Science.gov

Sample records for one-dimensional finite element

  1. Finite element analysis of true and pseudo surface acoustic waves in one-dimensional phononic crystals

    SciTech Connect

    Graczykowski, B. Alzina, F.; Gomis-Bresco, J.; Sotomayor Torres, C. M.

    2016-01-14

    In this paper, we report a theoretical investigation of surface acoustic waves propagating in one-dimensional phononic crystal. Using finite element method eigenfrequency and frequency response studies, we develop two model geometries suitable to distinguish true and pseudo (or leaky) surface acoustic waves and determine their propagation through finite size phononic crystals, respectively. The novelty of the first model comes from the application of a surface-like criterion and, additionally, functional damping domain. Exemplary calculated band diagrams show sorted branches of true and pseudo surface acoustic waves and their quantified surface confinement. The second model gives a complementary study of transmission, reflection, and surface-to-bulk losses of Rayleigh surface waves in the case of a phononic crystal with a finite number of periods. Here, we demonstrate that a non-zero transmission within non-radiative band gaps can be carried via leaky modes originating from the coupling of local resonances with propagating waves in the substrate. Finally, we show that the transmission, reflection, and surface-to-bulk losses can be effectively optimised by tuning the geometrical properties of a stripe.

  2. A one-dimensional mixed porohyperelastic transport swelling finite element model with growth

    PubMed Central

    Harper, J.L.; Simon, B.R.; Vande Geest, J.P.

    2013-01-01

    A one-dimensional, large-strain, mixed porohyperelastic transport and swelling (MPHETS) finite element model was developed in MATLAB and incorporated with a well-known growth model for soft tissues to allow the model to grow (increase in length) or shrink (decrease in length) at constant material density. By using the finite element model to determine the deformation and stress state, it is possible to implement different growth laws in the program in the future to simulate how soft tissues grow and behave when exposed to various stimuli (e.g. mechanical, chemical, or electrical). The essential assumptions needed to use the MPHETS model with growth are clearly identified and explained in this paper. The primary assumption in this work, however, is that the stress upon which growth acts is the stress in the solid skeleton, i.e. the effective stress, Seff. It is shown that significantly different amounts of growth are experienced for the same loading conditions when using a porohyperelastic model as compared to a purely solid model. In one particular example, approximately 51% less total growth occurred in the MPHETS model than in the solid model even though both problems were subjected to the same external loading. This work represents a first step in developing more sophisticated models capable of capturing the complex mechanical and biochemical environment in growing and remodeling tissues. PMID:23778062

  3. A static analysis of three-dimensional functionally graded beams through hierarchical one-dimensional finite elements

    SciTech Connect

    Giunta, G.; Belouettar, S.

    2015-03-10

    In this paper, the static response of three-dimensional beams made of functionally graded materials is investigated through a family of hierarchical one-dimensional finite elements. A wide variety of elements is proposed differing by the kinematic formulation and the number of nodes per elements along the beam axis. Elements’ stiffness matrix and load vector are derived in a unified nuclear form that does not depend upon the a priori expansion order over the cross-section nor the finite element approximation along the beam axis. Results are validated towards three-dimensional finite element models as well as equivalent Navier-type analytical solutions. The numerical investigations show that accurate and efficient solutions (when compared with full three-dimensional FEM solutions) can be obtained by the proposed family of hierarchical one-dimensional elements’ family.

  4. One-dimensional finite-elements method for the analysis of whispering gallery microresonators.

    PubMed

    Bagheri-Korani, Ebrahim; Mohammad-Taheri, Mahmoud; Shahabadi, Mahmoud

    2014-07-01

    By taking advantage of axial symmetry of the planar whispering gallery microresonators, the three-dimensional (3D) problem of the resonator is reduced to a two-dimensional (2D) one; thus, only the cross section of the resonator needs to be analyzed. Then, the proposed formulation, which works based on a combination of the finite-elements method (FEM) and Fourier expansion of the fields, can be applied to the 2D problem. First, the axial field variation is expressed in terms of a Fourier series. Then, a FEM method is applied to the radial field variation. This formulation yields an eigenvalue problem with sparse matrices and can be solved using a well-known numerical technique. This method takes into account both the radiation loss and the dielectric loss; hence, it works efficiently either for high number or low number modes. Efficiency of the method was investigated by comparison of the results with those of commercial software.

  5. Analysis of wave motion in one-dimensional structures through fast-Fourier-transform-based wavelet finite element method

    NASA Astrophysics Data System (ADS)

    Shen, Wei; Li, Dongsheng; Zhang, Shuaifang; Ou, Jinping

    2017-07-01

    This paper presents a hybrid method that combines the B-spline wavelet on the interval (BSWI) finite element method and spectral analysis based on fast Fourier transform (FFT) to study wave propagation in One-Dimensional (1D) structures. BSWI scaling functions are utilized to approximate the theoretical wave solution in the spatial domain and construct a high-accuracy dynamic stiffness matrix. Dynamic reduction on element level is applied to eliminate the interior degrees of freedom of BSWI elements and substantially reduce the size of the system matrix. The dynamic equations of the system are then transformed and solved in the frequency domain through FFT-based spectral analysis which is especially suitable for parallel computation. A comparative analysis of four different finite element methods is conducted to demonstrate the validity and efficiency of the proposed method when utilized in high-frequency wave problems. Other numerical examples are utilized to simulate the influence of crack and delamination on wave propagation in 1D rods and beams. Finally, the errors caused by FFT and their corresponding solutions are presented.

  6. 1DFEMWATER: A one-dimensional finite element model of WATER flow through saturated-unsaturated media

    SciTech Connect

    Yeh, G.T.

    1988-08-01

    This report presents the development and verification of a one- dimensional finite element model of water flow through saturated- unsaturated media. 1DFEMWATER is very flexible and capable of modeling a wide range of real-world problems. The model is designed to (1) treat heterogeneous media consisting of many geologic formations; (2) consider distributed and point sources/sinks that are spatially and temporally variable; (3) accept prescribed initial conditions or obtain them from steady state simulations; (4) deal with transient heads distributed over the Dirichlet boundary; (5) handle time-dependent fluxes caused by pressure gradient on the Neumann boundary; (6) treat time-dependent total fluxes (i.e., the sum of gravitational fluxes and pressure-gradient fluxes) on the Cauchy boundary; (7) automatically determine variable boundary conditions of evaporation, infiltration, or seepage on the soil-air interface; (8) provide two options for treating the mass matrix (consistent and lumping); (9) provide three alternatives for approximating the time derivative term (Crank-Nicolson central difference, backward difference, and mid-difference); (10) give three options (exact relaxation, underrelaxation, and overrelaxation) for estimating the nonlinear matrix; (11) automatically reset the time step size when boundary conditions or source/sinks change abruptly; and (12) check mass balance over the entire region for every time step. The model is verified with analytical solutions and other numerical models for three examples.

  7. Approximate Approaches to the One-Dimensional Finite Potential Well

    ERIC Educational Resources Information Center

    Singh, Shilpi; Pathak, Praveen; Singh, Vijay A.

    2011-01-01

    The one-dimensional finite well is a textbook problem. We propose approximate approaches to obtain the energy levels of the well. The finite well is also encountered in semiconductor heterostructures where the carrier mass inside the well (m[subscript i]) is taken to be distinct from mass outside (m[subscript o]). A relevant parameter is the mass…

  8. Approximate Approaches to the One-Dimensional Finite Potential Well

    ERIC Educational Resources Information Center

    Singh, Shilpi; Pathak, Praveen; Singh, Vijay A.

    2011-01-01

    The one-dimensional finite well is a textbook problem. We propose approximate approaches to obtain the energy levels of the well. The finite well is also encountered in semiconductor heterostructures where the carrier mass inside the well (m[subscript i]) is taken to be distinct from mass outside (m[subscript o]). A relevant parameter is the mass…

  9. Approximate approaches to the one-dimensional finite potential well

    NASA Astrophysics Data System (ADS)

    Singh, Shilpi; Pathak, Praveen; Singh, Vijay A.

    2011-11-01

    The one-dimensional finite well is a textbook problem. We propose approximate approaches to obtain the energy levels of the well. The finite well is also encountered in semiconductor heterostructures where the carrier mass inside the well (mi) is taken to be distinct from mass outside (mo). A relevant parameter is the mass discontinuity ratio β = mi/mo. To correctly account for the mass discontinuity, we apply the BenDaniel-Duke boundary condition. We obtain approximate solutions for two cases: when the well is shallow and when the well is deep. We compare the approximate results with the exact results and find that higher-order approximations are quite robust. For the shallow case, the approximate solution can be expressed in terms of a dimensionless parameter σl = 2moV0L2/planck2 (or σ = β2σl for the deep case). We show that the lowest-order results are related by a duality transform. We also discuss how the energy upscales with L (E~1/Lγ) and obtain the exponent γ. Exponent γ → 2 when the well is sufficiently deep and β → 1. The ratio of the masses dictates the physics. Our presentation is pedagogical and should be useful to students on a first course on elementary quantum mechanics or low-dimensional semiconductors.

  10. Carbyne with finite length: The one-dimensional sp carbon

    PubMed Central

    Pan, Bitao; Xiao, Jun; Li, Jiling; Liu, Pu; Wang, Chengxin; Yang, Guowei

    2015-01-01

    Carbyne is the one-dimensional allotrope of carbon composed of sp-hybridized carbon atoms. Definitive evidence for carbyne has remained elusive despite its synthesis and preparation in the laboratory. Given the remarkable technological breakthroughs offered by other allotropes of carbon, including diamond, graphite, fullerenes, carbon nanotubes, and graphene, interest in carbyne and its unusual potential properties remains intense. We report the first synthesis of carbyne with finite length, which is clearly composed of alternating single bonds and triple bonds, using a novel process involving laser ablation in liquid. Spectroscopic analyses confirm that the product is the structure of sp hybridization with alternating carbon-carbon single bonds and triple bonds and capped by hydrogen. We observe purple-blue fluorescence emissions from the gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital of carbyne. Condensed-phase carbyne crystals have a hexagonal lattice and resemble the white crystalline powder produced by drying a carbyne solution. We also establish that the combination of gold and alcohol is crucial to carbyne formation because carbon-hydrogen bonds can be cleaved with the help of gold catalysts under the favorable thermodynamic environment provided by laser ablation in liquid and because the unique configuration of two carbon atoms in an alcohol molecule matches the elementary entity of carbyne. This laboratory synthesis of carbyne will enable the exploration of its properties and applications. PMID:26601318

  11. Supercurrent states in one-dimensional finite-size rings

    NASA Astrophysics Data System (ADS)

    Kashurnikov, Vladimir A.; Podlivaev, Alexei I.; Prokof'ev, Nikolai V.; Svistunov, Boris V.

    1996-05-01

    We consider topological supercurrent excitations (SC's) in one-dimensional (1D) mesoscopic rings. In the superfluid phase such excitations are well defined except for (i) a tunneling between resonating states with clockwise and counterclockwise currents, which may be characterized by the amplitude Δ, and (ii) a decay of SC assisted by phonons of the substrate, both effects being macroscopically small. Our approach, being based on the hydrodynamical action for the phase field and its generalization to the effective Hamiltonian, explicitly takes into account transitions between the states with different topological numbers and turns out to be very effective for the calculation of Δ and estimation of the decay width of SC, as well as for the unified description of all known 1D superfluid-insulator transitions. Most attention is paid to the calculation of the macroscopic scaling of Δ (the main superfluid characteristic of a mesoscopic system) under different conditions: a commensurate system, a system with single impurity, and a disordered system. The results are in a very good agreement with the exact-diagonalization spectra of the boson Hubbard models. Apart from really 1D electron wires we discuss two other important experimental systems: the 2D electron gas in the fractional quantum Hall effect state and quasi-1D superconducting rings. We suggest some experimental setups for studying SC, e.g., via persistent current measurements, resonant electromagnetic absorption or echo signals, and relaxation of the metastable current states.

  12. Elementary excitations for the one-dimensional Hubbard model at finite temperatures

    NASA Astrophysics Data System (ADS)

    Tomiyama, A.; Suga, S.; Okiji, A.

    1997-07-01

    The elementary excitations for the one-dimensional Hubbard model at finite temperatures are studied with the use of the Bethe ansatz solution. The formulation is based on the method of Yang and Yang, which was developed for the one-dimensional boson systems with the 0953-8984/9/27/014/img1-function type interaction. The dispersion relations and the excitation spectrums are obtained numerically for the charge and the spin degrees of freedom.

  13. Oscillatory motion of a camphor grain in a one-dimensional finite region

    NASA Astrophysics Data System (ADS)

    Koyano, Yuki; Sakurai, Tatsunari; Kitahata, Hiroyuki

    2016-10-01

    The motion of a self-propelled particle is affected by its surroundings, such as boundaries or external fields. In this paper, we investigated the bifurcation of the motion of a camphor grain, as a simple actual self-propelled system, confined in a one-dimensional finite region. A camphor grain exhibits oscillatory motion or remains at rest around the center position in a one-dimensional finite water channel, depending on the length of the water channel and the resistance coefficient. A mathematical model including the boundary effect is analytically reduced to an ordinary differential equation. Linear stability analysis reveals that the Hopf bifurcation occurs, reflecting the symmetry of the system.

  14. ONEOptimal: A Maple Package for Generating One-Dimensional Optimal System of Finite Dimensional Lie Algebra

    NASA Astrophysics Data System (ADS)

    Miao, Qian; Hu, Xiao-Rui; Chen, Yong

    2014-02-01

    We present a Maple computer algebra package, ONEOptimal, which can calculate one-dimensional optimal system of finite dimensional Lie algebra for nonlinear equations automatically based on Olver's theory. The core of this theory is viewing the Killing form of the Lie algebra as an invariant for the adjoint representation. Some examples are given to demonstrate the validity and efficiency of the program.

  15. One-Dimensional Ablation with Pyrolysis Gas Flow Using a Full Newton's Method and Finite Control Volume Procedure

    NASA Technical Reports Server (NTRS)

    Amar, Adam J.; Blackwell, Ben F.; Edwards, Jack R.

    2007-01-01

    The development and verification of a one-dimensional material thermal response code with ablation is presented. The implicit time integrator, control volume finite element spatial discretization, and Newton's method for nonlinear iteration on the entire system of residual equations have been implemented and verified for the thermochemical ablation of internally decomposing materials. This study is a continuation of the work presented in "One-Dimensional Ablation with Pyrolysis Gas Flow Using a Full Newton's Method and Finite Control Volume Procedure" (AIAA-2006-2910), which described the derivation, implementation, and verification of the constant density solid energy equation terms and boundary conditions. The present study extends the model to decomposing materials including decomposition kinetics, pyrolysis gas flow through the porous char layer, and a mixture (solid and gas) energy equation. Verification results are presented for the thermochemical ablation of a carbon-phenolic ablator which involves the solution of the entire system of governing equations.

  16. On One-Dimensional Stretching Functions for Finite-Difference Calculations

    NASA Technical Reports Server (NTRS)

    Vinokur, M.

    1980-01-01

    The class of one dimensional stretching function used in finite difference calculations is studied. For solutions containing a highly localized region of rapid variation, simple criteria for a stretching function are derived using a truncation error analysis. These criteria are used to investigate two types of stretching functions. One is an interior stretching function, for which the location and slope of an interior clustering region are specified. The simplest such function satisfying the criteria is found to be one based on the inverse hyperbolic sine. The other type of function is a two sided stretching function, for which the arbitrary slopes at the two ends of the one dimensional interval are specified. The simplest such general function is found to be one based on the inverse tangent. The general two sided function has many applications in the construction of finite difference grids.

  17. Theory of finite-entanglement scaling at one-dimensional quantum critical points.

    PubMed

    Pollmann, Frank; Mukerjee, Subroto; Turner, Ari M; Moore, Joel E

    2009-06-26

    Studies of entanglement in many-particle systems suggest that most quantum critical ground states have infinitely more entanglement than noncritical states. Standard algorithms for one-dimensional systems construct model states with limited entanglement, which are a worse approximation to quantum critical states than to others. We give a quantitative theory of previously observed scaling behavior resulting from finite entanglement at quantum criticality. Finite-entanglement scaling in one-dimensional systems is governed not by the scaling dimension of an operator but by the "central charge" of the critical point. An important ingredient is the universal distribution of density-matrix eigenvalues at a critical point [P. Calabrese and A. Lefevre, Phys. Rev. A 78, 032329 (2008)10.1103/PhysRevA.78.032329]. The parameter-free theory is checked against numerical scaling at several quantum critical points.

  18. A nine-point finite difference scheme for one-dimensional wave equation

    NASA Astrophysics Data System (ADS)

    Szyszka, Barbara

    2017-07-01

    The paper is devoted to an implicit finite difference method (FDM) for solving initial-boundary value problems (IBVP) for one-dimensional wave equation. The second-order derivatives in the wave equation have been approximated at the four intermediate points, as a consequence, an implicit nine-point difference scheme has been obtained. Von Neumann stability analysis has been conducted and we have demonstrated, that the presented difference scheme is unconditionally stable.

  19. Application of the Space-Time Conservation Element and Solution Element Method to One-Dimensional Advection-Diffusion Problems

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Chow, Chuen-Yen; Chang, Sin-Chung

    1999-01-01

    Test problems are used to examine the performance of several one-dimensional numerical schemes based on the space-time conservation and solution element (CE/SE) method. Investigated in this paper are the CE/SE schemes constructed previously for solving the linear unsteady advection-diffusion equation and the schemes derived here for solving the nonlinear viscous and inviscid Burgers equations. In comparison with the numerical solutions obtained using several traditional finite-difference schemes with similar accuracy, the CE/SE solutions display much lower numerical dissipation and dispersion errors.

  20. On one-dimensional stretching functions for finite-difference calculations. [computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Vinokur, M.

    1983-01-01

    The class of one-dimensional stretching functions used in finite-difference calculations is studied. For solutions containing a highly localized region of rapid variation, simple criteria for a stretching function are derived using a truncation error analysis. These criteria are used to investigate two types of stretching functions. One an interior stretching function, for which the location and slope of an interior clustering region are specified. The simplest such function satisfying the criteria is found to be one based on the inverse hyperbolic sine. The other type of function is a two-sided stretching function, for which the arbitrary slopes at the two ends of the one-dimensional interval are specified. The simplest such general function is found to be one based on the inverse tangent. Previously announced in STAR as N80-25055

  1. On one-dimensional stretching functions for finite-difference calculations. [computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Vinokur, M.

    1979-01-01

    The class of one-dimensional stretching functions used in finite-difference calculations is studied. For solutions containing a highly localized region of rapid variation, simple criteria for a stretching function are derived using a truncation error analysis. These criteria are used to investigate two types of stretching functions. One is an interior stretching function, for which the location and slope of an interior clustering region are specified. The simplest such function satisfying the criteria is found to be one based on the inverse hyperbolic sine. The other type of function is a two-sided stretching function, for which the arbitrary slopes at the two ends of the one-dimensional interval are specified. The simplest such general function is found to be one based on the inverse tangent.

  2. Properties of the t 1 - t 2 one-dimensional Hubbard model at finite temperature

    NASA Astrophysics Data System (ADS)

    Kim, SungKun; Lee, Hunpyo

    2017-08-01

    The one-dimensional t 1 - t 2 half-filled Hubbard model is considered at finite temperatures T within a dynamical cluster approximation (DCA) with N c = 24 in combination with a semiclassical approximation (SCA) impurity solver. The SCA approach accounts for long-range spatial fluctuations, where exact numerical impurity solvers can not capture due to computational expense, even though dynamical fluctuations are freezing. Therefore, it can consider both frequency- and momentum-resolved physical properties beyond the DCA with small cluster in combination with exact impurity solvers. By the computation of the static spin-spin correlation, the density of states, and the double occupancy, we examine the description of the frustrated one-dimensional systems at finite T within given approximations. We confirm not only the interaction-driven metal-insulator transition in the regions of t 2/ t 1 > 0.5, but also the commensurate-incommensurate transition by tunning t 2/ t 1 in the strong interaction region. We also observe finite T-driven metal-insulator transition.

  3. Chaotic (as a one-dimensional map) laser cavity: influence of finite response time

    SciTech Connect

    Hnilo, A.A.; de Sousa Vieira, M.C.

    1988-05-01

    A laser cavity whose output is a train of pulses of intensities given by a one-dimensional recurrence map with a sharp extremum was presented in a previous paper. In this paper we study the road to chaos that is obtained when finite response times are taken into account. The scenario changes smoothly from the sharp map's scenario (undefined universality class) to the Fiegenbaum's scenario (logistic-map universality class) as the response time increases. We also discuss the feasibility of using the device as a new method for measuring short response times.

  4. Correlation versus commensurability effects for finite bosonic systems in one-dimensional lattices

    SciTech Connect

    Brouzos, Ioannis; Schmelcher, Peter; Zoellner, Sascha

    2010-05-15

    We investigate few-boson systems in finite one-dimensional multiwell traps covering the full interaction crossover from uncorrelated to fermionized particles. Our treatment of the ground-state properties is based on the numerically exact multiconfigurational time-dependent Hartree method. For commensurate filling, we trace the fingerprints of localization as the interaction strength increases, in several observables like reduced-density matrices, fluctuations, and momentum distribution. For a filling factor larger than 1 we observe on-site repulsion effects in the densities and fragmentation of particles beyond the validity of the Bose-Hubbard model upon approaching the Tonks-Girardeau limit. The presence of an incommensurate fraction of particles induces incomplete localization and spatial modulations of the density profiles, taking into account the finite size of the system.

  5. Finite-temperature charge transport in the one-dimensional Hubbard model

    NASA Astrophysics Data System (ADS)

    Jin, F.; Steinigeweg, R.; Heidrich-Meisner, F.; Michielsen, K.; De Raedt, H.

    2015-11-01

    We study the charge conductivity of the one-dimensional repulsive Hubbard model at finite temperature using the method of dynamical quantum typicality, focusing at half filling. This numerical approach allows us to obtain current autocorrelation functions from systems with as many as 18 sites, way beyond the range of standard exact diagonalization. Our data clearly suggest that the charge Drude weight vanishes with a power law as a function of system size. The low-frequency dependence of the conductivity is consistent with a finite dc value and thus with diffusion, despite large finite-size effects. Furthermore, we consider the mass-imbalanced Hubbard model for which the charge Drude weight decays exponentially with system size, as expected for a nonintegrable model. We analyze the conductivity and diffusion constant as a function of the mass imbalance and we observe that the conductivity of the lighter component decreases exponentially fast with the mass-imbalance ratio. While in the extreme limit of immobile heavy particles, the Falicov-Kimball model, there is an effective Anderson-localization mechanism leading to a vanishing conductivity of the lighter species, we resolve finite conductivities for an inverse mass ratio of η ≳0.25 .

  6. Finite doping of a one-dimensional charge density wave: Solitons vs Luttinger liquid charge density

    NASA Astrophysics Data System (ADS)

    Weiss, Yuval; Goldstein, Moshe; Berkovits, Richard

    2008-05-01

    The effects of doping on a one-dimensional wire in a charge density wave state are studied using the density-matrix renormalization group method. We show that for a finite number of extra electrons, the ground state becomes conducting but the particle density along the wire corresponds to a charge density wave with an incommensurate+ wave number determined by the filling. We find that the absence of the translational invariance can be discerned even in the thermodynamic limit as long as the number of doping electrons is finite. The Luttinger liquid behavior is reached only for a finite change in the electron filling factor, which for an infinite wire corresponds to the addition of an infinite number of electrons. In addition to the half filled insulating Mott state and the conducting states, we find evidence for subgap states at fillings different from half filling by a single electron or hole. Finally, we show that by coupling our system to a quantum dot, one can have a discontinuous dependence of its population on the applied gate voltage in the thermodynamic limit, similar to the one predicted for a Luttinger liquid without umklapp processes.

  7. Effective-medium theory for energy velocity in one-dimensional finite lossless photonic crystals.

    PubMed

    Torrese, Guido; Taylor, Jason; Hall, Trevor J; Mégret, Patrice

    2006-06-01

    The effective medium theory is a useful approach for investigating the electromagnetic wave propagation in periodic multilayer slabs. It allows accurate computation of transmission and reflection spectra as well as of phase and group velocities. In this paper we derive an exact analytical expression for the energy velocity of a one-dimensional finite photonic crystal based on the effective medium approach. It accounts for the multiple reflections within the structure which results in the characteristic oscillations of the transmission spectrum. Our analytical expression holds for an arbitrary refractive index contrast and goes beyond the limits of the standard homogenization method. In order to validate our approach, results obtained by using the all-frequency effective energy velocity have been compared to those obtained using the transfer matrix method.

  8. Improved finite-difference computation of the van der Waals force: One-dimensional case

    SciTech Connect

    Pinto, Fabrizio

    2009-10-15

    We present an improved demonstration of the calculation of Casimir forces in one-dimensional systems based on the recently proposed numerical imaginary frequency Green's function computation approach. The dispersion force on two thick lossy dielectric slabs separated by an empty gap and placed within a perfectly conducting cavity is obtained from the Green's function of the modified Helmholtz equation by means of an ordinary finite-difference method. In order to demonstrate the possibility to develop algorithms to explore complex geometries in two and three dimensions to higher order in the mesh spacing, we generalize existing classical electromagnetism algebraic methods to generate the difference equations for dielectric boundaries not coinciding with any grid points. Diagnostic tests are presented to monitor the accuracy of our implementation of the method and follow-up applications in higher dimensions are introduced.

  9. Collective modes of a one-dimensional trapped atomic Bose gas at finite temperatures

    NASA Astrophysics Data System (ADS)

    Hu, Hui; Xianlong, Gao; Liu, Xia-Ji

    2014-07-01

    We theoretically investigate collective modes of a one-dimensional (1D) interacting Bose gas in a harmonic tras at finite temperatures, by using a variational approach and the local density approximation. We find that the temperature dependence of collective mode frequencies is notably different in the weakly and strongly interacting regimes. Therefore, the experimental measurement of collective modes could provide a sensitive probe for different quantum phases of a 1D trapped Bose gas, realized by tuning the interatomic interaction strength and temperature. Our prediction on the temperature dependence of the breathing mode frequency is in good qualitative agreement with an earlier experimental measurement for a weakly interacting 1D Bose gas of rubidium-87 atoms in harmonic traps [Moritz et al., Phys. Rev. Lett. 91, 250402 (2003), 10.1103/PhysRevLett.91.250402].

  10. Thermal tuning of omnidirectional reflection bands in one-dimensional finite phononic crystals

    NASA Astrophysics Data System (ADS)

    Chen, Zhaojiang

    2015-03-01

    This study investigates the temperature-tuned omnidirectional reflection (ODR) bands in a one-dimensional (1D) finite phononic crystal (PnC), formed by alternating layers of nitinol and epoxy. An analytical model, based on the transfer matrix method, is developed to study reflection and transmission characteristics of the acoustic waves including shear and compressional waves in a 1D PnC. Existence criteria and the sensitive and continuous temperature-tunability of ODR bands in the nitinol/epoxy PnC are demonstrated using the analyses of projected-band structures and reflection spectra. The width and location of the ODR bands shift markedly with temperature variations of nitinol across the phase transition from martensite to austenite. The effects of temperature, filling fraction of nitinol layers, and the Si clad layer on ODR bands are considered. The results will be of benefit in the design and optimization of thermal tuning of omnidirectional acoustic mirrors.

  11. Expansion of one-dimensional lattice hard-core bosons at finite temperature

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Rigol, Marcos

    2017-03-01

    We develop an exact approach to study the quench dynamics of hard-core bosons initially in thermal equilibrium in one-dimensional lattices. This approach is used to study the sudden expansion of thermal states after confining potentials are switched off. We find that a dynamical fermionization of the momentum distribution occurs at all temperatures. This phenomenon is studied for low initial site occupations, for which the expansion of the cloud is self-similar. In this regime, the occupation of the natural orbitals allows one to distinguish hard-core bosons from noninteracting fermions. We also study the free expansion of initial Mott insulating domains at finite temperature and show that the emergence of off-diagonal one-body correlations is suppressed gradually with increasing temperature. Surprisingly, the melting of the Mott domain is accompanied by an effective cooling of the system. We explain this phenomenon analytically using an equilibrium description based on an emergent local Hamiltonian.

  12. Improved finite-difference computation of the van der Waals force: One-dimensional case

    NASA Astrophysics Data System (ADS)

    Pinto, Fabrizio

    2009-10-01

    We present an improved demonstration of the calculation of Casimir forces in one-dimensional systems based on the recently proposed numerical imaginary frequency Green’s function computation approach. The dispersion force on two thick lossy dielectric slabs separated by an empty gap and placed within a perfectly conducting cavity is obtained from the Green’s function of the modified Helmholtz equation by means of an ordinary finite-difference method. In order to demonstrate the possibility to develop algorithms to explore complex geometries in two and three dimensions to higher order in the mesh spacing, we generalize existing classical electromagnetism algebraic methods to generate the difference equations for dielectric boundaries not coinciding with any grid points. Diagnostic tests are presented to monitor the accuracy of our implementation of the method and follow-up applications in higher dimensions are introduced.

  13. Fully stable numerical calculations for finite one-dimensional structures: Mapping the transfer matrix method

    NASA Astrophysics Data System (ADS)

    Luque-Raigon, Jose Miguel; Halme, Janne; Miguez, Hernan

    2014-02-01

    We design a fully stable numerical solution of the Maxwell's equations with the transfer matrix method (TMM) to understand the interaction between an electromagnetic field and a finite, one-dimensional, non-periodic structure. Such an exact solution can be tailored from a conventional solution by choosing an adequate transformation between its reference systems, which induces a mapping between its associated TMMs. The paper demonstrates theoretically the numerical stability of the TMM for the exact solution within the framework of Maxwell's equations, but the same formalism can efficiently be applied to resolve other classical or quantum linear wave-propagation interaction in one, two, and three dimensions. This is because the formalism is exclusively built up for an in depth analysis of the TMM's symmetries.

  14. Universality of finite-size corrections to geometrical entanglement in one-dimensional quantum critical systems

    NASA Astrophysics Data System (ADS)

    Liu, Xi-Jing; Hu, Bing-Quan; Cho, Sam Young; Zhou, Huan-Qiang; Shi, Qian-Qian

    2016-10-01

    Recently, the finite-size corrections to the geometrical entanglement per lattice site in the spin-1/2 chain have been numerically shown to scale inversely with system size, and its prefactor b has been suggested to be possibly universal [Q-Q. Shi et al., New J. Phys. 12, 025008 (2010)]. As possible evidence of its universality, the numerical values of the prefactors have been confirmed analytically by using the Affleck-Ludwig boundary entropy with a Neumann boundary condition for a free compactified field [J-M. Stephan et al., Phys. Rev. B 82, 180406(R) (2010)]. However, the Affleck-Ludwig boundary entropy is not unique and does depend on conformally invariant boundary conditions. Here, we show that a unique Affleck-Ludwig boundary entropy corresponding to a finitesize correction to the geometrical entanglement per lattice site exists and show that the ratio of the prefactor b to the corresponding minimum groundstate degeneracy gmin for the Affleck- Ludwig boundary entropy is a constant for any critical region of the spin-1 XXZ system with the single-ion anisotropy, i.e., b/(2 log2 g min ) = -1. Previously studied spin-1/2 systems, including the quantum three-state Potts model, have verified the universal ratio. Hence, the inverse finite-size correction to the geometrical entanglement per lattice site and its prefactor b are universal for one-dimensional critical systems.

  15. Excitation spectrum of bosons in a finite one-dimensional circular waveguide via the Bethe ansatz

    SciTech Connect

    Sykes, Andrew G.; Drummond, Peter D.; Davis, Matthew J.

    2007-12-15

    The exactly solvable Lieb-Liniger model of interacting bosons in one dimension has attracted renewed interest as current experiments with ultracold atoms begin to probe this regime. Here we numerically solve the equations arising from the Bethe ansatz solution for the exact many-body wave function in a finite-size system of up to 20 particles for attractive interactions. We discuss the features of the solutions, and how they deviate from the well-known string solutions [Thacker, Rev. Mod. Phys. 53, 253 (1981)] at finite densities. We present excited state string solutions in the limit of strong interactions and discuss their physical interpretation, as well as the characteristics of the quantum phase transition that occurs as a function of interaction strength in the mean-field limit. Finally we compare our results to those of exact diagonalization of the many-body Hamiltonian in a truncated basis. We also present excited state solutions and the excitation spectrum for the repulsive one-dimensional Bose gas on a ring.

  16. Finite current stationary states of random walks on one-dimensional lattices with aperiodic disorder

    NASA Astrophysics Data System (ADS)

    Miki, Hiroshi

    2016-11-01

    Stationary states of random walks with finite induced drift velocity on one-dimensional lattices with aperiodic disorder are investigated by scaling analysis. Three aperiodic sequences, the Thue-Morse (TM), the paperfolding (PF), and the Rudin-Shapiro (RS) sequences, are used to construct the aperiodic disorder. These are binary sequences, composed of two symbols A and B, and the ratio of the number of As to that of Bs converges to unity in the infinite sequence length limit, but their effects on diffusional behavior are different. For the TM model, the stationary distribution is extended, as in the case without current, and the drift velocity is independent of the system size. For the PF model and the RS model, as the system size increases, the hierarchical and fractal structure and the localized structure, respectively, are broken by a finite current and changed to an extended distribution if the system size becomes larger than a certain threshold value. Correspondingly, the drift velocity is saturated in a large system while in a small system it decreases as the system size increases.

  17. Functional renormalization group approach for inhomogeneous one-dimensional Fermi systems with finite-ranged interactions

    NASA Astrophysics Data System (ADS)

    Weidinger, Lukas; Bauer, Florian; von Delft, Jan

    2017-01-01

    We introduce an equilibrium formulation of the functional renormalization group (fRG) for inhomogeneous systems capable of dealing with spatially finite-ranged interactions. In the general third-order truncated form of fRG, the dependence of the two-particle vertex is described by O (N4) independent variables, where N is the dimension of the single-particle system. In a previous paper [Bauer et al., Phys. Rev. B 89, 045128 (2014), 10.1103/PhysRevB.89.045128], the so-called coupled-ladder approximation (CLA) was introduced and shown to admit a consistent treatment for models with a purely onsite interaction, reducing the vertex to O (N2) independent variables. In this work, we introduce an extended version of this scheme, called the extended coupled ladder approximation (eCLA), which includes a spatially extended feedback between the individual channels, measured by a feedback length L , using O (N2L2) independent variables for the vertex. We apply the eCLA in a static approximation and at zero temperature to three types of one-dimensional model systems, focusing on obtaining the linear response conductance. First, we study a model of a quantum point contact (QPC) with a parabolic barrier top and on-site interactions. In our setup, where the characteristic length lx of the QPC ranges between approximately 4-10 sites, eCLA achieves convergence once L becomes comparable to lx. It also turns out that the additional feedback stabilizes the fRG flow. This enables us, second, to study the geometric crossover between a QPC and a quantum dot, again for a one-dimensional model with on-site interactions. Third, the enlarged feedback also enables the treatment of a finite-ranged interaction extending over up to L sites. Using a simple estimate for the form of such a finite-ranged interaction in a QPC with a parabolic barrier top, we study its effects on the conductance and the density. We find that for low densities and sufficiently large interaction ranges the conductance

  18. Equilibrium charge distribution on a finite straight one-dimensional wire

    NASA Astrophysics Data System (ADS)

    Batle, Josep; Ciftja, Orion; Abdalla, Soliman; Elhoseny, Mohamed; Alkhambashi, Majid; Farouk, Ahmed

    2017-09-01

    The electrostatic properties of uniformly charged regular bodies are prominently discussed on college-level electromagnetism courses. However, one of the most basic problems of electrostatics that deals with how a continuous charge distribution reaches equilibrium is rarely mentioned at this level. In this work we revisit the problem of equilibrium charge distribution on a straight one-dimensional (1D) wire with finite length. The majority of existing treatments in the literature deal with the 1D wire as a limiting case of a higher-dimensional structure that can be treated analytically for a Coulomb interaction potential between point charges. Surprisingly, different models (for instance, an ellipsoid or a cylinder model) may lead to different results, thus there is even some ambiguity on whether the problem is well-posed. In this work we adopt a different approach where we do not start with any higher-dimensional body that reduces to a 1D wire in the appropriate limit. Instead, our starting point is the obvious one, a finite straight 1D wire that contains charge. However, the new tweak in the model is the assumption that point charges interact with each other via a non-Coulomb power-law interaction potential. This potential is well-behaved, allows exact analytical results and approaches the standard Coulomb interaction potential as a limit. The results originating from this approach suggest that the equilibrium charge distribution for a finite straight 1D wire is a uniform charge density when the power-law interaction potential approaches the Coulomb interaction potential as a suitable limit. We contrast such a finding to results obtained using a different regularised logarithmic interaction potential which allows exact treatment in 1D. The present self-contained material may be of interest to instructors teaching electromagnetism as well as students who will discover that simple-looking problems may sometimes pose important scientific challenges.

  19. Electromagnetic-field amplification in finite one-dimensional photonic crystals

    SciTech Connect

    Gorelik, V. S.; Kapaev, V. V.

    2016-09-15

    The electromagnetic-field distribution in a finite one-dimensional photonic crystal is studied using the numerical solution of Maxwell’s equations by the transfer-matrix method. The dependence of the transmission coefficient T on the period d (or the wavelength λ) has the characteristic form with M–1 (M is the number of periods in the structure) maxima with T = 1 in the allowed band of an infinite crystal and zero values in the forbidden band. The field-modulus distribution E(x) in the structure for parameters that correspond to the transmission maxima closest to the boundaries of forbidden bands has maxima at the center of the structure; the value at the maximum considerably exceeds the incident-field strength. For the number of periods M ~ 50, more than an order of magnitude increase in the field amplification is observed. The numerical results are interpreted with an analytic theory constructed by representing the solution in the form of a linear combination of counterpropagating Floquet modes in a periodic structure.

  20. Experimental evidence of Willis coupling in a one-dimensional effective material element

    NASA Astrophysics Data System (ADS)

    Muhlestein, Michael B.; Sieck, Caleb F.; Wilson, Preston S.; Haberman, Michael R.

    2017-06-01

    The primary objective of acoustic metamaterial research is to design subwavelength systems that behave as effective materials with novel acoustical properties. One such property couples the stress-strain and the momentum-velocity relations. This response is analogous to bianisotropy in electromagnetism, is absent from common materials, and is often referred to as Willis coupling after J.R., Willis, who first described it in the context of the dynamic response of heterogeneous elastic media. This work presents two principal results: first, experimental and theoretical demonstrations, illustrating that Willis properties are required to obtain physically meaningful effective material properties resulting solely from local behaviour of an asymmetric one-dimensional isolated element and, second, an experimental procedure to extract the effective material properties from a one-dimensional isolated element. The measured material properties are in very good agreement with theoretical predictions and thus provide improved understanding of the physical mechanisms leading to Willis coupling in acoustic metamaterials.

  1. Experimental evidence of Willis coupling in a one-dimensional effective material element.

    PubMed

    Muhlestein, Michael B; Sieck, Caleb F; Wilson, Preston S; Haberman, Michael R

    2017-06-13

    The primary objective of acoustic metamaterial research is to design subwavelength systems that behave as effective materials with novel acoustical properties. One such property couples the stress-strain and the momentum-velocity relations. This response is analogous to bianisotropy in electromagnetism, is absent from common materials, and is often referred to as Willis coupling after J.R., Willis, who first described it in the context of the dynamic response of heterogeneous elastic media. This work presents two principal results: first, experimental and theoretical demonstrations, illustrating that Willis properties are required to obtain physically meaningful effective material properties resulting solely from local behaviour of an asymmetric one-dimensional isolated element and, second, an experimental procedure to extract the effective material properties from a one-dimensional isolated element. The measured material properties are in very good agreement with theoretical predictions and thus provide improved understanding of the physical mechanisms leading to Willis coupling in acoustic metamaterials.

  2. Exact finite elements for conduction and convection

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.

    1981-01-01

    An appproach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions. Previously announced in STAR as N81-31507

  3. Exact finite elements for conduction and convection

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.

    1981-01-01

    An appproach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions. Previously announced in STAR as N81-31507

  4. Exact finite elements for conduction and convection

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.

    1981-01-01

    An approach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions.

  5. Finite-temperature hydrodynamics for one-dimensional Bose gases: Breathing-mode oscillations as a case study

    NASA Astrophysics Data System (ADS)

    Bouchoule, I.; Szigeti, S. S.; Davis, M. J.; Kheruntsyan, K. V.

    2016-11-01

    We develop a finite-temperature hydrodynamic approach for a harmonically trapped one-dimensional quasicondensate and apply it to describe the phenomenon of frequency doubling in the breathing-mode oscillations of the quasicondensate momentum distribution. The doubling here refers to the oscillation frequency relative to the oscillations of the real-space density distribution, invoked by a sudden confinement quench. By constructing a nonequilibrium phase diagram that characterizes the regime of frequency doubling and its gradual disappearance, we find that this crossover is governed by the quench strength and the initial temperature rather than by the equilibrium-state crossover from the quasicondensate to the ideal Bose gas regime. The hydrodynamic predictions are supported by the results of numerical simulations based on a finite-temperature c -field approach and extend the utility of the hydrodynamic theory for low-dimensional quantum gases to the description of finite-temperature systems and their dynamics in momentum space.

  6. Equivalence of Fluctuation Splitting and Finite Volume for One-Dimensional Gas Dynamics

    NASA Technical Reports Server (NTRS)

    Wood, William A.

    1997-01-01

    The equivalence of the discretized equations resulting from both fluctuation splitting and finite volume schemes is demonstrated in one dimension. Scalar equations are considered for advection, diffusion, and combined advection/diffusion. Analysis of systems is performed for the Euler and Navier-Stokes equations of gas dynamics. Non-uniform mesh-point distributions are included in the analyses.

  7. Finite-size effects in Anderson localization of one-dimensional Bose-Einstein condensates

    SciTech Connect

    Cestari, J. C. C.; Foerster, A.; Gusmao, M. A.

    2010-12-15

    We investigate the disorder-induced localization transition in Bose-Einstein condensates for the Anderson and Aubry-Andre models in the noninteracting limit using exact diagonalization. We show that, in addition to the standard superfluid fraction, other tools such as the entanglement and fidelity can provide clear signatures of the transition. Interestingly, the fidelity exhibits good sensitivity even for small lattices. Effects of the system size on these quantities are analyzed in detail, including the determination of a finite-size-scaling law for the critical disorder strength in the case of the Anderson model.

  8. WONDY V: A one-dimensional finite-difference wave-propagation code

    NASA Astrophysics Data System (ADS)

    Kipp, M. E.; Lawrence, R. J.

    1982-06-01

    WONDY V solves the finite difference analogs to the Lagrangian equations of motion in one spatial dimension (planar, cylindrical, or spherical). Simulations of explosive detonation, energy deposition, plate impact, and dynamic fracture are possible, using a variety of existing material models. In addition, WONDY proves to be a powerful tool in the evaluation of new constitutive models. A preprocessor is available to allocate storage arrays commensurate with problem size, and automatic rezoning may be employed to improve resolution. A description of the equations solved, available material models, operating instructions, and sample problems are given.

  9. WONDY V: a one-dimensional finite-difference wave-propagation code

    SciTech Connect

    Kipp, M.E.; Lawrence, R.J.

    1982-06-01

    WONDY V solves the finite difference analogs to the Lagrangian equations of motion in one spatial dimension (planar, cylindrical, or spherical). Simulations of explosive detonation, energy deposition, plate impact, and dynamic fracture are possible, using a variety of existing material models. In addition, WONDY has proven to be a powerful tool in the evaluation of new constitutive models. A preprocessor is available to allocate storage arrays commensurate with problem size, and automatic rezoning may be employed to improve resolution. This document provides a description of the equations solved, available material models, operating instructions, and sample problems.

  10. One-dimensional transient finite difference model of an operational salinity gradient solar pond

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Golding, Peter

    1992-01-01

    This paper describes the modeling approach used to simulate the transient behavior of a salinity gradient solar pond. A system of finite difference equations are used to generate the time dependent temperature and salinity profiles within the pond. The stability of the pond, as determined by the capacity of the resulting salinity profile to suppress thermal convection within the primary gradient region of the pond, is continually monitored and when necessary adjustments are made to the thickness of the gradient zone. Results of the model are then compared to measurements taken during two representative seasonal periods at the University of Texas at El Paso's (UTEP's) research solar pond.

  11. Universality in one-dimensional fermions at finite temperature: Density, pressure, compressibility, and contact

    NASA Astrophysics Data System (ADS)

    Hoffman, M. D.; Javernick, P. D.; Loheac, A. C.; Porter, W. J.; Anderson, E. R.; Drut, J. E.

    2015-03-01

    We present finite-temperature, lattice Monte Carlo calculations of the particle number density, compressibility, pressure, and Tan's contact of an unpolarized system of short-range, attractively interacting spin-1/2 fermions in one spatial dimension, i.e., the Gaudin-Yang model. In addition, we compute the second-order virial coefficients for the pressure and the contact, both of which are in excellent agreement with the lattice results in the low-fugacity regime. Our calculations yield universal predictions for ultracold atomic systems with broad resonances in highly constrained traps. We cover a wide range of couplings and temperatures and find results that support the existence of a strong-coupling regime in which the thermodynamics of the system is markedly different from the noninteracting case. We compare and contrast our results with identical systems in higher dimensions.

  12. Linear and nonlinear optical response of one-dimensional semiconductors: finite-size and Franz–Keldysh effects

    NASA Astrophysics Data System (ADS)

    Bonabi, Farzad; Pedersen, Thomas G.

    2017-04-01

    The dipole moment formalism for the optical response of finite electronic structures breaks down in infinite ones, for which a momentum-based method is better suited. Focusing on simple chain structures, we compare the linear and nonlinear optical response of finite and infinite one-dimensional semiconductors. This comparison is then extended to cases including strong electro-static fields breaking translational invariance. For large electro-static fields, highly non-perturbative Franz–Keldysh (FK) features are observed in both linear and nonlinear spectra. It is demonstrated that dipole and momentum formalisms agree in the limit of large structures provided the intraband momentum contributions are carefully treated. This convergence is established even in the presence of non-perturbative electro-static fields.

  13. Compact high order finite volume method on unstructured grids I: Basic formulations and one-dimensional schemes

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Ren, Yu-Xin; Li, Wanai

    2016-06-01

    The large reconstruction stencil has been the major bottleneck problem in developing high order finite volume schemes on unstructured grids. This paper presents a compact reconstruction procedure for arbitrarily high order finite volume method on unstructured grids to overcome this shortcoming. In this procedure, a set of constitutive relations are constructed by requiring the reconstruction polynomial and its derivatives on the control volume of interest to conserve their averages on face-neighboring cells. These relations result in an over-determined linear equation system, which, in the sense of least-squares, can be reduced to a block-tridiagonal system in the one-dimensional case. The one-dimensional formulations of the reconstruction are discussed in detail and a Fourier analysis is presented to study the dispersion/dissipation and stability properties. The WBAP limiter based on the secondary reconstruction is used to suppress the non-physical oscillations near discontinuities while achieve high order accuracy in smooth regions of the solution. Numerical results demonstrate the method's high order accuracy, robustness and shock capturing capability.

  14. Automatic finite element generators

    NASA Technical Reports Server (NTRS)

    Wang, P. S.

    1984-01-01

    The design and implementation of a software system for generating finite elements and related computations are described. Exact symbolic computational techniques are employed to derive strain-displacement matrices and element stiffness matrices. Methods for dealing with the excessive growth of symbolic expressions are discussed. Automatic FORTRAN code generation is described with emphasis on improving the efficiency of the resultant code.

  15. Improved finite element methodology for integrated thermal structural analysis

    NASA Technical Reports Server (NTRS)

    Dechaumphai, P.; Thornton, E. A.

    1982-01-01

    An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analysis is presented. New thermal finite elements which yield exact nodal and element temperatures for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.

  16. Improved finite element methodology for integrated thermal structural analysis

    NASA Technical Reports Server (NTRS)

    Dechaumphai, P.; Thornton, E. A.

    1982-01-01

    An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analyses is presented. New thermal finite elements which yield exact nodal and element temperature for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal-structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.

  17. Heat-current correlation loss induced by finite-size effects in a one-dimensional nonlinear lattice.

    PubMed

    Wang, Lei; Xu, Lubo; Zhao, Huizhu

    2015-01-01

    The Green-Kubo formula provides a mathematical expression for heat conductivity in terms of integrals of the heat-current correlation function, which should be calculated in the thermodynamic limit. In finite systems this function generally decreases, i.e., it decays faster than it does in infinite systems. We compared the values of the correlation function in a one-dimensional purely quartic lattice with various lengths, and found that this loss is much smaller than is conventionally estimated. By studying the heat diffusion process in this lattice, we found that, in contrast to the conventional belief, the collisions between sound modes do not noticeably affect the current correlation function. Therefore, its loss being surprisingly small can be well understood. This finding allows one to calculate the heat conductivity in a very large system with desirable accuracy by performing simulations in a system with much smaller size, and thus greatly broadens the application of the Green-Kubo method.

  18. Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures

    NASA Astrophysics Data System (ADS)

    Bendickson, Jon M.; Dowling, Jonathan P.; Scalora, Michael

    1996-04-01

    We derive an exact expression for the electromagnetic mode density, and hence the group velocity, for a finite, N-period, one-dimensional, photonic band-gap structure. We begin by deriving a general formula for the mode density in terms of the complex transmission coefficient of an arbitrary index profile. Then we develop a specific formula that gives the N-period mode density in terms of the complex transmission coefficient of the unit cell. The special cases of mode-density enhancement and suppression at the photonic band edge and also at midgap, respectively, are derived. The specific example of a quarter-wave stack is analyzed, and applications to three-dimensional structures, spontaneous emission control, delay lines, band-edge lasers, and superluminal tunneling times are discussed.

