemporary students. Implications for instruction are…

  3. Teaching Module for One-Dimensional, Transient Conduction.

    ERIC Educational Resources Information Center

    Ribando, Robert J.; O'Leary, Gerald W.

    1998-01-01

    Describes a PC-based teaching module designed to instruct engineering students in transient one-dimensional conduction heat transfer analysis. The discussion considers problem formulation, nondimensionalization, discretization, numerical stability and the time-step restriction, program operation, and program verification. (MES)

  4. Underwater striling engine design with modified one-dimensional model

    NASA Astrophysics Data System (ADS)

    Li, Daijin; Qin, Kan; Luo, Kai

    2015-05-01

    Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs) is discussed. And a one-dimensional model incorporated with empirical equations of mechanical loss and auxiliary power obtained from experiments is derived while referring to the Stirling engine computer model of National Aeronautics and Space Administration (NASA). The P-40 Stirling engine with sufficient testing results from NASA is utilized to validate the accuracy of this one-dimensional model. It shows that the maximum error of output power of theoretical analysis results is less than 18% over testing results, and the maximum error of input power is no more than 9%. Finally, a Stirling engine for UUVs is designed with Schmidt analysis method and the modified one-dimensional model, and the results indicate this designed engine is capable of showing desired output power.

  5. Underwater striling engine design with modified one-dimensional model

    NASA Astrophysics Data System (ADS)

    Li, Daijin; Qin, Kan; Luo, Kai

    2015-09-01

    Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs) is discussed. And a one-dimensional model incorporated with empirical equations of mechanical loss and auxiliary power obtained from experiments is derived while referring to the Stirling engine computer model of National Aeronautics and Space Administration (NASA). The P-40 Stirling engine with sufficient testing results from NASA is utilized to validate the accuracy of this one-dimensional model. It shows that the maximum error of output power of theoretical analysis results is less than 18% over testing results, and the maximum error of input power is no more than 9%. Finally, a Stirling engine for UUVs is designed with Schmidt analysis method and the modified one-dimensional model, and the results indicate this designed engine is capable of showing desired output power.

  6. One-Dimensional Ising Model with "k"-Spin Interactions

    ERIC Educational Resources Information Center

    Fan, Yale

    2011-01-01

    We examine a generalization of the one-dimensional Ising model involving interactions among neighbourhoods of "k" adjacent spins. The model is solved by exploiting a connection to an interesting computational problem that we call ""k"-SAT on a ring", and is shown to be equivalent to the nearest-neighbour Ising model in the absence of an external…

  7. A one-dimensional model of subsurface hillslope flow

    Treesearch

    Jason C. Fisher

    1997-01-01

    Abstract - A one-dimensional, finite difference model of saturated subsurface flow within a hillslope was developed. The model uses rainfall, elevation data, a hydraulic conductivity, and a storage coefficient to predict the saturated thickness in time and space. The model was tested against piezometric data collected in a swale located in the headwaters of the North...

  8. Optically induced zener tunneling in one-dimensional lattices.

    PubMed

    Fratalocchi, Andrea; Assanto, Gaetano; Brzdakiewicz, Kasia A; Karpierz, Mirek A

    2006-03-15

    We investigate Landau-Zener tunneling in one-dimensional liquid crystalline waveguide arrays by all-optical impression of acceleration with an additional beam. We derive the Zener model from the governing equations and demonstrate a novel approach to Floquet-Bloch band tunneling.

  9. Mechanisms of contaminant transport in a multi-basin lake.

    PubMed

    Rueda, Francisco J; Schladow, S Geoffrey; Clark, Jordan F

    2008-12-01

    Tracer studies are combined with a three-dimensional (3-D) numerical modeling study to provide a robust description of hydrodynamic and particle transport in Clear Lake, a multi-basin, polymictic lake in northern California, USA. The focus is on the mechanisms of transport of contaminants away from the vicinity of the Sulphur Bank Mercury Mine and out of the Oaks Arm to the rest of the lake and the hydraulic connection existing among the sub-basins of the lake. Under stratified conditions, the rate of spreading of the tracer was found to be large. In less than a week the tracer spread from the eastern end of the Oaks Arm to the other basins. Under non-stratified conditions, the tracer spread more slowly and had a concentration that gradually diminished with distance from the injection location. The numerical results showed that the mechanisms accounting for these observed patterns occur in pulses, with maximum rates coinciding with the stratified periods. Stratification acts first to enhance the currents by inhibiting vertical momentum mixing and decoupling the surface currents from bottom friction. The diversity of the flow structures that results from the interaction of the wind and the density fields in the lake is responsible for the high dispersion rates. Contaminants originating in the Oaks Arm are shown to be transported into the Lower Arm following the surface currents and into the Upper Arm mainly through the bottom currents. It was also shown that, under stratified conditions, both the baroclinic (density driven) gradients and the wind forcing act jointly to exacerbate the interbasin exchange.

  10. Spin-drag relaxation time in one-dimensional spin-polarized Fermi gases

    NASA Astrophysics Data System (ADS)

    Rainis, Diego; Polini, Marco; Tosi, M. P.; Vignale, G.

    2008-01-01

    Spin propagation in systems of one-dimensional interacting fermions at finite temperature is intrinsically diffusive. The spreading rate of a spin packet is controlled by a transport coefficient termed “spin drag” relaxation time τsd . In this paper we present both numerical and analytical calculations of τsd for a two-component spin-polarized cold Fermi gas trapped inside a tight atomic waveguide. At low temperatures we find an activation law for τsd , in agreement with earlier calculations of Coulomb drag between slightly asymmetric quantum wires, but with a different and much stronger temperature dependence of the prefactor. Our results provide a fundamental input for microscopic time-dependent spin-density functional theory calculations of spin transport in one-dimensional inhomogeneous systems of interacting fermions.

  11. Free-surface turbulent flow and contaminants transport modeling

    SciTech Connect

    Wang, S.S.Y.

    1994-12-31

    The requirement of maintaining the environmental quality and ecological balance of the surface water systems at the acceptable level both now and in the future has accelerated the development and refinement of a cost-effective engineering analysis and design tool--Computational Modeling. This paper presents the progress of an on-going study to develop and refine computational models to simulate the free-surface turbulent flows and contaminants transport phenomena. New developments include: the efficient Element Method, which adopts the advantages of both Finite Element and Finite Difference; the most effective up-winding and/or characteristic-path integration; the prescribed solution forcing to conduct modeling verification studies of this correctness and capabilities in prediction of nonlinear effects; among others. The newly refined computational models have been applied to simulate unsteady, three-dimensional, turbulent, free-surface flows and pollutant transport in lakes, reservoirs, streams, rivers, estuaries, and coastal waters with natural (highly-irregular) geometric configurations. They have been verified in some cases to be able to predict basic physical characteristics of the free surface flows including boundary layer separations and re-attachments, wake flow and vortex shedding, corner separation and re-circulation, etc. They are also capable of simulating the transport of solute substances, solid particles and heat energy in these waters. Results can be displayed in stationary (snapshots) color graphics and in animation (motion pictures) recorded on video cassettes.

  12. Rustler Formation as a transport medium for contaminated groundwater

    SciTech Connect

    Chaturvedi, L.; Channell, J.K.

    1985-12-01

    The WIPP repository is being excavated in the lower part of the 2000 ft thick Salado Formation, 2150 ft below the ground surface. The water-bearing zones in the Rustler Formation, which overlies the Salado, are considered to be the main pathway for the transport of radionuclides to the biosphere after a potential breach of the WIPP repository. Geological nd hydrological characterization of the Rustler Formation has not yet been completed to a desired level of detail for a realistic modeling of breach and transport scenarios through this Formation. Currently, the Department of Energy is conducting studies which will significantly enhance our knowledge about the suitability of the Rustler Formation to act as a barrier against the movement of radionuclide contaminated water. A sedimentological study of the cores from several boreholes will help establish the causes for the absence of salt from the Rustler Formation. Several multi-well flow tests over the WIPP site will yield more reliable values for the hydrologic parameters. Rustler water-chemistry data will help in more accurately establishing the flow directions and the pattern of interconnections. In addition to analyzing the geological conditions which affect the hydrological characteristics of the Rustler Formation, this report contains an analysis of radionuclide transport through a Rustler water-bearing zone which is assumed to contain karst conduits. 54 refs., 18 figs., 4 tabs.

  13. Emergence of correlated optics in one-dimensional waveguides for classical and quantum atomic gases

    NASA Astrophysics Data System (ADS)

    Ruostekoski, Janne; Javanainen, Juha

    2016-09-01

    We analyze the emergence of correlated optical phenomena in the transmission of light through a waveguide that confines classical or ultracold quantum degenerate atomic ensembles. The conditions of the correlated collective response are identified in terms of atom density, thermal broadening, and photon losses by using stochastic Monte Carlo simulations and transfer matrix methods of transport theory. We also calculate the "cooperative Lamb shift" for the waveguide transmission resonance, and discuss line shifts that are specific to effectively one-dimensional waveguide systems.

  14. Groundwater flow and contaminant transport in geologic media

    SciTech Connect

    Rizk, T.A.

    1991-01-01

    The classical approaches to the study of groundwater flow and contaminant transport in geologic media may lead to erroneous results depending on the particular site of interest. This emphasis is on improving the state of the art parameter estimation techniques using the Darcian equation of fluid motion. The new parameter estimation technique was applied to a model validation experiment conducted at Bear Creek Valley on the Oak Ridge Reservation, Oak Ridge, TN, under an Oak Ridge National Laboratory research contract. It is shown that the new approach to parameter estimation using the Darcy theory reproduced the groundwater movement and tracer plume behavior with reasonable accuracy. In addition, a set of governing field equations using the theory of interacting continuua are derived. Through a relative order of magnitude analysis of the Bear Creek Valley study, the mixture equations of motion were shown to reduce to the Darcy equation of motion.

  15. A Linear Systems Approach to Segmented Watershed Contaminant Transport

    NASA Astrophysics Data System (ADS)

    Carleton, J. N.

    2013-12-01

    The U.S. Environmental Protection Agency (USEPA) employs simulation models to estimate concentrations of pesticide residues in surface waters for risk assessment. These models have historically been used to simulate runoff loadings from homogeneous landscapes to isolated, well-mixed lentic systems that generically represent vulnerable waters. Recent efforts to refine this approach in terms of realism and geographic specificity have focused on enhancing the level of detail of the landscape representation, rather than that of receiving water hydrology. Linear systems theory and transfer function based approaches have been applied by various investigators to the representation of contaminant leaching through soils, and to surface water hydrology (e.g., unit hydrographs), but rarely to contaminant transport either within surface waters, or through multi-compartment systems such as stream networks. This poster describes a straightforward approach to simulating watersheds as segmented into collections of linked water bodies. The approach employs convolution integrals, impulse response functions, and the Discrete Fourier Transform to propagate concentration time series from upstream to downstream locations. Given knowledge only of estimated mean stream residence times, with appropriately-scaled segmentations of catchments, realistic representations of concentration dynamics are shown to be achievable. These representations are based upon high-frequency atrazine monitoring data sets collected over common time periods from upstream and downstream locations within the same small watersheds. Simulated concentrations are shown to match measured concentrations well in both the temporal and spectral domains without the need for calibration, and despite inherent simplifying assumptions such as steady flow. The approach may have utility for enhancing surface water hydrologic representation in contaminant modeling used for regulatory purposes.

  16. Coliform contamination of a coastal embayment: Sources and transport pathways

    USGS Publications Warehouse

    Weiskel, P.K.; Howes, B.L.; Heufelder, G.R.

    1996-01-01

    Fecal bacterial contamination of nearshore waters has direct economic impacts to coastal communities through the loss of shellfisheries and restrictions of recreational uses. We conducted seasonal measurements of fecal coliform (FC) sources and transport pathways contributing to FC contamination of Buttermilk Bay, a shallow embayment adjacent to Buzzards Bay, MA. Typical of most coastal embayments, there were no direct sewage discharges (i.e., outfalls), and fecal bacteria from human, domestic animal, and wildlife pools entered open waters primarily through direct deposition or after transport through surface waters or groundwaters. Direct fecal coliform inputs to bay waters occurred primarily in winter (December-March) from waterfowl, ~33 x 1012 FC yr-1 or ~67% of the total annual loading. Effects of waterfowl inputs on bay FC densities were mitigated by their seasonality, wide distribution across the bay surface, and the apparent limited dispersal from fecal pellets. On-site disposal of sewage by septic systems was the single largest FC source in the watershed-embayment system, 460 x 1012 FC yr-1, but due to attenuation during subsurface transport only a minute fraction, < 0.006 x 1012 FC yr-1, reached bay waters (<0.01% of annual input to bay). Instead, surface water flows, via storm drains and natural streams under both wet- and dry-weather conditions, contributed the major terrestrial input, 12 x 1012 FC yr-1 (24% of annual input), all from animal sources. Since most of the surface water FC inputs were associated with periodic, short-duration rain events with discharge concentrated in nearshore zones, wet-weather flows were found to have a disproportionately high impact on nearshore FC levels. Elution of FC from shoreline deposits of decaying vegetation (wrack) comprised an additional coliform source. Both laboratory and field experiments suggest significant elution of bacteria from wrack, ~3 x 1012 FC yr-1 on a bay-wide basis (6% of annual input), primarily

  17. Spatial Coherence Properties of One Dimensional Exciton-Polariton Condensates

    NASA Astrophysics Data System (ADS)

    Fischer, J.; Savenko, I. G.; Fraser, M. D.; Holzinger, S.; Brodbeck, S.; Kamp, M.; Shelykh, I. A.; Schneider, C.; Höfling, S.

    2014-11-01

    In this work, we combine a systematic experimental investigation of the power- and temperature-dependent evolution of the spatial coherence function, g(1 )(r ) , in a one dimensional exciton-polariton channel with a modern microscopic numerical theory based on a stochastic master equation approach. The spatial coherence function g(1 )(r ) is extracted via high-precision Michelson interferometry, which allows us to demonstrate that in the regime of nonresonant excitation, the dependence g(1 )(r ) reaches a saturation value with a plateau, which is determined by the intensity of the pump and effective temperature of the crystal lattice. The theory, which was extended to allow for treating incoherent excitation in a stochastic frame, matches the experimental data with good qualitative and quantitative agreement. This allows us to verify the prediction that the decay of the off-diagonal long-range order can be almost fully suppressed in one dimensional condensate systems.

  18. Entanglement vs. gap for one-dimensional spin systems

    SciTech Connect

    Hastings, Matthew; Aharonov, Dorit; Gottesman, Daniel

    2008-01-01

    We study the relationship between entanglement and spectral gap for local Hamiltonians in one dimension. The area law for a one-dimensional system states that for the ground state, the entanglement of any interval is upper-bounded by a constant independent of the size of the interval. However, the possible dependence of the upper bound on the spectral gap {Delta} is not known, as the best known general upper bound is asymptotically much larger than the largest possible entropy of any model system previously constructed for small {Delta}. To help resolve this asymptotic behavior, we construct a family of one-dimensional local systems for which some intervals have entanglement entropy which is polynomial in 1/{Delta}, whereas previously studied systems had the entropy of all intervals bounded by a constant times log(1/{Delta}).

  19. True Bilayer Exciton Condensate of One-Dimensional Electrons

    NASA Astrophysics Data System (ADS)

    Kantian, A.; Abergel, D. S. L.

    2017-07-01

    We theoretically predict that a true bilayer exciton condensate, characterized by off-diagonal long-range order and global phase coherence, can be created in one-dimensional solid state electron systems. The mechanism by which this happens is to introduce a single particle hybridization of electron and hole populations, which locks the phase of the relevant mode and hence invalidates the Mermin-Wagner theorem. Electron-hole interactions then amplify this tendency towards off-diagonal long-range order, enhancing the condensate properties by more than an order of magnitude over the noninteracting limit. We show that the temperatures below which a substantial condensate fraction would form could reach hundreds of Kelvin, a benefit of the weak screening in one-dimensional systems.

  20. Fabrication routes for one-dimensional nanostructures via block copolymers

    NASA Astrophysics Data System (ADS)

    Tharmavaram, Maithri; Rawtani, Deepak; Pandey, Gaurav

    2017-05-01

    Nanotechnology is the field which deals with fabrication of materials with dimensions in the nanometer range by manipulating atoms and molecules. Various synthesis routes exist for the one, two and three dimensional nanostructures. Recent advancements in nanotechnology have enabled the usage of block copolymers for the synthesis of such nanostructures. Block copolymers are versatile polymers with unique properties and come in many types and shapes. Their properties are highly dependent on the blocks of the copolymers, thus allowing easy tunability of its properties. This review briefly focusses on the use of block copolymers for synthesizing one-dimensional nanostructures especially nanowires, nanorods, nanoribbons and nanofibers. Template based, lithographic, and solution based approaches are common approaches in the synthesis of nanowires, nanorods, nanoribbons, and nanofibers. Synthesis of metal, metal oxides, metal oxalates, polymer, and graphene one dimensional nanostructures using block copolymers have been discussed as well.

  1. Fate of classical solitons in one-dimensional quantum systems.

    SciTech Connect

    Pustilnik, M.; Matveev, K. A.

    2015-11-23

    We study one-dimensional quantum systems near the classical limit described by the Korteweg-de Vries (KdV) equation. The excitations near this limit are the well-known solitons and phonons. The classical description breaks down at long wavelengths, where quantum effects become dominant. Focusing on the spectra of the elementary excitations, we describe analytically the entire classical-to-quantum crossover. We show that the ultimate quantum fate of the classical KdV excitations is to become fermionic quasiparticles and quasiholes. We discuss in detail two exactly solvable models exhibiting such crossover, the Lieb-Liniger model of bosons with weak contact repulsion and the quantum Toda model, and argue that the results obtained for these models are universally applicable to all quantum one-dimensional systems with a well-defined classical limit described by the KdV equation.

  2. Adiabatic Nonlinear Probes of One-Dimensional Bose Gases

    SciTech Connect

    De Grandi, C.; Barankov, R. A.; Polkovnikov, A.

    2008-12-05

    We discuss two complimentary problems: adiabatic loading of one-dimensional bosons into an optical lattice and merging two one-dimensional Bose systems. Both problems can be mapped to the sine-Gordon model. This mapping allows us to find power-law scalings for the number of excitations with the ramping rate in the regime where the conventional linear response approach fails. We show that the exponent of this power law is sensitive to the interaction strength. In particular, the response is larger, or less adiabatic, for strongly (weakly) interacting bosons for the loading (merging) problem. Our results illustrate that in general the nonlinear response to slow relevant perturbations can be a powerful tool for characterizing properties of interacting systems.

  3. Chaotic macroscopic phases in one-dimensional oscillators

    NASA Astrophysics Data System (ADS)

    Politi, Antonio; Pikovsky, Arkady; Ullner, Ekkehard

    2017-06-01

    The connection between the macroscopic description of collective chaos and the underlying microscopic dynamics is thoroughly analysed in mean-field models of one-dimensional oscillators. We investigate to what extent infinitesimal perturbations of the microscopic configurations can provide information also on the stability of the corresponding macroscopic phase. In ensembles of identical one-dimensional dynamical units, it is possible to represent the microscopic configurations so as to make transparent their connection with the macroscopic world. As a result, we find evidence of an intermediate, mesoscopic, range of distances, over which the instability is neither controlled by the microscopic equations nor by the macroscopic ones. We examine a whole series of indicators, ranging from the usual microscopic Lyapunov exponents, to the collective ones, including finite-amplitude exponents. A system of pulse-coupled oscillators is also briefly reviewed as an example of non-identical phase oscillators where collective chaos spontaneously emerges.

  4. Assessing the inherent uncertainty of one-dimensional diffusions

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo; Cohen, Morrel H.

    2013-01-01

    In this paper we assess the inherent uncertainty of one-dimensional diffusion processes via a stochasticity classification which provides an à la Mandelbrot categorization into five states of uncertainty: infra-mild, mild, borderline, wild, and ultra-wild. Two settings are considered. (i) Stopped diffusions: the diffusion initiates from a high level and is stopped once it first reaches a low level; in this setting we analyze the inherent uncertainty of the diffusion's maximal exceedance above its initial high level. (ii) Stationary diffusions: the diffusion is in dynamical statistical equilibrium; in this setting we analyze the inherent uncertainty of the diffusion's equilibrium level. In both settings general closed-form analytic results are established, and their application is exemplified by stock prices in the stopped-diffusions setting, and by interest rates in the stationary-diffusions setting. These results provide a highly implementable decision-making tool for the classification of uncertainty in the context of one-dimensional diffusions.

  5. Interacting Electrons in Quasi-One-Dimensional Organic Superconductors

    NASA Astrophysics Data System (ADS)

    Bourbonnais, C.; Jérome, D.

    This review highlights the main features of the temperature-pressure phase diagram of the Bechgaard and Fabre salts series of quasi-one-dimensional organic superconductors. We go over the various electronic and structural instabilities found experimentally in the normal state of the sulfur (TMTTF)2X series at relatively high temperature and show how these are strongly influenced by the one-dimensional character of electronic degrees of freedom. The problem of three-dimensional long-range order is then discussed for the Fabre series and the mechanisms responsible for the spin-Peierls and Néel phase transitions are depicted. The influence of pressure on the relative stability of these phases and the emergence of quasi-particles when the Fabre series evolves towards the Bechgaard (TMTSF)2X salts series are presented. Itinerant antiferromagnetism, density-wave and uncoventional superconductivity are described and the microscopic origin of their interplay is! discussed.

  6. One-dimensional SDS gel electrophoresis of proteins.

    PubMed

    Gallagher, Sean R

    2012-04-01

    One-dimensional gel electrophoresis of proteins provides information about the molecular size, amount, and purity of a protein sample. Separated proteins can be recovered from polyacrylamide gels for subsequent characterization by a variety of secondary techniques, such as mass spectrometry to determine post-translational modifications and the amino acid sequence. In addition, one-dimensional electrophoresis is the standard first step in immunoblotting and immunodetection. Protein separations in vertical slab gels are performed in a variety of formats. Most recently, small format minigels are typical due to their ease of use, low relative cost, and ready commercial availability. Larger gels provide more separation area and thus better resolution for complex samples and continue to be in use for specialized analysis. © 2012 by John Wiley & Sons, Inc.

  7. One-dimensional SDS gel electrophoresis of proteins.

    PubMed

    Gallagher, Sean R

    2012-01-01

    One-dimensional gel electrophoresis of proteins provides information about the molecular size, amount, and purity of a protein sample. Separated proteins can be recovered from polyacrylamide gels for subsequent characterization by a variety of secondary techniques, such as mass spectrometry to determine post-translational modifications and the amino acid sequence. In addition, one-dimensional electrophoresis is the standard first step in immunoblotting and immunodetection. Protein separations in vertical slab gels are performed in a variety of formats. Most recently, small format minigels are typical due to their ease of use, low relative cost, and ready commercial availability. Larger gels provide more separation area and thus better resolution for complex samples and continue to be in use for specialized analysis. © 2012 by John Wiley & Sons, Inc.

  8. Luttinger parameter of quasi-one-dimensional para -H2

    NASA Astrophysics Data System (ADS)

    Ferré, G.; Gordillo, M. C.; Boronat, J.

    2017-02-01

    We have studied the ground-state properties of para-hydrogen in one dimension and in quasi-one-dimensional configurations using the path-integral ground-state Monte Carlo method. This method produces zero-temperature exact results for a given interaction and geometry. The quasi-one-dimensional setup has been implemented in two forms: the inner channel inside a carbon nanotube coated with H2 and a harmonic confinement of variable strength. Our main result is the dependence of the Luttinger parameter on the density within the stable regime. Going from one dimension to quasi-one dimension, keeping the linear density constant, produces a systematic increase of the Luttinger parameter. This increase is, however, not enough to reach the superfluid regime and the system always remain in the quasicrystal regime, according to Luttinger liquid theory.

  9. Boosted one dimensional fermionic superfluids on a lattice

    NASA Astrophysics Data System (ADS)

    Ray, Sayonee; Mukerjee, Subroto; Shenoy, Vijay B.

    2017-09-01

    We study the effect of a boost (Fermi sea displaced by a finite momentum) on one dimensional systems of lattice fermions with short-ranged interactions. In the absence of a boost such systems with attractive interactions possess algebraic superconducting order. Motivated by physics in higher dimensions, one might naively expect a boost to weaken and ultimately destroy superconductivity. However, we show that for one dimensional systems the effect of the boost can be to strengthen the algebraic superconducting order by making correlation functions fall off more slowly with distance. This phenomenon can manifest in interesting ways, for example, a boost can produce a Luther-Emery phase in a system with both charge and spin gaps by engendering the destruction of the former.

  10. One-dimensional Si nanolines in hydrogenated Si(001)

    NASA Astrophysics Data System (ADS)

    François, Bianco; Köster, Sigrun A.; Owen, James G. H.; Renner, Christoph; Bowler, David R.

    2012-02-01

    We present a detailed study of the structural and electronic properties of a self-assembled silicon nanoline embedded in the H-terminated silicon (001) surface, known as the Haiku stripe. The nanoline is a perfectly straight and defect free endotaxial structure of huge aspect ratio; it can grow micrometre long at a constant width of exactly four Si dimers (1.54 nm). Another remarkable property is its capacity to be exposed to air without suffering any degradation. The nanoline grows independently of any step edges at tunable densities, from isolated nanolines to a dense array of nanolines. In addition to these unique structural characteristics, scanning tunnelling microscopy and density functional theory reveal a one-dimensional state confined along the Haiku core. This nanoline is a promising candidate for the long sought after electronic solid-state one-dimensional model system to explore the fascinating quantum properties emerging in such reduced dimensionality. Phys. Rev. B, 84, 035328 (2011)

  11. Fibonacci anyon excitations of one-dimensional dipolar lattice bosons

    NASA Astrophysics Data System (ADS)

    Äńurić, Tanja; Biedroń, Krzysztof; Zakrzewski, Jakub

    2017-02-01

    We study a system of dipolar bosons in a one-dimensional optical lattice using exact diagonalization and density matrix renormalization group methods. In particular, we analyze low energy properties of the system at an average filling of 3/2 atoms per lattice site. We identify the region of the parameter space where the system has non-Abelian Fibonacci anyon excitations that correspond to fractional domain walls between different charge-density waves. When such one-dimensional systems are combined into a two-dimensional network, braiding of Fibonacci anyon excitations has potential application for fault tolerant, universal, topological quantum computation. Contrary to previous calculations, our results also demonstrate that super-solid phases are not present in the phase diagram for the discussed 3/2 average filling. Instead, decreasing the value of the nearest-neighbor tunneling strength leads to a direct, Berezinskii-Kosterlitz-Thouless, superfluid to charge-density-wave quantum phase transition.

  12. Monitoring and modeling contaminated sediment transport in the White Oak Creek watershed. Environmental Restoration Program

    SciTech Connect

    Fontaine, T.A.

    1991-11-01

    Over the past 47 years, operations and waste disposal activities at Oak Ridge National Laboratory have resulted in the contamination of the White Oak Creek drainage system. The containments presenting the highest risk to human health and the environment are particle reactive and are associated with the soils and sediments in White Oak Creek. During floods, the erosion of these sediments results in the transport of contaminants out of the catchment into the Clinch River. A long-term strategy is required to monitor the movement of contaminated sediments and to predict the transport of these sediments that could occur during major floods. A monitoring program will provide the information required to (1) evaluate the existing off-site transport of contaminated sediments, (2) evaluate the need for short-term control measures, (3) set priorities for remediation of contaminated areas in White Oak Creek (4) verify the success of completed remedial actions intended to control the movement of contaminated sediments, and (5) develop a computer model to simulate the transport of contaminated sediments in White Oak Creek. A contaminant-transport model will be developed to (1) evaluate the potential for the off-site transport of contaminated sediments during major floods, (2) develop long term control measures and remediation solutions, (3) predict the impact of future land-use changes in White Oak Creek on the transport of contaminated sediment. This report contains a plan for the monitoring and modeling activities required to accomplish these objectives.

  13. Monitoring and modeling contaminated sediment transport in the White Oak Creek watershed

    SciTech Connect

    Fontaine, T.A.

