Rahatgaonkar, P. S.; Datta, D.; Malhotra, P. K.; Ghadge, S. G.
2012-07-01
Prediction of groundwater movement and contaminant transport in soil is an important problem in many branches of science and engineering. This includes groundwater hydrology, environmental engineering, soil science, agricultural engineering and also nuclear engineering. Specifically, in nuclear engineering it is applicable in the design of spent fuel storage pools and waste management sites in the nuclear power plants. Ground water modeling involves the simulation of flow and contaminant transport by groundwater flow. In the context of contaminated soil and groundwater system, numerical simulations are typically used to demonstrate compliance with regulatory standard. A one-dimensional Computational Fluid Dynamics code GFLOW had been developed based on the Finite Difference Method for simulating groundwater flow and contaminant transport through saturated and unsaturated soil. The code is validated with the analytical model and the benchmarking cases available in the literature. (authors)
1995-07-07
DUST solves for release and transport of contaminants from containerized wastes. Each container may have unique properties (i.e., time to failure or localized failure, e.g., pitting) and each waste form may have unique release properties. Release from the waste form is limited by one of four physical or chemical restraints: solubility, diffusion, dissolution, and surface wash-off with partitioning. The release from the waste form acts as a source for transport in the advection/dispersion equation. Transportmore » is modeled in one-dimension through the groundwater pathway from subsurface disposal. RNUCL.DAT, database of half-lives, solubility limits, and atomic mass for selected radionuclides, is included in this package.« less
Varank, Gamze; Demir, Ahmet; Yetilmezsoy, Kaan; Bilgili, M. Sinan; Top, Selin; Sekman, Elif
2011-11-15
Highlights: > We conduct 1D advection-dispersion modeling to estimate transport parameters. > We examine fourteen phenolic compounds and three inorganic contaminants. > 2-MP, 2,4-DCP, 2,6-DCP, 2,4,5-TCP, 2,3,4,6-TeCP have the highest coefficients. > Dispersion coefficients of Cu are determined to be higher than Zn and Fe. > Transport of phenolics can be prevented by zeolite and bentonite in landfill liners. - Abstract: One-dimensional (1D) advection-dispersion transport modeling was conducted as a conceptual approach for the estimation of the transport parameters of fourteen different phenolic compounds (phenol, 2-CP, 2-MP, 3-MP, 4-MP, 2-NP, 4-NP, 2,4-DNP, 2,4-DCP, 2,6-DCP, 2,4,5-TCP, 2,4,6-TCP, 2,3,4,6-TeCP, PCP) and three different inorganic contaminants (Cu, Zn, Fe) migrating downward through the several liner systems. Four identical pilot-scale landfill reactors (0.25 m{sup 3}) with different composite liners (R1: 0.10 + 0.10 m of compacted clay liner (CCL), L{sub e} = 0.20 m, k{sub e} = 1 x 10{sup -8} m/s, R2: 0.002-m-thick damaged high-density polyethylene (HDPE) geomembrane overlying 0.10 + 0.10 m of CCL, L{sub e} = 0.20 m, k{sub e} = 1 x 10{sup -8} m/s, R3: 0.002-m-thick damaged HDPE geomembrane overlying a 0.02-m-thick bentonite layer encapsulated between 0.10 + 0.10 m CCL, L{sub e} = 0.22 m, k{sub e} = 1 x 10{sup -8} m/s, R4: 0.002-m-thick damaged HDPE geomembrane overlying a 0.02-m-thick zeolite layer encapsulated between 0.10 + 0.10 m CCL, L{sub e} = 0.22 m, k{sub e} = 4.24 x 10{sup -7} m/s) were simultaneously run for a period of about 540 days to investigate the nature of diffusive and advective transport of the selected organic and inorganic contaminants. The results of 1D transport model showed that the highest molecular diffusion coefficients, ranging from 4.77 x 10{sup -10} to 10.67 x 10{sup -10} m{sup 2}/s, were estimated for phenol (R4), 2-MP (R1), 2,4-DNP (R2), 2,4-DCP (R1), 2,6-DCP (R2), 2,4,5-TCP (R2) and 2,3,4,6-TeCP (R1). For all reactors
Varank, Gamze; Demir, Ahmet; Yetilmezsoy, Kaan; Bilgili, M Sinan; Top, Selin; Sekman, Elif
2011-11-01
One-dimensional (1D) advection-dispersion transport modeling was conducted as a conceptual approach for the estimation of the transport parameters of fourteen different phenolic compounds (phenol, 2-CP, 2-MP, 3-MP, 4-MP, 2-NP, 4-NP, 2,4-DNP, 2,4-DCP, 2,6-DCP, 2,4,5-TCP, 2,4,6-TCP, 2,3,4,6-TeCP, PCP) and three different inorganic contaminants (Cu, Zn, Fe) migrating downward through the several liner systems. Four identical pilot-scale landfill reactors (0.25 m3) with different composite liners (R1: 0.10+0.10 m of compacted clay liner (CCL), L(e) = 0.20 m, k(e) = 1 × 10(-8) m/s, R2: 0.002-m-thick damaged high-density polyethylene (HDPE) geomembrane overlying 0.10+0.10 m of CCL, L(e) = 0.20 m, k(e) = 1 × 10(-8) m/s, R3: 0.002-m-thick damaged HDPE geomembrane overlying a 0.02-m-thick bentonite layer encapsulated between 0.10+0.10 m CCL, L(e) = 0.22 m, k(e) = 1 × 10(-8) m/s, R4: 0.002-m-thick damaged HDPE geomembrane overlying a 0.02-m-thick zeolite layer encapsulated between 0.10+0.10 m CCL, L(e) = 0.22 m, k(e) = 4.24 × 10(-7) m/s) were simultaneously run for a period of about 540 days to investigate the nature of diffusive and advective transport of the selected organic and inorganic contaminants. The results of 1D transport model showed that the highest molecular diffusion coefficients, ranging from 4.77×10(-10) to 10.67 × 10(-10)m2/s, were estimated for phenol (R4), 2-MP (R1), 2,4-DNP (R2), 2,4-DCP (R1), 2,6-DCP (R2), 2,4,5-TCP (R2) and 2,3,4,6-TeCP (R1). For all reactors, dispersion coefficients of Cu, ranging from 3.47 × 10(-6) m(2)/s to 5.37 × 10(-2) m2/s, was determined to be higher than others obtained for Zn and Fe. Average molecular diffusion coefficients of phenolic compounds were estimated to be about 5.64 × 10(-10) m2/s, 5.37 × 10(-10) m2/s, 2.69 × 10(-10) m2/s and 3.29 × 10(-10) m2/s for R1, R2, R3 and R4 systems, respectively. The findings of this study clearly indicated that about 35-50% of transport of phenolic compounds to the groundwater
Transport in a one-dimensional hyperconductor
NASA Astrophysics Data System (ADS)
Plamadeala, Eugeniu; Mulligan, Michael; Nayak, Chetan
2016-03-01
We define a "hyperconductor" to be a material whose electrical and thermal dc conductivities are infinite at zero temperature and finite at any nonzero temperature. The low-temperature behavior of a hyperconductor is controlled by a quantum critical phase of interacting electrons that is stable to all potentially gap-generating interactions and potentially localizing disorder. In this paper, we compute the low-temperature dc and ac electrical and thermal conductivities in a one-dimensional hyperconductor, studied previously by the present authors, in the presence of both disorder and umklapp scattering. We identify the conditions under which the transport coefficients are finite, which allows us to exhibit examples of violations of the Wiedemann-Franz law. The temperature dependence of the electrical conductivity, which is characterized by the parameter ΔX, is a power law, σ ∝1 /T1 -2 (2 -ΔX) when ΔX≥2 , down to zero temperature when the Fermi surface is commensurate with the lattice. There is a surface in parameter space along which ΔX=2 and ΔX≈2 for small deviations from this surface. In the generic (incommensurate) case with weak disorder, such scaling is seen at high temperatures, followed by an exponential increase of the conductivity lnσ ˜1 /T at intermediate temperatures and, finally, σ ∝1 /T2 -2 (2 -ΔX) at the lowest temperatures. In both cases, the thermal conductivity diverges at low temperatures.
Transport in a One-Dimensional Hyperconductor
NASA Astrophysics Data System (ADS)
Plamadeala, Eugeniu; Mulligan, Michael; Nayak, Chetan
We define a `hyperconductor' to be a material whose electrical and thermal DC conductivities are infinite at zero temperature. The low-temperature behavior of a hyperconductor is controlled by a quantum critical phase of interacting electrons that is stable to all potentially-gap-generating interactions and arbitrary potentially-localizing disorder. We compute the low-temperature DC and AC electrical and thermal conductivities in a one-dimensional hyperconductor, studied previously by the present authors, in the presence of both disorder and umklapp scattering. We identify the conditions under which the transport coefficients are finite, and exhibit examples of violations of the Wiedemann-Franz law. We show that the temperature dependence of the electrical conductivity is a power law, σ ~ 1 /T 1 - 2 (2 -ΔX) for ΔX >= 2 , down to zero temperature when the Fermi surface is commensurate with the lattice. In the incommensurate case with weak disorder, such scaling is seen at high-temperatures, followed by an exponential increase of the conductivity lnσ ~ 1 / T at intermediate temperatures and, finally, σ ~ 1 /T 2 - 2 (2 -ΔX) at the lowest temperatures. In both cases, the thermal conductivity diverges at low temperatures.
Arthur S. Rood
2005-03-30
This report describes the Mixing Cell Model code, a one-dimensional model for water flow and solute transport in the unsaturated zone under steady-state or transient flow conditions. The model is based on the principles and assumptions underlying mixing cell model formulations. The unsaturated zone is discretized into a series of independent mixing cells. Each cell may have unique hydrologic, lithologic, and sorptive properties. Ordinary differential equations describe the material (water and solute) balance within each cell. Water flow equations are derived from the continuity equation assuming that unit-gradient conditions exist at all times in each cell. Pressure gradients are considered implicitly through model discretization. Unsaturated hydraulic conductivity and moisture contents are determined by the material-specific moisture characteristic curves. Solute transport processes include explicit treatment of advective processes, first-order chain decay, and linear sorption reactions. Dispersion is addressed through implicit and explicit dispersion. Implicit dispersion is an inherent feature of all mixing cell models and originates from the formulation of the problem in terms of mass balance around fully mixed volume elements. Expressions are provided that relate implicit dispersion to the physical dispersion of the system. Two FORTRAN codes were developed to solve the water flow and solute transport equations: (1) the Mixing-Cell Model for Flow (MCMF) solves transient water flow problems and (2) the Mixing Cell Model for Transport (MCMT) solves the solute transport problem. The transient water flow problem is typically solved first by estimating the water flux through each cell in the model domain as a function of time using the MCMF code. These data are stored in either ASCII or binary files that are later read by the solute transport code (MCMT). Code output includes solute pore water concentrations, water and solute inventories in each cell and at each
A. S. Rood
2005-03-01
This report describes the Mixing Cell Model code, a one-dimensional model for water flow and solute transport in the unsaturated zone under steady-state or transient flow conditions. The model is based on the principles and assumptions underlying mixing cell model formulations. The unsaturated zone is discretized into a series of independent mixing cells. Each cell may have unique hydrologic, lithologic, and sorptive properties. Ordinary differential equations describe the material (water and solute) balance within each cell. Water flow equations are derived from the continuity equation assuming that unit-gradient conditions exist at all times in each cell. Pressure gradients are considered implicitly through model discretization. Unsaturated hydraulic conductivity and moisture contents are determined by the material-specific moisture characteristic curves. Solute transport processes include explicit treatment of advective processes, first-order chain decay, and linear sorption reactions. Dispersion is addressed through implicit and explicit dispersion. Implicit dispersion is an inherent feature of all mixing cell models and originates from the formulation of the problem in terms of mass balance around fully mixed volume elements. Expressions are provided that relate implicit dispersion to the physical dispersion of the system. Two FORTRAN codes were developed to solve the water flow and solute transport equations: (1) the Mixing-Cell Model for Flow (MCMF) solves transient water flow problems and (2) the Mixing Cell Model for Transport (MCMT) solves the solute transport problem. The transient water flow problem is typically solved first by estimating the water flux through each cell in the model domain as a function of time using the MCMF code. These data are stored in either ASCII or binary files that are later read by the solute transport code (MCMT). Code output includes solute pore water concentrations, water and solute inventories in each cell and at each
A. S. Rood
2009-04-01
This report describes the Mixing Cell Model code, a one-dimensional model for water flow and solute transport in the unsaturated zone under steady-state or transient flow conditions. The model is based on the principles and assumptions underlying mixing cell model formulations. The unsaturated zone is discretized into a series of independent mixing cells. Each cell may have unique hydrologic, lithologic, and sorptive properties. Ordinary differential equations describe the material (water and solute) balance within each cell. Water flow equations are derived from the continuity equation assuming that unit-gradient conditions exist at all times in each cell. Pressure gradients are considered implicitly through model discretization. Unsaturated hydraulic conductivity and moisture contents are determined by the material-specific moisture characteristic curves. Solute transport processes include explicit treatment of advective processes, first-order chain decay, and linear sorption reactions. Dispersion is addressed through implicit and explicit dispersion. Implicit dispersion is an inherent feature of all mixing cell models and originates from the formulation of the problem in terms of mass balance around fully mixed volume elements. Expressions are provided that relate implicit dispersion to the physical dispersion of the system. Two FORTRAN codes were developed to solve the water flow and solute transport equations: (1) the Mixing-Cell Model for Flow (MCMF) solves transient water flow problems and (2) the Mixing Cell Model for Transport (MCMT) solves the solute transport problem. The transient water flow problem is typically solved first by estimating the water flux through each cell in the model domain as a function of time using the MCMF code. These data are stored in either ASCII or binary files that are later read by the solute transport code (MCMT). Code output includes solute pore water concentrations, water and solute inventories in each cell and at each
A. S. Rood
2010-10-01
This report describes the Mixing Cell Model code, a one-dimensional model for water flow and solute transport in the unsaturated zone under steady-state or transient flow conditions. The model is based on the principles and assumptions underlying mixing cell model formulations. The unsaturated zone is discretized into a series of independent mixing cells. Each cell may have unique hydrologic, lithologic, and sorptive properties. Ordinary differential equations describe the material (water and solute) balance within each cell. Water flow equations are derived from the continuity equation assuming that unit-gradient conditions exist at all times in each cell. Pressure gradients are considered implicitly through model discretization. Unsaturated hydraulic conductivity and moisture contents are determined by the material-specific moisture characteristic curves. Solute transport processes include explicit treatment of advective processes, first-order chain decay, and linear sorption reactions. Dispersion is addressed through implicit and explicit dispersion. Implicit dispersion is an inherent feature of all mixing cell models and originates from the formulation of the problem in terms of mass balance around fully mixed volume elements. Expressions are provided that relate implicit dispersion to the physical dispersion of the system. Two FORTRAN codes were developed to solve the water flow and solute transport equations: (1) the Mixing-Cell Model for Flow (MCMF) solves transient water flow problems and (2) the Mixing Cell Model for Transport (MCMT) solves the solute transport problem. The transient water flow problem is typically solved first by estimating the water flux through each cell in the model domain as a function of time using the MCMF code. These data are stored in either ASCII or binary files that are later read by the solute transport code (MCMT). Code output includes solute pore water concentrations, water and solute inventories in each cell and at each
Programmers manual for a one-dimensional Lagrangian transport model
Schoellhamer, D.H.; Jobson, H.E.
1986-01-01
A one-dimensional Lagrangian transport model for simulating water-quality constituents such as temperature, dissolved oxygen , and suspended sediment in rivers is presented in this Programmers Manual. Lagrangian transport modeling techniques, the model 's subroutines, and the user-written decay-coefficient subroutine are discussed in detail. Appendices list the program codes. The Programmers Manual is intended for the model user who needs to modify code either to adapt the model to a particular need or to use reaction kinetics not provided with the model. (Author 's abstract)
Users manual for a one-dimensional Lagrangian transport model
Schoellhamer, D.H.; Jobson, H.E.
1986-01-01
A Users Manual for the Lagrangian Transport Model (LTM) is presented. The LTM uses Lagrangian calculations that are based on a reference frame moving with the river flow. The Lagrangian reference frame eliminates the need to numerically solve the convective term of the convection-diffusion equation and provides significant numerical advantages over the more commonly used Eulerian reference frame. When properly applied, the LTM can simulate riverine transport and decay processes within the accuracy required by most water quality studies. The LTM is applicable to steady or unsteady one-dimensional unidirectional flows in fixed channels with tributary and lateral inflows. Application of the LTM is relatively simple and optional capabilities improve the model 's convenience. Appendices give file formats and three example LTM applications that include the incorporation of the QUAL II water quality model 's reaction kinetics into the LTM. (Author 's abstract)
Quasi one dimensional transport in individual electrospun composite nanofibers
Avnon, A. Datsyuk, V.; Trotsenko, S.; Wang, B.; Zhou, S.
2014-01-15
We present results of transport measurements of individual suspended electrospun nanofibers Poly(methyl methacrylate)-multiwalled carbon nanotubes. The nanofiber is comprised of highly aligned consecutive multiwalled carbon nanotubes. We have confirmed that at the range temperature from room temperature down to ∼60 K, the conductance behaves as power-law of temperature with an exponent of α ∼ 2.9−10.2. The current also behaves as power law of voltage with an exponent of β ∼ 2.3−8.6. The power-law behavior is a footprint for one dimensional transport. The possible models of this confined system are discussed. Using the model of Luttinger liquid states in series, we calculated the exponent for tunneling into the bulk of a single multiwalled carbon nanotube α{sub bulk} ∼ 0.06 which agrees with theoretical predictions.
Energy transport in one-dimensional disordered granular solids
NASA Astrophysics Data System (ADS)
Achilleos, V.; Theocharis, G.; Skokos, Ch.
2016-02-01
We investigate the energy transport in one-dimensional disordered granular solids by extensive numerical simulations. In particular, we consider the case of a polydisperse granular chain composed of spherical beads of the same material and with radii taken from a random distribution. We start by examining the linear case, in which it is known that the energy transport strongly depends on the type of initial conditions. Thus, we consider two sets of initial conditions: an initial displacement and an initial momentum excitation of a single bead. After establishing the regime of sufficiently strong disorder, we focus our study on the role of nonlinearity for both sets of initial conditions. By increasing the initial excitation amplitudes we are able to identify three distinct dynamical regimes with different energy transport properties: a near linear, a weakly nonlinear, and a highly nonlinear regime. Although energy spreading is found to be increasing for higher nonlinearities, in the weakly nonlinear regime no clear asymptotic behavior of the spreading is found. In this regime, we additionally find that energy, initially trapped in a localized region, can be eventually detrapped and this has a direct influence on the fluctuations of the energy spreading. We also demonstrate that in the highly nonlinear regime, the differences in energy transport between the two sets of initial conditions vanish. Actually, in this regime the energy is almost ballistically transported through shocklike excitations.
Thermal transport in one-dimensional spin heterostructures
NASA Astrophysics Data System (ADS)
Arrachea, Liliana; Lozano, Gustavo S.; Aligia, A. A.
2009-07-01
We study heat transport in a one-dimensional inhomogeneous quantum spin-1/2 system. It consists of a finite-size XX spin chain coupled at its ends to semi-infinite XX and XY chains at different temperatures, which play the role of heat and spin reservoirs. After using the Jordan-Wigner transformation we map the original spin Hamiltonian into a fermionic Hamiltonian, which contains normal and pairing terms. We find the expressions for the heat currents and solve the problem with a nonequilibrium Green’s-function formalism. We analyze the behavior of the heat currents as functions of the model parameters. When finite magnetic fields are applied at the two reservoirs, the system exhibits rectifying effects in the heat flow.
Electrical transport in doped one-dimensional nanostructures.
Li, Tan; Wang, Jianning; Zhang, Yumin
2005-09-01
Mobility and noise are two important issues for electronic devices, and they have many new features in one-dimensional (1D) doped nanostructures. For the convenience of readers the background of solid state physics is reviewed first, and then the transport process in 3D crystal material is introduced. Velocity saturation is an important phenomenon in modern electronic devices, and it is analyzed in an intuitive approach. It is predicted FinFET will be the next generation MOSFET, and its structure and characteristics are introduced. With the reduction of device dimensions the mesoscopic phenomena begin to show up. A simple way to treat transport problem in this domain is the Landauer-Büttiker formula, and the basic equation is derived. Finally the 1D quantum wire structure grown from a bottom-up approach is reviewed. Owing to the good material quality the scattering is very weak, and the wave properties of the coherent transport are discussed. Engineering applications of nanostructures in electronic information processing that manipulates time varying signals often involve device characterizations in the time domain. Since carrier transport in nanostructures is inherently a random process and it causes random fluctuations in quantities like current and voltage, so background knowledge in the microscopic origins of noise and other related practical issues is important to identify enough noise margins for reliable system design. This subject is the focus of the second part of the review article. PMID:16193956
Bioinspired one-dimensional materials for directional liquid transport.
Ju, Jie; Zheng, Yongmei; Jiang, Lei
2014-08-19
One-dimensional materials (1D) capable of transporting liquid droplets directionally, such as spider silks and cactus spines, have recently been gathering scientists' attention due to their potential applications in microfluidics, textile dyeing, filtration, and smog removal. This remarkable property comes from the arrangement of the micro- and nanostructures on these organisms' surfaces, which have inspired chemists to develop methods to prepare surfaces with similar directional liquid transport ability. In this Account, we report our recent progress in understanding how this directional transport works, as well our advances in the design and fabrication of bioinspired 1D materials capable of transporting liquid droplets directionally. To begin, we first discuss some basic theories on droplet directional movement. Then, we discuss the mechanism of directional transport of water droplets on natural spider silks. Upon contact with water droplets, the spider silk undergoes what is known as a wet-rebuilt, which forms periodic spindle-knots and joints. We found that the resulting gradient of Laplace pressure and surface free energy between the spindle-knots and joints account for the cooperative driving forces to transport water droplets directionally. Next, we discuss the directional transport of water droplets on desert cactus. The integration of multilevel structures of the cactus and the resulting integration of multiple functions together allow the cactus spine to transport water droplets continuously from tip to base. Based on our studies of natural spider silks and cactus spines, we have prepared a series of artificial spider silks (A-SSs) and artificial cactus spines (A-CSs) with various methods. By changing the surface roughness and chemical compositions of the artificial spider silks' spindle-knots, or by introducing stimulus-responsive molecules, such as thermal-responsive and photoresponsive molecules, onto the spindle-knots, we can reversibly manipulate
Charge transport through one-dimensional Moiré crystals.
Bonnet, Roméo; Lherbier, Aurélien; Barraud, Clément; Della Rocca, Maria Luisa; Lafarge, Philippe; Charlier, Jean-Christophe
2016-01-01
Moiré superlattices were generated in two-dimensional (2D) van der Waals heterostructures and have revealed intriguing electronic structures. The appearance of mini-Dirac cones within the conduction and valence bands of graphene is one of the most striking among the new quantum features. A Moiré superstructure emerges when at least two periodic sub-structures superimpose. 2D Moiré patterns have been particularly investigated in stacked hexagonal 2D atomic lattices like twisted graphene layers and graphene deposited on hexagonal boron-nitride. In this letter, we report both experimentally and theoretically evidence of superlattices physics in transport properties of one-dimensional (1D) Moiré crystals. Rolling-up few layers of graphene to form a multiwall carbon nanotube adds boundaries conditions that can be translated into interference fringes-like Moiré patterns along the circumference of the cylinder. Such a 1D Moiré crystal exhibits a complex 1D multiple bands structure with clear and robust interband quantum transitions due to the presence of mini-Dirac points and pseudo-gaps. Our devices consist in a very large diameter (>80 nm) multiwall carbon nanotubes of high quality, electrically connected by metallic electrodes acting as charge reservoirs. Conductance measurements reveal the presence of van Hove singularities assigned to 1D Moiré superlattice effect and illustrated by electronic structure calculations. PMID:26786067
Charge transport through one-dimensional Moiré crystals
Bonnet, Roméo; Lherbier, Aurélien; Barraud, Clément; Rocca, Maria Luisa Della; Lafarge, Philippe; Charlier, Jean-Christophe
2016-01-01
Moiré superlattices were generated in two-dimensional (2D) van der Waals heterostructures and have revealed intriguing electronic structures. The appearance of mini-Dirac cones within the conduction and valence bands of graphene is one of the most striking among the new quantum features. A Moiré superstructure emerges when at least two periodic sub-structures superimpose. 2D Moiré patterns have been particularly investigated in stacked hexagonal 2D atomic lattices like twisted graphene layers and graphene deposited on hexagonal boron-nitride. In this letter, we report both experimentally and theoretically evidence of superlattices physics in transport properties of one-dimensional (1D) Moiré crystals. Rolling-up few layers of graphene to form a multiwall carbon nanotube adds boundaries conditions that can be translated into interference fringes-like Moiré patterns along the circumference of the cylinder. Such a 1D Moiré crystal exhibits a complex 1D multiple bands structure with clear and robust interband quantum transitions due to the presence of mini-Dirac points and pseudo-gaps. Our devices consist in a very large diameter (>80 nm) multiwall carbon nanotubes of high quality, electrically connected by metallic electrodes acting as charge reservoirs. Conductance measurements reveal the presence of van Hove singularities assigned to 1D Moiré superlattice effect and illustrated by electronic structure calculations. PMID:26786067
Nonequilibrium electronic transport in a one-dimensional Mott insulator
Heidrich-Meisner, F.; Gonzalez, Ivan; Al-Hassanieh, K. A.; Feiguin, A. E.; Rozenberg, M. J.; Dagotto, Elbio R
2010-01-01
We calculate the nonequilibrium electronic transport properties of a one-dimensional interacting chain at half filling, coupled to noninteracting leads. The interacting chain is initially in a Mott insulator state that is driven out of equilibrium by applying a strong bias voltage between the leads. For bias voltages above a certain threshold we observe the breakdown of the Mott insulator state and the establishment of a steady-state elec- tronic current through the system. Based on extensive time-dependent density-matrix renormalization-group simulations, we show that this steady-state current always has the same functional dependence on voltage, independent of the microscopic details of the model and we relate the value of the threshold to the Lieb-Wu gap. We frame our results in terms of the Landau-Zener dielectric breakdown picture. Finally, we also discuss the real-time evolution of the current, and characterize the current-carrying state resulting from the breakdown of the Mott insulator by computing the double occupancy, the spin structure factor, and the entanglement entropy.
Xu, Bruce S; Lollar, Barbara Sherwood; Passeport, Elodie; Sleep, Brent E
2016-04-15
Aqueous phase diffusion-related isotope fractionation (DRIF) for carbon isotopes was investigated for common groundwater contaminants in systems in which transport could be considered to be one-dimensional. This paper focuses not only on theoretically observable DRIF effects in these systems but introduces the important concept of constraining "observable" DRIF based on constraints imposed by the scale of measurements in the field, and on standard limits of detection and analytical uncertainty. Specifically, constraints for the detection of DRIF were determined in terms of the diffusive fractionation factor, the initial concentration of contaminants (C0), the method detection limit (MDL) for isotopic analysis, the transport time, and the ratio of the longitudinal mechanical dispersion coefficient to effective molecular diffusion coefficient (Dmech/Deff). The results allow a determination of field conditions under which DRIF may be an important factor in the use of stable carbon isotope measurements for evaluation of contaminant transport and transformation for one-dimensional advective-dispersive transport. This study demonstrates that for diffusion-dominated transport of BTEX, MTBE, and chlorinated ethenes, DRIF effects are only detectable for the smaller molar mass compounds such as vinyl chloride for C0/MDL ratios of 50 or higher. Much larger C0/MDL ratios, corresponding to higher source concentrations or lower detection limits, are necessary for DRIF to be detectable for the higher molar mass compounds. The distance over which DRIF is observable for VC is small (less than 1m) for a relatively young diffusive plume (<100years), and DRIF will not easily be detected by using the conventional sampling approach with "typical" well spacing (at least several meters). With contaminant transport by advection, mechanical dispersion, and molecular diffusion this study suggests that in field sites where Dmech/Deff is larger than 10, DRIF effects will likely not be
Characterization of Thermal Transport in One-dimensional Solid Materials
Liu, Guoqing; Lin, Huan; Tang, Xiaoduan; Bergler, Kevin; Wang, Xinwei
2014-01-01
The TET (transient electro-thermal) technique is an effective approach developed to measure the thermal diffusivity of solid materials, including conductive, semi-conductive or nonconductive one-dimensional structures. This technique broadens the measurement scope of materials (conductive and nonconductive) and improves the accuracy and stability. If the sample (especially biomaterials, such as human head hair, spider silk, and silkworm silk) is not conductive, it will be coated with a gold layer to make it electronically conductive. The effect of parasitic conduction and radiative losses on the thermal diffusivity can be subtracted during data processing. Then the real thermal conductivity can be calculated with the given value of volume-based specific heat (ρcp), which can be obtained from calibration, noncontact photo-thermal technique or measuring the density and specific heat separately. In this work, human head hair samples are used to show how to set up the experiment, process the experimental data, and subtract the effect of parasitic conduction and radiative losses. PMID:24514072
Thermal transport in disordered one-dimensional spin chains
NASA Astrophysics Data System (ADS)
Poboiko, Igor; Feigel'man, Mikhail
2015-12-01
We study a one-dimensional anisotropic XXZ Heisenberg spin-1/2 chain with weak random fields hizSiz by means of Jordan-Wigner transformation to spinless Luttinger liquid with disorder and bosonization technique. First, we reinvestigate the phase diagram of the system in terms of dimensionless disorder γ =
McKenzie, Erica R; Siegrist, Robert L; McCray, John E; Higgins, Christopher P
2015-02-01
In situ chemical oxidation (ISCO) is a remediation approach that is often used to remediate soil and groundwater contaminated with fuels and chlorinated solvents. At many aqueous film-forming foam-impacted sites, perfluoroalkyl acids (PFAAs) can also be present at concentrations warranting concern. Laboratory experiments were completed using flow-through one-dimensional columns to improve our understanding of how ISCO (i.e., activated persulfate, permanganate, or catalyzed hydrogen peroxide) could affect the fate and transport of PFAAs in saturated porous media. While the resultant data suggest that standard ISCO is not a viable remediation strategy for PFAA decomposition, substantial changes in PFAA transport were observed upon and following the application of ISCO. In general, activated persulfate decreased PFAA transport, while permanganate and catalyzed hydrogen peroxide increased PFAA transport. PFAA sorption increased in the presence of increased aqueous polyvalent cation concentrations or decreased pH. The changes in contaminant mobility were greater than what would be predicted on the basis of aqueous chemistry considerations alone, suggesting that the application of ISCO results in changes to the porous media matrix (e.g., soil organic matter quality) that also influence transport. The application of ISCO is likely to result in changes in PFAA transport, where the direction (increased or decreased transport) and magnitude are dependent on PFAA characteristics, oxidant characteristics, and site-specific factors. PMID:25621878
Half-range acceleration for one-dimensional transport problems
Zika, M.R.; Larsen, E.W.
1998-12-31
Researchers have devoted considerable effort to developing acceleration techniques for transport iterations in highly diffusive problems. The advantages and disadvantages of source iteration, rebalance, diffusion synthetic acceleration (DSA), transport synthetic acceleration (TSA), and projection acceleration methods are documented in the literature and will not be discussed here except to note that no single method has proven to be applicable to all situations. Here, the authors describe a new acceleration method that is based solely on transport sweeps, is algebraically linear (and is therefore amenable to a Fourier analysis), and yields a theoretical spectral radius bounded by one-third for all cases. This method does not introduce spatial differencing difficulties (as is the case for DSA) nor does its theoretical performance degrade as a function of mesh and material properties (as is the case for TSA). Practical simulations of the new method agree with the theoretical predictions, except for scattering ratios very close to unity. At this time, they believe that the discrepancy is due to the effect of boundary conditions. This is discussed further.
A one-dimensional heat-transport model for conduit flow in karst aquifers
Long, A.J.; Gilcrease, P.C.
2009-01-01
A one-dimensional heat-transport model for conduit flow in karst aquifers is presented as an alternative to two or three-dimensional distributed-parameter models, which are data intensive and require knowledge of conduit locations. This model can be applied for cases where water temperature in a well or spring receives all or part of its water from a phreatic conduit. Heat transport in the conduit is simulated by using a physically-based heat-transport equation that accounts for inflow of diffuse flow from smaller openings and fissures in the surrounding aquifer during periods of low recharge. Additional diffuse flow that is within the zone of influence of the well or spring but has not interacted with the conduit is accounted for with a binary mixing equation to proportion these different water sources. The estimation of this proportion through inverse modeling is useful for the assessment of contaminant vulnerability and well-head or spring protection. The model was applied to 7 months of continuous temperature data for a sinking stream that recharges a conduit and a pumped well open to the Madison aquifer in western South Dakota. The simulated conduit-flow fraction to the well ranged from 2% to 31% of total flow, and simulated conduit velocity ranged from 44 to 353 m/d.
Li, Lei; Liang, Lizhi; Wu, Heng; Zhu, Xinhua
2016-12-01
One-dimensional nanostructures, including nanowires, nanorods, nanotubes, nanofibers, and nanobelts, have promising applications in mesoscopic physics and nanoscale devices. In contrast to other nanostructures, one-dimensional nanostructures can provide unique advantages in investigating the size and dimensionality dependence of the materials' physical properties, such as electrical, thermal, and mechanical performances, and in constructing nanoscale electronic and optoelectronic devices. Among the one-dimensional nanostructures, one-dimensional perovskite manganite nanostructures have been received much attention due to their unusual electron transport and magnetic properties, which are indispensable for the applications in microelectronic, magnetic, and spintronic devices. In the past two decades, much effort has been made to synthesize and characterize one-dimensional perovskite manganite nanostructures in the forms of nanorods, nanowires, nanotubes, and nanobelts. Various physical and chemical deposition techniques and growth mechanisms are explored and developed to control the morphology, identical shape, uniform size, crystalline structure, defects, and homogenous stoichiometry of the one-dimensional perovskite manganite nanostructures. This article provides a comprehensive review of the state-of-the-art research activities that focus on the rational synthesis, structural characterization, fundamental properties, and unique applications of one-dimensional perovskite manganite nanostructures in nanotechnology. It begins with the rational synthesis of one-dimensional perovskite manganite nanostructures and then summarizes their structural characterizations. Fundamental physical properties of one-dimensional perovskite manganite nanostructures are also highlighted, and a range of unique applications in information storages, field-effect transistors, and spintronic devices are discussed. Finally, we conclude this review with some perspectives/outlook and future
NASA Astrophysics Data System (ADS)
Li, Lei; Liang, Lizhi; Wu, Heng; Zhu, Xinhua
2016-03-01
One-dimensional nanostructures, including nanowires, nanorods, nanotubes, nanofibers, and nanobelts, have promising applications in mesoscopic physics and nanoscale devices. In contrast to other nanostructures, one-dimensional nanostructures can provide unique advantages in investigating the size and dimensionality dependence of the materials' physical properties, such as electrical, thermal, and mechanical performances, and in constructing nanoscale electronic and optoelectronic devices. Among the one-dimensional nanostructures, one-dimensional perovskite manganite nanostructures have been received much attention due to their unusual electron transport and magnetic properties, which are indispensable for the applications in microelectronic, magnetic, and spintronic devices. In the past two decades, much effort has been made to synthesize and characterize one-dimensional perovskite manganite nanostructures in the forms of nanorods, nanowires, nanotubes, and nanobelts. Various physical and chemical deposition techniques and growth mechanisms are explored and developed to control the morphology, identical shape, uniform size, crystalline structure, defects, and homogenous stoichiometry of the one-dimensional perovskite manganite nanostructures. This article provides a comprehensive review of the state-of-the-art research activities that focus on the rational synthesis, structural characterization, fundamental properties, and unique applications of one-dimensional perovskite manganite nanostructures in nanotechnology. It begins with the rational synthesis of one-dimensional perovskite manganite nanostructures and then summarizes their structural characterizations. Fundamental physical properties of one-dimensional perovskite manganite nanostructures are also highlighted, and a range of unique applications in information storages, field-effect transistors, and spintronic devices are discussed. Finally, we conclude this review with some perspectives/outlook and future
One-dimensional transport equation models for sound energy propagation in long spaces: theory.
Jing, Yun; Larsen, Edward W; Xiang, Ning
2010-04-01
In this paper, a three-dimensional transport equation model is developed to describe the sound energy propagation in a long space. Then this model is reduced to a one-dimensional model by approximating the solution using the method of weighted residuals. The one-dimensional transport equation model directly describes the sound energy propagation in the "long" dimension and deals with the sound energy in the "short" dimensions by prescribed functions. Also, the one-dimensional model consists of a coupled set of N transport equations. Only N=1 and N=2 are discussed in this paper. For larger N, although the accuracy could be improved, the calculation time is expected to significantly increase, which diminishes the advantage of the model in terms of its computational efficiency. PMID:20370013
Transport diffusion in one dimensional molecular systems: Power law and validity of Fick's law
NASA Astrophysics Data System (ADS)
Xu, Zhi-cheng; Zheng, Dong-qin; Ai, Bao-quan; Hu, Bambi; Zhong, Wei-rong
2015-10-01
The transport diffusion in one-dimensional molecular systems is investigated through non-equilibrium molecular dynamics and Monte Carlo methods. We have proposed the power law relationship of the transport diffusion coefficient with the temperature, the mass and the transport length, D* ∝ T*m*-1L*β, where β equals to 0.8 for small systems and zero for large systems. It is found that Fick's law is valid in long transport length but invalid in short transport length. Our results can provide a new perspective for understanding the microscopic mechanism of the molecular transport phenomena in low-dimensional systems.
Time-dependent radiation transport in a one-dimensional medium
NASA Technical Reports Server (NTRS)
Nagel, W.; Meszaros, P.
1985-01-01
An analytic solution of the time-dependent radiation transport problem in a one-dimensional, stationary and homogeneous medium of finite thickness is presented. The solution is found by the method of images, and is compared with an eigenfunction expansion. Previous conjectures about the structure of such an expansion are clarified. The Green's function of this problem is also expanded in scattering orders.
ONE-DIMENSIONAL HYDRODYNAMIC/SEDIMENT TRANSPORT MODEL FOR STREAM NETWORKS: TECHNICAL REPORT
This technical report describes a new sediment transport model and the supporting post-processor, and sampling procedures for sediments in streams. Specifically, the following items are described herein:
EFDC1D - This is a new one-dimensional hydrodynamic and sediment tr...
NASA Astrophysics Data System (ADS)
Sykes, J. F.; Scott, M. E.; Jyrkama, M. I.
2005-05-01
Wilmot Township is located in southwestern Ontario within the Grand River Watershed. The township is approximately 266 square kilometers, of which 80 percent is classified as farmland. A majority of the region relies on groundwater as the source of drinking water and it is therefore important to determine the effect of crop fertilization on the groundwater quality. The purpose of this study is to determine the one-dimensional transport of nitrate through the vadose zone to the water table with attenuation due to biodegradation. The model is simulated over a 30-year period to investigate the impact of seasonal applications of nitrate fertilizers on the concentration at the water table. Based on land use/land class maps, ArcView GIS is used to spatially define the location of fertilizer applications. Fertilizer sources are determined from Statistics Canada's Agricultural Census and include livestock manure and popular commercial fertilizers for the past 30 years. A physically based and readily implemented methodology for estimating recharge, as developed by Jyrkama (2003), is used to approximate the advective velocity through the soil column. This research methodology can be applied at the watershed scale. Future large-scale modeling will be performed on the Grand River Watershed, which is approximately 7000 square kilometers. Municipalities can utilize this model as a management tool to determine the extent of contamination and delineate site sensitive locations, such as well-head protection zones. This research is a first step in developing agricultural contaminant loadings for a regional scale surface water and groundwater model.
NASA Astrophysics Data System (ADS)
Brasiello, Antonio; Crescitelli, Silvestro; Giona, Massimiliano
2016-05-01
We consider the one-dimensional Cattaneo equation for transport of scalar fields such as solute concentration and temperature in mass and heat transport problems, respectively. Although the Cattaneo equation admits a stochastic interpretation-at least in the one-dimensional case-negative concentration values can occur in boundary-value problems on a finite interval. This phenomenon stems from the probabilistic nature of this model: the stochastic interpretation provides constraints on the admissible boundary conditions, as can be deduced from the wave formulation here presented. Moreover, as here shown, energetic inequalities and the dissipative nature of the equation provide an alternative way to derive the same constraints on the boundary conditions derived by enforcing positivity. The analysis reported is also extended to transport problems in the presence of a biasing velocity field. Several general conclusions are drawn from this analysis that could be extended to the higher-dimensional case.
Wu, Y.; Xie, Z.; Fischer, U.
1999-11-01
A discrete ordinates nodal transport method has been developed for numerical solution of the one-dimensional neutron transport equation in curvilinear geometries. The nodal transport equation is solved by the Green's function method, using the Legendre polynomial expansion for spatial dependence and the discrete ordinates (S{sub N}) approximation for angular dependence. The calculation for various test problems has been performed to verify the method. The numerical results demonstrate that it has very high precision on coarse spatial meshes relative to the standard fine-mesh S{sub N} method with the spatial diamond-differencing scheme.
Numerical Analysis of Quantum Transport Equation for Bose Gas in One Dimensional Optical Lattice
NASA Astrophysics Data System (ADS)
Kuwahara, Yukiro; Nakamura, Yusuke; Yamanaka, Yoshiya
The quantum transport equation and the correction of the quasiparticle energy are derived by imposing the renormalization conditions on the improved time-dependent on-shell self-energy in nonequilibrium Thermo Field Dynamics. They are numerically analyzed for the one dimensional system of cold neutral atomic Bose gas confined by a combined harmonic and optical lattice potentials. The analysis indicates that the correction of the quaisparticle energy plays a crucial role in the thermal relaxation processes described by the quantum transport equation.
One-dimensional transport code modelling of the limiter-divertor region in tokamaks
Ogden, J.M.; Post, D.E.; Jensen, R.V.; Seidl, F.G.P.
1980-02-01
A model of the limiter-divertor scrape-off region has been incorporated into the BALDUR one-dimensional tokamak transport code. Simulations of PDX and ALCATOR have been carried out for ohmic and neutral beam heated cases. In particular, we have studied how the edge conditions and energy loss mechanisms of PDX depend upon plasma density, and compared our results with analytic estimates. The sensitivity of the results to changes in the transport coefficients and scrape-off model is also discussed.
Anomalous charge transport in a quasi-one-dimensional electron system over liquid helium
NASA Astrophysics Data System (ADS)
Gladchenko, S. P.; Kovdrya, Yu. Z.; Nikolaenko, V. A.
2003-11-01
The conductivity σ in a quasi-one-dimensional electron system over liquid helium is measured in the temperature interval 0.5-1.7 K over a wide range of electron densities n. It is shown that the quantity σ/ne (e is the charge of the electron) initially increases with decreasing temperature and then, after passing through a maximum, begins to decline for T≈1 K. In this temperature region the value of σ/ne, above a certain value of the drift potential Vd, decreases with increasing Vd. It is conjectured that the anomalous charge transport observed in this study is due either to spatial ordering of the electrons in the quasi-one-dimensional channels or to the formation of many-electron polarons in the nonuniform potential along the channels.
An exact solution of solute transport by one-dimensional random velocity fields
Cvetkovic, V.D.; Dagan, G.; Shapiro, A.M.
1991-01-01
The problem of one-dimensional transport of passive solute by a random steady velocity field is investigated. This problem is representative of solute movement in porous media, for example, in vertical flow through a horizontally stratified formation of variable porosity with a constant flux at the soil surface. Relating moments of particle travel time and displacement, exact expressions for the advection and dispersion coefficients in the Focker-Planck equation are compared with the perturbation results for large distances. The first- and second-order approximations for the dispersion coefficient are robust for a lognormal velocity field. The mean Lagrangian velocity is the harmonic mean of the Eulerian velocity for large distances. This is an artifact of one-dimensional flow where the continuity equation provides for a divergence free fluid flux, rather than a divergence free fluid velocity. ?? 1991 Springer-Verlag.
Electron trapping and transport by supersonic solitons in one-dimensional systems
NASA Technical Reports Server (NTRS)
Zmuidzinas, J. S.
1978-01-01
A one-dimensional chain of ions or molecules and electrons described by a Froehlich-type Hamiltonian with quartic phonon anharmonicities is investigated. It is shown that the anharmonic lattice supports supersonic solitons which under favorable circumstances may trap electrons and transport them along the lattice. For a lattice constant/soliton spatial extent quotient of the order of 0.1, rough estimates give electron trapping energies in the meV range. They imply a useful temperature range, up to tens of degrees K, for observing the new effect. The activation energy of a lattice soliton is proportional to the molecular mass and is therefore quite high (about 1 eV) for typical quasi-one-dimensional organic systems.
Jing, Yun; Xiang, Ning
2010-04-01
In this paper, the accuracy and efficiency of the previously discussed one-dimensional transport equation models [Y. Jing et al., J. Acoust. Soc. Am. 127, 2312-2322 (2010)] are examined both numerically and experimentally. The finite element method is employed to solve the equations. Artificial diffusion is applied in the numerical implementation to suppress oscillations of the solution. The transport equation models are then compared with the ray-tracing based method for different scenarios. In general, they are in good agreement, and the transport equation models are substantially less time consuming. In addition, the two-group model is found to yield more accurate results than the one-group model for the tested cases. Lastly, acoustic experimental results obtained from a 1:10 long room scale-model are used to verify the transport equation models. The results suggest that the transport equation models are able to accurately model the sound field in a long space. PMID:20370014
Wuebbles, D.J.
1981-09-01
Since the LLNL one-dimensional coupled transport and chemical kinetics model of the troposphere and stratosphere was originally developed in 1972 (Chang et al., 1974), there have been many changes to the model's representation of atmospheric physical and chemical processes. A brief description is given of the current LLNL one-dimensional coupled transport and chemical kinetics model of the troposphere and stratosphere.
Correlated few-photon transport in one-dimensional waveguides: Linear and nonlinear dispersions
Roy, Dibyendu
2011-04-15
We address correlated few-photon transport in one-dimensional waveguides coupled to a two-level system (TLS), such as an atom or a quantum dot. We derive exactly the single-photon and two-photon current (transmission) for linear and nonlinear (tight-binding sinusoidal) energy-momentum dispersion relations of photons in the waveguides and compare the results for the different dispersions. A large enhancement of the two-photon current for the sinusoidal dispersion has been seen at a certain transition energy of the TLS away from the single-photon resonances.
NASA Astrophysics Data System (ADS)
Wang, Jianjin; He, Dahai; Zhang, Yong; Wang, Jiao; Zhao, Hong
2015-09-01
We study effects of interaction symmetry in one-dimensional, momentum-conserving disordered lattices. It is found that asymmetric and symmetric interparticle interactions may result in significant difference: localized modes can be delocalized by very weak asymmetric interactions but survive much stronger symmetric interactions. Moreover, in the delocalization regime, asymmetric and symmetric interactions also have qualitatively different effects on transport: the former (the latter) may lead to a fast decaying (slow power-law decaying) heat current correlation function and in turn a convergent (divergent) heat conductivity. A method for detecting delocalization in systems at a nonzero temperature is proposed as well.
Photon transport in a one-dimensional nanophotonic waveguide QED system
NASA Astrophysics Data System (ADS)
Liao, Zeyang; Zeng, Xiaodong; Nha, Hyunchul; Zubairy, M. Suhail
2016-06-01
The waveguide quantum electrodynamics (QED) system may have important applications in quantum device and quantum information technology. In this article we review the methods being proposed to calculate photon transport in a one-dimensional (1D) waveguide coupled to quantum emitters. We first introduce the Bethe ansatz approach and the input–output formalism to calculate the stationary results of a single photon transport. Then we present a dynamical time-dependent theory to calculate the real-time evolution of the waveguide QED system. In the longtime limit, both the stationary theory and the dynamical calculation give the same results. Finally, we also briefly discuss the calculations of the multiphoton transport problems.
Oxygen isotopic transport and exchange during fluid flow: One-dimensional models and applications
Bowman, J.R. ); Willett, S.D. ); Cook, S.J. Environ Corp., Houston, TX )
1994-01-01
In this work the authors investigate the consequences of fluid flow and fluid-rock interaction to the isotopic evolution of fluids and rock with one-dimensional transport models of fluid flow and oxygen isotope exchange. Transport models dealing with stable isotopes are well established in recent geochemical literature. The authors extend previous treatments by presenting the derivation of both analytical and numerical solutions to the transport equations incorporating simultaneously advection, diffusion and hydrodynamic dispersion, and kinetics of isotopic exchange. The increased generality of numerical solutions allows the incorporation of other effects which control the spatial patterns of [delta][sup 18]O values developed in rocks and fluids including multiple reactive species and temperature gradients. The authors discuss the effects of flow parameters, conditions of isotopic exchange, and temperature gradients on the spatial patterns of isotopic shifts produced in rock sequences subjected to fluid flow, and on conventionally calculated W/R ratios for these rock sequences. Finally, the authors examine the implications of oxygen isotope transport for two natural systems where isotopic shifts or gradients could be interpreted in terms of unidirectional fluid infiltration. Solutions of one-dimensional transport equations including the mechanisms of advection, diffusion, hydrodynamic dispersion, and non-equilibrium exchange between water and rock indicate that the time-space evolution of oxygen isotopic compositions of rock and infiltrating fluid is dependent on (1) the rate of fluid infiltration, (2) the diffusive and dispersive properties of the rock matrix, (3) the rate of isotopic exchange, and (4) the rock-water mass oxygen ratio in a unit volume of water-saturated, porous rock. 56 refs., 18 figs., 2 tabs.
SESOIL. Code System Calculate One-Dimensional Vertical Transport Unsaturated Soil Zone
Scott, S.J.; Hetrick, D.M.
1994-08-01
SESOIL, as an integrated screening-level soil compartment model, is designed to simultaneously model water transport, sediment transport, and pollutant fate. SESOIL is a one-dimensional vertical transport model for the unsaturated soil zone. Only one compound at a time can be considered. The model is based on mass balance and equilibrium partitioning of the chemical between different phases (dissolved, sorbed, vapor, and pure). The SESOIL model was designed to perform long-term simulations of chemical transport and transformations in the soil and uses theoretically derived equations to represent water transport, sediment transport on the land surface, pollutant transformation, and migration of the pollutant to the atmosphere and groundwater. Climatic data, compartment geometry, and soil and chemical property data are the major components used in the equations. SESOIL was developed as a screening-level model, utilizing less soil, chemical, and meteorological values as input than most other similar models. Output of SESOIL includes time-varying pollutant concentrations at various soil depths and pollutant loss from the unsaturated zone in terms of surface runoff, percolation to the groundwater, volatilization, and degradation. The February 1995 release corrects an error that caused the code to fail when average monthly air temperature was -10C and includes an improved iteration procedure for the mass balance equations in the model.
Analytically-derived sensitivities in one-dimensional models of solute transport in porous media
Knopman, D.S.
1987-01-01
Analytically-derived sensitivities are presented for parameters in one-dimensional models of solute transport in porous media. Sensitivities were derived by direct differentiation of closed form solutions for each of the odel, and by a time integral method for two of the models. Models are based on the advection-dispersion equation and include adsorption and first-order chemical decay. Boundary conditions considered are: a constant step input of solute, constant flux input of solute, and exponentially decaying input of solute at the upstream boundary. A zero flux is assumed at the downstream boundary. Initial conditions include a constant and spatially varying distribution of solute. One model simulates the mixing of solute in an observation well from individual layers in a multilayer aquifer system. Computer programs produce output files compatible with graphics software in which sensitivities are plotted as a function of either time or space. (USGS)
NASA Astrophysics Data System (ADS)
Hu, Jiuning; Chen, Yong P.
2013-06-01
We show that in a finite one-dimensional (1D) system with diffusive thermal transport described by the Fourier's law, negative differential thermal conductance (NDTC) cannot occur when the temperature at one end is fixed and there are no abrupt junctions. We demonstrate that NDTC in this case requires the presence of junction(s) with temperature-dependent thermal contact resistance (TCR). We derive a necessary and sufficient condition for the existence of NDTC in terms of the properties of the TCR for systems with a single junction. We show that under certain circumstances we even could have infinite (negative or positive) differential thermal conductance in the presence of the TCR. Our predictions provide theoretical basis for constructing NDTC-based devices, such as thermal amplifiers, oscillators, and logic devices.
Anomalous quantum heat transport in a one-dimensional harmonic chain with random couplings.
Yan, Yonghong; Zhao, Hui
2012-07-11
We investigate quantum heat transport in a one-dimensional harmonic system with random couplings. In the presence of randomness, phonon modes may normally be classified as ballistic, diffusive or localized. We show that these modes can roughly be characterized by the local nearest-neighbor level spacing distribution, similarly to their electronic counterparts. We also show that the thermal conductance G(th) through the system decays rapidly with the system size (G(th) ∼ L(-α)). The exponent α strongly depends on the system size and can change from α < 1 to α > 1 with increasing system size, indicating that the system undergoes a transition from a heat conductor to a heat insulator. This result could be useful in thermal control of low-dimensional systems. PMID:22713930
1985-02-01
Version 00 TP1 is a transport theory code, developed to determine reactivity effects and kinetic parameters such as effective delayed neutron fractions and mean generation time by applying the usual perturbation formalism for one-dimensional geometry.
SESOIL. Code System Calculate One-Dimensional Vertical Transport Unsaturated Soil Zone
Hetrick, D.M.; Scott, D.J.
1994-08-01
SESOIL, as an integrated screening-level soil compartment model, is designed to simultaneously model water transport, sediment transport, and pollutant fate. SESOIL is a one-dimensional vertical transport model for the unsaturated soil zone. Only one compound at a time can be considered. The model is based on mass balance and equilibrium partitioning of the chemical between different phases (dissolved, sorbed, vapor, and pure). The SESOIL model was designed to perform long-term simulations of chemical transport and transformations in the soil and uses theoretically derived equations to represent water transport, sediment transport on the land surface, pollutant transformation, and migration of the pollutant to the atmosphere and groundwater. Climatic data, compartment geometry, and soil and chemical property data are the major components used in the equations. SESOIL was developed as a screening-level model, utilizing less soil, chemical, and meteorological values as input than most other similar models. Output of SESOIL includes time-varying pollutant concentrations at various soil depths and pollutant loss from the unsaturated zone in terms of surface runoff, percolation to the groundwater, volatilization, and degradation. The February 1995 release corrects an error that caused the code to fail when average monthly air temperature was -10C and includes an improved iteration procedure for the mass balance equations in the model. PLEASE NOTE: The RISKPRO information management software (see OTHER PROG/OPER SYS INFO) was used by the developers of the New SESOIL User`s Guide in their study and revisions of SESOIL. Using RISKPRO in conjunction with SESOIL is an option, and it may provide the easiest way to use SESOIL. The other option, use of SESOIL in stand-alone mode, has been tested and used. The stand-alone option is covered in `Instructions for Running Stand-Alone SESOIL Code`, and in `A Seasonal Soil Compartment Model`.
Code System Calculate One-Dimensional Vertical Transport Unsaturated Soil Zone
Bonazountas, Marcos; Wagner, Janet
1989-03-01
SESOIL, as an integrated screening-level soil compartment model, is designed to simultaneously model water transport, sediment transport, and pollutant fate. SESOIL is a one-dimensional vertical transport model for the unsaturated soil zone. Only one compound at a time can be considered. The model is based on mass balance and equilibrium partitioning of the chemical between different phases (dissolved, sorbed, vapor, and pure). The SESOIL model was designed to perform long-term simulations of chemical transport and transformations in the soil and uses theoretically derived equations to represent water transport, sediment transport on the land surface, pollutant transformation, and migration of the pollutant to the atmosphere and groundwater. Climatic data, compartment geometry, and soil and chemical property data are the major components used in the equations. SESOIL was developed as a screening-level model, utilizing less soil, chemical, and meteorological values as input than most other similar models. Output of SESOIL includes time-varying pollutant concentrations at various soil depths and pollutant loss from the unsaturated zone in terms of surface runoff, percolation to the groundwater, volatilization, and degradation. The February 1995 release corrects an error that caused the code to fail when average monthly air temperature was -10C and includes an improved iteration procedure for the mass balance equations in the model. PLEASE NOTE: The RISKPRO information management software (see OTHER PROG/OPER SYS INFO) was used by the developers of the New SESOIL User''s Guide in their study and revisions of SESOIL. Using RISKPRO in conjunction with SESOIL is an option, and it may provide the easiest way to use SESOIL. The other option, use of SESOIL in stand-alone mode, has been tested and used. The stand-alone option is covered in ''Instructions for Running Stand-Alone SESOIL Code'', and in ''A Seasonal Soil Compartment Model''.
Code System Calculate One-Dimensional Vertical Transport Unsaturated Soil Zone
1989-03-01
SESOIL, as an integrated screening-level soil compartment model, is designed to simultaneously model water transport, sediment transport, and pollutant fate. SESOIL is a one-dimensional vertical transport model for the unsaturated soil zone. Only one compound at a time can be considered. The model is based on mass balance and equilibrium partitioning of the chemical between different phases (dissolved, sorbed, vapor, and pure). The SESOIL model was designed to perform long-term simulations of chemical transport andmore » transformations in the soil and uses theoretically derived equations to represent water transport, sediment transport on the land surface, pollutant transformation, and migration of the pollutant to the atmosphere and groundwater. Climatic data, compartment geometry, and soil and chemical property data are the major components used in the equations. SESOIL was developed as a screening-level model, utilizing less soil, chemical, and meteorological values as input than most other similar models. Output of SESOIL includes time-varying pollutant concentrations at various soil depths and pollutant loss from the unsaturated zone in terms of surface runoff, percolation to the groundwater, volatilization, and degradation. The February 1995 release corrects an error that caused the code to fail when average monthly air temperature was -10C and includes an improved iteration procedure for the mass balance equations in the model. PLEASE NOTE: The RISKPRO information management software (see OTHER PROG/OPER SYS INFO) was used by the developers of the New SESOIL User''s Guide in their study and revisions of SESOIL. Using RISKPRO in conjunction with SESOIL is an option, and it may provide the easiest way to use SESOIL. The other option, use of SESOIL in stand-alone mode, has been tested and used. The stand-alone option is covered in ''Instructions for Running Stand-Alone SESOIL Code'', and in ''A Seasonal Soil Compartment Model''.« less
Degenerate Bogdanov-Takens bifurcations in a one-dimensional transport model of a fusion plasma
NASA Astrophysics Data System (ADS)
de Blank, H. J.; Kuznetsov, Yu. A.; Pekkér, M. J.; Veldman, D. W. M.
2016-09-01
Experiments in tokamaks (nuclear fusion reactors) have shown two modes of operation: L-mode and H-mode. Transitions between these two modes have been observed in three types: sharp, smooth and oscillatory. The same modes of operation and transitions between them have been observed in simplified transport models of the fusion plasma in one spatial dimension. We study the dynamics in such a one-dimensional transport model by numerical continuation techniques. To this end the MATLAB package CL_MATCONTL was extended with the continuation of (codimension-2) Bogdanov-Takens bifurcations in three parameters using subspace reduction techniques. During the continuation of (codimension-2) Bogdanov-Takens bifurcations in 3 parameters, generically degenerate Bogdanov-Takens bifurcations of codimension-3 are detected. However, when these techniques are applied to the transport model, we detect a degenerate Bogdanov-Takens bifurcation of codimension 4. The nearby 1- and 2-parameter slices are in agreement with the presence of this codimension-4 degenerate Bogdanov-Takens bifurcation, and all three types of L-H transitions can be recognized in these slices. The same codimension-4 situation is observed under variation of the additional parameters in the model, and under some modifications of the model.
Generalization of one-dimensional solute transport. A stochastic-convective flow conceptualization
Simmons, C.S.
1986-04-01
A stochastic-convective representation of one-dimensional solute transport is derived. It is shown to conceptually encompass solutions of the conventional convection-dispersion equation. This stochastic approach, however, does not rely on the assumption that dispersive flux satisfies Fick's diffusion law. Observable values of solute concentration and flux, which together satisfy a conservation equation, are expressed as expectations over a flow velocity ensemble, representing the inherent random processess that govern dispersion. Solute concentration is determined by a Lagrangian pdf for random spatial displacements, while flux is determined by an equivalent Eulerian pdf for random travel times. A condition for such equivalence is derived for steady nonuniform flow, and it is proven that both Lagrangian and Eulerian pdfs are required to account for specified initial and boundary conditions on a global scale. Furthermore, simplified modeling of transport is justified by proving that an ensemble of effectively constant velocities always exists that constitutes an equivalent representation. An example of how a two-dimensional transport problems can be reduced to a single-dimensional stochastic viewpoint is also presented to further clarify concepts.
Generalization of one-dimensional solute transport: A stochastic-convective flow conceptualization
NASA Astrophysics Data System (ADS)
Simmons, C. S.
