Sample records for one-dimensional model based

  1. One-dimensional GIS-based model compared with a two-dimensional model in urban floods simulation.

    PubMed

    Lhomme, J; Bouvier, C; Mignot, E; Paquier, A

    2006-01-01

    A GIS-based one-dimensional flood simulation model is presented and applied to the centre of the city of Nîmes (Gard, France), for mapping flow depths or velocities in the streets network. The geometry of the one-dimensional elements is derived from the Digital Elevation Model (DEM). The flow is routed from one element to the next using the kinematic wave approximation. At the crossroads, the flows in the downstream branches are computed using a conceptual scheme. This scheme was previously designed to fit Y-shaped pipes junctions, and has been modified here to fit X-shaped crossroads. The results were compared with the results of a two-dimensional hydrodynamic model based on the full shallow water equations. The comparison shows that good agreements can be found in the steepest streets of the study zone, but differences may be important in the other streets. Some reasons that can explain the differences between the two models are given and some research possibilities are proposed.

  2. Progress Report on SAM Reduced-Order Model Development for Thermal Stratification and Mixing during Reactor Transients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, R.

    This report documents the initial progress on the reduced-order flow model developments in SAM for thermal stratification and mixing modeling. Two different modeling approaches are pursued. The first one is based on one-dimensional fluid equations with additional terms accounting for the thermal mixing from both flow circulations and turbulent mixing. The second approach is based on three-dimensional coarse-grid CFD approach, in which the full three-dimensional fluid conservation equations are modeled with closure models to account for the effects of turbulence.

  3. Numerical Modeling of One-Dimensional Steady-State Flow and Contaminant Transport in a Horizontally Heterogeneous Unconfined Aquifer with an Uneven Base

    EPA Science Inventory

    Algorithms and a short description of the D1_Flow program for numerical modeling of one-dimensional steady-state flow in horizontally heterogeneous aquifers with uneven sloping bases are presented. The algorithms are based on the Dupuit-Forchheimer approximations. The program per...

  4. Transient Stress Wave Propagation in One-Dimensional Micropolar Bodies

    DTIC Science & Technology

    2009-02-01

    based on Biot’s theory of poro- elasticity. Two compressional waves were then observed in the resulting one-dimensional model of a poroelastic column...Lisina, S., Potapov, A., Nesterenko, V., 2001. A nonlinear granular medium with particle rotation: a one-dimensional model . Acoustical Physics 47 (5...zones in failed ceramics, may be modeled using continuum theories incorporating additional kinematic degrees of freedom beyond the scope of classical

  5. TPSLVM: a dimensionality reduction algorithm based on thin plate splines.

    PubMed

    Jiang, Xinwei; Gao, Junbin; Wang, Tianjiang; Shi, Daming

    2014-10-01

    Dimensionality reduction (DR) has been considered as one of the most significant tools for data analysis. One type of DR algorithms is based on latent variable models (LVM). LVM-based models can handle the preimage problem easily. In this paper we propose a new LVM-based DR model, named thin plate spline latent variable model (TPSLVM). Compared to the well-known Gaussian process latent variable model (GPLVM), our proposed TPSLVM is more powerful especially when the dimensionality of the latent space is low. Also, TPSLVM is robust to shift and rotation. This paper investigates two extensions of TPSLVM, i.e., the back-constrained TPSLVM (BC-TPSLVM) and TPSLVM with dynamics (TPSLVM-DM) as well as their combination BC-TPSLVM-DM. Experimental results show that TPSLVM and its extensions provide better data visualization and more efficient dimensionality reduction compared to PCA, GPLVM, ISOMAP, etc.

  6. Limit Properties of One Dimensional Periodic Hopping Model

    NASA Astrophysics Data System (ADS)

    Zhang, Yun-xin

    2010-02-01

    One dimensional periodic hopping model is useful to understand the motion of microscopic particles in thermal noise environment. In this research, by formal calculation and based on detailed balance, the explicit expressions of the limits of mean velocity and diffusion constant of this model as the number of internal mechanochemical sates tend to infinity are obtained. These results will be helpful to understand the limit of the one dimensional hopping model. At the same time, the work can be used to get more useful results in continuous form from the corresponding ones obtained by discrete models.

  7. Reaction time for trimolecular reactions in compartment-based reaction-diffusion models

    NASA Astrophysics Data System (ADS)

    Li, Fei; Chen, Minghan; Erban, Radek; Cao, Yang

    2018-05-01

    Trimolecular reaction models are investigated in the compartment-based (lattice-based) framework for stochastic reaction-diffusion modeling. The formulae for the first collision time and the mean reaction time are derived for the case where three molecules are present in the solution under periodic boundary conditions. For the case of reflecting boundary conditions, similar formulae are obtained using a computer-assisted approach. The accuracy of these formulae is further verified through comparison with numerical results. The presented derivation is based on the first passage time analysis of Montroll [J. Math. Phys. 10, 753 (1969)]. Montroll's results for two-dimensional lattice-based random walks are adapted and applied to compartment-based models of trimolecular reactions, which are studied in one-dimensional or pseudo one-dimensional domains.

  8. Surrogate-Based Optimization of Biogeochemical Transport Models

    NASA Astrophysics Data System (ADS)

    Prieß, Malte; Slawig, Thomas

    2010-09-01

    First approaches towards a surrogate-based optimization method for a one-dimensional marine biogeochemical model of NPZD type are presented. The model, developed by Oschlies and Garcon [1], simulates the distribution of nitrogen, phytoplankton, zooplankton and detritus in a water column and is driven by ocean circulation data. A key issue is to minimize the misfit between the model output and given observational data. Our aim is to reduce the overall optimization cost avoiding expensive function and derivative evaluations by using a surrogate model replacing the high-fidelity model in focus. This in particular becomes important for more complex three-dimensional models. We analyse a coarsening in the discretization of the model equations as one way to create such a surrogate. Here the numerical stability crucially depends upon the discrete stepsize in time and space and the biochemical terms. We show that for given model parameters the level of grid coarsening can be choosen accordingly yielding a stable and satisfactory surrogate. As one example of a surrogate-based optimization method we present results of the Aggressive Space Mapping technique (developed by John W. Bandler [2, 3]) applied to the optimization of this one-dimensional biogeochemical transport model.

  9. Laser range profile of cones

    NASA Astrophysics Data System (ADS)

    Zhou, Wenzhen; Gong, Yanjun; Wang, Mingjun; Gong, Lei

    2016-10-01

    technology. Laser one-dimensional range profile can reflect the characteristics of the target shape and surface material. These techniques were motivated by applications of laser radar to target discrimination in ballistic missile defense. The radar equation of pulse laser about cone is given in this paper. This paper demonstrates the analytical model of laser one-dimensional range profile of cone based on the radar equation of the pulse laser. Simulations results of laser one-dimensional range profiles of some cones are given. Laser one-dimensional range profiles of cone, whose surface material with diffuse lambertian reflectance, is given in this paper. Laser one-dimensional range profiles of cone, whose surface mater with diffuse materials whose retroreflectance can be modeled closely with an exponential term that decays with increasing incidence angles, is given in this paper. Laser one-dimensional range profiles of different pulse width of cone is given in this paper. The influences of surface material, pulse width, attitude on the one-dimensional range are analyzed. The laser two-dimensional range profile is two-dimensional scattering imaging of pulse laser of target. The two-dimensional range profile of roughness target can provide range resolved information. An analytical model of two-dimensional laser range profile of cone is proposed. The simulations of two-dimensional laser range profiles of some cones are given. Laser two-dimensional range profiles of cone, whose surface mater with diffuse lambertian reflectance, is given in this paper. Laser two-dimensional range profiles of cone, whose surface mater with diffuse materials whose retroreflectance can be modeled closely with an exponential term that decays with increasing incidence angles, is given in this paper. The influence of pulse width, surface material on laser two-dimensional range profile is analyzed. Laser one-dimensional range profile and laser two-dimensional range profile are called as laser range profile (LRP).

  10. One-Dimensional Modeling Studies of the Gaseous Electronics Conference RF Reference Cell

    PubMed Central

    Govindan, T. R.; Meyyappan, M.

    1995-01-01

    A review of the one-dimensional modeling studies in the literature of the Gaseous Electronics Conference (GEC) reference plasma reactor is presented. Most of the studies are based on the fluid model description of the discharge and some utilize hybrid fluid-kinetic schemes. Both models are discussed here briefly. The models provide a basic understanding of the discharge mechanisms and reproduce several critical discharge features observed experimentally. PMID:29151755

  11. Web-based application for inverting one-dimensional magnetotelluric data using Python

    NASA Astrophysics Data System (ADS)

    Suryanto, Wiwit; Irnaka, Theodosius Marwan

    2016-11-01

    One-dimensional modeling of magnetotelluric (MT) data has been performed using an online application on a web-based virtual private server. The application was developed with the Python language using the Django framework with HTML and CSS components. The input data, including the apparent resistivity and phase as a function of period or frequency with standard deviation, can be entered through an interactive web page that can be freely accessed at https://komputasi.geofisika.ugm.ac.id. The subsurface models, represented by resistivity as a function of depth, are iteratively improved by changing the model parameters, such as the resistivity and the layer depth, based on the observed apparent resistivity and phase data. The output of the application displayed on the screen presents resistivity as a function of depth and includes the RMS error for each iteration. Synthetic and real data were used in comparative tests of the application's performance, and it is shown that the application developed accurate subsurface resistivity models. Hence, this application can be used for practical one-dimensional modeling of MT data.

  12. FireStem2D — A two-dimensional heat transfer model for simulating tree stem injury in fires

    Treesearch

    Efthalia K. Chatziefstratiou; Gil Bohrer; Anthony S. Bova; Ravishankar Subramanian; Renato P.M. Frasson; Amy Scherzer; Bret W. Butler; Matthew B. Dickinson

    2013-01-01

    FireStem2D, a software tool for predicting tree stem heating and injury in forest fires, is a physically-based, two-dimensional model of stem thermodynamics that results from heating at the bark surface. It builds on an earlier one-dimensional model (FireStem) and provides improved capabilities for predicting fire-induced mortality and injury before a fire occurs by...