    1991-11-01

    Over the past 47 years, operations and waste disposal activities at Oak Ridge National Laboratory have resulted in the contamination of the White Oak Creek drainage system. The containments presenting the highest risk to human health and the environment are particle reactive and are associated with the soils and sediments in White Oak Creek. During floods, the erosion of these sediments results in the transport of contaminants out of the catchment into the Clinch River. A long-term strategy is required to monitor the movement of contaminated sediments and to predict the transport of these sediments that could occur during major floods. A monitoring program will provide the information required to (1) evaluate the existing off-site transport of contaminated sediments, (2) evaluate the need for short-term control measures, (3) set priorities for remediation of contaminated areas in White Oak Creek (4) verify the success of completed remedial actions intended to control the movement of contaminated sediments, and (5) develop a computer model to simulate the transport of contaminated sediments in White Oak Creek. A contaminant-transport model will be developed to (1) evaluate the potential for the off-site transport of contaminated sediments during major floods, (2) develop long term control measures and remediation solutions, (3) predict the impact of future land-use changes in White Oak Creek on the transport of contaminated sediment. This report contains a plan for the monitoring and modeling activities required to accomplish these objectives.

  14. On numerical modeling of one-dimensional geothermal histories

    USGS Publications Warehouse

    Haugerud, R.A.

    1989-01-01

    Numerical models of one-dimensional geothermal histories are one way of understanding the relations between tectonics and transient thermal structure in the crust. Such models can be powerful tools for interpreting geochronologic and thermobarometric data. A flexible program to calculate these models on a microcomputer is available and examples of its use are presented. Potential problems with this approach include the simplifying assumptions that are made, limitations of the numerical techniques, and the neglect of convective heat transfer. ?? 1989.

  15. Thermal breakage of a discrete one-dimensional string.

    PubMed

    Lee, Chiu Fan

    2009-09-01

    We study the thermal breakage of a discrete one-dimensional string, with open and fixed ends, in the heavily damped regime. Basing our analysis on the multidimensional Kramers escape theory, we are able to make analytical predictions on the mean breakage rate and on the breakage propensity with respect to the breakage location on the string. We then support our predictions with numerical simulations.

  16. Fast Integration of One-Dimensional Boundary Value Problems

    NASA Astrophysics Data System (ADS)

    Campos, Rafael G.; Ruiz, Rafael García

    2013-11-01

    Two-point nonlinear boundary value problems (BVPs) in both unbounded and bounded domains are solved in this paper using fast numerical antiderivatives and derivatives of functions of L2(-∞, ∞). This differintegral scheme uses a new algorithm to compute the Fourier transform. As examples we solve a fourth-order two-point boundary value problem (BVP) and compute the shape of the soliton solutions of a one-dimensional generalized Korteweg-de Vries (KdV) equation.

  17. One-Dimensional Quantum Walks with One Defect

    NASA Astrophysics Data System (ADS)

    Cantero, M. J.; Grünbaum, F. A.; Moral, L.; Velázquez, L.

    The CGMV method allows for the general discussion of localization properties for the states of a one-dimensional quantum walk, both in the case of the integers and in the case of the nonnegative integers. Using this method we classify, according to such localization properties, all the quantum walks with one defect at the origin, providing explicit expressions for the asymptotic return probabilities to the origin.

  18. Thermalization in a one-dimensional integrable system

    SciTech Connect

    Grisins, Pjotrs; Mazets, Igor E.

    2011-11-15

    We present numerical results demonstrating the possibility of thermalization of single-particle observables in a one-dimensional system, which is integrable in both the quantum and classical (mean-field) descriptions (a quasicondensate of ultracold, weakly interacting bosonic atoms are studied as a definite example). We find that certain initial conditions admit the relaxation of single-particle observables to the equilibrium state reasonably close to that corresponding to the Bose-Einstein thermal distribution of Bogoliubov quasiparticles.

  19. One-Dimensional Hybrid Simulation of EAS Using Cascade Equations

    NASA Astrophysics Data System (ADS)

    Kalmykov, N. N.; Alekseeva, M. K.; Bergmann, T.; Chernatkin, V.; Engel, R.; Heck, D.; Moyon, J.; Ostapchenko, S. S.; Pierog, T.; Thouw, T.; Werner, K.

    2003-07-01

    A hybrid simulation code is developed that is suited for fast one-dimensional simulations of shower profiles, including fluctuations. It combines Monte Carlo simulation of high energy interactions with a fast numerical solution of cascade equations for the resulting distributions of secondary particles. First results obtained with this new code, called CONEX, are presented and compared to CORSIKA predictions, fo cusing on the treatment of the electromagnetic shower component.

  20. Exchange effects in a quasi-one-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Gold, A.; Ghazali, A.

    1990-04-01

    We calculate the electron exchange of a quasi-one-dimensional electron gas in a quantum-well wire of radius R0. A two-subband model is considered and the exchange self-energy for the first and second subband is calculated under the assumption that only the lowest subband is partially filled with electrons. Band-bending effects are also discussed. Results for the total energy per electron including kinetic and exchange energy are presented.

  1. Quasi-one-dimensional magnons in an intermetallic marcasite.

    PubMed

    Stone, M B; Lumsden, M D; Nagler, S E; Singh, D J; He, J; Sales, B C; Mandrus, D

    2012-04-20

    We present inelastic neutron scattering measurements and first principles calculations examining the intermetallic marcasite CrSb(2). The observed spin-wave dispersion implies that the magnetic interactions are strongly one-dimensional with antiferromagnetic chains parallel to the crystalline c axis. Such low-dimensional excitations are unexpected in a semiconducting intermetallic system. Moreover, we observe a clear anisotropic thermal conductivity indicating that the magnetic anisotropy enhances thermoelectric properties along particular crystallographic directions.

  2. Quasi-One-Dimensional Magnons in an Intermetallic Marcasite

    NASA Astrophysics Data System (ADS)

    Stone, M. B.; Lumsden, M. D.; Nagler, S. E.; Singh, D. J.; He, J.; Sales, B. C.; Mandrus, D.

    2012-04-01

    We present inelastic neutron scattering measurements and first principles calculations examining the intermetallic marcasite CrSb2. The observed spin-wave dispersion implies that the magnetic interactions are strongly one-dimensional with antiferromagnetic chains parallel to the crystalline c axis. Such low-dimensional excitations are unexpected in a semiconducting intermetallic system. Moreover, we observe a clear anisotropic thermal conductivity indicating that the magnetic anisotropy enhances thermoelectric properties along particular crystallographic directions.

  3. Defects in a nonlinear pseudo one-dimensional solid

    NASA Astrophysics Data System (ADS)

    Blanchet, Graciela B.; Fincher, C. R., Jr.

    1985-03-01

    These infrared studies of acetanilide together with the existence of two equivalent structures for the hydrogen-bonded chain suggest the possibility of a topological defect state rather than a Davydov soliton as suggested previously. Acetanilide is an example of a class of one-dimensional materials where solitons are a consequence of a twofold degenerate structure and the nonlinear dynamics of the hydrogen-bonded network.

  4. Nonequilibrium statistical mechanics in one-dimensional bose gases

    NASA Astrophysics Data System (ADS)

    Baldovin, F.; Cappellaro, A.; Orlandini, E.; Salasnich, L.

    2016-06-01

    We study cold dilute gases made of bosonic atoms, showing that in the mean-field one-dimensional regime they support stable out-of-equilibrium states. Starting from the 3D Boltzmann-Vlasov equation with contact interaction, we derive an effective 1D Landau-Vlasov equation under the condition of a strong transverse harmonic confinement. We investigate the existence of out-of-equilibrium states, obtaining stability criteria similar to those of classical plasmas.

  5. Single parameter scaling in one-dimensional localization revisited

    PubMed

    Deych; Lisyansky; Altshuler

    2000-03-20

    The variance of the Lyapunov exponent is calculated exactly in the one-dimensional Anderson model with random site energies distributed according to the Cauchy distribution. We find a new significant scaling parameter in the system, and derive an exact analytical criterion for single parameter scaling which differs from the commonly used condition of phase randomization. The results obtained are applied to the Kronig-Penney model with the potential in the form of periodically positioned delta functions with random strength.

  6. One-dimensional photonic crystals bound by light

    NASA Astrophysics Data System (ADS)

    Cui, Liyong; Li, Xiao; Chen, Jun; Cao, Yongyin; Du, Guiqiang; Ng, Jack

    2017-08-01

    Through rigorous simulations, the light scattering induced optical binding of one-dimensional (1D) dielectric photonic crystals is studied. The optical forces corresponding to the pass band, band gap, and band edge are qualitatively different. It is shown that light can induce self-organization of dielectric slabs into stable photonic crystals, with its lower band edge coinciding with the incident light frequency. Incident light at normal and oblique incidence and photonic crystals with parity-time symmetry are also considered.

  7. One-dimensional contact process: duality and renormalization.

    PubMed

    Hooyberghs, J; Vanderzande, C

    2001-04-01

    We study the one-dimensional contact process in its quantum version using a recently proposed real-space renormalization technique for stochastic many-particle systems. Exploiting the duality and other properties of the model, we can apply the method for cells with up to 37 sites. After suitable extrapolation, we obtain exponent estimates that are comparable in accuracy with the best known in the literature.

  8. LES validation for contaminant transport in urban areas

    NASA Astrophysics Data System (ADS)

    Hertwig, D.; Leitl, B.; Schatzmann, M.; Patnaik, G.

    2010-09-01

    Contaminant transport in urban areas poses a major challenge with respect to its simulation with computational fluid dynamics (CFD) models. The use of time-resolved approaches like large-eddy simulation (LES) can provide insight into transient flow and dispersion regimes, which are strongly influenced by the urban geometry. LES models have the potential to resolve the characteristic unsteady flow features and their impact on plume dynamics, whereas standard industrial codes based on Reynolds-averaged Navier-Stokes (RANS) equations can only yield steady state solutions. However, the potential to simulate the energetically dominating part of an inherently unsteady turbulent flow with LES also sets higher requirements for validation strategies. This includes that the evaluation of the model performance must go beyond comparisons of first and second order statistics which were adequate for RANS models and currently provide the basis for most of the validation metrics used as a standard. With regard to an a posteriori validation of model results for atmospheric boundary layer (ABL) flow and dispersion in complex geometry, laboratory data from boundary-layer wind tunnels are of special value. Since inflow and boundary conditions are well-defined, systematic laboratory studies provide high statistical confidence levels of measured quantities. The potential of field measurements - in this regard - is limited due to the natural atmospheric variability. In order to verify the realistic simulation of the spatio-temporal behavior of turbulent eddies, transient flow phenomena have to be characterized in experimental validation data sets as well. This topic is closely linked to structure identification and the characterization of organized motions in ABL flows, for which advanced analysis strategies like wavelet transforms, orthogonal decomposition, or stochastic estimation can be employed. Systematic comparisons of wind-tunnel measurements and LES simulation results are planned

  9. Dynamical structure factor of one-dimensional hard rods

    NASA Astrophysics Data System (ADS)

    Motta, M.; Vitali, E.; Rossi, M.; Galli, D. E.; Bertaina, G.

    2016-10-01

    The zero-temperature dynamical structure factor S (q ,ω ) of one-dimensional hard rods is computed using state-of-the-art quantum Monte Carlo and analytic continuation techniques, complemented by a Bethe ansatz analysis. As the density increases, S (q ,ω ) reveals a crossover from the Tonks-Girardeau gas to a quasisolid regime, along which the low-energy properties are found in agreement with the nonlinear Luttinger liquid theory. Our quantitative estimate of S (q ,ω ) extends beyond the low-energy limit and confirms a theoretical prediction regarding the behavior of S (q ,ω ) at specific wave vectors Qn=n 2 π /a , where a is the core radius, resulting from the interplay of the particle-hole boundaries of suitably rescaled ideal Fermi gases. We observe significant similarities between hard rods and one-dimensional 4He at high density, suggesting that the hard-rods model may provide an accurate description of dense one-dimensional liquids of quantum particles interacting through a strongly repulsive, finite-range potential.

  10. Analysis of necking based on a one-dimensional model

    NASA Astrophysics Data System (ADS)

    Audoly, Basile; Hutchinson, John W.

    2016-12-01

    Dimensional reduction is applied to derive a one-dimensional energy functional governing tensile necking localization in a family of initially uniform prismatic solids, including as particular cases rectilinear blocks in plane strain and cylindrical bars undergoing axisymmetric deformations. The energy functional depends on both the axial stretch and its gradient. The coefficient of the gradient term is derived in an exact and general form. The one-dimensional model is used to analyze necking localization for nonlinear elastic materials that experience a maximum load under tensile loading, and for a class of nonlinear materials that mimic elastic-plastic materials by displaying a linear incremental response when stretch switches from increasing to decreasing. Bifurcation predictions for the onset of necking from the simplified theory compared with exact results suggest the approach is highly accurate at least when the departures from uniformity are not too large. Post-bifurcation behavior is analyzed to the point where the neck is fully developed and localized to a region on the order of the thickness of the block or bar. Applications to the nonlinear elastic and elastic-plastic materials reveal the highly unstable nature of necking for the former and the stable behavior for the latter, except for geometries where the length of the block or bar is very large compared to its thickness. A formula for the effective stress reduction at the center of a neck is established based on the one-dimensional model, which is similar to that suggested by Bridgman (1952).

  11. Cryptography using multiple one-dimensional chaotic maps

    NASA Astrophysics Data System (ADS)

    Pareek, N. K.; Patidar, Vinod; Sud, K. K.

    2005-10-01

    Recently, Pareek et al. [Phys. Lett. A 309 (2003) 75] have developed a symmetric key block cipher algorithm using a one-dimensional chaotic map. In this paper, we propose a symmetric key block cipher algorithm in which multiple one-dimensional chaotic maps are used instead of a one-dimensional chaotic map. However, we also use an external secret key of variable length (maximum 128-bits) as used by Pareek et al. In the present cryptosystem, plaintext is divided into groups of variable length (i.e. number of blocks in each group is different) and these are encrypted sequentially by using randomly chosen chaotic map from a set of chaotic maps. For block-by-block encryption of variable length group, number of iterations and initial condition for the chaotic maps depend on the randomly chosen session key and encryption of previous block of plaintext, respectively. The whole process of encryption/decryption is governed by two dynamic tables, which are updated time to time during the encryption/decryption process. Simulation results show that the proposed cryptosystem requires less time to encrypt the plaintext as compared to the existing chaotic cryptosystems and further produces the ciphertext having flat distribution of same size as the plaintext.

  12. Nordheim-Gorter like behavior and one carrier conduction in a quasi-one-dimensional system

    NASA Astrophysics Data System (ADS)

    Datta, T.; Hermann, A. M.; Deck, R. J.; Somoano, R. B.

    1980-09-01

    We report the extension and observation of Nordheim-Gorter type scaling of the thermoelectric power with the d.c. conductivity for the system of quasi-one-dimensional (QOD) conductors, (TTF) 12(SeCN) 7, (TTF) 12(SCN) 7, (TTF) 3(Cl) 2 and (TTF) 7(I) 5. The consideration of additional scattering processes for one carrier transport leads to a thermopower which scales linearly with conductivity. Furthermore, such a TEP vs conductivity (or resistivity) analysis will identify single carrier (or bi-carrier) transport in other QOD systems as well.

  13. Electron supercollimation in graphene and Dirac fermion materials using one-dimensional disorder potentials.

    PubMed

    Choi, SangKook; Park, Cheol-Hwan; Louie, Steven G

    2014-07-11

    Electron supercollimation, in which a wave packet is guided to move undistorted along a selected direction, is a highly desirable property that has yet to be realized experimentally. Disorder in general is expected to inhibit supercollimation. Here we report a counterintuitive phenomenon of electron supercollimation by disorder in graphene and related Dirac fermion materials. We show that one can use one-dimensional disorder potentials to control electron wave packet transport. This is distinct from known systems where an electron wave packet would be further spread by disorder and hindered in the potential fluctuating direction. The predicted phenomenon has significant implications in the understanding and applications of electron transport in Dirac fermion materials.

  14. EVALUATION OF THE STATE-OF-THE-ART CONTAMINATED SEDIMENT TRANSPORT AND FATE MODELING SYSTEM

    EPA Science Inventory

    Modeling approaches for evaluating the transport and fate of sediment and associated contaminants are briefly reviewed. The main emphasis is on: 1) the application of EFDC (Environmental Fluid Dynamics Code), the state-of-the-art contaminated sediment transport and fate public do...

  15. EVALUATION OF THE STATE-OF-THE-ART CONTAMINATED SEDIMENT TRANSPORT AND FATE MODELING SYSTEM

    EPA Science Inventory

    Modeling approaches for evaluating the transport and fate of sediment and associated contaminants are briefly reviewed. The main emphasis is on: 1) the application of EFDC (Environmental Fluid Dynamics Code), the state-of-the-art contaminated sediment transport and fate public do...

  16. Ordering of small particles in one-dimensional coherent structures by time-periodic flows.

    PubMed

    Pushkin, D O; Melnikov, D E; Shevtsova, V M

    2011-06-10

    Small particles transported by a fluid medium do not necessarily have to follow the flow. We show that for a wide class of time-periodic incompressible flows inertial particles have a tendency to spontaneously align in one-dimensional dynamic coherent structures. This effect may take place for particles so small that often they would be expected to behave as passive tracers and be used in PIV measurement technique. We link the particle tendency to form one-dimensional structures to the nonlinear phenomenon of phase locking. We propose that this general mechanism is, in particular, responsible for the enigmatic formation of the "particle accumulation structures" discovered experimentally in thermocapillary flows more than a decade ago and unexplained until now.

  17. Invariant for one-dimensional heat conduction in dielectrics and metals

    NASA Astrophysics Data System (ADS)

    Sajadi, Seyed Mohammad; Ordonez-Miranda, Jose; Hill, James M.; Ezzahri, Younès; Joulain, Karl; Ghasemi, Hadi

    2017-05-01

    We theoretically and experimentally demonstrate that the one-dimensional heat conduction in dielectrics and metals is ruled by the invariant T^4(z)+T^4(L-z)=\\text{constant} , where T is the temperature and z an arbitrary position within the heated material of length L. This is achieved using the integral expressions predicted by the Boltzmann transport equation, under the gray relaxation time approximation, for the steady-state temperature and heat flux, and measuring the temperature at three equidistant positions in rods of Si, Cu, and Fe-C excited with temperatures much smaller than their corresponding Debye ones. The obtained temperature invariant for symmetrical positions could be applied to describe the heating of materials supporting one-dimensional heat conduction.

  18. One-dimensional behavior and high thermoelectric power factor in thin indium arsenide nanowires

    SciTech Connect

    Mensch, P.; Karg, S. Schmidt, V.; Gotsmann, B.; Schmid, H.; Riel, H.

    2015-03-02

    Electrical conductivity and Seebeck coefficient of quasi-one-dimensional indium arsenide (InAs) nanowires with 20 nm diameter are investigated. The carrier concentration of the passivated nanowires was modulated by a gate electrode. A thermoelectric power factor of 1.7 × 10{sup −3} W/m K{sup 2} was measured at room temperature. This value is at least as high as in bulk-InAs and exceeds by far typical values of thicker InAs nanowires with three-dimensional properties. The interpretation of the experimental results in terms of power-factor enhancement by one-dimensionality is supported by model calculations using the Boltzmann transport formalism.

  19. Local chiral symmetry and charge-density waves in one-dimensional conductors

    NASA Astrophysics Data System (ADS)

    Sakita, B.; Shizuya, K.

    1990-09-01

    Symmetry-related features of charge-density-wave transport phenomena are studied using a non-mean-field effective Lagrangian approach. It is pointed out that a local chiral symmetry (based on the Kač-Moody algebra) emerges in the low-energy structure of one-dimensional electron-phonon systems. From this symmetry follow directly power-law correlations of both electrons and phonons. The Peierls instability is suppressed owing to one-dimensional fluctuations. Still the charge-density wave arises and the chiral anomaly can account for acceleration of a sliding charge-density wave along with a phonon-drag effect. The problem of pinning of charge-density waves is discussed in relation to explicit breakings of the chiral symmetry.

  20. A one-dimensional radiative-convective model of the Earth`s atmosphere

    SciTech Connect

    Kemball-Cook, Susan Rives

    1994-09-01

    The current Lawrence Livermore National Laboratory (LLNL) one-dimensional climate model, ALTO (Altitude Only), consists of 44 vertical layers which span the troposphere and the stratosphere. ALTO`s radiative transfer package evaluates radiative heating rates at each level of the stratosphere, and then predicts the evolution of the temperature profile above the tropopause. The tropospheric temperatures are fixed at climatological values which are indexed to a given surface temperature. There is no explicit treatment of convection, which plays an important role in the vertical transport of heat and moisture in the troposphere. This limits ALTO`s ability to predict temperature and water vapor profiles in the troposphere, and makes it difficult to model interactions between the troposphere and stratosphere. The goal of this project was to design a one-dimensional radiative-convective model using a closed convection parameterization which allows the prediction of temperature, water vapor, and mass transport profiles in the troposphere as well as the stratosphere. A one-dimensional model is a useful testing ground for a convection parameterization before its integration into a two-dimensional model, because a one-dimensional model can be easily run to equilibrium in prognostic mode. The model`s sensitivity to different forcings can be examined, and this allows the assessment of the convection parameterization`s validity. This is more difficult in a two or three-dimensional model because the effects of convection can be obscured by other physical processes, as well as by truncation errors in time and space. Since computer codes for determining radiative heating rates were readily available, the task at hand was to determine how to calculate the convective heating.

  1. One-Dimensional Scanning Approach to Shock Sensing

    NASA Technical Reports Server (NTRS)

    Tokars, Roger; Adamovsky, Girgory; Floyd, Bertram

    2009-01-01

    Measurement tools for high speed air flow are sought both in industry and academia. Particular interest is shown in air flows that exhibit aerodynamic shocks. Shocks are accompanied by sudden changes in density, pressure, and temperature. Optical detection and characterization of such shocks can be difficult because the medium is normally transparent air. A variety of techniques to analyze these flows are available, but they often require large windows and optical components as in the case of Schlieren measurements and/or large operating powers which precludes their use for in-flight monitoring and applications. The one-dimensional scanning approach in this work is a compact low power technique that can be used to non-intrusively detect shocks. The shock is detected by analyzing the optical pattern generated by a small diameter laser beam as it passes through the shock. The optical properties of a shock result in diffraction and spreading of the beam as well as interference fringes. To investigate the feasibility of this technique a shock is simulated by a 426 m diameter optical fiber. Analysis of results revealed a direct correlation between the optical fiber or shock location and the beam s diffraction pattern. A plot of the width of the diffraction pattern vs. optical fiber location reveals that the width of the diffraction pattern was maximized when the laser beam is directed at the center of the optical fiber. This work indicates that the one-dimensional scanning approach may be able to determine the location of an actual shock. Near and far field effects associated with a small diameter laser beam striking an optical fiber used as a simulated shock are investigated allowing a proper one-dimensional scanning beam technique.

  2. Quantum Simulations of One-Dimensional Nanostructures under Arbitrary Deformations

    NASA Astrophysics Data System (ADS)

    Koskinen, Pekka

    2016-09-01

    A powerful technique is introduced for simulating mechanical and electromechanical properties of one-dimensional nanostructures under arbitrary combinations of bending, twisting, and stretching. The technique is based on an unconventional control of periodic symmetry which eliminates artifacts due to deformation constraints and quantum finite-size effects and allows transparent electronic-structure analysis. Via density-functional tight-binding implementation, the technique demonstrates its utility by predicting nonlinear electromechanical properties in carbon nanotubes and abrupt behavior in the structural yielding of Au7 and Mo6 S6 nanowires. The technique drives simulations markedly closer to the realistic modeling of these slender nanostructures under experimental conditions.

  3. Coherent Backscattering of Light Off One-Dimensional Atomic Strings

    NASA Astrophysics Data System (ADS)

    Sørensen, H. L.; Béguin, J.-B.; Kluge, K. W.; Iakoupov, I.; Sørensen, A. S.; Müller, J. H.; Polzik, E. S.; Appel, J.

    2016-09-01

    We present the first experimental realization of coherent Bragg scattering off a one-dimensional system—two strings of atoms strongly coupled to a single photonic mode—realized by trapping atoms in the evanescent field of a tapered optical fiber, which also guides the probe light. We report nearly 12% power reflection from strings containing only about 1000 cesium atoms, an enhancement of 2 orders of magnitude compared to reflection from randomly positioned atoms. This result paves the road towards collective strong coupling in 1D atom-photon systems. Our approach also allows for a straightforward fiber connection between several distant 1D atomic crystals.

  4. Coupling of impurity modes in one-dimensional periodic systems.

    PubMed

    Royo, P; Stanley, R P; Ilegems, M

    2001-07-01

    One-dimensional periodic dielectric structures are known to exhibit band gaps because of their symmetry. Defect states can be found in the band gaps if an impurity layer is added to the lattice such that the symmetry of the structure is broken. In this paper, we consider the case where a second impurity layer is added and we discuss the existence of coupling between the two defects. We discuss the possibility of exploiting the coupling of impurity modes in the realization of tunable wavelength emitting devices and dual-wavelength vertical-cavity surface-emitting lasers.

  5. Purcell effect in one-dimensional photonic quasicrystals

    NASA Astrophysics Data System (ADS)

    Morozov, K. M.; Ivanov, K. A.; Gubaydullin, A. R.; Kaliteevski, M. A.

    2017-02-01

    The change in probability of spontaneous emission for emitter placed in one-dimensional photonic quasicrystal (optical Fibonacci lattice) was examined. When the dipole is placed in Fibonacci lattice two different scenarios can be expected: enhancing (if frequency and direction of the dipole emission correspond to optical eigenmode of structure, and position corresponds to maximum value of modes electric field profile) or suppression (in case of photonic band gap) of spontaneous emission rate. Fact that both effects are expressed in quasicrystals less than in the Bragg reflectors and in the microcavities was demonstrated.

  6. An improved lambda-scheme for one-dimensional flows

    NASA Technical Reports Server (NTRS)

    Moretti, G.; Dipiano, M. T.

    1983-01-01

    A code for the calculation of one-dimensional flows is presented, which combines a simple and efficient version of the lambda-scheme with tracking of discontinuities. The latter is needed to identify points where minor departures from the basic integration scheme are applied to prevent infiltration of numerical errors. Such a tracking is obtained via a systematic application of Boolean algebra. It is, therefore, very efficient. Fifteen examples are presented and discussed in detail. The results are exceptionally good. All discontinuites are captured within one mesh interval.

  7. Entanglement entropy and complexity for one-dimensional holographic superconductors

    NASA Astrophysics Data System (ADS)

    Kord Zangeneh, Mahdi; Ong, Yen Chin; Wang, Bin

    2017-08-01

    Holographic superconductor is an important arena for holography, as it allows concrete calculations to further understand the dictionary between bulk physics and boundary physics. An important quantity of recent interest is the holographic complexity. Conflicting claims had been made in the literature concerning the behavior of holographic complexity during phase transition. We clarify this issue by performing a numerical study on one-dimensional holographic superconductor. Our investigation shows that holographic complexity does not behave in the same way as holographic entanglement entropy. Nevertheless, the universal terms of both quantities are finite and reflect the phase transition at the same critical temperature.

  8. One-dimensional metal oxide nanostructures for heterogeneous catalysis.

    PubMed

    Zhang, Qian; Wang, Hsin-Yi; Jia, Xinli; Liu, Bin; Yang, Yanhui

    2013-08-21

    Metal oxides are of paramount importance in heterogeneous catalysis as either supports or active phases. Controlled synthesis of one-dimensional (1D) metal oxide nanostructures has received enormous attention in heterogeneous catalysis due to the possibility of tailoring the properties of metal oxides by tuning their shapes, sizes, and compositions. This feature article highlights recent advances in shape controlled synthesis of 1D metal oxide nanostructures and their applications in heterogeneous catalysis, with the aim of introducing new insights into the heterogeneous catalyst design.

  9. Correlations in light propagation in one-dimensional waveguides

    NASA Astrophysics Data System (ADS)

    Javanainen, Juha; Ruostekoski, Janne

    2016-05-01

    We study light propagation between atoms in a one-dimensional waveguide both analytically and using numerical simulations. We employ classical electrodynamics, but in the limit of low light intensity the results are essentially exact also for quantum mechanics. We characterize the cooperative interactions between the atoms mediated by the electromagnetic field. The focus is on resonance shifts for various statistics of the positions of the atoms, such as statistically independent positions or atoms in a regular lattice. These shifts, potentially important if 1D waveguides are to be used in metrology, are different from the usual resonance shifts found in three spatial dimensions.