1986-04-01
A stochastic-convective representation of one-dimensional solute transport is derived. It is shown to conceptually encompass solutions of the conventional convection-dispersion equation. This stochastic approach, however, does not rely on the assumption that dispersive flux satisfies Fick's diffusion law. Observable values of solute concentration and flux, which together satisfy a conservation equation, are expressed as expectations over a flow velocity ensemble, representing the inherent random processess that govern dispersion. Solute concentration is determined by a Lagrangian pdf for random spatial displacements, while flux is determined by an equivalent Eulerian pdf for random travel times. A condition for such equivalence is derived for steady nonuniform flow, and it is proven that both Lagrangian and Eulerian pdfs are required to account for specified initial and boundary conditions on a global scale. Furthermore, simplified modeling of transport is justified by proving that an ensemble of effectively constant velocities always exists that constitutes an equivalent representation. An example of how a two-dimensional transport problem can be reduced to a single-dimensional stochastic viewpoint is also presented to further clarify concepts.
NASA Astrophysics Data System (ADS)
Paradiso, Daniele; Perelli Cippo, Enrico; Gorini, Giuseppe; Rossi, Giorgio; Larese, John Z.
The development of new materials for use in energy and environmental applications is of great interest, in particular in the areas of gas separation and carbon capture, where molecular transport plays a significant role. The dipeptides are organic molecules that offer an attractive possibility in such areas, because they form open hexagonal crystalline structures (space group P61) with quasi one-dimensional channels of tunable pore diameters in the range 3-6 Å. These molecular crystals exhibit selective adsorption, as well as, water and gas transport properties: these are believed to result from collective vibrations of the crystal structure that are coupled to the motions of the guest molecules within the channels. Current studies focus on characterizing the system methane and L-Isoleucyl-L-Valine (IV): this was initially done with high-resolution adsorption isotherms; then, high-resolution Inelastic Neutron Scattering measurements at the Spallation Neutron Source (BASIS spectrometer) revealed clear rotational tunneling peaks, offering details to unravel the potential energy surface of the system, as well as, evidences that channels flexibility and dynamical motion of the molecules have influence on the dipeptides adsorption properties.
A transport based one-dimensional perturbation code for reactivity calculations in metal systems
Wenz, T.R.
1995-02-01
A one-dimensional reactivity calculation code is developed using first order perturbation theory. The reactivity equation is based on the multi-group transport equation using the discrete ordinates method for angular dependence. In addition to the first order perturbation approximations, the reactivity code uses only the isotropic scattering data, but cross section libraries with higher order scattering data can still be used with this code. The reactivity code obtains all the flux, cross section, and geometry data from the standard interface files created by ONEDANT, a discrete ordinates transport code. Comparisons between calculated and experimental reactivities were done with the central reactivity worth data for Lady Godiva, a bare uranium metal assembly. Good agreement is found for isotopes that do not violate the assumptions in the first order approximation. In general for cases where there are large discrepancies, the discretized cross section data is not accurately representing certain resonance regions that coincide with dominant flux groups in the Godiva assembly. Comparing reactivities calculated with first order perturbation theory and a straight {Delta}k/k calculation shows agreement within 10% indicating the perturbation of the calculated fluxes is small enough for first order perturbation theory to be applicable in the modeled system. Computation time comparisons between reactivities calculated with first order perturbation theory and straight {Delta}k/k calculations indicate considerable time can be saved performing a calculation with a perturbation code particularly as the complexity of the modeled problems increase.
Runkel, Robert L.
2010-01-01
OTEQ is a mathematical simulation model used to characterize the fate and transport of waterborne solutes in streams and rivers. The model is formed by coupling a solute transport model with a chemical equilibrium submodel. The solute transport model is based on OTIS, a model that considers the physical processes of advection, dispersion, lateral inflow, and transient storage. The equilibrium submodel is based on MINTEQ, a model that considers the speciation and complexation of aqueous species, acid-base reactions, precipitation/dissolution, and sorption. Within OTEQ, reactions in the water column may result in the formation of solid phases (precipitates and sorbed species) that are subject to downstream transport and settling processes. Solid phases on the streambed may also interact with the water column through dissolution and sorption/desorption reactions. Consideration of both mobile (waterborne) and immobile (streambed) solid phases requires a unique set of governing differential equations and solution techniques that are developed herein. The partial differential equations describing physical transport and the algebraic equations describing chemical equilibria are coupled using the sequential iteration approach. The model's ability to simulate pH, precipitation/dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between instream chemistry and hydrologic transport at the field scale. This report details the development and application of OTEQ. Sections of the report describe model theory, input/output specifications, model applications, and installation instructions. OTEQ may be obtained over the Internet at http://water.usgs.gov/software/OTEQ.
Wave transport in one-dimensional disordered systems with finite-size scatterers
NASA Astrophysics Data System (ADS)
Díaz, Marlos; Mello, Pier A.; Yépez, Miztli; Tomsovic, Steven
2015-05-01
We study the problem of wave transport in a one-dimensional disordered system, where the scatterers of the chain are n barriers and wells with statistically independent intensities and with a spatial extension lc which may contain an arbitrary number δ /2 π of wavelengths, where δ =k lc . We analyze the average Landauer resistance and transmission coefficient of the chain as a function of n and the phase parameter δ . For weak scatterers, we find: (i) a regime, to be called I, associated with an exponential behavior of the resistance with n ; (ii) a regime, to be called II, for δ in the vicinity of π , where the system is almost transparent and less localized; and (iii) right in the middle of regime II, for δ very close to π , the formation of a band gap, which becomes ever more conspicuous as n increases. In regime II, both the average Landauer resistance and the transmission coefficient show an oscillatory behavior with n and δ . These characteristics of the system are found analytically, some of them exactly and some others approximately. The agreement between theory and simulations is excellent, which suggests a strong motivation for the experimental study of these systems. We also present a qualitative discussion of the results.
One-dimensional edge state transport in a topological Kondo insulator
NASA Astrophysics Data System (ADS)
Nakajima, Yasuyuki; Syers, Paul; Wang, Xiangfeng; Wang, Renxiong; Paglione, Johnpierre
2016-03-01
Topological insulators, with metallic boundary states protected against time-reversal-invariant perturbations, are a promising avenue for realizing exotic quantum states of matter, including various excitations of collective modes predicted in particle physics, such as Majorana fermions and axions. According to theoretical predictions, a topological insulating state can emerge from not only a weakly interacting system with strong spin-orbit coupling, but also in insulators driven by strong electron correlations. The Kondo insulator compound SmB6 is an ideal candidate for realizing this exotic state of matter, with hybridization between itinerant conduction electrons and localized f-electrons driving an insulating gap and metallic surface states at low temperatures. Here we exploit the existence of surface ferromagnetism in SmB6 to investigate the topological nature of metallic surface states by studying magnetotransport properties at very low temperatures. We find evidence of one-dimensional surface transport with a quantized conductance value of e2/h originating from the chiral edge channels of ferromagnetic domain walls, providing strong evidence that topologically non-trivial surface states exist in SmB6.
Numerical method for nonlinear steady-state transport in one-dimensional correlated conductors
NASA Astrophysics Data System (ADS)
Einhellinger, M.; Cojuhovschi, A.; Jeckelmann, E.
2012-06-01
We present a method for investigating the steady-state transport properties of one-dimensional correlated quantum systems. Using a procedure based on our analysis of finite-size effects in a related classical model (LC line) we show that stationary currents can be obtained from transient currents in finite systems driven out of equilibrium. The nonequilibrium dynamics of correlated quantum systems is calculated using the time-evolving block decimation method. To demonstrate our method we determine the full I-V characteristic of the spinless fermion model with nearest-neighbor hopping tH and interaction VH using two different setups to generate currents (turning on/off a potential bias). Our numerical results agree with exact results for noninteracting fermions (VH=0). For interacting fermions we find that in the linear regime eV≪4tH the current I is independent from the setup and our numerical data agree with the predictions of the Luttinger liquid theory combined with the Bethe Ansatz solution. For larger potentials V the steady-state current depends on the current-generating setup and as V increases we find a negative differential conductance with one setup while the currents saturate at finite values in the other one. Both effects are due to finite renormalized bandwidths.
One-dimensional nature in transport property of SWNT thin film electrochemical transistor
NASA Astrophysics Data System (ADS)
Shimotani, Hidekazu; Tsuda, Satoshi; Yuan, Hongtao; Yomogida, Yohei; Moriya, Rieko; Takenobu, Taishi; Yanagi, Kazuhiro; Iwasa, Yoshihiro
2012-02-01
Recent success in isolating single-walled carbon nanotubes (SWNTs) of narrow chirality distribution enabled making pure metallic (m-) and semiconducting (s-) SWNT films. Such films are expected to reflect the nature of individual SWNTs, that is their one dimensional subband structure. Therefore, it is interesting to investigate electronic transport in m- and s-SWNT films by controlling their Fermi level (EF). Chemical doping or FET is unsuitable for the purpose because of the lack of precise and reversible EF controllability, and the narrow controllable EF range, respectively. The problems are solved by our electric double layer transistor technique,^1 where the gate voltage (VG) is applied through an electrolyte. The conductance and optical absorption spectra of the resistance of s- and m-SWNT films were measured at various VG. The conductance of the s-SWNT film showed stepwise change against VG. The absorbance spectra indicate the steps correspond to reaching of the EF to a vHs. Furthermore, even m-SWNT films showed steep increases of conductance, demonstrating that the conductance strongly depend on the subband filling. ^1 H. Shimotani et al., Appl. Phys. Lett. 88, 073104 (2006).
Single-photon transport through an atomic chain coupled to a one-dimensional nanophotonic waveguide
NASA Astrophysics Data System (ADS)
Liao, Zeyang; Zeng, Xiaodong; Zhu, Shi-Yao; Zubairy, M. Suhail
2015-08-01
We study the dynamics of a single-photon pulse traveling through a linear atomic chain coupled to a one-dimensional (1D) single mode photonic waveguide. We derive a time-dependent dynamical theory for this collective many-body system which allows us to study the real time evolution of the photon transport and the atomic excitations. Our analytical result is consistent with previous numerical calculations when there is only one atom. For an atomic chain, the collective interaction between the atoms mediated by the waveguide mode can significantly change the dynamics of the system. The reflectivity of a photon can be tuned by changing the ratio of coupling strength and the photon linewidth or by changing the number of atoms in the chain. The reflectivity of a single-photon pulse with finite bandwidth can even approach 100 % . The spectrum of the reflected and transmitted photon can also be significantly different from the single-atom case. Many interesting physical phenomena can occur in this system such as the photonic band-gap effects, quantum entanglement generation, Fano-like interference, and superradiant effects. For engineering, this system may serve as a single-photon frequency filter, single-photon modulation, and may find important applications in quantum information.
2013-01-01
Single crystalline one-dimensional (1D) nanostructures of silver telluride (Ag2Te) with well-controlled shapes and sizes were synthesized via the hydrothermal reduction of sodium tellurite (Na2TeO3) in a mixed solution. The morphological evolution of various 1D nanostructures was mainly determined by properly controlling the nucleation and growth process of Ag2Te in different reaction times. Based on the transmission electron microscopy and scanning electron microscopy studies, the formation mechanism for these 1D nanostructures was rationally interpreted. In addition, the current–voltage (I-V) characteristics as a function of magnetic field of the highly single crystal Ag2Te nanowires were systematically measured. From the investigation of I-V characteristics, we have observed a rapid change of the current in low magnetic field, which can be used as the magnetic field sensor. The magneto-resistance behavior of the Ag2Te nanowires with monoclinic structure was also investigated. Comparing to the bulk and thin film materials, we found that there is generally a larger change in R (T) as the sample size is reduced, which indicates that the size of the sample has a certain impact on magneto-transport properties. Simultaneously, some possible reasons resulting in the observed large positive magneto-resistance behavior are discussed. PMID:23958372
Quantum transport of strongly interacting photons in a one-dimensional nonlinear waveguide
NASA Astrophysics Data System (ADS)
Hafezi, Mohammad; Chang, Darrick E.; Gritsev, Vladimir; Demler, Eugene; Lukin, Mikhail D.
2012-01-01
We present a theoretical technique for solving the quantum transport problem of a few photons through a one-dimensional, strongly nonlinear waveguide. We specifically consider the situation where the evolution of the optical field is governed by the quantum nonlinear Schrödinger equation. Although this kind of nonlinearity is quite general, we focus on a realistic implementation involving cold atoms loaded in a hollow-core optical fiber, where the atomic system provides a tunable nonlinearity that can be large even at a single-photon level. In particular, we show that when the interaction between photons is effectively repulsive, the transmission of multiphoton components of the field is suppressed. This leads to antibunching of the transmitted light and indicates that the system acts as a single-photon switch. On the other hand, in the case of attractive interaction, the system can exhibit either antibunching or bunching, which is in stark contrast to semiclassical calculations. We show that the bunching behavior is related to the resonant excitation of bound states of photons inside the system.
Electronic transport properties in random one-dimensional chains containing mesoscopic-ring defects
NASA Astrophysics Data System (ADS)
Huang, X.
1999-11-01
We study the electronic transport properties in one-dimensional systems with two kinds of mesoscopic ring defects: squarelike mesoscopic ring (SMR) defects and siamese-twins-like mescoscopic ring (STMR) defects. By using the transfer-matrix method, the resonant energies (where the transmission coefficient T=1) are derived successfully for both system. For the one SMR defect system, two resonant energies are found as a function of the magnetic flux Φ threading the ring defect, while for the latter case, two magnetic-flux-dependent and one magnetic-flux-independent resonant energies are predicted in the system, furthermore, if Φ takes some specific values, one of the Φ-dependent resonant energies may be the same as the Φ-independent resonant energy. The word ``resonant'' is used to describe this situation. When a finite concentration of SMR or STMR defects are randomly embedded in a perfect chain, the numerical results confirm all the analytical predictions. Finally, for the ``resonant'' case, we show numerically a rather wide perfect transmission region which is almost ten times as wide as that of the ``unresonant'' case.
Quasi one-dimensional transport in doped polythiophene and polythiophene thin film transistors
NASA Astrophysics Data System (ADS)
Yuen, Jonathan Dsu-Bei
Conducting and semiconducting polymers are important materials in the development of printed, mechanically flexible, large area electronics for various applications, such as flat panel displays and photovoltaic cells. The development of conjugated polymers of high mobility for thin-film transistor active layers, in particular, has been very rapid, starting with early mobilities of around 10-4cm2/Vs to a recent report of 1cm 2/Vs in transistors with an active layer of poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT). Metallic behavior has a long history in the field of conjugated polymers and recently, even "true" metallic transport has been observed with drho/dT > 0. Thus, development of such high-mobility polymers also raises the possibility that similar behavior will also occur in such materials. A suitable candidate is PBTTT, which is a high performance, rigid-rod conjugated polymer that possesses a thermally-induced liquid crystalline phase where the polymer chains pack into stacked structures, forming two-dimensional layered terraces which extend laterally over hundreds of nanometers, contributing greatly to its high mobility. In this work, the electrical properties of PBTTT are studied under high charge densities both as the active layer in transistors and in electrochemically doped films, in order to determine the mechanism that governs its transport. This thesis will first describe the process of experimental setup and optimization required to produce high performance transistors and doped films; data derived from this is analyzed and correlated to suitable models that may describe charge behavior in these samples. We show that the data obtained using a wide range of parameters (temperature, gate-induced carrier density, source-drain voltage and doping level) scale onto the universal curve predicted for transport in a systems with electronic structure described by the Luttinger Liquid model, a one-dimensional "metallic" system where
Carrier transport and localization in a one-dimensional electronic system over liquid helium
NASA Astrophysics Data System (ADS)
Gladchenko, S. P.; Nikolaenko, V. A.; Kovdrya, Yu. Z.; Sokolov, S. S.
2001-01-01
The carrier mobility in a nearly one-dimensional electronic system over liquid helium is measured. One-dimensional conducting channels are created by using the curvature of the surface of liquid helium covering a profiled dielectric substrate and applying a clamping electric field, which holds the electrons on the bottom of the liquid troughs. Measurements are made in a temperature interval of 0.5-1.6 K at linear densities in the range (0.5-2.5)×104 cm-1 at a generator voltage of 2-200 mV. It is shown that for a clean substrate the mobility of the electrons is governed by their interaction with helium atoms in the vapor and with ripplons; the results of the measurements are in satisfactory agreement with a theoretical calculation that assumes no localization. It is found that for substrates carrying a charge or having defects on the surface, the electron mobility decreases in comparison with the value for a clean substrate, and at temperatures T<1 K is either practically independent of temperature or decreases slightly as the temperature is lowered. It is observed that the frequency of the plasma waves propagating in the system of conducting channels decreases as the electron mobility decreases. The observed effects can be explained by localization in the one-dimensional electronic system in a random potential and the diffusive motion of the carriers in hops from one localized state to another.
Absolutely continuous spectrum and ballistic transport in a one-dimensional quasiperiodic system
NASA Astrophysics Data System (ADS)
Pal, Biplab; Chakrabarti, Arunava
2013-02-01
We analyse a quasiperiodic arrangement of four atomic sites sitting at the vertices of a diamond shaped plaquette and single isolated sites, occupying a one dimensional backbone following a Fibonacci quasicrystal pattern. We work within a tight binding formalism. It is shown that, even with this simple deviation from pure one dimension, a definite relation between the numerical values of the system parameters will render all the single particle states completely extended. The spectrum will be absolutely continuous with the transmission completely ballistic throughout the band, completely violating the Cantor set character of the usual Fibonacci quasiperiodic chains.
NASA Astrophysics Data System (ADS)
Chen, Yunmin; Xie, Haijian; Ke, Han; Chen, Renpeng
2009-09-01
An analytical solution for one-dimensional contaminant diffusion through multi-layered media is derived regarding the change of the concentration of contaminants at the top boundary with time. The model accounts for the arbitrary initial conditions and the conditions of zero concentration and zero mass flux on the bottom boundary. The average degree of diffusion of the layered system is introduced on the basis of the solution. The results obtained by the presented analytical solutions agree well with those obtained by the numerical methods presented in the literature papers. The application of the analytical solution to the problem of landfill liner design is illustrated by considering a composite liner consisting of geomembrane and compacted clay liner. The results show that the 100-year mass flux of benzene at the bottom of the composite liner is 45 times higher than that of acetone for the same composite liner. The half-life of the contaminant has a great influence on the solute flux of benzene diffused into the underlying aquifer. Results also indicates that an additional 2.9-5.0 m of the conventional (untreated) compacted clay liner under the geomembrane is required to achieve the same level of protection as provided by 0.60 m of the Hexadecyltrimethylammonium (HDTMA)-treated compacted clay liners in conjunction with the geomembrane. Applications of the solution are also presented in the context of a contaminated two-layered media to demonstrate that different boundary and initial conditions can greatly affect the decontamination rate of the problem. The method is relatively simple to apply and can be used for performing equivalency analysis of landfill liners, preliminary design of groundwater remediation system, evaluating experimental results, and verifying more complex numerical models.
Finite-temperature charge transport in the one-dimensional Hubbard model
NASA Astrophysics Data System (ADS)
Jin, F.; Steinigeweg, R.; Heidrich-Meisner, F.; Michielsen, K.; De Raedt, H.
2015-11-01
We study the charge conductivity of the one-dimensional repulsive Hubbard model at finite temperature using the method of dynamical quantum typicality, focusing at half filling. This numerical approach allows us to obtain current autocorrelation functions from systems with as many as 18 sites, way beyond the range of standard exact diagonalization. Our data clearly suggest that the charge Drude weight vanishes with a power law as a function of system size. The low-frequency dependence of the conductivity is consistent with a finite dc value and thus with diffusion, despite large finite-size effects. Furthermore, we consider the mass-imbalanced Hubbard model for which the charge Drude weight decays exponentially with system size, as expected for a nonintegrable model. We analyze the conductivity and diffusion constant as a function of the mass imbalance and we observe that the conductivity of the lighter component decreases exponentially fast with the mass-imbalance ratio. While in the extreme limit of immobile heavy particles, the Falicov-Kimball model, there is an effective Anderson-localization mechanism leading to a vanishing conductivity of the lighter species, we resolve finite conductivities for an inverse mass ratio of η ≳0.25 .
Proceedings of the Advanced Seminar on one-dimensional, open-channel Flow and transport modeling
Schaffranek, R. W., (compiler)
1989-01-01
If several limiting assumptions are valid, flow in a waterbody can be represented by one-dimensional equations of unsteady open-channel flow. The equations can be expressed in a number of forms of varying complexity, depending upon the choice of dependent variables used in their formulation and on possible additional limiting assumptions which allow various terms to be excluded. The assumptions are related to the physical characteristics of water and water flow, characteristics of the flow channel, and the effects of boundary friction and turbulence. With the assumptions, unsteady open-channel flow can be described by two dependent variables, either flow discharge and water surface elevation or flow velocity and cross-sectional area. These variables are expressed as a function of distance and time at a given cross section. The equations are derived from the principles of conservation of mass and momentum. Additional variables may be included to account for wind effects , the Coriolis effect, overbank storage, and other influences. Equations are formulated for unsteady gradually varied flow, steady gradually varied flow, steady uniform flow (the Manning equation), and other variations. More rudimentary continuity-based equations, such as the kinematic wave equation and storage-routing equations, are inherently more empirical and considerable caution must be exercised in their use. Models employing the full dynamic equations for simulating unsteady open-channel flow should be used whenever possible. (See also W90-10652) (Tappert-PTT)
NASA Astrophysics Data System (ADS)
Liu, Jingyi; Zhang, Wenzhao; Li, Xun; Yan, Weibin; Zhou, Ling
2016-06-01
We investigate the two-photon transport properties inside one-dimensional waveguide side coupled to an atom-optomechanical system, aiming to control the two-photon transport by using the nonlinearity. By generalizing the scheme of Phys. Rev. A 90, 033832, we show that Kerr nonlinearity induced by the four-level atoms is remarkable and can make the photons antibunching, while the nonlinear interaction of optomechanical coupling participates in both the single photon and the two photon processes so that it can make the two photons exhibiting bunching and antibunching.
Heat and particle transport in a one-dimensional hard-point gas model with on-site potential
Wang, Lei
2015-05-15
Heat and particle transport in a one-dimensional hard-point gas of elastically colliding particles are studied. In the nonequal mass case, due to the presence of on-site potential, the heat conduction of the model obeys the Fourier law and all the transport coefficients asymptotically approach constants in the thermodynamic limit. The thermoelectric figure of merit ZT increases slowly with the system length L and is proportional to the height of the potential barriers H in high H regime. These findings may serve as a guide for future theoretical and experimental studies.
Electronic transport properties of one dimensional lithium nanowire using density functional theory
Thakur, Anil; Kumar, Arun; Chandel, Surjeet; Ahluwalia, P. K.
2015-05-15
Single nanowire electrode devices are a unique platform for studying as energy storage devices. Lithium nanowire is of much importance in lithium ion batteries and therefore has received a great deal of attention in past few years. In this paper we investigated structural and electronic transport properties of Li nanowire using density functional theory (DFT) with SIESTA code. Electronic transport properties of Li nanowire are investigated theoretically. The calculations are performed in two steps: first an optimized geometry for Li nanowire is obtained using DFT calculations, and then the transport relations are obtained using NEGF approach. SIESTA and TranSIESTA simulation codes are used in the calculations correspondingly. The electrodes are chosen to be the same as the central region where transport is studied, eliminating current quantization effects due to contacts and focusing the electronic transport study to the intrinsic structure of the material. By varying chemical potential in the electrode regions, an I-V curve is traced which is in agreement with the predicted behavior. Agreement of bulk properties of Li with experimental values make the study of electronic and transport properties in lithium nanowires interesting because they are promising candidates as bridging pieces in nanoelectronics. Transmission coefficient and V-I characteristic of Li nano wire indicates that Li nanowire can be used as an electrode device.
Electronic transport properties of one dimensional lithium nanowire using density functional theory
NASA Astrophysics Data System (ADS)
Thakur, Anil; Kumar, Arun; Chandel, Surjeet; Ahluwalia, P. K.
2015-05-01
Single nanowire electrode devices are a unique platform for studying as energy storage devices. Lithium nanowire is of much importance in lithium ion batteries and therefore has received a great deal of attention in past few years. In this paper we investigated structural and electronic transport properties of Li nanowire using density functional theory (DFT) with SIESTA code. Electronic transport properties of Li nanowire are investigated theoretically. The calculations are performed in two steps: first an optimized geometry for Li nanowire is obtained using DFT calculations, and then the transport relations are obtained using NEGF approach. SIESTA and TranSIESTA simulation codes are used in the calculations correspondingly. The electrodes are chosen to be the same as the central region where transport is studied, eliminating current quantization effects due to contacts and focusing the electronic transport study to the intrinsic structure of the material. By varying chemical potential in the electrode regions, an I-V curve is traced which is in agreement with the predicted behavior. Agreement of bulk properties of Li with experimental values make the study of electronic and transport properties in lithium nanowires interesting because they are promising candidates as bridging pieces in nanoelectronics. Transmission coefficient and V-I characteristic of Li nano wire indicates that Li nanowire can be used as an electrode device.
One-dimensional velocity profiles in open-channel flow with intense transport of coarse sediment
NASA Astrophysics Data System (ADS)
Zrostlík, Štěpán; Bareš, Vojtěch; Krupička, Jan; Picek, Tomáš; Matoušek, Václav
2015-05-01
The paper deals with laboratory experiments in open-channel flows with intense transport of model sediment (coarse plastic particles) in our new tilting flume. The major objectives of the paper are: 1. to discuss applied measuring methods, 2. to analyze measured velocity profiles. Ad 1. A profile of the longitudinal component of local velocity was measured across the vertical axis of symmetry of a flume cross section using three independent measuring methods (Prandtl tube, Ultrasonic Velocity Profiler, Acoustic Doppler Velocity Profiler). Due to strong stratification of the flow in the flume, parts of the profile are measured in regions of very different local concentrations of sediment (from virtually zero concentration to the maximum concentration of bed packing). This makes measurements complicated, particularly for ultrasonic measuring techniques. Profiles measured using the different techniques are evaluated and mutually compared. Ad 2. The layered character of the flow causes that shapes of velocity profiles tend to be different in the transport layer (rich on transported particles) above the bed and in the solids-free region between the top of the transport layer and the water surface. Shapes of the profiles are analyzed. Particular attention is paid to the logarithmic profile in the solids-free region of the flow cross section. The profile can be handled using the law of the hydraulically-rough wall. In the law, the eroded top of the bed with the transport layer is supposed to be the rough boundary and appropriate values are sought for its variables.
Deterministic proton transport solving a one dimensional Fokker-Planck equation
Marr, D.; Prael, R.; Adams, K.; Alcouffe, R.
1997-10-01
The transport of protons through matter is characterized by many interactions which cause small deflections and slight energy losses. The few which are catastrophic or cause large angle scattering can be viewed as extinction for many applications. The transport of protons at this level of approximation can be described by a Fokker Planck Equation. This equation is solved using a deterministic multigroup differencing scheme with a highly resolved set of discrete ordinates centered around the beam direction which is adequate to properly account for deflections and energy losses due to multiple Coulomb scattering. Comparisons with LAHET for a large variety of problems ranging from 800 MeV protons on a copper step wedge to 10 GeV protons on a sandwich of material are presented. The good agreement with the Monte Carlo code shows that the solution method is robust and useful for approximate solutions of selected proton transport problems.
Benchmarking a Visual-Basic based multi-component one-dimensional reactive transport modeling tool
NASA Astrophysics Data System (ADS)
Torlapati, Jagadish; Prabhakar Clement, T.
2013-01-01
We present the details of a comprehensive numerical modeling tool, RT1D, which can be used for simulating biochemical and geochemical reactive transport problems. The code can be run within the standard Microsoft EXCEL Visual Basic platform, and it does not require any additional software tools. The code can be easily adapted by others for simulating different types of laboratory-scale reactive transport experiments. We illustrate the capabilities of the tool by solving five benchmark problems with varying levels of reaction complexity. These literature-derived benchmarks are used to highlight the versatility of the code for solving a variety of practical reactive transport problems. The benchmarks are described in detail to provide a comprehensive database, which can be used by model developers to test other numerical codes. The VBA code presented in the study is a practical tool that can be used by laboratory researchers for analyzing both batch and column datasets within an EXCEL platform.
Bifurcation theory of a one-dimensional transport model for the L-H transition
Weymiens, W.; Blank, H. J. de; Hogeweij, G. M. D.
2013-08-15
Transitions between low and high-confinement (L-H transitions) in magnetically confined plasmas can appear as three qualitatively different types: sharp, smooth, and oscillatory. Bifurcation analysis unravels these possible transition types and how they are situated in parameter space. In this paper the bifurcation analysis is applied to a 1-dimensional model for the radial transport of energy and density near the edge of magnetically confined plasmas. This phenomenological L-H transition model describes the reduction of the turbulent transport by E×B-flow shear self-consistently with the evolution of the radial electric field. Therewith, the exact parameter space, including the threshold values of the control parameters, of the possible L-H transitions in the model is determined. Furthermore, a generalised equal area rule is derived to describe the evolution of the transport barrier in space and time self-consistently. Applying this newly developed rule to the model analysed in this paper reveals a naturally occurring transition to an extra wide transport barrier that may correspond to the improved confinement known as the very-high-confinement mode.
One dimensional heavy ion beam transport: Energy independent model. M.S. Thesis
NASA Technical Reports Server (NTRS)
Farhat, Hamidullah
1990-01-01
Attempts are made to model the transport problem for heavy ion beams in various targets, employing the current level of understanding of the physics of high-charge and energy (HZE) particle interaction with matter are made. An energy independent transport model, with the most simplified assumptions and proper parameters is presented. The first and essential assumption in this case (energy independent transport) is the high energy characterization of the incident beam. The energy independent equation is solved and application is made to high energy neon (NE-20) and iron (FE-56) beams in water. The numerical solutions is given and compared to a numerical solution to determine the accuracy of the model. The lower limit energy for neon and iron to be high energy beams is calculated due to Barkas and Burger theory by LBLFRG computer program. The calculated values in the density range of interest (50 g/sq cm) of water are: 833.43 MeV/nuc for neon and 1597.68 MeV/nuc for iron. The analytical solutions of the energy independent transport equation gives the flux of different collision terms. The fluxes of individual collision terms are given and the total fluxes are shown in graphs relative to different thicknesses of water. The values for fluxes are calculated by the ANASTP computer code.
One-dimensional transport in hybrid metal-semiconductor nanotube systems
NASA Astrophysics Data System (ADS)
Gelin, M. F.; Bondarev, I. V.
2016-03-01
We develop an electron transport theory for the hybrid system of a semiconducting carbon nanotube that encapsulates a one-atom-thick metallic wire. The theory predicts Fano resonances in electron transport through the system, whereby the interaction of electrons on the wire with nanotube plasmon generated near fields blocks some of the wire transmission channels to open up the new coherent plasmon-mediated channel in the nanotube forbidden gap outside the wire transmission band. Such a channel makes the entire hybrid system transparent in the energy domain where neither wire nor nanotube is individually transparent. This effect can be used to control and optimize charge transfer in hybrid nanodevices built on metal-semiconductor nanotube systems.
Revealing origin of quasi-one dimensional current transport in defect rich two dimensional materials
Lotz, Mikkel R.; Boll, Mads; Bøggild, Peter; Petersen, Dirch H.; Hansen, Ole; Kjær, Daniel
2014-08-04
The presence of defects in graphene have for a long time been recognized as a bottleneck for its utilization in electronic and mechanical devices. We recently showed that micro four-point probes may be used to evaluate if a graphene film is truly 2D or if defects in proximity of the probe will lead to a non-uniform current flow characteristic of lower dimensionality. In this work, simulations based on a finite element method together with a Monte Carlo approach are used to establish the transition from 2D to quasi-1D current transport, when applying a micro four-point probe to measure on 2D conductors with an increasing amount of line-shaped defects. Clear 2D and 1D signatures are observed at low and high defect densities, respectively, and current density plots reveal the presence of current channels or branches in defect configurations yielding 1D current transport. A strong correlation is found between the density filling factor and the simulation yield, the fraction of cases with 1D transport and the mean sheet conductance. The upper transition limit is shown to agree with the percolation threshold for sticks. Finally, the conductance of a square sample evaluated with macroscopic edge contacts is compared to the micro four-point probe conductance measurements and we find that the micro four-point probe tends to measure a slightly higher conductance in samples containing defects.
O'Dell, R.D.; Brinkley, F.W. Jr.; Marr, D.R.
1982-02-01
ONEDANT is designed for the CDC-7600, but the program has been implemented and run on the IBM-370/190 and CRAY-I computers. ONEDANT solves the one-dimensional multigroup transport equation in plane, cylindrical, spherical, and two-angle plane geometries. Both regular and adjoint, inhomogeneous and homogeneous (k/sub eff/ and eigenvalue search) problems subject to vacuum, reflective, periodic, white, albedo, or inhomogeneous boundary flux conditions are solved. General anisotropic scattering is allowed and anisotropic inhomogeneous sources are permitted. ONEDANT numerically solves the one-dimensional, multigroup form of the neutral-particle, steady-state form of the Boltzmann transport equation. The discrete-ordinates approximation is used for treating the angular variation of the particle distribution and the diamond-difference scheme is used for phase space discretization. Negative fluxes are eliminated by a local set-to-zero-and-correct algorithm. A standard inner (within-group) iteration, outer (energy-group-dependent source) iteration technique is used. Both inner and outer iterations are accelerated using the diffusion synthetic acceleration method. (WHK)
Quantum ballistic transport by interacting two-electron states in quasi-one-dimensional channels
Huang, Danhong; Gumbs, Godfrey; Abranyos, Yonatan; Pepper, Michael; Kumar, Sanjeev
2015-11-15
For quantum ballistic transport of electrons through a short conduction channel, the role of Coulomb interaction may significantly modify the energy levels of two-electron states at low temperatures as the channel becomes wide. In this regime, the Coulomb effect on the two-electron states is calculated and found to lead to four split energy levels, including two anticrossing-level and two crossing-level states. Moreover, due to the interplay of anticrossing and crossing effects, our calculations reveal that the ground two-electron state will switch from one anticrossing state (strong confinement) to a crossing state (intermediate confinement) as the channel width gradually increases and then back to the original anticrossing state (weak confinement) as the channel width becomes larger than a threshold value. This switching behavior leaves a footprint in the ballistic conductance as well as in the diffusion thermoelectric power of electrons. Such a switching is related to the triple spin degeneracy as well as to the Coulomb repulsion in the central region of the channel, which separates two electrons away and pushes them to different channel edges. The conductance reoccurrence region expands from the weak to the intermediate confinement regime with increasing electron density.
Yoo-Kong, Sikarin; Liewrian, Watchara
2015-12-01
We report on a theoretical investigation concerning the polaronic effect on the transport properties of a charge carrier in a one-dimensional molecular chain. Our technique is based on the Feynman's path integral approach. Analytical expressions for the frequency-dependent mobility and effective mass of the carrier are obtained as functions of electron-phonon coupling. The result exhibits the crossover from a nearly free particle to a heavily trapped particle. We find that the mobility depends on temperature and decreases exponentially with increasing temperature at low temperature. It exhibits large polaronic-like behaviour in the case of weak electron-phonon coupling. These results agree with the phase transition (A.S. Mishchenko et al., Phys. Rev. Lett. 114, 146401 (2015)) of transport phenomena related to polaron motion in the molecular chain. PMID:26701710
Kavitha, L; Priya, R; Ayyappan, N; Gopi, D; Jayanthi, S
2016-01-01
The dynamics of protons in a one-dimensional hydrogen-bonded (HB) polypeptide chain (PC) is investigated theoretically. A new Hamiltonian is formulated with the inclusion of higher-order molecular interactions between peptide groups (PGs). The wave function of the excitation state of a single particle is replaced by a new wave function of a two-quanta quasi-coherent state. The dynamics is governed by a higher-order nonlinear Schrödinger equation and the energy transport is performed by the proton soliton. A nonlinear multiple-scale perturbation analysis has been performed and the evolution of soliton parameters such as velocity and amplitude is explored numerically. The proton soliton is thermally stable and very robust against these perturbations. The energy transport by the proton soliton is more appropriate to understand the mechanism of energy transfer in biological processes such as muscle contraction, DNA replication, and neuro-electric pulse transfer on biomembranes. PMID:26198375
NASA Astrophysics Data System (ADS)
Xiong, Daxing
2016-04-01
Previous studies have suggested a crossover from superdiffusive to normal heat transport in one-dimensional (1D) anharmonic oscillator systems with a double-well type interatomic interaction like V(ξ )=-{ξ2}/2+{ξ4}/4 , when the system temperature is varied. In order to better understand this unusual manner of thermal transport, here we perform a direct dynamics simulation to examine how the spreading processes of the three physical quantities, i.e. the heat, the total energy and the momentum, would depend on temperature. We find three main points that are worth noting. (i) The crossover from superdiffusive to normal heat transport is well verified from a new perspective of heat spread. (ii) The spreading of the total energy is found to be very distinct from heat diffusion, especially under some temperature regimes, energy is strongly localized, while heat can be superdiffusive. So one should take care to derive a general connection between the heat conduction and energy diffusion. (iii) In a narrow range of temperatures, the spreading of momentum implies clear unusual non-ballistic behaviors; however, such unusual transport of momentum cannot be directly related to the normal transport of heat. An analysis of phonon spectra suggests that one should also take the effects of phonon softening into account. All of these results may provide insights into establishing the connection between the macroscopic heat transport and the underlying dynamics in 1D systems.
Correlated two-photon transport in a one-dimensional waveguide side-coupled to a nonlinear cavity
Liao Jieqiao; Law, C. K.
2010-11-15
We investigate the transport properties of two photons inside a one-dimensional waveguide side-coupled to a single-mode nonlinear cavity. The cavity is filled with a nonlinear Kerr medium. Based on the Laplace transform method, we present an analytic solution for the quantum states of the two transmitted and reflected photons, which are initially prepared in a Lorentzian wave packet. The solution reveals how quantum correlation between the two photons emerges after the scattering by the nonlinear cavity. In particular, we show that the output wave function of the two photons in position space can be localized in relative coordinates, which is a feature that might be interpreted as a two-photon bound state in this waveguide-cavity system.
Nonlinear transport in quasi-one-dimensional Nb{sub 2}PdS{sub 5} nanowires
Ning, Wei; Yu, Hongyan; Wang, Ning; Han, Yuyan; Yang, Jiyong; Du, Haifeng; Zhang, Changjin; Liu, Yequn; Yang, Kun; Tian, Mingliang Zhang, Yuheng
2014-10-27
Nb{sub 2}PdS{sub 5} is a newly discovered quasi-one-dimensional (quasi-1D) superconductor with a high upper critical field along the chain direction. Here, we report the size-dependent electronic properties of Nb{sub 2}PdS{sub 5} nanowires obtained by ultrasonically cleaving the bulk crystals. The nanowires exhibit a superconductor to insulator transition as the cross-sectional area decreases. Moreover, for the thinner nanowires with insulating state, the transport properties exhibit a power-law dependence on both temperature and bias voltage at an intermediate temperature (<30 K), followed by a conduction saturation below 10 K. We found that such an apparent power-law behavior can be described by the extended variable range hopping theory developed recently for the multichannel quasi-1D systems, where the localization of electrons is expected to be dominant instead of the Luttinger liquid nature.
Length-dependent thermal transport in one-dimensional self-assembly of planar π-conjugated molecules
NASA Astrophysics Data System (ADS)
Tang, Hao; Xiong, Yucheng; Zu, Fengshuo; Zhao, Yang; Wang, Xiaomeng; Fu, Qiang; Jie, Jiansheng; Yang, Juekuan; Xu, Dongyan
2016-06-01
This work reports a thermal transport study in quasi-one-dimensional organic nanostructures self-assembled from conjugated planar molecules via π-π interactions. Thermal resistances of single crystalline copper phthalocyanine (CuPc) and perylenetetracarboxylic diimide (PTCDI) nanoribbons are measured via a suspended thermal bridge method. We experimentally observed the deviation from the linear length dependence for the thermal resistance of single crystalline β-phase CuPc nanoribbons, indicating possible subdiffusion thermal transport. Interestingly, a gradual transition to the linear length dependence is observed with the increase of the lateral dimensions of CuPc nanoribbons. The measured thermal resistance of single crystalline CuPc nanoribbons shows an increasing trend with temperature. However, the trend of temperature dependence of thermal resistance is reversed after electron irradiation, i.e., decreasing with temperature, indicating that the single crystalline CuPc nanoribbons become `amorphous'. Similar behavior is also observed for PTCDI nanoribbons after electron irradiation, proving that the electron beam can induce amorphization of single crystalline self-assembled nanostructures of planar π-conjugated molecules. The measured thermal resistance of the `amorphous' CuPc nanoribbon demonstrates a roughly linear dependence on the nanoribbon length, suggesting that normal diffusion dominates thermal transport.This work reports a thermal transport study in quasi-one-dimensional organic nanostructures self-assembled from conjugated planar molecules via π-π interactions. Thermal resistances of single crystalline copper phthalocyanine (CuPc) and perylenetetracarboxylic diimide (PTCDI) nanoribbons are measured via a suspended thermal bridge method. We experimentally observed the deviation from the linear length dependence for the thermal resistance of single crystalline β-phase CuPc nanoribbons, indicating possible subdiffusion thermal transport
NASA Astrophysics Data System (ADS)
Wang, Dapeng
This thesis focuses on the transport properties and electronic device applications of two I classes of granular materials: multiwalled carbon nanotubes (CNTs) and nanotube Y-junctions, and granular metal thin films. In the first part of thesis, the work will focus on the transport properties of quasi-one-dimensional transport in template-deposited CNT material. First, we employ a multiwalled CNT Y-junction as a dual gate to create a lateral electrostatic double-barrier quantum well and control the conductance in a high mobility GaAs electron channel, observing low-temperature conductance features corresponding to electron tunneling into the electrostatically confined one-dimensional subbands. Second, as previous studies of three-terminal CNT Y-junctions revealed differential current gain consistent with hopping conduction in the Y-junction area, we study the transport properties of the granular CNT material as a function of temperature, applied electric and magnetic fields, as well as the granularity which we changed using high-temperature annealing. The observed transport characteristics are analyzed in terms of variable range hopping in the unusual geometry of a pseudo-two-dimensional granular material wrapped into a cylinder. The second part of the thesis focuses on granular metal films for flexible interconnects. As opposed to planar electronics on rigid substrates, flexible electronics capable of withstanding significant and repeated mechanical strains require new interconnect technology. We focused on multi-layered metal interconnects, including a granular discontinuous ductile indium layer, fabricated on a variety of compliant substrates. Our experimental results demonstrate that the multi-layered films maintain a continuous electrical path through the interconnect lines via a bridging mechanism observed in the specimen after a mechanical loading force is applied. As a result, very high strains (over 20%) can be accommodated with minimal change in resistance
NASA Astrophysics Data System (ADS)
Bobik, P.; Boschini, M. J.; Della Torre, S.; Gervasi, M.; Grandi, D.; La Vacca, G.; Pensotti, S.; Putis, M.; Rancoita, P. G.; Rozza, D.; Tacconi, M.; Zannoni, M.
2016-05-01
The cosmic rays propagation inside the heliosphere is well described by a transport equation introduced by Parker in 1965. To solve this equation, several approaches were followed in the past. Recently, a Monte Carlo approach became widely used in force of its advantages with respect to other numerical methods. In this approach the transport equation is associated to a fully equivalent set of stochastic differential equations (SDE). This set is used to describe the stochastic path of quasi-particle from a source, e.g., the interstellar space, to a specific target, e.g., a detector at Earth. We present a comparison of forward-in-time and backward-in-time methods to solve the cosmic rays transport equation in the heliosphere. The Parker equation and the related set of SDE in the several formulations are treated in this paper. For the sake of clarity, this work is focused on the one-dimensional solutions. Results were compared with an alternative numerical solution, namely, Crank-Nicolson method, specifically developed for the case under study. The methods presented are fully consistent each others for energy greater than 400 MeV. The comparison between stochastic integrations and Crank-Nicolson allows us to estimate the systematic uncertainties of Monte Carlo methods. The forward-in-time stochastic integrations method showed a systematic uncertainty <5%, while backward-in-time stochastic integrations method showed a systematic uncertainty <1% in the studied energy range.
Tang, Hao; Xiong, Yucheng; Zu, Fengshuo; Zhao, Yang; Wang, Xiaomeng; Fu, Qiang; Jie, Jiansheng; Yang, Juekuan; Xu, Dongyan
2016-06-01
This work reports a thermal transport study in quasi-one-dimensional organic nanostructures self-assembled from conjugated planar molecules via π-π interactions. Thermal resistances of single crystalline copper phthalocyanine (CuPc) and perylenetetracarboxylic diimide (PTCDI) nanoribbons are measured via a suspended thermal bridge method. We experimentally observed the deviation from the linear length dependence for the thermal resistance of single crystalline β-phase CuPc nanoribbons, indicating possible subdiffusion thermal transport. Interestingly, a gradual transition to the linear length dependence is observed with the increase of the lateral dimensions of CuPc nanoribbons. The measured thermal resistance of single crystalline CuPc nanoribbons shows an increasing trend with temperature. However, the trend of temperature dependence of thermal resistance is reversed after electron irradiation, i.e., decreasing with temperature, indicating that the single crystalline CuPc nanoribbons become 'amorphous'. Similar behavior is also observed for PTCDI nanoribbons after electron irradiation, proving that the electron beam can induce amorphization of single crystalline self-assembled nanostructures of planar π-conjugated molecules. The measured thermal resistance of the 'amorphous' CuPc nanoribbon demonstrates a roughly linear dependence on the nanoribbon length, suggesting that normal diffusion dominates thermal transport. PMID:27240641
NASA Astrophysics Data System (ADS)
Vettchinkina, V.; Kartsev, A.; Karlsson, D.; Verdozzi, C.
2013-03-01
We investigate the static and dynamical behavior of one-dimensional interacting fermions in disordered Hubbard chains contacted to semi-infinite leads. The chains are described via the repulsive Anderson-Hubbard Hamiltonian, using static and time-dependent lattice density-functional theory. The dynamical behavior of our quantum transport system is studied using an integration scheme available in the literature, which we modify via the recursive Lanczos method to increase its efficiency. To quantify the degree of localization due to disorder and interactions, we adapt the definition of the inverse participation ratio to obtain an indicator which is suitable for quantum transport geometries and can be obtained within density-functional theory. Lattice density-functional theories are reviewed and, for contacted chains, we analyze the merits and limits of the coherent-potential approximation in describing the spectral properties, with interactions included via lattice density-functional theory. Our approach appears to be able to capture complex features due to the competition between disorder and interactions. Specifically, we find a dynamical enhancement of delocalization in the presence of a finite bias and an increase of the steady-state current induced by interparticle interactions. This behavior is corroborated by results for the time-dependent densities and for the inverse participation ratio. Using short isolated chains with interaction and disorder, a brief comparative analysis between time-dependent density-functional theory and exact results is then given, followed by general concluding remarks.
NASA Astrophysics Data System (ADS)
Lehrer, E.; Hönninger, G.; Platt, U.
2004-12-01
Sudden depletions of tropospheric ozone during spring were reported from the Arctic and also from Antarctic coastal sites. Field studies showed that those depletion events are caused by reactive halogen species, especially bromine compounds. However the source and seasonal variation of reactive halogen species is still not completely understood. There are several indications that the halogen mobilisation from the sea ice surface of the polar oceans may be the most important source for the necessary halogens. Here we present a one dimensional model study aimed at determining the primary source of reactive halogens. The model includes gas phase and heterogeneous bromine and chlorine chemistry as well as vertical transport between the surface and the top of the boundary layer. The autocatalytic Br release by photochemical processes (bromine explosion) and subsequent rapid bromine catalysed ozone depletion is well reproduced in the model and the major source of reactive bromine appears to be the sea ice surface. The sea salt aerosol alone is not sufficient to yield the high levels of reactive bromine in the gas phase necessary for fast ozone depletion. However, the aerosol efficiently "recycles" less reactive bromine species (e.g. HBr) and feeds them back into the ozone destruction cycle. Isolation of the boundary layer air from the free troposphere by a strong temperature inversion was found to be critical for boundary layer ozone depletion to happen. The combination of strong surface inversions and presence of sunlight occurs only during polar spring.
NASA Astrophysics Data System (ADS)
Okamoto, Kentaro; Tanaka, Toshiyuki; Fujita, Wataru; Awaga, Kunio; Inabe, Tamotsu
2007-08-01
We here examine the electrical and magnetic properties of the isostructural NT3•MCl4 ( NT=naphtho [2,1- d :6,5- d' ]bis([1,2,3] dithiazole and M=Ga and Fe). The crystal structure of NT3•MCl4 consists of one-dimensional π -stacking chains of NT with strong interchain interactions caused by electrostatic Sδ+•••Nδ- contacts. This structure includes four NT molecules with significant differences in molecular structure and charge, exhibiting a characteristic charge ordering, namely, three-dimensional alternation of charge-rich (or -intermediate) and -poor molecules. NT3•GaCl4 and NT3•FeCl4 are found to be semiconductors with σRT˜0.5Scm-1 and to exhibit a nonlinear electrical transport at room temperature with a very low threshold field of 80Vcm-1 for the negative differential resistance. This threshold field significantly increases with a decrease in temperature. The X -band electron paramagnetic resonance (EPR) spectra of NT3•GaCl4 consist of a single-line absorption ascribable to that of the NT+ cation. When the sample is exposed to a current at room temperature, this signal exhibits a drastic decrease in intensity with little change in linewidth. This is attributed to the inhomogeneous formation of EPR-silent conducting pathways for the nonlinear transport. The temperature dependence of the EPR spin susceptibility χs of NT3•GaCl4 suggests a transition toward a spin-gap state below 20K ; χs exhibits a Bonner-Fisher-type temperature dependence above 20K , but gradually collapses to zero below this temperature.
This technical report describes the new one-dimensional (1D) hydrodynamic and sediment transport model EFDC1D. This model that can be applied to stream networks. The model code and two sample data sets are included on the distribution CD. EFDC1D can simulate bi-directional unstea...
Technology Transfer Automated Retrieval System (TEKTRAN)
Analytical solutions of the advection-dispersion solute transport equation remain useful for a large number of applications in science and engineering. In this paper we extend the Duhamel theorem, originally established for diffusion type problems, to the case of advective-dispersive transport subj...
NASA Astrophysics Data System (ADS)
Ncube, Siphephile; Chimowa, George; Chiguvare, Zivayi; Bhattacharyya, Somnath
2014-07-01
The superiority of the electronic transport properties of single-walled carbon nanotube (SWNT) ropes over SWNT mats is verified from low temperature and frequency-dependent transport. The overall change of resistance versus in nanotube mats shows that 3D variable range hopping is the dominant conduction mechanism within the 2-300 K range. The magneto-resistance (MR) is found to be predominantly negative with a parabolic nature, which can also be described by the hopping model. Although the positive upturn of the MR at low temperatures establishes the contribution from quantum interference, the inherent quantum transport in individual tubes is suppressed at elevated temperatures. Therefore, to minimize multi-channel effects from inter-tube interactions and other defects, two-terminal devices were fabricated from aligned SWNT (extracted from a mat) for low temperature transport as well as high-frequency measurements. In contrast to the mat, the aligned ropes exhibit step-like features in the differential conductance within the 80-300 K temperature range. The effects of plasmon propagation, unique to one dimension, were identified in electronic transport as a non-universal power-law dependence of the differential conductance on temperature and source-drain voltage. The complex impedance showed high power transmission capabilities up to 65 GHz as well as oscillations in the frequency range up to 30 GHz. The measurements suggest that aligned SWNT ropes have a realistic potential for high-speed device applications.
Ncube, Siphephile; Chimowa, George; Chiguvare, Zivayi; Bhattacharyya, Somnath
2014-07-14
The superiority of the electronic transport properties of single-walled carbon nanotube (SWNT) ropes over SWNT mats is verified from low temperature and frequency-dependent transport. The overall change of resistance versus in nanotube mats shows that 3D variable range hopping is the dominant conduction mechanism within the 2–300 K range. The magneto-resistance (MR) is found to be predominantly negative with a parabolic nature, which can also be described by the hopping model. Although the positive upturn of the MR at low temperatures establishes the contribution from quantum interference, the inherent quantum transport in individual tubes is suppressed at elevated temperatures. Therefore, to minimize multi-channel effects from inter-tube interactions and other defects, two-terminal devices were fabricated from aligned SWNT (extracted from a mat) for low temperature transport as well as high-frequency measurements. In contrast to the mat, the aligned ropes exhibit step-like features in the differential conductance within the 80–300 K temperature range. The effects of plasmon propagation, unique to one dimension, were identified in electronic transport as a non-universal power-law dependence of the differential conductance on temperature and source-drain voltage. The complex impedance showed high power transmission capabilities up to 65 GHz as well as oscillations in the frequency range up to 30 GHz. The measurements suggest that aligned SWNT ropes have a realistic potential for high-speed device applications.
Dupree, S. A.
1980-06-01
The use of adjoint techniques to determine the interaction of externally incident collimated beams of particles with cylindrical targets is a convenient means of examining a class of problems important in radiation transport studies. The theory relevant to such applications is derived, and a simple example involving a fissioning target is discussed. Results from both discrete ordinates and Monte Carlo transport-code calculations are presented, and comparisons are made with results obtained from forward calculations. The accuracy of the discrete ordinates adjoint results depends on the order of angular quadrature used in the calculation. Reasonable accuracy by using EQN quadratures can be expected from order S/sub 16/ or higher.
Kerstein, A.R.
1996-12-31
One-Dimensional Turbulence is a new turbulence modeling strategy involving an unsteady simulation implemented in one spatial dimension. In one dimension, fine scale viscous and molecular-diffusive processes can be resolved affordably in simulations at high turbulence intensity. The mechanistic distinction between advective and molecular processes is thereby preserved, in contrast to turbulence models presently employed. A stochastic process consisting of mapping {open_quote}events{close_quote} applied to a one-dimensional velocity profile represents turbulent advection. The local event rate for given eddy size is proportional to the velocity difference across the eddy. These properties cause an imposed shear to induce an eddy cascade analogous in many respects to the eddy cascade in turbulent flow. Many scaling and fluctuation properties of self-preserving flows, and of passive scalars introduced into these flows, are reproduced.
Jo, Wan-Kuen; Kang, Hyun-Jung; Chun, Ho-Hwan
2014-01-01
In this study, one-dimensional rod-shaped titania (RST) and nitrogen-doped RST (N-RST) with different ratios of N to Ti were prepared using a hydrothermal method and their applications for purification of indoor toxic organic contaminants in a plug-flow reactor were examined under visible or ultraviolet (UV) irradiation. The surface characteristics of as-prepared photocatalysts were investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), and UV-visible spectroscopy. The TEM images revealed that both pure RSTs and N-RSTs displayed uniform and nanorod-shaped structures. XRD revealed that the photocatalysts had crystalline TiO2. The UV-visible spectra demonstrated that the N-RSTs could be activated in the visible region. In most cases, N-RSTs showed higher degradation efficiencies than pure RSTs under visible-light and UV irradiation. N-RSTs with a N-to-Ti ratio of 0.5 exhibited the highest degradation efficiencies of benzene, toluene, ethyl benzene, and o-xylene (BTEX), suggesting the presence of an optimal N-to-Ti ratio for preparation of N-RSTs. In addition, the average degradation efficiencies of BTEX determined for the N-RSTs with a N-to-Ti ratio of 0.5 under visible-light irradiation for the lowest initial concentration (IC, 0.1 ppm) were 19%, 53%, 85%, and 92%, respectively, while the degradation efficiencies for the highest IC (2.0 ppm) were 2%, 8%, 17%, and 33%. These values decreased as the stream flow rate increased. Overall, the as-prepared N-RSTs could be effectively applied for degradation of toxic gas-phase organic contaminants under visible-light as well as UV irradiation. PMID:25145164
Knopman, D.S.; Voss, C.I.
1988-01-01
Sensitivities of solute concentration to parameters associated with first-order chemical decay, boundary conditions, initial conditions, and multilayer transport are examined. A sensitivity is a change in solute concentration resulting from a change in a model parameter. Minimum information required in regression on chemical data for the estimation of model parameters by regression is expressed in terms of sensitivities. Nonlinear regression models were tested on sets of noiseless observations from known models that exceeded the minimum sensitivity information requirements. Results demonstrate that the regression models consistently converged to the correct parameters when the initial sets of parameter values substantially deviated from the correct parameters. -from Authors
Mieles, John; Zhan, Hongbin
2012-06-01
The permeable reactive barrier (PRB) remediation technology has proven to be more cost-effective than conventional pump-and-treat systems, and has demonstrated the ability to rapidly reduce the concentrations of specific chemicals of concern (COCs) by up to several orders of magnitude in some scenarios. This study derives new steady-state analytical solutions to multispecies reactive transport in a PRB-aquifer (dual domain) system. The advantage of the dual domain model is that it can account for the potential existence of natural degradation in the aquifer, when designing the required PRB thickness. The study focuses primarily on the steady-state analytical solutions of the tetrachloroethene (PCE) serial degradation pathway and secondly on the analytical solutions of the parallel degradation pathway. The solutions in this study can also be applied to other types of dual domain systems with distinct flow and transport properties. The steady-state analytical solutions are shown to be accurate and the numerical program RT3D is selected for comparison. The results of this study are novel in that the solutions provide improved modeling flexibility including: 1) every species can have unique first-order reaction rates and unique retardation factors, and 2) daughter species can be modeled with their individual input concentrations or solely as byproducts of the parent species. The steady-state analytical solutions exhibit a limitation that occurs when interspecies reaction rate factors equal each other, which result in undefined solutions. Excel spreadsheet programs were created to facilitate prompt application of the steady-state analytical solutions, for both the serial and parallel degradation pathways. PMID:22579667
McConnell, J.W.; Rogers, R.D. ); Brey, R.R. ); Sullivan, T.M. )
1992-01-01
The computer code MIXBATH has been applied to compare model predictions with six years of leachate collection data from five lysimeters located at Oak Ridge and five located at Argonne National Laboratories. The goal of this study was to critique the applicability of these data for use as a basis for the long-term prediction of release and transport of radionuclides contained in Portland type I-II cement and Dow vinyl ester-styrene waste forms loaded with EPICOR-II prefilter ion exchange resins. MIXBATH was useful in providing insight into information needs for long-term performance assessment. In most cases, the total activity released from the lysimeters over the test period was indistinguishable from background, indicating a need for longer-term data collection. In cases where there was both sufficient information available and activity released, MIXBATH was able to predict releases within an order of magnitude of those measured. Releases are extremely sensitive to the soil partition coefficient and waste form diffusion coefficient, and these were identified as the key data needs for long-term performance assessment.
McConnell, J.W.; Rogers, R.D.; Brey, R.R.; Sullivan, T.M.
1992-08-01
The computer code MIXBATH has been applied to compare model predictions with six years of leachate collection data from five lysimeters located at Oak Ridge and five located at Argonne National Laboratories. The goal of this study was to critique the applicability of these data for use as a basis for the long-term prediction of release and transport of radionuclides contained in Portland type I-II cement and Dow vinyl ester-styrene waste forms loaded with EPICOR-II prefilter ion exchange resins. MIXBATH was useful in providing insight into information needs for long-term performance assessment. In most cases, the total activity released from the lysimeters over the test period was indistinguishable from background, indicating a need for longer-term data collection. In cases where there was both sufficient information available and activity released, MIXBATH was able to predict releases within an order of magnitude of those measured. Releases are extremely sensitive to the soil partition coefficient and waste form diffusion coefficient, and these were identified as the key data needs for long-term performance assessment.
Gureghian, A.B.
1990-08-01
Analytical solutions based on the Laplace transforms are presented for the one-dimensional, transient, advective-dispersive transport of a reacting radionuclide through a discrete planar fracture with constant aperture subject to diffusion in the surrounding rock matrix where both regions of solute migration display residual concentrations. The dispersion-free solutions, which are of closed form, are also reported. The solution assumes that the ground-water flow regime is under steady-state and isothermal conditions and that the rock matrix is homogeneous, isotropic, and saturated with stagnant water. The verification of the solution was performed by means of related analytical solutions dealing with particular aspects of the transport problem under investigation on the one hand, and a numerical solution capable of handling the complete problem on the other. The integrals encountered in the general solution are evaluated by means of a composite Gauss-Legendre quadrature scheme. 9 refs., 8 figs., 32 tabs.
Qian, Zekan; Li, Rui; Hou, Shimin; Xue, Zengquan; Sanvito, Stefano
2007-11-21
An efficient self-consistent approach combining the nonequilibrium Green's function formalism with density functional theory is developed to calculate electron transport properties of molecular devices with quasi-one-dimensional (1D) electrodes. Two problems associated with the low dimensionality of the 1D electrodes, i.e., the nonequilibrium state and the uncertain boundary conditions for the electrostatic potential, are circumvented by introducing the reflectionless boundary conditions at the electrode-contact interfaces and the zero electric field boundary conditions at the electrode-molecule interfaces. Three prototypical systems, respectively, an ideal ballistic conductor, a high resistance tunnel junction, and a molecular device, are investigated to illustrate the accuracy and efficiency of our approach. PMID:18035901
NASA Astrophysics Data System (ADS)
Bäßler, Svenja; Hamdou, Bacel; Sergelius, Philip; Michel, Ann-Kathrin; Zierold, Robert; Reith, Heiko; Gooth, Johannes; Nielsch, Kornelius
2015-11-01
The geometry of topological insulators (TIs) has a major impact on the magnetoelectric band structure of their surface states. Here, we investigate the surface states of cylindrical TI bismuth telluride selenide nanowires with three different diameters, by parallel and transverse magnetoresistance (MR) measurements. In parallel configuration, we observe Aharonov-Bohm oscillations as well as weak antilocalization, indicating two-dimensional TI surface states. In transverse magnetic fields, we observed MR oscillations that are non-linear against the reciprocal of the magnetic field and thus cannot be explained by two- or three-dimensional states. Instead, our transport data analysis reveals that these MR oscillations are the consequence of one-dimensional edge channels at the nanowire surface that form due to the projection of the external magnetic field on the cylindrically curved surface plane in high magnetic fields. Our observation provides an exotic class of surface states that might be used for electronic and spintronic devices.