  13. Semiclassical description of resonance-assisted tunneling in one-dimensional integrable models

    NASA Astrophysics Data System (ADS)

    Le Deunff, Jérémy; Mouchet, Amaury; Schlagheck, Peter

    2013-10-01

    Resonance-assisted tunneling is investigated within the framework of one-dimensional integrable systems. We present a systematic recipe, based on Hamiltonian normal forms, to construct one-dimensional integrable models that exhibit resonance island chain structures with accurately controlled sizes and positions of the islands. Using complex classical trajectories that evolve along suitably defined paths in the complex time domain, we construct a semiclassical theory of the resonance-assisted tunneling process. This semiclassical approach yields a compact analytical expression for tunnelling-induced level splittings which is found to be in very good agreement with the exact splittings obtained through numerical diagonalization.

  14. Bursting Transition Dynamics Within the Pre-Bötzinger Complex

    NASA Astrophysics Data System (ADS)

    Duan, Lixia; Chen, Xi; Tang, Xuhui; Su, Jianzhong

    The pre-Bötzinger complex of the mammalian brain stem plays a crucial role in the respiratory rhythms generation. Neurons within the pre-Bötzinger complex have been found experimentally to yield different firing activities. In this paper, we study the spiking and bursting activities related to the respiratory rhythms in the pre-Bötzinger complex based on a mathematical model proposed by Butera. Using the one-dimensional first recurrence map induced by dynamics, we investigate the different bursting patterns and their transition of the pre-Bötzinger complex neurons based on the Butera model, after we derived a one-dimensional map from the dynamical characters of the differential equations, and we obtained conditions for the transition of different bursting patterns. These analytical results were verified through numerical simulations. We conclude that the one-dimensional map contains similar rhythmic patterns as the Butera model and can be used as a simpler modeling tool to study fast-slow models like pre-Bötzinger complex neural circuit.

  15. Three Dimensional Distribution of Sensitive Field and Stress Field Inversion of Force Sensitive Materials under Constant Current Excitation.

    PubMed

    Zhao, Shuanfeng; Liu, Min; Guo, Wei; Zhang, Chuanwei

    2018-02-28

    Force sensitive conductive composite materials are functional materials which can be used as the sensitive material of force sensors. However, the existing sensors only use one-dimensional electrical properties of force sensitive conductive materials. Even in tactile sensors, the measurement of contact pressure is achieved by large-scale arrays and the units of a large-scale array are also based on the one-dimensional electrical properties of force sensitive materials. The main contribution of this work is to study the three-dimensional electrical properties and the inversion method of three-dimensional stress field of a force sensitive material (conductive rubber), which pushes the application of force sensitive material from one dimensional to three-dimensional. First, the mathematical model of the conductive rubber current field distribution under a constant force is established by the effective medium theory, and the current field distribution model of conductive rubber with different geometry, conductive rubber content and conductive rubber relaxation parameters is deduced. Secondly, the inversion method of the three-dimensional stress field of conductive rubber is established, which provides a theoretical basis for the design of a new tactile sensor, three-dimensional stress field and space force based on force sensitive materials.

  16. Three-dimensional head anthropometric analysis

    NASA Astrophysics Data System (ADS)

    Enciso, Reyes; Shaw, Alex M.; Neumann, Ulrich; Mah, James

    2003-05-01

    Currently, two-dimensional photographs are most commonly used to facilitate visualization, assessment and treatment of facial abnormalities in craniofacial care but are subject to errors because of perspective, projection, lack metric and 3-dimensional information. One can find in the literature a variety of methods to generate 3-dimensional facial images such as laser scans, stereo-photogrammetry, infrared imaging and even CT however each of these methods contain inherent limitations and as such no systems are in common clinical use. In this paper we will focus on development of indirect 3-dimensional landmark location and measurement of facial soft-tissue with light-based techniques. In this paper we will statistically evaluate and validate a current three-dimensional image-based face modeling technique using a plaster head model. We will also develop computer graphics tools for indirect anthropometric measurements in a three-dimensional head model (or polygonal mesh) including linear distances currently used in anthropometry. The measurements will be tested against a validated 3-dimensional digitizer (MicroScribe 3DX).

  17. Comparisons between thermodynamic and one-dimensional combustion models of spark-ignition engines

    NASA Technical Reports Server (NTRS)

    Ramos, J. I.

    1986-01-01

    Results from a one-dimensional combustion model employing a constant eddy diffusivity and a one-step chemical reaction are compared with those of one-zone and two-zone thermodynamic models to study the flame propagation in a spark-ignition engine. One-dimensional model predictions are found to be very sensitive to the eddy diffusivity and reaction rate data. The average mixing temperature found using the one-zone thermodynamic model is higher than those of the two-zone and one-dimensional models during the compression stroke, and that of the one-dimensional model is higher than those predicted by both thermodynamic models during the expansion stroke. The one-dimensional model is shown to predict an accelerating flame even when the front approaches the cold cylinder wall.

  18. Continuum modeling of catastrophic collisions

    NASA Technical Reports Server (NTRS)

    Ryan, Eileen V.; Aspaug, Erik; Melosh, H. J.

    1991-01-01

    A two dimensional hydrocode based on 2-D SALE was modified to include strength effects and fragmentation equations for fracture resulting from tensile stress in one dimension. Output from this code includes a complete fragmentation summary for each cell of the modeled object: fragment size (mass) distribution, vector velocities of particles, peak values of pressure and tensile stress, and peak strain rates associated with fragmentation. Contour plots showing pressure and temperature at given times within the object are also produced. By invoking axial symmetry, three dimensional events can be modeled such as zero impact parameter collisions between asteroids. The code was tested against the one dimensional model and the analytical solution for a linearly increasing tensile stress under constant strain rate.

  19. Thermal Pollution Math Model. Volume 1. Thermal Pollution Model Package Verification and Transfer. [environment impact of thermal discharges from power plants

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Sengupta, S.

    1980-01-01

    Two three dimensional, time dependent models, one free surface, the other rigid lid, were verified at Anclote Anchorage and Lake Keowee respectively. The first site is a coastal site in northern Florida; the other is a man-made lake in South Carolina. These models describe the dispersion of heated discharges from power plants under the action of ambient conditions. A one dimensional, horizontally-averaged model was also developed and verified at Lake Keowee. The data base consisted of archival in situ measurements and data collected during field missions. The field missions were conducted during winter and summer conditions at each site. Each mission consisted of four infrared scanner flights with supporting ground truth and in situ measurements. At Anclote, special care was taken to characterize the complete tidal cycle. The three dimensional model results compared with IR data for thermal plumes on an average within 1 C root mean square difference. The one dimensional model performed satisfactorily in simulating the 1971-1979 period.

  20. Panel summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutjahr, A.L.; Kincaid, C.T.; Mercer, J.W.

    1987-04-01

    The objective of this report is to summarize the various modeling approaches that were used to simulate solute transport in a variably saturated emission. In particular, the technical strengths and weaknesses of each approach are discussed, and conclusions and recommendations for future studies are made. Five models are considered: (1) one-dimensional analytical and semianalytical solutions of the classical deterministic convection-dispersion equation (van Genuchten, Parker, and Kool, this report ); (2) one-dimensional simulation using a continuous-time Markov process (Knighton and Wagenet, this report); (3) one-dimensional simulation using the time domain method and the frequency domain method (Duffy and Al-Hassan, this report);more » (4) one-dimensional numerical approach that combines a solution of the classical deterministic convection-dispersion equation with a chemical equilibrium speciation model (Cederberg, this report); and (5) three-dimensional numerical solution of the classical deterministic convection-dispersion equation (Huyakorn, Jones, Parker, Wadsworth, and White, this report). As part of the discussion, the input data and modeling results are summarized. The models were used in a data analysis mode, as opposed to a predictive mode. Thus, the following discussion will concentrate on the data analysis aspects of model use. Also, all the approaches were similar in that they were based on a convection-dispersion model of solute transport. Each discussion addresses the modeling approaches in the order listed above.« less

  1. User's manual for the one-dimensional hypersonic experimental aero-thermodynamic (1DHEAT) data reduction code

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.

    1995-01-01

    A FORTRAN computer code for the reduction and analysis of experimental heat transfer data has been developed. This code can be utilized to determine heat transfer rates from surface temperature measurements made using either thin-film resistance gages or coaxial surface thermocouples. Both an analytical and a numerical finite-volume heat transfer model are implemented in this code. The analytical solution is based on a one-dimensional, semi-infinite wall thickness model with the approximation of constant substrate thermal properties, which is empirically corrected for the effects of variable thermal properties. The finite-volume solution is based on a one-dimensional, implicit discretization. The finite-volume model directly incorporates the effects of variable substrate thermal properties and does not require the semi-finite wall thickness approximation used in the analytical model. This model also includes the option of a multiple-layer substrate. Fast, accurate results can be obtained using either method. This code has been used to reduce several sets of aerodynamic heating data, of which samples are included in this report.

  2. Inverse regression-based uncertainty quantification algorithms for high-dimensional models: Theory and practice

    NASA Astrophysics Data System (ADS)

    Li, Weixuan; Lin, Guang; Li, Bing

    2016-09-01

    Many uncertainty quantification (UQ) approaches suffer from the curse of dimensionality, that is, their computational costs become intractable for problems involving a large number of uncertainty parameters. In these situations, the classic Monte Carlo often remains the preferred method of choice because its convergence rate O (n - 1 / 2), where n is the required number of model simulations, does not depend on the dimension of the problem. However, many high-dimensional UQ problems are intrinsically low-dimensional, because the variation of the quantity of interest (QoI) is often caused by only a few latent parameters varying within a low-dimensional subspace, known as the sufficient dimension reduction (SDR) subspace in the statistics literature. Motivated by this observation, we propose two inverse regression-based UQ algorithms (IRUQ) for high-dimensional problems. Both algorithms use inverse regression to convert the original high-dimensional problem to a low-dimensional one, which is then efficiently solved by building a response surface for the reduced model, for example via the polynomial chaos expansion. The first algorithm, which is for the situations where an exact SDR subspace exists, is proved to converge at rate O (n-1), hence much faster than MC. The second algorithm, which doesn't require an exact SDR, employs the reduced model as a control variate to reduce the error of the MC estimate. The accuracy gain could still be significant, depending on how well the reduced model approximates the original high-dimensional one. IRUQ also provides several additional practical advantages: it is non-intrusive; it does not require computing the high-dimensional gradient of the QoI; and it reports an error bar so the user knows how reliable the result is.