  10. Saturable discrete vector solitons in one-dimensional photonic lattices

    SciTech Connect

    Vicencio, Rodrigo A.; Smirnov, Eugene; Rueter, Christian E.; Kip, Detlef; Stepic, Milutin

    2007-09-15

    Localized vectorial modes, with equal frequencies and mutually orthogonal polarizations, are investigated both analytically and experimentally in a one-dimensional photonic lattice with defocusing saturable nonlinearity. It is shown that these modes may span over many lattice elements and that energy transfer among the two components is both phase and intensity dependent. The transverse electrically polarized mode exhibits a single-hump structure and spreads in cascades in saturation, while the transverse magnetically polarized mode exhibits splitting into a two-hump structure. Experimentally such discrete vector solitons are observed in lithium niobate lattices for both coherent and mutually incoherent excitations.

  11. One-dimensional neutron imager for the Sandia Z facility.

    PubMed

    Fittinghoff, David N; Bower, Dan E; Hollaway, James R; Jacoby, Barry A; Weiss, Paul B; Buckles, Robert A; Sammons, Timothy J; McPherson, Leroy A; Ruiz, Carlos L; Chandler, Gordon A; Torres, José A; Leeper, Ramon J; Cooper, Gary W; Nelson, Alan J

    2008-10-01

    A multiinstitution collaboration is developing a neutron imaging system for the Sandia Z facility. The initial system design is for slit aperture imaging system capable of obtaining a one-dimensional image of a 2.45 MeV source producing 5x10(12) neutrons with a resolution of 320 microm along the axial dimension of the plasma, but the design being developed can be modified for two-dimensional imaging and imaging of DT neutrons with other resolutions. This system will allow us to understand the spatial production of neutrons in the plasmas produced at the Z facility.

  12. Parallel solution of sparse one-dimensional dynamic programming problems

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1989-01-01

    Parallel computation offers the potential for quickly solving large computational problems. However, it is often a non-trivial task to effectively use parallel computers. Solution methods must sometimes be reformulated to exploit parallelism; the reformulations are often more complex than their slower serial counterparts. We illustrate these points by studying the parallelization of sparse one-dimensional dynamic programming problems, those which do not obviously admit substantial parallelization. We propose a new method for parallelizing such problems, develop analytic models which help us to identify problems which parallelize well, and compare the performance of our algorithm with existing algorithms on a multiprocessor.

  13. Numerical computations on one-dimensional inverse scattering problems

    NASA Technical Reports Server (NTRS)

    Dunn, M. H.; Hariharan, S. I.

    1983-01-01

    An approximate method to determine the index of refraction of a dielectric obstacle is presented. For simplicity one dimensional models of electromagnetic scattering are treated. The governing equations yield a second order boundary value problem, in which the index of refraction appears as a functional parameter. The availability of reflection coefficients yield two additional boundary conditions. The index of refraction by a k-th order spline which can be written as a linear combination of B-splines is approximated. For N distinct reflection coefficients, the resulting N boundary value problems yield a system of N nonlinear equations in N unknowns which are the coefficients of the B-splines.

  14. Three material and four material one-dimensional phononic crystals

    NASA Astrophysics Data System (ADS)

    Kriegel, Ilka; Scotognella, Francesco

    2017-01-01

    In this work, we studied one-dimensional phononic structures for selective acoustic filtering. The structures are composed of three and four materials which have different elastic properties. We have observed that the phononic band gaps split in two and three transmission valleys for the three-material and the four-material based phononic structures, respectively. Furthermore, the number of transmission peaks between the split gaps is directly related to the number of unit cells composing the phononic structures. The observations of this work can be useful for the fabrication of acoustic filters with the possibility to select the transmission of particular frequencies.

  15. One-dimensional hydrodynamic model generating a turbulent cascade

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takeshi; Sakajo, Takashi

    2016-05-01

    As a minimal mathematical model generating cascade analogous to that of the Navier-Stokes turbulence in the inertial range, we propose a one-dimensional partial-differential-equation model that conserves the integral of the squared vorticity analog (enstrophy) in the inviscid case. With a large-scale random forcing and small viscosity, we find numerically that the model exhibits the enstrophy cascade, the broad energy spectrum with a sizable correction to the dimensional-analysis prediction, peculiar intermittency, and self-similarity in the dynamical system structure.

  16. One-dimensional intense laser pulse solitons in a plasma

    SciTech Connect

    Sudan, R.N.; Dimant, Y.S.; Shiryaev, O.B.

    1997-05-01

    A general analytical framework is developed for the nonlinear dispersion relations of a class of large amplitude one-dimensional isolated envelope solitons for modulated light pulse coupled to electron plasma waves, previously investigated numerically [Kozlov {ital et al.}, Zh. Eksp. Teor. Fiz. {bold 76}, 148 (1979); Kaw {ital et al.}, Phys. Rev. Lett. {bold 68}, 3172 (1992)]. The analytical treatment of weakly nonlinear solitons [Kuehl and Zhang, Phys. Rev. E {bold 48}, 1316 (1993)] is extended to the strongly nonlinear limit. {copyright} {ital 1997 American Institute of Physics.}

  17. Absolute negative mobility in a one-dimensional overdamped system

    NASA Astrophysics Data System (ADS)

    Chen, Ru-Yin; Nie, Lin-Ru; Pan, Wan-Li; Zhang, Jian-Qiang

    2015-10-01

    A one-dimensional overdamped system consisting of a symmetric periodic potential, a constant bias force and a trichotomous noise was investigated. In the frame of master equations, we derived analytical expression of its current. By means of numerical calculations, the results indicate that the current first increases, then decreases and finally increases with the bias force increasing, i.e., an absolute negative mobility (ANM) phenomenon. Our further investigations presented dependence of the ANM phenomenon on parameters of the noise. Its intrinsic physical mechanism was also open up, and a minimal model with ANM phenomenon is demonstrated.

  18. Quantum Criticality of Quasi-One-Dimensional Topological Anderson Insulators

    NASA Astrophysics Data System (ADS)

    Altland, Alexander; Bagrets, Dmitry; Fritz, Lars; Kamenev, Alex; Schmiedt, Hanno

    2014-05-01

    We present an analytic theory of quantum criticality in the quasi-one-dimensional topological Anderson insulators of class AIII and BDI. We describe the systems in terms of two parameters (g, χ) representing localization and topological properties, respectively. Surfaces of half-integer valued χ define phase boundaries between distinct topological sectors. Upon increasing system size, the two parameters exhibit flow similar to the celebrated two-parameter flow describing the class A quantum Hall insulator. However, unlike the quantum Hall system, an exact analytical description of the entire phase diagram can be given. We check the quantitative validity of our theory by comparison to numerical transfer matrix computations.

  19. Polarization hydrodynamics in a one-dimensional polariton condensate

    NASA Astrophysics Data System (ADS)

    Larré, P.-É.; Pavloff, N.; Kamchatnov, A. M.

    2013-12-01

    We study the hydrodynamics of a nonresonantly pumped polariton condensate in a quasi-one-dimensional quantum wire taking into account the spin degree of freedom. We clarify the relevance of the Landau criterion for superfluidity in this dissipative two-component system. Two Cherenkov-like critical velocities are identified corresponding to the opening of different channels of radiation: one of (damped) density fluctuations and another of (weakly damped) polarization fluctuations. We determine the drag force exerted onto an external obstacle and propose experimentally measurable consequences of the specific features of the fluctuations of polarization.

  20. Molecular nanostamp based on one-dimensional porphyrin polymers.

    PubMed

    Kanaizuka, Katsuhiko; Izumi, Atsushi; Ishizaki, Manabu; Kon, Hiroki; Togashi, Takanari; Miyake, Ryosuke; Ishida, Takao; Tamura, Ryo; Haga, Masa-aki; Moritani, Youji; Sakamoto, Masatomi; Kurihara, Masato

    2013-08-14

    Surface design with unique functional molecules by a convenient one-pot treatment is an attractive project for the creation of smart molecular devices. We have employed a silane coupling reaction of porphyrin derivatives that form one-dimensional polymer wires on substrates. Our simple one-pot treatment of a substrate with porphyrin has successfully achieved the construction of nanoscale bamboo shoot structures. The nanoscale bamboo shoots on the substrates were characterized by atomic force microscopy (AFM), UV-vis spectra, and X-ray diffraction (XRD) measurements. The uneven and rigid nanoscale structure has been used as a stamp for constructing bamboo shoot structures of fullerene.

  1. Singular Spectrum of Lebesgue Measure Zerofor One-Dimensional Quasicrystals

    NASA Astrophysics Data System (ADS)

    Lenz, Daniel

    The spectrum of one-dimensional discrete Schr\\"odinger operators associated to strictly ergodic dynamical systems is shown to coincide with the set of zeros of the Lyapunov exponent if and only if the Lyapunov exponent exists uniformly. This is used to obtain Cantor spectrum of zero Lebesgue measure for all aperiodic subshifts with uniform positive weights. This covers, in particular, all aperiodic subshifts arising from primitive substitutions including new examples as e.g. the Rudin-Shapiro substitution. Our investigation is not based on trace maps. Instead it relies on an Oseledec type theorem due to A. Furman and a uniform ergodic theorem due to the author.

  2. Wave propagation in one-dimensional microscopic granular chains

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Hsun; Daraio, Chiara

    2016-11-01

    We employ noncontact optical techniques to generate and measure stress waves in uncompressed, one-dimensional microscopic granular chains, and support our experiments with discrete numerical simulations. We show that the wave propagation through dry particles (150 μm radius) is highly nonlinear and it is significantly influenced by the presence of defects (e.g., surface roughness, interparticle gaps, and misalignment). We derive an analytical relation between the group velocity and gap size, and define bounds for the formation of highly nonlinear solitary waves as a function of gap size and axial misalignment.

  3. One-dimensional model of fluidized-bed combustor dynamics

    SciTech Connect

    Perez, R.B.

    1980-01-01

    Starting from Soo's basic multiphase equations, a set of one-dimensional time-dependent hydrodynamic and enthalpy equations was developed for a fluidized bed reactor by averaging over its cross sectional area. The following effects were not considered in the derivation of the FBC equations: forces to accelerate the apparent mass of the solid particle, basset force, heat exchange by radiation between solids and fluid or within each phase, and electrodynamic effects. Within these restrictions, the material developed here forms the basis for a sequel to this report devoted to the development of stability studies and to the application of stochastic methods for FBC surveillance.

  4. Quantum mechanics of graphene with a one-dimensional potential

    SciTech Connect

    Miserev, D. S.; Entin, M. V.

    2012-10-15

    Electron states in graphene with a one-dimensional potential have been studied. An approximate solution has been obtained for a small angle between vectors of the incident electron momentum and potential gradient. Exactly solvable problems with a potential of the smoothened step type U(x) Utanh(x/a) and a potential with a singularity U(x) = -U/(|x| + d) are considered. The transmission/reflection coefficients and phases for various potential barriers are determined. A quasi-classical solution is obtained.

  5. A statistical formulation of one-dimensional electron fluid turbulence

    NASA Technical Reports Server (NTRS)

    Fyfe, D.; Montgomery, D.

    1977-01-01

    A one-dimensional electron fluid model is investigated using the mathematical methods of modern fluid turbulence theory. Non-dissipative equilibrium canonical distributions are determined in a phase space whose co-ordinates are the real and imaginary parts of the Fourier coefficients for the field variables. Spectral densities are calculated, yielding a wavenumber electric field energy spectrum proportional to k to the negative second power for large wavenumbers. The equations of motion are numerically integrated and the resulting spectra are found to compare well with the theoretical predictions.

  6. Strongly anisotropic wetting on one-dimensional nanopatterned surfaces.

    PubMed

    Xia, Deying; Brueck, S R J

    2008-09-01

    This communication reports strongly anisotropic wetting behavior on one-dimensional nanopatterned surfaces. Contact angles, degree of anisotropy, and droplet distortion are measured on micro- and nanopatterned surfaces fabricated with interference lithography. Both the degree of anisotropy and the droplet distortion are extremely high as compared with previous reports because of the well-defined nanostructural morphology. The surface is manipulated to tune with the wetting from hydrophobic to hydrophilic while retaining the structural wetting anisotropy with a simple silica nanoparticle overcoat. The wetting mechanisms are discussed. Potential applications in microfluidic devices and evaporation-induced pattern formation are demonstrated.

  7. Scanned gate microscopy of a one-dimensional quantum dot.

    PubMed

    Zhang, Lingfeng M; Fogler, Michael M

    2006-10-01

    We analyze electrostatic interaction between a sharp conducting tip and a thin one-dimensional wire, e.g., a carbon nanotube, in a scanned gate microscopy (SGM) experiment. The problem is analytically tractable if the wire resides on a thin dielectric substrate above a metallic backgate. The characteristic spatial scale of the electrostatic coupling to the tip is equal to its height above the substrate. Numerical simulations indicate that imaging of individual electrons by SGM is possible once the mean electron separation exceeds this scale (typically, a few tens of nm). Differences between weakly and strongly invasive SGM regimes are pointed out.

  8. Numerical Simulations of One-dimensional Microstructure Dynamics

    SciTech Connect

    Berezovski, M.; Berezovski, A.; Engelbrecht, J.

    2010-05-21

    Results of numerical simulations of one-dimensional wave propagation in microstructured solids are presented and compared with the corresponding results of wave propagation in given layered media. A linear microstructure model based on Mindlin theory is adopted and represented in the framework of the internal variable theory. Fully coupled systems of equations for macro-motion and microstructure evolution are rewritten in the form of conservation laws. A modification of wave propagation algorithm is used for numerical calculations. It is shown how the initial microstructure model can be improved in order to match the results obtained by both approaches.

  9. Functional One-Dimensional Lipid Bilayers on Carbon Nanotube Templates

    SciTech Connect

    Artyukhin, A; Shestakov, A; Harper, J; Bakajin, O; Stroeve, P; Noy, A

    2004-07-23

    We present one-dimensional (1-D) lipid bilayer structures that integrate carbon nanotubes with a key biological environment-phospholipid membrane. Our structures consist of lipid bilayers wrapped around carbon nanotubes modified with a hydrophilic polymer cushion layer. Despite high bilayer curvature, the lipid membrane maintains its fluidity and can sustain repeated damage-recovery cycles. We also present the first evidence of spontaneous insertion of pore-forming proteins into 1-D lipid bilayers. These structures could lead to the development of new classes of biosensors and bioelectronic devices.

  10. The Interfaces of One-Dimensional Flows in Porous Media.

    DTIC Science & Technology

    1983-07-01

    Words: flows in porous media, interfaces, blow-up time, waiting time, asymptotic behaviour Work Unit Number 1 (Applied Analysis) D1 )iv. Matematicas ...AD-A132 862 THE INTERFACES OF ONE-DIMENSIONAL FLOWS IN POROUS MEDIA 1 / 1 (U) WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER .J L VAZQUEZ JUL 83...MRC-TSR-2538 DAAG2N-80-C-0041 UNCLASSIFIED FIG 12/ 1 N lm . 1.25 1.4 16 MICROCOY RESOLUTION TEST CHART sNarOAI.I U(’ OV $t MOAAI9 - -A A1 NRC Technical

  11. Modeling uranium transport in acidic contaminated groundwater with base addition.

    PubMed

    Zhang, Fan; Luo, Wensui; Parker, Jack C; Brooks, Scott C; Watson, David B; Jardine, Philip M; Gu, Baohua

    2011-06-15

    This study investigates reactive transport modeling in a column of uranium(VI)-contaminated sediments with base additions in the circulating influent. The groundwater and sediment exhibit oxic conditions with low pH, high concentrations of NO(3)(-), SO(4)(2-), U and various metal cations. Preliminary batch experiments indicate that additions of strong base induce rapid immobilization of U for this material. In the column experiment that is the focus of the present study, effluent groundwater was titrated with NaOH solution in an inflow reservoir before reinjection to gradually increase the solution pH in the column. An equilibrium hydrolysis, precipitation and ion exchange reaction model developed through simulation of the preliminary batch titration experiments predicted faster reduction of aqueous Al than observed in the column experiment. The model was therefore modified to consider reaction kinetics for the precipitation and dissolution processes which are the major mechanism for Al immobilization. The combined kinetic and equilibrium reaction model adequately described variations in pH, aqueous concentrations of metal cations (Al, Ca, Mg, Sr, Mn, Ni, Co), sulfate and U(VI). The experimental and modeling results indicate that U(VI) can be effectively sequestered with controlled base addition due to sorption by slowly precipitated Al with pH-dependent surface charge. The model may prove useful to predict field-scale U(VI) sequestration and remediation effectiveness.

  12. Hydrogen peroxide stabilization in one-dimensional flow columns

    NASA Astrophysics Data System (ADS)

    Schmidt, Jeremy T.; Ahmad, Mushtaque; Teel, Amy L.; Watts, Richard J.

    2011-09-01

    Rapid hydrogen peroxide decomposition is the primary limitation of catalyzed H 2O 2 propagations in situ chemical oxidation (CHP ISCO) remediation of the subsurface. Two stabilizers of hydrogen peroxide, citrate and phytate, were investigated for their effectiveness in one-dimensional columns of iron oxide-coated and manganese oxide-coated sand. Hydrogen peroxide (5%) with and without 25 mM citrate or phytate was applied to the columns and samples were collected at 8 ports spaced 13 cm apart. Citrate was not an effective stabilizer for hydrogen peroxide in iron-coated sand; however, phytate was highly effective, increasing hydrogen peroxide residuals two orders of magnitude over unstabilized hydrogen peroxide. Both citrate and phytate were effective stabilizers for manganese-coated sand, increasing hydrogen peroxide residuals by four-fold over unstabilized hydrogen peroxide. Phytate and citrate did not degrade and were not retarded in the sand columns; furthermore, the addition of the stabilizers increased column flow rates relative to unstabilized columns. These results demonstrate that citrate and phytate are effective stabilizers of hydrogen peroxide under the dynamic conditions of one-dimensional columns, and suggest that citrate and phytate can be added to hydrogen peroxide before injection to the subsurface as an effective means for increasing the radius of influence of CHP ISCO.

  13. One dimensional wavefront sensor development for tomographic flow measurements

    SciTech Connect

    Neal, D.; Pierson, R.; Chen, E.

    1995-08-01

    Optical diagnostics are extremely useful in fluid mechanics because they generally have high inherent bandwidth, and are non-intrusive. However, since optical probe measurements inherently integrate all information along the optical path, it is often difficult to isolate out-of-plane components in 3-dimensional flow events. It is also hard to make independent measurements of internal flow structure. Using an arrangement of one-dimensional wavefront sensors, we have developed a system that uses tomographic reconstruction to make two-dimensional measurements in an arbitrary flow. These measurements provide complete information in a plane normal to the flow. We have applied this system to the subsonic free jet because of the wide range of flow scales available. These measurements rely on the development of a series of one-dimensional wavefront sensors that are used to measure line-integral density variations in the flow of interest. These sensors have been constructed using linear CCD cameras and binary optics lenslet arrays. In designing these arrays, we have considered the coherent coupling between adjacent lenses and have made comparisons between theory and experimental noise measurements. The paper will present examples of the wavefront sensor development, line-integral measurements as a function of various experimental parameters, and sample tomographic reconstructions.

  14. Majorana fermion exchange in quasi-one-dimensional networks

    NASA Astrophysics Data System (ADS)

    Clarke, David J.; Sau, Jay D.; Tewari, Sumanta

    2011-07-01

    Heterostructures of spin-orbit coupled materials with s-wave superconductors are thought to be capable of supporting zero-energy Majorana bound states. Such excitations are known to obey non-Abelian statistics in two dimensions, and are thus relevant to topological quantum computation (TQC). In a one-dimensional system, Majorana states are localized to phase boundaries. In order to bypass the constraints of one dimension, a wire network may be created, allowing the exchange of Majoranas by way of junctions in the network. Alicea have proposed such a network as a platform for TQC, showing that the Majorana bound states obey non-Abelian exchange statistics even in quasi-one-dimensional systems. Here we show that the particular realization of non-Abelian statistics produced in a Majorana wire network is highly dependent on the local properties of individual wire junctions. For a simply connected network, the possible realizations can be characterized by the chirality of individual junctions. There is in general no requirement for junction chiralities to remain consistent across a wire network. We show how the chiralities of different junctions may be compared experimentally and discuss the implications for TQC in Majorana wire networks.

  15. Hydrogen peroxide stabilization in one-dimensional flow columns.

    PubMed

    Schmidt, Jeremy T; Ahmad, Mushtaque; Teel, Amy L; Watts, Richard J

    2011-09-25

    Rapid hydrogen peroxide decomposition is the primary limitation of catalyzed H(2)O(2) propagations in situ chemical oxidation (CHP ISCO) remediation of the subsurface. Two stabilizers of hydrogen peroxide, citrate and phytate, were investigated for their effectiveness in one-dimensional columns of iron oxide-coated and manganese oxide-coated sand. Hydrogen peroxide (5%) with and without 25 mM citrate or phytate was applied to the columns and samples were collected at 8 ports spaced 13 cm apart. Citrate was not an effective stabilizer for hydrogen peroxide in iron-coated sand; however, phytate was highly effective, increasing hydrogen peroxide residuals two orders of magnitude over unstabilized hydrogen peroxide. Both citrate and phytate were effective stabilizers for manganese-coated sand, increasing hydrogen peroxide residuals by four-fold over unstabilized hydrogen peroxide. Phytate and citrate did not degrade and were not retarded in the sand columns; furthermore, the addition of the stabilizers increased column flow rates relative to unstabilized columns. These results demonstrate that citrate and phytate are effective stabilizers of hydrogen peroxide under the dynamic conditions of one-dimensional columns, and suggest that citrate and phytate can be added to hydrogen peroxide before injection to the subsurface as an effective means for increasing the radius of influence of CHP ISCO.

  16. Dislocation-mediated melting of one-dimensional Rydberg crystals

    SciTech Connect

    Sela, Eran; Garst, Markus; Punk, Matthias

    2011-08-15

    We consider cold Rydberg atoms in a one-dimensional optical lattice in the Mott regime with a single atom per site at zero temperature. An external laser drive with Rabi frequency {Omega} and laser detuning {Delta} creates Rydberg excitations whose dynamics is governed by an effective spin-chain model with (quasi) long-range interactions. This system possesses intrinsically a large degree of frustration resulting in a ground-state phase diagram in the ({Delta},{Omega}) plane with a rich topology. As a function of {Delta}, the Rydberg blockade effect gives rise to a series of crystalline phases commensurate with the optical lattice that form a so-called devil's staircase. The Rabi frequency {Omega}, on the other hand, creates quantum fluctuations that eventually lead to a quantum melting of the crystalline states. Upon increasing {Omega}, we find that generically a commensurate-incommensurate transition to a floating Rydberg crystal that supports gapless phonon excitations occurs first. For even larger {Omega}, dislocations within the floating Rydberg crystal start to proliferate and a second, Kosterlitz-Thouless-Nelson-Halperin-Young dislocation-mediated melting transition finally destroys the crystalline arrangement of Rydberg excitations. This latter melting transition is generic for one-dimensional Rydberg crystals and persists even in the absence of an optical lattice. The floating phase and the concomitant transitions can, in principle, be detected by Bragg scattering of light.

  17. One-Dimensional Forward–Forward Mean-Field Games

    SciTech Connect

    Gomes, Diogo A. Nurbekyan, Levon; Sedjro, Marc

    2016-12-15

    While the general theory for the terminal-initial value problem for mean-field games (MFGs) has achieved a substantial progress, the corresponding forward–forward problem is still poorly understood—even in the one-dimensional setting. Here, we consider one-dimensional forward–forward MFGs, study the existence of solutions and their long-time convergence. First, we discuss the relation between these models and systems of conservation laws. In particular, we identify new conserved quantities and study some qualitative properties of these systems. Next, we introduce a class of wave-like equations that are equivalent to forward–forward MFGs, and we derive a novel formulation as a system of conservation laws. For first-order logarithmic forward–forward MFG, we establish the existence of a global solution. Then, we consider a class of explicit solutions and show the existence of shocks. Finally, we examine parabolic forward–forward MFGs and establish the long-time convergence of the solutions.

  18. Magnetic Stimulation of One-Dimensional Neuronal Cultures

    PubMed Central

    Rotem, Assaf; Moses, Elisha

    2008-01-01

    Transcranial magnetic stimulation is a remarkable tool for neuroscience research, with a multitude of diagnostic and therapeutic applications. Surprisingly, application of the same magnetic stimulation directly to neurons that are dissected from the brain and grown in vitro was not reported to activate them to date. Here we report that central nervous system neurons patterned on large enough one-dimensional rings can be magnetically stimulated in vitro. In contrast, two-dimensional cultures with comparable size do not respond to excitation. This happens because the one-dimensional pattern enforces an ordering of the axons along the ring, which is designed to follow the lines of the magnetically induced electric field. A small group of sensitive (i.e., initiating) neurons respond even when the network is disconnected, and are presumed to excite the entire network when it is connected. This implies that morphological and electrophysiological properties of single neurons are crucial for magnetic stimulation. We conjecture that the existence of a select group of neurons with higher sensitivity may occur in the brain in vivo as well, with consequences for transcranial magnetic stimulation. PMID:18326634

  19. Self-Organized Freestanding One-Dimensional Au Nanoparticle Arrays.

    PubMed

    Kang, Myungkoo; Yuwen, Yu; Hu, Wenchong; Yun, Seokho; Mahalingam, Krishnamurthy; Jiang, Bin; Eyink, Kurt; Poutrina, Ekaterina; Richardson, Kathleen; Mayer, Theresa S

    2017-06-27

    One-dimensional Au nanoparticle arrays encapsulated within freestanding SiO2 nanowires are fabricated by thermal oxidation of Au-coated Si nanowires with controlled diameter and surface modulation. The nanoparticle diameter is determined by the Si nanowire diameter and Au film thickness, while the interparticle spacing is independently controlled by the Si nanowire modulation. The optical absorption of randomly oriented Au nanoparticle arrays exhibits a strong plasmonic response at 550 nm. Scanning transmission electron microscopy (STEM)-electron energy loss spectrum (EELS) of nanoparticle arrays confirmed the same plasmonic response and demonstrated uniform optical properties of the Au nanoparticles. The plasmonic response in the STEM-EELS maps is primarily confined around the vicinity of the nanoparticles. On the other hand, examination of the same nanowires by energy-filtered transmission electron microscopy also revealed significant enhancement in the plasmonic excitation in the regions in between the nanoparticles. This versatile route to synthesize one-dimensional Au nanoparticle arrays with independently tailorable nanoparticle diameter and interparticle spacing opens up opportunities to exploit enhanced design flexibility and cost-effectiveness for future plasmonic devices.

  20. One dimensional global and local solution for ICRF heating

    SciTech Connect

    Wang, C.Y.; Batchelor, D.B.; Jaeger, E.F.; Carter, M.D.

    1995-02-01

    A numerical code GLOSI [Global and Local One-dimensional Solution for Ion cyclotron range of frequencies (ICRF) heating] is developed to solve one-dimensional wave equations resulting from the use of radio frequency (RF) waves to heat plasmas. The code uses a finite difference method. Due to its numerical stability, the code can be used to find both global and local solutions when imposed with appropriate boundary conditions. Three types of boundary conditions are introduced to describe wave scattering, antenna wave excitation, and fixed tangential wave magnetic field. The scattering boundary conditions are especially useful for local solutions. The antenna wave excitation boundary conditions can be used to excite fast and slow waves in a plasma. The tangential magnetic field boundary conditions are used to calculate impedance matrices, which describe plasma and antenna coupling and can be used by an antenna code to calculate antenna loading. These three types of boundary conditions can also be combined to describe various physical situations in RF plasma heating. The code also includes plasma thermal effects and calculates collisionless power absorption and kinetic energy flux. The plasma current density is approximated by a second-order Larmor radius expansion, which results in a sixth-order ordinary differential equation.

