Science.gov

Sample records for one-dimensional markov processes

  1. One-dimensional contact process: duality and renormalization.

    PubMed

    Hooyberghs, J; Vanderzande, C

    2001-04-01

    We study the one-dimensional contact process in its quantum version using a recently proposed real-space renormalization technique for stochastic many-particle systems. Exploiting the duality and other properties of the model, we can apply the method for cells with up to 37 sites. After suitable extrapolation, we obtain exponent estimates that are comparable in accuracy with the best known in the literature.

  2. Computer model of one-dimensional equilibrium controlled sorption processes

    USGS Publications Warehouse

    Grove, D.B.; Stollenwerk, K.G.

    1984-01-01

    A numerical solution to the one-dimensional solute-transport equation with equilibrium-controlled sorption and a first-order irreversible-rate reaction is presented. The computer code is written in FORTRAN language, with a variety of options for input and output for user ease. Sorption reactions include Langmuir, Freundlich, and ion-exchange, with or without equal valance. General equations describing transport and reaction processes are solved by finite-difference methods, with nonlinearities accounted for by iteration. Complete documentation of the code, with examples, is included. (USGS)

  3. Markov reward processes

    NASA Technical Reports Server (NTRS)

    Smith, R. M.

    1991-01-01

    Numerous applications in the area of computer system analysis can be effectively studied with Markov reward models. These models describe the behavior of the system with a continuous-time Markov chain, where a reward rate is associated with each state. In a reliability/availability model, upstates may have reward rate 1 and down states may have reward rate zero associated with them. In a queueing model, the number of jobs of certain type in a given state may be the reward rate attached to that state. In a combined model of performance and reliability, the reward rate of a state may be the computational capacity, or a related performance measure. Expected steady-state reward rate and expected instantaneous reward rate are clearly useful measures of the Markov reward model. More generally, the distribution of accumulated reward or time-averaged reward over a finite time interval may be determined from the solution of the Markov reward model. This information is of great practical significance in situations where the workload can be well characterized (deterministically, or by continuous functions e.g., distributions). The design process in the development of a computer system is an expensive and long term endeavor. For aerospace applications the reliability of the computer system is essential, as is the ability to complete critical workloads in a well defined real time interval. Consequently, effective modeling of such systems must take into account both performance and reliability. This fact motivates our use of Markov reward models to aid in the development and evaluation of fault tolerant computer systems.

  4. One-Dimensional Particle Processes with Acceleration/Braking Asymmetry

    NASA Astrophysics Data System (ADS)

    Furtlehner, Cyril; Lasgouttes, Jean-Marc; Samsonov, Maxim

    2012-07-01

    The slow-to-start mechanism is known to play an important role in the particular shape of the Fundamental Diagram of traffic and to be associated to hysteresis effects of traffic flow. We study this question in the context of exclusion and queueing processes, by including an asymmetry between deceleration and acceleration in the formulation of these processes. For exclusions processes, this corresponds to a multi-class process with transition asymmetry between different speed levels, while for queueing processes we consider non-reversible stochastic dependency of the service rate w.r.t. the number of clients. The relationship between these 2 families of models is analyzed on the ring geometry, along with their steady state properties. Spatial condensation phenomena and metastability are observed, depending on the level of the aforementioned asymmetry. In addition, we provide a large deviation formulation of the fundamental diagram which includes the level of fluctuations, in the canonical ensemble when the stationary state is expressed as a product form of such generalized queues.

  5. Convergence of One-Dimensional Diffusion Processes to a Jump Process Related to Population Genetics

    DTIC Science & Technology

    1990-06-01

    one-dimensional difkusion processes Let x(t),tkO be a one-dimensional diffusion process ( ODDP for brief) on the state space (A,r),- i<r<+o, with the... ODDP on (A,r). 2.2. Generalized diffusion processes Feller (1959) proposed a class of one-dimensional stochastic processes including ODDPs by means of...x(tN >a for every NrEN, 0 <tl1<t 2 < ...<tN9 al9a 2 ’...,aNErQ\\J(m) and xeQ. 3. Populatioii genetics models Let x8 (t) be a ODDP on 10,11 with

  6. Metastability in Markov processes

    NASA Astrophysics Data System (ADS)

    Larralde, H.; Leyvraz, F.; Sanders, D. P.

    2006-08-01

    We present a formalism for describing slowly decaying systems in the context of finite Markov chains obeying detailed balance. We show that phase space can be partitioned into approximately decoupled regions, in which one may introduce restricted Markov chains which are close to the original process but do not leave these regions. Within this context, we identify the conditions under which the decaying system can be considered to be in a metastable state. Furthermore, we show that such metastable states can be described in thermodynamic terms and define their free energy. This is accomplished, showing that the probability distribution describing the metastable state is indeed proportional to the equilibrium distribution, as is commonly assumed. We test the formalism numerically in the case of the two-dimensional kinetic Ising model, using the Wang-Landau algorithm to show this proportionality explicitly, and confirm that the proportionality constant is as derived in the theory. Finally, we extend the formalism to situations in which a system can have several metastable states.

  7. Convergence of One-Dimensional Diffusion Processes to a Jump Process Related to Population Genetics.

    DTIC Science & Technology

    A conjecture on the convergence of diffusion models in population genetics to a simple Markov chain model is proved. The notion of bi-generalized diffusion processes and their limit theorems are used systematically to prove the conjecture. Three limits; strong selection - weak mutation limit, moderate selection - weak mutation limit, weak selection - weak mutation limit are considered for typical diffusion models in population genetics . (JES)

  8. Markov Chains and Chemical Processes

    ERIC Educational Resources Information Center

    Miller, P. J.

    1972-01-01

    Views as important the relating of abstract ideas of modern mathematics now being taught in the schools to situations encountered in the sciences. Describes use of matrices and Markov chains to study first-order processes. (Author/DF)

  9. Fluctuations and Stochastic Processes in One-Dimensional Many-Body Quantum Systems

    SciTech Connect

    Stimming, H.-P.; Mauser, N. J.; Mazets, I. E.

    2010-07-02

    We study the fluctuation properties of a one-dimensional many-body quantum system composed of interacting bosons and investigate the regimes where quantum noise or, respectively, thermal excitations are dominant. For the latter, we develop a semiclassical description of the fluctuation properties based on the Ornstein-Uhlenbeck stochastic process. As an illustration, we analyze the phase correlation functions and the full statistical distributions of the interference between two one-dimensional systems, either independent or tunnel-coupled, and compare with the Luttinger-liquid theory.

  10. Current Fluctuations in the One-Dimensional Symmetric Exclusion Process with Open Boundaries

    NASA Astrophysics Data System (ADS)

    Derrida, B.; Douçot, B.; Roche, P.-E.

    2004-05-01

    We calculate the first four cumulants of the integrated current of the one dimensional symmetric simple exclusion process of $N$ sites with open boundary conditions. For large system size $N$, the generating function of the integrated current depends on the densities $\\rho_a$ and $\\rho_b$ of the two reservoirs and on the fugacity $z$, the parameter conjugated to the integrated current, through a single parameter. Based on our expressions for these first four cumulants, we make a conjecture which leads to a prediction for all the higher cumulants. In the case $\\rho_a=1$ and $\\rho_b=0$, our conjecture gives the same universal distribution as the one obtained by Lee, Levitov and Yakovets for one dimensional quantum conductors in the metallic regime.

  11. Relaxational processes in the one-dimensional Ising model with long-range interactions

    NASA Astrophysics Data System (ADS)

    Tomita, Yusuke

    2016-12-01

    Relaxational processes in ordered phases of one-dimensional Ising models with long-range interactions are investigated by Monte Carlo simulations. Three types of spin model, the pure ferromagnetic, the diluted ferromagnetic, and the spin glass models, are examined. The effective dimension of the one-dimensional systems are controlled by a parameter σ , which tunes the rate of interaction decay. Systematical investigations of droplet dynamics, from the lower to the upper critical dimension, are conducted by changing the value of σ . Comparing numerical data with the droplet theory, it is found that the surface dimension of droplets is distributed around the effective dimension. The distribution in the surface dimension makes the droplet dynamics complex and extremely enhances dynamical crossover.

  12. Relaxational processes in the one-dimensional Ising model with long-range interactions.

    PubMed

    Tomita, Yusuke

    2016-12-01

    Relaxational processes in ordered phases of one-dimensional Ising models with long-range interactions are investigated by Monte Carlo simulations. Three types of spin model, the pure ferromagnetic, the diluted ferromagnetic, and the spin glass models, are examined. The effective dimension of the one-dimensional systems are controlled by a parameter σ, which tunes the rate of interaction decay. Systematical investigations of droplet dynamics, from the lower to the upper critical dimension, are conducted by changing the value of σ. Comparing numerical data with the droplet theory, it is found that the surface dimension of droplets is distributed around the effective dimension. The distribution in the surface dimension makes the droplet dynamics complex and extremely enhances dynamical crossover.

  13. A large-scale interactive one-dimensional array processing system. [for spectrophotometric data

    NASA Technical Reports Server (NTRS)

    Clark, R. N.

    1980-01-01

    The work describes a scientist/user oriented interactive program for processing one-dimensional arrays. It is shown that the program is oriented toward processing spectrophotometric astronomical data and can also be used for general I-D array processing. Further, the program has totally free format input with a sophisticated decoding capability which can cope with typographical plus other possible mistakes. Finally, a description of the program is given to provide information on implementing a large-scale data-reduction facility.

  14. Graphics processing unit accelerated one-dimensional blood flow computation in the human arterial tree.

    PubMed

    Itu, Lucian; Sharma, Puneet; Kamen, Ali; Suciu, Constantin; Comaniciu, Dorin

    2013-12-01

    One-dimensional blood flow models have been used extensively for computing pressure and flow waveforms in the human arterial circulation. We propose an improved numerical implementation based on a graphics processing unit (GPU) for the acceleration of the execution time of one-dimensional model. A novel parallel hybrid CPU-GPU algorithm with compact copy operations (PHCGCC) and a parallel GPU only (PGO) algorithm are developed, which are compared against previously introduced PHCG versions, a single-threaded CPU only algorithm and a multi-threaded CPU only algorithm. Different second-order numerical schemes (Lax-Wendroff and Taylor series) are evaluated for the numerical solution of one-dimensional model, and the computational setups include physiologically motivated non-periodic (Windkessel) and periodic boundary conditions (BC) (structured tree) and elastic and viscoelastic wall laws. Both the PHCGCC and the PGO implementations improved the execution time significantly. The speed-up values over the single-threaded CPU only implementation range from 5.26 to 8.10 × , whereas the speed-up values over the multi-threaded CPU only implementation range from 1.84 to 4.02 × . The PHCGCC algorithm performs best for an elastic wall law with non-periodic BC and for viscoelastic wall laws, whereas the PGO algorithm performs best for an elastic wall law with periodic BC. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Universal scaling for second-class particles in a one-dimensional misanthrope process

    NASA Astrophysics Data System (ADS)

    Rákos, Attila

    2010-06-01

    We consider the one-dimensional Katz-Lebowitz-Spohn (KLS) model, which is a generalization of the totally asymmetric simple exclusion process (TASEP) with nearest neighbour interaction. Using a powerful mapping, the KLS model can be translated into a misanthrope process. In this model, for the repulsive case, it is possible to introduce second-class particles, the number of which is conserved. We study the distance distribution of second-class particles in this model numerically and find that for large distances it decreases as x-3/2. This agrees with a previous analytical result of Derrida et al (1993) for the TASEP, where the same asymptotic behaviour was found. We also study the dynamical scaling function of the distance distribution and find that it is universal within this family of models.

  16. A Second Law for Open Markov Processes

    NASA Astrophysics Data System (ADS)

    Pollard, Blake S.

    2016-03-01

    In this paper we define the notion of an open Markov process. An open Markov process is a generalization of an ordinary Markov process in which populations are allowed to flow in and out of the system at certain boundary states. We show that the rate of change of relative entropy in an open Markov process is less than or equal to the flow of relative entropy through its boundary states. This can be viewed as a generalization of the Second Law for open Markov processes. In the case of a Markov process whose equilibrium obeys detailed balance, this inequality puts an upper bound on the rate of change of the free energy for any non-equilibrium distribution.

  17. Phase transition of the one-dimensional coagulation-production process

    SciTech Connect

    Odor, Geza

    2001-06-01

    Recently an exact solution has been found by M. Henkel and H. Hinrichsen [J. Phys. A >34, 1561 (2001)] for the one-dimensional coagulation-production process: 2A{r_arrow}A, A0A{r_arrow}3A with equal diffusion and coagulation rates. This model evolves into the inactive phase independently of the production rate with t{sup {minus}1/2} density decay law. This paper shows that cluster mean-field approximations and Monte Carlo simulations predict a continuous phase transition for higher diffusion/coagulation rates as considered by the exact solution. Numerical evidence is given that the phase transition universality agrees with that of the annihilation-fission model with low diffusions.

  18. A compositional framework for Markov processes

    NASA Astrophysics Data System (ADS)

    Baez, John C.; Fong, Brendan; Pollard, Blake S.

    2016-03-01

    We define the concept of an "open" Markov process, or more precisely, continuous-time Markov chain, which is one where probability can flow in or out of certain states called "inputs" and "outputs." One can build up a Markov process from smaller open pieces. This process is formalized by making open Markov processes into the morphisms of a dagger compact category. We show that the behavior of a detailed balanced open Markov process is determined by a principle of minimum dissipation, closely related to Prigogine's principle of minimum entropy production. Using this fact, we set up a functor mapping open detailed balanced Markov processes to open circuits made of linear resistors. We also describe how to "black box" an open Markov process, obtaining the linear relation between input and output data that holds in any steady state, including nonequilibrium steady states with a nonzero flow of probability through the system. We prove that black boxing gives a symmetric monoidal dagger functor sending open detailed balanced Markov processes to Lagrangian relations between symplectic vector spaces. This allows us to compute the steady state behavior of an open detailed balanced Markov process from the behaviors of smaller pieces from which it is built. We relate this black box functor to a previously constructed black box functor for circuits.

  19. Separation of time scales in one-dimensional directed nucleation-growth processes

    NASA Astrophysics Data System (ADS)

    Pierobon, Paolo; Miné-Hattab, Judith; Cappello, Giovanni; Viovy, Jean-Louis; Lagomarsino, Marco Cosentino

    2010-12-01

    Proteins involved in homologous recombination such as RecA and hRad51 polymerize on single- and double-stranded DNA according to a nucleation-growth kinetics, which can be monitored by single-molecule in vitro assays. The basic models currently used to extract biochemical rates rely on ensemble averages and are typically based on an underlying process of bidirectional polymerization, in contrast with the often observed anisotropic polymerization of similar proteins. For these reasons, if one considers single-molecule experiments, the available models are useful to understand observations only in some regimes. In particular, recent experiments have highlighted a steplike polymerization kinetics. The classical model of one-dimensional nucleation growth, the Kolmogorov-Avrami-Mehl-Johnson (KAMJ) model, predicts the correct polymerization kinetics only in some regimes and fails to predict the steplike behavior. This work illustrates by simulations and analytical arguments the limitation of applicability of the KAMJ description and proposes a minimal model for the statistics of the steps based on the so-called stick-breaking stochastic process. We argue that this insight might be useful to extract information on the time and length scales involved in the polymerization kinetics.

  20. One-dimensional irreversible aggregation with dynamics of a totally asymmetric simple exclusion process

    NASA Astrophysics Data System (ADS)

    Bunzarova, N. Zh.; Pesheva, N. C.

    2017-05-01

    We define and study one-dimensional model of irreversible aggregation of particles obeying a discrete-time kinetics, which is a special limit of the generalized Totally Asymmetric Simple Exclusion Process (gTASEP) on open chains. The model allows for clusters of particles to translate as a whole entity one site to the right with the same probability as single particles do. A particle and a cluster, as well as two clusters, irreversibly aggregate whenever they become nearest neighbors. Nonequilibrium stationary phases appear under the balance of injection and ejection of particles. By extensive Monte Carlo simulations it is established that the phase diagram in the plane of the injection-ejection probabilities consists of three stationary phases: a multiparticle (MP) one, a completely filled (CF) phase, and a "mixed" (MP+CF) one. The transitions between these phases are: an unusual transition between MP and CF with jump discontinuity in both the bulk density and the current, a conventional first-order transition with a jump in the bulk density between MP and MP+CF, and a continuous clustering-type transition from MP to CF, which takes place throughout the MP+CF phase between them. By the data collapse method a finite-size scaling function for the current and bulk density is obtained near the unusual phase transition line. A diverging correlation length, associated with that transition, is identified and interpreted as the size of the largest cluster. The model allows for a future extension to account for possible cluster fragmentation.

  1. The role of cloud microphysical processes in climate: An assessment from a one-dimensional perspective

    NASA Astrophysics Data System (ADS)

    Liou, Kuo-Nan; Ou, Szu-Cheng

    1989-06-01

    The potential link between cloud microphysical processes and climate is investigated and theorized. We base our theory on results simulated from a one-dimensional climate model with an interactive cloud formation and precipitation program. This cloud program includes temperature-dependent parameterization equations for condensation, evaporation, and precipitation derived from growth equations for water droplets. We show that the cloud liquid water content is directly related to precipitation processes, which are governed by the mean cloud particle radius. In particular, we illustrate that the rate of precipitation generation is directly proportional to the fourth power of this radius. A doubling of CO2 is used as the radiative forcing. If the perturbed mean cloud particle radii for model high, middle, and low clouds are less than the climatological mean values, precipitation decreases because of the presence of smaller cloud particles, leading to an increase in the cloud liquid water content. Cloud solar albedo effects are enhanced, resulting in a reduction of temperature increases due to CO2 doubling (negative feedback). If, however, the perturbed mean cloud particle radii are larger than the climatological mean values, the availability of larger cloud particles would increase precipitation, leading to a decrease in the cloud liquid water content. The temperature increase in the case of CO2 doubling is amplified because of a reduction of cloud solar albedo effects (positive feedback). In the model the particle sizes are not directly related to radiative transfer, but they are indirectly related through precipitation and condensation processes, which determine the cloud liquid water content. We hypothesize that there are uncertainties in cloud microphysical processes and that a possible key to climate stability due to external radiative perturbations is the availability of larger or smaller cloud droplets (in reference to the climatological mean values). Smaller

  2. SPEFO---A Simple, Yet Powerful Program for One-Dimensional Spectra Processing

    NASA Astrophysics Data System (ADS)

    Skoda, Petr

    SPEFO is a small, yet powerful program used for processing stellar spectra at the Astronomical Institute of the Academy of Sciences of the Czech Republic in Ondřejov. It was originally written in 1990 by Dr. Jiři Horn for processing spectral plates obtained with the 2m telescope of the Ondřejov observatory and scanned with the local five channel microphotometer. Since then the code had been under constant improvement until the sudden death of the author in December 1994. Currently SPEFO is used mainly for the reduction of data from the Ondřejov Reticon detector (1872 pixels, 12 bit A/D), however it can process data from other instruments too, provided that they are in FITS one-dimensional format. The code was written in Turbo Pascal for MS-DOS; the size of the binaries is less than 350 KB. SPEFO will run on an ordinary PC computer with very modest hardware demands (PC AT 286, 1 MB RAM, 30 MB HD color EGA or VGA). Despite its small size the program is very powerful, and user friendly as well. The basic data reduction tasks such as derivation of the dispersion function, spectrum rectification, Fourier noise filtering, radial velocity and equivalent width measurements are performed in an easy manner, and the user can immediately see changes to the data on a screen plot (e.g., the line position is determined in the ``oscilloscopic'' mode by finding the coincidence of the displayed line and its interactively shifted mirrored profile, the continuum level spline is recalculated after fixing each new point, etc.). The main output of SPEFO is a table of radial velocities of measured stellar lines (including the atmospheric line correction), their equivalent widths and higher order moments, relative central line intensities and FWHM, together with the HPGL plot file. The program can do basic operations on spectra like comparison of two spectra, subtraction, adding, production of differential spectra or the transformation by rotational broadening. SPEFO can also deal with

  3. Markov and semi-Markov processes as a failure rate

    NASA Astrophysics Data System (ADS)

    Grabski, Franciszek

    2016-06-01

    In this paper the reliability function is defined by the stochastic failure rate process with a non negative and right continuous trajectories. Equations for the conditional reliability functions of an object, under assumption that the failure rate is a semi-Markov process with an at most countable state space are derived. A proper theorem is presented. The linear systems of equations for the appropriate Laplace transforms allow to find the reliability functions for the alternating, the Poisson and the Furry-Yule failure rate processes.

  4. Markov and semi-Markov processes as a failure rate

    SciTech Connect

    Grabski, Franciszek

    2016-06-08

    In this paper the reliability function is defined by the stochastic failure rate process with a non negative and right continuous trajectories. Equations for the conditional reliability functions of an object, under assumption that the failure rate is a semi-Markov process with an at most countable state space are derived. A proper theorem is presented. The linear systems of equations for the appropriate Laplace transforms allow to find the reliability functions for the alternating, the Poisson and the Furry-Yule failure rate processes.

  5. Multiplex templating process in one-dimensional nanoscale: controllable synthesis, macroscopic assemblies, and applications.

    PubMed

    Liang, Hai-Wei; Liu, Jian-Wei; Qian, Hai-Sheng; Yu, Shu-Hong

    2013-07-16

    Since their detection 20 years ago, carbon nanotubes (CNTs) have captured the interest of scientists, because one-dimensional (1D) nanostructures (nanowires, nanotubes, and nanoribbons) have fascinating physical properties and many potential technological applications. These are materials with structural features limited to the range of 1-100 nm in one dimension, and unlimited in the others. When their size goes down to certain characteristic lengths, such as the Bohr radius, the wavelength of incandescent light, and the phonon mean-free path, quantum mechanical effects can occur. This results in novel optical, magnetic, and electronic characteristics. These physical properties, along with unique transport features in the longitudinal direction and large surface-to-volume ratio, make 1D nanostructures attract extensive attention in both fundamental research and engineering applications. From a synthetic point of view, it is highly desirable to develop a simple route for fabricating 1D nanostructures in large scale at low cost. On the other hand, in order to transfer the intrinsic features of individual 1D nanostructures into macroscopic scale and realize practical applications, we need to explore highly efficient and scalable assembly methods to integrate 1D nanostructures into functional macroscopic architectures. In 2006, our group developed a simple hydrothermal method for synthesizing ultrathin Te nanowires (TeNWs) using conventional chemicals. As we found through systematic study over the past several years, we can use the ultrathin TeNWs as a versatile templating material to fabricate a series of high-quality 1D nanostructures by taking the unique advantages of TeNWs, such as large-scale synthesis, high processability, and high reactivity. The obtained 1D products inherit the dimensional (high aspect ratio) and mechanical (high flexibility) features of the original TeNW templates, thus allowing us to construct macroscopic architectures by using them as

  6. Markov process analysis of atom probe data

    NASA Astrophysics Data System (ADS)

    Wang, Qi; T, J. Kinkus; Ren, Dagang

    1990-08-01

    A geometry model of field evaporation process is set up; with this model the field evaporation process can be described as Markov process. Its application to the earliest stage of phase transition is studied. For comparison, Camus' system Fe-Cr 45 at.% is calculated agin, and the same result is extracted from our method and intimated in our experimental data.

  7. One-dimensional turbulence

    SciTech Connect

    Kerstein, A.R.

    1996-12-31

    One-Dimensional Turbulence is a new turbulence modeling strategy involving an unsteady simulation implemented in one spatial dimension. In one dimension, fine scale viscous and molecular-diffusive processes can be resolved affordably in simulations at high turbulence intensity. The mechanistic distinction between advective and molecular processes is thereby preserved, in contrast to turbulence models presently employed. A stochastic process consisting of mapping {open_quote}events{close_quote} applied to a one-dimensional velocity profile represents turbulent advection. The local event rate for given eddy size is proportional to the velocity difference across the eddy. These properties cause an imposed shear to induce an eddy cascade analogous in many respects to the eddy cascade in turbulent flow. Many scaling and fluctuation properties of self-preserving flows, and of passive scalars introduced into these flows, are reproduced.

  8. Autocatalytic genetic networks modeled by piecewise-deterministic Markov processes.

    PubMed

    Zeiser, Stefan; Franz, Uwe; Liebscher, Volkmar

    2010-02-01

    In the present work we propose an alternative approach to model autocatalytic networks, called piecewise-deterministic Markov processes. These were originally introduced by Davis in 1984. Such a model allows for random transitions between the active and inactive state of a gene, whereas subsequent transcription and translation processes are modeled in a deterministic manner. We consider three types of autoregulated networks, each based on a positive feedback loop. It is shown that if the densities of the stationary distributions exist, they are the solutions of a system of equations for a one-dimensional correlated random walk. These stationary distributions are determined analytically. Further, the distributions are analyzed for different simulation periods and different initial concentration values by numerical means. We show that, depending on the network structure, beside a binary response also a graded response is observable.

  9. Subensemble decomposition and Markov process analysis of Burgers turbulence.

    PubMed

    Zhang, Zhi-Xiong; She, Zhen-Su

    2011-08-01

    A numerical and statistical study is performed to describe the positive and negative local subgrid energy fluxes in the one-dimensional random-force-driven Burgers turbulence (Burgulence). We use a subensemble method to decompose the field into shock wave and rarefaction wave subensembles by group velocity difference. We observe that the shock wave subensemble shows a strong intermittency which dominates the whole Burgulence field, while the rarefaction wave subensemble satisfies the Kolmogorov 1941 (K41) scaling law. We calculate the two subensemble probabilities and find that in the inertial range they maintain scale invariance, which is the important feature of turbulence self-similarity. We reveal that the interconversion of shock and rarefaction waves during the equation's evolution displays in accordance with a Markov process, which has a stationary transition probability matrix with the elements satisfying universal functions and, when the time interval is much greater than the corresponding characteristic value, exhibits the scale-invariant property.

  10. Current Fluctuations of the One Dimensional Symmetric Simple Exclusion Process with Step Initial Condition

    NASA Astrophysics Data System (ADS)

    Derrida, Bernard; Gerschenfeld, Antoine

    2009-07-01

    For the symmetric simple exclusion process on an infinite line, we calculate exactly the fluctuations of the integrated current Q t during time t through the origin when, in the initial condition, the sites are occupied with density ρ a on the negative axis and with density ρ b on the positive axis. All the cumulants of Q t grow like sqrt{t} . In the range where Qt˜ sqrt{t} , the decay exp [- Q {/t 3}/ t] of the distribution of Q t is non-Gaussian. Our results are obtained using the Bethe ansatz and several identities derived recently by Tracy and Widom for exclusion processes on the infinite line.

  11. Metastability for Markov processes with detailed balance.

    PubMed

    Larralde, Hernán; Leyvraz, François

    2005-04-29

    We present a definition for metastable states applicable to arbitrary finite state Markov processes satisfying detailed balance. In particular, we identify a crucial condition that distinguishes metastable states from other slow decaying modes and which allows us to show that our definition has several desirable properties similar to those postulated in the restricted ensemble approach. The intuitive physical meaning of this condition is simply that the total equilibrium probability of finding the system in the metastable state is negligible.

  12. Metastability for Markov Processes with Detailed Balance

    NASA Astrophysics Data System (ADS)

    Larralde, Hernán; Leyvraz, François

    2005-04-01

    We present a definition for metastable states applicable to arbitrary finite state Markov processes satisfying detailed balance. In particular, we identify a crucial condition that distinguishes metastable states from other slow decaying modes and which allows us to show that our definition has several desirable properties similar to those postulated in the restricted ensemble approach. The intuitive physical meaning of this condition is simply that the total equilibrium probability of finding the system in the metastable state is negligible.

  13. One-dimensional biomass fast pyrolysis model with reaction kinetics integrated in an Aspen Plus Biorefinery Process Model

    DOE PAGES

    Humbird, David; Trendewicz, Anna; Braun, Robert; ...

    2017-01-12

    A biomass fast pyrolysis reactor model with detailed reaction kinetics and one-dimensional fluid dynamics was implemented in an equation-oriented modeling environment (Aspen Custom Modeler). Portions of this work were detailed in previous publications; further modifications have been made here to improve stability and reduce execution time of the model to make it compatible for use in large process flowsheets. The detailed reactor model was integrated into a larger process simulation in Aspen Plus and was stable for different feedstocks over a range of reactor temperatures. Sample results are presented that indicate general agreement with experimental results, but with higher gasmore » losses caused by stripping of the bio-oil by the fluidizing gas in the simulated absorber/condenser. Lastly, this integrated modeling approach can be extended to other well-defined, predictive reactor models for fast pyrolysis, catalytic fast pyrolysis, as well as other processes.« less

  14. Hybrid Discrete-Continuous Markov Decision Processes

    NASA Technical Reports Server (NTRS)

    Feng, Zhengzhu; Dearden, Richard; Meuleau, Nicholas; Washington, Rich

    2003-01-01

    This paper proposes a Markov decision process (MDP) model that features both discrete and continuous state variables. We extend previous work by Boyan and Littman on the mono-dimensional time-dependent MDP to multiple dimensions. We present the principle of lazy discretization, and piecewise constant and linear approximations of the model. Having to deal with several continuous dimensions raises several new problems that require new solutions. In the (piecewise) linear case, we use techniques from partially- observable MDPs (POMDPS) to represent value functions as sets of linear functions attached to different partitions of the state space.

  15. Neyman, Markov processes and survival analysis.

    PubMed

    Yang, Grace

    2013-07-01

    J. Neyman used stochastic processes extensively in his applied work. One example is the Fix and Neyman (F-N) competing risks model (1951) that uses finite homogeneous Markov processes to analyse clinical trials with breast cancer patients. We revisit the F-N model, and compare it with the Kaplan-Meier (K-M) formulation for right censored data. The comparison offers a way to generalize the K-M formulation to include risks of recovery and relapses in the calculation of a patient's survival probability. The generalization is to extend the F-N model to a nonhomogeneous Markov process. Closed-form solutions of the survival probability are available in special cases of the nonhomogeneous processes, like the popular multiple decrement model (including the K-M model) and Chiang's staging model, but these models do not consider recovery and relapses while the F-N model does. An analysis of sero-epidemiology current status data with recurrent events is illustrated. Fix and Neyman used Neyman's RBAN (regular best asymptotic normal) estimates for the risks, and provided a numerical example showing the importance of considering both the survival probability and the length of time of a patient living a normal life in the evaluation of clinical trials. The said extension would result in a complicated model and it is unlikely to find analytical closed-form solutions for survival analysis. With ever increasing computing power, numerical methods offer a viable way of investigating the problem.

  16. Generator estimation of Markov jump processes

    NASA Astrophysics Data System (ADS)

    Metzner, P.; Dittmer, E.; Jahnke, T.; Schütte, Ch.

    2007-11-01

    Estimating the generator of a continuous-time Markov jump process based on incomplete data is a problem which arises in various applications ranging from machine learning to molecular dynamics. Several methods have been devised for this purpose: a quadratic programming approach (cf. [D.T. Crommelin, E. Vanden-Eijnden, Fitting timeseries by continuous-time Markov chains: a quadratic programming approach, J. Comp. Phys. 217 (2006) 782-805]), a resolvent method (cf. [T. Müller, Modellierung von Proteinevolution, PhD thesis, Heidelberg, 2001]), and various implementations of an expectation-maximization algorithm ([S. Asmussen, O. Nerman, M. Olsson, Fitting phase-type distributions via the EM algorithm, Scand. J. Stat. 23 (1996) 419-441; I. Holmes, G.M. Rubin, An expectation maximization algorithm for training hidden substitution models, J. Mol. Biol. 317 (2002) 753-764; U. Nodelman, C.R. Shelton, D. Koller, Expectation maximization and complex duration distributions for continuous time Bayesian networks, in: Proceedings of the twenty-first conference on uncertainty in AI (UAI), 2005, pp. 421-430; M. Bladt, M. Sørensen, Statistical inference for discretely observed Markov jump processes, J.R. Statist. Soc. B 67 (2005) 395-410]). Some of these methods, however, seem to be known only in a particular research community, and have later been reinvented in a different context. The purpose of this paper is to compile a catalogue of existing approaches, to compare the strengths and weaknesses, and to test their performance in a series of numerical examples. These examples include carefully chosen model problems and an application to a time series from molecular dynamics.

  17. Scaling characteristics of one-dimensional fractional diffusion processes in the presence of power-law distributed random noise

    NASA Astrophysics Data System (ADS)

    Nezhadhaghighi, Mohsen Ghasemi

    2017-08-01

    Here, we present results of numerical simulations and the scaling characteristics of one-dimensional random fluctuations with heavy-tailed probability distribution functions. Assuming that the distribution function of the random fluctuations obeys Lévy statistics with a power-law scaling exponent, we investigate the fractional diffusion equation in the presence of μ -stable Lévy noise. We study the scaling properties of the global width and two-point correlation functions and then compare the analytical and numerical results for the growth exponent β and the roughness exponent α . We also investigate the fractional Fokker-Planck equation for heavy-tailed random fluctuations. We show that the fractional diffusion processes in the presence of μ -stable Lévy noise display special scaling properties in the probability distribution function (PDF). Finally, we numerically study the scaling properties of the heavy-tailed random fluctuations by using the diffusion entropy analysis. This method is based on the evaluation of the Shannon entropy of the PDF generated by the random fluctuations, rather than on the measurement of the global width of the process. We apply the diffusion entropy analysis to extract the growth exponent β and to confirm the validity of our numerical analysis.

  18. Scaling characteristics of one-dimensional fractional diffusion processes in the presence of power-law distributed random noise.

    PubMed

    Nezhadhaghighi, Mohsen Ghasemi

    2017-08-01

    Here, we present results of numerical simulations and the scaling characteristics of one-dimensional random fluctuations with heavy-tailed probability distribution functions. Assuming that the distribution function of the random fluctuations obeys Lévy statistics with a power-law scaling exponent, we investigate the fractional diffusion equation in the presence of μ-stable Lévy noise. We study the scaling properties of the global width and two-point correlation functions and then compare the analytical and numerical results for the growth exponent β and the roughness exponent α. We also investigate the fractional Fokker-Planck equation for heavy-tailed random fluctuations. We show that the fractional diffusion processes in the presence of μ-stable Lévy noise display special scaling properties in the probability distribution function (PDF). Finally, we numerically study the scaling properties of the heavy-tailed random fluctuations by using the diffusion entropy analysis. This method is based on the evaluation of the Shannon entropy of the PDF generated by the random fluctuations, rather than on the measurement of the global width of the process. We apply the diffusion entropy analysis to extract the growth exponent β and to confirm the validity of our numerical analysis.

  19. Enantiodromic effective generators of a Markov jump process with Gallavotti-Cohen symmetry

    NASA Astrophysics Data System (ADS)

    Terohid, S. A. A.; Torkaman, P.; Jafarpour, F. H.

    2016-11-01

    This paper deals with the properties of the stochastic generators of the effective (driven) processes associated with atypical values of transition-dependent time-integrated currents with Gallavotti-Cohen symmetry in Markov jump processes. Exploiting the concept of biased ensemble of trajectories by introducing a biasing field s , we show that the stochastic generators of the effective processes associated with the biasing fields s and E -s are enantiodromic with respect to each other where E is the conjugated field to the current. We illustrate our findings by considering an exactly solvable creation-annihilation process of classical particles with nearest-neighbor interactions defined on a one-dimensional lattice.

  20. Transition-Independent Decentralized Markov Decision Processes

    NASA Technical Reports Server (NTRS)

    Becker, Raphen; Silberstein, Shlomo; Lesser, Victor; Goldman, Claudia V.; Morris, Robert (Technical Monitor)

    2003-01-01

    There has been substantial progress with formal models for sequential decision making by individual agents using the Markov decision process (MDP). However, similar treatment of multi-agent systems is lacking. A recent complexity result, showing that solving decentralized MDPs is NEXP-hard, provides a partial explanation. To overcome this complexity barrier, we identify a general class of transition-independent decentralized MDPs that is widely applicable. The class consists of independent collaborating agents that are tied up by a global reward function that depends on both of their histories. We present a novel algorithm for solving this class of problems and examine its properties. The result is the first effective technique to solve optimally a class of decentralized MDPs. This lays the foundation for further work in this area on both exact and approximate solutions.

  1. Analytical Approach to the One-Dimensional Disordered Exclusion Process with Open Boundaries and Random Sequential Dynamics

    NASA Astrophysics Data System (ADS)

    Loulidi, M.

    2008-07-01

    A one-dimensional disordered particle hopping rate asymmetric exclusion process (ASEP) with open boundaries and a random sequential dynamics is studied analytically. Combining the exact results of the steady states in the pure case with a perturbative mean field-like approach the broken particle-hole symmetry is highlighted and the phase diagram is studied in the parameter space ( α, β), where α and β represent respectively the injection rate and the extraction rate of particles. The model displays, as in the pure case, high-density, low-density and maximum-current phases. All critical lines are determined analytically showing that the high-density low-density first order phase transition occurs at α≠ β. We show that the maximum-current phase extends its stability region as the disorder is increased and the usual 1/sqrt{ell} -decay of the density profile in this phase is universal. Assuming that some exact results for the disordered model on a ring hold for a system with open boundaries, we derive some analytical results for platoon phase transition within the low-density phase and we give an analytical expression of its corresponding critical injection rate α *. As it was observed numerically (Bengrine et al. J. Phys. A: Math. Gen. 32:2527, [1999]), we show that the quenched disorder induces a cusp in the current-density relation at maximum flow in a certain region of parameter space and determine the analytical expression of its slope. The results of numerical simulations we develop agree with the analytical ones.

  2. Magnetization process of a one-dimensional quantum antiferromagnet: The product-wave-function renormalization group approach

    NASA Astrophysics Data System (ADS)

    Hieida, Yasuhiro; Okunishi, Kouichi; Akutsu, Yasuhiro

    1997-02-01

    The product-wave-function renormalization group method, a new numerical renormalization group scheme proposed recently, is applied to one-dimensional quantum spin chains in a magnetic field. We find the zero-temperature magnetization curve of the spin chains, which excellently agrees with the exact solution in the whole range of the field.

  3. Relativized hierarchical decomposition of Markov decision processes.

    PubMed

    Ravindran, B

    2013-01-01

    Reinforcement Learning (RL) is a popular paradigm for sequential decision making under uncertainty. A typical RL algorithm operates with only limited knowledge of the environment and with limited feedback on the quality of the decisions. To operate effectively in complex environments, learning agents require the ability to form useful abstractions, that is, the ability to selectively ignore irrelevant details. It is difficult to derive a single representation that is useful for a large problem setting. In this chapter, we describe a hierarchical RL framework that incorporates an algebraic framework for modeling task-specific abstraction. The basic notion that we will explore is that of a homomorphism of a Markov Decision Process (MDP). We mention various extensions of the basic MDP homomorphism framework in order to accommodate different commonly understood notions of abstraction, namely, aspects of selective attention. Parts of the work described in this chapter have been reported earlier in several papers (Narayanmurthy and Ravindran, 2007, 2008; Ravindran and Barto, 2002, 2003a,b; Ravindran et al., 2007).

  4. Finite dimensional Markov process approximation for stochastic time-delayed dynamical systems

    NASA Astrophysics Data System (ADS)

    Sun, Jian-Qiao

    2009-05-01

    This paper presents a method of finite dimensional Markov process (FDMP) approximation for stochastic dynamical systems with time delay. The FDMP method preserves the standard state space format of the system, and allows us to apply all the existing methods and theories for analysis and control of stochastic dynamical systems. The paper presents the theoretical framework for stochastic dynamical systems with time delay based on the FDMP method, including the FPK equation, backward Kolmogorov equation, and reliability formulation. A simple one-dimensional stochastic system is used to demonstrate the method and the theory. The work of this paper opens a door to various studies of stochastic dynamical systems with time delay.

  5. Performability analysis using semi-Markov reward processes

    NASA Technical Reports Server (NTRS)

    Ciardo, Gianfranco; Marie, Raymond A.; Sericola, Bruno; Trivedi, Kishor S.

    1990-01-01

    Beaudry (1978) proposed a simple method of computing the distribution of performability in a Markov reward process. Two extensions of Beaudry's approach are presented. The method is generalized to a semi-Markov reward process by removing the restriction requiring the association of zero reward to absorbing states only. The algorithm proceeds by replacing zero-reward nonabsorbing states by a probabilistic switch; it is therefore related to the elimination of vanishing states from the reachability graph of a generalized stochastic Petri net and to the elimination of fast transient states in a decomposition approach to stiff Markov chains. The use of the approach is illustrated with three applications.

  6. Performability analysis using semi-Markov reward processes

    NASA Technical Reports Server (NTRS)

    Ciardo, Gianfranco; Marie, Raymond A.; Sericola, Bruno; Trivedi, Kishor S.

    1990-01-01

    Beaudry (1978) proposed a simple method of computing the distribution of performability in a Markov reward process. Two extensions of Beaudry's approach are presented. The method is generalized to a semi-Markov reward process by removing the restriction requiring the association of zero reward to absorbing states only. The algorithm proceeds by replacing zero-reward nonabsorbing states by a probabilistic switch; it is therefore related to the elimination of vanishing states from the reachability graph of a generalized stochastic Petri net and to the elimination of fast transient states in a decomposition approach to stiff Markov chains. The use of the approach is illustrated with three applications.

  7. NonMarkov Ito Processes with 1- state memory

    NASA Astrophysics Data System (ADS)

    McCauley, Joseph L.

    2010-08-01

    A Markov process, by definition, cannot depend on any previous state other than the last observed state. An Ito process implies the Fokker-Planck and Kolmogorov backward time partial differential eqns. for transition densities, which in turn imply the Chapman-Kolmogorov eqn., but without requiring the Markov condition. We present a class of Ito process superficially resembling Markov processes, but with 1-state memory. In finance, such processes would obey the efficient market hypothesis up through the level of pair correlations. These stochastic processes have been mislabeled in recent literature as 'nonlinear Markov processes'. Inspired by Doob and Feller, who pointed out that the ChapmanKolmogorov eqn. is not restricted to Markov processes, we exhibit a Gaussian Ito transition density with 1-state memory in the drift coefficient that satisfies both of Kolmogorov's partial differential eqns. and also the Chapman-Kolmogorov eqn. In addition, we show that three of the examples from McKean's seminal 1966 paper are also nonMarkov Ito processes. Last, we show that the transition density of the generalized Black-Scholes type partial differential eqn. describes a martingale, and satisfies the ChapmanKolmogorov eqn. This leads to the shortest-known proof that the Green function of the Black-Scholes eqn. with variable diffusion coefficient provides the so-called martingale measure of option pricing.

  8. Supports of invariant measures for piecewise deterministic Markov processes

    NASA Astrophysics Data System (ADS)

    Benaïm, M.; Colonius, F.; Lettau, R.

    2017-09-01

    For a class of piecewise deterministic Markov processes, the supports of the invariant measures are characterized. This is based on the analysis of controllability properties of an associated deterministic control system. Its invariant control sets determine the supports.

  9. Testing the Adequacy of a Semi-Markov Process

    DTIC Science & Technology

    2015-09-17

    and finance , there does not exist a theoretically-based, systematic method to determine if a semi-Markov process accurately fits the underlying data...fields, from finance and health care to game theory and reliability. Typically, these models decompose a complex system into a series of connected... finance [1], and computer science [14]. The basic approach to modeling with a semi- Markov process from observed data is the following: 1. Define

  10. Monte Carlo Simulation of Markov, Semi-Markov, and Generalized Semi- Markov Processes in Probabilistic Risk Assessment

    NASA Technical Reports Server (NTRS)

    English, Thomas

    2005-01-01

    A standard tool of reliability analysis used at NASA-JSC is the event tree. An event tree is simply a probability tree, with the probabilities determining the next step through the tree specified at each node. The nodal probabilities are determined by a reliability study of the physical system at work for a particular node. The reliability study performed at a node is typically referred to as a fault tree analysis, with the potential of a fault tree existing.for each node on the event tree. When examining an event tree it is obvious why the event tree/fault tree approach has been adopted. Typical event trees are quite complex in nature, and the event tree/fault tree approach provides a systematic and organized approach to reliability analysis. The purpose of this study was two fold. Firstly, we wanted to explore the possibility that a semi-Markov process can create dependencies between sojourn times (the times it takes to transition from one state to the next) that can decrease the uncertainty when estimating time to failures. Using a generalized semi-Markov model, we studied a four element reliability model and were able to demonstrate such sojourn time dependencies. Secondly, we wanted to study the use of semi-Markov processes to introduce a time variable into the event tree diagrams that are commonly developed in PRA (Probabilistic Risk Assessment) analyses. Event tree end states which change with time are more representative of failure scenarios than are the usual static probability-derived end states.

  11. Enantiodromic effective generators of a Markov jump process with Gallavotti-Cohen symmetry.

    PubMed

    Terohid, S A A; Torkaman, P; Jafarpour, F H

    2016-11-01

    This paper deals with the properties of the stochastic generators of the effective (driven) processes associated with atypical values of transition-dependent time-integrated currents with Gallavotti-Cohen symmetry in Markov jump processes. Exploiting the concept of biased ensemble of trajectories by introducing a biasing field s, we show that the stochastic generators of the effective processes associated with the biasing fields s and E-s are enantiodromic with respect to each other where E is the conjugated field to the current. We illustrate our findings by considering an exactly solvable creation-annihilation process of classical particles with nearest-neighbor interactions defined on a one-dimensional lattice.

  12. Birth-death process of local structures in defect turbulence described by the one-dimensional complex Ginzburg-Landau equation

    NASA Astrophysics Data System (ADS)

    Uchiyama, Yusuke; Konno, Hidetoshi

    2014-04-01

    Defect turbulence described by the one-dimensional complex Ginzburg-Landau equation is investigated and analyzed via a birth-death process of the local structures composed of defects, holes, and modulated amplitude waves (MAWs). All the number statistics of each local structure, in its stationary state, are subjected to Poisson statistics. In addition, the probability density functions of interarrival times of defects, lifetimes of holes, and MAWs show the existence of long-memory and some characteristic time scales caused by zigzag motions of oscillating traveling holes. The corresponding stochastic process for these observations is fully described by a non-Markovian master equation.

  13. Efficient maximum likelihood parameterization of continuous-time Markov processes

    PubMed Central

    McGibbon, Robert T.; Pande, Vijay S.

    2015-01-01

    Continuous-time Markov processes over finite state-spaces are widely used to model dynamical processes in many fields of natural and social science. Here, we introduce a maximum likelihood estimator for constructing such models from data observed at a finite time interval. This estimator is dramatically more efficient than prior approaches, enables the calculation of deterministic confidence intervals in all model parameters, and can easily enforce important physical constraints on the models such as detailed balance. We demonstrate and discuss the advantages of these models over existing discrete-time Markov models for the analysis of molecular dynamics simulations. PMID:26203016

  14. Conditioned Limit Theorems for Some Null Recurrent Markov Processes

    DTIC Science & Technology

    1976-08-01

    this conlus ion is the lolloing Suppos I in Pt > t 0 for all (t - nd (iv) hold X10 I J -or each is arN > mtv ,x is an inureas tip function of St hen (v...Diffusion Processes and Their Sample Paths, Springer-Verlag, second printing, (1973). 39. Jacobsen , M., Splitting times for Markov processes and a

  15. Markov chain Monte Carlo inference for Markov jump processes via the linear noise approximation.

    PubMed

    Stathopoulos, Vassilios; Girolami, Mark A

    2013-02-13

    Bayesian analysis for Markov jump processes (MJPs) is a non-trivial and challenging problem. Although exact inference is theoretically possible, it is computationally demanding, thus its applicability is limited to a small class of problems. In this paper, we describe the application of Riemann manifold Markov chain Monte Carlo (MCMC) methods using an approximation to the likelihood of the MJP that is valid when the system modelled is near its thermodynamic limit. The proposed approach is both statistically and computationally efficient whereas the convergence rate and mixing of the chains allow for fast MCMC inference. The methodology is evaluated using numerical simulations on two problems from chemical kinetics and one from systems biology.

  16. Markov and non-Markov processes in complex systems by the dynamical information entropy

    NASA Astrophysics Data System (ADS)

    Yulmetyev, R. M.; Gafarov, F. M.

    1999-12-01

    We consider the Markov and non-Markov processes in complex systems by the dynamical information Shannon entropy (DISE) method. The influence and important role of the two mutually dependent channels of entropy alternation (creation or generation of correlation) and anti-correlation (destroying or annihilation of correlation) have been discussed. The developed method has been used for the analysis of the complex systems of various natures: slow neutron scattering in liquid cesium, psychology (short-time numeral and pattern human memory and effect of stress on the dynamical taping-test), random dynamics of RR-intervals in human ECG (problem of diagnosis of various disease of the human cardio-vascular systems), chaotic dynamics of the parameters of financial markets and ecological systems.

  17. One-Dimensionality and Whiteness

    ERIC Educational Resources Information Center

    Calderon, Dolores

    2006-01-01

    This article is a theoretical discussion that links Marcuse's concept of one-dimensional society and the Great Refusal with critical race theory in order to achieve a more robust interrogation of whiteness. The author argues that in the context of the United States, the one-dimensionality that Marcuse condemns in "One-Dimensional Man" is best…

  18. One-Dimensionality and Whiteness

    ERIC Educational Resources Information Center

    Calderon, Dolores

    2006-01-01

    This article is a theoretical discussion that links Marcuse's concept of one-dimensional society and the Great Refusal with critical race theory in order to achieve a more robust interrogation of whiteness. The author argues that in the context of the United States, the one-dimensionality that Marcuse condemns in "One-Dimensional Man" is best…

  19. On the Limiting Markov Process of Energy Exchanges in a Rarely Interacting Ball-Piston Gas

    NASA Astrophysics Data System (ADS)

    Bálint, Péter; Gilbert, Thomas; Nándori, Péter; Szász, Domokos; Tóth, Imre Péter

    2016-08-01

    We analyse the process of energy exchanges generated by the elastic collisions between a point-particle, confined to a two-dimensional cell with convex boundaries, and a `piston', i.e. a line-segment, which moves back and forth along a one-dimensional interval partially intersecting the cell. This model can be considered as the elementary building block of a spatially extended high-dimensional billiard modeling heat transport in a class of hybrid materials exhibiting the kinetics of gases and spatial structure of solids. Using heuristic arguments and numerical analysis, we argue that, in a regime of rare interactions, the billiard process converges to a Markov jump process for the energy exchanges and obtain the expression of its generator.

  20. On the Limiting Markov Process of Energy Exchanges in a Rarely Interacting Ball-Piston Gas

    NASA Astrophysics Data System (ADS)

    Bálint, Péter; Gilbert, Thomas; Nándori, Péter; Szász, Domokos; Tóth, Imre Péter

    2017-02-01

    We analyse the process of energy exchanges generated by the elastic collisions between a point-particle, confined to a two-dimensional cell with convex boundaries, and a `piston', i.e. a line-segment, which moves back and forth along a one-dimensional interval partially intersecting the cell. This model can be considered as the elementary building block of a spatially extended high-dimensional billiard modeling heat transport in a class of hybrid materials exhibiting the kinetics of gases and spatial structure of solids. Using heuristic arguments and numerical analysis, we argue that, in a regime of rare interactions, the billiard process converges to a Markov jump process for the energy exchanges and obtain the expression of its generator.

  1. Finite Size Corrections to the Large Deviation Function of the Density in the One Dimensional Symmetric Simple Exclusion Process

    NASA Astrophysics Data System (ADS)

    Derrida, Bernard; Retaux, Martin

    2013-09-01

    The symmetric simple exclusion process is one of the simplest out-of-equilibrium systems for which the steady state is known. Its large deviation functional of the density has been computed in the past both by microscopic and macroscopic approaches. Here we obtain the leading finite size correction to this large deviation functional. The result is compared to the similar corrections for equilibrium systems.

  2. a Markov-Process Inspired CA Model of Highway Traffic

    NASA Astrophysics Data System (ADS)

    Wang, Fa; Li, Li; Hu, Jian-Ming; Ji, Yan; Ma, Rui; Jiang, Rui

    To provide a more accurate description of the driving behaviors especially in car-following, namely a Markov-Gap cellular automata model is proposed in this paper. It views the variation of the gap between two consequent vehicles as a Markov process whose stationary distribution corresponds to the observed gap distribution. This new model provides a microscopic simulation explanation for the governing interaction forces (potentials) between the queuing vehicles, which cannot be directly measurable for traffic flow applications. The agreement between empirical observations and simulation results suggests the soundness of this new approach.

  3. An innovative method for coordinate measuring machine one-dimensional self-calibration with simplified experimental process.

    PubMed

    Fang, Cheng; Butler, David Lee

    2013-05-01

    In this paper, an innovative method for CMM (Coordinate Measuring Machine) self-calibration is proposed. In contrast to conventional CMM calibration that relies heavily on a high precision reference standard such as a laser interferometer, the proposed calibration method is based on a low-cost artefact which is fabricated with commercially available precision ball bearings. By optimizing the mathematical model and rearranging the data sampling positions, the experimental process and data analysis can be simplified. In mathematical expression, the samples can be minimized by eliminating the redundant equations among those configured by the experimental data array. The section lengths of the artefact are measured at arranged positions, with which an equation set can be configured to determine the measurement errors at the corresponding positions. With the proposed method, the equation set is short of one equation, which can be supplemented by either measuring the total length of the artefact with a higher-precision CMM or calibrating the single point error at the extreme position with a laser interferometer. In this paper, the latter is selected. With spline interpolation, the error compensation curve can be determined. To verify the proposed method, a simple calibration system was set up on a commercial CMM. Experimental results showed that with the error compensation curve uncertainty of the measurement can be reduced to 50%.

  4. Inferring parental genomic ancestries using pooled semi-Markov processes.

    PubMed

    Zou, James Y; Halperin, Eran; Burchard, Esteban; Sankararaman, Sriram

    2015-06-15

    A basic problem of broad public and scientific interest is to use the DNA of an individual to infer the genomic ancestries of the parents. In particular, we are often interested in the fraction of each parent's genome that comes from specific ancestries (e.g. European, African, Native American, etc). This has many applications ranging from understanding the inheritance of ancestry-related risks and traits to quantifying human assortative mating patterns. We model the problem of parental genomic ancestry inference as a pooled semi-Markov process. We develop a general mathematical framework for pooled semi-Markov processes and construct efficient inference algorithms for these models. Applying our inference algorithm to genotype data from 231 Mexican trios and 258 Puerto Rican trios where we have the true genomic ancestry of each parent, we demonstrate that our method accurately infers parameters of the semi-Markov processes and parents' genomic ancestries. We additionally validated the method on simulations. Our model of pooled semi-Markov process and inference algorithms may be of independent interest in other settings in genomics and machine learning. © The Author 2015. Published by Oxford University Press.

  5. Irreversible kinetics on a one-dimensional lattice: Comparison of exact result with a point-process nucleation-growth-collision model

    NASA Astrophysics Data System (ADS)

    Fletcher, S.

    1983-02-01

    In this paper we discuss irreversible kinetics on a one-dimensional lattice. We compare the expectation value of the coverage of the lattice, as a function of time, with that predicted by a point-process nucleation-growth-collision model. We conclude that the nucleation-growth-collision model is only applicable to lattice kinetics when the spreading rate of clusters is much greater than their nucleation rate. Although the kinetics of coverage of a one-dimensional lattice are known exactly, the complete solution turns out to be rather complex. In order to facilitate comparison with the point-process nucleation and growth model, we calculate an approximation to the lattice kinetics which is valid when the collision rate of clusters is very fast. The result is complementary to an earlier approximation of McQuarrie, McTague and Reiss, which described the case when the collision rate of clusters was comparable with the spreading rate. We also consider an integral geometrical approach to discreteness effects in lattice models. The general approach which we suggest is to calculate coefficients of variation of the numbers of lattice sites covered by various geometric shapes as a measure of "discreteness". This method uses some mathematical results of Kendall et al.

  6. Nonlinear Markov Semigroups and Interacting Lévy Type Processes

    NASA Astrophysics Data System (ADS)

    Kolokoltsov, Vassili N.

    2007-02-01

    Semigroups of positivity preserving linear operators on measures of a measurable space X describe the evolutions of probability distributions of Markov processes on X. Their dual semigroups of positivity preserving linear operators on the space of measurable bounded functions B( X) on X describe the evolutions of averages over the trajectories of these Markov processes. In this paper we introduce and study the general class of semigroups of non-linear positivity preserving transformations on measures that is non-linear Markov or Feller semigroups. An explicit structure of generators of such groups is given in case when X is the Euclidean space R d (or more generally, a manifold) showing how these semigroups arise from the general kinetic equations of statistical mechanics and evolutionary biology that describe the dynamic law of large numbers for Markov models of interacting particles. Well posedness results for these equations are given together with applications to interacting particles: dynamic law of large numbers and central limit theorem, the latter being new already for the standard coagulation-fragmentation models.