  3. A one-dimensional stochastic approach to the study of cyclic voltammetry with adsorption effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samin, Adib J.

    In this study, a one-dimensional stochastic model based on the random walk approach is used to simulate cyclic voltammetry. The model takes into account mass transport, kinetics of the redox reactions, adsorption effects and changes in the morphology of the electrode. The model is shown to display the expected behavior. Furthermore, the model shows consistent qualitative agreement with a finite difference solution. This approach allows for an understanding of phenomena on a microscopic level and may be useful for analyzing qualitative features observed in experimentally recorded signals.

  4. A one-dimensional stochastic approach to the study of cyclic voltammetry with adsorption effects

    NASA Astrophysics Data System (ADS)

    Samin, Adib J.

    2016-05-01

    In this study, a one-dimensional stochastic model based on the random walk approach is used to simulate cyclic voltammetry. The model takes into account mass transport, kinetics of the redox reactions, adsorption effects and changes in the morphology of the electrode. The model is shown to display the expected behavior. Furthermore, the model shows consistent qualitative agreement with a finite difference solution. This approach allows for an understanding of phenomena on a microscopic level and may be useful for analyzing qualitative features observed in experimentally recorded signals.

  5. Mode-based equivalent multi-degree-of-freedom system for one-dimensional viscoelastic response analysis of layered soil deposit

    NASA Astrophysics Data System (ADS)

    Li, Chong; Yuan, Juyun; Yu, Haitao; Yuan, Yong

    2018-01-01

    Discrete models such as the lumped parameter model and the finite element model are widely used in the solution of soil amplification of earthquakes. However, neither of the models will accurately estimate the natural frequencies of soil deposit, nor simulate a damping of frequency independence. This research develops a new discrete model for one-dimensional viscoelastic response analysis of layered soil deposit based on the mode equivalence method. The new discrete model is a one-dimensional equivalent multi-degree-of-freedom (MDOF) system characterized by a series of concentrated masses, springs and dashpots with a special configuration. The dynamic response of the equivalent MDOF system is analytically derived and the physical parameters are formulated in terms of modal properties. The equivalent MDOF system is verified through a comparison of amplification functions with the available theoretical solutions. The appropriate number of degrees of freedom (DOFs) in the equivalent MDOF system is estimated. A comparative study of the equivalent MDOF system with the existing discrete models is performed. It is shown that the proposed equivalent MDOF system can exactly present the natural frequencies and the hysteretic damping of soil deposits and provide more accurate results with fewer DOFs.

  6. Controls/CFD Interdisciplinary Research Software Generates Low-Order Linear Models for Control Design From Steady-State CFD Results

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.

    1997-01-01

    The NASA Lewis Research Center is developing analytical methods and software tools to create a bridge between the controls and computational fluid dynamics (CFD) disciplines. Traditionally, control design engineers have used coarse nonlinear simulations to generate information for the design of new propulsion system controls. However, such traditional methods are not adequate for modeling the propulsion systems of complex, high-speed vehicles like the High Speed Civil Transport. To properly model the relevant flow physics of high-speed propulsion systems, one must use simulations based on CFD methods. Such CFD simulations have become useful tools for engineers that are designing propulsion system components. The analysis techniques and software being developed as part of this effort are an attempt to evolve CFD into a useful tool for control design as well. One major aspect of this research is the generation of linear models from steady-state CFD results. CFD simulations, often used during the design of high-speed inlets, yield high resolution operating point data. Under a NASA grant, the University of Akron has developed analytical techniques and software tools that use these data to generate linear models for control design. The resulting linear models have the same number of states as the original CFD simulation, so they are still very large and computationally cumbersome. Model reduction techniques have been successfully applied to reduce these large linear models by several orders of magnitude without significantly changing the dynamic response. The result is an accurate, easy to use, low-order linear model that takes less time to generate than those generated by traditional means. The development of methods for generating low-order linear models from steady-state CFD is most complete at the one-dimensional level, where software is available to generate models with different kinds of input and output variables. One-dimensional methods have been extended somewhat so that linear models can also be generated from two- and three-dimensional steady-state results. Standard techniques are adequate for reducing the order of one-dimensional CFD-based linear models. However, reduction of linear models based on two- and three-dimensional CFD results is complicated by very sparse, ill-conditioned matrices. Some novel approaches are being investigated to solve this problem.

  7. Programming a hillslope water movement model on the MPP

    NASA Technical Reports Server (NTRS)

    Devaney, J. E.; Irving, A. R.; Camillo, P. J.; Gurney, R. J.

    1987-01-01

    A physically based numerical model was developed of heat and moisture flow within a hillslope on a parallel architecture computer, as a precursor to a model of a complete catchment. Moisture flow within a catchment includes evaporation, overland flow, flow in unsaturated soil, and flow in saturated soil. Because of the empirical evidence that moisture flow in unsaturated soil is mainly in the vertical direction, flow in the unsaturated zone can be modeled as a series of one dimensional columns. This initial version of the hillslope model includes evaporation and a single column of one dimensional unsaturated zone flow. This case has already been solved on an IBM 3081 computer and is now being applied to the massively parallel processor architecture so as to make the extension to the one dimensional case easier and to check the problems and benefits of using a parallel architecture machine.

  8. Simulation of Water-Surface Elevations and Velocity Distributions at the U.S. Highway 13 Bridge over the Tar River at Greenville, North Carolina, Using One- and Two-Dimensional Steady-State Hydraulic Models

    USGS Publications Warehouse

    Wagner, Chad R.

    2007-01-01

    The use of one-dimensional hydraulic models currently is the standard method for estimating velocity fields through a bridge opening for scour computations and habitat assessment. Flood-flow contraction through bridge openings, however, is hydrodynamically two dimensional and often three dimensional. Although there is awareness of the utility of two-dimensional models to predict the complex hydraulic conditions at bridge structures, little guidance is available to indicate whether a one- or two-dimensional model will accurately estimate the hydraulic conditions at a bridge site. The U.S. Geological Survey, in cooperation with the North Carolina Department of Transportation, initiated a study in 2004 to compare one- and two-dimensional model results with field measurements at complex riverine and tidal bridges in North Carolina to evaluate the ability of each model to represent field conditions. The field data consisted of discharge and depth-averaged velocity profiles measured with an acoustic Doppler current profiler and surveyed water-surface profiles for two high-flow conditions. For the initial study site (U.S. Highway 13 over the Tar River at Greenville, North Carolina), the water-surface elevations and velocity distributions simulated by the one- and two-dimensional models showed appreciable disparity in the highly sinuous reach upstream from the U.S. Highway 13 bridge. Based on the available data from U.S. Geological Survey streamgaging stations and acoustic Doppler current profiler velocity data, the two-dimensional model more accurately simulated the water-surface elevations and the velocity distributions in the study reach, and contracted-flow magnitudes and direction through the bridge opening. To further compare the results of the one- and two-dimensional models, estimated hydraulic parameters (flow depths, velocities, attack angles, blocked flow width) for measured high-flow conditions were used to predict scour depths at the U.S. Highway 13 bridge by using established methods. Comparisons of pier-scour estimates from both models indicated that the scour estimates from the two-dimensional model were as much as twice the depth of the estimates from the one-dimensional model. These results can be attributed to higher approach velocities and the appreciable flow angles at the piers simulated by the two-dimensional model and verified in the field. Computed flood-frequency estimates of the 10-, 50-, 100-, and 500-year return-period floods on the Tar River at Greenville were also simulated with both the one- and two-dimensional models. The simulated water-surface profiles and velocity fields of the various return-period floods were used to compare the modeling approaches and provide information on what return-period discharges would result in road over-topping and(or) pressure flow. This information is essential in the design of new and replacement structures. The ability to accurately simulate water-surface elevations and velocity magnitudes and distributions at bridge crossings is essential in assuring that bridge plans balance public safety with the most cost-effective design. By compiling pertinent bridge-site characteristics and relating them to the results of several model-comparison studies, the framework for developing guidelines for selecting the most appropriate model for a given bridge site can be accomplished.

  9. Evaluation of one dimensional analytical models for vegetation canopies

    NASA Technical Reports Server (NTRS)

    Goel, Narendra S.; Kuusk, Andres

    1992-01-01

    The SAIL model for one-dimensional homogeneous vegetation canopies has been modified to include the specular reflectance and hot spot effects. This modified model and the Nilson-Kuusk model are evaluated by comparing the reflectances given by them against those given by a radiosity-based computer model, Diana, for a set of canopies, characterized by different leaf area index (LAI) and leaf angle distribution (LAD). It is shown that for homogeneous canopies, the analytical models are generally quite accurate in the visible region, but not in the infrared region. For architecturally realistic heterogeneous canopies of the type found in nature, these models fall short. These shortcomings are quantified.