  1. Optical parametric oscillation in one-dimensional microcavities

    NASA Astrophysics Data System (ADS)

    Lecomte, Timothée; Ardizzone, Vincenzo; Abbarchi, Marco; Diederichs, Carole; Miard, Audrey; Lemaitre, Aristide; Sagnes, Isabelle; Senellart, Pascale; Bloch, Jacqueline; Delalande, Claude; Tignon, Jerome; Roussignol, Philippe

    2013-04-01

    We present a comprehensive investigation of optical parametric oscillation in resonantly excited one-dimensional semiconductor microcavities with embedded quantum wells. Such solid-state structures feature a fine control over light-matter coupling and produce a photonic/polaritonic mode fan that is exploited for the efficient emission of parametric beams. We implement an energy-degenerate optical parametric oscillator with balanced signal and idler intensities via a polarization-inverting mechanism. In this paper, we (i) precisely review the multimode photonic/polaritonic structure of individual emitters, (ii) provide a thorough comparison between experiment and theory, focusing on the power and the threshold dependence on the exciton-photon detuning, (iii) discuss the influence of inhomogeneous broadening of the excitonic transition and finite size, and (iv) find that a large exciton-photon detuning is a key parameter to reach a high output power and a high conversion efficiency. Our study highlights the predictive character of the polariton interaction theory and the flexibility of one-dimensional semiconductor microcavities as a platform to study parametric phenomena.

  2. Stopping time of a one-dimensional bounded quantum walk

    NASA Astrophysics Data System (ADS)

    Luo, Hao; Zhan, Xiang; Zhang, Peng; Xue, Peng

    2016-11-01

    The stopping time of a one-dimensional bounded classical random walk (RW) is defined as the number of steps taken by a random walker to arrive at a fixed boundary for the first time. A quantum walk (QW) is a non-trivial generalization of RW, and has attracted a great deal of interest from researchers working in quantum physics and quantum information. In this paper, we develop a method to calculate the stopping time for a one-dimensional QW. Using our method, we further compare the properties of stopping time for QW and RW. We find that the mean value of the stopping time is the same for both of these problems. However, for short times, the probability for a walker performing a QW to arrive at the boundary is larger than that for a RW. This means that, although the mean stopping time of a quantum and classical walker are the same, the quantum walker has a greater probability of arriving at the boundary earlier than the classical walker. Project supported by the National Natural Science Foundation of China (Grant Nos. 11222430, 11434011, and 11474049), the National Basic Research Program of China (Grant No. 2012CB922104), the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (Grant No. 16XNLQ03).

  3. Influence of Cemented Layers on Contaminant Transport in Mine Tailings

    NASA Astrophysics Data System (ADS)

    Ptacek, C.; Blowes, D.; Jambor, J.; Moncur, M.; Gunsinger, M.; Doerr, N.

    2004-12-01

    Exposure of sulfide-mine tailings to atmospheric oxygen leads to the initiation of a series of reactions, including sulfide oxidation, acid neutralization and metal attenuation reactions. As oxygen ingresses into the tailings, the oxidation front moves downward and inward from the edges of the tailings surface. At or near the acid neutralization front, secondary phases can accumulate, leading to the formation of hardpan layers. Field studies were conducted at three mine sites to evaluate the role of cemented layers in influencing contaminant transport from oxidized tailings. Detailed field measurements were made, including collection of water and gas samples from the vadose and groundwater zones. Cores were collected for mineralogical and chemical analyses to evaluate the extent of sulfide mineral oxidation and accumulation of secondary phases. Calculations of mineral saturation indices were made using ion-pair and ion-interaction models that were modified to account for the very high solute concentrations observed in the tailings pore waters. At a site that has been oxidizing for 25 years, a massive Fe(III)-bearing hardpan, containing gypsum, goethite and jarosite, has formed over the last 15 years. At a site that has been oxidizing for 35 years, an Fe(III)-bearing hardpan is also present. At a site that has been oxidizing for 70 years, a massive Fe(II)-bearing hardpan containing melanterite and gypsum is present below the zone of active oxidation. Above this zone, there are discontinuous Fe(III)-bearing cemented layers that are likely oxidized remnants of the original Fe(II) hardpan. Calculated mineral saturation indices are consistent with the observed accumulations of secondary phases. Transient perched water table conditions have developed above the massive Fe(II) hardpan, leading to the lateral transport of sulfide oxidation products along the hardpan and the formation of seepage zones above the permanent water table. Chemical extractions and mineralogical

  4. Melting of Wigner Crystal on Helium in Quasi-One-Dimensional Geometry

    NASA Astrophysics Data System (ADS)

    Ikegami, Hiroki; Akimoto, Hikota; Kono, Kimitoshi

    2015-05-01

    We discuss melting of a Wigner crystal formed on a free surface of superfluid He, in quasi-one-dimensional (Q1D) channels of width between 5 and 15 m. We reexamine our previous transport data (Ikegami et al. in Phys Rev B 82:201104(R), 2010), in particular, by estimating the number of electrons across the channel in a more accurate way with the aid of numerical calculations of distributions of the electrons in the channels. The results of reexamination indicate more convincingly that the melting of the Wigner crystal in the Q1D geometry is understood by the finite size effect on the Kosterlitz-Thouless-Halperin-Nelson-Young melting process. We also present technical details of the transport measurements of the electrons in a Q1D geometry, including a fabrication method of devices used for the transport measurements, numerical simulations of response of the devices, and a procedure for analyzing transport data.

  5. Contaminant transport and biodegradation in saturated porous media: model development and simulation

    NASA Astrophysics Data System (ADS)

    Kim, Song-Bae

    2005-12-01

    A mathematical model is developed to describe the contaminant transport, sorption, and biodegradation in saturated porous media. In the model development, sorption was accounted for as a kinetic process for the contaminant transport. In addition, a double Monod function was incorporated into the model to describe the biodegradation of contaminants and utilization of oxygen. In the description of bacterial transport, reversible and irreversible depositions of bacteria were considered as kinetic processes in the model. The model equations were solved numerically with a fully implicit finite-difference method along with the Runge-Kutta method. The simulation showed that contaminant transport in porous media could be greatly affected by sorption and biodegradation processes. Sensitivity analysis demonstrated that the contaminant transport model was insensitive to the changes of desorption rate constant for contaminants kb, half-saturation constant for oxygen Ko, bacterial yield factor Y, and oxygen use coefficient F. However, the model was sensitive to the changes of adsorption rate constant for contaminants kf, maximum utilization rate of contaminants max, and half-saturation constant for contaminants Kc, and so their values should be selected carefully in the modelling process. Copyright

  6. A Sectored-One-Dimensional Model for Simulating Combustion Instabilities in Premix Combustors

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    1999-01-01

    A one-dimensional, CFD based combustor simulation has been developed that exhibits self-excited, thermoacoustic oscillations in premixed combustor geometries that typically have large, abrupt changes in cross sectional area. The combustor geometry is approximated by dividing it into a finite number of one-dimensional sectors. Within each sector, the equations of motion are integrated numerically, along with a species transport and a reaction equation. Across the sectors, mass and energy are conserved, and momentum loss is prescribed using appropriately compatible boundary conditions that account for the area change. The resulting simulation and associated boundary conditions essentially represent a one-dimensional, multi-block technique. Details of the simulation code are presented herein. Results are then shown comparing experimentally observed and simulated operation of a particular combustor rig that exhibited different instabilities at different operating points. It will be shown that the simulation closely matched the rig data in oscillation amplitudes, frequencies, and operating points at which the instabilities occurred. Finally, advantages and limitations of the simulation technique are discussed.

  7. Critical contaminant/critical pathway analysis - surface water transport for nonradioactive contaminants

    SciTech Connect

    Chen, Kuo-Fu

    1996-11-01

    The health risks for an individual exposed to contaminants released from SRS outfalls from 1989 to 1995 were estimated. The exposure pathways studied are ingestion of drinking water, ingestion of contaminated fish and dermal contact with contaminants in water while swimming. The estimated incremental risks for an individual developing cancer vary from 3.E-06 to 1.0E-05. The estimated total exposure chronic noncancer hazard indices vary from 6.E-02 to 1.E-01. The critical contaminants were ranked based on their cancer risks and chronic noncarcinogenic hazard quotients. For cancer risks, the critical contaminants released from SRS outfalls are arsenic, tetrachloroethylene, and benzene. For chronic noncarcinogenic risks, the critical contaminants released from srs outfalls are cadmium, arsenic, silver, chromium, mercury, selenium, nitrate, manganese, zinc, nickel, uranium, barium, copper, tetrachloroethylene, cyanide, and phenol. The critical pathways in decreasing risk order are ingestion of contaminated fish, ingestion of drinking water and dermal contact with contaminants in water while swimming.

  8. An analytical model for contaminant transport in landfill composite liners considering coupled effect of consolidation, diffusion, and degradation.

    PubMed

    Xie, Haijian; Yan, Huaxiang; Feng, Shijin; Wang, Qiao; Chen, Peixiong

    2016-10-01

    One-dimensional mathematical model is developed to investigate the behavior of contaminant transport in landfill composite liner system considering coupled effect of consolidation, diffusion, and degradation. The first- and second-type bottom boundary conditions are used to derive the steady-state and quasi-steady-state analytical solutions. The concentration profiles obtained by the proposed analytical solution are in good agreement with those obtained by the laboratory tests. The bottom concentration and flux of the soil liners can be greatly reduced when the degradation effect and porosity changing are considered. For the case under steady-state, the bottom flux and concentration for the case with t 1/2 =10 years can be 2.8 and 5.5 times lower than those of the case with t 1/2 =100 years, respectively. The bottom concentration and flux of the soil liners can be greatly reduced when the coefficient of volume compressibility decreases. For quasi-steady-state and with t 1/2 = 10 years, the bottom flux and concentration for the case with m v  = 0.02/MPa can be 17.4 and 21 times lower than the case with m v  = 0.5/MPa. This may be due to the fact that the true fluid velocity induced by consolidation is greater for the case with high coefficient of volume compressibility. The bottom flux for the case with single compacted clay liner (CCL) can be 1.5 times larger than that for the case with GMB/CCL considering diffusion and consolidation for DCM. The proposed analytical model can be used for verification of more complicated numerical models and assessment of the coupled effect of diffusion, consolidation, and degradation on contaminant transport in landfill liner systems.

  9. Configurational and energy landscape in one-dimensional Coulomb systems

    NASA Astrophysics Data System (ADS)

    Varela, Lucas; Téllez, Gabriel; Trizac, Emmanuel

    2017-02-01

    We study a one-dimensional Coulomb system, where two charged colloids are neutralized by a collection of point counterions, with global neutrality. With temperature being given, two situations are addressed: Either the colloids are kept at fixed positions (canonical ensemble) or the force acting on the colloids is fixed (isobaric-isothermal ensemble). The corresponding partition functions are worked out exactly, in view of determining which arrangement of counterions is optimal. How many counterions should be in the confined segment between the colloids? For the remaining ions outside, is there a left-right symmetry breakdown? We evidence a cascade of transitions as system size is varied in the canonical treatment or as pressure is increased in the isobaric formulation.

  10. Hydrodynamic modes of a one-dimensional trapped Bose gas

    SciTech Connect

    Fuchs, J.N.; Leyronas, X.; Combescot, R.

    2003-10-01

    We consider two regimes where a trapped Bose gas behaves as a one-dimensional (1D) system. In the first one the Bose gas is microscopically described by 3D mean-field theory, but the trap is so elongated that it behaves as a 1D gas with respect to low-frequency collective modes. In the second regime we assume that the 1D gas is truly 1D and that it is properly described by the Lieb-Liniger model. In both regimes we find the frequency of the lowest compressional mode by solving the hydrodynamic equations. This is done by making use of a method which allows us to find analytical or quasianalytical solutions of these equations for a large class of models approaching very closely the actual equation of state of the Bose gas. We find an excellent agreement with the recent results of Menotti and Stringari obtained from a sum-rule approach.

  11. Crystallographic shear mechanisms in Rh one-dimensional oxides

    NASA Astrophysics Data System (ADS)

    Hernando, María; Boulahya, Khalid; Parras, Marina; González-Calbet, José M.

    2005-02-01

    Electron diffraction and high resolution electron microscopy have been used to characterize two new one-dimensional superstructures in the A sbnd Rh sbnd O system (A = Ca, Sr) related to the 2H-ABO 3-type. They are formed by the intergrowth of n A 3A'BO 6 blocks, showing the Sr 4RhO 6-type, with A 12A' 2B 8O 30 blocks, constituted by two A 3O 9 and two A 3A'O 6 layers alternating in the stacking sequence 1:1, leading to the A 27A' 7B 13O 60 ( n=5) and A 30A' 8B 14O 66 ( n=6) compositions. A crystallographic shear mechanism is proposed to describe the structural relationship between Sr 4RhO 6 (A 3A'BO 6-type) and the new superstructures.

  12. Spin accumulation on a one-dimensional mesoscopic Rashba ring.

    PubMed

    Zhang, Zhi-Yong

    2006-04-26

    The nonequilibrium spin accumulation on a one-dimensional (1D) mesoscopic Rashba ring is investigated with unpolarized current injected through ideal leads. Due to the Rashba spin-orbit (SO) coupling and back-scattering at the interfaces between the leads and the ring, a beating pattern is formed in the fast oscillation of spin accumulation. If every beating period is complete, a plateau is formed, where the variation of spin accumulation with the external voltage is slow, but if new incomplete periods emerge in the envelope function, a transitional region appears. This plateau structure and the beating pattern are related to the tunnelling through spin-dependent resonant states. Because of the Aharonov-Casher (AC) effect, the average spin accumulation oscillates quasi-periodically with the Rashba SO coupling and has a series of zeros. In some situations, the direction of the average spin accumulation can be reversed by the external voltage in this 1D Rashba ring.

  13. Majorana fermion exchange in strictly one-dimensional structures

    NASA Astrophysics Data System (ADS)

    Chiu, Ching-Kai; Vazifeh, M. M.; Franz, M.

    2015-04-01

    It is generally thought that the adiabatic exchange of two identical particles is impossible in one spatial dimension. Here we describe a simple protocol that permits the adiabatic exchange of two Majorana fermions in a one-dimensional topological superconductor wire. The exchange relies on the concept of “Majorana shuttle” whereby a π domain wall in the superconducting order parameter which hosts a pair of ancillary majoranas delivers one zero mode across the wire while the other one tunnels in the opposite direction. The method requires some tuning of parameters and does not, therefore, enjoy full topological protection. The resulting exchange statistics, however, remain non-Abelian for a wide range of parameters that characterize the exchange.

  14. Magnons in one-dimensional k-component Fibonacci structures

    NASA Astrophysics Data System (ADS)

    Costa, C. H.; Vasconcelos, M. S.

    2014-05-01

    We have studied the magnon transmission through of one-dimensional magnonic k-component Fibonacci structures, where k different materials are arranged in accordance with the following substitution rule: Sn(k)=Sn-1(k)Sn-k(k) (n ≥k=0,1,2,…), where Sn(k) is the nth stage of the sequence. The calculations were carried out in exchange dominated regime within the framework of the Heisenberg model and taking into account the RPA approximation. We have considered multilayers composed of simple cubic spin-S Heisenberg ferromagnets, and, by using the powerful transfer-matrix method, the spin wave transmission is obtained. It is demonstrated that the transmission coefficient has a rich and interesting magnonic pass- and stop-bands structures, which depends on the frequency of magnons and the k values.

  15. Charge and energy fractionalization mechanism in one-dimensional channels

    NASA Astrophysics Data System (ADS)

    Acciai, Matteo; Calzona, Alessio; Dolcetto, Giacomo; Schmidt, Thomas L.; Sassetti, Maura

    2017-08-01

    We study the problem of injecting single electrons into interacting one-dimensional quantum systems, a fundamental building block for electron quantum optics. It is well known that such injection leads to charge and energy fractionalization. We elucidate this concept by calculating the nonequilibrium electron distribution function in the momentum and energy domains after the injection of an energy-resolved electron. Our results shed light on how fractionalization occurs via the creation of particle-hole pairs by the injected electron. In particular, we focus on systems with a pair of counterpropagating channels, and we fully analyze the properties of each chiral fractional excitation which is created by the injection. We suggest possible routes to access their energy and momentum distribution functions in topological quantum Hall or quantum spin-Hall edge states.

  16. Chaos in a one-dimensional compressible flow.

    PubMed

    Gerig, Austin; Hübler, Alfred

    2007-04-01

    We study the dynamics of a one-dimensional discrete flow with open boundaries--a series of moving point particles connected by ideal springs. These particles flow towards an inlet at constant velocity, pass into a region where they are free to move according to their nearest neighbor interactions, and then pass an outlet where they travel with a sinusoidally varying velocity. As the amplitude of the outlet oscillations is increased, we find that the resident time of particles in the chamber follows a bifurcating (Feigenbaum) route to chaos. This irregular dynamics may be related to the complex behavior of many particle discrete flows or is possibly a low-dimensional analogue of nonstationary flow in continuous systems.

  17. Static electric field in one-dimensional insulators without boundaries

    NASA Astrophysics Data System (ADS)

    Chen, Kuang-Ting; Lee, Patrick A.

    2011-09-01

    In this brief report, we show that in a one-dimensional insulating system with periodic boundary conditions, the coefficient of the θ term in the effective theory is not only determined by the topological index ∫i∑α∈occukα(∂)/(∂k)ukαdk. Specifically, the relative position between the electronic orbitals and the ions also alters the coefficient, as one would expect when one identifies -eθ/2π as the polarization. This resolves a paradox when we apply our previous result to the Su-Shreiffer-Heeger model, where the two ground states related by a lattice translation have θ differed by π. We also show that the static dielectric screening is the same with or without boundaries, in contrast to comments made in our previous paper.

  18. Engineering one-dimensional topological phases on p -wave superconductors

    NASA Astrophysics Data System (ADS)

    Sahlberg, Isac; Westström, Alex; Pöyhönen, Kim; Ojanen, Teemu

    2017-05-01

    In this paper, we study how, with the aid of impurity engineering, two-dimensional p -wave superconductors can be employed as a platform for one-dimensional topological phases. We discover that, while chiral and helical parent states themselves are topologically nontrivial, a chain of scalar impurities on both systems supports multiple topological phases and Majorana end states. We develop an approach which allows us to extract the topological invariants and subgap spectrum, even away from the center of the gap, for the representative cases of spinless, chiral, and helical superconductors. We find that the magnitude of the topological gaps protecting the nontrivial phases may be a significant fraction of the gap of the underlying superconductor.

  19. Chaotic dynamics of a one-dimensional plasma

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Miller, Bruce

    2014-03-01

    The dynamics of a one-dimensional periodic plasma is investigated with N-body simulations using an event-driven algorithm. The algorithm is based on analytic expressions for the electric field and potential in the periodic plasma that makes it possible to follow the time evolution of the plasma exactly without resorting to numerical approximations. The temperature dependence of the largest Lyapunov exponent of the plasma is investigated by employing an efficient approach for defining the phase-space distance appropriate for systems with periodic boundary. The approach allows for the unambiguous test-orbit renormalization in phase space required to calculate the Lyapunov exponent. The results show evidence of a characteristic transition in the chaotic behavior of the plasma near a specific temperature in the thermodynamic limit.

  20. Magnetoresistance anisotropy of a one-dimensional superconducting niobium strip.

    PubMed

    Hua, J; Xiao, Z L; Imre, A; Yu, S H; Patel, U; Ocola, L E; Divan, R; Koshelev, A; Pearson, J; Welp, U; Kwok, W K

    2008-08-15

    We investigated confinement effects on the resistive anisotropy of a superconducting niobium strip with a rectangular cross section. When its transverse dimensions are comparable to the superconducting coherence length, the angle dependent magnetoresistances at a fixed temperature can be scaled as R(theta,H) = R(H/Hctheta) where Hctheta =Hc0(cos2theta + gamma(-2)sin2theta)(-1/2) is the angular dependent critical field, gamma is the width to thickness ratio, and Hc0 is the critical field in the thickness direction at theta=0 degrees . The results can be understood in terms of the anisotropic diamagnetic energy for a given field in a one-dimensional superconductor.

  1. Magnetoresistance anisotropy of a one-dimensional superconducting niobium strip.

    SciTech Connect

    Hua, J.; Xiao, Z. L.; Imre, A.; Yu, S. H.; Patel, U.; Ocola, L. E.; Divan, R.; Koshelev, A.; Pearson, J.; Welp, U.; Kwok, W. K.; Northern Illinois Univ.

    2008-01-01

    We investigated confinement effects on the resistive anisotropy of a superconducting niobium strip with a rectangular cross section. When its transverse dimensions are comparable to the superconducting coherence length, the angle dependent magnetoresistances at a fixed temperature can be scaled as R({theta},H) = R(H/H{sub c{theta}}) where H{sub c{theta}} = H{sub c0}(cos{sup 2} {theta} + {gamma}{sup -2} sin{sup 2}{theta}){sup -1/2} is the angular dependent critical field, {gamma} is the width to thickness ratio, and H{sub c0} is the critical field in the thickness direction at {theta} = 0{sup o}. The results can be understood in terms of the anisotropic diamagnetic energy for a given field in a one-dimensional superconductor.

  2. One-dimensional three-body problem via symbolic dynamics.

    PubMed

    Tanikawa, Kiyotaka; Mikkola, Seppo

    2000-09-01

    Symbolic dynamics is applied to the one-dimensional three-body problem with equal masses. The sequence of binary collisions along an orbit is expressed as a symbol sequence of two symbols. Based on the time reversibility of the problem and numerical data, inadmissible (i.e., unrealizable) sequences of collisions are systematically found. A graph for the transitions among various regions in the Poincare section is constructed. This graph is used to find an infinite number of periodic sequences, which implies an infinity of periodic orbits other than those accompanying a simple periodic orbit called the Schubart orbit. Finally, under reasonable assumptions on inadmissible sequences, we prove that the set of admissible symbol sequences forms a Cantor set. (c) 2000 American Institute of Physics.

  3. A Reduced Order, One Dimensional Model of Joint Response

    SciTech Connect

    DOHNER,JEFFREY L.

    2000-11-06

    As a joint is loaded, the tangent stiffness of the joint reduces due to slip at interfaces. This stiffness reduction continues until the direction of the applied load is reversed or the total interface slips. Total interface slippage in joints is called macro-slip. For joints not undergoing macro-slip, when load reversal occurs the tangent stiffness immediately rebounds to its maximum value. This occurs due to stiction effects at the interface. Thus, for periodic loads, a softening and rebound hardening cycle is produced which defines a hysteretic, energy absorbing trajectory. For many jointed sub-structures, this hysteretic trajectory can be approximated using simple polynomial representations. This allows for complex joint substructures to be represented using simple non-linear models. In this paper a simple one dimensional model is discussed.

  4. CHARGE ORDER FLUCTUATIONS IN ONE-DIMENSIONAL SILICIDES

    PubMed Central

    Zeng, Changgan; Kent, P. R.C.; Kim, Tae-Hwan; Li, An-Ping; Weitering, Hanno H.

    2014-01-01

    Metallic nanowires are of great interest as interconnects in future nanoelectronic circuits. They also represent important systems for understanding the complexity of electronic interactions and conductivity in one-dimension. We have fabricated exceptionally long and uniform YSi2 nanowires via self-assembly of yttrium atoms on Si(001). The thinnest wires represent one of the closest realizations of the isolated Peierls chain, exhibiting van-Hove type singularities in the one-dimensional density of states and charge order fluctuations below 150 K. The structure of the wire was determined though a detailed comparison of scanning tunneling microscopy data and first-principles calculations. Sporadic broadenings of the wires’ cross section imply the existence of a novel metal-semiconductor junction whose electronic properties are governed by the finite-size- and temperature-scaling of the charge ordering correlation. PMID:18552849

  5. Loschmidt echo in one-dimensional interacting Bose gases

    SciTech Connect

    Lelas, K.; Seva, T.; Buljan, H.

    2011-12-15

    We explore Loschmidt echo in two regimes of one-dimensional interacting Bose gases: the strongly interacting Tonks-Girardeau (TG) regime, and the weakly interacting mean-field regime. We find that the Loschmidt echo of a TG gas decays as a Gaussian when small (random and time independent) perturbations are added to the Hamiltonian. The exponent is proportional to the number of particles and the magnitude of a small perturbation squared. In the mean-field regime the Loschmidt echo shows richer behavior: it decays faster for larger nonlinearity, and the decay becomes more abrupt as the nonlinearity increases; it can be very sensitive to the particular realization of the noise potential, especially for relatively small nonlinearities.

  6. Configurational and energy landscape in one-dimensional Coulomb systems.

    PubMed

    Varela, Lucas; Téllez, Gabriel; Trizac, Emmanuel

    2017-02-01

    We study a one-dimensional Coulomb system, where two charged colloids are neutralized by a collection of point counterions, with global neutrality. With temperature being given, two situations are addressed: Either the colloids are kept at fixed positions (canonical ensemble) or the force acting on the colloids is fixed (isobaric-isothermal ensemble). The corresponding partition functions are worked out exactly, in view of determining which arrangement of counterions is optimal. How many counterions should be in the confined segment between the colloids? For the remaining ions outside, is there a left-right symmetry breakdown? We evidence a cascade of transitions as system size is varied in the canonical treatment or as pressure is increased in the isobaric formulation.

  7. One-dimensional hybrid approach to extensive air shower simulation

    NASA Astrophysics Data System (ADS)

    Bergmann, T.; Engel, R.; Heck, D.; Kalmykov, N. N.; Ostapchenko, S.; Pierog, T.; Thouw, T.; Werner, K.

    2007-01-01

    An efficient scheme for one-dimensional extensive air shower simulation and its implementation in the program CONEX are presented. Explicit Monte Carlo simulation of the high-energy part of hadronic and electro-magnetic cascades in the atmosphere is combined with a numeric solution of cascade equations for smaller energy sub-showers to obtain accurate shower predictions. The developed scheme allows us to calculate not only observables related to the number of particles (shower size) but also ionization energy deposit profiles which are needed for the interpretation of data of experiments employing the fluorescence light technique. We discuss in detail the basic algorithms developed and illustrate the power of the method. It is shown that Monte Carlo, numerical, and hybrid air shower calculations give consistent results which agree very well with those obtained within the CORSIKA program.

  8. One dimensional 1H, 2H and 3H

    NASA Astrophysics Data System (ADS)

    Vidal, A. J.; Astrakharchik, G. E.; Vranješ Markić, L.; Boronat, J.

    2016-05-01

    The ground-state properties of one-dimensional electron-spin-polarized hydrogen 1H, deuterium 2H, and tritium 3H are obtained by means of quantum Monte Carlo methods. The equations of state of the three isotopes are calculated for a wide range of linear densities. The pair correlation function and the static structure factor are obtained and interpreted within the framework of the Luttinger liquid theory. We report the density dependence of the Luttinger parameter and use it to identify different physical regimes: Bogoliubov Bose gas, super-Tonks-Girardeau gas, and quasi-crystal regimes for bosons; repulsive, attractive Fermi gas, and quasi-crystal regimes for fermions. We find that the tritium isotope is the one with the richest behavior. Our results show unambiguously the relevant role of the isotope mass in the properties of this quantum system.

  9. Charge diffusion in the one-dimensional Hubbard model

    NASA Astrophysics Data System (ADS)

    Steinigeweg, R.; Jin, F.; De Raedt, H.; Michielsen, K.; Gemmer, J.

    2017-08-01

    We study the real-time and real-space dynamics of charge in the one-dimensional Hubbard model in the limit of high temperatures. To this end, we prepare pure initial states with sharply peaked density profiles and calculate the time evolution of these nonequilibrium states, by using numerical forward-propagation approaches to chains as long as 20 sites. For a class of typical states, we find excellent agreement with linear-response theory and unveil the existence of remarkably clean charge diffusion in the regime of strong particle-particle interactions. We additionally demonstrate that, in the half-filling sector, this diffusive behavior does not depend on certain details of our initial conditions, i.e., it occurs for five different realizations with random and nonrandom internal degrees of freedom, single and double occupation of the central site, and displacement of spin-up and spin-down particles.

  10. Thermal radiation in one-dimensional photonic quasicrystals with graphene

    NASA Astrophysics Data System (ADS)

    Costa, C. H.; Vasconcelos, M. S.; Fulco, U. L.; Albuquerque, E. L.

    2017-10-01

    In this work we investigate the thermal power spectra of the electromagnetic radiation through one-dimensional stacks of dielectric layers, with graphene at their interfaces, arranged according to a quasiperiodic structure obeying the Fibonacci (FB), Thue-Morse (TM) and double-period (DP) sequences. The thermal radiation power spectra are determined by means of a theoretical model based on a transfer matrix formalism for both normal and oblique incidence geometries, considering the Kirchhoff's law of thermal radiation. A systematic study of the consequences of the graphene layers in the thermal emittance spectra is presented and discussed. We studied also the radiation spectra considering the case where the chemical potential is changed in order to tune the omnidirectional photonic band gap.