NASA Technical Reports Server (NTRS)
Ghorai, S. K.
1983-01-01
The purpose of this project was to use a one-dimensional discrete coordinates transport code called ANISN in order to determine the energy-angle-spatial distribution of neutrons in a 6-feet cube rock box which houses a D-T neutron generator at its center. The project was two-fold. The first phase of the project involved adaptation of the ANISN code written for an IBM 360/75/91 computer to the UNIVAC system at JSC. The second phase of the project was to use the code with proper geometry, source function and rock material composition in order to determine the neutron flux distribution around the rock box when a 14.1 MeV neutron generator placed at its center is activated.
NASA Astrophysics Data System (ADS)
Ghorai, S. K.
1983-09-01
The purpose of this project was to use a one-dimensional discrete coordinates transport code called ANISN in order to determine the energy-angle-spatial distribution of neutrons in a 6-feet cube rock box which houses a D-T neutron generator at its center. The project was two-fold. The first phase of the project involved adaptation of the ANISN code written for an IBM 360/75/91 computer to the UNIVAC system at JSC. The second phase of the project was to use the code with proper geometry, source function and rock material composition in order to determine the neutron flux distribution around the rock box when a 14.1 MeV neutron generator placed at its center is activated.
One-Dimensionality and Whiteness
ERIC Educational Resources Information Center
Calderon, Dolores
2006-01-01
This article is a theoretical discussion that links Marcuse's concept of one-dimensional society and the Great Refusal with critical race theory in order to achieve a more robust interrogation of whiteness. The author argues that in the context of the United States, the one-dimensionality that Marcuse condemns in "One-Dimensional Man" is best…
NASA Astrophysics Data System (ADS)
Hemme, C.; van Berk, W.
2015-12-01
In carbon capture and storage (CCS) systems supercritical CO2 is injected into a reservoir and dissolves in the reservoir brine. Subsequently, CO2(aq) diffuses into the cap rock to regions of lower total pressure and temperature and triggers CO2-water-rock interactions that are coupled with mass transport and result in precipitation and/or dissolution of minerals along the CO2 migration path. Such hydrogeochemical interactions change porosities and are responsible for the improvement or deterioration of the long term integrity of the system. This study presents a semi-generic hydrogeochemical model based on chemical equilibrium thermodynamics, data from several CO2 storage systems, and plausible assumptions regarding non-available data. One-dimensional reactive transport modeling is performed by using the U.S.G.S. PHREEQC code (3.1.4-8929; phreeqc.dat database) to identify and quantify the loss or gain of total porosity affected by hydrogeochemical reactions driven by diffusive mass transport exposed to pressure and temperature gradients. A fine spatial and temporal discretization, the use of non-reactive tracers, and a broad variety of modeling scenarios enable the calculation of the relevant timescale for simulations of long-term storage of CO2 and the consideration of the pressure dependent mass action law constants along the CO2 migration path. Modeling results show that the relevant timescale for simulations of long-term storage of CO2 is in the range of 106 years, and that pressure/temperature conditions, heterogeneities (veins and fractures) and the mineralogical composition of the cap rock have the strongest influence on the increase in cap rock porosity (maximum increase from initial 5 % to 7.5 %). Critical parameter combinations - total pressure effects are crucial - could put long-term integrity at risks. Nevertheless, a wide range of conditions and parameter combinations for safe CO2 storage is identified by other modeling scenarios.
Parkhurst, David L.; Appelo, C.A.J.
1999-01-01
PHREEQC version 2 is a computer program written in the C programming language that is designed to perform a wide variety of low-temperature aqueous geochemical calculations. PHREEQC is based on an ion-association aqueous model and has capabilities for (1) speciation and saturation-index calculations; (2) batch-reaction and one-dimensional (1D) transport calculations involving reversible reactions, which include aqueous, mineral, gas, solid-solution, surface-complexation, and ion-exchange equilibria, and irreversible reactions, which include specified mole transfers of reactants, kinetically controlled reactions, mixing of solutions, and temperature changes; and (3) inverse modeling, which finds sets of mineral and gas mole transfers that account for differences in composition between waters, within specified compositional uncertainty limits.New features in PHREEQC version 2 relative to version 1 include capabilities to simulate dispersion (or diffusion) and stagnant zones in 1D-transport calculations, to model kinetic reactions with user-defined rate expressions, to model the formation or dissolution of ideal, multicomponent or nonideal, binary solid solutions, to model fixed-volume gas phases in addition to fixed-pressure gas phases, to allow the number of surface or exchange sites to vary with the dissolution or precipitation of minerals or kinetic reactants, to include isotope mole balances in inverse modeling calculations, to automatically use multiple sets of convergence parameters, to print user-defined quantities to the primary output file and (or) to a file suitable for importation into a spreadsheet, and to define solution compositions in a format more compatible with spreadsheet programs. This report presents the equations that are the basis for chemical equilibrium, kinetic, transport, and inverse-modeling calculations in PHREEQC; describes the input for the program; and presents examples that demonstrate most of the program's capabilities.
NASA Astrophysics Data System (ADS)
Xiong, Bo; Yang, Tao; Benedict, Keith A.
2013-07-01
We study the effect of quantum fluctuations on the dynamics of a quasi-one-dimensional Bose gas in an optical lattice at zero temperature using the truncated Wigner approximation with a variety of basis sets for the initial fluctuation modes. The initial spatial distributions of the quantum fluctuations are very different when using a limited number of plane-wave (PW), simple-harmonic-oscillator (SHO) and self-consistently determined Bogoliubov (SCB) modes. The short-time transport properties of the Bose gas, characterized by the phase coherence in the PW basis, are distinct from those gained using the SHO and SCB basis. The calculations using the SCB modes predict greater phase decoherence and stronger number fluctuations than the other choices. Furthermore, we observe that the use of PW modes overestimates the extent to which atoms are expelled from the core of the cloud, while the use of the other modes only breaks the cloud structure slightly, which is in agreement with the experimental observations by Fertig et al (2005 Phys. Rev. Lett. 94 120403).
NASA Astrophysics Data System (ADS)
Marocchino, A.; Atzeni, S.; Schiavi, A.
2014-01-01
In some regions of a laser driven inertial fusion target, the electron mean-free path can become comparable to or even longer than the electron temperature gradient scale-length. This can be particularly important in shock-ignited (SI) targets, where the laser-spike heated corona reaches temperatures of several keV. In this case, thermal conduction cannot be described by a simple local conductivity model and a Fick's law. Fluid codes usually employ flux-limited conduction models, which preserve causality, but lose important features of the thermal flow. A more accurate thermal flow modeling requires convolution-like non-local operators. In order to improve the simulation of SI targets, the non-local electron transport operator proposed by Schurtz-Nicolaï-Busquet [G. P. Schurtz et al., Phys. Plasmas 7, 4238 (2000)] has been implemented in the DUED fluid code. Both one-dimensional (1D) and two-dimensional (2D) simulations of SI targets have been performed. 1D simulations of the ablation phase highlight that while the shock profile and timing might be mocked up with a flux-limiter; the electron temperature profiles exhibit a relatively different behavior with no major effects on the final gain. The spike, instead, can only roughly be reproduced with a fixed flux-limiter value. 1D target gain is however unaffected, provided some minor tuning of laser pulses. 2D simulations show that the use of a non-local thermal conduction model does not affect the robustness to mispositioning of targets driven by quasi-uniform laser irradiation. 2D simulations performed with only two final polar intense spikes yield encouraging results and support further studies.
Marocchino, A.; Atzeni, S.; Schiavi, A.
2014-01-15
In some regions of a laser driven inertial fusion target, the electron mean-free path can become comparable to or even longer than the electron temperature gradient scale-length. This can be particularly important in shock-ignited (SI) targets, where the laser-spike heated corona reaches temperatures of several keV. In this case, thermal conduction cannot be described by a simple local conductivity model and a Fick's law. Fluid codes usually employ flux-limited conduction models, which preserve causality, but lose important features of the thermal flow. A more accurate thermal flow modeling requires convolution-like non-local operators. In order to improve the simulation of SI targets, the non-local electron transport operator proposed by Schurtz-Nicolaï-Busquet [G. P. Schurtz et al., Phys. Plasmas 7, 4238 (2000)] has been implemented in the DUED fluid code. Both one-dimensional (1D) and two-dimensional (2D) simulations of SI targets have been performed. 1D simulations of the ablation phase highlight that while the shock profile and timing might be mocked up with a flux-limiter; the electron temperature profiles exhibit a relatively different behavior with no major effects on the final gain. The spike, instead, can only roughly be reproduced with a fixed flux-limiter value. 1D target gain is however unaffected, provided some minor tuning of laser pulses. 2D simulations show that the use of a non-local thermal conduction model does not affect the robustness to mispositioning of targets driven by quasi-uniform laser irradiation. 2D simulations performed with only two final polar intense spikes yield encouraging results and support further studies.
NASA Astrophysics Data System (ADS)
Dewaide, Lorraine; Bonniver, Isabelle; Rochez, Gaëtan; Hallet, Vincent
2016-03-01
This paper presents the modelling results of several tracer-tests performed in the cave system of Han-sur-Lesse (South Belgium). In Han-sur-Lesse, solute flows along accessible underground river stretches and through flooded areas that are rather unknown in terms of geometry. This paper focus on the impact of those flooded areas on solute transport and their dimensioning. The program used (One-dimensional Transport with Inflow and Storage: OTIS) is based on the two-region non equilibrium model that supposes the existence of an immobile water zone along the main flow zone in which solute can be caught. The simulations aim to replicate experimental breakthrough curves (BTCs) by adapting the main transport and geometric parameters that govern solute transport in karst conduits. Furthermore, OTIS allows a discretization of the investigated system, which is particularly interesting in systems presenting heterogeneous geometries. Simulation results show that transient storage is a major process in flooded areas and that the crossing of these has a major effect on the BTCs shape. This influence is however rather complex and very dependent of the flooded areas geometry and transport parameters. Sensibility tests performed in this paper aim to validate the model and show the impact of the parametrization on the BTCs shape. Those tests demonstrate that transient storage is not necessarily transformed in retardation. Indeed, significant tailing effect is only observed in specific conditions (depending on the system geometry and/or the flow) that allow residence time in the storage area to be longer than restitution time. This study ends with a comparison of solute transport in river stretches and in flooded areas.
Parkhurst, David L.; Appelo, C.A.J.
2013-01-01
PHREEQC version 3 is a computer program written in the C and C++ programming languages that is designed to perform a wide variety of aqueous geochemical calculations. PHREEQC implements several types of aqueous models: two ion-association aqueous models (the Lawrence Livermore National Laboratory model and WATEQ4F), a Pitzer specific-ion-interaction aqueous model, and the SIT (Specific ion Interaction Theory) aqueous model. Using any of these aqueous models, PHREEQC has capabilities for (1) speciation and saturation-index calculations; (2) batch-reaction and one-dimensional (1D) transport calculations with reversible and irreversible reactions, which include aqueous, mineral, gas, solid-solution, surface-complexation, and ion-exchange equilibria, and specified mole transfers of reactants, kinetically controlled reactions, mixing of solutions, and pressure and temperature changes; and (3) inverse modeling, which finds sets of mineral and gas mole transfers that account for differences in composition between waters within specified compositional uncertainty limits. Many new modeling features were added to PHREEQC version 3 relative to version 2. The Pitzer aqueous model (pitzer.dat database, with keyword PITZER) can be used for high-salinity waters that are beyond the range of application for the Debye-Hückel theory. The Peng-Robinson equation of state has been implemented for calculating the solubility of gases at high pressure. Specific volumes of aqueous species are calculated as a function of the dielectric properties of water and the ionic strength of the solution, which allows calculation of pressure effects on chemical reactions and the density of a solution. The specific conductance and the density of a solution are calculated and printed in the output file. In addition to Runge-Kutta integration, a stiff ordinary differential equation solver (CVODE) has been included for kinetic calculations with multiple rates that occur at widely different time scales
Mass transport contamination study
NASA Technical Reports Server (NTRS)
Robertson, S. J.
1972-01-01
A theoretical analysis was performed to determine the effects of outgassing and waste dumping on the contamination field around an orbiting spacecraft. The spacecraft was assumed to be spherical in shape with the mass flow emitting uniformly from the spherical surface at a constant rate and in a D'Lambertian spatial distribution. The outflow of gases were assumed to be neutrally charged and of a single species with a molecular weight characteristic of a composite of the actual species involved in the mass flow. The theoretical analysis showed that, for outgassing only, less than 1.5 percent of the outgas products will return to the Skylab spacecraft as a result of intermolecular collisions. When the total mass flow from the spacecraft, including waste dumps and reaction control motor firings, was considered, it was estimated that about 30 percent will return to the spacecraft.
One-Dimensional Grid Turbulence
NASA Astrophysics Data System (ADS)
Kerstein, Alan R.; Nilsen, Vebjørn
1998-11-01
To capture molecular mixing and other small scale phenomena such as chemical reactions and differential diffusion, it is essential to resolve all the length (and time) scales. For large Reynolds number flows this is impossible to do in three-dimensional turbulence simulations with the current and foreseeable future computer technology. To circumvent this problem the one-dimensional turbulence (ODT) model, as the name implies, considers only one spatial dimension in which all the length scales can be resolved even at very large Reynolds numbers. To incorporate the effect of advection on a one-dimensional domain, the evolution of the velocity and scalar profiles is randomly interrupted by a sequence of profile rearrangements representing the effect of turbulent eddies. Results obtained from ODT simulations of grid turbulence with a passive scalar are presented. The decay exponents for the velocity and passive scalar fluctuations, as predicted by ODT, compare favorably with experimental data.
Technology Transfer Automated Retrieval System (TEKTRAN)
Transport equations governing the movement of multiple solutes undergoing sequential first-order decay reactions have relevance in analyzing a variety of subsurface contaminant transport problems. In this study, a one-dimensional analytical solution for multi-species transport is obtained for finite...
Reliability analysis of contaminant transport in saturated porous media
Jang, Yeon-Soo; Sitar, N.; Der Kiureghian, A. )
1994-08-01
An approach to probabilistic analysis of contaminant transport based on first- and second-order reliability methods (FORM and SORM) is presented. In addition, system reliability methodology is introduced for the analysis of problems with more than one limit state function. Conventional one-dimensional finite difference and two-dimensional finite element models are coupled with the FORM and SORM algorithms to perform reliability analyses of advection-dominated contaminant transport. A comparison of the results of FORM and SORM analyses with the results of Monte Carlo simulations shows that FORM tends to overestimate the probability of exceedence in spatially variable domains. However, SORM accounts for the nonlinearity of the limit state surface and remains accurate, giving results consistent with Monte Carlo simulation. Finally, while the analyses presented here considered relatively simple problems, the methodology is shown to have the necessary flexibility for application to problems of practical interest.
One-Dimensional Heat Conduction
Sutton, Steven B.
1992-03-09
ICARUS-LLNL was developed to solve one-dimensional planar, cylindrical, or spherical conduction heat transfer problems. The IBM PC version is a family of programs including ICARUSB, an interactive BASIC heat conduction program; ICARUSF, a FORTRAN heat conduction program; PREICAR, a BASIC preprocessor for ICARUSF; and PLOTIC and CPLOTIC, interpretive BASIC and compiler BASIC plot postprocessor programs. Both ICARUSB and ICARUSF account for multiple material regions and complex boundary conditions, such as convection or radiation. In addition, ICARUSF accounts for temperature-dependent material properties and time or temperature-dependent boundary conditions. PREICAR is a user-friendly preprocessor used to generate or modify ICARUSF input data. PLOTIC and CPLOTIC generate plots of the temperature or heat flux profile at specified times, plots of the variation of temperature or heat flux with time at selected nodes, or plots of the solution grid. First developed in 1974 to allow easy modeling of complex one-dimensional systems, its original application was in the nuclear explosive testing program. Since then it has undergone extensive revision and been applied to problems dealing with laser fusion target fabrication, heat loads on underground tests, magnetic fusion switching tube anodes, and nuclear waste isolation canisters.
One-Dimensional Heat Conduction
1992-03-09
ICARUS-LLNL was developed to solve one-dimensional planar, cylindrical, or spherical conduction heat transfer problems. The IBM PC version is a family of programs including ICARUSB, an interactive BASIC heat conduction program; ICARUSF, a FORTRAN heat conduction program; PREICAR, a BASIC preprocessor for ICARUSF; and PLOTIC and CPLOTIC, interpretive BASIC and compiler BASIC plot postprocessor programs. Both ICARUSB and ICARUSF account for multiple material regions and complex boundary conditions, such as convection or radiation. In addition,more » ICARUSF accounts for temperature-dependent material properties and time or temperature-dependent boundary conditions. PREICAR is a user-friendly preprocessor used to generate or modify ICARUSF input data. PLOTIC and CPLOTIC generate plots of the temperature or heat flux profile at specified times, plots of the variation of temperature or heat flux with time at selected nodes, or plots of the solution grid. First developed in 1974 to allow easy modeling of complex one-dimensional systems, its original application was in the nuclear explosive testing program. Since then it has undergone extensive revision and been applied to problems dealing with laser fusion target fabrication, heat loads on underground tests, magnetic fusion switching tube anodes, and nuclear waste isolation canisters.« less
One-dimensional Quantum Fluids
NASA Astrophysics Data System (ADS)
Gervais, Guillaume
2015-03-01
Fifty year ago, Joachim Mazdak Luttinger generalized the Tomonaga theory of interactions in a one-dimensional metal and show that the prior restrictions imposed by Tomonaga were not necessary. This model is now known as the Tomonaga- Luttinger liquid model (TLL) and most remarkably it does have mathematically exact solutions. In the case of electrons, it predicts that the spin and charge sector should separate, with each of them propagating with their own velocities. While there has been many attempts (some with great success) to observe TLL behaviour in clean quantum wires designed on an ultra-clean semiconductor platform, overall the Luttinger physics is experimentally still in its infancy. For instance, little is known regarding the 1D physics in a strongly-interacting neutral system, whether from the point-of-view of TLL theory or even localization physics. Helium-4, the paradigm superfluid, and Helium-3, the paradigm Fermi liquid, should in principleboth become Luttinger liquids if taken to the one-dimensional limit. In the bosonic case, this is supported by large-scale Quantum Monte Carlo simulations which found that a lengthscale of ~ 2 nm is sufficient for the system to crossover to the 1D regime and display universal Luttinger scaling. At McGill University, an experiment has been constructed to measure the liquid helium mass flow through a single nanopore. The technique consists of drilling a single nanopore in a SiN membrane using a TEM, and then applying a pressure gradient across the membrane. Previously published data in 45nm diameter hole determined the superfluid critical velocity to be close to the limit set by the Feynman vortex rings model. More recent work performed on nanopores with radii as small as 3 nm (and a length of 30nm) show the critical exponent for superfluid velocity to significantly deviate from its bulk value, 2/3. This is an important hint for the crossing over to the one-dimensional state in a strongly-correlated bosonic liquid.
One-dimensional wave turbulence
NASA Astrophysics Data System (ADS)
Zakharov, Vladimir; Dias, Frédéric; Pushkarev, Andrei
2004-08-01
The problem of turbulence is one of the central problems in theoretical physics. While the theory of fully developed turbulence has been widely studied, the theory of wave turbulence has been less studied, partly because it developed later. Wave turbulence takes place in physical systems of nonlinear dispersive waves. In most applications nonlinearity is small and dispersive wave interactions are weak. The weak turbulence theory is a method for a statistical description of weakly nonlinear interacting waves with random phases. It is not surprising that the theory of weak wave turbulence began to develop in connection with some problems of plasma physics as well as of wind waves. The present review is restricted to one-dimensional wave turbulence, essentially because finer computational grids can be used in numerical computations. Most of the review is devoted to wave turbulence in various wave equations, and in particular in a simple one-dimensional model of wave turbulence introduced by Majda, McLaughlin and Tabak in 1997. All the considered equations are model equations, but consequences on physical systems such as ocean waves are discussed as well. The main conclusion is that the range in which the theory of pure weak turbulence is valid is narrow. In general, wave turbulence is not completely weak. Together with the weak turbulence component, it can include coherent structures, such as solitons, quasisolitons, collapses or broad collapses. As a result, weak and strong turbulence coexist. In situations where coherent structures cannot develop, weak turbulence dominates. Even though this is primarily a review paper, new results are presented as well, especially on self-organized criticality and on quasisolitonic turbulence.
Kurylyk, Barret L.; McKenzie, Jeffrey M; MacQuarrie, Kerry T. B.; Voss, Clifford I.
2014-01-01
Numerous cold regions water flow and energy transport models have emerged in recent years. Dissimilarities often exist in their mathematical formulations and/or numerical solution techniques, but few analytical solutions exist for benchmarking flow and energy transport models that include pore water phase change. This paper presents a detailed derivation of the Lunardini solution, an approximate analytical solution for predicting soil thawing subject to conduction, advection, and phase change. Fifteen thawing scenarios are examined by considering differences in porosity, surface temperature, Darcy velocity, and initial temperature. The accuracy of the Lunardini solution is shown to be proportional to the Stefan number. The analytical solution results obtained for soil thawing scenarios with water flow and advection are compared to those obtained from the finite element model SUTRA. Three problems, two involving the Lunardini solution and one involving the classic Neumann solution, are recommended as standard benchmarks for future model development and testing.
Liu, Xiao-Yong; Zou, Zhi-Qiang
2015-05-15
We demonstrate the formation of contact barriers at the interfaces between MnSi1.7 nanowires (NWs) and Si substrates by the current-voltage (I-V) curves measured by scanning tunneling microscope with the tip contacting the NWs. The NWs on Si(110) exhibit linear reverse bias I-V curves, which suggests a parallel Ohmic surface state conductance of the Si(110) surface. The NWs on Si(111) exhibit nonlinear reverse bias I-V behavior, which indicates a considerable amount of minority carrier recombination-generation current. The NW length-dependence study of the forward bias current clearly shows that the quantitative change in NW length leads to a qualitative change in electrical transport properties. We derive a characteristic length LC ≈ 200 nm and the corresponding aspect ratio of ∼12-18 for MnSi1.7 NWs according to the variation of current density with the NW length. PMID:25900852
Modelling contaminant transport for pumping wells in riverbank filtration systems.
Mustafa, Shaymaa; Bahar, Arifah; Aziz, Zainal Abdul; Suratman, Saim
2016-01-01
Analytical study of the influence of both the pumping well discharge rate and pumping time on contaminant transport and attenuation is significant for hydrological and environmental science applications. This article provides an analytical solution for investigating the influence of both pumping time and travelling time together for one-dimensional contaminant transport in riverbank filtration systems by using the Green's function approach. The basic aim of the model is to understand how the pumping time and pumping rate, which control the travelling time, can affect the contaminant concentration in riverbank filtration systems. Results of analytical solutions are compared with the results obtained using a MODFLOW numerical model. Graphically, it is found that both analytical and numerical solutions have almost the same behaviour. Additionally, the graphs indicate that any increase in the pumping rate or simulation pumping time should increase the contamination in groundwater. The results from the proposed analytical model are well matched with the data collected from a riverbank filtration site in France. After this validation, the model is then applied to the first pilot project of a riverbank filtration system conducted in Malaysia. Sensitivity analysis results highlight the importance of degradation rates of contaminants on groundwater quality, for which higher utilization rates lead to the faster consumption of pollutants. PMID:26433356
Concentration distribution of contaminant transport in wetland flows
NASA Astrophysics Data System (ADS)
Wu, Zi; Fu, Xudong; Wang, Guangqian
2015-06-01
Study on contaminant transport in wetland flows is of fundamental importance. Recent investigation on scalar transport in laminar tube flows (Wu and Chen, 2014. J. Fluid Mech., 740: 196-213.) indicates that the vertical concentration difference in wetland flows may be remarkable for a very long time, which cannot be captured by the extensively applied one-dimensional Taylor dispersion model. To understand detailed information for the vertical distribution of contaminant in wetland flows, for the first time, the present paper deduces an analytical solution for the multi-dimensional concentration distribution by the method of mean concentration expansion. The solution is verified by both our analytical and numerical results. Representing the effects of vegetation in wetlands, the unique dimensionless parameter α can cause the longitudinal contraction of the contaminant cloud and the change of the shape of the concentration contours. By these complicated effects, it is shown unexpectedly that the maximum vertical concentration difference remains nearly unaffected, although its longitudinal position may change. Thus the slow-decaying transient effect (Wu and Chen, 2014. J. Hydrol., 519: 1974-1984.) is shown also apply to the process of contaminant transport in wetland flows.
One-dimensional silicone nanofilaments.
Artus, Georg R J; Seeger, Stefan
2014-07-01
A decade ago one-dimensional silicone nanofilaments (1D-SNF) such as fibres and wires were described for the first time. Since then, the exploration of 1D-SNF has led to remarkable advancements with respect to material science and surface science: one-, two- and three-dimensional nanostructures of silicone were unknown before. The discovery of silicone nanostructures marks a turning point in the research on the silicone material at the nanoscale. Coatings made of 1D-SNF are among the most superhydrophobic surfaces known today. They are free of fluorine, can be applied to a large range of technologically important materials and their properties can be modified chemically. This opens the way to many interesting applications such as water harvesting, superoleophobicity, separation of oil and water, patterned wettability and storage and manipulation of data on a surface. Because of their high surface area, coatings consisting of 1D-SNF are used for protein adsorption experiments and as carrier systems for catalytically active nanoparticles. This paper reviews the current knowledge relating to the broad development of 1D-SNF technologies. Common preparation and coating techniques are presented along with a comparison and discussion of the published coating parameters to provide an insight on how these affect the topography of the 1D-SNF or coating. The proposed mechanisms of growth are presented, and their potentials and shortcomings are discussed. We introduce all explored applications and finally identify future prospects and potentials of 1D-SNF with respect to applications in material science and surface science. PMID:24742356
Bäßler, Svenja Hamdou, Bacel; Sergelius, Philip; Michel, Ann-Kathrin; Zierold, Robert; Gooth, Johannes; Reith, Heiko; Nielsch, Kornelius
2015-11-02
The geometry of topological insulators (TIs) has a major impact on the magnetoelectric band structure of their surface states. Here, we investigate the surface states of cylindrical TI bismuth telluride selenide nanowires with three different diameters, by parallel and transverse magnetoresistance (MR) measurements. In parallel configuration, we observe Aharonov-Bohm oscillations as well as weak antilocalization, indicating two-dimensional TI surface states. In transverse magnetic fields, we observed MR oscillations that are non-linear against the reciprocal of the magnetic field and thus cannot be explained by two- or three-dimensional states. Instead, our transport data analysis reveals that these MR oscillations are the consequence of one-dimensional edge channels at the nanowire surface that form due to the projection of the external magnetic field on the cylindrically curved surface plane in high magnetic fields. Our observation provides an exotic class of surface states that might be used for electronic and spintronic devices.
Modeling Facilitated Contaminant Transport by Mobile Bacteria
NASA Astrophysics Data System (ADS)
Corapcioglu, M. Yavuz; Kim, Seunghyun
1995-01-01
Introduction of exogenous biocolloids such as genetically engineered bacteria in a bioremediation operation can enhance the transport of contaminants in groundwater by reducing the retardation effects. Because of their colloidal size and favorable surface conditions, bacteria are efficient contaminant carriers. In cases where contaminants have a low mobility in porous media because of their high partition with solid matrix, facilitated contaminant transport by mobile bacteria can create high contaminant fluxes. When metabolically active mobile bacteria are present in a subsurface environment, the system can be treated as consisting of three phases: water phase, bacterial phase, and stationary solid matrix phase. In this work a mathematical model based on mass balance equations is developed to describe the facilitated transport and fate of a contaminant and bacteria in a porous medium. Bacterial partition between the bulk solution and the stationary solid matrix and contaminant partition among three phases are represented by expressions in terms of measurable quantities. Solutions were obtained to provide estimates of contaminant and bacterial concentrations. A dimensional analysis of the transport model was utilized to estimate model parameters from the experimental data and to assess the effect of several parameters on model behavior. The model results matched favorably with experimental data of Jenkins and Lion (1993). The presence of mobile bacteria enhances the contaminant transport. However, bacterial consumption of the contaminant, which serves as a bacterial nutrient, can attenuate the contaminant mobility. The work presented in this paper is the first three-phase model to include the effects of substrate metabolism on the fate of groundwater contaminants.
Gureghian, A.B.; Wu, Y.T.; Sagar, B.; Codell, R.A.
1992-12-01
Exact analytical solutions based on the Laplace transforms are derived for describing the one-dimensional space-time-dependent, advective transport of a decaying species in a layered, saturated rock system intersected by a planar fracture of varying aperture. These solutions, which account for advection in fracture, molecular diffusion into the rock matrix, adsorption in both fracture and matrix, and radioactive decay, predict the concentrations in both fracture and rock matrix and the cumulative mass in the fracture. The solute migration domain in both fracture and rock is assumed to be semi-infinite with non-zero initial conditions. The concentration of each nuclide at the source is allowed to decay either continuously or according to some periodical fluctuations where both are subjected to either a step or band release mode. Two numerical examples related to the transport of Np-237 and Cm-245 in a five-layered system of fractured rock were used to verify these solutions with several well established evaluation methods of Laplace inversion integrals in the real and complex domain. In addition, with respect to the model parameters, a comparison of the analytically derived local sensitivities for the concentration and cumulative mass of Np-237 in the fracture with the ones obtained through a finite-difference method of approximation is also reported.
One-dimensional immiscible displacement experiments
NASA Astrophysics Data System (ADS)
Thomson, N. R.; Graham, D. N.; Farquhar, G. J.
1992-08-01
In recent years, a great deal of attention has focused on the development of various methods to predict the fate of immiscible contaminants (NAPL's) in soils. In an attempt to satisfy this requirement, a host of numerical models has been developed. Unfortunately, there exist little experimental data to verify the assumptions used in the derivation of these immiscible flow models. One objective of this paper is to report on a non-destructive measurement technique which was used to capture the relative organic-phase saturation variations in a number of two-phase flow displacement experiments. The data obtained from these experiments were compared to results obtained from a one-dimensional, finite-element based, two-phase flow model. The experiments consisted of five separate trials using three different immiscible liquids (hydraulic oil, kerosene and hexane) in a water-saturated column. Irregular immiscible liquid infiltration fronts were observed in four of the five experiments, indicating that very small-scale heterogeneities control the infiltration of immiscible liquids into soil. Independent of the column experiments, saturation-capillary pressure curves were determined for the various liquids. In general, the simulated NAPL saturation vs. time profiles agreed very well with the observations for all five of the trials.
One-Dimensional Czedli-Type Islands
ERIC Educational Resources Information Center
Horvath, Eszter K.; Mader, Attila; Tepavcevic, Andreja
2011-01-01
The notion of an island has surfaced in recent algebra and coding theory research. Discrete versions provide interesting combinatorial problems. This paper presents the one-dimensional case with finitely many heights, a topic convenient for student research.
Subsurface Flow and Contaminant Transport
2000-09-19
FACT is a transient three-dimensional, finite element code for simulating isothermal groundwater flow, moisture movement, and solute transport in variably and/or fully saturated subsurface porous media. Both single and dual-domain transport formulations are available. Transport mechanisms considered include advection, hydrodynamic dispersion, linear adsorption, mobile/immobile mass transfer and first-order degradation. A wide range of acquifier conditions and remediation systems commonly encountered in the field can be simulated. Notable boundary condition (BC) options include, a combined rechargemore » and drain BC for simulating recirculation wells, and a head dependent well BC that computes flow based on specified drawdown. The code is designed to handle highly heterogenous, multi-layer, acquifer systems in a numerically efficient manner. Subsurface structure is represented with vertically distorted rectangular brick elements in a Cartesian system. The groundwater flow equation is approximated using the Bubnov-Galerkin finite element method in conjunction with an efficient symmetric Preconditioned Conjugate Gradient (PCG) ICCG matrix solver. The solute transport equation is approximated using an upstream weighted residual finite element method designed to alleviate numerical oscillation. An efficient asymmetric PCG (ORTHOMIN) matrix solver is employed for transport. For both the flow and transport equations, element matrices are computed from either influence coefficient formulas for speed, or two point Gauss-Legendre quadrature for accuracy. Non-linear flow problems can be solved using either Newton-Ralphson linearization or Picard iteration, with under-relaxation formulas to further enhance convergence. Dynamic memory allocation is implemented using Fortran 90 constructs. FACT coding is clean and modular.« less
One dimensional representations in quantum optics
NASA Technical Reports Server (NTRS)
Janszky, J.; Adam, P.; Foldesi, I.; Vinogradov, An. V.
1993-01-01
The possibility of representing the quantum states of a harmonic oscillator not on the whole alpha-plane but on its one dimensional manifolds is considered. It is shown that a simple Gaussian distribution along a straight line describes a quadrature squeezed state while a similar Gaussian distribution along a circle leads to the amplitude squeezed state. The connection between the one dimensional representations and the usual Glauber representation is discussed.
Arctic seabirds transport marine-derived contaminants.
Blais, Jules M; Kimpe, Lynda E; McMahon, Dominique; Keatley, Bronwyn E; Mallory, Mark L; Douglas, Marianne S V; Smol, John P
2005-07-15
Long-range atmospheric transport of pollutants is generally assumed to be the main vector for arctic contamination, because local pollution sources are rare. We show that arctic seabirds, which occupy high trophic levels in marine food webs, are the dominant vectors for the transport of marine-derived contaminants to coastal ponds. The sediments of ponds most affected by seabirds had 60 times higher DDT, 25 times higher mercury, and 10 times higher hexachlorobenzene concentrations than nearby control sites. Bird guano greatly stimulates biological productivity in these extreme environments but also serves as a major source of industrial and agricultural pollutants in these remote ecosystems. PMID:16020729
One-dimensional Gromov minimal filling problem
Ivanov, Alexandr O; Tuzhilin, Alexey A
2012-05-31
The paper is devoted to a new branch in the theory of one-dimensional variational problems with branching extremals, the investigation of one-dimensional minimal fillings introduced by the authors. On the one hand, this problem is a one-dimensional version of a generalization of Gromov's minimal fillings problem to the case of stratified manifolds. On the other hand, this problem is interesting in itself and also can be considered as a generalization of another classical problem, the Steiner problem on the construction of a shortest network connecting a given set of terminals. Besides the statement of the problem, we discuss several properties of the minimal fillings and state several conjectures. Bibliography: 38 titles.
Heredity in one-dimensional quadratic maps
NASA Astrophysics Data System (ADS)
Romera, M.; Pastor, G.; Alvarez, G.; Montoya, F.
1998-12-01
In an iterative process, as is the case of a one-dimensional quadratic map, heredity has never been mentioned. In this paper we show that the pattern of a superstable orbit of a one-dimensional quadratic map can be expressed as the sum of the gene of the chaotic band where the pattern is to be found, and the ancestral path that joins all its ancestors. The ancestral path holds all the needed genetic information to calculate the descendants of the pattern. The ancestral path and successive descendant generations of the pattern constitute the family tree of the pattern, which is important to study and understand the orbit's ordering.
One-Dimensional Oscillator in a Box
ERIC Educational Resources Information Center
Amore, Paolo; Fernandez, Francisco M.
2010-01-01
We discuss a quantum-mechanical model of two particles that interact by means of a harmonic potential and are confined to a one-dimensional box with impenetrable walls. We apply perturbation theory to the cases of different and equal masses and analyse the symmetry of the states in the latter case. We compare the approximate perturbation results…
One-Dimensional Wavefront Sensor Analysis
1996-04-25
This software analyzes one-dimensional wavefront sensor data acquired with any of several data acquisition systems. It analyzes the data to determine centroids, wavefront slopes and overall wavefront error. The data can be displayed in many formats, with plots of various parameters vs time and position, including computer generated movies. Data can also be exported for use by other programs.
MULTIMEDIA CONTAMINANT FATE, TRANSPORT, AND EXPOSURE MODEL (MMSOILS)
The Multimedia Contaminant Fate, Transport, and Exposure Model (MMSOILS) estimates the human exposure and health risk associated with releases of contamination from hazardous waste sites. The methodology consists of a multimedia model that addresses the transport of a chemical in...
Hybrid Nanomaterials: One Dimensional Nanoparticle Assemblies
NASA Astrophysics Data System (ADS)
Sharma, Nikhil; Pochan, Darrin
2007-03-01
One-dimensional nanoparticle assemblies have potential applications in sensing, as plasmon and energy waveguides and in the conduction of novel signals such as phonons and spin states. Herein we present two strategies for the fabrication of such assemblies. Micro and meso-scale particle assemblies have been produced via a coaxial electrospinning process that results in assemblies of particles (silica and silver) encapsulated within a polymer nanofiber (polyethylene oxide). The method has been demonstrated successfully in the creation of 1D assemblies of differently sized silica particles. The effect of change in solution concentrations and relative flow rates in internal and external channels of the coaxial electrospinning apparatus on the structure of these assemblies has been investigated. Nano-scale assemblies of gold particles have been prepared by templating gold nanoparticles on a 20 amino acid peptide that displays laminated morphology. These assemblies are formed as laterally spaced one-dimensional nanoparticle assemblies.
Transient One-dimensional Pipe Flow Analyzer
1986-04-08
TOPAZ-SNLL, the Transient One- dimensional Pipe flow AnalyZer code, is a user-friendly computer program for modeling the heat transfer, fluid mechanics, and thermodynamics of multi-species gas transfer in arbitrary arrangements of pipes, valves, vessels, and flow branches. Although the flow conservation equations are assumed to be one-dimensional and transient, multidimensional features of internal fluid flow and heat transfer may be accounted for using the available quasi-steady flow correlations (e.g., Moody friction factor correlation and variousmore » form loss and heat transfer correlations). Users may also model the effects of moving system boundaries such as pistons, diaphragms, and bladders. The features of fully compressible flow are modeled, including the propagation of shocks and rarefaction waves, as well as the establishment of multiple choke points along the flow path.« less
Transient One-dimensional Pipe Flow Analyzer
1986-04-08
TOPAZ-SNLL, the Transient One- dimensional Pipe flow AnalyZer code, is a user-friendly computer program for modeling the heat transfer, fluid mechanics, and thermodynamics of multi-species gas transfer in arbitrary arrangements of pipes, valves, vessels, and flow branches. Although the flow conservation equations are assumed to be one-dimensional and transient, multidimensional features of internal fluid flow and heat transfer may be accounted for using the available quasi-steady flow correlations (e.g., Moody friction factor correlation and various form loss and heat transfer correlations). Users may also model the effects of moving system boundaries such as pistons, diaphragms, and bladders. The features of fully compressible flow are modeled, including the propagation of shocks and rarefaction waves, as well as the establishment of multiple choke points along the flow path.
NASA Astrophysics Data System (ADS)
Ntsime, Basetsana P.; Moitsheki, Raseelo J.
2016-06-01
In this paper we consider a nonlinear convection-dispersion equation arising in contaminant transport. The water flow velocity is considered to be spatially-dependent and dispersion coefficient depends on concentration. A direct group classification resulted in a number of cases for which the governing equation admits Lie point symmetries. In each case the one dimensional optimal system of subalgebras is constructed. Reductions are performed. The reduced ordinary differential equations (ODEs) are nonlinear and difficult to solve exactly. On the other hand we consider the steady state problem and applied the method of canonical coordinates to determine exact solutions.
NASA Astrophysics Data System (ADS)
Ostrowski, J.; Shlomi, S.; Michalak, A.
2007-12-01
The process of estimating the release history of a contaminant in groundwater relies on coupling a limited number of concentration measurements with a groundwater flow and transport model in an inverse modeling framework. The information provided by available measurements is generally not sufficient to fully characterize the unknown release history; therefore, an accurate assessment of the estimation uncertainty is required. The modeler's level of confidence in the transport parameters, expressed as pdfs, can be incorporated into the inverse model to improve the accuracy of the release estimates. In this work, geostatistical inverse modeling is used in conjunction with Monte Carlo sampling of transport parameters to estimate groundwater contaminant release histories. Concentration non-negativity is enforced using a Gibbs sampling algorithm based on a truncated normal distribution. The method is applied to two one-dimensional test cases: a hypothetical dataset commonly used in validating contaminant source identification methods, and data collected from a tetrachloroethylene and trichloroethylene plume at the Dover Air Force Base in Delaware. The estimated release histories and associated uncertainties are compared to results from a geostatistical inverse model where uncertainty in transport parameters is ignored. Results show that the a posteriori uncertainty associated with the model that accounts for parameter uncertainty is higher, but that this model provides a more realistic representation of the release history based on available data. This modified inverse modeling technique has many applications, including assignment of liability in groundwater contamination cases, characterization of groundwater contamination, and model calibration.
TNT transport and fate in contaminated soil
Comfort, S.D.; Shea, P.J.; Hundal, L.S.
1995-11-01
Past disposal practices at munitions production plants have contaminated terrestrial and aquatk ecosystems with 2,4,6-trinitrotoluene (TNT). We determined TNT transport, degradation, and long-term sorption characteristics in soil. Transport experiments were conducted with repacked, unsaturated soil columns containing uncontaminated soil or layers of contaminated and uncontaminated soil. Uncontaminated soil columns received multiple pore volumes (22-50) of a TNT-{sup 3}H{sub 2}O pulse, containing 70 or 6.3 mg TNT L{sup -1} at a constant pore water velocity. TNT breakthrough curves (BTCs) never reached initial solute pulse concentrations. Apex concentrations (C/C{sub o}) were between 0.6 and 0.8 for an initial pulse of 70 mg TNT L{sup -1} and 0.2 to 0.3 for the 6.3 mg TNT L{sup -1} pulse. Earlier TNT breakthrough was observed at the higher pulse concentration. This mobility difference was predicted from the nonlinear adsorption isotherm determined for TNT sorption. In all experiments, a significant fraction of added TNT was recovered as amino degradates of TNT. Mass balance estimates indicated 81% of the added TNT was recovered (as TNT and amino degradates) from columns receiving the 70 mg TNT L{sup -1} pulse compared to 35% from columns receiving the 6.3 mg TNT L{sup -1} pulse. Most of the unaccountable TNT was hypothesized to be unextractable. This was supported by a 168-d sorption experiment, which found that within 14d, 80% of {sup 14}C activity (added as {sup 14}C-TNT) was adsorbed and roughly 40% unextractable. Our observations illustrate that TNT sorption and degradation are concentration-dependent and the assumptions of linear adsorption and adsorption-desorption singularity commonly used in transport modeling, may not be valid for predicting TNT transport in munitions-contaminated soils. 29 refs., 6 figs., 7 tabs.
Computer model of one-dimensional equilibrium controlled sorption processes
Grove, D.B.; Stollenwerk, K.G.
1984-01-01
A numerical solution to the one-dimensional solute-transport equation with equilibrium-controlled sorption and a first-order irreversible-rate reaction is presented. The computer code is written in FORTRAN language, with a variety of options for input and output for user ease. Sorption reactions include Langmuir, Freundlich, and ion-exchange, with or without equal valance. General equations describing transport and reaction processes are solved by finite-difference methods, with nonlinearities accounted for by iteration. Complete documentation of the code, with examples, is included. (USGS)
Wave turbulence in one-dimensional models
NASA Astrophysics Data System (ADS)
Zakharov, V. E.; Guyenne, P.; Pushkarev, A. N.; Dias, F.
2001-05-01
A two-parameter nonlinear dispersive wave equation proposed by Majda, McLaughlin and Tabak is studied analytically and numerically as a model for the study of wave turbulence in one-dimensional systems. Our ultimate goal is to test the validity of weak turbulence theory. Although weak turbulence theory is independent on the sign of the nonlinearity of the model, the numerical results show a strong dependence on the sign of the nonlinearity. A possible explanation for this discrepancy is the strong influence of coherent structures - wave collapses and quasisolitons - in wave turbulence.
One-dimensional hypersonic phononic crystals.
Gomopoulos, N; Maschke, D; Koh, C Y; Thomas, E L; Tremel, W; Butt, H-J; Fytas, G
2010-03-10
We report experimental observation of a normal incidence phononic band gap in one-dimensional periodic (SiO(2)/poly(methyl methacrylate)) multilayer film at gigahertz frequencies using Brillouin spectroscopy. The band gap to midgap ratio of 0.30 occurs for elastic wave propagation along the periodicity direction, whereas for inplane propagation the system displays an effective medium behavior. The phononic properties are well captured by numerical simulations. The porosity in the silica layers presents a structural scaffold for the introduction of secondary active media for potential coupling between phonons and other excitations, such as photons and electrons. PMID:20141118
The one-dimensional hydrogen atom revisited
NASA Astrophysics Data System (ADS)
Palma, G.; Raff, U.
2006-09-01
The one-dimensional Schrodinger hydrogen atom is an interesting mathematical and physical problem for the study of bound states, eigenfunctions, and quantum-degeneracy issues. This one-dimensional physical system has given rise to some intriguing controversy for more than four decades. Presently, still no definite consensus seems to have been reached. We reanalyzed this apparently controversial problem, approaching it from a Fourier-transform representation method combined with some fundamental (basic) ideas found in self-adjoint extensions of symmetric operators. In disagreement with some previous claims, we found that the complete Balmer energy spectrum is obtained together with an odd-parity set of eigenfunctions. Closed-form solutions in both coordinate and momentum spaces were obtained. No twofold degeneracy was observed as predicted by the degeneracy theorem in one dimension, though it does not necessarily have to hold for potentials with singularities. No ground state with infinite energy exists since the corresponding eigenfunction does not satisfy the Schrodinger equation at the origin.
Can contaminant transport models predict breakthrough?
Peng, Wei-Shyuan; Hampton, Duane R.; Konikow, Leonard F.; Kambham, Kiran; Benegar, Jeffery J.
2000-01-01
A solute breakthrough curve measured during a two-well tracer test was successfully predicted in 1986 using specialized contaminant transport models. Water was injected into a confined, unconsolidated sand aquifer and pumped out 125 feet (38.3 m) away at the same steady rate. The injected water was spiked with bromide for over three days; the outflow concentration was monitored for a month. Based on previous tests, the horizontal hydraulic conductivity of the thick aquifer varied by a factor of seven among 12 layers. Assuming stratified flow with small dispersivities, two research groups accurately predicted breakthrough with three-dimensional (12-layer) models using curvilinear elements following the arc-shaped flowlines in this test. Can contaminant transport models commonly used in industry, that use rectangular blocks, also reproduce this breakthrough curve? The two-well test was simulated with four MODFLOW-based models, MT3D (FD and HMOC options), MODFLOWT, MOC3D, and MODFLOW-SURFACT. Using the same 12 layers and small dispersivity used in the successful 1986 simulations, these models fit almost as accurately as the models using curvilinear blocks. Subtle variations in the curves illustrate differences among the codes. Sensitivities of the results to number and size of grid blocks, number of layers, boundary conditions, and values of dispersivity and porosity are briefly presented. The fit between calculated and measured breakthrough curves degenerated as the number of layers and/or grid blocks decreased, reflecting a loss of model predictive power as the level of characterization lessened. Therefore, the breakthrough curve for most field sites can be predicted only qualitatively due to limited characterization of the hydrogeology and contaminant source strength.
Aperiodicity in one-dimensional cellular automata
Jen, E.
1990-01-01
Cellular automata are a class of mathematical systems characterized by discreteness (in space, time, and state values), determinism, and local interaction. A certain class of one-dimensional, binary site-valued, nearest-neighbor automata is shown to generate infinitely many aperiodic temporal sequences from arbitrary finite initial conditions on an infinite lattice. The class of automaton rules that generate aperiodic temporal sequences are characterized by a particular form of injectivity in their interaction rules. Included are the nontrivial linear'' automaton rules (that is, rules for which the superposition principle holds); certain nonlinear automata that retain injectivity properties similar to those of linear automata; and a wider subset of nonlinear automata whose interaction rules satisfy a weaker form of injectivity together with certain symmetry conditions. A technique is outlined here that maps this last set of automata onto a linear automaton, and thereby establishes the aperiodicity of their temporal sequences. 12 refs., 3 figs.
Superfluid helium-4 in one dimensional channel
NASA Astrophysics Data System (ADS)
Kim, Duk Y.; Banavar, Samhita; Chan, Moses H. W.; Hayes, John; Sazio, Pier
2013-03-01
Superfluidity, as superconductivity, cannot exist in a strict one-dimensional system. However, the experiments employing porous media showed that superfluid helium can flow through the pores of nanometer size. Here we report a study of the flow of liquid helium through a single hollow glass fiber of 4 cm in length with an open id of 150 nm between 1.6 and 2.3 K. We found the superfluid transition temperature was suppressed in the hollow cylinder and that there is no flow above the transition. Critical velocity at temperature below the transition temperature was determined. Our results bear some similarity to that found by Savard et. al. studying the flow of helium through a nanohole in a silicon nitrite membrane. Experimental study at Penn State is supported by NSF Grants No. DMR 1103159.
One-Dimensional Photonic Crystal Superprisms
NASA Technical Reports Server (NTRS)
Ting, David
2005-01-01
Theoretical calculations indicate that it should be possible for one-dimensional (1D) photonic crystals (see figure) to exhibit giant dispersions known as the superprism effect. Previously, three-dimensional (3D) photonic crystal superprisms have demonstrated strong wavelength dispersion - about 500 times that of conventional prisms and diffraction gratings. Unlike diffraction gratings, superprisms do not exhibit zero-order transmission or higher-order diffraction, thereby eliminating cross-talk problems. However, the fabrication of these 3D photonic crystals requires complex electron-beam substrate patterning and multilayer thin-film sputtering processes. The proposed 1D superprism is much simpler in structural complexity and, therefore, easier to design and fabricate. Like their 3D counterparts, the 1D superprisms can exhibit giant dispersions over small spectral bands that can be tailored by judicious structure design and tuned by varying incident beam direction. Potential applications include miniature gas-sensing devices.
Three one-dimensional structural heating programs
NASA Technical Reports Server (NTRS)
Wing, L. D.
1978-01-01
Two computer programs for calculating profiles in a ten-element structure consisting of up to ten materials are presented, along with a third program for calculating the mean temperature for a payload container placed in an orbiting vehicle cargo bay. The three programs are related by the sharing of a common analytical technique; the energy balance is based upon one-dimensional heat transfer. The first program, NQLDW112, assumes a non-ablating surface. NQLDW117 is very similar but allows the outermost element to ablate. NQLDW040 calculates an average temperature profile through an idealized model of the real payload cannister and contents in the cargo bay of an orbiting vehicle.
Unitary equivalent classes of one-dimensional quantum walks
NASA Astrophysics Data System (ADS)
Ohno, Hiromichi
2016-06-01
This study investigates unitary equivalent classes of one-dimensional quantum walks. We prove that one-dimensional quantum walks are unitary equivalent to quantum walks of Ambainis type and that translation-invariant one-dimensional quantum walks are Szegedy walks. We also present a necessary and sufficient condition for a one-dimensional quantum walk to be a Szegedy walk.
Packaging and transportation of radioactively contaminated lead
Gleason, Eugene; Holden, Gerard
2007-07-01
Under the management of the Nuclear Decommissioning Authority (NDA) the government of the United Kingdom has launched an ambitious program to remediate the nation's nuclear waste legacy. Over a twenty-five year period NDA plans to decommission several first generation nuclear power plants and other radioactive facilities. The use innovative, safe 'fit for purpose' technologies will be a major part of this complex program. This paper will present a case study of a recently completed project undertaken in support of the nuclear decommissioning activities at the Sellafield site in the United Kingdom. The focus is on an innovative application of new packaging technology developed for the safe transportation of radioactively contaminated lead objects. Several companies collaborated on the project and contributed to its safe and successful conclusion. These companies include British Nuclear Group, Gravatom Engineering, W. F. Bowker Transport, Atlantic Container Lines, MHF Logistical Solutions and Energy Solutions. New containers and a new innovative inter-modal packaging system to transport the radioactive lead were developed and demonstrated during the project. The project also demonstrated the potential contribution of international nuclear recycling activities as a safe, economic and feasible technical option for nuclear decommissioning in the United Kingdom. (authors)
COLLOIDAL CONSIDERATIONS IN GROUNDWATER SAMPLING AND CONTAMINANT TRANSPORT PREDICTIONS
The association of contaminants with suspended colloidal material in groundwater is a possible transport mechanism and a complicating factor for accurate estimations of the aqueous geochemistry of subsurface systems. esearch to date indicates colloidal facilitated transport of co...
Perched-Water Analysis Related to Deep Vadose Zone Contaminant Transport and Impact to Groundwater
Oostrom, Martinus; Truex, Michael J.; Carroll, KC; Chronister, Glen B.
2013-11-15
Perched-water conditions have been observed in the vadose zone above a fine-grained zone that is located just a few meters above the water table beneath the B-complex at the Hanford Site. The perched water, containing elevated concentrations of uranium and technetium-99, is important to consider in evaluating the future flux of contaminated water into the groundwater. A study was conducted to examine the perched-water conditions and quantitatively evaluate 1) factors that control perching behavior, 2) contaminant flux toward groundwater, and, 3) associated groundwater impact. Based on the current vertical transport pathways and large areal extent of the perched system, the evaluation was conducted using a one-dimensional (1-D) analysis. Steady-state scoping calculations showed that the perching-layer hydraulic conductivity is likely to be up to two orders of magnitude less than the base case value obtained from Hanford site literature. Numerical flow and transport simulations provided both steady-state and transient system estimates of water and contaminant behavior and were used to further refine the range of conditions consistent with current observations of perched water height and to provide estimates of future water and contaminant flux to groundwater. With a recharge rate of 6 cm/yr, representative of current disturbed surface conditions, contaminant flux from the perched water occurs over a time interval of tens of years. However, if the recharge rate is 0.35 cm/yr, representative of returning recharge to pre-Hanford Site levels, the contaminant flux into the groundwater is spread over hundreds of years. It was also demonstrated that removal of perched water by pumping would reduce the flux of water (and associated contaminants) to the groundwater, thereby impacting the long-term rate of contaminant movement to the groundwater.
Tseng, Yaw-Teng
1993-12-31
I have investigated two different linear chain compounds; NbSe{sub 3}, a conventional CDW material undergoing two independent charge density wave phase transitions at 144 K and 59 K, and Tl{sub 2}Mo{sub 6}Se{sub 6}, a novel quasi-one-dimensional conductor standing out from its M{sub 2}Mo{sub 6}X{sub 6} family because of its superconductivity at 5-7 K. Under elastic strain {var_epsilon}, the threshold field E{sub Tau} is greatly increased for the upper CDW but not for the lower CDW. The minimum in E{sub Tau} doubles at {epsilon} = 1% for the upper CDW whereas it increases less than 10% for the lower CDW. Using a plot of the E{sub Tau} vs. the reduced temperature, t = T/T{sub Rho} where T{sub Rho} is the Peierls transition temperature, we show that the t{sub min}, temperature where E{sub Tau} goes through a minimum, is independent of {epsilon}/ Below t{sub min}, elastic strain experiments can separate E{sub Tau} into two additive terms, E{sub Tau}({epsilon},{Tau}) = E{prime} {sub Tau}(t) + E{double_prime}{sub Tau}({epsilon},t) is independent of t and is equal to Emin below tmin., and E`{sub Tau}(t) is independent of {epsilon} and n{sub i}. We speculate that E{prime}{sub Tau}(t) is due to phase slip, and E{double_prime}{sub Tau}({epsilon},t) is due to impurity pinning. Such a separation is valid for both the upper and lower CDWs. The lower CDW resistance anomaly and thermopower are strongly enhanced by {epsilon}. An interesting feature is that the slope of the piezoresistance dR/D{sigma} and piezothermopower dS/d{sigma} both show a peculiar decrease at {epsilon} = 0.5 {plus_minus} 0.1%. They exhibit a plateau-like region below 40 K. We discuss the results in term of suggested Fermi surfaces topological change using a model in which a electron-like Fermi surface at the zone boundary is depleted under elastic strain.
One-dimensional quantum spin heterojunction as a thermal switch
NASA Astrophysics Data System (ADS)
Yang, Chuan-Jing; Jin, Li-Hui; Gong, Wei-Jiang
2016-03-01
We study the thermal transport through a quantum spin-1 2 heterojunction, which consists of a finite-size chain with two-site anisotropic XY interaction and three-site XZX+YZY interaction coupled at its ends to two semi-infinite isotropic XY chains. By performing the Jordan-Wigner transformation, the original spin Hamiltonian is mapped onto a fermionic Hamiltonian. Then, the fermionic structure is discussed, and the heat current as a function of structural parameters is evaluated. It is found that the magnetic fields applied at respective chains play different roles in adjusting the heat current in this heterojunction. Moreover, the interplay between the anisotropy of the XY interaction and the three-site spin interaction assists to further control the thermal transport. In view of the numerical results, we propose this heterojunction to be an alternate candidate for manipulating the heat current in one-dimensional (1D) systems.
Feed gas contaminant removal in ion transport membrane systems
Underwood, Richard Paul; Makitka, III, Alexander; Carolan, Michael Francis
2012-04-03
An oxygen ion transport membrane process wherein a heated oxygen-containing gas having one or more contaminants is contacted with a reactive solid material to remove the one or more contaminants. The reactive solid material is provided as a deposit on a support. The one or more contaminant compounds in the heated oxygen-containing gas react with the reactive solid material. The contaminant-depleted oxygen-containing gas is contacted with a membrane, and oxygen is transported through the membrane to provide transported oxygen.
NASA Astrophysics Data System (ADS)
Zhu, Yan; Shi, Liangsheng; Yang, Jinzhong; Wu, Jingwei; Mao, Deqiang
2013-09-01
An efficient integrated modeling approach is developed to simulate the contaminant transport in the subsurface system. The unsaturated zone is divided into a number of horizontal sub-areas according to the atmospheric boundary conditions, land use types and hydrological conditions. Solute migration through the unsaturated zone of each sub-area is assumed to be vertical and can be represented by the one-dimensional advection-dispersion equation, which is then coupled to the three-dimensional advection-dispersion equation representing the subsequent groundwater transport. The finite element method is adopted to discretize the vertical solute equation, while the hybrid finite element and finite difference method is used to discretize the three-dimensional saturated solute transport equation, which is split into the horizontal and vertical equations based on the concept of the horizontal/vertical splitting. The unsaturated and saturated solute transport equations are combined into a unified matrix by the mass balance analysis for the adjacent nodes located at the one-dimensional soil column and at the water table. Two hypothetical cases and two field cases are simulated to test the validity of the model with the results compared with those from HYDRUS-1D, SWMS2D and the measured data. The limitations of the model are discussed as well. The analysis of the four cases demonstrates that the proposed model can calculate the water flow and solute transport reasonably even with complex boundary and variable topography conditions. It also shows that the model is efficient to simulate the water flow and solute transport in regional-scale areas with small computational costs. However, the model will lose accuracy when the lateral dispersion effect is dominant in the unsaturated zone.
Quasi-one-dimensional foam drainage
NASA Astrophysics Data System (ADS)
Grassia, P.; Cilliers, J. J.; Neethling, S. J.; Ventura-Medina, E.
Foam drainage is considered in a froth flotation cell. Air flow through the foam is described by a simple two-dimensional deceleration flow, modelling the foam spilling over a weir. Foam microstructure is given in terms of the number of channels (Plateau borders) per unit area, which scales as the inverse square of bubble size. The Plateau border number density decreases with height in the foam, and also decreases horizontally as the weir is approached. Foam drainage equations, applicable in the dry foam limit, are described. These can be used to determine the average cross-sectional area of a Plateau border, denoted A, as a function of position in the foam. Quasi-one-dimensional solutions are available in which A only varies vertically, in spite of the two-dimensional nature of the air flow and Plateau border number density fields. For such situations the liquid drainage relative to the air flow is purely vertical. The parametric behaviour of the system is investigated with respect to a number of dimensionless parameters: K (the strength of capillary suction relative to gravity), α (the deceleration of the air flow), and n and h (respectively, the horizontal and vertical variations of the Plateau border number density). The parameter K is small, implying the existence of boundary layer solutions: capillary suction is negligible except in thin layers near the bottom boundary. The boundary layer thickness (when converted back to dimensional variables) is independent of the height of the foam. The deceleration parameter α affects the Plateau border area on the top boundary: weaker decelerations give larger Plateau border areas at the surface. For weak decelerations, there is rapid convergence of the boundary layer solutions at the bottom onto ones with negligible capillary suction higher up. For strong decelerations, two branches of solutions for A are possible in the K=0 limit: one is smooth, and the other has a distinct kink. The full system, with small but non
Experimental investigation of contaminant transport in porous media. Research report
Wang, J.C.; Booker, J.R.; Carter, J.P.