  10. Projection multiplex recording of computer-synthesised one-dimensional Fourier holograms for holographic memory systems: mathematical and experimental modelling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betin, A Yu; Bobrinev, V I; Verenikina, N M

    A multiplex method of recording computer-synthesised one-dimensional Fourier holograms intended for holographic memory devices is proposed. The method potentially allows increasing the recording density in the previously proposed holographic memory system based on the computer synthesis and projection recording of data page holograms. (holographic memory)

  11. An Advanced One-Dimensional Finite Element Model for Incompressible Thermally Expandable Flow

    DOE PAGES

    Hu, Rui

    2017-03-27

    Here, this paper provides an overview of a new one-dimensional finite element flow model for incompressible but thermally expandable flow. The flow model was developed for use in system analysis tools for whole-plant safety analysis of sodium fast reactors. Although the pressure-based formulation was implemented, the use of integral equations in the conservative form ensured the conservation laws of the fluid. A stabilization scheme based on streamline-upwind/Petrov-Galerkin and pressure-stabilizing/Petrov-Galerkin formulations is also introduced. The flow model and its implementation have been verified by many test problems, including density wave propagation, steep gradient problems, discharging between tanks, and the conjugate heatmore » transfer in a heat exchanger.« less

  12. An Advanced One-Dimensional Finite Element Model for Incompressible Thermally Expandable Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Rui

    Here, this paper provides an overview of a new one-dimensional finite element flow model for incompressible but thermally expandable flow. The flow model was developed for use in system analysis tools for whole-plant safety analysis of sodium fast reactors. Although the pressure-based formulation was implemented, the use of integral equations in the conservative form ensured the conservation laws of the fluid. A stabilization scheme based on streamline-upwind/Petrov-Galerkin and pressure-stabilizing/Petrov-Galerkin formulations is also introduced. The flow model and its implementation have been verified by many test problems, including density wave propagation, steep gradient problems, discharging between tanks, and the conjugate heatmore » transfer in a heat exchanger.« less

  13. On numerical model of one-dimensional time-dependent gas flows through bed of encapsulated phase change material

    NASA Astrophysics Data System (ADS)

    Lutsenko, N. A.; Fetsov, S. S.

    2017-10-01

    Mathematical model and numerical method are proposed for investigating the one-dimensional time-dependent gas flows through a packed bed of encapsulated Phase Change Material (PCM). The model is based on the assumption of interacting interpenetrating continua and includes equations of state, continuity, momentum conservation and energy for PCM and gas. The advantage of the method is that it does not require predicting the location of phase transition zone and can define it automatically as in a usual shock-capturing method. One of the applications of the developed numerical model is the simulation of novel Adiabatic Compressed Air Energy Storage system (A-CAES) with Thermal Energy Storage subsystem (TES) based on using the encapsulated PCM in packed bed. Preliminary test calculations give hope that the method can be effectively applied in the future for modelling the charge and discharge processes in such TES with PCM.

  14. A splitting scheme based on the space-time CE/SE method for solving multi-dimensional hydrodynamical models of semiconductor devices

    NASA Astrophysics Data System (ADS)

    Nisar, Ubaid Ahmed; Ashraf, Waqas; Qamar, Shamsul

    2016-08-01

    Numerical solutions of the hydrodynamical model of semiconductor devices are presented in one and two-space dimension. The model describes the charge transport in semiconductor devices. Mathematically, the models can be written as a convection-diffusion type system with a right hand side describing the relaxation effects and interaction with a self consistent electric field. The proposed numerical scheme is a splitting scheme based on the conservation element and solution element (CE/SE) method for hyperbolic step, and a semi-implicit scheme for the relaxation step. The numerical results of the suggested scheme are compared with the splitting scheme based on Nessyahu-Tadmor (NT) central scheme for convection step and the same semi-implicit scheme for the relaxation step. The effects of various parameters such as low field mobility, device length, lattice temperature and voltages for one-space dimensional hydrodynamic model are explored to further validate the generic applicability of the CE/SE method for the current model equations. A two dimensional simulation is also performed by CE/SE method for a MESFET device, producing results in good agreement with those obtained by NT-central scheme.

  15. Speciation and Neutral Molecular Evolution in One-Dimensional Closed Population

    NASA Astrophysics Data System (ADS)

    Semovski, Sergei V.; Bukin, Yuri S.; Sherbakov, Dmitry Yu.

    Models are presented suitable for a description of speciation processes arising due to reproductive isolation depending on genetic distance. The main attention is paid to the model of a one-dimensional closed population, which describes the evolution of littoral benthic organisms. In order to correspond the modeling results to the results obtained in the course of experimental phylogenetic studies, all individual-based models described here involve neutrally evolving and maternally inherited DNA sequence. Sub-samples of the resulting sequences were used for a posteriori phylogenetic inferences which then were compared to the "true" evolutionary histories.

  16. Modeling Three-Dimensional Flow in Confined Aquifers by Superposition of Both Two- and Three-Dimensional Analytic Functions

    NASA Astrophysics Data System (ADS)

    Haitjema, Henk M.

    1985-10-01

    A technique is presented to incorporate three-dimensional flow in a Dupuit-Forchheimer model. The method is based on superposition of approximate analytic solutions to both two- and three-dimensional flow features in a confined aquifer of infinite extent. Three-dimensional solutions are used in the domain of interest, while farfield conditions are represented by two-dimensional solutions. Approximate three- dimensional solutions have been derived for a partially penetrating well and a shallow creek. Each of these solutions satisfies the condition that no flow occurs across the confining layers of the aquifer. Because of this condition, the flow at some distance of a three-dimensional feature becomes nearly horizontal. Consequently, remotely from a three-dimensional feature, its three-dimensional solution is replaced by a corresponding two-dimensional one. The latter solution is trivial as compared to its three-dimensional counterpart, and its use greatly enhances the computational efficiency of the model. As an example, the flow is modeled between a partially penetrating well and a shallow creek that occur in a regional aquifer system.

  17. Comparison of two-dimensional and quasi-one-dimensional scramjet models by the example of VAG experiment

    NASA Astrophysics Data System (ADS)

    Seleznev, R. K.

    2017-02-01

    In the paper two-dimensional and quasi-one dimensional models for scramjet combustion chamber are described. Comparison of the results of calculations for the two-dimensional and quasi-one dimensional code by the example of VAG experiment are presented.

  18. Four-dimensional reconstruction of cultural heritage sites based on photogrammetry and clustering

    NASA Astrophysics Data System (ADS)

    Voulodimos, Athanasios; Doulamis, Nikolaos; Fritsch, Dieter; Makantasis, Konstantinos; Doulamis, Anastasios; Klein, Michael

    2017-01-01

    A system designed and developed for the three-dimensional (3-D) reconstruction of cultural heritage (CH) assets is presented. Two basic approaches are presented. The first one, resulting in an "approximate" 3-D model, uses images retrieved in online multimedia collections; it employs a clustering-based technique to perform content-based filtering and eliminate outliers that significantly reduce the performance of 3-D reconstruction frameworks. The second one is based on input image data acquired through terrestrial laser scanning, as well as close range and airborne photogrammetry; it follows a sophisticated multistep strategy, which leads to a "precise" 3-D model. Furthermore, the concept of change history maps is proposed to address the computational limitations involved in four-dimensional (4-D) modeling, i.e., capturing 3-D models of a CH landmark or site at different time instances. The system also comprises a presentation viewer, which manages the display of the multifaceted CH content collected and created. The described methods have been successfully applied and evaluated in challenging real-world scenarios, including the 4-D reconstruction of the historic Market Square of the German city of Calw in the context of the 4-D-CH-World EU project.

  19. Sampling design for groundwater solute transport: Tests of methods and analysis of Cape Cod tracer test data

    USGS Publications Warehouse

    Knopman, Debra S.; Voss, Clifford I.; Garabedian, Stephen P.

    1991-01-01

    Tests of a one-dimensional sampling design methodology on measurements of bromide concentration collected during the natural gradient tracer test conducted by the U.S. Geological Survey on Cape Cod, Massachusetts, demonstrate its efficacy for field studies of solute transport in groundwater and the utility of one-dimensional analysis. The methodology was applied to design of sparse two-dimensional networks of fully screened wells typical of those often used in engineering practice. In one-dimensional analysis, designs consist of the downstream distances to rows of wells oriented perpendicular to the groundwater flow direction and the timing of sampling to be carried out on each row. The power of a sampling design is measured by its effectiveness in simultaneously meeting objectives of model discrimination, parameter estimation, and cost minimization. One-dimensional models of solute transport, differing in processes affecting the solute and assumptions about the structure of the flow field, were considered for description of tracer cloud migration. When fitting each model using nonlinear regression, additive and multiplicative error forms were allowed for the residuals which consist of both random and model errors. The one-dimensional single-layer model of a nonreactive solute with multiplicative error was judged to be the best of those tested. Results show the efficacy of the methodology in designing sparse but powerful sampling networks. Designs that sample five rows of wells at five or fewer times in any given row performed as well for model discrimination as the full set of samples taken up to eight times in a given row from as many as 89 rows. Also, designs for parameter estimation judged to be good by the methodology were as effective in reducing the variance of parameter estimates as arbitrary designs with many more samples. Results further showed that estimates of velocity and longitudinal dispersivity in one-dimensional models based on data from only five rows of fully screened wells each sampled five or fewer times were practically equivalent to values determined from moments analysis of the complete three-dimensional set of 29,285 samples taken during 16 sampling times.

  20. Exploring load, velocity, and surface disorder dependence of friction with one-dimensional and two-dimensional models.

    PubMed

    Dagdeviren, Omur E

    2018-08-03

    The effect of surface disorder, load, and velocity on friction between a single asperity contact and a model surface is explored with one-dimensional and two-dimensional Prandtl-Tomlinson (PT) models. We show that there are fundamental physical differences between the predictions of one-dimensional and two-dimensional models. The one-dimensional model estimates a monotonic increase in friction and energy dissipation with load, velocity, and surface disorder. However, a two-dimensional PT model, which is expected to approximate a tip-sample system more realistically, reveals a non-monotonic trend, i.e. friction is inert to surface disorder and roughness in wearless friction regime. The two-dimensional model discloses that the surface disorder starts to dominate the friction and energy dissipation when the tip and the sample interact predominantly deep into the repulsive regime. Our numerical calculations address that tracking the minimum energy path and the slip-stick motion are two competing effects that determine the load, velocity, and surface disorder dependence of friction. In the two-dimensional model, the single asperity can follow the minimum energy path in wearless regime; however, with increasing load and sliding velocity, the slip-stick movement dominates the dynamic motion and results in an increase in friction by impeding tracing the minimum energy path. Contrary to the two-dimensional model, when the one-dimensional PT model is employed, the single asperity cannot escape to the minimum energy minimum due to constraint motion and reveals only a trivial dependence of friction on load, velocity, and surface disorder. Our computational analyses clarify the physical differences between the predictions of the one-dimensional and two-dimensional models and open new avenues for disordered surfaces for low energy dissipation applications in wearless friction regime.