  11. Compaction of quasi-one-dimensional elastoplastic materials

    NASA Astrophysics Data System (ADS)

    Shaebani, M. Reza; Najafi, Javad; Farnudi, Ali; Bonn, Daniel; Habibi, Mehdi

    2017-06-01

    Insight into crumpling or compaction of one-dimensional objects is important for understanding biopolymer packaging and designing innovative technological devices. By compacting various types of wires in rigid confinements and characterizing the morphology of the resulting crumpled structures, here, we report how friction, plasticity and torsion enhance disorder, leading to a transition from coiled to folded morphologies. In the latter case, where folding dominates the crumpling process, we find that reducing the relative wire thickness counter-intuitively causes the maximum packing density to decrease. The segment size distribution gradually becomes more asymmetric during compaction, reflecting an increase of spatial correlations. We introduce a self-avoiding random walk model and verify that the cumulative injected wire length follows a universal dependence on segment size, allowing for the prediction of the efficiency of compaction as a function of material properties, container size and injection force.

  12. Enhanced multiple exciton generation in quasi-one-dimensional semiconductors.

    PubMed

    Cunningham, Paul D; Boercker, Janice E; Foos, Edward E; Lumb, Matthew P; Smith, Anthony R; Tischler, Joseph G; Melinger, Joseph S

    2011-08-10

    The creation of a single electron-hole pair (i.e., exciton) per incident photon is a fundamental limitation for current optoelectronic devices including photodetectors and photovoltaic cells. The prospect of multiple exciton generation per incident photon is of great interest to fundamental science and the improvement of solar cell technology. Multiple exciton generation is known to occur in semiconductor nanostructures with increased efficiency and reduced threshold energy compared to their bulk counterparts. Here we report a significant enhancement of multiple exciton generation in PbSe quasi-one-dimensional semiconductors (nanorods) over zero-dimensional nanostructures (nanocrystals), characterized by a 2-fold increase in efficiency and reduction of the threshold energy to (2.23 ± 0.03)E(g), which approaches the theoretical limit of 2E(g). Photovoltaic cells based on PbSe nanorods are capable of improved power conversion efficiencies, in particular when operated in conjunction with solar concentrators.

  13. Strongly Interacting One-dimensional Systems with Small Mass Imbalance

    NASA Astrophysics Data System (ADS)

    Volosniev, Artem G.

    2017-03-01

    We study a strongly interacting system of N identical bosons and one impurity in a one-dimensional trap. First, we assume that the particles have identical masses and analyze the corresponding set-up. After that, we study the influence of a small mass asymmetry on our analysis. In particular, we discuss how the structure of the wave function and the degeneracy in the impenetrable regime depend on the mass ratio and the shape of the trapping potential. To illustrate our findings, we consider a four-body system in a box and in an oscillator. We show that in the former case the system has the smallest energy when a heavy (light) impurity is close to the edge (center) of the trap. And we demonstrate that the opposite is true in the latter case.

  14. One-Dimensional Time to Explosion (Thermal Sensitivity) of ANPZ

    SciTech Connect

    Hsu, P.; Hust, G.; McClelland, M.; Gresshoff, M.

    2014-11-12

    Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 C) and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. This report summarizes the recent ODTX experimental data and modeling results for 2,6-diamino-3,5-dintropyrazine (ANPZ).

  15. Characterizing high- n quasi-one-dimensional strontium Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Hiller, Moritz; Yoshida, Shuhei; Burgdörfer, Joachim; Ye, Shuzhen; Zhang, Xinyue; Dunning, F. Barry

    2014-05-01

    The production of high- n, n ~ 300 , quasi-one-dimensional strontium Rydberg atoms by two-photon excitation of selected extreme Stark states in the presence of a weak dc field is examined using a crossed laser-atom beam geometry. The polarization of the product states is probed using three independent techniques which are analyzed with the aid of classical-trajectory Monte Carlo simulations that employ initial ensembles based on quantum calculations using a two-active-electron model. Comparisons between theory and experiment demonstrate that the product states have large dipole moments, ~ 1 . 0 - 1 . 2n2 a . u . and that they can be engineered using pulsed electric fields to create a wide variety of target states. Research supported by the NSF, the Robert A Welch Foundation, and the FWF (Austria).

  16. Equilibrium properties of a one-dimensional kinetic system.

    NASA Technical Reports Server (NTRS)

    Williams, J. H.; Joyce, G.

    1973-01-01

    One-dimensional systems of N = 500 and 250 particles in equilibrium are numerically simulated utilizing the method of molecular dynamics. Periodic boundary conditions are imposed. The classical two-body interaction potential is short range, repulsive and has a corresponding finite force. The equations of state are determined for densities both less and greater than one. Corresponding theoretical isochores are determined from models based on nearest-neighbor interactions and on a truncated virial expansion, and a comparison is made with the experimental isochores. Time independent radial distributions are constructed numerically and discussed. A change of state from a solidlike state to a fluid-gas state based on the penetrability of the particles is predicted. The transition temperatures are estimated from the radial distribution functions and the nearest-neighbor model. Self-diffusion is observed and the corresponding constants are determined from the velocity autocorrelation functions.

  17. Switching synchronization in one-dimensional memristive networks

    NASA Astrophysics Data System (ADS)

    Slipko, Valeriy A.; Shumovskyi, Mykola; Pershin, Yuriy V.

    2015-11-01

    We report on a switching synchronization phenomenon in one-dimensional memristive networks, which occurs when several memristive systems with different switching constants are switched from the high- to low-resistance state. Our numerical simulations show that such a collective behavior is especially pronounced when the applied voltage slightly exceeds the combined threshold voltage of memristive systems. Moreover, a finite increase in the network switching time is found compared to the average switching time of individual systems. An analytical model is presented to explain our observations. Using this model, we have derived asymptotic expressions for memory resistances at short and long times, which are in excellent agreement with results of our numerical simulations.

  18. One dimensional simulations of transients in heavy ion injectors

    SciTech Connect

    Barnard, J.J.; Caporaso, G.J.; Yu, S.S.; Eylon, E.

    1993-05-11

    A fast-running time-dependent one-dimensional particle code has been developed to simulate transients in both electrostatic quadrupole and electrostatic column heavy-ion injectors. Two-dimensional effects are incorporated through the use of an approximation to the transverse part of the Laplacian operator. Longitudinal electric fields are solved on a mesh. An external circuit is coupled to the column, and the effect of the beam on the circuit is modeled. Transients such as initial current spikes, space-charge de-bunching, and beam loading of the circuit, are simulated. Future directions for the code include introduction of envelope and centroid equations to provide beam radius and displacement information and the modeling of secondary electron currents arising from beam-spill.

  19. Capillary condensation in one-dimensional irregular confinement

    NASA Astrophysics Data System (ADS)

    Handford, Thomas P.; Pérez-Reche, Francisco J.; Taraskin, Sergei N.

    2013-07-01

    A lattice-gas model with heterogeneity is developed for the description of fluid condensation in finite sized one-dimensional pores of arbitrary shape. Mapping to the random-field Ising model allows an exact solution of the model to be obtained at zero-temperature, reproducing the experimentally observed dependence of the amount of fluid adsorbed in the pore on external pressure. It is demonstrated that the disorder controls the sorption for long pores and can result in H2-type hysteresis. Finite-temperature Metropolis dynamics simulations support analytical findings in the limit of low temperatures. The proposed framework is viewed as a fundamental building block of the theory of capillary condensation necessary for reliable structural analysis of complex porous media from adsorption-desorption data.

  20. Critical conductance of a one-dimensional doped Mott insulator

    NASA Astrophysics Data System (ADS)

    Garst, M.; Novikov, D. S.; Stern, Ady; Glazman, L. I.

    2008-01-01

    We consider the two-terminal conductance of a one-dimensional Mott insulator undergoing the commensurate-incommensurate quantum phase transition to a conducting state. We treat the leads as Luttinger liquids. At a specific value of compressibility of the leads, corresponding to the Luther-Emery point, the conductance can be described in terms of the free propagation of noninteracting fermions with charge e/2 . At that point, the temperature dependence of the conductance across the quantum phase transition is described by a Fermi function. The deviation from the Luther-Emery point in the leads changes the temperature dependence qualitatively. In the metallic state, the low-temperature conductance is determined by the properties of the leads, and is described by the conventional Luttinger-liquid theory. In the insulating state, conductance occurs via activation of e/2 charges, and is independent of the Luttinger-liquid compressibility.

  1. Quantum quench dynamics in analytically solvable one-dimensional models

    NASA Astrophysics Data System (ADS)

    Iucci, Anibal; Cazalilla, Miguel A.; Giamarchi, Thierry

    2008-03-01

    In connection with experiments in cold atomic systems, we consider the non-equilibrium dynamics of some analytically solvable one-dimensional systems which undergo a quantum quench. In this quench one or several of the parameters of the Hamiltonian of an interacting quantum system are changed over a very short time scale. In particular, we concentrate on the Luttinger model and the sine-Gordon model in the Luther-Emery point. For the latter, we show that the order parameter and the two-point correlation function relax in the long time limit to the values determined by a generalized Gibbs ensemble first discussed by J. T. Jaynes [Phys. Rev. 106, 620 (1957); 108, 171 (1957)], and recently conjectured by M. Rigol et.al. [Phys. Rev. Lett. 98, 050405 (2007)] to apply to the non-equilibrium dynamics of integrable systems.

  2. Atom-Molecule Coherence in a One-Dimensional System

    NASA Astrophysics Data System (ADS)

    Citro, R.; Orignac, E.

    2005-09-01

    We study a model of one-dimensional fermionic atoms with a narrow Feshbach resonance that allows them to bind in pairs to form bosonic molecules. We show that at low energy, a coherence develops between the molecule and fermion Luttinger liquids. At the same time, a gap opens in the spin excitation spectrum. The coherence implies that the order parameters for the molecular Bose-Einstein condensation and the atomic BCS pairing become identical. Moreover, both bosonic and fermionic charge density wave correlations decay exponentially, in contrast with a usual Luttinger liquid. We exhibit a Luther-Emery point where the systems can be described in terms of noninteracting pseudofermions. At this point we discuss the threshold behavior of density-density response functions.

  3. Quasi-one-dimensional model of pretransitional soft mode behavior

    NASA Astrophysics Data System (ADS)

    Mendelson, S.

    1988-04-01

    Pretransitional effects at displacive phase transitions are temperature dependent responses to fluctuations of the order parameter; these give rise to 1-D correlations in martensitic transformations when lattice dynamical constraints divide the “hard mode” 3-D correlation of the Bain distortion in order to maintain the mean field on a macroscopic scale. The quasi-one-dimensional (QOD) soft mode model of the latttice-variant-shear-theory (LVST) is described and its relevance to pretransitional nucleation and soft mode behavior, discussed. The 1-D correlations give rise to localized soft modes above T m , which nucleate microdomains of an intermediate phase at dissociated dislocations; these grow with second order kinetics and maintain the mean field when microdomains of opposite displacement vector cancel each other. Pretransitional behavior, predicted by LVST, are compared with experimental data in a wide range of materials and show why materials with different order parameters show similar transformation behavior.

  4. One-dimensional topological edge states of bismuth bilayers

    NASA Astrophysics Data System (ADS)

    Drozdov, Ilya K.; Alexandradinata, A.; Jeon, Sangjun; Nadj-Perge, Stevan; Ji, Huiwen; Cava, R. J.; Andrei Bernevig, B.; Yazdani, Ali

    2014-09-01

    The hallmark of a topologically insulating state of matter in two dimensions protected by time-reversal symmetry is the existence of chiral edge modes propagating along the perimeter of the sample. Among the first systems predicted to be a two-dimensional topological insulator are bilayers of bismuth. Here we report scanning tunnelling microscopy experiments on bulk Bi crystals that show that a subset of the predicted Bi-bilayers' edge states are decoupled from the states of the substrate and provide direct spectroscopic evidence of their one-dimensional nature. Moreover, by visualizing the quantum interference of edge-mode quasi-particles in confined geometries, we demonstrate their remarkable coherent propagation along the edge with scattering properties consistent with strong suppression of backscattering as predicted for the propagating topological edge states.

  5. The statistical distributions of one-dimensional “turbulence”

    NASA Astrophysics Data System (ADS)

    Peyrard, Michel

    2004-06-01

    We study a one-dimensional discrete analog of the von Kármán flow widely investigated in turbulence, made of a lattice of anharmonic oscillators excited by both ends in the presence of a dissipative term proportional to the second-order finite difference of the velocities, similar to the viscous term in a fluid. The dynamics of the model shows striking similarities with an actual turbulent flow, both at local and global scales. Calculations of the probability distribution function of velocity increments, extensively studied in turbulence, with a very large number of points in order to determine accurately the statistics of rare events, allow us to provide a meaningful comparison of different theoretical expressions of the PDFs.

  6. One-dimensional hybrid nanostructures for heterogeneous photocatalysis and photoelectrocatalysis.

    PubMed

    Xiao, Fang-Xing; Miao, Jianwei; Tao, Hua Bing; Hung, Sung-Fu; Wang, Hsin-Yi; Yang, Hong Bin; Chen, Jiazang; Chen, Rong; Liu, Bin

    2015-05-13

    Semiconductor-based photocatalysis and photoelectrocatalysis have received considerable attention as alternative approaches for solar energy harvesting and storage. The photocatalytic or photoelectrocatalytic performance of a semiconductor is closely related to the design of the semiconductor at the nanoscale. Among various nanostructures, one-dimensional (1D) nanostructured photocatalysts and photoelectrodes have attracted increasing interest owing to their unique optical, structural, and electronic advantages. In this article, a comprehensive review of the current research efforts towards the development of 1D semiconductor nanomaterials for heterogeneous photocatalysis and photoelectrocatalysis is provided and, in particular, a discussion of how to overcome the challenges for achieving full potential of 1D nanostructures is presented. It is anticipated that this review will afford enriched information on the rational exploration of the structural and electronic properties of 1D semiconductor nanostructures for achieving more efficient 1D nanostructure-based photocatalysts and photoelectrodes for high-efficiency solar energy conversion.

  7. Strongly-Refractive One-Dimensional Photonic Crystal Prisms

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor)

    2004-01-01

    One-dimensional (1D) photonic crystal prisms can separate a beam of polychromatic electromagnetic waves into constituent wavelength components and can utilize unconventional refraction properties for wavelength dispersion over significant portions of an entire photonic band rather than just near the band edges outside the photonic band gaps. Using a ID photonic crystal simplifies the design and fabrication process and allows the use of larger feature sizes. The prism geometry broadens the useful wavelength range, enables better optical transmission, and exhibits angular dependence on wavelength with reduced non-linearity. The properties of the 1 D photonic crystal prism can be tuned by varying design parameters such as incidence angle, exit surface angle, and layer widths. The ID photonic crystal prism can be fabricated in a planar process, and can be used as optical integrated circuit elements.

  8. Medical image denoising using one-dimensional singularity function model.

    PubMed

    Luo, Jianhua; Zhu, Yuemin; Hiba, Bassem

    2010-03-01

    A novel denoising approach is proposed that is based on a spectral data substitution mechanism through using a mathematical model of one-dimensional singularity function analysis (1-D SFA). The method consists in dividing the complete spectral domain of the noisy signal into two subsets: the preserved set where the spectral data are kept unchanged, and the substitution set where the original spectral data having lower signal-to-noise ratio (SNR) are replaced by those reconstructed using the 1-D SFA model. The preserved set containing original spectral data is determined according to the SNR of the spectrum. The singular points and singularity degrees in the 1-D SFA model are obtained through calculating finite difference of the noisy signal. The theoretical formulation and experimental results demonstrated that the proposed method allows more efficient denoising while introducing less distortion, and presents significant improvement over conventional denoising methods.

  9. Magnons in one-dimensional k-component Fibonacci structures

    SciTech Connect

    Costa, C. H.; Vasconcelos, M. S.

    2014-05-07

    We have studied the magnon transmission through of one-dimensional magnonic k-component Fibonacci structures, where k different materials are arranged in accordance with the following substitution rule: S{sub n}{sup (k)}=S{sub n−1}{sup (k)}S{sub n−k}{sup (k)} (n≥k=0,1,2,…), where S{sub n}{sup (k)} is the nth stage of the sequence. The calculations were carried out in exchange dominated regime within the framework of the Heisenberg model and taking into account the RPA approximation. We have considered multilayers composed of simple cubic spin-S Heisenberg ferromagnets, and, by using the powerful transfer-matrix method, the spin wave transmission is obtained. It is demonstrated that the transmission coefficient has a rich and interesting magnonic pass- and stop-bands structures, which depends on the frequency of magnons and the k values.

  10. Recurrence relations in one-dimensional Ising models

    NASA Astrophysics Data System (ADS)

    da Conceição, C. M. Silva; Maia, R. N. P.

    2017-09-01

    The exact finite-size partition function for the nonhomogeneous one-dimensional (1D) Ising model is found through an approach using algebra operators. Specifically, in this paper we show that the partition function can be computed through a trace from a linear second-order recurrence relation with nonconstant coefficients in matrix form. A relation between the finite-size partition function and the generalized Lucas polynomials is found for the simple homogeneous model, thus establishing a recursive formula for the partition function. This is an important property and it might indicate the possible existence of recurrence relations in higher-dimensional Ising models. Moreover, assuming quenched disorder for the interactions within the model, the quenched averaged magnetic susceptibility displays a nontrivial behavior due to changes in the ferromagnetic concentration probability.

  11. Wigner quantization of some one-dimensional Hamiltonians

    SciTech Connect

    Regniers, G.; Van der Jeugt, J.

    2010-12-15

    Recently, several papers have been dedicated to the Wigner quantization of different Hamiltonians. In these examples, many interesting mathematical and physical properties have been shown. Among those we have the ubiquitous relation with Lie superalgebras and their representations. In this paper, we study two one-dimensional Hamiltonians for which the Wigner quantization is related with the orthosymplectic Lie superalgebra osp(1|2). One of them, the Hamiltonian H=xp, is popular due to its connection with the Riemann zeros, discovered by Berry and Keating on the one hand and Connes on the other. The Hamiltonian of the free particle, H{sub f}=p{sup 2}/2, is the second Hamiltonian we will examine. Wigner quantization introduces an extra representation parameter for both of these Hamiltonians. Canonical quantization is recovered by restricting to a specific representation of the Lie superalgebra osp(1|2).

  12. Wave propagation in one-dimensional nonlinear acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Fang, Xin; Wen, Jihong; Bonello, Bernard; Yin, Jianfei; Yu, Dianlong

    2017-05-01

    The propagation of waves in nonlinear acoustic metamaterial (NAM) is fundamentally different from that in conventional linear ones. In this article we consider two one-dimensional (1D) NAM systems featuring respectively a diatomic and a tetratomic meta unit-cell. We investigate the attenuation of waves, band structures, and bifurcations to demonstrate novel nonlinear effects, which can significantly expand the bandwidth for elastic wave suppression and cause nonlinear wave phenomena. The harmonic averaging approach, continuation algorithm, and Lyapunov exponents (LEs) are combined to study the frequency responses, nonlinear modes, bifurcations of periodic solutions, and chaos. The nonlinear resonances are studied, and the influence of damping on hyperchaotic attractors is evaluated. Moreover, a ‘quantum’ behavior is found between the low-energy and high-energy orbits. This work provides a theoretical base for furthering understandings and applications of NAMs.

  13. Solution of a one-dimensional ablation model

    NASA Astrophysics Data System (ADS)

    Rupertijunior, Nerbe Jose

    1991-11-01

    Ablation in multilayered one-dimensional media is studied. A finite element technique using a Streamline Upwind/Petrov-Galerkin (SU/PG) formulation is employed with a moving mesh which adapts itself to the moving boundary at each time step. The SU/PG formulation is used to avoid oscillations caused by first order derivatives in the energy equation. Ablation problems with time-dependent heat fluxes and a typical example in aerospace thermal protection applications are solved. Critical comparisons are made with finite differences results recently obtained through the control volume approach with exponential differencing. The generalized integral transform technique (GITT) is used as an alternative solution to ablation in multilayered media and to validate the results obtained by the finite element method. The eigenvalues needed in the GITT solution are determined simultaneously with the tansformed temperatures by rewriting the associated transcedental equations into ordinary differential equations.

  14. Singularity formation for one dimensional full Euler equations

    NASA Astrophysics Data System (ADS)

    Pan, Ronghua; Zhu, Yi

    2016-12-01

    We investigate the basic open question on the global existence v.s. finite time blow-up phenomena of classical solutions for the one-dimensional compressible Euler equations of adiabatic flow. For isentropic flows, it is well-known that the solutions develop singularity if and only if initial data contain any compression (the Riemann variables have negative spatial derivative). The situation for non-isentropic flow is not quite clear so far, due to the presence of non-constant entropy. In [4], it is shown that initial weak compressions do not necessarily develop singularity in finite time, unless the compression is strong enough for general data. In this paper, we identify a class of solutions of the full (non-isentropic) Euler equations, developing singularity in finite time even though their initial data do not contain any compression. This is in sharp contrast to the isentropic flow.

  15. Particle partition entanglement of one dimensional spinless fermions

    NASA Astrophysics Data System (ADS)

    Barghathi, Hatem; Casiano-Diaz, Emanuel; Del Maestro, Adrian

    2017-08-01

    We investigate the scaling of the Rényi entanglement entropies for a particle bipartition of interacting spinless fermions in one spatial dimension. In the Tomonaga-Luttinger liquid regime, we calculate the second Rényi entanglement entropy and show that the leading order finite-size scaling is equal to a universal logarithm of the system size plus a non-universal constant. Higher-order corrections decay as power-laws in the system size with exponents that depend only on the Luttinger parameter. We confirm the universality of our results by investigating the one dimensional t-V model of interacting spinless fermions via exact-diagonalization techniques. The resulting sensitivity of the particle partition entanglement to boundary conditions and statistics supports its utility as a probe of quantum liquids.

  16. One-dimensional photonic crystals as selective back reflectors

    NASA Astrophysics Data System (ADS)

    Gondek, Ewa; Karasiński, Paweł

    2013-06-01

    Using the sol-gel technology and dip-coating method involving the deposition of silica layers and titania layers, we have fabricated symmetrical structures with one-dimensional photonic crystals on both sides of glass substrates. For the structure with five bilayers (SiO2/TiO2) we have obtained the maximum reflectance of 0.967 for the wavelength λr=493 nm and full width at half maximum of the main reflectance peak of FWHM=185 nm. The fabricated structures have been analyzed theoretically with the application of the transfer matrix 2×2 method, allowing for complex refraction indexes for the component layers. The paper presents the applied theoretical model and the discussion involving the calculated and experimental results. Good agreement between the calculation and experimental results has been obtained. The elaborated photonic structures can be applied in solar light concentrators for photovoltaic systems.

  17. Entangling Qubits in a One-Dimensional Harmonic Oscillator

    NASA Astrophysics Data System (ADS)

    Owen, Edmund; Dean, Matthew; Barnes, Crispin

    2012-02-01

    We present a method for generating entanglement between qubits associated with a pair of particles interacting in a one-dimensional harmonic potential. By considering the effect of the interaction on the energy spectrum of the system, we show that, under certain approximations, a ``power-of-SWAP" operation is performed on the initial two-qubit quantum state without requiring any time-dependent control. Initialization errors and deviations from our approximation are shown to have a negligible effect on the final state. Using a GPU-accelerated iteration scheme to find numerical solutions to the two-particle time-dependent Schr"odinger equation, we demonstrate that it is possible to generate maximally entangled Bell states between the two qubits with high fidelity for a range of possible interaction potentials.

  18. Experiment and simulation on one-dimensional plasma photonic crystals

    SciTech Connect

    Zhang, Lin; Ouyang, Ji-Ting

    2014-10-15

    The transmission characteristics of microwaves passing through one-dimensional plasma photonic crystals (PPCs) have been investigated by experiment and simulation. The PPCs were formed by a series of discharge tubes filled with argon at 5 Torr that the plasma density in tubes can be varied by adjusting the discharge current. The transmittance of X-band microwaves through the crystal structure was measured under different discharge currents and geometrical parameters. The finite-different time-domain method was employed to analyze the detailed properties of the microwaves propagation. The results show that there exist bandgaps when the plasma is turned on. The properties of bandgaps depend on the plasma density and the geometrical parameters of the PPCs structure. The PPCs can perform as dynamical band-stop filter to control the transmission of microwaves within a wide frequency range.

  19. Erosion by a one-dimensional random walk

    NASA Astrophysics Data System (ADS)

    Chisholm, Rebecca H.; Hughes, Barry D.; Landman, Kerry A.

    2014-08-01

    We consider a model introduced by Baker et al. [Phys. Rev. E 88, 042113 (2013), 10.1103/PhysRevE.88.042113] of a single lattice random walker moving on a domain of allowed sites, surrounded by blocked sites. The walker enlarges the allowed domain by eroding the boundary at its random encounters with blocked boundary sites: attempts to step onto blocked sites succeed with a given probability and convert these sites to allowed sites. The model interpolates continuously between the Pólya random walker on the one-dimensional lattice and a "blind" walker who attempts freely, but always aborts, moves to blocked sites. We obtain some exact results about the walker's location and the rate of erosion.

  20. A radiating one-dimensional current sheet configuration

    NASA Technical Reports Server (NTRS)

    Pritchett, P. L.; Coroniti, F. V.

    1993-01-01

    The structure of the x-independent (one-dimensional) forced current sheet including a self consistent By component is investigated for the case of small normal field component, Bz/B0 much less than 1. A hybrid (kinetic ions, massless fluid electrons) simulation model is used to demonstrate that such a current sheet has a time-dependent structure which radiates incompressible Alfven waves with amplitude of the order of the asymptotic (lobe) field strength B0. The central density enhancement acts as the source of a propagating wavetrain in which Bx rotates into By and back again. One of the characteristic signatures of the radiating current sheet is the presence of a reversal in Bx (or By) without a corresponding increase in density.

  1. One dimensional modeling of blood flow in large networks

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofei; Lagree, Pierre-Yves; Fullana, Jose-Maria; Lorthois, Sylvie; Institut de Mecanique des Fluides de Toulouse Collaboration

    2014-11-01

    A fast and valid simulation of blood flow in large networks of vessels can be achieved with a one-dimensional viscoelastic model. In this paper, we developed a parallel code with this model and computed several networks: a circle of arteries, a human systemic network with 55 arteries and a vascular network of mouse kidney with more than one thousand segments. The numerical results were verified and the speedup of parallel computing was tested on multi-core computers. The evolution of pressure distributions in all the networks were visualized and we can see clearly the propagation patterns of the waves. This provides us a convenient tool to simulate blood flow in networks.

  2. One-dimensional photonic crystal fishbone hybrid nanocavity with nanoposts

    SciTech Connect

    Lu, Tsan-Wen; Lin, Pin-Tso; Lee, Po-Tsung

    2014-05-12

    We propose and investigate a one-dimensional photonic crystal (PhC) fishbone (FB) hybrid nanocavity lying on silver substrate with a horizontal air slot. With very few PhC periods, the confined transverse-magnetic, TM{sub 10} hybrid mode concentrated within the air slot shows high quality factor over effective mode volume ratio larger than 10{sup 5}λ{sup −3}. Most importantly, this FB hybrid nanocavity allows formation of low-index nanoposts within the air slot without significantly affecting the mode properties. These nanoposts guarantee the structural stabilities under different environmental perturbations. Furthermore, capabilities of our proposed design in serving as optical sensors and tweezers for bio-sized nanoparticles are also investigated.

  3. One-dimensional photonic crystal fishbone hybrid nanocavity with nanoposts

    NASA Astrophysics Data System (ADS)

    Lu, Tsan-Wen; Lin, Pin-Tso; Lee, Po-Tsung

    2014-05-01

    We propose and investigate a one-dimensional photonic crystal (PhC) fishbone (FB) hybrid nanocavity lying on silver substrate with a horizontal air slot. With very few PhC periods, the confined transverse-magnetic, TM10 hybrid mode concentrated within the air slot shows high quality factor over effective mode volume ratio larger than 105λ-3. Most importantly, this FB hybrid nanocavity allows formation of low-index nanoposts within the air slot without significantly affecting the mode properties. These nanoposts guarantee the structural stabilities under different environmental perturbations. Furthermore, capabilities of our proposed design in serving as optical sensors and tweezers for bio-sized nanoparticles are also investigated.