  19. Heat-current correlation loss induced by finite-size effects in a one-dimensional nonlinear lattice

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Xu, Lubo; Zhao, Huizhu

    2015-01-01

    The Green-Kubo formula provides a mathematical expression for heat conductivity in terms of integrals of the heat-current correlation function, which should be calculated in the thermodynamic limit. In finite systems this function generally decreases, i.e., it decays faster than it does in infinite systems. We compared the values of the correlation function in a one-dimensional purely quartic lattice with various lengths, and found that this loss is much smaller than is conventionally estimated. By studying the heat diffusion process in this lattice, we found that, in contrast to the conventional belief, the collisions between sound modes do not noticeably affect the current correlation function. Therefore, its loss being surprisingly small can be well understood. This finding allows one to calculate the heat conductivity in a very large system with desirable accuracy by performing simulations in a system with much smaller size, and thus greatly broadens the application of the Green-Kubo method.

  20. Finite-size effects for the gap in the excitation spectrum of the one-dimensional Hubbard model

    SciTech Connect

    Colome-Tatche, M.; Matveenko, S. I.; Shlyapnikov, G. V.

    2010-01-15

    We study finite-size effects for the gap of the quasiparticle excitation spectrum in the weakly interacting regime one-dimensional Hubbard model with on-site attraction. Two types of corrections to the result of the thermodynamic limit are obtained. Aside from a power law (conformal) correction due to gapless excitations which behaves as 1/N{sub a}, where N{sub a} is the number of lattice sites, we obtain corrections related to the existence of gapped excitations. First of all, there is an exponential correction which in the weakly interacting regime (|U|<>1, where t is the hopping amplitude, U is the on-site energy, and DELTA{sub i}nfinity is the gap in the thermodynamic limit. Second, in a finite-size system a spin-flip producing unpaired fermions leads to the appearance of solitons with nonzero momenta, which provides an extra (nonexponential) contribution delta. For moderate but still large values of N{sub a}DELTA{sub i}nfinity/t, these corrections significantly increase and may become comparable with the 1/N{sub a} conformal correction. Moreover, in the case of weak interactions where DELTA{sub i}nfinity<finite-size effects.

  1. Metastable configurations of a finite-size chain of classical spins within the one-dimensional chiral XY-model

    NASA Astrophysics Data System (ADS)

    Popov, Alexander P.; Gloria Pini, Maria; Rettori, Angelo

    2016-03-01

    The metastable states of a finite-size chain of N classical spins described by the chiral XY-model on a discrete one-dimensional lattice are calculated by means of a general theoretical method recently developed by one of us. This method allows one to determine all the possible equilibrium magnetic states in an accurate and systematic way. The ground state of a chain consisting of N classical XY spins is calculated in the presence of (i) a symmetric ferromagnetic exchange interaction, favoring parallel alignment of nearest neighbor spins, (ii) a uniaxial anisotropy, favoring a given direction in the film plane, and (iii) an antisymmetric Dzyaloshinskii-Moriya interaction (DMI), favoring perpendicular alignment of nearest neighbor spins. In addition to the ground state with a non-uniform helical spin arrangement, which originates from the energy competition in the finite-size chain with open boundary conditions, we have found a considerable number of higher-energy equilibrium states. In the investigated case of a chain with N=10 spins and a DMI much smaller than the in-plane uniaxial anisotropy, it turns out that a metastable (unstable) state of the finite chain is characterized by a configuration where none (at least one) of the inner spins is nearly parallel to the hard axis. The role of the DMI is to establish a unique rotational sense for the helical ground state. Moreover, the number of both metastable and unstable equilibrium states is doubled with respect to the case of zero DMI. This produces modifications in the Peierls-Nabarro potential encountered by a domain wall during its displacement along the discrete spin chain.

  2. An efficient locally one-dimensional finite-difference time-domain method based on the conformal scheme

    NASA Astrophysics Data System (ADS)

    Wei, Xiao-Kun; Shao, Wei; Shi, Sheng-Bing; Zhang, Yong; Wang, Bing-Zhong

    2015-07-01

    An efficient conformal locally one-dimensional finite-difference time-domain (LOD-CFDTD) method is presented for solving two-dimensional (2D) electromagnetic (EM) scattering problems. The formulation for the 2D transverse-electric (TE) case is presented and its stability property and numerical dispersion relationship are theoretically investigated. It is shown that the introduction of irregular grids will not damage the numerical stability. Instead of the staircasing approximation, the conformal scheme is only employed to model the curve boundaries, whereas the standard Yee grids are used for the remaining regions. As the irregular grids account for a very small percentage of the total space grids, the conformal scheme has little effect on the numerical dispersion. Moreover, the proposed method, which requires fewer arithmetic operations than the alternating-direction-implicit (ADI) CFDTD method, leads to a further reduction of the CPU time. With the total-field/scattered-field (TF/SF) boundary and the perfectly matched layer (PML), the radar cross section (RCS) of two 2D structures is calculated. The numerical examples verify the accuracy and efficiency of the proposed method. Project supported by the National Natural Science Foundation of China (Grant Nos. 61331007 and 61471105).

  3. Modeling and Calculation of Optical Amplification in One Dimensional Case of Laser Medium Using Finite Difference Time Domain Method

    NASA Astrophysics Data System (ADS)

    Maryana, Okky Fajar Tri; Hidayat, Rahmat

    2016-08-01

    Finite Difference Time Domain (FDTD) method has been much employed for studying light propagation in various structures, from simple one-dimensional structures up to three-dimensional complex structures. One of challenging problems is to implement this method for the case of light propagation in amplifying medium or structures, such as optical amplifier and lasers. The implementation is hindered by the fact that the dielectric constant becomes a complex number when optical gain parameter is involved in the calculation. In general, complex dielectric constant is related to complex susceptibility, in which the imaginary part is related to optical gain. Here, we then modify the formulation for updating electric field in the calculation algorithm. Using this approach, we then finally can calculate light amplification in laser active medium of Nd3+ ion doped glass. The calculation result shows an agreement with the result from the calculation using differential equation for intensity. Although this method is more time consuming, the method seem promising for optical complex micro- and nano-structures, such quantum dot lasers, micro-ring lasers, etc.

  4. High speed, high power one-dimensional beam steering from a 6-element optical phased array.

    PubMed

    Huang, W Ronny; Montoya, Juan; Kansky, Jan E; Redmond, Shawn M; Turner, George W; Sanchez-Rubio, Antonio

    2012-07-30

    Beam steering at high speed and high power is demonstrated from a 6-element optical phased array using coherent beam combining (CBC) techniques. The steering speed, defined as the inverse of the time to required to sweep the beam across the steering range, is 40 MHz and the total power is 396 mW. The measured central lobe FWHM width is 565 μrad. High on-axis intensity is maintained periodically by phase-locking the array via a stochastic-parallel-gradient-descent (SPGD) algorithm. A master-oscillator-power-amplifier (MOPA) configuration is used where the amplifier array elements are semiconductor slab-coupled-optical-waveguide-amplifiers (SCOWAs). The beam steering is achieved by LiNbO(3) phase modulators; the phase-locking occurs by current adjustment of the SCOWAs. The system can be readily scaled to GHz steering speed and multiwatt-class output.

  5. Ablative Thermal Response Analysis Using the Finite Element Method

    NASA Technical Reports Server (NTRS)

    Dec John A.; Braun, Robert D.

    2009-01-01

    A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.

  6. Fourier analysis of finite element preconditioned collocation schemes

    NASA Technical Reports Server (NTRS)

    Deville, Michel O.; Mund, Ernest H.

    1990-01-01

    The spectrum of the iteration operator of some finite element preconditioned Fourier collocation schemes is investigated. The first part of the paper analyses one-dimensional elliptic and hyperbolic model problems and the advection-diffusion equation. Analytical expressions of the eigenvalues are obtained with use of symbolic computation. The second part of the paper considers the set of one-dimensional differential equations resulting from Fourier analysis (in the tranverse direction) of the 2-D Stokes problem. All results agree with previous conclusions on the numerical efficiency of finite element preconditioning schemes.

  7. Plasma instabilities in a steady-state nonequilibrium one-dimensional solid-state plasma of finite length

    SciTech Connect

    Kempa, K.; Bakshi, P.; Gornik, E.

    1996-09-01

    We show theoretically that strong plasma mode generation is possible in a nonequilibrium steady-state quasi-one-dimensional bounded solid-state plasma, in which a nonequilibrium distribution is maintained by appropriate injection/extraction of carriers. We calculate the density response of realistic model systems using the random-phase approximation, determine the normal modes of the bounded carrier plasma, and show that strong plasma instabilities can be generated under suitable conditions. Such stimulated plasma oscillations could lead to sources of terahertz electromagnetic radiation. {copyright} {ital 1996 The American Physical Society.}

  8. Extended universal finite-T renormalization of excitations in a class of one-dimensional quantum magnets.

    PubMed

    Zheludev, A; Garlea, V O; Regnault, L-P; Manaka, H; Tsvelik, A; Chung, J-H

    2008-04-18

    Temperature dependencies of gap energies and magnon lifetimes are measured in the quasi-one-dimensional S=1/2 gapped quantum magnets (CH3)(2)CHNH(3)CuCL(3) (IPA-CuCl(3), where IPA denotes isopropyl ammonium) and Cu(2)Cl(4).D(8)C(4)SO(2) (Sul-Cu(2)Cl(4)) using inelastic neutron scattering. The results are compared to those found in literature for S=1 Haldane spin chain materials and to theoretical calculations for the O(3)- and O(N)- quantum nonlinear sigma-models. It is found that when the T=0 energy gap Delta is used as the temperature scale, all experimental and theoretical curves are identical to within system-dependent but temperature-independent scaling factors of the order of unity. This quasi-universality extends over a surprising broad T range, at least up to kappaT approximately 1.5 Delta.

  9. Quantum Hall Effect in Quasi-One-Dimensional Conductors: The Roles of Moving FISDW, Finite Temperature, and Edge States

    NASA Astrophysics Data System (ADS)

    Yakovenko, Victor M.; Goan, Hsi-Sheng

    1996-12-01

    This paper reviews recent developments in the theory of the quantum Hall effect (QHE) in the magnetic-field-induced spin-density-wave (FISDW) state of the quasi-one-dimensional organic conductors (TMTSF)2X. The origin and the basic features of the FISDW are reviewed. The QHE in the pinned FISDW state is derived in several simple, transparent ways, including the edge states formulation of the problem. The temperature dependence of the Hall conductivity is found to be the same as the temperature dependence of the Fröhlich current. It is shown that, when the FISDW is free to move, it produces an additional contribution to the Hall conductivity that nullifies the total Hall effect. The paper is written on mathematically simple level, emphasizes physical meaning over sophisticated mathematical technique, and uses inductive, rather than deductive, reasoning.

  10. Finite element computational fluid mechanics

    NASA Technical Reports Server (NTRS)

    Baker, A. J.

    1983-01-01

    Finite element analysis as applied to the broad spectrum of computational fluid mechanics is analyzed. The finite element solution methodology is derived, developed, and applied directly to the differential equation systems governing classes of problems in fluid mechanics. The heat conduction equation is used to reveal the essence and elegance of finite element theory, including higher order accuracy and convergence. The algorithm is extended to the pervasive nonlinearity of the Navier-Stokes equations. A specific fluid mechanics problem class is analyzed with an even mix of theory and applications, including turbulence closure and the solution of turbulent flows.

  11. Finite element computational fluid mechanics

    NASA Technical Reports Server (NTRS)

    Baker, A. J.

    1983-01-01

    Finite element analysis as applied to the broad spectrum of computational fluid mechanics is analyzed. The finite element solution methodology is derived, developed, and applied directly to the differential equation systems governing classes of problems in fluid mechanics. The heat conduction equation is used to reveal the essence and elegance of finite element theory, including higher order accuracy and convergence. The algorithm is extended to the pervasive nonlinearity of the Navier-Stokes equations. A specific fluid mechanics problem class is analyzed with an even mix of theory and applications, including turbulence closure and the solution of turbulent flows.

  12. Finite elements of nonlinear continua.

    NASA Technical Reports Server (NTRS)

    Oden, J. T.

    1972-01-01

    The finite element method is extended to a broad class of practical nonlinear problems, treating both theory and applications from a general and unifying point of view. The thermomechanical principles of continuous media and the properties of the finite element method are outlined, and are brought together to produce discrete physical models of nonlinear continua. The mathematical properties of the models are analyzed, and the numerical solution of the equations governing the discrete models is examined. The application of the models to nonlinear problems in finite elasticity, viscoelasticity, heat conduction, and thermoviscoelasticity is discussed. Other specific topics include the topological properties of finite element models, applications to linear and nonlinear boundary value problems, convergence, continuum thermodynamics, finite elasticity, solutions to nonlinear partial differential equations, and discrete models of the nonlinear thermomechanical behavior of dissipative media.

  13. Finite elements of nonlinear continua.

    NASA Technical Reports Server (NTRS)

    Oden, J. T.

    1972-01-01

    The finite element method is extended to a broad class of practical nonlinear problems, treating both theory and applications from a general and unifying point of view. The thermomechanical principles of continuous media and the properties of the finite element method are outlined, and are brought together to produce discrete physical models of nonlinear continua. The mathematical properties of the models are analyzed, and the numerical solution of the equations governing the discrete models is examined. The application of the models to nonlinear problems in finite elasticity, viscoelasticity, heat conduction, and thermoviscoelasticity is discussed. Other specific topics include the topological properties of finite element models, applications to linear and nonlinear boundary value problems, convergence, continuum thermodynamics, finite elasticity, solutions to nonlinear partial differential equations, and discrete models of the nonlinear thermomechanical behavior of dissipative media.

  14. Application of the Space-Time Conservation Element and Solution Element Method to One-Dimensional Convection-Diffusion Problems

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Wang, Xiao-Yen; To, Wai-Ming

    2000-01-01

    In the space-time conservation element and solution element (CE/SE) method, the independent marching variables used comprise not only the mesh value of the physical dependent variables but also, in contrast to it typical numerical method, the Mesh values of the spatial derivatives of the physical variables The use of the extra marching variables results from the need to construct the two-level explicit and nondissipative schemes which are at the core of the CE/SE development. It also results from the need to minimize the stencil while maintaining accuracy. In this paper using the 1D(sub (alpha)-mu) scheme as an example, the effect of this added complication on consistency, accuracy and operation count is assessed. As part of this effort, an equivalent yet more efficient form of the alpha-mu scheme in which the independent marching variables are the local fluxes tied to each mesh point is introduced. Also, the intriguing relations that exist among the alpha-mu. Leapfrog, and DuFort-Frankel schemes are further explored. In addition, the redundance of the Leapfrog, DUFort-Frankel, and Lax scheme and the remedy for this redundance are discussed. This paper is concluded with the construction and evaluation of a CE/SE solver for the inviscid Burger equation.

  15. Application of the Space-Time Conservation Element and Solution Element Method to One-Dimensional Convection-Diffusion Problems

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Wang, Xiao-Yen; To, Wai-Ming

    2000-01-01

    In the space-time conservation element and solution element (CE/SE) method, the independent marching variables used comprise not only the mesh value of the physical dependent variables but also, in contrast to it typical numerical method, the Mesh values of the spatial derivatives of the physical variables The use of the extra marching variables results from the need to construct the two-level explicit and nondissipative schemes which are at the core of the CE/SE development. It also results from the need to minimize the stencil while maintaining accuracy. In this paper using the 1D(sub (alpha)-mu) scheme as an example, the effect of this added complication on consistency, accuracy and operation count is assessed. As part of this effort, an equivalent yet more efficient form of the alpha-mu scheme in which the independent marching variables are the local fluxes tied to each mesh point is introduced. Also, the intriguing relations that exist among the alpha-mu. Leapfrog, and DuFort-Frankel schemes are further explored. In addition, the redundance of the Leapfrog, DUFort-Frankel, and Lax scheme and the remedy for this redundance are discussed. This paper is concluded with the construction and evaluation of a CE/SE solver for the inviscid Burger equation.

  16. General finite-size effects for zero-entropy states in one-dimensional quantum integrable models

    NASA Astrophysics Data System (ADS)

    Eliëns, Sebas; Caux, Jean-Sébastien

    2016-12-01

    We present a general derivation of the spectrum of excitations for gapless states of zero entropy density in Bethe ansatz solvable models. Our formalism is valid for an arbitrary choice of bare energy function which is relevant to situations where the Hamiltonian for time evolution differs from the Hamiltonian in a (generalized) Gibbs ensemble, i.e. out of equilibrium. The energy of particle and hole excitations, as measured with the time-evolution Hamiltonian, is shown to include additional contributions stemming from the shifts of the Fermi points that may now have finite energy. The finite-size effects are also derived and the connection with conformal field theory discussed. The critical exponents can still be obtained from the finite-size spectrum, however the velocity occurring here differs from the one in the constant Casimir term. The derivation highlights the importance of the phase shifts at the Fermi points for the critical exponents of asymptotes of correlations. We generalize certain results known for the ground state and discuss the relation to the dressed charge (matrix). Finally, we discuss the finite-size corrections in the presence of an additional particle or hole, which are important for dynamical correlation functions.

  17. Toward automatic finite element analysis

    NASA Technical Reports Server (NTRS)

    Kela, Ajay; Perucchio, Renato; Voelcker, Herbert

    1987-01-01

    Two problems must be solved if the finite element method is to become a reliable and affordable blackbox engineering tool. Finite element meshes must be generated automatically from computer aided design databases and mesh analysis must be made self-adaptive. The experimental system described solves both problems in 2-D through spatial and analytical substructuring techniques that are now being extended into 3-D.

  18. Extended universal finite-T renormalization of excitations in a class of one-dimensional quantum magnets.

    SciTech Connect

    Zheludev, Andrey I; Garlea, Vasile O; Regnault, L.-P.; Manaka, H.; Tswelik, A.

    2008-01-01

    Temperature dependencies of gap energies and magnon lifetimes are measured in the quasi-one-dimensional S=1/2 gapped quantum magnets (CH{sub 3}){sub 2}CHNH{sub 3}CuCL{sub 3} (IPA-CuCl{sub 3}, where IPA denotes isopropyl ammonium) and Cu{sub 2}Cl{sub 4} {center_dot} D{sub 8}C{sub 4}SO{sub 2} (Sul-Cu{sub 2}Cl{sub 4}) using inelastic neutron scattering. The results are compared to those found in literature for S=1 Haldane spin chain materials and to theoretical calculations for the O(3)- and O(N)- quantum nonlinear {delta}-models. It is found that when the T=0 energy gap {Delta} is used as the temperature scale, all experimental and theoretical curves are identical to within system-dependent but temperature-independent scaling factors of the order of unity. This quasi-universality extends over a surprising broad T range, at least up to {kappa}T {approx} 1.5{Delta}.

  19. Fermi edge singularity and finite-frequency spectral features in a semi-infinite one-dimensional wire

    NASA Astrophysics Data System (ADS)

    Sheikhan, A.; Snyman, I.

    2012-08-01

    We theoretically study a charge qubit interacting with electrons in a semi-infinite one-dimensional wire. The system displays the physics of the Fermi edge singularity. Our results generalize known results for the Fermi edge system to the regime where excitations induced by the qubit can resolve the spatial structure of the scattering region. We find resonant features in the qubit tunneling rate as a function of the qubit level splitting. They occur at integer multiples of hvF/l. Here vF is the Fermi velocity of the electrons in the wire, and l is the distance from the tip of the wire to the point where it interacts with the qubit. These features are due to the constructive interference of the amplitudes for creating single coherent left- or right-moving charge fluctuation (plasmon) in the electron gas. As the coupling between the qubit and the wire is increased, the resonances are washed out. This is a clear signature of the increasingly violent Fermi sea shake-up, associated with the creation of many plasmons whose individual energies are too low to meet the resonance condition.

  20. Finite Size Corrections to the Large Deviation Function of the Density in the One Dimensional Symmetric Simple Exclusion Process

    NASA Astrophysics Data System (ADS)

    Derrida, Bernard; Retaux, Martin

    2013-09-01

    The symmetric simple exclusion process is one of the simplest out-of-equilibrium systems for which the steady state is known. Its large deviation functional of the density has been computed in the past both by microscopic and macroscopic approaches. Here we obtain the leading finite size correction to this large deviation functional. The result is compared to the similar corrections for equilibrium systems.

  1. Second order tensor finite element

    NASA Technical Reports Server (NTRS)

    Oden, J. Tinsley; Fly, J.; Berry, C.; Tworzydlo, W.; Vadaketh, S.; Bass, J.

    1990-01-01

    The results of a research and software development effort are presented for the finite element modeling of the static and dynamic behavior of anisotropic materials, with emphasis on single crystal alloys. Various versions of two dimensional and three dimensional hybrid finite elements were implemented and compared with displacement-based elements. Both static and dynamic cases are considered. The hybrid elements developed in the project were incorporated into the SPAR finite element code. In an extension of the first phase of the project, optimization of experimental tests for anisotropic materials was addressed. In particular, the problem of calculating material properties from tensile tests and of calculating stresses from strain measurements were considered. For both cases, numerical procedures and software for the optimization of strain gauge and material axes orientation were developed.

  2. IUPAP C10 2011 Young Scientist Prize in the Structure and Dynamics of Condensed Matter Talk: Breakdown of thermalization in finite one-dimensional systems

    NASA Astrophysics Data System (ADS)

    Rigol, Marcos

    2011-03-01

    Little more than fifty years ago, Fermi, Pasta, and Ulam set up a numerical experiment to prove the ergodic hypothesis for a one-dimensional lattice of harmonic oscillators when nonlinear couplings were added. Much to their surprise, the system exhibited long-time periodic dynamics with no signals of ergodic behavior. Those results motivated intense research, which ultimately gave rise to the modern chaos theory and to a better understanding of the basic principles of classical statistical mechanics. More recently, experiments with ultracold gases in one-dimensional geometries have challenged our understanding of the quantum domain. After bringing a nearly isolated system out of equilibrium, no signals of relaxation to the expected thermal equilibrium distribution were observed. Some of those results can be understood in the framework of integrable quantum systems, but then it remains the question of why thermalization did not occur even when the system was supposed to be far from integrability. In the latter regime, thermalization is expected to occur and can be understood on the basis of the eigenstate thermalization hypothesis. In this talk, we utilize quantum quenches to study how thermalization breaks down in finite one-dimensional lattices as one approaches an integrable point. We establish a direct connection between the presence or absence of thermalization and the validity or failure of the eigenstate thermalization hypothesis, respectively. This work was supported by the US Office of Naval Research.

  3. Finite element shell instability analysis

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Formulation procedures and the associated computer program for finite element thin shell instability analysis are discussed. Data cover: (1) formulation of basic element relationships, (2) construction of solution algorithms on both the conceptual and algorithmic levels, and (3) conduction of numerical analyses to verify the accuracy and efficiency of the theory and related programs therein are described.

  4. High order sub-cell finite volume schemes for solving hyperbolic conservation laws I: basic formulation and one-dimensional analysis

    NASA Astrophysics Data System (ADS)

    Pan, JianHua; Ren, YuXin

    2017-08-01

    In this paper, a family of sub-cell finite volume schemes for solving the hyperbolic conservation laws is proposed and analyzed in one-dimensional cases. The basic idea of this method is to subdivide a control volume (main cell) into several sub-cells and the finite volume discretization is applied to each of the sub-cells. The averaged values on the sub-cells of current and face neighboring main cells are used to reconstruct the polynomial distributions of the dependent variables. This method can achieve arbitrarily high order of accuracy using a compact stencil. It is similar to the spectral volume method incorporating with PNPM technique but with fundamental differences. An elaborate utilization of these differences overcomes some shortcomings of the spectral volume method and results in a family of accurate and robust schemes for solving the hyperbolic conservation laws. In this paper, the basic formulation of the proposed method is presented. The Fourier analysis is performed to study the properties of the one-dimensional schemes. A WENO limiter based on the secondary reconstruction is constructed.

  5. Application of one-dimensional model to calculate water velocity distributions over elastic elements simulating Canadian waterweed plants (Elodea Canadensis)

    NASA Astrophysics Data System (ADS)

    Kubrak, Elżbieta; Kubrak, Janusz; Rowiński, Paweł

    2013-02-01

    One-dimensional model for vertical profiles of longitudinal velocities in open-channel flows is verified against laboratory data obtained in an open channel with artificial plants. Those plants simulate Canadian waterweed which in nature usually forms dense stands that reach all the way to the water surface. The model works particularly well for densely spaced plants.

  6. Simulation of one-dimensional ring quantum interference transistors using the time-dependent finite-difference beam propagation method

    NASA Astrophysics Data System (ADS)

    Heller, E. K.; Jain, F. C.

    2000-06-01

    A time-dependent finite-difference beam propagation method is presented to analyze quantum interference transistor (QUIT) structures, employing the Aharonov-Bohm effect, in both steady state and transient conditions. Current-voltage characteristics of two ring structures having 0.2 and 0.05 μm channel lengths, respectively, are presented. Additionally, the wave functions are calculated, and reflections are observed in both the ON and OFF states of the device. Cutoff frequency fT values of 3 and 8.5 THz, respectively, are calculated from the switching response to a gate pulse of 200 fs, for the 0.2 μm device, and to a pulse of 50 fs, for the 0.05 μm device. Results indicate that reflections at the drain may degrade frequency performance of these devices, which is not evident from earlier analytical studies. These structures are further explored to investigate the effects of imperfections introduced in fabricating the quantum wire channels. We compare two QUITs, one realized by a 1 nm resolution lithography process (representing an advanced fabrication technique) and the other realized by a 10 nm resolution (representing current state-of-the-art lithography). We also present an asymmetric 10 nm resolution structure, to represent the case when errors in fabrication significantly alter the QUIT topology. This simulation shows strong dependence of the electron transmission probability on the channel topology and roughness determined by the lithographic resolution.

  7. Finite elements: Theory and application

    NASA Technical Reports Server (NTRS)

    Dwoyer, D. L. (Editor); Hussaini, M. Y. (Editor); Voigt, R. G. (Editor)

    1988-01-01

    Recent advances in FEM techniques and applications are discussed in reviews and reports presented at the ICASE/LaRC workshop held in Hampton, VA in July 1986. Topics addressed include FEM approaches for partial differential equations, mixed FEMs, singular FEMs, FEMs for hyperbolic systems, iterative methods for elliptic finite-element equations on general meshes, mathematical aspects of FEMS for incompressible viscous flows, and gradient weighted moving finite elements in two dimensions. Consideration is given to adaptive flux-corrected FEM transport techniques for CFD, mixed and singular finite elements and the field BEM, p and h-p versions of the FEM, transient analysis methods in computational dynamics, and FEMs for integrated flow/thermal/structural analysis.

  8. Finite elements: Theory and application

    NASA Technical Reports Server (NTRS)

    Dwoyer, D. L. (Editor); Hussaini, M. Y. (Editor); Voigt, R. G. (Editor)

    1988-01-01

    Recent advances in FEM techniques and applications are discussed in reviews and reports presented at the ICASE/LaRC workshop held in Hampton, VA in July 1986. Topics addressed include FEM approaches for partial differential equations, mixed FEMs, singular FEMs, FEMs for hyperbolic systems, iterative methods for elliptic finite-element equations on general meshes, mathematical aspects of FEMS for incompressible viscous flows, and gradient weighted moving finite elements in two dimensions. Consideration is given to adaptive flux-corrected FEM transport techniques for CFD, mixed and singular finite elements and the field BEM, p and h-p versions of the FEM, transient analysis methods in computational dynamics, and FEMs for integrated flow/thermal/structural analysis.

  9. Parallel, Implicit, Finite Element Solver

    NASA Astrophysics Data System (ADS)

    Lowrie, Weston; Shumlak, Uri; Meier, Eric; Marklin, George

    2007-11-01

    A parallel, implicit, finite element solver is described for solutions to the ideal MHD equations and the Pseudo-1D Euler equations. The solver uses the conservative flux source form of the equations. This helps simplify the discretization of the finite element method by keeping the specification of the physics separate. An implicit time advance is used to allow sufficiently large time steps. The Portable Extensible Toolkit for Scientific Computation (PETSc) is implemented for parallel matrix solvers and parallel data structures. Results for several test cases are described as well as accuracy of the method.

  10. On numerically accurate finite element

    NASA Technical Reports Server (NTRS)

    Nagtegaal, J. C.; Parks, D. M.; Rice, J. R.

    1974-01-01

    A general criterion for testing a mesh with topologically similar repeat units is given, and the analysis shows that only a few conventional element types and arrangements are, or can be made suitable for computations in the fully plastic range. Further, a new variational principle, which can easily and simply be incorporated into an existing finite element program, is presented. This allows accurate computations to be made even for element designs that would not normally be suitable. Numerical results are given for three plane strain problems, namely pure bending of a beam, a thick-walled tube under pressure, and a deep double edge cracked tensile specimen. The effects of various element designs and of the new variational procedure are illustrated. Elastic-plastic computation at finite strain are discussed.

  11. The Relation of Finite Element and Finite Difference Methods

    NASA Technical Reports Server (NTRS)

    Vinokur, M.

    1976-01-01

    Finite element and finite difference methods are examined in order to bring out their relationship. It is shown that both methods use two types of discrete representations of continuous functions. They differ in that finite difference methods emphasize the discretization of independent variable, while finite element methods emphasize the discretization of dependent variable (referred to as functional approximations). An important point is that finite element methods use global piecewise functional approximations, while finite difference methods normally use local functional approximations. A general conclusion is that finite element methods are best designed to handle complex boundaries, while finite difference methods are superior for complex equations. It is also shown that finite volume difference methods possess many of the advantages attributed to finite element methods.

  12. A 2-D Interface Element for Coupled Analysis of Independently Modeled 3-D Finite Element Subdomains

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1998-01-01

    Over the past few years, the development of the interface technology has provided an analysis framework for embedding detailed finite element models within finite element models which are less refined. This development has enabled the use of cascading substructure domains without the constraint of coincident nodes along substructure boundaries. The approach used for the interface element is based on an alternate variational principle often used in deriving hybrid finite elements. The resulting system of equations exhibits a high degree of sparsity but gives rise to a non-positive definite system which causes difficulties with many of the equation solvers in general-purpose finite element codes. Hence the global system of equations is generally solved using, a decomposition procedure with pivoting. The research reported to-date for the interface element includes the one-dimensional line interface element and two-dimensional surface interface element. Several large-scale simulations, including geometrically nonlinear problems, have been reported using the one-dimensional interface element technology; however, only limited applications are available for the surface interface element. In the applications reported to-date, the geometry of the interfaced domains exactly match each other even though the spatial discretization within each domain may be different. As such, the spatial modeling of each domain, the interface elements and the assembled system is still laborious. The present research is focused on developing a rapid modeling procedure based on a parametric interface representation of independently defined subdomains which are also independently discretized.

  13. Discontinuous Galerkin Finite Element Method for Parabolic Problems

    NASA Technical Reports Server (NTRS)

    Kaneko, Hideaki; Bey, Kim S.; Hou, Gene J. W.

    2004-01-01

    In this paper, we develop a time and its corresponding spatial discretization scheme, based upon the assumption of a certain weak singularity of parallel ut(t) parallel Lz(omega) = parallel ut parallel2, for the discontinuous Galerkin finite element method for one-dimensional parabolic problems. Optimal convergence rates in both time and spatial variables are obtained. A discussion of automatic time-step control method is also included.

  14. Nonlinear, finite deformation, finite element analysis

    NASA Astrophysics Data System (ADS)

    Nguyen, Nhung; Waas, Anthony M.

    2016-06-01

    The roles of the consistent Jacobian matrix and the material tangent moduli, which are used in nonlinear incremental finite deformation mechanics problems solved using the finite element method, are emphasized in this paper, and demonstrated using the commercial software ABAQUS standard. In doing so, the necessity for correctly employing user material subroutines to solve nonlinear problems involving large deformation and/or large rotation is clarified. Starting with the rate form of the principle of virtual work, the derivations of the material tangent moduli, the consistent Jacobian matrix, the stress/strain measures, and the objective stress rates are discussed and clarified. The difference between the consistent Jacobian matrix (which, in the ABAQUS UMAT user material subroutine is referred to as DDSDDE) and the material tangent moduli ( C e ) needed for the stress update is pointed out and emphasized in this paper. While the former is derived based on the Jaumann rate of the Kirchhoff stress, the latter is derived using the Jaumann rate of the Cauchy stress. Understanding the difference between these two objective stress rates is crucial for correctly implementing a constitutive model, especially a rate form constitutive relation, and for ensuring fast convergence. Specifically, the implementation requires the stresses to be updated correctly. For this, the strains must be computed directly from the deformation gradient and corresponding strain measure (for a total form model). Alternatively, the material tangent moduli derived from the corresponding Jaumann rate of the Cauchy stress of the constitutive relation (for a rate form model) should be used. Given that this requirement is satisfied, the consistent Jacobian matrix only influences the rate of convergence. Its derivation should be based on the Jaumann rate of the Kirchhoff stress to ensure fast convergence; however, the use of a different objective stress rate may also be possible. The error associated

  15. ANSYS duplicate finite-element checker routine

    NASA Technical Reports Server (NTRS)

    Ortega, R.

    1995-01-01

    An ANSYS finite-element code routine to check for duplicated elements within the volume of a three-dimensional (3D) finite-element mesh was developed. The routine developed is used for checking floating elements within a mesh, identically duplicated elements, and intersecting elements with a common face. A space shuttle main engine alternate turbopump development high pressure oxidizer turbopump finite-element model check using the developed subroutine is discussed. Finally, recommendations are provided for duplicate element checking of 3D finite-element models.

  16. Probabilistic finite elements for transient analysis in nonlinear continua

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Belytschko, T.; Mani, A.

    1985-01-01

    The probabilistic finite element method (PFEM), which is a combination of finite element methods and second-moment analysis, is formulated for linear and nonlinear continua with inhomogeneous random fields. Analogous to the discretization of the displacement field in finite element methods, the random field is also discretized. The formulation is simplified by transforming the correlated variables to a set of uncorrelated variables through an eigenvalue orthogonalization. Furthermore, it is shown that a reduced set of the uncorrelated variables is sufficient for the second-moment analysis. Based on the linear formulation of the PFEM, the method is then extended to transient analysis in nonlinear continua. The accuracy and efficiency of the method is demonstrated by application to a one-dimensional, elastic/plastic wave propagation problem. The moments calculated compare favorably with those obtained by Monte Carlo simulation. Also, the procedure is amenable to implementation in deterministic FEM based computer programs.

  17. Finite element method for non-linear dispersive wave analysis

    NASA Astrophysics Data System (ADS)

    Cheng, Jung-Yu; Kawahara, Mutsuto

    1993-09-01

    This report presents the finite element method for the analysis of the short wave problem expressed by the Boussinesq equation. The Boussinesq equation considers the effect of wave crest curvature. The standard Galerkin finite element method is employed for the spatial discretization using the triangular finite element based on the linear interpolation function. The combination of the explicit and the quasi-explicit schemes-- i.e., the explicit scheme for the continuum equation and the quasi-explicit scheme for the momentum equation--is employed for the discretization in time. To show the applicability of the present method to the practical problem, the simulation of wave propagation in one-dimensional and two-dimensional channel flows is carried out. The numerical results are in good agreement with the experimental results being. The practical example for Miyako Bay is presented.

  18. Infinite Possibilities for the Finite Element.

    ERIC Educational Resources Information Center

    Finlayson, Bruce A.

    1981-01-01

    Describes the uses of finite element methods in solving problems of heat transfer, fluid flow, etc. Suggests that engineers should know the general concepts and be able to apply the principles of finite element methods. (Author/WB)

  19. SUPG Finite Element Simulations of Compressible Flows

    NASA Technical Reports Server (NTRS)

    Kirk, Brnjamin, S.

    2006-01-01

    The Streamline-Upwind Petrov-Galerkin (SUPG) finite element simulations of compressible flows is presented. The topics include: 1) Introduction; 2) SUPG Galerkin Finite Element Methods; 3) Applications; and 4) Bibliography.

  20. Peridynamic Multiscale Finite Element Methods

    SciTech Connect

    Costa, Timothy; Bond, Stephen D.; Littlewood, David John; Moore, Stan Gerald

    2015-12-01

    The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic and local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the

  1. Finite element model and identification procedure

    NASA Technical Reports Server (NTRS)

    How, Jonathan P.; Blackwood, Gary; Anderson, Eric; Balmes, Etienne

    1992-01-01

    Viewgraphs on finite element model and identification procedure are presented. Topics covered include: interferometer finite element model; testbed mode shapes; finite element model update; identification procedure; shaker locations; data analysis; modal frequency and damping comparison; computational procedure; fit comparison; residue analysis; typical residues; identification/FEM residual comparison; and pathlength control using isolation mounts.

  2. Finite element simulation of microindentation

    NASA Astrophysics Data System (ADS)

    Zhuk, D. I.; Isaenkova, M. G.; Perlovich, Yu. A.; Krymskaya, O. A.

    2017-05-01

    Finite element models are created to describe the testing of a material by a Berkovich indenter. The results of calculations by these models are compared to experimental data on indentation of the same material (grade 10 steel). The experimental and calculated data agree well with each other. The developed models for an indenter and the material to be tested are used to find the laws of behavior of a material during indentation. The state of stress in the material under an indenter is studied by various methods. The indentation results are plotted versus the mechanical properties of a material.

  3. Phase-space finite elements in a least-squares solution of the transport equation

    SciTech Connect

    Drumm, C.; Fan, W.; Pautz, S.

    2013-07-01

    The linear Boltzmann transport equation is solved using a least-squares finite element approximation in the space, angular and energy phase-space variables. The method is applied to both neutral particle transport and also to charged particle transport in the presence of an electric field, where the angular and energy derivative terms are handled with the energy/angular finite elements approximation, in a manner analogous to the way the spatial streaming term is handled. For multi-dimensional problems, a novel approach is used for the angular finite elements: mapping the surface of a unit sphere to a two-dimensional planar region and using a meshing tool to generate a mesh. In this manner, much of the spatial finite-elements machinery can be easily adapted to handle the angular variable. The energy variable and the angular variable for one-dimensional problems make use of edge/beam elements, also building upon the spatial finite elements capabilities. The methods described here can make use of either continuous or discontinuous finite elements in space, angle and/or energy, with the use of continuous finite elements resulting in a smaller problem size and the use of discontinuous finite elements resulting in more accurate solutions for certain types of problems. The work described in this paper makes use of continuous finite elements, so that the resulting linear system is symmetric positive definite and can be solved with a highly efficient parallel preconditioned conjugate gradients algorithm. The phase-space finite elements capability has been built into the Sceptre code and applied to several test problems, including a simple one-dimensional problem with an analytic solution available, a two-dimensional problem with an isolated source term, showing how the method essentially eliminates ray effects encountered with discrete ordinates, and a simple one-dimensional charged-particle transport problem in the presence of an electric field. (authors)

  4. Domain decomposition methods for mortar finite elements

    SciTech Connect

    Widlund, O.

    1996-12-31

    In the last few years, domain decomposition methods, previously developed and tested for standard finite element methods and elliptic problems, have been extended and modified to work for mortar and other nonconforming finite element methods. A survey will be given of work carried out jointly with Yves Achdou, Mario Casarin, Maksymilian Dryja and Yvon Maday. Results on the p- and h-p-version finite elements will also be discussed.

  5. Finite-element model for phase-change recording

    NASA Astrophysics Data System (ADS)

    Brusche, J. H.; Segal, A.; Urbach, H. P.

    2005-04-01

    The finite-element method is applied to model phase-change recording in a grooved recording stack. A rigorous model for the scattering of a three-dimensional focused spot by a one-dimensional periodic grating is used to determine the absorbed light in a three-dimensional region inside the phase-change layer. The optical model is combined with a three-dimensional thermal model to compute the temperature distribution. Land and groove recording and polarization dependence are studied, and the model is applied to the Blu-ray Disc.

  6. Finite element coiled cochlea model

    NASA Astrophysics Data System (ADS)

    Isailovic, Velibor; Nikolic, Milica; Milosevic, Zarko; Saveljic, Igor; Nikolic, Dalibor; Radovic, Milos; Filipović, Nenad

    2015-12-01

    Cochlea is important part of the hearing system, and thanks to special structure converts external sound waves into neural impulses which go to the brain. Shape of the cochlea is like snail, so geometry of the cochlea model is complex. The simplified cochlea coiled model was developed using finite element method inside SIFEM FP7 project. Software application is created on the way that user can prescribe set of the parameters for spiral cochlea, as well as material properties and boundary conditions to the model. Several mathematical models were tested. The acoustic wave equation for describing fluid in the cochlea chambers - scala vestibuli and scala timpani, and Newtonian dynamics for describing vibrations of the basilar membrane are used. The mechanical behavior of the coiled cochlea was analyzed and the third chamber, scala media, was not modeled because it does not have a significant impact on the mechanical vibrations of the basilar membrane. The obtained results are in good agreement with experimental measurements. Future work is needed for more realistic geometry model. Coiled model of the cochlea was created and results are compared with initial simplified coiled model of the cochlea.

  7. Finite elements and finite differences for transonic flow calculations

    NASA Technical Reports Server (NTRS)

    Hafez, M. M.; Murman, E. M.; Wellford, L. C.

    1978-01-01

    The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.

  8. One-Dimensional Czedli-Type Islands

    ERIC Educational Resources Information Center

    Horvath, Eszter K.; Mader, Attila; Tepavcevic, Andreja

    2011-01-01

    The notion of an island has surfaced in recent algebra and coding theory research. Discrete versions provide interesting combinatorial problems. This paper presents the one-dimensional case with finitely many heights, a topic convenient for student research.

  9. One-Dimensional Czedli-Type Islands

    ERIC Educational Resources Information Center

    Horvath, Eszter K.; Mader, Attila; Tepavcevic, Andreja

    2011-01-01

    The notion of an island has surfaced in recent algebra and coding theory research. Discrete versions provide interesting combinatorial problems. This paper presents the one-dimensional case with finitely many heights, a topic convenient for student research.

  10. Element-topology-independent preconditioners for parallel finite element computations

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Alexander, Scott

    1992-01-01

    A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.

  11. Element-topology-independent preconditioners for parallel finite element computations

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Alexander, Scott

    1992-01-01

    A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.

  12. Finite-Element Composite-Analysis Program

    NASA Technical Reports Server (NTRS)

    Bowles, David E.

    1990-01-01

    Finite Element Composite Analysis Program, FECAP, special-purpose finite-element program for analyzing behavior of composite material with microcomputer. Procedure leads to set of linear simultaneous equations relating unknown nodal displacement to applied loads. Written in HP BASIC 3.0.

  13. Finite element analysis of helicopter structures

    NASA Technical Reports Server (NTRS)

    Rich, M. J.

    1978-01-01

    Application of the finite element analysis is now being expanded to three dimensional analysis of mechanical components. Examples are presented for airframe, mechanical components, and composite structure calculations. Data are detailed on the increase of model size, computer usage, and the effect on reducing stress analysis costs. Future applications for use of finite element analysis for helicopter structures are projected.

  14. Nonlinear finite element modeling of corrugated board

    Treesearch

    A. C. Gilchrist; J. C. Suhling; T. J. Urbanik

    1999-01-01

    In this research, an investigation on the mechanical behavior of corrugated board has been performed using finite element analysis. Numerical finite element models for corrugated board geometries have been created and executed. Both geometric (large deformation) and material nonlinearities were included in the models. The analyses were performed using the commercial...

  15. 3-D Finite Element Code Postprocessor

    SciTech Connect

    1996-07-15

    TAURUS is an interactive post-processing application supporting visualization of finite element analysis results on unstructured grids. TAURUS provides the ability to display deformed geometries and contours or fringes of a large number of derived results on meshes consisting of beam, plate, shell, and solid type finite elements. Time history plotting is also available.

  16. Books and monographs on finite element technology

    NASA Technical Reports Server (NTRS)

    Noor, A. K.

    1985-01-01

    The present paper proviees a listing of all of the English books and some of the foreign books on finite element technology, taking into account also a list of the conference proceedings devoted solely to finite elements. The references are divided into categories. Attention is given to fundamentals, mathematical foundations, structural and solid mechanics applications, fluid mechanics applications, other applied science and engineering applications, computer implementation and software systems, computational and modeling aspects, special topics, boundary element methods, proceedings of symmposia and conferences on finite element technology, bibliographies, handbooks, and historical accounts.

  17. Books and monographs on finite element technology

    NASA Technical Reports Server (NTRS)

    Noor, A. K.

    1985-01-01

    The present paper proviees a listing of all of the English books and some of the foreign books on finite element technology, taking into account also a list of the conference proceedings devoted solely to finite elements. The references are divided into categories. Attention is given to fundamentals, mathematical foundations, structural and solid mechanics applications, fluid mechanics applications, other applied science and engineering applications, computer implementation and software systems, computational and modeling aspects, special topics, boundary element methods, proceedings of symmposia and conferences on finite element technology, bibliographies, handbooks, and historical accounts.

  18. Discontinuous dual-primal mixed finite elements for elliptic problems

    NASA Technical Reports Server (NTRS)

    Bottasso, Carlo L.; Micheletti, Stefano; Sacco, Riccardo

    2000-01-01

    We propose a novel discontinuous mixed finite element formulation for the solution of second-order elliptic problems. Fully discontinuous piecewise polynomial finite element spaces are used for the trial and test functions. The discontinuous nature of the test functions at the element interfaces allows to introduce new boundary unknowns that, on the one hand enforce the weak continuity of the trial functions, and on the other avoid the need to define a priori algorithmic fluxes as in standard discontinuous Galerkin methods. Static condensation is performed at the element level, leading to a solution procedure based on the sole interface unknowns. The resulting family of discontinuous dual-primal mixed finite element methods is presented in the one and two-dimensional cases. In the one-dimensional case, we show the equivalence of the method with implicit Runge-Kutta schemes of the collocation type exhibiting optimal behavior. Numerical experiments in one and two dimensions demonstrate the order accuracy of the new method, confirming the results of the analysis.

  19. One-dimensional turbulence

    SciTech Connect

    Kerstein, A.R.

    1996-12-31

    One-Dimensional Turbulence is a new turbulence modeling strategy involving an unsteady simulation implemented in one spatial dimension. In one dimension, fine scale viscous and molecular-diffusive processes can be resolved affordably in simulations at high turbulence intensity. The mechanistic distinction between advective and molecular processes is thereby preserved, in contrast to turbulence models presently employed. A stochastic process consisting of mapping {open_quote}events{close_quote} applied to a one-dimensional velocity profile represents turbulent advection. The local event rate for given eddy size is proportional to the velocity difference across the eddy. These properties cause an imposed shear to induce an eddy cascade analogous in many respects to the eddy cascade in turbulent flow. Many scaling and fluctuation properties of self-preserving flows, and of passive scalars introduced into these flows, are reproduced.

  20. A variational method for finite element stress recovery: Applications in one-dimension

    NASA Technical Reports Server (NTRS)

    Riggs, H. Ronald

    1992-01-01

    It is well-known that stresses (and strains) calculated by a displacement-based finite element analysis are generally not as accurate as the displacements. In addition, the calculated stress field is typically discontinuous at element interfaces. Because the stresses are typically of more interest than the displacements, several procedures have been proposed to obtain a smooth stress field, given the finite element stresses, and to improve the accuracy. Hinton and Irons introduced global least squares smoothing of discrete data defined on a plane using a finite element formulation. Tessler and co-workers recently developed a conceptually similar formulation for smoothing of two-dimensional data based on a discrete least square approximation with a penalty constraint. The penalty constraint results in a stress field which is C(exp 1)-continuous, a result not previously obtained. The approach requires additional, 'smoothing' finite element analysis and for their two-dimensional application, they used a conforming C(exp 0)-continuous triangular finite element based on a conforming plate element. This paper presents the results of a detailed investigation into the application of Tessler's smoothing procedure to the smoothing of finite element stresses from one-dimensional problems. Although the one-dimensional formulation has some practical applicability, such as in truss, beam, axisymmetric mechanics, and one-dimensional heat conduction, the primary motivation for developing the one-dimensional smoothing case is to explore the characteristics of the general smoothing strategy. In particular, it is used to describe the behavior of the method and to explore the suitability of criteria proposed for the smoothing analysis. Prior to presenting numerical results, the variational formulation of the smoothing strategy is presented and a criterion for the smoothing analysis is described.

  1. Assignment Of Finite Elements To Parallel Processors

    NASA Technical Reports Server (NTRS)

    Salama, Moktar A.; Flower, Jon W.; Otto, Steve W.

    1990-01-01

    Elements assigned approximately optimally to subdomains. Mapping algorithm based on simulated-annealing concept used to minimize approximate time required to perform finite-element computation on hypercube computer or other network of parallel data processors. Mapping algorithm needed when shape of domain complicated or otherwise not obvious what allocation of elements to subdomains minimizes cost of computation.

  2. Assignment Of Finite Elements To Parallel Processors

    NASA Technical Reports Server (NTRS)

    Salama, Moktar A.; Flower, Jon W.; Otto, Steve W.

    1990-01-01

    Elements assigned approximately optimally to subdomains. Mapping algorithm based on simulated-annealing concept used to minimize approximate time required to perform finite-element computation on hypercube computer or other network of parallel data processors. Mapping algorithm needed when shape of domain complicated or otherwise not obvious what allocation of elements to subdomains minimizes cost of computation.

  3. Optimizing header strength utilizing finite element analyses

    NASA Astrophysics Data System (ADS)

    Burchett, S. N.