  1. Bond Graph Model of Cerebral Circulation: Toward Clinically Feasible Systemic Blood Flow Simulations.

    PubMed

    Safaei, Soroush; Blanco, Pablo J; Müller, Lucas O; Hellevik, Leif R; Hunter, Peter J

    2018-01-01

    We propose a detailed CellML model of the human cerebral circulation that runs faster than real time on a desktop computer and is designed for use in clinical settings when the speed of response is important. A lumped parameter mathematical model, which is based on a one-dimensional formulation of the flow of an incompressible fluid in distensible vessels, is constructed using a bond graph formulation to ensure mass conservation and energy conservation. The model includes arterial vessels with geometric and anatomical data based on the ADAN circulation model. The peripheral beds are represented by lumped parameter compartments. We compare the hemodynamics predicted by the bond graph formulation of the cerebral circulation with that given by a classical one-dimensional Navier-Stokes model working on top of the whole-body ADAN model. Outputs from the bond graph model, including the pressure and flow signatures and blood volumes, are compared with physiological data.

  2. Quantum Monte Carlo study of the transverse-field quantum Ising model on infinite-dimensional structures

    NASA Astrophysics Data System (ADS)

    Baek, Seung Ki; Um, Jaegon; Yi, Su Do; Kim, Beom Jun

    2011-11-01

    In a number of classical statistical-physical models, there exists a characteristic dimensionality called the upper critical dimension above which one observes the mean-field critical behavior. Instead of constructing high-dimensional lattices, however, one can also consider infinite-dimensional structures, and the question is whether this mean-field character extends to quantum-mechanical cases as well. We therefore investigate the transverse-field quantum Ising model on the globally coupled network and on the Watts-Strogatz small-world network by means of quantum Monte Carlo simulations and the finite-size scaling analysis. We confirm that both of the structures exhibit critical behavior consistent with the mean-field description. In particular, we show that the existing cumulant method has difficulty in estimating the correct dynamic critical exponent and suggest that an order parameter based on the quantum-mechanical expectation value can be a practically useful numerical observable to determine critical behavior when there is no well-defined dimensionality.

  3. Generation Algorithm of Discrete Line in Multi-Dimensional Grids

    NASA Astrophysics Data System (ADS)

    Du, L.; Ben, J.; Li, Y.; Wang, R.

    2017-09-01

    Discrete Global Grids System (DGGS) is a kind of digital multi-resolution earth reference model, in terms of structure, it is conducive to the geographical spatial big data integration and mining. Vector is one of the important types of spatial data, only by discretization, can it be applied in grids system to make process and analysis. Based on the some constraint conditions, this paper put forward a strict definition of discrete lines, building a mathematic model of the discrete lines by base vectors combination method. Transforming mesh discrete lines issue in n-dimensional grids into the issue of optimal deviated path in n-minus-one dimension using hyperplane, which, therefore realizing dimension reduction process in the expression of mesh discrete lines. On this basis, we designed a simple and efficient algorithm for dimension reduction and generation of the discrete lines. The experimental results show that our algorithm not only can be applied in the two-dimensional rectangular grid, also can be applied in the two-dimensional hexagonal grid and the three-dimensional cubic grid. Meanwhile, when our algorithm is applied in two-dimensional rectangular grid, it can get a discrete line which is more similar to the line in the Euclidean space.

  4. Exact solution of a one-dimensional model of strained epitaxy on a periodically modulated substrate

    NASA Astrophysics Data System (ADS)

    Tokar, V. I.; Dreyssé, H.

    2005-03-01

    We consider a one-dimensional lattice gas model of strained epitaxy with the elastic strain accounted for through a finite number of cluster interactions comprising contiguous atomic chains. Interactions of this type arise in the models of strained epitaxy based on the Frenkel-Kontorova model. Furthermore, the deposited atoms interact with the substrate via an arbitrary periodic potential of period L . This model is solved exactly with the use of an appropriately adopted technique developed recently in the theory of protein folding. The advantage of the proposed approach over the standard transfer-matrix method is that it reduces the problem to finding the largest eigenvalue of a matrix of size L instead of 2L-1 , which is vital in the case of nanostructures where L may measure in hundreds of interatomic distances. Our major conclusion is that the substrate modulation always facilitates the size calibration of self-assembled nanoparticles in one- and two-dimensional systems.

  5. Higher (odd) dimensional quantum Hall effect and extended dimensional hierarchy

    NASA Astrophysics Data System (ADS)

    Hasebe, Kazuki

    2017-07-01

    We demonstrate dimensional ladder of higher dimensional quantum Hall effects by exploiting quantum Hall effects on arbitrary odd dimensional spheres. Non-relativistic and relativistic Landau models are analyzed on S 2 k - 1 in the SO (2 k - 1) monopole background. The total sub-band degeneracy of the odd dimensional lowest Landau level is shown to be equal to the winding number from the base-manifold S 2 k - 1 to the one-dimension higher SO (2 k) gauge group. Based on the chiral Hopf maps, we clarify the underlying quantum Nambu geometry for odd dimensional quantum Hall effect and the resulting quantum geometry is naturally embedded also in one-dimension higher quantum geometry. An origin of such dimensional ladder connecting even and odd dimensional quantum Hall effects is illuminated from a viewpoint of the spectral flow of Atiyah-Patodi-Singer index theorem in differential topology. We also present a BF topological field theory as an effective field theory in which membranes with different dimensions undergo non-trivial linking in odd dimensional space. Finally, an extended version of the dimensional hierarchy for higher dimensional quantum Hall liquids is proposed, and its relationship to quantum anomaly and D-brane physics is discussed.

  6. Residence-time framework for modeling multicomponent reactive transport in stream hyporheic zones

    NASA Astrophysics Data System (ADS)

    Painter, S. L.; Coon, E. T.; Brooks, S. C.

    2017-12-01

    Process-based models for transport and transformation of nutrients and contaminants in streams require tractable representations of solute exchange between the stream channel and biogeochemically active hyporheic zones. Residence-time based formulations provide an alternative to detailed three-dimensional simulations and have had good success in representing hyporheic exchange of non-reacting solutes. We extend the residence-time formulation for hyporheic transport to accommodate general multicomponent reactive transport. To that end, the integro-differential form of previous residence time models is replaced by an equivalent formulation based on a one-dimensional advection dispersion equation along the channel coupled at each channel location to a one-dimensional transport model in Lagrangian travel-time form. With the channel discretized for numerical solution, the associated Lagrangian model becomes a subgrid model representing an ensemble of streamlines that are diverted into the hyporheic zone before returning to the channel. In contrast to the previous integro-differential forms of the residence-time based models, the hyporheic flowpaths have semi-explicit spatial representation (parameterized by travel time), thus allowing coupling to general biogeochemical models. The approach has been implemented as a stream-corridor subgrid model in the open-source integrated surface/subsurface modeling software ATS. We use bedform-driven flow coupled to a biogeochemical model with explicit microbial biomass dynamics as an example to show that the subgrid representation is able to represent redox zonation in sediments and resulting effects on metal biogeochemical dynamics in a tractable manner that can be scaled to reach scales.

  7. A Bayesian trans-dimensional approach for the fusion of multiple geophysical datasets

    NASA Astrophysics Data System (ADS)

    JafarGandomi, Arash; Binley, Andrew

    2013-09-01

    We propose a Bayesian fusion approach to integrate multiple geophysical datasets with different coverage and sensitivity. The fusion strategy is based on the capability of various geophysical methods to provide enough resolution to identify either subsurface material parameters or subsurface structure, or both. We focus on electrical resistivity as the target material parameter and electrical resistivity tomography (ERT), electromagnetic induction (EMI), and ground penetrating radar (GPR) as the set of geophysical methods. However, extending the approach to different sets of geophysical parameters and methods is straightforward. Different geophysical datasets are entered into a trans-dimensional Markov chain Monte Carlo (McMC) search-based joint inversion algorithm. The trans-dimensional property of the McMC algorithm allows dynamic parameterisation of the model space, which in turn helps to avoid bias of the post-inversion results towards a particular model. Given that we are attempting to develop an approach that has practical potential, we discretize the subsurface into an array of one-dimensional earth-models. Accordingly, the ERT data that are collected by using two-dimensional acquisition geometry are re-casted to a set of equivalent vertical electric soundings. Different data are inverted either individually or jointly to estimate one-dimensional subsurface models at discrete locations. We use Shannon's information measure to quantify the information obtained from the inversion of different combinations of geophysical datasets. Information from multiple methods is brought together via introducing joint likelihood function and/or constraining the prior information. A Bayesian maximum entropy approach is used for spatial fusion of spatially dispersed estimated one-dimensional models and mapping of the target parameter. We illustrate the approach with a synthetic dataset and then apply it to a field dataset. We show that the proposed fusion strategy is successful not only in enhancing the subsurface information but also as a survey design tool to identify the appropriate combination of the geophysical tools and show whether application of an individual method for further investigation of a specific site is beneficial.

  8. Dark soliton pair of ultracold Fermi gases for a generalized Gross-Pitaevskii equation model.

    PubMed

    Wang, Ying; Zhou, Yu; Zhou, Shuyu; Zhang, Yongsheng

    2016-07-01

    We present the theoretical investigation of dark soliton pair solutions for one-dimensional as well as three-dimensional generalized Gross-Pitaevskii equation (GGPE) which models the ultracold Fermi gas during Bardeen-Cooper-Schrieffer-Bose-Einstein condensates crossover. Without introducing any integrability constraint and via the self-similar approach, the three-dimensional solution of GGPE is derived based on the one-dimensional dark soliton pair solution, which is obtained through a modified F-expansion method combined with a coupled modulus-phase transformation technique. We discovered the oscillatory behavior of the dark soliton pair from the theoretical results obtained for the three-dimensional case. The calculated period agrees very well with the corresponding reported experimental result [Weller et al., Phys. Rev. Lett. 101, 130401 (2008)PRLTAO0031-900710.1103/PhysRevLett.101.130401], demonstrating the applicability of the theoretical treatment presented in this work.