1998-10-01
When numerical methods are applied to simulate a real contaminant transport problem, the values of a number of key parameters such as porosity, hydrodynamic dispersion coefficient or dispersivity and Darcy velocity or seepage velocity or seepage velocity are needed. In this paper, two different experimental programs, involving two types of column test and a well simulation test, were designed to demonstrate that the theory developed to explain contaminant transport in porous media is capable of representing the actual phenomenon of contaminant migration in soil. It is demonstrated that experiments can also be carried out to determine the properties necessary to model a real case of contaminant migration in porous media.
Simulating higher-dimensional geometries in GADRAS using approximate one-dimensional solutions.
Thoreson, Gregory G.; Mitchell, Dean James; Harding, Lee T.
2013-02-01
The Gamma Detector Response and Analysis Software (GADRAS) software package is capable of simulating the radiation transport physics for one-dimensional models. Spherical shells are naturally one-dimensional, and have been the focus of development and benchmarking. However, some objects are not spherical in shape, such as cylinders and boxes. These are not one-dimensional. Simulating the radiation transport in two or three dimensions is unattractive because of the extra computation time required. To maintain computational efficiency, higher-dimensional geometries require approximations to simulate them in one-dimension. This report summarizes the theory behind these approximations, tests the theory against other simulations, and compares the results to experimental data. Based on the results, it is recommended that GADRAS users always attempt to approximate reality using spherical shells. However, if fissile material is present, it is imperative that the shape of the one-dimensional model matches the fissile material, including the use of slab and cylinder geometry.
Reprint of : Absorbing/Emitting Phonons with one dimensional MOSFETs
NASA Astrophysics Data System (ADS)
Bosisio, Riccardo; Gorini, Cosimo; Fleury, Geneviève; Pichard, Jean-Louis
2016-08-01
We consider nanowires in the field effect transistor device configuration. Modeling each nanowire as a one dimensional lattice with random site potentials, we study the heat exchanges between the nanowire electrons and the substrate phonons, when electron transport is due to phonon-assisted hops between localized states. Shifting the nanowire conduction band with a metallic gate induces different behaviors. When the Fermi potential is located near the band center, a bias voltage gives rise to small local heat exchanges which fluctuate randomly along the nanowire. When it is located near one of the band edges, the bias voltage yields heat currents which flow mainly from the substrate towards the nanowire near one boundary of the nanowire, and in the opposite direction near the other boundary. This opens interesting perspectives for heat management at submicron scales: arrays of parallel gated nanowires could be used for a field control of phonon emission/absorption.
Size Dependent Heat Conduction in One-Dimensional Diatomic Lattices
NASA Astrophysics Data System (ADS)
Tejal, N. Shah; P. N., Gajjar
2016-04-01
We study the size dependency of heat conduction in one-dimensional diatomic FPU-β lattices and establish that for low dimensional material, contribution from optical phonons is found more effective to the thermal conductivity and enhance heat transport in the thermodynamic limit N → ∞. For the finite size, thermal conductivity of 1D diatomic lattice is found to be lower than 1D monoatomic chain of the same size made up of the constituent particle of the diatomic chain. For the present 1D diatomic chain, obtained value of power divergent exponent of thermal conductivity 0.428±0.001 and diffusion exponent 1.2723 lead to the conclusions that increase in the system size, increases the thermal conductivity and existence of anomalous energy diffusion. Existing numerical data supports our findings.
One-dimensional Electron Gases at Oxide Interfaces
NASA Astrophysics Data System (ADS)
Cao, Yanwei; Zhong, Zhicheng; Shafer, P.; Liu, Xiaoran; Kareev, M.; Middey, S.; Meyers, D.; Arenholz, E.; Chakhalian, Jak
Emergence of two-dimensional electron gases (2DEG) at the oxide interfaces of two dissimilar insulators is a remarkable manifestation of interface engineering. With continuously reduced dimensionality, it arises an interesting question: could one-dimensional electron gases (1DEG) be designed at oxide interfaces? So far there is no report on this. Here, we report on the formation of 1DEG at the carefully engineered titanate heterostructures. Combined resonant soft X-ray linear dichroism with electrical transport and the first-principles calculations have confirmed the formation of 1DEG driven by the interfacial symmetry breaking. Our findings provide a route to engineer new electronic and magnetic states. This work was supported by Gordon and Betty Moore Foundation, DODARO, DOE, and the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy.
FACILITATED TRANSPORT OF INORGANIC CONTAMINANTS IN GROUNDWATER: PART II. COLLOIDAL TRANSPORT
This project consisted of both field and laboratory components. Field studies evaluated routine sampling procedures for determination of aqueous inorganicgeochemistry and assessment of contaminant transport by colloidal mobility. Research at three different metal-contaminated sit...
NASA Astrophysics Data System (ADS)
Sanders, J. E.; Miller, G. R.
2015-12-01
Magnetic shell crosslinked knedel-like nanoparticles (MSCKs) were originally engineered to aid in the cleanup of oil spills. These polymeric particles are spherical and approximately 70 nm in diameter. MSCKs have a hydrophobic shell and hydrophilic core which encapsulates suspended iron oxide nanoparticles, rendering them magnetic. MSCKs operate like discrete surfactant packets: increasing the mobility and apparent solubility of hydrophobic species, but do so within the confines of discrete particles which can then be recovered by filtration or magnetic removal. MSCKs accomplish this via sequestration of hydrophobic species from through the hydrophilic shell and into the hydrophobic core where hydrocarbon contaminants are entropically stabilized. In batch reactor testing, MSCKs have been shown to sequester crude oil up to ten times their mass (1000 mg of oil per 100 mg of MSCKs). This study examines the transport characteristics and contaminant sequestration capabilities of MSCKs in saturated porous media, in order to establish their potential for use in groundwater remediation. Baseline MSCK transport parameters were determined via one dimensional impulse column experiments. MSCKs were readily transported in saturated sand, with an average recovery rate of 99%. In the presence of 10% clay particles, recovery was reduced to 68%. MSCKs were able to completely sequester an aqueous phase pollutant (8.7 mg/L m-xylene), although it further reduced their recovery rate to 61% in sand and 53% in clay. The presence of a free phase contaminant (5% of pore space occupied by mineral oil) reduced MSCKs recovery in sand to 53%. The MSCKs recovered in the effluent had sequestered the mineral at ratios far below their capability (3-10 mg of oil per 100 mg of MSCKs). Overall, this study indicated that MSCKs show a number of promising attributes for use in remediation. However, further manipulation of their chemical and morphological properties is needed, with the objective of
CONTAMINATED SEDIMENT TRANSPORT AND FATE MODELING
Many Superfund sites include rivers, reservoirs, and other surface bodies of water (and the adjacent floodplains) that are highly contaminated with PCBs, metals, and other toxic chemicals. Examples of contaminated waters are the Hudson, Fox, Housatonic and Clark Fork Rivers, Lake...
Electronic effects of defects in one-dimensional channels
NASA Astrophysics Data System (ADS)
Fuller, Elliot J.; Pan, Deng; Corso, Brad L.; Gul, O. Tolga; Collins, Philip G.
2013-09-01
As electronic devices shrink to the one-dimensional limit, unusual device physics can result, even at room temperature. Nanoscale conductors like single-walled carbon nanotubes (SWNTs) are particularly useful tools for experimentally investigating these effects. Our characterization of point defects in SWNTs has focused on these electronic consequences. A single scattering site in an otherwise quasi-ballistic SWNT introduces resistance, transconductance, and chemical sensitivity, and here we investigate these contributions using a combination of transport and scanning probe techniques. The transport measurements determine the two-terminal contributions over a wide range of bias, temperature, and environmental conditions, while the scanning probe work provides complementary confirmation that the effects originate at a particular site along the conduction path in a SWNT. Together, the combination proves that single point defects behave like scattering barriers having Poole-Frenkel transport characteristics. The Poole-Frenkel barriers have heights of 10 - 30 meV and gate-dependent widths that grow as large as 1 μm due to the uniquely poor screening in one dimension. Poole-Frenkel characteristics suggest that the barriers contain at least one localized electronic state, and that this state primarily contributes to conduction under high bias or high temperature conditions. Because these localized states vary from one device to another, we hypothesize that each might be unique to a particular defect's chemical type.
Preliminary study of niobium alloy contamination by transport through helium
NASA Technical Reports Server (NTRS)
Scheuermann, C. M.; Moore, T. J.; Wheeler, D. R.
1987-01-01
Transport of gaseous contaminants through the working fluid to or from sensitive refractory alloys is theoretically possible during long time operation of Brayton and Stirling space power generation systems which use a gas as the working fluid. A test was designed which could give an answer to whether transport of contaminants through the working fluid was a potential major problem. The findings of that preliminary study are summarized.
Contaminant transport from an array of sources
Kim, C.L.; Chambre, P.L.; Lee, W.W.L.; Pigford, T.H.
1987-04-01
This document shows analytic solutions to the problem of contaminant dispersion from an array of point sources in a waste disposal site. These solutions are for waste sources in a fluid-saturated porous medium, and may be for isotropic or anisotropic dispersion. The solutions are illustrated through isopleths of contaminants for a planar array of point sources perpendicular to ground-water flow. The concentration fields several meters away from this plane can be approximated by equivalent plane sources. 2 refs., 4 figs.
A reactive transport model for mercury fate in contaminated soil--sensitivity analysis.
Leterme, Bertrand; Jacques, Diederik
2015-11-01
We present a sensitivity analysis of a reactive transport model of mercury (Hg) fate in contaminated soil systems. The one-dimensional model, presented in Leterme et al. (2014), couples water flow in variably saturated conditions with Hg physico-chemical reactions. The sensitivity of Hg leaching and volatilisation to parameter uncertainty is examined using the elementary effect method. A test case is built using a hypothetical 1-m depth sandy soil and a 50-year time series of daily precipitation and evapotranspiration. Hg anthropogenic contamination is simulated in the topsoil by separately considering three different sources: cinnabar, non-aqueous phase liquid and aqueous mercuric chloride. The model sensitivity to a set of 13 input parameters is assessed, using three different model outputs (volatilized Hg, leached Hg, Hg still present in the contaminated soil horizon). Results show that dissolved organic matter (DOM) concentration in soil solution and the binding constant to DOM thiol groups are critical parameters, as well as parameters related to Hg sorption to humic and fulvic acids in solid organic matter. Initial Hg concentration is also identified as a sensitive parameter. The sensitivity analysis also brings out non-monotonic model behaviour for certain parameters. PMID:26099598
Nilson, R.H.; Lie, K.H. )
1987-12-01
A double-porosity model is used to describe the oscillatory gas motion and associated contaminant transport induced by cyclical variations in the barometric pressure at the surface of a fractured porous medium. Flow along the fractures and within the permeable matrix blocks is locally one-dimensional. The interaction between fractures and blocks includes the Darcian seepage of fluid as well as the Fickian diffusion of contaminant. To guard against artificial numerical diffusion, the FRAM filtering remedy and methodology of Chapman is used in calculating the advective fluxes along fractures and within blocks. The entire system of equations, including the fracture/matrix interaction terms, is solved by a largely implicit non-computational time step is large compared to the cross-block transit time of Darcian pressure waves. The numerical accuracy is tested by comparison with exact solutions for oscillatory and unidirectional flows, some of which include Darcian seepage or Fickian diffusion interaction between the fracture and the matrix. The method is used to estimate the rate of transport of radioactive gases through the rubblized chimney produced by an underground nuclear explosion.
Simulation of phosphate transport in sewage-contaminated groundwater, Cape Cod, Massachusetts
Stollenwerk, K.G.
1996-01-01
Sewage-contaminated groundwater currently discharges to Ashumet Pond, located on Cape Cod, Massachusetts Phosphate concentrations as high as 60 ??mol l-1 have been measured in groundwater entering Ashumet Pond, and there is concern that the rate of eutrophication could increase. Phosphate in the sewage plume is sorbed by aquifer sediment; the amount is a function of phosphate concentration and pH. A nonelectrostatic surface-complexation model coupled with a one-dimensional solute-transport code was used to simulate sorption and desorption of phosphate in laboratory column experiments. The model simulated sorption of phosphate reasonably well, although the slow rate of approach to complete breakthrough indicated a nonequilibrium process that was not accounted for in the solute-transport model The rate of phosphate desorption in the column experiments was relatively slow Phosphate could still be measured in effluent after 160 pore volumes of uncontaminated groundwater had been flushed through the columns. Desorption was partly a function of the slowly decreasing pH in the columns and could be modeled quantitatively. Disposal of sewage at this site is scheduled to stop in 1995; however, a large reservoir of sorbed phosphate exists on aquifer sediment upgradient from Ashumet Pond. Computer simulations predict that desorption of phosphate could result in contamination of Ashumet Pond for decades.
Investigation of contaminant transport from the saginaw confined disposal facility
Velleux, M.L.; Rathbun, J.E.; Kreis, R.G.; Martin, J.L.; Mac, M.J.
1993-01-01
Pilot biomonitoring and modeling studies were conducted at the Saginaw Confined Disposal Facility (CDF), Saginaw Bay, Lake Huron, during 1987 to develop methods to assess the potential for or magnitude of (1) contaminant transport from the dike interior to the outside environment, (2) impacts of CDF disposal on the water column and sediments, and (3) impacts of CDF disposal on aquatic biota living in the outdike zone. Polychlorinated biphenyls (PCBs) were selected for study due to their presence in the sediments of the Saginaw River/Bay ecosystem. A mathematical model of near-field contaminant transport through the dike walls was constructed. Model predictions indicate that the rate of contaminant transport through the dike is expected to be small, amounting to less than 0.25 kg of PCBs after 5,000 days of simulation. A mathematical model of the farfield impacts of CDF transport was also constructed. Model predictions indicate that the incremental increase in steady-state, water column PCB concentrations in Saginaw Bay is expected to be approximately 0.05 ng/L per kg of PCB transported from the CDF. A biomonitoring program was developed to assess contaminant transport through dike walls and its impact on contaminant concentrations in biological tissues.
Topological states in one dimensional solids and photonic crystals
NASA Astrophysics Data System (ADS)
Atherton, Timothy; Mathur, Harsh
2011-03-01
We show that the band structure of a one-dimensional solid with particle-hole symmetry may be characterized by a topological index that owes its existence to the non-trivial homotopy of the space of non-degenerate real symmetric matrices. Moreover we explicitly demonstrate a theorem linking the topological index to the existence of bound states on the surface of a semi-infinite one dimensional solid. Our analysis is a one-dimensional analogue of the analysis of topological insulators in two and three dimensions by Balents and Moore; our results may be relevant to long molecules that are the one dimensional analogue of topological insulators. We propose the realization of this physics in a one-dimensional photonic crystal. In this case the topology of the bandstructure reveals itself not as a bound surface state but as a Lorentzian feature in the time delay of light that is otherwise perfectly reflected by the photonic crystal.
Is there hope for spintronics in one dimensional realistic systems?
NASA Astrophysics Data System (ADS)
Rocha, Alexandre; Martins, Thiago; Fazzio, Adalberto; da Silva, Antônio J. R.
2010-03-01
The use of the electron spin as the ultimate logic bit can lead to a novel way of thinking about information flow. At the same time graphene, a gapless semiconductor, has been the subject of intense research due to its fundamental properties and its potential application in electronics. Defects are usually seen as having deleterious effects on the spin polarization of devices and thus they would tend to hinder the applicability of spintronics in realistic devices. Here we use a ab initio methods to simulate the electronic transport properties of graphene nanoribbons up to 450 nm long containing a large number of randomly distributed impurities. We will demonstrate that it is possible to obtain perfect spin selectivity in these nanoribbons which can be explained in terms of different localization lengths for each spin channel. This together with the well know exponential dependence of the conductance on the length of the device leads to a new mechanism for the spin filtering effect that is in fact driven by disorder. Furthermore, we demonstrate that this is an effect that does not depend on the underlying system itself and could be observed in carbon nanotubes and nanowires or any other one-dimensional device.
Reentrant phase coherence in a quasi-one-dimensional superconductor
NASA Astrophysics Data System (ADS)
Ansermet, Diane; Petrovic, Alexander P.; He, Shikun; Chernyshov, Dmitri; Hoesch, Moritz; Salloum, Diala; Gougeon, Patrick; Potel, Michel; Boeri, Lilia; Andersen, Ole K.; Panagopoulos, Christos
Short coherence lengths characteristic of low-dimensional superconductors are related to high critical fields or temperatures. Fatally, such materials are often sensitive to disorder and suffer from phase fluctuations in the order parameter which diverge with temperature T, magnetic field H or current I. To solve synthesis and fluctuation problems, we propose to build superconductors from inhomogeneous composites of nanofilaments. Single crystals of quasi-one-dimensional Na2-δMo6Se6 featuring Na vacancy disorder (δ ~ 0 . 2) behave as percolative networks of superconducting nanowires. Long range order is established via transverse coupling between individual filaments, yet phase coherence is unstable to fluctuations and localization in the zero-(T, H, I) limit. A region of reentrant phase coherence develops upon raising (T, H, I) and is attributed to an enhancement of the transverse coupling due to electron delocalization. The observed reentrance in the electronic transport coincides with a peak in the Josephson energy EJ at non-zero (T, H, I). Na2-δMo6Se6 is a blueprint for a new generation of low dimensional superconductors with resilience to phase fluctuations at high (T, H, I). This work was supported by the National Research Foundation, Singapore, through Grant NRF-CRP4-2008-04.
Transport of trace contaminants through porous media
NASA Technical Reports Server (NTRS)
Madey, R.
1975-01-01
Research accomplishments in the following areas are discussed: (1) the calibration of the gas chromatograph for acetaldehyde and ethanol; (2) the development of data reduction and analysis methods; (3) the generation and analysis of experimental data for the transport of 100 ppm acetaldehyde through a cylindrical bed packed with activated carbon granules; (4) the generation and analysis of experimental data for the transport of 100 ppm ethanol through a cylindrical bed packed with activated carbon granules; and (5) a comparison of the volume adsorption capacity of activated carbon for 100 ppm concentrations of acetaldehyde, ethanol, and acetone. Activities in progress and planned activities are reviewed.
Effects of vegetation on contaminant transport in surface flows
Green, R.; Govindaraju, R.S.; Erickson, L.E.; Roig, L.
1996-12-31
It is well known that vegetation reduces off-site contamination that would result from surface flows. A significant portion of heavy metal contamination occurs at abandoned mine sites due to sediment movement. The effects of vegetation on sediment transport and surface runoff are reviewed, with an emphasis on factors that can reduce or prevent the movement of such metals in mine tailings. Several mathematical models for sediment transport in surface flows are briefly discussed, including advantages and limitations of the Universal Soil-Loss Equation and CREAMS model. Reported experimental and field data on contaminant transport in surface flows are reviewed and evaluated, as well as studies in treating the bioavailability of heavy metals in attempts to reduce metal phytotoxicity or decreasing the potential for entrance of the metals into the food chain via vegetation. Pollutants of concern include lead, zinc, and cadmium. 55 refs.
Preliminary study of niobium alloy contamination by transport through helium
NASA Technical Reports Server (NTRS)
Scheuermann, Coulson M.; Moore, Thomas J.; Wheeler, Donald R.
1987-01-01
Preliminary tests were conducted to determine if interstitial element transport through a circulating helium working fluid was a potential problem in Brayton and Stirling space power systems. Test specimens exposed to a thermal gradient for up to 3000-hr included Nb-1%Zr, a Sm-Co alloy (referred to as SmCo in this paper), Hiperco 50 steel, and alumina to simulate various engine components of the Brayton and Stirling systems. Results indicate that helium transport of interstitial contaminants can be minimized over a 7-yr life with a monometallic Nb-1%Zr design. Exposure with other materials indicated a potential for interstitial contaminant transport. Determination of contamination kinetics and the effects on structural integrity will require additional testing.
Contaminant transport from Elliott and Commencement Bays. Technical memo
Curl, H.C.; Baker, E.T.; Bates, T.S.; Cannon, G.A.; Feely, R.A.
1988-04-01
Contaminant transport from Elliott and Commencement Bays to the main basin of the Puget Sound was investigated by the Pacific Marine Environmental Laboratory during the spring and summer of 1985 and January of 1986. Distributions of water properties (salinity, suspended particulate matter, and toxic trace metals and organics) were mapped during periods of high river runoff and during combined sewer outflow after heavy rainfall. Results indicate that: (1) dissolved contaminants remain in the very thin, fresh-water plume and are transported through the bays into the main basin quite rapidly; (2) PCB and DDT isomers were undetectable in either bay; and (3) there was no evidence that resuspension and transport of contaminated bottom sediments was taking place in Elliot Bay. These results must be qualified due to the short periods during which measurements were taken.
Wagner, B.J.
1992-01-01
Parameter estimation and contaminant source characterization are key steps in the development of a coupled groundwater flow and contaminant transport simulation model. Here a methodologyfor simultaneous model parameter estimation and source characterization is presented. The parameter estimation/source characterization inverse model combines groundwater flow and contaminant transport simulation with non-linear maximum likelihood estimation to determine optimal estimates of the unknown model parameters and source characteristics based on measurements of hydraulic head and contaminant concentration. First-order uncertainty analysis provides a means for assessing the reliability of the maximum likelihood estimates and evaluating the accuracy and reliability of the flow and transport model predictions. A series of hypothetical examples is presented to demonstrate the ability of the inverse model to solve the combined parameter estimation/source characterization inverse problem. Hydraulic conductivities, effective porosity, longitudinal and transverse dispersivities, boundary flux, and contaminant flux at the source are estimated for a two-dimensional groundwater system. In addition, characterization of the history of contaminant disposal or location of the contaminant source is demonstrated. Finally, the problem of estimating the statistical parameters that describe the errors associated with the head and concentration data is addressed. A stage-wise estimation procedure is used to jointly estimate these statistical parameters along with the unknown model parameters and source characteristics. ?? 1992.
Tomasko, D.
1990-04-01
One-dimensional analytical expressions are developed to simulate two processes in a homogeneous porous medium: contaminant transport through a porous medium that has a zero-concentration sink located at a finite distance from a step-function source; and contaminant transport through a porous medium that has an initial steady-state distribution corresponding to a constant strength source and zero-concentration sink separated by a finite distance. The governing equations are cast in dimensionless form, making use of the flow system's Peclet number. Evaluation of the analytical expressions is accomplished by numerical inversion of Laplace-space concentrations using either a full Fourier series approach with acceleration, or the Stehfest algorithm. The analytical expressions are used to evaluate possible contaminant conditions at the Weldon Spring quarry near Weldon Spring, Missouri. The following results have been found: contaminant concentrations should be at or near steady-state conditions; the spatial distribution of contaminants should be a function of the flow system's Peclet number; contaminant concentrations near the Femme Osage Slough should approach zero; contaminant concentrations near the quarry during dewatering and bulk-waste removal should monotonically decrease with time; and the spatial distribution of contaminants during remedial activities should be relatively flat, especially near the dewatering pumps. Future work will entail evaluating existing radionuclide or chemical concentration data to determine the applicability of the proposed contaminant transport model and to improve the hydrogeological conceptualization of the quarry area and vicinity. 20 refs., 27 figs.
Extending the Analysis of One-Dimensional Motion.
ERIC Educational Resources Information Center
Canderle, Luis H.
1999-01-01
Proposes that introductory physics courses extend the analysis of one-dimensional motion to a more sophisticated level. Gives four experimental setups and graphical analysis of the distance, velocity, and acceleration in the vertical and horizontal directions. (WRM)
Asymptotic formula for eigenvalues of one dimensional Dirac system
NASA Astrophysics Data System (ADS)
Ulusoy, Ismail; Penahlı, Etibar
2016-06-01
In this paper, we study the spectral problem for one dimensional Dirac system with Dirichlet boundary conditions. By using Counting lemma, we give an asymptotic formulas of eigenvalues of Dirac system.
One-dimensional simulation of temperature and moisture in atmospheric and soil boundary layers
NASA Technical Reports Server (NTRS)
Bornstein, R. D.; Santhanam, K.
1981-01-01
Meteorologists are interested in modeling the vertical flow of heat and moisture through the soil in order to better simulate the vertical and temporal variations of the atmospheric boundary layer. The one dimensional planetary boundary layer model of is modified by the addition of transport equations to be solved by a finite difference technique to predict soil moisture.
The effects of a perturbed source on contaminant transport near the Weldon Spring quarry
Tomasko, D.
1989-03-01
The effects of a perturbed contamination source at the Weldon Spring quarry in St. Charles County, Missouri, on downstream solute concentrations were investigated using one-dimensional analytical solutions to an advection-dispersion equation developed for both constant-strength and multiple-stepped source functions. A sensitivity study using parameter base-case values and ranges consistent with the geologic conceptualization of the quarry area indicates that the parameters having the greatest effect on predicted concentrations are the distance from the quarry to the point of interest, the average linear groundwater velocity, the contaminant retardation coefficient, and the amplitude and duration of the source perturbation caused by response action activities. Use of base-case parameter value and realistic values for the amplitude and duration of the source perturbation produced a small effect on solute concentrations near the western extremity of the nearby municipal well field, as well as small uncertainties in the predicted results for the assumed model. The effect of simplifying assumptions made in deriving the analytic solution is unknown: use of a multidimensional flow and transport model and additional field work are needed to validate the model. 13 refs., 18 figs.
One-dimensional pattern of Au nanodots by ion-beam sputtering: formation and mechanism.
Kim, J-H; Ha, N-B; Kim, J-S; Joe, M; Lee, K-R; Cuerno, R
2011-07-15
Highly ordered one-dimensional arrays of nanodots, or nanobeads, are fabricated by forming nanoripples and nanodots in sequence, entirely by ion-beam sputtering (IBS) of Au(001). This demonstrates the capability of IBS for the fabrication of sophisticated nanostructures via hierarchical self-assembly. The intricate nanobead pattern ideally serves to identify the governing mechanisms for the pattern formation: nonlinear effects, especially local redeposition and surface-confined transport, are essential both for the formation and the preservation of the one-dimensional order of the nanobead pattern. PMID:21625038
CONTAMINANT TRANSPORT IN PARALLEL FRACTURED MEDIA: SUDICKY AND FRIND REVISITED
This paper is concerned with a modified, nondimensional form of the parallel fracture, contaminant transport model of Sudicky and Frind (1982). The modifications include the boundary condition at the fracture wall, expressed by a parameter, and the power-law relationship between...
STABILITY AND TRANSPORT OF INORGANIC COLLOIDS THROUGH CONTAMINATED AQUIFER MATERIAL
Laboratory columns using contaminated natural aquifer material from Globe, Arizona, were used to investigate the transport of inorganic colloids under saturated flow conditions. e2O3 radio-labeled spherical colloids of various diameters were synthesized and introduced into the co...
INVESTIGATION OF CONTAMINANT TRANSPORT FROM THE SAGINAW CONFINED DISPOSAL FACILITY
Pilot biomonitoring and monitoring studies were conducted at the Saginaw Confined Disposal Facility (CDF), Saginaw Bay, Lake Huron, during 1987 to develop methods to assess the potential for magnitude of 1) contaminant transport from the dike interior to the outside environment, ...
CONTAMINANT TRANSPORT IN PARALLEL FRACTURED MEDIA: SUDICKY AND FRIND REVISITED
This paper is concerned with a modified, nondimensional form of the parallel fracture, contaminant transport model of Sudicky and Frind (1982). The modifications include the boundary condition at the fracture wall, expressed by a parameter , and the power-law relationship betwe...
A contaminant transport model for wetlands accounting for distinct residence time bimodality
NASA Astrophysics Data System (ADS)
Musner, T.; Bottacin-Busolin, A.; Zaramella, M.; Marion, A.
2014-07-01
Vegetation plays a major role in controlling the fate of contaminants in natural and constructed wetlands. Estimating the efficiency of contaminant removal of a wetland requires separate knowledge of the residence time statistics in the main flow channels, where the flow velocity is relatively higher, and in the more densely vegetated zones, where the velocity is smaller and most of the biochemical transformations occur. A conceptual wetland characterized by a main flow channel (MFC) and lateral vegetated zones (LVZs) is modeled here using a two-dimensional depth-averaged hydrodynamic and advection-dispersion model. The effect of vegetation is described as a flow resistance represented in the hydrodynamic model as a function of the stem density. Simulations are performed for a given flow discharge and for increasing values of the ratio between the vegetation density in the LVZs and in the MFC. Residence time distributions (RTDs) of a nonreactive tracer are derived from numerical simulations of the solute breakthrough curves (BTCs) resulting from a continuous concentration input. Results show that increasing vegetation densities produce an increasingly pronounced bimodality of the RTDs. At longer times, the RTDs decrease exponentially, with different timescales depending on the stem density ratio and other system parameters. The overall residence time distribution can be decomposed into a first component associated with the relatively fast transport in the MFC, and a second component associated with the slower transport in the LVZs. The weight of each temporal component is related to the exchange flux at the MFC-LVZ interface. A one-dimensional transport model is proposed that is capable to reproduce the RTDs predicted by the depth-averaged model, and the relationship between model and system parameters is investigated using a combination of direct and inverse modeling approaches.
Reductive dissolution and reactive solute transport in a sewage-contaminated glacial outwash aquifer
Lee, R.W.; Bennett, P.C.
1998-01-01
Contamination of shallow ground water by sewage effluent typically contains reduced chemical species that consume dissolved oxygen, developing either a low oxygen geochemical environment or an anaerobic geochemical environment. Based on the load of reduced chemical species discharged to shallow ground water and the amounts of reactants in the aquifer matrix, it should be possible to determine chemical processes in the aquifer and compare observed results to predicted ones. At the Otis Air Base research site (Cape Cod, Massachusetts) where sewage effluent has infiltrated the shallow aquifer since 1936, bacterially mediated processes such as nitrification, denitrification, manganese reduction, and iron reduction have been observed in the contaminant plume. In specific areas of the plume, dissolved manganese and iron have increased significantly where local geochemical conditions are favorable for reduction and transport of these constituents from the aquifer matrix. Dissolved manganese and iron concentrations ranged from 0.02 to 7.3 mg/L, and 0.001 to 13.0 mg/L, respectively, for 21 samples collected from 1988 to 1989. Reduction of manganese and iron is linked to microbial oxidation of sewage carbon, producing bicarbonate and the dissolved metal ions as by-products. Calculated production and flux of CO2 through the unsaturated zone from manganese reduction in the aquifer was 0.035 g/m2/d (12% of measured CO2 flux during winter). Manganese is limited in the aquifer, however. A one-dimensional, reaction-coupled transport model developed for the mildly reducing conditions in the sewage plume nearest the source beds showed that reduction, transport, and removal of manganese from the aquifer sediments should result in iron reduction where manganese has been depleted.
Heterolayered, one-dimensional nanobuilding block mat batteries.
Choi, Keun-Ho; Cho, Sung-Ju; Chun, Sang-Jin; Yoo, Jong Tae; Lee, Chang Kee; Kim, Woong; Wu, Qinglin; Park, Sang-Bum; Choi, Don-Ha; Lee, Sun-Young; Lee, Sang-Young
2014-10-01
The rapidly approaching smart/wearable energy era necessitates advanced rechargeable power sources with reliable electrochemical properties and versatile form factors. Here, as a unique and promising energy storage system to address this issue, we demonstrate a new class of heterolayered, one-dimensional (1D) nanobuilding block mat (h-nanomat) battery based on unitized separator/electrode assembly (SEA) architecture. The unitized SEAs consist of wood cellulose nanofibril (CNF) separator membranes and metallic current collector-/polymeric binder-free electrodes comprising solely single-walled carbon nanotube (SWNT)-netted electrode active materials (LiFePO4 (cathode) and Li4Ti5O12 (anode) powders are chosen as model systems to explore the proof of concept for h-nanomat batteries). The nanoporous CNF separator plays a critical role in securing the tightly interlocked electrode-separator interface. The SWNTs in the SEAs exhibit multifunctional roles as electron conductive additives, binders, current collectors and also non-Faradaic active materials. This structural/physicochemical uniqueness of the SEAs allows significant improvements in the mass loading of electrode active materials, electron transport pathways, electrolyte accessibility and misalignment-proof of separator/electrode interface. As a result, the h-nanomat batteries, which are easily fabricated by stacking anode SEA and cathode SEA, provide unprecedented advances in the electrochemical performance, shape flexibility and safety tolerance far beyond those achievable with conventional battery technologies. We anticipate that the h-nanomat batteries will open 1D nanobuilding block-driven new architectural design/opportunity for development of next-generation energy storage systems. PMID:25226349
One dimensional time-to-explode (ODTX) in HMX spheres
Breshears, D.
1997-06-02
In a series of papers researchers at Lawrence Livermore National Laboratory (LLNL) have reported measurements of the time to explosion in spheres of various high explosives following a rapid, uniform increase in the surface temperature of the sphere. Due to the spherical symmetry, the time-dependent properties of the explosive (temperature, chemical composition, etc.) are functions of the radial spatial coordinate only; thus the name one-dimensional time-to-explosion (ODTX). The LLNL researchers also report an evolving series of computational modeling results for the ODTX experiments, culminating in those obtained using a sophisticated heat transfer code incorporating accurate descriptions of chemical reaction. Although the chemical reaction mechanism used to describe HMX decomposition is quite simple, the computational results agree very well with the experimental data. In addition to reproducing the magnitude and temperature dependence of the measured times to explosion, the computational results also agree with the results of post reaction visual inspection. The ODTX experiments offer a near-ideal example of a transport process (heat transfer in this case) tightly coupled with chemical reaction. The LLNL computational model clearly captures the important features of the ODTX experiments. An obvious question of interest is to what extent the model and/or its individual components (specifically the chemical reaction mechanism) are applicable to other experimental scenarios. Valid exploration of this question requires accurate understanding of (1) the experimental scenario addressed by the LLNL model and (2) details of the application of the model. The author reports here recent work addressing points (1) and (2).
Construction and optoelectronic properties of organic one-dimensional nanostructures.
Zhao, Yong Sheng; Fu, Hongbing; Peng, Aidong; Ma, Ying; Liao, Qing; Yao, Jiannian
2010-03-16
In the last 10 years, nanomaterials based on small organic molecules have attracted increasing attention. Such materials have unique optical and electronic properties, which could lead to new applications in nanoscale devices. Zero-dimensional (0D) organic nanoparticles with amorphous structures have been widely studied; however, the systematic investigation of crystalline one-dimensional (1D) organic nanostructures has only emerged in recent years. Researchers have used inorganic 1D nanomaterials, such as wires, tubes, and belts, as building blocks in optoelectronic nanodevices. We expect that their organic counterparts will also play an important role in this field. Because organic nanomaterials are composed of molecular units with weaker intermolecular interactions, they allow for higher structural tunability, reactivity, and processability. In addition, organic materials usually possess higher luminescence efficiency and can be grown on almost any solid substrate. In this Account, we describe recent progress in our group toward the construction of organic 1D nanomaterials and studies of their unique optical and electronic properties. First, we introduce the techniques for synthesizing 1D organic nanostructures. Because this strategy is both facile and reliable, liquid phase synthesis is most commonly used. More importantly, this method allows researchers to produce composite materials, including core/sheath and uniformly doped structures, which allow to investigate the interactions between different components in the nanomaterials, including fluorescent resonance energy transfer and photoinduced electron transfer. Physical vapor deposition allows for the synthesis of organic 1D nanomaterials with high crystallinity. Nanomaterials produced with this method offer improved charge transport properties and better optoelectronic performance in areas including multicolor emission, tunable emission, optical waveguide, and lasing. Although inorganic nanomaterials have
NASA Astrophysics Data System (ADS)
Li, Nianbei; Li, Baowen
2012-12-01
Heat transport in low-dimensional systems has attracted enormous attention from both theoretical and experimental aspects due to its significance to the perception of fundamental energy transport theory and its potential applications in the emerging field of phononics: manipulating heat flow with electronic anologs. We consider the heat conduction of one-dimensional nonlinear lattice models. The energy carriers responsible for the heat transport have been identified as the renormalized phonons. Within the framework of renormalized phonons, a phenomenological theory, effective phonon theory, has been developed to explain the heat transport in general one-dimensional nonlinear lattices. With the help of numerical simulations, it has been verified that this effective phonon theory is able to predict the scaling exponents of temperature-dependent thermal conductivities quantitatively and consistently.
Ignition transient analysis of a solid rocket motor using a one dimensional two fluid model
NASA Astrophysics Data System (ADS)
Pardue, Byron A.; Han, Samuel S.
1992-07-01
A one dimensional two fluid numerical model has been used to study the ignition transient stage of a Space Shuttle solid rocket motor. During the ignition phase of a solid rocket motor a pressure transient is induced by complex transport processes involving the igniter gas heat transfer to the propellant, chemical reactions at the propellant surface, and the interaction of the fluid with the attached rocket nozzle. One dimensional models used in the past neglected the aluminum oxide particles which are present in the combustion gases. The current model uses the IPSA (Inter-Phase-Slip-Algorithm) to solve the transient compressible flow equations for the rocket chamber and attached nozzle. Numerical results for head end pressure changes and overall thrust are compared with both measurement data and predictions of a one dimensional one fluid model.
Contaminant Transport Through Subsurface Material from the DOE Hanford Reservation
Pace, M.N.; Mayes, M.A.; Jardine, P.M.; Fendorf, S.E.; Nehlhorn, T.L.; Yin, X.P.; Ladd, J.; Teerlink, J.; Zachara, J.M.
2003-03-26
Accelerated migration of contaminants in the vadose zone has been observed beneath tank farms at the U.S. Department of Energy's Hanford Reservation. This paper focuses on the geochemical processes controlling the fate and transport of contaminants in the sediments beneath the Hanford tank farms. Laboratory scale batch sorption experiments and saturated transport experiments were conducted using reactive tracers U(VI), Sr, Cs, Co and Cr(VI) to investigate geochemical processes controlling the rates and mechanisms of sorption to Hanford subsurface material. Results indicate that the rate of sorption is influenced by changes in solution chemistry such as ionic strength, pH and presence of competing cations. Sediment characteristics such as mineralogy, iron content and cation/anion exchange capacity coupled with the dynamics of flow impact the number of sites available for sorption. Investigative approaches using a combination of batch and transport experiments will contribute to the conceptual and Hanford vadose zone.
The nature of one-dimensional carbon: polyynic versus cumulenic.
Neiss, Christian; Trushin, Egor; Görling, Andreas
2014-08-25
A question of both fundamental as well as practical importance is the nature of one-dimensional carbon, in particular whether a one-dimensional carbon allotrope is polyynic or cumulenic, that is, whether bond-length alternation occurs or not. By combining the concept of aromaticity and antiaromaticity with the rule of Peierls distortion, the occurrence and magnitude of bond-length alternation in carbon chains with periodic boundary conditions and corresponding carbon rings as a function of the chain or ring length can be explained. The electronic properties of one-dimensional carbon depend crucially on the bond-length alternation. Whereas it is generally accepted that carbon chains in the limit of infinite length have a polyynic structure at the minimum of the potential energy surface with bond-length alternation, we show here that zero-point vibrations lead to an effective equalization of all carbon-carbon bond lengths and thus to a cumulenic structure. PMID:24962252
One-dimensional rainbow technique using Fourier domain filtering.
Wu, Yingchun; Promvongsa, Jantarat; Wu, Xuecheng; Cen, Kefa; Grehan, Gerard; Saengkaew, Sawitree
2015-11-16
Rainbow refractometry can measure the refractive index and the size of a droplet simultaneously. The refractive index measurement is extracted from the absolute rainbow scattering angle. Accordingly, the angular calibration is vital for accurate measurements. A new optical design of the one-dimensional rainbow technique is proposed by using a one-dimensional spatial filter in the Fourier domain. The relationship between the scattering angle and the CCD pixel of a recorded rainbow image can be accurately determined by a simple calibration. Moreover, only the light perpendicularly incident on the lens in the angle (φ) direction is selected, which exactly matches the classical inversion algorithm used in rainbow refractometry. Both standard and global one-dimensional rainbow techniques are implemented with the proposed optical design, and are successfully applied to measure the refractive index and the size of a line of n-heptane droplets. PMID:26698532
One-Dimensional Quasicrystals from Incommensurate Charge Order
NASA Astrophysics Data System (ADS)
Flicker, Felix; van Wezel, Jasper
2015-12-01
Artificial quasicrystals are nowadays routinely manufactured, yet only two naturally occurring examples are known. We present a class of systems with the potential to be realized both artificially and in nature, in which the lowest energy state is a one-dimensional quasicrystal. These systems are based on incommensurately charge-ordered materials, in which the quasicrystalline phase competes with the formation of a regular array of discommensurations as a way of interpolating between incommensurate charge order at high temperatures and commensurate order at low temperatures. The nonlocal correlations characteristic of the quasicrystalline state emerge from a free-energy contribution localized in reciprocal space. We present a theoretical phase diagram showing that the required material properties for the appearance of such a ground state allow for one-dimensional quasicrystals to form in real materials. The result is a potentially wide class of one-dimensional quasicrystals.
One dimensional speckle fields generated by three phase level diffusers
NASA Astrophysics Data System (ADS)
Cabezas, L.; Amaya, D.; Bolognini, N.; Lencina, A.
2015-02-01
Speckle patterns have usually been obtained by using ground glass as random diffusers. Liquid-crystal spatial light modulators have opened the possibility of engineering tailored speckle fields obtained from designed diffusers. In this work, one-dimensional Gaussian speckle fields with fully controllable features are generated. By employing a low-cost liquid-crystal spatial light modulator, one-dimensional three phase level diffusers are implemented. These diffusers make it possible to control average intensity distribution and statistical independence among the generated patterns. The average speckle size is governed by an external slit pupil. A theoretical model to describe the generated speckle patterns is developed. Experimental and theoretical results confirming the generation of one-dimensional speckle fields are presented. Some possible applications of these speckles, such as atom trapping and super-resolution imaging, are briefly envisaged.
Quantum solution for the one-dimensional Coulomb problem
Nunez-Yepez, H. N.; Salas-Brito, A. L.; Solis, Didier A.
2011-06-15
The one-dimensional hydrogen atom has been a much studied system with a wide range of applications. Since the pioneering work of Loudon [R. Loudon, Am. J. Phys. 27, 649 (1959).], a number of different features related to the nature of the eigenfunctions have been found. However, many of the claims made throughout the years in this regard are not correct--such as the existence of only odd eigenstates or of an infinite binding-energy ground state. We explicitly show that the one-dimensional hydrogen atom does not admit a ground state of infinite binding energy and that the one-dimensional Coulomb potential is not its own supersymmetric partner. Furthermore, we argue that at the root of many such false claims lies the omission of a superselection rule that effectively separates the right side from the left side of the singularity of the Coulomb potential.
Some topological states in one-dimensional cold atomic systems
Mei, Feng; Zhang, Dan-Wei; Zhu, Shi-Liang
2015-07-15
Ultracold atoms trapped in optical lattices nowadays have been widely used to mimic various models from condensed-matter physics. Recently, many great experimental progresses have been achieved for producing artificial magnetic field and spin–orbit coupling in cold atomic systems, which turn these systems into a new platform for simulating topological states. In this paper, we give a review focusing on quantum simulation of topologically protected soliton modes and topological insulators in one-dimensional cold atomic system. Firstly, the recent achievements towards quantum simulation of one-dimensional models with topological non-trivial states are reviewed, including the celebrated Jackiw–Rebbi model and Su–Schrieffer–Heeger model. Then, we will introduce a dimensional reduction method for systematically constructing high dimensional topological states in lower dimensional models and review its applications on simulating two-dimensional topological insulators in one-dimensional optical superlattices.
Pose estimation for one-dimensional object with general motion
NASA Astrophysics Data System (ADS)
Liu, Jinbo; Song, Ge; Zhang, Xiaohu
2014-11-01
Our primary interest is in real-time one-dimensional object's pose estimation. In this paper, a method to estimate general motion one-dimensional object's pose, that is, the position and attitude parameters, using a single camera is proposed. Centroid-movement is necessarily continuous and orderly in temporal space, which means it follows at least approximately certain motion law in a short period of time. Therefore, the centroid trajectory in camera frame can be described as a combination of temporal polynomials. Two endpoints on one-dimensional object, A and B, at each time are projected on the corresponding image plane. With the relationship between A, B and centroid C, we can obtain a linear equation system related to the temporal polynomials' coefficients, in which the camera has been calibrated and the image coordinates of A and B are known. Then in the cases that object moves continuous in natural temporal space within the view of a stationary camera, the position of endpoints on the one-dimensional object can be located and also the attitude can be estimated using two end points. Moreover the position of any other point aligned on one-dimensional object can also be solved. Scene information is not needed in the proposed method. If the distance between the endpoints is not known, a scale factor between the object's real positions and the estimated results will exist. In order to improve the algorithm's performance from accuracy and robustness, we derive a pain of linear and optimal algorithms. Simulations' and experiments' results show that the method is valid and robust with respect to various Gaussian noise levels. The paper's work contributes to making self-calibration algorithms using one-dimensional objects applicable to practice. Furthermore, the method can also be used to estimate the pose and shape parameters of parallelogram, prism or cylinder objects.
Monitoring Potential Transport of Radioactive Contaminants in Shallow Ephemeral Channels
Miller, Julianne J.; Mizell, Steve A.; Nikolich, George; Campbell, Scott A.
2012-02-01
The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 550, Area 8 Smoky Contamination Area (CA), during precipitation runoff events. CAU 550 includes Corrective Action Sites (CASs) 08-23-03, 08-23-04, 08-23-06, and 08-23-07; these CASs are associated with tests designated Ceres, Smoky, Oberon, and Titania, respectively.
Hybrid surface-relief/volume one dimensional holographic gratings
NASA Astrophysics Data System (ADS)
Lucchetta, D. E.; Spegni, P.; Di Donato, A.; Simoni, F.; Castagna, R.
2015-04-01
Many one dimensional optically patterned photopolymers exist as surface relief or volume phase gratings. However, as far as we know, holographically recorded acrylate-based gratings in which both configurations are present are not described in literature. In this work we report a two steps fabrication process in which a large-area high-resolution hybrid volume/surface relief grating phase gratings is created in a thin film of multiacrylate material spinned on a proper designed substrate. Optical and morphological investigations, made on the optically patterned area, confirm the presence of a one dimensional double (surface relief and Bragg volume phase) periodic structure.
Lateral electronic screening in quasi-one-dimensional plasmons.
Lichtenstein, T; Tegenkamp, C; Pfnür, H
2016-09-01
The properties of one-dimensional (1D) plasmons are rather unexplored. We investigated the plasmonic collective excitations, measured as one-dimensional plasmon dispersions with electron energy loss spectroscopy, highly resolved both in energy and lateral momentum, for both phases of Au induced chains on stepped Si(553) substrates. We observe 1D dispersions that are strongly influenced by the lateral chain width and by the interchain coupling. Indications for the existence of two different plasmons originating from two surface bands of the systems are given for the low coverage phase. PMID:27384978
Lateral electronic screening in quasi-one-dimensional plasmons
NASA Astrophysics Data System (ADS)
Lichtenstein, T.; Tegenkamp, C.; Pfnür, H.
2016-09-01
The properties of one-dimensional (1D) plasmons are rather unexplored. We investigated the plasmonic collective excitations, measured as one-dimensional plasmon dispersions with electron energy loss spectroscopy, highly resolved both in energy and lateral momentum, for both phases of Au induced chains on stepped Si(553) substrates. We observe 1D dispersions that are strongly influenced by the lateral chain width and by the interchain coupling. Indications for the existence of two different plasmons originating from two surface bands of the systems are given for the low coverage phase.
Explicit solutions of one-dimensional total variation problem
NASA Astrophysics Data System (ADS)
Makovetskii, Artyom; Voronin, Sergei; Kober, Vitaly
2015-09-01
This work deals with denosing of a one-dimensional signal corrupted by additive white Gaussian noise. A common way to solve the problem is to utilize the total variation (TV) method. Basically, the TV regularization minimizes a functional consisting of the sum of fidelity and regularization terms. We derive explicit solutions of the one-dimensional TV regularization problem that help us to restore noisy signals with a direct, non-iterative algorithm. Computer simulation results are provided to illustrate the performance of the proposed algorithm for restoration of noisy signals.
Analysis Of Multispectral Imagery And Modeling Contaminant Transport
NASA Astrophysics Data System (ADS)
Irvine, J. M.; Becker, N. M.; Brumby, S.; David, N. A.
2003-12-01
A significant concern in the monitoring of hazardous waste is the potential for contaminants to migrate into locations where their presence poses greater environmental risks. The transport modeling performed in this study demonstrates the joint use of remotely sensed multispectral imagery and mathematical modeling to assess the surface migration of contaminants. KINEROS, an event-driven model of surface runoff and sediment transport, was used to assess uranium transport for various rain events. While our specific application was uranium transport, the methods apply to surface transport of any substance of concern. The model inputs include parameters related to the size and slope of watershed components, vegetation, and soil conditions. One distinct set of model inputs was derived from remotely sensed imagery data and another from site-specific knowledge. To derive the parameters of the KINEROS model from remotely sensed data, classification analysis was performed on IKONOS four-band multispectral imagery of the watershed. A system known as GENIE, developed by Los Alamos National Laboratory, employs genetics algorithms to evolve classifiers based on small, user-selected training samples. The classification analysis derived by employing GENIE provided insight into the correct KINEROS parameters for various sub-elements of the watershed. The model results offer valuable information about portions of the watershed that contributed the most to contaminant transport. These methods are applicable to numerous sites where possible transport of waste materials or other hazardous substances poses an environmental risk. Consequently, the approach presented here is relevant to homeland security and emergency response scenarios, as well as long-term environmental monitoring applications. Because the approach rests on the analysis of remote sensing data, the techniques can be used to monitor a range of sites and can reduce costs of data collection for model calibration.
Multimedia transport of organic contaminants and exposure modeling
Layton, D.W.; McKone, T.E.
1988-01-01
Human exposures to organic contaminants in the environment are a complex function of human factors, physicochemical properties of the contaminants, and characteristics of the environmental media in which the contaminants reside. One subject of interest in the screening of organic chemicals for the purpose of identifying exposure pathways of potential concern is the relationship between exposures and contaminant properties. To study such relationships, a multimedia environmental model termed GEOTOX is used to predict the equilibrium partitioning and transport of ''reference'' organic chemicals between compartments representing different media (i.e., soil layers, ground water, air, biota, etc.) of a contaminated landscape. Reference chemicals, which are added to the surface soil of a landscape, are defined by properties consisting of the Henry's law constant, soil water-soil organic carbon partition coefficient, and bioconcentration factors. The steady-state concentrations of the chemical in the GEOTOX compartments are then used to estimate lifetime exposures (in mg/kg-d) to the compartments for individuals living in the contaminated landscape. Exposure pathways addressed include ingestion, inhalation, and dermal absorption. Local sensitivity analyses are performed to determine which chemical and landscape properties have the greatest effect on the exposure estimates. 9 refs., 4 figs., 3 tabs.
NASA Astrophysics Data System (ADS)
Ouyang, Ying
2002-09-01
Phytoremediation is an emerging technology that uses plants and their associated rhizospheric microorganisms to remove, degrade, detoxify, or contain contaminants located in the soil, sediments, groundwater, surface water, and even the atmosphere. This study investigates phytoremediation of 1,4-dioxane from a contaminated sandy soil by a poplar cutting, which is associated with water flow in the soil as well as water movement and 1,4-dioxane translocation in the xylem and phloem systems. An existing one-dimensional mathematical model for coupled transport of water, heat, and solutes in the soil-plant-atmosphere continuum (CTSPAC) is modified for the purpose of this study. The model is calibrated with the laboratory experimental measurements prior to its applications. A simulation scenario is then performed to investigate phytoremediation of 1,4-dioxane by a poplar cutting in response to daily water flow and 1,4-dioxane transport for a simulation period of 7 days. Simulation shows that 1,4-dioxane concentration is high in leaves and low in roots with the stem in between. However, 1,4-dioxane mass in the stem (60%) is higher than that of leaves (28%) and roots (12%). This occurs because the stem volume used in this study is larger than those of leaves and roots. The simulation further reveals that about 30% of the soil 1,4-dioxane is removed within 7 days, resulting mainly from root uptake. A plot of the 1,4-dioxane concentrations in plant compartments as a function of time shows that the highest concentration in leaves is about 2600 μg/cm 3 and the lowest concentration in roots is about 350 μg/cm 3 at the end of the simulation. Results indicate that leaves are an important compartment for 1,4-dioxane accumulation and transpiration. This study suggests that the modified CTSPAC model could be a useful tool for phytoremediation estimations.
Mass transfer model of nanoparticle-facilitated contaminant transport in saturated porous media.
Johari, Wan Lutfi Wan; Diamessis, Peter J; Lion, Leonard W
2010-02-01
A one-dimensional model has been evaluated for transport of hydrophobic contaminants, such as polycyclic aromatic hydrocarbon (PAH) compounds, facilitated by synthetic amphiphilic polyurethane (APU) nanoparticles in porous media. APU particles synthesized from poly(ethylene glycol)-modified urethane acrylate (PMUA) precursor chains have been shown to enhance the desorption rate and mobility of phenanthrene (PHEN) in soil. A reversible process governed by attachment and detachment rates was considered to describe the PMUA binding in soil in addition to PMUA transport through advection and dispersion. Ultimately, an irreversible second-order PMUA attachment rate in which the fractional soil saturation capacity with PMUA was a rate control was found to be adequate to describe the retention of PMUA particles. A gamma-distributed site model (GS) was used to describe the spectrum of physical/chemical constraints for PHEN transfer from solid to aqueous phases. Instantaneous equilibrium was assumed for PMUA-PHEN interactions. The coupled model for PMUA and PHEN behavior successfully described the enhanced elution profile of PHEN by PMUA. Sensitivity analysis was performed to analyze the significance of model parameters on model predictions. The adjustable parameter alpha in the gamma-distribution shapes the contaminant desorption distribution profile as well as elution and breakthrough curves. Model simulations show the use of PMUA can be also expected to improve the release rate of PHEN in soils with higher organic carbon content. The percentage removal of PHEN mass over time is shown to be influenced by the concentration of PMUA added and this information can be used to optimize cost and time require to accomplish a desired remediation goal. PMID:19406449
IMPACT OF REDOX DISEQUILIBRIA ON CONTAMINANT TRANSPORT AND REMEDIATION IN SUBSURFACE SYSTEMS
Partitioning to mineral surfaces exerts significant control on inorganic contaminant transport in subsurface systems. Remedial technologies for in-situ treatment of subsurface contamination are frequently designed to optimize the efficiency of contaminant partitioning to solid s...
Transport mechanisms of contaminants released from fine sediment in rivers
NASA Astrophysics Data System (ADS)
Cheng, Pengda; Zhu, Hongwei; Zhong, Baochang; Wang, Daozeng
2015-12-01
Contaminants released from sediment into rivers are one of the main problems to study in environmental hydrodynamics. For contaminants released into the overlying water under different hydrodynamic conditions, the mechanical mechanisms involved can be roughly divided into convective diffusion, molecular diffusion, and adsorption/desorption. Because of the obvious environmental influence of fine sediment (D_{90}= 0.06 mm), non-cohesive fine sediment, and cohesive fine sediment are researched in this paper, and phosphorus is chosen for a typical adsorption of a contaminant. Through theoretical analysis of the contaminant release process, according to different hydraulic conditions, the contaminant release coupling mathematical model can be established by the N-S equation, the Darcy equation, the solute transport equation, and the adsorption/desorption equation. Then, the experiments are completed in an open water flume. The simulation results and experimental results show that convective diffusion dominates the contaminant release both in non-cohesive and cohesive fine sediment after their suspension, and that they contribute more than 90 % of the total release. Molecular diffusion and desorption have more of a contribution for contaminant release from unsuspended sediment. In unsuspension sediment, convective diffusion is about 10-50 times larger than molecular diffusion during the initial stages under high velocity; it is close to molecular diffusion in the later stages. Convective diffusion is about 6 times larger than molecular diffusion during the initial stages under low velocity, it is about a quarter of molecular diffusion in later stages, and has a similar level with desorption/adsorption. In unsuspended sediment, a seepage boundary layer exists below the water-sediment interface, and various release mechanisms in that layer mostly dominate the contaminant release process. In non-cohesive fine sediment, the depth of that layer increases linearly with shear
Minimum critical length for superconductivity in one-dimensional wires
Chi, C.C.; Santhanam, P.; Wind, S.J.; Brady, M.J.; Bucchignano, J.J. )
1994-08-01
We have experimentally studied the superconducting behavior of one-dimensional aluminum wires of various lengths. Each wire had much wider two-dimensional contact pads on both sides. At a temperature [ital T] below [ital T][sub [ital c
Underwater striling engine design with modified one-dimensional model
NASA Astrophysics Data System (ADS)
Li, Daijin; Qin, Kan; Luo, Kai
2015-09-01
Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs) is discussed. And a one-dimensional model incorporated with empirical equations of mechanical loss and auxiliary power obtained from experiments is derived while referring to the Stirling engine computer model of National Aeronautics and Space Administration (NASA). The P-40 Stirling engine with sufficient testing results from NASA is utilized to validate the accuracy of this one-dimensional model. It shows that the maximum error of output power of theoretical analysis results is less than 18% over testing results, and the maximum error of input power is no more than 9%. Finally, a Stirling engine for UUVs is designed with Schmidt analysis method and the modified one-dimensional model, and the results indicate this designed engine is capable of showing desired output power.
Underwater striling engine design with modified one-dimensional model
NASA Astrophysics Data System (ADS)
Li, Daijin; Qin, Kan; Luo, Kai
2015-05-01
Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs) is discussed. And a one-dimensional model incorporated with empirical equations of mechanical loss and auxiliary power obtained from experiments is derived while referring to the Stirling engine computer model of National Aeronautics and Space Administration (NASA). The P-40 Stirling engine with sufficient testing results from NASA is utilized to validate the accuracy of this one-dimensional model. It shows that the maximum error of output power of theoretical analysis results is less than 18% over testing results, and the maximum error of input power is no more than 9%. Finally, a Stirling engine for UUVs is designed with Schmidt analysis method and the modified one-dimensional model, and the results indicate this designed engine is capable of showing desired output power.
Approximate Approaches to the One-Dimensional Finite Potential Well
ERIC Educational Resources Information Center
Singh, Shilpi; Pathak, Praveen; Singh, Vijay A.
2011-01-01
The one-dimensional finite well is a textbook problem. We propose approximate approaches to obtain the energy levels of the well. The finite well is also encountered in semiconductor heterostructures where the carrier mass inside the well (m[subscript i]) is taken to be distinct from mass outside (m[subscript o]). A relevant parameter is the mass…
A difference characteristic for one-dimensional deterministic systems
NASA Astrophysics Data System (ADS)
Shahverdian, A. Yu.; Apkarian, A. V.
2007-06-01
A numerical characteristic for one-dimensional deterministic systems reflecting its higher order difference structure is introduced. The comparison with Lyapunov exponent is given. A difference analogy for Eggleston theorem as well as an estimate for Hausdorff dimension of the difference attractor, formulated in terms of the new characteristic is proved.
Teaching Module for One-Dimensional, Transient Conduction.
ERIC Educational Resources Information Center
Ribando, Robert J.; O'Leary, Gerald W.
1998-01-01
Describes a PC-based teaching module designed to instruct engineering students in transient one-dimensional conduction heat transfer analysis. The discussion considers problem formulation, nondimensionalization, discretization, numerical stability and the time-step restriction, program operation, and program verification. (MES)
Synchronization of One-Dimensional Stochastically Coupled Cellular Automata
NASA Astrophysics Data System (ADS)
Mrowinski, Maciej J.; Kosinski, Robert A.
In this work the authors study synchronization resulting from the asymmetric stochastic coupling between two one-dimensional chaotic cellular automata and provide a simple analytical model to explain this phenomenon. The authors also study synchronization in a more general case, using sets of rules with a different number of states and different values of Langton's parameter λ.
The Long Decay Model of One-Dimensional Projectile Motion
ERIC Educational Resources Information Center
Lattery, Mark Joseph
2008-01-01
This article introduces a research study on student model formation and development in introductory mechanics. As a point of entry, I present a detailed analysis of the Long Decay Model of one-dimensional projectile motion. This model has been articulated by Galileo ("in De Motu") and by contemporary students. Implications for instruction are…
Transition density of one-dimensional diffusion with discontinuous drift
NASA Technical Reports Server (NTRS)
Zhang, Weijian
1990-01-01
The transition density of a one-dimensional diffusion process with a discontinuous drift coefficient is studied. A probabilistic representation of the transition density is given, illustrating the close connections between discontinuities of the drift and Brownian local times. In addition, some explicit results are obtained based on the trivariate density of Brownian motion, its occupation, and local times.
One-Dimensional Ising Model with "k"-Spin Interactions
ERIC Educational Resources Information Center
Fan, Yale
2011-01-01
We examine a generalization of the one-dimensional Ising model involving interactions among neighbourhoods of "k" adjacent spins. The model is solved by exploiting a connection to an interesting computational problem that we call ""k"-SAT on a ring", and is shown to be equivalent to the nearest-neighbour Ising model in the absence of an external…
Sandia One-Dimensional Direct and Inverse Thermal Code
1995-02-27
SODDIT is a reliable tool for solving a wide variety of one-dimensional transient heat conduction problems. Originally developed in 1972 to predict the ablation of graphite/carbon bodies reentering the earth''s atmosphere, it has since been modified by the authors to extend its capabilities well beyond its original scope.