    Finite element techniques have been successfully applied as a design tool in the optimization of high strength headers for pyrotechnic-driven actuators. These techniques have been applied to three aspects of the design process of a high strength header. The design process was a joint effort of experts from several disciplines including design engineers, material scientists, test engineers, manufacturing engineers, and structural analysts. Following material selection, finite element techniques were applied to evaluate the residual stresses due to manufacturing which were developed in the high strength glass ceramic-to-metal seal headers. Results from these finite element analyses were used to identify header designs which were manufacturable and had a minimum residual stress state. Finite element techniques were than applied to obtain the response of the header due to pyrotechnic burn. The results provided realistic upper bounds on the pressure containment ability of various preliminary header designs and provided a quick and inexpensive method of strengthening and refining the designs. Since testing of the headers was difficult and sometimes destructive, results of the analyses were also used to interpret test results and identify failure modes. In this paper, details of the finite element element techniques including the models used, material properties, material failure models, and loading will be presented. Results from the analyses showing the header failure process will also be presented. This paper will show that significant gains in capability and understanding can result when finite element techniques are included as an integral part of the design process of complicated high strength headers.

  4. Visualization of higher order finite elements.

    SciTech Connect

    Thompson, David C.; Pebay, Philippe Pierre; Crawford, Richard H.; Khardekar, Rahul Vinay

    2004-04-01

    Finite element meshes are used to approximate the solution to some differential equation when no exact solution exists. A finite element mesh consists of many small (but finite, not infinitesimal or differential) regions of space that partition the problem domain, {Omega}. Each region, or element, or cell has an associated polynomial map, {Phi}, that converts the coordinates of any point, x = ( x y z ), in the element into another value, f(x), that is an approximate solution to the differential equation, as in Figure 1(a). This representation works quite well for axis-aligned regions of space, but when there are curved boundaries on the problem domain, {Omega}, it becomes algorithmically much more difficult to define {Phi} in terms of x. Rather, we define an archetypal element in a new coordinate space, r = ( r s t ), which has a simple, axis-aligned boundary (see Figure 1(b)) and place two maps onto our archetypal element:

  5. A survey of mixed finite element methods

    NASA Technical Reports Server (NTRS)

    Brezzi, F.

    1987-01-01

    This paper is an introduction to and an overview of mixed finite element methods. It discusses the mixed formulation of certain basic problems in elasticity and hydrodynamics. It also discusses special techniques for solving the discrete problem.

  6. Finite element schemes for Fermi equation

    NASA Astrophysics Data System (ADS)

    Asadzadeh, M.; Beilina, L.; Naseer, M.; Standar, C.

    2017-07-01

    A priori error estimates are derived for the streamline diffusion (SD) finite element methods for the Fermi pencil-beam equation. Two-dimensional numerical examples confirm our theoretical investigations.

  7. Finite element modeling of the human pelvis

    SciTech Connect

    Carlson, B.

    1995-11-01

    A finite element model of the human pelvis was created using a commercial wire frame image as a template. To test the final mesh, the model`s mechanical behavior was analyzed through finite element analysis and the results were displayed graphically as stress concentrations. In the future, this grid of the pelvis will be integrated with a full leg model and used in side-impact car collision simulations.

  8. Quadratic finite elements and incompressible viscous flows.

    SciTech Connect

    Dohrmann, Clark R.; Gartling, David K.

    2005-01-01

    Pressure stabilization methods are applied to higher-order velocity finite elements for application to viscous incompressible flows. Both a standard pressure stabilizing Petrov-Galerkin (PSPG) method and a new polynomial pressure projection stabilization (PPPS) method have been implemented and tested for various quadratic elements in two dimensions. A preconditioner based on relaxing the incompressibility constraint is also tested for the iterative solution of saddle point problems arising from mixed Galerkin finite element approximations to the Navier-Stokes equations. The preconditioner is demonstrated for BB stable elements with discontinuous pressure approximations in two and three dimensions.

  9. Finite element analysis of flexible, rotating blades

    NASA Technical Reports Server (NTRS)

    Mcgee, Oliver G.

    1987-01-01

    A reference guide that can be used when using the finite element method to approximate the static and dynamic behavior of flexible, rotating blades is given. Important parameters such as twist, sweep, camber, co-planar shell elements, centrifugal loads, and inertia properties are studied. Comparisons are made between NASTRAN elements through published benchmark tests. The main purpose is to summarize blade modeling strategies and to document capabilities and limitations (for flexible, rotating blades) of various NASTRAN elements.

  10. Stabilized Finite Elements in FUN3D

    NASA Technical Reports Server (NTRS)

    Anderson, W. Kyle; Newman, James C.; Karman, Steve L.

    2017-01-01

    A Streamlined Upwind Petrov-Galerkin (SUPG) stabilized finite-element discretization has been implemented as a library into the FUN3D unstructured-grid flow solver. Motivation for the selection of this methodology is given, details of the implementation are provided, and the discretization for the interior scheme is verified for linear and quadratic elements by using the method of manufactured solutions. A methodology is also described for capturing shocks, and simulation results are compared to the finite-volume formulation that is currently the primary method employed for routine engineering applications. The finite-element methodology is demonstrated to be more accurate than the finite-volume technology, particularly on tetrahedral meshes where the solutions obtained using the finite-volume scheme can suffer from adverse effects caused by bias in the grid. Although no effort has been made to date to optimize computational efficiency, the finite-element scheme is competitive with the finite-volume scheme in terms of computer time to reach convergence.

  11. Wave dispersion properties of compound finite elements

    NASA Astrophysics Data System (ADS)

    Melvin, Thomas; Thuburn, John

    2017-06-01

    Mixed finite elements use different approximation spaces for different dependent variables. Certain classes of mixed finite elements, called compatible finite elements, have been shown to exhibit a number of desirable properties for a numerical weather prediction model. In two-dimensions the lowest order element of the Raviart-Thomas based mixed element is the finite element equivalent of the widely used C-grid staggering, which is known to possess good wave dispersion properties, at least for quadrilateral grids. It has recently been proposed that building compound elements from a number of triangular Raviart-Thomas sub-elements, such that both the primal and (implied) dual grid are constructed from the same sub-elements, would allow greater flexibility in the use of different advection schemes along with the ability to build arbitrary polygonal elements. Although the wave dispersion properties of the triangular sub-elements are well understood, those of the compound elements are unknown. It would be useful to know how they compare with the non-compound elements and what properties of the triangular sub-grid elements are inherited? Here a numerical dispersion analysis is presented for the linear shallow water equations in two dimensions discretised using the lowest order compound Raviart-Thomas finite elements on regular quadrilateral and hexagonal grids. It is found that, in comparison with the well known C-grid scheme, the compound elements exhibit a more isotropic dispersion relation, with a small over estimation of the frequency for short waves compared with the relatively large underestimation for the C-grid. On a quadrilateral grid the compound elements are found to differ from the non-compound Raviart-Thomas quadrilateral elements even for uniform elements, exhibiting the influence of the underlying sub-elements. This is shown to lead to small improvements in the accuracy of the dispersion relation: the compound quadrilateral element is slightly better for

  12. Finite Element Interface to Linear Solvers

    SciTech Connect

    Williams, Alan

    2005-03-18

    Sparse systems of linear equations arise in many engineering applications, including finite elements, finite volumes, and others. The solution of linear systems is often the most computationally intensive portion of the application. Depending on the complexity of problems addressed by the application, there may be no single solver capable of solving all of the linear systems that arise. This motivates the desire to switch an application from one solver librwy to another, depending on the problem being solved. The interfaces provided by solver libraries differ greatly, making it difficult to switch an application code from one library to another. The amount of library-specific code in an application Can be greatly reduced by having an abstraction layer between solver libraries and the application, putting a common "face" on various solver libraries. One such abstraction layer is the Finite Element Interface to Linear Solvers (EEl), which has seen significant use by finite element applications at Sandia National Laboratories and Lawrence Livermore National Laboratory.

  13. Model Reduction of Viscoelastic Finite Element Models

    NASA Astrophysics Data System (ADS)

    Park, C. H.; Inman, D. J.; Lam, M. J.

    1999-01-01

    This paper examines a method of adding viscoelastic properties to finite element models by using additional co-ordinates to account for the frequency dependence usually associated with such damping materials. Several such methods exist and all suffer from an increase in order of the final finite model which is undesirable in many applications. Here we propose to combine one of these methods, the GHM (Golla-Hughes-McTavish) method, with model reduction techniques to remove the objection of increased model order. The result of combining several methods is an ability to add the effects of visoelastic components to finite element or other analytical models without increasing the order of the system. The procedure is illustrated by a numerical example. The method proposed here results in a viscoelastic finite element of a structure without increasing the order of the original model.

  14. Two-dimensional finite element analysis of flexible pavements considering non-linear materials and interface conditions

    SciTech Connect

    Gonzales, C.R.; Salami, M.R.

    1995-06-01

    Two-dimensional finite element analysis of a flexible pavement section was performed using a special purpose finite element method (FEM) code and a commercial general purpose FEM. Viscoelastic, plastic, and hyperbolic-elastic materials models were used in the analyses. One-dimensional interface elements were used in both analyses. The results of the analyses were compared with predictions using current evaluation/design models.

  15. Discontinuous finite element method for vector radiative transfer

    NASA Astrophysics Data System (ADS)

    Wang, Cun-Hai; Yi, Hong-Liang; Tan, He-Ping

    2017-03-01

    The discontinuous finite element method (DFEM) is applied to solve the vector radiative transfer in participating media. The derivation in a discrete form of the vector radiation governing equations is presented, in which the angular space is discretized by the discrete-ordinates approach with a local refined modification, and the spatial domain is discretized into finite non-overlapped discontinuous elements. The elements in the whole solution domain are connected by modelling the boundary numerical flux between adjacent elements, which makes the DFEM numerically stable for solving radiative transfer equations. Several various problems of vector radiative transfer are tested to verify the performance of the developed DFEM, including vector radiative transfer in a one-dimensional parallel slab containing a Mie/Rayleigh/strong forward scattering medium and a two-dimensional square medium. The fact that DFEM results agree very well with the benchmark solutions in published references shows that the developed DFEM in this paper is accurate and effective for solving vector radiative transfer problems.

  16. Finite-element models of continental extension

    NASA Technical Reports Server (NTRS)

    Lynch, H. David; Morgan, Paul

    1990-01-01

    Numerical models of the initial deformation of extending continental lithosphere, computed to investigate the control of preexisting thermal and mechanical heterogeneities on the style of deformation, are presented. The finite element method is used to calculate deformation with a viscoelastic-plastic model for the lithosphere. Comparisons of the results of analytic models and finite-element models using this method show that good results may be obtained by the numerical technique, even with elements containing both brittle and viscoelastic sampling points. It is shown that the gross style of initial extensional deformation is controlled by the depth and width of the initial heterogeneity which localizes deformation.

  17. The GPRIME approach to finite element modeling

    NASA Technical Reports Server (NTRS)

    Wallace, D. R.; Mckee, J. H.; Hurwitz, M. M.

    1983-01-01

    GPRIME, an interactive modeling system, runs on the CDC 6000 computers and the DEC VAX 11/780 minicomputer. This system includes three components: (1) GPRIME, a user friendly geometric language and a processor to translate that language into geometric entities, (2) GGEN, an interactive data generator for 2-D models; and (3) SOLIDGEN, a 3-D solid modeling program. Each component has a computer user interface of an extensive command set. All of these programs make use of a comprehensive B-spline mathematics subroutine library, which can be used for a wide variety of interpolation problems and other geometric calculations. Many other user aids, such as automatic saving of the geometric and finite element data bases and hidden line removal, are available. This interactive finite element modeling capability can produce a complete finite element model, producing an output file of grid and element data.

  18. Quadrilateral finite element mesh coarsening

    SciTech Connect

    Staten, Matthew L; Dewey, Mark W; Benzley, Steven E

    2012-10-16

    Techniques for coarsening a quadrilateral mesh are described. These techniques include identifying a coarsening region within the quadrilateral mesh to be coarsened. Quadrilateral elements along a path through the coarsening region are removed. Node pairs along opposite sides of the path are identified. The node pairs along the path are then merged to collapse the path.

  19. A wave envelope finite element scheme for acoustical radiation

    NASA Astrophysics Data System (ADS)

    Astley, R. J.

    The aeroacoustic problem associated with the radiation of fan noise from the inlet of a turbofan aircraft engine, the dimensions of which are generally many times larger than the acoustical wavelengths of the major energy-carrying frequencies, is considered. In the present approach, a conventional finite element solution in the inner region is compatibly matched to a 'wave envelope' finite element solution in a large but finite outer region. The inclusion of a wavelike variation with the correct asymptotic decay in the shape functions for the outer region preserves the correct behavior of the solution at large distances. The method is initially presented for a simple one-dimensional model based on the solution of Webster's horn equation. Results are presented for the specific case of a uniform cylindrical section joined to a conical expansion, and also for a simple axisymmetric test case of the calculation of acoustical pressure generated by a vibrating circular piston located at the center of an infinite rigid baffle.

  20. Waveguide finite elements for curved structures

    NASA Astrophysics Data System (ADS)

    Finnveden, Svante; Fraggstedt, Martin

    2008-05-01

    A waveguide finite element formulation for the analysis of curved structures is introduced. The formulation is valid for structures that along one axis have constant properties. It is based on a modified Hamilton's principle valid for general linear viscoelastic motion, which is derived here. Using this principle, material properties such as losses may be distributed in the system and may vary with frequency. Element formulations for isoparametric solid elements and deep shell elements are presented for curved waveguides as well as for straight waveguides. In earlier works, the curved elements have successfully been used to model a passenger car tyre. Here a simple validation example and convergence study is presented, which considers a finite length circular cylinder and all four elements presented are used, in turn, to model this structure. Calculated results compare favourably to those in the literature.

  1. A Decoupled Finite Element Heterogeneous Coarse Mesh Transport Method.

    SciTech Connect

    Mosher, S. W.; Rahnema, Farzad

    2005-01-01

    In a recent paper, an original finite element (FE) method was presented for solving eigenvalue transport problems on a coarse spatial mesh. The method employed a surface Green's function expansion of the angular flux trial functions, so that heterogeneous coarse-meshes could be treated with relative ease. Numerical problems were solved using the multigroup discrete ordinates approximation in one-dimensional (1-D) slab geometry. Unfortunately, difficulties were encountered in finding solutions to the algebraic finite element equations, which led to sizeable angular flux discontinuities at coarse-mesh interfaces and significant errors. For this reason, a nonvariational iterative technique was ultimately favored for converging the angular flux distribution, and was used in conjunction with a Rayleigh quotient for converging the eigenvalue. In this paper, a new derivation of finite element equations is presented, which seems to offer a remedy for at least some of the numerical ills that plagued the previous work. First, the equations are derived in terms of a generalized response function expansion. This allows a more efficient response basis to be employed and vastly reduces the overall computational effort without a substantial loss of accuracy. Second, the tight coupling between coarse-meshes in the original equations is effectively broken by assuming that an accurate estimate of the flux distribution entering a given coarse-mesh is known. With an additional assumption that an accurate eigenvalue estimate is known, an iterative approach to solving these decoupled finite element (DFE) equations is developed. The DFE method has been applied to both 1- and 2-D heterogeneous coarse-mesh problems with a far greater degree of success than the original FE method. However, some numerical difficulties remain to be overcome before the new approach can be considered robust.

  2. FINITE VOLUME ELEMENT APPROXIMATIONS OF NONLOCAL IN TIME ONE-DIMENSIONAL PLOWS IN POROUS MEDIA. (R825207)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  3. Finite element modeling and analysis of tires

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Andersen, C. M.

    1983-01-01

    Predicting the response of tires under various loading conditions using finite element technology is addressed. Some of the recent advances in finite element technology which have high potential for application to tire modeling problems are reviewed. The analysis and modeling needs for tires are identified. Reduction methods for large-scale nonlinear analysis, with particular emphasis on treatment of combined loads, displacement-dependent and nonconservative loadings; development of simple and efficient mixed finite element models for shell analysis, identification of equivalent mixed and purely displacement models, and determination of the advantages of using mixed models; and effective computational models for large-rotation nonlinear problems, based on a total Lagrangian description of the deformation are included.

  4. Visualizing higher order finite elements. Final report

    SciTech Connect

    Thompson, David C; Pebay, Philippe Pierre

    2005-11-01

    This report contains an algorithm for decomposing higher-order finite elements into regions appropriate for isosurfacing and proves the conditions under which the algorithm will terminate. Finite elements are used to create piecewise polynomial approximants to the solution of partial differential equations for which no analytical solution exists. These polynomials represent fields such as pressure, stress, and momentum. In the past, these polynomials have been linear in each parametric coordinate. Each polynomial coefficient must be uniquely determined by a simulation, and these coefficients are called degrees of freedom. When there are not enough degrees of freedom, simulations will typically fail to produce a valid approximation to the solution. Recent work has shown that increasing the number of degrees of freedom by increasing the order of the polynomial approximation (instead of increasing the number of finite elements, each of which has its own set of coefficients) can allow some types of simulations to produce a valid approximation with many fewer degrees of freedom than increasing the number of finite elements alone. However, once the simulation has determined the values of all the coefficients in a higher-order approximant, tools do not exist for visual inspection of the solution. This report focuses on a technique for the visual inspection of higher-order finite element simulation results based on decomposing each finite element into simplicial regions where existing visualization algorithms such as isosurfacing will work. The requirements of the isosurfacing algorithm are enumerated and related to the places where the partial derivatives of the polynomial become zero. The original isosurfacing algorithm is then applied to each of these regions in turn.

  5. Finite Element Analysis of Pipe Elbows.

    DTIC Science & Technology

    1980-02-01

    AD-AO81 077 DAVD TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/B 13/11 FINITE ELEMENT ANALYSIS OF PIPE ELBOWS .(U) FE SO M S MARCUS, B C...TAYLOR NAVAL SHIP i RESEARCH AND DEVELOPMENT CENTER Bethesda, Md. 20084 4 FINITE ELEMENT ANALYSIS OF PIPE ELBOWS by 0 Melvyn S. Marcus and Gordon C...a 90-degree pipe elbow to determine principal stresses due to internal pressure, inplane bending, out-of-plane bending, and torsion moment loadings

  6. Finite element methods for high speed flows

    NASA Technical Reports Server (NTRS)

    Loehner, R.; Morgan, K.; Peraire, J.; Zienkiewicz, O. C.

    1985-01-01

    An explicit finite element based solution procedure for solving the equations of compressible viscous high speed flow is presented. The method uses domain splitting to advance the solution with different timesteps on different portions of the mesh. For steady inviscid flows, adaptive mesh refinement procedures are successfully employed to enhance the definition of discontinuities. Preliminary ideas on the application of adaptive mesh refinement to the solution of problems involving steady viscous flow are presented. Sample timings are given for the performance of the finite element code on modern supercomputers.

  7. Studies of finite element analysis of composite material structures

    NASA Technical Reports Server (NTRS)

    Douglas, D. O.; Holzmacher, D. E.; Lane, Z. C.; Thornton, E. A.

    1975-01-01

    Research in the area of finite element analysis is summarized. Topics discussed include finite element analysis of a picture frame shear test, BANSAP (a bandwidth reduction program for SAP IV), FEMESH (a finite element mesh generation program based on isoparametric zones), and finite element analysis of a composite bolted joint specimens.

  8. Finite element modelling of buried structures

    NASA Technical Reports Server (NTRS)

    Playdon, D. K.; Simmonds, S. H.

    1984-01-01

    In many structures the final stress states are dependent on the sequence of construction or the stress states at various stages of construction are of interest. Such problems can be analyzed using finite element programs that have the capability of adding (birthing) elements to simulate the progress of construction. However, the usual procedure of assembling elements may lead to numerical instabilities or stress states that are unrealistic. Both problems are demonstrated in the analysis of a structure using the program ADINA. A technique which combines application of a preload with element birthing to overcome these problems is described and illustrated.

  9. Numerical computation of transonic flows by finite-element and finite-difference methods

    NASA Technical Reports Server (NTRS)

    Hafez, M. M.; Wellford, L. C.; Merkle, C. L.; Murman, E. M.

    1978-01-01

    Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined.

  10. One-Dimensionality and Whiteness

    ERIC Educational Resources Information Center

    Calderon, Dolores

    2006-01-01

    This article is a theoretical discussion that links Marcuse's concept of one-dimensional society and the Great Refusal with critical race theory in order to achieve a more robust interrogation of whiteness. The author argues that in the context of the United States, the one-dimensionality that Marcuse condemns in "One-Dimensional Man" is best…

  11. One-Dimensionality and Whiteness

    ERIC Educational Resources Information Center

    Calderon, Dolores

    2006-01-01

    This article is a theoretical discussion that links Marcuse's concept of one-dimensional society and the Great Refusal with critical race theory in order to achieve a more robust interrogation of whiteness. The author argues that in the context of the United States, the one-dimensionality that Marcuse condemns in "One-Dimensional Man" is best…

  12. Slave finite elements: The temporal element approach to nonlinear analysis

    NASA Technical Reports Server (NTRS)

    Gellin, S.

    1984-01-01

    A formulation method for finite elements in space and time incorporating nonlinear geometric and material behavior is presented. The method uses interpolation polynomials for approximating the behavior of various quantities over the element domain, and only explicit integration over space and time. While applications are general, the plate and shell elements that are currently being programmed are appropriate to model turbine blades, vanes, and combustor liners.

  13. Finite element wavelets with improved quantitative properties

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoang; Stevenson, Rob

    2009-08-01

    In [W. Dahmen, R. Stevenson, Element-by-element construction of wavelets satisfying stability and moment conditions, SIAM J. Numer. Anal. 37 (1) (1999) 319-352 (electronic)], finite element wavelets were constructed on polygonal domains or Lipschitz manifolds that are piecewise parametrized by mappings with constant Jacobian determinants. The wavelets could be arranged to have any desired order of cancellation properties, and they generated stable bases for the Sobolev spaces Hs for (or s<=1 on manifolds). Unfortunately, it appears that the quantitative properties of these wavelets are rather disappointing. In this paper, we modify the construction from the above-mentioned work to obtain finite element wavelets which are much better conditioned.

  14. Finite element analysis for a finite conductivity fracture in an infinite poroelastic medium

    NASA Astrophysics Data System (ADS)

    Li, Y.-C.

    1999-03-01

    In the technology of oil recovery, oil production rate can be increased by generation of a vertical conductive fracture adjacent to the well-bore. In this paper the seepage flow and isothermal deformation in both the oil formation and the fracture are studied by modelling the formation as a two-dimensional infinite poroelastic medium and the conductive fracture as a one-dimensional poroelastic material, saturated by a one-phase compressible fluid. The plane strain condition is employed. Solutions for a growing conductive fracture and a stationary conductive fracture in the infinite medium are obtained by means of the finite element method based on a variational principle for the formation which can impose the governing equations of the fracture. Infinite elements are used outside the finite element domain. Numerical results indicate that the injection rate, the applied pressure and the crack mouth opening displacement at the well-bore oscillate during the propagation of the conductive fracture. The production rate of a well with the conductive fracture is compared with that of a well without the conductive fracture. Finally, a new definition of the conductivity coefficient for the conductive fracture is presented.

  15. Finite Element Simulation of Smart Structures

    NASA Technical Reports Server (NTRS)

    Cui, Y. Lawrence; Panahandeh, M.

    1996-01-01

    Finite element equations representing the behavior of piezoelectric materials when bounded to a typical structure and used as sensors and actuators were developed. Emphasis was placed on generating sensor output equations of piezoelectric sensors and responses of a typical structure bonded with piezoelectric sensors and actuators on the basis of finite element formulation. The model can predict not only structural responses due to both mechanical and electrical loading but also electrical potential due to mechanical or thermal effects. The resulted finite element equations were then used for simple control design and performance evaluation. In the control algorithm, voltages coming out from piezoelectric sensors, which are proportional to strains at sensing locations, are taken as input. The voltages applied to the piezoelectric actuators are used as output. The feasibility of integrating control algorithm with the element routine developed herein and FEAP was demonstrated. In particular, optimal independent modal space control was implemented in a software package on the basis of finite element formulation. A rudimentary finite element-control algorithm package was also developed to evaluate the performance of candidate control laws. A few numerical simulations using the software package developed herein were given. The integrated software package will provide a design tool to address issues such as how adaptive smart systems will scale to a full size aircraft, the amount of piezoelectric materials and the powers needed to actuate it for desired performance. It will also provide a viable new structural control design concept for practical applications in large flexible structures such as aerospace vehicles and aircraft.

  16. A multidimensional finite element method for CFD

    NASA Technical Reports Server (NTRS)

    Pepper, Darrell W.; Humphrey, Joseph W.

    1991-01-01

    A finite element method is used to solve the equations of motion for 2- and 3-D fluid flow. The time-dependent equations are solved explicitly using quadrilateral (2-D) and hexahedral (3-D) elements, mass lumping, and reduced integration. A Petrov-Galerkin technique is applied to the advection terms. The method requires a minimum of computational storage, executes quickly, and is scalable for execution on computer systems ranging from PCs to supercomputers.

  17. Quadrilateral/hexahedral finite element mesh coarsening

    DOEpatents

    Staten, Matthew L; Dewey, Mark W; Scott, Michael A; Benzley, Steven E

    2012-10-16

    A technique for coarsening a finite element mesh ("FEM") is described. This technique includes identifying a coarsening region within the FEM to be coarsened. Perimeter chords running along perimeter boundaries of the coarsening region are identified. The perimeter chords are redirected to create an adaptive chord separating the coarsening region from a remainder of the FEM. The adaptive chord runs through mesh elements residing along the perimeter boundaries of the coarsening region. The adaptive chord is then extracted to coarsen the FEM.

  18. Adaptive finite element strategies for shell structures

    NASA Technical Reports Server (NTRS)

    Stanley, G.; Levit, I.; Stehlin, B.; Hurlbut, B.

    1992-01-01

    The present paper extends existing finite element adaptive refinement (AR) techniques to shell structures, which have heretofore been neglected in the AR literature. Specific challenges in applying AR to shell structures include: (1) physical discontinuities (e.g., stiffener intersections); (2) boundary layers; (3) sensitivity to geometric imperfections; (4) the sensitivity of most shell elements to mesh distortion, constraint definition and/or thinness; and (5) intrinsic geometric nonlinearity. All of these challenges but (5) are addressed here.

  19. Finite element modeling of nonisothermal polymer flows

    NASA Technical Reports Server (NTRS)

    Roylance, D.

    1981-01-01

    A finite element formulation designed to simulate polymer melt flows in which both conductive and convective heat transfer are important is described, and the numerical model is illustrated by means of computer experiments using extruder drag flow and entry flow as trial problems. Fluid incompressibility is enforced by a penalty treatment of the element pressures, and the thermal convective transport is modeled by conventional Galerkin and optimal upwind treatments.

  20. Spectral function of the U →∞ one-dimensional Hubbard model at finite temperature and the crossover to the spin-incoherent regime

    NASA Astrophysics Data System (ADS)

    Soltanieh-ha, Mohammad; Feiguin, Adrian E.

    2014-10-01

    The physics of the strongly interacting Hubbard chain (with t /U ≪1 ) at finite temperatures undergoes a crossover to a spin-incoherent regime when the temperature is very small relative to the Fermi energy, but larger than the characteristic spin energy scale. This crossover can be understood by means of Ogata and Shiba's factorized wave function, where charge and spin are totally decoupled, and assuming that the charge remains in the ground state, while the spin is thermally excited and at an effective "spin temperature." We use the time-dependent density matrix renormalization group method to calculate the dynamical contributions of the spin, to reconstruct the single-particle spectral function of the electrons. The crossover is characterized by a redistribution of spectral weight both in frequency and momentum, with an apparent shift by kF of the minimum of the dispersion.

  1. Finite element analysis applied to cornea reshaping.

    PubMed

    Cabrera Fernández, Delia; Niazy, A M; Kurtz, R M; Djotyan, G P; Juhasz, T

    2005-01-01

    A 2-D finite element model of the cornea is developed to simulate corneal reshaping and the resulting deformation induced by refractive surgery. In the numerical simulations, linear and nonlinear elastic models are applied when stiffness inhomogeneities varying with depth are considered. Multiple simulations are created that employ different geometric configurations for the removal of the corneal tissue. Side-by-side comparisons of the different constitutive laws are also performed. To facilitate the comparison, the material property constants are identified from the same experimental data, which are obtained from mechanical tests on corneal strips and membrane inflation experiments. We then validate the resulting models by comparing computed refractive power changes with clinical results. Tissue deformations created by simulated corneal tissue removal using finite elements are consistent with clinically observed postsurgical results. The model developed provides a much more predictable refractive outcome when the stiffness inhomogeneities of the cornea and nonlinearities of the deformations are included in the simulations. Finite element analysis is a useful tool for modeling surgical effects on the cornea and developing a better understanding of the biomechanics of the cornea. The creation of patient-specific simulations would allow surgical outcomes to be predicted based on individualized finite element models.

  2. Finite element displacement analysis of a lung.

    NASA Technical Reports Server (NTRS)

    Matthews, F. L.; West, J. B.

    1972-01-01

    A method is given based on the technique of finite elements which determines theoretically the mechanical behavior of a lung-shaped body loaded by its own weight. The results of this theoretical analysis have been compared with actual measurements of alveolar size and pleural pressures in animal lungs.

  3. Finite element modelling of acoustic emission sensor

    NASA Astrophysics Data System (ADS)

    Gerasimov, S. I.; Sych, T. V.

    2017-08-01

    With a validated finite element system COSMOS/M, the out-of-plane displacements corresponding to model sources of acoustic emission (AE) were calculated in three-dimensional samples. The displacement signals were calculated for positions of the receiver on the top plate surface at several different distances (in the far-field) from the source’s epicenter.

  4. Solution of a one-dimensional ablation model

    NASA Astrophysics Data System (ADS)

    Rupertijunior, Nerbe Jose

    1991-11-01

    Ablation in multilayered one-dimensional media is studied. A finite element technique using a Streamline Upwind/Petrov-Galerkin (SU/PG) formulation is employed with a moving mesh which adapts itself to the moving boundary at each time step. The SU/PG formulation is used to avoid oscillations caused by first order derivatives in the energy equation. Ablation problems with time-dependent heat fluxes and a typical example in aerospace thermal protection applications are solved. Critical comparisons are made with finite differences results recently obtained through the control volume approach with exponential differencing. The generalized integral transform technique (GITT) is used as an alternative solution to ablation in multilayered media and to validate the results obtained by the finite element method. The eigenvalues needed in the GITT solution are determined simultaneously with the tansformed temperatures by rewriting the associated transcedental equations into ordinary differential equations.

  5. On Hybrid and mixed finite element methods

    NASA Technical Reports Server (NTRS)

    Pian, T. H. H.

    1981-01-01

    Three versions of the assumed stress hybrid model in finite element methods and the corresponding variational principles for the formulation are presented. Examples of rank deficiency for stiffness matrices by the hybrid stress model are given and their corresponding kinematic deformation modes are identified. A discussion of the derivation of general semi-Loof elements for plates and shells by the hybrid stress method is given. It is shown that the equilibrium model by Fraeijs de Veubeke can be derived by the approach of the hybrid stress model as a special case of semi-Loof elements.

  6. Revolution in Orthodontics: Finite element analysis

    PubMed Central

    Singh, Johar Rajvinder; Kambalyal, Prabhuraj; Jain, Megha; Khandelwal, Piyush

    2016-01-01

    Engineering has not only developed in the field of medicine but has also become quite established in the field of dentistry, especially Orthodontics. Finite element analysis (FEA) is a computational procedure to calculate the stress in an element, which performs a model solution. This structural analysis allows the determination of stress resulting from external force, pressure, thermal change, and other factors. This method is extremely useful for indicating mechanical aspects of biomaterials and human tissues that can hardly be measured in vivo. The results obtained can then be studied using visualization software within the finite element method (FEM) to view a variety of parameters, and to fully identify implications of the analysis. This is a review to show the applications of FEM in Orthodontics. It is extremely important to verify what the purpose of the study is in order to correctly apply FEM. PMID:27114948

  7. Finite element computation of grating scattering matrices and application to photonic crystal band calculations

    SciTech Connect

    Dossou, Kokou . E-mail: Kokou.Dossou@uts.edu.au; Byrne, Michael A.; Botten, Lindsay C.

    2006-11-20

    We consider the calculation of the band structure and Bloch mode basis of two-dimensional photonic crystals, modelled as stacks of one-dimensional diffraction gratings. The scattering properties of each grating are calculated using an efficient finite element method (FEM) and allow the complete mode structure to be derived from a transfer matrix method. A range of numerical examples showing the accuracy, flexibility and utility of the method is presented.

  8. Finite Element Analysis of Piping Tees.

    DTIC Science & Technology

    1980-06-01

    Combustion Engineering, Inc., performed an experimental stress analysis3 on an ANSI B16.9 carbon steelt tee designated T-12. Pipe extensions were welded to...AD-ASS? 353 DAVID If TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/S 13/11 FINITE ELEENT ANALYSIS OF PIPING TEES.(U) JUN 8 A J QUEZON. S C...DAVID W. TAYLOR NAVAL SHIP SRESEARCH AND DEVELOPMENT CENTER Bethesa Md. 20084 FINITE ELEMENT ANALYSIS OF PIPING TEES by Antonio J. Quezon, Gordon C

  9. Finite Element Heat & Mass Transfer Code

    SciTech Connect

    Trease, Lynn

    1996-10-10

    FEHM is a numerical simulation code for subsurface transport processes. It models 3-D, time-dependent, multiphase, multicomponent, non-isothermal, reactive flow through porous and fractured media. It can accurately represent complex 3-D geologic media and structures and their effects on subsurface flow and transport. Its capabilities include flow of gas, water, and heat; flow of air, water, and heat; multiple chemically reactive and sorbing tracers; finite element/finite volume formulation; coupled stress module; saturated and unsaturated media; and double porosity and double porosity/double permeability capabilities.

  10. FEHM. Finite Element Heat & Mass Transfer Code

    SciTech Connect

    Zyvoloski, G.A.

    1996-10-10

    FEHM is a numerical simulation code for subsurface transport processes. It models 3-D, time-dependent, multiphase, multicomponent, non-isothermal, reactive flow through porous and fractured media. It can accurately represent complex 3-D geologic media and structures and their effects on subsurface flow and transport. Its capabilities include flow of gas, water, and heat; flow of air, water, and heat; multiple chemically reactive and sorbing tracers; finite element/finite volume formulation; coupled stress module; saturated and unsaturated media; and double porosity and double porosity/double permeability capabilities.

  11. Finite element simulations of stacked crystal filters

    NASA Astrophysics Data System (ADS)

    Lee, Jiunn-Horng; Tzeng, Kung-Yu; Cheng, Chih-Wei; Shih, Yu-Ching; Yao, Chih-Min

    2004-03-01

    Wireless networks are growing rapidly. Their applications include cellular phone, satellite communication and wireless local area networks. In order to avoid interference between all these applications, high selectivity RF filters are essential. The stacked crystal filter (SCF) is a useful configuration when low insertion loss is desired and the near-in skirt selectivity requirement is not as high as that produced by ladder filters. A SCF is an acoustically coupled resonator filter which includes a pair of thickness mode piezoelectric plates attached to each other. Mounted between adjacent sides of the two plates is a shared electrode. The common ways to model the SCF are mason model and lumped element equivalent circuit method. To accommodate complicated geometries, we need to use the other kinds of numerical analysis techniques. Finite element methods have been applied to the modeling of thin film bulk acoustic wave resonator in recent years. Advanced FEM software has the capability to do a coupled piezoelectric-circuit analysis that can connect electrical circuits directly to the piezoelectric finite element models. In this work, we integrate the SCF two-dimensional piezoelectric finite element models and electrical circuits together to simulate the performance of SCF. The influences of electrode property and acoustic loss to the performance of filter are also investigated. The results of simulation are verified by mason model. This methodology can be applied to more complicated geometry models and other types of filters simulation such as coupled resonator filters (CRF) and ladder filters.

  12. Finite element modelling of SAW correlator

    NASA Astrophysics Data System (ADS)

    Tikka, Ajay C.; Al-Sarawi, Said F.; Abbott, Derek

    2007-12-01

    Numerical simulations of SAW correlators so far are limited to delta function and equivalent circuit models. These models are not accurate as they do not replicate the actual behaviour of the device. Manufacturing a correlator to specifically realise a different configuration is both expensive and time consuming. With the continuous improvement in computing capacity, switching to finite element modelling would be more appropriate. In this paper a novel way of modelling a SAW correlator using finite element analysis is presented. This modelling approach allows the consideration of different code implementation and device structures. This is demonstrated through simulation results for a 5×2-bit Barker sequence encoded SAW correlator. These results show the effect of both bulk and leaky modes on the device performance at various operating frequencies. Moreover, the ways in which the gain of the correlator can be optimised though variation of design parameters will also be outlined.

  13. EC Vacuum Vessel Finite Element Analysis

    SciTech Connect

    Rudland, D.; Luther, R.; /Fermilab

    1992-02-04

    This Note contains a summary of the results of the finite element analysis of the EC Cryostat vacuum vessel performed by Dave Rudland in 1987. The results are used in the structural evaluation of the EC cryostats presented in Engineering Note 194. It should also be noted that the adequacy of the design of the vacuum vessels was reviewed and verified by the Battelle Memorial Institute. Battelle used a shell of revolution program to essentially duplicate the FEA analysis with similar results. It should be noted that no plots of the finite element mesh were retained from the analysis, and these can not be easily reproduced due to a change in the version of the ANSYS computer program shortly after the analysis was completed.

  14. Finite element substructuring methods for composite mechanics

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Chamis, Christos C.

    1988-01-01

    Finite element substructuring strategies are presented to obtain numerical solutions for three typical problems of interest to the composites community: (1) impact and toughness characterization of composites using Charpy's impact test specimen; (2) free-edge stress analysis of composite laminates; and (3) fracture toughness predictions of composites for individual and combined fracture of modes I, II, and III. The key issue common to these problems is the presence of singular or near singular stress fields. The regions prone to see steep stress gradients are substructured with progressively refined meshes to study the local response simultaneously with the global response. The results from the select examples indicate that finite element substructuring methods are computationally effective for composite singularity mechanics.

  15. Finite element modeling of permanent magnet devices

    NASA Astrophysics Data System (ADS)

    Brauer, J. R.; Larkin, L. A.; Overbye, V. D.

    1984-03-01

    New techniques are presented for finite element modeling of permanent magnets in magnetic devices such as motors and generators. These techniques extend a previous sheet-current permanent magnet model that applies only for straight line B-H loops and rectangular-shaped magnets. Here Maxwell's equations are used to derive the model of a permanent magnet having a general curved B-H loop and any geometric shape. The model enables a nonlinear magnetic finite element program to use Newton-Raphson iteration to solve for saturable magnetic fields in a wide variety of devices containing permanent magnets and steels. The techniques are applied to a brushless dc motor with irregular-shaped permanent magnets. The calculated motor torque agrees well with measured torque.

  16. 2-d Finite Element Code Postprocessor

    SciTech Connect

    Sanford, L. A.; Hallquist, J. O.

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  17. Finite element analysis of human joints

    SciTech Connect

    Bossart, P.L.; Hollerbach, K.

    1996-09-01

    Our work focuses on the development of finite element models (FEMs) that describe the biomechanics of human joints. Finite element modeling is becoming a standard tool in industrial applications. In highly complex problems such as those found in biomechanics research, however, the full potential of FEMs is just beginning to be explored, due to the absence of precise, high resolution medical data and the difficulties encountered in converting these enormous datasets into a form that is usable in FEMs. With increasing computing speed and memory available, it is now feasible to address these challenges. We address the first by acquiring data with a high resolution C-ray CT scanner and the latter by developing semi-automated method for generating the volumetric meshes used in the FEM. Issues related to tomographic reconstruction, volume segmentation, the use of extracted surfaces to generate volumetric hexahedral meshes, and applications of the FEM are described.

  18. Finite element concepts in computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Baker, A. J.

    1978-01-01

    Finite element theory was employed to establish an implicit numerical solution algorithm for the time averaged unsteady Navier-Stokes equations. Both the multidimensional and a time-split form of the algorithm were considered, the latter of particular interest for problem specification on a regular mesh. A Newton matrix iteration procedure is outlined for solving the resultant nonlinear algebraic equation systems. Multidimensional discretization procedures are discussed with emphasis on automated generation of specific nonuniform solution grids and accounting of curved surfaces. The time-split algorithm was evaluated with regards to accuracy and convergence properties for hyperbolic equations on rectangular coordinates. An overall assessment of the viability of the finite element concept for computational aerodynamics is made.

  19. Finite element analysis of wrinkling membranes

    NASA Technical Reports Server (NTRS)

    Miller, R. K.; Hedgepeth, J. M.; Weingarten, V. I.; Das, P.; Kahyai, S.

    1984-01-01

    The development of a nonlinear numerical algorithm for the analysis of stresses and displacements in partly wrinkled flat membranes, and its implementation on the SAP VII finite-element code are described. A comparison of numerical results with exact solutions of two benchmark problems reveals excellent agreement, with good convergence of the required iterative procedure. An exact solution of a problem involving axisymmetric deformations of a partly wrinkled shallow curved membrane is also reported.

  20. Finite element methods in fracture mechanics

    NASA Technical Reports Server (NTRS)

    Liebowitz, H.; Moyer, E. T., Jr.

    1989-01-01

    Finite-element methodology specific to the analysis of fracture mechanics problems is reviewed. Primary emphasis is on the important algorithmic developments which have enhanced the numerical modeling of fracture processes. Methodologies to address elastostatic problems in two and three dimensions, elastodynamic problems, elastoplastic problems, special considerations for three-dimensional nonlinear problems, and the modeling of stable crack growth are reviewed. In addition, the future needs of the fracture community are discussed and open questions are identified.

  1. Finite Element Output Bounds for Hyperbolic Problems

    SciTech Connect

    Machiels, L.

    2000-03-27

    We propose a Neumann-subproblem a posteriori finite element error bound technique for linear stationary scalar advection problems. The method is similar in many respects to the previous output bound technique developed for elliptic problems. In the new approach, however, the primal residual is enhanced with a streamline diffusion term. We first formulate the bound algorithm, with particular emphasis on the proof of the bounding properties; then, we provide numerical results for an illustrative example.

  2. Finite Element Methods: Principles for Their Selection.

    DTIC Science & Technology

    1983-02-01

    the finite element methods. 39 Various statements in the literature that certain mixed methods work well inspite of the fact that the LBB (BB...method, displacement and mixed methods , various adaptive approaches, etc. The examples discussed in Sections 2 and 3 show that the same computational...performance and their relation to mixed methods , SIAM J. Num. Anal., to appear. 5. F. Brezzi, On the existence uniqueness and approximation of saddle-point

  3. EXODUS II: A finite element data model

    SciTech Connect

    Schoof, L.A.; Yarberry, V.R.

    1994-09-01

    EXODUS II is a model developed to store and retrieve data for finite element analyses. It is used for preprocessing (problem definition), postprocessing (results visualization), as well as code to code data transfer. An EXODUS II data file is a random access, machine independent, binary file that is written and read via C, C++, or Fortran library routines which comprise the Application Programming Interface (API).

  4. Finite Element Analysis of Reverberation Chambers

    NASA Technical Reports Server (NTRS)

    Bunting, Charles F.; Nguyen, Duc T.

    2000-01-01

    The primary motivating factor behind the initiation of this work was to provide a deterministic means of establishing the validity of the statistical methods that are recommended for the determination of fields that interact in -an avionics system. The application of finite element analysis to reverberation chambers is the initial step required to establish a reasonable course of inquiry in this particularly data-intensive study. The use of computational electromagnetics provides a high degree of control of the "experimental" parameters that can be utilized in a simulation of reverberating structures. As the work evolved there were four primary focus areas they are: 1. The eigenvalue problem for the source free problem. 2. The development of a complex efficient eigensolver. 3. The application of a source for the TE and TM fields for statistical characterization. 4. The examination of shielding effectiveness in a reverberating environment. One early purpose of this work was to establish the utility of finite element techniques in the development of an extended low frequency statistical model for reverberation phenomena. By employing finite element techniques, structures of arbitrary complexity can be analyzed due to the use of triangular shape functions in the spatial discretization. The effects of both frequency stirring and mechanical stirring are presented. It is suggested that for the low frequency operation the typical tuner size is inadequate to provide a sufficiently random field and that frequency stirring should be used. The results of the finite element analysis of the reverberation chamber illustrate io-W the potential utility of a 2D representation for enhancing the basic statistical characteristics of the chamber when operating in a low frequency regime. The basic field statistics are verified for frequency stirring over a wide range of frequencies. Mechanical stirring is shown to provide an effective frequency deviation.

  5. Finite element based electric motor design optimization

    NASA Technical Reports Server (NTRS)

    Campbell, C. Warren

    1993-01-01

    The purpose of this effort was to develop a finite element code for the analysis and design of permanent magnet electric motors. These motors would drive electromechanical actuators in advanced rocket engines. The actuators would control fuel valves and thrust vector control systems. Refurbishing the hydraulic systems of the Space Shuttle after each flight is costly and time consuming. Electromechanical actuators could replace hydraulics, improve system reliability, and reduce down time.

  6. Finite Element Results Visualization for Unstructured Grids

    SciTech Connect

    Speck, Douglas E.; Dovey, Donald J.

    1996-07-15

    GRIZ is a general-purpose post-processing application supporting interactive visualization of finite element analysis results on unstructured grids. In addition to basic pseudocolor renderings of state variables over the mesh surface, GRIZ provides modern visualization techniques such as isocontours and isosurfaces, cutting planes, vector field display, and particle traces. GRIZ accepts both command-line and mouse-driven input, and is portable to virtually any UNIX platform which provides Motif and OpenGl libraries.

  7. TAURUS. 3-D Finite Element Code Postprocessor

    SciTech Connect

    Whirley, R.G.

    1984-05-01

    TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D, DYNA3D, TACO3D, TOPAZ3D, and GEMINI and plots contours, time histories,and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.

  8. TAURUS. 3-D Finite Element Code Postprocessor

    SciTech Connect

    Kennedy, T.

    1992-03-03

    TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D, DYNA3D, TACO3D, TOPAZ3D, and GEMINI and plots contours, time histories, and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.

  9. TAURUS. 3-D Finite Element Code Postprocessor

    SciTech Connect

    Whirley, R.G.

    1993-11-30

    TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D, DYNA3D, TACO3D, TOPAZ3D, and GEMINI and plots contours, time histories,and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.

  10. TAURUS. 3-d Finite Element Code Postprocessor

    SciTech Connect

    Whirley, R.G.

    1991-05-01

    TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D (ESTSC 139), DYNA3D (ESTSC 138), TACO3D (ESTSC 287), TOPAZ3D (ESTSC 231), and GEMINI (ESTSC 455) and plots contours, time histories,and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.

  11. TAURUS. 3-d Finite Element Code Postprocessor

    SciTech Connect

    Whirley, R.G.

    1992-03-03

    TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D (ESTSC 139), DYNA3D (ESTSC 138), TACO3D (ESTSC 287), TOPAZ3D (ESTSC 231), and GEMINI (ESTSC 455) and plots contours, time histories,and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.

  12. TAURUS. 3-D Finite Element Code Postprocessor

    SciTech Connect

    Whirley, R.G.

    1992-03-03

    TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D, DYNA3D, TACO3D, TOPAZ3D, and GEMINI and plots contours, time histories,and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.

  13. Transient finite element method using edge elements for moving conductor

    SciTech Connect

    Tani, Koji; Nishio, Takayuki; Yamada, Takashi ); Kawase, Yoshihiro . Dept. of Information Science)

    1999-05-01

    For the next generation of high speed railway systems and automobiles new braking systems are currently under development. These braking systems take into account the eddy currents, which are produced by the movement of the conductor in the magnetic field. For their optimum design, it is necessary to know the distribution of eddy currents in the moving conductor. The finite element method (FEM) is often used to simulate them. Here, transient finite element method using edge elements for moving conductor is presented. Here the magnetic vector potential is interpolated at the upwind position and the time derivative term is discretized by the backward difference method. As a result, the system matrix becomes symmetric and the ICCG method is applicable to solve the matrix. This method is used to solve an eddy current rail brake system. The results demonstrate that this approach is suitable to solve transient problems involving movement.

  14. Variational approach to probabilistic finite elements

    NASA Technical Reports Server (NTRS)

    Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.

    1991-01-01

    Probabilistic finite element methods (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.

  15. Variational approach to probabilistic finite elements

    NASA Technical Reports Server (NTRS)

    Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.

    1987-01-01

    Probabilistic finite element method (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties, and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.

  16. Finite element modeling of lipid bilayer membranes

    NASA Astrophysics Data System (ADS)

    Feng, Feng; Klug, William S.

    2006-12-01

    A numerical simulation framework is presented for the study of biological membranes composed of lipid bilayers based on the finite element method. The classic model for these membranes employs a two-dimensional-fluid-like elastic constitutive law which is sensitive to curvature, and subjects vesicles to physically imposed constraints on surface area and volume. This model is implemented numerically via the use of C1-conforming triangular Loop subdivision finite elements. The validity of the framework is tested by computing equilibrium shapes from previously-determined axisymmetric shape-phase diagram of lipid bilayer vesicles with homogeneous material properties. Some of the benefits and challenges of finite element modeling of lipid bilayer systems are discussed, and it is indicated how this framework is natural for future investigation of biologically realistic bilayer structures involving nonaxisymmetric geometries, binding and adhesive interactions, heterogeneous mechanical properties, cytoskeletal interactions, and complex loading arrangements. These biologically relevant features have important consequences for the shape mechanics of nonidealized vesicles and cells, and their study requires not simply advances in theory, but also advances in numerical simulation techniques, such as those presented here.