  4. Source of Relaxation in the One Dimensional Gravitating System

    NASA Astrophysics Data System (ADS)

    Miller, Bruce

    1996-05-01

    Recent numerical experiments suggest that the one dimensional system consisting of N parallel mass sheets relaxes on two time scales: a rapid violent phase with duration of order T (a typical system crossing time) resulting in a quasi-equilibrium (QE) state followed by (2) a succession of QE states leading finally to thermal equilibrium. Within each QE state fluctuations relax on a time scale of order NT while complete thermalization occurs in about 10^4NT. Here I show that both time scales can be explained within the context of a diffusion model developed by the author and K. Yawn* (K. R. Yawn and B. N. Miller, Phys. Rev. E v.52, p. 3390 (1995).) specifically for this system.

  5. One-dimensional cloud fluid model for propagating star formation

    NASA Technical Reports Server (NTRS)

    Titus, Timothy N.; Struck-Marcell, Curtis

    1990-01-01

    The aim of this project was to study the propagation of star formation (SF) with a self-consistent deterministic model for the interstellar gas. The questions of under what conditions does star formation propagate in this model and what are the mechanisms of the propagation are explored. Here, researchers used the deterministic Oort-type cloud fluid model of Scalo and Struck-Marcell (1984, also see the review of Struck-Marcell, Scalo and Appleton 1987). This cloud fluid approach includes simple models for the effects of cloud collisional coalescence or disruption, collisional energy dissipation, and cloud disruption and acceleration as the result of young star winds, HII regions and supernovae. An extensive one-zone parameter study is presented in Struck-Marcell and Scalo (1987). To answer the questions above, researchers carried out one-dimensional calculations for an annulus within a galactic disk, like the so-called solar neighborhood of the galactic chemical evolution. In the calculations the left-hand boundary is set equal to the right hand boundary. The calculation is obviously idealized; however, it is computationally convenient to study the first order effects of propagating star formation. The annulus was treated as if it were at rest, i.e., in the local rotating frame. This assumption may remove some interesting effects of a supersonic gas flow, but was necessary to maintain a numerical stability in the annulus. The results on the one-dimensional propagation of SF in the Oort cloud fluid model follow: (1) SF is propagated by means of hydrodynamic waves, which can be generated by external forces or by the pressure generated by local bursts. SF is not effectively propagated via diffusion or variation in cloud interaction rates without corresponding density and velocity changes. (2) The propagation and long-range effects of SF depend on how close the gas density is to the critical threshold value, i.e., on the susceptibility of the medium.

  6. A One-Dimensional Synthetic-Aperture Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Doiron, Terence; Piepmeier, Jeffrey

    2010-01-01

    A proposed one-dimensional synthetic- aperture microwave radiometer could serve as an alternative to either the two-dimensional synthetic-aperture radiometer described in the immediately preceding article or to a prior one-dimensional one, denoted the Electrically Scanned Thinned Array Radiometer (ESTAR), mentioned in that article. The proposed radiometer would operate in a pushbroom imaging mode, utilizing (1) interferometric cross-track scanning to obtain cross-track resolution and (2) the focusing property of a reflector for along-track resolution. The most novel aspect of the proposed system would be the antenna (see figure), which would include a cylindrical reflector of offset parabolic cross section. The reflector could be made of a lightweight, flexible material amenable to stowage and deployment. Other than a stowage/deployment mechanism, the antenna would not include moving parts, and cross-track scanning would not entail mechanical rotation of the antenna. During operation, the focal line, parallel to the cylindrical axis, would be oriented in the cross-track direction, so that placement of receiving/radiating elements at the focal line would afford the desired along-track resolution. The elements would be microwave feed horns sparsely arrayed along the focal line. The feed horns would be oriented with their short and long cross-sectional dimensions parallel and perpendicular, respectively, to the cylindrical axis to obtain fan-shaped beams having their broad and narrow cross-sectional dimensions parallel and perpendicular, respectively, to the cylindrical axis. The interference among the beams would be controlled in the same manner as in the ESTAR to obtain along-cylindrical- axis (cross-track) resolution and cross-track scanning.

  7. Bjorken flow in one-dimensional relativistic magnetohydrodynamics with magnetization

    NASA Astrophysics Data System (ADS)

    Pu, Shi; Roy, Victor; Rezzolla, Luciano; Rischke, Dirk H.

    2016-04-01

    We study the one-dimensional, longitudinally boost-invariant motion of an ideal fluid with infinite conductivity in the presence of a transverse magnetic field, i.e., in the ideal transverse magnetohydrodynamical limit. In an extension of our previous work Roy et al., [Phys. Lett. B 750, 45 (2015)], we consider the fluid to have a nonzero magnetization. First, we assume a constant magnetic susceptibility χm and consider an ultrarelativistic ideal gas equation of state. For a paramagnetic fluid (i.e., with χm>0 ), the decay of the energy density slows down since the fluid gains energy from the magnetic field. For a diamagnetic fluid (i.e., with χm<0 ), the energy density decays faster because it feeds energy into the magnetic field. Furthermore, when the magnetic field is taken to be external and to decay in proper time τ with a power law ˜τ-a, two distinct solutions can be found depending on the values of a and χm. Finally, we also solve the ideal magnetohydrodynamical equations for one-dimensional Bjorken flow with a temperature-dependent magnetic susceptibility and a realistic equation of state given by lattice-QCD data. We find that the temperature and energy density decay more slowly because of the nonvanishing magnetization. For values of the magnetic field typical for heavy-ion collisions, this effect is, however, rather small. It is only for magnetic fields about an order of magnitude larger than expected for heavy-ion collisions that the system is substantially reheated and the lifetime of the quark phase might be extended.

  8. Pseudo one-dimensional analysis of polymer electrolyte fuel cell cold-start

    SciTech Connect

    Mukherjee, Partha P; Mukundan, Rangachary; Borup, Rodney L; Wang, Yun; Mishlera, Jeff

    2009-01-01

    This paper investigates the electrochemical kinetics, oxygen transport, and solid water formation in polymer electrolyte fuel cell (PEFC) during cold start. Following [Yo Wang, J. Electrochem. Soc., 154 (2007) B1041-B1048], we develop a pseudo one-dimensional analysis, which enables the evaluation of the impact of ice volume fraction and temperature variations on cell performance during cold-start. The oxygen profile, starvation ice volume fraction, and relevant overpotentials are obtained. This study is valuable for studying the characteristics of PEFC cold-start.

  9. Synthesis of one-dimensional hierarchical NiO hollow nanostructures with enhanced supercapacitive performance.

    PubMed

    Zhang, Genqiang; Yu, Le; Hoster, Harry E; Lou, Xiong Wen David

    2013-02-07

    One-dimensional hierarchical hollow nanostructures composed of NiO nanosheets are successfully synthesized through a facile carbon nanofiber directed solution method followed by a simple thermal annealing treatment. With the advantages of high electro-active surface area, carbon nanofiber supported robust structure and short ion and electron transport pathways, the hierarchical hybrid nanostructures deliver largely enhanced capacitance with excellent cycling stability when evaluated as electrode materials for supercapacitors. More specifically, a high capacitance of 642 F g(-1) is achieved when the charge-discharge current density is 3 A g(-1) and the total capacitance loss is only 5.6% after 1000 cycles.

  10. On-surface formation of one-dimensional polyphenylene through Bergman cyclization.

    PubMed

    Sun, Qiang; Zhang, Chi; Li, Zhiwen; Kong, Huihui; Tan, Qinggang; Hu, Aiguo; Xu, Wei

    2013-06-12

    On-surface fabrication of covalently interlinked conjugated nanostructures has attracted significant attention, mainly because of the high stability and efficient electron transport ability of these structures. Here, from the interplay of scanning tunneling microscopy imaging and density functional theory calculations, we report for the first time on-surface formation of one-dimensional polyphenylene chains through Bergman cyclization followed by radical polymerization on Cu(110). The formed surface nanostructures were further corroborated by the results for the ex situ-synthesized molecular product after Bergman cyclization. These findings are of particular interest and importance for the construction of molecular electronic nanodevices on surfaces.

  11. One-dimensional model of two-phase fluid displacement in a slot with permeable walls

    NASA Astrophysics Data System (ADS)

    Golovin, S. V.; Kazakova, M. Yu.

    2017-01-01

    A one-dimensional model is proposed for transportation of a two-phase fluid (sandcontaining fluid and pure fluid) in the Hele-Shaw cell with permeable walls through which the pure fluid can leak off, causing the growth of the sand concentration. The model describes the process of pure fluid displacement with the emergence of the Saffman-Taylor instability and extends Koval's model to the case of sand concentration variation owing to pure fluid outflow through the cell walls. The Riemann problem is analyzed. New flow configurations, which are not predicted by Koval's model, are discovered.

  12. A one-dimensional stochastic approach to the study of cyclic voltammetry with adsorption effects

    SciTech Connect

    Samin, Adib J.

    2016-05-15

    In this study, a one-dimensional stochastic model based on the random walk approach is used to simulate cyclic voltammetry. The model takes into account mass transport, kinetics of the redox reactions, adsorption effects and changes in the morphology of the electrode. The model is shown to display the expected behavior. Furthermore, the model shows consistent qualitative agreement with a finite difference solution. This approach allows for an understanding of phenomena on a microscopic level and may be useful for analyzing qualitative features observed in experimentally recorded signals.

  13. Numerical studies of variable-range hopping in one-dimensional systems

    NASA Astrophysics Data System (ADS)

    Rodin, A. S.; Fogler, M. M.

    2010-03-01

    We report on our recent numerical study [1] of hopping transport in disordered one-dimensional systems. A fast new algorithm, based on Dijkstra shortest-path algorithm, is devised to find the lowest-resistance path through the hopping network at arbitrary electric field. Probability distribution functions of individual resistances on the path and the net resistance are calculated and fitted to compact analytic formulas. Qualitative differences between statistics of resistance fluctuations in Ohmic and non-Ohmic regimes are elucidated. The results are compared with prior theoretical and experimental work on the subject.[6pt] [1] A. S. Rodin and M. M. Fogler, Phys. Rev. B 80, 155435 (2009).

  14. Rectification in synthetic conical nanopores: a one-dimensional Poisson-Nernst-Planck model.

    PubMed

    Kosińska, I D; Goychuk, I; Kostur, M; Schmid, G; Hänggi, P

    2008-03-01

    Ion transport in biological and synthetic nanochannels is characterized by phenomena such as ion current fluctuations and rectification. Recently, it has been demonstrated that nanofabricated synthetic pores can mimic transport properties of biological ion channels [P. Yu. Apel, Nucl. Instrum Methods Phys. Res. B 184, 337 (2001); Z. Siwy, Europhys. Lett. 60, 349 (2002)]. Here, the ion current rectification is studied within a reduced one-dimensional (1D) Poisson-Nernst-Planck (PNP) model of synthetic nanopores. A conical channel of a few nm to a few hundred nm in diameter, and of a few mum long is considered in the limit where the channel length considerably exceeds the Debye screening length. The rigid channel wall is assumed to be weakly charged. A one-dimensional reduction of the three-dimensional problem in terms of corresponding entropic effects is put forward. The ion transport is described by the nonequilibrium steady-state solution of the 1D Poisson-Nernst-Planck system within a singular perturbation treatment. An analytic formula for the approximate rectification current in the lowest order perturbation theory is derived. A detailed comparison between numerical results and the singular perturbation theory is presented. The crucial importance of the asymmetry in the potential jumps at the pore ends on the rectification effect is demonstrated. This so constructed 1D theory is shown to describe well the experimental data in the regime of small-to-moderate electric currents.

  15. Chemical contaminants in the Wadden Sea: Sources, transport, fate and effects

    NASA Astrophysics Data System (ADS)

    Laane, R. W. P. M.; Vethaak, A. D.; Gandrass, J.; Vorkamp, K.; Köhler, A.; Larsen, M. M.; Strand, J.

    2013-09-01

    The Wadden Sea receives contaminants from various sources and via various transport routes. The contaminants described in this overview are various metals (Cd, Cu, Hg, Pb and Zn) and various organic contaminants (polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and lindane (hexachlorocyclohexane, γ-HCH)). In addition, information is presented about other and emerging contaminants such as antifouling biocides (e.g. TBT and Irgarol), brominated flame retardants (BFRs), poly- and perfluorinated compounds (PFCs) and pharmaceutical and personal care products (PPCPs). Special attention is given to biogeochemical processes that contribute to the mobilization of contaminants in the surface sediments of the Wadden Sea. Finally, the effects on organisms of contaminants are reviewed and discussed. The main source of contaminants in the Wadden Sea are the rivers Rhine (via de Dutch coastal zone), Elbe and Weser. The Wadden Sea is not a sink for contaminants and adsorbed contaminants are transported from east to west. The surface sediments of the Wadden Sea are an important source for contaminants to the water above. The input and concentration of most contaminants have significantly decreased in water, sediments, organisms (e.g., mussel, flounder and bird eggs) in various parts of the Wadden Sea in the last three decades. Remarkably, the Cd concentration in mussels is increasing the last decades. In recent decades, the effects of contaminants on organisms (e.g., flounder, seal) have fallen markedly. Most of the affected populations have recovered, except for TBT induced effects in snails. Little is known about the concentration and effects of most emerging contaminants and the complex environmental mixtures of contaminants. It is recommended to install an international coordinated monitoring programme for contaminants and their effects in the whole Wadden Sea and to identify the chemical contaminants that really cause the effect.

  16. One-dimensional/two-dimensional hybridization for self-supported binder-free silicon-based lithium ion battery anodes.

    PubMed

    Wang, Bin; Li, Xianglong; Luo, Bin; Jia, Yuying; Zhi, Linjie

    2013-02-21

    A unique silicon-based anode for lithium ion batteries is developed via the facile hybridization of one-dimensional silicon nanowires and two-dimensional graphene sheets. The resulting paper-like film holds advantages highly desirable for not only accommodating the volume change of silicon, but also facilitating the fast transport of electron and lithium ions.

  17. Modeling the transport of PCDD/F compounds in a contaminated river and the possible influence of restoration dredging on calculated fluxes.

    PubMed

    Malve, Olli; Salo, Simo; Verta, Matti; Forsius, John

    2003-08-01

    River Kymijoki, the fourth largest river in Finland, has been heavily polluted by pulp mill effluents as well as by chemical industry. Loading has been reduced considerably, although remains of past emissions still exist in river sediments. The sediments are highly contaminated with polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated diphenyl ethers (PCDEs), and mercury originating from production of the chlorophenolic wood preservative (Ky-5) and other sources. The objective of this study was to simulate the transport of these PCDD/F compounds with a one-dimensional flow and transport model and to assess the impact of restoration dredging. Using the estimated trend in PCDD/F loading, downstream concentrations were calculated until 2020. If contaminated sediments are removed by dredging, the temporary increase of PCDD/F concentrations in downstream water and surface sediments will be within acceptable limits. Long-term predictions indicated only a minor decrease in surface sediment concentrations but a major decrease if the most contaminated sediments close to the emission source were removed. A more detailed assessment of the effects is suggested.

  18. Dynamics of one-dimensional large amplitude motions: molecular Hamiltonians

    NASA Astrophysics Data System (ADS)

    Kleiner, I.

    1998-09-01

    A general description of the usual theoretical approaches used to analyze the spectroscopic data of molecules presenting a one-dimensional large amplitude motion is given. The characteristics of this motion are first described briefly, and the pionner's works which led to the development of the molecular Hamitonian are then shown. A more detailed description is applied to one example of a one- dimensional large amplitude motion, the internal rotation (or torsion) of a symmetric group, typically the methyl CH3 group. Different methods, commonly found in the literature on this topic, such as the “principal axis method”, the “rho axis method" and the “internal axis method”, are described paying particular attention to the group theory implications. Finally, the present understanding of the torsional manifold in molecules containing a methyl internal rotor , which have become recently “prototype” molecular systems for such problems as IVR (Intramolecular Vibrational Relaxation) is presented. Une description générale des approches théoriques utilisées pour analyser les données spectroscopiques des molécules montrant un mouvement de grande amplitude est présentée.Les caractéristiques de ce mouvement sont d'abord décrites brievement et les travaux des “pionniers" du domaine, qui ont permis le développement de l'Hamiltonien moléculaire sont ensuite présentés. Une description plus détaillée est consacrée au problème de la rotation interne d'un groupe symétrique, typiquement le groupe méthyle, CH3. Différentes méthodes, traditionellement utilisées dans la littérature, telles que la méthode des “axes principaux d'inertie", la méthode des “axes rho" ou la “méthode des axes internes" sont décrites avec leurs implications au niveau de la théorie des groupes. Finalement, la compréhension actuelle du “bain" de torsion présent dans les molécules contenant un rotateur interne, qui sont devenues depuis peu des molécules

  19. Mobility edges in one-dimensional bichromatic incommensurate potentials

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Li, Xiaopeng; Das Sarma, S.

    2017-08-01

    We theoretically study a one-dimensional (1D) mutually incommensurate bichromatic lattice system, which has been implemented in ultracold atoms to study quantum localization. It has been universally believed that the tight-binding version of this bichromatic incommensurate system is represented by the well-known Aubry-Andre model capturing all the essential localization physics in the experimental cold atom optical lattice system. Here we establish that this belief is incorrect and that the Aubry-Andre model description, which applies only in the extreme tight-binding limit of a very deep primary lattice potential, generically breaks down near the localization transition due to the unavoidable appearance of single-particle mobility edges (SPME). In fact, we show that the 1D bichromatic incommensurate potential system manifests generic mobility edges, which disappear in the tight-binding limit, leading to the well-studied Aubry-Andre physics. We carry out an extensive study of the localization properties of the 1D incommensurate optical lattice without making any tight-binding approximation. We find that, for the full lattice system, an intermediate phase between completely localized and completely delocalized regions appears due to the existence of the SPME, making the system qualitatively distinct from the Aubry-Andre prediction. Using the Wegner flow approach, we show that the SPME in the real lattice system can be attributed to significant corrections of higher-order harmonics in the lattice potential, which are absent in the strict tight-binding limit. We calculate the dynamical consequences of the intermediate phase in detail to guide future experimental investigations for the observation of 1D SPME and the associated intermediate (i.e., neither purely localized nor purely delocalized) phase. We consider effects of interaction numerically, and conjecture the stability of SPME to weak interaction effects, thus leading to the exciting possibility of an

  20. An adaptive grid algorithm for one-dimensional nonlinear equations

    NASA Technical Reports Server (NTRS)

    Gutierrez, William E.; Hills, Richard G.

    1990-01-01

    Richards' equation, which models the flow of liquid through unsaturated porous media, is highly nonlinear and difficult to solve. Step gradients in the field variables require the use of fine grids and small time step sizes. The numerical instabilities caused by the nonlinearities often require the use of iterative methods such as Picard or Newton interation. These difficulties result in large CPU requirements in solving Richards equation. With this in mind, adaptive and multigrid methods are investigated for use with nonlinear equations such as Richards' equation. Attention is focused on one-dimensional transient problems. To investigate the use of multigrid and adaptive grid methods, a series of problems are studied. First, a multigrid program is developed and used to solve an ordinary differential equation, demonstrating the efficiency with which low and high frequency errors are smoothed out. The multigrid algorithm and an adaptive grid algorithm is used to solve one-dimensional transient partial differential equations, such as the diffusive and convective-diffusion equations. The performance of these programs are compared to that of the Gauss-Seidel and tridiagonal methods. The adaptive and multigrid schemes outperformed the Gauss-Seidel algorithm, but were not as fast as the tridiagonal method. The adaptive grid scheme solved the problems slightly faster than the multigrid method. To solve nonlinear problems, Picard iterations are introduced into the adaptive grid and tridiagonal methods. Burgers' equation is used as a test problem for the two algorithms. Both methods obtain solutions of comparable accuracy for similar time increments. For the Burgers' equation, the adaptive grid method finds the solution approximately three times faster than the tridiagonal method. Finally, both schemes are used to solve the water content formulation of the Richards' equation. For this problem, the adaptive grid method obtains a more accurate solution in fewer work units and

  1. Applying model abstraction techniques to optimize monitoring networks for detecting subsurface contaminant transport

    USDA-ARS?s Scientific Manuscript database

    Improving strategies for monitoring subsurface contaminant transport includes performance comparison of competing models, developed independently or obtained via model abstraction. Model comparison and parameter discrimination involve specific performance indicators selected to better understand s...

  2. Effects of lag and maximum growth in contaminant transport and biodegradation modeling

    SciTech Connect

    Wood, B.D. ); Dawson, C.N. . Dept. of Mathematical Sciences)

    1992-06-01

    The effects of time lag and maximum microbial growth on biodegradation in contaminant transport are discussed. A mathematical model is formulated that accounts for these effects, and a numerical case study is presented that demonstrates how lag influences biodegradation.

  3. PREDICTING SUBSURFACE CONTAMINANT TRANSPORT AND TRANSFORMATION: CONSIDERATIONS FOR MODEL SELECTION AND FIELD VALIDATION

    EPA Science Inventory

    Predicting subsurface contaminant transport and transformation requires mathematical models based on a variety of physical, chemical, and biological processes. The mathematical model is an attempt to quantitatively describe observed processes in order to permit systematic forecas...

  4. COLLOIDAL-FACILITATED TRANSPORT OF INORGANIC CONTAMINANTS IN GROUND WATER: PART I. SAMPLING CONSIDERATIONS

    EPA Science Inventory

    Investigations at Pinal Creek, Arizona, evaluated routine sampling procedures for determination of aqueous inorganic geochemistry and assessment of contaminant transport by colloidal mobility. Sampling variables included pump type and flow rate, collection under air or nitrogen,...

  5. Potential for rapid transport of contaminants from the Kara Sea.

    PubMed

    Pfirman, S L; Kögeler, J W; Rigor, I

    1997-08-25

    Export of sea ice from the Kara Sea may redistribute contaminants entrained from atmospheric, marine and riverine sources. Ice exiting the Kara Sea ice to the north, will influence the Fram Strait, Svalbard and Barents Sea regions. Kara Sea ice may also be exported to the Barents Sea through straits north and south of Novaya Zemlya. Some ice from the Kara Sea makes its way into the Laptev Sea to the north and south of Severnaya Zemlya. Data on ice exchange and contaminant levels are not adequate to assess contaminant flux.

  6. Computational modeling of 137Cs contaminant transfer associated with sediment transport in Abukuma River.

    PubMed

    Iwasaki, T; Nabi, M; Shimizu, Y; Kimura, I

    2015-01-01

    A numerical model capable of simulating the transfer of (137)Cs in rivers associated with transport of fine sediment is presented. The accident at Fukushima Dai-ichi Nuclear Power Plant (FDNPP) released radionuclides into the atmosphere, and after fallout several radionuclides in them, such as radiocesium ((134)Cs, (137)Cs) and radioiodine ((131)I) were adsorbed on surface soil particles around FDNPP and transported by surface water. To understand the transport and deposition of the radioactive contaminant along with surface soil particles and its flux to the ocean, we modeled the transport of the (137)Cs contaminant by computing the water flow and the associated washload and suspended load transport. We have developed a two-dimensional model to simulate the plane flow structure, sediment transport and associated (137)Cs contaminant transport in rivers by combining a shallow water flow model and an advection-diffusion equation for the transport of sediment. The proposed model has been applied to the lower reach of Abukuma River, which is the main river in the highly contaminated area around FDNPP. The numerical results indicate that most (137)Cs supplied from the upstream river reach with washload would directly reach to Pacific Ocean. In contrast, washload-oriented (137)Cs supplied from the upstream river basin has a limited role in the radioactive contamination in the river. The results also suggest that the proposed framework of computational model can be a potential tool for understanding the sediment-oriented (137)Cs behavior in rivers.

  7. Time series analysis of contaminant transport in the subsurface: applications to conservative tracer and engineered nanomaterials.

    PubMed

    Bai, Chunmei; Li, Yusong

    2014-08-01

    Accurately predicting the transport of contaminants in the field is subject to multiple sources of uncertainty due to the variability of geological settings, the complexity of field measurements, and the scarcity of data. Such uncertainties can be amplified when modeling some emerging contaminants, such as engineered nanomaterials, when a fundamental understanding of their fate and transport is lacking. Typical field work includes collecting concentration at a certain location for an extended period of time, or measuring the movement of plume for an extended period time, which would result in a time series of observation data. This work presents an effort to evaluate the possibility of applying time series analysis, particularly, autoregressive integrated moving average (ARIMA) models, to forecast contaminant transport and distribution in the subsurface environment. ARIMA modeling was first assessed in terms of its capability to forecast tracer transport at two field sites, which had different levels of heterogeneity. After that, this study evaluated the applicability of ARIMA modeling to predict the transport of engineered nanomaterials at field sites, including field measured data of nanoscale zero valent iron and (nZVI) and numerically generated data for the transport of nano-fullerene aggregates (nC60). This proof-of-concept effort demonstrates the possibility of applying ARIMA to predict the contaminant transport in the subsurface environment. Like many other statistical models, ARIMA modeling is only descriptive and not explanatory. The limitation and the challenge associated with applying ARIMA modeling to contaminant transport in the subsurface are also discussed.

  8. Time series analysis of contaminant transport in the subsurface: Applications to conservative tracer and engineered nanomaterials

    NASA Astrophysics Data System (ADS)

    Bai, Chunmei; Li, Yusong

    2014-08-01

    Accurately predicting the transport of contaminants in the field is subject to multiple sources of uncertainty due to the variability of geological settings, the complexity of field measurements, and the scarcity of data. Such uncertainties can be amplified when modeling some emerging contaminants, such as engineered nanomaterials, when a fundamental understanding of their fate and transport is lacking. Typical field work includes collecting concentration at a certain location for an extended period of time, or measuring the movement of plume for an extended period time, which would result in a time series of observation data. This work presents an effort to evaluate the possibility of applying time series analysis, particularly, autoregressive integrated moving average (ARIMA) models, to forecast contaminant transport and distribution in the subsurface environment. ARIMA modeling was first assessed in terms of its capability to forecast tracer transport at two field sites, which had different levels of heterogeneity. After that, this study evaluated the applicability of ARIMA modeling to predict the transport of engineered nanomaterials at field sites, including field measured data of nanoscale zero valent iron and (nZVI) and numerically generated data for the transport of nano-fullerene aggregates (nC60). This proof-of-concept effort demonstrates the possibility of applying ARIMA to predict the contaminant transport in the subsurface environment. Like many other statistical models, ARIMA modeling is only descriptive and not explanatory. The limitation and the challenge associated with applying ARIMA modeling to contaminant transport in the subsurface are also discussed.

  9. Characterization of Contaminant Transport Using Naturally-Occurring U-Series Disequilibria

    SciTech Connect

    TEH-LUNG KU

    2001-06-01

    Study the migration of nuclear waste contaminants in subsurface fractured systems using naturally occurring uranium and thorium-series radionuclides as tracers under in-situ physico-chemical and hydrogeologic conditions. Radioactive disequilibria among members of these decay-series nuclides can provide information on the rates of adsorption-desorption and transport of contaminants as well as on fluid transport and rock dissolution in a natural setting.

  10. Evaluating Transport and Attenuation of Inorganic Contaminants in the Vadose Zone for Aqueous Waste Disposal Sites

    SciTech Connect

    Truex, Michael J.; Oostrom, Martinus; Tartakovsky, Guzel D.

    2015-09-01

    An approach was developed for evaluating vadose zone transport and attenuation of aqueous wastes containing inorganic (non-volatile) contaminants that were disposed of at the land surface (i.e., directly to the ground in cribs, trenches, tile fields, etc.) and their effect on the underlying groundwater. The approach provides a structured method for estimating transport of contaminants through the vadose zone and the resulting temporal profile of groundwater contaminant concentrations. The intent of the approach is also to provide a means for presenting and explaining the results of the transport analysis in the context of the site-specific waste disposal conditions and site properties, including heterogeneities and other complexities. The document includes considerations related to identifying appropriate monitoring to verify the estimated contaminant transport and associated predictions of groundwater contaminant concentrations. While primarily intended for evaluating contaminant transport under natural attenuation conditions, the approach can also be applied to identify types of, and targets for, mitigation approaches in the vadose zone that would reduce the temporal profile of contaminant concentrations in groundwater, if needed.

  11. Numerical method of characteristics for one-dimensional blood flow

    NASA Astrophysics Data System (ADS)

    Acosta, Sebastian; Puelz, Charles; Rivière, Béatrice; Penny, Daniel J.; Rusin, Craig G.