  7. Development and Validation of a One-Dimensional Co-Electrolysis Model for Use in Large-Scale Process Modeling Analysis

    SciTech Connect

    J. E. O'Brien; M. G. McKellar; G. L. Hawkes; C. M. Stoots

    2007-07-01

    A one-dimensional chemical equilibrium model has been developed for analysis of simultaneous high-temperature electrolysis of steam and carbon dioxide (coelectrolysis) for the direct production of syngas, a mixture of hydrogen and carbon monoxide. The model assumes local chemical equilibrium among the four process-gas species via the shift reaction. For adiabatic or specified-heat-transfer conditions, the electrolyzer model allows for the determination of coelectrolysis outlet temperature, composition (anode and cathode sides), mean Nernst potential, operating voltage and electrolyzer power based on specified inlet gas flow rates, heat loss or gain, current density, and cell area-specific resistance. Alternately, for isothermal operation, it allows for determination of outlet composition, mean Nernst potential, operating voltage, electrolyzer power, and the isothermal heat requirement for specified inlet gas flow rates, operating temperature, current density and area-specific resistance. This model has been developed for incorporation into a system-analysis code from which the overall performance of large-scale coelectrolysis plants can be evaluated. The one-dimensional co-electrolysis model has been validated by comparison with results obtained from a 3-D computational fluid dynamics model and by comparison with experimental results.

  8. Invariant Markov processes on compact groups and correlation functions

    NASA Astrophysics Data System (ADS)

    Zimpel, Zbigniew

    1990-04-01

    Random processes governing the time evolution of probability distributions of many physical systems can be described by continuous homogeneous Markov processes taking values from compact groups. Assuming the transition probability function of the process to be invariant in the sense that Pt( x, B) = Pt( e, x-1B) with e being the neutral element of the group, the harmonic analysis (Weyl theory) is applied to study the properties of the Markov semi-group. The infinitesimal operator and generating functional are decomposed using the Levy-Khinchin formula. Under some auxiliary assumptions the components of this decomposition are interpreted as generators of a one parameter subgroup, Brownian motion and a jump process. The formalism is illustrated for several models of processes taking values from compact Lie groups. The properties of the correlation functions of time dependent random variables are investigated.

  9. Carrier relaxation through two-electron process during photoconduction in highly UV sensitive quasi-one-dimensional ZnO nanowires

    SciTech Connect

    Bera, A.; Basak, D.

    2008-08-04

    We have investigated the carrier relaxation process during photoconduction in quasi-one-dimensional (Q1D) ZnO nanowires (NWs) of diameters 29-36 nm on different substrates using photocurrent transient measurements. Ultraviolet (UV) sensitive NWs show around three to four orders of change in the photo-to-dark current ratio. Under steady UV illumination, the photocarrier relaxation occurs through two-electron process--carrier loss due to the trapping by the surface states and recombination at the deep defect states. The results demonstrate that the carrier relaxation during photoconduction in Q1D NWs of diameter comparable to the Debye length is also dominated by the surface states.

  10. MARKOV: A methodology for the solution of infinite time horizon MARKOV decision processes

    USGS Publications Warehouse

    Williams, B.K.

    1988-01-01

    Algorithms are described for determining optimal policies for finite state, finite action, infinite discrete time horizon Markov decision processes. Both value-improvement and policy-improvement techniques are used in the algorithms. Computing procedures are also described. The algorithms are appropriate for processes that are either finite or infinite, deterministic or stochastic, discounted or undiscounted, in any meaningful combination of these features. Computing procedures are described in terms of initial data processing, bound improvements, process reduction, and testing and solution. Application of the methodology is illustrated with an example involving natural resource management. Management implications of certain hypothesized relationships between mallard survival and harvest rates are addressed by applying the optimality procedures to mallard population models.

  11. Indexed semi-Markov process for wind speed modeling.

    NASA Astrophysics Data System (ADS)

    Petroni, F.; D'Amico, G.; Prattico, F.

    2012-04-01

    -order Markov chain with different number of states, and Weibull distribution. All this model use Markov chains to generate synthetic wind speed time series but the search for a better model is still open. Approaching this issue, we applied new models which are generalization of Markov models. More precisely we applied semi-Markov models to generate synthetic wind speed time series. In a previous work we proposed different semi-Markov models, showing their ability to reproduce the autocorrelation structures of wind speed data. In that paper we showed also that the autocorrelation is higher with respect to the Markov model. Unfortunately this autocorrelation was still too small compared to the empirical one. In order to overcome the problem of low autocorrelation, in this paper we propose an indexed semi-Markov model. More precisely we assume that wind speed is described by a discrete time homogeneous semi-Markov process. We introduce a memory index which takes into account the periods of different wind activities. With this model the statistical characteristics of wind speed are faithfully reproduced. The wind is a very unstable phenomenon characterized by a sequence of lulls and sustained speeds, and a good wind generator must be able to reproduce such sequences. To check the validity of the predictive semi-Markovian model, the persistence of synthetic winds were calculated, then averaged and computed. The model is used to generate synthetic time series for wind speed by means of Monte Carlo simulations and the time lagged autocorrelation is used to compare statistical properties of the proposed models with those of real data and also with a time series generated though a simple Markov chain. [1] A. Shamshad, M.A. Bawadi, W.M.W. Wan Hussin, T.A. Majid, S.A.M. Sanusi, First and second order Markov chain models for synthetic generation of wind speed time series, Energy 30 (2005) 693-708. [2] H. Nfaoui, H. Essiarab, A.A.M. Sayigh, A stochastic Markov chain model for simulating

  12. On a Markov-Modulated Shock and Wear Process

    DTIC Science & Technology

    2009-04-01

    Markov-modulated shocks and wear. The transient results are derived from the (transform) solution of an integro - differential equation describing the...conditionally satisfies an integro - differential equation . This equation leads to the Laplace-Stieltjes transform (LST) of the lifetime distribution function and...derived from the (transform) solution of an integro -di?erential equation describing the joint distribution of the cumulative degradation process and the

  13. Symbolic Heuristic Search for Factored Markov Decision Processes

    NASA Technical Reports Server (NTRS)

    Morris, Robert (Technical Monitor); Feng, Zheng-Zhu; Hansen, Eric A.

    2003-01-01

    We describe a planning algorithm that integrates two approaches to solving Markov decision processes with large state spaces. State abstraction is used to avoid evaluating states individually. Forward search from a start state, guided by an admissible heuristic, is used to avoid evaluating all states. We combine these two approaches in a novel way that exploits symbolic model-checking techniques and demonstrates their usefulness for decision-theoretic planning.

  14. Markov decision processes in natural resources management: observability and uncertainty

    USGS Publications Warehouse

    Williams, Byron K.

    2015-01-01

    The breadth and complexity of stochastic decision processes in natural resources presents a challenge to analysts who need to understand and use these approaches. The objective of this paper is to describe a class of decision processes that are germane to natural resources conservation and management, namely Markov decision processes, and to discuss applications and computing algorithms under different conditions of observability and uncertainty. A number of important similarities are developed in the framing and evaluation of different decision processes, which can be useful in their applications in natural resources management. The challenges attendant to partial observability are highlighted, and possible approaches for dealing with it are discussed.

  15. Markov decision processes in natural resources management: Observability and uncertainty

    USGS Publications Warehouse

    Williams, B.K.

    2009-01-01

    The breadth and complexity of stochastic decision processes in natural resources presents a challenge to analysts who need to understand and use these approaches. The objective of this paper is to describe a class of decision processes that are germane to natural resources conservation and management, namely Markov decision processes, and to discuss applications and computing algorithms under different conditions of observability and uncertainty. A number of important similarities are developed in the framing and evaluation of different decision processes, which can be useful in their applications in natural resources management. The challenges attendant to partial observability are highlighted, and possible approaches for dealing with it are discussed.

  16. Markov process models of the dynamics of HIV reservoirs.

    PubMed

    Hawkins, Jane M

    2016-05-01

    While latently infected CD4+ T cells are extremely sparse, they are a reality that prevents HIV from being cured, and their dynamics are largely unknown. We begin with a two-state Markov process that models the outcomes of regular but infrequent blood tests for latently infected cells in an HIV positive patient under drug therapy. We then model the hidden dynamics of a latently infected CD4+ T cell in an HIV positive patient and show there is a limiting distribution, which indicates in which compartments the HIV typically can be found. Our model shows that the limiting distribution of latently infected cells reveals the presence of latency in every compartment with positive probability, supported by clinical data. We also show that the hidden Markov model determines the outcome of blood tests and analyze its connection to the blood test model. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Partially observable Markov decision processes for risk-based screening

    NASA Astrophysics Data System (ADS)

    Mrozack, Alex; Liao, Xuejun; Skatter, Sondre; Carin, Lawrence

    2016-05-01

    A long-term goal for checked baggage screening in airports has been to include passenger information, or at least a predetermined passenger risk level, in the screening process. One method for including that information could be treating the checked baggage screening process as a system-of-systems. This would allow for an optimized policy builder, such as one trained using the methodology of partially observable Markov decision processes (POMDP), to navigate the different sensors available for screening. In this paper we describe the necessary steps to tailor a POMDP for baggage screening, as well as results of simulations for specific screening scenarios.

  18. One-dimensional Bi2MoxW1-xO6 sosoloids: controllable synthesis by electrospinning process and enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Wang, Qinyu; Lu, Qifang; Ji, Xueyang; Liu, Zhendong; Wei, Mingzhi; Guo, Enyan

    2017-06-01

    One-dimensional Bi2MoxW1-xO6 (x = 0, 0.2, 0.5, 0.67, and 1) photocatalysts have been successfully synthesized for the first time by a straightforward electrospinning technique with a calcination process. The as-formed Bi2MoxW1-xO6 nanofibers are composed of inter-linked nanosheets of 30-50 nm in size and characterized by thermogravimetric and differential scanning calorimetric, Fourier transform infrared, Raman spectra, X-ray powder diffraction, scanning electron microscope, Brunauer-Emmett-Teller, transmission electron microscope, UV-Vis spectroscopy, photoluminescence, HPLC, and EIS. The photodegradation behaviors towards organic dyes, including rhodamine B (RhB) and methylene blue (MB) are investigated, and the results illustrate that Bi2Mo0.25W0.75O6 nanofibers exhibit the highest photocatalytic performance under visible light irradiation than Bi2MoxW1-xO6 (x = 0, 0.2, 0.5, 0.67, and 1) samples. The possible mechanisms of the enhanced photocatalytic properties are discussed in detail.

  19. A definition of metastability for Markov processes with detailed balance

    NASA Astrophysics Data System (ADS)

    Leyvraz, F.; Larralde, H.; Sanders, D. P.

    2006-03-01

    A definition of metastable states applicable to arbitrary finite state Markov processes satisfying detailed balance is discussed. In particular, we identify a crucial condition that distinguishes genuine metastable states from other types of slowly decaying modes and which leads to properties similar to those postulated in the restricted ensemble approach [1]. The intuitive physical meaning of this condition is simply that the total equilibrium probability of finding the system in the metastable state is negligible. As a concrete application of our formalism we present preliminary results on a 2D kinetic Ising model.

  20. Markov decision processes with iterated coherent risk measures

    NASA Astrophysics Data System (ADS)

    Chu, Shanyun; Zhang, Yi

    2014-11-01

    This paper considers a Markov decision process in Borel state and action spaces with the aggregated (or say iterated) coherent risk measure to be minimised. For this problem, we establish the Bellman optimality equation as well as the value and policy iteration algorithms, and show the existence of a deterministic stationary optimal policy. The cost function, while being allowed to be unbounded from below (in the sense that its negative part needs be bounded by some nonnegative real-valued possibly unbounded weight function), can be arbitrarily unbounded from above and possibly infinitely valued.

  1. Fabrication and luminescence properties of one-dimensional CaMoO(4): Ln(3+) (Ln = Eu, Tb, Dy) nanofibers via electrospinning process.

    PubMed

    Hou, Zhiyao; Chai, Ruitao; Zhang, Milin; Zhang, Cuimiao; Chong, Peng; Xu, Zhenhe; Li, Guogang; Lin, Jun

    2009-10-20

    One-dimensional CaMoO(4):Ln(3+) (Ln = Eu, Tb, Dy) nanofibers have been prepared by a combination method of sol-gel and electrospinning process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), and low voltage cathodoluminescence (CL) as well as kinetic decays were used to characterize the resulting samples. SEM and TEM analyses indicate that the obtained precursor fibers have a uniform size, and the as-formed CaMoO(4):Ln(3+) nanofibers consist of nanoparticles. Under ultraviolet excitation, the CaMoO(4) samples exhibit a blue-green emission band with a maximum at 500 nm originating from the MoO(4)(2-) groups. Due to an efficient energy transfer from molybdate groups to dopants, CaMoO(4):Ln(3+) phosphors show their strong characteristic emission under ultraviolet excitation and low-voltage electron beam excitation. The energy transfer process was further studied by the emission spectra and the kinetic decay curves of Ln(3+) upon excitation into the MoO(4)(2-) groups in the CaMoO(4):x mol % Ln(3+) samples (x = 0-5). Furthermore, the emission colors of CaMoO(4):Ln(3+) nanofibers can be tuned from blue-green to green, yellow, and orange-red easily by changing the doping concentrations (x) of Ln(3+) ions, making the materials have potential applications in fluorescent lamps and field emission displays (FEDs).

  2. Markov modulated Poisson process models incorporating covariates for rainfall intensity.

    PubMed

    Thayakaran, R; Ramesh, N I

    2013-01-01

    Time series of rainfall bucket tip times at the Beaufort Park station, Bracknell, in the UK are modelled by a class of Markov modulated Poisson processes (MMPP) which may be thought of as a generalization of the Poisson process. Our main focus in this paper is to investigate the effects of including covariate information into the MMPP model framework on statistical properties. In particular, we look at three types of time-varying covariates namely temperature, sea level pressure, and relative humidity that are thought to be affecting the rainfall arrival process. Maximum likelihood estimation is used to obtain the parameter estimates, and likelihood ratio tests are employed in model comparison. Simulated data from the fitted model are used to make statistical inferences about the accumulated rainfall in the discrete time interval. Variability of the daily Poisson arrival rates is studied.

  3. Inferring phenomenological models of Markov processes from data

    NASA Astrophysics Data System (ADS)

    Rivera, Catalina; Nemenman, Ilya

    Microscopically accurate modeling of stochastic dynamics of biochemical networks is hard due to the extremely high dimensionality of the state space of such networks. Here we propose an algorithm for inference of phenomenological, coarse-grained models of Markov processes describing the network dynamics directly from data, without the intermediate step of microscopically accurate modeling. The approach relies on the linear nature of the Chemical Master Equation and uses Bayesian Model Selection for identification of parsimonious models that fit the data. When applied to synthetic data from the Kinetic Proofreading process (KPR), a common mechanism used by cells for increasing specificity of molecular assembly, the algorithm successfully uncovers the known coarse-grained description of the process. This phenomenological description has been notice previously, but this time it is derived in an automated manner by the algorithm. James S. McDonnell Foundation Grant No. 220020321.

  4. Local Composite Quantile Regression Smoothing for Harris Recurrent Markov Processes

    PubMed Central

    Li, Degui; Li, Runze

    2016-01-01

    In this paper, we study the local polynomial composite quantile regression (CQR) smoothing method for the nonlinear and nonparametric models under the Harris recurrent Markov chain framework. The local polynomial CQR regression method is a robust alternative to the widely-used local polynomial method, and has been well studied in stationary time series. In this paper, we relax the stationarity restriction on the model, and allow that the regressors are generated by a general Harris recurrent Markov process which includes both the stationary (positive recurrent) and nonstationary (null recurrent) cases. Under some mild conditions, we establish the asymptotic theory for the proposed local polynomial CQR estimator of the mean regression function, and show that the convergence rate for the estimator in nonstationary case is slower than that in stationary case. Furthermore, a weighted type local polynomial CQR estimator is provided to improve the estimation efficiency, and a data-driven bandwidth selection is introduced to choose the optimal bandwidth involved in the nonparametric estimators. Finally, we give some numerical studies to examine the finite sample performance of the developed methodology and theory. PMID:27667894

  5. Stem Cell Differentiation as a Non-Markov Stochastic Process.

    PubMed

    Stumpf, Patrick S; Smith, Rosanna C G; Lenz, Michael; Schuppert, Andreas; Müller, Franz-Josef; Babtie, Ann; Chan, Thalia E; Stumpf, Michael P H; Please, Colin P; Howison, Sam D; Arai, Fumio; MacArthur, Ben D

    2017-09-27

    Pluripotent stem cells can self-renew in culture and differentiate along all somatic lineages in vivo. While much is known about the molecular basis of pluripotency, the mechanisms of differentiation remain unclear. Here, we profile individual mouse embryonic stem cells as they progress along the neuronal lineage. We observe that cells pass from the pluripotent state to the neuronal state via an intermediate epiblast-like state. However, analysis of the rate at which cells enter and exit these observed cell states using a hidden Markov model indicates the presence of a chain of unobserved molecular states that each cell transits through stochastically in sequence. This chain of hidden states allows individual cells to record their position on the differentiation trajectory, thereby encoding a simple form of cellular memory. We suggest a statistical mechanics interpretation of these results that distinguishes between functionally distinct cellular "macrostates" and functionally similar molecular "microstates" and propose a model of stem cell differentiation as a non-Markov stochastic process. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. The application of Markov decision process in restaurant delivery robot

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Hu, Zhen; Wang, Ying

    2017-05-01

    As the restaurant delivery robot is often in a dynamic and complex environment, including the chairs inadvertently moved to the channel and customers coming and going. The traditional path planning algorithm is not very ideal. To solve this problem, this paper proposes the Markov dynamic state immediate reward (MDR) path planning algorithm according to the traditional Markov decision process. First of all, it uses MDR to plan a global path, then navigates along this path. When the sensor detects there is no obstructions in front state, increase its immediate state reward value; when the sensor detects there is an obstacle in front, plan a global path that can avoid obstacle with the current position as the new starting point and reduce its state immediate reward value. This continues until the target is reached. When the robot learns for a period of time, it can avoid those places where obstacles are often present when planning the path. By analyzing the simulation experiment, the algorithm has achieved good results in the global path planning under the dynamic environment.

  7. Upscaling of Mixing Processes using a Spatial Markov Model

    NASA Astrophysics Data System (ADS)

    Bolster, Diogo; Sund, Nicole; Porta, Giovanni

    2016-11-01

    The Spatial Markov model is a model that has been used to successfully upscale transport behavior across a broad range of spatially heterogeneous flows, with most examples to date coming from applications relating to porous media. In its most common current forms the model predicts spatially averaged concentrations. However, many processes, including for example chemical reactions, require an adequate understanding of mixing below the averaging scale, which means that knowledge of subscale fluctuations, or closures that adequately describe them, are needed. Here we present a framework, consistent with the Spatial Markov modeling framework, that enables us to do this. We apply and present it as applied to a simple example, a spatially periodic flow at low Reynolds number. We demonstrate that our upscaled model can successfully predict mixing by comparing results from direct numerical simulations to predictions with our upscaled model. To this end we focus on predicting two common metrics of mixing: the dilution index and the scalar dissipation. For both metrics our upscaled predictions very closely match observed values from the DNS. This material is based upon work supported by NSF Grants EAR-1351625 and EAR-1417264.

  8. Pavement maintenance optimization model using Markov Decision Processes

    NASA Astrophysics Data System (ADS)

    Mandiartha, P.; Duffield, C. F.; Razelan, I. S. b. M.; Ismail, A. b. H.

    2017-09-01

    This paper presents an optimization model for selection of pavement maintenance intervention using a theory of Markov Decision Processes (MDP). There are some particular characteristics of the MDP developed in this paper which distinguish it from other similar studies or optimization models intended for pavement maintenance policy development. These unique characteristics include a direct inclusion of constraints into the formulation of MDP, the use of an average cost method of MDP, and the policy development process based on the dual linear programming solution. The limited information or discussions that are available on these matters in terms of stochastic based optimization model in road network management motivates this study. This paper uses a data set acquired from road authorities of state of Victoria, Australia, to test the model and recommends steps in the computation of MDP based stochastic optimization model, leading to the development of optimum pavement maintenance policy.

  9. Deciding when to intervene: a Markov decision process approach.

    PubMed

    Magni, P; Quaglini, S; Marchetti, M; Barosi, G

    2000-12-01

    The aim of this paper is to point out the difference between static and dynamic approaches to choosing the optimal time for intervention. The paper demonstrates that classical approaches, such as decision trees and influence diagrams, hardly cope with dynamic problems: they cannot simulate all the real-world strategies and consequently can only calculate suboptimal solutions. A dynamic formalism based on Markov decision processes (MPPs) is then proposed and applied to a medical problem: the prophylactic surgery in mild hereditary spherocytosis. The paper compares the proposed approach with a static approach on the same medical problem. The policy provided by the dynamic approach achieved significant gain over the static policy by delaying the intervention time in some categories of patients. The calculations are carried out with DT-Planner, a graphical decision aid specifically built for dealing with dynamic decision processes.

  10. The exit-time problem for a Markov jump process

    SciTech Connect

    Burch, N.; D'Elia, Marta; Lehoucq, Richard B.

    2014-12-15

    The purpose of our paper is to consider the exit-time problem for a finite-range Markov jump process, i.e, the distance the particle can jump is bounded independent of its location. Such jump diffusions are expedient models for anomalous transport exhibiting super-diffusion or nonstandard normal diffusion. We refer to the associated deterministic equation as a volume-constrained nonlocal diffusion equation. The volume constraint is the nonlocal analogue of a boundary condition necessary to demonstrate that the nonlocal diffusion equation is well-posed and is consistent with the jump process. A critical aspect of the analysis is a variational formulation and a recently developed nonlocal vector calculus. Furthermore, this calculus allows us to pose nonlocal backward and forward Kolmogorov equations, the former equation granting the various moments of the exit-time distribution.

  11. From empirical data to time-inhomogeneous continuous Markov processes.

    PubMed

    Lencastre, Pedro; Raischel, Frank; Rogers, Tim; Lind, Pedro G

    2016-03-01

    We present an approach for testing for the existence of continuous generators of discrete stochastic transition matrices. Typically, existing methods to ascertain the existence of continuous Markov processes are based on the assumption that only time-homogeneous generators exist. Here a systematic extension to time inhomogeneity is presented, based on new mathematical propositions incorporating necessary and sufficient conditions, which are then implemented computationally and applied to numerical data. A discussion concerning the bridging between rigorous mathematical results on the existence of generators to its computational implementation is presented. Our detection algorithm shows to be effective in more than 60% of tested matrices, typically 80% to 90%, and for those an estimate of the (nonhomogeneous) generator matrix follows. We also solve the embedding problem analytically for the particular case of three-dimensional circulant matrices. Finally, a discussion of possible applications of our framework to problems in different fields is briefly addressed.

  12. Entropy of continuous Markov processes in local thermal equilibrium

    NASA Astrophysics Data System (ADS)

    Hoyuelos, Miguel

    2009-05-01

    The Boltzmann’s entropy of a continuous Markov process, in local thermal equilibrium, in contact with a reservoir at temperature T , is analyzed. Assuming that the corresponding Fokker-Planck equation has constant coefficients and satisfies detailed balance, an equation for the entropy density is derived, from which it is possible to obtain expressions for the transport coefficients as functions of the diffusion matrix. Expressions for the entropy production terms of the system and of the combination of system plus reservoir are obtained. Known relations among transport coefficients are derived. The multicomponent case is also analyzed and the Prigogine theorem of minimum entropy production is derived in the context of reaction diffusion systems. The derivations presented in this paper are proposed as a framework for a deeper understanding of concepts used in nonequilibrium diffusion systems.

  13. Interacting discrete Markov processes with power-law probability distributions

    NASA Astrophysics Data System (ADS)

    Ridley, Kevin D.; Jakeman, Eric

    2017-09-01

    During recent years there has been growing interest in the occurrence of long-tailed distributions, also known as heavy-tailed or fat-tailed distributions, which can exhibit power-law behaviour and often characterise physical systems that undergo very large fluctuations. In this paper we show that the interaction between two discrete Markov processes naturally generates a time-series characterised by such a distribution. This possibility is first demonstrated by numerical simulation and then confirmed by a mathematical analysis that enables the parameter range over which the power-law occurs to be quantified. The results are supported by comparison of numerical results with theoretical predictions and general conclusions are drawn regarding mechanisms that can cause this behaviour.

  14. Accelerated decomposition techniques for large discounted Markov decision processes

    NASA Astrophysics Data System (ADS)

    Larach, Abdelhadi; Chafik, S.; Daoui, C.

    2017-03-01

    Many hierarchical techniques to solve large Markov decision processes (MDPs) are based on the partition of the state space into strongly connected components (SCCs) that can be classified into some levels. In each level, smaller problems named restricted MDPs are solved, and then these partial solutions are combined to obtain the global solution. In this paper, we first propose a novel algorithm, which is a variant of Tarjan's algorithm that simultaneously finds the SCCs and their belonging levels. Second, a new definition of the restricted MDPs is presented to ameliorate some hierarchical solutions in discounted MDPs using value iteration (VI) algorithm based on a list of state-action successors. Finally, a robotic motion-planning example and the experiment results are presented to illustrate the benefit of the proposed decomposition algorithms.

  15. Hidden Markov model using Dirichlet process for de-identification.

    PubMed

    Chen, Tao; Cullen, Richard M; Godwin, Marshall

    2015-12-01

    For the 2014 i2b2/UTHealth de-identification challenge, we introduced a new non-parametric Bayesian hidden Markov model using a Dirichlet process (HMM-DP). The model intends to reduce task-specific feature engineering and to generalize well to new data. In the challenge we developed a variational method to learn the model and an efficient approximation algorithm for prediction. To accommodate out-of-vocabulary words, we designed a number of feature functions to model such words. The results show the model is capable of understanding local context cues to make correct predictions without manual feature engineering and performs as accurately as state-of-the-art conditional random field models in a number of categories. To incorporate long-range and cross-document context cues, we developed a skip-chain conditional random field model to align the results produced by HMM-DP, which further improved the performance.

  16. Qualitative Analysis of Partially-Observable Markov Decision Processes

    NASA Astrophysics Data System (ADS)

    Chatterjee, Krishnendu; Doyen, Laurent; Henzinger, Thomas A.

    We study observation-based strategies for partially-observable Markov decision processes (POMDPs) with parity objectives. An observation-based strategy relies on partial information about the history of a play, namely, on the past sequence of observations. We consider qualitative analysis problems: given a POMDP with a parity objective, decide whether there exists an observation-based strategy to achieve the objective with probability 1 (almost-sure winning), or with positive probability (positive winning). Our main results are twofold. First, we present a complete picture of the computational complexity of the qualitative analysis problem for POMDPs with parity objectives and its subclasses: safety, reachability, Büchi, and coBüchi objectives. We establish several upper and lower bounds that were not known in the literature. Second, we give optimal bounds (matching upper and lower bounds) for the memory required by pure and randomized observation-based strategies for each class of objectives.

  17. System Identification and Filtering of Nonlinear Controlled Markov Processes by Canonical Variate Analysis

    DTIC Science & Technology

    1989-10-30

    In this Phase I SBIR study, new methods are developed for the system identification and stochastic filtering of nonlinear controlled Markov processes...state space Markov process models and canonical variate analysis (CVA) for obtaining optimal nonlinear procedures for system identification and stochastic

  18. Markov vs. Hurst-Kolmogorov behaviour identification in hydroclimatic processes

    NASA Astrophysics Data System (ADS)

    Dimitriadis, Panayiotis; Gournari, Naya; Koutsoyiannis, Demetris

    2016-04-01

    Hydroclimatic processes are usually modelled either by exponential decay of the autocovariance function, i.e., Markovian behaviour, or power type decay, i.e., long-term persistence (or else Hurst-Kolmogorov behaviour). For the identification and quantification of such behaviours several graphical stochastic tools can be used such as the climacogram (i.e., plot of the variance of the averaged process vs. scale), autocovariance, variogram, power spectrum etc. with the former usually exhibiting smaller statistical uncertainty as compared to the others. However, most methodologies including these tools are based on the expected value of the process. In this analysis, we explore a methodology that combines both the practical use of a graphical representation of the internal structure of the process as well as the statistical robustness of the maximum-likelihood estimation. For validation and illustration purposes, we apply this methodology to fundamental stochastic processes, such as Markov and Hurst-Kolmogorov type ones. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.

  19. One-dimensional Quantum Fluids

    NASA Astrophysics Data System (ADS)

    Gervais, Guillaume

    2015-03-01

    Fifty year ago, Joachim Mazdak Luttinger generalized the Tomonaga theory of interactions in a one-dimensional metal and show that the prior restrictions imposed by Tomonaga were not necessary. This model is now known as the Tomonaga- Luttinger liquid model (TLL) and most remarkably it does have mathematically exact solutions. In the case of electrons, it predicts that the spin and charge sector should separate, with each of them propagating with their own velocities. While there has been many attempts (some with great success) to observe TLL behaviour in clean quantum wires designed on an ultra-clean semiconductor platform, overall the Luttinger physics is experimentally still in its infancy. For instance, little is known regarding the 1D physics in a strongly-interacting neutral system, whether from the point-of-view of TLL theory or even localization physics. Helium-4, the paradigm superfluid, and Helium-3, the paradigm Fermi liquid, should in principleboth become Luttinger liquids if taken to the one-dimensional limit. In the bosonic case, this is supported by large-scale Quantum Monte Carlo simulations which found that a lengthscale of ~ 2 nm is sufficient for the system to crossover to the 1D regime and display universal Luttinger scaling. At McGill University, an experiment has been constructed to measure the liquid helium mass flow through a single nanopore. The technique consists of drilling a single nanopore in a SiN membrane using a TEM, and then applying a pressure gradient across the membrane. Previously published data in 45nm diameter hole determined the superfluid critical velocity to be close to the limit set by the Feynman vortex rings model. More recent work performed on nanopores with radii as small as 3 nm (and a length of 30nm) show the critical exponent for superfluid velocity to significantly deviate from its bulk value, 2/3. This is an important hint for the crossing over to the one-dimensional state in a strongly-correlated bosonic liquid.

  20. Dynamical symmetries of Markov processes with multiplicative white noise

    NASA Astrophysics Data System (ADS)

    Aron, Camille; Barci, Daniel G.; Cugliandolo, Leticia F.; González Arenas, Zochil; Lozano, Gustavo S.

    2016-05-01

    We analyse various properties of stochastic Markov processes with multiplicative white noise. We take a single-variable problem as a simple example, and we later extend the analysis to the Landau-Lifshitz-Gilbert equation for the stochastic dynamics of a magnetic moment. In particular, we focus on the non-equilibrium transfer of angular momentum to the magnetization from a spin-polarised current of electrons, a technique which is widely used in the context of spintronics to manipulate magnetic moments. We unveil two hidden dynamical symmetries of the generating functionals of these Markovian multiplicative white-noise processes. One symmetry only holds in equilibrium and we use it to prove generic relations such as the fluctuation-dissipation theorems. Out of equilibrium, we take profit of the symmetry-breaking terms to prove fluctuation theorems. The other symmetry yields strong dynamical relations between correlation and response functions which can notably simplify the numerical analysis of these problems. Our construction allows us to clarify some misconceptions on multiplicative white-noise stochastic processes that can be found in the literature. In particular, we show that a first-order differential equation with multiplicative white noise can be transformed into an additive-noise equation, but that the latter keeps a non-trivial memory of the discretisation prescription used to define the former.

  1. Volatility: A hidden Markov process in financial time series

    NASA Astrophysics Data System (ADS)

    Eisler, Zoltán; Perelló, Josep; Masoliver, Jaume

    2007-11-01

    Volatility characterizes the amplitude of price return fluctuations. It is a central magnitude in finance closely related to the risk of holding a certain asset. Despite its popularity on trading floors, volatility is unobservable and only the price is known. Diffusion theory has many common points with the research on volatility, the key of the analogy being that volatility is a time-dependent diffusion coefficient of the random walk for the price return. We present a formal procedure to extract volatility from price data by assuming that it is described by a hidden Markov process which together with the price forms a two-dimensional diffusion process. We derive a maximum-likelihood estimate of the volatility path valid for a wide class of two-dimensional diffusion processes. The choice of the exponential Ornstein-Uhlenbeck (expOU) stochastic volatility model performs remarkably well in inferring the hidden state of volatility. The formalism is applied to the Dow Jones index. The main results are that (i) the distribution of estimated volatility is lognormal, which is consistent with the expOU model, (ii) the estimated volatility is related to trading volume by a power law of the form σ∝V0.55 , and (iii) future returns are proportional to the current volatility, which suggests some degree of predictability for the size of future returns.

  2. A one-dimensional model describing aerosol formation and evolution in the stratosphere. I - Physical processes and mathematical analogs. II - Sensitivity studies and comparison with observations

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Hamill, P.; Toon, O. B.; Whitten, R. C.; Kiang, C. S.

    1979-01-01

    A new time-dependent one-dimensional model of the stratospheric sulfate aerosol layer is developed. The model treats atmospheric photochemistry and aerosol physics in detail and includes the interaction between gases and particles explicitly. It is shown that the numerical algorithms used in the model are quite precise. Sensitivity studies and comparison with observations are made. The simulated aerosol physics generates a particle layer with most of the observed properties. The sensitivity of the calculated properties to changes in a large number of aeronomic aerosol parameters is discussed in some detail. The sensitivity analysis reveals areas where the aerosol model is most uncertain. New observations are suggested that might help resolve important questions about the origin of the stratospheric aerosol layer.

  3. Non-equilibrium Thermodynamics of Piecewise Deterministic Markov Processes

    NASA Astrophysics Data System (ADS)

    Faggionato, A.; Gabrielli, D.; Ribezzi Crivellari, M.

    2009-10-01

    We consider a class of stochastic dynamical systems, called piecewise deterministic Markov processes, with states ( x, σ)∈Ω×Γ, Ω being a region in ℝ d or the d-dimensional torus, Γ being a finite set. The continuous variable x follows a piecewise deterministic dynamics, the discrete variable σ evolves by a stochastic jump dynamics and the two resulting evolutions are fully-coupled. We study stationarity, reversibility and time-reversal symmetries of the process. Increasing the frequency of the σ-jumps, the system behaves asymptotically as deterministic and we investigate the structure of its fluctuations (i.e. deviations from the asymptotic behavior), recovering in a non Markovian frame results obtained by Bertini et al. (Phys. Rev. Lett. 87(4):040601, 2001; J. Stat. Phys. 107(3-4):635-675, 2002; J. Stat. Mech. P07014, 2007; Preprint available online at http://www.arxiv.org/abs/0807.4457, 2008), in the context of Markovian stochastic interacting particle systems. Finally, we discuss a Gallavotti-Cohen-type symmetry relation with involution map different from time-reversal.

  4. One-dimensional ZnO nanostructures.

    PubMed

    Jayadevan, K P; Tseng, T Y

    2012-06-01

    The wide-gap semiconductor ZnO with nanostructures such as nanoparticle, nanorod, nanowire, nanobelt, nanotube has high potential for a variety of applications. This article reviews the fundamentals of one-dimensional ZnO nanostructures, including processing, structure, property, application and their processing-microstructure-property correlation. Various fabrication methods of the ZnO nanostructures including vapor-liquid-solid process, vapor-solid growth, solution growth, solvothermal growth, template-assisted growth and self-assembly are introduced. The characterization and properties of the ZnO nanostructures are described. The possible applications of these nanostructures are also discussed.

  5. Optimal Control of Markov Processes with Age-Dependent Transition Rates

    SciTech Connect

    Ghosh, Mrinal K. Saha, Subhamay

    2012-10-15

    We study optimal control of Markov processes with age-dependent transition rates. The control policy is chosen continuously over time based on the state of the process and its age. We study infinite horizon discounted cost and infinite horizon average cost problems. Our approach is via the construction of an equivalent semi-Markov decision process. We characterise the value function and optimal controls for both discounted and average cost cases.

  6. On the optimality equation for average cost Markov control processes with Feller transition probabilities

    NASA Astrophysics Data System (ADS)

    Jaskiewicz, Anna; Nowak, Andrzej S.

    2006-04-01

    We consider Markov control processes with Borel state space and Feller transition probabilities, satisfying some generalized geometric ergodicity conditions. We provide a new theorem on the existence of a solution to the average cost optimality equation.

  7. Electrodeposition of one-dimensional nanostructures.

    PubMed

    She, Guangwei; Mu, Lixuan; Shi, Wensheng

    2009-01-01

    Electrodeposition is a simple and flexible method for the synthesis of one-dimensional (1D) nanostructures and has attracted more and more attention in recent years. 1D nanostructures of metals, semiconductors and polymers have been successfully fabricated by electrodeposition. Templates were often used in the electrochemical process to realize the 1D growth. On the other hand, some materials with intrinsic anisotropic crystal structures can also be prepared by the template-free electrochemical method. In this paper, we review the recent patents progress and offer some prospects of future directions in electrodeposition of 1D nanostructures.

  8. Students' Progress throughout Examination Process as a Markov Chain

    ERIC Educational Resources Information Center

    Hlavatý, Robert; Dömeová, Ludmila

    2014-01-01

    The paper is focused on students of Mathematical methods in economics at the Czech university of life sciences (CULS) in Prague. The idea is to create a model of students' progress throughout the whole course using the Markov chain approach. Each student has to go through various stages of the course requirements where his success depends on the…

  9. A Learning Based Approach to Control Synthesis of Markov Decision Processes for Linear Temporal Logic Specifications

    DTIC Science & Technology

    2014-09-20

    Eric S. Kim , Samuel Coogan, S. Shankar Sastry , Sanjit A. Seshia Abstract— We propose to synthesize a control policy for a Markov decision process (MDP...A Learning Based Approach to Control Synthesis of Markov Decision Processes for Linear Temporal Logic Specifications Dorsa Sadigh Eric Kim Samuel...Coogan S. Shankar Sastry Sanjit A. Seshia Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS

  10. Value-Function Approximations for Partially Observable Markov Decision Processes

    DTIC Science & Technology

    2000-08-01

    The model of hoi e for problems similar to patient management is the partiallyobservable Markov de ision pro ess (POMDP) (Drake, 1962; Astrom , 1965...ient to work with belief statesthat assign probabilities to every possible pro ess state ( Astrom , 1965).2 In this ase theBellman equation redu es...approximate the value fun tion for a POMDP is to assumethat states of the pro ess are fully observable ( Astrom , 1965; Lovejoy, 1993). In that asethe

  11. Dynamic response of mechanical systems to impulse process stochastic excitations: Markov approach

    NASA Astrophysics Data System (ADS)

    Iwankiewicz, R.

    2016-05-01

    Methods for determination of the response of mechanical dynamic systems to Poisson and non-Poisson impulse process stochastic excitations are presented. Stochastic differential and integro-differential equations of motion are introduced. For systems driven by Poisson impulse process the tools of the theory of non-diffusive Markov processes are used. These are: the generalized Itô’s differential rule which allows to derive the differential equations for response moments and the forward integro-differential Chapman-Kolmogorov equation from which the equation governing the probability density of the response is obtained. The relation of Poisson impulse process problems to the theory of diffusive Markov processes is given. For systems driven by a class of non-Poisson (Erlang renewal) impulse processes an exact conversion of the original non-Markov problem into a Markov one is based on the appended Markov chain corresponding to the introduced auxiliary pure jump stochastic process. The derivation of the set of integro-differential equations for response probability density and also a moment equations technique are based on the forward integro-differential Chapman-Kolmogorov equation. An illustrating numerical example is also included.

  12. Co-crystal engineering: a novel method to obtain one-dimensional (1D) carbon nanocrystals of corannulene-fullerene by a solution process.

    PubMed

    Wang, Yu; Li, Yang; Zhu, Weigang; Liu, Jinyu; Zhang, Xiaotao; Li, Rongjin; Zhen, Yonggang; Dong, Huanli; Hu, Wenping

    2016-08-11

    In this study, 1D nanocrystals composed of C60 and corannulene were synthesized efficiently through cocrystallization by a solution process. These 1D nanocrystals display high electron transport characteristics of up to 0.11 cm(2) V(-1) s(-1) and good photoresponse of 0.09 A W(-1), indicating their potential applications in optoelectronics. The results suggest that co-crystal engineering provides a novel strategy for the rational design of new carbon-based crystalline nanomaterials.

  13. One-Dimensional Photonic Crystal Superprisms

    NASA Technical Reports Server (NTRS)

    Ting, David

    2005-01-01

    Theoretical calculations indicate that it should be possible for one-dimensional (1D) photonic crystals (see figure) to exhibit giant dispersions known as the superprism effect. Previously, three-dimensional (3D) photonic crystal superprisms have demonstrated strong wavelength dispersion - about 500 times that of conventional prisms and diffraction gratings. Unlike diffraction gratings, superprisms do not exhibit zero-order transmission or higher-order diffraction, thereby eliminating cross-talk problems. However, the fabrication of these 3D photonic crystals requires complex electron-beam substrate patterning and multilayer thin-film sputtering processes. The proposed 1D superprism is much simpler in structural complexity and, therefore, easier to design and fabricate. Like their 3D counterparts, the 1D superprisms can exhibit giant dispersions over small spectral bands that can be tailored by judicious structure design and tuned by varying incident beam direction. Potential applications include miniature gas-sensing devices.

  14. Solution-Processed One-Dimensional ZnO@CdS Heterojunction toward Efficient Cu2ZnSnS4 Solar Cell with Inverted Structure.

    PubMed

    Chen, Rongrong; Fan, Jiandong; Liu, Chong; Zhang, Xing; Shen, Yanjiao; Mai, Yaohua

    2016-10-13

    Kesterite Cu2ZnSnS4 (CZTS) semiconductor has been demonstrated to be a promising alternative absorber in thin film solar cell in virtue of its earth-abundant, non-toxic element, suitable optical and electrical properties. Herein, a low-cost and non-toxic method that based on the thermal decomposition and reaction of metal-thiourea-oxygen sol-gel complexes to synthesize CZTS thin film was developed. The low-dimensional ZnO@CdS heterojunction nano-arrays coupling with the as-prepared CZTS thin film were employed to fabricate a novel solar cell with inverted structure. The vertically aligned nanowires (NWs) allow facilitating the charge carrier collection/separation/transfer with large interface areas. By optimizing the parameters including the annealing temperature of CZTS absorber, the thickness of CdS buffer layer and the morphology of ZnO NWs, an open-circuit voltage (VOC) as high as 589 mV was obtained by such solar cell with inverted structure. The all-solution-processed technic allows the realization of CZTS solar cell with extremely low cost.

  15. Solution-Processed One-Dimensional ZnO@CdS Heterojunction toward Efficient Cu2ZnSnS4 Solar Cell with Inverted Structure

    NASA Astrophysics Data System (ADS)

    Chen, Rongrong; Fan, Jiandong; Liu, Chong; Zhang, Xing; Shen, Yanjiao; Mai, Yaohua

    2016-10-01

    Kesterite Cu2ZnSnS4 (CZTS) semiconductor has been demonstrated to be a promising alternative absorber in thin film solar cell in virtue of its earth-abundant, non-toxic element, suitable optical and electrical properties. Herein, a low-cost and non-toxic method that based on the thermal decomposition and reaction of metal-thiourea-oxygen sol-gel complexes to synthesize CZTS thin film was developed. The low-dimensional ZnO@CdS heterojunction nano-arrays coupling with the as-prepared CZTS thin film were employed to fabricate a novel solar cell with inverted structure. The vertically aligned nanowires (NWs) allow facilitating the charge carrier collection/separation/transfer with large interface areas. By optimizing the parameters including the annealing temperature of CZTS absorber, the thickness of CdS buffer layer and the morphology of ZnO NWs, an open-circuit voltage (VOC) as high as 589 mV was obtained by such solar cell with inverted structure. The all-solution-processed technic allows the realization of CZTS solar cell with extremely low cost.

  16. Solution-Processed One-Dimensional ZnO@CdS Heterojunction toward Efficient Cu2ZnSnS4 Solar Cell with Inverted Structure

    PubMed Central

    Chen, Rongrong; Fan, Jiandong; Liu, Chong; Zhang, Xing; Shen, Yanjiao; Mai, Yaohua

    2016-01-01

    Kesterite Cu2ZnSnS4 (CZTS) semiconductor has been demonstrated to be a promising alternative absorber in thin film solar cell in virtue of its earth-abundant, non-toxic element, suitable optical and electrical properties. Herein, a low-cost and non-toxic method that based on the thermal decomposition and reaction of metal-thiourea-oxygen sol-gel complexes to synthesize CZTS thin film was developed. The low-dimensional ZnO@CdS heterojunction nano-arrays coupling with the as-prepared CZTS thin film were employed to fabricate a novel solar cell with inverted structure. The vertically aligned nanowires (NWs) allow facilitating the charge carrier collection/separation/transfer with large interface areas. By optimizing the parameters including the annealing temperature of CZTS absorber, the thickness of CdS buffer layer and the morphology of ZnO NWs, an open-circuit voltage (VOC) as high as 589 mV was obtained by such solar cell with inverted structure. The all-solution-processed technic allows the realization of CZTS solar cell with extremely low cost. PMID:27734971

  17. Markov Decision Processes: A Tool for Sequential Decision Making under Uncertainty

    PubMed Central

    Alagoz, Oguzhan; Hsu, Heather; Schaefer, Andrew J.; Roberts, Mark S.

    2011-01-01

    We provide a tutorial on the construction and evaluation of Markov decision processes (MDPs), which are powerful analytical tools used for sequential decision making under uncertainty that have been widely used in many industrial and manufacturing applications but are underutilized in medical decision making (MDM). We demonstrate the use of an MDP to solve a sequential clinical treatment problem under uncertainty. Markov decision processes generalize standard Markov models in that a decision process is embedded in the model and multiple decisions are made over time. Furthermore, they have significant advantages over standard decision analysis. We compare MDPs to standard Markov-based simulation models by solving the problem of the optimal timing of living-donor liver transplantation using both methods. Both models result in the same optimal transplantation policy and the same total life expectancies for the same patient and living donor. The computation time for solving the MDP model is significantly smaller than that for solving the Markov model. We briefly describe the growing literature of MDPs applied to medical decisions. PMID:20044582

  18. Markov decision processes: a tool for sequential decision making under uncertainty.

    PubMed

    Alagoz, Oguzhan; Hsu, Heather; Schaefer, Andrew J; Roberts, Mark S

    2010-01-01

    We provide a tutorial on the construction and evaluation of Markov decision processes (MDPs), which are powerful analytical tools used for sequential decision making under uncertainty that have been widely used in many industrial and manufacturing applications but are underutilized in medical decision making (MDM). We demonstrate the use of an MDP to solve a sequential clinical treatment problem under uncertainty. Markov decision processes generalize standard Markov models in that a decision process is embedded in the model and multiple decisions are made over time. Furthermore, they have significant advantages over standard decision analysis. We compare MDPs to standard Markov-based simulation models by solving the problem of the optimal timing of living-donor liver transplantation using both methods. Both models result in the same optimal transplantation policy and the same total life expectancies for the same patient and living donor. The computation time for solving the MDP model is significantly smaller than that for solving the Markov model. We briefly describe the growing literature of MDPs applied to medical decisions.

  19. The application of Markov decision process with penalty function in restaurant delivery robot

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Hu, Zhen; Wang, Ying

    2017-05-01

    As the restaurant delivery robot is often in a dynamic and complex environment, including the chairs inadvertently moved to the channel and customers coming and going. The traditional Markov decision process path planning algorithm is not save, the robot is very close to the table and chairs. To solve this problem, this paper proposes the Markov Decision Process with a penalty term called MDPPT path planning algorithm according to the traditional Markov decision process (MDP). For MDP, if the restaurant delivery robot bumps into an obstacle, the reward it receives is part of the current status reward. For the MDPPT, the reward it receives not only the part of the current status but also a negative constant term. Simulation results show that the MDPPT algorithm can plan a more secure path.

  20. Potts model based on a Markov process computation solves the community structure problem effectively.

    PubMed

    Li, Hui-Jia; Wang, Yong; Wu, Ling-Yun; Zhang, Junhua; Zhang, Xiang-Sun

    2012-07-01

    The Potts model is a powerful tool to uncover community structure in complex networks. Here, we propose a framework to reveal the optimal number of communities and stability of network structure by quantitatively analyzing the dynamics of the Potts model. Specifically we model the community structure detection Potts procedure by a Markov process, which has a clear mathematical explanation. Then we show that the local uniform behavior of spin values across multiple timescales in the representation of the Markov variables could naturally reveal the network's hierarchical community structure. In addition, critical topological information regarding multivariate spin configuration could also be inferred from the spectral signatures of the Markov process. Finally an algorithm is developed to determine fuzzy communities based on the optimal number of communities and the stability across multiple timescales. The effectiveness and efficiency of our algorithm are theoretically analyzed as well as experimentally validated.

  1. Average reflected power from a one-dimensional slab of discrete scatterers

    NASA Technical Reports Server (NTRS)

    Saatchi, Sasan S.; Lang, Roger H.

    1990-01-01

    Reflection from a one-dimensional random medium of discrete scatterers is considered. The discrete scattering medium is modeled by a Poisson impulse process with concentration lambda. By employing the Markov property of the Poisson impulse process, an exact functional integro-differential equation of the Kolmogorov-Feller type is found for the average reflected power. Approximate solutions to this equation are obtained by regular perturbation and two variable expansion techniques in the limit of small lambda. The regular perturbation results is valid for small slab thicknesses, while the two-variable result is uniformly valid for any thickness. The two-variable result shows that as the slab size becomes infinite all of the incident power is reflected on the average.

  2. Average reflected power from a one-dimensional slab of discrete scatterers

    NASA Technical Reports Server (NTRS)

    Saatchi, Sasan S.; Lang, Roger H.

    1990-01-01

    Reflection from a one-dimensional random medium of discrete scatterers is considered. The discrete scattering medium is modeled by a Poisson impulse process with concentration lambda. By employing the Markov property of the Poisson impulse process, an exact functional integro-differential equation of the Kolmogorov-Feller type is found for the average reflected power. Approximate solutions to this equation are obtained by regular perturbation and two variable expansion techniques in the limit of small lambda. The regular perturbation results is valid for small slab thicknesses, while the two-variable result is uniformly valid for any thickness. The two-variable result shows that as the slab size becomes infinite all of the incident power is reflected on the average.

  3. Likelihood free inference for Markov processes: a comparison.

    PubMed

    Owen, Jamie; Wilkinson, Darren J; Gillespie, Colin S

    2015-04-01

    Approaches to Bayesian inference for problems with intractable likelihoods have become increasingly important in recent years. Approximate Bayesian computation (ABC) and "likelihood free" Markov chain Monte Carlo techniques are popular methods for tackling inference in these scenarios but such techniques are computationally expensive. In this paper we compare the two approaches to inference, with a particular focus on parameter inference for stochastic kinetic models, widely used in systems biology. Discrete time transition kernels for models of this type are intractable for all but the most trivial systems yet forward simulation is usually straightforward. We discuss the relative merits and drawbacks of each approach whilst considering the computational cost implications and efficiency of these techniques. In order to explore the properties of each approach we examine a range of observation regimes using two example models. We use a Lotka-Volterra predator-prey model to explore the impact of full or partial species observations using various time course observations under the assumption of known and unknown measurement error. Further investigation into the impact of observation error is then made using a Schlögl system, a test case which exhibits bi-modal state stability in some regions of parameter space.

  4. Second virial coefficient of one dimensional gas

    SciTech Connect

    Mijatovic, M.

    1982-08-01

    The second virial coefficient of a one dimensional gas is calculated using the expressions for the scattering amplitude. The scattering amplitude is chosen in the form of rational function of wave vector.

  5. One-Dimensional Czedli-Type Islands

    ERIC Educational Resources Information Center

    Horvath, Eszter K.; Mader, Attila; Tepavcevic, Andreja

    2011-01-01

    The notion of an island has surfaced in recent algebra and coding theory research. Discrete versions provide interesting combinatorial problems. This paper presents the one-dimensional case with finitely many heights, a topic convenient for student research.

  6. One-Dimensional Czedli-Type Islands

    ERIC Educational Resources Information Center

    Horvath, Eszter K.; Mader, Attila; Tepavcevic, Andreja

    2011-01-01

    The notion of an island has surfaced in recent algebra and coding theory research. Discrete versions provide interesting combinatorial problems. This paper presents the one-dimensional case with finitely many heights, a topic convenient for student research.

  7. Factorizations of one-dimensional classical systems

    SciTech Connect

    Kuru, Senguel; Negro, Javier

    2008-02-15

    A class of one-dimensional classical systems is characterized from an algebraic point of view. The Hamiltonians of these systems are factorized in terms of two functions that together with the Hamiltonian itself close a Poisson algebra. These two functions lead directly to two time-dependent integrals of motion from which the phase motions are derived algebraically. The systems so obtained constitute the classical analogues of the well known factorizable one-dimensional quantum mechanical systems.

  8. One dimensional representations in quantum optics

    NASA Technical Reports Server (NTRS)

    Janszky, J.; Adam, P.; Foldesi, I.; Vinogradov, An. V.

    1993-01-01

    The possibility of representing the quantum states of a harmonic oscillator not on the whole alpha-plane but on its one dimensional manifolds is considered. It is shown that a simple Gaussian distribution along a straight line describes a quadrature squeezed state while a similar Gaussian distribution along a circle leads to the amplitude squeezed state. The connection between the one dimensional representations and the usual Glauber representation is discussed.

  9. Quantification of heart rate variability by discrete nonstationary non-Markov stochastic processes

    NASA Astrophysics Data System (ADS)

    Yulmetyev, Renat; Hänggi, Peter; Gafarov, Fail

    2002-04-01

    We develop the statistical theory of discrete nonstationary non-Markov random processes in complex systems. The objective of this paper is to find the chain of finite-difference non-Markov kinetic equations for time correlation functions (TCF) in terms of nonstationary effects. The developed theory starts from careful analysis of time correlation through nonstationary dynamics of vectors of initial and final states and nonstationary normalized TCF. Using the projection operators technique we find the chain of finite-difference non-Markov kinetic equations for discrete nonstationary TCF and for the set of nonstationary discrete memory functions (MF's). The last one contains supplementary information about nonstationary properties of the complex system on the whole. Another relevant result of our theory is the construction of the set of dynamic parameters of nonstationarity, which contains some information of the nonstationarity effects. The full set of dynamic, spectral and kinetic parameters, and kinetic functions (TCF, short MF's statistical spectra of non-Markovity parameter, and statistical spectra of nonstationarity parameter) has made it possible to acquire the in-depth information about discreteness, non-Markov effects, long-range memory, and nonstationarity of the underlying processes. The developed theory is applied to analyze the long-time (Holter) series of RR intervals of human ECG's. We had two groups of patients: the healthy ones and the patients after myocardial infarction. In both groups we observed effects of fractality, standard and restricted self-organized criticality, and also a certain specific arrangement of spectral lines. The received results demonstrate that the power spectra of all orders (n=1,2,...) MF mn(t) exhibit the neatly expressed fractal features. We have found out that the full sets of non-Markov, discrete and nonstationary parameters can serve as reliable and powerful means of diagnosis of the cardiovascular system states and can

  10. Quantification of heart rate variability by discrete nonstationary non-Markov stochastic processes.

    PubMed

    Yulmetyev, Renat; Hänggi, Peter; Gafarov, Fail

    2002-04-01

    We develop the statistical theory of discrete nonstationary non-Markov random processes in complex systems. The objective of this paper is to find the chain of finite-difference non-Markov kinetic equations for time correlation functions (TCF) in terms of nonstationary effects. The developed theory starts from careful analysis of time correlation through nonstationary dynamics of vectors of initial and final states and nonstationary normalized TCF. Using the projection operators technique we find the chain of finite-difference non-Markov kinetic equations for discrete nonstationary TCF and for the set of nonstationary discrete memory functions (MF's). The last one contains supplementary information about nonstationary properties of the complex system on the whole. Another relevant result of our theory is the construction of the set of dynamic parameters of nonstationarity, which contains some information of the nonstationarity effects. The full set of dynamic, spectral and kinetic parameters, and kinetic functions (TCF, short MF's statistical spectra of non-Markovity parameter, and statistical spectra of nonstationarity parameter) has made it possible to acquire the in-depth information about discreteness, non-Markov effects, long-range memory, and nonstationarity of the underlying processes. The developed theory is applied to analyze the long-time (Holter) series of RR intervals of human ECG's. We had two groups of patients: the healthy ones and the patients after myocardial infarction. In both groups we observed effects of fractality, standard and restricted self-organized criticality, and also a certain specific arrangement of spectral lines. The received results demonstrate that the power spectra of all orders (n=1,2, ...) MF m(n)(t) exhibit the neatly expressed fractal features. We have found out that the full sets of non-Markov, discrete and nonstationary parameters can serve as reliable and powerful means of diagnosis of the cardiovascular system states and

  11. Risk aversion and risk seeking in multicriteria forest management: a Markov decision process approach

    Treesearch

    Joseph Buongiorno; Mo Zhou; Craig Johnston

    2017-01-01

    Markov decision process models were extended to reflect some consequences of the risk attitude of forestry decision makers. One approach consisted of maximizing the expected value of a criterion subject to an upper bound on the variance or, symmetrically, minimizing the variance subject to a lower bound on the expected value.  The other method used the certainty...