  17. Gauge finite element method for incompressible flows

    NASA Astrophysics Data System (ADS)

    E, Weinan; Liu, Jian-Guo

    2000-12-01

    A finite element method for computing viscous incompressible flows based on the gauge formulation introduced in [Weinan E, Liu J-G. Gauge method for viscous incompressible flows. Journal of Computational Physics (submitted)] is presented. This formulation replaces the pressure by a gauge variable. This new gauge variable is a numerical tool and differs from the standard gauge variable that arises from decomposing a compressible velocity field. It has the advantage that an additional boundary condition can be assigned to the gauge variable, thus eliminating the issue of a pressure boundary condition associated with the original primitive variable formulation. The computational task is then reduced to solving standard heat and Poisson equations, which are approximated by straightforward, piecewise linear (or higher-order) finite elements. This method can achieve high-order accuracy at a cost comparable with that of solving standard heat and Poisson equations. It is naturally adapted to complex geometry and it is much simpler than traditional finite element methods for incompressible flows. Several numerical examples on both structured and unstructured grids are presented. Copyright

  18. FESDIF -- Finite Element Scalar Diffraction theory code

    SciTech Connect

    Kraus, H.G.

    1992-09-01

    This document describes the theory and use of a powerful scalar diffraction theory based computer code for calculation of intensity fields due to diffraction of optical waves by two-dimensional planar apertures and lenses. This code is called FESDIF (Finite Element Scalar Diffraction). It is based upon both Fraunhofer and Kirchhoff scalar diffraction theories. Simplified routines for circular apertures are included. However, the real power of the code comes from its basis in finite element methods. These methods allow the diffracting aperture to be virtually any geometric shape, including the various secondary aperture obstructions present in telescope systems. Aperture functions, with virtually any phase and amplitude variations, are allowed in the aperture openings. Step change aperture functions are accommodated. The incident waves are considered to be monochromatic. Plane waves, spherical waves, or Gaussian laser beams may be incident upon the apertures. Both area and line integral transformations were developed for the finite element based diffraction transformations. There is some loss of aperture function generality in the line integral transformations which are typically many times more computationally efficient than the area integral transformations when applicable to a particular problem.

  19. Finite-temperature second-order many-body perturbation and Hartree-Fock theories for one-dimensional solids: an application to Peierls and charge-density-wave transitions in conjugated polymers.

    PubMed

    He, Xiao; Ryu, Shinsei; Hirata, So

    2014-01-14

    Finite-temperature extensions of ab initio Gaussian-basis-set spin-restricted Hartree-Fock (HF) and second-order many-body perturbation (MP2) theories are implemented for infinitely extended, periodic, one-dimensional solids and applied to the Peierls and charge-density-wave (CDW) transitions in polyyne and all-trans polyacetylene. The HF theory predicts insulating CDW ground states for both systems in their equidistant structures at low temperatures. In the same structures, they turn metallic at high temperatures. Starting from the "dimerized" low-temperature equilibrium structures, the systems need even higher temperatures to undergo a Peierls transition, which is accompanied by geometric as well as electronic distortions from dimerized to non-dimerized forms. The conventional finite-temperature MP2 theory shows a sign of divergence in any phase at any nonzero temperature and is useless. The renormalized finite-temperature MP2 (MP2R) theory is divergent only near metallic electronic structures, but is well behaved elsewhere. MP2R also predicts CDW and Peierls transitions occurring at two different temperatures. The effect of electron correlation is primarily to lower the Peierls transition temperature.

  20. Finite-temperature second-order many-body perturbation and Hartree–Fock theories for one-dimensional solids: An application to Peierls and charge-density-wave transitions in conjugated polymers

    SciTech Connect

    He, Xiao; Ryu, Shinsei; Hirata, So

    2014-01-14

    Finite-temperature extensions of ab initio Gaussian-basis-set spin-restricted Hartree–Fock (HF) and second-order many-body perturbation (MP2) theories are implemented for infinitely extended, periodic, one-dimensional solids and applied to the Peierls and charge-density-wave (CDW) transitions in polyyne and all-trans polyacetylene. The HF theory predicts insulating CDW ground states for both systems in their equidistant structures at low temperatures. In the same structures, they turn metallic at high temperatures. Starting from the “dimerized” low-temperature equilibrium structures, the systems need even higher temperatures to undergo a Peierls transition, which is accompanied by geometric as well as electronic distortions from dimerized to non-dimerized forms. The conventional finite-temperature MP2 theory shows a sign of divergence in any phase at any nonzero temperature and is useless. The renormalized finite-temperature MP2 (MP2R) theory is divergent only near metallic electronic structures, but is well behaved elsewhere. MP2R also predicts CDW and Peierls transitions occurring at two different temperatures. The effect of electron correlation is primarily to lower the Peierls transition temperature.

  1. DENSITY-DEPENDENT FLOW IN ONE-DIMENSIONAL VARIABLY-SATURATED MEDIA

    EPA Science Inventory

    A one-dimensional finite element is developed to simulate density-dependent flow of saltwater in variably saturated media. The flow and solute equations were solved in a coupled mode (iterative), in a partially coupled mode (non-iterative), and in a completely decoupled mode. P...

  2. DENSITY-DEPENDENT FLOW IN ONE-DIMENSIONAL VARIABLY-SATURATED MEDIA

    EPA Science Inventory

    A one-dimensional finite element is developed to simulate density-dependent flow of saltwater in variably saturated media. The flow and solute equations were solved in a coupled mode (iterative), in a partially coupled mode (non-iterative), and in a completely decoupled mode. P...

  3. An approach for verification of finite-element analysis in nonlinear elasticity under large strains

    NASA Astrophysics Data System (ADS)

    Zingerman, K. M.; Vershinin, A. V.; Levin, V. A.

    2016-11-01

    An approach to verification of finite-element calculations of stress-strain state of nonlinear elastic bodies under large deformations is suggested. The problems that may be reduced to one-dimensional ones using a semi-inverse method are taken as test problems. An example of such a test problem is the Lame problem for a cylinder. Generally, this problem for compressible hyperelastic materials has no exact analytical solution, but it can be reduced to a boundary value problem for an ordinary second-order nonlinear differential equation, and in some cases - to the Cauchy problem. A numerical solution of this problem can be used as a test one for finite element calculations carried out in three-dimensional statement. Some results of such verification (finite element calculations were performed using the Fidesys CAE-system) are presented.

  4. Mixed Finite Element Method for Melt Migration

    NASA Astrophysics Data System (ADS)

    Taicher, A. L.; Hesse, M. A.; Arbogast, T.

    2012-12-01

    Multi-phase flow arises during partial melting in the earth mantle, where the porosity is small and material has the characteristics of a compacting porous medium. The equations governing multi-phase flow have been specialized to partially molten materials by McKenzie and Fowler. Their model, also called a Darcy-Stokes system, is highly coupled and non-linear. Melt flow is governed by Darcy's Law while the high temperature, ductile creep of the solid matrix is modeled using viscous non-Newtonian Stokes rheology. In addition, the melt and solid pressures are related through a compaction relation. This nearly elliptic mechanical problem is then coupled with both solute transport and thermal evolution according to the enthalpy method developed by Katz. A suitable numerical method must solve the Darcy-Stokes problem in a manner compatible with the transport problem. Moreover, unlike most porous media problems, partially molten materials transition dynamically from non-porous solid to porous medium. Therefore, a numerical method must also carefully account for the limit of zero porosity. The Darcy-Stokes system for modeling partial melting in the mantle is a novel problem. As far as we know, there currently does not exist a finite element solution in the literature solving these coupled equations. The finite element framework provides support for additional analysis of error and convergence. Moreover, both mesh refinement and anisotropy are naturally incorporated into finite elements. In particular, the mixed finite element method presents a good candidate because it works in both limiting cases: Darcy and incompressible Stokes flow. Mixed methods also produce discretely conservative fluxes that are required for the transport problem to remains stable without violating conservation of mass. Based preliminary investigations in 1D and derived energy estimates, we present a mixed formulation for the Darcy-Stokes system. Next, using novel elements of lowest order and

  5. Modelling bucket excavation by finite element

    NASA Astrophysics Data System (ADS)

    Pecingina, O. M.

    2015-11-01

    Changes in geological components of the layers from lignite pits have an impact on the sustainability of the cup path elements and under the action of excavation force appear efforts leading to deformation of the entire assembly. Application of finite element method in the optimization of components leads to economic growth, to increase the reliability and durability of the studied machine parts thus the machine. It is obvious usefulness of knowledge the state of mechanical tensions that the designed piece or the assembly not to break under the action of tensions that must cope during operation. In the course of excavation work on all bucket cutting force components, the first coming into contact with the material being excavated cutting edge. Therefore in the study with finite element analysis is retained only cutting edge. To study the field of stress and strain on the cutting edge will be created geometric patterns for each type of cup this will be subject to static analysis. The geometric design retains the cutting edge shape and on this on the tooth cassette location will apply an areal force on the abutment tooth. The cutting edge real pattern is subjected to finite element study for the worst case of rock cutting by symmetrical and asymmetrical cups whose profile is different. The purpose of this paper is to determine the displacement and tensions field for both profiles considering the maximum force applied on the cutting edge and the depth of the cutting is equal with the width of the cutting edge of the tooth. It will consider the worst case when on the structure will act both the tangential force and radial force on the bucket profile. For determination of stress and strain field on the form design of cutting edge profile will apply maximum force assuming uniform distribution and on the edge surface force will apply a radial force. After geometric patterns discretization on the cutting knives and determining stress field, can be seen that at the

  6. Cracked finite elements proposed for NASTRAN. [based on application of finite element method to fracture mechanics

    NASA Technical Reports Server (NTRS)

    Aberson, J. A.; Anderson, J. M.

    1973-01-01

    The recent introduction of special crack-tip singularity elements, usually referred to as cracked elements, has brought the power and flexibility of the finite-element method to bear much more effectively on fracture mechanics problems. This paper recalls the development of two cracked elements and presents the results of some applications proving their accuracy and economy. Judging from the available literature on numerical methods in fracture mechanics, it seems clear that the elements described have been used more extensively than any others in practical fracture mechanics applications.

  7. System software for the finite element machine

    NASA Technical Reports Server (NTRS)

    Crockett, T. W.; Knott, J. D.

    1985-01-01

    The Finite Element Machine is an experimental parallel computer developed at Langley Research Center to investigate the application of concurrent processing to structural engineering analysis. This report describes system-level software which has been developed to facilitate use of the machine by applications researchers. The overall software design is outlined, and several important parallel processing issues are discussed in detail, including processor management, communication, synchronization, and input/output. Based on experience using the system, the hardware architecture and software design are critiqued, and areas for further work are suggested.

  8. Iterative methods for mixed finite element equations

    NASA Technical Reports Server (NTRS)

    Nakazawa, S.; Nagtegaal, J. C.; Zienkiewicz, O. C.

    1985-01-01

    Iterative strategies for the solution of indefinite system of equations arising from the mixed finite element method are investigated in this paper with application to linear and nonlinear problems in solid and structural mechanics. The augmented Hu-Washizu form is derived, which is then utilized to construct a family of iterative algorithms using the displacement method as the preconditioner. Two types of iterative algorithms are implemented. Those are: constant metric iterations which does not involve the update of preconditioner; variable metric iterations, in which the inverse of the preconditioning matrix is updated. A series of numerical experiments is conducted to evaluate the numerical performance with application to linear and nonlinear model problems.

  9. A finite element model of ultrasonic extrusion

    NASA Astrophysics Data System (ADS)

    Lucas, M.; Daud, Y.

    2009-08-01

    Since the 1950's researchers have carried out investigations into the effects of applying ultrasonic excitation to metals undergoing elastic and plastic deformation. Experiments have been conducted where ultrasonic excitation is superimposed in complex metalworking operations such as wire drawing and extrusion, to identify the benefits of ultrasonic vibrations. This study presents a finite element analysis of ultrasonic excitation applied to the extrusion of a cylindrical aluminium bar. The effects of friction on the extrusion load are reported for the two excitation configurations of radially and axially applied ultrasonic vibrations and the results are compared with experimental data reported in the literature.

  10. Finite Element Modeling of Mitral Valve Repair

    PubMed Central

    Morgan, Ashley E.; Pantoja, Joe Luis; Weinsaft, Jonathan; Grossi, Eugene; Guccione, Julius M.; Ge, Liang; Ratcliffe, Mark

    2016-01-01

    The mitral valve is a complex structure regulating forward flow of blood between the left atrium and left ventricle (LV). Multiple disease processes can affect its proper function, and when these diseases cause severe mitral regurgitation (MR), optimal treatment is repair of the native valve. The mitral valve (MV) is a dynamic structure with multiple components that have complex interactions. Computational modeling through finite element (FE) analysis is a valuable tool to delineate the biomechanical properties of the mitral valve and understand its diseases and their repairs. In this review, we present an overview of relevant mitral valve diseases, and describe the evolution of FE models of surgical valve repair techniques. PMID:26632260

  11. Algebraic surface design and finite element meshes

    NASA Technical Reports Server (NTRS)

    Bajaj, Chandrajit L.

    1992-01-01

    Some of the techniques are summarized which are used in constructing C sup 0 and C sup 1 continuous meshes of low degree, implicitly defined, algebraic surface patches in three dimensional space. These meshes of low degree algebraic surface patches are used to construct accurate computer models of physical objects. These meshes are also used in the finite element simulation of physical phenomena (e.g., heat dissipation, stress/strain distributions, fluid flow characteristics) required in the computer prototyping of both the manufacturability and functionality of the geometric design.

  12. Chemorheology of reactive systems: Finite element analysis

    NASA Technical Reports Server (NTRS)

    Douglas, C.; Roylance, D.

    1982-01-01

    The equations which govern the nonisothermal flow of reactive fluids are outlined, and the means by which finite element analysis is used to solve these equations for the sort of arbitrary boundary conditions encountered in industrial practice are described. The performance of the computer code is illustrated by several trial problems, selected more for their value in providing insight to polymer processing flows than as practical production problems. Although a good deal remains to be learned as to the performance and proper use of this numerical technique, it is undeniably useful in providing better understanding of today's complicated polymer processing problems.

  13. An enriched finite element method to fractional advection-diffusion equation

    NASA Astrophysics Data System (ADS)

    Luan, Shengzhi; Lian, Yanping; Ying, Yuping; Tang, Shaoqiang; Wagner, Gregory J.; Liu, Wing Kam

    2017-03-01

    In this paper, an enriched finite element method with fractional basis [ 1,x^{α }] for spatial fractional partial differential equations is proposed to obtain more stable and accurate numerical solutions. For pure fractional diffusion equation without advection, the enriched Galerkin finite element method formulation is demonstrated to simulate the exact solution successfully without any numerical oscillation, which is advantageous compared to the traditional Galerkin finite element method with integer basis [ 1,x] . For fractional advection-diffusion equation, the oscillatory behavior becomes complex due to the introduction of the advection term which can be characterized by a fractional element Peclet number. For the purpose of addressing the more complex numerical oscillation, an enriched Petrov-Galerkin finite element method is developed by using a dimensionless fractional stabilization parameter, which is formulated through a minimization of the residual of the nodal solution. The effectiveness and accuracy of the enriched finite element method are demonstrated by a series of numerical examples of fractional diffusion equation and fractional advection-diffusion equation, including both one-dimensional and two-dimensional, steady-state and time-dependent cases.

  14. An enriched finite element method to fractional advection-diffusion equation

    NASA Astrophysics Data System (ADS)

    Luan, Shengzhi; Lian, Yanping; Ying, Yuping; Tang, Shaoqiang; Wagner, Gregory J.; Liu, Wing Kam

    2017-08-01

    In this paper, an enriched finite element method with fractional basis [ 1,x^{α }] for spatial fractional partial differential equations is proposed to obtain more stable and accurate numerical solutions. For pure fractional diffusion equation without advection, the enriched Galerkin finite element method formulation is demonstrated to simulate the exact solution successfully without any numerical oscillation, which is advantageous compared to the traditional Galerkin finite element method with integer basis [ 1,x] . For fractional advection-diffusion equation, the oscillatory behavior becomes complex due to the introduction of the advection term which can be characterized by a fractional element Peclet number. For the purpose of addressing the more complex numerical oscillation, an enriched Petrov-Galerkin finite element method is developed by using a dimensionless fractional stabilization parameter, which is formulated through a minimization of the residual of the nodal solution. The effectiveness and accuracy of the enriched finite element method are demonstrated by a series of numerical examples of fractional diffusion equation and fractional advection-diffusion equation, including both one-dimensional and two-dimensional, steady-state and time-dependent cases.

  15. An algorithm for domain decomposition in finite element analysis

    NASA Technical Reports Server (NTRS)

    Al-Nasra, M.; Nguyen, D. T.

    1991-01-01

    A simple and efficient algorithm is described for automatic decomposition of an arbitrary finite element domain into a specified number of subdomains for finite element and substructuring analysis in a multiprocessor computer environment. The algorithm is designed to balance the work loads, to minimize the communication among processors and to minimize the bandwidths of the resulting system of equations. Small- to large-scale finite element models, which have two-node elements (truss, beam element), three-node elements (triangular element) and four-node elements (quadrilateral element), are solved on the Convex computer to illustrate the effectiveness of the proposed algorithm. A FORTRAN computer program is also included.

  16. Finite Element Analysis of a Floating Microstimulator

    PubMed Central

    Sahin, Mesut; Ur-Rahman, Syed S.

    2011-01-01

    Analytical solutions for voltage fields in a volume conductor are available only for ideal electrodes with radially symmetric contacts and infinitely extending substrates. Practical electrodes for neural stimulation may have asymmetric contacts and finite substrate dimensions and hence deviate from the ideal geometries. For instance, it needs to be determined if the analytical solutions are adequate for simulations of narrow shank electrodes where the substrate width is comparable to the size of the contacts. As an extension to this problem, a “floating” stimulator can be envisioned where the substrate would be finite in all directions. The question then becomes how small this floating stimulator can be made before its stimulation strength is compromised by the decrease in the medium impedance between the contacts as the contacts are approaching each other. We used finite element modeling to solve the voltage and current profiles generated by these radially asymmetric electrode geometries in a volume conductor. The simulation results suggest that both the substrate size and the bipolar contact separation influence the voltage field when these parameters are as small as a few times the contact size. Both of these effects are larger for increasing elevations from the contact surface, and even stronger for floating electrodes (finite substrate in all directions) than the shank-type electrodes. Location of the contacts on the floating electrode also plays a role in determining the voltage field. The voltage field for any device size and current, and any specific resistance of the volume conductor can be predicted from these results so long as the aspect ratios are preserved. PMID:17601192

  17. Impeller deflection and modal finite element analysis.

    SciTech Connect

    Spencer, Nathan A.

    2013-10-01

    Deflections of an impeller due to centripetal forces are calculated using finite element analysis. The lateral, or out of plane, deflections are an important design consideration for this particular impeller because it incorporates an air bearing with critical gap tolerances. The target gap distance is approximately 10 microns at a rotational velocity of 2500 rpm. The centripetal forces acting on the impeller cause it deflect in a concave fashion, decreasing the initial gap distance as a function of radial position. This deflection is characterized for a previous and updated impeller design for comparative purposes. The impact of design options such as material selection, geometry dimensions, and operating rotational velocity are also explored, followed by a sensitivity study with these parameters bounded by specific design values. A modal analysis is also performed to calculate the impeller's natural frequencies which are desired to be avoided during operation. The finite element modeling techniques continue to be exercised by the impeller design team to address specific questions and evaluate conceptual designs, some of which are included in the Appendix.

  18. Finite element analysis of multilayer coextrusion.

    SciTech Connect

    Hopkins, Matthew Morgan; Schunk, Peter Randall; Baer, Thomas A.; Mrozek, Randy A.; Lenhart, Joseph Ludlow; Rao, Rekha Ranjana; Collins, Robert; Mondy, Lisa Ann

    2011-09-01

    Multilayer coextrusion has become a popular commercial process for producing complex polymeric products from soda bottles to reflective coatings. A numerical model of a multilayer coextrusion process is developed based on a finite element discretization and two different free-surface methods, an arbitrary-Lagrangian-Eulerian (ALE) moving mesh implementation and an Eulerian level set method, to understand the moving boundary problem associated with the polymer-polymer interface. The goal of this work is to have a numerical capability suitable for optimizing and troubleshooting the coextrusion process, circumventing flow instabilities such as ribbing and barring, and reducing variability in layer thickness. Though these instabilities can be both viscous and elastic in nature, for this work a generalized Newtonian description of the fluid is used. Models of varying degrees of complexity are investigated including stability analysis and direct three-dimensional finite element free surface approaches. The results of this work show how critical modeling can be to reduce build test cycles, improve material choices, and guide mold design.

  19. Finite element analysis of bolted flange connections

    NASA Astrophysics Data System (ADS)

    Hwang, D. Y.; Stallings, J. M.

    1994-06-01

    A 2-D axisymmetric finite element model and a 3-D solid finite element model of a high pressure bolted flange joint were generated to investigate the stress behaviors. This investigation includes comparisons for axisymmetric loading of both the 2-D and 3-D models, the effects of non-axisymmetric bolt pretensions in the 3-D models, and the differences between 2-D and 3-D models subjected to non-axisymmetric loading. Comparisons indicated differences in von Mises stress up to 12% at various points due to the non-axisymmetric bolt pretensions. Applied bending moments were converted to equivalent axial forces for use in the 2-D model. It was found that the largest von Mises stresses in 3-D model did not occur on the side of the connection where the bending stresses and applied axial stresses were additive. Hence, in the 2-D model where the equivalent axial force (for bending moment) and applied axial forces were added, the 2-D model under estimated the maximum von Mises stress obtained from the 3-D model by 30%.

  20. A multigrid solution method for mixed hybrid finite elements

    SciTech Connect

    Schmid, W.

    1996-12-31

    We consider the multigrid solution of linear equations arising within the discretization of elliptic second order boundary value problems of the form by mixed hybrid finite elements. Using the equivalence of mixed hybrid finite elements and non-conforming nodal finite elements, we construct a multigrid scheme for the corresponding non-conforming finite elements, and, by this equivalence, for the mixed hybrid finite elements, following guidelines from Arbogast/Chen. For a rectangular triangulation of the computational domain, this non-conforming schemes are the so-called nodal finite elements. We explicitly construct prolongation and restriction operators for this type of non-conforming finite elements. We discuss the use of plain multigrid and the multilevel-preconditioned cg-method and compare their efficiency in numerical tests.

  1. Accurate finite element modeling of acoustic waves

    NASA Astrophysics Data System (ADS)

    Idesman, A.; Pham, D.

    2014-07-01

    In the paper we suggest an accurate finite element approach for the modeling of acoustic waves under a suddenly applied load. We consider the standard linear elements and the linear elements with reduced dispersion for the space discretization as well as the explicit central-difference method for time integration. The analytical study of the numerical dispersion shows that the most accurate results can be obtained with the time increments close to the stability limit. However, even in this case and the use of the linear elements with reduced dispersion, mesh refinement leads to divergent numerical results for acoustic waves under a suddenly applied load. This is explained by large spurious high-frequency oscillations. For the quantification and the suppression of spurious oscillations, we have modified and applied a two-stage time-integration technique that includes the stage of basic computations and the filtering stage. This technique allows accurate convergent results at mesh refinement as well as significantly reduces the numerical anisotropy of solutions. We should mention that the approach suggested is very general and can be equally applied to any loading as well as for any space-discretization technique and any explicit or implicit time-integration method.

  2. Finite element analysis enhancement of cryogenic testing

    NASA Astrophysics Data System (ADS)

    Thiem, Clare D.; Norton, Douglas A.

    1991-12-01

    Finite element analysis (FEA) of large space optics enhances cryogenic testing by providing an analytical method by which to ensure that a test article survives proposed testing. The analyses presented in this paper were concerned with determining the reliability of a half meter mirror in an environment where the exact environmental profile was unknown. FEA allows the interaction between the test object and the environment to be simulated to detect potential problems prior to actual testing. These analyses examined worse case scenerios related to cooling the mirror, its structural integrity for the proposed test environment, and deformation of the reflective surface. The FEA was conducted in-house on the System's Reliability Division's VAX 11-750 and Decstation 3100 using Engineering Mechanics Research Corporation's numerically integrated elements for systems analysis finite element software. The results of the analyses showed that it would take at least 48 hours to cool the mirror to its desired testing temperature. It was also determined that the proposed mirror mount would not cause critical concentrated thermal stresses that would fracture the mirror. FEA and actual measurements of the front reflective face were compared and good agreement between computer simulation and physical tests were seen. Space deployment of large optics requires lightweight mirrors which can perform under the harsh conditions of space. The physical characteristics of these mirrors must be well understood in order that their deployment and operation are successful. Evaluating design approaches by analytical simulation, like FEA, verifies the reliability and structural integrity of a space optic during design prior to prototyping and testing. Eliminating an optic's poor design early in its life saves money, materials, and human resources while ensuring performance.

  3. Mixed Finite Element Methods for Melt Migration

    NASA Astrophysics Data System (ADS)

    Taicher, A. L.

    2013-12-01

    Multi-phase flow arises during partial melting in the earth mantle, where the porosity is small and material has the characteristics of a compacting porous medium. The equations governing multi-phase flow have been specialized to partially molten materials by McKenzie and Fowler. Their model, also called a Darcy-Stokes system, is highly coupled and non-linear. Melt flow is governed by Darcy's Law while the high temperature, ductile creep of the solid matrix is modeled using viscous non-Newtonian Stokes rheology. In addition, the melt and solid pressures are related through a compaction relation. This nearly elliptic mechanical problem is then coupled with both solute transport and thermal evolution according to the enthalpy method developed by Katz. A suitable numerical method must solve the Darcy-Stokes problem in a manner compatible with the transport problem. Moreover, unlike most porous media problems, partially molten materials transition dynamically from non-porous solid to porous medium so must carefully account for the limit of zero porosity. The Darcy-Stokes system for modeling partial melting in the mantle is a novel problem. As far as we know, there currently does not exist a finite element solution in the literature solving these coupled equations. In particular, the mixed finite element method presents a good candidate because it works in both limiting cases: Darcy and incompressible Stokes flow. We present a mixed formulation for the Darcy-Stokes system. Next, we present novel elements of lowest order and compatible with both Darcy and Stokes flow Finally, we present our 2D mixed FEM code result for solving Stokes and Darcy flow as well as the coupled Darcy-Stokes system the mid-ocean ridge or corner flow problem.

  4. Finite element models and feedback control of flexible aerospace structures

    NASA Technical Reports Server (NTRS)

    Balas, M. J.

    1980-01-01

    Large flexible aerospace structures, such as the solar power satellite, are distributed parameter systems with very complex continuum descriptions. This paper investigates the use of finite element methods to produce reduced-order models and finite dimensional feedback controllers for these structures. The main results give conditions under which stable control of the finite element model will produce stable control of the actual structure.

  5. Finite element analysis of notch behavior using a state variable constitutive equation

    NASA Technical Reports Server (NTRS)

    Dame, L. T.; Stouffer, D. C.; Abuelfoutouh, N.

    1985-01-01

    The state variable constitutive equation of Bodner and Partom was used to calculate the load-strain response of Inconel 718 at 649 C in the root of a notch. The constitutive equation was used with the Bodner-Partom evolution equation and with a second evolution equation that was derived from a potential function of the stress and state variable. Data used in determining constants for the constitutive models was from one-dimensional smooth bar tests. The response was calculated for a plane stress condition at the root of the notch with a finite element code using constant strain triangular elements. Results from both evolution equations compared favorably with the observed experimental response. The accuracy and efficiency of the finite element calculations also compared favorably to existing methods.

  6. Three-dimensional finite element analysis for high velocity impact. [of projectiles from space debris

    NASA Technical Reports Server (NTRS)

    Chan, S. T. K.; Lee, C. H.; Brashears, M. R.

    1975-01-01

    A finite element algorithm for solving unsteady, three-dimensional high velocity impact problems is presented. A computer program was developed based on the Eulerian hydroelasto-viscoplastic formulation and the utilization of the theorem of weak solutions. The equations solved consist of conservation of mass, momentum, and energy, equation of state, and appropriate constitutive equations. The solution technique is a time-dependent finite element analysis utilizing three-dimensional isoparametric elements, in conjunction with a generalized two-step time integration scheme. The developed code was demonstrated by solving one-dimensional as well as three-dimensional impact problems for both the inviscid hydrodynamic model and the hydroelasto-viscoplastic model.

  7. Patient-specific finite element modeling of bones.

    PubMed

    Poelert, Sander; Valstar, Edward; Weinans, Harrie; Zadpoor, Amir A

    2013-04-01

    Finite element modeling is an engineering tool for structural analysis that has been used for many years to assess the relationship between load transfer and bone morphology and to optimize the design and fixation of orthopedic implants. Due to recent developments in finite element model generation, for example, improved computed tomography imaging quality, improved segmentation algorithms, and faster computers, the accuracy of finite element modeling has increased vastly and finite element models simulating the anatomy and properties of an individual patient can be constructed. Such so-called patient-specific finite element models are potentially valuable tools for orthopedic surgeons in fracture risk assessment or pre- and intraoperative planning of implant placement. The aim of this article is to provide a critical overview of current themes in patient-specific finite element modeling of bones. In addition, the state-of-the-art in patient-specific modeling of bones is compared with the requirements for a clinically applicable patient-specific finite element method, and judgment is passed on the feasibility of application of patient-specific finite element modeling as a part of clinical orthopedic routine. It is concluded that further development in certain aspects of patient-specific finite element modeling are needed before finite element modeling can be used as a routine clinical tool.

  8. Higher order finite element modeling of acoustic propagation in a moving medium

    NASA Astrophysics Data System (ADS)

    Listerud, Eivind

    This research considers the finite element modeling of the convective potential formulation of acoustic propagation and radiation. Higher order elements have been used to increase the computational efficiency of duct and turbofan models. Cubic serendipity elements have been implemented in a non-uniform duct model of acoustic propagation in a moving medium. These elements outperform the quadratic serendipity elements in terms of reducing the dimensionality without losing accuracy based on visual observations and error norm analysis. Comparisons show that for computation of acoustic pressure the cubic element formulation converges at a higher rate than the quadratic. CPU time reduction of up to 40% has been observed without sacrifice in accuracy. Serendipity elements have also been compared in performance to Lagrangian elements. Any penalty in numerical accuracy incurred by using serendipity elements rather than Lagrangian elements is far outweighed by the gains in dimensionality. Analytical expressions for the effects of convection and that of acoustic propagating modes on the wavelength have been formulated and compared to numerical results. The cubic serendipity elements have also been applied to the near field of inlet and aft acoustic radiation models for a turbofan engine resulting in considerable reduction in the dimensionality of the problem without sacrificing accuracy. Preliminary assessment of alternative finite element approaches to model the convective potential formulation has been conducted. Stabilization and wave approximation methods have been implemented to solve simple one-dimensional problems.

  9. Efficient finite element modeling of elastodynamic scattering

    NASA Astrophysics Data System (ADS)

    Wilcox, Paul D.; Velichko, Alexander

    2009-03-01

    The scattering of elastic waves by defects is the physical basis of ultrasonic NDE. Although analytical models exist for some canonical problems, the general case of scattering from an arbitrarily-shaped defect requires numerical methods such as finite elements (FE). In this paper, a robust and efficient FE technique is presented that is based on the premise of meshing a relatively small domain sufficient to enclose the scatterer. Plane waves are then excited from a particular direction by a numerical implementation of the Helmholtz-Kirchhoff integral that uses an encircling array of uni-modal point sources. The scattered field displacements are recorded at the same points and the field decomposed into plane waves of different modes at different angles. By repeating this procedure for different incident angles it is possible to generate the scattering- or S-matrix for the scatterer. For a given size of scatterer, all the information in an S-matrix can be represented in the Fourier domain by a limited number of complex coefficients. Thus the complete scattering behavior of an arbitrary-shaped scatterer can be characterized by a finite number of complex coefficients, that can be obtained from a relatively small number of FE model executions.

  10. Immersed molecular electrokinetic finite element method

    NASA Astrophysics Data System (ADS)

    Kopacz, Adrian M.; Liu, Wing K.

    2013-07-01

    A unique simulation technique has been developed capable of modeling electric field induced detection of biomolecules such as viruses, at room temperatures where thermal fluctuations must be considered. The proposed immersed molecular electrokinetic finite element method couples electrokinetics with fluctuating hydrodynamics to study the motion and deformation of flexible objects immersed in a suspending medium under an applied electric field. The force induced on an arbitrary object due to an electric field is calculated based on the continuum electromechanics and the Maxwell stress tensor. The thermal fluctuations are included in the Navier-Stokes fluid equations via the stochastic stress tensor. Dielectrophoretic and fluctuating forces acting on the particle are coupled through the fluid-structure interaction force calculated within the surrounding environment. This method was used to perform concentration and retention efficacy analysis of nanoscale biosensors using gold particles of various sizes. The analysis was also applied to a human papillomavirus.

  11. Quality management of finite element analysis

    NASA Astrophysics Data System (ADS)

    Barlow, John

    1991-09-01

    A quality management system covering the use of finite element analysis is described. The main topics are as follows: acquisition, development and verification of software (including the software suppliers software quality control system), support, documentation, error control, internal software, software acceptance and release; development and qualification of analysis methods, including software evaluation, analysis procedure qualification and documentation, procedure quality checks, control of analysis procedure errors; product design and integrity analysis, including project quality assurance and analysis planning, task specification and allocation, analysis, execution, results checking and analysis records. Other issues include the commercial and business advantages of quality systems, project and technical management and the training and experience of personnel. The items are correlated with the requirements of International Standard Organization 9001.

  12. Finite element or Galerkin type semidiscrete schemes

    NASA Technical Reports Server (NTRS)

    Durgun, K.

    1983-01-01

    A finite element of Galerkin type semidiscrete method is proposed for numerical solution of a linear hyperbolic partial differential equation. The question of stability is reduced to the stability of a system of ordinary differential equations for which Dahlquist theory applied. Results of separating the part of numerical solution which causes the spurious oscillation near shock-like response of semidiscrete scheme to a step function initial condition are presented. In general all methods produce such oscillatory overshoots on either side of shocks. This overshoot pathology, which displays a behavior similar to Gibb's phenomena of Fourier series, is explained on the basis of dispersion of separated Fourier components which relies on linearized theory to be satisfactory. Expository results represented.

  13. Finite-element solutions for geothermal systems

    NASA Technical Reports Server (NTRS)

    Chen, J. C.; Conel, J. E.

    1977-01-01

    Vector potential and scalar potential are used to formulate the governing equations for a single-component and single-phase geothermal system. By assuming an initial temperature field, the fluid velocity can be determined which, in turn, is used to calculate the convective heat transfer. The energy equation is then solved by considering convected heat as a distributed source. Using the resulting temperature to compute new source terms, the final results are obtained by iterations of the procedure. Finite-element methods are proposed for modeling of realistic geothermal systems; the advantages of such methods are discussed. The developed methodology is then applied to a sample problem. Favorable agreement is obtained by comparisons with a previous study.

  14. Finite-element solutions for geothermal systems

    NASA Technical Reports Server (NTRS)

    Chen, J. C.; Conel, J. E.

    1977-01-01

    Vector potential and scalar potential are used to formulate the governing equations for a single-component and single-phase geothermal system. By assuming an initial temperature field, the fluid velocity can be determined which, in turn, is used to calculate the convective heat transfer. The energy equation is then solved by considering convected heat as a distributed source. Using the resulting temperature to compute new source terms, the final results are obtained by iterations of the procedure. Finite-element methods are proposed for modeling of realistic geothermal systems; the advantages of such methods are discussed. The developed methodology is then applied to a sample problem. Favorable agreement is obtained by comparisons with a previous study.

  15. A finite element model with nonviscous damping

    NASA Technical Reports Server (NTRS)

    Roussos, L. A.; Hyer, M. W.; Thornton, E. A.

    1981-01-01

    A constitutive law by which structural damping is modeled as a relationship between stress, strain, and strain rate in a material is used in conjunction with the finite element method to develop general integral expressions for viscous and nonviscous damping matrices. To solve the set of nonlinear equations resulting from the presence of nonviscous damping, a solution technique is developed by modifying the Newmark method to accommodate an iterative solution and treat the nonviscous damping as a pseudo-force. The technique is then checked for accuracy and convergence in single- and multi-degree-of-freedom problems, and is found to be accurate and efficient for initial-condition problems with small nonviscous damping.

  16. Adaptive finite element methods in electrochemistry.

    PubMed

    Gavaghan, David J; Gillow, Kathryn; Süli, Endre

    2006-12-05

    In this article, we review some of our previous work that considers the general problem of numerical simulation of the currents at microelectrodes using an adaptive finite element approach. Microelectrodes typically consist of an electrode embedded (or recessed) in an insulating material. For all such electrodes, numerical simulation is made difficult by the presence of a boundary singularity at the electrode edge (where the electrode meets the insulator), manifested by the large increase in the current density at this point, often referred to as the edge effect. Our approach to overcoming this problem has involved the derivation of an a posteriori bound on the error in the numerical approximation for the current that can be used to drive an adaptive mesh-generation algorithm, allowing calculation of the quantity of interest (the current) to within a prescribed tolerance. We illustrate the generic applicability of the approach by considering a broad range of steady-state applications of the technique.

  17. Finite-temperature coupled-cluster, many-body perturbation, and restricted and unrestricted Hartree–Fock study on one-dimensional solids: Luttinger liquids, Peierls transitions, and spin- and charge-density waves

    SciTech Connect

    Hermes, Matthew R.; Hirata, So

    2015-09-14

    One-dimensional (1D) solids exhibit a number of striking electronic structures including charge-density wave (CDW) and spin-density wave (SDW). Also, the Peierls theorem states that at zero temperature, a 1D system predicted by simple band theory to be a metal will spontaneously dimerize and open a finite fundamental bandgap, while at higher temperatures, it will assume the equidistant geometry with zero bandgap (a Peierls transition). We computationally study these unique electronic structures and transition in polyyne and all-trans polyacetylene using finite-temperature generalizations of ab initio spin-unrestricted Hartree–Fock (UHF) and spin-restricted coupled-cluster doubles (CCD) theories, extending upon previous work [He et al., J. Chem. Phys. 140, 024702 (2014)] that is based on spin-restricted Hartree–Fock (RHF) and second-order many-body perturbation (MP2) theories. Unlike RHF, UHF can predict SDW as well as CDW and metallic states, and unlike MP2, CCD does not diverge even if the underlying RHF reference wave function is metallic. UHF predicts a gapped SDW state with no dimerization at low temperatures, which gradually becomes metallic as the temperature is raised. CCD, meanwhile, confirms that electron correlation lowers the Peierls transition temperature. Furthermore, we show that the results from all theories for both polymers are subject to a unified interpretation in terms of the UHF solutions to the Hubbard–Peierls model using different values of the electron-electron interaction strength, U/t, in its Hamiltonian. The CCD wave function is shown to encompass the form of the exact solution of the Tomonaga–Luttinger model and is thus expected to describe accurately the electronic structure of Luttinger liquids.

  18. Finite-temperature coupled-cluster, many-body perturbation, and restricted and unrestricted Hartree-Fock study on one-dimensional solids: Luttinger liquids, Peierls transitions, and spin- and charge-density waves.

    PubMed

    Hermes, Matthew R; Hirata, So

    2015-09-14

    One-dimensional (1D) solids exhibit a number of striking electronic structures including charge-density wave (CDW) and spin-density wave (SDW). Also, the Peierls theorem states that at zero temperature, a 1D system predicted by simple band theory to be a metal will spontaneously dimerize and open a finite fundamental bandgap, while at higher temperatures, it will assume the equidistant geometry with zero bandgap (a Peierls transition). We computationally study these unique electronic structures and transition in polyyne and all-trans polyacetylene using finite-temperature generalizations of ab initio spin-unrestricted Hartree-Fock (UHF) and spin-restricted coupled-cluster doubles (CCD) theories, extending upon previous work [He et al., J. Chem. Phys. 140, 024702 (2014)] that is based on spin-restricted Hartree-Fock (RHF) and second-order many-body perturbation (MP2) theories. Unlike RHF, UHF can predict SDW as well as CDW and metallic states, and unlike MP2, CCD does not diverge even if the underlying RHF reference wave function is metallic. UHF predicts a gapped SDW state with no dimerization at low temperatures, which gradually becomes metallic as the temperature is raised. CCD, meanwhile, confirms that electron correlation lowers the Peierls transition temperature. Furthermore, we show that the results from all theories for both polymers are subject to a unified interpretation in terms of the UHF solutions to the Hubbard-Peierls model using different values of the electron-electron interaction strength, U/t, in its Hamiltonian. The CCD wave function is shown to encompass the form of the exact solution of the Tomonaga-Luttinger model and is thus expected to describe accurately the electronic structure of Luttinger liquids.

  19. Finite-temperature coupled-cluster, many-body perturbation, and restricted and unrestricted Hartree-Fock study on one-dimensional solids: Luttinger liquids, Peierls transitions, and spin- and charge-density waves

    NASA Astrophysics Data System (ADS)

    Hermes, Matthew R.; Hirata, So

    2015-09-01

    One-dimensional (1D) solids exhibit a number of striking electronic structures including charge-density wave (CDW) and spin-density wave (SDW). Also, the Peierls theorem states that at zero temperature, a 1D system predicted by simple band theory to be a metal will spontaneously dimerize and open a finite fundamental bandgap, while at higher temperatures, it will assume the equidistant geometry with zero bandgap (a Peierls transition). We computationally study these unique electronic structures and transition in polyyne and all-trans polyacetylene using finite-temperature generalizations of ab initio spin-unrestricted Hartree-Fock (UHF) and spin-restricted coupled-cluster doubles (CCD) theories, extending upon previous work [He et al., J. Chem. Phys. 140, 024702 (2014)] that is based on spin-restricted Hartree-Fock (RHF) and second-order many-body perturbation (MP2) theories. Unlike RHF, UHF can predict SDW as well as CDW and metallic states, and unlike MP2, CCD does not diverge even if the underlying RHF reference wave function is metallic. UHF predicts a gapped SDW state with no dimerization at low temperatures, which gradually becomes metallic as the temperature is raised. CCD, meanwhile, confirms that electron correlation lowers the Peierls transition temperature. Furthermore, we show that the results from all theories for both polymers are subject to a unified interpretation in terms of the UHF solutions to the Hubbard-Peierls model using different values of the electron-electron interaction strength, U/t, in its Hamiltonian. The CCD wave function is shown to encompass the form of the exact solution of the Tomonaga-Luttinger model and is thus expected to describe accurately the electronic structure of Luttinger liquids.

  20. High order accurate, one-sided finite-difference approximations to concentration gradients at the boundaries, for the simulation of electrochemical reaction-diffusion problems in one-dimensional space geometry.

    PubMed

    Bieniasz, L K

    2003-07-01

    Accurate calculation of concentration gradients at the boundaries is crucial in electrochemical kinetic simulations, owing to the frequent occurrence of gradient-dependent boundary conditions, and the importance of the gradient-dependent electric current. By using the information about higher spatial derivatives of the concentrations, contained in the time-dependent, kinetic reaction-diffusion partial differential equation(s) in one-dimensional space geometry, under appropriate assumptions it is possible to increase the accuracy orders of the conventional, one-sided n-point finite-difference formulae for the concentration gradients at the boundaries, without increasing n. In this way a new class of high order accurate gradient approximations is derived, and tested in simulations of potential-step chronoamperometric and current-step chronopotentiometric transients for the Reinert-Berg system. The new formulae possess advantages over the conventional gradient approximations. For example, they allow one to obtain a third order accuracy by using two space points only, or fourth order accuracy by using three points, and yet they yield smaller errors than the conventional four-point, or five-point formulae, respectively. Needing fewer points, for approximating the gradients with a given accuracy, simplifies also the solution of the linear algebraic equations arising from the application of implicit time integration schemes.

  1. Improved finite-element methods for rotorcraft structures

    NASA Technical Reports Server (NTRS)

    Hinnant, Howard E.

    1991-01-01

    An overview of the research directed at improving finite-element methods for rotorcraft airframes is presented. The development of a modification to the finite element method which eliminates interelement discontinuities is covered. The following subject areas are discussed: geometric entities, interelement continuity, dependent rotational degrees of freedom, and adaptive numerical integration. This new methodology is being implemented as an anisotropic, curvilinear, p-version, beam, shell, and brick finite element program.

  2. Impact of new computing systems on finite element computations

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Storassili, O. O.; Fulton, R. E.

    1983-01-01

    Recent advances in computer technology that are likely to impact finite element computations are reviewed. The characteristics of supersystems, highly parallel systems, and small systems (mini and microcomputers) are summarized. The interrelations of numerical algorithms and software with parallel architectures are discussed. A scenario is presented for future hardware/software environment and finite element systems. A number of research areas which have high potential for improving the effectiveness of finite element analysis in the new environment are identified.

  3. A comparative study of finite element and finite difference methods for Cauchy-Riemann type equations

    NASA Technical Reports Server (NTRS)

    Fix, G. J.; Rose, M. E.

    1983-01-01

    A least squares formulation of the system divu = rho, curlu = zeta is surveyed from the viewpoint of both finite element and finite difference methods. Closely related arguments are shown to establish convergence estimates.

  4. Survey and development of finite elements for nonlinear structural analysis. Volume 2: Nonlinear shell finite elements

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The development of two new shell finite elements for applications to large deflection problems is considered. The elements in question are doubly curved and of triangular and quadrilateral planform. They are restricted to small strains of elastic materials, and can accommodate large rotations. The elements described, which are based on relatively simple linear elements, make use of a new displacement function approach specifically designed for strongly nonlinear problems. The displacement function development for nonlinear applications is based on certain beam element formulations, and the strain-displacement equations are of a shallow shell type. Additional terms were included in these equations in an attempt to avoid the large errors characteristic of shallow shell elements in certain types of problems. An incremental nonlinear solution procedure specifically adopted to the element formulation was developed. The solution procedure is of combined incremental and total Lagrangian type, and uses a new updating scheme. A computer program was written to evaluate the developed formulations. This program can accommodate small element groups in arbitrary arrangements. Two simple programs were successfully solved. The results indicate that this new type of element has definite promise and should be a fruitful area for further research.

  5. Lamb Wave Transmission Through One-Dimensional Three-Component Fibonacci Composite Plates

    NASA Astrophysics Data System (ADS)

    Chen, Jiu-Jiu; Wang, Qiong; Han, Xu

    Using the finite element method, we have calculated the transmission spectra of Lamb wave modes which propagate in one-dimensional three-component Fibonacci quasiperiodic composite plates made of three different materials, and analyzed the influence of filling fraction, the ratio of the thickness of the plates to the lattice period and especially the number of generations on the band gaps of Lamb wave modes. The band gap splitting depends on the number of generations which is different from those of one-dimensional two-component Fibonacci composite plates. Engineering band gaps can be obtained by turning different parameters and the number of generations.

  6. Leapfrog/Finite Element Method for Fractional Diffusion Equation

    PubMed Central

    Zhao, Zhengang; Zheng, Yunying

    2014-01-01

    We analyze a fully discrete leapfrog/Galerkin finite element method for the numerical solution of the space fractional order (fractional for simplicity) diffusion equation. The generalized fractional derivative spaces are defined in a bounded interval. And some related properties are further discussed for the following finite element analysis. Then the fractional diffusion equation is discretized in space by the finite element method and in time by the explicit leapfrog scheme. For the resulting fully discrete, conditionally stable scheme, we prove an L 2-error bound of finite element accuracy and of second order in time. Numerical examples are included to confirm our theoretical analysis. PMID:24955431

  7. Parallel iterative procedures for approximate solutions of wave propagation by finite element and finite difference methods

    SciTech Connect

    Kim, S.

    1994-12-31

    Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.

  8. An Integrated Magnetic Circuit Model and Finite Element Model Approach to Magnetic Bearing Design

    NASA Technical Reports Server (NTRS)

    Provenza, Andrew J.; Kenny, Andrew; Palazzolo, Alan B.

    2003-01-01

    A code for designing magnetic bearings is described. The code generates curves from magnetic circuit equations relating important bearing performance parameters. Bearing parameters selected from the curves by a designer to meet the requirements of a particular application are input directly by the code into a three-dimensional finite element analysis preprocessor. This means that a three-dimensional computer model of the bearing being developed is immediately available for viewing. The finite element model solution can be used to show areas of magnetic saturation and make more accurate predictions of the bearing load capacity, current stiffness, position stiffness, and inductance than the magnetic circuit equations did at the start of the design process. In summary, the code combines one-dimensional and three-dimensional modeling methods for designing magnetic bearings.

  9. An efficient finite element solution for gear dynamics

    NASA Astrophysics Data System (ADS)

    Cooley, C. G.; Parker, R. G.; Vijayakar, S. M.

    2010-06-01

    A finite element formulation for the dynamic response of gear pairs is proposed. Following an established approach in lumped parameter gear dynamic models, the static solution is used as the excitation in a frequency domain solution of the finite element vibration model. The nonlinear finite element/contact mechanics formulation provides accurate calculation of the static solution and average mesh stiffness that are used in the dynamic simulation. The frequency domain finite element calculation of dynamic response compares well with numerically integrated (time domain) finite element dynamic results and previously published experimental results. Simulation time with the proposed formulation is two orders of magnitude lower than numerically integrated dynamic results. This formulation admits system level dynamic gearbox response, which may include multiple gear meshes, flexible shafts, rolling element bearings, housing structures, and other deformable components.