    2015-08-01

    Mathematical modeling at the level of the full cardiovascular system requires the numerical approximation of solutions to a one-dimensional nonlinear hyperbolic system describing flow in a single vessel. This model is often simulated by computationally intensive methods like finite elements and discontinuous Galerkin, while some recent applications require more efficient approaches (e.g. for real-time clinical decision support, phenomena occurring over multiple cardiac cycles, iterative solutions to optimization/inverse problems, and uncertainty quantification). Further, the high speed of pressure waves in blood vessels greatly restricts the time step needed for stability in explicit schemes. We address both cost and stability by presenting an efficient and unconditionally stable method for approximating solutions to diagonal nonlinear hyperbolic systems. Theoretical analysis of the algorithm is given along with a comparison of our method to a discontinuous Galerkin implementation. Lastly, we demonstrate the utility of the proposed method by implementing it on small and large arterial networks of vessels whose elastic and geometrical parameters are physiologically relevant.

  12. Using the NASA GRC Sectored-One-Dimensional Combustor Simulation

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Mehta, Vishal R.

    2014-01-01

    The document is a user manual for the NASA GRC Sectored-One-Dimensional (S-1-D) Combustor Simulation. It consists of three sections. The first is a very brief outline of the mathematical and numerical background of the code along with a description of the non-dimensional variables on which it operates. The second section describes how to run the code and includes an explanation of the input file. The input file contains the parameters necessary to establish an operating point as well as the associated boundary conditions (i.e. how it is fed and terminated) of a geometrically configured combustor. It also describes the code output. The third section describes the configuration process and utilizes a specific example combustor to do so. Configuration consists of geometrically describing the combustor (section lengths, axial locations, and cross sectional areas) and locating the fuel injection point and flame region. Configuration requires modifying the source code and recompiling. As such, an executable utility is included with the code which will guide the requisite modifications and insure that they are done correctly.

  13. One-dimensional quantum walk with a moving boundary

    SciTech Connect

    Kwek, Leong Chuan; Setiawan

    2011-09-15

    Quantum walks are interesting models with potential applications to quantum algorithms and physical processes such as photosynthesis. In this paper, we study two models of one-dimensional quantum walks, namely, quantum walks with a moving absorbing wall and quantum walks with one stationary and one moving absorbing wall. For the former, we calculate numerically the survival probability, the rate of change of average position, and the rate of change of standard deviation of the particle's position in the long time limit for different wall velocities. Moreover, we also study the asymptotic behavior and the dependence of the survival probability on the initial particle's state. While for the latter, we compute the absorption probability of the right stationary wall for different velocities and initial positions of the left wall boundary. The results for these two models are compared with those obtained for the classical model. The difference between the results obtained for the quantum and classical models can be attributed to the difference in the probability distributions.

  14. SUSY-hierarchy of one-dimensional reflectionless potentials

    SciTech Connect

    Maydanyuk, Sergei P. . E-mail: maidan@kinr.kiev.ua

    2005-04-01

    A class of one-dimensional reflectionless potentials is studied. It is found that all possible types of the reflectionless potentials can be combined into one SUSY-hierarchy with a constant potential. An approach for determination of a general form of the reflectionless potential on the basis of construction of such a hierarchy by the recurrent method is proposed. A general integral form of interdependence between superpotentials with neighboring numbers of this hierarchy, opening a possibility to find new reflectionless potentials, is found and has a simple analytical view. It is supposed that any possible type of the reflectionless potential can be expressed through finite number of elementary functions (unlike some presentations of the reflectionless potentials, which are constructed on the basis of soliton solutions or are shape invariant in one or many steps with involving scaling of parameters, and are expressed through series). An analysis of absolute transparency existence for the potential which has the inverse power dependence on space coordinate (and here tunneling is possible), i.e., which has the form V (x) = {+-} {alpha}/ vertical bar x-x{sub 0} vertical bar{sup n} (where {alpha} and x{sub 0} are constants, n is natural number), is fulfilled. It is shown that such a potential can be reflectionless at n = 2 only. A SUSY-hierarchy of the inverse power reflectionless potentials is constructed. Isospectral expansions of this hierarchy are analyzed.

  15. One-dimensional simulation of lanthanide isotachophoresis using COMSOL.

    PubMed

    Dixon, Derek R; Clark, Sue B; Ivory, Cornelius F

    2012-03-01

    Electrokinetic separations can be used to quickly separate rare earth metals to determine their forensic signature. In this work, we simulate the concentration and separation of trivalent lanthanide cations by isotachophoresis. A one-dimensional simulation is developed using COMSOL v4.0a, a commercial finite element simulator, to represent the isotachophoretic separation of three lanthanides: lanthanum, terbium, and lutetium. The binding ligand chosen for complexation with the lanthanides is α-hydroxyisobutyric acid (HIBA) and the buffer system includes acetate, which also complexes with the lanthanides. The complexes formed between the three lanthanides, HIBA, and acetate are all considered in the simulation. We observe that the presence of only lanthanide:HIBA complexes in a buffer system with 10 mM HIBA causes the slowest lanthanide peak (lutetium) to split from the other analytes. The addition of lanthanide:acetate complexes into the simulation of the same buffer system eliminates this splitting. Decreasing the concentration of HIBA in the buffer to 7 mM causes the analyte stack to migrate faster through the capillary.

  16. One-dimensional magnetophotonic crystals with magnetooptical double layers

    SciTech Connect

    Berzhansky, V. N. Shaposhnikov, A. N.; Prokopov, A. R.; Karavainikov, A. V.; Mikhailova, T. V.; Lukienko, I. N.; Kharchenko, Yu. N.; Golub, V. O. Salyuk, O. Yu.; Belotelov, V. I.

    2016-11-15

    One-dimensional magnetophotonic microcavity crystals with nongarnet dielectric mirrors are created and investigated. The defect layers in the magnetophotonic crystals are represented by two bismuth-substituted yttrium iron garnet Bi:YIG layers with various bismuth contents in order to achieve a high magnetooptical response of the crystals. The parameters of the magnetophotonic crystal layers are optimized by numerical solution of the Maxwell equations by the transfer matrix method to achieve high values of Faraday rotation angle Θ{sub F} and magnetooptical Q factor. The calculated and experimental data agree well with each other. The maximum values of Θ{sub F} =–20.6°, Q = 8.1° at a gain t = 16 are obtained for magnetophotonic crystals with m = 7 pairs of layers in Bragg mirrors, and the parameters obtained for crystals with m = 4 and t = 8.5 are Θ{sub F} =–12.5° and Q = 14.3°. It is shown that, together with all-garnet and multimicrocavities magnetophotonic crystals, such structures have high magnetooptical characteristics.

  17. Fractal geometry in an expanding, one-dimensional, Newtonian universe.

    PubMed

    Miller, Bruce N; Rouet, Jean-Louis; Le Guirriec, Emmanuel

    2007-09-01

    Observations of galaxies over large distances reveal the possibility of a fractal distribution of their positions. The source of fractal behavior is the lack of a length scale in the two body gravitational interaction. However, even with new, larger, sample sizes from recent surveys, it is difficult to extract information concerning fractal properties with confidence. Similarly, three-dimensional N-body simulations with a billion particles only provide a thousand particles per dimension, far too small for accurate conclusions. With one-dimensional models these limitations can be overcome by carrying out simulations with on the order of a quarter of a million particles without compromising the computation of the gravitational force. Here the multifractal properties of two of these models that incorporate different features of the dynamical equations governing the evolution of a matter dominated universe are compared. For each model at least two scaling regions are identified. By employing criteria from dynamical systems theory it is shown that only one of them can be geometrically significant. The results share important similarities with galaxy observations, such as hierarchical clustering and apparent bifractal geometry. They also provide insights concerning possible constraints on length and time scales for fractal structure. They clearly demonstrate that fractal geometry evolves in the mu (position, velocity) space. The observed patterns are simply a shadow (projection) of higher-dimensional structure.

  18. Interspecies tunneling in one-dimensional Bose mixtures

    SciTech Connect

    Pflanzer, Anika C.; Zoellner, Sascha; Schmelcher, Peter

    2010-02-15

    We study the ground-state properties and quantum dynamics of few-boson mixtures with strong interspecies repulsion in one-dimensional traps. If one species localizes at the center, e.g., due to a very large mass compared to the other component, it represents an effective barrier for the latter, and the system can be mapped onto identical bosons in a double well. For weaker localization, the barrier atoms begin to respond to the light component, leading to an induced attraction between the mobile atoms that may even outweigh their bare intraspecies repulsion. To explain the resulting effects, we derive an effective Hubbard model for the lighter species accounting for the back action of the barrier in correction terms to the lattice parameters. Also the tunneling is drastically affected: by varying the degree of localization of the 'barrier' atoms, the dynamics of intrinsically noninteracting bosons can change from Rabi oscillations to effective pair tunneling. For identical fermions (or fermionized bosons), this leads to the tunneling of attractively bound pairs.

  19. Weak lasing in one-dimensional polariton superlattices

    PubMed Central

    Zhang, Long; Xie, Wei; Wang, Jian; Poddubny, Alexander; Lu, Jian; Wang, Yinglei; Gu, Jie; Liu, Wenhui; Xu, Dan; Shen, Xuechu; Rubo, Yuri G.; Altshuler, Boris L.; Kavokin, Alexey V.; Chen, Zhanghai

    2015-01-01

    Bosons with finite lifetime exhibit condensation and lasing when their influx exceeds the lasing threshold determined by the dissipative losses. In general, different one-particle states decay differently, and the bosons are usually assumed to condense in the state with the longest lifetime. Interaction between the bosons partially neglected by such an assumption can smear the lasing threshold into a threshold domain—a stable lasing many-body state exists within certain intervals of the bosonic influxes. This recently described weak lasing regime is formed by the spontaneously symmetry breaking and phase-locking self-organization of bosonic modes, which results in an essentially many-body state with a stable balance between gains and losses. Here we report, to our knowledge, the first observation of the weak lasing phase in a one-dimensional condensate of exciton–polaritons subject to a periodic potential. Real and reciprocal space photoluminescence images demonstrate that the spatial period of the condensate is twice as large as the period of the underlying periodic potential. These experiments are realized at room temperature in a ZnO microwire deposited on a silicon grating. The period doubling takes place at a critical pumping power, whereas at a lower power polariton emission images have the same periodicity as the grating. PMID:25787253

  20. Weak lasing in one-dimensional polariton superlattices.

    PubMed

    Zhang, Long; Xie, Wei; Wang, Jian; Poddubny, Alexander; Lu, Jian; Wang, Yinglei; Gu, Jie; Liu, Wenhui; Xu, Dan; Shen, Xuechu; Rubo, Yuri G; Altshuler, Boris L; Kavokin, Alexey V; Chen, Zhanghai

    2015-03-31

    Bosons with finite lifetime exhibit condensation and lasing when their influx exceeds the lasing threshold determined by the dissipative losses. In general, different one-particle states decay differently, and the bosons are usually assumed to condense in the state with the longest lifetime. Interaction between the bosons partially neglected by such an assumption can smear the lasing threshold into a threshold domain--a stable lasing many-body state exists within certain intervals of the bosonic influxes. This recently described weak lasing regime is formed by the spontaneously symmetry breaking and phase-locking self-organization of bosonic modes, which results in an essentially many-body state with a stable balance between gains and losses. Here we report, to our knowledge, the first observation of the weak lasing phase in a one-dimensional condensate of exciton-polaritons subject to a periodic potential. Real and reciprocal space photoluminescence images demonstrate that the spatial period of the condensate is twice as large as the period of the underlying periodic potential. These experiments are realized at room temperature in a ZnO microwire deposited on a silicon grating. The period doubling takes place at a critical pumping power, whereas at a lower power polariton emission images have the same periodicity as the grating.

  1. One-dimensional nanoferroic rods; synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; Seddik, U.; Okasha, N.; Imam, N. G.

    2015-11-01

    One-dimensional nanoferroic rods of BaTiO3 were synthesized by improved citrate auto-combustion technology using tetrabutyl titanate. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), transmission electron microscopy (TEM), atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) have been used to characterize the prepared sample. The results indicated that the crystal structure of BaTiO3 is tetragonal phase with an average crystallite size of 47 nm. SEM image gives a cauliflower-like morphology of the agglomerated nanorods. The stoichiometry of the chemical composition of the BaTiO3 ceramic was confirmed by EDX. TEM micrograph exhibited that BaTiO3 nanoparticles have rod-like shape with an average length of 120 nm and width of 43 nm. AFM was used to investigate the surface topography and its roughness. The topography image in 3D showed that the BaTiO3 particles have a rod shape with an average particle size of 116 nm which in agreement with 3D TEM result.

  2. A disorder-enhanced quasi-one-dimensional superconductor

    PubMed Central

    Petrović, A. P.; Ansermet, D.; Chernyshov, D.; Hoesch, M.; Salloum, D.; Gougeon, P.; Potel, M.; Boeri, L.; Panagopoulos, C.

    2016-01-01

    A powerful approach to analysing quantum systems with dimensionality d>1 involves adding a weak coupling to an array of one-dimensional (1D) chains. The resultant quasi-1D (q1D) systems can exhibit long-range order at low temperature, but are heavily influenced by interactions and disorder due to their large anisotropies. Real q1D materials are therefore ideal candidates not only to provoke, test and refine theories of strongly correlated matter, but also to search for unusual emergent electronic phases. Here we report the unprecedented enhancement of a superconducting instability by disorder in single crystals of Na2−δMo6Se6, a q1D superconductor comprising MoSe chains weakly coupled by Na atoms. We argue that disorder-enhanced Coulomb pair-breaking (which usually destroys superconductivity) may be averted due to a screened long-range Coulomb repulsion intrinsic to disordered q1D materials. Our results illustrate the capability of disorder to tune and induce new correlated electron physics in low-dimensional materials. PMID:27448209

  3. Quantum heat waves in a one-dimensional condensate

    NASA Astrophysics Data System (ADS)

    Agarwal, Kartiek; Dalla Torre, Emanuele G.; Schmiedmayer, Jörg; Demler, Eugene

    2017-05-01

    We study the dynamics of phase relaxation between a pair of one-dimensional condensates created by a bi-directional, supersonic `unzipping' of a finite single condensate. We find that the system fractures into different extensive chunks of space-time, within which correlations appear thermal but correspond to different effective temperatures. Coherences between different eigen-modes are crucial for understanding the development of such thermal correlations; at no point in time can our system be described by a generalized Gibbs' ensemble despite nearly always appearing locally thermal. We rationalize a picture of propagating fronts of hot and cold sound waves, populated at effective, relativistically red- and blue-shifted temperatures to intuitively explain our findings. The disparity between these hot and cold temperatures vanishes for the case of instantaneous splitting but diverges in the limit where the splitting velocity approaches the speed of sound; in this limit, a sonic boom occurs wherein the system is excited only along an infinitely narrow, and infinitely hot beam. We expect our findings to apply generally to the study of superluminal perturbations in systems with emergent Lorentz symmetry.

  4. Screw dislocation-driven growth of one-dimensional nanomaterials

    NASA Astrophysics Data System (ADS)

    Meng, Fei

    Nanoscience and nanotechnology are impacting our lives in many ways, from electronic and photonic devices to biosensors. They also hold the promise of tackling the renewable energy challenges facing us. However, one limiting scientific challenge is the effective and efficient bottom-up synthesis of nanomaterials. In this thesis, we discuss the fundamental theories of screw dislocation-driven growth of various nanostructures including one-dimensional nanowires and nanotubes, two-dimensional nanoplates, and three-dimensional hierarchical tree-like nanostructures. We then introduce the transmission electron microscopy (TEM) techniques to structurally characterize the dislocation-driven nanomaterials for future searching and identifying purposes. We summarize the guidelines for rationally designing the dislocation-driven growth and discuss specific examples to illustrate how to implement the guidelines. We also show that dislocation growth is a general and versatile mechanism that can be used to grow a variety of nanomaterials via distinct reaction chemistry and synthetic methods. The fundamental investigation and development of dislocation-driven growth of nanomaterials will create a new dimension to the rational design and synthesis of increasingly complex nanomaterials.

  5. Validation and Comparison of One-Dimensional Graound Motion Methodologies

    SciTech Connect

    B. Darragh; W. Silva; N. Gregor

    2006-06-28

    Both point- and finite-source stochastic one-dimensional ground motion models, coupled to vertically propagating equivalent-linear shear-wave site response models are validated using an extensive set of strong motion data as part of the Yucca Mountain Project. The validation and comparison exercises are presented entirely in terms of 5% damped pseudo absolute response spectra. The study consists of a quantitative analyses involving modeling nineteen well-recorded earthquakes, M 5.6 to 7.4 at over 600 sites. The sites range in distance from about 1 to about 200 km in the western US (460 km for central-eastern US). In general, this validation demonstrates that the stochastic point- and finite-source models produce accurate predictions of strong ground motions over the range of 0 to 100 km and for magnitudes M 5.0 to 7.4. The stochastic finite-source model appears to be broadband, producing near zero bias from about 0.3 Hz (low frequency limit of the analyses) to the high frequency limit of the data (100 and 25 Hz for response and Fourier amplitude spectra, respectively).

  6. Supercurrent states in one-dimensional finite-size rings

    NASA Astrophysics Data System (ADS)

    Kashurnikov, Vladimir A.; Podlivaev, Alexei I.; Prokof'ev, Nikolai V.; Svistunov, Boris V.

    1996-05-01

    We consider topological supercurrent excitations (SC's) in one-dimensional (1D) mesoscopic rings. In the superfluid phase such excitations are well defined except for (i) a tunneling between resonating states with clockwise and counterclockwise currents, which may be characterized by the amplitude Δ, and (ii) a decay of SC assisted by phonons of the substrate, both effects being macroscopically small. Our approach, being based on the hydrodynamical action for the phase field and its generalization to the effective Hamiltonian, explicitly takes into account transitions between the states with different topological numbers and turns out to be very effective for the calculation of Δ and estimation of the decay width of SC, as well as for the unified description of all known 1D superfluid-insulator transitions. Most attention is paid to the calculation of the macroscopic scaling of Δ (the main superfluid characteristic of a mesoscopic system) under different conditions: a commensurate system, a system with single impurity, and a disordered system. The results are in a very good agreement with the exact-diagonalization spectra of the boson Hubbard models. Apart from really 1D electron wires we discuss two other important experimental systems: the 2D electron gas in the fractional quantum Hall effect state and quasi-1D superconducting rings. We suggest some experimental setups for studying SC, e.g., via persistent current measurements, resonant electromagnetic absorption or echo signals, and relaxation of the metastable current states.

  7. One-dimensional flows of an imperfect diatomic gas

    NASA Technical Reports Server (NTRS)

    1959-01-01

    With the assumptions that Berthelot's equation of state accounts for molecular size and intermolecular force effects, and that changes in the vibrational heat capacities are given by a Planck term, expressions are developed for analyzing one-dimensional flows of a diatomic gas. The special cases of flow through normal and oblique shocks in free air at sea level are investigated. It is found that up to a Mach number 10 pressure ratio across a normal shock differs by less than 6 percent from its ideal gas value; whereas at Mach numbers above 4 the temperature rise is considerable below and hence the density rise is well above that predicted assuming ideal gas behavior. It is further shown that only the caloric imperfection in air has an appreciable effect on the pressures developed in the shock process considered. The effects of gaseous imperfections on oblique shock-flows are studied from the standpoint of their influence on the life and pressure drag of a flat plate operating at Mach numbers of 10 and 20. The influence is found to be small. (author)

  8. Transmission properties of one-dimensional ternary plasma photonic crystals

    SciTech Connect

    Shiveshwari, Laxmi; Awasthi, S. K.

    2015-09-15

    Omnidirectional photonic band gaps (PBGs) are found in one-dimensional ternary plasma photonic crystals (PPC) composed of single negative metamaterials. The band characteristics and transmission properties are investigated through the transfer matrix method. We show that the proposed structure can trap light in three-dimensional space due to the elimination of Brewster's angle transmission resonance allowing the existence of complete PBG. The results are discussed in terms of incident angle, layer thickness, dielectric constant of the dielectric material, and number of unit cells (N) for TE and TM polarizations. It is seen that PBG characteristics is apparent even in an N ≥ 2 system, which is weakly sensitive to the incident angle and completely insensitive to the polarization. Finite PPC could be used for multichannel transmission filter without introducing any defect in the geometry. We show that the locations of the multichannel transmission peaks are in the allowed band of the infinite structure. The structure can work as a single or multichannel filter by varying the number of unit cells. Binary PPC can also work as a polarization sensitive tunable filter.

  9. Developing one-dimensional implosions for inertial confinement fusion science

    DOE PAGES

    Kline, John L.; Yi, Sunghwan A.; Simakov, Andrei Nikolaevich; ...

    2016-12-12

    Experiments on the National Ignition Facility show that multi-dimensional effects currently dominate the implosion performance. Low mode implosion symmetry and hydrodynamic instabilities seeded by capsule mounting features appear to be two key limiting factors for implosion performance. One reason these factors have a large impact on the performance of inertial confinement fusion implosions is the high convergence required to achieve high fusion gains. To tackle these problems, a predictable implosion platform is needed meaning experiments must trade-off high gain for performance. LANL has adopted three main approaches to develop a one-dimensional (1D) implosion platform where 1D means measured yield overmore » the 1D clean calculation. A high adiabat, low convergence platform is being developed using beryllium capsules enabling larger case-to-capsule ratios to improve symmetry. The second approach is liquid fuel layers using wetted foam targets. With liquid fuel layers, the implosion convergence can be controlled via the initial vapor pressure set by the target fielding temperature. The last method is double shell targets. For double shells, the smaller inner shell houses the DT fuel and the convergence of this cavity is relatively small compared to hot spot ignition. However, double shell targets have a different set of trade-off versus advantages. As a result, details for each of these approaches are described.« less

  10. Dispersive excitations in one-dimensional ionic Hubbard model

    NASA Astrophysics Data System (ADS)

    Hafez Torbati, M.; Drescher, Nils A.; Uhrig, Götz S.

    2014-06-01

    A detailed study of the one-dimensional ionic Hubbard model with interaction U is presented. We focus on the band insulating (BI) phase and the spontaneously dimerized insulating (SDI) phase which appears on increasing U. By a recently introduced continuous unitary transformation [H. Krull et al., Phys. Rev. B 86, 125113 (2012), 10.1103/PhysRevB.86.125113] we are able to describe the system even close to the phase transition from BI to SDI although the bare perturbative series diverges before the transition is reached. First, the dispersion of single fermionic quasiparticles is determined in the full Brillouin zone. Second, we describe the binding phenomena between two fermionic quasiparticles leading to an S =0 and to an S =1 exciton. The latter corresponds to the lowest spin excitation and defines the spin gap which remains finite through the transition from BI to SDI. The former becomes soft at the transition, indicating that the SDI corresponds to a condensate of these S =0 excitons. This view is confirmed by a BCS mean-field theory for the SDI phase.

  11. Majorana Fermions in Disordered Quasi-One-Dimensional Topological Superconductors

    NASA Astrophysics Data System (ADS)

    Potter, Andrew; Lee, Patrick

    2012-02-01

    Majorana fermions have long been predicted to emerge in certain quantum Hall states and other naturally occurring p-wave superconductors. However, these materials are quite delicate and consequently the experimental realization of Majorana fermions remains elusive. The possibility of engineering 1D networks of topological superconducting wires from conventional materials offers a promising alternative route to realize Majorana fermions and probe their predicted non-Abelian statistics. In practice, it is impossible to fabricate perfectly clean and strictly one-dimensional structures; how do these non-idealities affect the proposed Majorana states? This talk will show that Majorana end states are robust away from the strict 1D limit, so long as the sample width is not much larger than the superconducting coherence length. The effects of disorder are potentially more severe, as impurity scattering is generally pair-breaking and tends to suppress the gap protecting the Majorana modes. Finally, we propose new candidate materials and geometries that greatly simplify the experimental setup and mitigate the harmful effects of disorder.

  12. Carbyne with finite length: The one-dimensional sp carbon

    PubMed Central

    Pan, Bitao; Xiao, Jun; Li, Jiling; Liu, Pu; Wang, Chengxin; Yang, Guowei

    2015-01-01

    Carbyne is the one-dimensional allotrope of carbon composed of sp-hybridized carbon atoms. Definitive evidence for carbyne has remained elusive despite its synthesis and preparation in the laboratory. Given the remarkable technological breakthroughs offered by other allotropes of carbon, including diamond, graphite, fullerenes, carbon nanotubes, and graphene, interest in carbyne and its unusual potential properties remains intense. We report the first synthesis of carbyne with finite length, which is clearly composed of alternating single bonds and triple bonds, using a novel process involving laser ablation in liquid. Spectroscopic analyses confirm that the product is the structure of sp hybridization with alternating carbon-carbon single bonds and triple bonds and capped by hydrogen. We observe purple-blue fluorescence emissions from the gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital of carbyne. Condensed-phase carbyne crystals have a hexagonal lattice and resemble the white crystalline powder produced by drying a carbyne solution. We also establish that the combination of gold and alcohol is crucial to carbyne formation because carbon-hydrogen bonds can be cleaved with the help of gold catalysts under the favorable thermodynamic environment provided by laser ablation in liquid and because the unique configuration of two carbon atoms in an alcohol molecule matches the elementary entity of carbyne. This laboratory synthesis of carbyne will enable the exploration of its properties and applications. PMID:26601318

  13. Solitary Wave in One-dimensional Buckyball System at Nanoscale.

    PubMed

    Xu, Jun; Zheng, Bowen; Liu, Yilun

    2016-02-19

    We have studied the stress wave propagation in one-dimensional (1-D) nanoscopic buckyball (C60) system by molecular dynamics (MD) simulation and quantitative modeling. Simulation results have shown that solitary waves are generated and propagating in the buckyball system through impacting one buckyball at one end of the buckyball chain. We have found the solitary wave behaviors are closely dependent on the initial temperature and impacting speed of the buckyball chain. There are almost no dispersion and dissipation of the solitary waves (stationary solitary wave) for relatively low temperature and high impacting speed. While for relatively high temperature and low impacting speed the profile of the solitary waves is highly distorted and dissipated after propagating several tens of buckyballs. A phase diagram is proposed to describe the effect of the temperature and impacting speed on the solitary wave behaviors in buckyball system. In order to quantitatively describe the wave behavior in buckyball system, a simple nonlinear-spring model is established, which can describe the MD simulation results at low temperature very well. The results presented in this work may lay a solid step towards the further understanding and manipulation of stress wave propagation and impact energy mitigation at nanoscale.

  14. Multi-symplectic, Lagrangian, one-dimensional gas dynamics

    NASA Astrophysics Data System (ADS)

    Webb, G. M.

    2015-05-01

    The equations of Lagrangian, ideal, one-dimensional, compressible gas dynamics are written in a multi-symplectic form using the Lagrangian mass coordinate m and time t as independent variables, and in which the Eulerian position of the fluid element x = x(m, t) is one of the dependent variables. This approach differs from the Eulerian, multi-symplectic approach using Clebsch variables. Lagrangian constraints are used to specify equations for xm, xt, and St consistent with the Lagrangian map, where S is the entropy of the gas. We require St = 0 corresponding to advection of the entropy S with the flow. We show that the Lagrangian Hamiltonian equations are related to the de Donder-Weyl multi-momentum formulation. The pullback conservation laws and the symplecticity conservation laws are discussed. The pullback conservation laws correspond to invariance of the action with respect to translations in time (energy conservation) and translations in m in Noether's theorem. The conservation law due to m-translation invariance gives rise to a novel nonlocal conservation law involving the Clebsch variable r used to impose ∂S(m, t)/∂t = 0. Translation invariance with respect to x in Noether's theorem is associated with momentum conservation. We obtain the Cartan-Poincaré form for the system, and use it to obtain a closed ideal of two-forms representing the equation system.