  12. Post processing with first- and second-order hidden Markov models

    NASA Astrophysics Data System (ADS)

    Taghva, Kazem; Poudel, Srijana; Malreddy, Spandana

    2013-01-01

    In this paper, we present the implementation and evaluation of first order and second order Hidden Markov Models to identify and correct OCR errors in the post processing of books. Our experiments show that the first order model approximately corrects 10% of the errors with 100% precision, while the second order model corrects a higher percentage of errors with much lower precision.

  13. Markov Processes: Exploring the Use of Dynamic Visualizations to Enhance Student Understanding

    ERIC Educational Resources Information Center

    Pfannkuch, Maxine; Budgett, Stephanie

    2016-01-01

    Finding ways to enhance introductory students' understanding of probability ideas and theory is a goal of many first-year probability courses. In this article, we explore the potential of a prototype tool for Markov processes using dynamic visualizations to develop in students a deeper understanding of the equilibrium and hitting times…

  14. Generalization of Faustmann's Formula for Stochastic Forest Growth and Prices with Markov Decision Process Models

    Treesearch

    Joseph Buongiorno

    2001-01-01

    Faustmann's formula gives the land value, or the forest value of land with trees, under deterministic assumptions regarding future stand growth and prices, over an infinite horizon. Markov decision process (MDP) models generalize Faustmann's approach by recognizing that future stand states and prices are known only as probabilistic distributions. The...

  15. Markov models of non-Gaussian exponentially correlated processes and their applications

    SciTech Connect

    Primak, S.; Lyandres, V.; Kontorovich, V.

    2001-06-01

    We consider three different methods of generating non-Gaussian Markov processes with given probability density functions and exponential correlation functions. All models are based on stochastic differential equations. A number of analytically treatable examples are considered. The results obtained can be used in different areas such as telecommunications and neurobiology.

  16. Markov Processes: Exploring the Use of Dynamic Visualizations to Enhance Student Understanding

    ERIC Educational Resources Information Center

    Pfannkuch, Maxine; Budgett, Stephanie

    2016-01-01

    Finding ways to enhance introductory students' understanding of probability ideas and theory is a goal of many first-year probability courses. In this article, we explore the potential of a prototype tool for Markov processes using dynamic visualizations to develop in students a deeper understanding of the equilibrium and hitting times…

  17. Functional equation for the crossover in the model of one-dimensional Weierstrass random walks

    NASA Astrophysics Data System (ADS)

    Rudoi, Yu. G.; Kotel'nikova, O. A.

    2016-12-01

    We consider the problem of one-dimensional symmetric diffusion in the framework of Markov random walks of the Weierstrass type using two-parameter scaling for the transition probability. We construct a solution for the characteristic Lyapunov function as a sum of regular (homogeneous) and singular (nonhomogeneous) solutions and find the conditions for the crossover from normal to anomalous diffusion.

  18. One-dimensional Gromov minimal filling problem

    NASA Astrophysics Data System (ADS)

    Ivanov, Alexandr O.; Tuzhilin, Alexey A.

    2012-05-01

    The paper is devoted to a new branch in the theory of one-dimensional variational problems with branching extremals, the investigation of one-dimensional minimal fillings introduced by the authors. On the one hand, this problem is a one-dimensional version of a generalization of Gromov's minimal fillings problem to the case of stratified manifolds. On the other hand, this problem is interesting in itself and also can be considered as a generalization of another classical problem, the Steiner problem on the construction of a shortest network connecting a given set of terminals. Besides the statement of the problem, we discuss several properties of the minimal fillings and state several conjectures. Bibliography: 38 titles.

  19. Experimental optimization of a real time fed-batch fermentation process using Markov decision process.

    PubMed

    Saucedo, V M; Karim, M N

    1997-07-20

    This article describes a methodology that implements a Markov decision process (MDP) optimization technique in a real time fed-batch experiment. Biological systems can be better modeled under the stochastic framework and MDP is shown to be a suitable technique for their optimization. A nonlinear input/output model is used to calculate the probability transitions. All elements of the MDP are identified according to physical parameters. Finally, this study compares the results obtained when optimizing ethanol production using the infinite horizon problem, with total expected discount policy, to previous experimental results aimed at optimizing ethanol production using a recombinant Escherichia coli fed-batch cultivation. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 317-327, 1997.

  20. One-Dimensional Wavefront Sensor Analysis

    SciTech Connect

    Neal, Daniel R.

    1996-04-25

    This software analyzes one-dimensional wavefront sensor data acquired with any of several data acquisition systems. It analyzes the data to determine centroids, wavefront slopes and overall wavefront error. The data can be displayed in many formats, with plots of various parameters vs time and position, including computer generated movies. Data can also be exported for use by other programs.

  1. One-Dimensional Oscillator in a Box

    ERIC Educational Resources Information Center

    Amore, Paolo; Fernandez, Francisco M.

    2010-01-01

    We discuss a quantum-mechanical model of two particles that interact by means of a harmonic potential and are confined to a one-dimensional box with impenetrable walls. We apply perturbation theory to the cases of different and equal masses and analyse the symmetry of the states in the latter case. We compare the approximate perturbation results…

  2. One-Dimensional Oscillator in a Box

    ERIC Educational Resources Information Center

    Amore, Paolo; Fernandez, Francisco M.

    2010-01-01

    We discuss a quantum-mechanical model of two particles that interact by means of a harmonic potential and are confined to a one-dimensional box with impenetrable walls. We apply perturbation theory to the cases of different and equal masses and analyse the symmetry of the states in the latter case. We compare the approximate perturbation results…

  3. One-dimensional differential Hardy inequality.

    PubMed

    Kalybay, Aigerim

    2017-01-01

    We establish necessary and sufficient conditions for the one-dimensional differential Hardy inequality to hold, including the overdetermined case. The solution is given in terms different from those of the known results. Moreover, the least constant for this inequality is estimated.

  4. One-Dimensional Fluids with Positive Potentials

    NASA Astrophysics Data System (ADS)

    Fantoni, Riccardo

    2017-03-01

    We study a class of one-dimensional classical fluids with penetrable particles interacting through positive, purely repulsive, pair-potentials. Starting from some lower bounds to the total potential energy, we draw results on the thermodynamic limit of the given model.

  5. Goal Management in Organizations: A Markov Decision Process (MDP) Approach

    DTIC Science & Technology

    2005-01-01

    model by introducing novel problem domain-specific heuristic evaluation functions ( HEF ) to aid the search process. We employ the optimal AO* search...introducing novel problem domain-specific heuristic evaluation functions ( HEF ) to aid the search process. We employ the optimal AO* search and two...algorithm, and greedy heuristics. Novel problem domain-based heuristic evaluation functions ( HEFs ) are introduced and evidence of their admissibility is

  6. A fast exact simulation method for a class of Markov jump processes

    SciTech Connect

    Li, Yao; Hu, Lili

    2015-11-14

    A new method of the stochastic simulation algorithm (SSA), named the Hashing-Leaping method (HLM), for exact simulations of a class of Markov jump processes, is presented in this paper. The HLM has a conditional constant computational cost per event, which is independent of the number of exponential clocks in the Markov process. The main idea of the HLM is to repeatedly implement a hash-table-like bucket sort algorithm for all times of occurrence covered by a time step with length τ. This paper serves as an introduction to this new SSA method. We introduce the method, demonstrate its implementation, analyze its properties, and compare its performance with three other commonly used SSA methods in four examples. Our performance tests and CPU operation statistics show certain advantages of the HLM for large scale problems.

  7. Unraveling Markov Processes in Movement Patterns of Indicator Species in Response to Chemical Stressors

    NASA Astrophysics Data System (ADS)

    Nguyen, Tuyen Van; Liu, Yuedan; Jung, Il-Hyo; Chon, Tae-Soo; Lee, Sang-Hee

    Revealing biological responses of organisms in responding to environmental stressors is the critical issue in contemporary ecological sciences. Markov processes in behavioral data were unraveled by utilizing the hidden Markov model (HMM). Individual organisms of daphnia (Daphnia magna) and zebrafish (Danio rerio) were exposed to diazinon at low concentrations. The transition probability matrix (TPM) and the emission probability matrix (EPM) were accordingly estimated by training with the HMM and were verified before and after the treatments with 10-6 tolerance in 103 iterations. Structured property in behavioral changes was accordingly revealed to characterize dynamic processes in movement patterns. Parameters and sequences produced through the HMM training could be a suitable means of monitoring toxic chemicals in environment.

  8. Fluctuation-dissipation theorems for inhomogeneous Markov jump processes and a biochemical application

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Jia, Chen; Jiang, Da-Quan

    2017-02-01

    In this paper, we establish a rigorous mathematical theory of three types of fluctuation-dissipation theorems (FDTs) for inhomogeneous Markov jump processes. It turns out that the FDTs and the response formula proved in this paper apply to any form of external perturbations and thus are quite general. Further physical and biochemical applications are also discussed. In particular, the FDTs are used to study an important biochemical phenomenon called adaptation.

  9. Phase-Type Approximations for Wear Processes in A Semi-Markov Environment

    DTIC Science & Technology

    2004-03-01

    identically distributed exponential random variables, is equivalent to the absorption time of an underlying k-state Markov process. As noted by Perros ...the Coxian distribution is that it can exactly represent any distribution having a rational Laplace transform [23]. Moreover, Perros [23] gives the...Performance Evaluation (TOOLS 2003), 200-217. 23. Perros , H. (1994). Queueing Networks with Blocking. Oxford University Press, New York. 24. Ro, C.W

  10. Scalable approximate policies for Markov decision process models of hospital elective admissions.

    PubMed

    Zhu, George; Lizotte, Dan; Hoey, Jesse

    2014-05-01

    To demonstrate the feasibility of using stochastic simulation methods for the solution of a large-scale Markov decision process model of on-line patient admissions scheduling. The problem of admissions scheduling is modeled as a Markov decision process in which the states represent numbers of patients using each of a number of resources. We investigate current state-of-the-art real time planning methods to compute solutions to this Markov decision process. Due to the complexity of the model, traditional model-based planners are limited in scalability since they require an explicit enumeration of the model dynamics. To overcome this challenge, we apply sample-based planners along with efficient simulation techniques that given an initial start state, generate an action on-demand while avoiding portions of the model that are irrelevant to the start state. We also propose a novel variant of a popular sample-based planner that is particularly well suited to the elective admissions problem. Results show that the stochastic simulation methods allow for the problem size to be scaled by a factor of almost 10 in the action space, and exponentially in the state space. We have demonstrated our approach on a problem with 81 actions, four specialities and four treatment patterns, and shown that we can generate solutions that are near-optimal in about 100s. Sample-based planners are a viable alternative to state-based planners for large Markov decision process models of elective admissions scheduling. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Assistive system for people with Apraxia using a Markov decision process.

    PubMed

    Jean-Baptiste, Emilie M D; Russell, Martin; Rothstein, Pia

    2014-01-01

    CogWatch is an assistive system to re-train stroke survivors suffering from Apraxia or Action Disorganization Syndrome (AADS) to complete activities of daily living (ADLs). This paper describes the approach to real-time planning based on a Markov Decision Process (MDP), and demonstrates its ability to improve task's performance via user simulation. The paper concludes with a discussion of the remaining challenges and future enhancements.

  12. Transient One-dimensional Pipe Flow Analyzer

    SciTech Connect

    1986-04-08

    TOPAZ-SNLL, the Transient One- dimensional Pipe flow AnalyZer code, is a user-friendly computer program for modeling the heat transfer, fluid mechanics, and thermodynamics of multi-species gas transfer in arbitrary arrangements of pipes, valves, vessels, and flow branches. Although the flow conservation equations are assumed to be one-dimensional and transient, multidimensional features of internal fluid flow and heat transfer may be accounted for using the available quasi-steady flow correlations (e.g., Moody friction factor correlation and various form loss and heat transfer correlations). Users may also model the effects of moving system boundaries such as pistons, diaphragms, and bladders. The features of fully compressible flow are modeled, including the propagation of shocks and rarefaction waves, as well as the establishment of multiple choke points along the flow path.

  13. A conditional Markov model for clustered progressive multistate processes under incomplete observation.

    PubMed

    Cook, Richard J; Yi, Grace Y; Lee, Ker-Ai; Gladman, Dafna D

    2004-06-01

    Clustered progressive chronic disease processes arise when interest lies in modeling damage in paired organ systems (e.g., kidneys, eyes), in diseases manifest in different organ systems, or in systemic conditions for which damage may occur in several locations of the body. Multistate Markov models have considerable appeal for modeling damage in such settings, particularly when patients are only under intermittent observation. Generalizations are necessary, however, to deal with the fact that processes within subjects may not be independent. We describe a conditional Markov model in which the clustering in processes within subjects is addressed by the use of multiplicative random effects for each transition intensity. The random effects for the different transition intensities may be correlated within subjects, but are assumed to be independent for different subjects. We apply the mixed Markov model to a motivating data set of patients with psoriatic arthritis, and characterize the progressive course of damage in joints of the hand. A generalization to accommodate a subpopulation of "stayers" and extensions which facilitate regression are indicated and illustrated.

  14. One-dimensional opal photonic crystals

    NASA Astrophysics Data System (ADS)

    Kapitonov, A. M.

    2008-12-01

    One-dimensional opals are 1D self-assembled close packed colloidal crystals consisting of monodisperse colloidal globules. Polystyrene globules with sizes in the 1.9-10 μm range sit on a flat substrate and touch two neighbors in diametrally opposite contact points. These opals are quasi-1D photonic crystals. Optical modes, including whispering gallery modes of individual globules, coupled collective modes, and nanojet-induced modes, are visualized in 1D opals.

  15. An Overview of Markov Chain Methods for the Study of Stage-Sequential Developmental Processes

    ERIC Educational Resources Information Center

    Kapland, David

    2008-01-01

    This article presents an overview of quantitative methodologies for the study of stage-sequential development based on extensions of Markov chain modeling. Four methods are presented that exemplify the flexibility of this approach: the manifest Markov model, the latent Markov model, latent transition analysis, and the mixture latent Markov model.…

  16. A mixed model for two-state Markov processes under panel observation.

    PubMed

    Cook, R J

    1999-09-01

    Many chronic medical conditions can be meaningfully characterized in terms of a two-state stochastic process. Here we consider the problem in which subjects make transitions among two such states in continuous time but are only observed at discrete, irregularly spaced time points that are possibly unique to each subject. Data arising from such an observation scheme are called panel data, and methods for related analyses are typically based on Markov assumptions. The purpose of this article is to present a conditionally Markov model that accommodates subject-to-subject variation in the model parameters by the introduction of random effects. We focus on a particular random effects formulation that generates a closed-form expression for the marginal likelihood. The methodology is illustrated by application to a data set from a parasitic field infection survey.

  17. Variance-penalized Markov decision processes: dynamic programming and reinforcement learning techniques

    NASA Astrophysics Data System (ADS)

    Gosavi, Abhijit

    2014-08-01

    In control systems theory, the Markov decision process (MDP) is a widely used optimization model involving selection of the optimal action in each state visited by a discrete-event system driven by Markov chains. The classical MDP model is suitable for an agent/decision-maker interested in maximizing expected revenues, but does not account for minimizing variability in the revenues. An MDP model in which the agent can maximize the revenues while simultaneously controlling the variance in the revenues is proposed. This work is rooted in machine learning/neural network concepts, where updating is based on system feedback and step sizes. First, a Bellman equation for the problem is proposed. Thereafter, convergent dynamic programming and reinforcement learning techniques for solving the MDP are provided along with encouraging numerical results on a small MDP and a preventive maintenance problem.

  18. Availability Control for Means of Transport in Decisive Semi-Markov Models of Exploitation Process

    NASA Astrophysics Data System (ADS)

    Migawa, Klaudiusz

    2012-12-01

    The issues presented in this research paper refer to problems connected with the control process for exploitation implemented in the complex systems of exploitation for technical objects. The article presents the description of the method concerning the control availability for technical objects (means of transport) on the basis of the mathematical model of the exploitation process with the implementation of the decisive processes by semi-Markov. The presented method means focused on the preparing the decisive for the exploitation process for technical objects (semi-Markov model) and after that specifying the best control strategy (optimal strategy) from among possible decisive variants in accordance with the approved criterion (criteria) of the activity evaluation of the system of exploitation for technical objects. In the presented method specifying the optimal strategy for control availability in the technical objects means a choice of a sequence of control decisions made in individual states of modelled exploitation process for which the function being a criterion of evaluation reaches the extreme value. In order to choose the optimal control strategy the implementation of the genetic algorithm was chosen. The opinions were presented on the example of the exploitation process of the means of transport implemented in the real system of the bus municipal transport. The model of the exploitation process for the means of transports was prepared on the basis of the results implemented in the real transport system. The mathematical model of the exploitation process was built taking into consideration the fact that the model of the process constitutes the homogenous semi-Markov process.

  19. A reward semi-Markov process with memory for wind speed modeling

    NASA Astrophysics Data System (ADS)

    Petroni, F.; D'Amico, G.; Prattico, F.

    2012-04-01

    -order Markov chain with different number of states, and Weibull distribution. All this model use Markov chains to generate synthetic wind speed time series but the search for a better model is still open. Approaching this issue, we applied new models which are generalization of Markov models. More precisely we applied semi-Markov models to generate synthetic wind speed time series. The primary goal of this analysis is the study of the time history of the wind in order to assess its reliability as a source of power and to determine the associated storage levels required. In order to assess this issue we use a probabilistic model based on indexed semi-Markov process [4] to which a reward structure is attached. Our model is used to calculate the expected energy produced by a given turbine and its variability expressed by the variance of the process. Our results can be used to compare different wind farms based on their reward and also on the risk of missed production due to the intrinsic variability of the wind speed process. The model is used to generate synthetic time series for wind speed by means of Monte Carlo simulations and backtesting procedure is used to compare results on first and second oder moments of rewards between real and synthetic data. [1] A. Shamshad, M.A. Bawadi, W.M.W. Wan Hussin, T.A. Majid, S.A.M. Sanusi, First and second order Markov chain models for synthetic gen- eration of wind speed time series, Energy 30 (2005) 693-708. [2] H. Nfaoui, H. Essiarab, A.A.M. Sayigh, A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco, Re- newable Energy 29 (2004) 1407-1418. [3] F. Youcef Ettoumi, H. Sauvageot, A.-E.-H. Adane, Statistical bivariate modeling of wind using first-order Markov chain and Weibull distribu- tion, Renewable Energy 28 (2003) 1787-1802. [4]F. Petroni, G. D'Amico, F. Prattico, Indexed semi-Markov process for wind speed modeling. To be submitted.

  20. The discovery of processing stages: analyzing EEG data with hidden semi-Markov models.

    PubMed

    Borst, Jelmer P; Anderson, John R

    2015-03-01

    In this paper we propose a new method for identifying processing stages in human information processing. Since the 1860s scientists have used different methods to identify processing stages, usually based on reaction time (RT) differences between conditions. To overcome the limitations of RT-based methods we used hidden semi-Markov models (HSMMs) to analyze EEG data. This HSMM-EEG methodology can identify stages of processing and how they vary with experimental condition. By combining this information with the brain signatures of the identified stages one can infer their function, and deduce underlying cognitive processes. To demonstrate the method we applied it to an associative recognition task. The stage-discovery method indicated that three major processes play a role in associative recognition: a familiarity process, an associative retrieval process, and a decision process. We conclude that the new stage-discovery method can provide valuable insight into human information processing.

  1. A one-dimensional tunable magnetic metamaterial.

    PubMed

    Butz, S; Jung, P; Filippenko, L V; Koshelets, V P; Ustinov, A V

    2013-09-23

    We present experimental data on a one-dimensional super-conducting metamaterial that is tunable over a broad frequency band. The basic building block of this magnetic thin-film medium is a single-junction (rf-) superconducting quantum interference device (SQUID). Due to the nonlinear inductance of such an element, its resonance frequency is tunable in situ by applying a dc magnetic field. We demonstrate that this results in tunable effective parameters of our metamaterial consisting of 54 rf-SQUIDs. In order to obtain the effective magnetic permeability μr,eff from the measured data, we employ a technique that uses only the complex transmission coefficient S₂₁.

  2. One-dimensional circular diffraction patterns

    NASA Astrophysics Data System (ADS)

    Daimon, Hiroshi; Ino, Shozo

    1989-11-01

    Circular diffraction patterns from a bulk crystal have been found in MEED patterns by using a newly developed two-dimensional spherical mirror analyzer. From the analysis of the energy dependence of their radii and from the fact that they are not associated with the tangential Kikuchi lines, the circles were interpreted by the concept of one-dimensional diffraction along the crystallographic axes. The hemi-circular patterns, which have been observed in RHEED patterns near superstructural spots from a surface structure, were also explained by this concept.

  3. One-dimensional hypersonic phononic crystals.

    PubMed

    Gomopoulos, N; Maschke, D; Koh, C Y; Thomas, E L; Tremel, W; Butt, H-J; Fytas, G

    2010-03-10

    We report experimental observation of a normal incidence phononic band gap in one-dimensional periodic (SiO(2)/poly(methyl methacrylate)) multilayer film at gigahertz frequencies using Brillouin spectroscopy. The band gap to midgap ratio of 0.30 occurs for elastic wave propagation along the periodicity direction, whereas for inplane propagation the system displays an effective medium behavior. The phononic properties are well captured by numerical simulations. The porosity in the silica layers presents a structural scaffold for the introduction of secondary active media for potential coupling between phonons and other excitations, such as photons and electrons.

  4. Multivariate Markov processes for stochastic systems with delays: application to the stochastic Gompertz model with delay.

    PubMed

    Frank, T D

    2002-07-01

    Using the method of steps, we describe stochastic processes with delays in terms of Markov diffusion processes. Thus, multivariate Langevin equations and Fokker-Planck equations are derived for stochastic delay differential equations. Natural, periodic, and reflective boundary conditions are discussed. Both Ito and Stratonovich calculus are used. In particular, our Fokker-Planck approach recovers the generalized delay Fokker-Planck equation proposed by Guillouzic et al. The results obtained are applied to a model for population growth: the Gompertz model with delay and multiplicative white noise.

  5. A statistical property of multiagent learning based on Markov decision process.

    PubMed

    Iwata, Kazunori; Ikeda, Kazushi; Sakai, Hideaki

    2006-07-01

    We exhibit an important property called the asymptotic equipartition property (AEP) on empirical sequences in an ergodic multiagent Markov decision process (MDP). Using the AEP which facilitates the analysis of multiagent learning, we give a statistical property of multiagent learning, such as reinforcement learning (RL), near the end of the learning process. We examine the effect of the conditions among the agents on the achievement of a cooperative policy in three different cases: blind, visible, and communicable. Also, we derive a bound on the speed with which the empirical sequence converges to the best sequence in probability, so that the multiagent learning yields the best cooperative result.

  6. Electronic structure of one-dimensional cuprates

    NASA Astrophysics Data System (ADS)

    Maiti, K.; Sarma, D. D.; Mizokawa, T.; Fujimori, A.

    1998-01-01

    We have investigated the electronic structures of one-dimensional antiferromagnetic insulators Ca2CuO3 and Sr2CuO3 combining electron spectroscopic measurements and various calculations. While calculations based on a local-spin-density approach for the real magnetic structures fail to yield an insulating state, from our experiments we estimate the intrinsic band gaps in these materials to be about 1.7 eV (Ca2CuO3) and 1.5 eV (Sr2CuO3). Analysis of the core-level and the valence-band spectra in terms of model many-body Hamiltonians show that the charge-transfer energy Δ for these one-dimensional systems is significantly smaller than other cuprates, such as the high-Tc oxides (two-dimensional) and CuO (three-dimensional). Such a small Δ suggests the presence of the bare upper Hubbard band within the oxygen p bandwidth and thus provides an example of a correlated covalent insulator.

  7. The one-dimensional hydrogen atom revisited

    NASA Astrophysics Data System (ADS)

    Palma, G.; Raff, U.

    2006-09-01

    The one-dimensional Schrodinger hydrogen atom is an interesting mathematical and physical problem for the study of bound states, eigenfunctions, and quantum-degeneracy issues. This one-dimensional physical system has given rise to some intriguing controversy for more than four decades. Presently, still no definite consensus seems to have been reached. We reanalyzed this apparently controversial problem, approaching it from a Fourier-transform representation method combined with some fundamental (basic) ideas found in self-adjoint extensions of symmetric operators. In disagreement with some previous claims, we found that the complete Balmer energy spectrum is obtained together with an odd-parity set of eigenfunctions. Closed-form solutions in both coordinate and momentum spaces were obtained. No twofold degeneracy was observed as predicted by the degeneracy theorem in one dimension, though it does not necessarily have to hold for potentials with singularities. No ground state with infinite energy exists since the corresponding eigenfunction does not satisfy the Schrodinger equation at the origin.

  8. Specificities of one-dimensional dissipative magnetohydrodynamics

    SciTech Connect

    Popov, P. V.

    2016-11-15

    One-dimensional dynamics of a plane slab of cold (β ≪ 1) isothermal plasma accelerated by a magnetic field is studied in terms of the MHD equations with a finite constant conductivity. The passage to the limit β → 0 is analyzed in detail. It is shown that, at β = 0, the character of the solution depends substantially on the boundary condition for the electric field at the inner plasma boundary. The relationship between the boundary condition for the pressure at β > 0 and the conditions for the electric field at β = 0 is found. The stability of the solution against one-dimensional longitudinal perturbations is analyzed. It is shown that, in the limit β → 0, the stationary solution is unstable if the time during which the acoustic wave propagates across the slab is longer than the time of magnetic field diffusion. The growth rate and threshold of instability are determined, and results of numerical simulation of its nonlinear stage are presented.

  9. Markov processes and partial differential equations on a group: the space-homogeneous case

    NASA Astrophysics Data System (ADS)

    Bendikov, A. D.

    1987-10-01

    CONTENTS Introduction Terminology and notation Chapter I. Potential theory of conjugate processes § 1.1. Markov processes and harmonic spaces § 1.2. Processes of class \\mathscr{A} and Brelot spaces § 1.3. Processes of class \\mathscr{B} and Bauer spaces Chapter II. Space-homogeneous processes on a group § 2.1. Space-homogeneous processes and harmonic structures § 2.2. Quasidiagonal processes § 2.3. An example of a non-quasidiagonal process Chapter III. Elliptic equations on a group § 3.1. Admissible distributions and multipliers § 3.2. Weak solutions of elliptic equations ( L_p-theory) § 3.3. Weyl's lemma and the hypoelliptic property References

  10. Adiabatic reduction of a model of stochastic gene expression with jump Markov process.

    PubMed

    Yvinec, Romain; Zhuge, Changjing; Lei, Jinzhi; Mackey, Michael C

    2014-04-01

    This paper considers adiabatic reduction in a model of stochastic gene expression with bursting transcription considered as a jump Markov process. In this model, the process of gene expression with auto-regulation is described by fast/slow dynamics. The production of mRNA is assumed to follow a compound Poisson process occurring at a rate depending on protein levels (the phenomena called bursting in molecular biology) and the production of protein is a linear function of mRNA numbers. When the dynamics of mRNA is assumed to be a fast process (due to faster mRNA degradation than that of protein) we prove that, with appropriate scalings in the burst rate, jump size or translational rate, the bursting phenomena can be transmitted to the slow variable. We show that, depending on the scaling, the reduced equation is either a stochastic differential equation with a jump Poisson process or a deterministic ordinary differential equation. These results are significant because adiabatic reduction techniques seem to have not been rigorously justified for a stochastic differential system containing a jump Markov process. We expect that the results can be generalized to adiabatic methods in more general stochastic hybrid systems.

  11. Application of Markov process modelling to health status switching behaviour of infants.

    PubMed

    Biritwum, R B; Odoom, S I

    1995-02-01

    This study is an attempt to apply Markov process modelling to health status switching behaviour of infants. The data for the study consist of monthly records of diagnosed illnesses for 1152 children, each observed from the month of first contact with Kasangati Health Centre, Kampala, Uganda, until age 18 months. Only two states of health are considered in the study, a 'Health' state, denoted by W: (for Well), and an 'Illness' state denoted by S: (for Sick). The data are thus reduced to monthly records (W or S) of the states of health of the study sample. The simplest model of dependence of current health state on the past is one that links the current state to the immediately preceding month only; that is a Markov model. The starting point of this study was therefore to determine the proportions of children making the transitions W-->W, W-->S, S-->W, S-->S, from one month to the next, for each month from birth (month 0) to 18 months of age (month 18). These were used as estimates of the probabilities of making these transitions for each month from birth. This paper discusses the main features emerging from the study of these transition probabilities. In the first 5 months after birth, the probabilities of making the transitions W-->W, W-->S, S-->W, S-->S from one month to the next, showed some dependence on the age of the child. From the sixth month on, however, the dependence on age seemed to wear off. The transition probabilities remained the same from then on, suggesting that the switching pattern between health states behaves, eventually, like a time-homogeneous Markov Chain. This time-homogeneous chain attained a steady state distribution at about 12 months from birth. The study has shown that the transitions between Health and Illness for infants, from month to month, can be modelled by a Markov Chain for which the (single-step) transition probabilities are generally time-dependent or age-dependent. After the first few months of life the dependence on age may

  12. Superfluid helium-4 in one dimensional channel

    NASA Astrophysics Data System (ADS)

    Kim, Duk Y.; Banavar, Samhita; Chan, Moses H. W.; Hayes, John; Sazio, Pier

    2013-03-01

    Superfluidity, as superconductivity, cannot exist in a strict one-dimensional system. However, the experiments employing porous media showed that superfluid helium can flow through the pores of nanometer size. Here we report a study of the flow of liquid helium through a single hollow glass fiber of 4 cm in length with an open id of 150 nm between 1.6 and 2.3 K. We found the superfluid transition temperature was suppressed in the hollow cylinder and that there is no flow above the transition. Critical velocity at temperature below the transition temperature was determined. Our results bear some similarity to that found by Savard et. al. studying the flow of helium through a nanohole in a silicon nitrite membrane. Experimental study at Penn State is supported by NSF Grants No. DMR 1103159.

  13. Three one-dimensional structural heating programs

    NASA Technical Reports Server (NTRS)

    Wing, L. D.

    1978-01-01

    Two computer programs for calculating profiles in a ten-element structure consisting of up to ten materials are presented, along with a third program for calculating the mean temperature for a payload container placed in an orbiting vehicle cargo bay. The three programs are related by the sharing of a common analytical technique; the energy balance is based upon one-dimensional heat transfer. The first program, NQLDW112, assumes a non-ablating surface. NQLDW117 is very similar but allows the outermost element to ablate. NQLDW040 calculates an average temperature profile through an idealized model of the real payload cannister and contents in the cargo bay of an orbiting vehicle.

  14. One-dimensional frequency-based spectroscopy.

    PubMed

    Cygan, Agata; Wcisło, Piotr; Wójtewicz, Szymon; Masłowski, Piotr; Hodges, Joseph T; Ciuryło, Roman; Lisak, Daniel

    2015-06-01

    Recent developments in optical metrology have tremendously improved the precision and accuracy of the horizontal (frequency) axis in measured spectra. However, the vertical (typically absorbance) axis is usually based on intensity measurements that are subject to instrumental errors which limit the spectrum accuracy. Here we report a one-dimensional spectroscopy that uses only the measured frequencies of high-finesse cavity modes to provide complete information about the dispersive properties of the spectrum. Because this technique depends solely on the measurement of frequencies or their differences, it is insensitive to systematic errors in the detection of light intensity and has the potential to become the most accurate of all absorptive and dispersive spectroscopic methods. The experimental results are compared to measurements by two other high-precision cavity-enhanced spectroscopy methods. We expect that the proposed technique will have significant impact in fields such as fundamental physics, gas metrology and environmental remote sensing.

  15. One-dimensional spinon spin currents

    NASA Astrophysics Data System (ADS)

    Hirobe, Daichi; Sato, Masahiro; Kawamata, Takayuki; Shiomi, Yuki; Uchida, Ken-Ichi; Iguchi, Ryo; Koike, Yoji; Maekawa, Sadamichi; Saitoh, Eiji

    2017-01-01

    Quantum spin fluctuation in a low-dimensional or frustrated magnet breaks magnetic ordering while keeping spin correlation. Such fluctuation has been a central topic in magnetism because of its relevance to high-Tc superconductivity and topological states. However, utilizing such spin states has been quite difficult. In a one-dimensional spin-1/2 chain, a particle-like excitation called a spinon is known to be responsible for spin fluctuation in a paramagnetic state. Spinons behave as a Tomonaga-Luttinger liquid at low energy, and the spin system is often called a quantum spin chain. Here we show that a quantum spin chain generates and carries spin current, which is attributed to spinon spin current. This is demonstrated by observing an anisotropic negative spin Seebeck effect along the spin chains in Sr2CuO3. The results show that spin current can flow even in an atomic channel owing to long-range spin fluctuation.

  16. Macroscopic Quantum Tunneling in One Dimensional Superconductor

    NASA Astrophysics Data System (ADS)

    Chang, Yongmin

    Macroscopic quantum tunneling (MQT) in a one dimensional superconductor is discussed based on the microscopic model near the critical temperature. By means of a functional integral approach, a formula for the total decay rate, which is the sum of the thermal activation and quantum mechanical tunneling rate, is derived. The Bounce solution in the imaginary time formalism gives rise to the exponent in the tunneling rate. From the study of fluctuations from the bounce path, the pre-exponential factor has been evaluated. The theory for the tunneling rate is consistent with experimental results for temperatures at which the thermal activation theory fails. As the temperature approaches to the critical temperature, thermal activation over a free energy barrier which separates metastable states is dominant and the theory shows good agreement with experiment over the whole temperature region.

  17. Collapsing of chaos in one dimensional maps

    NASA Astrophysics Data System (ADS)

    Yuan, Guocheng; Yorke, James A.

    2000-02-01

    In their numerical investigation of the family of one dimensional maps f l(x)=1-2∣x∣ l, where l>2 , Diamond et al. [P. Diamond et al., Physica D 86 (1999) 559-571] have observed the surprising numerical phenomenon that a large fraction of initial conditions chosen at random eventually wind up at -1, a repelling fixed point. This is a numerical artifact because the continuous maps are chaotic and almost every (true) trajectory can be shown to be dense in [-1,1]. The goal of this paper is to extend and resolve this obvious contradiction. We model the numerical simulation with a randomly selected map. While they used 27 bit precision in computing f l, we prove for our model that this numerical artifact persists for an arbitrary high numerical prevision. The fraction of initial points eventually winding up at -1 remains bounded away from 0 for every numerical precision.

  18. One-dimensional Vlasov-Maxwell equilibria

    NASA Astrophysics Data System (ADS)

    Greene, John M.

    1993-06-01

    The purpose of this paper is to show that the Vlasov equilibrium of a plasma of charged particles in an electromagnetic field is closely related to a fluid equilibrium, where only a few moments of the velocity distribution of the plasma are considered. In this fluid equilibrium the electric field should be calculated from Ohm's law, rather than the Poisson equation. In practice, only one-dimensional equilibria are treated, because the symmetry makes this case tractable. The emphasis here is on gaining a better understanding of the subject, but an alternate way of doing the calculations is suggested. It is shown that particle distributions can be found that are consistent with any reasonable electromagnetic field profile.

  19. One-dimensional quantum pump simulated by cold atoms

    NASA Astrophysics Data System (ADS)

    Xiao, Yun-Chang; Zhu, Ming-Han; Liu, Zheng-Qin

    2015-05-01

    Quantum pump set up in one-dimensional (1D) channel was proposed by the cold atom simulation. The target pumping system is driven by the double time-dependent potentials. We investigated that the system can be achieved via the study of the cold atoms simulation. And by using the Floquet scattering method and the related transport theories in the mesoscopic systems, simulations of the pumping processes were presented in detail.

  20. Conditions for the Solvability of the Linear Programming Formulation for Constrained Discounted Markov Decision Processes

    SciTech Connect

    Dufour, F.; Prieto-Rumeau, T.

    2016-08-15

    We consider a discrete-time constrained discounted Markov decision process (MDP) with Borel state and action spaces, compact action sets, and lower semi-continuous cost functions. We introduce a set of hypotheses related to a positive weight function which allow us to consider cost functions that might not be bounded below by a constant, and which imply the solvability of the linear programming formulation of the constrained MDP. In particular, we establish the existence of a constrained optimal stationary policy. Our results are illustrated with an application to a fishery management problem.

  1. Markov chain Monte Carlo methods for state-space models with point process observations.

    PubMed

    Yuan, Ke; Girolami, Mark; Niranjan, Mahesan

    2012-06-01

    This letter considers how a number of modern Markov chain Monte Carlo (MCMC) methods can be applied for parameter estimation and inference in state-space models with point process observations. We quantified the efficiencies of these MCMC methods on synthetic data, and our results suggest that the Reimannian manifold Hamiltonian Monte Carlo method offers the best performance. We further compared such a method with a previously tested variational Bayes method on two experimental data sets. Results indicate similar performance on the large data sets and superior performance on small ones. The work offers an extensive suite of MCMC algorithms evaluated on an important class of models for physiological signal analysis.

  2. Finite Dimensional Markov Process Approximation for Time-Delayed Stochastic Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Sun, Jian-Qiao

    This paper presents a method of finite dimensional Markov process (FDMP) approximation for stochastic dynamical systems with time delay. The FDMP method preserves the standard state space format of the system, and allows us to apply all the existing methods and theories for analysis and control of stochastic dynamical systems. The paper presents the theoretical framework for stochastic dynamical systems with time delay based on the FDMP method, including the FPK equation, backward Kolmogorov equation, and reliability formulation. The work of this paper opens a door to various studies of stochastic dynamical systems with time delay.

  3. A Stable Clock Error Model Using Coupled First and Second Order Gauss-Markov Processes

    NASA Technical Reports Server (NTRS)

    Carpenter, Russell; Lee, Taesul

    2008-01-01

    Long data outages may occur in applications of global navigation satellite system technology to orbit determination for missions that spend significant fractions of their orbits above the navigation satellite constellation(s). Current clock error models based on the random walk idealization may not be suitable in these circumstances, since the covariance of the clock errors may become large enough to overflow flight computer arithmetic. A model that is stable, but which approximates the existing models over short time horizons is desirable. A coupled first- and second-order Gauss-Markov process is such a model.

  4. Pitch angle scattering of relativistic electrons from stationary magnetic waves: Continuous Markov process and quasilinear theory

    SciTech Connect

    Lemons, Don S.

    2012-01-15

    We develop a Markov process theory of charged particle scattering from stationary, transverse, magnetic waves. We examine approximations that lead to quasilinear theory, in particular the resonant diffusion approximation. We find that, when appropriate, the resonant diffusion approximation simplifies the result of the weak turbulence approximation without significant further restricting the regime of applicability. We also explore a theory generated by expanding drift and diffusion rates in terms of a presumed small correlation time. This small correlation time expansion leads to results valid for relatively small pitch angle and large wave energy density - a regime that may govern pitch angle scattering of high-energy electrons into the geomagnetic loss cone.

  5. Effective degree Markov-chain approach for discrete-time epidemic processes on uncorrelated networks

    NASA Astrophysics Data System (ADS)

    Cai, Chao-Ran; Wu, Zhi-Xi; Guan, Jian-Yue

    2014-11-01

    Recently, Gómez et al. proposed a microscopic Markov-chain approach (MMCA) [S. Gómez, J. Gómez-Gardeñes, Y. Moreno, and A. Arenas, Phys. Rev. E 84, 036105 (2011), 10.1103/PhysRevE.84.036105] to the discrete-time susceptible-infected-susceptible (SIS) epidemic process and found that the epidemic prevalence obtained by this approach agrees well with that by simulations. However, we found that the approach cannot be straightforwardly extended to a susceptible-infected-recovered (SIR) epidemic process (due to its irreversible property), and the epidemic prevalences obtained by MMCA and Monte Carlo simulations do not match well when the infection probability is just slightly above the epidemic threshold. In this contribution we extend the effective degree Markov-chain approach, proposed for analyzing continuous-time epidemic processes [J. Lindquist, J. Ma, P. Driessche, and F. Willeboordse, J. Math. Biol. 62, 143 (2011), 10.1007/s00285-010-0331-2], to address discrete-time binary-state (SIS) or three-state (SIR) epidemic processes on uncorrelated complex networks. It is shown that the final epidemic size as well as the time series of infected individuals obtained from this approach agree very well with those by Monte Carlo simulations. Our results are robust to the change of different parameters, including the total population size, the infection probability, the recovery probability, the average degree, and the degree distribution of the underlying networks.

  6. A patterned and un-patterned minefield detection in cluttered environments using Markov marked point process

    NASA Astrophysics Data System (ADS)

    Trang, Anh; Agarwal, Sanjeev; Regalia, Phillip; Broach, Thomas; Smith, Thomas

    2007-04-01

    A typical minefield detection approach is based on a sequential processing employing mine detection and false alarm rejection followed by minefield detection. The current approach does not work robustly under different backgrounds and environment conditions because target signature changes with time and its performance degrades in the presence of high density of false alarms. The aim of this research will be to advance the state of the art in detection of both patterned and unpatterned minefield in high clutter environments. The proposed method seeks to combine false alarm rejection module and the minefield detection module of the current architecture by spatial-spectral clustering and inference module using a Markov Marked Point Process formulation. The approach simultaneously exploits the feature characteristics of the target signature and spatial distribution of the targets in the interrogation region. The method is based on the premise that most minefields can be characterized by some type of distinctive spatial distribution of "similar" looking mine targets. The minefield detection problem is formulated as a Markov Marked Point Process (MMPP) where the set of possible mine targets is divided into a possibly overlapping mixture of targets. The likelihood of the minefield depends simultaneously on feature characteristics of the target and their spatial distribution. A framework using "Belief Propagation" is developed to solve the minefield inference problem based on MMPP. Preliminary investigation using simulated data shows the efficacy of the approach.

  7. Assessing the inherent uncertainty of one-dimensional diffusions

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo; Cohen, Morrel H.

    2013-01-01

    In this paper we assess the inherent uncertainty of one-dimensional diffusion processes via a stochasticity classification which provides an à la Mandelbrot categorization into five states of uncertainty: infra-mild, mild, borderline, wild, and ultra-wild. Two settings are considered. (i) Stopped diffusions: the diffusion initiates from a high level and is stopped once it first reaches a low level; in this setting we analyze the inherent uncertainty of the diffusion's maximal exceedance above its initial high level. (ii) Stationary diffusions: the diffusion is in dynamical statistical equilibrium; in this setting we analyze the inherent uncertainty of the diffusion's equilibrium level. In both settings general closed-form analytic results are established, and their application is exemplified by stock prices in the stopped-diffusions setting, and by interest rates in the stationary-diffusions setting. These results provide a highly implementable decision-making tool for the classification of uncertainty in the context of one-dimensional diffusions.

  8. Cryptography using multiple one-dimensional chaotic maps

    NASA Astrophysics Data System (ADS)

    Pareek, N. K.; Patidar, Vinod; Sud, K. K.

    2005-10-01

    Recently, Pareek et al. [Phys. Lett. A 309 (2003) 75] have developed a symmetric key block cipher algorithm using a one-dimensional chaotic map. In this paper, we propose a symmetric key block cipher algorithm in which multiple one-dimensional chaotic maps are used instead of a one-dimensional chaotic map. However, we also use an external secret key of variable length (maximum 128-bits) as used by Pareek et al. In the present cryptosystem, plaintext is divided into groups of variable length (i.e. number of blocks in each group is different) and these are encrypted sequentially by using randomly chosen chaotic map from a set of chaotic maps. For block-by-block encryption of variable length group, number of iterations and initial condition for the chaotic maps depend on the randomly chosen session key and encryption of previous block of plaintext, respectively. The whole process of encryption/decryption is governed by two dynamic tables, which are updated time to time during the encryption/decryption process. Simulation results show that the proposed cryptosystem requires less time to encrypt the plaintext as compared to the existing chaotic cryptosystems and further produces the ciphertext having flat distribution of same size as the plaintext.

  9. Singular Perturbation for the Discounted Continuous Control of Piecewise Deterministic Markov Processes

    SciTech Connect

    Costa, O. L. V.; Dufour, F.

    2011-06-15

    This paper deals with the expected discounted continuous control of piecewise deterministic Markov processes (PDMP's) using a singular perturbation approach for dealing with rapidly oscillating parameters. The state space of the PDMP is written as the product of a finite set and a subset of the Euclidean space Double-Struck-Capital-R {sup n}. The discrete part of the state, called the regime, characterizes the mode of operation of the physical system under consideration, and is supposed to have a fast (associated to a small parameter {epsilon}>0) and a slow behavior. By using a similar approach as developed in Yin and Zhang (Continuous-Time Markov Chains and Applications: A Singular Perturbation Approach, Applications of Mathematics, vol. 37, Springer, New York, 1998, Chaps. 1 and 3) the idea in this paper is to reduce the number of regimes by considering an averaged model in which the regimes within the same class are aggregated through the quasi-stationary distribution so that the different states in this class are replaced by a single one. The main goal is to show that the value function of the control problem for the system driven by the perturbed Markov chain converges to the value function of this limit control problem as {epsilon} goes to zero. This convergence is obtained by, roughly speaking, showing that the infimum and supremum limits of the value functions satisfy two optimality inequalities as {epsilon} goes to zero. This enables us to show the result by invoking a uniqueness argument, without needing any kind of Lipschitz continuity condition.

  10. An overview of Markov chain methods for the study of stage-sequential developmental processes.

    PubMed

    Kapland, David

    2008-03-01

    This article presents an overview of quantitative methodologies for the study of stage-sequential development based on extensions of Markov chain modeling. Four methods are presented that exemplify the flexibility of this approach: the manifest Markov model, the latent Markov model, latent transition analysis, and the mixture latent Markov model. A special case of the mixture latent Markov model, the so-called mover-stayer model, is used in this study. Unconditional and conditional models are estimated for the manifest Markov model and the latent Markov model, where the conditional models include a measure of poverty status. Issues of model specification, estimation, and testing using the Mplus software environment are briefly discussed, and the Mplus input syntax is provided. The author applies these 4 methods to a single example of stage-sequential development in reading competency in the early school years, using data from the Early Childhood Longitudinal Study--Kindergarten Cohort.

  11. Markovian and Non-Markovian Protein Sequence Evolution: Aggregated Markov Process Models

    PubMed Central

    Kosiol, Carolin; Goldman, Nick

    2011-01-01

    Over the years, there have been claims that evolution proceeds according to systematically different processes over different timescales and that protein evolution behaves in a non-Markovian manner. On the other hand, Markov models are fundamental to many applications in evolutionary studies. Apparent non-Markovian or time-dependent behavior has been attributed to influence of the genetic code at short timescales and dominance of physicochemical properties of the amino acids at long timescales. However, any long time period is simply the accumulation of many short time periods, and it remains unclear why evolution should appear to act systematically differently across the range of timescales studied. We show that the observed time-dependent behavior can be explained qualitatively by modeling protein sequence evolution as an aggregated Markov process (AMP): a time-homogeneous Markovian substitution model observed only at the level of the amino acids encoded by the protein-coding DNA sequence. The study of AMPs sheds new light on the relationship between amino acid-level and codon-level models of sequence evolution, and our results suggest that protein evolution should be modeled at the codon level rather than using amino acid substitution models. PMID:21718704

  12. Simulation Study of Estimators for the Survival Probability of a First Passage Time for a Semi-Markov Process Using Censored Data

    DTIC Science & Technology

    1988-09-01

    Finite state space semi-Markov process find application in many areas. Often interest centers on whether or not the process has hit a particular state before a time t. This thesis reports results of a simulation study of the small behavior for three estimators of the survival probability of a first passage time for a semi-Markov process using censored data. Keywords: Semi- Markov; Kaplan Meier estimator; Confidence interval ; Jackknife; Problem; Theses.

  13. On-line monitoring of pharmaceutical production processes using Hidden Markov Model.

    PubMed

    Zhang, Hui; Jiang, Zhuangde; Pi, J Y; Xu, H K; Du, R

    2009-04-01

    This article presents a new method for on-line monitoring of pharmaceutical production process, especially the powder blending process. The new method consists of two parts: extracting features from the Near Infrared (NIR) spectroscopy signals and recognizing patterns from the features. Features are extracted from spectra by using Partial Least Squares method (PLS). The pattern recognition is done by using Hidden Markov Model (HMM). A series of experiments are conducted to evaluate the effectiveness of this new method. In the experiments, wheat powder and corn powder are blended together at a set concentration. The proposed method can effectively detect the blending uniformity (the success rate is 99.6%). In comparison to the conventional Moving Block of Standard Deviation (MBSD), the proposed method has a number of advantages, including higher reliability, higher robustness and more transparent decision making. It can be used for effective on-line monitoring of pharmaceutical production processes.

  14. Exploring the WTI crude oil price bubble process using the Markov regime switching model

    NASA Astrophysics Data System (ADS)

    Zhang, Yue-Jun; Wang, Jing

    2015-03-01

    The sharp volatility of West Texas Intermediate (WTI) crude oil price in the past decade triggers us to investigate the price bubbles and their evolving process. Empirical results indicate that the fundamental price of WTI crude oil appears relatively more stable than that of the market-trading price, which verifies the existence of oil price bubbles during the sample period. Besides, by allowing the WTI crude oil price bubble process to switch between two states (regimes) according to a first-order Markov chain, we are able to statistically discriminate upheaval from stable states in the crude oil price bubble process; and in most of time, the stable state dominates the WTI crude oil price bubbles while the upheaval state usually proves short-lived and accompanies unexpected market events.

  15. First Passage Moments of Finite-State Semi-Markov Processes

    SciTech Connect

    Warr, Richard; Cordeiro, James

    2014-03-31

    In this paper, we discuss the computation of first-passage moments of a regular time-homogeneous semi-Markov process (SMP) with a finite state space to certain of its states that possess the property of universal accessibility (UA). A UA state is one which is accessible from any other state of the SMP, but which may or may not connect back to one or more other states. An important characteristic of UA is that it is the state-level version of the oft-invoked process-level property of irreducibility. We adapt existing results for irreducible SMPs to the derivation of an analytical matrix expression for the first passage moments to a single UA state of the SMP. In addition, consistent point estimators for these first passage moments, together with relevant R code, are provided.

  16. Impulsive Control for Continuous-Time Markov Decision Processes: A Linear Programming Approach

    SciTech Connect

    Dufour, F.; Piunovskiy, A. B.

    2016-08-15

    In this paper, we investigate an optimization problem for continuous-time Markov decision processes with both impulsive and continuous controls. We consider the so-called constrained problem where the objective of the controller is to minimize a total expected discounted optimality criterion associated with a cost rate function while keeping other performance criteria of the same form, but associated with different cost rate functions, below some given bounds. Our model allows multiple impulses at the same time moment. The main objective of this work is to study the associated linear program defined on a space of measures including the occupation measures of the controlled process and to provide sufficient conditions to ensure the existence of an optimal control.

  17. Planning treatment of ischemic heart disease with partially observable Markov decision processes.

    PubMed

    Hauskrecht, M; Fraser, H

    2000-03-01

    Diagnosis of a disease and its treatment are not separate, one-shot activities. Instead, they are very often dependent and interleaved over time. This is mostly due to uncertainty about the underlying disease, uncertainty associated with the response of a patient to the treatment and varying cost of different diagnostic (investigative) and treatment procedures. The framework of partially observable Markov decision processes (POMDPs) developed and used in the operations research, control theory and artificial intelligence communities is particularly suitable for modeling such a complex decision process. In this paper, we show how the POMDP framework can be used to model and solve the problem of the management of patients with ischemic heart disease (IHD), and demonstrate the modeling advantages of the framework over standard decision formalisms.

  18. Modeling treatment of ischemic heart disease with partially observable Markov decision processes.

    PubMed

    Hauskrecht, M; Fraser, H

    1998-01-01

    Diagnosis of a disease and its treatment are not separate, one-shot activities. Instead they are very often dependent and interleaved over time, mostly due to uncertainty about the underlying disease, uncertainty associated with the response of a patient to the treatment and varying cost of different diagnostic (investigative) and treatment procedures. The framework of Partially observable Markov decision processes (POMDPs) developed and used in operations research, control theory and artificial intelligence communities is particularly suitable for modeling such a complex decision process. In the paper, we show how the POMDP framework could be used to model and solve the problem of the management of patients with ischemic heart disease, and point out modeling advantages of the framework over standard decision formalisms.

  19. Multi-Objective Markov Decision Processes for Data-Driven Decision Support

    PubMed Central

    Lizotte, Daniel J.; Laber, Eric B.

    2016-01-01

    We present new methodology based on Multi-Objective Markov Decision Processes for developing sequential decision support systems from data. Our approach uses sequential decision-making data to provide support that is useful to many different decision-makers, each with different, potentially time-varying preference. To accomplish this, we develop an extension of fitted-Q iteration for multiple objectives that computes policies for all scalarization functions, i.e. preference functions, simultaneously from continuous-state, finite-horizon data. We identify and address several conceptual and computational challenges along the way, and we introduce a new solution concept that is appropriate when different actions have similar expected outcomes. Finally, we demonstrate an application of our method using data from the Clinical Antipsychotic Trials of Intervention Effectiveness and show that our approach offers decision-makers increased choice by a larger class of optimal policies. PMID:28018133

  20. Sieve estimation in a Markov illness-death process under dual censoring.

    PubMed

    Boruvka, Audrey; Cook, Richard J

    2016-04-01

    Semiparametric methods are well established for the analysis of a progressive Markov illness-death process observed up to a noninformative right censoring time. However, often the intermediate and terminal events are censored in different ways, leading to a dual censoring scheme. In such settings, unbiased estimation of the cumulative transition intensity functions cannot be achieved without some degree of smoothing. To overcome this problem, we develop a sieve maximum likelihood approach for inference on the hazard ratio. A simulation study shows that the sieve estimator offers improved finite-sample performance over common imputation-based alternatives and is robust to some forms of dependent censoring. The proposed method is illustrated using data from cancer trials.

  1. A Gallavotti-Cohen-Evans-Morriss Like Symmetry for a Class of Markov Jump Processes

    NASA Astrophysics Data System (ADS)

    Barato, Andre Cardoso; Chetrite, Raphaël; Hinrichsen, Haye; Mukamel, David

    2012-01-01

    We investigate a new symmetry of the large deviation function of certain time-integrated currents in non-equilibrium systems. The symmetry is similar to the well-known Gallavotti-Cohen-Evans-Morriss-symmetry for the entropy production, but it concerns a different functional of the stochastic trajectory. The symmetry can be found in a restricted class of Markov jump processes, where the network of microscopic transitions has a particular structure and the transition rates satisfy certain constraints. We provide three physical examples, where time-integrated observables display such a symmetry. Moreover, we argue that the origin of the symmetry can be traced back to time-reversal if stochastic trajectories are grouped appropriately.

  2. A second-order Markov process for modeling diffusive motion through spatial discretization.

    PubMed

    Sant, Marco; Papadopoulos, George K; Theodorou, Doros N

    2008-01-14

    A new "mesoscopic" stochastic model has been developed to describe the diffusive behavior of a system of particles at equilibrium. The model is based on discretizing space into slabs by drawing equispaced parallel planes along a coordinate direction. A central role is played by the probability that a particle exits a slab via the face opposite to the one through which it entered (transmission probability), as opposed to exiting via the same face through which it entered (reflection probability). A simple second-order Markov process invoking this probability is developed, leading to an expression for the self-diffusivity, applicable for large slab widths, consistent with a continuous formulation of diffusional motion. This model is validated via molecular dynamics simulations in a bulk system of soft spheres across a wide range of densities.

  3. An Online Policy Gradient Algorithm for Markov Decision Processes with Continuous States and Actions.

    PubMed

    Ma, Yao; Zhao, Tingting; Hatano, Kohei; Sugiyama, Masashi

    2016-03-01

    We consider the learning problem under an online Markov decision process (MDP) aimed at learning the time-dependent decision-making policy of an agent that minimizes the regret-the difference from the best fixed policy. The difficulty of online MDP learning is that the reward function changes over time. In this letter, we show that a simple online policy gradient algorithm achieves regret O(√T) for T steps under a certain concavity assumption and O(log T) under a strong concavity assumption. To the best of our knowledge, this is the first work to present an online MDP algorithm that can handle continuous state, action, and parameter spaces with guarantee. We also illustrate the behavior of the proposed online policy gradient method through experiments.