  9. Flows in forward deformable roll coating gaps: Comparison between spring and plane-strain models of roll cover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carvalho, M.S.; Scriven, L.E.

    1997-12-01

    In this report the flow between rigid and a deformable rotating rolls fully submerged in a liquid pool is studied. The deformation of compliant roll cover is described by two different models (1) independent, radially oriented springs that deform in response to the traction force applied at the extremity of each or one-dimensional model, and (2) a plane-strain deformation of an incompressible Mooney-Rivlin material or non-linear elastic model. Based on the flow rate predictions of both models, an empirical relation between the spring constant of the one dimensional model and the roll cover thickness and elastic modulus is proposed.

  10. Three-dimensional finite element analysis for high velocity impact. [of projectiles from space debris

    NASA Technical Reports Server (NTRS)

    Chan, S. T. K.; Lee, C. H.; Brashears, M. R.

    1975-01-01

    A finite element algorithm for solving unsteady, three-dimensional high velocity impact problems is presented. A computer program was developed based on the Eulerian hydroelasto-viscoplastic formulation and the utilization of the theorem of weak solutions. The equations solved consist of conservation of mass, momentum, and energy, equation of state, and appropriate constitutive equations. The solution technique is a time-dependent finite element analysis utilizing three-dimensional isoparametric elements, in conjunction with a generalized two-step time integration scheme. The developed code was demonstrated by solving one-dimensional as well as three-dimensional impact problems for both the inviscid hydrodynamic model and the hydroelasto-viscoplastic model.

  11. [Extraction of buildings three-dimensional information from high-resolution satellite imagery based on Barista software].

    PubMed

    Zhang, Pei-feng; Hu, Yuan-man; He, Hong-shi

    2010-05-01

    The demand for accurate and up-to-date spatial information of urban buildings is becoming more and more important for urban planning, environmental protection, and other vocations. Today's commercial high-resolution satellite imagery offers the potential to extract the three-dimensional information of urban buildings. This paper extracted the three-dimensional information of urban buildings from QuickBird imagery, and validated the precision of the extraction based on Barista software. It was shown that the extraction of three-dimensional information of the buildings from high-resolution satellite imagery based on Barista software had the advantages of low professional level demand, powerful universality, simple operation, and high precision. One pixel level of point positioning and height determination accuracy could be achieved if the digital elevation model (DEM) and sensor orientation model had higher precision and the off-Nadir View Angle was relatively perfect.

  12. Variational asymptotic modeling of composite dimensionally reducible structures

    NASA Astrophysics Data System (ADS)

    Yu, Wenbin

    A general framework to construct accurate reduced models for composite dimensionally reducible structures (beams, plates and shells) was formulated based on two theoretical foundations: decomposition of the rotation tensor and the variational asymptotic method. Two engineering software systems, Variational Asymptotic Beam Sectional Analysis (VABS, new version) and Variational Asymptotic Plate and Shell Analysis (VAPAS), were developed. Several restrictions found in previous work on beam modeling were removed in the present effort. A general formulation of Timoshenko-like cross-sectional analysis was developed, through which the shear center coordinates and a consistent Vlasov model can be obtained. Recovery relations are given to recover the asymptotic approximations for the three-dimensional field variables. A new version of VABS has been developed, which is a much improved program in comparison to the old one. Numerous examples are given for validation. A Reissner-like model being as asymptotically correct as possible was obtained for composite plates and shells. After formulating the three-dimensional elasticity problem in intrinsic form, the variational asymptotic method was used to systematically reduce the dimensionality of the problem by taking advantage of the smallness of the thickness. The through-the-thickness analysis is solved by a one-dimensional finite element method to provide the stiffnesses as input for the two-dimensional nonlinear plate or shell analysis as well as recovery relations to approximately express the three-dimensional results. The known fact that there exists more than one theory that is asymptotically correct to a given order is adopted to cast the refined energy into a Reissner-like form. A two-dimensional nonlinear shell theory consistent with the present modeling process was developed. The engineering computer code VAPAS was developed and inserted into DYMORE to provide an efficient and accurate analysis of composite plates and shells. Numerical results are compared with the exact solutions, and the excellent agreement proves that one can use VAPAS to analyze composite plates and shells efficiently and accurately. In conclusion, rigorous modeling approaches were developed for composite beams, plates and shells within a general framework. No such consistent and general treatment is found in the literature. The associated computer programs VABS and VAPAS are envisioned to have many applications in industry.

  13. Real-time modeling of heat distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamann, Hendrik F.; Li, Hongfei; Yarlanki, Srinivas

    Techniques for real-time modeling temperature distributions based on streaming sensor data are provided. In one aspect, a method for creating a three-dimensional temperature distribution model for a room having a floor and a ceiling is provided. The method includes the following steps. A ceiling temperature distribution in the room is determined. A floor temperature distribution in the room is determined. An interpolation between the ceiling temperature distribution and the floor temperature distribution is used to obtain the three-dimensional temperature distribution model for the room.

  14. Exploring photonic topological insulator states in a circuit-QED lattice

    NASA Astrophysics Data System (ADS)

    Li, Jing-Ling; Shan, Chuan-Jia; Zhao, Feng

    2018-04-01

    We propose a simple protocol to explore the topological properties of photonic integer quantum Hall states in a one-dimensional circiut-QED lattice. By periodically modulating the on-site photonic energies in such a lattice, we demonstrate that this one-dimensional lattice model can be mapped into a two-dimensional integer quantum Hall insulator model. Based on the lattice-based cavity input-output theory, we show that both the photonic topological protected edge states and topological invariants can be clearly measured from the final steady state of the resonator lattice after taking into account cavity dissipation. Interestingly, we also find that the measurement signals associated with the above topological features are quite unambitious even in five coupled dissipative resonators. Our work opens up a new prospect of exploring topological states with a small-size dissipative quantum artificial lattice, which is quite attractive to the current quantum optics community.

  15. Nodal-line pairing with 1D-3D coupled Fermi surfaces: A model motivated by Cr-based superconductors

    NASA Astrophysics Data System (ADS)

    Wachtel, Gideon; Kim, Yong Baek

    2016-09-01

    Motivated by the recent discovery of a new family of chromium-based superconductors, we consider a two-band model, where a band of electrons dispersing only in one direction interacts with a band of electrons dispersing in all three directions. Strong 2 kf density fluctuations in the one-dimensional band induces attractive interactions between the three-dimensional electrons, which, in turn, makes the system superconducting. Solving the associated Eliashberg equations, we obtain a gap function which is peaked at the "poles" of the three-dimensional Fermi sphere, and decreases towards the "equator." When strong enough local repulsion is included, the gap actually changes sign around the equator and nodal rings are formed. These nodal rings manifest themselves in several experimentally observable quantities, some of which resemble unconventional observations in the newly discovered superconductors which motivated this work.

  16. Modelling of Heat and Moisture Loss Through NBC Ensembles

    DTIC Science & Technology

    1991-11-01

    the heat and moisture transport through various NBC clothing ensembles. The analysis involves simplifying the three dimensional physical problem of... clothing on a person to that of a one dimensional problem of flow through parallel layers of clothing and air. Body temperatures are calculated based on...prescribed work rates, ambient conditions and clothing properties. Sweat response and respiration rates are estimated based on empirical data to

  17. Laser one-dimensional range profile and the laser two-dimensional range profile of cylinders

    NASA Astrophysics Data System (ADS)

    Gong, Yanjun; Wang, Mingjun; Gong, Lei

    2015-10-01

    Laser one-dimensional range profile, that is scattering power from pulse laser scattering of target, is a radar imaging technology. The laser two-dimensional range profile is two-dimensional scattering imaging of pulse laser of target. Laser one-dimensional range profile and laser two-dimensional range profile are called laser range profile(LRP). The laser range profile can reflect the characteristics of the target shape and surface material. These techniques were motivated by applications of laser radar to target discrimination in ballistic missile defense. The radar equation of pulse laser is given in this paper. This paper demonstrates the analytical model of laser range profile of cylinder based on the radar equation of the pulse laser. Simulations results of laser one-dimensional range profiles of some cylinders are given. Laser range profiles of cylinder, whose surface material with diffuse lambertian reflectance, is given in this paper. Laser range profiles of different pulse width of cylinder are given in this paper. The influences of geometric parameters, pulse width, attitude on the range profiles are analyzed.

  18. Framework to model neutral particle flux in convex high aspect ratio structures using one-dimensional radiosity

    NASA Astrophysics Data System (ADS)

    Manstetten, Paul; Filipovic, Lado; Hössinger, Andreas; Weinbub, Josef; Selberherr, Siegfried

    2017-02-01

    We present a computationally efficient framework to compute the neutral flux in high aspect ratio structures during three-dimensional plasma etching simulations. The framework is based on a one-dimensional radiosity approach and is applicable to simulations of convex rotationally symmetric holes and convex symmetric trenches with a constant cross-section. The framework is intended to replace the full three-dimensional simulation step required to calculate the neutral flux during plasma etching simulations. Especially for high aspect ratio structures, the computational effort, required to perform the full three-dimensional simulation of the neutral flux at the desired spatial resolution, conflicts with practical simulation time constraints. Our results are in agreement with those obtained by three-dimensional Monte Carlo based ray tracing simulations for various aspect ratios and convex geometries. With this framework we present a comprehensive analysis of the influence of the geometrical properties of high aspect ratio structures as well as of the particle sticking probability on the neutral particle flux.

  19. Minimizers with Bounded Action for the High-Dimensional Frenkel-Kontorova Model

    NASA Astrophysics Data System (ADS)

    Miao, Xue-Qing; Wang, Ya-Nan; Qin, Wen-Xin

    In Aubry-Mather theory for monotone twist maps or for one-dimensional Frenkel-Kontorova (FK) model with nearest neighbor interactions, each global minimizer (minimal energy configuration) is naturally Birkhoff. However, this is not true for the one-dimensional FK model with non-nearest neighbor interactions or for the high-dimensional FK model. In this paper, we study the Birkhoff property of minimizers with bounded action for the high-dimensional FK model.