Zero-n gap in one dimensional photonic crystal
NASA Astrophysics Data System (ADS)
Chobey, Mahesh K.; Suthar, B.
2016-05-01
We study a one-dimensional (1-D) photonic crystal composed of Double Positive (DPS) and Double Negative (DNG) material. This structure shows omnidirectional photonic bandgap, which is insensitive with angle of incidence and polarization. To study the effect of structural parameters on the photonic band structure, we have calculated photonic band gap at various thicknesses of DPS and DNG.
Exact Results for One Dimensional Fluids Through Functional Integration
NASA Astrophysics Data System (ADS)
Fantoni, Riccardo
2016-06-01
We review some of the exactly solvable one dimensional continuum fluid models of equilibrium classical statistical mechanics under the unified setting of functional integration in one dimension. We make some further developments and remarks concerning fluids with penetrable particles. We then apply our developments to the study of the Gaussian core model for which we are unable to find a well defined thermodynamics.
Reflection properties of one dimensional plasma photonic crystal
NASA Astrophysics Data System (ADS)
Kumar, Arun; Khundrakpam, Pinky; Sharma, Priyanka
2013-06-01
In this paper band structure and reflection properties of on one-dimensional plasma photonic crystal (PPC) containing alternate layers of dielectric and micro-plasma have been presented. For the purpose of computation, transfer matrix method has been used. It is found that width of the forbidden band gap(s) can be increased by increasing the thickness of plasma layers.
PREMIXED ONE-DIMENSIONAL FLAME (PROF) CODE USER'S MANUAL
The report is a user's manual that describes the problems that can be treated by the Premixed One-dimensional Flame (PROF) code. It also describes the mathematical models and solution procedures applied to these problems. Complete input instructions and a description of output ar...
One-Dimensional SO2 Predictions for Duct Injection
1993-10-05
DIAN1D is a one-dimensional model that predicts SO2 absorption by slurry droplets injected into a flue gas stream with two-fluid atomizers. DIANUI is an interactive user interface for DIAN1D. It prepares the input file for DIAN1D from plant design specifications and process requirements.
Toward precise solution of one-dimensional velocity inverse problems
Gray, S.; Hagin, F.
1980-01-01
A family of one-dimensional inverse problems are considered with the goal of reconstructing velocity profiles to reasonably high accuracy. The travel-time variable change is used together with an iteration scheme to produce an effective algorithm for computation. Under modest assumptions the scheme is shown to be convergent.
Simulation of contaminated sediment transport in White Oak Creek basin
Bao, Y.; Clapp, R.B.; Brenkert, A.L.; Moore, T.D.; Fontaine, T.A.
1995-12-31
This paper presents a systematic approach to management of the contaminated sediments in the White Oak Creek watershed at Oak Ridge National Laboratory near Oak Ridge, Tennessee. The primary contaminant of concern is radioactive cesium-137 ({sup 137}Cs), which binds to soil and sediment particles. The key components in the approach include an intensive sampling and monitoring system for flood events; modeling of hydrological processes, sediment transport, and contaminant flux movement; and a decision framework with a detailed human health risk analysis. Emphasis is placed on modeling of watershed rainfall-runoff and contaminated sediment transport during flooding periods using the Hydrologic Simulation Program- Fortran (HSPF) model. Because a large number of parameters are required in HSPF modeling, the major effort in the modeling process is the calibration of model parameters to make simulation results and measured values agree as closely as possible. An optimization model incorporating the concepts of an expert system was developed to improve calibration results and efficiency. Over a five-year simulation period, the simulated flows match the observed values well. Simulated total amount of sediment loads at various locations during storms match with the observed values within a factor of 1.5. Simulated annual releases of {sup 137}Cs off-site locations match the data within a factor of 2 for the five-year period. The comprehensive modeling approach can provide a valuable tool for decision makers to quantitatively analyze sediment erosion, deposition, and transport; exposure risk related to radionuclides in contaminated sediment; and various management strategies.
Benchmarking of a Markov multizone model of contaminant transport.
Jones, Rachael M; Nicas, Mark
2014-10-01
A Markov chain model previously applied to the simulation of advection and diffusion process of gaseous contaminants is extended to three-dimensional transport of particulates in indoor environments. The model framework and assumptions are described. The performance of the Markov model is benchmarked against simple conventional models of contaminant transport. The Markov model is able to replicate elutriation predictions of particle deposition with distance from a point source, and the stirred settling of respirable particles. Comparisons with turbulent eddy diffusion models indicate that the Markov model exhibits numerical diffusion in the first seconds after release, but over time accurately predicts mean lateral dispersion. The Markov model exhibits some instability with grid length aspect when turbulence is incorporated by way of the turbulent diffusion coefficient, and advection is present. However, the magnitude of prediction error may be tolerable for some applications and can be avoided by incorporating turbulence by way of fluctuating velocity (e.g. turbulence intensity). PMID:25143517
One-dimensional fast migration of vacancy clusters in metals
Matsukawa, Yoshitaka; Zinkle, Steven J
2007-01-01
The migration of point defects, e.g. crystal lattice vacancies and self-interstitial atoms (SIAs), typically occurs through three-dimensional (3-D) random walk. However, when vacancies and SIAs agglomerate with like defects forming clusters, the migration mode may change. Recently, atomic-scale computer simulations using molecular dynamics (MD) codes have reported that nanometer-sized two-dimensional (2-D) clusters of SIAs exhibit one-dimensional (1-D) fast migration1-7. The 1-D migration mode transports the entire cluster containing several tens of SIAs with a mobility comparable to single SIAs3. This anisotropic migration of SIA clusters can have a significant impact on the evolution of a material fs neutron-irradiation damage microstructure, which dominates the material fs lifetime in nuclear reactor environments8-9. This is also proposed to be a key physical mechanism for the self-organization of nanometer-sized sessile vacancy cluster arrays10-13. Given these findings for SIA clusters, a fundamental question is whether the 1-D migration mode is also possible for 2-D clusters of vacancies. Preceding MD results predicted that 1-D migration of vacancy clusters is possible in body-centered cubic (bcc) iron, but not in face-centered cubic (fcc) copper2. Previous experimental studies have reported 1-D migration of SIA clusters14, but there have been no observations of 1-D vacancy cluster migration. Here we present the first experimental transmission electron microscopy (TEM) dynamic observation demonstrating the 1-D migration of vacancy clusters in fcc gold. It was found that the mobility of the vacancy clusters via the 1-D migration is much higher than single vacancies via 3-D random walk and comparable to single SIAs via 3-D random walk. Hence, the mobility of the glissile clusters is not associated with the character of their constituent point defects. Dynamic conversion of a planar vacancy loop into a 3-D stacking fault tetrahedron geometry was also observed.
Prediction methodology for contaminant transport from rangeland watersheds
Devaurs, M.A.; Springer, E.P.; Lane, L.J.; Langhorst, G.J.
1988-01-01
Weather on arid and semiarid lands can be extremely variable. Runoff is generally emphermeral, and high intensity, short-duration rainfall events are the major stimulus for runoff events. Transport of sediment and associated contaminants occurs with these infrequent events. Incorporation of variability in weather into any prediction technology is essential to provide accurate representations of climate-induced uncertainty in predictions of hydrologic response. The objective of this study is to investigate a method for including short-term climatic variations in analyses for contaminant transport from rangeland watersheds in arid/semiarid regions. Short term is defined here as a twenty to fifty time frame and it is assumed that lone term climatic fluctuations are not observed during this time. Also, most weather records are available for this time period; predictions of greater length are extrapolations of existing records unless corroborative data for longer term trends are collected. Predictions are being made with condensable uncertainty in the weather inputs even if the models for water, sediment, and contaminant transport are perfectly unknown. This study will incorporate uncertainty in weather inputs into the prediction process and address the ramifications of this uncertainty. Uncertainty introduced by improper model or parameter specification is only briefly addressed.
Modeling of contaminant transport in underground coal gasification
Lanhe Yang; Xing Zhang
2009-01-15
In order to study and discuss the impact of contaminants produced from underground coal gasification on groundwater, a coupled seepage-thermodynamics-transport model for underground gasification was developed on the basis of mass and energy conservation and pollutant-transport mechanisms, the mathematical model was solved by the upstream weighted multisell balance method, and the model was calibrated and verified against the experimental site data. The experiment showed that because of the effects of temperature on the surrounding rock of the gasification panel the measured pore-water-pressure was higher than the simulated one; except for in the high temperature zone where the simulation errors of temperature, pore water pressure, and contaminant concentration were relatively high, the simulation values of the overall gasification panel were well fitted with the measured values. As the gasification experiment progressed, the influence range of temperature field expanded, the gradient of groundwater pressure decreased, and the migration velocity of pollutant increased. Eleven months and twenty months after the test, the differences between maximum and minimum water pressure were 2.4 and 1.8 MPa, respectively, and the migration velocities of contaminants were 0.24-0.38 m/d and 0.27-0.46 m/d, respectively. It was concluded that the numerical simulation of the transport process for pollutants from underground coal gasification was valid. 42 refs., 13 figs., 1 tab.
Jeffrey Yang, Y; Goodrich, James A; Clark, Robert M; Li, Sylvana Y
2008-03-01
A modified one-dimensional Danckwerts convection-dispersion-reaction (CDR) model is numerically simulated to explain the observed chlorine residual loss for a "slug" of reactive contaminants instantaneously introduced into a drinking water pipe of assumed no or negligible wall demand. In response to longitudinal dispersion, a contaminant propagates into the bulk phase where it reacts with disinfectants in the water. This process generates a U-shaped pattern of chlorine residual loss in a time-series concentration plot. Numerical modeling indicates that the residual loss curve geometry (i.e., slope, depth, and width) is a function of several variables such as axial Péclet number, reaction rate constants, molar fraction of the fast- and slow-reacting contaminants, and the quasi-steady-state chlorine decay inside the "slug" which serves as a boundary condition of the CDR model. Longitudinal dispersion becomes dominant for less reactive contaminants. Pilot-scale pipe flow experiments for a non-reactive sodium fluoride tracer and the fast-reacting aldicarb, a pesticide, were conducted under turbulent flow conditions (Re=9020 and 25,000). Both the experimental results and the CDR modeling are in agreement showing a close relationship among the aldicarb contaminant "slug", chlorine residual loss and its variations, and a concentration increase of chloride as the final reaction product. Based on these findings, the residual loss curve and its geometry are useful tools to identify the presence of a contaminant "slug" and infer its reactive properties in adaptive contaminant detections. PMID:17991507
One-dimensional thermonuclear burn computations for the Reversed-Field Pinch Reactor (RFPR)
Nebel, R.A.; Miley, G.H.; Moses, R.W.
1980-01-01
Conceptual fusion reactor designs of the Reversed-Field Pinch Reactor (RFPR) have been based on profile-averaged zero-dimensional (point) plasma models. The plasma response/performance that has been predicted by the point plasma model is re-examined by a comprehensive one-dimensional (radial) burn code (RFPBRN) that has been developed and parametrically evaluated for the RFPR. The RFPR plasma parameters have been optimized and effects of turbulent transport and stability have been studied.
Excitonic condensation in spatially separated one-dimensional systems
Abergel, D. S. L.
2015-05-25
We show theoretically that excitons can form from spatially separated one-dimensional ground state populations of electrons and holes, and that the resulting excitons can form a quasicondensate. We describe a mean-field Bardeen-Cooper-Schrieffer theory in the low carrier density regime and then focus on the core-shell nanowire giving estimates of the size of the excitonic gap for InAs/GaSb wires and as a function of all the experimentally relevant parameters. We find that optimal conditions for pairing include small overlap of the electron and hole bands, large effective mass of the carriers, and low dielectric constant of the surrounding media. Therefore, one-dimensional systems provide an attractive platform for the experimental detection of excitonic quasicondensation in zero magnetic field.
Pairing correlations in a trapped one-dimensional Fermi gas
NASA Astrophysics Data System (ADS)
Kudla, Stephen; Gautreau, Dominique M.; Sheehy, Daniel E.
2015-04-01
We use a BCS-type variational wave function to study attractively interacting quasi-one-dimensional fermionic atomic gases, motivated by cold-atom experiments that access the one-dimensional regime using an anisotropic harmonic trapping potential (with trapping frequencies ωx=ωy≫ωz ) that confines the gas to a cigar-shaped geometry. To handle the presence of the trap along the z direction, we construct our variational wave function from the harmonic oscillator Hermite functions, which are the eigenstates of the single-particle problem. Using an analytic determination of the effective interaction among harmonic oscillator states along with a numerical solution of the resulting variational equations, we make specific experimental predictions for how pairing correlations would be revealed in experimental probes, such as the local density and the momentum correlation function.
Scaling properties of one-dimensional driven-dissipative condensates
NASA Astrophysics Data System (ADS)
He, Liang; Sieberer, Lukas M.; Altman, Ehud; Diehl, Sebastian
2015-10-01
We numerically investigate the scaling properties of a one-dimensional driven-dissipative condensate described by a stochastic complex Ginzburg-Landau equation (SCGLE). We directly extract the static and dynamical scaling exponents from the dynamics of the condensate's phase field, and find that both coincide with the ones of the one-dimensional Kardar-Parisi-Zhang (KPZ) equation. We furthermore calculate the spatial and the temporal two-point correlation functions of the condensate field itself. The decay of the temporal two-point correlator assumes a stretched-exponential form, providing further quantitative evidence for an effective KPZ description. Moreover, we confirm the observability of this nonequilibrium scaling for typical current experimental setups with exciton-polariton systems, if cavities with a reduced Q factor are used.
Dynamics of one-dimensional Kerr cavity solitons.
Leo, François; Gelens, Lendert; Emplit, Philippe; Haelterman, Marc; Coen, Stéphane
2013-04-01
We present an experimental observation of an oscillating Kerr cavity soliton, i.e., a time-periodic oscillating one-dimensional temporally localized structure excited in a driven nonlinear fiber cavity with a Kerr-type nonlinearity. More generally, these oscillations result from a Hopf bifurcation of a (spatially or temporally) localized state in the generic class of driven dissipative systems close to the 1 : 1 resonance tongue. Furthermore, we theoretically analyze dynamical instabilities of the one-dimensional cavity soliton, revealing oscillations and different chaotic states in previously unexplored regions of parameter space. As cavity solitons are closely related to Kerr frequency combs, we expect these dynamical regimes to be highly relevant for the field of microresonator-based frequency combs. PMID:23572006
Fate of classical solitons in one-dimensional quantum systems.
Pustilnik, M.; Matveev, K. A.
2015-11-23
We study one-dimensional quantum systems near the classical limit described by the Korteweg-de Vries (KdV) equation. The excitations near this limit are the well-known solitons and phonons. The classical description breaks down at long wavelengths, where quantum effects become dominant. Focusing on the spectra of the elementary excitations, we describe analytically the entire classical-to-quantum crossover. We show that the ultimate quantum fate of the classical KdV excitations is to become fermionic quasiparticles and quasiholes. We discuss in detail two exactly solvable models exhibiting such crossover, the Lieb-Liniger model of bosons with weak contact repulsion and the quantum Toda model, and argue that the results obtained for these models are universally applicable to all quantum one-dimensional systems with a well-defined classical limit described by the KdV equation.
Spatial coherence properties of one dimensional exciton-polariton condensates.
Fischer, J; Savenko, I G; Fraser, M D; Holzinger, S; Brodbeck, S; Kamp, M; Shelykh, I A; Schneider, C; Höfling, S
2014-11-14
In this work, we combine a systematic experimental investigation of the power- and temperature-dependent evolution of the spatial coherence function, g^{(1)}(r), in a one dimensional exciton-polariton channel with a modern microscopic numerical theory based on a stochastic master equation approach. The spatial coherence function g^{(1)}(r) is extracted via high-precision Michelson interferometry, which allows us to demonstrate that in the regime of nonresonant excitation, the dependence g^{(1)}(r) reaches a saturation value with a plateau, which is determined by the intensity of the pump and effective temperature of the crystal lattice. The theory, which was extended to allow for treating incoherent excitation in a stochastic frame, matches the experimental data with good qualitative and quantitative agreement. This allows us to verify the prediction that the decay of the off-diagonal long-range order can be almost fully suppressed in one dimensional condensate systems. PMID:25432043
One-dimensional Hubbard-Luttinger model for carbon nanotubes
NASA Astrophysics Data System (ADS)
Ishkhanyan, H. A.; Krainov, V. P.
2015-06-01
A Hubbard-Luttinger model is developed for qualitative description of one-dimensional motion of interacting Pi-conductivity-electrons in carbon single-wall nanotubes at low temperatures. The low-lying excitations in one-dimensional electron gas are described in terms of interacting bosons. The Bogolyubov transformation allows one to describe the system as an ensemble of non-interacting quasi-bosons. Operators of Fermi excitations and Green functions of fermions are introduced. The electric current is derived as a function of potential difference on the contact between a nanotube and a normal metal. Deviations from Ohm law produced by electron-electron short-range repulsion as well as by the transverse quantization in single-wall nanotubes are discussed. The results are compared with experimental data.
Versatile hydrothermal synthesis of one-dimensional composite structures
NASA Astrophysics Data System (ADS)
Luo, Yonglan
2008-12-01
In this paper we report on a versatile hydrothermal approach developed to fabricate one-dimensional (1D) composite structures. Sulfur and selenium formed liquid and adsorbed onto microrods as droplets and subsequently reacted with metallic ion in solution to produce nanoparticles-decorated composite microrods. 1D composites including ZnO/CdS, ZnO/MnS, ZnO/CuS, ZnO/CdSe, and FeOOH/CdS were successfully made using this hydrothermal strategy and the growth mechanism was also discussed. This hydrothermal strategy is simple and green, and can be extended to the synthesis of various 1D composite structures. Moreover, the interaction between the shell nanoparticles and the one-dimensional nanomaterials were confirmed by photoluminescence investigation of ZnO/CdS.
Assessing the inherent uncertainty of one-dimensional diffusions
NASA Astrophysics Data System (ADS)
Eliazar, Iddo; Cohen, Morrel H.
2013-01-01
In this paper we assess the inherent uncertainty of one-dimensional diffusion processes via a stochasticity classification which provides an à la Mandelbrot categorization into five states of uncertainty: infra-mild, mild, borderline, wild, and ultra-wild. Two settings are considered. (i) Stopped diffusions: the diffusion initiates from a high level and is stopped once it first reaches a low level; in this setting we analyze the inherent uncertainty of the diffusion's maximal exceedance above its initial high level. (ii) Stationary diffusions: the diffusion is in dynamical statistical equilibrium; in this setting we analyze the inherent uncertainty of the diffusion's equilibrium level. In both settings general closed-form analytic results are established, and their application is exemplified by stock prices in the stopped-diffusions setting, and by interest rates in the stationary-diffusions setting. These results provide a highly implementable decision-making tool for the classification of uncertainty in the context of one-dimensional diffusions.
One-dimensional XY model: Ergodic properties and hydrodynamic limit
NASA Astrophysics Data System (ADS)
Shuhov, A. G.; Suhov, Yu. M.
1986-11-01
We prove theorems on convergence to a stationary state in the course of time for the one-dimensional XY model and its generalizations. The key point is the well-known Jordan-Wigner transformation, which maps the XY dynamics onto a group of Bogoliubov transformations on the CAR C *-algebra over Z 1. The role of stationary states for Bogoliubov transformations is played by quasifree states and for the XY model by their inverse images with respect to the Jordan-Wigner transformation. The hydrodynamic limit for the one-dimensional XY model is also considered. By using the Jordan-Wigner transformation one reduces the problem to that of constructing the hydrodynamic limit for the group of Bogoliubov transformations. As a result, we obtain an independent motion of "normal modes," which is described by a hyperbolic linear differential equation of second order. For the XX model this equation reduces to a first-order transfer equation.
Improving the One Dimensional Schr"odinger Equation
NASA Astrophysics Data System (ADS)
Schorer, Bradley; Bricher, Stephen; Murray, Joelle
2009-05-01
The simple harmonic oscillator (SHO) model is a useful approach for approximating energies close to the ground state in a one dimensional hydrogen atom. According to empirical evidence, the actual potential results in an asymmetric equilibrium point and exhibits and exhibits asymptotic behavior at large distances from the nucleus. This creates a problem in the SHO model, as it does not possess such characteristics, and as a result, has energy values that do not match do not agree with the known energy levels very well. We propose a new one dimensional potential that more accurately fits the empirical data than the SHO model. We test our model by comparing the Schr"odinger equation's energy states to accepted energy levels of the hydrogen atom. Possible other uses for this model include the description of energy levels of atoms other than the hydrogen atom.
Entanglement vs. gap for one-dimensional spin systems
Hastings, Matthew; Aharonov, Dorit; Gottesman, Daniel
2008-01-01
We study the relationship between entanglement and spectral gap for local Hamiltonians in one dimension. The area law for a one-dimensional system states that for the ground state, the entanglement of any interval is upper-bounded by a constant independent of the size of the interval. However, the possible dependence of the upper bound on the spectral gap {Delta} is not known, as the best known general upper bound is asymptotically much larger than the largest possible entropy of any model system previously constructed for small {Delta}. To help resolve this asymptotic behavior, we construct a family of one-dimensional local systems for which some intervals have entanglement entropy which is polynomial in 1/{Delta}, whereas previously studied systems had the entropy of all intervals bounded by a constant times log(1/{Delta}).
Defects in a nonlinear pseudo one-dimensional solid
NASA Astrophysics Data System (ADS)
Blanchet, Graciela B.; Fincher, C. R., Jr.
1985-03-01
These infrared studies of acetanilide together with the existence of two equivalent structures for the hydrogen-bonded chain suggest the possibility of a topological defect state rather than a Davydov soliton as suggested previously. Acetanilide is an example of a class of one-dimensional materials where solitons are a consequence of a twofold degenerate structure and the nonlinear dynamics of the hydrogen-bonded network.
Cooling of a One-Dimensional Bose Gas
NASA Astrophysics Data System (ADS)
Rauer, B.; Grišins, P.; Mazets, I. E.; Schweigler, T.; Rohringer, W.; Geiger, R.; Langen, T.; Schmiedmayer, J.
2016-01-01
We experimentally study the dynamics of a degenerate one-dimensional Bose gas that is subject to a continuous outcoupling of atoms. Although standard evaporative cooling is rendered ineffective by the absence of thermalizing collisions in this system, we observe substantial cooling. This cooling proceeds through homogeneous particle dissipation and many-body dephasing, enabling the preparation of otherwise unexpectedly low temperatures. Our observations establish a scaling relation between temperature and particle number, and provide insights into equilibration in the quantum world.
Nonequilibrium statistical mechanics in one-dimensional bose gases
NASA Astrophysics Data System (ADS)
Baldovin, F.; Cappellaro, A.; Orlandini, E.; Salasnich, L.
2016-06-01
We study cold dilute gases made of bosonic atoms, showing that in the mean-field one-dimensional regime they support stable out-of-equilibrium states. Starting from the 3D Boltzmann–Vlasov equation with contact interaction, we derive an effective 1D Landau–Vlasov equation under the condition of a strong transverse harmonic confinement. We investigate the existence of out-of-equilibrium states, obtaining stability criteria similar to those of classical plasmas.
Superlensing properties of one-dimensional dielectric photonic crystals
NASA Astrophysics Data System (ADS)
Savo, Salvatore; di Gennaro, Emiliano; Andreone, Antonello
2009-10-01
We present the experimental observation of the superlensing effect in a slab of a one-dimensional photonic crystal made of tilted dielectric elements. We show that this flat lens can achieve subwavelength resolution in different frequency bands. We also demonstrate that the introduction of a proper corrugation on the lens surface can dramatically improve both the transmission and the resolution of the imaged signal.
Many-body Anderson localization in one-dimensional systems
NASA Astrophysics Data System (ADS)
Delande, Dominique; Sacha, Krzysztof; Płodzień, Marcin; Avazbaev, Sanat K.; Zakrzewski, Jakub
2013-04-01
We show, using quasi-exact numerical simulations, that Anderson localization in a disordered one-dimensional potential survives in the presence of attractive interaction between particles. The localization length of the particles' center of mass—computed analytically for weak disorder—is in good agreement with the quasi-exact numerical observations using the time evolving block decimation algorithm. Our approach allows for simulation of the entire experiment including the final measurement of all atom positions.
Topological modes in one-dimensional solids and photonic crystals
NASA Astrophysics Data System (ADS)
Atherton, Timothy J.; Butler, Celia A. M.; Taylor, Melita C.; Hooper, Ian R.; Hibbins, Alastair P.; Sambles, J. Roy; Mathur, Harsh
2016-03-01
It is shown theoretically that a one-dimensional crystal with time-reversal and particle-hole symmetries is characterized by a topological invariant that predicts the existence or otherwise of edge states. This is confirmed experimentally through the construction and simulation of a photonic crystal analog in the microwave regime. It is shown that the edge mode couples to modes external to the photonic crystal via a Fano resonance.
Thermalization in a one-dimensional integrable system
Grisins, Pjotrs; Mazets, Igor E.
2011-11-15
We present numerical results demonstrating the possibility of thermalization of single-particle observables in a one-dimensional system, which is integrable in both the quantum and classical (mean-field) descriptions (a quasicondensate of ultracold, weakly interacting bosonic atoms are studied as a definite example). We find that certain initial conditions admit the relaxation of single-particle observables to the equilibrium state reasonably close to that corresponding to the Bose-Einstein thermal distribution of Bogoliubov quasiparticles.
Cloud pumping in a one-dimensional photochemical model
NASA Technical Reports Server (NTRS)
Costen, Robert C.; Tennille, Geoffrey M.; Levine, Joel S.
1988-01-01
Cloud pumping data based on tropical maritime updraft statistics are incorporated in a one-dimensional steady-state eddy diffusive photochemical model of the troposphere. It is suggested that regions with weaker convection, such as the midlatitudes, may also experience substantial effects from cloud pumping. The direct effects of cloud pumping on CO were found to be more significant than implied by sensitivity studies. The (CH3)2S profile computed with cloud pumping agrees well with previous data.
Growth of one-dimensional single-crystalline hydroxyapatite nanorods
NASA Astrophysics Data System (ADS)
Ren, Fuzeng; Ding, Yonghui; Ge, Xiang; Lu, Xiong; Wang, Kefeng; Leng, Yang
2012-06-01
A facile, effective and template/surfactant-free hydrothermal route in the presence of sodium bicarbonate was developed to synthesize highly uniform single-crystalline hydroxyapatite (HA) nanorods with the lengths of several hundred nanometers and aspect ratio up to ˜20. One dimensional (1-D) growth and aspect ratio could be controlled by hydrothermal reaction time and temperature. The longitudinal axis, also the growth direction of the nanorods, is parallel to the [001] direction of HA hexagonal crystal structure.
Quasi-Dirac points in one-dimensional graphene superlattices
NASA Astrophysics Data System (ADS)
Chen, C. H.; Tseng, P.; Hsueh, W. J.
2016-08-01
Quasi-Dirac points (QDPs) with energy different from the traditional Dirac points (TDPs) have been found for the first time in one-dimensional graphene superlattices. The angular-averaged conductance reaches a minimum value at the QDPs, at which the Fano factor approaches 1/3. Surprisingly, the minimum conductance at these QDPs may be lower than that at the TDPs under certain conditions. This is remarkable as the minimum conductance attainable in graphene superlattices was believed to appear at TDPs.
On numerical modeling of one-dimensional geothermal histories
Haugerud, R.A.
1989-01-01
Numerical models of one-dimensional geothermal histories are one way of understanding the relations between tectonics and transient thermal structure in the crust. Such models can be powerful tools for interpreting geochronologic and thermobarometric data. A flexible program to calculate these models on a microcomputer is available and examples of its use are presented. Potential problems with this approach include the simplifying assumptions that are made, limitations of the numerical techniques, and the neglect of convective heat transfer. ?? 1989.
Species segregation in one-dimensional granular-system simulations.
Pantellini, F; Landi, S
2008-02-01
We present one-dimensional molecular dynamics simulations of a two-species, initially uniform, freely evolving granular system. Colliding particles swap their relative position with a 50% probability allowing for the initial spatial ordering of the particles to evolve in time and frictional forces to operate. Unlike one-dimensional systems of identical particles, two-species one-dimensional systems of quasi-elastic particles are ergodic and the particles' velocity distributions tend to evolve towards Maxwell-Boltzmann distributions. Under such conditions, standard fluid equations with merely an additional sink term in the energy equation, reflecting the non-elasticity of the interparticle collisions, provide an excellent means to investigate the system's evolution. According to the predictions of fluid theory we find that the clustering instability is dominated by a non-propagating mode at a wavelength of the order 10 pi L/N epsilon , where N is the total number of particles, L the spatial extent of the system and epsilon the inelasticity coefficient. The typical fluid velocities at the time of inelastic collapse are seen to be supersonic, unless N epsilon
Cryptography using multiple one-dimensional chaotic maps
NASA Astrophysics Data System (ADS)
Pareek, N. K.; Patidar, Vinod; Sud, K. K.
2005-10-01
Recently, Pareek et al. [Phys. Lett. A 309 (2003) 75] have developed a symmetric key block cipher algorithm using a one-dimensional chaotic map. In this paper, we propose a symmetric key block cipher algorithm in which multiple one-dimensional chaotic maps are used instead of a one-dimensional chaotic map. However, we also use an external secret key of variable length (maximum 128-bits) as used by Pareek et al. In the present cryptosystem, plaintext is divided into groups of variable length (i.e. number of blocks in each group is different) and these are encrypted sequentially by using randomly chosen chaotic map from a set of chaotic maps. For block-by-block encryption of variable length group, number of iterations and initial condition for the chaotic maps depend on the randomly chosen session key and encryption of previous block of plaintext, respectively. The whole process of encryption/decryption is governed by two dynamic tables, which are updated time to time during the encryption/decryption process. Simulation results show that the proposed cryptosystem requires less time to encrypt the plaintext as compared to the existing chaotic cryptosystems and further produces the ciphertext having flat distribution of same size as the plaintext.
Attenuation of Selected Emerging Contaminants During River Transport
NASA Astrophysics Data System (ADS)
Reinhard, M.; Gross, B.; Hadeler, A.
2002-12-01
The ubiquitous occurrence of emerging (non-regulated) contaminants in the aquatic environment is of concern because some of these chemicals are biologically active at low concentrations and a potential threat to wildlife and human health.. Emerging contaminants include a diverse range of chemicals, including pharmaceuticals, natural and synthetic hormones and industrial surfactants, such as alkylphenol ethoxylates (APEO) and their metabolites. To address the ecotoxicological impact of these chemicals, it is necessary to know their sources, removal efficiencies during wastewater treatment, and their behavior in the environment. In this study, the fate of selected emerging contaminants in the Santa Ana River (SAR) in Southern California was investigated. The SAR originates in the San Bernardino Mountains and flows 80 miles into the Pacific Ocean. The SAR flow stems mainly from storm runoff, wastewater treatment effluents and several other minor sources. During the dry season, SAR flow is dominated by effluent from public wastewater treatment plants. Input into the SAR was studied by analyzing samples from four major treatment plants that employ different tertiary treatment processes. To assess the fate during river water transport and during wetland treatment, samples from six sites along the river were analyzed. Effluent samples were analyzed every two months, river water every four months. River samples were taken considering the flow velocity, which is approximately 1 mile per hour. The analytical method involves solid-phase extraction using C-18 cartridges and extraction of three fractions. Samples were analyzed with and without further derivatization using GC/MS and GC/MS/MS. Results indicate significant contaminant removal during river transport, presumably by photochemical oxidation. Within a distance of nine miles, pharmaceuticals, plasticizers, flame retardants, APEOs and metabolites were attenuated with removal rates ranging from 76% for a flame retardant
Transport of contaminants in the planetary boundary layer
NASA Technical Reports Server (NTRS)
Lee, I. Y.; Swan, P. R.
1978-01-01
A planetary boundary layer model is described and used to simulate PBL phenomena including cloud formation and pollution transport in the San Francisco Bay Area. The effect of events in the PBL on air pollution is considered, and governing equations for the average momentum, potential temperature, water vapor mixing ratio, and air contaminants are presented. These equations are derived by integrating the basic equations vertically through the mixed layer. Characteristics of the day selected for simulation are reported, and the results suggest that the diurnally cyclic features of the mesoscale motion, including clouds and air pollution, can be simulated in a readily interpretable way with the model.
NASA Astrophysics Data System (ADS)
Ngo-Cong, D.; Mohammed, F. J.; Strunin, D. V.; Skvortsov, A. T.; Mai-Duy, N.; Tran-Cong, T.
2015-06-01
The contaminant transport process governed by the advection-diffusion equation plays an important role in modelling industrial and environmental flows. In this article, our aim is to accurately reduce the 2-D advection-diffusion equation governing the dispersion of a contaminant in a turbulent open channel flow to its 1-D approximation. The 1-D model helps to quickly estimate the horizontal size of contaminant clouds based on the values of the model coefficients. We derive these coefficients analytically and investigate numerically the model convergence. The derivation is based on the centre manifold theory to obtain successively more accurate approximations in a consistent manner. Two types of the average velocity profile are considered: the classical logarithmic profile and the power profile. We further develop the one-dimensional integrated radial basis function network method as a numerical approach to obtain the numerical solutions to both the original 2-D equation and the approximate 1-D equations. We compare the solutions of the original models with their centre-manifold approximations at very large Reynolds numbers. The numerical results obtained from the approximate 1-D models are in good agreement with those of the original 2-D model for both the logarithmic and power velocity profiles.
NASA Astrophysics Data System (ADS)
Choi, SangKook; Park, Cheol-Hwan; Louie, Steven G.
2014-07-01
Electron supercollimation, in which a wave packet is guided to move undistorted along a selected direction, is a highly desirable property that has yet to be realized experimentally. Disorder in general is expected to inhibit supercollimation. Here we report a counterintuitive phenomenon of electron supercollimation by disorder in graphene and related Dirac fermion materials. We show that one can use one-dimensional disorder potentials to control electron wave packet transport. This is distinct from known systems where an electron wave packet would be further spread by disorder and hindered in the potential fluctuating direction. The predicted phenomenon has significant implications in the understanding and applications of electron transport in Dirac fermion materials.
Subsurface Flow and Contaminant Transport Documentation and User's Guide
Aleman, S.E.
1999-07-28
This report documents a finite element code designed to model subsurface flow and contaminant transport, named FACT. FACT is a transient three-dimensional, finite element code designed to simulate isothermal groundwater flow, moisture movement, and solute transport in variably saturated and fully saturated subsurface porous media. The code is designed specifically to handle complex multi-layer and/or heterogeneous aquifer systems in an efficient manner and accommodates a wide range of boundary conditions. Additionally, 1-D and 2-D (in Cartesian coordinates) problems are handled in FACT by simply limiting the number of elements in a particular direction(s) to one. The governing equations in FACT are formulated only in Cartesian coordinates.
One-Dimensional Scanning Approach to Shock Sensing
NASA Technical Reports Server (NTRS)
Tokars, Roger; Adamovsky, Girgory; Floyd, Bertram
2009-01-01
Measurement tools for high speed air flow are sought both in industry and academia. Particular interest is shown in air flows that exhibit aerodynamic shocks. Shocks are accompanied by sudden changes in density, pressure, and temperature. Optical detection and characterization of such shocks can be difficult because the medium is normally transparent air. A variety of techniques to analyze these flows are available, but they often require large windows and optical components as in the case of Schlieren measurements and/or large operating powers which precludes their use for in-flight monitoring and applications. The one-dimensional scanning approach in this work is a compact low power technique that can be used to non-intrusively detect shocks. The shock is detected by analyzing the optical pattern generated by a small diameter laser beam as it passes through the shock. The optical properties of a shock result in diffraction and spreading of the beam as well as interference fringes. To investigate the feasibility of this technique a shock is simulated by a 426 m diameter optical fiber. Analysis of results revealed a direct correlation between the optical fiber or shock location and the beam s diffraction pattern. A plot of the width of the diffraction pattern vs. optical fiber location reveals that the width of the diffraction pattern was maximized when the laser beam is directed at the center of the optical fiber. This work indicates that the one-dimensional scanning approach may be able to determine the location of an actual shock. Near and far field effects associated with a small diameter laser beam striking an optical fiber used as a simulated shock are investigated allowing a proper one-dimensional scanning beam technique.
One-dimensional behavior and high thermoelectric power factor in thin indium arsenide nanowires
Mensch, P.; Karg, S. Schmidt, V.; Gotsmann, B.; Schmid, H.; Riel, H.
2015-03-02
Electrical conductivity and Seebeck coefficient of quasi-one-dimensional indium arsenide (InAs) nanowires with 20 nm diameter are investigated. The carrier concentration of the passivated nanowires was modulated by a gate electrode. A thermoelectric power factor of 1.7 × 10{sup −3} W/m K{sup 2} was measured at room temperature. This value is at least as high as in bulk-InAs and exceeds by far typical values of thicker InAs nanowires with three-dimensional properties. The interpretation of the experimental results in terms of power-factor enhancement by one-dimensionality is supported by model calculations using the Boltzmann transport formalism.
Decay of fermionic quasiparticles in one-dimensional quantum liquids.
Matveev, K A; Furusaki, A
2013-12-20
The low-energy properties of one-dimensional quantum liquids are commonly described in terms of the Tomonaga-Luttinger liquid theory, in which the elementary excitations are free bosons. To this approximation, the theory can be alternatively recast in terms of free fermions. In both approaches, small perturbations give rise to finite lifetimes of excitations. We evaluate the decay rate of fermionic excitations and show that it scales as the eighth power of energy, in contrast to the much faster decay of bosonic excitations. Our results can be tested experimentally by measuring the broadening of power-law features in the density structure factor or spectral functions. PMID:24483750
One-dimensional intense laser pulse solitons in a plasma
Sudan, R.N.; Dimant, Y.S.; Shiryaev, O.B.
1997-05-01
A general analytical framework is developed for the nonlinear dispersion relations of a class of large amplitude one-dimensional isolated envelope solitons for modulated light pulse coupled to electron plasma waves, previously investigated numerically [Kozlov {ital et al.}, Zh. Eksp. Teor. Fiz. {bold 76}, 148 (1979); Kaw {ital et al.}, Phys. Rev. Lett. {bold 68}, 3172 (1992)]. The analytical treatment of weakly nonlinear solitons [Kuehl and Zhang, Phys. Rev. E {bold 48}, 1316 (1993)] is extended to the strongly nonlinear limit. {copyright} {ital 1997 American Institute of Physics.}
Dynamical Structure Factors of quasi-one-dimensional antiferromagnets
NASA Astrophysics Data System (ADS)
Hagemans, Rob; Caux, Jean-Sébastien; Maillet, Jean Michel
2007-03-01
For a long time it has been impossible to accurately calculate the dynamical structure factors (spin-spin correlators as a function of momentum and energy) of quasi-one-dimensional antiferromagnets. For integrable Heisenberg chains, the recently developed ABACUS method (a first-principles computational approach based on the Bethe Ansatz) now yields highly accurate (over 99% of the sum rule) results for the DSF for finite chains, allowing for a very precise description of neutron-scattering data over the full momentum and energy range. We show remarkable agreement between results obtained with ABACUS and experiment.
Discrete breathers in one-dimensional diatomic granular crystals.
Boechler, N; Theocharis, G; Job, S; Kevrekidis, P G; Porter, Mason A; Daraio, C
2010-06-18
We report the experimental observation of modulational instability and discrete breathers in a one-dimensional diatomic granular crystal composed of compressed elastic beads that interact via Hertzian contact. We first characterize their effective linear spectrum both theoretically and experimentally. We then illustrate theoretically and numerically the modulational instability of the lower edge of the optical band. This leads to the dynamical formation of long-lived breather structures, whose families of solutions we compute throughout the linear spectral gap. Finally, we experimentally observe the manifestation of the modulational instability and the resulting generation of localized breathing modes with quantitative characteristics that agree with our numerical results. PMID:20867305
A one-dimensional basic oscillator model of the vircator
NASA Astrophysics Data System (ADS)
Biswas, Debabrata
2009-06-01
A one-dimensional model of the virtual cathode oscillator (vircator) is proposed keeping only the essential physical processes. The basic model consists of a radiating charge in an oscillating electric field. Using parameters from (realistic) particle-in-cell simulations such as the charge Q and amplitude E1 of the oscillating electric field, the model correctly predicts the amplitude of virtual cathode oscillation and the power radiated. The basic model is then extended to incorporate beam-cavity interaction and the resonance effect.
One-dimensional image transformation in white light
NASA Astrophysics Data System (ADS)
Bartelt, H.
1981-08-01
A method for linear, one-dimensional transformations in white light is described. In the case of discrete object and transformation functions, this operation may also be called a matrix multiplication. The method uses the multiplexing facility of the wavelength coordinate. This fact allows an image quality corresponding to the full spatial resolution of the optical system to be achieved. Any type of positive basis functions can be introduced into the optical system. The only restriction is caused by the use of temporally incoherent light. Therefore, bipolar basis functions of a transformation must be split into positive parts. As an application, a Walsh-Hadamard transformation has been performed.
Parallel solution of sparse one-dimensional dynamic programming problems
NASA Technical Reports Server (NTRS)
Nicol, David M.
1989-01-01
Parallel computation offers the potential for quickly solving large computational problems. However, it is often a non-trivial task to effectively use parallel computers. Solution methods must sometimes be reformulated to exploit parallelism; the reformulations are often more complex than their slower serial counterparts. We illustrate these points by studying the parallelization of sparse one-dimensional dynamic programming problems, those which do not obviously admit substantial parallelization. We propose a new method for parallelizing such problems, develop analytic models which help us to identify problems which parallelize well, and compare the performance of our algorithm with existing algorithms on a multiprocessor.
One-dimensional electron system over liquid helium
NASA Astrophysics Data System (ADS)
Kovdrya, Yu. Z.; Nikolaenko, V. A.; Gladchenko, S. P.
2000-07-01
A system close to a one-dimensional (1D) electron system on superfluid helium is realized in the experiments. A profiled substrate with a small dielectric constant is used to create a set of parallel channels on the surface of liquid helium. The mobility of carriers was measured in this system in the temperature range 0.5-1.8 K. For clean substrates the electron mobility increases with decreasing temperature and reaches high values at low temperatures. The results of experiments are found to be in a good agreement with the existing theory.
Coupling Identical one-dimensional Many-Body Localized Systems
NASA Astrophysics Data System (ADS)
Bordia, Pranjal; Lüschen, Henrik P.; Hodgman, Sean S.; Schreiber, Michael; Bloch, Immanuel; Schneider, Ulrich
2016-04-01
We experimentally study the effects of coupling one-dimensional many-body localized systems with identical disorder. Using a gas of ultracold fermions in an optical lattice, we artificially prepare an initial charge density wave in an array of 1D tubes with quasirandom on-site disorder and monitor the subsequent dynamics over several thousand tunneling times. We find a strikingly different behavior between many-body localization and Anderson localization. While the noninteracting Anderson case remains localized, in the interacting case any coupling between the tubes leads to a delocalization of the entire system.
One-dimensional hydrodynamic model generating a turbulent cascade
NASA Astrophysics Data System (ADS)
Matsumoto, Takeshi; Sakajo, Takashi
2016-05-01
As a minimal mathematical model generating cascade analogous to that of the Navier-Stokes turbulence in the inertial range, we propose a one-dimensional partial-differential-equation model that conserves the integral of the squared vorticity analog (enstrophy) in the inviscid case. With a large-scale random forcing and small viscosity, we find numerically that the model exhibits the enstrophy cascade, the broad energy spectrum with a sizable correction to the dimensional-analysis prediction, peculiar intermittency, and self-similarity in the dynamical system structure.
Correlations in light propagation in one-dimensional waveguides
NASA Astrophysics Data System (ADS)
Javanainen, Juha; Ruostekoski, Janne
2016-05-01
We study light propagation between atoms in a one-dimensional waveguide both analytically and using numerical simulations. We employ classical electrodynamics, but in the limit of low light intensity the results are essentially exact also for quantum mechanics. We characterize the cooperative interactions between the atoms mediated by the electromagnetic field. The focus is on resonance shifts for various statistics of the positions of the atoms, such as statistically independent positions or atoms in a regular lattice. These shifts, potentially important if 1D waveguides are to be used in metrology, are different from the usual resonance shifts found in three spatial dimensions.
Cooling of a One-Dimensional Bose Gas.
Rauer, B; Grišins, P; Mazets, I E; Schweigler, T; Rohringer, W; Geiger, R; Langen, T; Schmiedmayer, J
2016-01-22
We experimentally study the dynamics of a degenerate one-dimensional Bose gas that is subject to a continuous outcoupling of atoms. Although standard evaporative cooling is rendered ineffective by the absence of thermalizing collisions in this system, we observe substantial cooling. This cooling proceeds through homogeneous particle dissipation and many-body dephasing, enabling the preparation of otherwise unexpectedly low temperatures. Our observations establish a scaling relation between temperature and particle number, and provide insights into equilibration in the quantum world. PMID:26849577
An improved lambda-scheme for one-dimensional flows
NASA Technical Reports Server (NTRS)
Moretti, G.; Dipiano, M. T.
1983-01-01
A code for the calculation of one-dimensional flows is presented, which combines a simple and efficient version of the lambda-scheme with tracking of discontinuities. The latter is needed to identify points where minor departures from the basic integration scheme are applied to prevent infiltration of numerical errors. Such a tracking is obtained via a systematic application of Boolean algebra. It is, therefore, very efficient. Fifteen examples are presented and discussed in detail. The results are exceptionally good. All discontinuites are captured within one mesh interval.
Quantum mechanics of graphene with a one-dimensional potential
Miserev, D. S.; Entin, M. V.
2012-10-15
Electron states in graphene with a one-dimensional potential have been studied. An approximate solution has been obtained for a small angle between vectors of the incident electron momentum and potential gradient. Exactly solvable problems with a potential of the smoothened step type U(x) Utanh(x/a) and a potential with a singularity U(x) = -U/(|x| + d) are considered. The transmission/reflection coefficients and phases for various potential barriers are determined. A quasi-classical solution is obtained.
Solution methods for one-dimensional viscoelastic problems
NASA Technical Reports Server (NTRS)
Stubstad, John M.; Simitses, George J.
1987-01-01
A recently developed differential methodology for solution of one-dimensional nonlinear viscoelastic problems is presented. Using the example of an eccentrically loaded cantilever beam-column, the results from the differential formulation are compared to results generated using a previously published integral solution technique. It is shown that the results obtained from these distinct methodologies exhibit a surprisingly high degree of correlation with one another. A discussion of the various factors affecting the numerical accuracy and rate of convergence of these two procedures is also included. Finally, the influences of some 'higher order' effects, such as straining along the centroidal axis are discussed.
One-dimensional physics in the 21st century
NASA Astrophysics Data System (ADS)
Giamarchi, Thierry
2016-03-01
This paper presents a brief introduction to some of the systems and questions concerning one-dimensional interacting quantum systems. Historically, organic conductors and superconductors - a field extremely active in the "Laboratoire de physique des solides" in Orsay, in a good part thanks to the influence of Jacques Friedel, played a crucial role in this field. I will describe some of the aspects of this physics and also review some of the very exciting theoretical and experimental developments that took place in the 1D world in the last 15 years or so. xml:lang="fr"
A statistical formulation of one-dimensional electron fluid turbulence
NASA Technical Reports Server (NTRS)
Fyfe, D.; Montgomery, D.
1977-01-01
A one-dimensional electron fluid model is investigated using the mathematical methods of modern fluid turbulence theory. Non-dissipative equilibrium canonical distributions are determined in a phase space whose co-ordinates are the real and imaginary parts of the Fourier coefficients for the field variables. Spectral densities are calculated, yielding a wavenumber electric field energy spectrum proportional to k to the negative second power for large wavenumbers. The equations of motion are numerically integrated and the resulting spectra are found to compare well with the theoretical predictions.
Functional One-Dimensional Lipid Bilayers on Carbon Nanotube Templates
Artyukhin, A; Shestakov, A; Harper, J; Bakajin, O; Stroeve, P; Noy, A
2004-07-23
We present one-dimensional (1-D) lipid bilayer structures that integrate carbon nanotubes with a key biological environment-phospholipid membrane. Our structures consist of lipid bilayers wrapped around carbon nanotubes modified with a hydrophilic polymer cushion layer. Despite high bilayer curvature, the lipid membrane maintains its fluidity and can sustain repeated damage-recovery cycles. We also present the first evidence of spontaneous insertion of pore-forming proteins into 1-D lipid bilayers. These structures could lead to the development of new classes of biosensors and bioelectronic devices.
Accuracy of differential sensitivity for one-dimensional shock problems
Henninger, R.J.; Maudlin, P.J.; Rightley, M.L.
1998-07-01
The technique called Differential Sensitivity has been applied to the system of Eulerian continuum mechanics equations solved by a hydrocode. Differential Sensitivity uses forward and adjoint techniques to obtain output response sensitivity to input parameters. Previous papers have described application of the technique to two-dimensional, multi-component problems. Inaccuracies in the adjoint solutions have prompted us to examine our numerical techniques in more detail. Here we examine one-dimensional, one material shock problems. Solution accuracy is assessed by comparison to sensitivities obtained by automatic differentiation and a code-based adjoint differentiation technique. {copyright} {ital 1998 American Institute of Physics.}
Evaluation of one dimensional analytical models for vegetation canopies
NASA Technical Reports Server (NTRS)
Goel, Narendra S.; Kuusk, Andres
1992-01-01
The SAIL model for one-dimensional homogeneous vegetation canopies has been modified to include the specular reflectance and hot spot effects. This modified model and the Nilson-Kuusk model are evaluated by comparing the reflectances given by them against those given by a radiosity-based computer model, Diana, for a set of canopies, characterized by different leaf area index (LAI) and leaf angle distribution (LAD). It is shown that for homogeneous canopies, the analytical models are generally quite accurate in the visible region, but not in the infrared region. For architecturally realistic heterogeneous canopies of the type found in nature, these models fall short. These shortcomings are quantified.
Time delay in simple one-dimensional systems
NASA Astrophysics Data System (ADS)
van Dijk, W.; Kiers, K. A.
1992-06-01
The time delay or the time advance in the scattering of simple one-dimensional systems can be evaluated in a straightforward manner for certain potential models. It is found that when the interacting potential is attractive and has a strength such that it nearly supports an additional bound state, the time delay at small scattering energy is very large. On the other hand, if the potential supports a bound state with nearly zero binding energy, the time advance near threshold is anomalously large. The behavior of a wave packet scattering from the double delta-function potential is also investigated.
Analysis of Contaminant Transport through the Vadose and Saturated Zones for Source Screening
NASA Astrophysics Data System (ADS)
Bedekar, V.; Neville, C. J.; Tonkin, M. J.
2010-12-01
At complex sites there may be many potential source areas. Screening level analyses are useful to identify which of the source areas should be the focus of detailed investigation and analysis. A screening tool has been developed to evaluate the threat posed by waste sites on groundwater quality. This tool implements analytical solutions to simulate contaminant transport through the vadose and saturated zones and predict time-varying concentrations at potential groundwater receptors. The screening tool is developed within a user friendly, Microsoft ExcelTM based interface; however, care has been taken to implement rigorous solutions. The screening tool considers the following mechanisms: (a) Partitioning of soil contamination in to an equivalent dissolved concentration. For a time-invariant source, the solution is generalized from [3] for sorption and decay. For a time-varying source, the solution represents a special, degenerate, case of a solution implemented in ATRANS [2]; (b) One-dimensional (1D) transport of the dissolved contamination through the vadose zone considering 1D dispersion, equilibrium sorption, and first order transformation reactions. Steady state infiltration and moisture content are assumed; (c) Blending (mixing) of ambient water quality in the saturated zone with the contaminated water leaching from the vadose zone; and (d) Three-dimensional (3D) transport through the saturated zone using the formulation provided in [2], considering advection, dispersion, sorption, and first-order transformation reactions. The solution is derived using integral transform methods, following approaches adopted in [1] and [4]. Independent verification showed that the analytical techniques implemented in this study generate solutions that closely approximate those obtained using sophisticated numerical approaches, with a systematic over-estimate of the likely impact to groundwater that (predictably) stems from the use of a 1D approximation in the vadose zone. As a
One dimensional wavefront sensor development for tomographic flow measurements
Neal, D.; Pierson, R.; Chen, E.
1995-08-01
Optical diagnostics are extremely useful in fluid mechanics because they generally have high inherent bandwidth, and are non-intrusive. However, since optical probe measurements inherently integrate all information along the optical path, it is often difficult to isolate out-of-plane components in 3-dimensional flow events. It is also hard to make independent measurements of internal flow structure. Using an arrangement of one-dimensional wavefront sensors, we have developed a system that uses tomographic reconstruction to make two-dimensional measurements in an arbitrary flow. These measurements provide complete information in a plane normal to the flow. We have applied this system to the subsonic free jet because of the wide range of flow scales available. These measurements rely on the development of a series of one-dimensional wavefront sensors that are used to measure line-integral density variations in the flow of interest. These sensors have been constructed using linear CCD cameras and binary optics lenslet arrays. In designing these arrays, we have considered the coherent coupling between adjacent lenses and have made comparisons between theory and experimental noise measurements. The paper will present examples of the wavefront sensor development, line-integral measurements as a function of various experimental parameters, and sample tomographic reconstructions.
One-Dimensional Electrical Contact to Molybdenum Disulfide
NASA Astrophysics Data System (ADS)
Yang, Zheng; Ra, Changho; Ahmed, Faisal; Lee, Daeyeong; Choi, Minsup; Liu, Xiaochi; Qu, Deshun; Yoo, Won Jong; Nano Device Processing Lab Team
Molybdenum disulfide (MoS2) is one of the promising two-dimensional materials for future application in nano electronics, which has high carrier mobility, very good stability under atmosphere, proper band gap, etc. However, its application to electronic switching devices is hindered by Fermi level pinning at metal-MoS2 interfaces. Here, we experimentally demonstrate one-dimensional electrical contact to MoS2 formed via controllable plasma etching. We fabricated Al/MoS2 FET (n-type), Mo/MoS2 FET (n-type), and Pd/MoS2 FET (ambipolar). For Mo/MoS2 FET (n-type), on/off current ratio is around 108 and mobility is around 104 cm2/(Vs). By contrast, for Pd/MoS2 FET (ambipolar), on/off current ratio is around 108, hole mobility is ranged from 350 to 650 cm2/(Vs), and the mean free path of holes at 9K is around 23 nm. All the measured mobilities are evaluated by using two-terminal field-effect configuration. We can also achieve complementary logic gates with intrinsic MoS2/metal one-dimensional electrical contact.
Polarization transitions in one-dimensional arrays of interacting rings
NASA Astrophysics Data System (ADS)
Roostaei, Bahman; Mullen, Kieran J.; Rezakhani, A. T.
2008-08-01
Periodic nanostructures can display the dynamics of arrays of atoms while enabling the tuning of interactions in ways not normally possible in nature. We examine one-dimensional (1D) arrays of a “synthetic atom,” a one-dimensional ring with a nearest-neighbor Coulomb interaction. We consider the classical limit first, finding that arrays of singly charged rings possess antiferroelectric order at low temperatures when the charge is discrete, but that they do not order when the charge is treated as a continuous classical fluid. In the quantum limit Monte Carlo simulation suggests that the system undergoes a quantum phase transition as the interaction strength is increased. This is supported by mapping the system to the 1D transverse field Ising model. Finally, we examine the effect of magnetic fields. We find that a magnetic field can alter the electrostatic phase transition producing a ferroelectric ground state, solely through its effect of shifting the eigenenergies of the quantum problem.
Constraint and gauge shocks in one-dimensional numerical relativity
Reimann, Bernd; Alcubierre, Miguel; Nunez, Dario; Gonzalez, Jose A.
2005-03-15
We study how different types of blowups can occur in systems of hyperbolic evolution equations of the type found in general relativity. In particular, we discuss two independent criteria that can be used to determine when such blowups can be expected. One criteria is related to the so-called geometric blowup leading to gradient catastrophes, while the other is based upon the ODE-mechanism leading to blowups within finite time. We show how both mechanisms work in the case of a simple one-dimensional wave equation with a dynamic wave speed and sources, and later explore how those blowups can appear in one-dimensional numerical relativity. In the latter case we recover the well known 'gauge shocks' associated with Bona-Masso-type slicing conditions. However, a crucial result of this study has been the identification of a second family of blowups associated with the way in which the constraints have been used to construct a hyperbolic formulation. We call these blowups 'constraint shocks' and show that they are formulation specific, and that choices can be made to eliminate them or at least make them less severe.
Lattice Boltzmann method for one-dimensional vector radiative transfer.
Zhang, Yong; Yi, Hongliang; Tan, Heping
2016-02-01
A one-dimensional vector radiative transfer (VRT) model based on lattice Boltzmann method (LBM) that considers polarization using four Stokes parameters is developed. The angular space is discretized by the discrete-ordinates approach, and the spatial discretization is conducted by LBM. LBM has such attractive properties as simple calculation procedure, straightforward and efficient handing of boundary conditions, and capability of stable and accurate simulation. To validate the performance of LBM for vector radiative transfer, four various test problems are examined. The first case investigates the non-scattering thermal-emitting atmosphere with no external collimated solar. For the other three cases, the external collimated solar and three different scattering types are considered. Particularly, the LBM is extended to solve VRT in the atmospheric aerosol system where the scattering function contains singularities and the hemisphere space distributions for the Stokes vector are presented and discussed. The accuracy and computational efficiency of this algorithm are discussed. Numerical results show that the LBM is accurate, flexible and effective to solve one-dimensional polarized radiative transfer problems. PMID:26906779
Dislocation-mediated melting of one-dimensional Rydberg crystals
Sela, Eran; Garst, Markus; Punk, Matthias
2011-08-15
We consider cold Rydberg atoms in a one-dimensional optical lattice in the Mott regime with a single atom per site at zero temperature. An external laser drive with Rabi frequency {Omega} and laser detuning {Delta} creates Rydberg excitations whose dynamics is governed by an effective spin-chain model with (quasi) long-range interactions. This system possesses intrinsically a large degree of frustration resulting in a ground-state phase diagram in the ({Delta},{Omega}) plane with a rich topology. As a function of {Delta}, the Rydberg blockade effect gives rise to a series of crystalline phases commensurate with the optical lattice that form a so-called devil's staircase. The Rabi frequency {Omega}, on the other hand, creates quantum fluctuations that eventually lead to a quantum melting of the crystalline states. Upon increasing {Omega}, we find that generically a commensurate-incommensurate transition to a floating Rydberg crystal that supports gapless phonon excitations occurs first. For even larger {Omega}, dislocations within the floating Rydberg crystal start to proliferate and a second, Kosterlitz-Thouless-Nelson-Halperin-Young dislocation-mediated melting transition finally destroys the crystalline arrangement of Rydberg excitations. This latter melting transition is generic for one-dimensional Rydberg crystals and persists even in the absence of an optical lattice. The floating phase and the concomitant transitions can, in principle, be detected by Bragg scattering of light.
Generating arbitrary one-dimensional dose profiles using rotational therapy
NASA Astrophysics Data System (ADS)
Zhuang, Tingliang; Wu, Qiuwen
2010-10-01
Conformal radiation therapy can be delivered using several methods: intensity-modulated radiotherapy (IMRT) at fixed gantry angles, through the continuous gantry rotation of linac (rotational arc therapy), or by a dedicated treatment unit such as tomotherapy. The recently developed volumetric modulated arc therapy (VMAT), a form of rotational arc therapy, has attracted lots of attention from investigators to explore its capability of generating highly conformal dose to the target. The main advanced features of VMAT are the variable dose rate and gantry rotation speed. In this paper, we present a theoretical framework of generating arbitrary one-dimensional dose profiles using rotational arc therapy to further explore the new degree of freedom of the VMAT technique. This framework was applied to design a novel technique for total body irradiation (TBI) treatment, where the desired dose distribution can be simplified by a one-dimensional profile. The technique was validated using simulations and experimental measurements. The preliminary results demonstrated that the new TBI technique using either dynamic MLC only, variable dose rate only, or a combination of dynamic MLC and variable dose rate can achieve arbitrary dose distribution in one dimension, such as uniform dose to target and lower dose to critical organ. This technique does not require the use of customized compensators, nor large treatment rooms as in the conventional extended SSD technique.
CONTAMINANT TRANSPORT IN SEDIMENT UNDER THE INFLUENCE OF SUBMARINE GROUNDWATER DISCHARGE
Theoretical estimations and laboratory studies suggest that capping can effectively retard contaminant transport from sediments under undisturbed conditions. However, contaminated near-shore areas, commonly selected as capping sites, are frequently subjected to submarine groundwa...
A Sectored-One-Dimensional Model for Simulating Combustion Instabilities in Premix Combustors
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.