  4. On the Controller Synthesis for Markov Decision Process of Conflict Tolerant Specification

    NASA Astrophysics Data System (ADS)

    Zhang, Junhua; Huang, Zhiqiu; Cao, Zining

    For an embedded control system, different requirements often need be satisfied at same time, and some of them make the system to act conflicted. Conflict tolerant specification is provided to denote this situation. In such a system, there often exist probabilistic and non-deterministic behaviors. We use Markov Decision Process (MDP) to denote these features. We study the controller synthesis for MDP over conflict tolerant specification. We extend PCTL star by adding past operator to denote the conflict tolerant specification succinctly. We use CT-PLTL to denote conflicted actions and PCTL to denote the specification for probability demand. We first synthesize a controller on a base system over CT-PLTL and then use it to prune the corresponding MDP of the system model. We use the resulting sub-MDP as the model to further synthesis a controller over PCTL. The whole controller for MDP is a conjunction of the two controllers obtained.

  5. "Markov at the bat": a model of cognitive processing in baseball batters.

    PubMed

    Gray, Rob

    2002-11-01

    Anecdotal evidence from players and coaches indicates that cognitive processing (e.g., expectations about the upcoming pitch) plays an important role in successful baseball batting, yet this aspect of hitting has not been investigated in detail. The present study provides experimental evidence that prior expectations significantly influence the timing of a baseball swing. A two-state Markov model was used to predict the effects of pitch sequence and pitch count on batting performance. The model is a hitting strategy of switching between expectancy states using a simple set of transition rules. In a simulated batting experiment, the model provided a good fit to the hitting performance of 6 experienced college baseball players, and the estimated model parameters were highly correlated with playing level.

  6. Few-photon transport in quasi-one-dimensional geometries

    NASA Astrophysics Data System (ADS)

    Ralley, Kevin

    An analysis of some aspects of photon transport through cavities and emitters embedded in a one-dimensional geometries is presented. The concept of photon blockade is defined for few-photon states interacting with a single two-level atom and the strength of achievable blockade is calculated in this setting. A brief review of some promising schemes for achieving photon blockade from the literature is also provided. The conflict between linear and nonlinear optical processes is studied for a novel version of the famous Hong-Ou-Mandel effect in a photonic waveguide with a side-coupled two-level emitter.

  7. Incorporating risk attitude into Markov-process decision models: importance for individual decision making.

    PubMed

    Cher, D J; Miyamoto, J; Lenert, L A

    1997-01-01

    Most decision models published in the medical literature take a risk-neutral perspective. Under risk neutrality, the utility of a gamble is equivalent to its expected value and the marginal utility of living a given unit of time is the same regardless of when it occurs. Most patients, however, are not risk-neutral. Not only does risk aversion affect decision analyses when tradeoffs between short- and long-term survival are involved, it also affects the interpretation of time-tradeoff measures of health-state utility. The proportional time tradeoff under- or overestimates the disutility of an inferior health state, depending on whether the patient is risk-seeking or risk-averse (it is unbiased if the patient is risk-neutral). The authors review how risk attitude with respect to gambles for survival duration can be incorporated into decision models using the framework of risk-adjusted quality-adjusted life years (RA-QALYs). They present a simple extension of this framework that allows RA-QALYs to be calculated for Markov-process decision models. Using a previously published Markov-process model of surgical vs expectant treatment for benign prostatic hypertrophy (BPH), they show how attitude towards risk affects the expected number of QALYs calculated by the model. In this model, under risk neutrality, surgery was the preferred option. Under mild risk aversion, expectant treatment was the preferred option. Risk attitude is an important aspect of preferences that should be incorporated into decision models where one treatment option has upfront risks of morbidity or mortality.

  8. Research on Multi-Stage Inventory Model by Markov Decision Process

    NASA Astrophysics Data System (ADS)

    Rong, Ke

    This paper researched multi-stage inventory system and established limited inventory Markov model, on the other hand it induced DP algorithm of limited inventory Markov model. The results proved that the reorder point of multi-stage inventory system can guarantee demand, and also allows the storage costs to a minimum level in accordance with the above model.

  9. Effects of stochastic interest rates in decision making under risk: A Markov decision process model for forest management

    Treesearch

    Mo Zhou; Joseph Buongiorno

    2011-01-01

    Most economic studies of forest decision making under risk assume a fixed interest rate. This paper investigated some implications of this stochastic nature of interest rates. Markov decision process (MDP) models, used previously to integrate stochastic stand growth and prices, can be extended to include variable interest rates as well. This method was applied to...

  10. One-dimensional particle-in-cell simulation on the influence of electron and ion temperature on the sheath expansion process in the post-arc stage of vacuum circuit breaker

    NASA Astrophysics Data System (ADS)

    Mo, Yongpeng; Shi, Zongqian; Jia, Shenli; Wang, Lijun

    2015-02-01

    The inter-contact region of vacuum circuit breakers is filled with residual plasma at the moment when the current is zero after the burning of metal vapor arc. The residual plasma forms an ion sheath in front of the post-arc cathode. The sheath then expands towards the post-arc anode under the influence of a transient recovery voltage. In this study, a one-dimensional particle-in-cell model is developed to investigate the post-arc sheath expansion. The influence of ion and electron temperatures on the decrease in local plasma density at the post-arc cathode side and post-arc anode side is discussed. When the decay in the local plasma density develops from the cathode and anode sides into the high-density region and merges, the overall plasma density in the inter-contact region begins to decrease. Meanwhile, the ion sheath begins to expand faster. Furthermore, the theory of ion rarefaction wave only explains quantitatively the decrease in the overall plasma density at relatively low ion temperatures. With the increase of ion temperature to certain extent, another possible reason for the decrease in the overall plasma density is proposed and results from the more active thermal diffusion of plasma.

  11. One-dimensional particle-in-cell simulation on the influence of electron and ion temperature on the sheath expansion process in the post-arc stage of vacuum circuit breaker

    SciTech Connect

    Mo, Yongpeng; Shi, Zongqian; Jia, Shenli; Wang, Lijun

    2015-02-15

    The inter-contact region of vacuum circuit breakers is filled with residual plasma at the moment when the current is zero after the burning of metal vapor arc. The residual plasma forms an ion sheath in front of the post-arc cathode. The sheath then expands towards the post-arc anode under the influence of a transient recovery voltage. In this study, a one-dimensional particle-in-cell model is developed to investigate the post-arc sheath expansion. The influence of ion and electron temperatures on the decrease in local plasma density at the post-arc cathode side and post-arc anode side is discussed. When the decay in the local plasma density develops from the cathode and anode sides into the high-density region and merges, the overall plasma density in the inter-contact region begins to decrease. Meanwhile, the ion sheath begins to expand faster. Furthermore, the theory of ion rarefaction wave only explains quantitatively the decrease in the overall plasma density at relatively low ion temperatures. With the increase of ion temperature to certain extent, another possible reason for the decrease in the overall plasma density is proposed and results from the more active thermal diffusion of plasma.

  12. An information theoretic approach for generating an aircraft avoidance Markov Decision Process

    NASA Astrophysics Data System (ADS)

    Weinert, Andrew J.

    Developing a collision avoidance system that can meet safety standards required of commercial aviation is challenging. A dynamic programming approach to collision avoidance has been developed to optimize and generate logics that are robust to the complex dynamics of the national airspace. The current approach represents the aircraft avoidance problem as Markov Decision Processes and independently optimizes a horizontal and vertical maneuver avoidance logics. This is a result of the current memory requirements for each logic, simply combining the logics will result in a significantly larger representation. The "curse of dimensionality" makes it computationally inefficient and unfeasible to optimize this larger representation. However, existing and future collision avoidance systems have mostly defined the decision process by hand. In response, a simulation-based framework was built to better understand how each potential state quantifies the aircraft avoidance problem with regards to safety and operational components. The framework leverages recent advances in signals processing and database, while enabling the highest fidelity analysis of Monte Carlo aircraft encounter simulations to date. This framework enabled the calculation of how well each state of the decision process quantifies the collision risk and the associated memory requirements. Using this analysis, a collision avoidance logic that leverages both horizontal and vertical actions was built and optimized using this simulation based approach.

  13. Quasi- and pseudo-maximum likelihood estimators for discretely observed continuous-time Markov branching processes

    PubMed Central

    Chen, Rui; Hyrien, Ollivier

    2011-01-01

    This article deals with quasi- and pseudo-likelihood estimation in a class of continuous-time multi-type Markov branching processes observed at discrete points in time. “Conventional” and conditional estimation are discussed for both approaches. We compare their properties and identify situations where they lead to asymptotically equivalent estimators. Both approaches possess robustness properties, and coincide with maximum likelihood estimation in some cases. Quasi-likelihood functions involving only linear combinations of the data may be unable to estimate all model parameters. Remedial measures exist, including the resort either to non-linear functions of the data or to conditioning the moments on appropriate sigma-algebras. The method of pseudo-likelihood may also resolve this issue. We investigate the properties of these approaches in three examples: the pure birth process, the linear birth-and-death process, and a two-type process that generalizes the previous two examples. Simulations studies are conducted to evaluate performance in finite samples. PMID:21552356

  14. Using Bayesian Nonparametric Hidden Semi-Markov Models to Disentangle Affect Processes during Marital Interaction

    PubMed Central

    Griffin, William A.; Li, Xun

    2016-01-01

    Sequential affect dynamics generated during the interaction of intimate dyads, such as married couples, are associated with a cascade of effects—some good and some bad—on each partner, close family members, and other social contacts. Although the effects are well documented, the probabilistic structures associated with micro-social processes connected to the varied outcomes remain enigmatic. Using extant data we developed a method of classifying and subsequently generating couple dynamics using a Hierarchical Dirichlet Process Hidden semi-Markov Model (HDP-HSMM). Our findings indicate that several key aspects of existing models of marital interaction are inadequate: affect state emissions and their durations, along with the expected variability differences between distressed and nondistressed couples are present but highly nuanced; and most surprisingly, heterogeneity among highly satisfied couples necessitate that they be divided into subgroups. We review how this unsupervised learning technique generates plausible dyadic sequences that are sensitive to relationship quality and provide a natural mechanism for computational models of behavioral and affective micro-social processes. PMID:27187319

  15. Strongly-Refractive One-Dimensional Photonic Crystal Prisms

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor)

    2004-01-01

    One-dimensional (1D) photonic crystal prisms can separate a beam of polychromatic electromagnetic waves into constituent wavelength components and can utilize unconventional refraction properties for wavelength dispersion over significant portions of an entire photonic band rather than just near the band edges outside the photonic band gaps. Using a ID photonic crystal simplifies the design and fabrication process and allows the use of larger feature sizes. The prism geometry broadens the useful wavelength range, enables better optical transmission, and exhibits angular dependence on wavelength with reduced non-linearity. The properties of the 1 D photonic crystal prism can be tuned by varying design parameters such as incidence angle, exit surface angle, and layer widths. The ID photonic crystal prism can be fabricated in a planar process, and can be used as optical integrated circuit elements.

  16. Towards a Theory of Sampled-Data Piecewise-Deterministic Markov Processes

    NASA Technical Reports Server (NTRS)

    Herencia-Zapana, Heber; Gonzalez, Oscar R.; Gray, W. Steven

    2006-01-01

    The analysis and design of practical control systems requires that stochastic models be employed. Analysis and design tools have been developed, for example, for Markovian jump linear continuous and discrete-time systems, piecewise-deterministic processes (PDP's), and general stochastic hybrid systems (GSHS's). These model classes have been used in many applications, including fault tolerant control and networked control systems. This paper presents initial results on the analysis of a sampled-data PDP representation of a nonlinear sampled-data system with a jump linear controller. In particular, it is shown that the state of the sampled-data PDP satisfies the strong Markov property. In addition, a relation between the invariant measures of a sampled-data system driven by a stochastic process and its associated discrete-time representation are presented. As an application, when the plant is linear with no external input, a sufficient testable condition for the convergence in distribution to the invariant delta Dirac measure is given.

  17. A Simulation Study of Estimates of a First Passage Time Distribution for a Semi-Markov Process.

    DTIC Science & Technology

    1987-03-01

    probability a semi-markov process enters a particular state before a fixed time t. Three estimators and confidence interval procedures are proposed and...compared. The different estimators use different amounts of information about the process. The maximum likelihood estimator and its normal confidence ... interval procedure uses the most; the estimator based on the empirical distribution function of the observed first passage times used the least. An

  18. Interpreting functions of one-dimensional kinematics

    NASA Astrophysics Data System (ADS)

    Canty, Reality S.

    The present work examined several factors related to interpreting graphical representations of motion concepts. Since the seminal work of Larkin and Simon (1987), cognitive research has investigated informational equivalence and computational efficiency by contrasting performance across different representations systems such as line versus bar graph (Ali & Peebles, 2012; Shah & Freedman, 2009; Zacks & Tversky, 1999), table versus graph (Speier, 2006; Vessey, 1991) or table versus map (Smelcer & Carmel, 1997). Physics education research has focused on difficulties related to interpreting motion concepts in graphs, accounting for them in terms of misconceptions. Kinematics, the branch of physics concerned with the motion of objects, makes an interesting study of informational equivalence and computational efficiency because its three primary representations -- position-time, velocity-time, and acceleration-time graphs -- can reflect the same information in the same representational system which provides a different type of contrast than has usually been used in this area of cognitive research. In the present work, four experiments were used to test several hypotheses concerned with whether information about the motion of objects can be directly read-off the graph or whether it needed additional processing beyond what was directly visible; Palmer (1987) referred to this as the derivational structure of representations. The main findings across the four experiments were that (a) graph type was not a reliable factor of graph interpretation difficulty, (b) derivational structure was useful for analyzing tasks but there was no evidence supporting it as a process account, (c) graph-based judgment is susceptible to visual features in the graph that trigger powerful spatial-conceptual correspondences particularly height (e.g., higher means more, lower means less), direction of slope (e.g., zero, positive, negative), and curvature (e.g., increasing rate of change, decreasing

  19. Composition of Web Services Using Markov Decision Processes and Dynamic Programming

    PubMed Central

    Uc-Cetina, Víctor; Moo-Mena, Francisco; Hernandez-Ucan, Rafael

    2015-01-01

    We propose a Markov decision process model for solving the Web service composition (WSC) problem. Iterative policy evaluation, value iteration, and policy iteration algorithms are used to experimentally validate our approach, with artificial and real data. The experimental results show the reliability of the model and the methods employed, with policy iteration being the best one in terms of the minimum number of iterations needed to estimate an optimal policy, with the highest Quality of Service attributes. Our experimental work shows how the solution of a WSC problem involving a set of 100,000 individual Web services and where a valid composition requiring the selection of 1,000 services from the available set can be computed in the worst case in less than 200 seconds, using an Intel Core i5 computer with 6 GB RAM. Moreover, a real WSC problem involving only 7 individual Web services requires less than 0.08 seconds, using the same computational power. Finally, a comparison with two popular reinforcement learning algorithms, sarsa and Q-learning, shows that these algorithms require one or two orders of magnitude and more time than policy iteration, iterative policy evaluation, and value iteration to handle WSC problems of the same complexity. PMID:25874247

  20. Markov-CA model using analytical hierarchy process and multiregression technique

    NASA Astrophysics Data System (ADS)

    Omar, N. Q.; Sanusi, S. A. M.; Hussin, W. M. W.; Samat, N.; Mohammed, K. S.

    2014-06-01

    The unprecedented increase in population and rapid rate of urbanisation has led to extensive land use changes. Cellular automata (CA) are increasingly used to simulate a variety of urban dynamics. This paper introduces a new CA based on an integration model built-in multi regression and multi-criteria evaluation to improve the representation of CA transition rule. This multi-criteria evaluation is implemented by utilising data relating to the environmental and socioeconomic factors in the study area in order to produce suitability maps (SMs) using an analytical hierarchical process, which is a well-known method. Before being integrated to generate suitability maps for the periods from 1984 to 2010 based on the different decision makings, which have become conditioned for the next step of CA generation. The suitability maps are compared in order to find the best maps based on the values of the root equation (R2). This comparison can help the stakeholders make better decisions. Thus, the resultant suitability map derives a predefined transition rule for the last step for CA model. The approach used in this study highlights a mechanism for monitoring and evaluating land-use and land-cover changes in Kirkuk city, Iraq owing changes in the structures of governments, wars, and an economic blockade over the past decades. The present study asserts the high applicability and flexibility of Markov-CA model. The results have shown that the model and its interrelated concepts are performing rather well.

  1. A test of multiple correlation temporal window characteristic of non-Markov processes

    NASA Astrophysics Data System (ADS)

    Arecchi, F. T.; Farini, A.; Megna, N.

    2016-03-01

    We introduce a sensitive test of memory effects in successive events. The test consists of a combination K of binary correlations at successive times. K decays monotonically from K = 1 for uncorrelated events as a Markov process. For a monotonic memory fading, K<1 always. Here we report evidence of a K>1 temporal window in cognitive tasks consisting of the visual identification of the front face of the Necker cube after a previous presentation of the same. We speculate that memory effects provide a temporal window with K>1 and this experiment could be a possible first step towards a better comprehension of this phenomenon. The K>1 behaviour is maximal at an inter-measurement time τ around 2s with inter-subject differences. The K>1 persists over a time window of 1s around τ; outside this window the K<1 behaviour is recovered. The universal occurrence of a K>1 window in pairs of successive perceptions suggests that, at variance with single visual stimuli eliciting a suitable response, a pair of stimuli shortly separated in time displays mutual correlations.

  2. Dynamics of a tracer granular particle as a nonequilibrium Markov process

    NASA Astrophysics Data System (ADS)

    Puglisi, Andrea; Visco, Paolo; Trizac, Emmanuel; van Wijland, Frédéric

    2006-02-01

    The dynamics of a tracer particle in a stationary driven granular gas is investigated. We show how to transform the linear Boltzmann equation, describing the dynamics of the tracer into a master equation for a continuous Markov process. The transition rates depend on the stationary velocity distribution of the gas. When the gas has a Gaussian velocity probability distribution function (PDF), the stationary velocity PDF of the tracer is Gaussian with a lower temperature and satisfies detailed balance for any value of the restitution coefficient α . As soon as the velocity PDF of the gas departs from the Gaussian form, detailed balance is violated. This nonequilibrium state can be characterized in terms of a Lebowitz-Spohn action functional W(τ) defined over trajectories of time duration τ . We discuss the properties of this functional and of a similar functional Wmacr (τ) , which differs from the first for a term that is nonextensive in time. On the one hand, we show that in numerical experiments (i.e., at finite times τ ), the two functionals have different fluctuations and Wmacr always satisfies an Evans-Searles-like symmetry. On the other hand, we cannot observe the verification of the Lebowitz-Spohn-Gallavotti-Cohen (LS-GC) relation, which is expected for W(τ) at very large times τ . We give an argument for the possible failure of the LS-GC relation in this situation. We also suggest practical recipes for measuring W(τ) and Wmacr (τ) in experiments.

  3. Composition of web services using Markov decision processes and dynamic programming.

    PubMed

    Uc-Cetina, Víctor; Moo-Mena, Francisco; Hernandez-Ucan, Rafael

    2015-01-01

    We propose a Markov decision process model for solving the Web service composition (WSC) problem. Iterative policy evaluation, value iteration, and policy iteration algorithms are used to experimentally validate our approach, with artificial and real data. The experimental results show the reliability of the model and the methods employed, with policy iteration being the best one in terms of the minimum number of iterations needed to estimate an optimal policy, with the highest Quality of Service attributes. Our experimental work shows how the solution of a WSC problem involving a set of 100,000 individual Web services and where a valid composition requiring the selection of 1,000 services from the available set can be computed in the worst case in less than 200 seconds, using an Intel Core i5 computer with 6 GB RAM. Moreover, a real WSC problem involving only 7 individual Web services requires less than 0.08 seconds, using the same computational power. Finally, a comparison with two popular reinforcement learning algorithms, sarsa and Q-learning, shows that these algorithms require one or two orders of magnitude and more time than policy iteration, iterative policy evaluation, and value iteration to handle WSC problems of the same complexity.

  4. A Markov Decision Process Model for Cervical Cancer Screening Policies in Colombia.

    PubMed

    Akhavan-Tabatabaei, Raha; Sánchez, Diana Marcela; Yeung, Thomas G

    2017-02-01

    Cervical cancer is the second most common cancer in women around the world, and the human papillomavirus (HPV) is universally known as the necessary agent for developing this disease. Through early detection of abnormal cells and HPV virus types, cervical cancer incidents can be reduced and disease progression prevented. We propose a finite-horizon Markov decision process model to determine the optimal screening policies for cervical cancer prevention. The optimal decision is given in terms of when and what type of screening test to be performed on a patient based on her current diagnosis, age, HPV contraction risk, and screening test results. The cost function considers the tradeoff between the cost of prevention and treatment procedures and the risk of taking no action while taking into account a cost assigned to loss of life quality in each state. We apply the model to data collected from a representative sample of 1141 affiliates at a health care provider located in Bogotá, Colombia. To track the disease incidence more effectively and avoid higher cancer rates and future costs, the optimal policies recommend more frequent colposcopies and Pap tests for women with riskier profiles.

  5. A markov decision process model for the optimal dispatch of military medical evacuation assets.

    PubMed

    Keneally, Sean K; Robbins, Matthew J; Lunday, Brian J

    2016-06-01

    We develop a Markov decision process (MDP) model to examine aerial military medical evacuation (MEDEVAC) dispatch policies in a combat environment. The problem of deciding which aeromedical asset to dispatch to each service request is complicated by the threat conditions at the service locations and the priority class of each casualty event. We assume requests for MEDEVAC support arrive sequentially, with the location and the priority of each casualty known upon initiation of the request. The United States military uses a 9-line MEDEVAC request system to classify casualties as being one of three priority levels: urgent, priority, and routine. Multiple casualties can be present at a single casualty event, with the highest priority casualty determining the priority level for the casualty event. Moreover, an armed escort may be required depending on the threat level indicated by the 9-line MEDEVAC request. The proposed MDP model indicates how to optimally dispatch MEDEVAC helicopters to casualty events in order to maximize steady-state system utility. The utility gained from servicing a specific request depends on the number of casualties, the priority class for each of the casualties, and the locations of both the servicing ambulatory helicopter and casualty event. Instances of the dispatching problem are solved using a relative value iteration dynamic programming algorithm. Computational examples are used to investigate optimal dispatch policies under different threat situations and armed escort delays; the examples are based on combat scenarios in which United States Army MEDEVAC units support ground operations in Afghanistan.

  6. Dynamics of a tracer granular particle as a nonequilibrium Markov process.

    PubMed

    Puglisi, Andrea; Visco, Paolo; Trizac, Emmanuel; van Wijland, Frédéric

    2006-02-01

    The dynamics of a tracer particle in a stationary driven granular gas is investigated. We show how to transform the linear Boltzmann equation, describing the dynamics of the tracer into a master equation for a continuous Markov process. The transition rates depend on the stationary velocity distribution of the gas. When the gas has a Gaussian velocity probability distribution function (PDF), the stationary velocity PDF of the tracer is Gaussian with a lower temperature and satisfies detailed balance for any value of the restitution coefficient alpha. As soon as the velocity PDF of the gas departs from the Gaussian form, detailed balance is violated. This nonequilibrium state can be characterized in terms of a Lebowitz-Spohn action functional W(tau) defined over trajectories of time duration tau. We discuss the properties of this functional and of a similar functional W(tau), which differs from the first for a term that is nonextensive in time. On the one hand, we show that in numerical experiments (i.e., at finite times tau), the two functionals have different fluctuations and W always satisfies an Evans-Searles-like symmetry. On the other hand, we cannot observe the verification of the Lebowitz-Spohn-Gallavotti-Cohen (LS-GC) relation, which is expected for W(tau) at very large times tau. We give an argument for the possible failure of the LS-GC relation in this situation. We also suggest practical recipes for measuring W(tau) and W(tau) in experiments.

  7. Value-directed human behavior analysis from video using partially observable Markov decision processes.

    PubMed

    Hoey, Jesse; Little, James J

    2007-07-01

    This paper presents a method for learning decision theoretic models of human behaviors from video data. Our system learns relationships between the movements of a person, the context in which they are acting, and a utility function. This learning makes explicit that the meaning of a behavior to an observer is contained in its relationship to actions and outcomes. An agent wishing to capitalize on these relationships must learn to distinguish the behaviors according to how they help the agent to maximize utility. The model we use is a partially observable Markov decision process, or POMDP. The video observations are integrated into the POMDP using a dynamic Bayesian network that creates spatial and temporal abstractions amenable to decision making at the high level. The parameters of the model are learned from training data using an a posteriori constrained optimization technique based on the expectation-maximization algorithm. The system automatically discovers classes of behaviors and determines which are important for choosing actions that optimize over the utility of possible outcomes. This type of learning obviates the need for labeled data from expert knowledge about which behaviors are significant and removes bias about what behaviors may be useful to recognize in a particular situation. We show results in three interactions: a single player imitation game, a gestural robotic control problem, and a card game played by two people.

  8. Strategic level proton therapy patient admission planning: a Markov decision process modeling approach.

    PubMed

    Gedik, Ridvan; Zhang, Shengfan; Rainwater, Chase

    2016-01-25

    A relatively new consideration in proton therapy planning is the requirement that the mix of patients treated from different categories satisfy desired mix percentages. Deviations from these percentages and their impacts on operational capabilities are of particular interest to healthcare planners. In this study, we investigate intelligent ways of admitting patients to a proton therapy facility that maximize the total expected number of treatment sessions (fractions) delivered to patients in a planning period with stochastic patient arrivals and penalize the deviation from the patient mix restrictions. We propose a Markov Decision Process (MDP) model that provides very useful insights in determining the best patient admission policies in the case of an unexpected opening in the facility (i.e., no-shows, appointment cancellations, etc.). In order to overcome the curse of dimensionality for larger and more realistic instances, we propose an aggregate MDP model that is able to approximate optimal patient admission policies using the worded weight aggregation technique. Our models are applicable to healthcare treatment facilities throughout the United States, but are motivated by collaboration with the University of Florida Proton Therapy Institute (UFPTI).

  9. Analyses of Markov decision process structure regarding the possible strategic use of interacting memory systems.

    PubMed

    Zilli, Eric A; Hasselmo, Michael E

    2008-01-01

    Behavioral tasks are often used to study the different memory systems present in humans and animals. Such tasks are usually designed to isolate and measure some aspect of a single memory system. However, it is not necessarily clear that any given task actually does isolate a system or that the strategy used by a subject in the experiment is the one desired by the experimenter. We have previously shown that when tasks are written mathematically as a form of partially observable Markov decision processes, the structure of the tasks provide information regarding the possible utility of certain memory systems. These previous analyses dealt with the disambiguation problem: given a specific ambiguous observation of the environment, is there information provided by a given memory strategy that can disambiguate that observation to allow a correct decision? Here we extend this approach to cases where multiple memory systems can be strategically combined in different ways. Specifically, we analyze the disambiguation arising from three ways by which episodic-like memory retrieval might be cued (by another episodic-like memory, by a semantic association, or by working memory for some earlier observation). We also consider the disambiguation arising from holding earlier working memories, episodic-like memories or semantic associations in working memory. From these analyses we can begin to develop a quantitative hierarchy among memory systems in which stimulus-response memories and semantic associations provide no disambiguation while the episodic memory system provides the most flexible disambiguation, with working memory at an intermediate level.

  10. Safety-cost trade-offs in medical device reuse: a Markov decision process model.

    PubMed

    Sloan, Thomas W

    2007-02-01

    Healthcare expenditures in the US are approaching 2 trillion dollars, and hospitals and other healthcare providers are under tremendous pressure to rein in costs. One cost-saving approach which is gaining popularity is the reuse of medical devices which were designed only for a single use. Device makers decry this practice as unsanitary and unsafe, but a growing number of third-party firms are willing to sterilize, refurbish, and/or remanufacture devices and resell them to hospitals at a fraction of the original price. Is this practice safe? Is reliance on single-use devices sustainable? A Markov decision process (MDP) model is formulated to study the trade-offs involved in these decisions. Several key parameters are examined: device costs, device failure probabilities, and failure penalty cost. For each of these parameters, expressions are developed which identify the indifference point between using new and reprocessed devices. The results can be used to inform the debate on the economic, ethical, legal, and environmental dimensions of this complex issue.

  11. A Markov decision process approach to temporal modulation of dose fractions in radiation therapy planning.

    PubMed

    Kim, M; Ghate, A; Phillips, M H

    2009-07-21

    The current state of the art in cancer treatment by radiation optimizes beam intensity spatially such that tumors receive high dose radiation whereas damage to nearby healthy tissues is minimized. It is common practice to deliver the radiation over several weeks, where the daily dose is a small constant fraction of the total planned. Such a 'fractionation schedule' is based on traditional models of radiobiological response where normal tissue cells possess the ability to repair sublethal damage done by radiation. This capability is significantly less prominent in tumors. Recent advances in quantitative functional imaging and biological markers are providing new opportunities to measure patient response to radiation over the treatment course. This opens the door for designing fractionation schedules that take into account the patient's cumulative response to radiation up to a particular treatment day in determining the fraction on that day. We propose a novel approach that, for the first time, mathematically explores the benefits of such fractionation schemes. This is achieved by building a stylistic Markov decision process (MDP) model, which incorporates some key features of the problem through intuitive choices of state and action spaces, as well as transition probability and reward functions. The structure of optimal policies for this MDP model is explored through several simple numerical examples.

  12. Optimizing prescription of chinese herbal medicine for unstable angina based on partially observable markov decision process.

    PubMed

    Feng, Yan; Qiu, Yu; Zhou, Xuezhong; Wang, Yixin; Xu, Hao; Liu, Baoyan

    2013-01-01

    Objective. Initial optimized prescription of Chinese herb medicine for unstable angina (UA). Methods. Based on partially observable Markov decision process model (POMDP), we choose hospitalized patients of 3 syndrome elements, such as qi deficiency, blood stasis, and turbid phlegm for the data mining, analysis, and objective evaluation of the diagnosis and treatment of UA at a deep level in order to optimize the prescription of Chinese herb medicine for UA. Results. The recommended treatment options of UA for qi deficiency, blood stasis, and phlegm syndrome patients were as follows: Milkvetch Root + Tangshen + Indian Bread + Largehead Atractylodes Rhizome (ADR = 0.96630); Danshen Root + Chinese Angelica + Safflower + Red Peony Root + Szechwan Lovage Rhizome Orange Fruit (ADR = 0.76); Snakegourd Fruit + Longstamen Onion Bulb + Pinellia Tuber + Dried Tangerine peel + Largehead Atractylodes Rhizome + Platycodon Root (ADR = 0.658568). Conclusion. This study initially optimized prescriptions for UA based on POMDP, which can be used as a reference for further development of UA prescription in Chinese herb medicine.

  13. Real-time network security situation visualization and threat assessment based on semi-Markov process

    NASA Astrophysics Data System (ADS)

    Chen, Junhua

    2013-03-01

    To cope with a large amount of data in current sensed environments, decision aid tools should provide their understanding of situations in a time-efficient manner, so there is an increasing need for real-time network security situation awareness and threat assessment. In this study, the state transition model of vulnerability in the network based on semi-Markov process is proposed at first. Once events are triggered by an attacker's action or system response, the current states of the vulnerabilities are known. Then we calculate the transition probabilities of the vulnerability from the current state to security failure state. Furthermore in order to improve accuracy of our algorithms, we adjust the probabilities that they exploit the vulnerability according to the attacker's skill level. In the light of the preconditions and post-conditions of vulnerabilities in the network, attack graph is built to visualize security situation in real time. Subsequently, we predict attack path, recognize attack intention and estimate the impact through analysis of attack graph. These help administrators to insight into intrusion steps, determine security state and assess threat. Finally testing in a network shows that this method is reasonable and feasible, and can undertake tremendous analysis task to facilitate administrators' work.

  14. Users manual for a one-dimensional Lagrangian transport model

    USGS Publications Warehouse

    Schoellhamer, D.H.; Jobson, H.E.

    1986-01-01

    A Users Manual for the Lagrangian Transport Model (LTM) is presented. The LTM uses Lagrangian calculations that are based on a reference frame moving with the river flow. The Lagrangian reference frame eliminates the need to numerically solve the convective term of the convection-diffusion equation and provides significant numerical advantages over the more commonly used Eulerian reference frame. When properly applied, the LTM can simulate riverine transport and decay processes within the accuracy required by most water quality studies. The LTM is applicable to steady or unsteady one-dimensional unidirectional flows in fixed channels with tributary and lateral inflows. Application of the LTM is relatively simple and optional capabilities improve the model 's convenience. Appendices give file formats and three example LTM applications that include the incorporation of the QUAL II water quality model 's reaction kinetics into the LTM. (Author 's abstract)

  15. Compaction of quasi-one-dimensional elastoplastic materials

    NASA Astrophysics Data System (ADS)

    Shaebani, M. Reza; Najafi, Javad; Farnudi, Ali; Bonn, Daniel; Habibi, Mehdi

    2017-06-01

    Insight into crumpling or compaction of one-dimensional objects is important for understanding biopolymer packaging and designing innovative technological devices. By compacting various types of wires in rigid confinements and characterizing the morphology of the resulting crumpled structures, here, we report how friction, plasticity and torsion enhance disorder, leading to a transition from coiled to folded morphologies. In the latter case, where folding dominates the crumpling process, we find that reducing the relative wire thickness counter-intuitively causes the maximum packing density to decrease. The segment size distribution gradually becomes more asymmetric during compaction, reflecting an increase of spatial correlations. We introduce a self-avoiding random walk model and verify that the cumulative injected wire length follows a universal dependence on segment size, allowing for the prediction of the efficiency of compaction as a function of material properties, container size and injection force.

  16. Alternative decision modelling techniques for the evaluation of health care technologies: Markov processes versus discrete event simulation.

    PubMed

    Karnon, Jonathan

    2003-10-01

    Markov models have traditionally been used to evaluate the cost-effectiveness of competing health care technologies that require the description of patient pathways over extended time horizons. Discrete event simulation (DES) is a more flexible, but more complicated decision modelling technique, that can also be used to model extended time horizons. Through the application of a Markov process and a DES model to an economic evaluation comparing alternative adjuvant therapies for early breast cancer, this paper compares the respective processes and outputs of these alternative modelling techniques. DES displays increased flexibility in two broad areas, though the outputs from the two modelling techniques were similar. These results indicate that the use of DES may be beneficial only when the available data demonstrates particular characteristics.

  17. An open Markov chain scheme model for a credit consumption portfolio fed by ARIMA and SARMA processes

    NASA Astrophysics Data System (ADS)

    Esquível, Manuel L.; Fernandes, José Moniz; Guerreiro, Gracinda R.

    2016-06-01

    We introduce a schematic formalism for the time evolution of a random population entering some set of classes and such that each member of the population evolves among these classes according to a scheme based on a Markov chain model. We consider that the flow of incoming members is modeled by a time series and we detail the time series structure of the elements in each of the classes. We present a practical application to data from a credit portfolio of a Cape Verdian bank; after modeling the entering population in two different ways - namely as an ARIMA process and as a deterministic sigmoid type trend plus a SARMA process for the residues - we simulate the behavior of the population and compare the results. We get that the second method is more accurate in describing the behavior of the populations when compared to the observed values in a direct simulation of the Markov chain.

  18. Projected metastable Markov processes and their estimation with observable operator models

    SciTech Connect

    Wu, Hao Prinz, Jan-Hendrik Noé, Frank

    2015-10-14

    The determination of kinetics of high-dimensional dynamical systems, such as macromolecules, polymers, or spin systems, is a difficult and generally unsolved problem — both in simulation, where the optimal reaction coordinate(s) are generally unknown and are difficult to compute, and in experimental measurements, where only specific coordinates are observable. Markov models, or Markov state models, are widely used but suffer from the fact that the dynamics on a coarsely discretized state spaced are no longer Markovian, even if the dynamics in the full phase space are. The recently proposed projected Markov models (PMMs) are a formulation that provides a description of the kinetics on a low-dimensional projection without making the Markovianity assumption. However, as yet no general way of estimating PMMs from data has been available. Here, we show that the observed dynamics of a PMM can be exactly described by an observable operator model (OOM) and derive a PMM estimator based on the OOM learning.

  19. The Recursion Method Applied to One-Dimensional Spin Systems

    NASA Astrophysics Data System (ADS)

    Viswanath, V. S.

    The recursion method is used for the study of the dynamics of quantum spin models at zero and infinite temperatures. Two alternative formulations of the recursion method are described in detail. Application of either formulation to quantum many-body systems yields a set of continued-fraction coefficients. Several new calculational techniques for the analysis of these continued-fraction coefficients developed during the course of my research are presented. The efficacy and accuracy of these techniques are demonstrated by applications to the few situations were exact nontrivial results are available. For the s = 1/2 XXZ model on a linear chain, new and reliable quantitative information has been obtained on the type of ordering in the ground-state, on the size of gaps in the dynamically relevant excitation spectrum, on the bandwidths of dominant structures in spectral densities, on the exponents of infrared singularities in the same functions, and on the detailed shape of spectral-weight distributions. Zero temperature dynamic structure factors for the one-dimensional spin-s XYZ model in a magnetic field have been calculated for systems with s = 1/2, 1, 3/2. The line shapes and peak positions have been shown to differ considerably from the corresponding spin-wave results. Time-dependent spin autocorrelation functions and their spectral densities for the semi-infinite one -dimensional s = 1/2 XY model at infinite temperature have been determined in part by rigorous calculations in the fermion representation and in part by the recursion method in the spin representation. The study of boundary effects yields valuable new insight into the dynamical processes which govern the transport of spin fluctuations in that model. The exact results also provide a benchmark against which the results of the recursion method have been compared and calibrated.

  20. Collaborative distributed sensor management and information exchange flow control for multitarget tracking using Markov decision processes

    NASA Astrophysics Data System (ADS)

    Akselrod, Dimitry; Kirubarajan, T.

    2008-04-01

    In this paper, we consider the problem of collaborative management of uninhabited aerial vehicles (UAVs) for multitarget tracking. In addition to providing a solution to the problem of controlling individual UAVs, we present a method for controlling the information flow among them. The latter provides a solution to one of the main problems in decentralized tracking, namely, distributed information transfer and fusion among the participating platforms. The problem of decentralized cooperative control considered in this paper is an optimization of the information obtained by a number of UAVs, carrying out surveillance over a region, which includes a number of confirmed and suspected moving targets with the goal to track confirmed targets and detects new targets in the area. Each UAV has to decide on the most optimal path with the objective to track as many targets as possible, maximizing the information obtained during its operation with the maximum possible accuracy at the lowest possible cost. Limited communication between UAVs and uncertainty in the information obtained by each UAV regarding the location of the ground targets are addressed in the problem formulation. In order to handle these issues, the problem is presented as an operation of a group of decision makers. Markov Decision Processes (MDPs) are incorporated into the solution. A decision mechanism for collaborative distributed data fusion provides each UAV with the required data for the fusion process while substantially reducing redundancy in the information flow in the overall system. We consider a distributed data fusion system consisting of UAVs that are decentralized, heterogenous, and potentially unreliable. Simulation results are presented on a representative multisensor-multitarget tracking problem.

  1. Double-observer line transect surveys with Markov-modulated Poisson process models for animal availability.

    PubMed

    Borchers, D L; Langrock, R

    2015-12-01

    We develop maximum likelihood methods for line transect surveys in which animals go undetected at distance zero, either because they are stochastically unavailable while within view or because they are missed when they are available. These incorporate a Markov-modulated Poisson process model for animal availability, allowing more clustered availability events than is possible with Poisson availability models. They include a mark-recapture component arising from the independent-observer survey, leading to more accurate estimation of detection probability given availability. We develop models for situations in which (a) multiple detections of the same individual are possible and (b) some or all of the availability process parameters are estimated from the line transect survey itself, rather than from independent data. We investigate estimator performance by simulation, and compare the multiple-detection estimators with estimators that use only initial detections of individuals, and with a single-observer estimator. Simultaneous estimation of detection function parameters and availability model parameters is shown to be feasible from the line transect survey alone with multiple detections and double-observer data but not with single-observer data. Recording multiple detections of individuals improves estimator precision substantially when estimating the availability model parameters from survey data, and we recommend that these data be gathered. We apply the methods to estimate detection probability from a double-observer survey of North Atlantic minke whales, and find that double-observer data greatly improve estimator precision here too. © 2015 The Authors Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.

  2. A robust hidden semi-Markov model with application to aCGH data processing.

    PubMed

    Ding, Jiarui; Shah, Sohrab

    2013-01-01

    Hidden semi-Markov models are effective at modelling sequences with succession of homogenous zones by choosing appropriate state duration distributions. To compensate for model mis-specification and provide protection against outliers, we design a robust hidden semi-Markov model with Student's t mixture models as the emission distributions. The proposed approach is used to model array based comparative genomic hybridization data. Experiments conducted on the benchmark data from the Coriell cell lines, and glioblastoma multiforme data illustrate the reliability of the technique.

  3. Learning to maximize reward rate: a model based on semi-Markov decision processes

    PubMed Central

    Khodadadi, Arash; Fakhari, Pegah; Busemeyer, Jerome R.

    2014-01-01

    When animals have to make a number of decisions during a limited time interval, they face a fundamental problem: how much time they should spend on each decision in order to achieve the maximum possible total outcome. Deliberating more on one decision usually leads to more outcome but less time will remain for other decisions. In the framework of sequential sampling models, the question is how animals learn to set their decision threshold such that the total expected outcome achieved during a limited time is maximized. The aim of this paper is to provide a theoretical framework for answering this question. To this end, we consider an experimental design in which each trial can come from one of the several possible “conditions.” A condition specifies the difficulty of the trial, the reward, the penalty and so on. We show that to maximize the expected reward during a limited time, the subject should set a separate value of decision threshold for each condition. We propose a model of learning the optimal value of decision thresholds based on the theory of semi-Markov decision processes (SMDP). In our model, the experimental environment is modeled as an SMDP with each “condition” being a “state” and the value of decision thresholds being the “actions” taken in those states. The problem of finding the optimal decision thresholds then is cast as the stochastic optimal control problem of taking actions in each state in the corresponding SMDP such that the average reward rate is maximized. Our model utilizes a biologically plausible learning algorithm to solve this problem. The simulation results show that at the beginning of learning the model choses high values of decision threshold which lead to sub-optimal performance. With experience, however, the model learns to lower the value of decision thresholds till finally it finds the optimal values. PMID:24904252

  4. Comparative effectiveness research on patients with acute ischemic stroke using Markov decision processes

    PubMed Central

    2012-01-01

    Background Several methodological issues with non-randomized comparative clinical studies have been raised, one of which is whether the methods used can adequately identify uncertainties that evolve dynamically with time in real-world systems. The objective of this study is to compare the effectiveness of different combinations of Traditional Chinese Medicine (TCM) treatments and combinations of TCM and Western medicine interventions in patients with acute ischemic stroke (AIS) by using Markov decision process (MDP) theory. MDP theory appears to be a promising new method for use in comparative effectiveness research. Methods The electronic health records (EHR) of patients with AIS hospitalized at the 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine between May 2005 and July 2008 were collected. Each record was portioned into two "state-action-reward" stages divided by three time points: the first, third, and last day of hospital stay. We used the well-developed optimality technique in MDP theory with the finite horizon criterion to make the dynamic comparison of different treatment combinations. Results A total of 1504 records with a primary diagnosis of AIS were identified. Only states with more than 10 (including 10) patients' information were included, which gave 960 records to be enrolled in the MDP model. Optimal combinations were obtained for 30 types of patient condition. Conclusion MDP theory makes it possible to dynamically compare the effectiveness of different combinations of treatments. However, the optimal interventions obtained by the MDP theory here require further validation in clinical practice. Further exploratory studies with MDP theory in other areas in which complex interventions are common would be worthwhile. PMID:22400712

  5. Collaborative distributed sensor management for multitarget tracking using hierarchical Markov decision processes

    NASA Astrophysics Data System (ADS)

    Akselrod, D.; Sinha, A.; Kirubarajan, T.

    2007-09-01

    In this paper, we consider the problem of collaborative sensor management with particular application to using unmanned aerial vehicles (UAVs) for multitarget tracking. The problem of decentralized cooperative control considered in this paper is an optimization of the information obtained by a number of unmanned aerial vehicles (UAVs) equipped with Ground Moving Target Indicator (GMTI) radars, carrying out surveillance over a region which includes a number of confirmed and suspected moving targets. The goal is to track confirmed targets and detect new targets in the area. Each UAV has to decide on the most optimal path with the objective to track as many targets as possible maximizing the information obtained during its operation with the maximum possible accuracy at the lowest possible cost. Limited communication between UAVs and uncertainty in the information obtained by each UAV regarding the location of the ground targets are addressed in the problem formulation. In order to handle these issues, the problem is presented as a decentralized operation of a group of decision-makers lacking full observability of the global state of the system. Markov Decision Processes (MDPs) are incorporated into the solution. Given the MDP model, a local policy of actions for a single agent (UAV) is given by a mapping from a current partial view of a global state observed by an agent to actions. The available probability model regarding possible and confirmed locations of the targets is considered in the computations of the UAVs' policies. The authors present multi-level hierarchy of MDPs controlling each of the UAVs. Each level in the hierarchy solves a problem at a different level of abstraction. Simulation results are presented on a representative multisensor-multitarget tracking problem.

  6. Decision Making Under Uncertainty: A Neural Model Based on Partially Observable Markov Decision Processes

    PubMed Central

    Rao, Rajesh P. N.

    2010-01-01

    A fundamental problem faced by animals is learning to select actions based on noisy sensory information and incomplete knowledge of the world. It has been suggested that the brain engages in Bayesian inference during perception but how such probabilistic representations are used to select actions has remained unclear. Here we propose a neural model of action selection and decision making based on the theory of partially observable Markov decision processes (POMDPs). Actions are selected based not on a single “optimal” estimate of state but on the posterior distribution over states (the “belief” state). We show how such a model provides a unified framework for explaining experimental results in decision making that involve both information gathering and overt actions. The model utilizes temporal difference (TD) learning for maximizing expected reward. The resulting neural architecture posits an active role for the neocortex in belief computation while ascribing a role to the basal ganglia in belief representation, value computation, and action selection. When applied to the random dots motion discrimination task, model neurons representing belief exhibit responses similar to those of LIP neurons in primate neocortex. The appropriate threshold for switching from information gathering to overt actions emerges naturally during reward maximization. Additionally, the time course of reward prediction error in the model shares similarities with dopaminergic responses in the basal ganglia during the random dots task. For tasks with a deadline, the model learns a decision making strategy that changes with elapsed time, predicting a collapsing decision threshold consistent with some experimental studies. The model provides a new framework for understanding neural decision making and suggests an important role for interactions between the neocortex and the basal ganglia in learning the mapping between probabilistic sensory representations and actions that maximize

  7. A new method of automatic processing of seismic waves: waveform modeling by using Hidden Markov Model

    NASA Astrophysics Data System (ADS)

    Kodera, Y.; Sakai, S.

    2012-12-01

    Development of a method of automatic processing of seismic waves is needed since there are limitations to manually picking out earthquake events from seismograms. However, there is no practical method to automatically detect arrival times of P and S waves in seismograms. One typical example of previously proposed methods is automatic detection by using AR model (e.g. Kitagawa et al., 2004). This method seems not to be effective for seismograms contaminated with spike noise, because it cannot distinguish non-stationary signals generated by earthquakes from those generated by noise. The difficulty of distinguishing the signals is caused by the fact that the automatic detection system has a lack of information on time series variation of seismic waves. We expect that an automatic detection system that includes the information on seismic waves is more effective for seismograms contaminated with noise. So we try to adapt Hidden Markov Model (HMM) to construct seismic wave models and establish a new automatic detection method. HMM has been widely used in many fields such as voice recognition (e.g. Bishop, 2006). With the use of HMM, P- or S-waveform models that include envelops can be constructed directly and semi-automatically from lots of observed waveform data of P or S waves. These waveform models are expected to become more robust if the quantity of observation data increases. We have constructed seismic wave models based on HMM from seismograms observed in Ashio, Japan. By using these models, we have tried automatic detection of arrival times of earthquake events in Ashio. Results show that automatic detection based on HMM is more effective for seismograms contaminated with noise than that based on AR model.

  8. Learning to maximize reward rate: a model based on semi-Markov decision processes.

    PubMed

    Khodadadi, Arash; Fakhari, Pegah; Busemeyer, Jerome R

    2014-01-01

    WHEN ANIMALS HAVE TO MAKE A NUMBER OF DECISIONS DURING A LIMITED TIME INTERVAL, THEY FACE A FUNDAMENTAL PROBLEM: how much time they should spend on each decision in order to achieve the maximum possible total outcome. Deliberating more on one decision usually leads to more outcome but less time will remain for other decisions. In the framework of sequential sampling models, the question is how animals learn to set their decision threshold such that the total expected outcome achieved during a limited time is maximized. The aim of this paper is to provide a theoretical framework for answering this question. To this end, we consider an experimental design in which each trial can come from one of the several possible "conditions." A condition specifies the difficulty of the trial, the reward, the penalty and so on. We show that to maximize the expected reward during a limited time, the subject should set a separate value of decision threshold for each condition. We propose a model of learning the optimal value of decision thresholds based on the theory of semi-Markov decision processes (SMDP). In our model, the experimental environment is modeled as an SMDP with each "condition" being a "state" and the value of decision thresholds being the "actions" taken in those states. The problem of finding the optimal decision thresholds then is cast as the stochastic optimal control problem of taking actions in each state in the corresponding SMDP such that the average reward rate is maximized. Our model utilizes a biologically plausible learning algorithm to solve this problem. The simulation results show that at the beginning of learning the model choses high values of decision threshold which lead to sub-optimal performance. With experience, however, the model learns to lower the value of decision thresholds till finally it finds the optimal values.

  9. Partially Observable Markov Decision Processes Over an Infinite Planning Horizon with Discounting. Technical Report No. 77.

    ERIC Educational Resources Information Center

    Wollmer, Richard D.

    The true state of the system described here is characterized by a probability vector. At each stage of the system an action must be chosen from a finite set of actions. Each possible action yields an expected reward, transforms the system to a new state in accordance with a Markov transition matrix, and yields an observable outcome. The problem of…

  10. One-dimensional Pt induced chains on Si(337)

    NASA Astrophysics Data System (ADS)

    McChesney, Jessica; Bostwick, A.; Rotenberg, E.; Lapeyre, Gerald

    2006-03-01

    The use of high index Si surfaces as templates for the formation of adsorbate induced one-dimensional chain structures have attracted considerable interest. These systems have been used as a test bed in which to study low-dimension physics and components of nanoelectronics. In addition to the Ag and Au induced chains reported to form on the Si(337) surface, Pt also produces one-dimensional chains. Angle-resolved photoemission spectroscopy was used to investigate the electronic structure of these new Pt chains. The valence band mapping confirms the one-dimensional nature of these chains as seen in LEED. Supported by ONR and DOE.

  11. Torsional Detwinning Domino in Nanotwinned One-Dimensional Nanostructures.

    PubMed

    Zhou, Haofei; Li, Xiaoyan; Wang, Ying; Liu, Zishun; Yang, Wei; Gao, Huajian

    2015-09-09

    How to maintain sustained deformation in one-dimensional nanostructures without localized failure is an important question for many applications of nanotechnology. Here we report a phenomenon of torsional detwinning domino that leads to giant rotational deformation without localized failure in nanotwinned one-dimensional metallic nanostructures. This mechanism is demonstrated in nanotwinned Cu nanorods via molecular dynamics simulations, where coherent twin boundaries are transformed into twist boundaries and then dissolved one by one, resulting in practically unlimited rotational deformation. This finding represents a fundamental advance in our understanding of deformation mechanisms in one-dimensional metallic nanostructures.

  12. An investigation of dopping profile for a one dimensional heterostructure

    NASA Astrophysics Data System (ADS)

    Huang, Zhaohui

    2005-03-01

    A one-dimensional junction is formed by joining two silicon nanowires whose surfaces are terminated with capping groups of different electronegativity and polarizability. If this heterostructure is doped (with e.g. phosphorous) on the side with the higher bandgap, the system becomes a modulation doped heterostructure with novel one-dimensional electrostatics. We use density functional theory calculations in the pseudopotential approximation, plus empirical model calculations, to investigate doping profiles in this new class of nanostructures.

  13. Characterization of Thermal Transport in One-dimensional Solid Materials

    PubMed Central

    Liu, Guoqing; Lin, Huan; Tang, Xiaoduan; Bergler, Kevin; Wang, Xinwei

    2014-01-01

    The TET (transient electro-thermal) technique is an effective approach developed to measure the thermal diffusivity of solid materials, including conductive, semi-conductive or nonconductive one-dimensional structures. This technique broadens the measurement scope of materials (conductive and nonconductive) and improves the accuracy and stability. If the sample (especially biomaterials, such as human head hair, spider silk, and silkworm silk) is not conductive, it will be coated with a gold layer to make it electronically conductive. The effect of parasitic conduction and radiative losses on the thermal diffusivity can be subtracted during data processing. Then the real thermal conductivity can be calculated with the given value of volume-based specific heat (ρcp), which can be obtained from calibration, noncontact photo-thermal technique or measuring the density and specific heat separately. In this work, human head hair samples are used to show how to set up the experiment, process the experimental data, and subtract the effect of parasitic conduction and radiative losses. PMID:24514072

  14. Nucleation and growth of nanoscaled one-dimensional materials

    NASA Astrophysics Data System (ADS)

    Cui, Hongtao

    Nanoscaled one-dimensional materials have attracted great interest due to their novel physical and chemical properties. The purpose of this dissertation is to study the nucleation and growth mechanisms of carbon nanotubes and silicon nitride nanowires with their field emission applications in mind. As a result of this research, a novel methodology has been developed to deposit aligned bamboo-like carbon nanotubes on substrates using a methane and ammonia mixture in microwave plasma enhanced chemical deposition. Study of growth kinetics suggests that the carbon diffusion through bulk catalyst particles controls growth in the initial deposition process. Microstructures of carbon nanotubes are affected by the growth temperature and carbon concentration in the gas phase. High-resolution transmission electron microscope confirms the existence of the bamboo-like structure. Electron diffraction reveals that the iron-based catalyst nucleates and sustains the growth of carbon nanotubes. A nucleation and growth model has been constructed based upon experimental data and observations. In the study of silicon nitride nanoneedles, a vapor-liquid-solid model is employed to explain the nucleation and growth processes. Ammonia plasma etching is proposed to reduce the size of the catalyst and subsequently produce the novel needle-like nanostructure. High-resolution transmission electron microscope shows the structure is well crystallized and composed of alpha-silicon nitride. Other observations in the structure are also explained.

  15. Automated quantification of one-dimensional nanostructure alignment on surfaces

    NASA Astrophysics Data System (ADS)

    Dong, Jianjin; Goldthorpe, Irene A.; Mohieddin Abukhdeir, Nasser

    2016-06-01

    A method for automated quantification of the alignment of one-dimensional (1D) nanostructures from microscopy imaging is presented. Nanostructure alignment metrics are formulated and shown to be able to rigorously quantify the orientational order of nanostructures within a two-dimensional domain (surface). A complementary image processing method is also presented which enables robust processing of microscopy images where overlapping nanostructures might be present. Scanning electron microscopy (SEM) images of nanowire-covered surfaces are analyzed using the presented methods and it is shown that past single parameter alignment metrics are insufficient for highly aligned domains. Through the use of multiple parameter alignment metrics, automated quantitative analysis of SEM images is shown to be possible and the alignment characteristics of different samples are able to be quantitatively compared using a similarity metric. The results of this work provide researchers in nanoscience and nanotechnology with a rigorous method for the determination of structure/property relationships, where alignment of 1D nanostructures is significant.

  16. An adaptive grid algorithm for one-dimensional nonlinear equations

    NASA Technical Reports Server (NTRS)

    Gutierrez, William E.; Hills, Richard G.