  10. Finite Element Analysis (FEA) in Design and Production.

    ERIC Educational Resources Information Center

    Waggoner, Todd C.; And Others

    1995-01-01

    Finite element analysis (FEA) enables industrial designers to analyze complex components by dividing them into smaller elements, then assessing stress and strain characteristics. Traditionally mainframe based, FEA is being increasingly used in microcomputers. (SK)

  11. Finite Element Analysis (FEA) in Design and Production.

    ERIC Educational Resources Information Center

    Waggoner, Todd C.; And Others

    1995-01-01

    Finite element analysis (FEA) enables industrial designers to analyze complex components by dividing them into smaller elements, then assessing stress and strain characteristics. Traditionally mainframe based, FEA is being increasingly used in microcomputers. (SK)

  12. A composite nodal finite element for hexagons

    SciTech Connect

    Hennart, J.P.; Mund, E.H. |; Valle, E. Del

    1997-10-01

    A nodal algorithm for the solution of the multigroup diffusion equations in hexagonal arrays is analyzed. Basically, the method consists of dividing each hexagon into four quarters and mapping the hexagon quarters onto squares. The resulting boundary value problem on a quadrangular domain is solved in primal weak formulation. Nodal finite element methods like the Raviart-Thomas RTk schemes provide accurate analytical expansions of the solution in the hexagons. Transverse integration cannot be performed on the equations in the quadrangular domain as simply as it is usually done on squares because these equations have essentially variable coefficients. However, by considering an auxiliary problem with constant coefficients (on the same quadrangular domain) and by using a preconditioning approach, transverse integration can be performed as for rectangular geometry. A description of the algorithm is given for a one-group diffusion equation. Numerical results are presented for a simple model problem with a known analytical solution and for k{sub eff} evaluations of some benchmark problems proposed in the literature. For the analytical problem, the results indicate that the theoretical convergence orders of RTk schemes (k = 0,1) are obtained, yielding accurate solutions at the expense of a few preconditioning iterations.

  13. Finite element modelling of fabric shear

    NASA Astrophysics Data System (ADS)

    Lin, Hua; Clifford, Mike J.; Long, Andrew C.; Sherburn, Martin

    2009-01-01

    In this study, a finite element model to predict shear force versus shear angle for woven fabrics is developed. The model is based on the TexGen geometric modelling schema, developed at the University of Nottingham and orthotropic constitutive models for yarn behaviour, coupled with a unified displacement-difference periodic boundary condition. A major distinction from prior modelling of fabric shear is that the details of picture frame kinematics are included in the model, which allows the mechanisms of fabric shear to be represented more accurately. Meso- and micro-mechanisms of deformation are modelled to determine their contributions to energy dissipation during shear. The model is evaluated using results obtained for a glass fibre plain woven fabric, and the importance of boundary conditions in the analysis of deformation mechanisms is highlighted. The simulation results show that the simple rotation boundary condition is adequate for predicting shear force at large deformations, with most of the energy being dissipated at higher shear angles due to yarn compaction. For small deformations, a detailed kinematic analysis is needed, enabling the yarn shear and rotation deformation mechanisms to be modelled accurately.

  14. Finite element analysis of arc welding

    SciTech Connect

    Friedman, E.

    1980-01-01

    Analytical models of the gas tungsten-arc welding process into finite element computer programs provides a valuable tool for determining the welding thermal cycle, weld bead shape, and penetration characteristics, as well as for evaluating the stresses and distortions generated as a result of the temperature transients. The analysis procedures are applicable to planar or axisymmetric welds with arbitrary cross-sectional geometries, under quasistationary conditions. The method used for determining temperatures features an iteration procedure to accurately account for the latent heat absorbed during melting and liberated during solidification of the weld. By simulating the heat input from the arc to the workpiece by a normal distribution function, temperature transients, weld bead dimensions, and cooling rates are evaluated as functions of both the magnitude and distribution of heat input, weldment geometry, and weld speed (or duration of heating for stationary arcs). Modeling of the welding thermal cycle is a prerequisite to analytical treatments of metallurgical changes in weld metal and heat-affected zone material, residual stresses and distortions, and weld defects. A quasistationary formulation for moving welds enables temperatures to be calculated using a two-dimensional heat conduction computer program. The present limitation of high welding speed can, however, be relaxed without altering the two-dimensional framework of the procedure.

  15. An iterative algorithm for finite element analysis

    NASA Astrophysics Data System (ADS)

    Laouafa, F.; Royis, P.

    2004-03-01

    In this paper, we state in a new form the algebraic problem arising from the one-field displacement finite element method (FEM). The displacement approach, in this discrete form, can be considered as the dual approach (force or equilibrium) with subsidiary constraints. This approach dissociates the nonlinear operator to the linear ones and their sizes are linear functions of integration rule which is of interest in the case of reduced integration. This new form of the problem leads to an inexpensive improvement of FEM computations, which acts at local, elementary and global levels. We demonstrate the numerical performances of this approach which is independent of the mesh structure. Using the GMRES algorithm we build, for nonsymmetric problems, a new algorithm based upon the discretized field of strain. The new algorithms proposed are more closer to the mechanical problem than the classical ones because all fields appear during the resolution process. The sizes of the different operators arising in these new forms are linear functions of integration rule, which is of great interest in the case of reduced integration.

  16. TACO: a finite element heat transfer code

    SciTech Connect

    Mason, W.E. Jr.

    1980-02-01

    TACO is a two-dimensional implicit finite element code for heat transfer analysis. It can perform both linear and nonlinear analyses and can be used to solve either transient or steady state problems. Either plane or axisymmetric geometries can be analyzed. TACO has the capability to handle time or temperature dependent material properties and materials may be either isotropic or orthotropic. A variety of time and temperature dependent loadings and boundary conditions are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additionally, TACO has some specialized features such as internal surface conditions (e.g., contact resistance), bulk nodes, enclosure radiation with view factor calculations, and chemical reactive kinetics. A user subprogram feature allows for any type of functional representation of any independent variable. A bandwidth and profile minimization option is also available in the code. Graphical representation of data generated by TACO is provided by a companion post-processor named POSTACO. The theory on which TACO is based is outlined, the capabilities of the code are explained, the input data required to perform an analysis with TACO are described. Some simple examples are provided to illustrate the use of the code.

  17. VALIDATION OF ANSYS FINITE ELEMENT ANALYSIS SOFTWARE

    SciTech Connect

    HAMM, E.R.

    2003-06-27

    This document provides a record of the verification and Validation of the ANSYS Version 7.0 software that is installed on selected CH2M HILL computers. The issues addressed include: Software verification, installation, validation, configuration management and error reporting. The ANSYS{reg_sign} computer program is a large scale multi-purpose finite element program which may be used for solving several classes of engineering analysis. The analysis capabilities of ANSYS Full Mechanical Version 7.0 installed on selected CH2M Hill Hanford Group (CH2M HILL) Intel processor based computers include the ability to solve static and dynamic structural analyses, steady-state and transient heat transfer problems, mode-frequency and buckling eigenvalue problems, static or time-varying magnetic analyses and various types of field and coupled-field applications. The program contains many special features which allow nonlinearities or secondary effects to be included in the solution, such as plasticity, large strain, hyperelasticity, creep, swelling, large deflections, contact, stress stiffening, temperature dependency, material anisotropy, and thermal radiation. The ANSYS program has been in commercial use since 1970, and has been used extensively in the aerospace, automotive, construction, electronic, energy services, manufacturing, nuclear, plastics, oil and steel industries.

  18. Intra Plate Stresses Using Finite Element Modelling

    NASA Astrophysics Data System (ADS)

    Jayalakshmi, S.; Raghukanth, S. T. G.

    2016-10-01

    One of the most challenging problems in the estimation of seismic hazard is the ability to quantify seismic activity. Empirical models based on the available earthquake catalogue are often used to obtain activity of source regions. The major limitation with this approach is the lack of sufficient data near a specified source. The non-availability of data poses difficulties in obtaining distribution of earthquakes with large return periods. Such events recur over geological time scales during which tectonic processes, including mantle convection, formation of faults and new plate boundaries, are likely to take place. The availability of geometries of plate boundaries, plate driving forces, lithospheric stress field and GPS measurements has provided numerous insights on the mechanics of tectonic plates. In this article, a 2D finite element model of Indo-Australian plate is developed with the focus of representing seismic activity in India. The effect of large scale geological features including sedimentary basins, fold belts and cratons on the stress field in India is explored in this study. In order to address long term behaviour, the orientation of stress field and tectonic faults of the present Indo- Australian plate are compared with a reconstructed stress field from the early Miocene (20 Ma).

  19. Thermal-structural finite element analysis using linear flux formulation

    NASA Technical Reports Server (NTRS)

    Pandey, Ajay K.; Dechaumphai, Pramote; Wieting, Allan R.

    1990-01-01

    A linear flux approach is developed for a finite element thermal-structural analysis of steady state thermal and structural problems. The element fluxes are assumed to vary linearly in the same form as the element unknown variables, and the finite element matrices are evaluated in closed form. Since numerical integration is avoided, significant computational time saving is achieved. Solution accuracy and computational speed improvements are demonstrated by solving several two and three dimensional thermal-structural examples.

  20. Solution-adaptive finite element method in computational fracture mechanics

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Bass, J. M.; Spradley, L. W.

    1993-01-01

    Some recent results obtained using solution-adaptive finite element method in linear elastic two-dimensional fracture mechanics problems are presented. The focus is on the basic issue of adaptive finite element method for validating the applications of new methodology to fracture mechanics problems by computing demonstration problems and comparing the stress intensity factors to analytical results.

  1. Modular Finite Element Methods Library Version: 1.0

    SciTech Connect

    2010-06-22

    MFEM is a general, modular library for finite element methods. It provides a variety of finite element spaces and bilinear/linear forms in 2D and 3D. MFEM also includes classes for dealing with various types of meshes and their refinement.

  2. Generating Finite-Element Models Of Composite Materials

    NASA Technical Reports Server (NTRS)

    Melis, M. E.

    1993-01-01

    Program starts at micromechanical level, from simple inputs supplied by user. COMGEN, COmposite Model GENerator, is interactive FORTRAN program used to create wide variety of finite-element models of continuous-fiber composite materials at micromechanical level. Quickly generates batch or "session files" to be submitted to finite-element preprocessor and postprocessor program, PATRAN. COMGEN requires PATRAN to complete model.

  3. A computer graphics program for general finite element analyses

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Sawyer, L. M.

    1978-01-01

    Documentation for a computer graphics program for displays from general finite element analyses is presented. A general description of display options and detailed user instructions are given. Several plots made in structural, thermal and fluid finite element analyses are included to illustrate program options. Sample data files are given to illustrate use of the program.

  4. Large Scale Finite Element Modeling Using Scalable Parallel Processing

    NASA Technical Reports Server (NTRS)

    Cwik, T.; Katz, D.; Zuffada, C.; Jamnejad, V.

    1995-01-01

    An iterative solver for use with finite element codes was developed for the Cray T3D massively parallel processor at the Jet Propulsion Laboratory. Finite element modeling is useful for simulating scattered or radiated electromagnetic fields from complex three-dimensional objects with geometry variations smaller than an electrical wavelength.

  5. Finite element meshing of ANSYS (trademark) solid models

    NASA Technical Reports Server (NTRS)

    Kelley, F. S.

    1987-01-01

    A large scale, general purpose finite element computer program, ANSYS, developed and marketed by Swanson Analysis Systems, Inc. is discussed. ANSYS was perhaps the first commercially available program to offer truly interactive finite element model generation. ANSYS's purpose is for solid modeling. This application is briefly discussed and illustrated.

  6. TAURUS96. 3-D Finite Element Code Postprocessor

    SciTech Connect

    Brown, B.; Hallquist, J.O.; Spelce, T.E.

    1993-11-30

    TAURUS is an interactive post-processing application supporting visualization of finite element analysis results on unstructured grids. TAURUS provides the ability to display deformed geometries and contours or fringes of a large number of derived results on meshes consisting of beam, plate, shell, and solid type finite elements. Time history plotting is also available.

  7. Finite-element analysis of a weld-penetration problem

    NASA Technical Reports Server (NTRS)

    Rogge, T. R.

    1977-01-01

    The stress concentration factor for a weld penetration defect is calculated by the finite-element method. A stress intensity factor is computed by use of the finite-element solution and the J-integral. The results are compared with experimental results.

  8. Practical Application of Finite Element Analysis to Aircraft Structural Design

    DTIC Science & Technology

    1986-08-01

    t] Cook, Robert D., "Concepts and Applications of Finite element Analysis," John Wiley & Sons, Inc., New York, 1981. [5] Rao, S. S., "The Finite...generation large-scale computer programs is discussed. V.P. Analysis of aircraft structure using applied fracture mechanics (AA) WILHEM , D. P. Northrop...Analytical, finite element for surface flaws, holes (AA) WILHEM , D. P. Northrop Corp., Hawthorne, Calif. (N5631231) Aircraft Group. In AGARD Fracture

  9. Analysis of finite deformations of elastic solids by the finite element method.

    NASA Technical Reports Server (NTRS)

    Oden, J. T.; Key, J. E.

    1971-01-01

    Finite element applications, particularly to analyses of finite deformations in elastic solids, are reviewed, along with the difficulties encountered in the formulation of certain problems and in their numerical solution. Various approaches are discussed for overcoming these and other difficulties. A computer program designed for finite elasticity problems is described, and several numerical examples are presented.

  10. Nondestructive Evaluation Correlated with Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Abdul-Azid, Ali; Baaklini, George Y.

    1999-01-01

    Advanced materials are being developed for use in high-temperature gas turbine applications. For these new materials to be fully utilized, their deformation properties, their nondestructive evaluation (NDE) quality and material durability, and their creep and fatigue fracture characteristics need to be determined by suitable experiments. The experimental findings must be analyzed, characterized, modeled and translated into constitutive equations for stress analysis and life prediction. Only when these ingredients - together with the appropriate computational tools - are available, can durability analysis be performed in the design stage, long before the component is built. One of the many structural components being evaluated by the NDE group at the NASA Lewis Research Center is the flywheel system. It is being considered as an energy storage device for advanced space vehicles. Such devices offer advantages over electrochemical batteries in situations demanding high power delivery and high energy storage per unit weight. In addition, flywheels have potentially higher efficiency and longer lifetimes with proper motor-generator and rotor design. Flywheels made of fiber-reinforced polymer composite material show great promise for energy applications because of the high energy and power densities that they can achieve along with a burst failure mode that is relatively benign in comparison to those of flywheels made of metallic materials Therefore, to help improve durability and reduce structural uncertainties, we are developing a comprehensive analytical approach to predict the reliability and life of these components under these harsh loading conditions. The combination of NDE and two- and three-dimensional finite element analyses (e.g., stress analyses and fracture mechanics) is expected to set a standardized procedure to accurately assess the applicability of using various composite materials to design a suitable rotor/flywheel assembly.

  11. Finite element simulation of thick sheet thermoforming

    NASA Astrophysics Data System (ADS)

    Mercier, Daniel

    This PhD was organized as collaboration between Lehigh University and the Ecole des Mines d'Albi on the subject: "Numerical simulation of thick sheet thermoforming". The research applications cover a wide range of products from thermoforming, e.g., packaging, automobile parts, appliance parts, large-scale panels and covers. Due to the special nature of this PhD, and the requirements of each hosting institutes, the research was split accordingly into two parts: At Lehigh University, under the supervision of Prof. Herman F. Nied, a full three-dimensional finite element program was developed in order to simulate the mechanical deformation during the process of thermoforming. The material behavior is considered hyperelastic with the property of incompressibility. The deformed structure may exhibit symmetries and may use a large choice of boundary conditions. A contact procedure for molds and/or displacements caused by a plug was implemented to complete the similarity with the thermoforming process. The research focused on simulating the observed nonlinear behaviors and their instabilities. The author emphasized the impact of large deformation on the numerical results and demonstrated the need for a remeshing capability. At the Ecole des Mines d'Albi, under the supervision of Prof. Fabrice Schmidt, an equi-biaxial rheometer was developed and built in order to determine the material properties during the process of thermoforming. Thermoplastic materials consist of long macromolecular chains that when stretched, during the process of sheet extrusion, exhibit a transversal isotropic behavior. The rheometer technique is the inflation of a circular membrane made of extruded thermoplastics. The resulting strain is identified by video analysis during the membrane inflation. This dissertation focused on technical issues related to heating with the goal of overcoming the difficulty of producing a homogeneous temperature distribution.

  12. Finite Element analyses of soil bioengineered slopes

    NASA Astrophysics Data System (ADS)

    Tamagnini, Roberto; Switala, Barbara Maria; Sudan Acharya, Madhu; Wu, Wei; Graf, Frank; Auer, Michael; te Kamp, Lothar

    2014-05-01

    Soil Bioengineering methods are not only effective from an economical point of view, but they are also interesting as fully ecological solutions. The presented project is aimed to define a numerical model which includes the impact of vegetation on slope stability, considering both mechanical and hydrological effects. In this project, a constitutive model has been developed that accounts for the multi-phase nature of the soil, namely the partly saturated condition and it also includes the effects of a biological component. The constitutive equation is implemented in the Finite Element (FE) software Comes-Geo with an implicit integration scheme that accounts for the collapse of the soils structure due to wetting. The mathematical formulation of the constitutive equations is introduced by means of thermodynamics and it simulates the growth of the biological system during the time. The numerical code is then applied in the analysis of an ideal rainfall induced landslide. The slope is analyzed for vegetated and non-vegetated conditions. The final results allow to quantitatively assessing the impact of vegetation on slope stability. This allows drawing conclusions and choosing whenever it is worthful to use soil bioengineering methods in slope stabilization instead of traditional approaches. The application of the FE methods show some advantages with respect to the commonly used limit equilibrium analyses, because it can account for the real coupled strain-diffusion nature of the problem. The mechanical strength of roots is in fact influenced by the stress evolution into the slope. Moreover, FE method does not need a pre-definition of any failure surface. FE method can also be used in monitoring the progressive failure of the soil bio-engineered system as it calculates the amount of displacements and strains of the model slope. The preliminary study results show that the formulated equations can be useful for analysis and evaluation of different soil bio

  13. Finite element analysis of posterior cervical fixation.

    PubMed

    Duan, Y; Wang, H H; Jin, A M; Zhang, L; Min, S X; Liu, C L; Qiu, S J; Shu, X Q

    2015-02-01

    Despite largely, used in the past, biomechanical test, to investigate the fixation techniques of subaxial cervical spine, information is lacking about the internal structural response to external loading. It is not yet clear which technique represents the best choice and whether stabilization devices can be efficient and beneficial for three-column injuries (TCI). The different posterior cervical fixation techniques (pedicle screw PS, lateral mass screw LS, and transarticular screw TS) have respective indications. A detailed, geometrically accurate, nonlinear C3-C7 finite element model (FEM) had been successfully developed and validated. Then three FEMs were reconstructed from different fixation techniques after C4-C6 TCI. A compressive preload of 74N combined with a pure moment of 1.8 Nm in flexion, extension, left-right lateral bending, and left-right axial rotation was applied to the FEMs. The ROM results showed that there were obvious significant differences when comparing the different fixation techniques. PS and TS techniques can provide better immediate stabilization, compared to LS technique. The stress results showed that the variability of von Mises stress in the TS fixation device was minimum and LS fixation device was maximum. Furthermore, the screws inserted by TS technique had high stress concentration at the middle part of the screws. Screw inserted by PS and LS techniques had higher stress concentration at the actual cap-rod-screw interface. The research considers that spinal surgeon should first consider using the TS technique to treat cervical TCI. If PS technique is used, we should eventually prolong the need for external bracing in order to reduce the higher risk of fracture on fixation devices. If LS technique is used, we should add anterior cervical operation for acquire a better immediate stabilization. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. Photonic band structure of one-dimensional aperiodic superlattices composed of negative refraction metamaterials

    NASA Astrophysics Data System (ADS)

    Tyc, Michał H.; Salejda, Włodzimierz; Klauzer-Kruszyna, Agnieszka; Tarnowski, Karol

    2007-05-01

    The dispersion relation for polarized light transmitting through a one-dimensional superlattice composed of aperiodically arranged layers made of ordinary dielectric and negative refraction metamaterials is calculated with finite element method. Generalized Fibonacci, generalized Thue-Morse, double-periodic and Rudin-Shapiro superlattices are investigated, using their periodic approximants. Strong dispersion of metamaterials is taken into account. Group velocities and effective refraction indices in the structures are calculated. The self-similar structure of the transmission spectra is observed.

  15. Superconducting axisymmetric finite elements based on a gauged potential variational principle. Part 1: Formulation

    NASA Technical Reports Server (NTRS)

    Schuler, James J.; Felippa, Carlos A.

    1994-01-01

    The present work is part of a research program for the numerical simulation of electromagnetic (EM) fields within conventional Ginzburg-Landau (GL) superconductors. The final goal of this research is to formulate, develop and validate finite element (FE) models that can accurately capture electromagnetic thermal and material phase changes in a superconductor. The formulations presented here are for a time-independent Ginzburg-Landau superconductor and are derived from a potential-based variational principle. We develop an appropriate variational formulation of time-independent supercontivity for the general three-dimensional case and specialize it to the one-dimensional case. Also developed are expressions for the material-dependent parameters alpha and beta of GL theory and their dependence upon the temperature T. The one-dimensional formulation is then discretized for finite element purposes and the first variation of these equations is obtained. The resultant Euler equations contain nonlinear terms in the primary variables. To solve these equations, an incremental-iterative solution method is used. Expressions for the internal force vector, external force vector, loading vector and tangent stiffness matrix are therefore developed for use with the solution procedure.

  16. Three-dimensional finite element modelling of muscle forces during mastication.

    PubMed

    Röhrle, Oliver; Pullan, Andrew J

    2007-01-01

    This paper presents a three-dimensional finite element model of human mastication. Specifically, an anatomically realistic model of the masseter muscles and associated bones is used to investigate the dynamics of chewing. A motion capture system is used to track the jaw motion of a subject chewing standard foods. The three-dimensional nonlinear deformation of the masseter muscles are calculated via the finite element method, using the jaw motion data as boundary conditions. Motion-driven muscle activation patterns and a transversely isotropic material law, defined in a muscle-fibre coordinate system, are used in the calculations. Time-force relationships are presented and analysed with respect to different tasks during mastication, e.g. opening, closing, and biting, and are also compared to a more traditional one-dimensional model. The results strongly suggest that, due to the complex arrangement of muscle force directions, modelling skeletal muscles as conventional one-dimensional lines of action might introduce a significant source of error.

  17. One-dimensional Quantum Fluids

    NASA Astrophysics Data System (ADS)

    Gervais, Guillaume

    2015-03-01

    Fifty year ago, Joachim Mazdak Luttinger generalized the Tomonaga theory of interactions in a one-dimensional metal and show that the prior restrictions imposed by Tomonaga were not necessary. This model is now known as the Tomonaga- Luttinger liquid model (TLL) and most remarkably it does have mathematically exact solutions. In the case of electrons, it predicts that the spin and charge sector should separate, with each of them propagating with their own velocities. While there has been many attempts (some with great success) to observe TLL behaviour in clean quantum wires designed on an ultra-clean semiconductor platform, overall the Luttinger physics is experimentally still in its infancy. For instance, little is known regarding the 1D physics in a strongly-interacting neutral system, whether from the point-of-view of TLL theory or even localization physics. Helium-4, the paradigm superfluid, and Helium-3, the paradigm Fermi liquid, should in principleboth become Luttinger liquids if taken to the one-dimensional limit. In the bosonic case, this is supported by large-scale Quantum Monte Carlo simulations which found that a lengthscale of ~ 2 nm is sufficient for the system to crossover to the 1D regime and display universal Luttinger scaling. At McGill University, an experiment has been constructed to measure the liquid helium mass flow through a single nanopore. The technique consists of drilling a single nanopore in a SiN membrane using a TEM, and then applying a pressure gradient across the membrane. Previously published data in 45nm diameter hole determined the superfluid critical velocity to be close to the limit set by the Feynman vortex rings model. More recent work performed on nanopores with radii as small as 3 nm (and a length of 30nm) show the critical exponent for superfluid velocity to significantly deviate from its bulk value, 2/3. This is an important hint for the crossing over to the one-dimensional state in a strongly-correlated bosonic liquid.

  18. STARS: A general-purpose finite element computer program for analysis of engineering structures

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.

    1984-01-01

    STARS (Structural Analysis Routines) is primarily an interactive, graphics-oriented, finite-element computer program for analyzing the static, stability, free vibration, and dynamic responses of damped and undamped structures, including rotating systems. The element library consists of one-dimensional (1-D) line elements, two-dimensional (2-D) triangular and quadrilateral shell elements, and three-dimensional (3-D) tetrahedral and hexahedral solid elements. These elements enable the solution of structural problems that include truss, beam, space frame, plane, plate, shell, and solid structures, or any combination thereof. Zero, finite, and interdependent deflection boundary conditions can be implemented by the program. The associated dynamic response analysis capability provides for initial deformation and velocity inputs, whereas the transient excitation may be either forces or accelerations. An effective in-core or out-of-core solution strategy is automatically employed by the program, depending on the size of the problem. Data input may be at random within a data set, and the program offers certain automatic data-generation features. Input data are formatted as an optimal combination of free and fixed formats. Interactive graphics capabilities enable convenient display of nodal deformations, mode shapes, and element stresses.

  19. Procedure for Determining One-Dimensional Flow Distributions in Arbitrarily Connected Passages Without the Influence of Pumping

    NASA Technical Reports Server (NTRS)

    Meitner, Peter L.

    2004-01-01

    A calculation procedure is presented which allows the one-dimensional determination of flow distributions in arbitrarily connected (branching) flow passages having multiple inlets and exits. The procedure uses an adaptation of the finite element technique, iteratively coupled with an accurate one-dimensional flow solver. The procedure eliminates the usual restrictions inherent with finite element flow calculations. Unlike existing one-dimensional methods, which require simplifications to the flow equations (uncoupling the momentum and energy equations), to allow for arbitrary branching and multiple inlets and exits, the only limitation of the described methodology is that, at present, it can only accommodate non-rotating configurations (no pumping effects). The calculation procedure is robust, and will always converge for physically possible flow. The procedure is described, and its use is illustrated by an example.

  20. An atomic finite element model for biodegradable polymers. Part 1. Formulation of the finite elements.

    PubMed

    Gleadall, Andrew; Pan, Jingzhe; Ding, Lifeng; Kruft, Marc-Anton; Curcó, David

    2015-11-01

    Molecular dynamics (MD) simulations are widely used to analyse materials at the atomic scale. However, MD has high computational demands, which may inhibit its use for simulations of structures involving large numbers of atoms such as amorphous polymer structures. An atomic-scale finite element method (AFEM) is presented in this study with significantly lower computational demands than MD. Due to the reduced computational demands, AFEM is suitable for the analysis of Young's modulus of amorphous polymer structures. This is of particular interest when studying the degradation of bioresorbable polymers, which is the topic of an accompanying paper. AFEM is derived from the inter-atomic potential energy functions of an MD force field. The nonlinear MD functions were adapted to enable static linear analysis. Finite element formulations were derived to represent interatomic potential energy functions between two, three and four atoms. Validation of the AFEM was conducted through its application to atomic structures for crystalline and amorphous poly(lactide). Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Discontinuous Galerkin finite element solution for poromechanics

    NASA Astrophysics Data System (ADS)

    Liu, Ruijie

    This dissertation focuses on applying discontinuous Galerkin (DG) methods to poromechanics problems. A few challenges have been presented in traditional and popular continuous Galerkin (CG) finite element methods for solving complex coupled thermal, flow and solid mechanics. For example, nonphysical pore pressure oscillations often occur in CG solutions for poroelasticity problems with low permeability. A robust and practical numerical scheme for removing or alleviating the oscillation is not available. In modeling thermoporoelastoplasticity, CG methods require the use of very small time steps to obtain a convergent solution. The temperature profile predicted by CG methods in the fine mesh zones is often seriously polluted by large errors produced in coarse mesh zones in the case where the convection dominates the thermal process. The nonphysical oscillations in pore pressure and temperature solutions induced by CG methods at very early time stages seriously corrupt the solutions at longer time. We propose DG methods to handle these challenges because they are physics driven, provide local conservation of mass and momentum, have high stability and robustness, are locking-free, and because of their meshing and implementation capabilities. We first apply a family of DG methods, including Oden-Babuska-Baumann (OBB), Nonsymmetric Interior Penalty Galerkin (NIPG), Symmetric Interior Penalty Galerkin (SIPG) and Incomplete Interior Penalty Galerkin (IIPG), to 3D linear elasticity problems. This family of DG methods is tested and evaluated by using a cantilever beam problem with nearly incompressible materials. It is shown that DG methods are simple, robust and locking-free in dealing with nearly incompressible materials. Based on the success of DG methods in elasticity, we extend the DG theory into plasticity problems. A DG formulation has been implemented for solving 3D poroelasticity problems with low permeability. Numerical examples solved by DG methods demonstrate

  2. A one-dimensional tunable magnetic metamaterial.

    PubMed

    Butz, S; Jung, P; Filippenko, L V; Koshelets, V P; Ustinov, A V

    2013-09-23

    We present experimental data on a one-dimensional super-conducting metamaterial that is tunable over a broad frequency band. The basic building block of this magnetic thin-film medium is a single-junction (rf-) superconducting quantum interference device (SQUID). Due to the nonlinear inductance of such an element, its resonance frequency is tunable in situ by applying a dc magnetic field. We demonstrate that this results in tunable effective parameters of our metamaterial consisting of 54 rf-SQUIDs. In order to obtain the effective magnetic permeability μr,eff from the measured data, we employ a technique that uses only the complex transmission coefficient S₂₁.

  3. Mixed finite element - discontinuous finite volume element discretization of a general class of multicontinuum models

    NASA Astrophysics Data System (ADS)

    Ruiz-Baier, Ricardo; Lunati, Ivan

    2016-10-01

    We present a novel discretization scheme tailored to a class of multiphase models that regard the physical system as consisting of multiple interacting continua. In the framework of mixture theory, we consider a general mathematical model that entails solving a system of mass and momentum equations for both the mixture and one of the phases. The model results in a strongly coupled and nonlinear system of partial differential equations that are written in terms of phase and mixture (barycentric) velocities, phase pressure, and saturation. We construct an accurate, robust and reliable hybrid method that combines a mixed finite element discretization of the momentum equations with a primal discontinuous finite volume-element discretization of the mass (or transport) equations. The scheme is devised for unstructured meshes and relies on mixed Brezzi-Douglas-Marini approximations of phase and total velocities, on piecewise constant elements for the approximation of phase or total pressures, as well as on a primal formulation that employs discontinuous finite volume elements defined on a dual diamond mesh to approximate scalar fields of interest (such as volume fraction, total density, saturation, etc.). As the discretization scheme is derived for a general formulation of multicontinuum physical systems, it can be readily applied to a large class of simplified multiphase models; on the other, the approach can be seen as a generalization of these models that are commonly encountered in the literature and employed when the latter are not sufficiently accurate. An extensive set of numerical test cases involving two- and three-dimensional porous media are presented to demonstrate the accuracy of the method (displaying an optimal convergence rate), the physics-preserving properties of the mixed-primal scheme, as well as the robustness of the method (which is successfully used to simulate diverse physical phenomena such as density fingering, Terzaghi's consolidation

  4. Application of the Finite Element Method to Rotary Wing Aeroelasticity

    NASA Technical Reports Server (NTRS)

    Straub, F. K.; Friedmann, P. P.

    1982-01-01

    A finite element method for the spatial discretization of the dynamic equations of equilibrium governing rotary-wing aeroelastic problems is presented. Formulation of the finite element equations is based on weighted Galerkin residuals. This Galerkin finite element method reduces algebraic manipulative labor significantly, when compared to the application of the global Galerkin method in similar problems. The coupled flap-lag aeroelastic stability boundaries of hingeless helicopter rotor blades in hover are calculated. The linearized dynamic equations are reduced to the standard eigenvalue problem from which the aeroelastic stability boundaries are obtained. The convergence properties of the Galerkin finite element method are studied numerically by refining the discretization process. Results indicate that four or five elements suffice to capture the dynamics of the blade with the same accuracy as the global Galerkin method.

  5. Finite-element mesh generation from mappable features

    USGS Publications Warehouse

    Kuniansky, Eve L.; Lowther, Robert A.

    1993-01-01

    A vector-based geographical information system (GIS) is used to generate a variably-sized triangular element finite-element mesh from mappable features. Important digitally-mapped features are automatically linked to nodes in the finite-element model, ensuring an efficient, virtually error-free alternative to the tedious process of mesh design and data-input preparation by other methods. The procedure permits the user to work interactively with graphically-displayed hydrologic information about the study area allowing different mesh sizes to be used as needed, based on hydrologic complexity. The mesh-generaiion programs are stand-alone macros within the GIS that set up the basic data defining a finite-element mesh for many different finite-element model programs.

  6. A finite element conjugate gradient FFT method for scattering

    NASA Technical Reports Server (NTRS)

    Collins, Jeffery D.; Ross, Dan; Jin, J.-M.; Chatterjee, A.; Volakis, John L.

    1991-01-01

    Validated results are presented for the new 3D body of revolution finite element boundary integral code. A Fourier series expansion of the vector electric and mangnetic fields is employed to reduce the dimensionality of the system, and the exact boundary condition is employed to terminate the finite element mesh. The mesh termination boundary is chosen such that is leads to convolutional boundary operatores of low O(n) memory demand. Improvements of this code are discussed along with the proposed formulation for a full 3D implementation of the finite element boundary integral method in conjunction with a conjugate gradiant fast Fourier transformation (CGFFT) solution.

  7. Hybrid stress finite elements for large deformations of inelastic solids

    NASA Technical Reports Server (NTRS)

    Reed, K. W.; Atluri, S. N.

    1984-01-01

    A new hybrid stress finite element algorithm, based on a generalization of Fraeijs de Veubeke's complementary energy principle is presented. Analyses of large quasistatic deformation of inelastic solids (hypoelastic, plastic, viscoplastic) are within its capability. Principle variables in the formulation are the nominal stress rate and spin. A brief account is given of the boundary value problem in these variables, and the 'equivalent' variational principle. The finite element equation, along with initial positions and stresses, comprise an initial value problem. Factors affecting the choice of time integration schemes are discussed. Results found by application of the new algorithm are compared to those obtained by a velocity based finite element algorithm.

  8. Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms

    NASA Technical Reports Server (NTRS)

    Kurdila, Andrew J.; Sharpley, Robert C.

    1999-01-01

    This paper presents a final report on Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms. The focus of this research is to derive and implement: 1) Wavelet based methodologies for the compression, transmission, decoding, and visualization of three dimensional finite element geometry and simulation data in a network environment; 2) methodologies for interactive algorithm monitoring and tracking in computational mechanics; and 3) Methodologies for interactive algorithm steering for the acceleration of large scale finite element simulations. Also included in this report are appendices describing the derivation of wavelet based Particle Image Velocity algorithms and reduced order input-output models for nonlinear systems by utilizing wavelet approximations.

  9. Non-Linear Finite Element Modeling of THUNDER Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Taleghani, Barmac K.; Campbell, Joel F.

    1999-01-01

    A NASTRAN non-linear finite element model has been developed for predicting the dome heights of THUNDER (THin Layer UNimorph Ferroelectric DrivER) piezoelectric actuators. To analytically validate the finite element model, a comparison was made with a non-linear plate solution using Von Karmen's approximation. A 500 volt input was used to examine the actuator deformation. The NASTRAN finite element model was also compared with experimental results. Four groups of specimens were fabricated and tested. Four different input voltages, which included 120, 160, 200, and 240 Vp-p with a 0 volts offset, were used for this comparison.

  10. Quality assessment and control of finite element solutions

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Babuska, Ivo

    1987-01-01

    Status and some recent developments in the techniques for assessing the reliability of finite element solutions are summarized. Discussion focuses on a number of aspects including: the major types of errors in the finite element solutions; techniques used for a posteriori error estimation and the reliability of these estimators; the feedback and adaptive strategies for improving the finite element solutions; and postprocessing approaches used for improving the accuracy of stresses and other important engineering data. Also, future directions for research needed to make error estimation and adaptive movement practical are identified.

  11. Mixed Transform Finite Element Method for Solving the Non-Linear Equation for Flow in Variably Saturated Porous Media

    NASA Astrophysics Data System (ADS)

    Baca, R. G.; Chung, J. N.; Mulla, D. J.

    1997-03-01

    A new computational method is developed for numerical solution of the Richards equation for flow in variably saturated porous media. The new method, referred to as the mixed transform finite element method, employs the mixed formulation of the Richards equation but expressed in terms of a partitioned transform. An iterative finite element algorithm is derived using a Newton-Galerkin weak statement. Specific advantages of the new method are demonstrated with applications to a set of one- dimensional test problems. Comparisons with the modified Picard method show that the new method produces more robust solutions for a broad range of soil- moisture regimes, including flow in desiccated soils, in heterogeneous media and in layered soils with formation of perched water zones. In addition, the mixed transform finite element method is shown to converge faster than the modified Picard method in a number of cases and to accurately represent pressure head and moisture content profiles with very steep fronts.

  12. Finite Element Analysis of Geodesically Stiffened Cylindrical Composite Shells Using a Layerwise Theory

    NASA Technical Reports Server (NTRS)

    Gerhard, Craig Steven; Gurdal, Zafer; Kapania, Rakesh K.

    1996-01-01

    Layerwise finite element analyses of geodesically stiffened cylindrical shells are presented. The layerwise laminate theory of Reddy (LWTR) is developed and adapted to circular cylindrical shells. The Ritz variational method is used to develop an analytical approach for studying the buckling of simply supported geodesically stiffened shells with discrete stiffeners. This method utilizes a Lagrange multiplier technique to attach the stiffeners to the shell. The development of the layerwise shells couples a one-dimensional finite element through the thickness with a Navier solution that satisfies the boundary conditions. The buckling results from the Ritz discrete analytical method are compared with smeared buckling results and with NASA Testbed finite element results. The development of layerwise shell and beam finite elements is presented and these elements are used to perform the displacement field, stress, and first-ply failure analyses. The layerwise shell elements are used to model the shell skin and the layerwise beam elements are used to model the stiffeners. This arrangement allows the beam stiffeners to be assembled directly into the global stiffness matrix. A series of analytical studies are made to compare the response of geodesically stiffened shells as a function of loading, shell geometry, shell radii, shell laminate thickness, stiffener height, and geometric nonlinearity. Comparisons of the structural response of geodesically stiffened shells, axial and ring stiffened shells, and unstiffened shells are provided. In addition, interlaminar stress results near the stiffener intersection are presented. First-ply failure analyses for geodesically stiffened shells utilizing the Tsai-Wu failure criterion are presented for a few selected cases.

  13. Specificities of one-dimensional dissipative magnetohydrodynamics

    SciTech Connect

    Popov, P. V.

    2016-11-15

    One-dimensional dynamics of a plane slab of cold (β ≪ 1) isothermal plasma accelerated by a magnetic field is studied in terms of the MHD equations with a finite constant conductivity. The passage to the limit β → 0 is analyzed in detail. It is shown that, at β = 0, the character of the solution depends substantially on the boundary condition for the electric field at the inner plasma boundary. The relationship between the boundary condition for the pressure at β > 0 and the conditions for the electric field at β = 0 is found. The stability of the solution against one-dimensional longitudinal perturbations is analyzed. It is shown that, in the limit β → 0, the stationary solution is unstable if the time during which the acoustic wave propagates across the slab is longer than the time of magnetic field diffusion. The growth rate and threshold of instability are determined, and results of numerical simulation of its nonlinear stage are presented.

  14. Higher-Order Finite Elements for Computing Thermal Radiation

    NASA Technical Reports Server (NTRS)

    Gould, Dana C.

    2004-01-01

    Two variants of the finite-element method have been developed for use in computational simulations of radiative transfers of heat among diffuse gray surfaces. Both variants involve the use of higher-order finite elements, across which temperatures and radiative quantities are assumed to vary according to certain approximations. In this and other applications, higher-order finite elements are used to increase (relative to classical finite elements, which are assumed to be isothermal) the accuracies of final numerical results without having to refine computational meshes excessively and thereby incur excessive computation times. One of the variants is termed the radiation sub-element (RSE) method, which, itself, is subject to a number of variations. This is the simplest and most straightforward approach to representation of spatially variable surface radiation. Any computer code that, heretofore, could model surface-to-surface radiation can incorporate the RSE method without major modifications. In the basic form of the RSE method, each finite element selected for use in computing radiative heat transfer is considered to be a parent element and is divided into sub-elements for the purpose of solving the surface-to-surface radiation-exchange problem. The sub-elements are then treated as classical finite elements; that is, they are assumed to be isothermal, and their view factors and absorbed heat fluxes are calculated accordingly. The heat fluxes absorbed by the sub-elements are then transferred back to the parent element to obtain a radiative heat flux that varies spatially across the parent element. Variants of the RSE method involve the use of polynomials to interpolate and/or extrapolate to approximate spatial variations of physical quantities. The other variant of the finite-element method is termed the integration method (IM). Unlike in the RSE methods, the parent finite elements are not subdivided into smaller elements, and neither isothermality nor other

  15. Finite Element Anlaysis of Laminated Composite Plates

    DTIC Science & Technology

    1988-09-01

    4.2, results depicting maximum displacement obtained using 2 x 2 integration points, 3 x 3 integration points and ’ heterosis ’ [Ref. 4] elements are...thick and thin plates. This element gives better predictions for thick plates than heterosis ele- ment, however, for thin plates, heterosis element...results showing the normalized maximum displacements are shown in Figure 4.8. The heterosis element results in about ten percent error while the

  16. Validating Finite Element Models of Assembled Shell Structures

    NASA Technical Reports Server (NTRS)

    Hoff, Claus

    2006-01-01

    The validation of finite element models of assembled shell elements is presented. The topics include: 1) Problems with membrane rotations in assembled shell models; 2) Penalty stiffness for membrane rotations; 3) Physical stiffness for membrane rotations using shell elements with 6 dof per node; and 4) Connections avoiding rotations.

  17. North Atlantic Finite Element Ocean Modeling

    NASA Astrophysics Data System (ADS)

    Veluthedathekuzhiyil, Praveen

    This thesis presents a modified version of the Finite Element Ocean Model (FEOM) developed at Alfred Wegener Institute for Polar and Marine Research (AWI) for the North Atlantic Ocean. A reasonable North Atlantic Ocean simulation is obtained against the observational data sets in a Control simulation (CS) where the surface boundary conditions are relaxed to a climatology. The vertical mixing in the model was tuned to represent convection in the model, also the horizontal mixing and diffusion coefficients to represent the changes in the resolution of the model’s unstructured grid. In addition, the open boundaries in the model are treated with a sponge layer where tracers are relaxed to climatology. The model is then further modified to accept the atmospheric flux forcing at the surface boundary with an added net heat flux correction and freshwater forcing from major rivers that are flowing into the North Atlantic Ocean. The impact of this boundary condition on the simulation results is then analyzed and shows many improvements albeit the drift in tracer properties around the Gulf Stream region remains as that of the CS case. However a comparison of the vertical sections at Cape Desolation and Cape Farewell with the available observational data sets shows many improvements in this simulation compared to that of the CS case. But the freshwater content in the Labrador Sea interior shows a continued drift as that of the CS case with an improvement towards the 10th model year. A detailed analysis of the boundary currents around the Labrador Sea shows the weak offshore transport of freshwater from the West Greenland Current (WGC) as one of the causes. To further improve the model and reasonably represent the boundary currents and associated sub-grid scale eddies in the model, a modified sub-grid scale parameterization based on Gent and McWilliams, (1990) is adopted. The sensitivity of using various approaches in the thickness diffusion parameter ( Kgm) for this

  18. Superconvergence in the Generalized Finite Element Method

    DTIC Science & Technology

    2005-01-01

    Galerkin method for elliptic equations based on tensor products of piecewise polynomials. RAIRO Anal. Numer., 8:61– 66, 1974. [19] M. Kř́ıžek...London, 1986. [22] P. Lesaint and M. Zlámal. Superconvergence of the gradient of finite ele- ment solutions. RAIRO Anal. Numer., 13:139–166, 1979. [23] Q

  19. Application of Mass Lumped Higher Order Finite Elements

    SciTech Connect

    Chen, J.; Strauss, H. R.; Jardin, S. C.; Park, W.; Sugiyama, L. E.; G. Fu; Breslau, J.

    2005-11-01

    There are many interesting phenomena in extended-MHD such as anisotropic transport, mhd, 2-fluid effects stellarator and hot particles. Any one of them challenges numerical analysts, and researchers are seeking for higher order methods, such as higher order finite difference, higher order finite elements and hp/spectral elements. It is true that these methods give more accurate solution than their linear counterparts. However, numerically they are prohibitively expensive. Here we give a successful solution of this conflict by applying mass lumped higher order finite elements. This type of elements not only keep second/third order accuracy but also scale closely to linear elements by doing mass lumping. This is especially true for second order lump elements. Full M3D and anisotropic transport models are studied.

  20. Finite Element Analysis of Elasto-plastic Plate Bending Problems using Transition Rectangular Plate Elements

    NASA Astrophysics Data System (ADS)

    Kanber, Bahattin; Bozkurt, O. Yavuz

    2006-08-01

    In this work, the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements. The shape functions of the transition plate elements are derived based on a practical rule. The transition plate elements are all quadrilateral and can be used to obtain efficient finite element models using minimum number of elements. The mesh convergence rates of the models including the transition elements are compared with the regular element models. To verify the developed elements, simple tests are demonstrated and various elasto-plastic problems are solved. Their results are compared with ANSYS results.

  1. Finite element analysis to evaluate optical mirror deformations

    NASA Astrophysics Data System (ADS)

    Izazaga-Pérez, R.; Aguirre-Aguirre, D.; Villalobos-Mendoza, B.

    2015-10-01

    In this work we describe the use of Finite Element Analysis software to simulate the deformations of an optical mirror. We use Finite Element Method software as a tool to simulate the mirror deformations assuming that it is a thin plate that can be mechanically tensed or compressed; the Finite Element Analysis give us information about the displacements of the mirror from an initial position and the tensions that remains in the surface. The information obtained by means of Finite Element Analysis can be easily exported to a coordinate system and processed in a simulation environment. Finally, a ray-tracing subroutine is used in the obtained data giving us information in terms of aberration coefficients. We present some results of the simulations describing the followed procedure.

  2. Adaptive Finite-Element Computation In Fracture Mechanics

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Bass, J. M.; Spradley, L. W.

    1995-01-01

    Report discusses recent progress in use of solution-adaptive finite-element computational methods to solve two-dimensional problems in linear elastic fracture mechanics. Method also shown extensible to three-dimensional problems.

  3. Validation of High Displacement Piezoelectric Actuator Finite Element Models

    NASA Technical Reports Server (NTRS)

    Taleghani, B. K.

    2000-01-01

    The paper presents the results obtained by using NASTRAN(Registered Trademark) and ANSYS(Regitered Trademark) finite element codes to predict doming of the THUNDER piezoelectric actuators during the manufacturing process and subsequent straining due to an applied input voltage. To effectively use such devices in engineering applications, modeling and characterization are essential. Length, width, dome height, and thickness are important parameters for users of such devices. Therefore, finite element models were used to assess the effects of these parameters. NASTRAN(Registered Trademark) and ANSYS(Registered Trademark) used different methods for modeling piezoelectric effects. In NASTRAN(Registered Trademark), a thermal analogy was used to represent voltage at nodes as equivalent temperatures, while ANSYS(Registered Trademark) processed the voltage directly using piezoelectric finite elements. The results of finite element models were validated by using the experimental results.

  4. Scalable, Finite Element Analysis of Electromagnetic Scattering and Radiation

    NASA Technical Reports Server (NTRS)

    Cwik, T.; Lou, J.; Katz, D.

    1997-01-01

    In this paper a method for simulating electromagnetic fields scattered from complex objects is reviewed; namely, an unstructured finite element code that does not use traditional mesh partitioning algorithms.

  5. Comparison of different precondtioners for nonsymmtric finite volume element methods

    SciTech Connect

    Mishev, I.D.

    1996-12-31

    We consider a few different preconditioners for the linear systems arising from the discretization of 3-D convection-diffusion problems with the finite volume element method. Their theoretical and computational convergence rates are compared and discussed.

  6. Error analysis of finite element solutions for postbuckled cylinders

    NASA Technical Reports Server (NTRS)

    Sistla, Rajaram; Thurston, Gaylen A.

    1989-01-01

    A general method of error analysis and correction is investigated for the discrete finite-element results for cylindrical shell structures. The method for error analysis is an adaptation of the method of successive approximation. When applied to the equilibrium equations of shell theory, successive approximations derive an approximate continuous solution from the discrete finite-element results. The advantage of this continuous solution is that it contains continuous partial derivatives of an order higher than the basis functions of the finite-element solution. Preliminary numerical results are presented in this paper for the error analysis of finite-element results for a postbuckled stiffened cylindrical panel modeled by a general purpose shell code. Numerical results from the method have previously been reported for postbuckled stiffened plates. A procedure for correcting the continuous approximate solution by Newton's method is outlined.

  7. Scalable, Finite Element Analysis of Electromagnetic Scattering and Radiation

    NASA Technical Reports Server (NTRS)

    Cwik, T.; Lou, J.; Katz, D.

    1997-01-01

    In this paper a method for simulating electromagnetic fields scattered from complex objects is reviewed; namely, an unstructured finite element code that does not use traditional mesh partitioning algorithms.

  8. The finite element machine: An experiment in parallel processing

    NASA Technical Reports Server (NTRS)

    Storaasli, O. O.; Peebles, S. W.; Crockett, T. W.; Knott, J. D.; Adams, L.

    1982-01-01

    The finite element machine is a prototype computer designed to support parallel solutions to structural analysis problems. The hardware architecture and support software for the machine, initial solution algorithms and test applications, and preliminary results are described.

  9. Validation of high displacement piezoelectric actuator finite element models

    NASA Astrophysics Data System (ADS)

    Taleghani, Barmac K.

    2000-08-01

    The paper presents the results obtained by using NASTRAN and ANSYS finite element codes to predict doming of the THUNDER piezoelectric actuators during the manufacturing process and subsequent straining due to an applied input voltage. To effectively use such devices in engineering applications, modeling and characterization are essential. Length, width, dome height, and thickness and important parameters for users of such devices. Therefore, finite element models were used to assess the effects of these parameters. NASTRAN and ANSYS used different methods for modeling piezoelectric effects. In NASTRAN, a thermal analogy was used to represent voltage at nodes as equivalent temperatures, while ANSYS processed the voltage directly using piezoelectric finite elements. The results of finite element models were validated by using the experimental results.