1999-01-01
A one-dimensional, CFD based combustor simulation has been developed that exhibits self-excited, thermoacoustic oscillations in premixed combustor geometries that typically have large, abrupt changes in cross sectional area. The combustor geometry is approximated by dividing it into a finite number of one-dimensional sectors. Within each sector, the equations of motion are integrated numerically, along with a species transport and a reaction equation. Across the sectors, mass and energy are conserved, and momentum loss is prescribed using appropriately compatible boundary conditions that account for the area change. The resulting simulation and associated boundary conditions essentially represent a one-dimensional, multi-block technique. Details of the simulation code are presented herein. Results are then shown comparing experimentally observed and simulated operation of a particular combustor rig that exhibited different instabilities at different operating points. It will be shown that the simulation closely matched the rig data in oscillation amplitudes, frequencies, and operating points at which the instabilities occurred. Finally, advantages and limitations of the simulation technique are discussed.
Properties of surface modes in one dimensional plasma photonic crystals
Shukla, S.; Prasad, S. Singh, V.
2015-02-15
Properties of surface modes supported at the interface of air and a semi-infinite one dimensional plasma photonic crystal are analyzed. The surface mode equation is obtained by using transfer matrix method and applying continuity conditions of electric fields and its derivatives at the interface. It is observed that with increase in the width of cap layer, frequencies of surface modes are shifted towards lower frequency side, whereas increase in tangential component of wave-vector increases the mode frequency and total energy carried by the surface modes. With increase in plasma frequency, surface modes are found to shift towards higher frequency side. The group velocity along interface is found to control by cap layer thickness.
Experiment and simulation on one-dimensional plasma photonic crystals
Zhang, Lin; Ouyang, Ji-Ting
2014-10-15
The transmission characteristics of microwaves passing through one-dimensional plasma photonic crystals (PPCs) have been investigated by experiment and simulation. The PPCs were formed by a series of discharge tubes filled with argon at 5 Torr that the plasma density in tubes can be varied by adjusting the discharge current. The transmittance of X-band microwaves through the crystal structure was measured under different discharge currents and geometrical parameters. The finite-different time-domain method was employed to analyze the detailed properties of the microwaves propagation. The results show that there exist bandgaps when the plasma is turned on. The properties of bandgaps depend on the plasma density and the geometrical parameters of the PPCs structure. The PPCs can perform as dynamical band-stop filter to control the transmission of microwaves within a wide frequency range.
Strongly-Refractive One-Dimensional Photonic Crystal Prisms
NASA Technical Reports Server (NTRS)
Ting, David Z. (Inventor)
2004-01-01
One-dimensional (1D) photonic crystal prisms can separate a beam of polychromatic electromagnetic waves into constituent wavelength components and can utilize unconventional refraction properties for wavelength dispersion over significant portions of an entire photonic band rather than just near the band edges outside the photonic band gaps. Using a ID photonic crystal simplifies the design and fabrication process and allows the use of larger feature sizes. The prism geometry broadens the useful wavelength range, enables better optical transmission, and exhibits angular dependence on wavelength with reduced non-linearity. The properties of the 1 D photonic crystal prism can be tuned by varying design parameters such as incidence angle, exit surface angle, and layer widths. The ID photonic crystal prism can be fabricated in a planar process, and can be used as optical integrated circuit elements.
Unexpected photoluminescence properties from one-dimensional molecular chains
NASA Astrophysics Data System (ADS)
Yuan, Ye; Yao, Mingguang; Chen, Shuanglong; Liu, Shijie; Yang, Xigui; Zhang, Weiwei; Yao, Zhen; Liu, Ran; Liu, Bo; Liu, Bingbing
2016-01-01
Unlike bulk iodine, iodine molecular chains formed inside one dimensional (1D) nanochannels of AlPO4-5 (AFI) single crystals show unexpected PL behavior. Thanks to its unique 1D structure, the PL exhibits obvious polarization both in excitation and emission, by changing the angle between the c-axis of the channels and the polarization direction of the incident laser. As pressure increases, the PL intensity increases obviously due to the population increase of (I2)n chains upon compression. In contrast, the breaking of the (I2)n chain at high temperature leads to the decrease of PL intensity. Our theoretical calculation further points out that the PL may arise from the intrinsic band structure of (I2)n chains.
One-Dimensional Analysis Techniques for Pulsed Blowing Distribution
NASA Astrophysics Data System (ADS)
Chambers, Frank
2005-11-01
Pulsed blowing offers reductions in bleed air requirements for aircraft flow control. Efficient pulsed blowing systems require careful design to minimize bleed air use while distributing blowing to multiple locations. Pulsed blowing systems start with a steady flow supply and process it to generate a pulsatile flow. The fluid-acoustic dynamics of the system play an important role in overall effectiveness. One-dimensional analysis techniques that in the past have been applied to ventilation systems and internal combustion engines have been adapted to pulsed blowing. Pressure wave superposition and reflection are used with the governing equations of continuity, momentum and energy to determine particle velocities and pressures through the flow field. Simulations have been performed to find changes in the amplitude and wave shape as pulses are transmitted through a simple pulsed blowing system. A general-purpose code is being developed to simulate wave transmission and allow the determination of blowing system dynamic parameters.
Localization of wave packets in one-dimensional random potentials
NASA Astrophysics Data System (ADS)
Valdes, Juan Pablo Ramírez; Wellens, Thomas
2016-06-01
We study the expansion of an initially strongly confined wave packet in a one-dimensional weak random potential with short correlation length. At long times, the expansion of the wave packet comes to a halt due to destructive interferences leading to Anderson localization. We develop an analytical description for the disorder-averaged localized density profile. For this purpose, we employ the diagrammatic method of Berezinskii which we extend to the case of wave packets, present an analytical expression of the Lyapunov exponent which is valid for small as well as for high energies, and, finally, develop a self-consistent Born approximation in order to analytically calculate the energy distribution of our wave packet. By comparison with numerical simulations, we show that our theory describes well the complete localized density profile, not only in the tails but also in the center.
Anyon Hubbard Model in One-Dimensional Optical Lattices.
Greschner, Sebastian; Santos, Luis
2015-07-31
Raman-assisted hopping may be used to realize the anyon Hubbard model in one-dimensional optical lattices. We propose a feasible scenario that significantly improves the proposal of T. Keilmann et al. [Nat. Commun. 2, 361 (2011)], allowing as well for an exact realization of the two-body hard-core constraint, and for controllable effective interactions without the need of Feshbach resonances. We show that the combination of anyonic statistics and two-body hard-core constraint leads to a rich ground-state physics, including Mott insulators with attractive interactions, pair superfluids, dimer phases, and multicritical points. Moreover, the anyonic statistics results in a novel two-component superfluid of holon and doublon dimers, characterized by a large but finite compressibility and a multipeaked momentum distribution, which may be easily revealed experimentally. PMID:26274417
Periodic transmission peak splitting in one dimensional disordered photonic structures
NASA Astrophysics Data System (ADS)
Kriegel, Ilka; Scotognella, Francesco
2016-08-01
In the present paper we present ways to modulate the periodic transmission peaks arising in disordered one dimensional photonic structures with hundreds of layers. Disordered structures in which the optical length nd (n is the refractive index and d the layer thickness) is the same for each layer show regular peaks in their transmission spectra. A proper variation of the optical length of the layers leads to a splitting of the transmission peaks. Notably, the variation of the occurrence of high and low refractive index layers, gives a tool to tune also the width of the peaks. These results are of highest interest for optical application, such as light filtering, where the manifold of parameters allows a precise design of the spectral transmission ranges.
NASA Astrophysics Data System (ADS)
Vidal, A. J.; Astrakharchik, G. E.; Vranješ Markić, L.; Boronat, J.
2016-05-01
The ground-state properties of one-dimensional electron-spin-polarized hydrogen 1H, deuterium 2H, and tritium 3H are obtained by means of quantum Monte Carlo methods. The equations of state of the three isotopes are calculated for a wide range of linear densities. The pair correlation function and the static structure factor are obtained and interpreted within the framework of the Luttinger liquid theory. We report the density dependence of the Luttinger parameter and use it to identify different physical regimes: Bogoliubov Bose gas, super-Tonks–Girardeau gas, and quasi-crystal regimes for bosons; repulsive, attractive Fermi gas, and quasi-crystal regimes for fermions. We find that the tritium isotope is the one with the richest behavior. Our results show unambiguously the relevant role of the isotope mass in the properties of this quantum system.
Growth of One-Dimensional MnO2 Nanostructure
NASA Astrophysics Data System (ADS)
Lu, Pai; Xue, Dongfeng
Large scale MnO2 nanorods were controllably synthesized from the inexpensive precursors (e.g., manganese acetate, ammonium persulfate) via a facile one-step low temperature hydrothermal strategy. The crystal phase and microscopic morphology of the as-prepared MnO2 nanorods were characterized by X-ray powder diffraction (XRD) and scanning electron microscope (SEM). Through investigating the morphology evolution of MnO2 products in the whole synthesis process, a novel growth mechanism of these MnO2 nanorods was proposed, which may be efficiently extended to other material systems as a general approach towards one-dimensional nanostructures. The obtained MnO2 nanorods may have potential applications in Li-ion batteries and supercapacitors.
Moving perturbation in a one-dimensional Fermi gas
NASA Astrophysics Data System (ADS)
Visuri, A.-M.; Kim, D.-H.; Kinnunen, J. J.; Massel, F.; Törmä, P.
2014-11-01
We simulate a balanced attractively interacting two-component Fermi gas in a one-dimensional lattice perturbed with a moving potential well or barrier. Using the time-evolving block decimation (TEBD) method, we study different velocities of the perturbation and distinguish two velocity regimes based on clear differences in the time evolution of particle densities and the pair correlation function. We show that, in the slow regime, the densities deform as particles are either attracted by the potential well or repelled by the barrier, and a wave front of hole or particle excitations propagates at the maximum group velocity. Simultaneously, the initial pair correlations are broken and coherence over different sites is lost. In contrast, in the fast regime, the densities are not considerably deformed and the pair correlations are preserved.
Topological phase transition in quasi-one dimensional organic conductors
Ye, Xiao-Shan; Liu, Yong-Jun; Zeng, Xiang-Hua; Wu, Guoqing
2015-01-01
We explore topological phase transition, which involves the energy spectra of field-induced spin-density-wave (FISDW) states in quasi-one dimensional (Q1D) organic conductors, using an extended Su-Schrieffer-Heeger (SSH) model. We show that, in presence of half magnetic-flux FISDW state, the system exhibits topologically nontrivial phases, which can be characterized by a nonzero Chern number. The nontrivial evolution of the bulk bands with chemical potential in a topological phase transition is discussed. We show that the system can have a similar phase diagram which is discussed in the Haldane’s model. We suggest that the topological feature should be tested experimentally in this organic system. These studies enrich the theoretical research on topologically nontrivial phases in the Q1D lattice system as compared to the Haldane topological phase appearing in the two-dimensional lattices. PMID:26612317
Pseudo-one-dimensional nucleation in dilute polymer solutions
NASA Astrophysics Data System (ADS)
Zhang, Lingyun; Schmit, Jeremy D.
2016-06-01
Pathogenic protein fibrils have been shown in vitro to have nucleation-dependent kinetics despite the fact that one-dimensional structures do not have the size-dependent surface energy responsible for the lag time in classical theory. We present a theory showing that the conformational entropy of the peptide chains creates a free-energy barrier that is analogous to the translational entropy barrier in higher dimensions. We find that the dynamics of polymer rearrangement make it very unlikely for nucleation to succeed along the lowest free-energy trajectory, meaning that most of the nucleation flux avoids the free-energy saddle point. We use these results to construct a three-dimensional model for amyloid nucleation that accounts for conformational entropy, backbone H bonds, and side-chain interactions to compute nucleation rates as a function of concentration.
CHARGE ORDER FLUCTUATIONS IN ONE-DIMENSIONAL SILICIDES
Zeng, Changgan; Kent, P. R.C.; Kim, Tae-Hwan; Li, An-Ping; Weitering, Hanno H.
2014-01-01
Metallic nanowires are of great interest as interconnects in future nanoelectronic circuits. They also represent important systems for understanding the complexity of electronic interactions and conductivity in one-dimension. We have fabricated exceptionally long and uniform YSi2 nanowires via self-assembly of yttrium atoms on Si(001). The thinnest wires represent one of the closest realizations of the isolated Peierls chain, exhibiting van-Hove type singularities in the one-dimensional density of states and charge order fluctuations below 150 K. The structure of the wire was determined though a detailed comparison of scanning tunneling microscopy data and first-principles calculations. Sporadic broadenings of the wires’ cross section imply the existence of a novel metal-semiconductor junction whose electronic properties are governed by the finite-size- and temperature-scaling of the charge ordering correlation. PMID:18552849
Probing the excitations of a one dimensional topological Bose insulator
NASA Astrophysics Data System (ADS)
Dalla Torre, Emanuele G.; Berg, Erez; Altman, Ehud
2008-03-01
We investigate the dynamic response of a system of ultracold dipolar atoms or molecules in the one dimensional Haldane Bose insulator phase. This phase, which was recently predicted theoretically [1], is characterized by non-local string order and its elementary excitations are domain walls in this order. We compute experimentally relevant response functions and we derive asymptotically exact expressions near the quantum critical points separating the Haldane insulator from the conventional Mott and density wave insulators. In particular, we predict a narrow absorption peak in Bragg spectroscopy experiments, due to the excitation of a single domain wall in the string order. [1] E.G. Dalla Torre, E. Berg, E. Altman, Phys. Rev Lett. 97, 260401 (2006)
Majorana fermion exchange in strictly one-dimensional structures
NASA Astrophysics Data System (ADS)
Chiu, Ching-Kai; Vazifeh, M. M.; Franz, M.
2015-04-01
It is generally thought that the adiabatic exchange of two identical particles is impossible in one spatial dimension. Here we describe a simple protocol that permits the adiabatic exchange of two Majorana fermions in a one-dimensional topological superconductor wire. The exchange relies on the concept of “Majorana shuttle” whereby a π domain wall in the superconducting order parameter which hosts a pair of ancillary majoranas delivers one zero mode across the wire while the other one tunnels in the opposite direction. The method requires some tuning of parameters and does not, therefore, enjoy full topological protection. The resulting exchange statistics, however, remain non-Abelian for a wide range of parameters that characterize the exchange.
Erosion by a one-dimensional random walk
NASA Astrophysics Data System (ADS)
Chisholm, Rebecca H.; Hughes, Barry D.; Landman, Kerry A.
2014-08-01
We consider a model introduced by Baker et al. [Phys. Rev. E 88, 042113 (2013), 10.1103/PhysRevE.88.042113] of a single lattice random walker moving on a domain of allowed sites, surrounded by blocked sites. The walker enlarges the allowed domain by eroding the boundary at its random encounters with blocked boundary sites: attempts to step onto blocked sites succeed with a given probability and convert these sites to allowed sites. The model interpolates continuously between the Pólya random walker on the one-dimensional lattice and a "blind" walker who attempts freely, but always aborts, moves to blocked sites. We obtain some exact results about the walker's location and the rate of erosion.
Topological phase transition in quasi-one dimensional organic conductors.
Ye, Xiao-Shan; Liu, Yong-Jun; Zeng, Xiang-Hua; Wu, Guoqing
2015-01-01
We explore topological phase transition, which involves the energy spectra of field-induced spin-density-wave (FISDW) states in quasi-one dimensional (Q1D) organic conductors, using an extended Su-Schrieffer-Heeger (SSH) model. We show that, in presence of half magnetic-flux FISDW state, the system exhibits topologically nontrivial phases, which can be characterized by a nonzero Chern number. The nontrivial evolution of the bulk bands with chemical potential in a topological phase transition is discussed. We show that the system can have a similar phase diagram which is discussed in the Haldane's model. We suggest that the topological feature should be tested experimentally in this organic system. These studies enrich the theoretical research on topologically nontrivial phases in the Q1D lattice system as compared to the Haldane topological phase appearing in the two-dimensional lattices. PMID:26612317
Topological phase transition in quasi-one dimensional organic conductors
NASA Astrophysics Data System (ADS)
Ye, Xiao-Shan; Liu, Yong-Jun; Zeng, Xiang-Hua; Wu, Guoqing
2015-11-01
We explore topological phase transition, which involves the energy spectra of field-induced spin-density-wave (FISDW) states in quasi-one dimensional (Q1D) organic conductors, using an extended Su-Schrieffer-Heeger (SSH) model. We show that, in presence of half magnetic-flux FISDW state, the system exhibits topologically nontrivial phases, which can be characterized by a nonzero Chern number. The nontrivial evolution of the bulk bands with chemical potential in a topological phase transition is discussed. We show that the system can have a similar phase diagram which is discussed in the Haldane’s model. We suggest that the topological feature should be tested experimentally in this organic system. These studies enrich the theoretical research on topologically nontrivial phases in the Q1D lattice system as compared to the Haldane topological phase appearing in the two-dimensional lattices.
A Reduced Order, One Dimensional Model of Joint Response
DOHNER,JEFFREY L.
2000-11-06
As a joint is loaded, the tangent stiffness of the joint reduces due to slip at interfaces. This stiffness reduction continues until the direction of the applied load is reversed or the total interface slips. Total interface slippage in joints is called macro-slip. For joints not undergoing macro-slip, when load reversal occurs the tangent stiffness immediately rebounds to its maximum value. This occurs due to stiction effects at the interface. Thus, for periodic loads, a softening and rebound hardening cycle is produced which defines a hysteretic, energy absorbing trajectory. For many jointed sub-structures, this hysteretic trajectory can be approximated using simple polynomial representations. This allows for complex joint substructures to be represented using simple non-linear models. In this paper a simple one dimensional model is discussed.
Polaron and bipolaron of uniaxially strained one dimensional zigzag ladder
NASA Astrophysics Data System (ADS)
Yavidov, B. Ya.
2016-09-01
An influence of the uniaxial strains in one dimensional zigzag ladder (1DZL) on the properties of polarons and bipolarons is considered. It is shown that strain changes all the parameters of the system, in particular, spectrum, existing bands and the masses of charge carriers. Numerical results obtained by taking into an account the Poisson effect clearly indicate that the properties of the (bi)polaronic system can be tuned via strain. Mass of bipolaron can be manipulated by the strain too which in turn leads to the way of tuning Bose-Einstein condensation temperature TBEC of bipolarons. It is shown that TBEC of bipolarons in strained 1DZL reasonably correlates with the values of critical temperature of superconductivity of certain perovskites.
One-dimensional vertical dust strings in a glass box
Kong, Jie; Hyde, Truell W.; Matthews, Lorin; Qiao Ke; Zhang Zhuanhao; Douglass, Angela
2011-07-15
The oscillation spectrum of a one-dimensional vertical dust string formed inside a glass box on top of the lower electrode in a gaseous electronics conference (GEC) reference cell was studied. A mechanism for creating a single vertical dust string is described. It is shown that the oscillation amplitudes, resonance frequencies, damping coefficients, and oscillation phases of the dust particles separate into two distinct groups. One group exhibits low damping coefficients, increasing amplitudes, and decreasing resonance frequencies for dust particles closer to the lower electrode. The other group shows high damping coefficients but anomalous resonance frequencies and amplitudes. At low oscillation frequencies, the two groups are also separated by a {pi} phase difference. One possible cause for the difference in behavior between the two groups is discussed.
One-Dimensional Time to Explosion (Thermal Sensitivity) of ANPZ
Hsu, P.; Hust, G.; McClelland, M.; Gresshoff, M.
2014-11-12
Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 C) and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. This report summarizes the recent ODTX experimental data and modeling results for 2,6-diamino-3,5-dintropyrazine (ANPZ).
Novel superconducting phenomena in quasi-one-dimensional Bechgaard salts
NASA Astrophysics Data System (ADS)
Jerome, Denis; Yonezawa, Shingo
2016-03-01
It is the saturation of the transition temperature Tc in the range of 24 K for known materials in the late sixties that triggered the search for additional materials offering new coupling mechanisms leading in turn to higher Tc's. As a result of this stimulation, superconductivity in organic matter was discovered in tetramethyl-tetraselenafulvalene-hexafluorophosphate, (TMTSF)2PF6, in 1979, in the laboratory founded at Orsay by Professor Friedel and his colleagues in 1962. Although this conductor is a prototype example for low-dimensional physics, we mostly focus in this article on the superconducting phase of the ambient-pressure superconductor (TMTSF)2ClO4, which has been studied most intensively among the TMTSF salts. We shall present a series of experimental results supporting nodal d-wave symmetry for the superconducting gap in these prototypical quasi-one-dimensional conductors. xml:lang="fr"
Superconducting cosmic strings and one dimensional extended supersymmetric algebras
Oikonomou, V.K.
2014-11-15
In this article we study in detail the supersymmetric structures that underlie the system of fermionic zero modes around a superconducting cosmic string. Particularly, we extend the analysis existing in the literature on the one dimensional N=2 supersymmetry and we find multiple N=2, d=1 supersymmetries. In addition, compact perturbations of the Witten index of the system are performed and we find to which physical situations these perturbations correspond. More importantly, we demonstrate that there exists a much more rich supersymmetric structure underlying the system of fermions with N{sub f} flavors and these are N-extended supersymmetric structures with non-trivial topological charges, with “N” depending on the fermion flavors.
Excitations of one-dimensional supersolids with optical lattices
NASA Astrophysics Data System (ADS)
Hsueh, C.-H.; Tsai, Y.-C.; Wu, W. C.
2016-06-01
Based on mean-field Gross-Pitaevskii and Bogoliubov-de Gennes approaches, we investigate excitations of a one-dimensional soft-core interacting ultracold Bose gas under the effect of an optical lattice. It is found that no matter how deep the lattice is, at q →0 the lowest mode corresponds to a gapless phonon, ω12=v12q2 , whereas the second lowest mode corresponds to a gapped optical phonon, ω22=Δ2±v22q2 . Determination of the velocities v1,v2 , the gap Δ , and the possible sign change in ω2 upon the change of lattice depth can give decisive measures to the transitions across various supersolid and solid states. The power law v1˜(fs) 1 /2 with fs the superfluid fraction is identified in the present system at the tight-binding regime.
Loschmidt echo in one-dimensional interacting Bose gases
Lelas, K.; Seva, T.; Buljan, H.
2011-12-15
We explore Loschmidt echo in two regimes of one-dimensional interacting Bose gases: the strongly interacting Tonks-Girardeau (TG) regime, and the weakly interacting mean-field regime. We find that the Loschmidt echo of a TG gas decays as a Gaussian when small (random and time independent) perturbations are added to the Hamiltonian. The exponent is proportional to the number of particles and the magnitude of a small perturbation squared. In the mean-field regime the Loschmidt echo shows richer behavior: it decays faster for larger nonlinearity, and the decay becomes more abrupt as the nonlinearity increases; it can be very sensitive to the particular realization of the noise potential, especially for relatively small nonlinearities.
Casimir forces between defects in one-dimensional quantum liquids
Recati, A.; Fuchs, J.N.; Peca, C.S.; Zwerger, W.
2005-08-15
We discuss the effective interactions between two localized perturbations in one-dimensional quantum liquids. For noninteracting fermions, the interactions exhibit Friedel oscillations, giving rise to a Ruderman-Kittel-Kasuya-Yosida-type interaction familiar from impurity spins in metals. In the interacting case, at low energies, a Luttinger-liquid description applies. In the case of repulsive fermions, the Friedel oscillations of the interacting system are replaced, at long distances, by a universal Casimir-type interaction which depends only on the sound velocity and decays inversely with the separation. The Casimir-type interaction between localized perturbations embedded in a fermionic environment gives rise to a long-range coupling between quantum dots in ultracold Fermi gases, opening an alternative to couple qubits with neutral atoms. We also briefly discuss the case of bosonic quantum liquids in which the interaction between weak impurities turns out to be short ranged, decaying exponentially on the scale of the healing length.
Wigner quantization of some one-dimensional Hamiltonians
Regniers, G.; Van der Jeugt, J.
2010-12-15
Recently, several papers have been dedicated to the Wigner quantization of different Hamiltonians. In these examples, many interesting mathematical and physical properties have been shown. Among those we have the ubiquitous relation with Lie superalgebras and their representations. In this paper, we study two one-dimensional Hamiltonians for which the Wigner quantization is related with the orthosymplectic Lie superalgebra osp(1|2). One of them, the Hamiltonian H=xp, is popular due to its connection with the Riemann zeros, discovered by Berry and Keating on the one hand and Connes on the other. The Hamiltonian of the free particle, H{sub f}=p{sup 2}/2, is the second Hamiltonian we will examine. Wigner quantization introduces an extra representation parameter for both of these Hamiltonians. Canonical quantization is recovered by restricting to a specific representation of the Lie superalgebra osp(1|2).
Bandgap characteristics of one-dimensional plasma photonic crystal
Yin Yan; Ma Yanyun; Tian Chenglin; Shao Fuqiu; Xu Han; Zhuo Hongbin; Yu, M. Y.
2009-10-15
When two pump laser pulses intersect in an underdense plasma, plasma Bragg grating (PBG) is induced by the slow-varying ponderomotive force [Z. M. Sheng et al., Appl. Phys. B: Lasers Opt. 77, 673 (2003)]. Such a PBG can be considered as a one-dimensional (1D) plasma photonic crystal (PPC). Here the bandgap characteristic of 1D PPC composed of plasma layers of different densities is investigated theoretically and numerically. It is found that when the maximum density is lower than the critical density of the pump laser, there is only one normal-incidence bandgap. When the maximum density is higher than the critical density of the pump laser, high-order bandgaps are found. The theoretical results are verified by 1D particle-in-cell simulations.
One-dimensional photonic crystal fishbone hybrid nanocavity with nanoposts
Lu, Tsan-Wen; Lin, Pin-Tso; Lee, Po-Tsung
2014-05-12
We propose and investigate a one-dimensional photonic crystal (PhC) fishbone (FB) hybrid nanocavity lying on silver substrate with a horizontal air slot. With very few PhC periods, the confined transverse-magnetic, TM{sub 10} hybrid mode concentrated within the air slot shows high quality factor over effective mode volume ratio larger than 10{sup 5}λ{sup −3}. Most importantly, this FB hybrid nanocavity allows formation of low-index nanoposts within the air slot without significantly affecting the mode properties. These nanoposts guarantee the structural stabilities under different environmental perturbations. Furthermore, capabilities of our proposed design in serving as optical sensors and tweezers for bio-sized nanoparticles are also investigated.
One-dimensional disk model simulation for klystron design
Yonezawa, H.; Okazaki, Y.
1984-05-01
In 1982, one of the authors (Okazaki), of Toshiba Corporation, wrote a one-dimensional, rigid-disk model computer program <1> to serve as a reliable design tool for the 150 MW klystron development project. This is an introductory note for the users of this program. While reviewing the so-called disk programs presently available, hypotheses such as gridded interaction gaps, a linear relation between phase and position, and so on, were found. These hypotheses bring serious limitations and uncertainties into the computational results. JPNDISK was developed to eliminate these defects, to follow the equations of motion as rigorously as possible, and to obtain self-consistent solutions for the gap voltages and the electron motion. Although some inaccuracy may be present in the relativistic region, JPNDISK, in its present form, seems a most suitable tool for klystron design; it is both easy and inexpensive to use.
Practical variational tomography for critical one-dimensional systems
NASA Astrophysics Data System (ADS)
Lee, Jong Yeon; Landon-Cardinal, Olivier
2015-06-01
We improve upon a recently introduced efficient quantum state reconstruction procedure targeted to states well approximated by the multiscale entanglement renormalization ansatz (MERA), e.g., ground states of critical models. We show how to numerically select a subset of experimentally accessible measurements which maximize information extraction about renormalized particles, thus dramatically reducing the required number of physical measurements. We numerically estimate the number of measurements required to characterize the ground state of the critical one-dimensional Ising (resp. XX) model and find that MERA tomography on 16-qubit (resp. 24-qubit) systems requires the same experimental effort as brute-force tomography on 8 qubits. We derive a bound computable from experimental data which certifies the distance between the experimental and reconstructed states.
Quantum rectifier in a one-dimensional photonic channel
NASA Astrophysics Data System (ADS)
Mascarenhas, E.; Santos, M. F.; Auffèves, A.; Gerace, D.
2016-04-01
By using a fully quantum approach based on an input-output formulation of the stochastic Schrödinger equation, we show rectification of radiation fields in a one-dimensional waveguide doped with a pair of ideal two-level systems for three topical cases: classical driving, under the action of noise, and single-photon pulsed excitation. We show that even under the constant action of unwanted noise the device still operates effectively as an optical isolator, which is of critical importance for noise resistance. Finally, harnessing stimulated emission allows for nonreciprocal behavior for single-photon inputs, thus showing purely quantum rectification at the single-photon level. The latter is a considerable step towards the ultimate goal of devising an unconditional quantum rectifier for arbitrary quantum states.
Pseudo-one-dimensional nucleation in dilute polymer solutions.
Zhang, Lingyun; Schmit, Jeremy D
2016-06-01
Pathogenic protein fibrils have been shown in vitro to have nucleation-dependent kinetics despite the fact that one-dimensional structures do not have the size-dependent surface energy responsible for the lag time in classical theory. We present a theory showing that the conformational entropy of the peptide chains creates a free-energy barrier that is analogous to the translational entropy barrier in higher dimensions. We find that the dynamics of polymer rearrangement make it very unlikely for nucleation to succeed along the lowest free-energy trajectory, meaning that most of the nucleation flux avoids the free-energy saddle point. We use these results to construct a three-dimensional model for amyloid nucleation that accounts for conformational entropy, backbone H bonds, and side-chain interactions to compute nucleation rates as a function of concentration. PMID:27415194
Switching synchronization in one-dimensional memristive networks
NASA Astrophysics Data System (ADS)
Slipko, Valeriy A.; Shumovskyi, Mykola; Pershin, Yuriy V.
2015-11-01
We report on a switching synchronization phenomenon in one-dimensional memristive networks, which occurs when several memristive systems with different switching constants are switched from the high- to low-resistance state. Our numerical simulations show that such a collective behavior is especially pronounced when the applied voltage slightly exceeds the combined threshold voltage of memristive systems. Moreover, a finite increase in the network switching time is found compared to the average switching time of individual systems. An analytical model is presented to explain our observations. Using this model, we have derived asymptotic expressions for memory resistances at short and long times, which are in excellent agreement with results of our numerical simulations.
Switching synchronization in one-dimensional memristive networks.
Slipko, Valeriy A; Shumovskyi, Mykola; Pershin, Yuriy V
2015-11-01
We report on a switching synchronization phenomenon in one-dimensional memristive networks, which occurs when several memristive systems with different switching constants are switched from the high- to low-resistance state. Our numerical simulations show that such a collective behavior is especially pronounced when the applied voltage slightly exceeds the combined threshold voltage of memristive systems. Moreover, a finite increase in the network switching time is found compared to the average switching time of individual systems. An analytical model is presented to explain our observations. Using this model, we have derived asymptotic expressions for memory resistances at short and long times, which are in excellent agreement with results of our numerical simulations. PMID:26651772
Sonic black holes in a one-dimensional relativistic flow
NASA Astrophysics Data System (ADS)
Carbonaro, P.
2015-09-01
The analogy between sound propagation in a fluid background and light propagation in a curved spacetime, discovered by Unruh in 1981, does not work in general when considering the motion of a fluid which is confined in one spatial dimension being unable in (1+1) dimensions to introduce in a coherent manner an effective acoustic metric, barring some exceptional cases. In this paper a relativistic fluid is considered and the general condition for the existence of an acoustic metric in strictly one-dimensional systems is found. Attention is also paid to the physical meaning of the equations of state characterizing such systems and to the remarkable symmetry of structure taken by the basic equations. Finally the Hawking temperature is calculated in an artificial de Laval nozzle.
Magnons in one-dimensional k-component Fibonacci structures
Costa, C. H.; Vasconcelos, M. S.
2014-05-07
We have studied the magnon transmission through of one-dimensional magnonic k-component Fibonacci structures, where k different materials are arranged in accordance with the following substitution rule: S{sub n}{sup (k)}=S{sub n−1}{sup (k)}S{sub n−k}{sup (k)} (n≥k=0,1,2,…), where S{sub n}{sup (k)} is the nth stage of the sequence. The calculations were carried out in exchange dominated regime within the framework of the Heisenberg model and taking into account the RPA approximation. We have considered multilayers composed of simple cubic spin-S Heisenberg ferromagnets, and, by using the powerful transfer-matrix method, the spin wave transmission is obtained. It is demonstrated that the transmission coefficient has a rich and interesting magnonic pass- and stop-bands structures, which depends on the frequency of magnons and the k values.
One-dimensional Ising model with multispin interactions
NASA Astrophysics Data System (ADS)
Turban, Loïc
2016-09-01
We study the spin-1/2 Ising chain with multispin interactions K involving the product of m successive spins, for general values of m. Using a change of spin variables the zero-field partition function of a finite chain is obtained for free and periodic boundary conditions and we calculate the two-spin correlation function. When placed in an external field H the system is shown to be self-dual. Using another change of spin variables the one-dimensional Ising model with multispin interactions in a field is mapped onto a zero-field rectangular Ising model with first-neighbour interactions K and H. The 2D system, with size m × N/m, has the topology of a cylinder with helical BC. In the thermodynamic limit N/m\\to ∞ , m\\to ∞ , a 2D critical singularity develops on the self-duality line, \\sinh 2K\\sinh 2H=1.
One-dimensional Kondo lattice model at quarter filling
NASA Astrophysics Data System (ADS)
Xavier, J. C.; Miranda, E.
2008-10-01
We revisit the problem of the quarter-filled one-dimensional Kondo lattice model, for which the existence of a dimerized phase and a nonzero charge gap had been reported by Xavier [Phys. Rev. Lett. 90, 247204 (2003)]. Recently, some objections were raised claiming that the system is neither dimerized nor has a charge gap. In the interest of clarifying this important issue, we show that these objections are based on results obtained under conditions in which the dimer order is artificially suppressed. We use the incontrovertible dimerized phase of the Majumdar-Ghosh point of the J1-J2 Heisenberg model as a paradigm with which to illustrate this artificial suppression. Finally, by means of extremely accurate density-matrix renormalization-group calculations, we show that the charge gap is indeed nonzero in the dimerized phase.
Bjorken flow in one-dimensional relativistic magnetohydrodynamics with magnetization
NASA Astrophysics Data System (ADS)
Pu, Shi; Roy, Victor; Rezzolla, Luciano; Rischke, Dirk H.
2016-04-01
We study the one-dimensional, longitudinally boost-invariant motion of an ideal fluid with infinite conductivity in the presence of a transverse magnetic field, i.e., in the ideal transverse magnetohydrodynamical limit. In an extension of our previous work Roy et al., [Phys. Lett. B 750, 45 (2015)], we consider the fluid to have a nonzero magnetization. First, we assume a constant magnetic susceptibility χm and consider an ultrarelativistic ideal gas equation of state. For a paramagnetic fluid (i.e., with χm>0 ), the decay of the energy density slows down since the fluid gains energy from the magnetic field. For a diamagnetic fluid (i.e., with χm<0 ), the energy density decays faster because it feeds energy into the magnetic field. Furthermore, when the magnetic field is taken to be external and to decay in proper time τ with a power law ˜τ-a, two distinct solutions can be found depending on the values of a and χm. Finally, we also solve the ideal magnetohydrodynamical equations for one-dimensional Bjorken flow with a temperature-dependent magnetic susceptibility and a realistic equation of state given by lattice-QCD data. We find that the temperature and energy density decay more slowly because of the nonvanishing magnetization. For values of the magnetic field typical for heavy-ion collisions, this effect is, however, rather small. It is only for magnetic fields about an order of magnitude larger than expected for heavy-ion collisions that the system is substantially reheated and the lifetime of the quark phase might be extended.
A One-Dimensional Synthetic-Aperture Microwave Radiometer
NASA Technical Reports Server (NTRS)
Doiron, Terence; Piepmeier, Jeffrey
2010-01-01
A proposed one-dimensional synthetic- aperture microwave radiometer could serve as an alternative to either the two-dimensional synthetic-aperture radiometer described in the immediately preceding article or to a prior one-dimensional one, denoted the Electrically Scanned Thinned Array Radiometer (ESTAR), mentioned in that article. The proposed radiometer would operate in a pushbroom imaging mode, utilizing (1) interferometric cross-track scanning to obtain cross-track resolution and (2) the focusing property of a reflector for along-track resolution. The most novel aspect of the proposed system would be the antenna (see figure), which would include a cylindrical reflector of offset parabolic cross section. The reflector could be made of a lightweight, flexible material amenable to stowage and deployment. Other than a stowage/deployment mechanism, the antenna would not include moving parts, and cross-track scanning would not entail mechanical rotation of the antenna. During operation, the focal line, parallel to the cylindrical axis, would be oriented in the cross-track direction, so that placement of receiving/radiating elements at the focal line would afford the desired along-track resolution. The elements would be microwave feed horns sparsely arrayed along the focal line. The feed horns would be oriented with their short and long cross-sectional dimensions parallel and perpendicular, respectively, to the cylindrical axis to obtain fan-shaped beams having their broad and narrow cross-sectional dimensions parallel and perpendicular, respectively, to the cylindrical axis. The interference among the beams would be controlled in the same manner as in the ESTAR to obtain along-cylindrical- axis (cross-track) resolution and cross-track scanning.
Magnetic properties of manganese based one-dimensional spin chains.
Asha, K S; Ranjith, K M; Yogi, Arvind; Nath, R; Mandal, Sukhendu
2015-12-14
We have correlated the structure-property relationship of three manganese-based inorganic-organic hybrid structures. Compound 1, [Mn2(OH-BDC)2(DMF)3] (where BDC = 1,4-benzene dicarboxylic acid and DMF = N,N'-dimethylformamide), contains Mn2O11 dimers as secondary building units (SBUs), which are connected by carboxylate anions forming Mn-O-C-O-Mn chains. Compound 2, [Mn2(BDC)2(DMF)2], contains Mn4O20 clusters as SBUs, which also form Mn-O-C-O-Mn chains. In compound 3, [Mn3(BDC)3(DEF)2] (where DEF = N,N'-diethylformamide), the distorted MnO6 octahedra are linked to form a one-dimensional chain with Mn-O-Mn connectivity. The magnetic properties were investigated by means of magnetization and heat capacity measurements. The temperature dependent magnetic susceptibility of all the three compounds could be nicely fitted using a one-dimensional S = 5/2 Heisenberg antiferromagnetic chain model and the value of intra-chain exchange coupling (J/k(B)) between Mn(2+) ions was estimated to be ∼1.1 K, ∼0.7 K, and ∼0.46 K for compounds 1, 2, and 3, respectively. Compound 1 does not undergo any magnetic long-range-order down to 2 K while compounds 2 and 3 undergo long-range magnetic order at T(N) ≈ 4.2 K and ≈4.3 K, respectively, which are of spin-glass type. From the values of J/k(B) and T(N) the inter-chain coupling (J(⊥)/k(B)) was calculated to be about 0.1J/k(B) for both compounds 2 and 3, respectively. PMID:26455515
One-dimensional cloud fluid model for propagating star formation
NASA Technical Reports Server (NTRS)
Titus, Timothy N.; Struck-Marcell, Curtis
1990-01-01
The aim of this project was to study the propagation of star formation (SF) with a self-consistent deterministic model for the interstellar gas. The questions of under what conditions does star formation propagate in this model and what are the mechanisms of the propagation are explored. Here, researchers used the deterministic Oort-type cloud fluid model of Scalo and Struck-Marcell (1984, also see the review of Struck-Marcell, Scalo and Appleton 1987). This cloud fluid approach includes simple models for the effects of cloud collisional coalescence or disruption, collisional energy dissipation, and cloud disruption and acceleration as the result of young star winds, HII regions and supernovae. An extensive one-zone parameter study is presented in Struck-Marcell and Scalo (1987). To answer the questions above, researchers carried out one-dimensional calculations for an annulus within a galactic disk, like the so-called solar neighborhood of the galactic chemical evolution. In the calculations the left-hand boundary is set equal to the right hand boundary. The calculation is obviously idealized; however, it is computationally convenient to study the first order effects of propagating star formation. The annulus was treated as if it were at rest, i.e., in the local rotating frame. This assumption may remove some interesting effects of a supersonic gas flow, but was necessary to maintain a numerical stability in the annulus. The results on the one-dimensional propagation of SF in the Oort cloud fluid model follow: (1) SF is propagated by means of hydrodynamic waves, which can be generated by external forces or by the pressure generated by local bursts. SF is not effectively propagated via diffusion or variation in cloud interaction rates without corresponding density and velocity changes. (2) The propagation and long-range effects of SF depend on how close the gas density is to the critical threshold value, i.e., on the susceptibility of the medium.
A Linear Systems Approach to Segmented Watershed Contaminant Transport
NASA Astrophysics Data System (ADS)
Carleton, J. N.
2013-12-01
The U.S. Environmental Protection Agency (USEPA) employs simulation models to estimate concentrations of pesticide residues in surface waters for risk assessment. These models have historically been used to simulate runoff loadings from homogeneous landscapes to isolated, well-mixed lentic systems that generically represent vulnerable waters. Recent efforts to refine this approach in terms of realism and geographic specificity have focused on enhancing the level of detail of the landscape representation, rather than that of receiving water hydrology. Linear systems theory and transfer function based approaches have been applied by various investigators to the representation of contaminant leaching through soils, and to surface water hydrology (e.g., unit hydrographs), but rarely to contaminant transport either within surface waters, or through multi-compartment systems such as stream networks. This poster describes a straightforward approach to simulating watersheds as segmented into collections of linked water bodies. The approach employs convolution integrals, impulse response functions, and the Discrete Fourier Transform to propagate concentration time series from upstream to downstream locations. Given knowledge only of estimated mean stream residence times, with appropriately-scaled segmentations of catchments, realistic representations of concentration dynamics are shown to be achievable. These representations are based upon high-frequency atrazine monitoring data sets collected over common time periods from upstream and downstream locations within the same small watersheds. Simulated concentrations are shown to match measured concentrations well in both the temporal and spectral domains without the need for calibration, and despite inherent simplifying assumptions such as steady flow. The approach may have utility for enhancing surface water hydrologic representation in contaminant modeling used for regulatory purposes.
Coliform contamination of a coastal embayment: Sources and transport pathways
Weiskel, P.K.; Howes, B.L.; Heufelder, G.R.
1996-01-01
Fecal bacterial contamination of nearshore waters has direct economic impacts to coastal communities through the loss of shellfisheries and restrictions of recreational uses. We conducted seasonal measurements of fecal coliform (FC) sources and transport pathways contributing to FC contamination of Buttermilk Bay, a shallow embayment adjacent to Buzzards Bay, MA. Typical of most coastal embayments, there were no direct sewage discharges (i.e., outfalls), and fecal bacteria from human, domestic animal, and wildlife pools entered open waters primarily through direct deposition or after transport through surface waters or groundwaters. Direct fecal coliform inputs to bay waters occurred primarily in winter (December-March) from waterfowl, ~33 x 1012 FC yr-1 or ~67% of the total annual loading. Effects of waterfowl inputs on bay FC densities were mitigated by their seasonality, wide distribution across the bay surface, and the apparent limited dispersal from fecal pellets. On-site disposal of sewage by septic systems was the single largest FC source in the watershed-embayment system, 460 x 1012 FC yr-1, but due to attenuation during subsurface transport only a minute fraction, < 0.006 x 1012 FC yr-1, reached bay waters (<0.01% of annual input to bay). Instead, surface water flows, via storm drains and natural streams under both wet- and dry-weather conditions, contributed the major terrestrial input, 12 x 1012 FC yr-1 (24% of annual input), all from animal sources. Since most of the surface water FC inputs were associated with periodic, short-duration rain events with discharge concentrated in nearshore zones, wet-weather flows were found to have a disproportionately high impact on nearshore FC levels. Elution of FC from shoreline deposits of decaying vegetation (wrack) comprised an additional coliform source. Both laboratory and field experiments suggest significant elution of bacteria from wrack, ~3 x 1012 FC yr-1 on a bay-wide basis (6% of annual input), primarily
Manifestations of one-dimensional electronic correlations in higher-dimensional systems
NASA Astrophysics Data System (ADS)
Saha, Ronojoy
In this work we have studied the fundamental aspects of transport and thermodynamic properties of a one-dimensional (1D) electron system, and have shown that these 1D correlations play an important role in understanding the physics of higher-dimensional systems. The first system we studied is a three-dimensional (3D) metal subjected to a strong magnetic field that confines the electrons to the lowest Landau level. We investigated the effect of dilute impurities in the transport properties of this system. We showed that the nature of electron transport is one dimensional due to the reduced effective dimensionality induced by the magnetic field. The localization behavior in this system was shown to be intermediate, between a 1D and a 3D system. The interaction corrections to the conductivity exhibit power law scaling, sigma ∝ Talpha with a field dependent exponent. Next we studied the thermodynamic properties of a one-dimensional interacting system, where we showed that the next-to-leading terms in the specific heat and spin susceptibility are nonanalytic, in the same way as they are for higher-dimensional (D = 2,3) systems. We obtained the nonanalytic, T lnT term in the specific heat in 1D and showed that although the nonanalytic corrections in all dimensions arise from the same source, there are subtle differences in the magnitude of the effect in different dimensions. In the final part of this work we analyzed the nonanalytic corrections to the spin susceptibility (chis(H)) in higher dimensional systems. We showed that, although there were contributions from non-1D scattering in these nonanalytic terms, the dominant contribution came from 1D scattering. We also showed that the second order ferromagnetic quantum phase transition is unstable both in 2D and 3D, with a tendency towards a first order transition.
A one-dimensional stochastic approach to the study of cyclic voltammetry with adsorption effects
NASA Astrophysics Data System (ADS)
Samin, Adib J.
2016-05-01
In this study, a one-dimensional stochastic model based on the random walk approach is used to simulate cyclic voltammetry. The model takes into account mass transport, kinetics of the redox reactions, adsorption effects and changes in the morphology of the electrode. The model is shown to display the expected behavior. Furthermore, the model shows consistent qualitative agreement with a finite difference solution. This approach allows for an understanding of phenomena on a microscopic level and may be useful for analyzing qualitative features observed in experimentally recorded signals.
Persistent random walk on a site-disordered one-dimensional lattice: Photon subdiffusion
NASA Astrophysics Data System (ADS)
Miri, Mirfaez; Sadjadi, Zeinab; Fouladvand, M. Ebrahim
2006-03-01
We study the persistent random walk of photons on a one-dimensional lattice of random transmittances. Transmittances at different sites are assumed independent, distributed according to a given probability density f(t) . Depending on the behavior of f(t) near t=0 , diffusive and subdiffusive transports are predicted by the disorder expansion of the mean square-displacement and the effective medium approximation. Monte Carlo simulations confirm the anomalous diffusion of photons. To observe photon subdiffusion experimentally, we suggest a dielectric film stack for realization of a distribution f(t) .
Pseudo one-dimensional analysis of polymer electrolyte fuel cell cold-start
Mukherjee, Partha P; Mukundan, Rangachary; Borup, Rodney L; Wang, Yun; Mishlera, Jeff
2009-01-01
This paper investigates the electrochemical kinetics, oxygen transport, and solid water formation in polymer electrolyte fuel cell (PEFC) during cold start. Following [Yo Wang, J. Electrochem. Soc., 154 (2007) B1041-B1048], we develop a pseudo one-dimensional analysis, which enables the evaluation of the impact of ice volume fraction and temperature variations on cell performance during cold-start. The oxygen profile, starvation ice volume fraction, and relevant overpotentials are obtained. This study is valuable for studying the characteristics of PEFC cold-start.
Numerical studies of variable-range hopping in one-dimensional systems
NASA Astrophysics Data System (ADS)
Rodin, A. S.; Fogler, M. M.
2010-03-01
We report on our recent numerical study [1] of hopping transport in disordered one-dimensional systems. A fast new algorithm, based on Dijkstra shortest-path algorithm, is devised to find the lowest-resistance path through the hopping network at arbitrary electric field. Probability distribution functions of individual resistances on the path and the net resistance are calculated and fitted to compact analytic formulas. Qualitative differences between statistics of resistance fluctuations in Ohmic and non-Ohmic regimes are elucidated. The results are compared with prior theoretical and experimental work on the subject.[6pt] [1] A. S. Rodin and M. M. Fogler, Phys. Rev. B 80, 155435 (2009).
LES validation for contaminant transport in urban areas
NASA Astrophysics Data System (ADS)
Hertwig, D.; Leitl, B.; Schatzmann, M.; Patnaik, G.
2010-09-01
Contaminant transport in urban areas poses a major challenge with respect to its simulation with computational fluid dynamics (CFD) models. The use of time-resolved approaches like large-eddy simulation (LES) can provide insight into transient flow and dispersion regimes, which are strongly influenced by the urban geometry. LES models have the potential to resolve the characteristic unsteady flow features and their impact on plume dynamics, whereas standard industrial codes based on Reynolds-averaged Navier-Stokes (RANS) equations can only yield steady state solutions. However, the potential to simulate the energetically dominating part of an inherently unsteady turbulent flow with LES also sets higher requirements for validation strategies. This includes that the evaluation of the model performance must go beyond comparisons of first and second order statistics which were adequate for RANS models and currently provide the basis for most of the validation metrics used as a standard. With regard to an a posteriori validation of model results for atmospheric boundary layer (ABL) flow and dispersion in complex geometry, laboratory data from boundary-layer wind tunnels are of special value. Since inflow and boundary conditions are well-defined, systematic laboratory studies provide high statistical confidence levels of measured quantities. The potential of field measurements - in this regard - is limited due to the natural atmospheric variability. In order to verify the realistic simulation of the spatio-temporal behavior of turbulent eddies, transient flow phenomena have to be characterized in experimental validation data sets as well. This topic is closely linked to structure identification and the characterization of organized motions in ABL flows, for which advanced analysis strategies like wavelet transforms, orthogonal decomposition, or stochastic estimation can be employed. Systematic comparisons of wind-tunnel measurements and LES simulation results are planned
NASA Astrophysics Data System (ADS)
Liu, Wen-Cheng; Cai, Wei
2008-03-01
One-dimensional (1D) and quasi-1D ZnO nanostructures have been fabricated by a kind of new spray-pyrolysis-assisted thermal evaporation method. Pure ZnO powder serves as an evaporation source. Thus-obtained products have been characterized by X-ray diffraction (XRD) analysis, scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), transmission electron microscope (TEM). The room temperature photoluminescence spectrum of these ZnO nanostructures is presented. The results show that as-grown ZnO nanomaterials have a hexagonal wurtzite crystalline structure. Besides nanosaws, nanobelts and nanowires, complex ZnO nanotrees have also been observed in synthesized products. The study provides a new simple route to construct 1D and quasi-1D ZnO nanomaterials, which can probably be extended to fabricate other oxide nanomaterials with high melting point and doped oxide nanomaterials.
Monitoring and modeling contaminated sediment transport in the White Oak Creek watershed
Fontaine, T.A.
1991-11-01
Over the past 47 years, operations and waste disposal activities at Oak Ridge National Laboratory have resulted in the contamination of the White Oak Creek drainage system. The containments presenting the highest risk to human health and the environment are particle reactive and are associated with the soils and sediments in White Oak Creek. During floods, the erosion of these sediments results in the transport of contaminants out of the catchment into the Clinch River. A long-term strategy is required to monitor the movement of contaminated sediments and to predict the transport of these sediments that could occur during major floods. A monitoring program will provide the information required to (1) evaluate the existing off-site transport of contaminated sediments, (2) evaluate the need for short-term control measures, (3) set priorities for remediation of contaminated areas in White Oak Creek (4) verify the success of completed remedial actions intended to control the movement of contaminated sediments, and (5) develop a computer model to simulate the transport of contaminated sediments in White Oak Creek. A contaminant-transport model will be developed to (1) evaluate the potential for the off-site transport of contaminated sediments during major floods, (2) develop long term control measures and remediation solutions, (3) predict the impact of future land-use changes in White Oak Creek on the transport of contaminated sediment. This report contains a plan for the monitoring and modeling activities required to accomplish these objectives.
Fontaine, T.A.
1991-11-01
Over the past 47 years, operations and waste disposal activities at Oak Ridge National Laboratory have resulted in the contamination of the White Oak Creek drainage system. The containments presenting the highest risk to human health and the environment are particle reactive and are associated with the soils and sediments in White Oak Creek. During floods, the erosion of these sediments results in the transport of contaminants out of the catchment into the Clinch River. A long-term strategy is required to monitor the movement of contaminated sediments and to predict the transport of these sediments that could occur during major floods. A monitoring program will provide the information required to (1) evaluate the existing off-site transport of contaminated sediments, (2) evaluate the need for short-term control measures, (3) set priorities for remediation of contaminated areas in White Oak Creek (4) verify the success of completed remedial actions intended to control the movement of contaminated sediments, and (5) develop a computer model to simulate the transport of contaminated sediments in White Oak Creek. A contaminant-transport model will be developed to (1) evaluate the potential for the off-site transport of contaminated sediments during major floods, (2) develop long term control measures and remediation solutions, (3) predict the impact of future land-use changes in White Oak Creek on the transport of contaminated sediment. This report contains a plan for the monitoring and modeling activities required to accomplish these objectives.
An adaptive grid algorithm for one-dimensional nonlinear equations
NASA Technical Reports Server (NTRS)
Gutierrez, William E.; Hills, Richard G.
1990-01-01
Richards' equation, which models the flow of liquid through unsaturated porous media, is highly nonlinear and difficult to solve. Step gradients in the field variables require the use of fine grids and small time step sizes. The numerical instabilities caused by the nonlinearities often require the use of iterative methods such as Picard or Newton interation. These difficulties result in large CPU requirements in solving Richards equation. With this in mind, adaptive and multigrid methods are investigated for use with nonlinear equations such as Richards' equation. Attention is focused on one-dimensional transient problems. To investigate the use of multigrid and adaptive grid methods, a series of problems are studied. First, a multigrid program is developed and used to solve an ordinary differential equation, demonstrating the efficiency with which low and high frequency errors are smoothed out. The multigrid algorithm and an adaptive grid algorithm is used to solve one-dimensional transient partial differential equations, such as the diffusive and convective-diffusion equations. The performance of these programs are compared to that of the Gauss-Seidel and tridiagonal methods. The adaptive and multigrid schemes outperformed the Gauss-Seidel algorithm, but were not as fast as the tridiagonal method. The adaptive grid scheme solved the problems slightly faster than the multigrid method. To solve nonlinear problems, Picard iterations are introduced into the adaptive grid and tridiagonal methods. Burgers' equation is used as a test problem for the two algorithms. Both methods obtain solutions of comparable accuracy for similar time increments. For the Burgers' equation, the adaptive grid method finds the solution approximately three times faster than the tridiagonal method. Finally, both schemes are used to solve the water content formulation of the Richards' equation. For this problem, the adaptive grid method obtains a more accurate solution in fewer work units and
Verification of a one-dimensional, unsteady-flow model for the Fox River in Illinois
Ishii, Audrey; Turner, Mary J.
1996-01-01
The previously-calibrated application of the Full EQuations (FEQ) model of one-dimensional, unsteady flow to a 30.7-mile reach of the Fox River in northeastern Illinois was verified with discharge, stage, and dye-transport data collected during a 12-day period in October-November 1990. The period included unsteady flow induced by the operation of a sluice gate dam located at the upstream end of the reach. The model flow field was input to the Branched Lagrangian Transport Model (BLTM) for the simulation of dye transport. The results of the FEQ and BLTM model simulations are compared with the measured data and sensitivity analyses of the model parameters for this application are presented.
Huang, Jinzhao; Fu, Ke; Yao, Nannan; Deng, Xiaolong; Ding, Meng; Shao, Minghui; Xu, Xijin; Wei, Mingzhi
2016-02-01
A new architecture of one dimensional ordered TiO2 nanorods modified by graphene oxide (GO) was assembled. The GO as the higher carrier mobility can reduce the recombination of carriers, which is more favourable for the methy orange (MO) degradation. Incorporating GO with the unblocked passageway for carrier transportation of the TiO2 nanorods can separate the transport pathway of electron and hole effectively. Furthermore, the large surface areas of TiO2 nanorods grown on the GO are beneficial to the enhancement of photocatalytic properties, and the reasonable band energy level can be obtained for the architecture, which is favorable for enhancing carrier separation and transportation. Finally, the higher transparency of the structure can enhance the light absorption. The photocatalyst grown on FTO substrates makes it easier to collect and recycle. PMID:27433607
Hydrophobic organic contaminant transport property heterogeneity in the Borden Aquifer
NASA Astrophysics Data System (ADS)
Allen-King, Richelle M.; Kalinovich, Indra; Dominic, David F.; Wang, Guohui; Polmanteer, Reid; Divine, Dana
2015-03-01
We determined that the spatial heterogeneity in aquifer properties governing the reactive transport of volatile organic contaminants is defined by the arrangement of lithofacies. We measured permeability (k) and perchloroethene sorption distribution coefficient (Kd) for lithofacies that we delineated for samples from the Canadian Forces Base Borden Aquifer. We compiled existing data and collected 57 new cores to characterize a 30 m section of the aquifer near the test location of Mackay et al. (1986). The k and Kd were measured for samples taken at six elevations from all cores to create a data set consisting of nearly 400 colocated measurements. Through analysis of variance (corrected for multiple comparisons), we determined that the 12 originally mapped lithofacies could be grouped into five relatively distinct chemohydrofacies that capture the variability of both transport properties. The mean of ln k by lithofacies was related to the grain size and the variance was relatively consistent. In contrast, both the mean and variance of ln Kd were greater for more poorly sorted lithofacies, which were also typically more coarse-grained. Half of the aquifer sorption capacity occurred in the three highest-sorbing lithofacies but comprised only 20% of its volume. The model of the aquifer that emerged is that of discontinuous scour-fill deposits of medium sand, generally characterized by greater Kd and k, within laterally extensive fine-grained to very fine-grained sands of lower Kd and k. Our findings demonstrate the importance of considering source rock composition, transport, and deposition processes when constructing conceptual models of chemohydrofacies.
A disorder-enhanced quasi-one-dimensional superconductor.
Petrović, A P; Ansermet, D; Chernyshov, D; Hoesch, M; Salloum, D; Gougeon, P; Potel, M; Boeri, L; Panagopoulos, C
2016-01-01
A powerful approach to analysing quantum systems with dimensionality d>1 involves adding a weak coupling to an array of one-dimensional (1D) chains. The resultant quasi-1D (q1D) systems can exhibit long-range order at low temperature, but are heavily influenced by interactions and disorder due to their large anisotropies. Real q1D materials are therefore ideal candidates not only to provoke, test and refine theories of strongly correlated matter, but also to search for unusual emergent electronic phases. Here we report the unprecedented enhancement of a superconducting instability by disorder in single crystals of Na2-δMo6Se6, a q1D superconductor comprising MoSe chains weakly coupled by Na atoms. We argue that disorder-enhanced Coulomb pair-breaking (which usually destroys superconductivity) may be averted due to a screened long-range Coulomb repulsion intrinsic to disordered q1D materials. Our results illustrate the capability of disorder to tune and induce new correlated electron physics in low-dimensional materials. PMID:27448209
A disorder-enhanced quasi-one-dimensional superconductor
Petrović, A. P.; Ansermet, D.; Chernyshov, D.; Hoesch, M.; Salloum, D.; Gougeon, P.; Potel, M.; Boeri, L.; Panagopoulos, C.
2016-01-01
A powerful approach to analysing quantum systems with dimensionality d>1 involves adding a weak coupling to an array of one-dimensional (1D) chains. The resultant quasi-1D (q1D) systems can exhibit long-range order at low temperature, but are heavily influenced by interactions and disorder due to their large anisotropies. Real q1D materials are therefore ideal candidates not only to provoke, test and refine theories of strongly correlated matter, but also to search for unusual emergent electronic phases. Here we report the unprecedented enhancement of a superconducting instability by disorder in single crystals of Na2−δMo6Se6, a q1D superconductor comprising MoSe chains weakly coupled by Na atoms. We argue that disorder-enhanced Coulomb pair-breaking (which usually destroys superconductivity) may be averted due to a screened long-range Coulomb repulsion intrinsic to disordered q1D materials. Our results illustrate the capability of disorder to tune and induce new correlated electron physics in low-dimensional materials. PMID:27448209
Decay of Bogoliubov excitations in one-dimensional Bose gases
NASA Astrophysics Data System (ADS)
Ristivojevic, Zoran; Matveev, K. A.
2016-07-01
We study the decay of Bogoliubov quasiparticles in one-dimensional Bose gases. Starting from the hydrodynamic Hamiltonian, we develop a microscopic theory that enables one to systematically study both the excitations and their decay. At zero temperature, the leading mechanism of decay of a quasiparticle is disintegration into three others. We find that low-energy quasiparticles (phonons) decay with the rate that scales with the seventh power of momentum, whereas the rate of decay of the high-energy quasiparticles does not depend on momentum. In addition, our approach allows us to study analytically the quasiparticle decay in the whole crossover region between the two limiting cases. When applied to integrable models, including the Lieb-Liniger model of bosons with contact repulsion, our theory confirms the absence of the decay of quasiparticle excitations. We account for two types of integrability-breaking perturbations that enable finite decay: three-body interaction between the bosons and two-body interaction of finite range.