    1990-01-01

    Richards' equation, which models the flow of liquid through unsaturated porous media, is highly nonlinear and difficult to solve. Step gradients in the field variables require the use of fine grids and small time step sizes. The numerical instabilities caused by the nonlinearities often require the use of iterative methods such as Picard or Newton interation. These difficulties result in large CPU requirements in solving Richards equation. With this in mind, adaptive and multigrid methods are investigated for use with nonlinear equations such as Richards' equation. Attention is focused on one-dimensional transient problems. To investigate the use of multigrid and adaptive grid methods, a series of problems are studied. First, a multigrid program is developed and used to solve an ordinary differential equation, demonstrating the efficiency with which low and high frequency errors are smoothed out. The multigrid algorithm and an adaptive grid algorithm is used to solve one-dimensional transient partial differential equations, such as the diffusive and convective-diffusion equations. The performance of these programs are compared to that of the Gauss-Seidel and tridiagonal methods. The adaptive and multigrid schemes outperformed the Gauss-Seidel algorithm, but were not as fast as the tridiagonal method. The adaptive grid scheme solved the problems slightly faster than the multigrid method. To solve nonlinear problems, Picard iterations are introduced into the adaptive grid and tridiagonal methods. Burgers' equation is used as a test problem for the two algorithms. Both methods obtain solutions of comparable accuracy for similar time increments. For the Burgers' equation, the adaptive grid method finds the solution approximately three times faster than the tridiagonal method. Finally, both schemes are used to solve the water content formulation of the Richards' equation. For this problem, the adaptive grid method obtains a more accurate solution in fewer work units and

  17. A Markov decision process approach to multi-category patient scheduling in a diagnostic facility.

    PubMed

    Gocgun, Yasin; Bresnahan, Brian W; Ghate, Archis; Gunn, Martin L

    2011-10-01

    To develop a mathematical model for multi-category patient scheduling decisions in computed tomography (CT), and to investigate associated tradeoffs from economic and operational perspectives. We modeled this decision-problem as a finite-horizon Markov decision process (MDP) with expected net CT revenue as the performance metric. The performance of optimal policies was compared with five heuristics using data from an urban hospital. In addition to net revenue, other patient-throughput and service-quality metrics were also used in this comparative analysis. The optimal policy had a threshold structure in the two-scanner case - it prioritized one type of patient when the queue-length for that type exceeded a threshold. The net revenue gap between the optimal policy and the heuristics ranged from 5% to 12%. This gap was 4% higher in the more congested, single-scanner system than in the two-scanner system. The performance of the net revenue maximizing policy was similar to the heuristics, when compared with respect to the alternative performance metrics in the two-scanner case. Under the optimal policy, the average number of patients that were not scanned by the end of the day, and the average patient waiting-time, were both nearly 80% smaller in the two-scanner case than in the single-scanner case. The net revenue gap between the optimal policy and the priority-based heuristics was nearly 2% smaller as compared to the first-come-first-served and random selection schemes. Net revenue was most sensitive to inpatient (IP) penalty costs in the single-scanner system, whereas to IP and outpatient revenues in the two-scanner case. The performance of the optimal policy is competitive with the operational and economic metrics considered in this paper. Such a policy can be implemented relatively easily and could be tested in practice in the future. The priority-based heuristics are next-best to the optimal policy and are much easier to implement. Copyright © 2011 Elsevier B

  18. Artificial intelligence framework for simulating clinical decision-making: a Markov decision process approach.

    PubMed

    Bennett, Casey C; Hauser, Kris

    2013-01-01

    In the modern healthcare system, rapidly expanding costs/complexity, the growing myriad of treatment options, and exploding information streams that often do not effectively reach the front lines hinder the ability to choose optimal treatment decisions over time. The goal in this paper is to develop a general purpose (non-disease-specific) computational/artificial intelligence (AI) framework to address these challenges. This framework serves two potential functions: (1) a simulation environment for exploring various healthcare policies, payment methodologies, etc., and (2) the basis for clinical artificial intelligence - an AI that can "think like a doctor". This approach combines Markov decision processes and dynamic decision networks to learn from clinical data and develop complex plans via simulation of alternative sequential decision paths while capturing the sometimes conflicting, sometimes synergistic interactions of various components in the healthcare system. It can operate in partially observable environments (in the case of missing observations or data) by maintaining belief states about patient health status and functions as an online agent that plans and re-plans as actions are performed and new observations are obtained. This framework was evaluated using real patient data from an electronic health record. The results demonstrate the feasibility of this approach; such an AI framework easily outperforms the current treatment-as-usual (TAU) case-rate/fee-for-service models of healthcare. The cost per unit of outcome change (CPUC) was $189 vs. $497 for AI vs. TAU (where lower is considered optimal) - while at the same time the AI approach could obtain a 30-35% increase in patient outcomes. Tweaking certain AI model parameters could further enhance this advantage, obtaining approximately 50% more improvement (outcome change) for roughly half the costs. Given careful design and problem formulation, an AI simulation framework can approximate optimal

  19. Modeling of HIV/AIDS dynamic evolution using non-homogeneous semi-markov process.

    PubMed

    Dessie, Zelalem Getahun

    2014-01-01

    The purpose of this study is to model the progression of HIV/AIDS disease of an individual patient under ART follow-up using non-homogeneous semi-Markov processes. The model focuses on the patient's age as a relevant factor to forecast the transitions among the different levels of seriousness of the disease. A sample of 1456 patients was taken from a hospital record at Amhara Referral Hospitals, Amhara Region, Ethiopia, who were under ART follow up from June 2006 to August 2013. The states of disease progression adopted in the model were defined based on of the following CD4 cell counts: >500 cells/mm(3) (SI); 349 to 500 cells/mm(3) (SII); 199 to 350 cells/mm(3)(SIII); ≤200 cells/mm(3) (SIV); and death (D). The first four states are referred as living states. The probability that an HIV/AIDS patient with any one of the living states will transition to the death state is greater with increasing age, irrespective of the current state and age of the patient. More generally, the probability of dying decreases with increasing CD4 counts over time. For an HIV/AIDS patient in a specific state of the disease, the probability of remaining in the same state decreases with increasing age. Within the living states, the results show that the probability of being in a better state is non-zero, but less than the probability of being in a worse state for all ages. A reliability analysis also revealed that the survival probabilities are all declining over time. Computed conditional probabilities show differential subject response that depends on the age of the patient. The dynamic nature of AIDS progression is confirmed with particular findings that patients are more likely to be in a worse state than a better one unless interventions are made. Our findings suggest that ongoing ART treatment services could be provided more effectively with careful consideration of the recent disease status of patients.

  20. Using the NASA GRC Sectored-One-Dimensional Combustor Simulation

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Mehta, Vishal R.

    2014-01-01

    The document is a user manual for the NASA GRC Sectored-One-Dimensional (S-1-D) Combustor Simulation. It consists of three sections. The first is a very brief outline of the mathematical and numerical background of the code along with a description of the non-dimensional variables on which it operates. The second section describes how to run the code and includes an explanation of the input file. The input file contains the parameters necessary to establish an operating point as well as the associated boundary conditions (i.e. how it is fed and terminated) of a geometrically configured combustor. It also describes the code output. The third section describes the configuration process and utilizes a specific example combustor to do so. Configuration consists of geometrically describing the combustor (section lengths, axial locations, and cross sectional areas) and locating the fuel injection point and flame region. Configuration requires modifying the source code and recompiling. As such, an executable utility is included with the code which will guide the requisite modifications and insure that they are done correctly.

  1. One-dimensional quantum walk with a moving boundary

    SciTech Connect

    Kwek, Leong Chuan; Setiawan

    2011-09-15

    Quantum walks are interesting models with potential applications to quantum algorithms and physical processes such as photosynthesis. In this paper, we study two models of one-dimensional quantum walks, namely, quantum walks with a moving absorbing wall and quantum walks with one stationary and one moving absorbing wall. For the former, we calculate numerically the survival probability, the rate of change of average position, and the rate of change of standard deviation of the particle's position in the long time limit for different wall velocities. Moreover, we also study the asymptotic behavior and the dependence of the survival probability on the initial particle's state. While for the latter, we compute the absorption probability of the right stationary wall for different velocities and initial positions of the left wall boundary. The results for these two models are compared with those obtained for the classical model. The difference between the results obtained for the quantum and classical models can be attributed to the difference in the probability distributions.

  2. One-dimensional flows of an imperfect diatomic gas

    NASA Technical Reports Server (NTRS)

    1959-01-01

    With the assumptions that Berthelot's equation of state accounts for molecular size and intermolecular force effects, and that changes in the vibrational heat capacities are given by a Planck term, expressions are developed for analyzing one-dimensional flows of a diatomic gas. The special cases of flow through normal and oblique shocks in free air at sea level are investigated. It is found that up to a Mach number 10 pressure ratio across a normal shock differs by less than 6 percent from its ideal gas value; whereas at Mach numbers above 4 the temperature rise is considerable below and hence the density rise is well above that predicted assuming ideal gas behavior. It is further shown that only the caloric imperfection in air has an appreciable effect on the pressures developed in the shock process considered. The effects of gaseous imperfections on oblique shock-flows are studied from the standpoint of their influence on the life and pressure drag of a flat plate operating at Mach numbers of 10 and 20. The influence is found to be small. (author)

  3. Carbyne with finite length: The one-dimensional sp carbon

    PubMed Central

    Pan, Bitao; Xiao, Jun; Li, Jiling; Liu, Pu; Wang, Chengxin; Yang, Guowei

    2015-01-01

    Carbyne is the one-dimensional allotrope of carbon composed of sp-hybridized carbon atoms. Definitive evidence for carbyne has remained elusive despite its synthesis and preparation in the laboratory. Given the remarkable technological breakthroughs offered by other allotropes of carbon, including diamond, graphite, fullerenes, carbon nanotubes, and graphene, interest in carbyne and its unusual potential properties remains intense. We report the first synthesis of carbyne with finite length, which is clearly composed of alternating single bonds and triple bonds, using a novel process involving laser ablation in liquid. Spectroscopic analyses confirm that the product is the structure of sp hybridization with alternating carbon-carbon single bonds and triple bonds and capped by hydrogen. We observe purple-blue fluorescence emissions from the gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital of carbyne. Condensed-phase carbyne crystals have a hexagonal lattice and resemble the white crystalline powder produced by drying a carbyne solution. We also establish that the combination of gold and alcohol is crucial to carbyne formation because carbon-hydrogen bonds can be cleaved with the help of gold catalysts under the favorable thermodynamic environment provided by laser ablation in liquid and because the unique configuration of two carbon atoms in an alcohol molecule matches the elementary entity of carbyne. This laboratory synthesis of carbyne will enable the exploration of its properties and applications. PMID:26601318

  4. Berry phase oscillations in a one-dimensional Dirac comb

    NASA Astrophysics Data System (ADS)

    Hodge, William; Cassera, Nicholas; Rave, Matthew

    In quantum mechanics, the Berry phase is a geometric phase acquired by a wave function over the course of a cycle, when subjected to adiabatic processes. In general, this phase is due to the geometry of the underlying parameter space and thus depends only on the path taken. In any system described by a periodic potential, the torus topology of the Brillouin zone itself can lead to such a phase. In this work, we numerically calculate the Berry phase for a one-dimensional Dirac comb described by N distinct wells per unit cell. As expected, the resulting Berry phase exhibits a rich band-dependence. In the case where N = 2 , we find that the Berry phase corresponding to the nth energy band oscillates such that γn (x) =An sin (πx) cos [ (2 n - 1) πx ] , where An is a band-dependent constant and 0 < x < 1 is the relative position of the two wells. This expression, obtained using perturbation theory, gives excellent agreement with exact numerical results, even at low energy levels. The Berry phase exhibits a similar behavior for cases where N > 2 .

  5. A Smart Colorful Supercapacitor with One Dimensional Photonic Crystals

    NASA Astrophysics Data System (ADS)

    Liu, Cihui; Liu, Xing; Xuan, Hongyun; Ren, Jiaoyu; Ge, Liqin

    2015-12-01

    To meet the pressing demands for portable and flexible equipment in contemporary society, developing flexible, lightweight, and sustainable supercapacitor systems with large power densities, long cycle life, and ease of strongly required. However, estimating the state-of-charge of existing supercapacitors is difficult, and thus their service life is limited. In this study, we fabricate a flexible color indicative supercapacitor device with mesoporous polyaniline (mPANI)/Poly(N-Isopropyl acrylamide-Graphene Oxide-Acrylic Acid) (P(NiPPAm-GO-AA)) one dimensional photonic crystals (1DPCs) as the electrode material through a low-cost, eco-friendly, and scalable fabrication process. We found that the state-of-charge could be monitored by the structural color oscillation due to the change in the photonic band gap position of the 1DPCs. The flexible 1DPCs supercapacitor is thin at 3 mm and exhibits good specific capacitance of 22.6 F g-1 with retention of 91.1% after 3,000 cycles. This study shows the application of the 1DPCs supercapacitor as a visual ultrathin power source. The technology may find many applications in future wearable electronics.

  6. A Smart Colorful Supercapacitor with One Dimensional Photonic Crystals

    PubMed Central

    Liu, Cihui; Liu, Xing; Xuan, Hongyun; Ren, Jiaoyu; Ge, Liqin

    2015-01-01

    To meet the pressing demands for portable and flexible equipment in contemporary society, developing flexible, lightweight, and sustainable supercapacitor systems with large power densities, long cycle life, and ease of strongly required. However, estimating the state-of-charge of existing supercapacitors is difficult, and thus their service life is limited. In this study, we fabricate a flexible color indicative supercapacitor device with mesoporous polyaniline (mPANI)/Poly(N-Isopropyl acrylamide-Graphene Oxide-Acrylic Acid) (P(NiPPAm-GO-AA)) one dimensional photonic crystals (1DPCs) as the electrode material through a low-cost, eco-friendly, and scalable fabrication process. We found that the state-of-charge could be monitored by the structural color oscillation due to the change in the photonic band gap position of the 1DPCs. The flexible 1DPCs supercapacitor is thin at 3 mm and exhibits good specific capacitance of 22.6 F g−1 with retention of 91.1% after 3,000 cycles. This study shows the application of the 1DPCs supercapacitor as a visual ultrathin power source. The technology may find many applications in future wearable electronics. PMID:26689375

  7. ONE-DIMENSIONAL ACCELERATOR IN PULSAR OUTER MAGNETOSPHERE REVISITED

    SciTech Connect

    Lin, G. F.; Zhang, L.

    2009-07-10

    We re-examine the one-dimensional (1D) vacuum and nonvacuum accelerators in the outer magnetosphere of rotation-powered pulsars by considering the limit of trans-field height through pair-production process. In the original 1D nonvacuum outer gap model, both the Poisson equation for electrical potential and the Boltzmann equations of particles and gamma-rays are solved self-consistently by assuming the trans-field height as a free parameter, usually resulting in a narrow outer gap (i.e., gap length along magnetic field lines is short). In the modified 1D nonvacuum outer gap model, two improvements have been made: the trans-field height is limited by photon-photon pair production process and the outer boundary of the outer gap can be extended outside the light cylinder. Under the above assumptions, we self-consistently solve the Poisson equation for electrical potential, and the Boltzmann equations of electrons/positrons and gamma-rays in both vacuum and nonvacuum outer gaps for the parameters of both Vela and Geminga pulsars. We obtain an approximate geometry of the outer gap, i.e., the trans-field height is limited by the pair-production process and increases with the radial distance to the star, and the width of the outer gap starts at the inner boundary (near the null charge surface in the vacuum case) and ends at the outer boundary which is located inside or outside the light cylinder depending on the inclination angle. Our calculated results also indicate that gamma-ray spectrum from a wide outer gap is flatter than the one from a narrow outer gap and the relation between the electric field and trans-field height has an important effect on the structure of the outer gap.

  8. LETTER TO THE EDITOR: Markov processes and a multiple generating function of product of generalized Laguerre polynomials

    NASA Astrophysics Data System (ADS)

    Lee, Poh-Aun

    1997-06-01

    From the spectral representation of the transition probability of birth-and-death processes, Karlin and McGregor show that the transition probability for the infinite server Markovian queue is in the form of a diagonal sum involving a product of Charlier polynomials. By using Meixner's bilinear generating formula for the Charlier polynomials and the Markov property, a multiple generating for the Charlier polynomials is deduced from the Chapman - Kolmogorov equation. The resulting formula possesses the same genre of a multiple generating function for the generalized Laguerre polynomials discussed by Messina and Paladimo, the explicit solution of which is recently given by the present author.

  9. Markov invariants, plethysms, and phylogenetics.

    PubMed

    Sumner, J G; Charleston, M A; Jermiin, L S; Jarvis, P D

    2008-08-07

    We explore model-based techniques of phylogenetic tree inference exercising Markov invariants. Markov invariants are group invariant polynomials and are distinct from what is known in the literature as phylogenetic invariants, although we establish a commonality in some special cases. We show that the simplest Markov invariant forms the foundation of the Log-Det distance measure. We take as our primary tool group representation theory, and show that it provides a general framework for analyzing Markov processes on trees. From this algebraic perspective, the inherent symmetries of these processes become apparent, and focusing on plethysms, we are able to define Markov invariants and give existence proofs. We give an explicit technique for constructing the invariants, valid for any number of character states and taxa. For phylogenetic trees with three and four leaves, we demonstrate that the corresponding Markov invariants can be fruitfully exploited in applied phylogenetic studies.

  10. Some topological states in one-dimensional cold atomic systems

    SciTech Connect

    Mei, Feng; Zhang, Dan-Wei; Zhu, Shi-Liang

    2015-07-15

    Ultracold atoms trapped in optical lattices nowadays have been widely used to mimic various models from condensed-matter physics. Recently, many great experimental progresses have been achieved for producing artificial magnetic field and spin–orbit coupling in cold atomic systems, which turn these systems into a new platform for simulating topological states. In this paper, we give a review focusing on quantum simulation of topologically protected soliton modes and topological insulators in one-dimensional cold atomic system. Firstly, the recent achievements towards quantum simulation of one-dimensional models with topological non-trivial states are reviewed, including the celebrated Jackiw–Rebbi model and Su–Schrieffer–Heeger model. Then, we will introduce a dimensional reduction method for systematically constructing high dimensional topological states in lower dimensional models and review its applications on simulating two-dimensional topological insulators in one-dimensional optical superlattices.

  11. One-dimensional rainbow technique using Fourier domain filtering.

    PubMed

    Wu, Yingchun; Promvongsa, Jantarat; Wu, Xuecheng; Cen, Kefa; Grehan, Gerard; Saengkaew, Sawitree

    2015-11-16

    Rainbow refractometry can measure the refractive index and the size of a droplet simultaneously. The refractive index measurement is extracted from the absolute rainbow scattering angle. Accordingly, the angular calibration is vital for accurate measurements. A new optical design of the one-dimensional rainbow technique is proposed by using a one-dimensional spatial filter in the Fourier domain. The relationship between the scattering angle and the CCD pixel of a recorded rainbow image can be accurately determined by a simple calibration. Moreover, only the light perpendicularly incident on the lens in the angle (φ) direction is selected, which exactly matches the classical inversion algorithm used in rainbow refractometry. Both standard and global one-dimensional rainbow techniques are implemented with the proposed optical design, and are successfully applied to measure the refractive index and the size of a line of n-heptane droplets.

  12. Few-body route to one-dimensional quantum liquids

    NASA Astrophysics Data System (ADS)

    Valiente, Manuel; Öhberg, Patrik

    2016-11-01

    Gapless many-body quantum systems in one spatial dimension are universally described by the Luttinger liquid effective theory at low energies. Essentially, only two parameters enter the effective low-energy description, namely, the speed of sound and the Luttinger parameter. These are highly system dependent and their calculation requires accurate nonperturbative solutions of the many-body problem. Here we present a simple theoretical method that only uses collisional information to extract the low-energy properties of spinless one-dimensional systems. Our results are in remarkable agreement with available results for integrable models and from large-scale Monte Carlo simulations of one-dimensional helium and hydrogen isotopes. Moreover, we estimate theoretically the critical point for spinodal decomposition in one-dimensional 4He and show that the exponent governing the divergence of the Luttinger parameter near the critical point is exactly 1/2, in excellent agreement with Monte Carlo simulations.

  13. Quantum solution for the one-dimensional Coulomb problem

    SciTech Connect

    Nunez-Yepez, H. N.; Salas-Brito, A. L.; Solis, Didier A.

    2011-06-15

    The one-dimensional hydrogen atom has been a much studied system with a wide range of applications. Since the pioneering work of Loudon [R. Loudon, Am. J. Phys. 27, 649 (1959).], a number of different features related to the nature of the eigenfunctions have been found. However, many of the claims made throughout the years in this regard are not correct--such as the existence of only odd eigenstates or of an infinite binding-energy ground state. We explicitly show that the one-dimensional hydrogen atom does not admit a ground state of infinite binding energy and that the one-dimensional Coulomb potential is not its own supersymmetric partner. Furthermore, we argue that at the root of many such false claims lies the omission of a superselection rule that effectively separates the right side from the left side of the singularity of the Coulomb potential.

  14. Bottom-Up Syntheses and Characterization of One Dimensional Nanomaterials

    NASA Astrophysics Data System (ADS)

    Yeh, Yao-Wen

    Nanomaterials, materials having at least one dimension below 100 nm, have been creating exciting opportunities for fundamental quantum confinement studies and applications in electronic devices and energy technologies. One obvious and important aspect of nanomaterials is their production. Although nanostructures can be obtained by top-down reductive e-beam lithography and focused ion beam processes, further development of these processes is needed before these techniques can become practical routes to large scale production. On the other hand, bottom-up syntheses, with advantages in material diversity, throughput, and the potential for large volume production, may provide an alternative strategy for creating nanostructures. In this work, we explore syntheses of one dimensional nanostructures based on hydrothermal and arc discharge methods. The first project presented in this thesis involves syntheses of technologically important nanomaterials and their potential application in energy harvesting. In particular, it was demonstrated that single crystal ferroelectric lead magnesium niobate lead titanate (PMN-PT) nanowires can be synthesized by a hydrothermal route. The chemical composition of the synthesized nanowires is near the rhombohedral-monoclinic boundary of PMN-PT, which leads to a high piezoelectric coefficient of 381 pm/V. Finally, the potential use of PMN-PT nanowires in energy harvesting applications was also demonstrated. The second part of this thesis involves the synthesis of carbon and boron nitride nanotubes by dc arc discharges. In particular, we investigated how local plasma related properties affected the synthesis of carbon nanostructures. Finally, we investigated the anodic nature of the arc and how a dc arc discharge can be applied to synthesize boron nitride nanotubes.

  15. Viscous Dissipation in One-Dimensional Quantum Liquids

    NASA Astrophysics Data System (ADS)

    Matveev, K. A.; Pustilnik, M.

    2017-07-01

    We develop a theory of viscous dissipation in one-dimensional single-component quantum liquids at low temperatures. Such liquids are characterized by a single viscosity coefficient, the bulk viscosity. We show that for a generic interaction between the constituent particles this viscosity diverges in the zero-temperature limit. In the special case of integrable models, the viscosity is infinite at any temperature, which can be interpreted as a breakdown of the hydrodynamic description. Our consideration is applicable to all single-component Galilean-invariant one-dimensional quantum liquids, regardless of the statistics of the constituent particles and the interaction strength.

  16. Quantum state transfer in a disordered one-dimensional lattice

    NASA Astrophysics Data System (ADS)

    Ashhab, S.

    2015-12-01

    We investigate the effect of disorder on the transfer of quantum states across a one-dimensional lattice with varying levels of control resources. We find that the application of properly designed control signals, even when applied only to the two ends of the lattice, allows perfect state transfer up to disorder strengths that would not allow a generic quantum state to propagate the length of the lattice. At sufficiently large disorder strengths, however, the local control signals fail to send the quantum state from one end of the system to the other end. Our results shed light on the interplay between disorder and controlled transport in one-dimensional systems.

  17. Random registry shifts in quasi-one-dimensional adsorbate systems

    SciTech Connect

    Schafer, J.; Erwin, S.C.; Hansmann, M.; Song, Z.; Rotenberg, E.; Kevan, S.D.; Hellberg, C.S.; Horn, K.

    2003-02-18

    The apparent contradiction of one-dimensional adsorbate chains on Si(111) having a 3x2 unit cell and yet a 3x1 diffraction pattern is resolved for the example of Ba/Si(111)-(3x2). Random registry shifts between adsorbate chains are observed in tunneling microscopy, with very short interchain correlation lengths. Fourier analysis provides a natural explanation for a pseudo-(3x1) diffraction pattern. Within density-functional theory such registry shifts can occur with essentially negligible energy cost, leading to entropy-driven, virtually perfect disorder. Substrate states of high symmetry and one-dimensional character are inferred to promote this phenomenon.

  18. Random registry shifts in quasi-one-dimensional adsorbate systems

    NASA Astrophysics Data System (ADS)

    Schäfer, J.; Erwin, S. C.; Hansmann, M.; Song, Z.; Rotenberg, E.; Kevan, S. D.; Hellberg, C. S.; Horn, K.

    2003-02-01

    The apparent contradiction of one-dimensional adsorbate chains on Si(111) having a 3×2 unit cell and yet a 3×1 diffraction pattern is resolved for the example of Ba/Si(111)-(3×2). Random registry shifts between adsorbate chains are observed in tunneling microscopy, with very short interchain correlation lengths. Fourier analysis provides a natural explanation for a pseudo-(3×1) diffraction pattern. Within density-functional theory such registry shifts can occur with essentially negligible energy cost, leading to entropy-driven, virtually perfect disorder. Substrate states of high symmetry and one-dimensional character are inferred to promote this phenomenon.

  19. Ballistic transport in one-dimensional random dimer photonic crystals

    NASA Astrophysics Data System (ADS)

    Cherid, Samira; Bentata, Samir; Zitouni, Ali; Djelti, Radouan; Aziz, Zoubir

    2014-04-01

    Using the transfer-matrix technique and the Kronig Penney model, we numerically and analytically investigate the effect of short-range correlated disorder in Random Dimer Model (RDM) on transmission properties of the light in one dimensional photonic crystals made of three different materials. Such systems consist of two different structures randomly distributed along the growth direction, with the additional constraint that one kind of these layers always appear in pairs. It is shown that the one dimensional random dimer photonic crystals support two types of extended modes. By shifting of the dimer resonance toward the host fundamental stationary resonance state, we demonstrate the existence of the ballistic response in these systems.

  20. Spiral growth of one dimensional titania nanostructures using anodic oxidation.

    PubMed

    Karakoti, A S; Filmalter, R; Bera, D; Kuchibhatla, Satyanarayana V N T; Vincent, A; Seal, S

    2006-07-01

    One dimensional spiral titania nanostructures were obtained by anodization of pure titanium from fluoride containing solutions of phosphoric acid. The formation of nanotubes was found to be dependant on current density. Field Emission Scanning Electron Microscopy (FESEM) shows the diameter of tubes around 70-100 nm which is consistent with the High Resolution Transmission Electron Micrographs (HRTEM) and Atomic Force Microscopy (AFM) images. HRTEM showed the one dimensional growth as spiral in nature which was also supported by AFM images. This anisotropic growth is compared with the possible growth mechanisms.

  1. Viscous Dissipation in One-Dimensional Quantum Liquids

    DOE PAGES

    Matveev, K. A.; Pustilnik, M.

    2017-07-20

    We develop a theory of viscous dissipation in one-dimensional single-component quantum liquids at low temperatures. Such liquids are characterized by a single viscosity coefficient, the bulk viscosity. We show that for a generic interaction between the constituent particles this viscosity diverges in the zerotemperature limit. In the special case of integrable models, the viscosity is infinite at any temperature, which can be interpreted as a breakdown of the hydrodynamic description. In conclusion, our consideration is applicable to all single-component Galilean- invariant one-dimensional quantum liquids, regardless of the statistics of the constituent particles and the interaction strength.

  2. Solitons in a one-dimensional Wigner crystal

    SciTech Connect

    Pustilnik, M.; Matveev, K. A.

    2015-04-16

    In one-dimensional quantum systems with strong long-range repulsion particles arrange in a quasi-periodic chain, the Wigner crystal. Here, we demonstrate that besides the familiar phonons, such one-dimensional Wigner crystal supports an additional mode of elementary excitations, which can be identified with solitons in the classical limit. Furthermore, we compute the corresponding excitation spectrum and argue that the solitons have a parametrically small decay rate at low energies. Finally, we discuss implications of our results for the behavior of the dynamic structure factor.

  3. [Classification of human sleep stages based on EEG processing using hidden Markov models].

    PubMed

    Doroshenkov, L G; Konyshev, V A; Selishchev, S V

    2007-01-01

    The goal of this work was to describe an automated system for classification of human sleep stages. Classification of sleep stages is an important problem of diagnosis and treatment of human sleep disorders. The developed classification method is based on calculation of characteristics of the main sleep rhythms. It uses hidden Markov models. The method is highly accurate and provides reliable identification of the main stages of sleep. The results of automatic classification are in good agreement with the results of sleep stage identification performed by an expert somnologist using Rechtschaffen and Kales rules. This substantiates the applicability of the developed classification system to clinical diagnosis.

  4. Semi-Markov Control Processes with Unknown Holding Times Distribution Under an Average Cost Criterion

    SciTech Connect

    Luque-Vasquez, Fernando Minjarez-Sosa, J. Adolfo Rosas-Rosas, Luz del Carmen

    2010-06-15

    This paper deals with a class of semi-Markov control models with Borel state and control spaces, possibly unbounded costs, and unknown holding times distribution F. Assuming that F does not depend on state-action pairs, we combine suitable methods of statistical estimation of the mean holding time with control procedures to construct an average cost optimal Markovian policy {pi}-hat={l_brace}f{sub n}{r_brace}, and an optimal stationary policy {l_brace}f{sub {infinity}}{r_brace}, where f{sub n} converges to f{sub {infinity}} in the sense of Schael.

  5. Noise, delocalization, and quantum diffusion in one-dimensional tight-binding models

    NASA Astrophysics Data System (ADS)

    Gholami, Ehsan; Lashkami, Zahra Mohammaddoust

    2017-02-01

    As an unusual type of anomalous diffusion behavior, namely (transient) superballistic transport, has been experimentally observed recently, but it is not yet well understood. In this paper, we investigate the white noise effect (in the Markov approximation) on quantum diffusion in one-dimensional tight-binding models with a periodic, disordered, and quasiperiodic region of size L attached to two perfect lattices at both ends in which the wave packet is initially located at the center of the sublattice. We find that in a completely localized system, inducing noise could delocalize the system to a desirable diffusion phase. This controllable system may be used to investigate the interplay of disorder and white noise, as well as to explore an exotic quantum phase.

  6. Signal processing of MEMS gyroscope arrays to improve accuracy using a 1st order Markov for rate signal modeling.

    PubMed

    Jiang, Chengyu; Xue, Liang; Chang, Honglong; Yuan, Guangmin; Yuan, Weizheng

    2012-01-01

    This paper presents a signal processing technique to improve angular rate accuracy of the gyroscope by combining the outputs of an array of MEMS gyroscope. A mathematical model for the accuracy improvement was described and a Kalman filter (KF) was designed to obtain optimal rate estimates. Especially, the rate signal was modeled by a first-order Markov process instead of a random walk to improve overall performance. The accuracy of the combined rate signal and affecting factors were analyzed using a steady-state covariance. A system comprising a six-gyroscope array was developed to test the presented KF. Experimental tests proved that the presented model was effective at improving the gyroscope accuracy. The experimental results indicated that six identical gyroscopes with an ARW noise of 6.2 °/√h and a bias drift of 54.14 °/h could be combined into a rate signal with an ARW noise of 1.8 °/√h and a bias drift of 16.3 °/h, while the estimated rate signal by the random walk model has an ARW noise of 2.4 °/√h and a bias drift of 20.6 °/h. It revealed that both models could improve the angular rate accuracy and have a similar performance in static condition. In dynamic condition, the test results showed that the first-order Markov process model could reduce the dynamic errors 20% more than the random walk model.

  7. Summary of the LLNL one-dimensional transport-kinetics model of the troposphere and stratosphere: 1981

    SciTech Connect

    Wuebbles, D.J.

    1981-09-01

    Since the LLNL one-dimensional coupled transport and chemical kinetics model of the troposphere and stratosphere was originally developed in 1972 (Chang et al., 1974), there have been many changes to the model's representation of atmospheric physical and chemical processes. A brief description is given of the current LLNL one-dimensional coupled transport and chemical kinetics model of the troposphere and stratosphere.

  8. Control policies for a water-treatment system using the Markov Decision Process.

    NASA Astrophysics Data System (ADS)

    Chiam, Tze; Mitchell, Cary; Yih, Yuehwern

    the system's current state but not the "path" that it has taken. Due to this "memoryless" property and the stochastic properties of the system, the state transition can be modeled by the Markov process. A reward system was constructed to assign reward values to every state visited. A water system is considered to be in a "good" state when it has sufficient clean water to meet the demands of crewmembers. Such states will receive a much higher reward value than states in which crewmembers suffer from water deficiencies. Transition probabilities are obtained through simulation using the Markovian model. Nine policies based on different values of treatment efficiencies for both subsystems were defined. One policy is applied to the system at every hour. The choice of policy to apply affects the system behavior (and state). Hence, it is important to apply a policy that is "best" for the system every hour. The Policy Iteration algorithm is used for this purpose. This algorithm provides the best policy under steady-state conditions. The transition probabilities and reward values are formulated into appropriate mathematical representation and are solved by applying the Policy Iteration algorithm. A system that uses the best policy is compared against one that uses a fixed policy by the use of a paired-t test. Results show that a system applying best policies has statistically better performance than a system operating on a fixed policy. This methodology is also applicable to various other scenarios with different system design, magnitude of "stochastic-ness", including system modules such as the crop system. Research sponsored in part by NASA grant NAG5-12686.

  9. Filtration-guided assembly for patterning one-dimensional nanostructures.

    PubMed

    Zhang, Yaozhong; Wang, Chuan; Yeom, Junghoon

    2017-04-07

    Tremendous progress has been made in synthesizing various types of one-dimensional (1D) nanostructures (NSs), such as nanotubes and nanowires, but some technical challenges still remain in the deterministic assembly of the solution-processed 1D NSs for device integration. In this work we investigate a scalable yet inexpensive nanomaterial assembly method, namely filtration-guided assembly (FGA), to place nanomaterials into desired locations as either an individual entity or ensembles, and form functional devices. FGA not only addresses the assembly challenges but also encompasses the notion of green nanomanufacturing, maximally utilizing nanomaterials and eliminating a waste stream of nanomaterials into the environment. FGA utilizes selective filtration of 1D NSs through the open windows on the nanoporous filter membrane whose surface is patterned by a polymer mask for guiding the 1D NS deposition. The modified soft-lithographic technique called blanket transfer (BT) is employed to create the various photoresist patterns of sub-10-micron resolution on the nanoporous filter membrane like mixed cellulose acetate. We use single-walled carbon nanotubes (SWCNTs) as a model 1D NS and demonstrate the fabrication of an array pattern of homogeneous 1D NS network films over an area of 20 cm(2) within 10 min. The FGA-patterned SWCNT network films are transferred onto the substrate using the adhesive-based transfer technique, and show the highly uniform film thickness and resistance measurements across the entire substrate. Finally, the electrical performance of the back-gated transistors made from the FGA and transfer method of 95% pure SWCNTs is demonstrated.

  10. One dimensional blood flow in a planetocentric orbit

    NASA Astrophysics Data System (ADS)

    Haranas, Ioannis; Gkigkitzis, Ioannis

    2012-05-01

    All life on earth is accustomed to the presence of gravity. When gravity is altered, biological processes can go awry. It is of great importance to ensure safety during a spaceflight. Long term exposure to microgravity can trigger detrimental physiological responses in the human body. Fluid redistribution coupled with fluid loss is one of the effects. In particular, in microgravity blood volume is shifted towards the thorax and head. Sympathetic nervous system-induced vasoconstriction is needed to maintain arterial pressure, while venoconstriction limits venous pooling of blood prevents further reductions in venous return of blood to the heart. In this paper, we modify an existing one dimensional blood flow model with the inclusion of the hydrostatic pressure gradient that further depends on the gravitational field modified by the oblateness and rotation of the Earth. We find that the velocity of the blood flow VB is inversely proportional to the blood specific volume d, also proportional to the oblateness harmonic coefficient J2, the angular velocity of the Earth ωE, and finally proportional to an arbitrary constant c. For c = -0.39073 and ξH = -0.5 mmHg, all orbits result to less blood flow velocities than that calculated on the surface of the Earth. From all considered orbits, elliptical polar orbit of eccentricity e = 0.2 exhibit the largest flow velocity VB = 1.031 m/s, followed by the orbits of inclination i = 45°and 0°. The Earth's oblateness and its rotation contribute a 0.7% difference to the blood flow velocity.

  11. One dimensional time-to-explode (ODTX) in HMX spheres

    SciTech Connect

    Breshears, D.

    1997-06-02

    In a series of papers researchers at Lawrence Livermore National Laboratory (LLNL) have reported measurements of the time to explosion in spheres of various high explosives following a rapid, uniform increase in the surface temperature of the sphere. Due to the spherical symmetry, the time-dependent properties of the explosive (temperature, chemical composition, etc.) are functions of the radial spatial coordinate only; thus the name one-dimensional time-to-explosion (ODTX). The LLNL researchers also report an evolving series of computational modeling results for the ODTX experiments, culminating in those obtained using a sophisticated heat transfer code incorporating accurate descriptions of chemical reaction. Although the chemical reaction mechanism used to describe HMX decomposition is quite simple, the computational results agree very well with the experimental data. In addition to reproducing the magnitude and temperature dependence of the measured times to explosion, the computational results also agree with the results of post reaction visual inspection. The ODTX experiments offer a near-ideal example of a transport process (heat transfer in this case) tightly coupled with chemical reaction. The LLNL computational model clearly captures the important features of the ODTX experiments. An obvious question of interest is to what extent the model and/or its individual components (specifically the chemical reaction mechanism) are applicable to other experimental scenarios. Valid exploration of this question requires accurate understanding of (1) the experimental scenario addressed by the LLNL model and (2) details of the application of the model. The author reports here recent work addressing points (1) and (2).

  12. Filtration-guided assembly for patterning one-dimensional nanostructures

    NASA Astrophysics Data System (ADS)

    Zhang, Yaozhong; Wang, Chuan; Yeom, Junghoon

    2017-04-01

    Tremendous progress has been made in synthesizing various types of one-dimensional (1D) nanostructures (NSs), such as nanotubes and nanowires, but some technical challenges still remain in the deterministic assembly of the solution-processed 1D NSs for device integration. In this work we investigate a scalable yet inexpensive nanomaterial assembly method, namely filtration-guided assembly (FGA), to place nanomaterials into desired locations as either an individual entity or ensembles, and form functional devices. FGA not only addresses the assembly challenges but also encompasses the notion of green nanomanufacturing, maximally utilizing nanomaterials and eliminating a waste stream of nanomaterials into the environment. FGA utilizes selective filtration of 1D NSs through the open windows on the nanoporous filter membrane whose surface is patterned by a polymer mask for guiding the 1D NS deposition. The modified soft-lithographic technique called blanket transfer (BT) is employed to create the various photoresist patterns of sub-10-micron resolution on the nanoporous filter membrane like mixed cellulose acetate. We use single-walled carbon nanotubes (SWCNTs) as a model 1D NS and demonstrate the fabrication of an array pattern of homogeneous 1D NS network films over an area of 20 cm2 within 10 min. The FGA-patterned SWCNT network films are transferred onto the substrate using the adhesive-based transfer technique, and show the highly uniform film thickness and resistance measurements across the entire substrate. Finally, the electrical performance of the back-gated transistors made from the FGA and transfer method of 95% pure SWCNTs is demonstrated.

  13. Numerical simulations of piecewise deterministic Markov processes with an application to the stochastic Hodgkin-Huxley model.

    PubMed

    Ding, Shaojie; Qian, Min; Qian, Hong; Zhang, Xuejuan

    2016-12-28

    The stochastic Hodgkin-Huxley model is one of the best-known examples of piecewise deterministic Markov processes (PDMPs), in which the electrical potential across a cell membrane, V(t), is coupled with a mesoscopic Markov jump process representing the stochastic opening and closing of ion channels embedded in the membrane. The rates of the channel kinetics, in turn, are voltage-dependent. Due to this interdependence, an accurate and efficient sampling of the time evolution of the hybrid stochastic systems has been challenging. The current exact simulation methods require solving a voltage-dependent hitting time problem for multiple path-dependent intensity functions with random thresholds. This paper proposes a simulation algorithm that approximates an alternative representation of the exact solution by fitting the log-survival function of the inter-jump dwell time, H(t), with a piecewise linear one. The latter uses interpolation points that are chosen according to the time evolution of the H(t), as the numerical solution to the coupled ordinary differential equations of V(t) and H(t). This computational method can be applied to all PDMPs. Pathwise convergence of the approximated sample trajectories to the exact solution is proven, and error estimates are provided. Comparison with a previous algorithm that is based on piecewise constant approximation is also presented.

  14. Numerical simulations of piecewise deterministic Markov processes with an application to the stochastic Hodgkin-Huxley model

    NASA Astrophysics Data System (ADS)

    Ding, Shaojie; Qian, Min; Qian, Hong; Zhang, Xuejuan

    2016-12-01

    The stochastic Hodgkin-Huxley model is one of the best-known examples of piecewise deterministic Markov processes (PDMPs), in which the electrical potential across a cell membrane, V(t), is coupled with a mesoscopic Markov jump process representing the stochastic opening and closing of ion channels embedded in the membrane. The rates of the channel kinetics, in turn, are voltage-dependent. Due to this interdependence, an accurate and efficient sampling of the time evolution of the hybrid stochastic systems has been challenging. The current exact simulation methods require solving a voltage-dependent hitting time problem for multiple path-dependent intensity functions with random thresholds. This paper proposes a simulation algorithm that approximates an alternative representation of the exact solution by fitting the log-survival function of the inter-jump dwell time, H(t), with a piecewise linear one. The latter uses interpolation points that are chosen according to the time evolution of the H(t), as the numerical solution to the coupled ordinary differential equations of V(t) and H(t). This computational method can be applied to all PDMPs. Pathwise convergence of the approximated sample trajectories to the exact solution is proven, and error estimates are provided. Comparison with a previous algorithm that is based on piecewise constant approximation is also presented.

  15. Lie symmetry algebra of one-dimensional nonconservative dynamical systems

    NASA Astrophysics Data System (ADS)

    Liu, Cui-Mei; Wu, Run-Heng; Fu, Jing-Li

    2007-09-01

    Lie symmetry algebra of linear nonconservative dynamical systems is studied in this paper. By using 1-1 mapping, the Lie point and Lie contact symmetry algebras are obtained from two independent solutions of the one-dimensional linear equations of motion.

  16. Zero-n gap in one dimensional photonic crystal

    SciTech Connect

    Chobey, Mahesh K. Suthar, B.

    2016-05-06

    We study a one-dimensional (1-D) photonic crystal composed of Double Positive (DPS) and Double Negative (DNG) material. This structure shows omnidirectional photonic bandgap, which is insensitive with angle of incidence and polarization. To study the effect of structural parameters on the photonic band structure, we have calculated photonic band gap at various thicknesses of DPS and DNG.

  17. Toward precise solution of one-dimensional velocity inverse problems

    SciTech Connect

    Gray, S.; Hagin, F.

    1980-01-01

    A family of one-dimensional inverse problems are considered with the goal of reconstructing velocity profiles to reasonably high accuracy. The travel-time variable change is used together with an iteration scheme to produce an effective algorithm for computation. Under modest assumptions the scheme is shown to be convergent.

  18. Approximate Approaches to the One-Dimensional Finite Potential Well

    ERIC Educational Resources Information Center

    Singh, Shilpi; Pathak, Praveen; Singh, Vijay A.

    2011-01-01

    The one-dimensional finite well is a textbook problem. We propose approximate approaches to obtain the energy levels of the well. The finite well is also encountered in semiconductor heterostructures where the carrier mass inside the well (m[subscript i]) is taken to be distinct from mass outside (m[subscript o]). A relevant parameter is the mass…

  19. The Long Decay Model of One-Dimensional Projectile Motion

    ERIC Educational Resources Information Center

    Lattery, Mark Joseph

    2008-01-01

    This article introduces a research study on student model formation and development in introductory mechanics. As a point of entry, I present a detailed analysis of the Long Decay Model of one-dimensional projectile motion. This model has been articulated by Galileo ("in De Motu") and by contemporary students. Implications for instruction are…

  20. One-Dimensional Ising Model with "k"-Spin Interactions

    ERIC Educational Resources Information Center

    Fan, Yale

    2011-01-01

    We examine a generalization of the one-dimensional Ising model involving interactions among neighbourhoods of "k" adjacent spins. The model is solved by exploiting a connection to an interesting computational problem that we call ""k"-SAT on a ring", and is shown to be equivalent to the nearest-neighbour Ising model in the absence of an external…

  1. Approximate Approaches to the One-Dimensional Finite Potential Well

    ERIC Educational Resources Information Center

    Singh, Shilpi; Pathak, Praveen; Singh, Vijay A.

    2011-01-01

    The one-dimensional finite well is a textbook problem. We propose approximate approaches to obtain the energy levels of the well. The finite well is also encountered in semiconductor heterostructures where the carrier mass inside the well (m[subscript i]) is taken to be distinct from mass outside (m[subscript o]). A relevant parameter is the mass…

  2. Anomalous heat conduction in a one-dimensional ideal gas.

    PubMed

    Casati, Giulio; Prosen, Tomaz

    2003-01-01

    We provide firm convincing evidence that the energy transport in a one-dimensional gas of elastically colliding free particles of unequal masses is anomalous, i.e., the Fourier law does not hold. Our conclusions are confirmed by a theoretical and numerical analysis based on a Green-Kubo-type approach specialized to momentum-conserving lattices.

  3. The Long Decay Model of One-Dimensional Projectile Motion

    ERIC Educational Resources Information Center

    Lattery, Mark Joseph

    2008-01-01

    This article introduces a research study on student model formation and development in introductory mechanics. As a point of entry, I present a detailed analysis of the Long Decay Model of one-dimensional projectile motion. This model has been articulated by Galileo ("in De Motu") and by contemporary students. Implications for instruction are…

  4. Teaching Module for One-Dimensional, Transient Conduction.

    ERIC Educational Resources Information Center

    Ribando, Robert J.; O'Leary, Gerald W.

    1998-01-01

    Describes a PC-based teaching module designed to instruct engineering students in transient one-dimensional conduction heat transfer analysis. The discussion considers problem formulation, nondimensionalization, discretization, numerical stability and the time-step restriction, program operation, and program verification. (MES)

  5. SIMPLE ONE-DIMENSIONAL TRANSPORT CODE FOR MAGNETIZED TARGET FUSION

    SciTech Connect

    STEFANO MIGLUIOLO - MIT

    1999-10-30

    A one-dimensional (in space) time-dependent simulation code is development to study the transport of energy and particles in a field reversed configuration (FRC) plasma that is undergoing radial contraction. This contraction is due to an imploding metallic liner, which is treated through a boundary condition.

  6. Underwater striling engine design with modified one-dimensional model

    NASA Astrophysics Data System (ADS)

    Li, Daijin; Qin, Kan; Luo, Kai

    2015-05-01

    Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs) is discussed. And a one-dimensional model incorporated with empirical equations of mechanical loss and auxiliary power obtained from experiments is derived while referring to the Stirling engine computer model of National Aeronautics and Space Administration (NASA). The P-40 Stirling engine with sufficient testing results from NASA is utilized to validate the accuracy of this one-dimensional model. It shows that the maximum error of output power of theoretical analysis results is less than 18% over testing results, and the maximum error of input power is no more than 9%. Finally, a Stirling engine for UUVs is designed with Schmidt analysis method and the modified one-dimensional model, and the results indicate this designed engine is capable of showing desired output power.

  7. Underwater striling engine design with modified one-dimensional model

    NASA Astrophysics Data System (ADS)

    Li, Daijin; Qin, Kan; Luo, Kai

    2015-09-01

    Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs) is discussed. And a one-dimensional model incorporated with empirical equations of mechanical loss and auxiliary power obtained from experiments is derived while referring to the Stirling engine computer model of National Aeronautics and Space Administration (NASA). The P-40 Stirling engine with sufficient testing results from NASA is utilized to validate the accuracy of this one-dimensional model. It shows that the maximum error of output power of theoretical analysis results is less than 18% over testing results, and the maximum error of input power is no more than 9%. Finally, a Stirling engine for UUVs is designed with Schmidt analysis method and the modified one-dimensional model, and the results indicate this designed engine is capable of showing desired output power.

  8. One-Dimensional Ising Model with "k"-Spin Interactions

    ERIC Educational Resources Information Center

    Fan, Yale

    2011-01-01

    We examine a generalization of the one-dimensional Ising model involving interactions among neighbourhoods of "k" adjacent spins. The model is solved by exploiting a connection to an interesting computational problem that we call ""k"-SAT on a ring", and is shown to be equivalent to the nearest-neighbour Ising model in the absence of an external…

  9. A one-dimensional model of subsurface hillslope flow

    Treesearch

    Jason C. Fisher

    1997-01-01

    Abstract - A one-dimensional, finite difference model of saturated subsurface flow within a hillslope was developed. The model uses rainfall, elevation data, a hydraulic conductivity, and a storage coefficient to predict the saturated thickness in time and space. The model was tested against piezometric data collected in a swale located in the headwaters of the North...

  10. Optically induced zener tunneling in one-dimensional lattices.

    PubMed

    Fratalocchi, Andrea; Assanto, Gaetano; Brzdakiewicz, Kasia A; Karpierz, Mirek A

    2006-03-15

    We investigate Landau-Zener tunneling in one-dimensional liquid crystalline waveguide arrays by all-optical impression of acceleration with an additional beam. We derive the Zener model from the governing equations and demonstrate a novel approach to Floquet-Bloch band tunneling.

  11. Tropical sea surface temperature - An interactive one-dimensional atmosphere-ocean model

    NASA Technical Reports Server (NTRS)

    Sarachik, E. S.

    1978-01-01

    It is shown that the (cumulus) convective processes in the tropics may be described by a one-dimensional cloud model, while the near-surface ocean may similarly be described by a one-dimensional mixed-layer model. The coupling is achieved through a sea surface flux budget combined with the flux parameterizations implied by Monin-Obukhov similarity theory. The coupled one-dimensional atmosphere-ocean model is applied to the equilibrium situation in which all temperatures reach a steady state. For the ocean, the fluxes must vanish in equilibrium, but the atmosphere maintains a stable lapse rate by balancing cumulonimbus heating against net radiative cooling. All water precipitating from cumulonimbus clouds must have evaporated from the sea. It is shown that this equilibrium system is closed and determinable solely in terms of the solar constant.

  12. Semiclassical description of resonance-assisted tunneling in one-dimensional integrable models.

    PubMed

    Le Deunff, Jérémy; Mouchet, Amaury; Schlagheck, Peter

    2013-10-01

    Resonance-assisted tunneling is investigated within the framework of one-dimensional integrable systems. We present a systematic recipe, based on Hamiltonian normal forms, to construct one-dimensional integrable models that exhibit resonance island chain structures with accurately controlled sizes and positions of the islands. Using complex classical trajectories that evolve along suitably defined paths in the complex time domain, we construct a semiclassical theory of the resonance-assisted tunneling process. This semiclassical approach yields a compact analytical expression for tunnelling-induced level splittings which is found to be in very good agreement with the exact splittings obtained through numerical diagonalization.

  13. Perturbative and iterative methods for photon transport in one-dimensional waveguides

    NASA Astrophysics Data System (ADS)

    Obi, Kenechukwu C.; Shen, Jung-Tsung

    2015-05-01

    The problems of photon transport in one-dimensional waveguides have recently attracted great attentions. We consider the case of single photons scattering off a Λ-type three-level quantum emitter, and discuss the perturbative treatments of the scattering processes in terms of Born approximation for the Lippmann-Schwinger formalism. We show that the iterative Born series of the scattering amplitudes converge to the exact results obtained by other approaches. The generalization of our work provides a foundational basis for efficient computational schemes for photon scattering problems in one-dimensional waveguides.

  14. On a Result for Finite Markov Chains

    ERIC Educational Resources Information Center

    Kulathinal, Sangita; Ghosh, Lagnojita

    2006-01-01

    In an undergraduate course on stochastic processes, Markov chains are discussed in great detail. Textbooks on stochastic processes provide interesting properties of finite Markov chains. This note discusses one such property regarding the number of steps in which a state is reachable or accessible from another state in a finite Markov chain with M…

  15. Using model-based proposals for fast parameter inference on discrete state space, continuous-time Markov processes

    PubMed Central

    Pooley, C. M.; Bishop, S. C.; Marion, G.

    2015-01-01

    Bayesian statistics provides a framework for the integration of dynamic models with incomplete data to enable inference of model parameters and unobserved aspects of the system under study. An important class of dynamic models is discrete state space, continuous-time Markov processes (DCTMPs). Simulated via the Doob–Gillespie algorithm, these have been used to model systems ranging from chemistry to ecology to epidemiology. A new type of proposal, termed ‘model-based proposal’ (MBP), is developed for the efficient implementation of Bayesian inference in DCTMPs using Markov chain Monte Carlo (MCMC). This new method, which in principle can be applied to any DCTMP, is compared (using simple epidemiological SIS and SIR models as easy to follow exemplars) to a standard MCMC approach and a recently proposed particle MCMC (PMCMC) technique. When measurements are made on a single-state variable (e.g. the number of infected individuals in a population during an epidemic), model-based proposal MCMC (MBP-MCMC) is marginally faster than PMCMC (by a factor of 2–8 for the tests performed), and significantly faster than the standard MCMC scheme (by a factor of 400 at least). However, when model complexity increases and measurements are made on more than one state variable (e.g. simultaneously on the number of infected individuals in spatially separated subpopulations), MBP-MCMC is significantly faster than PMCMC (more than 100-fold for just four subpopulations) and this difference becomes increasingly large. PMID:25994297

  16. Post processing of optically recognized text via second order hidden Markov model

    NASA Astrophysics Data System (ADS)

    Poudel, Srijana

    In this thesis, we describe a postprocessing system on Optical Character Recognition(OCR) generated text. Second Order Hidden Markov Model (HMM) approach is used to detect and correct the OCR related errors. The reason for choosing the 2nd order HMM is to keep track of the bigrams so that the model can represent the system more accurately. Based on experiments with training data of 159,733 characters and testing of 5,688 characters, the model was able to correct 43.38 % of the errors with a precision of 75.34 %. However, the precision value indicates that the model introduced some new errors, decreasing the correction percentage to 26.4%.

  17. Symbolic transfer entropy rate is equal to transfer entropy rate for bivariate finite-alphabet stationary ergodic Markov processes

    NASA Astrophysics Data System (ADS)

    Haruna, Taichi; Nakajima, Kohei

    2013-05-01

    Transfer entropy is a measure of the magnitude and the direction of information flow between jointly distributed stochastic processes. In recent years, its permutation analogues are considered in the literature to estimate the transfer entropy by counting the number of occurrences of orderings of values, not the values themselves. It has been suggested that the method of permutation is easy to implement, computationally low cost and robust to noise when applying to real world time series data. In this paper, we initiate a theoretical treatment of the corresponding rates. In particular, we consider the transfer entropy rate and its permutation analogue, the symbolic transfer entropy rate, and show that they are equal for any bivariate finite-alphabet stationary ergodic Markov process. This result is an illustration of the duality method introduced in [T. Haruna, K. Nakajima, Physica D 240, 1370 (2011)]. We also discuss the relationship among the transfer entropy rate, the time-delayed mutual information rate and their permutation analogues.

  18. Spatial Coherence Properties of One Dimensional Exciton-Polariton Condensates

    NASA Astrophysics Data System (ADS)

    Fischer, J.; Savenko, I. G.; Fraser, M. D.; Holzinger, S.; Brodbeck, S.; Kamp, M.; Shelykh, I. A.; Schneider, C.; Höfling, S.

    2014-11-01

    In this work, we combine a systematic experimental investigation of the power- and temperature-dependent evolution of the spatial coherence function, g(1 )(r ) , in a one dimensional exciton-polariton channel with a modern microscopic numerical theory based on a stochastic master equation approach. The spatial coherence function g(1 )(r ) is extracted via high-precision Michelson interferometry, which allows us to demonstrate that in the regime of nonresonant excitation, the dependence g(1 )(r ) reaches a saturation value with a plateau, which is determined by the intensity of the pump and effective temperature of the crystal lattice. The theory, which was extended to allow for treating incoherent excitation in a stochastic frame, matches the experimental data with good qualitative and quantitative agreement. This allows us to verify the prediction that the decay of the off-diagonal long-range order can be almost fully suppressed in one dimensional condensate systems.

  19. Entanglement vs. gap for one-dimensional spin systems

    SciTech Connect

    Hastings, Matthew; Aharonov, Dorit; Gottesman, Daniel

    2008-01-01

    We study the relationship between entanglement and spectral gap for local Hamiltonians in one dimension. The area law for a one-dimensional system states that for the ground state, the entanglement of any interval is upper-bounded by a constant independent of the size of the interval. However, the possible dependence of the upper bound on the spectral gap {Delta} is not known, as the best known general upper bound is asymptotically much larger than the largest possible entropy of any model system previously constructed for small {Delta}. To help resolve this asymptotic behavior, we construct a family of one-dimensional local systems for which some intervals have entanglement entropy which is polynomial in 1/{Delta}, whereas previously studied systems had the entropy of all intervals bounded by a constant times log(1/{Delta}).

  20. True Bilayer Exciton Condensate of One-Dimensional Electrons

    NASA Astrophysics Data System (ADS)

    Kantian, A.; Abergel, D. S. L.