  20. ESTIMATION OF GROUNDWATER POLLUTION POTENTIAL BY PESTICIDES IN MID-ATLANTIC COASTAL PLAIN WATERSHEDS

    EPA Science Inventory

    A simple GIS-based transport model to estimate the potential for groundwater pollution by pesticides has been developed within the ArcView GIS environment. The pesticide leaching analytical model, which is based on one-dimensional advective-dispersive-reactive (ADR) transport, ha...

  1. A Model for Measured Traveling Waves at End-Diastole in Human Heart Wall by Ultrasonic Imaging Method

    NASA Astrophysics Data System (ADS)

    Bekki, Naoaki; Shintani, Seine A.; Ishiwata, Shin'ichi; Kanai, Hiroshi

    2016-04-01

    We observe traveling waves, measured by the ultrasonic noninvasive imaging method, in a longitudinal beam direction from the apex to the base side on the interventricular septum (IVS) during the period from the end-diastole to the beginning of systole for a healthy human heart wall. We present a possible phenomenological model to explain part of one-dimensional cardiac behaviors for the observed traveling waves around the time of R-wave of echocardiography (ECG) in the human heart. Although the observed two-dimensional patterns of traveling waves are extremely complex and no one knows yet the exact solutions for the traveling homoclinic plane wave in the one-dimensional complex Ginzburg-Landau equation (CGLE), we numerically find that part of the one-dimensional homoclinic dynamics of the phase and amplitude patterns in the observed traveling waves is similar to that of the numerical homoclinic plane-wave solutions in the CGLE with periodic boundary condition in a certain parameter space. It is suggested that part of the cardiac dynamics of the traveling waves on the IVS can be qualitatively described by the CGLE model as a paradigm for understanding biophysical nonlinear phenomena.

  2. Illumination in diverse codimensions

    NASA Technical Reports Server (NTRS)

    Banks, David C.

    1994-01-01

    This paper derives a model of diffuse and specular illumination in arbitrarily large dimensions, based on a few characteristics of material and light in three-space. It then describes how to adjust for the anomaly of excess brightness in large codimensions. If a surface is grooved or furry, it can be illuminated with a hybrid model that incorporates both the one dimensional geometry (the grooves or fur) and the two dimensional geometry (the surface).

  3. One-Dimensional Contact Mode Interdigitated Center of Pressure Sensor (CMIPS)

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Kang, Jinho; Park, Cheol; Harrison, Joycelyn S.; Guerreiro, Nelson M.; Hubbard, James E.

    2009-01-01

    A one dimensional contact mode interdigitated center of pressure sensor (CMIPS) has been developed. The experimental study demonstrated that the CMIPS has the capability to measure the overall pressure as well as the center of pressure in one dimension, simultaneously. A theoretical model for the CMIPS is established here based on the equivalent circuit of the configuration of the CMIPS as well as the material properties of the sensor. The experimental results match well with theoretical modeling predictions. A system mapped with two or more pieces of the CMIPS can be used to obtain information from the pressure distribution in multi-dimensions.

  4. The Equivalence of Information-Theoretic and Likelihood-Based Methods for Neural Dimensionality Reduction

    PubMed Central

    Williamson, Ross S.; Sahani, Maneesh; Pillow, Jonathan W.

    2015-01-01

    Stimulus dimensionality-reduction methods in neuroscience seek to identify a low-dimensional space of stimulus features that affect a neuron’s probability of spiking. One popular method, known as maximally informative dimensions (MID), uses an information-theoretic quantity known as “single-spike information” to identify this space. Here we examine MID from a model-based perspective. We show that MID is a maximum-likelihood estimator for the parameters of a linear-nonlinear-Poisson (LNP) model, and that the empirical single-spike information corresponds to the normalized log-likelihood under a Poisson model. This equivalence implies that MID does not necessarily find maximally informative stimulus dimensions when spiking is not well described as Poisson. We provide several examples to illustrate this shortcoming, and derive a lower bound on the information lost when spiking is Bernoulli in discrete time bins. To overcome this limitation, we introduce model-based dimensionality reduction methods for neurons with non-Poisson firing statistics, and show that they can be framed equivalently in likelihood-based or information-theoretic terms. Finally, we show how to overcome practical limitations on the number of stimulus dimensions that MID can estimate by constraining the form of the non-parametric nonlinearity in an LNP model. We illustrate these methods with simulations and data from primate visual cortex. PMID:25831448

  5. On the modeling of the bottom particles segregation with non-linear diffusion equations: application to the marine sand ripples

    NASA Astrophysics Data System (ADS)

    Tiguercha, Djlalli; Bennis, Anne-claire; Ezersky, Alexander

    2015-04-01

    The elliptical motion in surface waves causes an oscillating motion of the sand grains leading to the formation of ripple patterns on the bottom. Investigation how the grains with different properties are distributed inside the ripples is a difficult task because of the segration of particle. The work of Fernandez et al. (2003) was extended from one-dimensional to two-dimensional case. A new numerical model, based on these non-linear diffusion equations, was developed to simulate the grain distribution inside the marine sand ripples. The one and two-dimensional models are validated on several test cases where segregation appears. Starting from an homogeneous mixture of grains, the two-dimensional simulations demonstrate different segregation patterns: a) formation of zones with high concentration of light and heavy particles, b) formation of «cat's eye» patterns, c) appearance of inverse Brazil nut effect. Comparisons of numerical results with the new set of field data and wave flume experiments show that the two-dimensional non-linear diffusion equations allow us to reproduce qualitatively experimental results on particles segregation.

  6. 1-D DC Resistivity Modeling and Interpretation in Anisotropic Media Using Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Pekşen, Ertan; Yas, Türker; Kıyak, Alper

    2014-09-01

    We examine the one-dimensional direct current method in anisotropic earth formation. We derive an analytic expression of a simple, two-layered anisotropic earth model. Further, we also consider a horizontally layered anisotropic earth response with respect to the digital filter method, which yields a quasi-analytic solution over anisotropic media. These analytic and quasi-analytic solutions are useful tests for numerical codes. A two-dimensional finite difference earth model in anisotropic media is presented in order to generate a synthetic data set for a simple one-dimensional earth. Further, we propose a particle swarm optimization method for estimating the model parameters of a layered anisotropic earth model such as horizontal and vertical resistivities, and thickness. The particle swarm optimization is a naturally inspired meta-heuristic algorithm. The proposed method finds model parameters quite successfully based on synthetic and field data. However, adding 5 % Gaussian noise to the synthetic data increases the ambiguity of the value of the model parameters. For this reason, the results should be controlled by a number of statistical tests. In this study, we use probability density function within 95 % confidence interval, parameter variation of each iteration and frequency distribution of the model parameters to reduce the ambiguity. The result is promising and the proposed method can be used for evaluating one-dimensional direct current data in anisotropic media.

  7. A tool for multi-scale modelling of the renal nephron

    PubMed Central

    Nickerson, David P.; Terkildsen, Jonna R.; Hamilton, Kirk L.; Hunter, Peter J.

    2011-01-01

    We present the development of a tool, which provides users with the ability to visualize and interact with a comprehensive description of a multi-scale model of the renal nephron. A one-dimensional anatomical model of the nephron has been created and is used for visualization and modelling of tubule transport in various nephron anatomical segments. Mathematical models of nephron segments are embedded in the one-dimensional model. At the cellular level, these segment models use models encoded in CellML to describe cellular and subcellular transport kinetics. A web-based presentation environment has been developed that allows the user to visualize and navigate through the multi-scale nephron model, including simulation results, at the different spatial scales encompassed by the model description. The Zinc extension to Firefox is used to provide an interactive three-dimensional view of the tubule model and the native Firefox rendering of scalable vector graphics is used to present schematic diagrams for cellular and subcellular scale models. The model viewer is embedded in a web page that dynamically presents content based on user input. For example, when viewing the whole nephron model, the user might be presented with information on the various embedded segment models as they select them in the three-dimensional model view. Alternatively, the user chooses to focus the model viewer on a cellular model located in a particular nephron segment in order to view the various membrane transport proteins. Selecting a specific protein may then present the user with a description of the mathematical model governing the behaviour of that protein—including the mathematical model itself and various simulation experiments used to validate the model against the literature. PMID:22670210

  8. Bond Graph Model of Cerebral Circulation: Toward Clinically Feasible Systemic Blood Flow Simulations

    PubMed Central

    Safaei, Soroush; Blanco, Pablo J.; Müller, Lucas O.; Hellevik, Leif R.; Hunter, Peter J.

    2018-01-01

    We propose a detailed CellML model of the human cerebral circulation that runs faster than real time on a desktop computer and is designed for use in clinical settings when the speed of response is important. A lumped parameter mathematical model, which is based on a one-dimensional formulation of the flow of an incompressible fluid in distensible vessels, is constructed using a bond graph formulation to ensure mass conservation and energy conservation. The model includes arterial vessels with geometric and anatomical data based on the ADAN circulation model. The peripheral beds are represented by lumped parameter compartments. We compare the hemodynamics predicted by the bond graph formulation of the cerebral circulation with that given by a classical one-dimensional Navier-Stokes model working on top of the whole-body ADAN model. Outputs from the bond graph model, including the pressure and flow signatures and blood volumes, are compared with physiological data. PMID:29551979

  9. Atomic and electronic properties of quasi-one-dimensional MOS2 nanowires

    PubMed Central

    Seivane, Lucas Fernandez; Barron, Hector; Botti, Silvana; Marques, Miguel Alexandre Lopes; Rubio, Ángel; López-Lozano, Xóchitl

    2013-01-01

    The structural, electronic and magnetic properties of quasi-one-dimensional MoS2 nanowires, passivated by extra sulfur, have been determined using ab initio density-functional theory. The nanostructures were simulated using several different models based on experimental electron microscopy images. It is found that independently of the geometrical details and the coverage of extra sulfur at the Mo-edge, quasi-one-dimensional metallic states are predominant in all the low-energy model structures despite their reduced dimensionality. These metallic states are localized mainly at the edges. However, the electronic and magnetic character of the NWs does not depend only on the S saturation but also on the symmetry configuration of the S edge atoms. Our results show that for the same S saturation the magnetization can be decreased by increasing the pairing of the S and Mo edge atoms. In spite of the observed pairing of S dimers at the Mo-edge, the nanowires do not experience a Peierls-like metal-insulator transition PMID:25429189

  10. One-dimensional transport equation models for sound energy propagation in long spaces: theory.

    PubMed

    Jing, Yun; Larsen, Edward W; Xiang, Ning

    2010-04-01

    In this paper, a three-dimensional transport equation model is developed to describe the sound energy propagation in a long space. Then this model is reduced to a one-dimensional model by approximating the solution using the method of weighted residuals. The one-dimensional transport equation model directly describes the sound energy propagation in the "long" dimension and deals with the sound energy in the "short" dimensions by prescribed functions. Also, the one-dimensional model consists of a coupled set of N transport equations. Only N=1 and N=2 are discussed in this paper. For larger N, although the accuracy could be improved, the calculation time is expected to significantly increase, which diminishes the advantage of the model in terms of its computational efficiency.