  10. Optimal least-squares finite element method for elliptic problems

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Povinelli, Louis A.

    1991-01-01

    An optimal least squares finite element method is proposed for two dimensional and three dimensional elliptic problems and its advantages are discussed over the mixed Galerkin method and the usual least squares finite element method. In the usual least squares finite element method, the second order equation (-Delta x (Delta u) + u = f) is recast as a first order system (-Delta x p + u = f, Delta u - p = 0). The error analysis and numerical experiment show that, in this usual least squares finite element method, the rate of convergence for flux p is one order lower than optimal. In order to get an optimal least squares method, the irrotationality Delta x p = 0 should be included in the first order system.

  11. Simple bounds on limit loads by elastic finite element analysis

    SciTech Connect

    Mackenzie, D.; Nadarajah, C.; Shi, J.; Boyle, J.T. . Dept. of Mechanical Engineering)

    1993-02-01

    A method for bounding limit loads by an iterative elastic continuum finite element analysis procedure, referred to as the elastic compensation method, is proposed. A number of sample problems are considered, based on both exact solutions and finite element analysis, and it is concluded that the method may be used to obtain limit-load bounds for pressure vessel design by analysis applications with useful accuracy.

  12. Examples of finite element mesh generation using SDRC IDEAS

    NASA Technical Reports Server (NTRS)

    Zapp, John; Volakis, John L.

    1990-01-01

    IDEAS (Integrated Design Engineering Analysis Software) offers a comprehensive package for mechanical design engineers. Due to its multifaceted capabilities, however, it can be manipulated to serve the needs of electrical engineers, also. IDEAS can be used to perform the following tasks: system modeling, system assembly, kinematics, finite element pre/post processing, finite element solution, system dynamics, drafting, test data analysis, and project relational database.

  13. Integration of geometric modeling and advanced finite element preprocessing

    NASA Technical Reports Server (NTRS)

    Shephard, Mark S.; Finnigan, Peter M.

    1987-01-01

    The structure to a geometry based finite element preprocessing system is presented. The key features of the system are the use of geometric operators to support all geometric calculations required for analysis model generation, and the use of a hierarchic boundary based data structure for the major data sets within the system. The approach presented can support the finite element modeling procedures used today as well as the fully automated procedures under development.

  14. Global/local finite element analysis of composite materials

    NASA Technical Reports Server (NTRS)

    Griffin, O. Hayden, Jr.; Vidussoni, M. A.

    1988-01-01

    The motivation for performing global/local finite element analysis in composite materials is described. An example of such an analysis of a composite plate with a central circular hole is presented. Deformed finite element grids and interlaminar normal stress distributions are presented to aid understanding of the plate response. Such distribution at the plate edge is shown to be basically unaffected, although transverse displacements of the edge were slightly different from an analysis of a similar plate with no hole.

  15. Finite element analysis to model complex mitral valve repair.

    PubMed

    Labrosse, Michel; Mesana, Thierry; Baxter, Ian; Chan, Vincent

    2016-01-01

    Although finite element analysis has been used to model simple mitral repair, it has not been used to model complex repair. A virtual mitral valve model was successful in simulating normal and abnormal valve function. Models were then developed to simulate an edge-to-edge repair and repair employing quadrangular resection. Stress contour plots demonstrated increased stresses along the mitral annulus, corresponding to the annuloplasty. The role of finite element analysis in guiding clinical practice remains undetermined.

  16. Finite element analysis of a composite wheelchair wheel design

    NASA Technical Reports Server (NTRS)

    Ortega, Rene

    1994-01-01

    The finite element analysis of a composite wheelchair wheel design is presented. The design is the result of a technology utilization request. The designer's intent is to soften the riding feeling by incorporating a mechanism attaching the wheel rim to the spokes that would allow considerable deflection upon compressive loads. A finite element analysis was conducted to verify proper structural function. Displacement and stress results are presented and conclusions are provided.

  17. An Adaptive Multiscale Finite Element Method for Large Scale Simulations

    DTIC Science & Technology

    2015-09-28

    the method . Using the above definitions , the weak statement of the non-linear local problem at the kth 4 DISTRIBUTION A: Distribution approved for...AFRL-AFOSR-VA-TR-2015-0305 An Adaptive Multiscale Finite Element Method for Large Scale Simulations Carlos Duarte UNIVERSITY OF ILLINOIS CHAMPAIGN...14-07-2015 4. TITLE AND SUBTITLE An Adaptive Multiscale Generalized Finite Element Method for Large Scale Simulations 5a.  CONTRACT NUMBER 5b

  18. Nonlinear Finite Element Analysis of Composite Flextensional Transducer Shell

    DTIC Science & Technology

    1993-03-01

    4 TITLE AND SUBTITLE s FUNDING NUMbE;h NONLINEAR FINITE ELEMENT ANALYSIS OF COMPOSITE FLEXTENSIONAL PR: SV70 TRANSDUCER SHELL PE: 020431 IN 6 AUFTHOA...D NSN 7540-01-280-5500 ,ssard tr,298 IBACI UiNCLA-SSIFlED NONLINEAR FINITE ELEMENT ANALYSIS OF COMPOSITE FLEXTENSIONAL TRANSDUCER SHELL R. C. SliAW...its correlation with test data for a Class IV flextensional underwater acoustic transducer . The thick. elliptical fiberglass/epoxy shell of the

  19. Finite element modeling of electromagnetic propagation in composite structures

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1987-01-01

    A finite element Galerkin formulation has been developed to study electromagnetic propagation in complex two-dimensional absorbing ducts. The reflection and transmission at entrance and exit boundaries are determined by coupling the finite element solutions at the entrance and exit to the eigenfunctions of an infinite uniform perfect conducting duct. Example solutions are presented for electromagnetic propagation with absorbing duct walls and propagating through dielectric-metallic matrix materials.

  20. Mathematical aspects of finite element methods for incompressible viscous flows

    NASA Technical Reports Server (NTRS)

    Gunzburger, M. D.

    1986-01-01

    Mathematical aspects of finite element methods are surveyed for incompressible viscous flows, concentrating on the steady primitive variable formulation. The discretization of a weak formulation of the Navier-Stokes equations are addressed, then the stability condition is considered, the satisfaction of which insures the stability of the approximation. Specific choices of finite element spaces for the velocity and pressure are then discussed. Finally, the connection between different weak formulations and a variety of boundary conditions is explored.

  1. Evaluation of a hybrid, anisotropic, multilayered, quadrilateral finite element

    NASA Technical Reports Server (NTRS)

    Robinson, J. C.; Blackburn, C. L.

    1978-01-01

    A multilayered finite element with bending-extensional coupling is evaluated for: (1) buckling of general laminated plates; (2) thermal stresses of laminated plates cured at elevated temperatures; (3) displacements of a bimetallic beam; and (4) displacement and stresses of a single-cell box beam with warped cover panels. Also, displacements and stresses for flat and spherical orthotropic and anisotropic segments are compared with results from higher order plate and shell finite-element analyses.

  2. Thermal buckling analysis of composite laminated plates by the finite-element method

    SciTech Connect

    Chen, Lienwen; Chen, Leiyi )

    1989-01-01

    The thermal buckling behavior of laminated plates subjected to a nonuniform temperature field is investigated by the finite-element method. Being nonuniformly distributed over the plate, the thermal stresses should be determined before solving the buckling problem. The stiffness matrix, geometry matrix, and load vector are derived based on the principle of minimum potential energy. The assumed displacement state over the middle surface of the plate element is expressed as the products of one-dimensional, first-order Hermite polynomials. Numerical results show that the thermal buckling strength of a clamped plate is higher than that of a simply supported plate, and the influence of lamination angle, plate aspect ratio, and modulus ratio on thermal buckling are found to be significant for laminated plates. 21 refs.

  3. Deforming finite elements for the numerical solution of the nonlinear inverse heat conduction problem

    NASA Astrophysics Data System (ADS)

    Mehta, R. C.; Jayachandran, T.

    1987-06-01

    A numerical solution of the nonlinear inverse heat conduction problem is obtained using an in-line method in conjunction with the measured thermocouple temperature history. The deforming finite elements technique is used to treat initial time delay in temperature response due to thermocouple location. In the absence of elements deformation, the method reduces to the conventional Galerkin formulation. A three-time level implicit scheme, which is unconditionally stable and convergent, is employed for the numerical solution. The temperature-dependent thermophysical properties in the matrices are evaluated at the intermediate level. The complication of solving a set of nonlinear algebraic equations at each step is avoided. Illustration of the technique is made on the one-dimensional problem with a thermal radiation boundary condition. The results demonstrate that the method is remarkable in its ability to predict surface condition without debilitation.

  4. Three one-dimensional structural heating programs

    NASA Technical Reports Server (NTRS)

    Wing, L. D.

    1978-01-01

    Two computer programs for calculating profiles in a ten-element structure consisting of up to ten materials are presented, along with a third program for calculating the mean temperature for a payload container placed in an orbiting vehicle cargo bay. The three programs are related by the sharing of a common analytical technique; the energy balance is based upon one-dimensional heat transfer. The first program, NQLDW112, assumes a non-ablating surface. NQLDW117 is very similar but allows the outermost element to ablate. NQLDW040 calculates an average temperature profile through an idealized model of the real payload cannister and contents in the cargo bay of an orbiting vehicle.

  5. An adaptive discontinuous finite element method for the transport equation

    SciTech Connect

    Lang, J.; Walter, A.

    1995-03-01

    In this paper we introduce a discontinuous finite element method. In our approach, it is possible to combine the advantages of finite element and finite difference methods. The main ingredients are numerical flux approximation and local orthogonal basis functions. The scheme is defined on arbitrary triangulations and two different error indicators are derived. Especially the second one is closely connected to our approach and able to handle arbitrary varying flow directions. Numerical results are given for boundary value problems in two dimensions. They demonstrate the performance of the scheme, combined with the two error indicators.

  6. Least-squares finite element methods for compressible Euler equations

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Carey, G. F.

    1990-01-01

    A method based on backward finite differencing in time and a least-squares finite element scheme for first-order systems of partial differential equations in space is applied to the Euler equations for gas dynamics. The scheme minimizes the L-sq-norm of the residual within each time step. The method naturally generates numerical dissipation proportional to the time step size. An implicit method employing linear elements has been implemented and proves robust. For high-order elements, computed solutions based on the L-sq method may have oscillations for calculations at similar time step sizes. To overcome this difficulty, a scheme which minimizes the weighted H1-norm of the residual is proposed and leads to a successful scheme with high-degree elements. Finally, a conservative least-squares finite element method is also developed. Numerical results for two-dimensional problems are given to demonstrate the shock resolution of the methods and compare different approaches.

  7. Nonlinear finite element analysis: An alternative formulation

    NASA Technical Reports Server (NTRS)

    Merazzi, S.; Stehlin, P.

    1980-01-01

    A geometrical nonlinear analysis based on an alternative definition of strain is presented. Expressions for strain are obtained by computing the change in length of the base vectors in the curvilinear element coordinate system. The isoparametric element formulation is assumed in the global Cartesian coordinate system. The approach is based on the minimization of the strain energy, and the resulting nonlinear equations are solved by the modified Newton method. Integration of the first and second variation of the strain energy is performed numerically in the case of two and three dimensional elements. Application is made to a simple long cantilever beam.

  8. Modeling of PZT-induced Lamb wave propagation in structures by using a novel two-layer spectral finite element

    NASA Astrophysics Data System (ADS)

    Liu, Xiaotong; Zhou, Li; Ouyang, Qinghua

    2016-04-01

    This paper presents a novel two-layer spectral finite element model, consisting of PZT wafer and host structure, to simulate PZT-induced Lamb wave propagation in beam-like and plate-like structures. Based on the idea of equal displacement on the interface between PZT wafer and host structure, the one-dimensional spectral beam element of PZT-host beam and two-dimensional spectral plate element of PZT-host plate are considered as one hybrid element, respectively. A novel approach is proposed by taking the coupling effect of piezoelectric transducers in the thickness direction into account. The dynamic equation of the two-layer spectral element is derived from Hamilton's principle. Validity of the developed spectral finite element is verified through numerical simulation. The result indicates that, compared with the conventional finite element method (FEM) based on elasticity, the proposed spectral finite element is proved to have a high accuracy in modeling Lamb wave propagation, meanwhile, significantly improve the calculation efficiency.

  9. Recent developments in finite element analysis for transonic airfoils

    NASA Technical Reports Server (NTRS)

    Hafez, M. M.; Murman, E. M.

    1979-01-01

    The prediction of aerodynamic forces in the transonic regime generally requires a flow field calculation to solve the governing non-linear mixed elliptic-hyperbolic partial differential equations. Finite difference techniques were developed to the point that design and analysis application are routine, and continual improvements are being made by various research groups. The principal limitation in extending finite difference methods to complex three-dimensional geometries is the construction of a suitable mesh system. Finite element techniques are attractive since their application to other problems have permitted irregular mesh elements to be employed. The purpose of this paper is to review the recent developments in the application of finite element methods to transonic flow problems and to report some recent results.

  10. Dynamical observer for a flexible beam via finite element approximations

    NASA Technical Reports Server (NTRS)

    Manitius, Andre; Xia, Hong-Xing

    1994-01-01

    The purpose of this view-graph presentation is a computational investigation of the closed-loop output feedback control of a Euler-Bernoulli beam based on finite element approximation. The observer is part of the classical observer plus state feedback control, but it is finite-dimensional. In the theoretical work on the subject it is assumed (and sometimes proved) that increasing the number of finite elements will improve accuracy of the control. In applications, this may be difficult to achieve because of numerical problems. The main difficulty in computing the observer and simulating its work is the presence of high frequency eigenvalues in the finite-element model and poor numerical conditioning of some of the system matrices (e.g. poor observability properties) when the dimension of the approximating system increases. This work dealt with some of these difficulties.

  11. Nonlinear Finite Element Analysis of Sandwich Composites.

    DTIC Science & Technology

    1981-03-01

    to the element midsurface z - z(x,y) at all points. An additional coordinate r is used to describe the distance away from the midsurface at any point...It is assumed that on the element level, the shell is shallow, so that z2 2 (56) ,y everywhere. The unit vector normal to the shell midsurface at a...relations above do not involve the orientation of the displaced midsurface normal, and, therefore, apply to arbitrarily large displacements and rotations

  12. Geometrical nonlinearity of 14-node brick finite element

    NASA Astrophysics Data System (ADS)

    Chandan, Swet; Chauhan, Alok P. S.

    2017-01-01

    The present work depicts the geometrical nonlinearity analysis for the finite element, PN5X1. Here, the general problem of elasticity is numerically solved using iteration method. The proposed element is passed through different tests in order to prove that it works not only for modeling sheet metal forming process but also for other large deformation problems.

  13. Large deformations of reconfigurable active membranes: a finite element model

    NASA Astrophysics Data System (ADS)

    Son, Seyul; Goulbourne, N. C.

    2010-04-01

    In this paper, a finite element model is used to describe the inhomogeneous deformations of dielectric elastomers (DE). In our previous work, inhomogeneous deformations of the DE with simple boundary conditions represented by a system of highly nonlinear coupled differential equations (ordinary and partial) were solved using numerical approaches [1-3]. To solve for the electromechanical response for complex shapes (asymmetric), nonuniform loading, and complex boundary conditions a finite element scheme is required. This paper describes a finite element implementation of the DE material model proposed in our previous work in a commercial FE code (ABAQUS 6.8-1, PAWTUCKET, R.I, USA). The total stress is postulated as the summation of the elastic stress tensor and the Maxwell stress tensor, or more generally the electrostatic stress tensor. The finite element model is verified by analytical solutions and experimental results for planar membrane extensions subject to mechanical loads and an electric field: (i) equibiaxial extension and (ii) generalized biaxial extension. Specifically, the analytical solutions for equibiaxial extension of the DE is obtained by combining a modified large deformation membrane theory that accounts for the electromechanical coupling effect in actuation commonly referred to as the Maxwell stress [4]. A Mooney-Rivlin strain energy function is employed to describe the constitutive stress strain behavior of the DE. For the finite element implementation, the constitutive relationships from our previously proposed mathematical model [4] are implemented into the finite element code. Experimentally, a 250% equibiaxially prestretched DE sample is attached to a rigid joint frame and inhomogeneous deformations of the reconfigurable DE are observed with respect to mechanical loads and an applied electric field. The computational result for the reconfigurable DE is compared with the test result to validate the accuracy and robustness of the finite

  14. Finite Element Model Development For Aircraft Fuselage Structures

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.

    2000-01-01

    The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results.

  15. Preconditioned CG-solvers and finite element grids

    SciTech Connect

    Bauer, R.; Selberherr, S.

    1994-12-31

    To extract parasitic capacitances in wiring structures of integrated circuits the authors developed the two- and three-dimensional finite element program SCAP (Smart Capacitance Analysis Program). The program computes the task of the electrostatic field from a solution of Poisson`s equation via finite elements and calculates the energies from which the capacitance matrix is extracted. The unknown potential vector, which has for three-dimensional applications 5000-50000 unknowns, is computed by a ICCG solver. Currently three- and six-node triangular, four- and ten-node tetrahedronal elements are supported.

  16. Radiosity algorithms using higher order finite element methods

    SciTech Connect

    Troutman, R.; Max, N.

    1993-08-01

    Many of the current radiosity algorithms create a piecewise constant approximation to the actual radiosity. Through interpolation and extrapolation, a continuous solution is obtained. An accurate solution is found by increasing the number of patches which describe the scene. This has the effect of increasing the computation time as well as the memory requirements. By using techniques found in the finite element method, we can incorporate an interpolation function directly into our form factor computation. We can then use less elements to achieve a more accurate solution. Two algorithms, derived from the finite element method, are described and analyzed.

  17. Finite element analysis of two disk rotor system

    SciTech Connect

    Dixit, Harsh Kumar

    2016-05-06

    A finite element model of simple horizontal rotor system is developed for evaluating its dynamic behaviour. The model is based on Timoshenko beam element and accounts for the effect of gyroscopic couple and other rotational forces. Present rotor system consists of single shaft which is supported by bearings at both ends and two disks are mounted at different locations. The natural frequencies, mode shapes and orbits of rotating system for a specific range of rotation speed are obtained by developing a MATLAB code for solving the finite element equations of rotary system. Consequently, Campbell diagram is plotted for finding a relationship between natural whirl frequencies and rotation of the rotor.

  18. Finite element analysis of shear deformable laminated composite plates

    SciTech Connect

    Kam, T.Y.; Chang, R.R. )

    1993-03-01

    A shear deformable finite element is developed for the analysis of thick laminated composite plates. The finite element formulation is based on Mindlin's plate theory in which shear correction factors are derived from the exact expressions for orthotropic materials. The element is used to solve a variety of problems on deflection, stress distribution, natural frequency and buckling of laminated composite plates. The effects of material properties, plate aspect ratio, length-to-thickness ratio, number of layers and lamination angle on the mechanical behaviors of laminated composite plates are investigated. Optimal lamination arrangements of layers for laminated composite plates of particular applications are determined.

  19. Time domain finite element analysis of multimode microwave applicators

    SciTech Connect

    Dibben, D.C.; Metaxas, R.

    1996-05-01

    Analysis of multimode applicators in the frequency domain via the finite element technique produces a set of very ill-conditioned equations. This paper outlines a time domain finite element method (TDFE) for analyzing three dimensional microwave applicators where this ill-conditioning is avoided. Edge elements are used in order to handle sharp metal edges and to avoid spurious solutions. Analysis in the time domain allows field distributions at a range of different frequencies to be obtained with a single calculation. Lumping is investigated as a means of reducing the time taken for the calculation. The reflection coefficient is also obtained.

  20. Probabilistic finite elements for fatigue and fracture analysis

    NASA Technical Reports Server (NTRS)

    Belytschko, Ted; Liu, Wing Kam

    1992-01-01

    Attenuation is focused on the development of Probabilistic Finite Element Method (PFEM), which combines the finite element method with statistics and reliability methods, and its application to linear, nonlinear structural mechanics problems and fracture mechanics problems. The computational tool based on the Stochastic Boundary Element Method is also given for the reliability analysis of a curvilinear fatigue crack growth. The existing PFEM's have been applied to solve for two types of problems: (1) determination of the response uncertainty in terms of the means, variance and correlation coefficients; and (2) determination the probability of failure associated with prescribed limit states.

  1. Adaptive grid finite element model of the tokamak scrapeoff layer

    SciTech Connect

    Kuprat, A.P.; Glasser, A.H.

    1995-07-01

    The authors discuss unstructured grids for application to transport in the tokamak edge SOL. They have developed a new metric with which to judge element elongation and resolution requirements. Using this method, the authors apply a standard moving finite element technique to advance the SOL equations while inserting/deleting dynamically nodes that violate an elongation criterion. In a tokamak plasma, this method achieves a more uniform accuracy, and results in highly stretched triangular finite elements, except near separatrix X-point where transport is more isotropic.

  2. Finite element analysis of two disk rotor system

    NASA Astrophysics Data System (ADS)

    Dixit, Harsh Kumar

    2016-05-01

    A finite element model of simple horizontal rotor system is developed for evaluating its dynamic behaviour. The model is based on Timoshenko beam element and accounts for the effect of gyroscopic couple and other rotational forces. Present rotor system consists of single shaft which is supported by bearings at both ends and two disks are mounted at different locations. The natural frequencies, mode shapes and orbits of rotating system for a specific range of rotation speed are obtained by developing a MATLAB code for solving the finite element equations of rotary system. Consequently, Campbell diagram is plotted for finding a relationship between natural whirl frequencies and rotation of the rotor.

  3. A finite element method to study multimaterial wind towers

    NASA Astrophysics Data System (ADS)

    Pascoal-Faria, P.; Dias, C.; Oliveira, M.; Alves, N.

    2017-07-01

    Wind towers are used to produce electrical energy from the wind. A significant number of towers is manufactured using tubular separately steel or concrete, having limitations such as maximum diameter and height imposed essentially by transportation limitations. Developed computational studies on structural design of towers have been mainly focused on a single material. This investigation aims to develop a finite element method able to study structural design of wind towers combining different materials. The finite element model combines solid and shell elements encompassing different geometries. Several case studies are considered to validate the proposed method and accurate results are obtained.

  4. Numerical Differentiation for Adaptively Refined Finite Element Meshes

    NASA Technical Reports Server (NTRS)

    Borgioli, Andrea; Cwik, Tom

    1998-01-01

    Postprocessing of point-wise data is a fundamental process in many fields of research. Numerical differentiation is a key operation in computational electromagnetics. In the case of data obtained from a finite element method with automatic mesh refinement much work needs still to be done. This paper addresses some issues in differentiating data obtained from a finite element electromagnetic code with adaptive mesh refinement, and it proposes a methodology for deriving the electric field given the magnetic field on a mesh of linear triangular elements. The procedure itself is nevertheless more general and might be extended for numerically differentiating any point-wise solution based on triangular meshes.

  5. Footbridge between finite volumes and finite elements with applications to CFD

    NASA Astrophysics Data System (ADS)

    Pascal, Frédéric; Ghidaglia, Jean-Michel

    2001-12-01

    The aim of this paper is to introduce a new algorithm for the discretization of second-order elliptic operators in the context of finite volume schemes on unstructured meshes. We are strongly motivated by partial differential equations (PDEs) arising in computational fluid dynamics (CFD), like the compressible Navier-Stokes equations. Our technique consists of matching up a finite volume discretization based on a given mesh with a finite element representation on the same mesh. An inverse operator is also built, which has the desirable property that in the absence of diffusion, one recovers exactly the finite volume solution. Numerical results are also provided. Copyright

  6. Characterization of sulfur compounds in whisky by full evaporation dynamic headspace and selectable one-dimensional/two-dimensional retention time locked gas chromatography-mass spectrometry with simultaneous element-specific detection.

    PubMed

    Ochiai, Nobuo; Sasamoto, Kikuo; MacNamara, Kevin

    2012-12-28

    A method is described for characterization of sulfur compounds in unaged and aged whisky. The method is based on full evaporation dynamic headspace (FEDHS) of 100 μL of whisky samples followed by selectable one-dimensional ((1)D) or two-dimensional ((2)D) retention-time-locked (RTL) gas chromatography (GC)-mass spectrometry (MS) with simultaneous element-specific detection using a sulfur chemiluminescence detector (SCD) and a nitrogen chemiluminescence detector (NCD). Sequential heart-cuts of the 16 sulfur fractions were used to identify each individual sulfur compound in the unaged whisky. Twenty sulfur compounds were positively identified by a MS library search, linear retention indices (LRI), and formula identification using MS calibration software. Additionally eight formulas were also identified for unknown sulfur compounds. Simultaneous heart-cuts of the 16 sulfur fractions were used to produce the (2)D RTL GC-SCD chromatograms for principal component analysis. PCA of the (2)D RTL GC-SCD data clearly demonstrated the difference between unaged and aged whisky, as well as two different whisky samples. Fourteen sulfur compounds could be characterized as key sulfur compounds responsible for the changes in the aging step and/or the difference between two kinds of whisky samples. The determined values of the key sulfur compounds were in the range of 0.3-210 ng mL(-1) (RSD: 0.37-12%, n=3).

  7. Design and finite element analysis of oval man way

    SciTech Connect

    Hari, Y.; Gryder, B.

    1996-12-01

    This paper presents the design of an oval man way in the side wall of a cylindrical pressure vessel. ASME Code Section 8 is used to obtain the design parameters of the oval man way, man way cover and bolts. The code calculations require some assumptions which may not be valid. A typical design example is taken. STAAD III finite element code with plate elements is used to model the oval man way, man way cover and bolts. The stresses calculated using ASME Code Section 8 and other analytical formulas for plate and shells are compared with the stresses obtained by Finite Element Modeling. This paper gives the designer of oval man way the ability to perform a finite element analysis and compare it with the analytical calculations and assumptions made. This gives added confidence to the designer as to the validity of his calculations and assumptions.

  8. A finite element simulation scheme for biological muscular hydrostats.

    PubMed

    Liang, Y; McMeeking, R M; Evans, A G

    2006-09-07

    An explicit finite element scheme is developed for biological muscular hydrostats such as squid tentacles, octopus arms and elephant trunks. The scheme is implemented by embedding muscle fibers in finite elements. In any given element, the fiber orientation can be assigned arbitrarily and multiple muscle directions can be simulated. The mechanical stress in each muscle fiber is the sum of active and passive parts. The active stress is taken to be a function of activation state, muscle fiber shortening velocity and fiber strain; while the passive stress depends only on the strain. This scheme is tested by simulating extension of a squid tentacle during prey capture; our numerical predictions are in close correspondence with existing experimental results. It is shown that the present finite element scheme can successfully simulate more complex behaviors such as torsion of a squid tentacle and the bending behavior of octopus arms or elephant trunks.

  9. User's Guide for ENSAERO_FE Parallel Finite Element Solver

    NASA Technical Reports Server (NTRS)

    Eldred, Lloyd B.; Guruswamy, Guru P.

    1999-01-01

    A high fidelity parallel static structural analysis capability is created and interfaced to the multidisciplinary analysis package ENSAERO-MPI of Ames Research Center. This new module replaces ENSAERO's lower fidelity simple finite element and modal modules. Full aircraft structures may be more accurately modeled using the new finite element capability. Parallel computation is performed by breaking the full structure into multiple substructures. This approach is conceptually similar to ENSAERO's multizonal fluid analysis capability. The new substructure code is used to solve the structural finite element equations for each substructure in parallel. NASTRANKOSMIC is utilized as a front end for this code. Its full library of elements can be used to create an accurate and realistic aircraft model. It is used to create the stiffness matrices for each substructure. The new parallel code then uses an iterative preconditioned conjugate gradient method to solve the global structural equations for the substructure boundary nodes.

  10. Finite element analysis for acoustic characteristics of a magnetostrictive transducer

    NASA Astrophysics Data System (ADS)

    Kim, Jaehwan; Jung, Eunmi

    2005-12-01

    This paper presents a finite element analysis for a magnetostrictive transducer by taking into account the nonlinear behavior of the magnetostrictive material and fluid interaction. A finite element formulation is derived for the coupling of magnetostrictive and elastic materials based upon a separated magnetic and displacement field calculation and a curve fitting technique of material properties. The fluid and structure coupled problem is taken into account based upon pressure and velocity potential fields formulation. Infinite wave envelope elements are introduced at an artificial boundary to deal with the infinite fluid domain. A finite element code for the analysis of a magnetostrictive transducer is developed. A magnetostrictive tonpilz transducer is taken as an example and verification for the developed program is made by comparing with a commercial code. The acoustic characteristics of the magnetostrictive tonpilz transducer are calculated in terms of radiation pattern and transmitted current response.

  11. Solution Techniques in Finite Element Analysis.

    DTIC Science & Technology

    1983-05-01

    7. we show a plane strain rubber block subjected to large deforma- tion. We employ a 4-node element and a Mooney - Rivlin material as described in...0 Rubber Block U: 0.30 Figure 7. Large Deformation Analysis of the R ubber Block with Mooney - Rivlin Material Model. GEOMETRY node iE 10 4 -0.3 1.0 1

  12. A finite element implementation for biphasic contact of hydrated porous media under finite deformation and sliding

    PubMed Central

    Guo, Hongqiang; Shah, Mitul; Spilker, Robert L.

    2014-01-01

    The study of biphasic soft tissues contact is fundamental to understanding the biomechanical behavior of human diarthrodial joints. However, to date, few biphasic finite element contact analysis for 3D physiological geometries under finite deformation has been developed. The objective of this paper is to develop a hyperelastic biphasic contact implementation for finite deformation and sliding problem. An augmented Lagrangian method was used to enforce the continuity of contact traction and fluid pressure across the contact interface. The finite element implementation was based on a general purpose software, COMSOL Multiphysics. The accuracy of the implementation is verified using example problems, for which solutions are available by alternative analyses. The implementation was proven to be robust and able to handle finite deformation and sliding. PMID:24496915

  13. Coupled finite-difference/finite-element approach for wing-body aeroelasticity

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    1992-01-01

    Computational methods using finite-difference approaches for fluids and finite-element approaches for structures have individually advanced to solve almost full-aircraft configurations. However, coupled approaches to solve fluid/structural interaction problems are still in their early stages of development, particularly for complex geometries using complete equations such as the Euler/Navier-Stokes equations. Earlier work demonstrated the success of coupling finite-difference and finite-element methods for simple wing configurations using the Euler/Navier-Stokes equations. In this paper, the same approach is extended for general wing-body configurations. The structural properties are represented by beam-type finite elements. The flow is modeled using the Euler/Navier-Stokes equations. A general procedure to fully couple structural finite-element boundary conditions with fluid finite-difference boundary conditions is developed for wing-body configurations. Computations are made using moving grids that adapt to wing-body structural deformations. Results are illustrated for a typical wing-body configuration.

  14. A blended continuous-discontinuous finite element method for solving the multi-fluid plasma model

    NASA Astrophysics Data System (ADS)

    Sousa, E. M.; Shumlak, U.

    2016-12-01

    The multi-fluid plasma model represents electrons, multiple ion species, and multiple neutral species as separate fluids that interact through short-range collisions and long-range electromagnetic fields. The model spans a large range of temporal and spatial scales, which renders the model stiff and presents numerical challenges. To address the large range of timescales, a blended continuous and discontinuous Galerkin method is proposed, where the massive ion and neutral species are modeled using an explicit discontinuous Galerkin method while the electrons and electromagnetic fields are modeled using an implicit continuous Galerkin method. This approach is able to capture large-gradient ion and neutral physics like shock formation, while resolving high-frequency electron dynamics in a computationally efficient manner. The details of the Blended Finite Element Method (BFEM) are presented. The numerical method is benchmarked for accuracy and tested using two-fluid one-dimensional soliton problem and electromagnetic shock problem. The results are compared to conventional finite volume and finite element methods, and demonstrate that the BFEM is particularly effective in resolving physics in stiff problems involving realistic physical parameters, including realistic electron mass and speed of light. The benefit is illustrated by computing a three-fluid plasma application that demonstrates species separation in multi-component plasmas.

  15. A one-dimensional model of subsurface hillslope flow

    Treesearch

    Jason C. Fisher

    1997-01-01

    Abstract - A one-dimensional, finite difference model of saturated subsurface flow within a hillslope was developed. The model uses rainfall, elevation data, a hydraulic conductivity, and a storage coefficient to predict the saturated thickness in time and space. The model was tested against piezometric data collected in a swale located in the headwaters of the North...

  16. New triangular and quadrilateral plate-bending finite elements

    NASA Technical Reports Server (NTRS)

    Narayanaswami, R.

    1974-01-01

    A nonconforming plate-bending finite element of triangular shape and associated quadrilateral elements are developed. The transverse displacement is approximated within the element by a quintic polynomial. The formulation takes into account the effects of transverse shear deformation. Results of the static and dynamic analysis of a square plate, with edges simply supported or clamped, are compared with exact solutions. Good accuracy is obtained in all calculations.

  17. Variational formulation of high performance finite elements: Parametrized variational principles

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.; Militello, Carmello

    1991-01-01

    High performance elements are simple finite elements constructed to deliver engineering accuracy with coarse arbitrary grids. This is part of a series on the variational basis of high-performance elements, with emphasis on those constructed with the free formulation (FF) and assumed natural strain (ANS) methods. Parametrized variational principles that provide a foundation for the FF and ANS methods, as well as for a combination of both are presented.

  18. Effective Finite Elements for Shell Analysis.

    DTIC Science & Technology

    1984-02-20

    important mode of deformation , and when an element is not capable of representing inextensional bending, parasitic membrane energy is generated in many modes...of deformation . In the same manner that parasitic shear causes shear locking, this spurious membrane energy causes membrane locking. Membrane locking...dominant mode of deformation . (cont.) 20. OISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIEO/UNLIMITEO X SAME AS

  19. The Mathematics of Finite Elements and Applications

    DTIC Science & Technology

    1993-04-30

    suitable geometrical mapping between the parametric u,v-plane and the physical xy- plane. In the u,v-plane the geometry of the elements is linear. In...the plate. For thin plates there may be a boundary layer, the existence and structure of which depends on the boundary conditions, the plate geometry ...exhibits a boundary layer except for very special data or plate geometry . The bending moment tensor and shear force vector have more pronounced boundary

  20. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 2: Derivation of finite-element equations and comparisons with analytical solutions

    USGS Publications Warehouse

    Cooley, Richard L.

    1992-01-01

    MODFE, a modular finite-element model for simulating steady- or unsteady-state, area1 or axisymmetric flow of ground water in a heterogeneous anisotropic aquifer is documented in a three-part series of reports. In this report, part 2, the finite-element equations are derived by minimizing a functional of the difference between the true and approximate hydraulic head, which produces equations that are equivalent to those obtained by either classical variational or Galerkin techniques. Spatial finite elements are triangular with linear basis functions, and temporal finite elements are one dimensional with linear basis functions. Physical processes that can be represented by the model include (1) confined flow, unconfined flow (using the Dupuit approximation), or a combination of both; (2) leakage through either rigid or elastic confining units; (3) specified recharge or discharge at points, along lines, or areally; (4) flow across specified-flow, specified-head, or head-dependent boundaries; (5) decrease of aquifer thickness to zero under extreme water-table decline and increase of aquifer thickness from zero as the water table rises; and (6) head-dependent fluxes from springs, drainage wells, leakage across riverbeds or confining units combined with aquifer dewatering, and evapotranspiration. The matrix equations produced by the finite-element method are solved by the direct symmetric-Doolittle method or the iterative modified incomplete-Cholesky conjugate-gradient method. The direct method can be efficient for small- to medium-sized problems (less than about 500 nodes), and the iterative method is generally more efficient for larger-sized problems. Comparison of finite-element solutions with analytical solutions for five example problems demonstrates that the finite-element model can yield accurate solutions to ground-water flow problems.

  1. Spectral finite-element methods for parametric constrained optimization problems.

    SciTech Connect

    Anitescu, M.; Mathematics and Computer Science

    2009-01-01

    We present a method to approximate the solution mapping of parametric constrained optimization problems. The approximation, which is of the spectral finite element type, is represented as a linear combination of orthogonal polynomials. Its coefficients are determined by solving an appropriate finite-dimensional constrained optimization problem. We show that, under certain conditions, the latter problem is solvable because it is feasible for a sufficiently large degree of the polynomial approximation and has an objective function with bounded level sets. In addition, the solutions of the finite-dimensional problems converge for an increasing degree of the polynomials considered, provided that the solutions exhibit a sufficiently large and uniform degree of smoothness. Our approach solves, in the case of optimization problems with uncertain parameters, the most computationally intensive part of stochastic finite-element approaches. We demonstrate that our framework is applicable to parametric eigenvalue problems.

  2. Stabilized plane and axisymmetric Lobatto finite element models

    NASA Astrophysics Data System (ADS)

    Hu, Y. C.; Sze, K. Y.; Zhou, Y. X.

    2015-11-01

    High order elements are renowned for their high accuracy and convergence. Among them, Lobatto spectral finite elements are commonly used in explicit dynamic analyses as their mass matrices when evaluated by the Lobatto integration rule are diagonal. While there are numerous advanced first and second order elements, advanced high order elements are rarely seen. In this paper, generic stabilization schemes are devised for the reduced integrated plane and axisymmetric elements. Static and explicit dynamic tests are considered for evaluating the relatively merits of the stabilized and conventional elements. The displacement errors of the stabilized elements are less than those of the conventional Lobatto elements. When the material is nearly incompressible, the stabilized elements are also more accurate in terms of the energy error norm. This advantage is of practical importance for bio-tissue and hydrated soil analyses.

  3. The Constraint Method for Solid Finite Elements.

    DTIC Science & Technology

    1982-11-30

    Sciences 13 . NUMBER S Bolling Air Force Base, DC 20332 - -Jfi’ 14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) IS. SECURITY CVASS...1- 4)Q2 (n) (’+C) Higher degree elements add edge modes, face modes and internal modes. More details are given in [12, 13 ]. triangular prism A...23) N2 (L2 , L3)(l-z) edge u (31) N2 (L3 ’ L)(1-z) nodes s u s (45). N2 (L1, L2 )z uso (56) N2 (L2, L3 )z K - 13 - nodal variable shape function u

  4. Finite Element Method for Capturing Ultra-relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Richardson, G. A.; Chung, T. J.

    2003-01-01

    While finite element methods are used extensively by researchers solving computational fluid dynamics in fields other than astrophysics, their use in astrophysical fluid simulations has been predominantly overlooked. Current simulations using other methods such as finite difference and finite volume (based on finite difference) have shown remarkable results, but these methods are limited by their fundamental properties in aspects that are important for simulations with complex geometries and widely varying spatial and temporal scale differences. We have explored the use of finite element methods for astrophysical fluids in order to establish the validity of using such methods in astrophysical environments. We present our numerical technique applied to solving ultra-relativistic (Lorentz Factor Gamma >> 1) shocks which are prevalent in astrophysical studies including relativistic jets and gamma-ray burst studies. We show our finite element formulation applied to simulations where the Lorentz factor ranges up to 2236 and demonstrate its stability in solving ultra-relativistic flows. Our numerical method is based on the Flowfield Dependent Variation (FDV) Method, unique in that numerical diffusion is derived from physical parameters rather than traditional artificial viscosity methods. Numerical instabilities account for most of the difficulties when capturing shocks in this regime. Our method results in stable solutions and accurate results as compared with other methods.

  5. Hybrid finite element-finite difference method for thermal analysis of blood vessels.

    PubMed

    Blanchard, C H; Gutierrez, G; White, J A; Roemer, R B

    2000-01-01

    A hybrid finite-difference/finite-element technique for the thermal analysis of blood vessels embedded in perfused tissue has been developed and evaluated. This method provides efficient and accurate solutions to the conjugated heat transfer problem of convection by blood coupled to conduction in the tissue. The technique uses a previously developed 3D automatic meshing method for creating a finite element mesh in the tissue surrounding the vessels, coupled iteratively with a 1-D marching finite difference method for the interior of the vessels. This hybrid technique retains the flexibility and ease of automated finite-element meshing techniques for modelling the complex geometry of blood vessels and irregularly shaped tissues, and speeds the solution time by using a simple finite-difference method to calculate the bulk mean temperatures within all blood vessels. The use of the 1D finite-difference technique in the blood vessels also eliminates the large computer memory requirements needed to accurately solve large vessel network problems when fine FE meshes are used in the interior of vessels. The accuracy of the hybrid technique has been verified against previously verified numerical solutions. In summary, the hybrid technique combines the accuracy and flexibility found in automated finite-element techniques, with the speed and reduction of computational memory requirements associated with the 1D finite-difference technique, something which has not been done before. This method, thus, has the potential to provide accurate, flexible and relatively fast solutions for the thermal analysis of coupled perfusion/blood vessel problems, and large vessel network problems.

  6. Optimal mapping of irregular finite element domains to parallel processors

    NASA Technical Reports Server (NTRS)

    Flower, J.; Otto, S.; Salama, M.

    1987-01-01

    Mapping the solution domain of n-finite elements into N-subdomains that may be processed in parallel by N-processors is an optimal one if the subdomain decomposition results in a well-balanced workload distribution among the processors. The problem is discussed in the context of irregular finite element domains as an important aspect of the efficient utilization of the capabilities of emerging multiprocessor computers. Finding the optimal mapping is an intractable combinatorial optimization problem, for which a satisfactory approximate solution is obtained here by analogy to a method used in statistical mechanics for simulating the annealing process in solids. The simulated annealing analogy and algorithm are described, and numerical results are given for mapping an irregular two-dimensional finite element domain containing a singularity onto the Hypercube computer.

  7. Finite element methods for nonlinear acoustics in fluids.

    SciTech Connect

    Walsh, Timothy Francis

    2005-06-01

    In this paper, weak formulations and finite element discretizations of the governing partial differential equations of three-dimensional nonlinear acoustics in absorbing fluids are presented. The fluid equations are considered in an Eulerian framework, rather than a displacement framework, since in the latter case the corresponding finite element formulations suffer from spurious modes and numerical instabilities. When taken with the governing partial differential equations of a solid body and the continuity conditions, a coupled formulation is derived. The change in solid/fluid interface conditions when going from a linear acoustic fluid to a nonlinear acoustic fluid is demonstrated. Finite element discretizations of the coupled problem are then derived, and verification examples are presented that demonstrate the correctness of the implementations. We demonstrate that the time step size necessary to resolve the wave decreases as steepening occurs. Finally, simulation results are presented on a resonating acoustic cavity, and a coupled elastic/acoustic system consisting of a fluid-filled spherical tank.

  8. Finite element methods on supercomputers - The scatter-problem

    NASA Technical Reports Server (NTRS)

    Loehner, R.; Morgan, K.

    1985-01-01

    Certain problems arise in connection with the use of supercomputers for the implementation of finite-element methods. These problems are related to the desirability of utilizing the power of the supercomputer as fully as possible for the rapid execution of the required computations, taking into account the gain in speed possible with the aid of pipelining operations. For the finite-element method, the time-consuming operations may be divided into three categories. The first two present no problems, while the third type of operation can be a reason for the inefficient performance of finite-element programs. Two possibilities for overcoming certain difficulties are proposed, giving attention to a scatter-process.

  9. Finite element method for eigenvalue problems in electromagnetics

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.; Deshpande, Manohar D.; Cockrell, C. R.; Beck, Fred B.

    1994-01-01

    Finite element method (FEM) has been a very powerful tool to solve many complex problems in electromagnetics. The goal of the current research at the Langley Research Center is to develop a combined FEM/method of moments approach to three-dimensional scattering/radiation problem for objects with arbitrary shape and filled with complex materials. As a first step toward that goal, an exercise is taken to establish the power of FEM, through closed boundary problems. This paper demonstrates the developed of FEM tools for two- and three-dimensional eigenvalue problems in electromagnetics. In section 2, both the scalar and vector finite elements have been used for various waveguide problems to demonstrate the flexibility of FEM. In section 3, vector finite element method has been extended to three-dimensional eigenvalue problems.

  10. An Object Oriented, Finite Element Framework for Linear Wave Equations

    SciTech Connect

    Koning, Joseph M.

    2004-03-01

    This dissertation documents an object oriented framework which can be used to solve any linear wave equation. The linear wave equations are expressed in the differential forms language. This differential forms expression allows a strict discrete interpretation of the system. The framework is implemented using the Galerkin Finite Element Method to define the discrete differential forms and operators. Finite element basis functions including standard scalar Nodal and vector Nedelec basis functions are used to implement the discrete differential forms resulting in a mixed finite element system. Discretizations of scalar and vector wave equations in the time and frequency domains will be demonstrated in both differential forms and vector calculi. This framework conserves energy, maintains physical continuity, is valid on unstructured grids, conditionally stable and second order accurate. Examples including linear electrodynamics, acoustics, elasticity and magnetohydrodynamics are demonstrated.

  11. Flow Applications of the Least Squares Finite Element Method

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan

    1998-01-01

    The main thrust of the effort has been towards the development, analysis and implementation of the least-squares finite element method (LSFEM) for fluid dynamics and electromagnetics applications. In the past year, there were four major accomplishments: 1) special treatments in computational fluid dynamics and computational electromagnetics, such as upwinding, numerical dissipation, staggered grid, non-equal order elements, operator splitting and preconditioning, edge elements, and vector potential are unnecessary; 2) the analysis of the LSFEM for most partial differential equations can be based on the bounded inverse theorem; 3) the finite difference and finite volume algorithms solve only two Maxwell equations and ignore the divergence equations; and 4) the first numerical simulation of three-dimensional Marangoni-Benard convection was performed using the LSFEM.

  12. Optimal mapping of irregular finite element domains to parallel processors

    NASA Technical Reports Server (NTRS)

    Flower, J.; Otto, S.; Salama, M.

    1987-01-01

    Mapping the solution domain of n-finite elements into N-subdomains that may be processed in parallel by N-processors is an optimal one if the subdomain decomposition results in a well-balanced workload distribution among the processors. The problem is discussed in the context of irregular finite element domains as an important aspect of the efficient utilization of the capabilities of emerging multiprocessor computers. Finding the optimal mapping is an intractable combinatorial optimization problem, for which a satisfactory approximate solution is obtained here by analogy to a method used in statistical mechanics for simulating the annealing process in solids. The simulated annealing analogy and algorithm are described, and numerical results are given for mapping an irregular two-dimensional finite element domain containing a singularity onto the Hypercube computer.

  13. Flow Applications of the Least Squares Finite Element Method

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan

    1998-01-01

    The main thrust of the effort has been towards the development, analysis and implementation of the least-squares finite element method (LSFEM) for fluid dynamics and electromagnetics applications. In the past year, there were four major accomplishments: 1) special treatments in computational fluid dynamics and computational electromagnetics, such as upwinding, numerical dissipation, staggered grid, non-equal order elements, operator splitting and preconditioning, edge elements, and vector potential are unnecessary; 2) the analysis of the LSFEM for most partial differential equations can be based on the bounded inverse theorem; 3) the finite difference and finite volume algorithms solve only two Maxwell equations and ignore the divergence equations; and 4) the first numerical simulation of three-dimensional Marangoni-Benard convection was performed using the LSFEM.

  14. Phase diagram kinetics for shape memory alloys: a robust finite element implementation

    NASA Astrophysics Data System (ADS)

    Gao, Xiujie; Qiao, Rui; Brinson, L. Catherine

    2007-12-01

    A physically based one-dimensional shape memory alloy (SMA) model is implemented into the finite element software ABAQUS via a user interface. Linearization of the SMA constitutive law together with complete transformation kinetics is performed and tabulated for implementation. Robust rules for transformation zones of the phase diagram are implemented and a new strategy for overlapping transformation zones is developed. The iteration algorithm, switching point updates and solution strategies are developed and are presented in detail. The code is validated via baseline simulations including the shape memory effect and pseudoelasticity and then further tested with complex loading paths. A hybrid composite with self-healing function is then simulated using the developed code. The example demonstrates the usefulness of the methods for the design and simulation of materials or structures actuated by SMA wires or ribbons.

  15. A finite-element visualization of quantum reactive scattering. II. Nonadiabaticity on coupled potential energy surfaces

    SciTech Connect

    Warehime, Mick; Kłos, Jacek; Alexander, Millard H.

    2015-01-21

    This is the second in a series of papers detailing a MATLAB based implementation of the finite element method applied to collinear triatomic reactions. Here, we extend our previous work to reactions on coupled potential energy surfaces. The divergence of the probability current density field associated with the two electronically adiabatic states allows us to visualize in a novel way where and how nonadiabaticity occurs. A two-dimensional investigation gives additional insight into nonadiabaticity beyond standard one-dimensional models. We study the F({sup 2}P) + HCl and F({sup 2}P) + H{sub 2} reactions as model applications. Our publicly available code (http://www2.chem.umd.edu/groups/alexander/FEM) is general and easy to use.

  16. Linear-scaling multipole-accelerated Gaussian and finite-element Coulomb method.

    PubMed

    Watson, Mark A; Kurashige, Yuki; Nakajima, Takahito; Hirao, Kimihiko

    2008-02-07

    A linear-scaling implementation of the Gaussian and finite-element Coulomb (GFC) method is presented for the rapid computation of the electronic Coulomb potential. The current work utilizes the fast multipole method (FMM) for the evaluation of the Poisson equation boundary condition. The FMM affords significant savings for small- and medium-sized systems and overcomes the bottleneck in the GFC method for very large systems. Compared to an exact analytical treatment of the boundary, more than 100-fold speedups are observed for systems with more than 1000 basis functions without any significant loss of accuracy. We present CPU times to demonstrate the effectiveness of the linear-scaling GFC method for both one-dimensional polyalanine chains and the challenging case of three-dimensional diamond fragments.