    2017-07-01

    We theoretically predict that a true bilayer exciton condensate, characterized by off-diagonal long-range order and global phase coherence, can be created in one-dimensional solid state electron systems. The mechanism by which this happens is to introduce a single particle hybridization of electron and hole populations, which locks the phase of the relevant mode and hence invalidates the Mermin-Wagner theorem. Electron-hole interactions then amplify this tendency towards off-diagonal long-range order, enhancing the condensate properties by more than an order of magnitude over the noninteracting limit. We show that the temperatures below which a substantial condensate fraction would form could reach hundreds of Kelvin, a benefit of the weak screening in one-dimensional systems.

  1. Fabrication routes for one-dimensional nanostructures via block copolymers

    NASA Astrophysics Data System (ADS)

    Tharmavaram, Maithri; Rawtani, Deepak; Pandey, Gaurav

    2017-05-01

    Nanotechnology is the field which deals with fabrication of materials with dimensions in the nanometer range by manipulating atoms and molecules. Various synthesis routes exist for the one, two and three dimensional nanostructures. Recent advancements in nanotechnology have enabled the usage of block copolymers for the synthesis of such nanostructures. Block copolymers are versatile polymers with unique properties and come in many types and shapes. Their properties are highly dependent on the blocks of the copolymers, thus allowing easy tunability of its properties. This review briefly focusses on the use of block copolymers for synthesizing one-dimensional nanostructures especially nanowires, nanorods, nanoribbons and nanofibers. Template based, lithographic, and solution based approaches are common approaches in the synthesis of nanowires, nanorods, nanoribbons, and nanofibers. Synthesis of metal, metal oxides, metal oxalates, polymer, and graphene one dimensional nanostructures using block copolymers have been discussed as well.

  2. Fate of classical solitons in one-dimensional quantum systems.

    SciTech Connect

    Pustilnik, M.; Matveev, K. A.

    2015-11-23

    We study one-dimensional quantum systems near the classical limit described by the Korteweg-de Vries (KdV) equation. The excitations near this limit are the well-known solitons and phonons. The classical description breaks down at long wavelengths, where quantum effects become dominant. Focusing on the spectra of the elementary excitations, we describe analytically the entire classical-to-quantum crossover. We show that the ultimate quantum fate of the classical KdV excitations is to become fermionic quasiparticles and quasiholes. We discuss in detail two exactly solvable models exhibiting such crossover, the Lieb-Liniger model of bosons with weak contact repulsion and the quantum Toda model, and argue that the results obtained for these models are universally applicable to all quantum one-dimensional systems with a well-defined classical limit described by the KdV equation.

  3. Adiabatic Nonlinear Probes of One-Dimensional Bose Gases

    SciTech Connect

    De Grandi, C.; Barankov, R. A.; Polkovnikov, A.

    2008-12-05

    We discuss two complimentary problems: adiabatic loading of one-dimensional bosons into an optical lattice and merging two one-dimensional Bose systems. Both problems can be mapped to the sine-Gordon model. This mapping allows us to find power-law scalings for the number of excitations with the ramping rate in the regime where the conventional linear response approach fails. We show that the exponent of this power law is sensitive to the interaction strength. In particular, the response is larger, or less adiabatic, for strongly (weakly) interacting bosons for the loading (merging) problem. Our results illustrate that in general the nonlinear response to slow relevant perturbations can be a powerful tool for characterizing properties of interacting systems.

  4. Chaotic macroscopic phases in one-dimensional oscillators

    NASA Astrophysics Data System (ADS)

    Politi, Antonio; Pikovsky, Arkady; Ullner, Ekkehard

    2017-06-01

    The connection between the macroscopic description of collective chaos and the underlying microscopic dynamics is thoroughly analysed in mean-field models of one-dimensional oscillators. We investigate to what extent infinitesimal perturbations of the microscopic configurations can provide information also on the stability of the corresponding macroscopic phase. In ensembles of identical one-dimensional dynamical units, it is possible to represent the microscopic configurations so as to make transparent their connection with the macroscopic world. As a result, we find evidence of an intermediate, mesoscopic, range of distances, over which the instability is neither controlled by the microscopic equations nor by the macroscopic ones. We examine a whole series of indicators, ranging from the usual microscopic Lyapunov exponents, to the collective ones, including finite-amplitude exponents. A system of pulse-coupled oscillators is also briefly reviewed as an example of non-identical phase oscillators where collective chaos spontaneously emerges.

  5. Interacting Electrons in Quasi-One-Dimensional Organic Superconductors

    NASA Astrophysics Data System (ADS)

    Bourbonnais, C.; Jérome, D.

    This review highlights the main features of the temperature-pressure phase diagram of the Bechgaard and Fabre salts series of quasi-one-dimensional organic superconductors. We go over the various electronic and structural instabilities found experimentally in the normal state of the sulfur (TMTTF)2X series at relatively high temperature and show how these are strongly influenced by the one-dimensional character of electronic degrees of freedom. The problem of three-dimensional long-range order is then discussed for the Fabre series and the mechanisms responsible for the spin-Peierls and Néel phase transitions are depicted. The influence of pressure on the relative stability of these phases and the emergence of quasi-particles when the Fabre series evolves towards the Bechgaard (TMTSF)2X salts series are presented. Itinerant antiferromagnetism, density-wave and uncoventional superconductivity are described and the microscopic origin of their interplay is! discussed.

  6. One-dimensional SDS gel electrophoresis of proteins.

    PubMed

    Gallagher, Sean R

    2012-04-01

    One-dimensional gel electrophoresis of proteins provides information about the molecular size, amount, and purity of a protein sample. Separated proteins can be recovered from polyacrylamide gels for subsequent characterization by a variety of secondary techniques, such as mass spectrometry to determine post-translational modifications and the amino acid sequence. In addition, one-dimensional electrophoresis is the standard first step in immunoblotting and immunodetection. Protein separations in vertical slab gels are performed in a variety of formats. Most recently, small format minigels are typical due to their ease of use, low relative cost, and ready commercial availability. Larger gels provide more separation area and thus better resolution for complex samples and continue to be in use for specialized analysis. © 2012 by John Wiley & Sons, Inc.

  7. One-dimensional SDS gel electrophoresis of proteins.

    PubMed

    Gallagher, Sean R

    2012-01-01

    One-dimensional gel electrophoresis of proteins provides information about the molecular size, amount, and purity of a protein sample. Separated proteins can be recovered from polyacrylamide gels for subsequent characterization by a variety of secondary techniques, such as mass spectrometry to determine post-translational modifications and the amino acid sequence. In addition, one-dimensional electrophoresis is the standard first step in immunoblotting and immunodetection. Protein separations in vertical slab gels are performed in a variety of formats. Most recently, small format minigels are typical due to their ease of use, low relative cost, and ready commercial availability. Larger gels provide more separation area and thus better resolution for complex samples and continue to be in use for specialized analysis. © 2012 by John Wiley & Sons, Inc.

  8. Luttinger parameter of quasi-one-dimensional para -H2

    NASA Astrophysics Data System (ADS)

    Ferré, G.; Gordillo, M. C.; Boronat, J.

    2017-02-01

    We have studied the ground-state properties of para-hydrogen in one dimension and in quasi-one-dimensional configurations using the path-integral ground-state Monte Carlo method. This method produces zero-temperature exact results for a given interaction and geometry. The quasi-one-dimensional setup has been implemented in two forms: the inner channel inside a carbon nanotube coated with H2 and a harmonic confinement of variable strength. Our main result is the dependence of the Luttinger parameter on the density within the stable regime. Going from one dimension to quasi-one dimension, keeping the linear density constant, produces a systematic increase of the Luttinger parameter. This increase is, however, not enough to reach the superfluid regime and the system always remain in the quasicrystal regime, according to Luttinger liquid theory.

  9. Boosted one dimensional fermionic superfluids on a lattice

    NASA Astrophysics Data System (ADS)

    Ray, Sayonee; Mukerjee, Subroto; Shenoy, Vijay B.

    2017-09-01

    We study the effect of a boost (Fermi sea displaced by a finite momentum) on one dimensional systems of lattice fermions with short-ranged interactions. In the absence of a boost such systems with attractive interactions possess algebraic superconducting order. Motivated by physics in higher dimensions, one might naively expect a boost to weaken and ultimately destroy superconductivity. However, we show that for one dimensional systems the effect of the boost can be to strengthen the algebraic superconducting order by making correlation functions fall off more slowly with distance. This phenomenon can manifest in interesting ways, for example, a boost can produce a Luther-Emery phase in a system with both charge and spin gaps by engendering the destruction of the former.

  10. One-dimensional Si nanolines in hydrogenated Si(001)

    NASA Astrophysics Data System (ADS)

    François, Bianco; Köster, Sigrun A.; Owen, James G. H.; Renner, Christoph; Bowler, David R.

    2012-02-01

    We present a detailed study of the structural and electronic properties of a self-assembled silicon nanoline embedded in the H-terminated silicon (001) surface, known as the Haiku stripe. The nanoline is a perfectly straight and defect free endotaxial structure of huge aspect ratio; it can grow micrometre long at a constant width of exactly four Si dimers (1.54 nm). Another remarkable property is its capacity to be exposed to air without suffering any degradation. The nanoline grows independently of any step edges at tunable densities, from isolated nanolines to a dense array of nanolines. In addition to these unique structural characteristics, scanning tunnelling microscopy and density functional theory reveal a one-dimensional state confined along the Haiku core. This nanoline is a promising candidate for the long sought after electronic solid-state one-dimensional model system to explore the fascinating quantum properties emerging in such reduced dimensionality. Phys. Rev. B, 84, 035328 (2011)

  11. Fibonacci anyon excitations of one-dimensional dipolar lattice bosons

    NASA Astrophysics Data System (ADS)

    Äńurić, Tanja; Biedroń, Krzysztof; Zakrzewski, Jakub

    2017-02-01

    We study a system of dipolar bosons in a one-dimensional optical lattice using exact diagonalization and density matrix renormalization group methods. In particular, we analyze low energy properties of the system at an average filling of 3/2 atoms per lattice site. We identify the region of the parameter space where the system has non-Abelian Fibonacci anyon excitations that correspond to fractional domain walls between different charge-density waves. When such one-dimensional systems are combined into a two-dimensional network, braiding of Fibonacci anyon excitations has potential application for fault tolerant, universal, topological quantum computation. Contrary to previous calculations, our results also demonstrate that super-solid phases are not present in the phase diagram for the discussed 3/2 average filling. Instead, decreasing the value of the nearest-neighbor tunneling strength leads to a direct, Berezinskii-Kosterlitz-Thouless, superfluid to charge-density-wave quantum phase transition.

  12. On numerical modeling of one-dimensional geothermal histories

    USGS Publications Warehouse

    Haugerud, R.A.

    1989-01-01

    Numerical models of one-dimensional geothermal histories are one way of understanding the relations between tectonics and transient thermal structure in the crust. Such models can be powerful tools for interpreting geochronologic and thermobarometric data. A flexible program to calculate these models on a microcomputer is available and examples of its use are presented. Potential problems with this approach include the simplifying assumptions that are made, limitations of the numerical techniques, and the neglect of convective heat transfer. ?? 1989.

  13. Thermal breakage of a discrete one-dimensional string.

    PubMed

    Lee, Chiu Fan

    2009-09-01

    We study the thermal breakage of a discrete one-dimensional string, with open and fixed ends, in the heavily damped regime. Basing our analysis on the multidimensional Kramers escape theory, we are able to make analytical predictions on the mean breakage rate and on the breakage propensity with respect to the breakage location on the string. We then support our predictions with numerical simulations.

  14. Fast Integration of One-Dimensional Boundary Value Problems

    NASA Astrophysics Data System (ADS)

    Campos, Rafael G.; Ruiz, Rafael García

    2013-11-01

    Two-point nonlinear boundary value problems (BVPs) in both unbounded and bounded domains are solved in this paper using fast numerical antiderivatives and derivatives of functions of L2(-∞, ∞). This differintegral scheme uses a new algorithm to compute the Fourier transform. As examples we solve a fourth-order two-point boundary value problem (BVP) and compute the shape of the soliton solutions of a one-dimensional generalized Korteweg-de Vries (KdV) equation.

  15. One-Dimensional Quantum Walks with One Defect

    NASA Astrophysics Data System (ADS)

    Cantero, M. J.; Grünbaum, F. A.; Moral, L.; Velázquez, L.

    The CGMV method allows for the general discussion of localization properties for the states of a one-dimensional quantum walk, both in the case of the integers and in the case of the nonnegative integers. Using this method we classify, according to such localization properties, all the quantum walks with one defect at the origin, providing explicit expressions for the asymptotic return probabilities to the origin.

  16. Thermalization in a one-dimensional integrable system

    SciTech Connect

    Grisins, Pjotrs; Mazets, Igor E.

    2011-11-15

    We present numerical results demonstrating the possibility of thermalization of single-particle observables in a one-dimensional system, which is integrable in both the quantum and classical (mean-field) descriptions (a quasicondensate of ultracold, weakly interacting bosonic atoms are studied as a definite example). We find that certain initial conditions admit the relaxation of single-particle observables to the equilibrium state reasonably close to that corresponding to the Bose-Einstein thermal distribution of Bogoliubov quasiparticles.

  17. One-Dimensional Hybrid Simulation of EAS Using Cascade Equations

    NASA Astrophysics Data System (ADS)

    Kalmykov, N. N.; Alekseeva, M. K.; Bergmann, T.; Chernatkin, V.; Engel, R.; Heck, D.; Moyon, J.; Ostapchenko, S. S.; Pierog, T.; Thouw, T.; Werner, K.

    2003-07-01

    A hybrid simulation code is developed that is suited for fast one-dimensional simulations of shower profiles, including fluctuations. It combines Monte Carlo simulation of high energy interactions with a fast numerical solution of cascade equations for the resulting distributions of secondary particles. First results obtained with this new code, called CONEX, are presented and compared to CORSIKA predictions, fo cusing on the treatment of the electromagnetic shower component.

  18. Exchange effects in a quasi-one-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Gold, A.; Ghazali, A.

    1990-04-01

    We calculate the electron exchange of a quasi-one-dimensional electron gas in a quantum-well wire of radius R0. A two-subband model is considered and the exchange self-energy for the first and second subband is calculated under the assumption that only the lowest subband is partially filled with electrons. Band-bending effects are also discussed. Results for the total energy per electron including kinetic and exchange energy are presented.

  19. Quasi-one-dimensional magnons in an intermetallic marcasite.

    PubMed

    Stone, M B; Lumsden, M D; Nagler, S E; Singh, D J; He, J; Sales, B C; Mandrus, D

    2012-04-20

    We present inelastic neutron scattering measurements and first principles calculations examining the intermetallic marcasite CrSb(2). The observed spin-wave dispersion implies that the magnetic interactions are strongly one-dimensional with antiferromagnetic chains parallel to the crystalline c axis. Such low-dimensional excitations are unexpected in a semiconducting intermetallic system. Moreover, we observe a clear anisotropic thermal conductivity indicating that the magnetic anisotropy enhances thermoelectric properties along particular crystallographic directions.

  20. Quasi-One-Dimensional Magnons in an Intermetallic Marcasite

    NASA Astrophysics Data System (ADS)

    Stone, M. B.; Lumsden, M. D.; Nagler, S. E.; Singh, D. J.; He, J.; Sales, B. C.; Mandrus, D.

    2012-04-01

    We present inelastic neutron scattering measurements and first principles calculations examining the intermetallic marcasite CrSb2. The observed spin-wave dispersion implies that the magnetic interactions are strongly one-dimensional with antiferromagnetic chains parallel to the crystalline c axis. Such low-dimensional excitations are unexpected in a semiconducting intermetallic system. Moreover, we observe a clear anisotropic thermal conductivity indicating that the magnetic anisotropy enhances thermoelectric properties along particular crystallographic directions.

  1. Defects in a nonlinear pseudo one-dimensional solid

    NASA Astrophysics Data System (ADS)

    Blanchet, Graciela B.; Fincher, C. R., Jr.

    1985-03-01

    These infrared studies of acetanilide together with the existence of two equivalent structures for the hydrogen-bonded chain suggest the possibility of a topological defect state rather than a Davydov soliton as suggested previously. Acetanilide is an example of a class of one-dimensional materials where solitons are a consequence of a twofold degenerate structure and the nonlinear dynamics of the hydrogen-bonded network.

  2. Duality and phase diagram of one-dimensional transport

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Somendra M.

    2007-02-01

    The idea of duality in one-dimensional nonequilibrium transport is introduced by generalizing the observations by Mukherji and Mishra. A general approach is developed for the classification and characterization of the steady state phase diagrams which are shown to be determined by the nature of the zeros of a set of coarse-grained functions that encode the microscopic dynamics. A new class of nonequilibrium multicritical points has been identified.

  3. Nonequilibrium statistical mechanics in one-dimensional bose gases

    NASA Astrophysics Data System (ADS)

    Baldovin, F.; Cappellaro, A.; Orlandini, E.; Salasnich, L.

    2016-06-01

    We study cold dilute gases made of bosonic atoms, showing that in the mean-field one-dimensional regime they support stable out-of-equilibrium states. Starting from the 3D Boltzmann-Vlasov equation with contact interaction, we derive an effective 1D Landau-Vlasov equation under the condition of a strong transverse harmonic confinement. We investigate the existence of out-of-equilibrium states, obtaining stability criteria similar to those of classical plasmas.

  4. Single parameter scaling in one-dimensional localization revisited

    PubMed

    Deych; Lisyansky; Altshuler

    2000-03-20

    The variance of the Lyapunov exponent is calculated exactly in the one-dimensional Anderson model with random site energies distributed according to the Cauchy distribution. We find a new significant scaling parameter in the system, and derive an exact analytical criterion for single parameter scaling which differs from the commonly used condition of phase randomization. The results obtained are applied to the Kronig-Penney model with the potential in the form of periodically positioned delta functions with random strength.

  5. One-dimensional photonic crystals bound by light

    NASA Astrophysics Data System (ADS)

    Cui, Liyong; Li, Xiao; Chen, Jun; Cao, Yongyin; Du, Guiqiang; Ng, Jack

    2017-08-01

    Through rigorous simulations, the light scattering induced optical binding of one-dimensional (1D) dielectric photonic crystals is studied. The optical forces corresponding to the pass band, band gap, and band edge are qualitatively different. It is shown that light can induce self-organization of dielectric slabs into stable photonic crystals, with its lower band edge coinciding with the incident light frequency. Incident light at normal and oblique incidence and photonic crystals with parity-time symmetry are also considered.

  6. Quasi-One-Dimensional Modeling of Pulse Detonation Rocket Engines

    NASA Technical Reports Server (NTRS)

    Morris, Christopher I.

    2002-01-01

    . While such a nozzle is a considerable idealization, it is clear that nozzle design and optimization will play a critical role in whether the performance potential of PDREs can be effectively realized in practice. In order to study PDRE nozzle issues with greater accuracy, a quasi-one-dimensional, finite-rate chemistry CFD code has been developed by the author. Comparisons of the code with both the previous MOC model and experimental data from Stanford University are reported. The effect of constant-gamma and finite-rate chemistry assumptions on the flowfield and performance is examined. Parametric studies of the effect of nozzle throat size and expansion ratio, at various blowdown pressure ratios, are reported.

  7. Dynamical structure factor of one-dimensional hard rods

    NASA Astrophysics Data System (ADS)

    Motta, M.; Vitali, E.; Rossi, M.; Galli, D. E.; Bertaina, G.

    2016-10-01

    The zero-temperature dynamical structure factor S (q ,ω ) of one-dimensional hard rods is computed using state-of-the-art quantum Monte Carlo and analytic continuation techniques, complemented by a Bethe ansatz analysis. As the density increases, S (q ,ω ) reveals a crossover from the Tonks-Girardeau gas to a quasisolid regime, along which the low-energy properties are found in agreement with the nonlinear Luttinger liquid theory. Our quantitative estimate of S (q ,ω ) extends beyond the low-energy limit and confirms a theoretical prediction regarding the behavior of S (q ,ω ) at specific wave vectors Qn=n 2 π /a , where a is the core radius, resulting from the interplay of the particle-hole boundaries of suitably rescaled ideal Fermi gases. We observe significant similarities between hard rods and one-dimensional 4He at high density, suggesting that the hard-rods model may provide an accurate description of dense one-dimensional liquids of quantum particles interacting through a strongly repulsive, finite-range potential.

  8. Analysis of necking based on a one-dimensional model

    NASA Astrophysics Data System (ADS)

    Audoly, Basile; Hutchinson, John W.

    2016-12-01

    Dimensional reduction is applied to derive a one-dimensional energy functional governing tensile necking localization in a family of initially uniform prismatic solids, including as particular cases rectilinear blocks in plane strain and cylindrical bars undergoing axisymmetric deformations. The energy functional depends on both the axial stretch and its gradient. The coefficient of the gradient term is derived in an exact and general form. The one-dimensional model is used to analyze necking localization for nonlinear elastic materials that experience a maximum load under tensile loading, and for a class of nonlinear materials that mimic elastic-plastic materials by displaying a linear incremental response when stretch switches from increasing to decreasing. Bifurcation predictions for the onset of necking from the simplified theory compared with exact results suggest the approach is highly accurate at least when the departures from uniformity are not too large. Post-bifurcation behavior is analyzed to the point where the neck is fully developed and localized to a region on the order of the thickness of the block or bar. Applications to the nonlinear elastic and elastic-plastic materials reveal the highly unstable nature of necking for the former and the stable behavior for the latter, except for geometries where the length of the block or bar is very large compared to its thickness. A formula for the effective stress reduction at the center of a neck is established based on the one-dimensional model, which is similar to that suggested by Bridgman (1952).

  9. Signal Processing of MEMS Gyroscope Arrays to Improve Accuracy Using a 1st Order Markov for Rate Signal Modeling

    PubMed Central

    Jiang, Chengyu; Xue, Liang; Chang, Honglong; Yuan, Guangmin; Yuan, Weizheng

    2012-01-01

    This paper presents a signal processing technique to improve angular rate accuracy of the gyroscope by combining the outputs of an array of MEMS gyroscope. A mathematical model for the accuracy improvement was described and a Kalman filter (KF) was designed to obtain optimal rate estimates. Especially, the rate signal was modeled by a first-order Markov process instead of a random walk to improve overall performance. The accuracy of the combined rate signal and affecting factors were analyzed using a steady-state covariance. A system comprising a six-gyroscope array was developed to test the presented KF. Experimental tests proved that the presented model was effective at improving the gyroscope accuracy. The experimental results indicated that six identical gyroscopes with an ARW noise of 6.2 °/√h and a bias drift of 54.14 °/h could be combined into a rate signal with an ARW noise of 1.8 °/√h and a bias drift of 16.3 °/h, while the estimated rate signal by the random walk model has an ARW noise of 2.4 °/√h and a bias drift of 20.6 °/h. It revealed that both models could improve the angular rate accuracy and have a similar performance in static condition. In dynamic condition, the test results showed that the first-order Markov process model could reduce the dynamic errors 20% more than the random walk model. PMID:22438734

  10. Complex Sequencing Rules of Birdsong Can be Explained by Simple Hidden Markov Processes

    PubMed Central

    Katahira, Kentaro; Suzuki, Kenta; Okanoya, Kazuo; Okada, Masato

    2011-01-01

    Complex sequencing rules observed in birdsongs provide an opportunity to investigate the neural mechanism for generating complex sequential behaviors. To relate the findings from studying birdsongs to other sequential behaviors such as human speech and musical performance, it is crucial to characterize the statistical properties of the sequencing rules in birdsongs. However, the properties of the sequencing rules in birdsongs have not yet been fully addressed. In this study, we investigate the statistical properties of the complex birdsong of the Bengalese finch (Lonchura striata var. domestica). Based on manual-annotated syllable labeles, we first show that there are significant higher-order context dependencies in Bengalese finch songs, that is, which syllable appears next depends on more than one previous syllable. We then analyze acoustic features of the song and show that higher-order context dependencies can be explained using first-order hidden state transition dynamics with redundant hidden states. This model corresponds to hidden Markov models (HMMs), well known statistical models with a large range of application for time series modeling. The song annotation with these models with first-order hidden state dynamics agreed well with manual annotation, the score was comparable to that of a second-order HMM, and surpassed the zeroth-order model (the Gaussian mixture model; GMM), which does not use context information. Our results imply that the hierarchical representation with hidden state dynamics may underlie the neural implementation for generating complex behavioral sequences with higher-order dependencies. PMID:21915345

  11. Complex sequencing rules of birdsong can be explained by simple hidden Markov processes.

    PubMed

    Katahira, Kentaro; Suzuki, Kenta; Okanoya, Kazuo; Okada, Masato

    2011-01-01

    Complex sequencing rules observed in birdsongs provide an opportunity to investigate the neural mechanism for generating complex sequential behaviors. To relate the findings from studying birdsongs to other sequential behaviors such as human speech and musical performance, it is crucial to characterize the statistical properties of the sequencing rules in birdsongs. However, the properties of the sequencing rules in birdsongs have not yet been fully addressed. In this study, we investigate the statistical properties of the complex birdsong of the Bengalese finch (Lonchura striata var. domestica). Based on manual-annotated syllable labeles, we first show that there are significant higher-order context dependencies in Bengalese finch songs, that is, which syllable appears next depends on more than one previous syllable. We then analyze acoustic features of the song and show that higher-order context dependencies can be explained using first-order hidden state transition dynamics with redundant hidden states. This model corresponds to hidden Markov models (HMMs), well known statistical models with a large range of application for time series modeling. The song annotation with these models with first-order hidden state dynamics agreed well with manual annotation, the score was comparable to that of a second-order HMM, and surpassed the zeroth-order model (the Gaussian mixture model; GMM), which does not use context information. Our results imply that the hierarchical representation with hidden state dynamics may underlie the neural implementation for generating complex behavioral sequences with higher-order dependencies.

  12. Metrics for Labeled Markov Systems

    NASA Technical Reports Server (NTRS)

    Desharnais, Josee; Jagadeesan, Radha; Gupta, Vineet; Panangaden, Prakash

    1999-01-01

    Partial Labeled Markov Chains are simultaneously generalizations of process algebra and of traditional Markov chains. They provide a foundation for interacting discrete probabilistic systems, the interaction being synchronization on labels as in process algebra. Existing notions of process equivalence are too sensitive to the exact probabilities of various transitions. This paper addresses contextual reasoning principles for reasoning about more robust notions of "approximate" equivalence between concurrent interacting probabilistic systems. The present results indicate that:We develop a family of metrics between partial labeled Markov chains to formalize the notion of distance between processes. We show that processes at distance zero are bisimilar. We describe a decision procedure to compute the distance between two processes. We show that reasoning about approximate equivalence can be done compositionally by showing that process combinators do not increase distance. We introduce an asymptotic metric to capture asymptotic properties of Markov chains; and show that parallel composition does not increase asymptotic distance.

  13. One-Dimensional Scanning Approach to Shock Sensing

    NASA Technical Reports Server (NTRS)

    Tokars, Roger; Adamovsky, Girgory; Floyd, Bertram

    2009-01-01

    Measurement tools for high speed air flow are sought both in industry and academia. Particular interest is shown in air flows that exhibit aerodynamic shocks. Shocks are accompanied by sudden changes in density, pressure, and temperature. Optical detection and characterization of such shocks can be difficult because the medium is normally transparent air. A variety of techniques to analyze these flows are available, but they often require large windows and optical components as in the case of Schlieren measurements and/or large operating powers which precludes their use for in-flight monitoring and applications. The one-dimensional scanning approach in this work is a compact low power technique that can be used to non-intrusively detect shocks. The shock is detected by analyzing the optical pattern generated by a small diameter laser beam as it passes through the shock. The optical properties of a shock result in diffraction and spreading of the beam as well as interference fringes. To investigate the feasibility of this technique a shock is simulated by a 426 m diameter optical fiber. Analysis of results revealed a direct correlation between the optical fiber or shock location and the beam s diffraction pattern. A plot of the width of the diffraction pattern vs. optical fiber location reveals that the width of the diffraction pattern was maximized when the laser beam is directed at the center of the optical fiber. This work indicates that the one-dimensional scanning approach may be able to determine the location of an actual shock. Near and far field effects associated with a small diameter laser beam striking an optical fiber used as a simulated shock are investigated allowing a proper one-dimensional scanning beam technique.

  14. One-dimensional organic lead halide perovskites with efficient bluish white-light emission

    NASA Astrophysics Data System (ADS)

    Yuan, Zhao; Zhou, Chenkun; Tian, Yu; Shu, Yu; Messier, Joshua; Wang, Jamie C.; van de Burgt, Lambertus J.; Kountouriotis, Konstantinos; Xin, Yan; Holt, Ethan; Schanze, Kirk; Clark, Ronald; Siegrist, Theo; Ma, Biwu

    2017-01-01

    Organic-inorganic hybrid metal halide perovskites, an emerging class of solution processable photoactive materials, welcome a new member with a one-dimensional structure. Herein we report the synthesis, crystal structure and photophysical properties of one-dimensional organic lead bromide perovskites, C4N2H14PbBr4, in which the edge sharing octahedral lead bromide chains [PbBr4 2-]∞ are surrounded by the organic cations C4N2H14 2+ to form the bulk assembly of core-shell quantum wires. This unique one-dimensional structure enables strong quantum confinement with the formation of self-trapped excited states that give efficient bluish white-light emissions with photoluminescence quantum efficiencies of approximately 20% for the bulk single crystals and 12% for the microscale crystals. This work verifies once again that one-dimensional systems are favourable for exciton self-trapping to produce highly efficient below-gap broadband luminescence, and opens up a new route towards superior light emitters based on bulk quantum materials.

  15. One-dimensional organic lead halide perovskites with efficient bluish white-light emission

    PubMed Central

    Yuan, Zhao; Zhou, Chenkun; Tian, Yu; Shu, Yu; Messier, Joshua; Wang, Jamie C.; van de Burgt, Lambertus J.; Kountouriotis, Konstantinos; Xin, Yan; Holt, Ethan; Schanze, Kirk; Clark, Ronald; Siegrist, Theo; Ma, Biwu

    2017-01-01

    Organic-inorganic hybrid metal halide perovskites, an emerging class of solution processable photoactive materials, welcome a new member with a one-dimensional structure. Herein we report the synthesis, crystal structure and photophysical properties of one-dimensional organic lead bromide perovskites, C4N2H14PbBr4, in which the edge sharing octahedral lead bromide chains [PbBr4 2−]∞ are surrounded by the organic cations C4N2H14 2+ to form the bulk assembly of core-shell quantum wires. This unique one-dimensional structure enables strong quantum confinement with the formation of self-trapped excited states that give efficient bluish white-light emissions with photoluminescence quantum efficiencies of approximately 20% for the bulk single crystals and 12% for the microscale crystals. This work verifies once again that one-dimensional systems are favourable for exciton self-trapping to produce highly efficient below-gap broadband luminescence, and opens up a new route towards superior light emitters based on bulk quantum materials. PMID:28051092

  16. Quantum Simulations of One-Dimensional Nanostructures under Arbitrary Deformations

    NASA Astrophysics Data System (ADS)

    Koskinen, Pekka

    2016-09-01

    A powerful technique is introduced for simulating mechanical and electromechanical properties of one-dimensional nanostructures under arbitrary combinations of bending, twisting, and stretching. The technique is based on an unconventional control of periodic symmetry which eliminates artifacts due to deformation constraints and quantum finite-size effects and allows transparent electronic-structure analysis. Via density-functional tight-binding implementation, the technique demonstrates its utility by predicting nonlinear electromechanical properties in carbon nanotubes and abrupt behavior in the structural yielding of Au7 and Mo6 S6 nanowires. The technique drives simulations markedly closer to the realistic modeling of these slender nanostructures under experimental conditions.

  17. Coherent Backscattering of Light Off One-Dimensional Atomic Strings

    NASA Astrophysics Data System (ADS)

    Sørensen, H. L.; Béguin, J.-B.; Kluge, K. W.; Iakoupov, I.; Sørensen, A. S.; Müller, J. H.; Polzik, E. S.; Appel, J.

    2016-09-01

    We present the first experimental realization of coherent Bragg scattering off a one-dimensional system—two strings of atoms strongly coupled to a single photonic mode—realized by trapping atoms in the evanescent field of a tapered optical fiber, which also guides the probe light. We report nearly 12% power reflection from strings containing only about 1000 cesium atoms, an enhancement of 2 orders of magnitude compared to reflection from randomly positioned atoms. This result paves the road towards collective strong coupling in 1D atom-photon systems. Our approach also allows for a straightforward fiber connection between several distant 1D atomic crystals.

  18. Coupling of impurity modes in one-dimensional periodic systems.

    PubMed

    Royo, P; Stanley, R P; Ilegems, M

    2001-07-01

    One-dimensional periodic dielectric structures are known to exhibit band gaps because of their symmetry. Defect states can be found in the band gaps if an impurity layer is added to the lattice such that the symmetry of the structure is broken. In this paper, we consider the case where a second impurity layer is added and we discuss the existence of coupling between the two defects. We discuss the possibility of exploiting the coupling of impurity modes in the realization of tunable wavelength emitting devices and dual-wavelength vertical-cavity surface-emitting lasers.

  19. Purcell effect in one-dimensional photonic quasicrystals

    NASA Astrophysics Data System (ADS)

    Morozov, K. M.; Ivanov, K. A.; Gubaydullin, A. R.; Kaliteevski, M. A.

    2017-02-01

    The change in probability of spontaneous emission for emitter placed in one-dimensional photonic quasicrystal (optical Fibonacci lattice) was examined. When the dipole is placed in Fibonacci lattice two different scenarios can be expected: enhancing (if frequency and direction of the dipole emission correspond to optical eigenmode of structure, and position corresponds to maximum value of modes electric field profile) or suppression (in case of photonic band gap) of spontaneous emission rate. Fact that both effects are expressed in quasicrystals less than in the Bragg reflectors and in the microcavities was demonstrated.

  20. An improved lambda-scheme for one-dimensional flows

    NASA Technical Reports Server (NTRS)

    Moretti, G.; Dipiano, M. T.

    1983-01-01

    A code for the calculation of one-dimensional flows is presented, which combines a simple and efficient version of the lambda-scheme with tracking of discontinuities. The latter is needed to identify points where minor departures from the basic integration scheme are applied to prevent infiltration of numerical errors. Such a tracking is obtained via a systematic application of Boolean algebra. It is, therefore, very efficient. Fifteen examples are presented and discussed in detail. The results are exceptionally good. All discontinuites are captured within one mesh interval.

  1. Entanglement entropy and complexity for one-dimensional holographic superconductors

    NASA Astrophysics Data System (ADS)

    Kord Zangeneh, Mahdi; Ong, Yen Chin; Wang, Bin

    2017-08-01

    Holographic superconductor is an important arena for holography, as it allows concrete calculations to further understand the dictionary between bulk physics and boundary physics. An important quantity of recent interest is the holographic complexity. Conflicting claims had been made in the literature concerning the behavior of holographic complexity during phase transition. We clarify this issue by performing a numerical study on one-dimensional holographic superconductor. Our investigation shows that holographic complexity does not behave in the same way as holographic entanglement entropy. Nevertheless, the universal terms of both quantities are finite and reflect the phase transition at the same critical temperature.

  2. One-dimensional metal oxide nanostructures for heterogeneous catalysis.

    PubMed

    Zhang, Qian; Wang, Hsin-Yi; Jia, Xinli; Liu, Bin; Yang, Yanhui

    2013-08-21

    Metal oxides are of paramount importance in heterogeneous catalysis as either supports or active phases. Controlled synthesis of one-dimensional (1D) metal oxide nanostructures has received enormous attention in heterogeneous catalysis due to the possibility of tailoring the properties of metal oxides by tuning their shapes, sizes, and compositions. This feature article highlights recent advances in shape controlled synthesis of 1D metal oxide nanostructures and their applications in heterogeneous catalysis, with the aim of introducing new insights into the heterogeneous catalyst design.

  3. Correlations in light propagation in one-dimensional waveguides

    NASA Astrophysics Data System (ADS)

    Javanainen, Juha; Ruostekoski, Janne

    2016-05-01

    We study light propagation between atoms in a one-dimensional waveguide both analytically and using numerical simulations. We employ classical electrodynamics, but in the limit of low light intensity the results are essentially exact also for quantum mechanics. We characterize the cooperative interactions between the atoms mediated by the electromagnetic field. The focus is on resonance shifts for various statistics of the positions of the atoms, such as statistically independent positions or atoms in a regular lattice. These shifts, potentially important if 1D waveguides are to be used in metrology, are different from the usual resonance shifts found in three spatial dimensions.

  4. Saturable discrete vector solitons in one-dimensional photonic lattices

    SciTech Connect

    Vicencio, Rodrigo A.; Smirnov, Eugene; Rueter, Christian E.; Kip, Detlef; Stepic, Milutin

    2007-09-15

    Localized vectorial modes, with equal frequencies and mutually orthogonal polarizations, are investigated both analytically and experimentally in a one-dimensional photonic lattice with defocusing saturable nonlinearity. It is shown that these modes may span over many lattice elements and that energy transfer among the two components is both phase and intensity dependent. The transverse electrically polarized mode exhibits a single-hump structure and spreads in cascades in saturation, while the transverse magnetically polarized mode exhibits splitting into a two-hump structure. Experimentally such discrete vector solitons are observed in lithium niobate lattices for both coherent and mutually incoherent excitations.

  5. One-dimensional neutron imager for the Sandia Z facility.

    PubMed

    Fittinghoff, David N; Bower, Dan E; Hollaway, James R; Jacoby, Barry A; Weiss, Paul B; Buckles, Robert A; Sammons, Timothy J; McPherson, Leroy A; Ruiz, Carlos L; Chandler, Gordon A; Torres, José A; Leeper, Ramon J; Cooper, Gary W; Nelson, Alan J

    2008-10-01

    A multiinstitution collaboration is developing a neutron imaging system for the Sandia Z facility. The initial system design is for slit aperture imaging system capable of obtaining a one-dimensional image of a 2.45 MeV source producing 5x10(12) neutrons with a resolution of 320 microm along the axial dimension of the plasma, but the design being developed can be modified for two-dimensional imaging and imaging of DT neutrons with other resolutions. This system will allow us to understand the spatial production of neutrons in the plasmas produced at the Z facility.

  6. Parallel solution of sparse one-dimensional dynamic programming problems

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1989-01-01

    Parallel computation offers the potential for quickly solving large computational problems. However, it is often a non-trivial task to effectively use parallel computers. Solution methods must sometimes be reformulated to exploit parallelism; the reformulations are often more complex than their slower serial counterparts. We illustrate these points by studying the parallelization of sparse one-dimensional dynamic programming problems, those which do not obviously admit substantial parallelization. We propose a new method for parallelizing such problems, develop analytic models which help us to identify problems which parallelize well, and compare the performance of our algorithm with existing algorithms on a multiprocessor.

  7. Numerical computations on one-dimensional inverse scattering problems

    NASA Technical Reports Server (NTRS)

    Dunn, M. H.; Hariharan, S. I.

    1983-01-01

    An approximate method to determine the index of refraction of a dielectric obstacle is presented. For simplicity one dimensional models of electromagnetic scattering are treated. The governing equations yield a second order boundary value problem, in which the index of refraction appears as a functional parameter. The availability of reflection coefficients yield two additional boundary conditions. The index of refraction by a k-th order spline which can be written as a linear combination of B-splines is approximated. For N distinct reflection coefficients, the resulting N boundary value problems yield a system of N nonlinear equations in N unknowns which are the coefficients of the B-splines.

  8. Three material and four material one-dimensional phononic crystals

    NASA Astrophysics Data System (ADS)

    Kriegel, Ilka; Scotognella, Francesco

    2017-01-01

    In this work, we studied one-dimensional phononic structures for selective acoustic filtering. The structures are composed of three and four materials which have different elastic properties. We have observed that the phononic band gaps split in two and three transmission valleys for the three-material and the four-material based phononic structures, respectively. Furthermore, the number of transmission peaks between the split gaps is directly related to the number of unit cells composing the phononic structures. The observations of this work can be useful for the fabrication of acoustic filters with the possibility to select the transmission of particular frequencies.

  9. One-dimensional hydrodynamic model generating a turbulent cascade

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takeshi; Sakajo, Takashi

    2016-05-01

    As a minimal mathematical model generating cascade analogous to that of the Navier-Stokes turbulence in the inertial range, we propose a one-dimensional partial-differential-equation model that conserves the integral of the squared vorticity analog (enstrophy) in the inviscid case. With a large-scale random forcing and small viscosity, we find numerically that the model exhibits the enstrophy cascade, the broad energy spectrum with a sizable correction to the dimensional-analysis prediction, peculiar intermittency, and self-similarity in the dynamical system structure.

  10. One-dimensional intense laser pulse solitons in a plasma

    SciTech Connect

    Sudan, R.N.; Dimant, Y.S.; Shiryaev, O.B.

    1997-05-01

    A general analytical framework is developed for the nonlinear dispersion relations of a class of large amplitude one-dimensional isolated envelope solitons for modulated light pulse coupled to electron plasma waves, previously investigated numerically [Kozlov {ital et al.}, Zh. Eksp. Teor. Fiz. {bold 76}, 148 (1979); Kaw {ital et al.}, Phys. Rev. Lett. {bold 68}, 3172 (1992)]. The analytical treatment of weakly nonlinear solitons [Kuehl and Zhang, Phys. Rev. E {bold 48}, 1316 (1993)] is extended to the strongly nonlinear limit. {copyright} {ital 1997 American Institute of Physics.}

  11. Absolute negative mobility in a one-dimensional overdamped system

    NASA Astrophysics Data System (ADS)

    Chen, Ru-Yin; Nie, Lin-Ru; Pan, Wan-Li; Zhang, Jian-Qiang

    2015-10-01

    A one-dimensional overdamped system consisting of a symmetric periodic potential, a constant bias force and a trichotomous noise was investigated. In the frame of master equations, we derived analytical expression of its current. By means of numerical calculations, the results indicate that the current first increases, then decreases and finally increases with the bias force increasing, i.e., an absolute negative mobility (ANM) phenomenon. Our further investigations presented dependence of the ANM phenomenon on parameters of the noise. Its intrinsic physical mechanism was also open up, and a minimal model with ANM phenomenon is demonstrated.

  12. Quantum Criticality of Quasi-One-Dimensional Topological Anderson Insulators

    NASA Astrophysics Data System (ADS)

    Altland, Alexander; Bagrets, Dmitry; Fritz, Lars; Kamenev, Alex; Schmiedt, Hanno

    2014-05-01

    We present an analytic theory of quantum criticality in the quasi-one-dimensional topological Anderson insulators of class AIII and BDI. We describe the systems in terms of two parameters (g, χ) representing localization and topological properties, respectively. Surfaces of half-integer valued χ define phase boundaries between distinct topological sectors. Upon increasing system size, the two parameters exhibit flow similar to the celebrated two-parameter flow describing the class A quantum Hall insulator. However, unlike the quantum Hall system, an exact analytical description of the entire phase diagram can be given. We check the quantitative validity of our theory by comparison to numerical transfer matrix computations.

  13. Polarization hydrodynamics in a one-dimensional polariton condensate

    NASA Astrophysics Data System (ADS)

    Larré, P.-É.; Pavloff, N.; Kamchatnov, A. M.

    2013-12-01

    We study the hydrodynamics of a nonresonantly pumped polariton condensate in a quasi-one-dimensional quantum wire taking into account the spin degree of freedom. We clarify the relevance of the Landau criterion for superfluidity in this dissipative two-component system. Two Cherenkov-like critical velocities are identified corresponding to the opening of different channels of radiation: one of (damped) density fluctuations and another of (weakly damped) polarization fluctuations. We determine the drag force exerted onto an external obstacle and propose experimentally measurable consequences of the specific features of the fluctuations of polarization.

  14. Molecular nanostamp based on one-dimensional porphyrin polymers.

    PubMed

    Kanaizuka, Katsuhiko; Izumi, Atsushi; Ishizaki, Manabu; Kon, Hiroki; Togashi, Takanari; Miyake, Ryosuke; Ishida, Takao; Tamura, Ryo; Haga, Masa-aki; Moritani, Youji; Sakamoto, Masatomi; Kurihara, Masato

    2013-08-14

    Surface design with unique functional molecules by a convenient one-pot treatment is an attractive project for the creation of smart molecular devices. We have employed a silane coupling reaction of porphyrin derivatives that form one-dimensional polymer wires on substrates. Our simple one-pot treatment of a substrate with porphyrin has successfully achieved the construction of nanoscale bamboo shoot structures. The nanoscale bamboo shoots on the substrates were characterized by atomic force microscopy (AFM), UV-vis spectra, and X-ray diffraction (XRD) measurements. The uneven and rigid nanoscale structure has been used as a stamp for constructing bamboo shoot structures of fullerene.

  15. Universality of anomalous one-dimensional heat conductivity

    NASA Astrophysics Data System (ADS)

    Lepri, Stefano; Livi, Roberto; Politi, Antonio

    2003-12-01

    In one and two dimensions, transport coefficients may diverge in the thermodynamic limit due to long-time correlation of the corresponding currents. The effective asymptotic behavior is addressed with reference to the problem of heat transport in one-dimensional crystals, modeled by chains of classical nonlinear oscillators. Extensive accurate equilibrium and nonequilibrium numerical simulations confirm that the finite-size thermal conductivity diverges with system size L as κ∝Lα. However, the exponent α deviates systematically from the theoretical prediction α=1/3 proposed in a recent paper [O. Narayan and S. Ramaswamy, Phys. Rev. Lett. 89, 200601 (2002)].

  16. Singular Spectrum of Lebesgue Measure Zerofor One-Dimensional Quasicrystals

    NASA Astrophysics Data System (ADS)

    Lenz, Daniel

    The spectrum of one-dimensional discrete Schr\\"odinger operators associated to strictly ergodic dynamical systems is shown to coincide with the set of zeros of the Lyapunov exponent if and only if the Lyapunov exponent exists uniformly. This is used to obtain Cantor spectrum of zero Lebesgue measure for all aperiodic subshifts with uniform positive weights. This covers, in particular, all aperiodic subshifts arising from primitive substitutions including new examples as e.g. the Rudin-Shapiro substitution. Our investigation is not based on trace maps. Instead it relies on an Oseledec type theorem due to A. Furman and a uniform ergodic theorem due to the author.

  17. Wave propagation in one-dimensional microscopic granular chains

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Hsun; Daraio, Chiara

    2016-11-01

    We employ noncontact optical techniques to generate and measure stress waves in uncompressed, one-dimensional microscopic granular chains, and support our experiments with discrete numerical simulations. We show that the wave propagation through dry particles (150 μm radius) is highly nonlinear and it is significantly influenced by the presence of defects (e.g., surface roughness, interparticle gaps, and misalignment). We derive an analytical relation between the group velocity and gap size, and define bounds for the formation of highly nonlinear solitary waves as a function of gap size and axial misalignment.

  18. One-dimensional model of fluidized-bed combustor dynamics

    SciTech Connect

    Perez, R.B.

    1980-01-01

    Starting from Soo's basic multiphase equations, a set of one-dimensional time-dependent hydrodynamic and enthalpy equations was developed for a fluidized bed reactor by averaging over its cross sectional area. The following effects were not considered in the derivation of the FBC equations: forces to accelerate the apparent mass of the solid particle, basset force, heat exchange by radiation between solids and fluid or within each phase, and electrodynamic effects. Within these restrictions, the material developed here forms the basis for a sequel to this report devoted to the development of stability studies and to the application of stochastic methods for FBC surveillance.

  19. Quantum mechanics of graphene with a one-dimensional potential

    SciTech Connect

    Miserev, D. S.; Entin, M. V.

    2012-10-15

    Electron states in graphene with a one-dimensional potential have been studied. An approximate solution has been obtained for a small angle between vectors of the incident electron momentum and potential gradient. Exactly solvable problems with a potential of the smoothened step type U(x) Utanh(x/a) and a potential with a singularity U(x) = -U/(|x| + d) are considered. The transmission/reflection coefficients and phases for various potential barriers are determined. A quasi-classical solution is obtained.

  20. A statistical formulation of one-dimensional electron fluid turbulence

    NASA Technical Reports Server (NTRS)

    Fyfe, D.; Montgomery, D.

    1977-01-01

    A one-dimensional electron fluid model is investigated using the mathematical methods of modern fluid turbulence theory. Non-dissipative equilibrium canonical distributions are determined in a phase space whose co-ordinates are the real and imaginary parts of the Fourier coefficients for the field variables. Spectral densities are calculated, yielding a wavenumber electric field energy spectrum proportional to k to the negative second power for large wavenumbers. The equations of motion are numerically integrated and the resulting spectra are found to compare well with the theoretical predictions.

  1. Strongly anisotropic wetting on one-dimensional nanopatterned surfaces.

    PubMed

    Xia, Deying; Brueck, S R J

    2008-09-01

    This communication reports strongly anisotropic wetting behavior on one-dimensional nanopatterned surfaces. Contact angles, degree of anisotropy, and droplet distortion are measured on micro- and nanopatterned surfaces fabricated with interference lithography. Both the degree of anisotropy and the droplet distortion are extremely high as compared with previous reports because of the well-defined nanostructural morphology. The surface is manipulated to tune with the wetting from hydrophobic to hydrophilic while retaining the structural wetting anisotropy with a simple silica nanoparticle overcoat. The wetting mechanisms are discussed. Potential applications in microfluidic devices and evaporation-induced pattern formation are demonstrated.

  2. Scanned gate microscopy of a one-dimensional quantum dot.

    PubMed

    Zhang, Lingfeng M; Fogler, Michael M

    2006-10-01

    We analyze electrostatic interaction between a sharp conducting tip and a thin one-dimensional wire, e.g., a carbon nanotube, in a scanned gate microscopy (SGM) experiment. The problem is analytically tractable if the wire resides on a thin dielectric substrate above a metallic backgate. The characteristic spatial scale of the electrostatic coupling to the tip is equal to its height above the substrate. Numerical simulations indicate that imaging of individual electrons by SGM is possible once the mean electron separation exceeds this scale (typically, a few tens of nm). Differences between weakly and strongly invasive SGM regimes are pointed out.

  3. Numerical Simulations of One-dimensional Microstructure Dynamics

    SciTech Connect

    Berezovski, M.; Berezovski, A.; Engelbrecht, J.

    2010-05-21

    Results of numerical simulations of one-dimensional wave propagation in microstructured solids are presented and compared with the corresponding results of wave propagation in given layered media. A linear microstructure model based on Mindlin theory is adopted and represented in the framework of the internal variable theory. Fully coupled systems of equations for macro-motion and microstructure evolution are rewritten in the form of conservation laws. A modification of wave propagation algorithm is used for numerical calculations. It is shown how the initial microstructure model can be improved in order to match the results obtained by both approaches.

  4. Functional One-Dimensional Lipid Bilayers on Carbon Nanotube Templates

    SciTech Connect

    Artyukhin, A; Shestakov, A; Harper, J; Bakajin, O; Stroeve, P; Noy, A

    2004-07-23

    We present one-dimensional (1-D) lipid bilayer structures that integrate carbon nanotubes with a key biological environment-phospholipid membrane. Our structures consist of lipid bilayers wrapped around carbon nanotubes modified with a hydrophilic polymer cushion layer. Despite high bilayer curvature, the lipid membrane maintains its fluidity and can sustain repeated damage-recovery cycles. We also present the first evidence of spontaneous insertion of pore-forming proteins into 1-D lipid bilayers. These structures could lead to the development of new classes of biosensors and bioelectronic devices.

  5. The Interfaces of One-Dimensional Flows in Porous Media.

    DTIC Science & Technology

    1983-07-01

    Words: flows in porous media, interfaces, blow-up time, waiting time, asymptotic behaviour Work Unit Number 1 (Applied Analysis) D1 )iv. Matematicas ...AD-A132 862 THE INTERFACES OF ONE-DIMENSIONAL FLOWS IN POROUS MEDIA 1 / 1 (U) WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER .J L VAZQUEZ JUL 83...MRC-TSR-2538 DAAG2N-80-C-0041 UNCLASSIFIED FIG 12/ 1 N lm . 1.25 1.4 16 MICROCOY RESOLUTION TEST CHART sNarOAI.I U(’ OV $t MOAAI9 - -A A1 NRC Technical

  6. Using model-based proposals for fast parameter inference on discrete state space, continuous-time Markov processes.

    PubMed

    Pooley, C M; Bishop, S C; Marion, G

    2015-06-06

    Bayesian statistics provides a framework for the integration of dynamic models with incomplete data to enable inference of model parameters and unobserved aspects of the system under study. An important class of dynamic models is discrete state space, continuous-time Markov processes (DCTMPs). Simulated via the Doob-Gillespie algorithm, these have been used to model systems ranging from chemistry to ecology to epidemiology. A new type of proposal, termed 'model-based proposal' (MBP), is developed for the efficient implementation of Bayesian inference in DCTMPs using Markov chain Monte Carlo (MCMC). This new method, which in principle can be applied to any DCTMP, is compared (using simple epidemiological SIS and SIR models as easy to follow exemplars) to a standard MCMC approach and a recently proposed particle MCMC (PMCMC) technique. When measurements are made on a single-state variable (e.g. the number of infected individuals in a population during an epidemic), model-based proposal MCMC (MBP-MCMC) is marginally faster than PMCMC (by a factor of 2-8 for the tests performed), and significantly faster than the standard MCMC scheme (by a factor of 400 at least). However, when model complexity increases and measurements are made on more than one state variable (e.g. simultaneously on the number of infected individuals in spatially separated subpopulations), MBP-MCMC is significantly faster than PMCMC (more than 100-fold for just four subpopulations) and this difference becomes increasingly large. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  7. Lifetime effectiveness of mifamurtide addition to chemotherapy in nonmetastatic and metastatic osteosarcoma: a Markov process model analysis.

    PubMed

    Song, Hyun Jin; Lee, Jun Ah; Han, Euna; Lee, Eui-Kyung

    2015-09-01

    The mortality and progression rates in osteosarcoma differ depending on the presence of metastasis. A decision model would be useful for estimating long-term effectiveness of treatment with limited clinical trial data. The aim of this study was to explore the lifetime effectiveness of the addition of mifamurtide to chemotherapy for patients with metastatic and nonmetastatic osteosarcoma. The target population was osteosarcoma patients with or without metastasis. A Markov process model was used, whose time horizon was lifetime with a starting age of 13 years. There were five health states: disease-free (DF), recurrence, post-recurrence disease-free, post-recurrence disease-progression, and death. Transition probabilities of the starting state, DF, were calculated from the INT-0133 clinical trials for chemotherapy with and without mifamurtide. Quality-adjusted life-years (QALY) increased upon addition of mifamurtide to chemotherapy by 10.5 % (10.13 and 9.17 QALY with and without mifamurtide, respectively) and 45.2 % (7.23 and 4.98 QALY with and without mifamurtide, respectively) relative to the lifetime effectiveness of chemotherapy in nonmetastatic and metastatic osteosarcoma, respectively. Life-years gained (LYG) increased by 10.1 % (13.10 LYG with mifamurtide and 11.90 LYG without mifamurtide) in nonmetastatic patients and 42.2 % (9.43 LYG with mifamurtide and 6.63 LYG without mifamurtide) in metastatic osteosarcoma patients. The Markov model analysis showed that chemotherapy with mifamurtide improved the lifetime effectiveness compared to chemotherapy alone in both nonmetastatic and metastatic osteosarcoma. Relative effectiveness of the therapy was higher in metastatic than nonmetastatic osteosarcoma over lifetime. However, absolute lifetime effectiveness was higher in nonmetastatic than metastatic osteosarcoma.

  8. Classes of Multivariate Exponential and Multivariate Geometric Distributions Derived from Markov Processes. Program Statistics Research Technical Report No. 89-87.

    ERIC Educational Resources Information Center

    Longford, Nicholas T.

    A class of multivariate exponential distributions is defined as the distributions of occupancy times in upwards skip-free Markov processes in continuous time. These distributions are infinitely divisible, and the multivariate gamma class defined by convolutions and fractions is a substantial generalization of the class defined by N. L. Johnson and…

  9. Hydrogen peroxide stabilization in one-dimensional flow columns

    NASA Astrophysics Data System (ADS)

    Schmidt, Jeremy T.; Ahmad, Mushtaque; Teel, Amy L.; Watts, Richard J.