Evolution of a One-dimensional, Two Component, Universe
NASA Astrophysics Data System (ADS)
Shiozawa, Yui; Miller, Bruce; Rouet, Jean-Louis
2015-03-01
While the universe we observe today exhibits local filament-like structures, with stellar clusters and large voids between them, the primordial universe is believed to have been nearly homogeneous with slight variations in matter density. To understand how the observed hierarchical structure was formed, researchers have developed a one-dimensional analogue of the universe that can simulate the evolution of a large number of matter particles. Investigations to date demonstrate that this model reveals structure formation that shares essential features with the three-dimensional observations. In the present work, we have expanded on this concept to include two species of matter, specifically dark matter and luminous matter. In our simulation, luminous matter is treated in a way that loses energy in interaction with itself. The results of the simulations clearly show the formation of a Cantor set like multifractal pattern over time in configuration space as well as in phase space. In contrast with most earlier studies, mass-oriented methods for computing the multifractal dimensions were performed on various subsets of the matter distribution in order to understand the bottom-up structure formation.
Fractal analysis in a one-dimensional universe
NASA Astrophysics Data System (ADS)
Shiozawa, Yui
2014-09-01
While the universe we observe today exhibits local filament-like structures, with stellar clusters and large voids between them, the primordial universe is believed to have been nearly homogeneous with slight variations in matter density. To understand how the observed hierarchical structure was formed, researchers have developed a one-dimensional analogue of the universe that can simulate the evolution of a large number of matter particles. Investigations to date demonstrate that this model reveals structure formation that shares essential features with the three-dimensional observations. In the present work, we have expanded on this concept to include two species of matter, specifically dark matter and luminous matter. In our simulation, luminous matter is treated in a way that loses energy in interaction. The results of the simulations clearly show the formation of a Cantor set like multifractal pattern over time. In contrast with most earlier studies, mass-oriented methods for computing multifractal dimensions were applied to analyze the bottom-up structure formation.
Automated quantification of one-dimensional nanostructure alignment on surfaces.
Dong, Jianjin; Goldthorpe, Irene A; Abukhdeir, Nasser Mohieddin
2016-06-10
A method for automated quantification of the alignment of one-dimensional (1D) nanostructures from microscopy imaging is presented. Nanostructure alignment metrics are formulated and shown to be able to rigorously quantify the orientational order of nanostructures within a two-dimensional domain (surface). A complementary image processing method is also presented which enables robust processing of microscopy images where overlapping nanostructures might be present. Scanning electron microscopy (SEM) images of nanowire-covered surfaces are analyzed using the presented methods and it is shown that past single parameter alignment metrics are insufficient for highly aligned domains. Through the use of multiple parameter alignment metrics, automated quantitative analysis of SEM images is shown to be possible and the alignment characteristics of different samples are able to be quantitatively compared using a similarity metric. The results of this work provide researchers in nanoscience and nanotechnology with a rigorous method for the determination of structure/property relationships, where alignment of 1D nanostructures is significant. PMID:27119552
Bulk-edge correspondence of one-dimensional quantum walks
NASA Astrophysics Data System (ADS)
Cedzich, C.; Grünbaum, F. A.; Stahl, C.; Velázquez, L.; Werner, A. H.; Werner, R. F.
2016-05-01
We outline a theory of symmetry protected topological phases of one-dimensional quantum walks. We assume spectral gaps around the symmetry-distinguished points +1 and ‑1, in which only discrete eigenvalues are allowed. The phase classification by integer or binary indices extends the classification known for translation invariant systems in terms of their band structure. However, our theory requires no translation invariance whatsoever, and the indices we define in this general setting are invariant under arbitrary symmetric local perturbations, even those that cannot be continuously contracted to the identity. More precisely we define two indices for every walk, characterizing the behavior far to the right and far to the left, respectively. Their sum is a lower bound on the number of eigenstates at +1 and ‑1. For a translation invariant system the indices add up to zero, so one of them already characterizes the phase. By joining two bulk phases with different indices we get a walk in which the right and left indices no longer cancel, so the theory predicts bound states at +1 or ‑1. This is a rigorous statement of bulk-edge correspondence. The results also apply to the Hamiltonian case with a single gap at zero.
Carbyne with finite length: The one-dimensional sp carbon
Pan, Bitao; Xiao, Jun; Li, Jiling; Liu, Pu; Wang, Chengxin; Yang, Guowei
2015-01-01
Carbyne is the one-dimensional allotrope of carbon composed of sp-hybridized carbon atoms. Definitive evidence for carbyne has remained elusive despite its synthesis and preparation in the laboratory. Given the remarkable technological breakthroughs offered by other allotropes of carbon, including diamond, graphite, fullerenes, carbon nanotubes, and graphene, interest in carbyne and its unusual potential properties remains intense. We report the first synthesis of carbyne with finite length, which is clearly composed of alternating single bonds and triple bonds, using a novel process involving laser ablation in liquid. Spectroscopic analyses confirm that the product is the structure of sp hybridization with alternating carbon-carbon single bonds and triple bonds and capped by hydrogen. We observe purple-blue fluorescence emissions from the gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital of carbyne. Condensed-phase carbyne crystals have a hexagonal lattice and resemble the white crystalline powder produced by drying a carbyne solution. We also establish that the combination of gold and alcohol is crucial to carbyne formation because carbon-hydrogen bonds can be cleaved with the help of gold catalysts under the favorable thermodynamic environment provided by laser ablation in liquid and because the unique configuration of two carbon atoms in an alcohol molecule matches the elementary entity of carbyne. This laboratory synthesis of carbyne will enable the exploration of its properties and applications. PMID:26601318
Carbyne with finite length: The one-dimensional sp carbon.
Pan, Bitao; Xiao, Jun; Li, Jiling; Liu, Pu; Wang, Chengxin; Yang, Guowei
2015-10-01
Carbyne is the one-dimensional allotrope of carbon composed of sp-hybridized carbon atoms. Definitive evidence for carbyne has remained elusive despite its synthesis and preparation in the laboratory. Given the remarkable technological breakthroughs offered by other allotropes of carbon, including diamond, graphite, fullerenes, carbon nanotubes, and graphene, interest in carbyne and its unusual potential properties remains intense. We report the first synthesis of carbyne with finite length, which is clearly composed of alternating single bonds and triple bonds, using a novel process involving laser ablation in liquid. Spectroscopic analyses confirm that the product is the structure of sp hybridization with alternating carbon-carbon single bonds and triple bonds and capped by hydrogen. We observe purple-blue fluorescence emissions from the gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital of carbyne. Condensed-phase carbyne crystals have a hexagonal lattice and resemble the white crystalline powder produced by drying a carbyne solution. We also establish that the combination of gold and alcohol is crucial to carbyne formation because carbon-hydrogen bonds can be cleaved with the help of gold catalysts under the favorable thermodynamic environment provided by laser ablation in liquid and because the unique configuration of two carbon atoms in an alcohol molecule matches the elementary entity of carbyne. This laboratory synthesis of carbyne will enable the exploration of its properties and applications. PMID:26601318
Topological water wave states in a one-dimensional structure
Yang, Zhaoju; Gao, Fei; Zhang, Baile
2016-01-01
Topological concepts have been introduced into electronic, photonic, and phononic systems, but have not been studied in surface-water-wave systems. Here we study a one-dimensional periodic resonant surface-water-wave system and demonstrate its topological transition. By selecting three different water depths, we can construct different types of water waves - shallow, intermediate and deep water waves. The periodic surface-water-wave system consists of an array of cylindrical water tanks connected with narrow water channels. As the width of connecting channel varies, the band diagram undergoes a topological transition which can be further characterized by Zak phase. This topological transition holds true for shallow, intermediate and deep water waves. However, the interface state at the boundary separating two topologically distinct arrays of water tanks can exhibit different bands for shallow, intermediate and deep water waves. Our work studies for the first time topological properties of water wave systems, and paves the way to potential management of water waves. PMID:27373982
Berry phase oscillations in a one-dimensional Dirac comb
NASA Astrophysics Data System (ADS)
Hodge, William; Cassera, Nicholas; Rave, Matthew
In quantum mechanics, the Berry phase is a geometric phase acquired by a wave function over the course of a cycle, when subjected to adiabatic processes. In general, this phase is due to the geometry of the underlying parameter space and thus depends only on the path taken. In any system described by a periodic potential, the torus topology of the Brillouin zone itself can lead to such a phase. In this work, we numerically calculate the Berry phase for a one-dimensional Dirac comb described by N distinct wells per unit cell. As expected, the resulting Berry phase exhibits a rich band-dependence. In the case where N = 2 , we find that the Berry phase corresponding to the nth energy band oscillates such that γn (x) =An sin (πx) cos [ (2 n - 1) πx ] , where An is a band-dependent constant and 0 < x < 1 is the relative position of the two wells. This expression, obtained using perturbation theory, gives excellent agreement with exact numerical results, even at low energy levels. The Berry phase exhibits a similar behavior for cases where N > 2 .
Quantum walks with a one-dimensional coin
NASA Astrophysics Data System (ADS)
Bisio, Alessandro; D'Ariano, Giacomo Mauro; Erba, Marco; Perinotti, Paolo; Tosini, Alessandro
2016-06-01
Quantum walks (QWs) describe particles evolving coherently on a graph. The internal degree of freedom corresponds to a Hilbert space, called a coin system. We consider QWs on Cayley graphs of some group G . In the literature, investigations concerning infinite G have been focused on graphs corresponding to G =Zd with a coin system of dimension 2, whereas for a one-dimensional coin (so-called scalar QWs) only the case of finite G has been studied. Here we prove that the evolution of a scalar QW with G infinite Abelian is trivial, providing a thorough classification of this kind of walks. Then we consider the infinite dihedral group D∞, that is, the unique non-Abelian group G containing a subgroup H ≅Z with two cosets. We characterize the class of QWs on the Cayley graphs of D∞, and, via a coarse-graining technique, we show that it coincides with the class of spinorial walks on Z which satisfies parity symmetry. This class of QWs includes the Weyl and the Dirac QWs. Remarkably, there exist also spinorial walks that are not coarse graining of a scalar QW, such as the Hadamard walk.
Weak lasing in one-dimensional polariton superlattices
Zhang, Long; Xie, Wei; Wang, Jian; Poddubny, Alexander; Lu, Jian; Wang, Yinglei; Gu, Jie; Liu, Wenhui; Xu, Dan; Shen, Xuechu; Rubo, Yuri G.; Altshuler, Boris L.; Kavokin, Alexey V.; Chen, Zhanghai
2015-01-01
Bosons with finite lifetime exhibit condensation and lasing when their influx exceeds the lasing threshold determined by the dissipative losses. In general, different one-particle states decay differently, and the bosons are usually assumed to condense in the state with the longest lifetime. Interaction between the bosons partially neglected by such an assumption can smear the lasing threshold into a threshold domain—a stable lasing many-body state exists within certain intervals of the bosonic influxes. This recently described weak lasing regime is formed by the spontaneously symmetry breaking and phase-locking self-organization of bosonic modes, which results in an essentially many-body state with a stable balance between gains and losses. Here we report, to our knowledge, the first observation of the weak lasing phase in a one-dimensional condensate of exciton–polaritons subject to a periodic potential. Real and reciprocal space photoluminescence images demonstrate that the spatial period of the condensate is twice as large as the period of the underlying periodic potential. These experiments are realized at room temperature in a ZnO microwire deposited on a silicon grating. The period doubling takes place at a critical pumping power, whereas at a lower power polariton emission images have the same periodicity as the grating. PMID:25787253
One-dimensional surface phonon polaritons in boron nitride nanotubes.
Xu, Xiaoji G; Ghamsari, Behnood G; Jiang, Jian-Hua; Gilburd, Leonid; Andreev, Gregory O; Zhi, Chunyi; Bando, Yoshio; Golberg, Dmitri; Berini, Pierre; Walker, Gilbert C
2014-01-01
Surface polaritons, which are electromagnetic waves coupled to material charge oscillations, have enabled applications in concentrating, guiding and harvesting optical energy below the diffraction limit. Surface plasmon polaritons involve oscillations of electrons and are accessible in noble metals at visible and near-infrared wavelengths, whereas surface phonon polaritons (SPhPs) rely on phonon resonances in polar materials, and are active in the mid-infrared. Noble metal surface plasmon polaritons have limited applications in the mid-infrared. SPhPs at flat interfaces normally possess long polariton wavelengths and provide modest field confinement/enhancement. Here we demonstrate propagating SPhPs in a one-dimensional material consisting of a boron nitride nanotube at mid-infrared wavelengths. The observed SPhP exhibits high field confinement and enhancement, and a very high effective index (neff~70). We show that the modal and propagation length characteristics of the SPhPs may be controlled through the nanotube size and the supporting substrates, enabling mid-infrared applications. PMID:25154586
Topological water wave states in a one-dimensional structure
NASA Astrophysics Data System (ADS)
Yang, Zhaoju; Gao, Fei; Zhang, Baile
2016-07-01
Topological concepts have been introduced into electronic, photonic, and phononic systems, but have not been studied in surface-water-wave systems. Here we study a one-dimensional periodic resonant surface-water-wave system and demonstrate its topological transition. By selecting three different water depths, we can construct different types of water waves - shallow, intermediate and deep water waves. The periodic surface-water-wave system consists of an array of cylindrical water tanks connected with narrow water channels. As the width of connecting channel varies, the band diagram undergoes a topological transition which can be further characterized by Zak phase. This topological transition holds true for shallow, intermediate and deep water waves. However, the interface state at the boundary separating two topologically distinct arrays of water tanks can exhibit different bands for shallow, intermediate and deep water waves. Our work studies for the first time topological properties of water wave systems, and paves the way to potential management of water waves.
Using the NASA GRC Sectored-One-Dimensional Combustor Simulation
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.; Mehta, Vishal R.
2014-01-01
The document is a user manual for the NASA GRC Sectored-One-Dimensional (S-1-D) Combustor Simulation. It consists of three sections. The first is a very brief outline of the mathematical and numerical background of the code along with a description of the non-dimensional variables on which it operates. The second section describes how to run the code and includes an explanation of the input file. The input file contains the parameters necessary to establish an operating point as well as the associated boundary conditions (i.e. how it is fed and terminated) of a geometrically configured combustor. It also describes the code output. The third section describes the configuration process and utilizes a specific example combustor to do so. Configuration consists of geometrically describing the combustor (section lengths, axial locations, and cross sectional areas) and locating the fuel injection point and flame region. Configuration requires modifying the source code and recompiling. As such, an executable utility is included with the code which will guide the requisite modifications and insure that they are done correctly.
Topological phase in one-dimensional Rashba wire
NASA Astrophysics Data System (ADS)
Sa-Ke, Wang; Jun, Wang; Jun-Feng, Liu
2016-07-01
We study the possible topological phase in a one-dimensional (1D) quantum wire with an oscillating Rashba spin–orbital coupling in real space. It is shown that there are a pair of particle–hole symmetric gaps forming in the bulk energy band and fractional boundary states residing in the gap when the system has an inversion symmetry. These states are topologically nontrivial and can be characterized by a quantized Berry phase ±π or nonzero Chern number through dimensional extension. When the Rashba spin–orbital coupling varies slowly with time, the system can pump out 2 charges in a pumping cycle because of the spin flip effect. This quantized pumping is protected by topology and is robust against moderate disorders as long as the disorder strength does not exceed the opened energy gap. Project supported by the National Natural Science Foundation of China (Grant Nos. 115074045 and 11204187) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20131284).
Solitary Wave in One-dimensional Buckyball System at Nanoscale
Xu, Jun; Zheng, Bowen; Liu, Yilun
2016-01-01
We have studied the stress wave propagation in one-dimensional (1-D) nanoscopic buckyball (C60) system by molecular dynamics (MD) simulation and quantitative modeling. Simulation results have shown that solitary waves are generated and propagating in the buckyball system through impacting one buckyball at one end of the buckyball chain. We have found the solitary wave behaviors are closely dependent on the initial temperature and impacting speed of the buckyball chain. There are almost no dispersion and dissipation of the solitary waves (stationary solitary wave) for relatively low temperature and high impacting speed. While for relatively high temperature and low impacting speed the profile of the solitary waves is highly distorted and dissipated after propagating several tens of buckyballs. A phase diagram is proposed to describe the effect of the temperature and impacting speed on the solitary wave behaviors in buckyball system. In order to quantitatively describe the wave behavior in buckyball system, a simple nonlinear-spring model is established, which can describe the MD simulation results at low temperature very well. The results presented in this work may lay a solid step towards the further understanding and manipulation of stress wave propagation and impact energy mitigation at nanoscale. PMID:26891624
One-dimensional simulation of lanthanide isotachophoresis using COMSOL.
Dixon, Derek R; Clark, Sue B; Ivory, Cornelius F
2012-03-01
Electrokinetic separations can be used to quickly separate rare earth metals to determine their forensic signature. In this work, we simulate the concentration and separation of trivalent lanthanide cations by isotachophoresis. A one-dimensional simulation is developed using COMSOL v4.0a, a commercial finite element simulator, to represent the isotachophoretic separation of three lanthanides: lanthanum, terbium, and lutetium. The binding ligand chosen for complexation with the lanthanides is α-hydroxyisobutyric acid (HIBA) and the buffer system includes acetate, which also complexes with the lanthanides. The complexes formed between the three lanthanides, HIBA, and acetate are all considered in the simulation. We observe that the presence of only lanthanide:HIBA complexes in a buffer system with 10 mM HIBA causes the slowest lanthanide peak (lutetium) to split from the other analytes. The addition of lanthanide:acetate complexes into the simulation of the same buffer system eliminates this splitting. Decreasing the concentration of HIBA in the buffer to 7 mM causes the analyte stack to migrate faster through the capillary. PMID:22522543
Interspecies tunneling in one-dimensional Bose mixtures
Pflanzer, Anika C.; Zoellner, Sascha; Schmelcher, Peter
2010-02-15
We study the ground-state properties and quantum dynamics of few-boson mixtures with strong interspecies repulsion in one-dimensional traps. If one species localizes at the center, e.g., due to a very large mass compared to the other component, it represents an effective barrier for the latter, and the system can be mapped onto identical bosons in a double well. For weaker localization, the barrier atoms begin to respond to the light component, leading to an induced attraction between the mobile atoms that may even outweigh their bare intraspecies repulsion. To explain the resulting effects, we derive an effective Hubbard model for the lighter species accounting for the back action of the barrier in correction terms to the lattice parameters. Also the tunneling is drastically affected: by varying the degree of localization of the 'barrier' atoms, the dynamics of intrinsically noninteracting bosons can change from Rabi oscillations to effective pair tunneling. For identical fermions (or fermionized bosons), this leads to the tunneling of attractively bound pairs.
Transmission properties of one-dimensional ternary plasma photonic crystals
NASA Astrophysics Data System (ADS)
Shiveshwari, Laxmi; Awasthi, S. K.
2015-09-01
Omnidirectional photonic band gaps (PBGs) are found in one-dimensional ternary plasma photonic crystals (PPC) composed of single negative metamaterials. The band characteristics and transmission properties are investigated through the transfer matrix method. We show that the proposed structure can trap light in three-dimensional space due to the elimination of Brewster's angle transmission resonance allowing the existence of complete PBG. The results are discussed in terms of incident angle, layer thickness, dielectric constant of the dielectric material, and number of unit cells (N) for TE and TM polarizations. It is seen that PBG characteristics is apparent even in an N ≥ 2 system, which is weakly sensitive to the incident angle and completely insensitive to the polarization. Finite PPC could be used for multichannel transmission filter without introducing any defect in the geometry. We show that the locations of the multichannel transmission peaks are in the allowed band of the infinite structure. The structure can work as a single or multichannel filter by varying the number of unit cells. Binary PPC can also work as a polarization sensitive tunable filter.
Weak lasing in one-dimensional polariton superlattices.
Zhang, Long; Xie, Wei; Wang, Jian; Poddubny, Alexander; Lu, Jian; Wang, Yinglei; Gu, Jie; Liu, Wenhui; Xu, Dan; Shen, Xuechu; Rubo, Yuri G; Altshuler, Boris L; Kavokin, Alexey V; Chen, Zhanghai
2015-03-31
Bosons with finite lifetime exhibit condensation and lasing when their influx exceeds the lasing threshold determined by the dissipative losses. In general, different one-particle states decay differently, and the bosons are usually assumed to condense in the state with the longest lifetime. Interaction between the bosons partially neglected by such an assumption can smear the lasing threshold into a threshold domain--a stable lasing many-body state exists within certain intervals of the bosonic influxes. This recently described weak lasing regime is formed by the spontaneously symmetry breaking and phase-locking self-organization of bosonic modes, which results in an essentially many-body state with a stable balance between gains and losses. Here we report, to our knowledge, the first observation of the weak lasing phase in a one-dimensional condensate of exciton-polaritons subject to a periodic potential. Real and reciprocal space photoluminescence images demonstrate that the spatial period of the condensate is twice as large as the period of the underlying periodic potential. These experiments are realized at room temperature in a ZnO microwire deposited on a silicon grating. The period doubling takes place at a critical pumping power, whereas at a lower power polariton emission images have the same periodicity as the grating. PMID:25787253
One-dimensional flows of an imperfect diatomic gas
NASA Technical Reports Server (NTRS)
1959-01-01
With the assumptions that Berthelot's equation of state accounts for molecular size and intermolecular force effects, and that changes in the vibrational heat capacities are given by a Planck term, expressions are developed for analyzing one-dimensional flows of a diatomic gas. The special cases of flow through normal and oblique shocks in free air at sea level are investigated. It is found that up to a Mach number 10 pressure ratio across a normal shock differs by less than 6 percent from its ideal gas value; whereas at Mach numbers above 4 the temperature rise is considerable below and hence the density rise is well above that predicted assuming ideal gas behavior. It is further shown that only the caloric imperfection in air has an appreciable effect on the pressures developed in the shock process considered. The effects of gaseous imperfections on oblique shock-flows are studied from the standpoint of their influence on the life and pressure drag of a flat plate operating at Mach numbers of 10 and 20. The influence is found to be small. (author)
One-Dimensional Random Walks with One-Step Memory
NASA Astrophysics Data System (ADS)
Piaskowski, Kevin; Nolan, Michael
2016-03-01
Formalized studies of random walks have been done dating back to the early 20th century. Since then, well-defined conclusions have been drawn, specifically in the case of one and two-dimensional random walks. An important theorem was formulated by George Polya in 1912. He stated that for a one or two-dimensional lattice random walk with infinite number of steps, N, the probability that the walker will return to its point of origin is unity. The work done in this particular research explores Polya's theorem for one-dimensional random walks that are non-isotropic and have the property of one-step memory, i.e. the probability of moving in any direction is non-symmetric and dependent on the previous step. The key mathematical construct used in this research is that of a generating function. This helps compute the return probability for an infinite N. An explicit form of the generating function was devised and used to calculate return probabilities for finite N. Return probabilities for various memory parameters were explored analytically and via simulations. Currently, further analysis is being done to try and find a relationship between memory parameters and number of steps, N.
Dynamical spin structure factor of one-dimensional interacting fermions
NASA Astrophysics Data System (ADS)
Zyuzin, Vladimir A.; Maslov, Dmitrii L.
2015-02-01
We revisit the dynamic spin susceptibility χ (q ,ω ) of one-dimensional interacting fermions. To second order in the interaction, backscattering results in a logarithmic correction to χ (q ,ω ) at q ≪kF , even if the single-particle spectrum is linearized near the Fermi points. Consequently, the dynamic spin structure factor Im χ (q ,ω ) is nonzero at frequencies above the single-particle continuum. In the boson language, this effect results from the marginally irrelevant backscattering operator of the sine-Gordon model. Away from the threshold, the high-frequency tail of Im χ (q ,ω ) due to backscattering is larger than that due to finite mass by a factor of kF/q . We derive the renormalization group equations for the coupling constants of the g -ology model at finite ω and q and find the corresponding expression for χ (q ,ω ) , valid to all orders in the interaction but not in the immediate vicinity of the continuum boundary, where the finite-mass effects become dominant.
Dynamic response of one-dimensional bosons in a trap
Golovach, Vitaly N.; Minguzzi, Anna; Glazman, Leonid I.
2009-10-15
We calculate the dynamic structure factor S(q,{omega}) of a one-dimensional (1D) interacting Bose gas confined in a harmonic trap. The effective interaction depends on the strength of the confinement enforcing the (1D) motion of atoms; interaction may be further enhanced by superimposing an optical lattice on the trap potential. In the compressible state, we find that the smooth variation in the gas density around the trap center leads to softening of the singular behavior of S(q,{omega}) at the first Lieb excitation mode compared to the behavior predicted for homogeneous 1D systems. Nevertheless, the density-averaged response S(q,{omega}) remains a nonanalytic function of q and {omega} at the first Lieb excitation mode in the limit of weak trap confinement. The exponent of the power-law nonanalyticity is modified due to the inhomogeneity in a universal way and thus bears unambiguously the information about the (homogeneous) Lieb-Liniger model. A strong optical lattice causes formation of Mott phases. Deep in the Mott regime, we predict a semicircular peak in S(q,{omega}) centered at the on-site repulsion energy, {omega}=U. Similar peaks of smaller amplitudes exist at multiples of U as well. We explain the suppression of the dynamic response with entering into the Mott regime, observed recently by Clement et al. [Phys. Rev. Lett. 102, 155301 (2009)], based on an f-sum rule for the Bose-Hubbard model.
One-dimensional nanoferroic rods; synthesis and characterization
NASA Astrophysics Data System (ADS)
Ahmed, M. A.; Seddik, U.; Okasha, N.; Imam, N. G.
2015-11-01
One-dimensional nanoferroic rods of BaTiO3 were synthesized by improved citrate auto-combustion technology using tetrabutyl titanate. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), transmission electron microscopy (TEM), atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) have been used to characterize the prepared sample. The results indicated that the crystal structure of BaTiO3 is tetragonal phase with an average crystallite size of 47 nm. SEM image gives a cauliflower-like morphology of the agglomerated nanorods. The stoichiometry of the chemical composition of the BaTiO3 ceramic was confirmed by EDX. TEM micrograph exhibited that BaTiO3 nanoparticles have rod-like shape with an average length of 120 nm and width of 43 nm. AFM was used to investigate the surface topography and its roughness. The topography image in 3D showed that the BaTiO3 particles have a rod shape with an average particle size of 116 nm which in agreement with 3D TEM result.
One dimensional coordination polymers: Synthesis, crystal structures and spectroscopic properties
NASA Astrophysics Data System (ADS)
Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Şahin, Onur
2016-11-01
Two new one dimensional (1D) cyanide complexes, namely [M(4-aepy)2(H2O)2][Pt(CN)4], (4-aepy = 4-(2-aminoethyl)pyridine M = Cu(II) (1) or Zn(II) (2)), have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal and elemental analyses techniques. The crystallographic analyses reveal that 1 and 2 are isomorphous and isostructural, and crystallize in the monoclinic system and C2 space group. The Pt(II) ions are coordinated by four cyanide-carbon atoms in the square-planar geometry and the [Pt(CN)4]2- ions act as a counter ion. The M(II) ions display an N4O2 coordination sphere with a distorted octahedral geometry, the nitrogen donors belonging to four molecules of the organic 4-aepy that act as unidentate ligands and two oxygen atoms from aqua ligands. The crystal structures of 1 and 2 are similar each other and linked via intermolecular hydrogen bonding, Pt⋯π interactions to form 3D supramolecular network. Vibration assignments of all the observed bands are given and the spectral features also supported to the crystal structures of the complexes.
Nucleation and growth of nanoscaled one-dimensional materials
NASA Astrophysics Data System (ADS)
Cui, Hongtao
Nanoscaled one-dimensional materials have attracted great interest due to their novel physical and chemical properties. The purpose of this dissertation is to study the nucleation and growth mechanisms of carbon nanotubes and silicon nitride nanowires with their field emission applications in mind. As a result of this research, a novel methodology has been developed to deposit aligned bamboo-like carbon nanotubes on substrates using a methane and ammonia mixture in microwave plasma enhanced chemical deposition. Study of growth kinetics suggests that the carbon diffusion through bulk catalyst particles controls growth in the initial deposition process. Microstructures of carbon nanotubes are affected by the growth temperature and carbon concentration in the gas phase. High-resolution transmission electron microscope confirms the existence of the bamboo-like structure. Electron diffraction reveals that the iron-based catalyst nucleates and sustains the growth of carbon nanotubes. A nucleation and growth model has been constructed based upon experimental data and observations. In the study of silicon nitride nanoneedles, a vapor-liquid-solid model is employed to explain the nucleation and growth processes. Ammonia plasma etching is proposed to reduce the size of the catalyst and subsequently produce the novel needle-like nanostructure. High-resolution transmission electron microscope shows the structure is well crystallized and composed of alpha-silicon nitride. Other observations in the structure are also explained.
One-dimensional transient radiative transfer by lattice Boltzmann method.
Zhang, Yong; Yi, Hongliang; Tan, Heping
2013-10-21
The lattice Boltzmann method (LBM) is extended to solve transient radiative transfer in one-dimensional slab containing scattering media subjected to a collimated short laser irradiation. By using a fully implicit backward differencing scheme to discretize the transient term in the radiative transfer equation, a new type of lattice structure is devised. The accuracy and computational efficiency of this algorithm are examined firstly. Afterwards, effects of the medium properties such as the extinction coefficient, the scattering albedo and the anisotropy factor, and the shapes of laser pulse on time-resolved signals of transmittance and reflectance are investigated. Results of the present method are found to compare very well with the data from the literature. For an oblique incidence, the LBM results in this paper are compared with those by Monte Carlo method generated by ourselves. In addition, transient radiative transfer in a two-Layer inhomogeneous media subjected to a short square pulse irradiation is investigated. At last, the LBM is further extended to study the transient radiative transfer in homogeneous medium with a refractive index discontinuity irradiated by the short pulse laser. Several trends on the time-resolved signals different from those for refractive index of 1 (i.e. refractive-index-matched boundary) are observed and analysed. PMID:24150298
Automated quantification of one-dimensional nanostructure alignment on surfaces
NASA Astrophysics Data System (ADS)
Dong, Jianjin; Goldthorpe, Irene A.; Mohieddin Abukhdeir, Nasser
2016-06-01
A method for automated quantification of the alignment of one-dimensional (1D) nanostructures from microscopy imaging is presented. Nanostructure alignment metrics are formulated and shown to be able to rigorously quantify the orientational order of nanostructures within a two-dimensional domain (surface). A complementary image processing method is also presented which enables robust processing of microscopy images where overlapping nanostructures might be present. Scanning electron microscopy (SEM) images of nanowire-covered surfaces are analyzed using the presented methods and it is shown that past single parameter alignment metrics are insufficient for highly aligned domains. Through the use of multiple parameter alignment metrics, automated quantitative analysis of SEM images is shown to be possible and the alignment characteristics of different samples are able to be quantitatively compared using a similarity metric. The results of this work provide researchers in nanoscience and nanotechnology with a rigorous method for the determination of structure/property relationships, where alignment of 1D nanostructures is significant.
Topological order in interacting one-dimensional Bose Systems
NASA Astrophysics Data System (ADS)
Grusdt, Fabian; Höning, Michael; Fleischhauer, Michael
2015-05-01
We discuss topological aspects of one-dimensional inversion-symmetric systems of interacting bosons, which can be implemented in current experiments with ultra cold atoms. We consider both integer and fractional fillings of a topologically non-trivial Bloch band. Our starting point is the chiral-symmetric Su-Schrieffer-Heeger (SSH) model of non-interacting fermions, which can be realized by hard-core bosons. When the hard-core constraint is removed, we obtain a bosonic system with inversion-symmetry protected topological order. Because the chiral symmetry is broken by finite interactions, the bulk-boundary correspondence of the SSH model is no longer valid. Nevertheless we show that the fractional part of the charge which is localized at the edge can distinguish topologically trivial- from non-trivial states. We generalize our analysis by including nearest neighbor interactions and present a topological classification of the resulting quarter-filling Mott insulating phase. In this case fractionally charged bulk excitations exist, which we identify in the grand-canonical phase diagram. F.G. acknowledges support from the Graduate School of Material Science MAINZ.
Scattering by infinitely rising one-dimensional potentials
NASA Astrophysics Data System (ADS)
Ferreira, E. M.; Sesma, J.
2015-12-01
Infinitely rising one-dimensional potentials constitute impenetrable barriers which reflect totally any incident wave. However, the scattering by such kind of potentials is not structureless: resonances may occur for certain values of the energy. Here we consider the problem of scattering by the members of a family of potentials Va(x) = - sgn(x) | x | a, where sgn represents the sign function and a is a positive rational number. The scattering function and the phase shifts are obtained from global solutions of the Schrödinger equation. For the determination of the Gamow states, associated to resonances, we exploit their close relation with the eigenvalues of the PT-symmetric Hamiltonians with potentials VaPT(x) = - i sgn(x) | x | a. Calculation of the time delay in the scattering at real energies is used to characterize the resonances. As an additional result, the breakdown of the PT-symmetry of the family of potentials VaPT for a < 3 may be conjectured.
Validation and Comparison of One-Dimensional Graound Motion Methodologies
B. Darragh; W. Silva; N. Gregor
2006-06-28
Both point- and finite-source stochastic one-dimensional ground motion models, coupled to vertically propagating equivalent-linear shear-wave site response models are validated using an extensive set of strong motion data as part of the Yucca Mountain Project. The validation and comparison exercises are presented entirely in terms of 5% damped pseudo absolute response spectra. The study consists of a quantitative analyses involving modeling nineteen well-recorded earthquakes, M 5.6 to 7.4 at over 600 sites. The sites range in distance from about 1 to about 200 km in the western US (460 km for central-eastern US). In general, this validation demonstrates that the stochastic point- and finite-source models produce accurate predictions of strong ground motions over the range of 0 to 100 km and for magnitudes M 5.0 to 7.4. The stochastic finite-source model appears to be broadband, producing near zero bias from about 0.3 Hz (low frequency limit of the analyses) to the high frequency limit of the data (100 and 25 Hz for response and Fourier amplitude spectra, respectively).
Thermodynamics of trajectories of the one-dimensional Ising model
NASA Astrophysics Data System (ADS)
Loscar, Ernesto S.; Mey, Antonia S. J. S.; Garrahan, Juan P.
2011-12-01
We present a numerical study of the dynamics of the one-dimensional Ising model by applying the large-deviation method to describe ensembles of dynamical trajectories. In this approach trajectories are classified according to a dynamical order parameter and the structure of ensembles of trajectories can be understood from the properties of large-deviation functions, which play the role of dynamical free-energies. We consider both Glauber and Kawasaki dynamics, and also the presence of a magnetic field. For Glauber dynamics in the absence of a field we confirm the analytic predictions of Jack and Sollich about the existence of critical dynamical, or space-time, phase transitions at critical values of the 'counting' field s. In the presence of a magnetic field the dynamical phase diagram also displays first order transition surfaces. We discuss how these non-equilibrium transitions in the 1d Ising model relate to the equilibrium ones of the 2d Ising model. For Kawasaki dynamics we find a much simpler dynamical phase structure, with transitions reminiscent of those seen in kinetically constrained models.
Numerical method of characteristics for one-dimensional blood flow
NASA Astrophysics Data System (ADS)
Acosta, Sebastian; Puelz, Charles; Rivière, Béatrice; Penny, Daniel J.; Rusin, Craig G.
2015-08-01
Mathematical modeling at the level of the full cardiovascular system requires the numerical approximation of solutions to a one-dimensional nonlinear hyperbolic system describing flow in a single vessel. This model is often simulated by computationally intensive methods like finite elements and discontinuous Galerkin, while some recent applications require more efficient approaches (e.g. for real-time clinical decision support, phenomena occurring over multiple cardiac cycles, iterative solutions to optimization/inverse problems, and uncertainty quantification). Further, the high speed of pressure waves in blood vessels greatly restricts the time step needed for stability in explicit schemes. We address both cost and stability by presenting an efficient and unconditionally stable method for approximating solutions to diagonal nonlinear hyperbolic systems. Theoretical analysis of the algorithm is given along with a comparison of our method to a discontinuous Galerkin implementation. Lastly, we demonstrate the utility of the proposed method by implementing it on small and large arterial networks of vessels whose elastic and geometrical parameters are physiologically relevant.
Energy Models of One-Dimensional Multi-Propagative Systems
NASA Astrophysics Data System (ADS)
Ichchou, M. N.; Le Bot, A.; Jezequel, L.
1997-04-01
For a number of years, a model well suited to medium and high frequencies in structures, and called Energy Flow analysis, has been studied in order to generalize Statistical Energy Analysis. This model is based on a thermal analogy: a law analogous to Fourier's law for heat flow is involved. This relationship, which relates the energy flow to the energy density, leads to a differential equation similar to the heat conduction equation in steady state conditions. The aim of this study is to generalize previous works on one-dimensional structures. A wave approach is adopted, It is shown that Fourier's law is valid for one symmetric propagation mode (one group velocity). However this law has to be modified for non-symmetric propagation modes or multi-mode propagation. In each case, the wave approach determines the relationship between energy density and energy flow. Finally, the theoretical models are illustrated with several examples of waveguides: an Euler-Bernoulli beam on an elastic support, pipes carrying moving fluid and a Timoshenko beam.
Transmission properties of one-dimensional ternary plasma photonic crystals
Shiveshwari, Laxmi; Awasthi, S. K.
2015-09-15
Omnidirectional photonic band gaps (PBGs) are found in one-dimensional ternary plasma photonic crystals (PPC) composed of single negative metamaterials. The band characteristics and transmission properties are investigated through the transfer matrix method. We show that the proposed structure can trap light in three-dimensional space due to the elimination of Brewster's angle transmission resonance allowing the existence of complete PBG. The results are discussed in terms of incident angle, layer thickness, dielectric constant of the dielectric material, and number of unit cells (N) for TE and TM polarizations. It is seen that PBG characteristics is apparent even in an N ≥ 2 system, which is weakly sensitive to the incident angle and completely insensitive to the polarization. Finite PPC could be used for multichannel transmission filter without introducing any defect in the geometry. We show that the locations of the multichannel transmission peaks are in the allowed band of the infinite structure. The structure can work as a single or multichannel filter by varying the number of unit cells. Binary PPC can also work as a polarization sensitive tunable filter.
Solitary Wave in One-dimensional Buckyball System at Nanoscale.
Xu, Jun; Zheng, Bowen; Liu, Yilun
2016-01-01
We have studied the stress wave propagation in one-dimensional (1-D) nanoscopic buckyball (C60) system by molecular dynamics (MD) simulation and quantitative modeling. Simulation results have shown that solitary waves are generated and propagating in the buckyball system through impacting one buckyball at one end of the buckyball chain. We have found the solitary wave behaviors are closely dependent on the initial temperature and impacting speed of the buckyball chain. There are almost no dispersion and dissipation of the solitary waves (stationary solitary wave) for relatively low temperature and high impacting speed. While for relatively high temperature and low impacting speed the profile of the solitary waves is highly distorted and dissipated after propagating several tens of buckyballs. A phase diagram is proposed to describe the effect of the temperature and impacting speed on the solitary wave behaviors in buckyball system. In order to quantitatively describe the wave behavior in buckyball system, a simple nonlinear-spring model is established, which can describe the MD simulation results at low temperature very well. The results presented in this work may lay a solid step towards the further understanding and manipulation of stress wave propagation and impact energy mitigation at nanoscale. PMID:26891624
One-dimensional surface phonon polaritons in boron nitride nanotubes
NASA Astrophysics Data System (ADS)
Xu, Xiaoji G.; Ghamsari, Behnood G.; Jiang, Jian-Hua; Gilburd, Leonid; Andreev, Gregory O.; Zhi, Chunyi; Bando, Yoshio; Golberg, Dmitri; Berini, Pierre; Walker, Gilbert C.
2014-08-01
Surface polaritons, which are electromagnetic waves coupled to material charge oscillations, have enabled applications in concentrating, guiding and harvesting optical energy below the diffraction limit. Surface plasmon polaritons involve oscillations of electrons and are accessible in noble metals at visible and near-infrared wavelengths, whereas surface phonon polaritons (SPhPs) rely on phonon resonances in polar materials, and are active in the mid-infrared. Noble metal surface plasmon polaritons have limited applications in the mid-infrared. SPhPs at flat interfaces normally possess long polariton wavelengths and provide modest field confinement/enhancement. Here we demonstrate propagating SPhPs in a one-dimensional material consisting of a boron nitride nanotube at mid-infrared wavelengths. The observed SPhP exhibits high field confinement and enhancement, and a very high effective index (neff~70). We show that the modal and propagation length characteristics of the SPhPs may be controlled through the nanotube size and the supporting substrates, enabling mid-infrared applications.
One-dimensional extended Hubbard model in the atomic limit
NASA Astrophysics Data System (ADS)
Mancini, F.; Mancini, F. P.
2008-06-01
We present the exact solution of the one-dimensional extended Hubbard model in the atomic limit within the Green’s function and equations of motion formalism. We provide a comprehensive and systematic analysis of the model by considering all the relevant response and correlation functions as well as thermodynamic quantities in the whole parameters space. At zero temperature we identify four phases in the plane (U,n) ( U is the on-site potential and n is the filling) and relative phase transitions as well as different types of charge ordering. These features are endorsed by investigating at T=0 the chemical potential and pertinent local correlators, the particle and double occupancy correlation functions, the entropy, and by studying the behavior in the limit T→0 of the charge and spin susceptibilities. A detailed study of the thermodynamic quantities is also presented at finite temperature. This study evidences that a finite-range order persists for a wide range of the temperature, as shown by the behavior of the correlation functions and by the two-peak structure exhibited by the charge susceptibility and by the entropy. Moreover, the equations of motion formalism, together with the use of composite operators, allows us to exactly determine the set of elementary excitations. As a result, the density of states can be determined and a detailed analysis of the specific heat allows for identifying the excitations and for ascribing its two-peak structure to a redistribution of the charge density.
Reflectometry as a fluctuation diagnostic: A one-dimensional simulation
Chou, A.E.; Luhmann, N.C. Jr.; Peebles, W.A.; Rhodes, T.L. )
1992-10-01
Reflectometry is currently employed to characterize turbulence in fusion plasmas worldwide and is expected to be a major diagnostic on the next generation of machines (e.g., ITER). Until recently, little was known about the response of a reflectometer to fluctuations (degree of localization of the signal, sensitivity to fluctuation wave number, dependence on density scale length, etc.). To elucidate these properties, we have been modeling reflectometer behavior with a code based on solution of a one-dimensional full wave equation. The code models an infinite plane plasma with density gradient in the {ital x} direction and solves the full wave equation to find the electric field of the reflectometer's electromagnetic wave. It can simulate stationary and moving density perturbations with arbitrary waveforms and wave numbers in plasmas with arbitrary density profiles. We present results of test cases comparing computational results to known analytic solutions for linear and 1{minus}{alpha}{sup 2}/{ital x}{sup 2} plasma density profiles, which show very good agreement.
One-dimensional consolidation in unsaturated soils under cyclic loading
NASA Astrophysics Data System (ADS)
Lo, Wei-Cheng; Sposito, Garrison; Lee, Jhe-Wei; Chu, Hsiuhua
2016-05-01
The one-dimensional consolidation model of poroelasticity of Lo et al. (2014) for an unsaturated soil under constant loading is generalized to include an arbitrary time-dependent loading. A closed-form solution for the pore water and air pressures along with the total settlement is derived by employing a Fourier series representation in the spatial domain and a Laplace transformation in the time domain. This solution is illustrated for the important example of a fully-permeable soil cylinder with an undrained initial condition acted upon by a periodic stress. Our results indicate that, in terms of a dimensionless time scale, the transient solution decays to zero most slowly in a water-saturated soil, whereas for an unsaturated soil, the time for the transient solution to die out is inversely proportional to the initial water saturation. The generalization presented here shows that the diffusion time scale for pore water in an unsaturated soil is orders of magnitude greater than that in a water-saturated soil, mainly because of the much smaller hydraulic conductivity of the former.
A Smart Colorful Supercapacitor with One Dimensional Photonic Crystals
Liu, Cihui; Liu, Xing; Xuan, Hongyun; Ren, Jiaoyu; Ge, Liqin
2015-01-01
To meet the pressing demands for portable and flexible equipment in contemporary society, developing flexible, lightweight, and sustainable supercapacitor systems with large power densities, long cycle life, and ease of strongly required. However, estimating the state-of-charge of existing supercapacitors is difficult, and thus their service life is limited. In this study, we fabricate a flexible color indicative supercapacitor device with mesoporous polyaniline (mPANI)/Poly(N-Isopropyl acrylamide-Graphene Oxide-Acrylic Acid) (P(NiPPAm-GO-AA)) one dimensional photonic crystals (1DPCs) as the electrode material through a low-cost, eco-friendly, and scalable fabrication process. We found that the state-of-charge could be monitored by the structural color oscillation due to the change in the photonic band gap position of the 1DPCs. The flexible 1DPCs supercapacitor is thin at 3 mm and exhibits good specific capacitance of 22.6 F g−1 with retention of 91.1% after 3,000 cycles. This study shows the application of the 1DPCs supercapacitor as a visual ultrathin power source. The technology may find many applications in future wearable electronics. PMID:26689375
Dynamic response of one-dimensional bosons in a trap
NASA Astrophysics Data System (ADS)
Golovach, Vitaly N.; Minguzzi, Anna; Glazman, Leonid I.
2009-10-01
We calculate the dynamic structure factor S(q,ω) of a one-dimensional (1D) interacting Bose gas confined in a harmonic trap. The effective interaction depends on the strength of the confinement enforcing the (1D) motion of atoms; interaction may be further enhanced by superimposing an optical lattice on the trap potential. In the compressible state, we find that the smooth variation in the gas density around the trap center leads to softening of the singular behavior of S(q,ω) at the first Lieb excitation mode compared to the behavior predicted for homogeneous 1D systems. Nevertheless, the density-averaged response S¯(q,ω) remains a nonanalytic function of q and ω at the first Lieb excitation mode in the limit of weak trap confinement. The exponent of the power-law nonanalyticity is modified due to the inhomogeneity in a universal way and thus bears unambiguously the information about the (homogeneous) Lieb-Liniger model. A strong optical lattice causes formation of Mott phases. Deep in the Mott regime, we predict a semicircular peak in S(q,ω) centered at the on-site repulsion energy, ω=U . Similar peaks of smaller amplitudes exist at multiples of U as well. We explain the suppression of the dynamic response with entering into the Mott regime, observed recently by Clément [Phys. Rev. Lett. 102, 155301 (2009)], based on an f -sum rule for the Bose-Hubbard model.
One-dimensional particle models for heat transfer analysis
NASA Astrophysics Data System (ADS)
Bufferand, H.; Ciraolo, G.; Ghendrih, Ph; Tamain, P.; Bagnoli, F.; Lepri, S.; Livi, R.
2010-11-01
For a better understanding of Spitzer-Härm closure restrictions and for estimating the relevancy of this expression when collisionnality decreases, an effort is done in developing simple models that aim at catching the physics of the transition from conductive to free-streaming heat flux. In that perspective, one-dimensional particle models are developed to study heat transfer properties in the direction parallel to the magnetic field in tokamaks. These models are based on particles that carry energy at a specific velocity and that can interact with each other or with heat sources. By adjusting the particle dynamics and particle interaction properties, it is possible to generate a broad range of models of growing complexity. The simplest models can be solved analytically and are used to link particle behavior to general macroscopic heat transfer properties. In particular, some configurations recover Fourier's law and make possible to investigate the dependance of thermal conductivity on temperature. Besides, some configurations where local balance is lost require defining non local expression for heat flux. These different classes of models could then be linked to different plasma configurations and used to study transition from collisional to non-collisional plasma.
Screw dislocation-driven growth of one-dimensional nanomaterials
NASA Astrophysics Data System (ADS)
Meng, Fei
Nanoscience and nanotechnology are impacting our lives in many ways, from electronic and photonic devices to biosensors. They also hold the promise of tackling the renewable energy challenges facing us. However, one limiting scientific challenge is the effective and efficient bottom-up synthesis of nanomaterials. In this thesis, we discuss the fundamental theories of screw dislocation-driven growth of various nanostructures including one-dimensional nanowires and nanotubes, two-dimensional nanoplates, and three-dimensional hierarchical tree-like nanostructures. We then introduce the transmission electron microscopy (TEM) techniques to structurally characterize the dislocation-driven nanomaterials for future searching and identifying purposes. We summarize the guidelines for rationally designing the dislocation-driven growth and discuss specific examples to illustrate how to implement the guidelines. We also show that dislocation growth is a general and versatile mechanism that can be used to grow a variety of nanomaterials via distinct reaction chemistry and synthetic methods. The fundamental investigation and development of dislocation-driven growth of nanomaterials will create a new dimension to the rational design and synthesis of increasingly complex nanomaterials.
Digital noise generators using one-dimensional chaotic maps
Martínez-Ñonthe, J. A; Palacios-Luengas, L.; Cruz-Irisson, M.; Vazquez Medina, R.; Díaz Méndez, J. A.
2014-05-15
This work shows how to improve the statistical distribution of signals produced by digital noise generators designed with one-dimensional (1-D) chaotic maps. It also shows that in a digital electronic design the piecewise linear chaotic maps (PWLCM) should be considered because they do not have stability islands in its chaotic behavior region, as it occurs in the case of the logistic map, which is commonly used to build noise generators. The design and implementation problems of the digital noise generators are analyzed and a solution is proposed. This solution relates the output of PWLCM, usually defined in the real numbers' domain, with a codebook of S elements, previously defined. The proposed solution scheme produces digital noise signals with a statistical distribution close to a uniform distribution. Finally, this work shows that it is possible to have control over the statistical distribution of the noise signal by selecting the control parameter of the PWLCM and using, as a design criterion, the bifurcation diagram.
Theoretical modelling of one dimensional photonic crystal based optical demultiplexer
NASA Astrophysics Data System (ADS)
Sharma, Gaurav; Kumar, Sushil; Prasad, Surendra; Singh, Vivek
2016-05-01
An optical demultiplexer through one-dimensional Si-SiO2 photonic crystal structure in the presence of air cavity with a single crystal PMN-0.38PT material is presented. The transmittance of this structure is obtained using the transfer matrix method. The transmittance of this structure shows a sharp passband in the band gap region. It is observed that by introducing PMN-0.38PT layer in both sides of the air cavity, the existing band gap region of Si-SiO2 structure is slightly increased. Here, PMN-0.38PT material is working as a tunable element for passband. By applying some external potential on PMN-0.38PT crystal, the thickness of cavity layer can be tuned and the passband can be placed at any desired wavelength in the band gap region. Since the photonic band gap region contains a range of wavelengths which are not allowed to pass through the structure can be considered as a multiplex signal for the proposed demultiplexer. Therefore, any optical signal that lies in the band gap region of the structure can be separated into its components as a pass band. Hence, the proposed structure will work as an optical demultiplexer.
Dynamics of Mobile Impurities in One-Dimensional Quantum Liquids
NASA Astrophysics Data System (ADS)
Schecter, Michael
2014-09-01
We study the dynamics of mobile impurities in a one-dimensional quantum liquid. Due to singular scattering with low-energy excitations of the host liquid, the impurity spectral properties become strongly renormalized even at weak coupling. This leads to universal phenomena with no higher-dimensional counterparts, such as lattice-free Bloch oscillations, power-law threshold behavior in the impurity spectral function and a quantum phase transition as the impurity mass exceeds a critical value. The additional possibility of integrability in one-dimension leads to the absence of thermal viscosity at special points in parameter space. The vanishing of the phonon-mediated Casimir interaction between separate impurities can be understood on the same footing. We explore these remarkable phenomena by developing an effective low-energy theory that identifies the proper collective coordinates of the dressed impurity, and their coupling to the low-energy excitations of the host liquid. The main appeal of our approach lies in its ability to describe a dynamic response using effective parameters which obey exact thermodynamic relations. The latter may be extracted using powerful numerical or analytical techniques available in one-dimension, yielding asymptotically exact results for the low-energy impurity dynamics.
Trapped Atoms in One-Dimensional Photonic Crystals
NASA Astrophysics Data System (ADS)
Kimble, H.
2013-05-01
I describe one-dimensional photonic crystals that support a guided mode suitable for atom trapping within a unit cell, as well as a second probe mode with strong atom-photon interactions. A new hybrid trap is analyzed that combines optical and Casimir-Polder forces to form stable traps for neutral atoms in dielectric nanostructures. By suitable design of the band structure, the atomic spontaneous emission rate into the probe mode can exceed the rate into all other modes by more than tenfold. The unprecedented single-atom reflectivity r0 ~= 0 . 9 for the guided probe field could create new scientific opportunities, including quantum many-body physics for 1 D atom chains with photon-mediated interactions and high-precision studies of vacuum forces. Towards these goals, my colleagues and I are pursuing numerical simulation, device fabrication, and cold-atom experiments with nanoscopic structures. Funding is provided by by the IQIM, an NSF PFC with support of the Moore Foundation, by the AFOSR QuMPASS MURI, by the DoD NSSEFF program (HJK), and by NSF Grant PHY0652914 (HJK). DEC acknowledges funding from Fundacio Privada Cellex Barcelona.
A Smart Colorful Supercapacitor with One Dimensional Photonic Crystals
NASA Astrophysics Data System (ADS)
Liu, Cihui; Liu, Xing; Xuan, Hongyun; Ren, Jiaoyu; Ge, Liqin
2015-12-01
To meet the pressing demands for portable and flexible equipment in contemporary society, developing flexible, lightweight, and sustainable supercapacitor systems with large power densities, long cycle life, and ease of strongly required. However, estimating the state-of-charge of existing supercapacitors is difficult, and thus their service life is limited. In this study, we fabricate a flexible color indicative supercapacitor device with mesoporous polyaniline (mPANI)/Poly(N-Isopropyl acrylamide-Graphene Oxide-Acrylic Acid) (P(NiPPAm-GO-AA)) one dimensional photonic crystals (1DPCs) as the electrode material through a low-cost, eco-friendly, and scalable fabrication process. We found that the state-of-charge could be monitored by the structural color oscillation due to the change in the photonic band gap position of the 1DPCs. The flexible 1DPCs supercapacitor is thin at 3 mm and exhibits good specific capacitance of 22.6 F g-1 with retention of 91.1% after 3,000 cycles. This study shows the application of the 1DPCs supercapacitor as a visual ultrathin power source. The technology may find many applications in future wearable electronics.
EVALUATION OF THE STATE-OF-THE-ART CONTAMINATED SEDIMENT TRANSPORT AND FATE MODELING SYSTEM
Modeling approaches for evaluating the transport and fate of sediment and associated contaminants are briefly reviewed. The main emphasis is on: 1) the application of EFDC (Environmental Fluid Dynamics Code), the state-of-the-art contaminated sediment transport and fate public do...
Stock, Naomi L; Furdui, Vasile I; Muir, Derek C G; Mabury, Scott A
2007-05-15
Perfluorosulfonates (PFSAs) and perfluorocarboxylates (PFCAs) have been hypothesized to reach remote locations such as the Canadian Arctic either indirectly as volatile precursor chemicals that undergo atmospheric transport and subsequent degradation, or directly via oceanic and atmospheric transport of the PFSAs and PFCAs themselves. Water, sediment, and air samples were collected from three Arctic lakes (Amituk, Char, and Resolute) on Cornwallis Island, Nunavut, Canada. Samples were analyzed for PFSAs and PFCAs, precursor chemicals including the fluorotelomer alcohols (FTOHs) and polyfluorinated sulfonamides (FSAs), and precursor degradation products such as the fluorotelomer unsaturated carboxylates (FTUCAs). PFSAs and PFCAs were detected in water and sediment of all three Arctic lakes (concentrations ranged from nondetect to 69 ng/L and nondetect to 85 ng/g dry weight, respectively). FTOHs and FSAs were observed in air samples (mean concentrations ranged from 2.8 to 29 pg/m3), and confirm that volatile precursors are reaching Arctic latitudes. The observation of degradation products, including FTUCAs observed in sediment and atmospheric particles, and N-ethyl perfluorooctanesulfonamide (NEtFOSA) and perfluorooctanesulfonamide (PFOSA) in air samples, indicate that degradation of the FTOHs and FSAs is occurring in the Arctic environment. PFSAs and PFCAs were also observed on atmospheric particles (mean concentrations ranged from < 0.1 to 5.9 pg/m3). In addition, results of this study also indicate that local perfluoroalkyl contamination of Resolute Lake, which is located downstream of an airport wastewater input, has occurred. PMID:17547174
One dimensional blood flow in a planetocentric orbit
NASA Astrophysics Data System (ADS)
Haranas, Ioannis; Gkigkitzis, Ioannis
2012-05-01
All life on earth is accustomed to the presence of gravity. When gravity is altered, biological processes can go awry. It is of great importance to ensure safety during a spaceflight. Long term exposure to microgravity can trigger detrimental physiological responses in the human body. Fluid redistribution coupled with fluid loss is one of the effects. In particular, in microgravity blood volume is shifted towards the thorax and head. Sympathetic nervous system-induced vasoconstriction is needed to maintain arterial pressure, while venoconstriction limits venous pooling of blood prevents further reductions in venous return of blood to the heart. In this paper, we modify an existing one dimensional blood flow model with the inclusion of the hydrostatic pressure gradient that further depends on the gravitational field modified by the oblateness and rotation of the Earth. We find that the velocity of the blood flow VB is inversely proportional to the blood specific volume d, also proportional to the oblateness harmonic coefficient J2, the angular velocity of the Earth ωE, and finally proportional to an arbitrary constant c. For c = -0.39073 and ξH = -0.5 mmHg, all orbits result to less blood flow velocities than that calculated on the surface of the Earth. From all considered orbits, elliptical polar orbit of eccentricity e = 0.2 exhibit the largest flow velocity VB = 1.031 m/s, followed by the orbits of inclination i = 45°and 0°. The Earth's oblateness and its rotation contribute a 0.7% difference to the blood flow velocity.
Spatial modes in one-dimensional models for capillary jets
NASA Astrophysics Data System (ADS)
Guerrero, J.; González, H.; García, F. J.
2016-03-01
One-dimensional (1D) models are widely employed to simplify the analysis of axisymmetric capillary jets. These models postulate that, for slender deformations of the free surface, the radial profile of the axial velocity can be approximated as uniform (viscous slice, averaged, and Cosserat models) or parabolic (parabolic model). In classical works on spatial stability analysis with 1D models, considerable misinterpretation was generated about the modes yielded by each model. The already existing physical analysis of three-dimensional (3D) axisymmetric spatial modes enables us to relate these 1D spatial modes to the exact 3D counterparts. To do so, we address the surface stimulation problem, which can be treated as linear, by considering the effect of normal and tangential stresses to perturb the jet. A Green's function for a spatially local stimulation having a harmonic time dependence provides the general formalism to describe any time-periodic stimulation. The Green's function of this signaling problem is known to be a superposition of the spatial modes, but in fact these modes are of fundamental nature, i.e., not restricted to the surface stimulation problem. The smallness of the wave number associated with each mode is the criterion to validate or invalidate the 1D approaches. The proposed axial-velocity profiles (planar or parabolic) also have a remarkable influence on the outcomes of each 1D model. We also compare with the classical 3D results for (i) conditions for absolute instability, and (ii) the amplitude of the unstable mode resulting from both normal and tangential surface stress stimulation. Incidentally, as a previous task, we need to re-deduce 1D models in order to include eventual stresses of various possible origins (electrohydrodynamic, thermocapillary, etc.) applied on the free surface, which were not considered in the previous general formulations.
Stereo correspondence in one-dimensional Gabor stimuli.
Prince, S J; Eagle, R A
2000-01-01
Previous data [Prince, S.J.D., & Eagle, R.A., (1999). Size-disparity correlation in human binocular depth perception. Proceedings of the Royal Society of London B, 266, 1361-1365] have demonstrated that the upper disparity limit for stereopsis (DMax) is considerably smaller in filtered noise stereograms than in isolated Gabor patches of the same spatial frequency. This discrepancy is not currently understood. Here, the solution of the correspondence problem for bandpass stereograms was further examined. On each trial observers were presented with two one-dimensional Gabor stimuli containing disparities of equal magnitude but opposite sign. Subjects were required to indicate which interval contained the crossed disparity stimulus. It was found that matching behaviour changed as a function of Gabor envelope size. As a function of disparity magnitude, performance cycled between mostly correct and mostly incorrect at large envelope sizes but was always correct at small envelope sizes. At intermediate envelope sizes performance was cyclical at small disparities but always correct at large disparities. The critical envelope size at which performance changed from mostly correct to mostly incorrect at 270 degrees phase disparity was used as a measure of the matching performance as other parameters of the Gabor were varied. Both absolute and relative contrast were shown to influence the perceived sign of matches. Critical envelope size was also found to decrease as a function of spatial frequency, but more slowly than a phase-based limit would predict. These data cannot be predicted by current models of stereopsis, and can be used to constrain future models. PMID:10720662
Two dimensionality in quasi-one-dimensional cobalt oxides
NASA Astrophysics Data System (ADS)
Sugiyama, J.; Nozaki, H.; Brewer, J. H.; Ansaldo, E. J.; Morris, G. D.; Takami, T.; Ikuta, H.; Mizutani, U.