  15. Topological water wave states in a one-dimensional structure

    PubMed Central

    Yang, Zhaoju; Gao, Fei; Zhang, Baile

    2016-01-01

    Topological concepts have been introduced into electronic, photonic, and phononic systems, but have not been studied in surface-water-wave systems. Here we study a one-dimensional periodic resonant surface-water-wave system and demonstrate its topological transition. By selecting three different water depths, we can construct different types of water waves - shallow, intermediate and deep water waves. The periodic surface-water-wave system consists of an array of cylindrical water tanks connected with narrow water channels. As the width of connecting channel varies, the band diagram undergoes a topological transition which can be further characterized by Zak phase. This topological transition holds true for shallow, intermediate and deep water waves. However, the interface state at the boundary separating two topologically distinct arrays of water tanks can exhibit different bands for shallow, intermediate and deep water waves. Our work studies for the first time topological properties of water wave systems, and paves the way to potential management of water waves. PMID:27373982

  16. Berry phase oscillations in a one-dimensional Dirac comb

    NASA Astrophysics Data System (ADS)

    Hodge, William; Cassera, Nicholas; Rave, Matthew

    In quantum mechanics, the Berry phase is a geometric phase acquired by a wave function over the course of a cycle, when subjected to adiabatic processes. In general, this phase is due to the geometry of the underlying parameter space and thus depends only on the path taken. In any system described by a periodic potential, the torus topology of the Brillouin zone itself can lead to such a phase. In this work, we numerically calculate the Berry phase for a one-dimensional Dirac comb described by N distinct wells per unit cell. As expected, the resulting Berry phase exhibits a rich band-dependence. In the case where N = 2 , we find that the Berry phase corresponding to the nth energy band oscillates such that γn (x) =An sin (πx) cos [ (2 n - 1) πx ] , where An is a band-dependent constant and 0 < x < 1 is the relative position of the two wells. This expression, obtained using perturbation theory, gives excellent agreement with exact numerical results, even at low energy levels. The Berry phase exhibits a similar behavior for cases where N > 2 .

  17. One-dimensional kinetics modifications for BWR reload methods

    SciTech Connect

    Chandola, V.; Robichaud, J.D.

    1990-01-01

    Yankee Atomic Electric Company (YAEC) currently uses RETRAN-02 to analyze limiting transients and establish operating minimum critical power ratio (MCPR) limits for Vermont Yankee (VY) boiling water reactor (BWR) reload analysis. The US Nuclear Regulatory Commission-approved analysis methods, used in previous cycles, use the point-kinetics modeling option in RETRAN-02 to represent transient-induced neutronic feedback. RETRAN-02 also contains a one-dimensional (1-D) kinetics neutronic feedback model option that provides a more accurate transient power prediction than the point-kinetics model. In the past few fuel cycles, the thermal or MCPR operating margin at VY has eroded due to increases in fuel cycle length. To offset this decrease, YAEC has developed the capability to use the more accurate 1-D kinetics RETRAN option. This paper reviews the qualification effort for the YAEC BWR methods. This paper also presents a comparison between RETRAN-02 predictions using 1-D and point kinetics for the limiting transient, and demonstrates the typical gain in thermal margin from 1-D kinetics.

  18. A Smart Colorful Supercapacitor with One Dimensional Photonic Crystals

    NASA Astrophysics Data System (ADS)

    Liu, Cihui; Liu, Xing; Xuan, Hongyun; Ren, Jiaoyu; Ge, Liqin

    2015-12-01

    To meet the pressing demands for portable and flexible equipment in contemporary society, developing flexible, lightweight, and sustainable supercapacitor systems with large power densities, long cycle life, and ease of strongly required. However, estimating the state-of-charge of existing supercapacitors is difficult, and thus their service life is limited. In this study, we fabricate a flexible color indicative supercapacitor device with mesoporous polyaniline (mPANI)/Poly(N-Isopropyl acrylamide-Graphene Oxide-Acrylic Acid) (P(NiPPAm-GO-AA)) one dimensional photonic crystals (1DPCs) as the electrode material through a low-cost, eco-friendly, and scalable fabrication process. We found that the state-of-charge could be monitored by the structural color oscillation due to the change in the photonic band gap position of the 1DPCs. The flexible 1DPCs supercapacitor is thin at 3 mm and exhibits good specific capacitance of 22.6 F g-1 with retention of 91.1% after 3,000 cycles. This study shows the application of the 1DPCs supercapacitor as a visual ultrathin power source. The technology may find many applications in future wearable electronics.

  19. Numerical Method of Characteristics for One-Dimensional Blood Flow.

    PubMed

    Acosta, Sebastian; Puelz, Charles; Riviére, Béatrice; Penny, Daniel J; Rusin, Craig G

    2015-08-01

    Mathematical modeling at the level of the full cardiovascular system requires the numerical approximation of solutions to a one-dimensional nonlinear hyperbolic system describing flow in a single vessel. This model is often simulated by computationally intensive methods like finite elements and discontinuous Galerkin, while some recent applications require more efficient approaches (e.g. for real-time clinical decision support, phenomena occurring over multiple cardiac cycles, iterative solutions to optimization/inverse problems, and uncertainty quantification). Further, the high speed of pressure waves in blood vessels greatly restricts the time step needed for stability in explicit schemes. We address both cost and stability by presenting an efficient and unconditionally stable method for approximating solutions to diagonal nonlinear hyperbolic systems. Theoretical analysis of the algorithm is given along with a comparison of our method to a discontinuous Galerkin implementation. Lastly, we demonstrate the utility of the proposed method by implementing it on small and large arterial networks of vessels whose elastic and geometrical parameters are physiologically relevant.

  20. Developing one-dimensional implosions for inertial confinement fusion science

    SciTech Connect

    Kline, John L.; Yi, Sunghwan A.; Simakov, Andrei Nikolaevich; Olson, Richard Edward; Wilson, Douglas Carl; Kyrala, George Amine; Perry, Theodore Sonne; Batha, Steven H.; Dewald, Eddie L.; Ralph, Joe E.; Strozzi, David J.; MacPhee, Andy G.; Callahan, Debbie A.; Hinkel, Denise; Hurricane, Omar A.; Leeper, Ramon J.; Zylstra, Alex B.; Peterson, Robert Ross; Haines, Brian Michael; Yin, Lin; Bradley, Paul Andrew; Shah, Rahul C.; Braun, Tom; Biener, Jorgan; Kozioziemski, Bernie J.; Sater, Jim D.; Biener, Monika M.; Hamza, Alex V.; Nikroo, Abbas; Berzak Hopkins, Laura F.; Ho, Darwin; LePape, Sebastian; Meezan, Nathan B.; Montgomery, David S.; Daughton, William Scott; Merritt, Elizabeth Catherine; Cardenas, Tana; Dodd, Evan S.

    2016-12-12

    Experiments on the National Ignition Facility show that multi-dimensional effects currently dominate the implosion performance. Low mode implosion symmetry and hydrodynamic instabilities seeded by capsule mounting features appear to be two key limiting factors for implosion performance. One reason these factors have a large impact on the performance of inertial confinement fusion implosions is the high convergence required to achieve high fusion gains. To tackle these problems, a predictable implosion platform is needed meaning experiments must trade-off high gain for performance. LANL has adopted three main approaches to develop a one-dimensional (1D) implosion platform where 1D means measured yield over the 1D clean calculation. A high adiabat, low convergence platform is being developed using beryllium capsules enabling larger case-to-capsule ratios to improve symmetry. The second approach is liquid fuel layers using wetted foam targets. With liquid fuel layers, the implosion convergence can be controlled via the initial vapor pressure set by the target fielding temperature. The last method is double shell targets. For double shells, the smaller inner shell houses the DT fuel and the convergence of this cavity is relatively small compared to hot spot ignition. However, double shell targets have a different set of trade-off versus advantages. As a result, details for each of these approaches are described.

  1. Dynamic response of one-dimensional bosons in a trap

    SciTech Connect

    Golovach, Vitaly N.; Minguzzi, Anna; Glazman, Leonid I.

    2009-10-15

    We calculate the dynamic structure factor S(q,{omega}) of a one-dimensional (1D) interacting Bose gas confined in a harmonic trap. The effective interaction depends on the strength of the confinement enforcing the (1D) motion of atoms; interaction may be further enhanced by superimposing an optical lattice on the trap potential. In the compressible state, we find that the smooth variation in the gas density around the trap center leads to softening of the singular behavior of S(q,{omega}) at the first Lieb excitation mode compared to the behavior predicted for homogeneous 1D systems. Nevertheless, the density-averaged response S(q,{omega}) remains a nonanalytic function of q and {omega} at the first Lieb excitation mode in the limit of weak trap confinement. The exponent of the power-law nonanalyticity is modified due to the inhomogeneity in a universal way and thus bears unambiguously the information about the (homogeneous) Lieb-Liniger model. A strong optical lattice causes formation of Mott phases. Deep in the Mott regime, we predict a semicircular peak in S(q,{omega}) centered at the on-site repulsion energy, {omega}=U. Similar peaks of smaller amplitudes exist at multiples of U as well. We explain the suppression of the dynamic response with entering into the Mott regime, observed recently by Clement et al. [Phys. Rev. Lett. 102, 155301 (2009)], based on an f-sum rule for the Bose-Hubbard model.

  2. One-dimensional surface phonon polaritons in boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoji G.; Ghamsari, Behnood G.; Jiang, Jian-Hua; Gilburd, Leonid; Andreev, Gregory O.; Zhi, Chunyi; Bando, Yoshio; Golberg, Dmitri; Berini, Pierre; Walker, Gilbert C.

    2014-08-01

    Surface polaritons, which are electromagnetic waves coupled to material charge oscillations, have enabled applications in concentrating, guiding and harvesting optical energy below the diffraction limit. Surface plasmon polaritons involve oscillations of electrons and are accessible in noble metals at visible and near-infrared wavelengths, whereas surface phonon polaritons (SPhPs) rely on phonon resonances in polar materials, and are active in the mid-infrared. Noble metal surface plasmon polaritons have limited applications in the mid-infrared. SPhPs at flat interfaces normally possess long polariton wavelengths and provide modest field confinement/enhancement. Here we demonstrate propagating SPhPs in a one-dimensional material consisting of a boron nitride nanotube at mid-infrared wavelengths. The observed SPhP exhibits high field confinement and enhancement, and a very high effective index (neff~70). We show that the modal and propagation length characteristics of the SPhPs may be controlled through the nanotube size and the supporting substrates, enabling mid-infrared applications.

  3. One-dimensional surface phonon polaritons in boron nitride nanotubes.

    PubMed

    Xu, Xiaoji G; Ghamsari, Behnood G; Jiang, Jian-Hua; Gilburd, Leonid; Andreev, Gregory O; Zhi, Chunyi; Bando, Yoshio; Golberg, Dmitri; Berini, Pierre; Walker, Gilbert C

    2014-08-26

    Surface polaritons, which are electromagnetic waves coupled to material charge oscillations, have enabled applications in concentrating, guiding and harvesting optical energy below the diffraction limit. Surface plasmon polaritons involve oscillations of electrons and are accessible in noble metals at visible and near-infrared wavelengths, whereas surface phonon polaritons (SPhPs) rely on phonon resonances in polar materials, and are active in the mid-infrared. Noble metal surface plasmon polaritons have limited applications in the mid-infrared. SPhPs at flat interfaces normally possess long polariton wavelengths and provide modest field confinement/enhancement. Here we demonstrate propagating SPhPs in a one-dimensional material consisting of a boron nitride nanotube at mid-infrared wavelengths. The observed SPhP exhibits high field confinement and enhancement, and a very high effective index (neff~70). We show that the modal and propagation length characteristics of the SPhPs may be controlled through the nanotube size and the supporting substrates, enabling mid-infrared applications.

  4. Topological phase in one-dimensional Rashba wire

    NASA Astrophysics Data System (ADS)

    Sa-Ke, Wang; Jun, Wang; Jun-Feng, Liu

    2016-07-01

    We study the possible topological phase in a one-dimensional (1D) quantum wire with an oscillating Rashba spin-orbital coupling in real space. It is shown that there are a pair of particle-hole symmetric gaps forming in the bulk energy band and fractional boundary states residing in the gap when the system has an inversion symmetry. These states are topologically nontrivial and can be characterized by a quantized Berry phase ±π or nonzero Chern number through dimensional extension. When the Rashba spin-orbital coupling varies slowly with time, the system can pump out 2 charges in a pumping cycle because of the spin flip effect. This quantized pumping is protected by topology and is robust against moderate disorders as long as the disorder strength does not exceed the opened energy gap. Project supported by the National Natural Science Foundation of China (Grant Nos. 115074045 and 11204187) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20131284).

  5. A disorder-enhanced quasi-one-dimensional superconductor.

    PubMed

    Petrović, A P; Ansermet, D; Chernyshov, D; Hoesch, M; Salloum, D; Gougeon, P; Potel, M; Boeri, L; Panagopoulos, C

    2016-07-22

    A powerful approach to analysing quantum systems with dimensionality d>1 involves adding a weak coupling to an array of one-dimensional (1D) chains. The resultant quasi-1D (q1D) systems can exhibit long-range order at low temperature, but are heavily influenced by interactions and disorder due to their large anisotropies. Real q1D materials are therefore ideal candidates not only to provoke, test and refine theories of strongly correlated matter, but also to search for unusual emergent electronic phases. Here we report the unprecedented enhancement of a superconducting instability by disorder in single crystals of Na2-δMo6Se6, a q1D superconductor comprising MoSe chains weakly coupled by Na atoms. We argue that disorder-enhanced Coulomb pair-breaking (which usually destroys superconductivity) may be averted due to a screened long-range Coulomb repulsion intrinsic to disordered q1D materials. Our results illustrate the capability of disorder to tune and induce new correlated electron physics in low-dimensional materials.

  6. Nucleation and growth of nanoscaled one-dimensional materials

    NASA Astrophysics Data System (ADS)

    Cui, Hongtao

    Nanoscaled one-dimensional materials have attracted great interest due to their novel physical and chemical properties. The purpose of this dissertation is to study the nucleation and growth mechanisms of carbon nanotubes and silicon nitride nanowires with their field emission applications in mind. As a result of this research, a novel methodology has been developed to deposit aligned bamboo-like carbon nanotubes on substrates using a methane and ammonia mixture in microwave plasma enhanced chemical deposition. Study of growth kinetics suggests that the carbon diffusion through bulk catalyst particles controls growth in the initial deposition process. Microstructures of carbon nanotubes are affected by the growth temperature and carbon concentration in the gas phase. High-resolution transmission electron microscope confirms the existence of the bamboo-like structure. Electron diffraction reveals that the iron-based catalyst nucleates and sustains the growth of carbon nanotubes. A nucleation and growth model has been constructed based upon experimental data and observations. In the study of silicon nitride nanoneedles, a vapor-liquid-solid model is employed to explain the nucleation and growth processes. Ammonia plasma etching is proposed to reduce the size of the catalyst and subsequently produce the novel needle-like nanostructure. High-resolution transmission electron microscope shows the structure is well crystallized and composed of alpha-silicon nitride. Other observations in the structure are also explained.

  7. Single ions trapped in a one-dimensional optical lattice.

    PubMed

    Enderlein, Martin; Huber, Thomas; Schneider, Christian; Schaetz, Tobias

    2012-12-07

    We report on three-dimensional optical trapping of single ions in a one-dimensional optical lattice formed by two counterpropagating laser beams. We characterize the trapping parameters of the standing-wave using the ion as a sensor stored in a hybrid trap consisting of a radio-frequency (rf), a dc, and the optical potential. When loading ions directly from the rf into the standing-wave trap, we observe a dominant heating rate. Monte Carlo simulations confirm rf-induced parametric excitations within the deep optical lattice as the main source. We demonstrate a way around this effect by an alternative transfer protocol which involves an intermediate step of optical confinement in a single-beam trap avoiding the temporal overlap of the standing-wave and the rf field. Implications arise for hybrid (rf-optical) and pure optical traps as platforms for ultracold chemistry experiments exploring atom-ion collisions or quantum simulation experiments with ions, or combinations of ions and atoms.

  8. Trapped Atoms in One-Dimensional Photonic Crystals

    NASA Astrophysics Data System (ADS)

    Kimble, H.

    2013-05-01

    I describe one-dimensional photonic crystals that support a guided mode suitable for atom trapping within a unit cell, as well as a second probe mode with strong atom-photon interactions. A new hybrid trap is analyzed that combines optical and Casimir-Polder forces to form stable traps for neutral atoms in dielectric nanostructures. By suitable design of the band structure, the atomic spontaneous emission rate into the probe mode can exceed the rate into all other modes by more than tenfold. The unprecedented single-atom reflectivity r0 ~= 0 . 9 for the guided probe field could create new scientific opportunities, including quantum many-body physics for 1 D atom chains with photon-mediated interactions and high-precision studies of vacuum forces. Towards these goals, my colleagues and I are pursuing numerical simulation, device fabrication, and cold-atom experiments with nanoscopic structures. Funding is provided by by the IQIM, an NSF PFC with support of the Moore Foundation, by the AFOSR QuMPASS MURI, by the DoD NSSEFF program (HJK), and by NSF Grant PHY0652914 (HJK). DEC acknowledges funding from Fundacio Privada Cellex Barcelona.

  9. One-dimensional nanoprobes for single-cell studies.

    PubMed

    Gao, Yang; Longenbach, Travis; Vitol, Elina A; Orynbayeva, Zulfiya; Friedman, Gary; Gogotsi, Yury

    2014-01-01

    Owing to variation of individual cells within a population, single-cell studies are of great interest to researchers. Recent developments in nanofabrication technology have made this area increasingly attractive as one-dimensional (1D) nanoscale probes can be manufactured with increasing accuracy. Here, we provide an overview and description of the major designs that have been reported to date. For more details of what applications could be realized and how, based on the probe shapes and designs, we summarize the most recently reported performances of 1D single-cell probes with their advantages and limitations. Minimally invasive probes are required for long-term experiments on single cells. Carbon nanotubes with their unique properties and structure are excellent candidates for multitask robotic intracellular probes. Carbon nanotube-tipped cellular endoscopes are less invasive compared with pipettes or cantilever tips. Advances in nanofabrication techniques have made it possible to produce more consistent nanoscale cellular probes that can capture a variety of information from optical, electrical and chemical signals. In addition, these tools can transfer tiny amounts of fluids and molecular materials in a highly localized fashion for the purpose of analyzing or stimulating a variety of responses at the level of individual cells and even cellular organelles. We conclude with a critical analysis of the current state of the field as well as the major obstacles for further probe development of minimally invasive probes and their widespread use in cell biology.

  10. Topological water wave states in a one-dimensional structure

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Gao, Fei; Zhang, Baile

    2016-07-01

    Topological concepts have been introduced into electronic, photonic, and phononic systems, but have not been studied in surface-water-wave systems. Here we study a one-dimensional periodic resonant surface-water-wave system and demonstrate its topological transition. By selecting three different water depths, we can construct different types of water waves - shallow, intermediate and deep water waves. The periodic surface-water-wave system consists of an array of cylindrical water tanks connected with narrow water channels. As the width of connecting channel varies, the band diagram undergoes a topological transition which can be further characterized by Zak phase. This topological transition holds true for shallow, intermediate and deep water waves. However, the interface state at the boundary separating two topologically distinct arrays of water tanks can exhibit different bands for shallow, intermediate and deep water waves. Our work studies for the first time topological properties of water wave systems, and paves the way to potential management of water waves.

  11. Approximate approaches to the one-dimensional finite potential well

    NASA Astrophysics Data System (ADS)

    Singh, Shilpi; Pathak, Praveen; Singh, Vijay A.

    2011-11-01

    The one-dimensional finite well is a textbook problem. We propose approximate approaches to obtain the energy levels of the well. The finite well is also encountered in semiconductor heterostructures where the carrier mass inside the well (mi) is taken to be distinct from mass outside (mo). A relevant parameter is the mass discontinuity ratio β = mi/mo. To correctly account for the mass discontinuity, we apply the BenDaniel-Duke boundary condition. We obtain approximate solutions for two cases: when the well is shallow and when the well is deep. We compare the approximate results with the exact results and find that higher-order approximations are quite robust. For the shallow case, the approximate solution can be expressed in terms of a dimensionless parameter σl = 2moV0L2/planck2 (or σ = β2σl for the deep case). We show that the lowest-order results are related by a duality transform. We also discuss how the energy upscales with L (E~1/Lγ) and obtain the exponent γ. Exponent γ → 2 when the well is sufficiently deep and β → 1. The ratio of the masses dictates the physics. Our presentation is pedagogical and should be useful to students on a first course on elementary quantum mechanics or low-dimensional semiconductors.

  12. A Smart Colorful Supercapacitor with One Dimensional Photonic Crystals

    PubMed Central

    Liu, Cihui; Liu, Xing; Xuan, Hongyun; Ren, Jiaoyu; Ge, Liqin

    2015-01-01

    To meet the pressing demands for portable and flexible equipment in contemporary society, developing flexible, lightweight, and sustainable supercapacitor systems with large power densities, long cycle life, and ease of strongly required. However, estimating the state-of-charge of existing supercapacitors is difficult, and thus their service life is limited. In this study, we fabricate a flexible color indicative supercapacitor device with mesoporous polyaniline (mPANI)/Poly(N-Isopropyl acrylamide-Graphene Oxide-Acrylic Acid) (P(NiPPAm-GO-AA)) one dimensional photonic crystals (1DPCs) as the electrode material through a low-cost, eco-friendly, and scalable fabrication process. We found that the state-of-charge could be monitored by the structural color oscillation due to the change in the photonic band gap position of the 1DPCs. The flexible 1DPCs supercapacitor is thin at 3 mm and exhibits good specific capacitance of 22.6 F g−1 with retention of 91.1% after 3,000 cycles. This study shows the application of the 1DPCs supercapacitor as a visual ultrathin power source. The technology may find many applications in future wearable electronics. PMID:26689375

  13. One-dimensional consolidation in unsaturated soils under cyclic loading

    NASA Astrophysics Data System (ADS)

    Lo, Wei-Cheng; Sposito, Garrison; Lee, Jhe-Wei; Chu, Hsiuhua

    2016-05-01

    The one-dimensional consolidation model of poroelasticity of Lo et al. (2014) for an unsaturated soil under constant loading is generalized to include an arbitrary time-dependent loading. A closed-form solution for the pore water and air pressures along with the total settlement is derived by employing a Fourier series representation in the spatial domain and a Laplace transformation in the time domain. This solution is illustrated for the important example of a fully-permeable soil cylinder with an undrained initial condition acted upon by a periodic stress. Our results indicate that, in terms of a dimensionless time scale, the transient solution decays to zero most slowly in a water-saturated soil, whereas for an unsaturated soil, the time for the transient solution to die out is inversely proportional to the initial water saturation. The generalization presented here shows that the diffusion time scale for pore water in an unsaturated soil is orders of magnitude greater than that in a water-saturated soil, mainly because of the much smaller hydraulic conductivity of the former.

  14. Negative Refraction Angular Characterization in One-Dimensional Photonic Crystals

    PubMed Central

    Lugo, Jesus Eduardo; Doti, Rafael; Faubert, Jocelyn

    2011-01-01

    Background Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs. Methodology/Principal Findings By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell's law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone. Conclusions/Significance Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or for sensing applications. PMID:21494332

  15. Negative refraction angular characterization in one-dimensional photonic crystals.

    PubMed

    Lugo, Jesus Eduardo; Doti, Rafael; Faubert, Jocelyn

    2011-04-06

    Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs. By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell's law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone. Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or for sensing applications.

  16. Digital noise generators using one-dimensional chaotic maps

    SciTech Connect

    Martínez-Ñonthe, J. A; Palacios-Luengas, L.; Cruz-Irisson, M.; Vazquez Medina, R.; Díaz Méndez, J. A.

    2014-05-15

    This work shows how to improve the statistical distribution of signals produced by digital noise generators designed with one-dimensional (1-D) chaotic maps. It also shows that in a digital electronic design the piecewise linear chaotic maps (PWLCM) should be considered because they do not have stability islands in its chaotic behavior region, as it occurs in the case of the logistic map, which is commonly used to build noise generators. The design and implementation problems of the digital noise generators are analyzed and a solution is proposed. This solution relates the output of PWLCM, usually defined in the real numbers' domain, with a codebook of S elements, previously defined. The proposed solution scheme produces digital noise signals with a statistical distribution close to a uniform distribution. Finally, this work shows that it is possible to have control over the statistical distribution of the noise signal by selecting the control parameter of the PWLCM and using, as a design criterion, the bifurcation diagram.

  17. One dimensional coordination polymers: Synthesis, crystal structures and spectroscopic properties

    NASA Astrophysics Data System (ADS)

    Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Şahin, Onur

    2016-11-01

    Two new one dimensional (1D) cyanide complexes, namely [M(4-aepy)2(H2O)2][Pt(CN)4], (4-aepy = 4-(2-aminoethyl)pyridine M = Cu(II) (1) or Zn(II) (2)), have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal and elemental analyses techniques. The crystallographic analyses reveal that 1 and 2 are isomorphous and isostructural, and crystallize in the monoclinic system and C2 space group. The Pt(II) ions are coordinated by four cyanide-carbon atoms in the square-planar geometry and the [Pt(CN)4]2- ions act as a counter ion. The M(II) ions display an N4O2 coordination sphere with a distorted octahedral geometry, the nitrogen donors belonging to four molecules of the organic 4-aepy that act as unidentate ligands and two oxygen atoms from aqua ligands. The crystal structures of 1 and 2 are similar each other and linked via intermolecular hydrogen bonding, Pt⋯π interactions to form 3D supramolecular network. Vibration assignments of all the observed bands are given and the spectral features also supported to the crystal structures of the complexes.

  18. Automated quantification of one-dimensional nanostructure alignment on surfaces

    NASA Astrophysics Data System (ADS)

    Dong, Jianjin; Goldthorpe, Irene A.; Mohieddin Abukhdeir, Nasser

    2016-06-01

    A method for automated quantification of the alignment of one-dimensional (1D) nanostructures from microscopy imaging is presented. Nanostructure alignment metrics are formulated and shown to be able to rigorously quantify the orientational order of nanostructures within a two-dimensional domain (surface). A complementary image processing method is also presented which enables robust processing of microscopy images where overlapping nanostructures might be present. Scanning electron microscopy (SEM) images of nanowire-covered surfaces are analyzed using the presented methods and it is shown that past single parameter alignment metrics are insufficient for highly aligned domains. Through the use of multiple parameter alignment metrics, automated quantitative analysis of SEM images is shown to be possible and the alignment characteristics of different samples are able to be quantitatively compared using a similarity metric. The results of this work provide researchers in nanoscience and nanotechnology with a rigorous method for the determination of structure/property relationships, where alignment of 1D nanostructures is significant.

  19. Cooperative eigenmodes and scattering in one-dimensional atomic arrays

    NASA Astrophysics Data System (ADS)

    Bettles, Robert J.; Gardiner, Simon A.; Adams, Charles S.

    2016-10-01

    Collective coupling between dipoles can dramatically modify the optical response of a medium. Such effects depend strongly on the geometry of the medium and the polarization of the light. Using a classical coupled dipole model, here we investigate the simplest case of one-dimensional arrays of interacting atomic dipoles driven by a weak laser field. Changing the polarization and direction of the driving field allows us to separately address superradiant, subradiant, redshifted, and blueshifted eigenmodes, as well as observe strong Fano-like interferences between different modes. The cooperative eigenvectors can be characterized by the phase difference between nearest-neighbor dipoles, ranging from all oscillating in phase to all oscillating out of phase with their nearest neighbors. Investigating the eigenvalue behavior as a function of atom number and lattice spacing, we find that certain eigenmodes of an infinite atomic chain have the same decay rate as a single atom between two mirrors. The effects we observe provide a framework for collective control of the optical response of a medium, giving insight into the behavior of more complicated geometries, as well as providing further evidence for the dipolar analog of cavity QED.

  20. Decay of Bogoliubov excitations in one-dimensional Bose gases

    SciTech Connect

    Ristivojevic, Zoran; Matveev, K. A.

    2016-07-11

    For this research, we study the decay of Bogoliubov quasiparticles in one-dimensional Bose gases. Starting from the hydrodynamic Hamiltonian, we develop a microscopic theory that enables one to systematically study both the excitations and their decay. At zero temperature, the leading mechanism of decay of a quasiparticle is disintegration into three others. We find that low-energy quasiparticles (phonons) decay with the rate that scales with the seventh power of momentum, whereas the rate of decay of the high-energy quasiparticles does not depend on momentum. In addition, our approach allows us to study analytically the quasiparticle decay in the whole crossover region between the two limiting cases. When applied to integrable models, including the Lieb-Liniger model of bosons with contact repulsion, our theory confirms the absence of the decay of quasiparticle excitations. Finally, we account for two types of integrability-breaking perturbations that enable finite decay: three-body interaction between the bosons and two-body interaction of finite range.