  17. Numerical reproduction of screening-current-induced fields in HTS tape windings using finite element method

    NASA Astrophysics Data System (ADS)

    Okabe, Yuma; Honda, Tomokazu; Kajikawa, Kazuhiro

    2017-07-01

    The screening-current-induced fields in one of the high temperature superconducting (HTS) coils fabricated previously with coated conductors are evaluated numerically by using a one-dimensional finite element method, in which only the perpendicular component of a current vector potential is considered due to a very thin superconductor layer in the coated conductor. It is assumed that the voltage-current characteristics in the superconductor layer can be expressed by the critical state or n-value model, in which the field-dependent critical current density is also taken into account. The numerically calculated results of the screening-current-induced fields are compared with the experimental results carried out previously.

  18. Finite element analysis of dynamic energy transfer in a Stirling engine regenerator

    NASA Astrophysics Data System (ADS)

    Datta, S.; Larson, V. H.

    The application of the finite element method (FEM) to characterizing the Stirling engine is demonstrated. An assumption of laminar and one-dimensional flow is made, and the FEM model describes the regenerator and contiguous portions of the heater and cooler. The dead volume is accounted for and gas velocity is set equal to piston velocity. Constant temperatures are chosen for the heater and cooler in the mesh, and the regenerator mesh temperature is computed at nodal points as a cosine distribution between the boundary values at the heater and cooler. Energy, and mass conservation equations are defined, as are the equation of state for an ideal gas and auxiliary equations for viscosity and heat transfer coefficients. Details of the Eulerian FEM formulation in Galerkin form are provided, as are the solution method for the matrix equations.

  19. Derivation of a Tappered p-Version Beam Finite Element

    NASA Technical Reports Server (NTRS)

    Hinnant, Howard E.

    1989-01-01

    A tapered p-version beam finite element suitable for dynamic applications is derived. The taper in the element is represented by allowing the area moments of inertia to vary as quartic polynomials along the length of the beam, and the cross-sectional area to vary as a quadratic polynomial. The p-version finite-element characteristics are implemented through a set of polynomial shape functions. The lower-order shape functions are identical to the classical cubic and linear shape functions normally associated with a beam element. The higher-order shape functions are a hierarchical set of polynomials that are integrals of orthogonal polynomials. Explicit expressions for the mass and stiffness matrices are presented for an arbitrary value of p. The element has been verified to be numerically stable using shape functions through 22nd order.

  20. Finite element modelling of acoustic singularities with application to near and far field propeller noise

    NASA Astrophysics Data System (ADS)

    Eversman, W.; Steck, J. E.

    1984-10-01

    Numerical formulations and results are presented which expand on recent developments in the finite element modelling of acoustic volume sources and acoustic dipoles. It is shown that with a suitable structuring of the acoustic field equations, it is possible to include monopoles and dipoles within the same analysis framework as has been extensively used for interior duct acoustics and for duct inlet radiation problems. This allows the extension of the finite element modelling method to include the noise sources in such applications as propellers enclosed in a duct or in free space with mean flows. The necessary structuring of the acoustic field equations is shown, and example calculations are given for the case of one-dimensional sources and body forces in the presence of mean flow, two-dimensional sources, axial body forces, and transverse body forces in the presence of uniform mean flow. Three dimensional non axial sources and dipoles are modelled as the Fourier sum of axially symmetric solutions without the necessity of introducing 'singular elements'. It is further demonstrated that distributions of singularities can be readily modelled, and an example is given of the computation of the near and far field radiation of a propeller. Comparison of the far field radiation directivity is made with the Gutin theory.

  1. Life assessment of structural components using inelastic finite element analyses

    NASA Astrophysics Data System (ADS)

    Arya, Vinod K.; Halford, Gary R.

    1993-10-01

    The need for enhanced and improved performance of structural components subject to severe cyclic thermal/mechanical loadings, such as in the aerospace industry, requires development of appropriate solution technologies involving time-dependent inelastic analyses. Such analyses are mandatory to predict local stress-strain response and to assess more accurately the cyclic life time of structural components. The NASA-Lewis Research Center is cognizant of this need. As a result of concerted efforts at Lewis during the last few years, several such finite element solution technologies (in conjunction with the finite element program MARC) were developed and successfully applied to numerous uniaxial and multiaxial problems. These solution technologies, although developed for use with MARC program, are general in nature and can easily be extended for adaptation with other finite element programs such as ABAQUS, ANSYS, etc. The description and results obtained from two such inelastic finite element solution technologies are presented. The first employs a classical (non-unified) creep-plasticity model. An application of this technology is presented for a hypersonic inlet cowl-lip problem. The second of these technologies uses a unified creep-plasticity model put forth by Freed. The structural component for which this finite element solution technology is illustrated, is a cylindrical rocket engine thrust chamber. The advantages of employing a viscoplastic model for nonlinear time-dependent structural analyses are demonstrated. The life analyses for cowl-lip and cylindrical thrust chambers are presented. These analyses are conducted by using the stress-strain response of these components obtained from the corresponding finite element analyses.

  2. Life assessment of structural components using inelastic finite element analyses

    NASA Technical Reports Server (NTRS)

    Arya, Vinod K.; Halford, Gary R.

    1993-01-01

    The need for enhanced and improved performance of structural components subject to severe cyclic thermal/mechanical loadings, such as in the aerospace industry, requires development of appropriate solution technologies involving time-dependent inelastic analyses. Such analyses are mandatory to predict local stress-strain response and to assess more accurately the cyclic life time of structural components. The NASA-Lewis Research Center is cognizant of this need. As a result of concerted efforts at Lewis during the last few years, several such finite element solution technologies (in conjunction with the finite element program MARC) were developed and successfully applied to numerous uniaxial and multiaxial problems. These solution technologies, although developed for use with MARC program, are general in nature and can easily be extended for adaptation with other finite element programs such as ABAQUS, ANSYS, etc. The description and results obtained from two such inelastic finite element solution technologies are presented. The first employs a classical (non-unified) creep-plasticity model. An application of this technology is presented for a hypersonic inlet cowl-lip problem. The second of these technologies uses a unified creep-plasticity model put forth by Freed. The structural component for which this finite element solution technology is illustrated, is a cylindrical rocket engine thrust chamber. The advantages of employing a viscoplastic model for nonlinear time-dependent structural analyses are demonstrated. The life analyses for cowl-lip and cylindrical thrust chambers are presented. These analyses are conducted by using the stress-strain response of these components obtained from the corresponding finite element analyses.

  3. In Vivo Validation of a One-Dimensional Finite Element Method for Simulation-Based Medical Planning for Cardiovascular Bypass Surgery

    DTIC Science & Technology

    2007-11-02

    loss value for a stenosis model (Fig. 1) developed by Seeley and Young [15]. This model utilizes the area ratio between the stenosed segment and...ÝÐ àÍ Ý (11) where pD is the pressure drop due to the stenosis , Re0 is the Reynolds number in the unobstructed section, D0 the unobstructed...segments that have a 75% or more reduction in area compared to the distal segment area. D1 D0 L Fig. 1. Stenosis model diagram We implemented minor

  4. Finite Element Modelling and Analysis of Conventional Pultrusion Processes

    NASA Astrophysics Data System (ADS)

    Akishin, P.; Barkanov, E.; Bondarchuk, A.

    2015-11-01

    Pultrusion is one of many composite manufacturing techniques and one of the most efficient methods for producing fiber reinforced polymer composite parts with a constant cross-section. Numerical simulation is helpful for understanding the manufacturing process and developing scientific means for the pultrusion tooling design. Numerical technique based on the finite element method has been developed for the simulation of pultrusion processes. It uses the general purpose finite element software ANSYS Mechanical. It is shown that the developed technique predicts the temperature and cure profiles, which are in good agreement with those published in the open literature.

  5. Predicting Rediated Noise With Power Flow Finite Element Analysis

    DTIC Science & Technology

    2007-02-01

    Defence R&D Canada – Atlantic DEFENCE DÉFENSE & Predicting Rediated Noise With Power Flow Finite Element Analysis D. Brennan T.S. Koko L. Jiang J...PREDICTING RADIATED NOISE WITH POWER FLOW FINITE ELEMENT ANALYSIS D.P. Brennan T.S. Koko L. Jiang J.C. Wallace Martec Limited Martec Limited...model- or full-scale data before it is available for general use. Brennan, D.P., Koko , T.S., Jiang, L., Wallace, J.C. 2007. Predicting Radiated

  6. Correlation of composite material test results with finite element analysis

    NASA Astrophysics Data System (ADS)

    Guƫu, M.

    2016-08-01

    In this paper are presented some aspects regarding the method of simulation of composite materials testing with finite element analysis software. There were simulated tensile and shear tests of specimens manufactured from glass fiber reinforced polyester. For specimens manufacturing two types of fabrics were used: unidirectional and bidirectional. Experimentally determined elastic properties of composite material were used as input data. Modeling of composite architecture of the specimens was performed with ANSYS Composite PrepPost software. Finite element analysis stresses and strains on strain gauges bonding area were considered and compared with the real values in a diagram. After results comparison, potential causes of deviations were identified.

  7. Finite element models of the space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Muller, G. R.

    1980-01-01

    Finite element models were developed as input to dynamic simulations of the high pressure fuel turbopump (HPFTP), the high pressure oxidizer turbopump (HPOTP), and the space shuttle main engine (SSME). Descriptions are provided for the five basic finite element models: HPFTP rotor, HPFTP case, HPOTP rotor, HPOTP case, and SSME (excluding turbopumps). Modal results are presented for the HPFTP rotor, HPFTP case, HPOTP rotor, coupled HPFTP rotor and case, HPOTP case, coupled HPOTP rotor and case, SSME (excluding turbopumps), and SSME (including turbopumps). Results for the SSME (including turbopumps) model are compared to data from a SSME HPOTP modal survey.

  8. Development of non-linear finite element computer code

    NASA Technical Reports Server (NTRS)

    Becker, E. B.; Miller, T.

    1985-01-01

    Recent work has shown that the use of separable symmetric functions of the principal stretches can adequately describe the response of certain propellant materials and, further, that a data reduction scheme gives a convenient way of obtaining the values of the functions from experimental data. Based on representation of the energy, a computational scheme was developed that allows finite element analysis of boundary value problems of arbitrary shape and loading. The computational procedure was implemental in a three-dimensional finite element code, TEXLESP-S, which is documented herein.

  9. Finite element methods for nonlinear elastostatic problems in rubber elasticity

    NASA Technical Reports Server (NTRS)

    Oden, J. T.; Becker, E. B.; Miller, T. H.; Endo, T.; Pires, E. B.

    1983-01-01

    A number of finite element methods for the analysis of nonlinear problems in rubber elasticity are outlined. Several different finite element schemes are discussed. These include the augmented Lagrangian method, continuation or incremental loading methods, and associated Riks-type methods which have the capability of incorporating limit point behavior and bifurcations. Algorithms for the analysis of limit point behavior and bifurcations are described and the results of several numerical experiments are presented. In addition, a brief survey of some recent work on modelling contact and friction in elasticity problems is given. These results pertain to the use of new nonlocal and nonlinear friction laws.

  10. Engineering and Design: Geotechnical Analysis by the Finite Element Method

    DTIC Science & Technology

    2007-11-02

    used it to determine stresses and movements in embank- ments, and Reyes and Deer described its application to analysis of underground openings in rock...36 Hughes, T. J. R. (1987). The Finite Element Reyes , S. F., and Deene, D. K. (1966). “Elastic Method, Linear Static and Dynamic Finite Element...SM4), 1,435-1,457. Fernando Dams During the Earthquakes of February Davis, E. H., and Poulos, H. G. (1972). “Rate of Report EERC-73-2, Berkeley, CA

  11. Experimentally validated finite element model of electrocaloric multilayer ceramic structures

    NASA Astrophysics Data System (ADS)

    Smith, N. A. S.; Rokosz, M. K.; Correia, T. M.

    2014-07-01

    A novel finite element model to simulate the electrocaloric response of a multilayer ceramic capacitor (MLCC) under real environment and operational conditions has been developed. The two-dimensional transient conductive heat transfer model presented includes the electrocaloric effect as a source term, as well as accounting for radiative and convective effects. The model has been validated with experimental data obtained from the direct imaging of MLCC transient temperature variation under application of an electric field. The good agreement between simulated and experimental data, suggests that the novel experimental direct measurement methodology and the finite element model could be used to support the design of optimised electrocaloric units and operating conditions.

  12. Discontinuous Galerkin finite element methods for gradient plasticity.

    SciTech Connect

    Garikipati, Krishna.; Ostien, Jakob T.

    2010-10-01

    In this report we apply discontinuous Galerkin finite element methods to the equations of an incompatibility based formulation of gradient plasticity. The presentation is motivated with a brief overview of the description of dislocations within a crystal lattice. A tensor representing a measure of the incompatibility with the lattice is used in the formulation of a gradient plasticity model. This model is cast in a variational formulation, and discontinuous Galerkin machinery is employed to implement the formulation into a finite element code. Finally numerical examples of the model are shown.

  13. Verification of a Finite Element Model for Pyrolyzing Ablative Materials

    NASA Technical Reports Server (NTRS)

    Risch, Timothy K.

    2017-01-01

    Ablating thermal protection system (TPS) materials have been used in many reentering spacecraft and in other applications such as rocket nozzle linings, fire protection materials, and as countermeasures for directed energy weapons. The introduction of the finite element model to the analysis of ablation has arguably resulted in improved computational capabilities due the flexibility and extended applicability of the method, especially to complex geometries. Commercial finite element codes often provide enhanced capability compared to custom, specially written programs based on versatility, usability, pre- and post-processing, grid generation, total life-cycle costs, and speed.

  14. Error analysis of finite element solutions for postbuckled plates

    NASA Technical Reports Server (NTRS)

    Sistla, Rajaram; Thurston, Gaylen A.

    1988-01-01

    An error analysis of results from finite-element solutions of problems in shell structures is further developed, incorporating the results of an additional numerical analysis by which oscillatory behavior is eliminated. The theory is extended to plates with initial geometric imperfections, and this novel analysis is programmed as a postprocessor for a general-purpose finite-element code. Numerical results are given for the case of a stiffened panel in compression and a plate loaded in shear by a 'picture-frame' test fixture.

  15. Differentiating a Finite Element Biodegradation Simulation Model for Optimal Control

    NASA Astrophysics Data System (ADS)

    Minsker, Barbara S.; Shoemaker, Christine A.

    1996-01-01

    An optimal control model for improving the design of in situ bioremediation of groundwater has been developed. The model uses a finite element biodegradation simulation model called Bio2D to find optimal pumping strategies. Analytical derivatives of the bioremediation finite element model are derived; these derivatives must be computed for the optimal control algorithm. The derivatives are complex and nonlinear; the bulk of the computational effort in solving the optimal control problem is required to calculate the derivatives. An overview of the optimal control and simulation model formulations is also given.

  16. Experimentally validated finite element model of electrocaloric multilayer ceramic structures

    SciTech Connect

    Smith, N. A. S. E-mail: maciej.rokosz@npl.co.uk Correia, T. M. E-mail: maciej.rokosz@npl.co.uk; Rokosz, M. K. E-mail: maciej.rokosz@npl.co.uk

    2014-07-28

    A novel finite element model to simulate the electrocaloric response of a multilayer ceramic capacitor (MLCC) under real environment and operational conditions has been developed. The two-dimensional transient conductive heat transfer model presented includes the electrocaloric effect as a source term, as well as accounting for radiative and convective effects. The model has been validated with experimental data obtained from the direct imaging of MLCC transient temperature variation under application of an electric field. The good agreement between simulated and experimental data, suggests that the novel experimental direct measurement methodology and the finite element model could be used to support the design of optimised electrocaloric units and operating conditions.

  17. Analysis of the Performance of Mixed Finite Element Methods.

    DTIC Science & Technology

    1986-10-01

    October 1986 SUMMARY The initial goal of this project is to analyze various mixed methods based on the p- and h-p versions of the finite element methods...The convergence of mixed methods depends on two factors: (1) Approximability of polynomial spaces used (2) Stability. In the past year, the question...significant portion of the research is geared towards the investigation of mixed methods based on the ’p’ and ’h-p’ versions of the finite element method

  18. Chemically pre-strained dielectric elastomers finite element analysis

    NASA Astrophysics Data System (ADS)

    Newell, Brittany; Krutz, Gary; Stewart, Frank; Pascal, Kevin

    2017-04-01

    The applications and feasibility of utilizing dielectric elastomer electroactive polymers in the industrial and medical sectors has drastically increased in recent years due to significant improvements in actuation potential, manufacturing, the introduction of new materials and modeling capabilities. One such development is the introduction of chemical pre-strain as a method of providing enhanced actuation. The purpose of this study was to utilize finite element analysis to analyze the mechanical actuation of an industrial fluoropolymer with chemical induced pre-strain and validate the model with experiential results. Results generated from the finite element analysis showed similar trends to results produced experimentally.

  19. Convergence of finite element approximations of large eddy motion.

    SciTech Connect

    Iliescu, T.; John, V.; Layton, W. J.; Mathematics and Computer Science; Otto-von-Guericke Univ.; Univ. of Pittsburgh

    2002-11-01

    This report considers 'numerical errors' in LES. Specifically, for one family of space filtered flow models, we show convergence of the finite element approximation of the model and give an estimate of the error. Keywords: Navier Stokes equations, large eddy simulation, finite element method I. INTRODUCTION Consider the (turbulent) flow of an incompressible fluid. One promising and common approach to the simulation of the motion of the large fluid structures is Large Eddy Simulation (LES). Various models are used in LES; a common one is to find (w, q), where w : {Omega}

  20. A weak Galerkin generalized multiscale finite element method

    DOE PAGES

    Mu, Lin; Wang, Junping; Ye, Xiu

    2016-03-31

    In this study, we propose a general framework for weak Galerkin generalized multiscale (WG-GMS) finite element method for the elliptic problems with rapidly oscillating or high contrast coefficients. This general WG-GMS method features in high order accuracy on general meshes and can work with multiscale basis derived by different numerical schemes. A special case is studied under this WG-GMS framework in which the multiscale basis functions are obtained by solving local problem with the weak Galerkin finite element method. Convergence analysis and numerical experiments are obtained for the special case.

  1. Using Finite-Element Analysis In Estimating Reliability

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.; August, Richard

    1994-01-01

    Method of estimating design survivability of structural component incorporates finite-element and probabilistic properties of materials. Involves evaluation of design parameters through direct comparisons of survivability of component expressed in terms of percentages of like components that survive at various lifetimes. Probabilistic properties of materials, given in terms of Weibull parameters, coupled with stress field computed by finite-element analysis to determine fatigue life based on initiation of cracks. Method applied to rotating disk containing bolt holes, representative of disks used in aerospace propulsion turbines. Also used in early stages of design process to optimize life-based designs, reducing testing of full-sized components needed to validate designs.

  2. Substructure System Identification for Finite Element Model Updating

    NASA Technical Reports Server (NTRS)

    Craig, Roy R., Jr.; Blades, Eric L.

    1997-01-01

    This report summarizes research conducted under a NASA grant on the topic 'Substructure System Identification for Finite Element Model Updating.' The research concerns ongoing development of the Substructure System Identification Algorithm (SSID Algorithm), a system identification algorithm that can be used to obtain mathematical models of substructures, like Space Shuttle payloads. In the present study, particular attention was given to the following topics: making the algorithm robust to noisy test data, extending the algorithm to accept experimental FRF data that covers a broad frequency bandwidth, and developing a test analytical model (TAM) for use in relating test data to reduced-order finite element models.

  3. Robust Hybrid Finite Element Methods for Antennas and Microwave Circuits

    NASA Technical Reports Server (NTRS)

    Gong, J.; Volakis, John L.

    1996-01-01

    One of the primary goals in this dissertation is concerned with the development of robust hybrid finite element-boundary integral (FE-BI) techniques for modeling and design of conformal antennas of arbitrary shape. Both the finite element and integral equation methods will be first overviewed in this chapter with an emphasis on recently developed hybrid FE-BI methodologies for antennas, microwave and millimeter wave applications. The structure of the dissertation is then outlined. We conclude the chapter with discussions of certain fundamental concepts and methods in electromagnetics, which are important to this study.

  4. Diffusive mesh relaxation in ALE finite element numerical simulations

    SciTech Connect

    Dube, E.I.

    1996-06-01

    The theory for a diffusive mesh relaxation algorithm is developed for use in three-dimensional Arbitary Lagrange/Eulerian (ALE) finite element simulation techniques. This mesh relaxer is derived by a variational principle for an unstructured 3D grid using finite elements, and incorporates hourglass controls in the numerical implementation. The diffusive coefficients are based on the geometric properties of the existing mesh, and are chosen so as to allow for a smooth grid that retains the general shape of the original mesh. The diffusive mesh relaxation algorithm is then applied to an ALE code system, and results from several test cases are discussed.

  5. Survey and development of finite elements for nonlinear structural analysis. Volume 1: Handbook for nonlinear finite elements

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A survey of research efforts in the area of geometrically nonlinear finite elements is presented. The survey is intended to serve as a guide in the choice of nonlinear elements for specific problems, and as background to provide directions for new element developments. The elements are presented in a handbook format and are separated by type as beams, plates (or shallow shells), shells, and other elements. Within a given type, the elements are identified by the assumed displacement shapes and the forms of the nonlinear strain equations. Solution procedures are not discussed except when a particular element formulation poses special problems or capabilities in this regard. The main goal of the format is to provide quick access to a wide variety of element types, in a consistent presentation format, and to facilitate comparison and evaluation of different elements with regard to features, probable accuracy, and complexity.

  6. Finite Element Model Development and Validation for Aircraft Fuselage Structures

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.

    2000-01-01

    The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results. The increased frequency range results in a corresponding increase in the number of modes, modal density and spatial resolution requirements. In this study, conventional modal tests using accelerometers are complemented with Scanning Laser Doppler Velocimetry and Electro-Optic Holography measurements to further resolve the spatial response characteristics. Whenever possible, component and subassembly modal tests are used to validate the finite element models at lower levels of assembly. Normal mode predictions for different finite element representations of components and assemblies are compared with experimental results to assess the most accurate techniques for modeling aircraft fuselage type structures.

  7. Modal Substructuring of Geometrically Nonlinear Finite-Element Models

    SciTech Connect

    Kuether, Robert J.; Allen, Matthew S.; Hollkamp, Joseph J.

    2015-12-21

    The efficiency of a modal substructuring method depends on the component modes used to reduce each subcomponent model. Methods such as Craig–Bampton have been used extensively to reduce linear finite-element models with thousands or even millions of degrees of freedom down orders of magnitude while maintaining acceptable accuracy. A novel reduction method is proposed here for geometrically nonlinear finite-element models using the fixed-interface and constraint modes of the linearized system to reduce each subcomponent model. The geometric nonlinearity requires an additional cubic and quadratic polynomial function in the modal equations, and the nonlinear stiffness coefficients are determined by applying a series of static loads and using the finite-element code to compute the response. The geometrically nonlinear, reduced modal equations for each subcomponent are then coupled by satisfying compatibility and force equilibrium. This modal substructuring approach is an extension of the Craig–Bampton method and is readily applied to geometrically nonlinear models built directly within commercial finite-element packages. The efficiency of this new approach is demonstrated on two example problems: one that couples two geometrically nonlinear beams at a shared rotational degree of freedom, and another that couples an axial spring element to the axial degree of freedom of a geometrically nonlinear beam. The nonlinear normal modes of the assembled models are compared with those of a truth model to assess the accuracy of the novel modal substructuring approach.

  8. Modal Substructuring of Geometrically Nonlinear Finite-Element Models

    DOE PAGES

    Kuether, Robert J.; Allen, Matthew S.; Hollkamp, Joseph J.

    2015-12-21

    The efficiency of a modal substructuring method depends on the component modes used to reduce each subcomponent model. Methods such as Craig–Bampton have been used extensively to reduce linear finite-element models with thousands or even millions of degrees of freedom down orders of magnitude while maintaining acceptable accuracy. A novel reduction method is proposed here for geometrically nonlinear finite-element models using the fixed-interface and constraint modes of the linearized system to reduce each subcomponent model. The geometric nonlinearity requires an additional cubic and quadratic polynomial function in the modal equations, and the nonlinear stiffness coefficients are determined by applying amore » series of static loads and using the finite-element code to compute the response. The geometrically nonlinear, reduced modal equations for each subcomponent are then coupled by satisfying compatibility and force equilibrium. This modal substructuring approach is an extension of the Craig–Bampton method and is readily applied to geometrically nonlinear models built directly within commercial finite-element packages. The efficiency of this new approach is demonstrated on two example problems: one that couples two geometrically nonlinear beams at a shared rotational degree of freedom, and another that couples an axial spring element to the axial degree of freedom of a geometrically nonlinear beam. The nonlinear normal modes of the assembled models are compared with those of a truth model to assess the accuracy of the novel modal substructuring approach.« less

  9. Rapid mesh generation for finite element analysis of investment castings

    SciTech Connect

    Lober, R.R.; Bohnhoff, W.J.; Meyers, R.J.

    1992-11-01

    FASTCAST is a Sandia National Laboratories program to produce investment cast prototypical hardware faster by integrating experimental and computational technologies into the casting process. FASTCAST uses the finite element method to characterize the metal flow and solidification processes to reduce uncertainty in the mold design. For the casting process to benefit from finite element analysis, analysis results must be available in a very short time frame. By focusing on the bottleneck of finite element model creation, automated mesh generation can drastically reduce the time span between geometry definition (design) and accurate analysis results. The increased availability of analysis results will diminish the need for trial and error approaches to acquiring production worthy mold and gating systems for investment casting. The CUBIT meshing tool kit is being developed to address the need for rapid mesh generation. CUBIT is being designed to effectively automate the generation of quadrilateral and hexahedral elements. It is a solid-modeler based, two- and three-dimensional preprocessor that prepares solid models for finite element analysis. CUBIT contains several meshing algorithms including two- and three-dimensional mapping, two- and three-dimensional paving (patented), and a general two and one-half dimensional sweeper based upon the plastering algorithm. This paper describes progress in the development of the CUBIT meshing toolkit.

  10. Rapid mesh generation for finite element analysis of investment castings

    SciTech Connect

    Lober, R.R.; Bohnhoff, W.J.; Meyers, R.J.

    1992-01-01

    FASTCAST is a Sandia National Laboratories program to produce investment cast prototypical hardware faster by integrating experimental and computational technologies into the casting process. FASTCAST uses the finite element method to characterize the metal flow and solidification processes to reduce uncertainty in the mold design. For the casting process to benefit from finite element analysis, analysis results must be available in a very short time frame. By focusing on the bottleneck of finite element model creation, automated mesh generation can drastically reduce the time span between geometry definition (design) and accurate analysis results. The increased availability of analysis results will diminish the need for trial and error approaches to acquiring production worthy mold and gating systems for investment casting. The CUBIT meshing tool kit is being developed to address the need for rapid mesh generation. CUBIT is being designed to effectively automate the generation of quadrilateral and hexahedral elements. It is a solid-modeler based, two- and three-dimensional preprocessor that prepares solid models for finite element analysis. CUBIT contains several meshing algorithms including two- and three-dimensional mapping, two- and three-dimensional paving (patented), and a general two and one-half dimensional sweeper based upon the plastering algorithm. This paper describes progress in the development of the CUBIT meshing toolkit.

  11. Finite Element Aircraft Simulation of Turbulence

    NASA Technical Reports Server (NTRS)

    McFarland, R. E.

    1997-01-01

    A turbulence model has been developed for realtime aircraft simulation that accommodates stochastic turbulence and distributed discrete gusts as a function of the terrain. This model is applicable to conventional aircraft, V/STOL aircraft, and disc rotor model helicopter simulations. Vehicle angular activity in response to turbulence is computed from geometrical and temporal relationships rather than by using the conventional continuum approximations that assume uniform gust immersion and low frequency responses. By using techniques similar to those recently developed for blade-element rotor models, the angular-rate filters of conventional turbulence models are not required. The model produces rotational rates as well as air mass translational velocities in response to both stochastic and deterministic disturbances, where the discrete gusts and turbulence magnitudes may be correlated with significant terrain features or ship models. Assuming isotropy, a two-dimensional vertical turbulence field is created. A novel Gaussian interpolation technique is used to distribute vertical turbulence on the wing span or lateral rotor disc, and this distribution is used to compute roll responses. Air mass velocities are applied at significant centers of pressure in the computation of the aircraft's pitch and roll responses.

  12. New hybrid quadrilateral finite element for Mindlin plate

    NASA Astrophysics Data System (ADS)

    Chin, Yi; Zhang, Jingyu

    1994-02-01

    A new quadrilateral plate element concerning the effect of transverse shear strain was presented. It was derived from the hybrid finite element model based on the principles of virtual work. The outstanding advantage of this element was to use more rational trial functions of the displacements. For this reason, every variety of plate deformation can be simulated really while the least degrees of freedom was employed. A wide range of numerical tests was conducted and the results illustrate that this element has a very wide application scope to the thickness of plates and satisfactory accuracy can be obtained by coarse mesh for all kinds of examples.

  13. Finite element approach for transient analysis of multibody systems

    NASA Technical Reports Server (NTRS)

    Wu, Shih-Chin; Chang, Che-Wei; Housner, Jerrold M.

    1992-01-01

    A three-dimensional, finite element based formulation for the transient dynamics of constrained multibody systems with trusslike configurations is presented. A convected coordinate system is used to define the rigid-body motion of individual elements in the system. Deformation of each element is defined relative to its convected coordinate system. The formulation is oriented toward joint-dominated structures. Through a series of sequential transformations, the joint degree of freedom is built into the equations of motion of the element to reduce geometric constraints. Based on the derivation, a general-purpose code has been developed. Two examples are presented to illustrate the application of the code.

  14. A new formulation of hybrid/mixed finite element

    NASA Technical Reports Server (NTRS)

    Pian, T. H. H.; Kang, D.; Chen, D.-P.

    1983-01-01

    A new formulation of finite element method is accomplished by the Hellinger-Reissner principle for which the stress equilibrium conditions are not introduced initially but are brought-in through the use of additional internal displacement parameters. The method can lead to the same result as the assumed stress hybrid model. However, it is more general and more flexible. The use of natural coordinates for stress assumptions leads to elements which are less sensitive to the choice of reference coordinates. Numerical solutions by 3-D solid element indicate that more efficient elements can be constructed by assumed stresses which only partially satisfy the equilibrium conditions.

  15. Numerical techniques in linear duct acoustics. [finite difference and finite element analyses

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1980-01-01

    Both finite difference and finite element analyses of small amplitude (linear) sound propagation in straight and variable area ducts with flow, as might be found in a typical turboject engine duct, muffler, or industrial ventilation system, are reviewed. Both steady state and transient theories are discussed. Emphasis is placed on the advantages and limitations associated with the various numerical techniques. Examples of practical problems are given for which the numerical techniques have been applied.

  16. Computational solid mechanics (finite elements and boundary elements) - Present status and future directions

    NASA Technical Reports Server (NTRS)

    Atluri, S. N.

    1986-01-01

    Computational finite-element and boundary-element methods are reviewed, and their application to the mechanics of solids is discussed. Stability conditions for general FEMs are considered in addition to the use of least-order, stable, invariant, or hybrid/mixed isoparametric elements as alternatives to the displacement-based isoparametric elements. The use of symbolic manipulation, adaptive mesh refinement, transient dynamic response, and boundary-element methods for linear elaslticity and finite-strain problems of inelastic materials are also discussed.

  17. A high-precision finite element method for shock-tube calculations

    NASA Technical Reports Server (NTRS)

    Hughes, T. J. R.; Mallet, M.

    1985-01-01

    A two-pass explicit scheme is developed in order to exploit some of the capabilities of finite difference modeling (FDM) for finite element modeling (FEM), which offers the opportunity to account for any type of geometry in fluid flow modeling. Features of the first-order upwind and the Lax-Wendroff high precision explicit finite difference algorithms are reviewed. A flux limiter is developed for FEM to serve as an analog for the single limiter function which has been defined for the various FDMs. It is shown that an antidiffusive limiter must be introduced into the weighting function which normally multiplies the time-derivative term in the variational equation. The two-pass scheme which results is demonstrated to be the equivalent of FDMs with five-point support. However, the present scheme is valid only for one-dimensional calculations and linear shape functions for shock tube flow phenomena. Further work is required for its use with nonlinear hyperbolic systems.

  18. A Demonstration of the Method of Stochastic Finite Element Analysis

    DTIC Science & Technology

    1989-03-01

    Lfl A DENONSTATION OF THE METHO -D OF DTIC STOCHASTIC FINITE ELEMENT ANALYSIS At LECTE S APR 0418 THESIS Paul R. Bryant Captain, USAF - AFIT/GA/A.A...Sample ASTROS Output) ....................... 78 Appendix D (Random Element Selection) .................... 83 Appendix E ( Weight Estimation...ensuring satisfactory performance? If weight is a concern, then the answer is yes. In the quest for higher performance aircraft and greater useful

  19. A finite element code for electric motor design

    NASA Technical Reports Server (NTRS)

    Campbell, C. Warren

    1994-01-01

    FEMOT is a finite element program for solving the nonlinear magnetostatic problem. This version uses nonlinear, Newton first order elements. The code can be used for electric motor design and analysis. FEMOT can be embedded within an optimization code that will vary nodal coordinates to optimize the motor design. The output from FEMOT can be used to determine motor back EMF, torque, cogging, and magnet saturation. It will run on a PC and will be available to anyone who wants to use it.

  20. Finite Element Modeling of the Buckling Response of Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Rose, Cheryl A.; Moore, David F.; Knight, Norman F., Jr.; Rankin, Charles C.

    2002-01-01

    A comparative study of different modeling approaches for predicting sandwich panel buckling response is described. The study considers sandwich panels with anisotropic face sheets and a very thick core. Results from conventional analytical solutions for sandwich panel overall buckling and face-sheet-wrinkling type modes are compared with solutions obtained using different finite element modeling approaches. Finite element solutions are obtained using layered shell element models, with and without transverse shear flexibility, layered shell/solid element models, with shell elements for the face sheets and solid elements for the core, and sandwich models using a recently developed specialty sandwich element. Convergence characteristics of the shell/solid and sandwich element modeling approaches with respect to in-plane and through-the-thickness discretization, are demonstrated. Results of the study indicate that the specialty sandwich element provides an accurate and effective modeling approach for predicting both overall and localized sandwich panel buckling response. Furthermore, results indicate that anisotropy of the face sheets, along with the ratio of principle elastic moduli, affect the buckling response and these effects may not be represented accurately by analytical solutions. Modeling recommendations are also provided.

  1. Finite element modeling of the deformation of magnetoelastic film

    SciTech Connect

    Barham, Matthew I.; White, Daniel A.; Steigmann, David J.

    2010-09-01

    Recently a new class of biocompatible elastic polymers loaded with small ferrous particles, a magnetoelastic polymer, has been developed. This engineered material is formed into a thin film using spin casting. An applied magnetic field will deform the film. The magnetic deformation of this film has many possible applications, particularly in microfluidic pumps and pressure regulators. In this paper a finite element method suitable for the transient simulation of arbitrarily shaped three-dimensional magnetoelastic polymers subjected to time-varying magnetic fields is developed. The approach is similar to that employed in finite elment magnetohydrodynamic simulations, the key difference is a more complex hyperelastic material model. In order to confirm the validity of the approach, finite element solutions for an axially symmetric thin film are compared to an analytical solution based on the membrane (infinitely thin) approximation. For this particular problem the two approaches give qualitatively similar results and converge as the film thickness approaches zero.

  2. Dedicated finite elements for electrode thin films on quartz resonators.

    PubMed

    Srivastava, Sonal A; Yong, Yook-Kong; Tanaka, Masako; Imai, Tsutomu

    2008-08-01

    The accuracy of the finite element analysis for thickness shear quartz resonators is a function of the mesh resolution; the finer the mesh resolution, the more accurate the finite element solution. A certain minimum number of elements are required in each direction for the solution to converge. This places a high demand on memory for computation, and often the available memory is insufficient. Typically the thickness of the electrode films is very small compared with the thickness of the resonator itself; as a result, electrode elements have very poor aspect ratios, and this is detrimental to the accuracy of the result. In this paper, we propose special methods to model the electrodes at the crystal interface of an AT cut crystal. This reduces the overall problem size and eliminates electrode elements having poor aspect ratios. First, experimental data are presented to demonstrate the effects of electrode film boundary conditions on the frequency-temperature curves of an AT cut plate. Finite element analysis is performed on a mesh representing the resonator, and the results are compared for testing the accuracy of the analysis itself and thus validating the results of analysis. Approximations such as lumping and Guyan reduction are then used to model the electrode thin films at the electrode interface and their results are studied. In addition, a new approximation called merging is proposed to model electrodes at the electrode interface.

  3. Finite-Element Analysis of Forced Convection and Conduction

    NASA Technical Reports Server (NTRS)

    Wieting, A. R.

    1982-01-01

    TAP2 thermal-analysis program was developed as part of research on finite element methodology for thermal analysis of convectively cooled structures, such as scramjet engines and hypersonic aircraft. Program simplifies computations when both structural and thermal analyses are required and is suited for thermal analysis of nuclear reactors and solar-panel heating systems.

  4. Finite-element analysis of end-notch flexure specimens

    NASA Technical Reports Server (NTRS)

    Mall, S.; Kochhar, N. K.

    1986-01-01

    A finite-element analysis of the end-notch flexure specimen for Mode II interlaminar fracture toughness measurement was conducted. The effects of friction between the crack faces and large deflection on the evaluation of G(IIc) from this specimen were investigated. Results of this study are presented in this paper.

  5. Finite element analysis of end notch flexure specimen

    NASA Technical Reports Server (NTRS)

    Mall, S.; Kochhar, N. K.

    1986-01-01

    A finite element analysis of the end notch flexure specimen for mode II interlaminar fracture toughness measurement was conducted. The effect of friction between the crack faces and large deflection on the evaluation of G sub IIc from this specimen were investigated. Results of this study are presented in this paper.

  6. Finite element corroboration of buckling phenomena observed in corrugated boxes

    Treesearch

    Thomas J. Urbanik; Edmond P. Saliklis

    2003-01-01

    Conventional compression strength formulas for corrugated fiberboard boxes are limited to geometry and material that produce an elastic postbuckling failure. Inelastic postbuckling can occur in squatty boxes and trays, but a mechanistic rationale for unifying observed strength data is lacking. This study combines a finite element model with a parametric design of the...

  7. Design, development and use of the finite element machine

    NASA Technical Reports Server (NTRS)

    Adams, L. M.; Voigt, R. C.

    1983-01-01

    Some of the considerations that went into the design of the Finite Element Machine, a research asynchronous parallel computer are described. The present status of the system is also discussed along with some indication of the type of results that were obtained.

  8. Modeling of resistive sheets in finite element solutions

    NASA Astrophysics Data System (ADS)

    Jin, J. M.; Volakis, John L.; Yu, C. L.; Woo, Alex C.

    1992-01-01

    A formulation is presented for modeling a resistive card in the context of the finite element method. The appropriate variational function is derived and for variational purposes results are presented for the scattering by a metal-backed cavity loaded with a resistive card.

  9. Modeling of resistive sheets in finite element solutions

    NASA Astrophysics Data System (ADS)

    Jin, J. M.; Volakis, J. L.; Yu, C. L.; Woo, A. C.

    1992-06-01

    A formulation is presented for modeling a resistive card in the context of the finite element method. The appropriate variational function is derived and for variational purposes results are presented for the scattering by metal-backed cavity loaded with a resistive card.

  10. Finite element analysis of aeroelasticity of plates and shells

    SciTech Connect

    Bismarck-Nasr, M.N.

    1992-12-01

    A review of the finite element method applied to the problem of supersonic aeroelastic stability of plates and shells is presented. The review is limited to linear models. Some new contributions in the field are presented and future trends are discussed. 105 refs., 18 figs., 6 tabs.

  11. Implicit extrapolation methods for multilevel finite element computations

    SciTech Connect

    Jung, M.; Ruede, U.

    1994-12-31

    The finite element package FEMGP has been developed to solve elliptic and parabolic problems arising in the computation of magnetic and thermomechanical fields. FEMGP implements various methods for the construction of hierarchical finite element meshes, a variety of efficient multilevel solvers, including multigrid and preconditioned conjugate gradient iterations, as well as pre- and post-processing software. Within FEMGP, multigrid {tau}-extrapolation can be employed to improve the finite element solution iteratively to higher order. This algorithm is based on an implicit extrapolation, so that the algorithm differs from a regular multigrid algorithm only by a slightly modified computation of the residuals on the finest mesh. Another advantage of this technique is, that in contrast to explicit extrapolation methods, it does not rely on the existence of global error expansions, and therefore neither requires uniform meshes nor global regularity assumptions. In the paper the authors will analyse the {tau}-extrapolation algorithm and present experimental results in the context of the FEMGP package. Furthermore, the {tau}-extrapolation results will be compared to higher order finite element solutions.

  12. Finite-Element Analysis of Multiphase Immiscible Flow Through Soils

    NASA Astrophysics Data System (ADS)

    Kuppusamy, T.; Sheng, J.; Parker, J. C.; Lenhard, R. J.

    1987-04-01

    A finite-element model is developed for multiphase flow through soil involving three immiscible fluids: namely, air, water, and a nonaqueous phase liquid (NAPL). A variational method is employed for the finite-element formulation corresponding to the coupled differential equations governing flow in a three-fluid phase porous medium system with constant air phase pressure. Constitutive relationships for fluid conductivities and saturations as functions of fluid pressures, which are derived in a companion paper by J. C. Parker et al. (this issue) and which may be calibrated from two-phase laboratory measurements, are employed in the finite-element program. The solution procedure uses backward time integration with iteration by a modified Picard method to handle the nonlinear properties. Laboratory experiments involving water displacement from soil columns by p cymene (a benzene-derivative hydrocarbon) under constant pressure were simulated by the finite-element program to validate the numerical model and formulation for constitutive properties. Transient water outflow predicted using independently measured saturation-capillary head data agreed with observed outflow data within the limits of precision of the predictions as estimated by a first-order Taylor series approximation considering parameter uncertainty due to experimental reproducability and constitutive model accuracy. Two-dimensional simulations are presented for a hypothetical field case involving introduction of NAPL near the soil surface due to leakage from an underground storage tank. Subsequent transport of NAPL in the variably saturated vadose and groundwater zones is analyzed.

  13. Finite element analyses of wood laminated composite poles

    Treesearch

    Cheng Piao; Todd F. Shupe; R.C. Tang; Chung Y. Hse

    2005-01-01

    Finite element analyses using ANSYS were conducted on orthotropic, polygonal, wood laminated composite poles subjected to a body force and a concentrated load at the free end. Deflections and stress distributions of small-scale and full-size composite poles were analyzed and compared to the results obtained in an experimental study. The predicted deflection for both...

  14. Three Dimensional Finite Element Simulation of the Fretting Wear Problems

    NASA Astrophysics Data System (ADS)

    Lee, Choon Yeol; Bae, Joon Woo; Choi, Byung Sun; Chai, Young Suck

    The structural integrity of steam generators in nuclear power plants is very much dependent upon the fretting wear characteristics of Inconel 690 U-tubes. In this study, a finite element analysis was used to investigate fretting wear on the secondary side of the steam generator, which arises from flow-induced vibrations (FIV) between the U-tubes and supports or foreign objects. Two-dimensional and three-dimensional finite element analyses were adopted to investigate the fretting wear problems. The purpose of the two-dimensional analysis, which simulated the contact between a punch and a plate, was to demonstrate the validity of using finite element analysis to analyze fretting wear problems. This was achieved by controlling the value of the wear constant and the number of cycles. The two-dimensional solutions obtained from this study were in good agreement with previous results reported by Strömberg. In the three-dimensional finite element analysis, a quarterly symmetric model was used to simulate tubes contacting at right angles. The results of the analyses showed donut-shaped wear along the contacting boundary, which is a typical feature of fretting wear.

  15. Coupling finite element and spectral methods: First results

    NASA Technical Reports Server (NTRS)

    Bernardi, Christine; Debit, Naima; Maday, Yvon

    1987-01-01

    A Poisson equation on a rectangular domain is solved by coupling two methods: the domain is divided in two squares, a finite element approximation is used on the first square and a spectral discretization is used on the second one. Two kinds of matching conditions on the interface are presented and compared. In both cases, error estimates are proved.

  16. 2-D Finite Element Cable and Box IEMP Analysis

    SciTech Connect

    Scivner, G.J.; Turner, C.D.

    1998-12-17

    A 2-D finite element code has been developed for the solution of arbitrary geometry cable SGEMP and box IEMP problems. The quasi- static electric field equations with radiation- induced charge deposition and radiation-induced conductivity y are numerically solved on a triangular mesh. Multiple regions of different dielectric materials and multiple conductors are permitted.

  17. Finite-element analysis of an epoxy-curing process

    SciTech Connect

    Gartling, D K; Hickox, C E; Nunziato, J W

    1983-01-01

    A finite element numerical procedure is used to study the curing of an epoxy compound. The problem involves the gelation of an incompressible liquid due to an exothermic chemical reaction. Nonuniform temperature fields produce buoyancy-driven fluid motions that interact with the solidifying material. The numerical simulations provide temperature histories and the progression of the gel front that are compared with experimental data.

  18. A finite element approach for prediction of aerothermal loads

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Dechaumphai, P.; Vemaganti, G.

    1986-01-01

    A Taylor-Galerkin finite element approach is presented for analysis of high speed viscous flows with an emphasis on predicting heating rates. Five computational issues relevant to the computation of steady flows are examined. Numerical results for supersonic and hypersonic problems address the computational issues and demonstrate the validity for the approach for analysis of high speed flows.

  19. SUPG Finite Element Simulations of Compressible Flows for Aerothermodynamic Applications

    NASA Technical Reports Server (NTRS)

    Kirk, Benjamin S.

    2007-01-01

    This viewgraph presentation reviews the Streamline-Upwind Petrov-Galerkin (SUPG) Finite Element Simulation. It covers the background, governing equations, weak formulation, shock capturing, inviscid flux discretization, time discretization, linearization, and implicit solution strategies. It also reviews some applications such as Type IV Shock Interaction, Forward-Facing Cavity and AEDC Sharp Double Cone.

  20. Coupling of Peridynamics and Finite Element Formulation for Multiscale Simulations

    DTIC Science & Technology

    2012-10-16

    state-based peridynamic method, Warren et al. [46] studied the elastic deformation and fracture of a bar. Littlewood [47] presented fragmentation of an...Journal of Solids and Structures 46 (2009) 1186-1195. [47] D. J. Littlewood , Simulation of dynamic fracture using peridynamics, finite element modeling

  1. Finite-Element Fracture Analysis of Pins and Bolts

    NASA Technical Reports Server (NTRS)

    Nord, K. J.

    1986-01-01

    Stress intensities calculated in bending and tension. Finite-element stress-analysis method gives stress-intensity estimates for surface flaws on smooth and threaded round bars. Calculations done for purely tensile and purely bending loads. Results, presented in dimensionless form, useful for determining fatigue lives of bolts and pins.

  2. Finite element modeling of 129Xe diffusive gas exchange NMR in the human alveoli

    NASA Astrophysics Data System (ADS)

    Stewart, Neil J.; Parra-Robles, Juan; Wild, Jim M.

    2016-10-01

    Existing models of 129Xe diffusive exchange for lung microstructural modeling with time-resolved MR spectroscopy data have considered analytical solutions to one-dimensional, homogeneous models of the lungs with specific assumptions about the alveolar geometry. In order to establish a model system for simulating the effects of physiologically-realistic changes in physical and microstructural parameters on 129Xe exchange NMR, we have developed a 3D alveolar capillary model for finite element analysis. To account for the heterogeneity of the alveolar geometry across the lungs, we have derived realistic geometries for finite element analysis based on 2D histological samples and 3D micro-CT image volumes obtained from ex vivo biopsies of lung tissue from normal subjects and patients with interstitial lung disease. The 3D alveolar capillary model permits investigation of the impact of alveolar geometrical parameters and diffusion and perfusion coefficients on the in vivo measured 129Xe CSSR signal response. The heterogeneity of alveolar microstructure that is accounted for in image-based models resulted in considerable alterations to the shape of the 129Xe diffusive uptake curve when compared to 1D models. Our findings have important implications for the future design and optimization of 129Xe MR experiments and in the interpretation of lung microstructural changes from this data.

  3. A finite element model of the tuning slot of labial organ pipes.

    PubMed

    Rucz, Péter; Augusztinovicz, Fülöp; Angster, Judit; Preukschat, Tim; Miklós, András

    2015-03-01

    An acoustic model suitable for the characterization of tuning slots of labial organ pipes is presented in this paper. Since the tuning slot arrangement is similar (but not identical) to that of toneholes in woodwind instruments, the adaptability of the well-established tonehole model for the specific problem is examined. A numerical model utilizing the finite element (FE) and perfectly matched layer techniques is set up for the simulation of tuning slots with design parameters varying over a wide range. Analytical tonehole models and the proposed numerical tuning slot model are both combined with analytical one-dimensional waveguide models to predict the acoustic behavior of tuning slot pipes. Comparison to measurements carried out on experimental pipes proves that the hybrid waveguide/FE model can predict the most important properties of the tuning slot pipe with good accuracy. The finite element method (FEM) also overcomes the limitations of traditional tonehole models relying on the equivalent T-circuit approximation. By means of the FE model the eigenfrequency-structure and its impact on the character of the sound can be foretold in the design phase, by which a more efficient scaling of tuning slot pipes can be achieved.