    2011-09-01

    Rapid hydrogen peroxide decomposition is the primary limitation of catalyzed H 2O 2 propagations in situ chemical oxidation (CHP ISCO) remediation of the subsurface. Two stabilizers of hydrogen peroxide, citrate and phytate, were investigated for their effectiveness in one-dimensional columns of iron oxide-coated and manganese oxide-coated sand. Hydrogen peroxide (5%) with and without 25 mM citrate or phytate was applied to the columns and samples were collected at 8 ports spaced 13 cm apart. Citrate was not an effective stabilizer for hydrogen peroxide in iron-coated sand; however, phytate was highly effective, increasing hydrogen peroxide residuals two orders of magnitude over unstabilized hydrogen peroxide. Both citrate and phytate were effective stabilizers for manganese-coated sand, increasing hydrogen peroxide residuals by four-fold over unstabilized hydrogen peroxide. Phytate and citrate did not degrade and were not retarded in the sand columns; furthermore, the addition of the stabilizers increased column flow rates relative to unstabilized columns. These results demonstrate that citrate and phytate are effective stabilizers of hydrogen peroxide under the dynamic conditions of one-dimensional columns, and suggest that citrate and phytate can be added to hydrogen peroxide before injection to the subsurface as an effective means for increasing the radius of influence of CHP ISCO.

  10. One dimensional wavefront sensor development for tomographic flow measurements

    SciTech Connect

    Neal, D.; Pierson, R.; Chen, E.

    1995-08-01

    Optical diagnostics are extremely useful in fluid mechanics because they generally have high inherent bandwidth, and are non-intrusive. However, since optical probe measurements inherently integrate all information along the optical path, it is often difficult to isolate out-of-plane components in 3-dimensional flow events. It is also hard to make independent measurements of internal flow structure. Using an arrangement of one-dimensional wavefront sensors, we have developed a system that uses tomographic reconstruction to make two-dimensional measurements in an arbitrary flow. These measurements provide complete information in a plane normal to the flow. We have applied this system to the subsonic free jet because of the wide range of flow scales available. These measurements rely on the development of a series of one-dimensional wavefront sensors that are used to measure line-integral density variations in the flow of interest. These sensors have been constructed using linear CCD cameras and binary optics lenslet arrays. In designing these arrays, we have considered the coherent coupling between adjacent lenses and have made comparisons between theory and experimental noise measurements. The paper will present examples of the wavefront sensor development, line-integral measurements as a function of various experimental parameters, and sample tomographic reconstructions.

  11. Majorana fermion exchange in quasi-one-dimensional networks

    NASA Astrophysics Data System (ADS)

    Clarke, David J.; Sau, Jay D.; Tewari, Sumanta

    2011-07-01

    Heterostructures of spin-orbit coupled materials with s-wave superconductors are thought to be capable of supporting zero-energy Majorana bound states. Such excitations are known to obey non-Abelian statistics in two dimensions, and are thus relevant to topological quantum computation (TQC). In a one-dimensional system, Majorana states are localized to phase boundaries. In order to bypass the constraints of one dimension, a wire network may be created, allowing the exchange of Majoranas by way of junctions in the network. Alicea have proposed such a network as a platform for TQC, showing that the Majorana bound states obey non-Abelian exchange statistics even in quasi-one-dimensional systems. Here we show that the particular realization of non-Abelian statistics produced in a Majorana wire network is highly dependent on the local properties of individual wire junctions. For a simply connected network, the possible realizations can be characterized by the chirality of individual junctions. There is in general no requirement for junction chiralities to remain consistent across a wire network. We show how the chiralities of different junctions may be compared experimentally and discuss the implications for TQC in Majorana wire networks.

  12. Hydrogen peroxide stabilization in one-dimensional flow columns.

    PubMed

    Schmidt, Jeremy T; Ahmad, Mushtaque; Teel, Amy L; Watts, Richard J

    2011-09-25

    Rapid hydrogen peroxide decomposition is the primary limitation of catalyzed H(2)O(2) propagations in situ chemical oxidation (CHP ISCO) remediation of the subsurface. Two stabilizers of hydrogen peroxide, citrate and phytate, were investigated for their effectiveness in one-dimensional columns of iron oxide-coated and manganese oxide-coated sand. Hydrogen peroxide (5%) with and without 25 mM citrate or phytate was applied to the columns and samples were collected at 8 ports spaced 13 cm apart. Citrate was not an effective stabilizer for hydrogen peroxide in iron-coated sand; however, phytate was highly effective, increasing hydrogen peroxide residuals two orders of magnitude over unstabilized hydrogen peroxide. Both citrate and phytate were effective stabilizers for manganese-coated sand, increasing hydrogen peroxide residuals by four-fold over unstabilized hydrogen peroxide. Phytate and citrate did not degrade and were not retarded in the sand columns; furthermore, the addition of the stabilizers increased column flow rates relative to unstabilized columns. These results demonstrate that citrate and phytate are effective stabilizers of hydrogen peroxide under the dynamic conditions of one-dimensional columns, and suggest that citrate and phytate can be added to hydrogen peroxide before injection to the subsurface as an effective means for increasing the radius of influence of CHP ISCO.

  13. Dislocation-mediated melting of one-dimensional Rydberg crystals

    SciTech Connect

    Sela, Eran; Garst, Markus; Punk, Matthias

    2011-08-15

    We consider cold Rydberg atoms in a one-dimensional optical lattice in the Mott regime with a single atom per site at zero temperature. An external laser drive with Rabi frequency {Omega} and laser detuning {Delta} creates Rydberg excitations whose dynamics is governed by an effective spin-chain model with (quasi) long-range interactions. This system possesses intrinsically a large degree of frustration resulting in a ground-state phase diagram in the ({Delta},{Omega}) plane with a rich topology. As a function of {Delta}, the Rydberg blockade effect gives rise to a series of crystalline phases commensurate with the optical lattice that form a so-called devil's staircase. The Rabi frequency {Omega}, on the other hand, creates quantum fluctuations that eventually lead to a quantum melting of the crystalline states. Upon increasing {Omega}, we find that generically a commensurate-incommensurate transition to a floating Rydberg crystal that supports gapless phonon excitations occurs first. For even larger {Omega}, dislocations within the floating Rydberg crystal start to proliferate and a second, Kosterlitz-Thouless-Nelson-Halperin-Young dislocation-mediated melting transition finally destroys the crystalline arrangement of Rydberg excitations. This latter melting transition is generic for one-dimensional Rydberg crystals and persists even in the absence of an optical lattice. The floating phase and the concomitant transitions can, in principle, be detected by Bragg scattering of light.

  14. One-Dimensional Forward–Forward Mean-Field Games

    SciTech Connect

    Gomes, Diogo A. Nurbekyan, Levon; Sedjro, Marc

    2016-12-15

    While the general theory for the terminal-initial value problem for mean-field games (MFGs) has achieved a substantial progress, the corresponding forward–forward problem is still poorly understood—even in the one-dimensional setting. Here, we consider one-dimensional forward–forward MFGs, study the existence of solutions and their long-time convergence. First, we discuss the relation between these models and systems of conservation laws. In particular, we identify new conserved quantities and study some qualitative properties of these systems. Next, we introduce a class of wave-like equations that are equivalent to forward–forward MFGs, and we derive a novel formulation as a system of conservation laws. For first-order logarithmic forward–forward MFG, we establish the existence of a global solution. Then, we consider a class of explicit solutions and show the existence of shocks. Finally, we examine parabolic forward–forward MFGs and establish the long-time convergence of the solutions.

  15. Magnetic Stimulation of One-Dimensional Neuronal Cultures

    PubMed Central

    Rotem, Assaf; Moses, Elisha

    2008-01-01

    Transcranial magnetic stimulation is a remarkable tool for neuroscience research, with a multitude of diagnostic and therapeutic applications. Surprisingly, application of the same magnetic stimulation directly to neurons that are dissected from the brain and grown in vitro was not reported to activate them to date. Here we report that central nervous system neurons patterned on large enough one-dimensional rings can be magnetically stimulated in vitro. In contrast, two-dimensional cultures with comparable size do not respond to excitation. This happens because the one-dimensional pattern enforces an ordering of the axons along the ring, which is designed to follow the lines of the magnetically induced electric field. A small group of sensitive (i.e., initiating) neurons respond even when the network is disconnected, and are presumed to excite the entire network when it is connected. This implies that morphological and electrophysiological properties of single neurons are crucial for magnetic stimulation. We conjecture that the existence of a select group of neurons with higher sensitivity may occur in the brain in vivo as well, with consequences for transcranial magnetic stimulation. PMID:18326634

  16. Self-Organized Freestanding One-Dimensional Au Nanoparticle Arrays.

    PubMed

    Kang, Myungkoo; Yuwen, Yu; Hu, Wenchong; Yun, Seokho; Mahalingam, Krishnamurthy; Jiang, Bin; Eyink, Kurt; Poutrina, Ekaterina; Richardson, Kathleen; Mayer, Theresa S

    2017-06-27

    One-dimensional Au nanoparticle arrays encapsulated within freestanding SiO2 nanowires are fabricated by thermal oxidation of Au-coated Si nanowires with controlled diameter and surface modulation. The nanoparticle diameter is determined by the Si nanowire diameter and Au film thickness, while the interparticle spacing is independently controlled by the Si nanowire modulation. The optical absorption of randomly oriented Au nanoparticle arrays exhibits a strong plasmonic response at 550 nm. Scanning transmission electron microscopy (STEM)-electron energy loss spectrum (EELS) of nanoparticle arrays confirmed the same plasmonic response and demonstrated uniform optical properties of the Au nanoparticles. The plasmonic response in the STEM-EELS maps is primarily confined around the vicinity of the nanoparticles. On the other hand, examination of the same nanowires by energy-filtered transmission electron microscopy also revealed significant enhancement in the plasmonic excitation in the regions in between the nanoparticles. This versatile route to synthesize one-dimensional Au nanoparticle arrays with independently tailorable nanoparticle diameter and interparticle spacing opens up opportunities to exploit enhanced design flexibility and cost-effectiveness for future plasmonic devices.

  17. One dimensional global and local solution for ICRF heating

    SciTech Connect

    Wang, C.Y.; Batchelor, D.B.; Jaeger, E.F.; Carter, M.D.

    1995-02-01

    A numerical code GLOSI [Global and Local One-dimensional Solution for Ion cyclotron range of frequencies (ICRF) heating] is developed to solve one-dimensional wave equations resulting from the use of radio frequency (RF) waves to heat plasmas. The code uses a finite difference method. Due to its numerical stability, the code can be used to find both global and local solutions when imposed with appropriate boundary conditions. Three types of boundary conditions are introduced to describe wave scattering, antenna wave excitation, and fixed tangential wave magnetic field. The scattering boundary conditions are especially useful for local solutions. The antenna wave excitation boundary conditions can be used to excite fast and slow waves in a plasma. The tangential magnetic field boundary conditions are used to calculate impedance matrices, which describe plasma and antenna coupling and can be used by an antenna code to calculate antenna loading. These three types of boundary conditions can also be combined to describe various physical situations in RF plasma heating. The code also includes plasma thermal effects and calculates collisionless power absorption and kinetic energy flux. The plasma current density is approximated by a second-order Larmor radius expansion, which results in a sixth-order ordinary differential equation.

  18. Optical parametric oscillation in one-dimensional microcavities

    NASA Astrophysics Data System (ADS)

    Lecomte, Timothée; Ardizzone, Vincenzo; Abbarchi, Marco; Diederichs, Carole; Miard, Audrey; Lemaitre, Aristide; Sagnes, Isabelle; Senellart, Pascale; Bloch, Jacqueline; Delalande, Claude; Tignon, Jerome; Roussignol, Philippe

    2013-04-01

    We present a comprehensive investigation of optical parametric oscillation in resonantly excited one-dimensional semiconductor microcavities with embedded quantum wells. Such solid-state structures feature a fine control over light-matter coupling and produce a photonic/polaritonic mode fan that is exploited for the efficient emission of parametric beams. We implement an energy-degenerate optical parametric oscillator with balanced signal and idler intensities via a polarization-inverting mechanism. In this paper, we (i) precisely review the multimode photonic/polaritonic structure of individual emitters, (ii) provide a thorough comparison between experiment and theory, focusing on the power and the threshold dependence on the exciton-photon detuning, (iii) discuss the influence of inhomogeneous broadening of the excitonic transition and finite size, and (iv) find that a large exciton-photon detuning is a key parameter to reach a high output power and a high conversion efficiency. Our study highlights the predictive character of the polariton interaction theory and the flexibility of one-dimensional semiconductor microcavities as a platform to study parametric phenomena.

  19. Transmission resonances anomaly in one-dimensional disordered quantum systems

    NASA Astrophysics Data System (ADS)

    Eisenbach, A.; Bliokh, Y.; Freilkher, V.; Kaveh, M.; Berkovits, R.

    2016-07-01

    Connections between the electronic eigenstates and conductivity of one-dimensional (1D) disordered systems is studied in the framework of the tight-binding model. We show that for weak disorder only part of the states exhibit resonant transmission and contribute to the conductivity. The rest of the eigenvalues are not associated with peaks in transmission and the amplitudes of their wave functions do not exhibit a significant maxima within the sample. Moreover, unlike ordinary states, the lifetimes of these "hidden" modes either remain constant or even decrease (depending on the coupling with the leads) as the disorder becomes stronger. In a wide range of the disorder strengths, the averaged ratio of the number of transmission peaks to the total number of the eigenstates is independent of the degree of disorder and is close to the value √{2 /5 }, which was derived analytically in the weak-scattering approximation. These results are in perfect analogy to the spectral and transport properties of light in one-dimensional randomly inhomogeneous media [Y. P. Bliokh et al., New J. Phys. 17, 113009 (2015), 10.1088/1367-2630/17/11/113009], which provides strong grounds to believe that the existence of hidden, nonconducting modes is a general phenomenon inherent to 1D open random systems, and their fraction of the total density of states is the same for quantum particles and classical waves.

  20. Stopping time of a one-dimensional bounded quantum walk

    NASA Astrophysics Data System (ADS)

    Luo, Hao; Zhan, Xiang; Zhang, Peng; Xue, Peng

    2016-11-01

    The stopping time of a one-dimensional bounded classical random walk (RW) is defined as the number of steps taken by a random walker to arrive at a fixed boundary for the first time. A quantum walk (QW) is a non-trivial generalization of RW, and has attracted a great deal of interest from researchers working in quantum physics and quantum information. In this paper, we develop a method to calculate the stopping time for a one-dimensional QW. Using our method, we further compare the properties of stopping time for QW and RW. We find that the mean value of the stopping time is the same for both of these problems. However, for short times, the probability for a walker performing a QW to arrive at the boundary is larger than that for a RW. This means that, although the mean stopping time of a quantum and classical walker are the same, the quantum walker has a greater probability of arriving at the boundary earlier than the classical walker. Project supported by the National Natural Science Foundation of China (Grant Nos. 11222430, 11434011, and 11474049), the National Basic Research Program of China (Grant No. 2012CB922104), the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (Grant No. 16XNLQ03).

  1. A Markov decision process for managing habitat for Florida scrub-jays

    USGS Publications Warehouse

    Johnson, Fred A.; Breininger, David R.; Duncan, Brean W.; Nichols, James D.; Runge, Michael C.; Williams, B. Ken

    2011-01-01

    Florida scrub-jays Aphelocoma coerulescens are listed as threatened under the Endangered Species Act due to loss and degradation of scrub habitat. This study concerned the development of an optimal strategy for the restoration and management of scrub habitat at Merritt Island National Wildlife Refuge, which contains one of the few remaining large populations of scrub-jays in Florida. There are documented differences in the reproductive and survival rates of scrubjays among discrete classes of scrub height (<120 cm or "short"; 120-170 cm or "optimal"; .170 cm or "tall"; and a combination of tall and optimal or "mixed"), and our objective was to calculate a state-dependent management strategy that would maximize the long-term growth rate of the resident scrub-jay population. We used aerial imagery with multistate Markov models to estimate annual transition probabilities among the four scrub-height classes under three possible management actions: scrub restoration (mechanical cutting followed by burning), a prescribed burn, or no intervention. A strategy prescribing the optimal management action for management units exhibiting different proportions of scrub-height classes was derived using dynamic programming. Scrub restoration was the optimal management action only in units dominated by mixed and tall scrub, and burning tended to be the optimal action for intermediate levels of short scrub. The optimal action was to do nothing when the amount of short scrub was greater than 30%, because short scrub mostly transitions to optimal height scrub (i.e., that state with the highest demographic success of scrub-jays) in the absence of intervention. Monte Carlo simulation of the optimal policy suggested that some form of management would be required every year. We note, however, that estimates of scrub-height transition probabilities were subject to several sources of uncertainty, and so we explored the management implications of alternative sets of transition probabilities

  2. Reliability characteristics in semi-Markov models

    NASA Astrophysics Data System (ADS)

    Grabski, Franciszek

    2017-07-01

    A semi-Markov (SM) process is defined by a renewal kernel and an initial distribution of states or another equivalent parameters. Those quantities contain full information about the process and they allow us to find many characteristics and parameters of the process. Constructing the semi-Markov reliability model means building the kernel of the process based on some assumptions. Many characteristics and parameters of the SM process have a natural interpretation in the semi-Markov reliability model.

  3. One-dimensional quantum spin heterojunction as a thermal switch

    NASA Astrophysics Data System (ADS)

    Yang, Chuan-Jing; Jin, Li-Hui; Gong, Wei-Jiang

    2016-03-01

    We study the thermal transport through a quantum spin-1 2 heterojunction, which consists of a finite-size chain with two-site anisotropic XY interaction and three-site XZX+YZY interaction coupled at its ends to two semi-infinite isotropic XY chains. By performing the Jordan-Wigner transformation, the original spin Hamiltonian is mapped onto a fermionic Hamiltonian. Then, the fermionic structure is discussed, and the heat current as a function of structural parameters is evaluated. It is found that the magnetic fields applied at respective chains play different roles in adjusting the heat current in this heterojunction. Moreover, the interplay between the anisotropy of the XY interaction and the three-site spin interaction assists to further control the thermal transport. In view of the numerical results, we propose this heterojunction to be an alternate candidate for manipulating the heat current in one-dimensional (1D) systems.

  4. Configurational and energy landscape in one-dimensional Coulomb systems

    NASA Astrophysics Data System (ADS)

    Varela, Lucas; Téllez, Gabriel; Trizac, Emmanuel

    2017-02-01

    We study a one-dimensional Coulomb system, where two charged colloids are neutralized by a collection of point counterions, with global neutrality. With temperature being given, two situations are addressed: Either the colloids are kept at fixed positions (canonical ensemble) or the force acting on the colloids is fixed (isobaric-isothermal ensemble). The corresponding partition functions are worked out exactly, in view of determining which arrangement of counterions is optimal. How many counterions should be in the confined segment between the colloids? For the remaining ions outside, is there a left-right symmetry breakdown? We evidence a cascade of transitions as system size is varied in the canonical treatment or as pressure is increased in the isobaric formulation.

  5. Hydrodynamic modes of a one-dimensional trapped Bose gas

    SciTech Connect

    Fuchs, J.N.; Leyronas, X.; Combescot, R.

    2003-10-01

    We consider two regimes where a trapped Bose gas behaves as a one-dimensional (1D) system. In the first one the Bose gas is microscopically described by 3D mean-field theory, but the trap is so elongated that it behaves as a 1D gas with respect to low-frequency collective modes. In the second regime we assume that the 1D gas is truly 1D and that it is properly described by the Lieb-Liniger model. In both regimes we find the frequency of the lowest compressional mode by solving the hydrodynamic equations. This is done by making use of a method which allows us to find analytical or quasianalytical solutions of these equations for a large class of models approaching very closely the actual equation of state of the Bose gas. We find an excellent agreement with the recent results of Menotti and Stringari obtained from a sum-rule approach.

  6. Crystallographic shear mechanisms in Rh one-dimensional oxides

    NASA Astrophysics Data System (ADS)

    Hernando, María; Boulahya, Khalid; Parras, Marina; González-Calbet, José M.

    2005-02-01

    Electron diffraction and high resolution electron microscopy have been used to characterize two new one-dimensional superstructures in the A sbnd Rh sbnd O system (A = Ca, Sr) related to the 2H-ABO 3-type. They are formed by the intergrowth of n A 3A'BO 6 blocks, showing the Sr 4RhO 6-type, with A 12A' 2B 8O 30 blocks, constituted by two A 3O 9 and two A 3A'O 6 layers alternating in the stacking sequence 1:1, leading to the A 27A' 7B 13O 60 ( n=5) and A 30A' 8B 14O 66 ( n=6) compositions. A crystallographic shear mechanism is proposed to describe the structural relationship between Sr 4RhO 6 (A 3A'BO 6-type) and the new superstructures.

  7. Spin accumulation on a one-dimensional mesoscopic Rashba ring.

    PubMed

    Zhang, Zhi-Yong

    2006-04-26

    The nonequilibrium spin accumulation on a one-dimensional (1D) mesoscopic Rashba ring is investigated with unpolarized current injected through ideal leads. Due to the Rashba spin-orbit (SO) coupling and back-scattering at the interfaces between the leads and the ring, a beating pattern is formed in the fast oscillation of spin accumulation. If every beating period is complete, a plateau is formed, where the variation of spin accumulation with the external voltage is slow, but if new incomplete periods emerge in the envelope function, a transitional region appears. This plateau structure and the beating pattern are related to the tunnelling through spin-dependent resonant states. Because of the Aharonov-Casher (AC) effect, the average spin accumulation oscillates quasi-periodically with the Rashba SO coupling and has a series of zeros. In some situations, the direction of the average spin accumulation can be reversed by the external voltage in this 1D Rashba ring.

  8. Majorana fermion exchange in strictly one-dimensional structures

    NASA Astrophysics Data System (ADS)

    Chiu, Ching-Kai; Vazifeh, M. M.; Franz, M.

    2015-04-01

    It is generally thought that the adiabatic exchange of two identical particles is impossible in one spatial dimension. Here we describe a simple protocol that permits the adiabatic exchange of two Majorana fermions in a one-dimensional topological superconductor wire. The exchange relies on the concept of “Majorana shuttle” whereby a π domain wall in the superconducting order parameter which hosts a pair of ancillary majoranas delivers one zero mode across the wire while the other one tunnels in the opposite direction. The method requires some tuning of parameters and does not, therefore, enjoy full topological protection. The resulting exchange statistics, however, remain non-Abelian for a wide range of parameters that characterize the exchange.

  9. Magnons in one-dimensional k-component Fibonacci structures

    NASA Astrophysics Data System (ADS)

    Costa, C. H.; Vasconcelos, M. S.

    2014-05-01

    We have studied the magnon transmission through of one-dimensional magnonic k-component Fibonacci structures, where k different materials are arranged in accordance with the following substitution rule: Sn(k)=Sn-1(k)Sn-k(k) (n ≥k=0,1,2,…), where Sn(k) is the nth stage of the sequence. The calculations were carried out in exchange dominated regime within the framework of the Heisenberg model and taking into account the RPA approximation. We have considered multilayers composed of simple cubic spin-S Heisenberg ferromagnets, and, by using the powerful transfer-matrix method, the spin wave transmission is obtained. It is demonstrated that the transmission coefficient has a rich and interesting magnonic pass- and stop-bands structures, which depends on the frequency of magnons and the k values.

  10. Charge and energy fractionalization mechanism in one-dimensional channels

    NASA Astrophysics Data System (ADS)

    Acciai, Matteo; Calzona, Alessio; Dolcetto, Giacomo; Schmidt, Thomas L.; Sassetti, Maura

    2017-08-01

    We study the problem of injecting single electrons into interacting one-dimensional quantum systems, a fundamental building block for electron quantum optics. It is well known that such injection leads to charge and energy fractionalization. We elucidate this concept by calculating the nonequilibrium electron distribution function in the momentum and energy domains after the injection of an energy-resolved electron. Our results shed light on how fractionalization occurs via the creation of particle-hole pairs by the injected electron. In particular, we focus on systems with a pair of counterpropagating channels, and we fully analyze the properties of each chiral fractional excitation which is created by the injection. We suggest possible routes to access their energy and momentum distribution functions in topological quantum Hall or quantum spin-Hall edge states.

  11. Chaos in a one-dimensional compressible flow.

    PubMed

    Gerig, Austin; Hübler, Alfred

    2007-04-01

    We study the dynamics of a one-dimensional discrete flow with open boundaries--a series of moving point particles connected by ideal springs. These particles flow towards an inlet at constant velocity, pass into a region where they are free to move according to their nearest neighbor interactions, and then pass an outlet where they travel with a sinusoidally varying velocity. As the amplitude of the outlet oscillations is increased, we find that the resident time of particles in the chamber follows a bifurcating (Feigenbaum) route to chaos. This irregular dynamics may be related to the complex behavior of many particle discrete flows or is possibly a low-dimensional analogue of nonstationary flow in continuous systems.

  12. Static electric field in one-dimensional insulators without boundaries

    NASA Astrophysics Data System (ADS)

    Chen, Kuang-Ting; Lee, Patrick A.

    2011-09-01

    In this brief report, we show that in a one-dimensional insulating system with periodic boundary conditions, the coefficient of the θ term in the effective theory is not only determined by the topological index ∫i∑α∈occukα(∂)/(∂k)ukαdk. Specifically, the relative position between the electronic orbitals and the ions also alters the coefficient, as one would expect when one identifies -eθ/2π as the polarization. This resolves a paradox when we apply our previous result to the Su-Shreiffer-Heeger model, where the two ground states related by a lattice translation have θ differed by π. We also show that the static dielectric screening is the same with or without boundaries, in contrast to comments made in our previous paper.

  13. Engineering one-dimensional topological phases on p -wave superconductors

    NASA Astrophysics Data System (ADS)

    Sahlberg, Isac; Westström, Alex; Pöyhönen, Kim; Ojanen, Teemu

    2017-05-01

    In this paper, we study how, with the aid of impurity engineering, two-dimensional p -wave superconductors can be employed as a platform for one-dimensional topological phases. We discover that, while chiral and helical parent states themselves are topologically nontrivial, a chain of scalar impurities on both systems supports multiple topological phases and Majorana end states. We develop an approach which allows us to extract the topological invariants and subgap spectrum, even away from the center of the gap, for the representative cases of spinless, chiral, and helical superconductors. We find that the magnitude of the topological gaps protecting the nontrivial phases may be a significant fraction of the gap of the underlying superconductor.

  14. Chaotic dynamics of a one-dimensional plasma

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Miller, Bruce

    2014-03-01

    The dynamics of a one-dimensional periodic plasma is investigated with N-body simulations using an event-driven algorithm. The algorithm is based on analytic expressions for the electric field and potential in the periodic plasma that makes it possible to follow the time evolution of the plasma exactly without resorting to numerical approximations. The temperature dependence of the largest Lyapunov exponent of the plasma is investigated by employing an efficient approach for defining the phase-space distance appropriate for systems with periodic boundary. The approach allows for the unambiguous test-orbit renormalization in phase space required to calculate the Lyapunov exponent. The results show evidence of a characteristic transition in the chaotic behavior of the plasma near a specific temperature in the thermodynamic limit.

  15. Magnetoresistance anisotropy of a one-dimensional superconducting niobium strip.

    PubMed

    Hua, J; Xiao, Z L; Imre, A; Yu, S H; Patel, U; Ocola, L E; Divan, R; Koshelev, A; Pearson, J; Welp, U; Kwok, W K

    2008-08-15

    We investigated confinement effects on the resistive anisotropy of a superconducting niobium strip with a rectangular cross section. When its transverse dimensions are comparable to the superconducting coherence length, the angle dependent magnetoresistances at a fixed temperature can be scaled as R(theta,H) = R(H/Hctheta) where Hctheta =Hc0(cos2theta + gamma(-2)sin2theta)(-1/2) is the angular dependent critical field, gamma is the width to thickness ratio, and Hc0 is the critical field in the thickness direction at theta=0 degrees . The results can be understood in terms of the anisotropic diamagnetic energy for a given field in a one-dimensional superconductor.

  16. Magnetoresistance anisotropy of a one-dimensional superconducting niobium strip.

    SciTech Connect

    Hua, J.; Xiao, Z. L.; Imre, A.; Yu, S. H.; Patel, U.; Ocola, L. E.; Divan, R.; Koshelev, A.; Pearson, J.; Welp, U.; Kwok, W. K.; Northern Illinois Univ.

    2008-01-01

    We investigated confinement effects on the resistive anisotropy of a superconducting niobium strip with a rectangular cross section. When its transverse dimensions are comparable to the superconducting coherence length, the angle dependent magnetoresistances at a fixed temperature can be scaled as R({theta},H) = R(H/H{sub c{theta}}) where H{sub c{theta}} = H{sub c0}(cos{sup 2} {theta} + {gamma}{sup -2} sin{sup 2}{theta}){sup -1/2} is the angular dependent critical field, {gamma} is the width to thickness ratio, and H{sub c0} is the critical field in the thickness direction at {theta} = 0{sup o}. The results can be understood in terms of the anisotropic diamagnetic energy for a given field in a one-dimensional superconductor.

  17. One-dimensional three-body problem via symbolic dynamics.

    PubMed

    Tanikawa, Kiyotaka; Mikkola, Seppo

    2000-09-01

    Symbolic dynamics is applied to the one-dimensional three-body problem with equal masses. The sequence of binary collisions along an orbit is expressed as a symbol sequence of two symbols. Based on the time reversibility of the problem and numerical data, inadmissible (i.e., unrealizable) sequences of collisions are systematically found. A graph for the transitions among various regions in the Poincare section is constructed. This graph is used to find an infinite number of periodic sequences, which implies an infinity of periodic orbits other than those accompanying a simple periodic orbit called the Schubart orbit. Finally, under reasonable assumptions on inadmissible sequences, we prove that the set of admissible symbol sequences forms a Cantor set. (c) 2000 American Institute of Physics.

  18. One-dimensional Electron Gases at Oxide Interfaces

    NASA Astrophysics Data System (ADS)

    Cao, Yanwei; Zhong, Zhicheng; Shafer, P.; Liu, Xiaoran; Kareev, M.; Middey, S.; Meyers, D.; Arenholz, E.; Chakhalian, Jak

    Emergence of two-dimensional electron gases (2DEG) at the oxide interfaces of two dissimilar insulators is a remarkable manifestation of interface engineering. With continuously reduced dimensionality, it arises an interesting question: could one-dimensional electron gases (1DEG) be designed at oxide interfaces? So far there is no report on this. Here, we report on the formation of 1DEG at the carefully engineered titanate heterostructures. Combined resonant soft X-ray linear dichroism with electrical transport and the first-principles calculations have confirmed the formation of 1DEG driven by the interfacial symmetry breaking. Our findings provide a route to engineer new electronic and magnetic states. This work was supported by Gordon and Betty Moore Foundation, DODARO, DOE, and the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy.

  19. A Reduced Order, One Dimensional Model of Joint Response

    SciTech Connect

    DOHNER,JEFFREY L.

    2000-11-06

    As a joint is loaded, the tangent stiffness of the joint reduces due to slip at interfaces. This stiffness reduction continues until the direction of the applied load is reversed or the total interface slips. Total interface slippage in joints is called macro-slip. For joints not undergoing macro-slip, when load reversal occurs the tangent stiffness immediately rebounds to its maximum value. This occurs due to stiction effects at the interface. Thus, for periodic loads, a softening and rebound hardening cycle is produced which defines a hysteretic, energy absorbing trajectory. For many jointed sub-structures, this hysteretic trajectory can be approximated using simple polynomial representations. This allows for complex joint substructures to be represented using simple non-linear models. In this paper a simple one dimensional model is discussed.

  20. CHARGE ORDER FLUCTUATIONS IN ONE-DIMENSIONAL SILICIDES

    PubMed Central

    Zeng, Changgan; Kent, P. R.C.; Kim, Tae-Hwan; Li, An-Ping; Weitering, Hanno H.

    2014-01-01

    Metallic nanowires are of great interest as interconnects in future nanoelectronic circuits. They also represent important systems for understanding the complexity of electronic interactions and conductivity in one-dimension. We have fabricated exceptionally long and uniform YSi2 nanowires via self-assembly of yttrium atoms on Si(001). The thinnest wires represent one of the closest realizations of the isolated Peierls chain, exhibiting van-Hove type singularities in the one-dimensional density of states and charge order fluctuations below 150 K. The structure of the wire was determined though a detailed comparison of scanning tunneling microscopy data and first-principles calculations. Sporadic broadenings of the wires’ cross section imply the existence of a novel metal-semiconductor junction whose electronic properties are governed by the finite-size- and temperature-scaling of the charge ordering correlation. PMID:18552849

  1. Loschmidt echo in one-dimensional interacting Bose gases

    SciTech Connect

    Lelas, K.; Seva, T.; Buljan, H.

    2011-12-15

    We explore Loschmidt echo in two regimes of one-dimensional interacting Bose gases: the strongly interacting Tonks-Girardeau (TG) regime, and the weakly interacting mean-field regime. We find that the Loschmidt echo of a TG gas decays as a Gaussian when small (random and time independent) perturbations are added to the Hamiltonian. The exponent is proportional to the number of particles and the magnitude of a small perturbation squared. In the mean-field regime the Loschmidt echo shows richer behavior: it decays faster for larger nonlinearity, and the decay becomes more abrupt as the nonlinearity increases; it can be very sensitive to the particular realization of the noise potential, especially for relatively small nonlinearities.

  2. Configurational and energy landscape in one-dimensional Coulomb systems.

    PubMed

    Varela, Lucas; Téllez, Gabriel; Trizac, Emmanuel

    2017-02-01

    We study a one-dimensional Coulomb system, where two charged colloids are neutralized by a collection of point counterions, with global neutrality. With temperature being given, two situations are addressed: Either the colloids are kept at fixed positions (canonical ensemble) or the force acting on the colloids is fixed (isobaric-isothermal ensemble). The corresponding partition functions are worked out exactly, in view of determining which arrangement of counterions is optimal. How many counterions should be in the confined segment between the colloids? For the remaining ions outside, is there a left-right symmetry breakdown? We evidence a cascade of transitions as system size is varied in the canonical treatment or as pressure is increased in the isobaric formulation.

  3. One-dimensional hybrid approach to extensive air shower simulation

    NASA Astrophysics Data System (ADS)

    Bergmann, T.; Engel, R.; Heck, D.; Kalmykov, N. N.; Ostapchenko, S.; Pierog, T.; Thouw, T.; Werner, K.

    2007-01-01

    An efficient scheme for one-dimensional extensive air shower simulation and its implementation in the program CONEX are presented. Explicit Monte Carlo simulation of the high-energy part of hadronic and electro-magnetic cascades in the atmosphere is combined with a numeric solution of cascade equations for smaller energy sub-showers to obtain accurate shower predictions. The developed scheme allows us to calculate not only observables related to the number of particles (shower size) but also ionization energy deposit profiles which are needed for the interpretation of data of experiments employing the fluorescence light technique. We discuss in detail the basic algorithms developed and illustrate the power of the method. It is shown that Monte Carlo, numerical, and hybrid air shower calculations give consistent results which agree very well with those obtained within the CORSIKA program.

  4. One dimensional 1H, 2H and 3H

    NASA Astrophysics Data System (ADS)

    Vidal, A. J.; Astrakharchik, G. E.; Vranješ Markić, L.; Boronat, J.

    2016-05-01

    The ground-state properties of one-dimensional electron-spin-polarized hydrogen 1H, deuterium 2H, and tritium 3H are obtained by means of quantum Monte Carlo methods. The equations of state of the three isotopes are calculated for a wide range of linear densities. The pair correlation function and the static structure factor are obtained and interpreted within the framework of the Luttinger liquid theory. We report the density dependence of the Luttinger parameter and use it to identify different physical regimes: Bogoliubov Bose gas, super-Tonks-Girardeau gas, and quasi-crystal regimes for bosons; repulsive, attractive Fermi gas, and quasi-crystal regimes for fermions. We find that the tritium isotope is the one with the richest behavior. Our results show unambiguously the relevant role of the isotope mass in the properties of this quantum system.

  5. Charge diffusion in the one-dimensional Hubbard model

    NASA Astrophysics Data System (ADS)

    Steinigeweg, R.; Jin, F.; De Raedt, H.; Michielsen, K.; Gemmer, J.

    2017-08-01

    We study the real-time and real-space dynamics of charge in the one-dimensional Hubbard model in the limit of high temperatures. To this end, we prepare pure initial states with sharply peaked density profiles and calculate the time evolution of these nonequilibrium states, by using numerical forward-propagation approaches to chains as long as 20 sites. For a class of typical states, we find excellent agreement with linear-response theory and unveil the existence of remarkably clean charge diffusion in the regime of strong particle-particle interactions. We additionally demonstrate that, in the half-filling sector, this diffusive behavior does not depend on certain details of our initial conditions, i.e., it occurs for five different realizations with random and nonrandom internal degrees of freedom, single and double occupation of the central site, and displacement of spin-up and spin-down particles.

  6. Thermal radiation in one-dimensional photonic quasicrystals with graphene

    NASA Astrophysics Data System (ADS)

    Costa, C. H.; Vasconcelos, M. S.; Fulco, U. L.; Albuquerque, E. L.

    2017-10-01

    In this work we investigate the thermal power spectra of the electromagnetic radiation through one-dimensional stacks of dielectric layers, with graphene at their interfaces, arranged according to a quasiperiodic structure obeying the Fibonacci (FB), Thue-Morse (TM) and double-period (DP) sequences. The thermal radiation power spectra are determined by means of a theoretical model based on a transfer matrix formalism for both normal and oblique incidence geometries, considering the Kirchhoff's law of thermal radiation. A systematic study of the consequences of the graphene layers in the thermal emittance spectra is presented and discussed. We studied also the radiation spectra considering the case where the chemical potential is changed in order to tune the omnidirectional photonic band gap.

  7. Enhanced multiple exciton generation in quasi-one-dimensional semiconductors.

    PubMed

    Cunningham, Paul D; Boercker, Janice E; Foos, Edward E; Lumb, Matthew P; Smith, Anthony R; Tischler, Joseph G; Melinger, Joseph S

    2011-08-10

    The creation of a single electron-hole pair (i.e., exciton) per incident photon is a fundamental limitation for current optoelectronic devices including photodetectors and photovoltaic cells. The prospect of multiple exciton generation per incident photon is of great interest to fundamental science and the improvement of solar cell technology. Multiple exciton generation is known to occur in semiconductor nanostructures with increased efficiency and reduced threshold energy compared to their bulk counterparts. Here we report a significant enhancement of multiple exciton generation in PbSe quasi-one-dimensional semiconductors (nanorods) over zero-dimensional nanostructures (nanocrystals), characterized by a 2-fold increase in efficiency and reduction of the threshold energy to (2.23 ± 0.03)E(g), which approaches the theoretical limit of 2E(g). Photovoltaic cells based on PbSe nanorods are capable of improved power conversion efficiencies, in particular when operated in conjunction with solar concentrators.

  8. Strongly Interacting One-dimensional Systems with Small Mass Imbalance

    NASA Astrophysics Data System (ADS)

    Volosniev, Artem G.

    2017-03-01

    We study a strongly interacting system of N identical bosons and one impurity in a one-dimensional trap. First, we assume that the particles have identical masses and analyze the corresponding set-up. After that, we study the influence of a small mass asymmetry on our analysis. In particular, we discuss how the structure of the wave function and the degeneracy in the impenetrable regime depend on the mass ratio and the shape of the trapping potential. To illustrate our findings, we consider a four-body system in a box and in an oscillator. We show that in the former case the system has the smallest energy when a heavy (light) impurity is close to the edge (center) of the trap. And we demonstrate that the opposite is true in the latter case.

  9. One-Dimensional Time to Explosion (Thermal Sensitivity) of ANPZ

    SciTech Connect

    Hsu, P.; Hust, G.; McClelland, M.; Gresshoff, M.

    2014-11-12

    Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 C) and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. This report summarizes the recent ODTX experimental data and modeling results for 2,6-diamino-3,5-dintropyrazine (ANPZ).

  10. Characterizing high- n quasi-one-dimensional strontium Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Hiller, Moritz; Yoshida, Shuhei; Burgdörfer, Joachim; Ye, Shuzhen; Zhang, Xinyue; Dunning, F. Barry

    2014-05-01

    The production of high- n, n ~ 300 , quasi-one-dimensional strontium Rydberg atoms by two-photon excitation of selected extreme Stark states in the presence of a weak dc field is examined using a crossed laser-atom beam geometry. The polarization of the product states is probed using three independent techniques which are analyzed with the aid of classical-trajectory Monte Carlo simulations that employ initial ensembles based on quantum calculations using a two-active-electron model. Comparisons between theory and experiment demonstrate that the product states have large dipole moments, ~ 1 . 0 - 1 . 2n2 a . u . and that they can be engineered using pulsed electric fields to create a wide variety of target states. Research supported by the NSF, the Robert A Welch Foundation, and the FWF (Austria).

  11. Equilibrium properties of a one-dimensional kinetic system.

    NASA Technical Reports Server (NTRS)

    Williams, J. H.; Joyce, G.

    1973-01-01

    One-dimensional systems of N = 500 and 250 particles in equilibrium are numerically simulated utilizing the method of molecular dynamics. Periodic boundary conditions are imposed. The classical two-body interaction potential is short range, repulsive and has a corresponding finite force. The equations of state are determined for densities both less and greater than one. Corresponding theoretical isochores are determined from models based on nearest-neighbor interactions and on a truncated virial expansion, and a comparison is made with the experimental isochores. Time independent radial distributions are constructed numerically and discussed. A change of state from a solidlike state to a fluid-gas state based on the penetrability of the particles is predicted. The transition temperatures are estimated from the radial distribution functions and the nearest-neighbor model. Self-diffusion is observed and the corresponding constants are determined from the velocity autocorrelation functions.

  12. Switching synchronization in one-dimensional memristive networks

    NASA Astrophysics Data System (ADS)

    Slipko, Valeriy A.; Shumovskyi, Mykola; Pershin, Yuriy V.

    2015-11-01

    We report on a switching synchronization phenomenon in one-dimensional memristive networks, which occurs when several memristive systems with different switching constants are switched from the high- to low-resistance state. Our numerical simulations show that such a collective behavior is especially pronounced when the applied voltage slightly exceeds the combined threshold voltage of memristive systems. Moreover, a finite increase in the network switching time is found compared to the average switching time of individual systems. An analytical model is presented to explain our observations. Using this model, we have derived asymptotic expressions for memory resistances at short and long times, which are in excellent agreement with results of our numerical simulations.

  13. One dimensional simulations of transients in heavy ion injectors

    SciTech Connect

    Barnard, J.J.; Caporaso, G.J.; Yu, S.S.; Eylon, E.

    1993-05-11

    A fast-running time-dependent one-dimensional particle code has been developed to simulate transients in both electrostatic quadrupole and electrostatic column heavy-ion injectors. Two-dimensional effects are incorporated through the use of an approximation to the transverse part of the Laplacian operator. Longitudinal electric fields are solved on a mesh. An external circuit is coupled to the column, and the effect of the beam on the circuit is modeled. Transients such as initial current spikes, space-charge de-bunching, and beam loading of the circuit, are simulated. Future directions for the code include introduction of envelope and centroid equations to provide beam radius and displacement information and the modeling of secondary electron currents arising from beam-spill.

  14. Capillary condensation in one-dimensional irregular confinement

    NASA Astrophysics Data System (ADS)

    Handford, Thomas P.; Pérez-Reche, Francisco J.; Taraskin, Sergei N.

    2013-07-01

    A lattice-gas model with heterogeneity is developed for the description of fluid condensation in finite sized one-dimensional pores of arbitrary shape. Mapping to the random-field Ising model allows an exact solution of the model to be obtained at zero-temperature, reproducing the experimentally observed dependence of the amount of fluid adsorbed in the pore on external pressure. It is demonstrated that the disorder controls the sorption for long pores and can result in H2-type hysteresis. Finite-temperature Metropolis dynamics simulations support analytical findings in the limit of low temperatures. The proposed framework is viewed as a fundamental building block of the theory of capillary condensation necessary for reliable structural analysis of complex porous media from adsorption-desorption data.

  15. Critical conductance of a one-dimensional doped Mott insulator

    NASA Astrophysics Data System (ADS)

    Garst, M.; Novikov, D. S.; Stern, Ady; Glazman, L. I.

    2008-01-01

    We consider the two-terminal conductance of a one-dimensional Mott insulator undergoing the commensurate-incommensurate quantum phase transition to a conducting state. We treat the leads as Luttinger liquids. At a specific value of compressibility of the leads, corresponding to the Luther-Emery point, the conductance can be described in terms of the free propagation of noninteracting fermions with charge e/2 . At that point, the temperature dependence of the conductance across the quantum phase transition is described by a Fermi function. The deviation from the Luther-Emery point in the leads changes the temperature dependence qualitatively. In the metallic state, the low-temperature conductance is determined by the properties of the leads, and is described by the conventional Luttinger-liquid theory. In the insulating state, conductance occurs via activation of e/2 charges, and is independent of the Luttinger-liquid compressibility.

  16. Quantum quench dynamics in analytically solvable one-dimensional models

    NASA Astrophysics Data System (ADS)

    Iucci, Anibal; Cazalilla, Miguel A.; Giamarchi, Thierry

    2008-03-01

    In connection with experiments in cold atomic systems, we consider the non-equilibrium dynamics of some analytically solvable one-dimensional systems which undergo a quantum quench. In this quench one or several of the parameters of the Hamiltonian of an interacting quantum system are changed over a very short time scale. In particular, we concentrate on the Luttinger model and the sine-Gordon model in the Luther-Emery point. For the latter, we show that the order parameter and the two-point correlation function relax in the long time limit to the values determined by a generalized Gibbs ensemble first discussed by J. T. Jaynes [Phys. Rev. 106, 620 (1957); 108, 171 (1957)], and recently conjectured by M. Rigol et.al. [Phys. Rev. Lett. 98, 050405 (2007)] to apply to the non-equilibrium dynamics of integrable systems.

  17. Atom-Molecule Coherence in a One-Dimensional System

    NASA Astrophysics Data System (ADS)

    Citro, R.; Orignac, E.

    2005-09-01

    We study a model of one-dimensional fermionic atoms with a narrow Feshbach resonance that allows them to bind in pairs to form bosonic molecules. We show that at low energy, a coherence develops between the molecule and fermion Luttinger liquids. At the same time, a gap opens in the spin excitation spectrum. The coherence implies that the order parameters for the molecular Bose-Einstein condensation and the atomic BCS pairing become identical. Moreover, both bosonic and fermionic charge density wave correlations decay exponentially, in contrast with a usual Luttinger liquid. We exhibit a Luther-Emery point where the systems can be described in terms of noninteracting pseudofermions. At this point we discuss the threshold behavior of density-density response functions.

  18. Quasi-one-dimensional model of pretransitional soft mode behavior

    NASA Astrophysics Data System (ADS)

    Mendelson, S.

    1988-04-01

    Pretransitional effects at displacive phase transitions are temperature dependent responses to fluctuations of the order parameter; these give rise to 1-D correlations in martensitic transformations when lattice dynamical constraints divide the “hard mode” 3-D correlation of the Bain distortion in order to maintain the mean field on a macroscopic scale. The quasi-one-dimensional (QOD) soft mode model of the latttice-variant-shear-theory (LVST) is described and its relevance to pretransitional nucleation and soft mode behavior, discussed. The 1-D correlations give rise to localized soft modes above T m , which nucleate microdomains of an intermediate phase at dissociated dislocations; these grow with second order kinetics and maintain the mean field when microdomains of opposite displacement vector cancel each other. Pretransitional behavior, predicted by LVST, are compared with experimental data in a wide range of materials and show why materials with different order parameters show similar transformation behavior.

  19. One-dimensional topological edge states of bismuth bilayers

    NASA Astrophysics Data System (ADS)

    Drozdov, Ilya K.; Alexandradinata, A.; Jeon, Sangjun; Nadj-Perge, Stevan; Ji, Huiwen; Cava, R. J.; Andrei Bernevig, B.; Yazdani, Ali

    2014-09-01

    The hallmark of a topologically insulating state of matter in two dimensions protected by time-reversal symmetry is the existence of chiral edge modes propagating along the perimeter of the sample. Among the first systems predicted to be a two-dimensional topological insulator are bilayers of bismuth. Here we report scanning tunnelling microscopy experiments on bulk Bi crystals that show that a subset of the predicted Bi-bilayers' edge states are decoupled from the states of the substrate and provide direct spectroscopic evidence of their one-dimensional nature. Moreover, by visualizing the quantum interference of edge-mode quasi-particles in confined geometries, we demonstrate their remarkable coherent propagation along the edge with scattering properties consistent with strong suppression of backscattering as predicted for the propagating topological edge states.

  20. The statistical distributions of one-dimensional “turbulence”

    NASA Astrophysics Data System (ADS)

    Peyrard, Michel

    2004-06-01

    We study a one-dimensional discrete analog of the von Kármán flow widely investigated in turbulence, made of a lattice of anharmonic oscillators excited by both ends in the presence of a dissipative term proportional to the second-order finite difference of the velocities, similar to the viscous term in a fluid. The dynamics of the model shows striking similarities with an actual turbulent flow, both at local and global scales. Calculations of the probability distribution function of velocity increments, extensively studied in turbulence, with a very large number of points in order to determine accurately the statistics of rare events, allow us to provide a meaningful comparison of different theoretical expressions of the PDFs.

  1. One-dimensional hybrid nanostructures for heterogeneous photocatalysis and photoelectrocatalysis.

    PubMed

    Xiao, Fang-Xing; Miao, Jianwei; Tao, Hua Bing; Hung, Sung-Fu; Wang, Hsin-Yi; Yang, Hong Bin; Chen, Jiazang; Chen, Rong; Liu, Bin

    2015-05-13

    Semiconductor-based photocatalysis and photoelectrocatalysis have received considerable attention as alternative approaches for solar energy harvesting and storage. The photocatalytic or photoelectrocatalytic performance of a semiconductor is closely related to the design of the semiconductor at the nanoscale. Among various nanostructures, one-dimensional (1D) nanostructured photocatalysts and photoelectrodes have attracted increasing interest owing to their unique optical, structural, and electronic advantages. In this article, a comprehensive review of the current research efforts towards the development of 1D semiconductor nanomaterials for heterogeneous photocatalysis and photoelectrocatalysis is provided and, in particular, a discussion of how to overcome the challenges for achieving full potential of 1D nanostructures is presented. It is anticipated that this review will afford enriched information on the rational exploration of the structural and electronic properties of 1D semiconductor nanostructures for achieving more efficient 1D nanostructure-based photocatalysts and photoelectrodes for high-efficiency solar energy conversion.

  2. Medical image denoising using one-dimensional singularity function model.

    PubMed

    Luo, Jianhua; Zhu, Yuemin; Hiba, Bassem

    2010-03-01

    A novel denoising approach is proposed that is based on a spectral data substitution mechanism through using a mathematical model of one-dimensional singularity function analysis (1-D SFA). The method consists in dividing the complete spectral domain of the noisy signal into two subsets: the preserved set where the spectral data are kept unchanged, and the substitution set where the original spectral data having lower signal-to-noise ratio (SNR) are replaced by those reconstructed using the 1-D SFA model. The preserved set containing original spectral data is determined according to the SNR of the spectrum. The singular points and singularity degrees in the 1-D SFA model are obtained through calculating finite difference of the noisy signal. The theoretical formulation and experimental results demonstrated that the proposed method allows more efficient denoising while introducing less distortion, and presents significant improvement over conventional denoising methods.

  3. Magnons in one-dimensional k-component Fibonacci structures

    SciTech Connect

    Costa, C. H.; Vasconcelos, M. S.

    2014-05-07

    We have studied the magnon transmission through of one-dimensional magnonic k-component Fibonacci structures, where k different materials are arranged in accordance with the following substitution rule: S{sub n}{sup (k)}=S{sub n−1}{sup (k)}S{sub n−k}{sup (k)} (n≥k=0,1,2,…), where S{sub n}{sup (k)} is the nth stage of the sequence. The calculations were carried out in exchange dominated regime within the framework of the Heisenberg model and taking into account the RPA approximation. We have considered multilayers composed of simple cubic spin-S Heisenberg ferromagnets, and, by using the powerful transfer-matrix method, the spin wave transmission is obtained. It is demonstrated that the transmission coefficient has a rich and interesting magnonic pass- and stop-bands structures, which depends on the frequency of magnons and the k values.

  4. Recurrence relations in one-dimensional Ising models

    NASA Astrophysics Data System (ADS)

    da Conceição, C. M. Silva; Maia, R. N. P.

    2017-09-01

    The exact finite-size partition function for the nonhomogeneous one-dimensional (1D) Ising model is found through an approach using algebra operators. Specifically, in this paper we show that the partition function can be computed through a trace from a linear second-order recurrence relation with nonconstant coefficients in matrix form. A relation between the finite-size partition function and the generalized Lucas polynomials is found for the simple homogeneous model, thus establishing a recursive formula for the partition function. This is an important property and it might indicate the possible existence of recurrence relations in higher-dimensional Ising models. Moreover, assuming quenched disorder for the interactions within the model, the quenched averaged magnetic susceptibility displays a nontrivial behavior due to changes in the ferromagnetic concentration probability.

  5. One-dimensional boron nanostructures: Prediction, synthesis, characterizations, and applications.

    PubMed

    Tian, Jifa; Xu, Zhichuan; Shen, Chengmin; Liu, Fei; Xu, Ningsheng; Gao, Hong-Jun

    2010-08-01

    One-dimensional (1D) boron nanostructures are very potential for nanoscale electronic devices since their physical properties including electric transport and field emission have been found very promising as compared to other well-developed 1D nanomaterials. In this article, we review the current progress that has been made on 1D boron nanostructures in terms of theoretical prediction, synthetic techniques, characterizations and potential applications. To date, the synthesis of 1D boron nanostructures has been well-developed. The popular structures include nanowires, nanobelts, and nanocones. Some of these 1D nanostructures exhibited improved electric transport properties over bulk boron materials as well as promising field emission properties. By current experimental findings, 1D boron nanostructures are promising to be one of core materials for future nanodevices. More efforts are expected to be made in future on the controlled growth of 1D boron nanostructures and tailoring their physical properties.

  6. Wigner quantization of some one-dimensional Hamiltonians

    SciTech Connect

    Regniers, G.; Van der Jeugt, J.

    2010-12-15

    Recently, several papers have been dedicated to the Wigner quantization of different Hamiltonians. In these examples, many interesting mathematical and physical properties have been shown. Among those we have the ubiquitous relation with Lie superalgebras and their representations. In this paper, we study two one-dimensional Hamiltonians for which the Wigner quantization is related with the orthosymplectic Lie superalgebra osp(1|2). One of them, the Hamiltonian H=xp, is popular due to its connection with the Riemann zeros, discovered by Berry and Keating on the one hand and Connes on the other. The Hamiltonian of the free particle, H{sub f}=p{sup 2}/2, is the second Hamiltonian we will examine. Wigner quantization introduces an extra representation parameter for both of these Hamiltonians. Canonical quantization is recovered by restricting to a specific representation of the Lie superalgebra osp(1|2).

  7. Wave propagation in one-dimensional nonlinear acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Fang, Xin; Wen, Jihong; Bonello, Bernard; Yin, Jianfei; Yu, Dianlong

    2017-05-01

    The propagation of waves in nonlinear acoustic metamaterial (NAM) is fundamentally different from that in conventional linear ones. In this article we consider two one-dimensional (1D) NAM systems featuring respectively a diatomic and a tetratomic meta unit-cell. We investigate the attenuation of waves, band structures, and bifurcations to demonstrate novel nonlinear effects, which can significantly expand the bandwidth for elastic wave suppression and cause nonlinear wave phenomena. The harmonic averaging approach, continuation algorithm, and Lyapunov exponents (LEs) are combined to study the frequency responses, nonlinear modes, bifurcations of periodic solutions, and chaos. The nonlinear resonances are studied, and the influence of damping on hyperchaotic attractors is evaluated. Moreover, a ‘quantum’ behavior is found between the low-energy and high-energy orbits. This work provides a theoretical base for furthering understandings and applications of NAMs.

  8. Solution of a one-dimensional ablation model

    NASA Astrophysics Data System (ADS)

    Rupertijunior, Nerbe Jose

    1991-11-01

    Ablation in multilayered one-dimensional media is studied. A finite element technique using a Streamline Upwind/Petrov-Galerkin (SU/PG) formulation is employed with a moving mesh which adapts itself to the moving boundary at each time step. The SU/PG formulation is used to avoid oscillations caused by first order derivatives in the energy equation. Ablation problems with time-dependent heat fluxes and a typical example in aerospace thermal protection applications are solved. Critical comparisons are made with finite differences results recently obtained through the control volume approach with exponential differencing. The generalized integral transform technique (GITT) is used as an alternative solution to ablation in multilayered media and to validate the results obtained by the finite element method. The eigenvalues needed in the GITT solution are determined simultaneously with the tansformed temperatures by rewriting the associated transcedental equations into ordinary differential equations.