2006-03-01
Magnetism of quasi-one-dimensional (1D) cobalt oxides ACoO ( A=Ca, Sr and Ba, n=1-5 and ∞) was investigated by μ+SR using polycrystalline samples, at temperatures from 300 K down to 1.8 K. The wTF- μ+SR experiments showed the existence of a magnetic transition in all six samples investigated. The onset temperature of the transition (Tcon) was found to decrease with n; that is, 100±25, 90±10, 85±10, 65±10 50±10, and 15±1 K for n=1-5, and ∞, respectively. In particular, for the samples with n=2-5, Tcon was detected only by the present μ+SR measurements. A muon spin oscillation was clearly observed in both Ca 3Co 2O 6(n=1) and BaCoO 3(n=∞), whereas only a fast relaxation is apparent even at 1.8 K in the other four samples ( n=2-5). Taking together with the fact that the paramagnetic Curie temperature ranges from -150 to -200 K for the compound with n=2 and 3, the μ+SR result indicates that a two-dimensional (2D) short-range antiferromagnetic (AF) order, which has been thought to be unlikely to exist at high T due to a relatively strong 1D F interaction, appears below Tcon for all compounds with n=1-5; but quasi-static long-range AF order formed only in Ca 3Co 2O 6, below 25 K. For BaCoO 3(n=∞), as T decreased from 300 K, 1D F order appeared below 53 K, and a sharp 2D AF transition occurred at 15 K.
Quench dynamics in one-dimensional quantum systems
NASA Astrophysics Data System (ADS)
Lancaster, Jarrett L.
The possibility of simulating non-equilibrium physics using cold atomic systems motivates many open questions regarding the dynamics of systems whose equilibrium properties are well understood. We first consider the non-equilibrium dynamics in a one-dimensional quantum spin chain by arranging the spins in an inhomogeneous initial state by application of a spatially varying magnetic field and rapidly switching off the field, also allowing for a sudden change in the interaction strength. The non-interacting case is treated exactly. To treat interactions, we employ a low-energy bosonization approach which correctly reproduces the long-time behavior in the non-interacting case. Depending on the strength of interactions, we find two different types of behavior. In the gapless region, expansion of the domain wall is ballistic. In the gapped phase, time evolution is substantially more complicated. To explore the time evolution within a gapped system, we turn our attention to a numerical investigation of a more general, low-energy theory: the quantum sine-Gordon model. Beginning with a domain wall density configuration, we study dynamics using the semi-classical truncated Wigner approximation. The numerical study is complemented by an analytical investigation of how an initial current-carrying state evolves when an energy gap is suddenly switched on. Both approaches reveal the persistence of some part of the initial current in the long-time limit. Finally, we apply the random phase approximation to treat weak interactions in a system of fermions after an interaction quench. We study how collective modes are modified by the quench. Compared to equilibrium, we find an enhanced particle-hole continuum which damps the collective mode for attractive interactions, while a single undamped mode survives for repulsive interactions. The situation is also investigated in the presence of a current.
Spectroscopy of one-dimensionally inhomogeneous media with quadratic nonlinearity
Golubkov, A A; Makarov, Vladimir A
2011-11-30
We present a brief review of the results of fifty years of development efforts in spectroscopy of one-dimensionally inhomogeneous media with quadratic nonlinearity. The recent original results obtained by the authors show the fundamental possibility of determining, from experimental data, the coordinate dependences of complex quadratic susceptibility tensor components of a onedimensionally inhomogeneous (along the z axis) medium with an arbitrary frequency dispersion, if the linear dielectric properties of the medium also vary along the z axis and are described by a diagonal tensor of the linear dielectric constant. It is assumed that the medium in question has the form of a plane-parallel plate, whose surfaces are perpendicular to the direction of the inhomogeneity. Using the example of several components of the tensors X{sup (2)}(z, {omega}{sub 1} {+-} {omega}{sub 2}; {omega}{sub 1}, {+-} {omega}{sub 2}), we describe two methods for finding their spatial profiles, which differ in the interaction geometry of plane monochromatic fundamental waves with frequencies {omega}{sub 1} and {omega}{sub 2}. The both methods are based on assessing the intensity of the waves propagating from the plate at the sum or difference frequency and require measurements over a range of angles of incidence of the fundamental waves. Such measurements include two series of additional estimates of the intensities of the waves generated under special conditions by using the test and additional reference plates, which eliminates the need for complicated phase measurements of the complex amplitudes of the waves at the sum (difference) frequency.
Contaminant transport model validation: The Oak Ridge Reservation
Lee, R.R.; Ketelle, R.H.
1988-09-01
In the complex geologic setting on the Oak Ridge Reservation, hydraulic conductivity is anisotropic and flow is strongly influenced by an extensive and largely discontinuous fracture network. Difficulties in describing and modeling the aquifer system prompted a study to obtain aquifer property data to be used in a groundwater flow model validation experiment. Characterization studies included the performance of an extensive suite of aquifer test within a 600-square-meter area to obtain aquifer property values to describe the flow field in detail. Following aquifer test, a groundwater tracer test was performed under ambient conditions to verify the aquifer analysis. Tracer migration data in the near-field were used in model calibration to predict tracer arrival time and concentration in the far-field. Despite the extensive aquifer testing, initial modeling inaccurately predicted tracer migration direction. Initial tracer migration rates were consistent with those predicted by the model; however, changing environmental conditions resulted in an unanticipated decay in tracer movement. Evaluation of the predictive accuracy of groundwater flow and contaminant transport models on the Oak Ridge Reservation depends on defining the resolution required, followed by field testing and model grid definition at compatible scales. The use of tracer tests, both as a characterization method and to verify model results, provides the highest level of resolution of groundwater flow characteristics. 3 refs., 4 figs.
Modeling uranium transport in acidic contaminated groundwater with base addition
Zhang, Fan; Luo, Wensui; Parker, Jack C.; Brooks, Scott C; Watson, David B; Jardine, Philip; Gu, Baohua
2011-01-01
This study investigates reactive transport modeling in a column of uranium(VI)-contaminated sediments with base additions in the circulating influent. The groundwater and sediment exhibit oxic conditions with low pH, high concentrations of NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, U and various metal cations. Preliminary batch experiments indicate that additions of strong base induce rapid immobilization of U for this material. In the column experiment that is the focus of the present study, effluent groundwater was titrated with NaOH solution in an inflow reservoir before reinjection to gradually increase the solution pH in the column. An equilibrium hydrolysis, precipitation and ion exchange reaction model developed through simulation of the preliminary batch titration experiments predicted faster reduction of aqueous Al than observed in the column experiment. The model was therefore modified to consider reaction kinetics for the precipitation and dissolution processes which are the major mechanism for Al immobilization. The combined kinetic and equilibrium reaction model adequately described variations in pH, aqueous concentrations of metal cations (Al, Ca, Mg, Sr, Mn, Ni, Co), sulfate and U(VI). The experimental and modeling results indicate that U(VI) can be effectively sequestered with controlled base addition due to sorption by slowly precipitated Al with pH-dependent surface charge. The model may prove useful to predict field-scale U(VI) sequestration and remediation effectiveness.
One-Dimensional Poole-Frenkel Conduction in the Single Defect Limit.
Pan, Deng; Fuller, Elliot J; Gül, O Tolga; Collins, Philip G
2015-08-12
A single point defect surrounded on either side by quasi-ballistic, semimetallic carbon nanotube is a nearly ideal system for investigating disorder in one-dimensional (1D) conductors and comparing experiment to theory. Here, individual single-walled nanotubes (SWNTs) are investigated before and after the incorporation of single point defects. Transport and local Kelvin Probe force microscopy independently demonstrate high-resistance depletion regions over 1.0 μm wide surrounding one point defect in semimetallic SWNTs. Transport measurements show that conductance through such wide depletion regions occurs via a modified, 1D version of Poole-Frenkel field-assisted emission. Given the breadth of theory dedicated to the possible effects of disorder in 1D systems, it is surprising that a Poole-Frenkel mechanism appears to describe defect scattering and resistance in this semimetallic system. PMID:26189911
Moment-Preserving SN Discretizations for the One-Dimensional Fokker-Planck Equation
Warsa, James S.; Prinja, Anil K.
2012-06-14
The Fokker-Planck equation: (1) Describes the transport and interactions of charged particles, (2) Many small-angle scattering collisions, (3) Asymptotic limit of the Boltzmann equation (Pomraning, 1992), and (4) The Boltzmann collision operator becomes the angular Laplacian. SN angular discretization: (1) Angular flux is collocated at the SN quadrature points, (2) The second-order derivatives in the Laplacian term must be discretized, and (3) Weighted finite-difference method preserves zeroth and first moments (Morel, 1985). Moment-preserving methods: (1) Collocate the Fokker-Planck operator at the SN quadrature points, (2) Develop several related and/or equivalent methods, and (3) Motivated by discretizations for the angular derivative appearing in the transport equation in one-dimensional spherical coordinates.
MULTI-IFE-A one-dimensional computer code for Inertial Fusion Energy (IFE) target simulations
NASA Astrophysics Data System (ADS)
Ramis, R.; Meyer-ter-Vehn, J.
2016-06-01
The code MULTI-IFE is a numerical tool devoted to the study of Inertial Fusion Energy (IFE) microcapsules. It includes the relevant physics for the implosion and thermonuclear ignition and burning: hydrodynamics of two component plasmas (ions and electrons), three-dimensional laser light ray-tracing, thermal diffusion, multigroup radiation transport, deuterium-tritium burning, and alpha particle diffusion. The corresponding differential equations are discretized in spherical one-dimensional Lagrangian coordinates. Two typical application examples, a high gain laser driven capsule and a low gain radiation driven marginally igniting capsule are discussed. In addition to phenomena relevant for IFE, the code includes also components (planar and cylindrical geometries, transport coefficients at low temperature, explicit treatment of Maxwell's equations) that extend its range of applicability to laser-matter interaction at moderate intensities (<1016 W cm-2). The source code design has been kept simple and structured with the aim to encourage user's modifications for specialized purposes.
Decoherence-induced conductivity in the one-dimensional Anderson model
Stegmann, Thomas; Wolf, Dietrich E.; Ujsághy, Orsolya
2014-08-20
We study the effect of decoherence on the electron transport in the one-dimensional Anderson model by means of a statistical model [1, 2, 3, 4, 5]. In this model decoherence bonds are randomly distributed within the system, at which the electron phase is randomized completely. Afterwards, the transport quantity of interest (e.g. resistance or conductance) is ensemble averaged over the decoherence configurations. Averaging the resistance of the sample, the calculation can be performed analytically. In the thermodynamic limit, we find a decoherence-driven transition from the quantum-coherent localized regime to the Ohmic regime at a critical decoherence density, which is determined by the second-order generalized Lyapunov exponent (GLE) [4].
Coulomb drag between one-dimensional electron systems
NASA Astrophysics Data System (ADS)
Muhammad, Mustafa
We have measured Coulomb drag (CD) between two spatially separated and electrically isolated one-dimensional (1D) wires to study the Luttinger liquid (LL) state in 1D systems. We have fabricated dual-wire CD devices with long quantum wires (≥ 1 microm) and short quantum wires (≤ 500 nm) with respect to the thermal lengths. The devices are made from high-mobility (≅10 6cm2/Vs) two-dimensional electron gas (2DEG) in AlGaAs/GaAs heterostructures, using high-resolution e-beam lithography, combined with metal deposition by e-beam evaporation to form surface Schottky gates. Peak in drag voltage occurs when the subband bottoms of the lowest energy subbands of the drive and the drag wires line up with each other and the Fermi level. We have observed drag on 1 microm device at 22 mK temperature which is found to be reminiscent of the drag observed earlier on a 2 microm device. An extensive reanalysis of the drag results obtained on the 2 microm device indicates a power-law temperature dependence of drag for both identical and non-identical wires. Also drag is found to decay exponentially with the mismatch between the wires. These properties indicate the existence of Luttinger liquid (LL) state in the long wire device. We have observed positive and negative drags on short wire devices. The observed temperature dependence of drag resistance, for both positive and negative drags, shows first an increase, followed by a constant plateau and finally a decrease as the temperature is increased. This is in line with the predictions of the Fermi--Luttinger liquid (FLL) forward momentum transfer theory. This is the first experimental observation of 1D Coulomb drag due to forward momentum transfer between wires. A negative drag between same type of carriers (holes or electrons) may conceivably result from forward momentum transfer or forward scattering if the band curvature of the drag wire at or near the Fermi point is negative. Negative band curvature may result from asymmetry
Coulomb drag between one-dimensional electron systems
NASA Astrophysics Data System (ADS)
Muhammad, Mustafa
We have measured Coulomb drag (CD) between two spatially separated and electrically isolated one-dimensional (1D) wires to study the Luttinger liquid (LL) state in 1D systems. We have fabricated dual-wire CD devices with long quantum wires (≥ 1 mum) and short quantum wires (≤ 500 nm) with respect to the thermal lengths. The devices are made from high-mobility (≅106cm2/Vs) two-dimensional electron gas (2DEG) in AlGaAs/GaAs heterostructures, using high-resolution e-beam lithography, combined with metal deposition by e-beam evaporation to form surface Schottky gates. Peak in drag voltage occurs when the subband bottoms of the lowest energy subbands of the drive and the drag wires line up with each other and the Fermi level. We have observed drag on 1 mum device at 22 mK temperature which is found to be reminiscent of the drag observed earlier on a 2 mum device. An extensive reanalysis of the drag results obtained on the 2 mum device indicates a power-law temperature dependence of drag for both identical and non-identical wires. Also drag is found to decay exponentially with the mismatch between the wires. These properties indicate the existence of Luttinger liquid (LL) state in the long wire device. We have observed positive and negative drags on short wire devices. The observed temperature dependence of drag resistance, for both positive and negative drags, shows first an increase, followed by a constant plateau and finally a decrease as the temperature is increased. This is in line with the predictions of the Fermi-Luttinger liquid (FLL) forward momentum transfer theory. This is the first experimental observation of 1D Coulomb drag due to forward momentum transfer between wires. A negative drag between same type of carriers (holes or electrons) may conceivably result from forward momentum transfer or forward scattering if the band curvature of the drag wire at or near the Fermi point is negative. Negative band curvature may result from asymmetry in the wire
Molecular Self-Assembly into One-Dimensional Nanostructures
PALMER, LIAM C.; STUPP, SAMUEL I.
2008-01-01
CONSPECTUS Self-assembly of small molecules into one-dimensional nanostructures offers many potential applications in electronically and biologically active materials. The recent advances discussed in this Account demonstrate how researchers can use the fundamental principles of supramolecular chemistry to craft the size, shape, and internal structure of nanoscale objects. In each system described here, we used atomic force microscopy (AFM) and transmission electron microscopy (TEM) to study the assembly morphology. Circular dichroism, nuclear magnetic resonance, infrared, and optical spectroscopy provided additional information about the self-assembly behavior in solution at the molecular level. Dendron rod–coil molecules self-assemble into flat or helical ribbons. They can incorporate electronically conductive groups and can be mineralized with inorganic semiconductors. To understand the relative importance of each segment in forming the supramolecular structure, we synthetically modified the dendron, rod, and coil portions. The self-assembly depended on the generation number of the dendron, the number of hydrogen-bonding functions, and the length of the rod and coil segments. We formed chiral helices using a dendron–rod–coil molecule prepared from an enantiomerically enriched coil. Because helical nanostructures are important targets for use in biomaterials, nonlinear optics, and stereoselective catalysis, researchers would like to precisely control their shape and size. Tripeptide-containing peptide lipid molecules assemble into straight or twisted nanofibers in organic solvents. As seen by AFM, the sterics of bulky end groups can tune the helical pitch of these peptide lipid nanofibers in organic solvents. Furthermore, we demonstrated the potential for pitch control using trans-to-cis photoisomerization of a terminal azobenzene group. Other molecules called peptide amphiphiles (PAs) are known to assemble in water into cylindrical nanostructures that
One-dimensional optical wave turbulence: Experiment and theory
NASA Astrophysics Data System (ADS)
Laurie, Jason; Bortolozzo, Umberto; Nazarenko, Sergey; Residori, Stefania
2012-05-01
We present a review of the latest developments in one-dimensional (1D) optical wave turbulence (OWT). Based on an original experimental setup that allows for the implementation of 1D OWT, we are able to show that an inverse cascade occurs through the spontaneous evolution of the nonlinear field up to the point when modulational instability leads to soliton formation. After solitons are formed, further interaction of the solitons among themselves and with incoherent waves leads to a final condensate state dominated by a single strong soliton. Motivated by the observations, we develop a theoretical description, showing that the inverse cascade develops through six-wave interaction, and that this is the basic mechanism of nonlinear wave coupling for 1D OWT. We describe theory, numerics and experimental observations while trying to incorporate all the different aspects into a consistent context. The experimental system is described by two coupled nonlinear equations, which we explore within two wave limits allowing for the expression of the evolution of the complex amplitude in a single dynamical equation. The long-wave limit corresponds to waves with wave numbers smaller than the electrical coherence length of the liquid crystal, and the opposite limit, when wave numbers are larger. We show that both of these systems are of a dual cascade type, analogous to two-dimensional (2D) turbulence, which can be described by wave turbulence (WT) theory, and conclude that the cascades are induced by a six-wave resonant interaction process. WT theory predicts several stationary solutions (non-equilibrium and thermodynamic) to both the long- and short-wave systems, and we investigate the necessary conditions required for their realization. Interestingly, the long-wave system is close to the integrable 1D nonlinear Schrödinger equation (NLSE) (which contains exact nonlinear soliton solutions), and as a result during the inverse cascade, nonlinearity of the system at low wave
Quasi-One-Dimensional Modeling of Pulse Detonation Rocket Engines
NASA Technical Reports Server (NTRS)
Morris, Christopher I.
2002-01-01
. While such a nozzle is a considerable idealization, it is clear that nozzle design and optimization will play a critical role in whether the performance potential of PDREs can be effectively realized in practice. In order to study PDRE nozzle issues with greater accuracy, a quasi-one-dimensional, finite-rate chemistry CFD code has been developed by the author. Comparisons of the code with both the previous MOC model and experimental data from Stanford University are reported. The effect of constant-gamma and finite-rate chemistry assumptions on the flowfield and performance is examined. Parametric studies of the effect of nozzle throat size and expansion ratio, at various blowdown pressure ratios, are reported.
CONTAMINATION OF U. S. ARCTIC ECOSYSTEMS BY LONG-RANGE TRANSPORT OF ATMOSPHERIC CONTAMINANTS
Various kinds of atmospheric pollutants are found in Arctic environments, including organic contaminants, radionuclides, and pollutants associated with fossil fuel combustion, smelting, and industrial development. hile some of these contaminants originate in the Arctic itself, ot...
Chen, Kuo-Fu
1996-11-01
The health risks for an individual exposed to contaminants released from SRS outfalls from 1989 to 1995 were estimated. The exposure pathways studied are ingestion of drinking water, ingestion of contaminated fish and dermal contact with contaminants in water while swimming. The estimated incremental risks for an individual developing cancer vary from 3.E-06 to 1.0E-05. The estimated total exposure chronic noncancer hazard indices vary from 6.E-02 to 1.E-01. The critical contaminants were ranked based on their cancer risks and chronic noncarcinogenic hazard quotients. For cancer risks, the critical contaminants released from SRS outfalls are arsenic, tetrachloroethylene, and benzene. For chronic noncarcinogenic risks, the critical contaminants released from srs outfalls are cadmium, arsenic, silver, chromium, mercury, selenium, nitrate, manganese, zinc, nickel, uranium, barium, copper, tetrachloroethylene, cyanide, and phenol. The critical pathways in decreasing risk order are ingestion of contaminated fish, ingestion of drinking water and dermal contact with contaminants in water while swimming.
Magnetotransport in a quasi-one-dimensional electron system on superfluid helium
NASA Astrophysics Data System (ADS)
Nikolaenko, B. A.; Kovdrya, Yu. Z.; Gladchenko, S. P.
2002-11-01
Magnetotransport in a nondegenerate quasi-one-dimensional electron system on superfluid helium is investigated experimentally. The measurements are performed in perpendicular magnetic fields B⩽2.6 T in the temperature range 0.48-2.05 K with 100-400 nm wide conducting channels. In the region where the carriers are scattered by the helium atoms in the vapor (T>0.9 K) and in the region where the electrons are scattered by ripplons (T<0.9 K) the longitudinal component ρxx of the magnetoresistance of the conducting channels predominantly increases with B. The experimental data in the region of carrier scattering by helium atoms in the vapor agree with the classical Drude law, and in the quantum transport regime with ωcτ>1 (ωc is the cyclotron frequency and τ is the relaxation time of the electron system) the self-consistent Born approximation for a 2D electron system above helium gives a qualitative explanation of the data. It is conjectured that the quantitative differences between the experimental data and the theoretical calculations are due to the difference of the specific features between the experimentally studied and theoretically analyzed systems. The experimental values of the electron mobilities at low temperatures and in weak magnetic fields agree with theoretical calculations for a quasi-one-dimensional system. Weak carrier localization in the experimental electron system explains the negative magnetoresistance of the conducting channels, which was observed in the gas and ripplon carrier scattering regions.
The physicist's companion to current fluctuations: one-dimensional bulk-driven lattice gases
NASA Astrophysics Data System (ADS)
Lazarescu, Alexandre
2015-12-01
One of the main features of statistical systems out of equilibrium is the currents they exhibit in their stationary state: microscopic currents of probability between configurations, which translate into macroscopic currents of mass, charge, etc. Understanding the general behaviour of these currents is an important step towards building a universal framework for non-equilibrium steady states akin to the Gibbs-Boltzmann distribution for equilibrium systems. In this review, we consider one-dimensional bulk-driven particle gases, and in particular the asymmetric simple exclusion process (ASEP) with open boundaries, which is one of the most popular models of one-dimensional transport. We focus, in particular, on the current of particles flowing through the system in its steady state, and on its fluctuations. We show how one can obtain the complete statistics of that current, through its large deviation function, by combining results from various methods: exact calculation of the cumulants of the current, using the integrability of the model; direct diagonalization of a biased process in the limits of very high or low current; hydrodynamic description of the model in the continuous limit using the macroscopic fluctuation theory. We give a pedagogical account of these techniques, starting with a quick introduction to the necessary mathematical tools, as well as a short overview of the existing works relating to the ASEP. We conclude by drawing the complete dynamical phase diagram of the current. We also remark on a few possible generalizations of these results.
Applications of One-Dimensional Nanomaterials for Stretchable Electronics
NASA Astrophysics Data System (ADS)
Xu, Feng
Electronics that can be stretched and/or conformal to curvilinear surfaces has recently attracted broad attention. Success of stretchable electronics depends on the availability of electronic materials and structures that can be highly stretched, compressed, bent, and twisted. One-dimensional (1D) nanomaterials are expected to aid the development of the stretchable electronic systems by improving performance, expanding integration possibilities, and potentially lowering cost, due to their superior mechanical/electronic/optical properties, high aspect ratios, and compatibility with bulk synthesis. This dissertation is primarily focused on the application of 1D nanomaterials, including silicon nanowires (SiNWs), carbon nanotubes (CNTs) and silver nanowires (AgNWs) for stretchable electronics. The mechanical properties of SiNWs, grown by the vapor-liquid-solid process, were first studied with in situ tensile tests inside a scanning electron microscope (SEM). It was found that the fracture strain increased from 2.7% to about 12% when the NW diameter decreased from 60 to 15 nm. The Young's modulus decreased while the fracture strength increased up to 12.2 GPa, as the nanowire diameter decreased. The fracture strength also increased with the decrease of the side surface area. Repeated loading and unloading during tensile tests demonstrated that the nanowires are linear elastic until fracture without appreciable plasticity. Then, SiNW coils were fabricated on elastomeric substrates by a controlled buckling process. SiNWs were first transferred onto prestrained and ultraviolet/ozone (UVO)-treated poly(dimethylsiloxane) (PDMS) substrates and buckled upon release of the prestrain. Two buckling modes (the in-plane wavy mode and the three-dimensional coiled mode) were found; a transition between them was achieved by controlling the UVO treatment of PDMS. Structural characterization revealed that the NW coils were oval-shaped. The oval-shaped NW coils exhibited very large
Malve, Olli; Salo, Simo; Verta, Matti; Forsius, John
2003-08-01
River Kymijoki, the fourth largest river in Finland, has been heavily polluted by pulp mill effluents as well as by chemical industry. Loading has been reduced considerably, although remains of past emissions still exist in river sediments. The sediments are highly contaminated with polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated diphenyl ethers (PCDEs), and mercury originating from production of the chlorophenolic wood preservative (Ky-5) and other sources. The objective of this study was to simulate the transport of these PCDD/F compounds with a one-dimensional flow and transport model and to assess the impact of restoration dredging. Using the estimated trend in PCDD/F loading, downstream concentrations were calculated until 2020. If contaminated sediments are removed by dredging, the temporary increase of PCDD/F concentrations in downstream water and surface sediments will be within acceptable limits. Long-term predictions indicated only a minor decrease in surface sediment concentrations but a major decrease if the most contaminated sediments close to the emission source were removed. A more detailed assessment of the effects is suggested. PMID:12966989
Electron supercollimation in graphene using one-dimensional disorder potentials
NASA Astrophysics Data System (ADS)
Choi, Sangkook; Park, Cheol-Hwan; Louie, Steven G.
2014-03-01
Due to its unique electronic structure, electrons in graphene interact with external potential in a counter-intuitive way, manifesting various different interesting characteristics Here we present another surprising, counter-intuitive electron transport phenomenon in graphene. We discovered that electron supercollimation can be induced by 1D disorder potentials. An electron wave packet is guided to propagate undistorted along the fluctuating direction of the external disorder potential, independent of its initial motion. The more disorder, the better is the supercollimation. This robust novel phenomenon is expected to have significant implications in the fundamental understanding of transport in graphene, as well as other materials with Dirac cone physics, and the potential to be exploited in the design of devices based on these materials. This work was supported by NSF grant No. DMR10-1006184 and U.S. DOE under Contract No. DE-AC02-05CH11231. Computational resources have been provided by NERSC.
Chemical contaminants in the Wadden Sea: Sources, transport, fate and effects
NASA Astrophysics Data System (ADS)
Laane, R. W. P. M.; Vethaak, A. D.; Gandrass, J.; Vorkamp, K.; Köhler, A.; Larsen, M. M.; Strand, J.
2013-09-01
The Wadden Sea receives contaminants from various sources and via various transport routes. The contaminants described in this overview are various metals (Cd, Cu, Hg, Pb and Zn) and various organic contaminants (polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and lindane (hexachlorocyclohexane, γ-HCH)). In addition, information is presented about other and emerging contaminants such as antifouling biocides (e.g. TBT and Irgarol), brominated flame retardants (BFRs), poly- and perfluorinated compounds (PFCs) and pharmaceutical and personal care products (PPCPs). Special attention is given to biogeochemical processes that contribute to the mobilization of contaminants in the surface sediments of the Wadden Sea. Finally, the effects on organisms of contaminants are reviewed and discussed. The main source of contaminants in the Wadden Sea are the rivers Rhine (via de Dutch coastal zone), Elbe and Weser. The Wadden Sea is not a sink for contaminants and adsorbed contaminants are transported from east to west. The surface sediments of the Wadden Sea are an important source for contaminants to the water above. The input and concentration of most contaminants have significantly decreased in water, sediments, organisms (e.g., mussel, flounder and bird eggs) in various parts of the Wadden Sea in the last three decades. Remarkably, the Cd concentration in mussels is increasing the last decades. In recent decades, the effects of contaminants on organisms (e.g., flounder, seal) have fallen markedly. Most of the affected populations have recovered, except for TBT induced effects in snails. Little is known about the concentration and effects of most emerging contaminants and the complex environmental mixtures of contaminants. It is recommended to install an international coordinated monitoring programme for contaminants and their effects in the whole Wadden Sea and to identify the chemical contaminants that really cause the effect.
Fabrication and characterization of one dimensional zinc oxide nanostructures
NASA Astrophysics Data System (ADS)
Cheng, Chun
In this thesis, one dimensional (1D) ZnO nanostructures with controlled morphologies, defects and alignment have been fabricated by a simple vapor transfer method. The crystal structures, interfaces, growth mechanisms and optical properties of ZnO nanostructures have been investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy. Great efforts have been devoted to the patterned growth and assembly of ZnO nanostructures as well as the stability of ZnO nanowires (NWs). Using carbonized photoresists, a simple and very effective method has been developed for fabricating and patterning high-quality ZnO NW arrays. ZnO NWs from this method show excellent alignment, crystal quality, and optical properties that are independent of the substrates. The carbonized photoresists provide perfect nucleation sites for the growth of aligned ZnO NWs and also perfectly connect to the NWs to form ideal electrodes. This approach is further extended to realize large area growth of different forms of ZnO NW arrays (e.g., the horizontal growth and multilayered ZnO NW arrays) on other kinds of carbon-based materials. In addition, the as-synthesized vertically aligned ZnO NW arrays show a low weighted reflectance (Rw) and can be used as antireflection coatings. Moreover, non c-axis growth of 1D ZnO nanostructures (e.g., nanochains, nanobrushes and nanobelts) and defect related 1D ZnO nanostructures (e.g., Y-shaped twinned nanobelts and hierarchical nanostructures decorated by flowers induced by screw dislocations) is also present. Using direct oxidization of pure Zn at high temperatures in air, uniformed ZnO NWs and tetrapods have been fabricated. The spatially-resolved PL study on these two kinds of nanostructures suggests that the defects leading to the green luminescence (GL) should originate from the structural changes along the legs of the tetrapods. Surface defects in these ZnO nanostructures play an unimportant
Porous one-dimensional nanostructures through confined cooperative self-assembly.
Bai, Feng; Sun, Zaicheng; Wu, Huimeng; Haddad, Raid E; Coker, Eric N; Huang, Jian Yu; Rodriguez, Mark A; Fan, Hongyou
2011-12-14
We report a simple confined self-assembly process to synthesize nanoporous one-dimensional photoactive nanostructures. Through surfactant-assisted cooperative interactions (e.g., π-π stacking, ligand coordination, and so forth) of the macrocyclic building block, zinc meso-tetra (4-pyridyl) porphyrin (ZnTPyP), self-assembled ZnTPyP nanowires and nanorods with controlled diameters and aspect ratios are prepared. Electron microscopy characterization in combination with X-ray diffraction and gas sorption experiments indicate that these materials exhibit stable single-crystalline and high surface area nanoporous frameworks with well-defined external morphology. Optical characterizations using UV-vis spectroscopy and fluorescence imaging and spectroscopy show enhanced collective optical properties over the individual chromophores (ZnTPyP), favorable for exciton formation and transport. PMID:22082076
Quasi-One Dimensional Analogues of BiS2-Based Superconductors
NASA Astrophysics Data System (ADS)
Panella, Jessica; Chamorro, Juan; McQueen, Tyrel
Many recently-reported superconductors have layered structures consisting of superconducting planes separated by insulating charge reservoir layers. Studies linking the width of the blocking layer to the critical temperature of the superconductivity onset draw a direct connection from the superconducting properties to the structure. We report three new compounds (Sr2O2Bi2Se3, Ba2O2Bi2Se3, and Sr2O2Sb2Se3) which are quasi-one dimensional analogues of the bismuth sulfide and bismuth selenide superconductors, providing a unique opportunity to study the role of dimensionality on superconductivity. The physical properties of the compounds were studied via magnetic susceptibility, thermal transport, resistivity, and heat capacity. This work is supported by a Cottrell Research Scholar Fellowship.
Bernate, Jorge A; Drazer, German
2012-05-25
We present a comprehensive description of vector chromatography (VC) that includes deterministic and stochastic transport in one-dimensional periodic free-energy landscapes, with both energetic and entropic contributions, and identifies the parameters governing the deflection angle. We also investigate the dependence of the deflection angle on the shape of the free-energy landscape by varying the width of the linear transitions in an otherwise dichotomous potential. Finally, we present experimental results obtained in a microfluidic system in which gravity drives the suspended particles and, in combination with a bottom surface patterned with shallow rectangular grooves, creates a periodic landscape of (potential) energy barriers. The experiments validate the model and demonstrate that a simple, passive microdevice can lead to VC of colloidal particles based on both size and density. More generally, other fields, e.g., electric, dielectrophoretic, or magnetic, can play or enhance the role of gravity, potentially leading to a versatile technique. PMID:23003265
Properties of the stratospheric aerosol layer studied with a one-dimensional computer model
NASA Technical Reports Server (NTRS)
Turco, R. P.; Toon, O. B.; Whitten, R. C.; Hamill, P.; Kiang, C. S.
1978-01-01
Aerosol particle effects are often neglected in theoretical studies of stratospheric phenomena. In reality, the particulate matter normally found above the tropopause may influence the terrestrial radiation balance, catalyze heterogeneous chemical interactions, and serve as a tracer of atmospheric motions. The paper proposes a one-dimensional model of the stratospheric aerosol layer, and it is used to compare aerosol theory with observational data. The model considers gaseous sulfur photochemistry and the physical aerosol processes of nucleation, coagulation, sedimentation, and diffusion. Calculations of the effects on the aerosol layer of stratospheric injections of aluminum oxide particles by Space Shuttle engines and of sulfur dioxide molecules by volcanic activity are performed. The relation between measured aerosol variability and changes in stratospheric air temperatures and vertical transport rates are discussed.
A one-dimensional time-dependent model of the magnetized ionosphere of Venus
NASA Astrophysics Data System (ADS)
Shinagawa, H.; Cravens, T. E.; Nagy, A. F.
1987-07-01
The behavior and time evolution of the large-scale magnetic fields and ionospheric plasma of the dayside Venus ionosphere were studied using a one-dimensional model. The coupled continuity, momentum, and Maxwell's equations were solved simultaneously for three ions (O+, O2+, H+) and the magnetic field. The CO2+ ion was included photochemically. The calculated magnetic field profiles are in good agreement with observations made by the Pioneer Venus orbiter magnetometer. Good agreement was also obtained between the calculated and observed plasma densities for altitudes below 250 km including the electron density "ledge" near 190 km in magnetized ionospheres. However, the significant disagreement between the calculated and observed plasma densities at high altitudes suggests that under magnetized conditions, horizontal transport processes become important in removing the plasma and/or the magnetic field even in the subsolar region.
Violation of the Wiedemann-Franz law for one-dimensional ultracold atomic gases
NASA Astrophysics Data System (ADS)
Filippone, Michele; Hekking, Frank; Minguzzi, Anna
2016-01-01
We study energy and particle transport for one-dimensional strongly interacting bosons through a ballistic single channel connecting two atomic reservoirs. We show the emergence of particle- and energy-current separation, leading to the violation of the Wiedemann-Franz law. As a consequence, we predict different time scales for the equilibration of temperature and particle imbalances between the reservoirs. Going beyond the linear spectrum approximation, we show the emergence of thermoelectric effects, which could be controlled by either tuning interactions or the temperature. Our results describe, in a unified picture, fermions in condensed-matter devices and bosons in ultracold atom setups. We conclude by discussing the effects of a controllable disorder.
The role of spatially variable stream hydraulics in reach scale, one-dimensional solute predictions
NASA Astrophysics Data System (ADS)
Schmadel, N. M.; Neilson, B. T.; Heavilin, J.; Worman, A. L.
2013-12-01
Estimating channel properties spatially to represent hydraulics is fundamental to predicting the fate and transport of heat and solutes at reach scales. Without these estimates our spatial understanding of other key physical transport processes, such as transient storage, is incomplete. Currently, the amount of detail necessary for proper reach segmentation to capture the variability in stream hydraulics and the associated influence on solute transport is lacking. To address this challenge, we derived closed form solutions to temporal moments of a one-dimensional two-zone transient storage stream transport model. These moment solutions are functions of hydraulic and other model parameters and can account for the spatial variation for different reach length averages. With the use of high-resolution spatial information to estimate parameters, we look at the influence of increasing the number of reach segments and therefore, spatial detail, on the moments. We found that at a certain number of distinct reach segments, each moment estimate begins to converge on itself and indicates that further segmentation of the reach is not necessary to improve the representation of hydraulic parameters. This application of moment solutions to establish appropriate reach scales ensures minimal impact of hydraulic variability on solute predictions where the criteria for convergence is the resolution of spatial detail. Ultimately, this can lead to more confidence when estimating transient storage parameters.
Wingert, Matthew C; Chen, Zack C Y; Kwon, Shooshin; Xiang, Jie; Chen, Renkun
2012-02-01
Thermal conductivity of one-dimensional nanostructures, such as nanowires, nanotubes, and polymer chains, is of significant interest for understanding nanoscale thermal transport phenomena as well as for practical applications in nanoelectronics, energy conversion, and thermal management. Various techniques have been developed during the past decade for measuring this fundamental quantity at the individual nanostructure level. However, the sensitivity of these techniques is generally limited to 1 × 10(-9) W∕K, which is inadequate for small diameter nanostructures that potentially possess thermal conductance ranging between 10(-11) and 10(-10) W∕K. In this paper, we demonstrate an experimental technique which is capable of measuring thermal conductance of ∼10(-11) W∕K. The improved sensitivity is achieved by using an on-chip Wheatstone bridge circuit that overcomes several instrumentation issues. It provides a more effective method of characterizing the thermal properties of smaller and less conductive one-dimensional nanostructures. The best sensitivity experimentally achieved experienced a noise equivalent temperature below 0.5 mK and a minimum conductance measurement of 1 × 10(-11) W∕K. Measuring the temperature fluctuation of both the four-point and bridge measurements over a 4 h time period shows a reduction in measured temperature fluctuation from 100 mK to 0.6 mK. Measurement of a 15 nm Ge nanowire and background conductance signal with no wire present demonstrates the increased sensitivity of the bridge method over the traditional four-point I-V measurement. This ultra-sensitive measurement platform allows for thermal measurements of materials at new size scales and will improve our understanding of thermal transport in nanoscale structures. PMID:22380117
Technology Transfer Automated Retrieval System (TEKTRAN)
Improving strategies for monitoring subsurface contaminant transport includes performance comparison of competing models, developed independently or obtained via model abstraction. Model comparison and parameter discrimination involve specific performance indicators selected to better understand s...
Investigations at Pinal Creek, Arizona, evaluated routine sampling procedures for determination of aqueous inorganic geochemistry and assessment of contaminant transport by colloidal mobility. Sampling variables included pump type and flow rate, collection under air or nitrogen,...
Effects of lag and maximum growth in contaminant transport and biodegradation modeling
Wood, B.D.; Dawson, C.N.
1992-06-01
The effects of time lag and maximum microbial growth on biodegradation in contaminant transport are discussed. A mathematical model is formulated that accounts for these effects, and a numerical case study is presented that demonstrates how lag influences biodegradation.
Configuration Management Plan for Long Length Contaminated Equipment Receiver and Transport Trailers
DALE, R.N.
2000-05-01
Long Length Contaminated Equipment Removal System Receiver Trailer and Transport Trailer require a configuration management plan for design, requirements and operations baseline documents. This report serves as the plan for the Trailers.
Configuration Management Plan for Long Length Contaminated Equipment Receiver and Transport Trailers
DALE, R.N.
2000-12-18
Long Length Contaminated Equipment Removal System Receiver Trailers and Transport Trailers require identification and control for the design, requirements and operations baseline documents. This plan serves as those controls for the subject trailers.
Predicting subsurface contaminant transport and transformation requires mathematical models based on a variety of physical, chemical, and biological processes. The mathematical model is an attempt to quantitatively describe observed processes in order to permit systematic forecas...
FIELD-DRIVEN APPROACHES TO SUBSURFACE CONTAMINANT TRANSPORT MODELING.
Observations from field sites provide a means for prioritizing research activities. In the case of petroleum releases, observations may include spiking of concentration distributions that may be related to water table fluctuation, co-location of contaminant plumes with geochemi...
BIOPLUME MODEL FOR CONTAMINANT TRANSPORT AFFECTED BY OXYGEN LIMITED BIODEGRADATION
Many of the organic pollutants entering ground water are potentially biodegradable in the subsurface. This potential has been demonstrated in aquifers contaminated by wood-creosoting process wastes. The persistence of many of these organic compounds in the subsurface indicated ...
Bai, Chunmei; Li, Yusong
2014-08-01
Accurately predicting the transport of contaminants in the field is subject to multiple sources of uncertainty due to the variability of geological settings, the complexity of field measurements, and the scarcity of data. Such uncertainties can be amplified when modeling some emerging contaminants, such as engineered nanomaterials, when a fundamental understanding of their fate and transport is lacking. Typical field work includes collecting concentration at a certain location for an extended period of time, or measuring the movement of plume for an extended period time, which would result in a time series of observation data. This work presents an effort to evaluate the possibility of applying time series analysis, particularly, autoregressive integrated moving average (ARIMA) models, to forecast contaminant transport and distribution in the subsurface environment. ARIMA modeling was first assessed in terms of its capability to forecast tracer transport at two field sites, which had different levels of heterogeneity. After that, this study evaluated the applicability of ARIMA modeling to predict the transport of engineered nanomaterials at field sites, including field measured data of nanoscale zero valent iron and (nZVI) and numerically generated data for the transport of nano-fullerene aggregates (nC60). This proof-of-concept effort demonstrates the possibility of applying ARIMA to predict the contaminant transport in the subsurface environment. Like many other statistical models, ARIMA modeling is only descriptive and not explanatory. The limitation and the challenge associated with applying ARIMA modeling to contaminant transport in the subsurface are also discussed. PMID:24987973
NASA Astrophysics Data System (ADS)
Bai, Chunmei; Li, Yusong
2014-08-01
Accurately predicting the transport of contaminants in the field is subject to multiple sources of uncertainty due to the variability of geological settings, the complexity of field measurements, and the scarcity of data. Such uncertainties can be amplified when modeling some emerging contaminants, such as engineered nanomaterials, when a fundamental understanding of their fate and transport is lacking. Typical field work includes collecting concentration at a certain location for an extended period of time, or measuring the movement of plume for an extended period time, which would result in a time series of observation data. This work presents an effort to evaluate the possibility of applying time series analysis, particularly, autoregressive integrated moving average (ARIMA) models, to forecast contaminant transport and distribution in the subsurface environment. ARIMA modeling was first assessed in terms of its capability to forecast tracer transport at two field sites, which had different levels of heterogeneity. After that, this study evaluated the applicability of ARIMA modeling to predict the transport of engineered nanomaterials at field sites, including field measured data of nanoscale zero valent iron and (nZVI) and numerically generated data for the transport of nano-fullerene aggregates (nC60). This proof-of-concept effort demonstrates the possibility of applying ARIMA to predict the contaminant transport in the subsurface environment. Like many other statistical models, ARIMA modeling is only descriptive and not explanatory. The limitation and the challenge associated with applying ARIMA modeling to contaminant transport in the subsurface are also discussed.
Iwasaki, T; Nabi, M; Shimizu, Y; Kimura, I
2015-01-01
A numerical model capable of simulating the transfer of (137)Cs in rivers associated with transport of fine sediment is presented. The accident at Fukushima Dai-ichi Nuclear Power Plant (FDNPP) released radionuclides into the atmosphere, and after fallout several radionuclides in them, such as radiocesium ((134)Cs, (137)Cs) and radioiodine ((131)I) were adsorbed on surface soil particles around FDNPP and transported by surface water. To understand the transport and deposition of the radioactive contaminant along with surface soil particles and its flux to the ocean, we modeled the transport of the (137)Cs contaminant by computing the water flow and the associated washload and suspended load transport. We have developed a two-dimensional model to simulate the plane flow structure, sediment transport and associated (137)Cs contaminant transport in rivers by combining a shallow water flow model and an advection-diffusion equation for the transport of sediment. The proposed model has been applied to the lower reach of Abukuma River, which is the main river in the highly contaminated area around FDNPP. The numerical results indicate that most (137)Cs supplied from the upstream river reach with washload would directly reach to Pacific Ocean. In contrast, washload-oriented (137)Cs supplied from the upstream river basin has a limited role in the radioactive contamination in the river. The results also suggest that the proposed framework of computational model can be a potential tool for understanding the sediment-oriented (137)Cs behavior in rivers. PMID:24909793
NASA Astrophysics Data System (ADS)
Cullin, J. A.; Ward, A. S.; Cwiertny, D. M.; Barber, L. B.; Kolpin, D. W.; Bradley, P. M.; Keefe, S. H.; Hubbard, L. E.
2013-12-01
Contaminants of emerging concern (CECs) are an unregulated suite of constituents possessing the potential to cause a host of reproductive and developmental problems in humans and wildlife. CECs are frequently detected in environmental waters. Degradation pathways of several CECs are well-characterized in idealized laboratory settings, but CEC fate and transport in complex field settings is poorly understood. In the present study we used a multi-tracer solute injection study to quantify physical transport, photodegradation, and sorption in a wastewater effluent-impacted stream. Conservative tracers were used to quantify physical transport processes in the stream. Use of reactive fluorescent tracers allows for isolation of the relative contribution of photodegradation and sorption within the system. Field data was used to calibrate a one-dimensional transport model allowing us to use forward modeling to predict the transport of sulfamethoxazole, an antibiotic documented to be present in the wastewater effluent and in Fourmile Creek which is susceptible to both sorption and photolysis. Forward modeling will predict both temporal persistence and spatial extent of sulfamethoxazole in Fourmile Creek
Truex, Michael J.; Oostrom, Martinus; Tartakovsky, Guzel D.
2015-09-01
An approach was developed for evaluating vadose zone transport and attenuation of aqueous wastes containing inorganic (non-volatile) contaminants that were disposed of at the land surface (i.e., directly to the ground in cribs, trenches, tile fields, etc.) and their effect on the underlying groundwater. The approach provides a structured method for estimating transport of contaminants through the vadose zone and the resulting temporal profile of groundwater contaminant concentrations. The intent of the approach is also to provide a means for presenting and explaining the results of the transport analysis in the context of the site-specific waste disposal conditions and site properties, including heterogeneities and other complexities. The document includes considerations related to identifying appropriate monitoring to verify the estimated contaminant transport and associated predictions of groundwater contaminant concentrations. While primarily intended for evaluating contaminant transport under natural attenuation conditions, the approach can also be applied to identify types of, and targets for, mitigation approaches in the vadose zone that would reduce the temporal profile of contaminant concentrations in groundwater, if needed.
Characterization of Contaminant Transport Using Naturally-Occurring U-Series Disequilibria
TEH-LUNG KU
2001-06-01
Study the migration of nuclear waste contaminants in subsurface fractured systems using naturally occurring uranium and thorium-series radionuclides as tracers under in-situ physico-chemical and hydrogeologic conditions. Radioactive disequilibria among members of these decay-series nuclides can provide information on the rates of adsorption-desorption and transport of contaminants as well as on fluid transport and rock dissolution in a natural setting.
One dimensional modeling of anthropogenic beach berm erosion
NASA Astrophysics Data System (ADS)
Shakeri Majd, M.; Sanders, B. F.
2013-12-01
Anthropogenic beach berms (sometimes called artificial berms or artificial dunes) are in use internationally to guard against beach overtopping and consequent coastal flooding. Berms can be constructed on a seasonal basis or in anticipation of a hazardous event, e.g., when a storm is expected to arrive coincident with an astronomical high tide. In either case, a common approach is to scrape sand from the foreshore with heavy equipment and deposit it on the crest of the natural beach dune, thus providing added protection from the possibility of wave overtopping. Given the potential for higher sea levels globally and more extreme storm events, anthropogenic berms will surely be tested to their limits and will ultimately fail, causing flooding. A better understanding of the conditions under which these berms fail is therefore needed to support coastal flood risk management. An experimental campaign in Newport Beach, California was conducted to document the dynamic erosion of prototype beach berms under a rising tide and mild to moderate wave conditions. Terrestrial laser scanning (TLS) of the berm produced a digital model of how the berm shape evolved over time. Here, a numerical model of swash zone hydromorphodynamics based on shallow-water flow physics is presented to evaluate whether and to what extent the timing and degree of berm erosion and overtopping can be predicted from first principles. The model tightly couples flow and sediment transport within an approximate Riemann solver, and thus is of the Godunov-type variety of finite volume schemes. Additionally, the model includes an avalanching scheme to account for non-hydrodynamic slumping down the angle of repose. Results indicate that it is possible to calibrate the model for a particular event, and then successfully predict erosion for another event, but due to parameter sensitivities, it is unlikely that the model can be applied at a site without calibration (true prediction).
Natural circulation in a liquid metal one-dimensional loop
NASA Astrophysics Data System (ADS)
Tarantino, M.; De Grandis, S.; Benamati, G.; Oriolo, F.
2008-06-01
A wide use of pure lead, as well as its alloys (such as lead-bismuth, lead-lithium), is foreseen in several nuclear-related fields: it is studied as coolant in critical and sub-critical nuclear reactors, as spallation target for neutron generation in several applications and for tritium generation in fusion systems. In this framework, a new facility named NAtural CIrculation Experiment (NACIE), has been designed at ENEA-Brasimone Research Centre. NACIE is a rectangular loop, made by stainless steel pipes. It consists mainly of a cold and hot leg and an expansion tank installed on the top of the loop. A fuel bundle simulator, made by three electrical heaters placed in a triangular lattice, is located in the lower part of the cold leg, while a tube in tube heat exchanger is installed in the upper part of the hot leg. The adopted secondary fluid is THT oil, while the foreseen primary fluid for the tests is lead-bismuth in eutectic composition (LBE). The aim of the facility is to carry out experimental tests of natural circulation and collect data on the heat transfer coefficient (HTC) for heavy liquid metal flowing through rod bundles. The paper is focused on the preliminary estimation of the LBE flow rate along the loop. An analytical methodology has been applied, solving the continuity, momentum and energy transport equations under appropriate hypothesis. Moreover numerical simulations have been performed. The FLUENT 6.2 CFD code has been utilized for the numerical simulations. The main results carried out from the pre-tests simulations are illustrated in the paper, and a comparison with the theoretical estimations is done.
Stochastic analysis of biodegradation fronts in one-dimensional heterogeneous porous media
NASA Astrophysics Data System (ADS)
Xin, Jack; Zhang, Dongxiao
We consider a one-dimensional model biodegradation system consisting of two reaction-advection equations for nutrient and pollutant concentrations and a rate equation for biomass. The hydrodynamic dispersion is ignored. Under an explicit condition on the decay and growth rates of biomass, the system can be approximated by two component models by setting biomass kinetics to equilibrium. We derive closed form solutions for constant speed traveling fronts for the reduced two component models and compare their profiles in homogeneous media. For a spatially random velocity field, we introduce travel time and study statistics of degradation fronts via representations in terms of the travel time probability density function ( pdf) and the traveling front profiles. The travel time pdf does not vary with the nutrient and pollutant concentrations and only depends on the random water velocity. The traveling front profiles are expressed analytically or semi-analytically as functions of the travel time. The problem of nonlinear transport by a random velocity reduces to two subproblems: one being nonlinear transport by a known (unit) velocity, and the other being linear (advective) transport by a random velocity. The approach is illustrated through some examples where the randomness in velocity stems from the spatial variability of porosity.
Soil and biosolid nano- and macro-colloid properties and contaminant transport behavior
NASA Astrophysics Data System (ADS)
Ghezzi, Jessique L.
Despite indications that they are potential contaminant transport systems and threats to groundwater quality, very little effort has been invested in comparing contaminant transport behavior of natural environmental nanocolloids and their corresponding macrocolloid fractions in the presence of As, Se, Pb, and Cu contaminants. This study involved physico-chemical, mineralogical, stability and contaminant-transport characterizations of nano- (< 100 nm) and macro-colloids (100-2000 nm) fractionated from three Kentucky soils and one biosolid waste. Particle size was investigated with SEM/TEM and dynamic light scattering. Surface reactivity was estimated using CEC and zeta potential. Mineralogical composition was determined by XRD, FTIR, and thermogravimetric analyses. Sorption isotherms assessed affinities for Cu2+, Pb2+, AsO3-, and SeO4 -2 contaminants, while settling kinetics experiments of suspensions at 0, 2 and 10 mg/L contaminants determined stability and transportability potential. Undisturbed 18x30 cm KY Ashton Loam soil monoliths were also used for transport experiments, involving infusion of 50 mg L-1 colloid suspensions spiked with 2 mg L-1 mixed contaminant loads in unsaturated, steady state, unit gradient downward percolation experiments. Overall, nanocolloids exhibited greater stability over corresponding macrocolloids in the presence and absence of contaminants following specific mineralogy trends. Physicochemical characterizations indicated that extensive organic carbon surface coatings and higher Al/Fe:Si ratios may have induced higher stability in the nanocolloid fractions, in spite of some hindrance by nano-aggregation phenomena. In the transport experiments, nanocolloids eluted significantly higher concentrations of colloids, total, and colloid-bound metals than corresponding macrocolloids. Contaminant elutions varied by colloid type, mineralogy and contaminant, with the following sequences: soil-colloids>bio-colloids, smectitic
NASA Astrophysics Data System (ADS)
Srivastava, Shubham
The past few decades have seen a great amount of interest in the field of nanotechnology. As our world moves towards miniaturized devices nanotechnology is set to revolutionize the electronics, storage and sensing industry. Various methods for synthesis of different types of nanoparticles are being explored. A few of these processes that hold great promise for the future are the flame synthesis methods. These methods are highly efficient but at the same time it is difficult to control the morphology of the produced nanoparticles due to a high number of control parameters involved because of the complex flow processes. These issues demand a better understanding before these processes can be exploited to their maximum potential. Most numerical methods developed cater to the simulation of spherical nanoparticles. However, it is now being increasingly understood that the shape and structure of a nanoparticle plays critical role in determining its chemical, physical and electronic properties. Therefore a high level of control on the shape of nanoparticles is highly imperative. With this purpose in mind this work proposes a novel numerical scheme to simulate the synthesis of one-dimensional nanorods and further presents mathematical simulations based on it followed by validation with experimental results. The ability to predict the morphology of a nanoparticle formed by a synthesis process adds a distinct advantage. Therefore, intricate solutions have been found for the fluid flow and these have been coupled to each stage of nanoparticle development, namely monomer formation, nucleation, particle growth and particle transport. The numerical scheme takes into account all the details of the complex surface phenomena taking place on a nanorod. Later, factors are studied which transition the growth characteristics of a nanoparticle from one dimensional to a spherical structure, thus encompassing all the factors that influence the particle shape. Group characteristics of
Prediction of contaminant fate and transport in potable water systems using H2OFate
NASA Astrophysics Data System (ADS)
Devarakonda, Venkat; Manickavasagam, Sivakumar; VanBlaricum, Vicki; Ginsberg, Mark
2009-05-01
BlazeTech has recently developed a software called H2OFate to predict the fate and transport of chemical and biological contaminants in water distribution systems. This software includes models for the reactions of these contaminants with residual disinfectant in bulk water and at the pipe wall, and their adhesion/reactions with the pipe walls. This software can be interfaced with sensors through SCADA systems to monitor water distribution networks for contamination events and activate countermeasures, as needed. This paper presents results from parametric calculations carried out using H2OFate for a simulated contaminant release into a sample water distribution network.
Feed gas contaminant removal in ion transport membrane systems
Carolan, Michael Francis; Miller, Christopher Francis
2008-09-16
Method for gas purification comprising (a) obtaining a feed gas stream containing one or more contaminants selected from the group consisting of volatile metal oxy-hydroxides, volatile metal oxides, and volatile silicon hydroxide; (b) contacting the feed gas stream with a reactive solid material in a guard bed and reacting at least a portion of the contaminants with the reactive solid material to form a solid reaction product in the guard bed; and (c) withdrawing from the guard bed a purified gas stream.
Technology Transfer Automated Retrieval System (TEKTRAN)
Contaminant transport processes in streams, rivers, and other surface water bodies can be analyzed or predicted using the advection-dispersion equation and related transport models. In part 1 of this two-part series we presented a large number of one- and multi-dimensional analytical solutions of t...
FACT (Version 2.0) - Subsurface Flow and Contaminant Transport Documentation and User's Guide
Aleman, S.E.
2000-05-05
This report documents a finite element code designed to model subsurface flow and contaminant transport, named FACT. FACT is a transient three-dimensional, finite element code designed to simulate isothermal groundwater flow, moisture movement, and solute transport in variably saturated and fully saturated subsurface porous media.
Interest in coupled biodegradation and transport of organic contaminants has expanded greatly in the past several years. In a system in which biodegradation is coupled with solute transport, the magnitude and rate of biodegradation is influenced not only by pr...
Contaminant Transport in the Unsaturated Zone Theory and Modeling
Technology Transfer Automated Retrieval System (TEKTRAN)
Mathematical models are increasingly used to better understand and quantify site-specific subsurface water flow and solute transport processes. This chapter reviews mathematical models for solute transport in predominantly variably-saturated media. After a brief description of the physics and mathe...
WELL IMPACT: A CONTAMINANT FATE AND TRANSPORT MODEL
A chemical reactor analogy is used to derive analytical solutions for contaminant source dissolution in ground water (analytic overlay model). This allows the user to develop a source function based on a conceptual site model. The resulting analytical source function can then b...
Contaminant Transport in Two Central Missouri Karst Recharge Areas
Technology Transfer Automated Retrieval System (TEKTRAN)
Karst watersheds with significant losing streams represent a particularly vulnerable setting for ground water contamination because of the direct connection to surface water. Because of the existing agricultural land-use and future threat of heavy urbanization, two losing stream karst basins were ch...
Contaminant transport in two central Missouri karst recharge areas
Technology Transfer Automated Retrieval System (TEKTRAN)
Karst watersheds with significant losing streams represent a particularly vulnerable setting for ground water contamination because of the direct connection to surface water. Because of the existing agricultural land-use and future threat of heavy urbanization, two losing stream karst basins were ch...
EFFECTS OF NATURAL CYCLIC VARIATIONS ON CONTAMINATED FATE AND TRANSPORT
The studies provide the scientific community with a greater understanding of the physiochemical processes of sediment-contaminant interaction. A primary consideration in sediment clean-up is when to stop, or how clean is acceptable. Present mathematical models assume that ...
Contaminant transport in two central Missouri karst recharge areas
Technology Transfer Automated Retrieval System (TEKTRAN)
Karst watersheds with significant losing streams represent a particularly vulnerable setting for ground water contamination because of the direct connection to surface water. Because of the existing agricultural land-use and future likelihood of urbanization, two losing stream karst basins were chos...
EMERGING CONTAMINANTS IN THE WATER CYCLE: FATE AND TRANSPORT
In the past decade, the scientific community and general public have become increasingly aware of the potential for the presence of unregulated, and generally unmonitored contaminants, found at low concentrations in surface, ground and drinking water. The most common pathway for...
NASA Astrophysics Data System (ADS)
Brown, James G.; Bassett, R. L.; Glynn, Pierre D.
1998-08-01
Large-scale mining activities have generated a plume of acidic ground water more than 15 km long in the regional aquifer of the Pinal Creek Basin. A one-dimensional reactive-transport model was developed using PHREEQC to aid in the analysis of transport and chemical processes in the plume and to determine the uses and limitations of this type of modeling approach. In 1984, the acidic part of the plume had a pH as low as 3.4 and contained milligram-per-liter concentrations of iron, copper, aluminum and other metals. From 1984 to 1994, concentrations of contaminants in the alluvial aquifer in Pinal Creek Basin, Arizona, decreased as a result of mixing, recharge, remedial pumping and chemical reactions. For reactions involving gypsum and rhodochrosite, the equilibrium modeling assumption of a local geochemical equilibrium was generally valid. From 1984 to 1990, water along the simulated flow path was at equilibrium or slightly supersaturated with gypsum, and gypsum equilibria controlled dissolved concentrations of calcium and sulfate. Beginning in 1991, water in the acidic part of the plume became increasingly undersaturated with respect to gypsum, indicating that the gypsum available for dissolution in the aquifer may have been completely consumed by about 1991. Rhodochrosite precipitation was thought responsible for the measured attenuation in dissolved manganese in the neutralized zone. For reactions involving calcite, the assumption of a local geochemical equilibrium was generally not valid. Dissolution of calcite in the transition zone was not sufficient to establish equilibrium although, following neutralization, the calcite saturation index decreased to -1.2 in 1986. Calcite undersaturation decreased along the flow path in the neutralized zone, and equilibrium was attained about 7 km downgradient of the transition zone. The assumption of a local geochemical equilibrium was not valid for oxidation-reduction reactions that involved iron oxides and manganese
Binning, P.; Celia, M.A.; Johnson, J.C.
1995-05-01
A numerical model of multiphase air-water flow and contaminant transport in the unsaturated zone is presented. The multiphase flow equations are solved using the two-pressure, mixed form of the equations with a modified Picard linearization of the equations and a finite element spatial approximation. A volatile contaminant is assumed to be transported in either phase, or in both phases simultaneously. The contaminant partitions between phases with an equilibrium distribution given by Henry`s Law or via kinetic mass transfer. The transport equations are solved using a Galerkin finite element method with reduced integration to lump the resultant matrices. The numerical model is applied to published experimental studies to examine the behavior of the air phase and associated contaminant movement under water infiltration. The model is also used to evaluate a hypothetical design for a low-level radioactive waste disposal facility. The model has been developed in both one and two dimensions; documentation and computer codes are available for the one-dimensional flow and transport model.