  4. Modelling of orbital deformation using finite-element analysis

    PubMed Central

    Al-Sukhun, Jehad; Lindqvist, Christian; Kontio, Risto

    2005-01-01

    The purpose of this study was to develop a three-dimensional finite-element model (FEM) of the human orbit, containing the globe, to predict orbital deformation in subjects following a blunt injury. This study investigated the hypothesis that such deformation could be modelled using finite-element techniques. One patient who had CT-scan examination to the maxillofacial skeleton including the orbits, as part of her treatment, was selected for this study. A FEM of one of the orbits containing the globe was constructed, based on CT-scan images. Simulations were performed with a computer using the finite-element software NISA (EMRC, Troy, USA). The orbit was subjected to a blunt injury of a 0.5 kg missile with 30 m s−1 velocity. The FEM was then used to predict principal and shear stresses or strains at each node position. Two types of orbital deformation were predicted during different impact simulations: (i) horizontal distortion and (ii) rotational distortion. Stress values ranged from 213.4 to 363.3 MPa for the maximum principal stress, from −327.8 to −653.1 MPa for the minimum principal stress, and from 212.3 to 444.3 MPa for the maximum shear stress. This is the first finite-element study, which demonstrates different and concurrent patterns of orbital deformation in a subject following a blunt injury. Finite element modelling is a powerful and invaluable tool to study the multifaceted phenomenon of orbital deformation. PMID:16849235

  5. Advance finite element modeling of rotor blade aeroelasticity

    NASA Technical Reports Server (NTRS)

    Straub, F. K.; Sangha, K. B.; Panda, B.

    1994-01-01

    An advanced beam finite element has been developed for modeling rotor blade dynamics and aeroelasticity. This element is part of the Element Library of the Second Generation Comprehensive Helicopter Analysis System (2GCHAS). The element allows modeling of arbitrary rotor systems, including bearingless rotors. It accounts for moderately large elastic deflections, anisotropic properties, large frame motion for maneuver simulation, and allows for variable order shape functions. The effects of gravity, mechanically applied and aerodynamic loads are included. All kinematic quantities required to compute airloads are provided. In this paper, the fundamental assumptions and derivation of the element matrices are presented. Numerical results are shown to verify the formulation and illustrate several features of the element.

  6. High-order Finite Element Analysis of Boundary Layer Flows

    NASA Astrophysics Data System (ADS)

    Zhang, Alvin; Sahni, Onkar

    2014-11-01

    Numerical analysis of boundary layer flows requires careful approximations, specifically the use of a mesh with layered and graded elements near the (viscous) walls. This is referred to as a boundary layer mesh, which for complex geometries is composed of triangular elements on the walls that are inflated or extruded into the volume along the wall-normal direction up to a desired height while the rest of the domain is filled with unstructured tetrahedral elements. Linear elements with C0 inter-element continuity are employed and in some situations higher order C0 elements are also used. However, these elements only enforce continuity whereas high-order smoothness is not attained as will be the case with C1 inter-element continuity and higher. As a result, C0 elements result in a poor approximation of the high-order boundary layer behavior. To achieve greater inter-element continuity in boundary layer region, we employ B-spline basis functions along the wall-normal direction (i.e., only in the layered portion of the mesh). In the rest of the fully unstructured mesh, linear or higher order C0 elements are used as appropriate. In this study we demonstrate the benefits of finite-element analysis based on such higher order and continuity basis functions for boundary layer flows.

  7. Numerical method of characteristics for one-dimensional blood flow

    NASA Astrophysics Data System (ADS)

    Acosta, Sebastian; Puelz, Charles; Rivière, Béatrice; Penny, Daniel J.; Rusin, Craig G.

    2015-08-01

    Mathematical modeling at the level of the full cardiovascular system requires the numerical approximation of solutions to a one-dimensional nonlinear hyperbolic system describing flow in a single vessel. This model is often simulated by computationally intensive methods like finite elements and discontinuous Galerkin, while some recent applications require more efficient approaches (e.g. for real-time clinical decision support, phenomena occurring over multiple cardiac cycles, iterative solutions to optimization/inverse problems, and uncertainty quantification). Further, the high speed of pressure waves in blood vessels greatly restricts the time step needed for stability in explicit schemes. We address both cost and stability by presenting an efficient and unconditionally stable method for approximating solutions to diagonal nonlinear hyperbolic systems. Theoretical analysis of the algorithm is given along with a comparison of our method to a discontinuous Galerkin implementation. Lastly, we demonstrate the utility of the proposed method by implementing it on small and large arterial networks of vessels whose elastic and geometrical parameters are physiologically relevant.

  8. One-dimensional simulation of lanthanide isotachophoresis using COMSOL.

    PubMed

    Dixon, Derek R; Clark, Sue B; Ivory, Cornelius F

    2012-03-01

    Electrokinetic separations can be used to quickly separate rare earth metals to determine their forensic signature. In this work, we simulate the concentration and separation of trivalent lanthanide cations by isotachophoresis. A one-dimensional simulation is developed using COMSOL v4.0a, a commercial finite element simulator, to represent the isotachophoretic separation of three lanthanides: lanthanum, terbium, and lutetium. The binding ligand chosen for complexation with the lanthanides is α-hydroxyisobutyric acid (HIBA) and the buffer system includes acetate, which also complexes with the lanthanides. The complexes formed between the three lanthanides, HIBA, and acetate are all considered in the simulation. We observe that the presence of only lanthanide:HIBA complexes in a buffer system with 10 mM HIBA causes the slowest lanthanide peak (lutetium) to split from the other analytes. The addition of lanthanide:acetate complexes into the simulation of the same buffer system eliminates this splitting. Decreasing the concentration of HIBA in the buffer to 7 mM causes the analyte stack to migrate faster through the capillary.

  9. Numerical Method of Characteristics for One-Dimensional Blood Flow.

    PubMed

    Acosta, Sebastian; Puelz, Charles; Riviére, Béatrice; Penny, Daniel J; Rusin, Craig G

    2015-08-01

    Mathematical modeling at the level of the full cardiovascular system requires the numerical approximation of solutions to a one-dimensional nonlinear hyperbolic system describing flow in a single vessel. This model is often simulated by computationally intensive methods like finite elements and discontinuous Galerkin, while some recent applications require more efficient approaches (e.g. for real-time clinical decision support, phenomena occurring over multiple cardiac cycles, iterative solutions to optimization/inverse problems, and uncertainty quantification). Further, the high speed of pressure waves in blood vessels greatly restricts the time step needed for stability in explicit schemes. We address both cost and stability by presenting an efficient and unconditionally stable method for approximating solutions to diagonal nonlinear hyperbolic systems. Theoretical analysis of the algorithm is given along with a comparison of our method to a discontinuous Galerkin implementation. Lastly, we demonstrate the utility of the proposed method by implementing it on small and large arterial networks of vessels whose elastic and geometrical parameters are physiologically relevant.

  10. Finite Element Modeling of the NASA Langley Aluminum Testbed Cylinder

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Pritchard, Joselyn I.; Buehrle, Ralph D.; Pappa, Richard S.

    2002-01-01

    The NASA Langley Aluminum Testbed Cylinder (ATC) was designed to serve as a universal structure for evaluating structural acoustic codes, modeling techniques and optimization methods used in the prediction of aircraft interior noise. Finite element models were developed for the components of the ATC based on the geometric, structural and material properties of the physical test structure. Numerically predicted modal frequencies for the longitudinal stringer, ring frame and dome component models, and six assembled ATC configurations were compared with experimental modal survey data. The finite element models were updated and refined, using physical parameters, to increase correlation with the measured modal data. Excellent agreement, within an average 1.5% to 2.9%, was obtained between the predicted and measured modal frequencies of the stringer, frame and dome components. The predictions for the modal frequencies of the assembled component Configurations I through V were within an average 2.9% and 9.1%. Finite element modal analyses were performed for comparison with 3 psi and 6 psi internal pressurization conditions in Configuration VI. The modal frequencies were predicted by applying differential stiffness to the elements with pressure loading and creating reduced matrices for beam elements with offsets inside external superelements. The average disagreement between the measured and predicted differences for the 0 psi and 6 psi internal pressure conditions was less than 0.5%. Comparably good agreement was obtained for the differences between the 0 psi and 3 psi measured and predicted internal pressure conditions.

  11. Dynamic quasistatic characterization of finite elements for shell structures.

    SciTech Connect

    Thomas, Jesse David

    2010-11-01

    Finite elements for shell structures have been investigated extensively, with numerous formulations offered in the literature. These elements are vital in modern computational solid mechanics due to their computational efficiency and accuracy for thin and moderately thick shell structures, allowing larger and more comprehensive (e.g. multi-scale and multi-physics) simulations. Problems now of interest in the research and development community are routinely pushing our computational capabilities, and thus shell finite elements are being used to deliver efficient yet high quality computations. Much work in the literature is devoted to the formulation of shell elements and their numerical accuracy, but there is little published work on the computational characterization and comparison of shell elements for modern solid mechanics problems. The present study is a comparison of three disparate shell element formulations in the Sandia National Laboratories massively parallel Sierra Solid Mechanics code. A constant membrane and bending stress shell element (Key and Hoff, 1995), a thick shell hex element (Key et al., 2004) and a 7-parameter shell element (Buechter et al., 1994) are available in Sierra Solid Mechanics for explicit transient dynamic, implicit transient dynamic and quasistatic calculations. Herein these three elements are applied to a set of canonical dynamic and quasistatic problems, and their numerical accuracy, computational efficiency and scalability are investigated. The results show the trade-off between the relative inefficiency and improved accuracy of the latter two high quality element types when compared with the highly optimized and more widely used constant membrane and bending stress shell element.

  12. Visualization of transient finite element analyses on large unstructured grids

    SciTech Connect

    Dovey, D.

    1995-03-22

    Three-dimensional transient finite element analysis is performed on unstructured grids. A trend toward running larger analysis problems, combined with a desire for interactive animation of analysis results, demands efficient visualization techniques. This paper discusses a set of data structures and algorithms for visualizing transient analysis results on unstructured grids and introduces some modifications in order to better support large grids. In particular, an element grouping approach is used to reduce the amount of memory needed for external surface determination and to speed up ``point in element`` tests. The techniques described lend themselves to visualization of analyses carried out in parallel on a massively parallel computer (MPC).

  13. PWSCC Assessment by Using Extended Finite Element Method

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Jun; Lee, Sang-Hwan; Chang, Yoon-Suk

    2015-12-01

    The head penetration nozzle of control rod driving mechanism (CRDM) is known to be susceptible to primary water stress corrosion cracking (PWSCC) due to the welding-induced residual stress. Especially, the J-groove dissimilar metal weld regions have received many attentions in the previous studies. However, even though several advanced techniques such as weight function and finite element alternating methods have been introduced to predict the occurrence of PWSCC, there are still difficulties in respect of applicability and efficiency. In this study, the extended finite element method (XFEM), which allows convenient crack element modeling by enriching degree of freedom (DOF) with special displacement function, was employed to evaluate structural integrity of the CRDM head penetration nozzle. The resulting stress intensity factors of surface cracks were verified for the reliability of proposed method through the comparison with those suggested in the American Society of Mechanical Engineering (ASME) code. The detailed results from the FE analyses are fully discussed in the manuscript.

  14. Finite element dynamic analysis on CDC STAR-100 computer

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Lambiotte, J. J., Jr.

    1978-01-01

    Computational algorithms are presented for the finite element dynamic analysis of structures on the CDC STAR-100 computer. The spatial behavior is described using higher-order finite elements. The temporal behavior is approximated by using either the central difference explicit scheme or Newmark's implicit scheme. In each case the analysis is broken up into a number of basic macro-operations. Discussion is focused on the organization of the computation and the mode of storage of different arrays to take advantage of the STAR pipeline capability. The potential of the proposed algorithms is discussed and CPU times are given for performing the different macro-operations for a shell modeled by higher order composite shallow shell elements having 80 degrees of freedom.

  15. Finite Element Modelling of Fluid Coupling in the Coiled Cochlea

    NASA Astrophysics Data System (ADS)

    Ni, Guangjian; Elliott, S. J.; Lineton, B.; Saba, R.

    2011-11-01

    A finite element model is first used to calculate the modal pressure difference for a box model of the cochlea, which shows that the number of fluid elements across the width of the cochlea determines the accuracy with which the near field, or short wavenumber, component of the fluid coupling is reproduced. Then results are compared with the analytic results to validate the accuracy of the FE model. It is, however, the far field, or long wavelength, component of the fluid coupling that is most affected by the geometry. A finite element model of the coiled cochlea is then used to calculate fluid coupling in this case, which has similar characteristics to the uncoiled model.

  16. Edge-based finite element scheme for the Euler equations

    NASA Astrophysics Data System (ADS)

    Luo, Hong; Baum, Joseph D.; Loehner, Rainald

    1994-06-01

    This paper describes the development, validation, and application of a new finite element scheme for the solution of the compressible Euler equations on unstructured grids. The implementation of the numerical scheme is based on an edge-based data structure, as opposed to a more element-based data structure. The use of this edge-based data structure not only improves the efficiency of the algorithm but also enables a straightforward implementation of the upwind schemes in the context of finite element methods. The algorithm has been tested and validated on some well documented configurations. A flow solution about a complete F-18 fighter is shown to demonstrate the accuracy and robustness of the proposed algorithm.

  17. Edge-based finite element scheme for the Euler equations

    NASA Astrophysics Data System (ADS)

    Luo, Hong; Baum, Joseph D.; Lohner, Rainald

    1994-06-01

    This paper describes the development, validation, and application of a new finite element scheme for the solution of the compressible Euler equations on unstructured grids. The implementation of the numerical scheme is based on an edge-based data structure, as opposed to a more traditional element-based data structure. The use of this edge-based data structure not only improves the efficiency of the algorithm but also enables a straightforward implementation of upwind schemes in the context of finite element methods. The algorithm has been tested and validated on some well-documented configurations. A flow solution about a complete F-18 fighter is shown to demonstrate the accuracy and robustness of the proposed algorithm.

  18. Finite element analysis of inviscid subsonic boattail flow

    NASA Technical Reports Server (NTRS)

    Chima, R. V.; Gerhart, P. M.

    1981-01-01

    A finite element code for analysis of inviscid subsonic flows over arbitrary nonlifting planar or axisymmetric bodies is described. The code solves a novel primitive variable formulation of the coupled irrotationality and compressible continuity equations. Results for flow over a cylinder, a sphere, and a NACA 0012 airfoil verify the code. Computed subcritical flows over an axisymmetric boattailed afterbody compare well with finite difference results and experimental data. Interative coupling with an integral turbulent boundary layer code shows strong viscous effects on the inviscid flow. Improvements in code efficiency and extensions to transonic flows are discussed.

  19. Finite-size scaling for quantum criticality using the finite-element method.

    PubMed

    Antillon, Edwin; Wehefritz-Kaufmann, Birgit; Kais, Sabre

    2012-03-01

    Finite size scaling for the Schrödinger equation is a systematic approach to calculate the quantum critical parameters for a given Hamiltonian. This approach has been shown to give very accurate results for critical parameters by using a systematic expansion with global basis-type functions. Recently, the finite-element method was shown to be a powerful numerical method for ab initio electronic-structure calculations with a variable real-space resolution. In this work, we demonstrate how to obtain quantum critical parameters by combining the finite-element method (FEM) with finite size scaling (FSS) using different ab initio approximations and exact formulations. The critical parameters could be atomic nuclear charges, internuclear distances, electron density, disorder, lattice structure, and external fields for stability of atomic, molecular systems and quantum phase transitions of extended systems. To illustrate the effectiveness of this approach we provide detailed calculations of applying FEM to approximate solutions for the two-electron atom with varying nuclear charge; these include Hartree-Fock, local density approximation, and an "exact" formulation using FEM. We then use the FSS approach to determine its critical nuclear charge for stability; here, the size of the system is related to the number of elements used in the calculations. Results prove to be in good agreement with previous Slater-basis set calculations and demonstrate that it is possible to combine finite size scaling with the finite-element method by using ab initio calculations to obtain quantum critical parameters. The combined approach provides a promising first-principles approach to describe quantum phase transitions for materials and extended systems.

  20. New alternating direction procedures in finite element analysis based upon EBE approximate factorizations. [element-by-element

    NASA Technical Reports Server (NTRS)

    Hughes, T. J. R.; Winget, J.; Levit, I.; Tezduyar, T. E.

    1983-01-01

    Element-by-element approximate factorization procedures are proposed for solving the large finite element equation systems which arise in computational mechanics. A variety of techniques are compared on problems of structural mechanics, heat conduction and fluid mechanics. The results obtained suggest considerable potential for the methods described.

  1. A nonlinear viscoelastic finite element model of polyethylene.

    PubMed

    Chen, P C; Colwell, C W; D'Lima, D D

    2011-06-01

    A nonlinear viscoelastic finite element model of ultra-high molecular weight polyethylene (UHMWPE) was developed in this study. Eight cylindrical specimens were machined from ram extruded UHMWPE bar stock (GUR 1020) and tested under constant compression at 7% strain for 100 sec. The stress strain data during the initial ramp up to 7% strain was utilized to model the "instantaneous" stress-strain response using a Mooney-Rivlin material model. The viscoelastic behavior was modeled using the time-dependent relaxation in stress seen after the initial maximum stress was achieved using a stored energy formulation. A cylindrical model of similar dimensions was created using a finite element analysis software program. The cylinder was made up of hexahedral elements, which were given the material properties utilizing the "instantaneous" stress-strain curve and the energy-relaxation curve obtained from the experimental data. The cylinder was compressed between two flat rigid bodies that simulated the fixtures of the testing machine. Experimental stress-relaxation, creep and dynamic testing data were then used to validate the model. The mean error for predicted versus experimental data for stress relaxation at different strain levels was 4.2%. The mean error for the creep test was 7% and for dynamic test was 5.4%. Finally, dynamic loading in a hip arthroplasty was modeled and validated experimentally with an error of 8%. This study establishes a working finite element material model of UHMWPE that can be utilized to simulate a variety of postoperative arthroplasty conditions.

  2. FECAP - FINITE ELEMENT COMPOSITE ANALYSIS PROGRAM FOR A MICROCOMPUTER

    NASA Technical Reports Server (NTRS)

    Bowles, D. E.

    1994-01-01

    Advanced composite materials have gained use in the aerospace industry over the last 20 years because of their high specific strength and stiffness, and low coefficient of thermal expansion. Design of composite structures requires the analysis of composite material behavior. The Finite Element Composite Analysis Program, FECAP, is a special purpose finite element analysis program for analyzing composite material behavior with a microcomputer. Composite materials, in regard to this program, are defined as the combination of at least two distinct materials to form one nonhomogeneous anisotropic material. FECAP assumes a state of generalized plane strain exists in a material consisting of two or more orthotropic phases, subjected to mechanical and/or thermal loading. The finite element formulation used in FECAP is displacement based and requires the minimization of the total potential energy for each element with respect to the unknown variables. This procedure leads to a set of linear simultaneous equations relating the unknown nodal displacements to the applied loads. The equations for each element are assembled into a global system, the boundary conditions are applied, and the system is solved for the nodal displacements. The analysis may be performed using either 4-mode linear or 8-mode quadratic isoparametric elements. Output includes the nodal displacements, and the element stresses and strains. FECAP was written for a Hewlett Packard HP9000 Series 200 Microcomputer with the HP Basic operating system. It was written in HP BASIC 3.0 and requires approximately 0.5 Mbytes of RAM in addition to what is required for the operating system. A math coprocessor card is highly recommended. FECAP was developed in 1988.

  3. Microbuckle initiation in fibre composites : A finite element study

    NASA Astrophysics Data System (ADS)

    Fleck, Norman A.; Shu, John Y.

    1995-12-01

    A finite strain continuum theory is presented for unidirectional fibre reinforced composites under in-plane loading. The constitutive response is expressed in terms of couple stress theory, and is deduced from a unit cell of a linear elastic Timoshenko beam embedded in a non-linear elastic-plastic matrix. The continuum theory is implemented within a finite element framework and is used to analyse compressive failure of polymer matrix composites by fibre microbuckling. It is assumed that microbuckling initiates from an imperfection in the form of a finite elliptical region of fibre waviness. The calculations show that the compressive strength decreases with increasing imperfection spatial size from the elastic bifurcation value of Rosen (1965, Fibre Composite Materials, pp. 37-75, American Society Metals Seminar) to the imperfection-sensitive infinite band strength given by Fleck et al. [1995, J. Appl. Mech.62, 329-337.].

  4. A refined one-dimensional rotordynamics model with three-dimensional capabilities

    NASA Astrophysics Data System (ADS)

    Carrera, E.; Filippi, M.

    2016-03-01

    This paper evaluates the vibration characteristics of various rotating structures. The present methodology exploits the one-dimensional Carrera Unified Formulation (1D CUF), which enables one to go beyond the kinematic assumptions of classical beam theories. According to the component-wise (CW) approach, Lagrange-like polynomial expansions (LE) are here adopted to develop the refined displacement theories. The LE elements make it possible to model each structural component of the rotor with an arbitrary degree of accuracy using either different displacement theories or localized mesh refinements. Hamilton's Principle is used to derive the governing equations, which are solved by the Finite Element Method. The CUF one-dimensional theory includes all the effects due to rotation, namely the Coriolis term, spin softening and geometrical stiffening. The numerical simulations have been performed considering a thin ring, discs and bladed-deformable shafts. The effects of the number and the position of the blades on the dynamic stability of the rotor have been evaluated. The results have been compared, when possible, with the 2D and 3D solutions that are available in the literature. CUF models appear very practical to investigate the dynamics of complex rotating structures since they provide 2D and quasi-3D results, while preserving the computational effectiveness of one-dimensional solutions.

  5. Finite element structural redesign by large admissible perturbations

    NASA Technical Reports Server (NTRS)

    Bernitsas, Michael M.; Beyko, E.; Rim, C. W.; Alzahabi, B.

    1991-01-01

    In structural redesign, two structural states are involved; the baseline (known) State S1 with unacceptable performance, and the objective (unknown) State S2 with given performance specifications. The difference between the two states in performance and design variables may be as high as 100 percent or more depending on the scale of the structure. A Perturbation Approach to Redesign (PAR) is presented to relate any two structural states S1 and S2 that are modeled by the same finite element model and represented by different values of the design variables. General perturbation equations are derived expressing implicitly the natural frequencies, dynamic modes, static deflections, static stresses, Euler buckling loads, and buckling modes of the objective S2 in terms of its performance specifications, and S1 data and Finite Element Analysis (FEA) results. Large Admissible Perturbation (LEAP) algorithms are implemented in code RESTRUCT to define the objective S2 incrementally without trial and error by postprocessing FEA results of S1 with no additional FEAs. Systematic numerical applications in redesign of a 10 element 48 degree of freedom (dof) beam, a 104 element 192 dof offshore tower, a 64 element 216 dof plate, and a 144 element 896 dof cylindrical shell show the accuracy, efficiency, and potential of PAR to find an objective state that may differ 100 percent from the baseline design.

  6. Programming finite element method based hysteresis loss computation software using non-linear superconductor resistivity and T - phiv formulation

    NASA Astrophysics Data System (ADS)

    Stenvall, A.; Tarhasaari, T.

    2010-07-01

    Due to the rapid development of personal computers from the beginning of the 1990s, it has become a reality to simulate current penetration, and thus hysteresis losses, in superconductors with other than very simple one-dimensional (1D) Bean model computations or Norris formulae. Even though these older approaches are still usable, they do not consider, for example, multifilamentary conductors, local critical current dependency on magnetic field or varying n-values. Currently, many numerical methods employing different formulations are available. The problem of hysteresis losses can be scrutinized via an eddy current formulation of the classical theory of electromagnetism. The difficulty of the problem lies in the non-linear resistivity of the superconducting region. The steep transition between the superconducting and the normal states often causes convergence problems for the most common finite element method based programs. The integration methods suffer from full system matrices and, thus, restrict the number of elements to a few thousands at most. The so-called T - phiv formulation and the use of edge elements, or more precisely Whitney 1-forms, within the finite element method have proved to be a very suitable method for hysteresis loss simulations of different geometries. In this paper we consider making such finite element method software from first steps, employing differential geometry and forms.

  7. Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes.

    PubMed

    Einstein, D R; Reinhall, P; Nicosia, M; Cochran, R P; Kunzelman, K

    2003-02-01

    We present a novel method for the implementation of hyperelastic finite strain, non-linear strain-energy functions for biological membranes in an explicit finite element environment. The technique is implemented in LS-DYNA but may also be implemented in any suitable non-linear explicit code. The constitutive equations are implemented on the foundation of a co-rotational uniformly reduced Hughes-Liu shell. This shell is based on an updated-Lagrangian formulation suitable for relating Cauchy stress to the rate-of-deformation, i.e. hypo-elasticity. To accommodate finite deformation hyper-elastic formulations, a co-rotational deformation gradient is assembled over time, resulting in a formulation suitable for pseudo-hyperelastic constitutive equations that are standard assumptions in biomechanics. Our method was validated by comparison with (1) an analytic solution to a spherically-symmetric dynamic membrane inflation problem, incorporating a Mooney-Rivlin hyperelastic equation and (2) with previously published finite element solutions to a non-linear transversely isotropic inflation problem. Finally, we implemented a transversely isotropic strain-energy function for mitral valve tissue. The method is simple and accurate and is believed to be generally useful for anyone who wishes to model biologic membranes with an experimentally driven strain-energy function.

  8. Finite-element modelling of multilayer X-ray optics.

    PubMed

    Cheng, Xianchao; Zhang, Lin

    2017-05-01

    Multilayer optical elements for hard X-rays are an attractive alternative to crystals whenever high photon flux and moderate energy resolution are required. Prediction of the temperature, strain and stress distribution in the multilayer optics is essential in designing the cooling scheme and optimizing geometrical parameters for multilayer optics. The finite-element analysis (FEA) model of the multilayer optics is a well established tool for doing so. Multilayers used in X-ray optics typically consist of hundreds of periods of two types of materials. The thickness of one period is a few nanometers. Most multilayers are coated on silicon substrates of typical size 60 mm × 60 mm × 100-300 mm. The high aspect ratio between the size of the optics and the thickness of the multilayer (10(7)) can lead to a huge number of elements for the finite-element model. For instance, meshing by the size of the layers will require more than 10(16) elements, which is an impossible task for present-day computers. Conversely, meshing by the size of the substrate will produce a too high element shape ratio (element geometry width/height > 10(6)), which causes low solution accuracy; and the number of elements is still very large (10(6)). In this work, by use of ANSYS layer-functioned elements, a thermal-structural FEA model has been implemented for multilayer X-ray optics. The possible number of layers that can be computed by presently available computers is increased considerably.

  9. Parallel, adaptive finite element methods for conservation laws

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Devine, Karen D.; Flaherty, Joseph E.

    1994-01-01

    We construct parallel finite element methods for the solution of hyperbolic conservation laws in one and two dimensions. Spatial discretization is performed by a discontinuous Galerkin finite element method using a basis of piecewise Legendre polynomials. Temporal discretization utilizes a Runge-Kutta method. Dissipative fluxes and projection limiting prevent oscillations near solution discontinuities. A posteriori estimates of spatial errors are obtained by a p-refinement technique using superconvergence at Radau points. The resulting method is of high order and may be parallelized efficiently on MIMD computers. We compare results using different limiting schemes and demonstrate parallel efficiency through computations on an NCUBE/2 hypercube. We also present results using adaptive h- and p-refinement to reduce the computational cost of the method.

  10. Compatibility conditions of structural mechanics for finite element analysis

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Berke, Laszlo; Gallagher, Richard H.

    1990-01-01

    The equilibrium equations and the compatibility conditions are fundamental to the analyses of structures. However, anyone who undertakes even a cursory generic study of the compatibility conditions can discover, with little effort, that historically this facet of structural mechanics had not been adequately researched by the profession. Now the compatibility conditions (CC's) have been researched and are understood to a great extent. For finite element discretizations, the CC's are banded and can be divided into three distinct categories: (1) the interface CC's; (2) the cluster or field CC's; and (3) the external CC's. The generation of CC's requires the separating of a local region, then writing the deformation displacement relation (ddr) for the region, and finally, the eliminating of the displacements from the ddr. The procedure to generate all three types of CC's is presented and illustrated through examples of finite element models. The uniqueness of the CC's thus generated is shown.

  11. A finite element model of ferroelectric/ferroelastic polycrystals

    SciTech Connect

    HWANG,STEPHEN C.; MCMEEKING,ROBERT M.

    2000-02-17

    A finite element model of polarization switching in a polycrystalline ferroelectric/ferroelastic ceramic is developed. It is assumed that a crystallite switches if the reduction in potential energy of the polycrystal exceeds a critical energy barrier per unit volume of switching material. Each crystallite is represented by a finite element with the possible dipole directions assigned randomly subject to crystallographic constraints. The model accounts for both electric field induced (i.e. ferroelectric) switching and stress induced (i.e. ferroelastic) switching with piezoelectric interactions. Experimentally measured elastic, dielectric, and piezoelectric constants are used consistently, but different effective critical energy barriers are selected phenomenologically. Electric displacement versus electric field, strain versus electric field, stress versus strain, and stress versus electric displacement loops of a ceramic lead lanthanum zirconate titanate (PLZT) are modeled well below the Curie temperature.

  12. Finite Element Analysis of Electrically Excited Quartz Tuning Fork Devices

    PubMed Central

    Oria, Roger; Otero, Jorge; González, Laura; Botaya, Luis; Carmona, Manuel; Puig-Vidal, Manel

    2013-01-01

    Quartz Tuning Fork (QTF)-based Scanning Probe Microscopy (SPM) is an important field of research. A suitable model for the QTF is important to obtain quantitative measurements with these devices. Analytical models have the limitation of being based on the double cantilever configuration. In this paper, we present an electromechanical finite element model of the QTF electrically excited with two free prongs. The model goes beyond the state-of-the-art of numerical simulations currently found in the literature for this QTF configuration. We present the first numerical analysis of both the electrical and mechanical behavior of QTF devices. Experimental measurements obtained with 10 units of the same model of QTF validate the finite element model with a good agreement. PMID:23722828

  13. Finite element calculation of residual stress in dental restorative material

    NASA Astrophysics Data System (ADS)

    Grassia, Luigi; D'Amore, Alberto

    2012-07-01

    A finite element methodology for residual stresses calculation in dental restorative materials is proposed. The material under concern is a multifunctional methacrylate-based composite for dental restorations, activated by visible light. Reaction kinetics, curing shrinkage, and viscoelastic relaxation functions were required as input data on a structural finite element solver. Post cure effects were considered in order to quantify the residual stresses coming out from natural contraction with respect to those debited to the chemical shrinkage. The analysis showed for a given test case that residual stresses frozen in the dental restoration at uniform temperature of 37°C are of the same order of magnitude of the strength of the dental composite material per se.

  14. An emulator for minimizing finite element analysis implementation resources

    NASA Technical Reports Server (NTRS)

    Melosh, R. J.; Utku, S.; Salama, M.; Islam, M.

    1982-01-01

    A finite element analysis emulator providing a basis for efficiently establishing an optimum computer implementation strategy when many calculations are involved is described. The SCOPE emulator determines computer resources required as a function of the structural model, structural load-deflection equation characteristics, the storage allocation plan, and computer hardware capabilities. Thereby, it provides data for trading analysis implementation options to arrive at a best strategy. The models contained in SCOPE lead to micro-operation computer counts of each finite element operation as well as overall computer resource cost estimates. Application of SCOPE to the Memphis-Arkansas bridge analysis provides measures of the accuracy of resource assessments. Data indicate that predictions are within 17.3 percent for calculation times and within 3.2 percent for peripheral storage resources for the ELAS code.

  15. A weak Hamiltonian finite element method for optimal control problems

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Bless, Robert R.

    1989-01-01

    A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.

  16. A weak Hamiltonian finite element method for optimal control problems

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Bless, Robert R.

    1990-01-01

    A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.

  17. Finite Element Modeling of Micromachined MEMS Photon Devices

    SciTech Connect

    Datskos, P.G.; Evans, B.M.; Schonberger, D.

    1999-09-20

    The technology of microelectronics that has evolved over the past half century is one of great power and sophistication and can now be extended to many applications (MEMS and MOEMS) other than electronics. An interesting application of MEMS quantum devices is the detection of electromagnetic radiation. The operation principle of MEMS quantum devices is based on the photoinduced stress in semiconductors, and the photon detection results from the measurement of the photoinduced bending. These devices can be described as micromechanical photon detectors. In this work, we have developed a technique for simulating electronic stresses using finite element analysis. We have used our technique to model the response of micromechanical photon devices to external stimuli and compared these results with experimental data. Material properties, geometry, and bimaterial design play an important role in the performance of micromechanical photon detectors. We have modeled these effects using finite element analysis and included the effects of bimaterial thickness coating, effective length of the device, width, and thickness.

  18. Compatibility conditions of structural mechanics for finite element analysis

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Berke, L.; Gallagher, R. H.

    1991-01-01

    The equilibrium equations and the compatibility conditions are fundamental to the analyses of structures. However, anyone who undertakes even a cursory generic study of the compatibility conditions can discover, with little effort, that historically this facet of structural mechanics had not been adequately researched by the profession. Now the compatibility conditions (CC's) have been researched and are understood to a great extent. For finite element discretizations, the CC's are banded and can be divided into three distinct categories: (1) the interface CC's; (2) the cluster or field CC's; and (3) the external CC's. The generation of CC's requires the separating of a local region, then writing the deformation displacement relation (ddr) for the region, and finally, the eliminating of the displacements from the ddr. The procedure to generate all three types of CC's is presented and illustrated through examples of finite element models. The uniqueness of the CC's thus generated is shown.

  19. An emulator for minimizing finite element analysis implementation resources

    NASA Technical Reports Server (NTRS)

    Melosh, R. J.; Utku, S.; Salama, M.; Islam, M.

    1982-01-01

    A finite element analysis emulator providing a basis for efficiently establishing an optimum computer implementation strategy when many calculations are involved is described. The SCOPE emulator determines computer resources required as a function of the structural model, structural load-deflection equation characteristics, the storage allocation plan, and computer hardware capabilities. Thereby, it provides data for trading analysis implementation options to arrive at a best strategy. The models contained in SCOPE lead to micro-operation computer counts of each finite element operation as well as overall computer resource cost estimates. Application of SCOPE to the Memphis-Arkansas bridge analysis provides measures of the accuracy of resource assessments. Data indicate that predictions are within 17.3 percent for calculation times and within 3.2 percent for peripheral storage resources for the ELAS code.

  20. Finite element analysis applied to dentoalveolar trauma: methodology description.

    PubMed

    da Silva, B R; Moreira Neto, J J S; da Silva, F I; de Aguiar, A S W

    2011-01-01

    Dentoalveolar traumatic injuries are among the clinical conditions most frequently treated in dental practice. However, few studies so far have addressed the biomechanical aspects of these events, probably as a result of difficulties in carrying out satisfactory experimental and clinical studies as well as the unavailability of truly scientific methodologies. The aim of this paper was to describe the use of finite element analysis applied to the biomechanical evaluation of dentoalveolar trauma. For didactic purposes, the methodological process was divided into steps that go from the creation of a geometric model to the evaluation of final results, always with a focus on methodological characteristics, advantages, and disadvantages, so as to allow the reader to customize the methodology according to specific needs. Our description shows that the finite element method can faithfully reproduce dentoalveolar trauma, provided the methodology is closely followed and thoroughly evaluated.

  1. Finite Element Analysis Applied to Dentoalveolar Trauma: Methodology Description

    PubMed Central

    da Silva, B. R.; Moreira Neto, J. J. S.; da Silva, F. I.; de Aguiar, A. S. W.

    2011-01-01

    Dentoalveolar traumatic injuries are among the clinical conditions most frequently treated in dental practice. However, few studies so far have addressed the biomechanical aspects of these events, probably as a result of difficulties in carrying out satisfactory experimental and clinical studies as well as the unavailability of truly scientific methodologies. The aim of this paper was to describe the use of finite element analysis applied to the biomechanical evaluation of dentoalveolar trauma. For didactic purposes, the methodological process was divided into steps that go from the creation of a geometric model to the evaluation of final results, always with a focus on methodological characteristics, advantages, and disadvantages, so as to allow the reader to customize the methodology according to specific needs. Our description shows that the finite element method can faithfully reproduce dentoalveolar trauma, provided the methodology is closely followed and thoroughly evaluated. PMID:21991463

  2. Surface subsidence prediction by nonlinear finite-element analysis

    SciTech Connect

    Najjar, Y. . Dept. of Civil Engineering); Zaman, M. . School of Civil Engineering and Environmental Science)

    1993-11-01

    An improved two-dimensional plane-strain numerical procedure based on the incremental-iterative nonlinear finite-element is developed to predict ground subsidence caused by underground mining. The procedure emphasizes the use of the following features: (1) an appropriate constitutive model that can accurately describe the nonlinear behavior of geological strata; and (2) an accurate algorithm for simulation of excavation sequences consistent with the actual underground mining process. The computer code is used to analyze a collapse that occurred in the Blue Goose Lease [number sign]1 Mine in northeastern Oklahoma. A parametric study is conducted to investigate the effects of some selected factors on the shape and extent of subsidence profiles. Analyses of the numerical results indicate that the nonlinear finite-element technique can be employed to meaningfully predict and characterize the potential for ground subsidence due to underground mining.

  3. Finite element thermo-viscoplastic analysis of aerospace structures

    NASA Technical Reports Server (NTRS)

    Pandey, Ajay K.; Dechaumphai, Pramote; Thornton, Earl A.

    1990-01-01

    The time-dependent thermo-viscoplastic response of aerospace structures subjected to intense aerothermal loads is predicted using the finite-element method. The finite-element analysis uses the Bodner-Partom unified viscoplastic constitutive relations to determine rate-dependent nonlinear material behavior. The methodology is verified by comparison with experimental data and other numerical results for a uniaxially-loaded bar. The method is then used (1) to predict the structural response of a rectangular plate subjected to line heating along a centerline, and (2) to predict the thermal-structural response of a convectively-cooled engine cowl leading edge subjected to aerodynamic shock-shock interference heating. Compared to linear elastic analysis, the viscoplastic analysis results in lower peak stresses and regions of plastic deformations.

  4. Total quality management of forged products through finite element simulation

    NASA Astrophysics Data System (ADS)

    Chandra, U.; Rachakonda, S.; Chandrasekharan, S.

    The paper reviews the entire thermo-mechanical history experienced by a complex shaped, high strength forged part during all stages of its manufacturing process, i.e. forging, heat treatment, and machining. It examines the current practice of selecting the process parameters using finite element simulation of forging and quenching operations on an individual basis. Some recent work related to the simulation of aging and machining operations is summarized. The capabilities of several well-known finite element codes for these individual simulations are compared. Then, an integrated simulation approach is presented which will permit the optimization of process parameters for all operations, as opposed to a single operation. This approach will ensure a total quality management of forged products by avoiding costly problems which, under the current practice, are detected only at the end of the manufacturing cycle, i.e. after final machining.

  5. Design Optimization of Coronary Stent Based on Finite Element Models

    PubMed Central

    Qiu, Tianshuang; Zhu, Bao; Wu, Jinying

    2013-01-01

    This paper presents an effective optimization method using the Kriging surrogate model combing with modified rectangular grid sampling to reduce the stent dogboning effect in the expansion process. An infilling sampling criterion named expected improvement (EI) is used to balance local and global searches in the optimization iteration. Four commonly used finite element models of stent dilation were used to investigate stent dogboning rate. Thrombosis models of three typical shapes are built to test the effectiveness of optimization results. Numerical results show that two finite element models dilated by pressure applied inside the balloon are available, one of which with the artery and plaque can give an optimal stent with better expansion behavior, while the artery and plaque unincluded model is more efficient and takes a smaller amount of computation. PMID:24222743

  6. Weak Hamiltonian finite element method for optimal control problems

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Bless, Robert R.

    1991-01-01

    A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.

  7. Pavement nondestructive evaluation using finite-element dynamic simulation

    NASA Astrophysics Data System (ADS)

    Uddin, W.; Hackett, R. M.

    1996-11-01

    This paper describes the nondestructive evaluation devices, visual distress survey and coring used to investigate jointed concrete pavement performance in northern Mississippi. 3D finite-element models were developed to simulate in-service conditions and to characterize in-situ material properties. Reasonable good agreement is found between in-situ moduli backcalculated from the dynamic analysis of falling weight deflectometer (FWD) deflections measured on selected pavements and laboratory moduli. Effects of load pulse shape, cracking, and discontinuities on the surface deflection response of pavements subjected to FWD load wee also investigated. It is shown that 3D analysis of temperature distribution and resulting thermal stresses play a significant role int he performance of concrete pavements. The study results demonstrated the extensive usefulness of the finite-element dynamic analysis and limitations of the static multilayered analysis and other pavement analysis programs which do not allow for crack modeling and dynamic analysis.

  8. Cyclic creep analysis from elastic finite-element solutions

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Hwang, S. Y.

    1986-01-01

    A uniaxial approach was developed for calculating cyclic creep and stress relaxation at the critical location of a structure subjected to cyclic thermomechanical loading. This approach was incorporated into a simplified analytical procedure for predicting the stress-strain history at a crack initiation site for life prediction purposes. An elastic finite-element solution for the problem was used as input for the simplified procedure. The creep analysis includes a self-adaptive time incrementing scheme. Cumulative creep is the sum of the initial creep, the recovery from the stress relaxation and the incremental creep. The simplified analysis was exercised for four cases involving a benchmark notched plate problem. Comparisons were made with elastic-plastic-creep solutions for these cases using the MARC nonlinear finite-element computer code.

  9. A fast hidden line algorithm for plotting finite element models

    NASA Technical Reports Server (NTRS)

    Jones, G. K.

    1982-01-01

    Effective plotting of finite element models requires the use of fast hidden line plot techniques that provide interactive response. A high speed hidden line technique was developed to facilitate the plotting of NASTRAN finite element models. Based on testing using 14 different models, the new hidden line algorithm (JONES-D) appears to be very fast: its speed equals that for normal (all lines visible) plotting and when compared to other existing methods it appears to be substantially faster. It also appears to be very reliable: no plot errors were observed using the new method to plot NASTRAN models. The new algorithm was made part of the NPLOT NASTRAN plot package and was used by structural analysts for normal production tasks.

  10. Finite Element Analysis of Extrusion of Multifilamentary Superconductor Precursor

    SciTech Connect

    Peng, X.; Sumption, M.D.; Collings, E.W.

    2004-06-28

    The extrusion of multifilamentary superconductor precursor billets has been modeled using finite element analysis. The billet configuration was 6 around 1, with the subelement consisting of Nb rods, and the outer can or sleeve was Cu. Two general cases were investigated, those in which the re-stack rods were initially; (i) round, and (ii) hexed. A thermo-mechanical, elasto-plastic, finite-element method was used to analyze the extrusion process. In this 3D FEM model, the initial state of the billet was assumed to be absent of bonding. A typical die angle (2{alpha}=45 deg.) and a series of extrusion ratios were selected to perform the simulation and the corresponding stress and strain distributions of the two billet variants processed were compared. Based on the stress and deformation created at the rod/rod and rod/sleeve interfaces, the bonding conditions generated through the extrusion were investigated.

  11. ORION96. 2-d Finite Element Code Postprocessor

    SciTech Connect

    Sanford, L.A.; Hallquist, J.O.

    1992-02-02

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  12. FEHM: finite element heat and mass transfer code

    SciTech Connect

    Zyvoloski, G.; Dash, Z.; Kelkar, S.

    1988-03-01

    The finite element heat and mass (FEHM) transfer code is a computer code developed to simulate geothermal and hot dry rock reservoirs. It is also applicable to natural-state studies of geothermal systems and ground-water flow. It solves the equations of heat and mass transfer for multiphase flow in porous and permeable media using the finite element method. The code also has provisions for a noncoupled tracer; that is, the tracer solutions do not affect the heat and mass transfer solutions. It can simulate two-dimensional, two-dimensional radial, or three-dimensional geometries. A summary of the equations in the model, the numerical solution procedure, and model verification and validation are provided in this report. A user's guide and sample problems are included in the appendices. 17 refs., 10 figs., 4 tabs.

  13. An emulator for minimizing computer resources for finite element analysis

    NASA Technical Reports Server (NTRS)

    Melosh, R.; Utku, S.; Islam, M.; Salama, M.

    1984-01-01

    A computer code, SCOPE, has been developed for predicting the computer resources required for a given analysis code, computer hardware, and structural problem. The cost of running the code is a small fraction (about 3 percent) of the cost of performing the actual analysis. However, its accuracy in predicting the CPU and I/O resources depends intrinsically on the accuracy of calibration data that must be developed once for the computer hardware and the finite element analysis code of interest. Testing of the SCOPE code on the AMDAHL 470 V/8 computer and the ELAS finite element analysis program indicated small I/O errors (3.2 percent), larger CPU errors (17.8 percent), and negligible total errors (1.5 percent).

  14. Finite element methods for integrated aerodynamic heating analysis

    NASA Technical Reports Server (NTRS)

    Peraire, J.

    1990-01-01

    Over the past few years finite element based procedures for the solution of high speed viscous compressible flows were developed. The objective of this research is to build upon the finite element concepts which have already been demonstrated and to develop these ideas to produce a method which is applicable to the solution of large scale practical problems. The problems of interest range from three dimensional full vehicle Euler simulations to local analysis of three-dimensional viscous laminar flow. Transient Euler flow simulations involving moving bodies are also to be included. An important feature of the research is to be the coupling of the flow solution methods with thermal/structural modeling techniques to provide an integrated fluid/thermal/structural modeling capability. The progress made towards achieving these goals during the first twelve month period of the research is presented.

  15. Finite element solution of transient fluid-structure interaction problems

    NASA Technical Reports Server (NTRS)

    Everstine, Gordon C.; Cheng, Raymond S.; Hambric, Stephen A.

    1991-01-01

    A finite element approach using NASTRAN is developed for solving time-dependent fluid-structure interaction problems, with emphasis on the transient scattering of acoustic waves from submerged elastic structures. Finite elements are used for modeling both structure and fluid domains to facilitate the graphical display of the wave motion through both media. For the liquid, the use of velocity potential as the fundamental unknown results in a symmetric matrix equation. The approach is illustrated for the problem of transient scattering from a submerged elastic spherical shell subjected to an incident tone burst. The use of an analogy between the equations of elasticity and the wave equation of acoustics, a necessary ingredient to the procedure, is summarized.

  16. A finite element model for residual stress in repair welds

    SciTech Connect

    Feng, Z.; Wang, X.L.; Spooner, S.; Goodwin, G.M.; Maziasz, P.J.; Hubbard, C.R.; Zacharia, T.

    1996-03-28

    This paper describes a three-dimensional finite element model for calculation of the residual stress distribution caused by repair welding. Special user subroutines were developed to simulate the continuous deposition of filler metal during welding. The model was then tested by simulating the residual stress/strain field of a FeAl weld overlay clad on a 2{1/4}Cr-1 Mo steel plate, for which neutron diffraction measurement data of the residual strain field were available. It is shown that the calculated residual stress distribution was consistent with that determined with neutron diffraction. High tensile residual stresses in both the longitudinal and transverse directions were observed around the weld toe at the end of the weld. The strong spatial dependency of the residual stresses in the region around the weld demonstrates that the common two-dimensional cross-section finite element models should not be used for repair welding analysis.

  17. Recent finite element studies in plasticity and fracture mechanics

    NASA Technical Reports Server (NTRS)

    Rice, J. R.; Mcmeeking, R. M.; Parks, D. M.; Sorensen, E. P.

    1979-01-01

    The paper reviews recent work on fundamentals of elastic-plastic finite-element analysis and its applications to the mechanics of crack opening and growth in ductile solids. The presentation begins with a precise formulation of incremental equilibrium equations and their finite-element forms in a manner valid for deformations of arbitrary magnitude. Special features of computational procedures are outlined for accuracy in view of the near-incompressibility of elastic-plastic response. Applications to crack mechanics include the analysis of large plastic deformations at a progressively opening crack tip, the determination of J integral values and of limitations to J characterizations of the intensity of the crack tip field, and the determination of crack tip fields in stable crack growth.

  18. Second virial coefficient of one dimensional gas

    SciTech Connect

    Mijatovic, M.

    1982-08-01

    The second virial coefficient of a one dimensional gas is calculated using the expressions for the scattering amplitude. The scattering amplitude is chosen in the form of rational function of wave vector.

  19. Finite element dynamic analysis of finite beams on a bilinear foundation under a moving load

    NASA Astrophysics Data System (ADS)

    Castro Jorge, P.; Pinto da Costa, A.; Simões, F. M. F.

    2015-06-01

    The present paper is concerned with the behaviour of finite elastic beams, acted by a moving transverse concentrated load, interacting with elastic foundations of different stiffnesses in compression and in tension. Using finite element analyses, the displacement amplitudes and the critical velocities of the load on a UIC-60 rail are computed and their dependence with respect to the difference between the foundation's moduli in compression and in tension is evaluated. The limit case of a tensionless foundation is as well analyzed. The numerical algorithm relies on the internal force vectors and tangent stiffness matrices computed exactly with automatic symbolic manipulation.

  20. An hybrid finite volume finite element method for variable density incompressible flows

    NASA Astrophysics Data System (ADS)

    Calgaro, Caterina; Creusé, Emmanuel; Goudon, Thierry

    2008-04-01

    This paper is devoted to the numerical simulation of variable density incompressible flows, modeled by the Navier-Stokes system. We introduce an hybrid scheme which combines a finite volume approach for treating the mass conservation equation and a finite element method to deal with the momentum equation and the divergence free constraint. The breakthrough relies on the definition of a suitable footbridge between the two methods, through the design of compatibility condition. In turn, the method is very flexible and allows to deal with unstructured meshes. Several numerical tests are performed to show the scheme capabilities. In particular, the viscous Rayleigh-Taylor instability evolution is carefully investigated.