  9. Singularity formation for one dimensional full Euler equations

    NASA Astrophysics Data System (ADS)

    Pan, Ronghua; Zhu, Yi

    2016-12-01

    We investigate the basic open question on the global existence v.s. finite time blow-up phenomena of classical solutions for the one-dimensional compressible Euler equations of adiabatic flow. For isentropic flows, it is well-known that the solutions develop singularity if and only if initial data contain any compression (the Riemann variables have negative spatial derivative). The situation for non-isentropic flow is not quite clear so far, due to the presence of non-constant entropy. In [4], it is shown that initial weak compressions do not necessarily develop singularity in finite time, unless the compression is strong enough for general data. In this paper, we identify a class of solutions of the full (non-isentropic) Euler equations, developing singularity in finite time even though their initial data do not contain any compression. This is in sharp contrast to the isentropic flow.

  10. Particle partition entanglement of one dimensional spinless fermions

    NASA Astrophysics Data System (ADS)

    Barghathi, Hatem; Casiano-Diaz, Emanuel; Del Maestro, Adrian

    2017-08-01

    We investigate the scaling of the Rényi entanglement entropies for a particle bipartition of interacting spinless fermions in one spatial dimension. In the Tomonaga-Luttinger liquid regime, we calculate the second Rényi entanglement entropy and show that the leading order finite-size scaling is equal to a universal logarithm of the system size plus a non-universal constant. Higher-order corrections decay as power-laws in the system size with exponents that depend only on the Luttinger parameter. We confirm the universality of our results by investigating the one dimensional t-V model of interacting spinless fermions via exact-diagonalization techniques. The resulting sensitivity of the particle partition entanglement to boundary conditions and statistics supports its utility as a probe of quantum liquids.

  11. One-dimensional photonic crystals as selective back reflectors

    NASA Astrophysics Data System (ADS)

    Gondek, Ewa; Karasiński, Paweł

    2013-06-01

    Using the sol-gel technology and dip-coating method involving the deposition of silica layers and titania layers, we have fabricated symmetrical structures with one-dimensional photonic crystals on both sides of glass substrates. For the structure with five bilayers (SiO2/TiO2) we have obtained the maximum reflectance of 0.967 for the wavelength λr=493 nm and full width at half maximum of the main reflectance peak of FWHM=185 nm. The fabricated structures have been analyzed theoretically with the application of the transfer matrix 2×2 method, allowing for complex refraction indexes for the component layers. The paper presents the applied theoretical model and the discussion involving the calculated and experimental results. Good agreement between the calculation and experimental results has been obtained. The elaborated photonic structures can be applied in solar light concentrators for photovoltaic systems.

  12. Entangling Qubits in a One-Dimensional Harmonic Oscillator

    NASA Astrophysics Data System (ADS)

    Owen, Edmund; Dean, Matthew; Barnes, Crispin

    2012-02-01

    We present a method for generating entanglement between qubits associated with a pair of particles interacting in a one-dimensional harmonic potential. By considering the effect of the interaction on the energy spectrum of the system, we show that, under certain approximations, a ``power-of-SWAP" operation is performed on the initial two-qubit quantum state without requiring any time-dependent control. Initialization errors and deviations from our approximation are shown to have a negligible effect on the final state. Using a GPU-accelerated iteration scheme to find numerical solutions to the two-particle time-dependent Schr"odinger equation, we demonstrate that it is possible to generate maximally entangled Bell states between the two qubits with high fidelity for a range of possible interaction potentials.

  13. Experiment and simulation on one-dimensional plasma photonic crystals

    SciTech Connect

    Zhang, Lin; Ouyang, Ji-Ting

    2014-10-15

    The transmission characteristics of microwaves passing through one-dimensional plasma photonic crystals (PPCs) have been investigated by experiment and simulation. The PPCs were formed by a series of discharge tubes filled with argon at 5 Torr that the plasma density in tubes can be varied by adjusting the discharge current. The transmittance of X-band microwaves through the crystal structure was measured under different discharge currents and geometrical parameters. The finite-different time-domain method was employed to analyze the detailed properties of the microwaves propagation. The results show that there exist bandgaps when the plasma is turned on. The properties of bandgaps depend on the plasma density and the geometrical parameters of the PPCs structure. The PPCs can perform as dynamical band-stop filter to control the transmission of microwaves within a wide frequency range.

  14. Quasi one dimensional transport in individual electrospun composite nanofibers

    SciTech Connect

    Avnon, A. Datsyuk, V.; Trotsenko, S.; Wang, B.; Zhou, S.

    2014-01-15

    We present results of transport measurements of individual suspended electrospun nanofibers Poly(methyl methacrylate)-multiwalled carbon nanotubes. The nanofiber is comprised of highly aligned consecutive multiwalled carbon nanotubes. We have confirmed that at the range temperature from room temperature down to ∼60 K, the conductance behaves as power-law of temperature with an exponent of α ∼ 2.9−10.2. The current also behaves as power law of voltage with an exponent of β ∼ 2.3−8.6. The power-law behavior is a footprint for one dimensional transport. The possible models of this confined system are discussed. Using the model of Luttinger liquid states in series, we calculated the exponent for tunneling into the bulk of a single multiwalled carbon nanotube α{sub bulk} ∼ 0.06 which agrees with theoretical predictions.

  15. Erosion by a one-dimensional random walk

    NASA Astrophysics Data System (ADS)

    Chisholm, Rebecca H.; Hughes, Barry D.; Landman, Kerry A.

    2014-08-01

    We consider a model introduced by Baker et al. [Phys. Rev. E 88, 042113 (2013), 10.1103/PhysRevE.88.042113] of a single lattice random walker moving on a domain of allowed sites, surrounded by blocked sites. The walker enlarges the allowed domain by eroding the boundary at its random encounters with blocked boundary sites: attempts to step onto blocked sites succeed with a given probability and convert these sites to allowed sites. The model interpolates continuously between the Pólya random walker on the one-dimensional lattice and a "blind" walker who attempts freely, but always aborts, moves to blocked sites. We obtain some exact results about the walker's location and the rate of erosion.

  16. A radiating one-dimensional current sheet configuration

    NASA Technical Reports Server (NTRS)

    Pritchett, P. L.; Coroniti, F. V.

    1993-01-01

    The structure of the x-independent (one-dimensional) forced current sheet including a self consistent By component is investigated for the case of small normal field component, Bz/B0 much less than 1. A hybrid (kinetic ions, massless fluid electrons) simulation model is used to demonstrate that such a current sheet has a time-dependent structure which radiates incompressible Alfven waves with amplitude of the order of the asymptotic (lobe) field strength B0. The central density enhancement acts as the source of a propagating wavetrain in which Bx rotates into By and back again. One of the characteristic signatures of the radiating current sheet is the presence of a reversal in Bx (or By) without a corresponding increase in density.

  17. One dimensional modeling of blood flow in large networks

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofei; Lagree, Pierre-Yves; Fullana, Jose-Maria; Lorthois, Sylvie; Institut de Mecanique des Fluides de Toulouse Collaboration

    2014-11-01

    A fast and valid simulation of blood flow in large networks of vessels can be achieved with a one-dimensional viscoelastic model. In this paper, we developed a parallel code with this model and computed several networks: a circle of arteries, a human systemic network with 55 arteries and a vascular network of mouse kidney with more than one thousand segments. The numerical results were verified and the speedup of parallel computing was tested on multi-core computers. The evolution of pressure distributions in all the networks were visualized and we can see clearly the propagation patterns of the waves. This provides us a convenient tool to simulate blood flow in networks.

  18. One-dimensional photonic crystal fishbone hybrid nanocavity with nanoposts

    SciTech Connect

    Lu, Tsan-Wen; Lin, Pin-Tso; Lee, Po-Tsung

    2014-05-12

    We propose and investigate a one-dimensional photonic crystal (PhC) fishbone (FB) hybrid nanocavity lying on silver substrate with a horizontal air slot. With very few PhC periods, the confined transverse-magnetic, TM{sub 10} hybrid mode concentrated within the air slot shows high quality factor over effective mode volume ratio larger than 10{sup 5}λ{sup −3}. Most importantly, this FB hybrid nanocavity allows formation of low-index nanoposts within the air slot without significantly affecting the mode properties. These nanoposts guarantee the structural stabilities under different environmental perturbations. Furthermore, capabilities of our proposed design in serving as optical sensors and tweezers for bio-sized nanoparticles are also investigated.

  19. One-dimensional photonic crystal fishbone hybrid nanocavity with nanoposts

    NASA Astrophysics Data System (ADS)

    Lu, Tsan-Wen; Lin, Pin-Tso; Lee, Po-Tsung

    2014-05-01

    We propose and investigate a one-dimensional photonic crystal (PhC) fishbone (FB) hybrid nanocavity lying on silver substrate with a horizontal air slot. With very few PhC periods, the confined transverse-magnetic, TM10 hybrid mode concentrated within the air slot shows high quality factor over effective mode volume ratio larger than 105λ-3. Most importantly, this FB hybrid nanocavity allows formation of low-index nanoposts within the air slot without significantly affecting the mode properties. These nanoposts guarantee the structural stabilities under different environmental perturbations. Furthermore, capabilities of our proposed design in serving as optical sensors and tweezers for bio-sized nanoparticles are also investigated.

  20. Source of Relaxation in the One Dimensional Gravitating System

    NASA Astrophysics Data System (ADS)

    Miller, Bruce

    1996-05-01

    Recent numerical experiments suggest that the one dimensional system consisting of N parallel mass sheets relaxes on two time scales: a rapid violent phase with duration of order T (a typical system crossing time) resulting in a quasi-equilibrium (QE) state followed by (2) a succession of QE states leading finally to thermal equilibrium. Within each QE state fluctuations relax on a time scale of order NT while complete thermalization occurs in about 10^4NT. Here I show that both time scales can be explained within the context of a diffusion model developed by the author and K. Yawn* (K. R. Yawn and B. N. Miller, Phys. Rev. E v.52, p. 3390 (1995).) specifically for this system.

  1. One-dimensional cloud fluid model for propagating star formation

    NASA Technical Reports Server (NTRS)

    Titus, Timothy N.; Struck-Marcell, Curtis

    1990-01-01

    The aim of this project was to study the propagation of star formation (SF) with a self-consistent deterministic model for the interstellar gas. The questions of under what conditions does star formation propagate in this model and what are the mechanisms of the propagation are explored. Here, researchers used the deterministic Oort-type cloud fluid model of Scalo and Struck-Marcell (1984, also see the review of Struck-Marcell, Scalo and Appleton 1987). This cloud fluid approach includes simple models for the effects of cloud collisional coalescence or disruption, collisional energy dissipation, and cloud disruption and acceleration as the result of young star winds, HII regions and supernovae. An extensive one-zone parameter study is presented in Struck-Marcell and Scalo (1987). To answer the questions above, researchers carried out one-dimensional calculations for an annulus within a galactic disk, like the so-called solar neighborhood of the galactic chemical evolution. In the calculations the left-hand boundary is set equal to the right hand boundary. The calculation is obviously idealized; however, it is computationally convenient to study the first order effects of propagating star formation. The annulus was treated as if it were at rest, i.e., in the local rotating frame. This assumption may remove some interesting effects of a supersonic gas flow, but was necessary to maintain a numerical stability in the annulus. The results on the one-dimensional propagation of SF in the Oort cloud fluid model follow: (1) SF is propagated by means of hydrodynamic waves, which can be generated by external forces or by the pressure generated by local bursts. SF is not effectively propagated via diffusion or variation in cloud interaction rates without corresponding density and velocity changes. (2) The propagation and long-range effects of SF depend on how close the gas density is to the critical threshold value, i.e., on the susceptibility of the medium.

  2. A One-Dimensional Synthetic-Aperture Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Doiron, Terence; Piepmeier, Jeffrey

    2010-01-01

    A proposed one-dimensional synthetic- aperture microwave radiometer could serve as an alternative to either the two-dimensional synthetic-aperture radiometer described in the immediately preceding article or to a prior one-dimensional one, denoted the Electrically Scanned Thinned Array Radiometer (ESTAR), mentioned in that article. The proposed radiometer would operate in a pushbroom imaging mode, utilizing (1) interferometric cross-track scanning to obtain cross-track resolution and (2) the focusing property of a reflector for along-track resolution. The most novel aspect of the proposed system would be the antenna (see figure), which would include a cylindrical reflector of offset parabolic cross section. The reflector could be made of a lightweight, flexible material amenable to stowage and deployment. Other than a stowage/deployment mechanism, the antenna would not include moving parts, and cross-track scanning would not entail mechanical rotation of the antenna. During operation, the focal line, parallel to the cylindrical axis, would be oriented in the cross-track direction, so that placement of receiving/radiating elements at the focal line would afford the desired along-track resolution. The elements would be microwave feed horns sparsely arrayed along the focal line. The feed horns would be oriented with their short and long cross-sectional dimensions parallel and perpendicular, respectively, to the cylindrical axis to obtain fan-shaped beams having their broad and narrow cross-sectional dimensions parallel and perpendicular, respectively, to the cylindrical axis. The interference among the beams would be controlled in the same manner as in the ESTAR to obtain along-cylindrical- axis (cross-track) resolution and cross-track scanning.

  3. Bjorken flow in one-dimensional relativistic magnetohydrodynamics with magnetization

    NASA Astrophysics Data System (ADS)

    Pu, Shi; Roy, Victor; Rezzolla, Luciano; Rischke, Dirk H.

    2016-04-01

    We study the one-dimensional, longitudinally boost-invariant motion of an ideal fluid with infinite conductivity in the presence of a transverse magnetic field, i.e., in the ideal transverse magnetohydrodynamical limit. In an extension of our previous work Roy et al., [Phys. Lett. B 750, 45 (2015)], we consider the fluid to have a nonzero magnetization. First, we assume a constant magnetic susceptibility χm and consider an ultrarelativistic ideal gas equation of state. For a paramagnetic fluid (i.e., with χm>0 ), the decay of the energy density slows down since the fluid gains energy from the magnetic field. For a diamagnetic fluid (i.e., with χm<0 ), the energy density decays faster because it feeds energy into the magnetic field. Furthermore, when the magnetic field is taken to be external and to decay in proper time τ with a power law ˜τ-a, two distinct solutions can be found depending on the values of a and χm. Finally, we also solve the ideal magnetohydrodynamical equations for one-dimensional Bjorken flow with a temperature-dependent magnetic susceptibility and a realistic equation of state given by lattice-QCD data. We find that the temperature and energy density decay more slowly because of the nonvanishing magnetization. For values of the magnetic field typical for heavy-ion collisions, this effect is, however, rather small. It is only for magnetic fields about an order of magnitude larger than expected for heavy-ion collisions that the system is substantially reheated and the lifetime of the quark phase might be extended.

  4. Dual Sticky Hierarchical Dirichlet Process Hidden Markov Model and Its Application to Natural Language Description of Motions.

    PubMed

    Hu, Weiming; Tian, Guodong; Kang, Yongxin; Yuan, Chunfeng; Maybank, Stephen

    2017-09-25

    In this paper, a new nonparametric Bayesian model called the dual sticky hierarchical Dirichlet process hidden Markov model (HDP-HMM) is proposed for mining activities from a collection of time series data such as trajectories. All the time series data are clustered. Each cluster of time series data, corresponding to a motion pattern, is modeled by an HMM. Our model postulates a set of HMMs that share a common set of states (topics in an analogy with topic models for document processing), but have unique transition distributions. For the application to motion trajectory modeling, topics correspond to motion activities. The learnt topics are clustered into atomic activities which are assigned predicates. We propose a Bayesian inference method to decompose a given trajectory into a sequence of atomic activities. On combining the learnt sources and sinks, semantic motion regions, and the learnt sequence of atomic activities, the action represented by the trajectory can be described in natural language in as automatic a way as possible. The effectiveness of our dual sticky HDP-HMM is validated on several trajectory datasets. The effectiveness of the natural language descriptions for motions is demonstrated on the vehicle trajectories extracted from a traffic scene.

  5. Two-boundary first exit time of Gauss-Markov processes for stochastic modeling of acto-myosin dynamics.

    PubMed

    D'Onofrio, Giuseppe; Pirozzi, Enrica

    2017-05-01

    We consider a stochastic differential equation in a strip, with coefficients suitably chosen to describe the acto-myosin interaction subject to time-varying forces. By simulating trajectories of the stochastic dynamics via an Euler discretization-based algorithm, we fit experimental data and determine the values of involved parameters. The steps of the myosin are represented by the exit events from the strip. Motivated by these results, we propose a specific stochastic model based on the corresponding time-inhomogeneous Gauss-Markov and diffusion process evolving between two absorbing boundaries. We specify the mean and covariance functions of the stochastic modeling process taking into account time-dependent forces including the effect of an external load. We accurately determine the probability density function (pdf) of the first exit time (FET) from the strip by solving a system of two non singular second-type Volterra integral equations via a numerical quadrature. We provide numerical estimations of the mean of FET as approximations of the dwell-time of the proteins dynamics. The percentage of backward steps is given in agreement to experimental data. Numerical and simulation results are compared and discussed.

  6. Fabrication and characterization of one dimensional zinc oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Cheng, Chun

    In this thesis, one dimensional (1D) ZnO nanostructures with controlled morphologies, defects and alignment have been fabricated by a simple vapor transfer method. The crystal structures, interfaces, growth mechanisms and optical properties of ZnO nanostructures have been investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy. Great efforts have been devoted to the patterned growth and assembly of ZnO nanostructures as well as the stability of ZnO nanowires (NWs). Using carbonized photoresists, a simple and very effective method has been developed for fabricating and patterning high-quality ZnO NW arrays. ZnO NWs from this method show excellent alignment, crystal quality, and optical properties that are independent of the substrates. The carbonized photoresists provide perfect nucleation sites for the growth of aligned ZnO NWs and also perfectly connect to the NWs to form ideal electrodes. This approach is further extended to realize large area growth of different forms of ZnO NW arrays (e.g., the horizontal growth and multilayered ZnO NW arrays) on other kinds of carbon-based materials. In addition, the as-synthesized vertically aligned ZnO NW arrays show a low weighted reflectance (Rw) and can be used as antireflection coatings. Moreover, non c-axis growth of 1D ZnO nanostructures (e.g., nanochains, nanobrushes and nanobelts) and defect related 1D ZnO nanostructures (e.g., Y-shaped twinned nanobelts and hierarchical nanostructures decorated by flowers induced by screw dislocations) is also present. Using direct oxidization of pure Zn at high temperatures in air, uniformed ZnO NWs and tetrapods have been fabricated. The spatially-resolved PL study on these two kinds of nanostructures suggests that the defects leading to the green luminescence (GL) should originate from the structural changes along the legs of the tetrapods. Surface defects in these ZnO nanostructures play an unimportant

  7. One-dimensional turbulence modeling of a turbulent counterflow flame with comparison to DNS

    SciTech Connect

    Jozefik, Zoltan; Kerstein, Alan R.; Schmidt, Heiko; Lyra, Sgouria; Kolla, Hemanth; Chen, Jackie H.

    2015-06-01

    The one-dimensional turbulence (ODT) model is applied to a reactant-to-product counterflow configuration and results are compared with DNS data. The model employed herein solves conservation equations for momentum, energy, and species on a one dimensional (1D) domain corresponding to the line spanning the domain between nozzle orifice centers. The effects of turbulent mixing are modeled via a stochastic process, while the Kolmogorov and reactive length and time scales are explicitly resolved and a detailed chemical kinetic mechanism is used. Comparisons between model and DNS results for spatial mean and root-meansquare (RMS) velocity, temperature, and major and minor species profiles are shown. The ODT approach shows qualitatively and quantitatively reasonable agreement with the DNS data. Scatter plots and statistics conditioned on temperature are also compared for heat release rate and all species. ODT is able to capture the range of results depicted by DNS. However, conditional statistics show signs of underignition.

  8. Self-organization of cosmic radiation pressure instability. II - One-dimensional simulations

    NASA Technical Reports Server (NTRS)

    Hogan, Craig J.; Woods, Jorden

    1992-01-01

    The clustering of statistically uniform discrete absorbing particles moving solely under the influence of radiation pressure from uniformly distributed emitters is studied in a simple one-dimensional model. Radiation pressure tends to amplify statistical clustering in the absorbers; the absorbing material is swept into empty bubbles, the biggest bubbles grow bigger almost as they would in a uniform medium, and the smaller ones get crushed and disappear. Numerical simulations of a one-dimensional system are used to support the conjecture that the system is self-organizing. Simple statistics indicate that a wide range of initial conditions produce structure approaching the same self-similar statistical distribution, whose scaling properties follow those of the attractor solution for an isolated bubble. The importance of the process for large-scale structuring of the interstellar medium is briefly discussed.

  9. Synchronization in a Plasmodial Strand of Physarum Polycephalum as a One-Dimensionally Coupled Oscillator System

    NASA Astrophysics Data System (ADS)

    Hu, Zi-Song; Takahashi, Kengo; Tsuchiya, Yoshimi

    1994-02-01

    Transient behaviors in self-sustained oscillation of a plasmodial strand of Physarum polycephalum have been investigated for various external loads under isotonic conditions. Synchronization between divisions of the strand has been observed in its formation process, which shows that the plasmodial strand can be considered as a one-dimensionally coupled oscillator system. The synchronization has been found to proceed faster with increasing external load applied to the strand. It has furthermore been found that the rate of increase of the amplitude of oscillation increases with the load, whereas the temporal behavior of its period is independent of the load. These results show that the oscillators themselves in the plasmodial strand do not depend on the external load, but the coupling between these oscillators is strongly affected with the external load. The experimental results have also been simulated on the basis of one-dimensionally coupled van der Pol equations.

  10. A one-dimensional time-dependent model of the magnetized ionosphere of Venus

    NASA Technical Reports Server (NTRS)

    Shinagawa, H.; Cravens, T. E.; Nagy, A. F.

    1987-01-01

    The behavior and time evolution of the large-scale magnetic fields and plasma of the dayside Venus ionosphere are studied using a one-dimensional model. The coupled continuity, momentum, and Maxwell's equations are solved simultaneously for O(+), O2(+), and H(+), and the magnetic field. The calculated magnetic field profiles are in good agreement with Pioneer Venus orbiter magnetometer observations. The magnetic field structure is quasi-steady for slow changes of the solar wind dynamic pressure. The peak at 165 km is maintained by downward convection from higher altitudes. The time scale for the decay of the field by the pure one-dimensional vertical diffusion/convection process is several hours unless the flux is resupplied from the top of the ionosphere.

  11. Young measure solutions and instability of the one-dimensional Perona-Malik equation

    NASA Astrophysics Data System (ADS)

    Taheri, Shahnaz; Tang, Qi; Zhang, Kewei

    2005-08-01

    We apply a variational approach to the one-dimensional version of the widely used Perona-Malik equation in image processing. We rephrase the problem into the one related to the quasiconvex hull of a graph in the space of 2×2 matrices M2×2. We then use the solutions of some heat equations as the centre of the mass for the Young measure-valued solutions to construct the approximate solutions by using simple laminates. The approximate solutions can be viewed as solutions of a perturbation problem by W-1,p (or W-1,[infinity]) functions. The sequences of the approximate solutions generates Young measure-valued solutions. Our results also show that the solutions of the one-dimensional Perona-Malik equation are unstable under small W-1,[infinity] perturbations.

  12. Sensitivity experiments with a one-dimensional coupled plume - ice flow model

    NASA Astrophysics Data System (ADS)

    Beckmann, Johanna; Perrette, Mahé; Beyer, Sebastian; Calov, Reinhard; Ganopolski, Andrey

    2017-04-01

    Over the past two decades net mass loss from the Greenland ice sheet quadrupled, caused by enhanced surface melting and speedup of the marine-terminating outlet glaciers. This speedup has been related, among other factors, to enhanced submarine melting, which in turn is caused by warming of the surrounding ocean and by increased subglacial discharge. For the future and recent mass balance changes of the Greenland Ice Sheet, ice-ocean processes potentially play an important role, yet they are not properly represented in contemporary Greenland Ice Sheet models. In this work we performed numerical experiments with a one-dimensional plume model coupled to a one-dimensional model of outlet glacier. We investigate the response of a coupled ice-flow plume model to possible outcomes of climate change. In particularly, we examine the transient and equilibrium response of the outlet glaciers to changes in ocean temperature and subglacial discharge which affects both: glacier geometry and submarine melt rates.

  13. ODTLES : a model for 3D turbulent flow based on one-dimensional turbulence modeling concepts.

    SciTech Connect

    McDermott, Randy; Kerstein, Alan R.; Schmidt, Rodney Cannon

    2005-01-01

    This report describes an approach for extending the one-dimensional turbulence (ODT) model of Kerstein [6] to treat turbulent flow in three-dimensional (3D) domains. This model, here called ODTLES, can also be viewed as a new LES model. In ODTLES, 3D aspects of the flow are captured by embedding three, mutually orthogonal, one-dimensional ODT domain arrays within a coarser 3D mesh. The ODTLES model is obtained by developing a consistent approach for dynamically coupling the different ODT line sets to each other and to the large scale processes that are resolved on the 3D mesh. The model is implemented computationally and its performance is tested and evaluated by performing simulations of decaying isotropic turbulence, a standard turbulent flow benchmarking problem.

  14. Kinetics of Intracellular Ice Formation in One-Dimensional Arrays of Interacting Biological Cells

    PubMed Central

    Irimia, Daniel; Karlsson, Jens O. M.

    2005-01-01

    Although cell-cell interactions are known to significantly affect the kinetics of intracellular ice formation (IIF) during tissue freezing, this effect is not well understood. Progress in elucidating the mechanism and role of intercellular ice propagation in tissue freezing has been hampered in part by limitations in experimental design and data analysis. Thus, using rapid-cooling cryomicroscopy, IIF was measured in adherent cells cultured in micropatterned linear constructs (to control cell-cell interactions and minimize confounding factors). By fitting a Markov chain model to IIF data from micropatterned HepG2 cell pairs, the nondimensional rate of intercellular ice propagation was found to be α = 10.4 ± 0.1. Using this measurement, a new generator matrix was derived to predict the kinetics of IIF in linear four-cell constructs; cryomicroscopic measurements of IIF state probabilities in micropatterned four-cell arrays conformed with theoretical predictions (p < 0.05), validating the modeling assumptions. Thus, the theoretical model was extended to allow prediction of IIF in larger tissues, using Monte Carlo techniques. Simulations were performed to investigate the effects of tissue size and ice propagation rate, for one-dimensional tissue constructs containing up to 100 cells and nondimensional propagation rates in the range 0.1 ≤ α ≤ 1000. PMID:15475590

  15. Optimal partition choice for invariant measure approximation for one-dimensional maps

    NASA Astrophysics Data System (ADS)

    Murray, Rua

    2004-09-01

    The problem of finding absolutely continuous invariant measures (ACIMs) for a dynamical system can be formulated as a fixed point problem for a Markov operator (the Perron-Frobenius operator). This is an infinite-dimensional problem. Ulam's method replaces the Perron-Frobenius operator by a sequence of finite rank approximations whose fixed points are relatively easy to compute numerically. This paper concerns the optimal choice of Ulam approximations for one-dimensional maps; an adaptive partition selection is used to tailor the approximations to the structure of the invariant measure. The main idea is to select a partition which equally distributes the square root of the derivative of the invariant density amongst the bins of the partition. The results are illustrated for the logistic map where the ACIMs may have inverse square root singularities in their density functions. O(log n/n) convergence rates can be expected, whereas a non-adaptive algorithm yields O(n-1/2) at best. Studying the convergence of the adaptive algorithm allows an estimate to be made of the measure of the Jakobson parameter set (those logistic maps which admit an ACIM).

  16. Semi-Markov Graph Dynamics

    PubMed Central

    Raberto, Marco; Rapallo, Fabio; Scalas, Enrico

    2011-01-01

    In this paper, we outline a model of graph (or network) dynamics based on two ingredients. The first ingredient is a Markov chain on the space of possible graphs. The second ingredient is a semi-Markov counting process of renewal type. The model consists in subordinating the Markov chain to the semi-Markov counting process. In simple words, this means that the chain transitions occur at random time instants called epochs. The model is quite rich and its possible connections with algebraic geometry are briefly discussed. Moreover, for the sake of simplicity, we focus on the space of undirected graphs with a fixed number of nodes. However, in an example, we present an interbank market model where it is meaningful to use directed graphs or even weighted graphs. PMID:21887245

  17. Multimodal Brain-Tumor Segmentation Based on Dirichlet Process Mixture Model with Anisotropic Diffusion and Markov Random Field Prior

    PubMed Central

    Lu, Yisu; Jiang, Jun; Chen, Wufan

    2014-01-01

    Brain-tumor segmentation is an important clinical requirement for brain-tumor diagnosis and radiotherapy planning. It is well-known that the number of clusters is one of the most important parameters for automatic segmentation. However, it is difficult to define owing to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of lesions. In this study, a nonparametric mixture of Dirichlet process (MDP) model is applied to segment the tumor images, and the MDP segmentation can be performed without the initialization of the number of clusters. Because the classical MDP segmentation cannot be applied for real-time diagnosis, a new nonparametric segmentation algorithm combined with anisotropic diffusion and a Markov random field (MRF) smooth constraint is proposed in this study. Besides the segmentation of single modal brain-tumor images, we developed the algorithm to segment multimodal brain-tumor images by the magnetic resonance (MR) multimodal features and obtain the active tumor and edema in the same time. The proposed algorithm is evaluated using 32 multimodal MR glioma image sequences, and the segmentation results are compared with other approaches. The accuracy and computation time of our algorithm demonstrates very impressive performance and has a great potential for practical real-time clinical use. PMID:25254064

  18. An implicit finite volume scheme for a scalar hyperbolic problem with measure data related to piecewise deterministic Markov processes

    NASA Astrophysics Data System (ADS)

    Eymard, Robert; Mercier, Sophie; Prignet, Alain

    2008-12-01

    We are interested here in the numerical approximation of a family of probability measures, solution of the Chapman-Kolmogorov equation associated to some non-diffusion Markov process with uncountable state space. Such an equation contains a transport term and another term, which implies redistribution of the probability mass on the whole space. An implicit finite volume scheme is proposed, which is intermediate between an upstream weighting scheme and a modified Lax-Friedrichs one. Due to the seemingly unusual probability framework, a new weak bounded variation inequality had to be developed, in order to prove the convergence of the discretised transport term. Such an inequality may be used in other contexts, such as for the study of finite volume approximations of scalar linear or nonlinear hyperbolic equations with initial data in L1. Also, due to the redistribution term, the tightness of the family of approximate probability measures had to be proven. Numerical examples are provided, showing the efficiency of the implicit finite volume scheme and its potentiality to be helpful in an industrial reliability context.

  19. Dynamics of one-dimensional large amplitude motions: molecular Hamiltonians

    NASA Astrophysics Data System (ADS)

    Kleiner, I.

    1998-09-01

    A general description of the usual theoretical approaches used to analyze the spectroscopic data of molecules presenting a one-dimensional large amplitude motion is given. The characteristics of this motion are first described briefly, and the pionner's works which led to the development of the molecular Hamitonian are then shown. A more detailed description is applied to one example of a one- dimensional large amplitude motion, the internal rotation (or torsion) of a symmetric group, typically the methyl CH3 group. Different methods, commonly found in the literature on this topic, such as the “principal axis method”, the “rho axis method" and the “internal axis method”, are described paying particular attention to the group theory implications. Finally, the present understanding of the torsional manifold in molecules containing a methyl internal rotor , which have become recently “prototype” molecular systems for such problems as IVR (Intramolecular Vibrational Relaxation) is presented. Une description générale des approches théoriques utilisées pour analyser les données spectroscopiques des molécules montrant un mouvement de grande amplitude est présentée.Les caractéristiques de ce mouvement sont d'abord décrites brievement et les travaux des “pionniers" du domaine, qui ont permis le développement de l'Hamiltonien moléculaire sont ensuite présentés. Une description plus détaillée est consacrée au problème de la rotation interne d'un groupe symétrique, typiquement le groupe méthyle, CH3. Différentes méthodes, traditionellement utilisées dans la littérature, telles que la méthode des “axes principaux d'inertie", la méthode des “axes rho" ou la “méthode des axes internes" sont décrites avec leurs implications au niveau de la théorie des groupes. Finalement, la compréhension actuelle du “bain" de torsion présent dans les molécules contenant un rotateur interne, qui sont devenues depuis peu des molécules

  20. Mobility edges in one-dimensional bichromatic incommensurate potentials

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Li, Xiaopeng; Das Sarma, S.

    2017-08-01

    We theoretically study a one-dimensional (1D) mutually incommensurate bichromatic lattice system, which has been implemented in ultracold atoms to study quantum localization. It has been universally believed that the tight-binding version of this bichromatic incommensurate system is represented by the well-known Aubry-Andre model capturing all the essential localization physics in the experimental cold atom optical lattice system. Here we establish that this belief is incorrect and that the Aubry-Andre model description, which applies only in the extreme tight-binding limit of a very deep primary lattice potential, generically breaks down near the localization transition due to the unavoidable appearance of single-particle mobility edges (SPME). In fact, we show that the 1D bichromatic incommensurate potential system manifests generic mobility edges, which disappear in the tight-binding limit, leading to the well-studied Aubry-Andre physics. We carry out an extensive study of the localization properties of the 1D incommensurate optical lattice without making any tight-binding approximation. We find that, for the full lattice system, an intermediate phase between completely localized and completely delocalized regions appears due to the existence of the SPME, making the system qualitatively distinct from the Aubry-Andre prediction. Using the Wegner flow approach, we show that the SPME in the real lattice system can be attributed to significant corrections of higher-order harmonics in the lattice potential, which are absent in the strict tight-binding limit. We calculate the dynamical consequences of the intermediate phase in detail to guide future experimental investigations for the observation of 1D SPME and the associated intermediate (i.e., neither purely localized nor purely delocalized) phase. We consider effects of interaction numerically, and conjecture the stability of SPME to weak interaction effects, thus leading to the exciting possibility of an

  1. Random Parameter Markov Population Process Models and Their Likelihood, Bayes and Empirical Bayes Analysis.

    DTIC Science & Technology

    1985-09-01

    Markovian Queueing Systems: M/M/C 4 3.2 Compartment Models in Pharmacology 4 3.3 Logistic Support for a System Depending Upon Repairable Modules 5 4...congestion at service facilities. in these models , some simple arrival or demand process confronts a given service process often presumed to nave i.i.d...Similarly. inventory control models typically assume that parameters of demano distributions a’e fixed, as do reliability- redundancy studies of

  2. Markov chain Monte Carlo simulation for Bayesian Hidden Markov Models

    NASA Astrophysics Data System (ADS)

    Chan, Lay Guat; Ibrahim, Adriana Irawati Nur Binti

    2016-10-01

    A hidden Markov model (HMM) is a mixture model which has a Markov chain with finite states as its mixing distribution. HMMs have been applied to a variety of fields, such as speech and face recognitions. The main purpose of this study is to investigate the Bayesian approach to HMMs. Using this approach, we can simulate from the parameters' posterior distribution using some Markov chain Monte Carlo (MCMC) sampling methods. HMMs seem to be useful, but there are some limitations. Therefore, by using the Mixture of Dirichlet processes Hidden Markov Model (MDPHMM) based on Yau et. al (2011), we hope to overcome these limitations. We shall conduct a simulation study using MCMC methods to investigate the performance of this model.

  3. Numerical method of characteristics for one-dimensional blood flow

    NASA Astrophysics Data System (ADS)

    Acosta, Sebastian; Puelz, Charles; Rivière, Béatrice; Penny, Daniel J.; Rusin, Craig G.

    2015-08-01

    Mathematical modeling at the level of the full cardiovascular system requires the numerical approximation of solutions to a one-dimensional nonlinear hyperbolic system describing flow in a single vessel. This model is often simulated by computationally intensive methods like finite elements and discontinuous Galerkin, while some recent applications require more efficient approaches (e.g. for real-time clinical decision support, phenomena occurring over multiple cardiac cycles, iterative solutions to optimization/inverse problems, and uncertainty quantification). Further, the high speed of pressure waves in blood vessels greatly restricts the time step needed for stability in explicit schemes. We address both cost and stability by presenting an efficient and unconditionally stable method for approximating solutions to diagonal nonlinear hyperbolic systems. Theoretical analysis of the algorithm is given along with a comparison of our method to a discontinuous Galerkin implementation. Lastly, we demonstrate the utility of the proposed method by implementing it on small and large arterial networks of vessels whose elastic and geometrical parameters are physiologically relevant.

  4. SUSY-hierarchy of one-dimensional reflectionless potentials

    SciTech Connect

    Maydanyuk, Sergei P. . E-mail: maidan@kinr.kiev.ua

    2005-04-01

    A class of one-dimensional reflectionless potentials is studied. It is found that all possible types of the reflectionless potentials can be combined into one SUSY-hierarchy with a constant potential. An approach for determination of a general form of the reflectionless potential on the basis of construction of such a hierarchy by the recurrent method is proposed. A general integral form of interdependence between superpotentials with neighboring numbers of this hierarchy, opening a possibility to find new reflectionless potentials, is found and has a simple analytical view. It is supposed that any possible type of the reflectionless potential can be expressed through finite number of elementary functions (unlike some presentations of the reflectionless potentials, which are constructed on the basis of soliton solutions or are shape invariant in one or many steps with involving scaling of parameters, and are expressed through series). An analysis of absolute transparency existence for the potential which has the inverse power dependence on space coordinate (and here tunneling is possible), i.e., which has the form V (x) = {+-} {alpha}/ vertical bar x-x{sub 0} vertical bar{sup n} (where {alpha} and x{sub 0} are constants, n is natural number), is fulfilled. It is shown that such a potential can be reflectionless at n = 2 only. A SUSY-hierarchy of the inverse power reflectionless potentials is constructed. Isospectral expansions of this hierarchy are analyzed.

  5. One-dimensional simulation of lanthanide isotachophoresis using COMSOL.

    PubMed

    Dixon, Derek R; Clark, Sue B; Ivory, Cornelius F

    2012-03-01

    Electrokinetic separations can be used to quickly separate rare earth metals to determine their forensic signature. In this work, we simulate the concentration and separation of trivalent lanthanide cations by isotachophoresis. A one-dimensional simulation is developed using COMSOL v4.0a, a commercial finite element simulator, to represent the isotachophoretic separation of three lanthanides: lanthanum, terbium, and lutetium. The binding ligand chosen for complexation with the lanthanides is α-hydroxyisobutyric acid (HIBA) and the buffer system includes acetate, which also complexes with the lanthanides. The complexes formed between the three lanthanides, HIBA, and acetate are all considered in the simulation. We observe that the presence of only lanthanide:HIBA complexes in a buffer system with 10 mM HIBA causes the slowest lanthanide peak (lutetium) to split from the other analytes. The addition of lanthanide:acetate complexes into the simulation of the same buffer system eliminates this splitting. Decreasing the concentration of HIBA in the buffer to 7 mM causes the analyte stack to migrate faster through the capillary.

  6. One-dimensional magnetophotonic crystals with magnetooptical double layers

    SciTech Connect

    Berzhansky, V. N. Shaposhnikov, A. N.; Prokopov, A. R.; Karavainikov, A. V.; Mikhailova, T. V.; Lukienko, I. N.; Kharchenko, Yu. N.; Golub, V. O. Salyuk, O. Yu.; Belotelov, V. I.

    2016-11-15

    One-dimensional magnetophotonic microcavity crystals with nongarnet dielectric mirrors are created and investigated. The defect layers in the magnetophotonic crystals are represented by two bismuth-substituted yttrium iron garnet Bi:YIG layers with various bismuth contents in order to achieve a high magnetooptical response of the crystals. The parameters of the magnetophotonic crystal layers are optimized by numerical solution of the Maxwell equations by the transfer matrix method to achieve high values of Faraday rotation angle Θ{sub F} and magnetooptical Q factor. The calculated and experimental data agree well with each other. The maximum values of Θ{sub F} =–20.6°, Q = 8.1° at a gain t = 16 are obtained for magnetophotonic crystals with m = 7 pairs of layers in Bragg mirrors, and the parameters obtained for crystals with m = 4 and t = 8.5 are Θ{sub F} =–12.5° and Q = 14.3°. It is shown that, together with all-garnet and multimicrocavities magnetophotonic crystals, such structures have high magnetooptical characteristics.

  7. Fractal geometry in an expanding, one-dimensional, Newtonian universe.

    PubMed

    Miller, Bruce N; Rouet, Jean-Louis; Le Guirriec, Emmanuel

    2007-09-01

    Observations of galaxies over large distances reveal the possibility of a fractal distribution of their positions. The source of fractal behavior is the lack of a length scale in the two body gravitational interaction. However, even with new, larger, sample sizes from recent surveys, it is difficult to extract information concerning fractal properties with confidence. Similarly, three-dimensional N-body simulations with a billion particles only provide a thousand particles per dimension, far too small for accurate conclusions. With one-dimensional models these limitations can be overcome by carrying out simulations with on the order of a quarter of a million particles without compromising the computation of the gravitational force. Here the multifractal properties of two of these models that incorporate different features of the dynamical equations governing the evolution of a matter dominated universe are compared. For each model at least two scaling regions are identified. By employing criteria from dynamical systems theory it is shown that only one of them can be geometrically significant. The results share important similarities with galaxy observations, such as hierarchical clustering and apparent bifractal geometry. They also provide insights concerning possible constraints on length and time scales for fractal structure. They clearly demonstrate that fractal geometry evolves in the mu (position, velocity) space. The observed patterns are simply a shadow (projection) of higher-dimensional structure.

  8. Reentrant phase coherence in a quasi-one-dimensional superconductor

    NASA Astrophysics Data System (ADS)

    Ansermet, Diane; Petrovic, Alexander P.; He, Shikun; Chernyshov, Dmitri; Hoesch, Moritz; Salloum, Diala; Gougeon, Patrick; Potel, Michel; Boeri, Lilia; Andersen, Ole K.; Panagopoulos, Christos

    Short coherence lengths characteristic of low-dimensional superconductors are related to high critical fields or temperatures. Fatally, such materials are often sensitive to disorder and suffer from phase fluctuations in the order parameter which diverge with temperature T, magnetic field H or current I. To solve synthesis and fluctuation problems, we propose to build superconductors from inhomogeneous composites of nanofilaments. Single crystals of quasi-one-dimensional Na2-δMo6Se6 featuring Na vacancy disorder (δ ~ 0 . 2) behave as percolative networks of superconducting nanowires. Long range order is established via transverse coupling between individual filaments, yet phase coherence is unstable to fluctuations and localization in the zero-(T, H, I) limit. A region of reentrant phase coherence develops upon raising (T, H, I) and is attributed to an enhancement of the transverse coupling due to electron delocalization. The observed reentrance in the electronic transport coincides with a peak in the Josephson energy EJ at non-zero (T, H, I). Na2-δMo6Se6 is a blueprint for a new generation of low dimensional superconductors with resilience to phase fluctuations at high (T, H, I). This work was supported by the National Research Foundation, Singapore, through Grant NRF-CRP4-2008-04.

  9. Interspecies tunneling in one-dimensional Bose mixtures

    SciTech Connect

    Pflanzer, Anika C.; Zoellner, Sascha; Schmelcher, Peter

    2010-02-15

    We study the ground-state properties and quantum dynamics of few-boson mixtures with strong interspecies repulsion in one-dimensional traps. If one species localizes at the center, e.g., due to a very large mass compared to the other component, it represents an effective barrier for the latter, and the system can be mapped onto identical bosons in a double well. For weaker localization, the barrier atoms begin to respond to the light component, leading to an induced attraction between the mobile atoms that may even outweigh their bare intraspecies repulsion. To explain the resulting effects, we derive an effective Hubbard model for the lighter species accounting for the back action of the barrier in correction terms to the lattice parameters. Also the tunneling is drastically affected: by varying the degree of localization of the 'barrier' atoms, the dynamics of intrinsically noninteracting bosons can change from Rabi oscillations to effective pair tunneling. For identical fermions (or fermionized bosons), this leads to the tunneling of attractively bound pairs.

  10. Weak lasing in one-dimensional polariton superlattices

    PubMed Central

    Zhang, Long; Xie, Wei; Wang, Jian; Poddubny, Alexander; Lu, Jian; Wang, Yinglei; Gu, Jie; Liu, Wenhui; Xu, Dan; Shen, Xuechu; Rubo, Yuri G.; Altshuler, Boris L.; Kavokin, Alexey V.; Chen, Zhanghai

    2015-01-01

    Bosons with finite lifetime exhibit condensation and lasing when their influx exceeds the lasing threshold determined by the dissipative losses. In general, different one-particle states decay differently, and the bosons are usually assumed to condense in the state with the longest lifetime. Interaction between the bosons partially neglected by such an assumption can smear the lasing threshold into a threshold domain—a stable lasing many-body state exists within certain intervals of the bosonic influxes. This recently described weak lasing regime is formed by the spontaneously symmetry breaking and phase-locking self-organization of bosonic modes, which results in an essentially many-body state with a stable balance between gains and losses. Here we report, to our knowledge, the first observation of the weak lasing phase in a one-dimensional condensate of exciton–polaritons subject to a periodic potential. Real and reciprocal space photoluminescence images demonstrate that the spatial period of the condensate is twice as large as the period of the underlying periodic potential. These experiments are realized at room temperature in a ZnO microwire deposited on a silicon grating. The period doubling takes place at a critical pumping power, whereas at a lower power polariton emission images have the same periodicity as the grating. PMID:25787253

  11. Weak lasing in one-dimensional polariton superlattices.

    PubMed

    Zhang, Long; Xie, Wei; Wang, Jian; Poddubny, Alexander; Lu, Jian; Wang, Yinglei; Gu, Jie; Liu, Wenhui; Xu, Dan; Shen, Xuechu; Rubo, Yuri G; Altshuler, Boris L; Kavokin, Alexey V; Chen, Zhanghai

    2015-03-31

    Bosons with finite lifetime exhibit condensation and lasing when their influx exceeds the lasing threshold determined by the dissipative losses. In general, different one-particle states decay differently, and the bosons are usually assumed to condense in the state with the longest lifetime. Interaction between the bosons partially neglected by such an assumption can smear the lasing threshold into a threshold domain--a stable lasing many-body state exists within certain intervals of the bosonic influxes. This recently described weak lasing regime is formed by the spontaneously symmetry breaking and phase-locking self-organization of bosonic modes, which results in an essentially many-body state with a stable balance between gains and losses. Here we report, to our knowledge, the first observation of the weak lasing phase in a one-dimensional condensate of exciton-polaritons subject to a periodic potential. Real and reciprocal space photoluminescence images demonstrate that the spatial period of the condensate is twice as large as the period of the underlying periodic potential. These experiments are realized at room temperature in a ZnO microwire deposited on a silicon grating. The period doubling takes place at a critical pumping power, whereas at a lower power polariton emission images have the same periodicity as the grating.

  12. Energy transport in one-dimensional disordered granular solids.

    PubMed

    Achilleos, V; Theocharis, G; Skokos, Ch

    2016-02-01

    We investigate the energy transport in one-dimensional disordered granular solids by extensive numerical simulations. In particular, we consider the case of a polydisperse granular chain composed of spherical beads of the same material and with radii taken from a random distribution. We start by examining the linear case, in which it is known that the energy transport strongly depends on the type of initial conditions. Thus, we consider two sets of initial conditions: an initial displacement and an initial momentum excitation of a single bead. After establishing the regime of sufficiently strong disorder, we focus our study on the role of nonlinearity for both sets of initial conditions. By increasing the initial excitation amplitudes we are able to identify three distinct dynamical regimes with different energy transport properties: a near linear, a weakly nonlinear, and a highly nonlinear regime. Although energy spreading is found to be increasing for higher nonlinearities, in the weakly nonlinear regime no clear asymptotic behavior of the spreading is found. In this regime, we additionally find that energy, initially trapped in a localized region, can be eventually detrapped and this has a direct influence on the fluctuations of the energy spreading. We also demonstrate that in the highly nonlinear regime, the differences in energy transport between the two sets of initial conditions vanish. Actually, in this regime the energy is almost ballistically transported through shocklike excitations.

  13. One-dimensional nanoferroic rods; synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; Seddik, U.; Okasha, N.; Imam, N. G.

    2015-11-01

    One-dimensional nanoferroic rods of BaTiO3 were synthesized by improved citrate auto-combustion technology using tetrabutyl titanate. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), transmission electron microscopy (TEM), atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) have been used to characterize the prepared sample. The results indicated that the crystal structure of BaTiO3 is tetragonal phase with an average crystallite size of 47 nm. SEM image gives a cauliflower-like morphology of the agglomerated nanorods. The stoichiometry of the chemical composition of the BaTiO3 ceramic was confirmed by EDX. TEM micrograph exhibited that BaTiO3 nanoparticles have rod-like shape with an average length of 120 nm and width of 43 nm. AFM was used to investigate the surface topography and its roughness. The topography image in 3D showed that the BaTiO3 particles have a rod shape with an average particle size of 116 nm which in agreement with 3D TEM result.

  14. A disorder-enhanced quasi-one-dimensional superconductor

    PubMed Central

    Petrović, A. P.; Ansermet, D.; Chernyshov, D.; Hoesch, M.; Salloum, D.; Gougeon, P.; Potel, M.; Boeri, L.; Panagopoulos, C.

    2016-01-01

    A powerful approach to analysing quantum systems with dimensionality d>1 involves adding a weak coupling to an array of one-dimensional (1D) chains. The resultant quasi-1D (q1D) systems can exhibit long-range order at low temperature, but are heavily influenced by interactions and disorder due to their large anisotropies. Real q1D materials are therefore ideal candidates not only to provoke, test and refine theories of strongly correlated matter, but also to search for unusual emergent electronic phases. Here we report the unprecedented enhancement of a superconducting instability by disorder in single crystals of Na2−δMo6Se6, a q1D superconductor comprising MoSe chains weakly coupled by Na atoms. We argue that disorder-enhanced Coulomb pair-breaking (which usually destroys superconductivity) may be averted due to a screened long-range Coulomb repulsion intrinsic to disordered q1D materials. Our results illustrate the capability of disorder to tune and induce new correlated electron physics in low-dimensional materials. PMID:27448209

  15. Quantum heat waves in a one-dimensional condensate

    NASA Astrophysics Data System (ADS)

    Agarwal, Kartiek; Dalla Torre, Emanuele G.; Schmiedmayer, Jörg; Demler, Eugene

    2017-05-01

    We study the dynamics of phase relaxation between a pair of one-dimensional condensates created by a bi-directional, supersonic `unzipping' of a finite single condensate. We find that the system fractures into different extensive chunks of space-time, within which correlations appear thermal but correspond to different effective temperatures. Coherences between different eigen-modes are crucial for understanding the development of such thermal correlations; at no point in time can our system be described by a generalized Gibbs' ensemble despite nearly always appearing locally thermal. We rationalize a picture of propagating fronts of hot and cold sound waves, populated at effective, relativistically red- and blue-shifted temperatures to intuitively explain our findings. The disparity between these hot and cold temperatures vanishes for the case of instantaneous splitting but diverges in the limit where the splitting velocity approaches the speed of sound; in this limit, a sonic boom occurs wherein the system is excited only along an infinitely narrow, and infinitely hot beam. We expect our findings to apply generally to the study of superluminal perturbations in systems with emergent Lorentz symmetry.

  16. Screw dislocation-driven growth of one-dimensional nanomaterials

    NASA Astrophysics Data System (ADS)

    Meng, Fei

    Nanoscience and nanotechnology are impacting our lives in many ways, from electronic and photonic devices to biosensors. They also hold the promise of tackling the renewable energy challenges facing us. However, one limiting scientific challenge is the effective and efficient bottom-up synthesis of nanomaterials. In this thesis, we discuss the fundamental theories of screw dislocation-driven growth of various nanostructures including one-dimensional nanowires and nanotubes, two-dimensional nanoplates, and three-dimensional hierarchical tree-like nanostructures. We then introduce the transmission electron microscopy (TEM) techniques to structurally characterize the dislocation-driven nanomaterials for future searching and identifying purposes. We summarize the guidelines for rationally designing the dislocation-driven growth and discuss specific examples to illustrate how to implement the guidelines. We also show that dislocation growth is a general and versatile mechanism that can be used to grow a variety of nanomaterials via distinct reaction chemistry and synthetic methods. The fundamental investigation and development of dislocation-driven growth of nanomaterials will create a new dimension to the rational design and synthesis of increasingly complex nanomaterials.

  17. Validation and Comparison of One-Dimensional Graound Motion Methodologies

    SciTech Connect

    B. Darragh; W. Silva; N. Gregor

    2006-06-28

    Both point- and finite-source stochastic one-dimensional ground motion models, coupled to vertically propagating equivalent-linear shear-wave site response models are validated using an extensive set of strong motion data as part of the Yucca Mountain Project. The validation and comparison exercises are presented entirely in terms of 5% damped pseudo absolute response spectra. The study consists of a quantitative analyses involving modeling nineteen well-recorded earthquakes, M 5.6 to 7.4 at over 600 sites. The sites range in distance from about 1 to about 200 km in the western US (460 km for central-eastern US). In general, this validation demonstrates that the stochastic point- and finite-source models produce accurate predictions of strong ground motions over the range of 0 to 100 km and for magnitudes M 5.0 to 7.4. The stochastic finite-source model appears to be broadband, producing near zero bias from about 0.3 Hz (low frequency limit of the analyses) to the high frequency limit of the data (100 and 25 Hz for response and Fourier amplitude spectra, respectively).

  18. Supercurrent states in one-dimensional finite-size rings

    NASA Astrophysics Data System (ADS)

    Kashurnikov, Vladimir A.; Podlivaev, Alexei I.; Prokof'ev, Nikolai V.; Svistunov, Boris V.

    1996-05-01

    We consider topological supercurrent excitations (SC's) in one-dimensional (1D) mesoscopic rings. In the superfluid phase such excitations are well defined except for (i) a tunneling between resonating states with clockwise and counterclockwise currents, which may be characterized by the amplitude Δ, and (ii) a decay of SC assisted by phonons of the substrate, both effects being macroscopically small. Our approach, being based on the hydrodynamical action for the phase field and its generalization to the effective Hamiltonian, explicitly takes into account transitions between the states with different topological numbers and turns out to be very effective for the calculation of Δ and estimation of the decay width of SC, as well as for the unified description of all known 1D superfluid-insulator transitions. Most attention is paid to the calculation of the macroscopic scaling of Δ (the main superfluid characteristic of a mesoscopic system) under different conditions: a commensurate system, a system with single impurity, and a disordered system. The results are in a very good agreement with the exact-diagonalization spectra of the boson Hubbard models. Apart from really 1D electron wires we discuss two other important experimental systems: the 2D electron gas in the fractional quantum Hall effect state and quasi-1D superconducting rings. We suggest some experimental setups for studying SC, e.g., via persistent current measurements, resonant electromagnetic absorption or echo signals, and relaxation of the metastable current states.

  19. Transmission properties of one-dimensional ternary plasma photonic crystals

    SciTech Connect

    Shiveshwari, Laxmi; Awasthi, S. K.

    2015-09-15

    Omnidirectional photonic band gaps (PBGs) are found in one-dimensional ternary plasma photonic crystals (PPC) composed of single negative metamaterials. The band characteristics and transmission properties are investigated through the transfer matrix method. We show that the proposed structure can trap light in three-dimensional space due to the elimination of Brewster's angle transmission resonance allowing the existence of complete PBG. The results are discussed in terms of incident angle, layer thickness, dielectric constant of the dielectric material, and number of unit cells (N) for TE and TM polarizations. It is seen that PBG characteristics is apparent even in an N ≥ 2 system, which is weakly sensitive to the incident angle and completely insensitive to the polarization. Finite PPC could be used for multichannel transmission filter without introducing any defect in the geometry. We show that the locations of the multichannel transmission peaks are in the allowed band of the infinite structure. The structure can work as a single or multichannel filter by varying the number of unit cells. Binary PPC can also work as a polarization sensitive tunable filter.

  20. Developing one-dimensional implosions for inertial confinement fusion science

    DOE PAGES

    Kline, John L.; Yi, Sunghwan A.; Simakov, Andrei Nikolaevich; ...

    2016-12-12

    Experiments on the National Ignition Facility show that multi-dimensional effects currently dominate the implosion performance. Low mode implosion symmetry and hydrodynamic instabilities seeded by capsule mounting features appear to be two key limiting factors for implosion performance. One reason these factors have a large impact on the performance of inertial confinement fusion implosions is the high convergence required to achieve high fusion gains. To tackle these problems, a predictable implosion platform is needed meaning experiments must trade-off high gain for performance. LANL has adopted three main approaches to develop a one-dimensional (1D) implosion platform where 1D means measured yield overmore » the 1D clean calculation. A high adiabat, low convergence platform is being developed using beryllium capsules enabling larger case-to-capsule ratios to improve symmetry. The second approach is liquid fuel layers using wetted foam targets. With liquid fuel layers, the implosion convergence can be controlled via the initial vapor pressure set by the target fielding temperature. The last method is double shell targets. For double shells, the smaller inner shell houses the DT fuel and the convergence of this cavity is relatively small compared to hot spot ignition. However, double shell targets have a different set of trade-off versus advantages. As a result, details for each of these approaches are described.« less