  11. One-dimensional wave bottom boundary layer model comparison: specific eddy viscosity and turbulence closure models

    USGS Publications Warehouse

    Puleo, J.A.; Mouraenko, O.; Hanes, D.M.

    2004-01-01

    Six one-dimensional-vertical wave bottom boundary layer models are analyzed based on different methods for estimating the turbulent eddy viscosity: Laminar, linear, parabolic, k—one equation turbulence closure, k−ε—two equation turbulence closure, and k−ω—two equation turbulence closure. Resultant velocity profiles, bed shear stresses, and turbulent kinetic energy are compared to laboratory data of oscillatory flow over smooth and rough beds. Bed shear stress estimates for the smooth bed case were most closely predicted by the k−ω model. Normalized errors between model predictions and measurements of velocity profiles over the entire computational domain collected at 15° intervals for one-half a wave cycle show that overall the linear model was most accurate. The least accurate were the laminar and k−ε models. Normalized errors between model predictions and turbulence kinetic energy profiles showed that the k−ω model was most accurate. Based on these findings, when the smallest overall velocity profile prediction error is required, the processing requirements and error analysis suggest that the linear eddy viscosity model is adequate. However, if accurate estimates of bed shear stress and TKE are required then, of the models tested, the k−ω model should be used.

  12. Distributed run of a one-dimensional model in a regional application using SOAP-based web services

    NASA Astrophysics Data System (ADS)

    Smiatek, Gerhard

    This article describes the setup of a distributed computing system in Perl. It facilitates the parallel run of a one-dimensional environmental model on a number of simple network PC hosts. The system uses Simple Object Access Protocol (SOAP) driven web services offering the model run on remote hosts and a multi-thread environment distributing the work and accessing the web services. Its application is demonstrated in a regional run of a process-oriented biogenic emission model for the area of Germany. Within a network consisting of up to seven web services implemented on Linux and MS-Windows hosts, a performance increase of approximately 400% has been reached compared to a model run on the fastest single host.

  13. Summary of mathematical models for a conventional and vertical junction photoconverter

    NASA Technical Reports Server (NTRS)

    Heinbockel, J. H.

    1986-01-01

    The geometry and computer programming for mathematical models of a one-dimensional conventional photoconverter, a one-dimensional vertical junction photoconverter, a three-dimensional conventinal photoconverter, and a three-dimensional vertical junction solar cell are discussed.

  14. Thermal Pollution Mathematical Model. Volume 2; Verification of One-Dimensional Numerical Model at Lake Keowee

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Sengupta, S.; Nwadike, E. V.

    1980-01-01

    A one dimensional model for studying the thermal dynamics of cooling lakes was developed and verified. The model is essentially a set of partial differential equations which are solved by finite difference methods. The model includes the effects of variation of area with depth, surface heating due to solar radiation absorbed at the upper layer, and internal heating due to the transmission of solar radiation to the sub-surface layers. The exchange of mechanical energy between the lake and the atmosphere is included through the coupling of thermal diffusivity and wind speed. The effects of discharge and intake by power plants are also included. The numerical model was calibrated by applying it to Cayuga Lake. The model was then verified through a long term simulation using Lake Keowee data base. The comparison between measured and predicted vertical temperature profiles for the nine years is good. The physical limnology of Lake Keowee is presented through a set of graphical representations of the measured data base.

  15. Electric potential calculation in molecular simulation of electric double layer capacitors

    NASA Astrophysics Data System (ADS)

    Wang, Zhenxing; Olmsted, David L.; Asta, Mark; Laird, Brian B.

    2016-11-01

    For the molecular simulation of electric double layer capacitors (EDLCs), a number of methods have been proposed and implemented to determine the one-dimensional electric potential profile between the two electrodes at a fixed potential difference. In this work, we compare several of these methods for a model LiClO4-acetonitrile/graphite EDLC simulated using both the traditional fixed-charged method (FCM), in which a fixed charge is assigned a priori to the electrode atoms, or the recently developed constant potential method (CPM) (2007 J. Chem. Phys. 126 084704), where the electrode charges are allowed to fluctuate to keep the potential fixed. Based on an analysis of the full three-dimensional electric potential field, we suggest a method for determining the averaged one-dimensional electric potential profile that can be applied to both the FCM and CPM simulations. Compared to traditional methods based on numerically solving the one-dimensional Poisson’s equation, this method yields better accuracy and no supplemental assumptions.

  16. Innovation Rather than Improvement: A Solvable High-Dimensional Model Highlights the Limitations of Scalar Fitness

    NASA Astrophysics Data System (ADS)

    Tikhonov, Mikhail; Monasson, Remi

    2018-01-01

    Much of our understanding of ecological and evolutionary mechanisms derives from analysis of low-dimensional models: with few interacting species, or few axes defining "fitness". It is not always clear to what extent the intuition derived from low-dimensional models applies to the complex, high-dimensional reality. For instance, most naturally occurring microbial communities are strikingly diverse, harboring a large number of coexisting species, each of which contributes to shaping the environment of others. Understanding the eco-evolutionary interplay in these systems is an important challenge, and an exciting new domain for statistical physics. Recent work identified a promising new platform for investigating highly diverse ecosystems, based on the classic resource competition model of MacArthur. Here, we describe how the same analytical framework can be used to study evolutionary questions. Our analysis illustrates how, at high dimension, the intuition promoted by a one-dimensional (scalar) notion of fitness can become misleading. Specifically, while the low-dimensional picture emphasizes organism cost or efficiency, we exhibit a regime where cost becomes irrelevant for survival, and link this observation to generic properties of high-dimensional geometry.

  17. A discontinuous Galerkin method for two-dimensional PDE models of Asian options

    NASA Astrophysics Data System (ADS)

    Hozman, J.; Tichý, T.; Cvejnová, D.

    2016-06-01

    In our previous research we have focused on the problem of plain vanilla option valuation using discontinuous Galerkin method for numerical PDE solution. Here we extend a simple one-dimensional problem into two-dimensional one and design a scheme for valuation of Asian options, i.e. options with payoff depending on the average of prices collected over prespecified horizon. The algorithm is based on the approach combining the advantages of the finite element methods together with the piecewise polynomial generally discontinuous approximations. Finally, an illustrative example using DAX option market data is provided.

  18. Study of discrete-particle effects in a one-dimensional plasma simulation with the Krook type collision model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Po-Yen; Chen, Liu; Institute for Fusion Theory and Simulation, Zhejiang University, 310027 Hangzhou

    2015-09-15

    The thermal relaxation time of a one-dimensional plasma has been demonstrated to scale with N{sub D}{sup 2} due to discrete particle effects by collisionless particle-in-cell (PIC) simulations, where N{sub D} is the particle number in a Debye length. The N{sub D}{sup 2} scaling is consistent with the theoretical analysis based on the Balescu-Lenard-Landau kinetic equation. However, it was found that the thermal relaxation time is anomalously shortened to scale with N{sub D} while externally introducing the Krook type collision model in the one-dimensional electrostatic PIC simulation. In order to understand the discrete particle effects enhanced by the Krook type collisionmore » model, the superposition principle of dressed test particles was applied to derive the modified Balescu-Lenard-Landau kinetic equation. The theoretical results are shown to be in good agreement with the simulation results when the collisional effects dominate the plasma system.« less

  19. Solving the master equation without kinetic Monte Carlo: Tensor train approximations for a CO oxidation model

    NASA Astrophysics Data System (ADS)

    Gelß, Patrick; Matera, Sebastian; Schütte, Christof

    2016-06-01

    In multiscale modeling of heterogeneous catalytic processes, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. Usually, this is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct solution of the Markovian master equation by exploiting the Tensor Train Format for this purpose. The performance of the approach is demonstrated on a first principles based, reduced model for the CO oxidation on the RuO2(110) surface. We investigate the complexity for increasing system size and for various reaction conditions. The advantage over the stochastic simulation approach is illustrated by a problem with increased stiffness.

  20. Robust check loss-based variable selection of high-dimensional single-index varying-coefficient model

    NASA Astrophysics Data System (ADS)

    Song, Yunquan; Lin, Lu; Jian, Ling

    2016-07-01

    Single-index varying-coefficient model is an important mathematical modeling method to model nonlinear phenomena in science and engineering. In this paper, we develop a variable selection method for high-dimensional single-index varying-coefficient models using a shrinkage idea. The proposed procedure can simultaneously select significant nonparametric components and parametric components. Under defined regularity conditions, with appropriate selection of tuning parameters, the consistency of the variable selection procedure and the oracle property of the estimators are established. Moreover, due to the robustness of the check loss function to outliers in the finite samples, our proposed variable selection method is more robust than the ones based on the least squares criterion. Finally, the method is illustrated with numerical simulations.

  1. Flow adjustment inside homogeneous canopies after a leading edge – An analytical approach backed by LES

    DOE PAGES

    Kroniger, Konstantin; Banerjee, Tirtha; De Roo, Frederik; ...

    2017-10-06

    A two-dimensional analytical model for describing the mean flow behavior inside a vegetation canopy after a leading edge in neutral conditions was developed and tested by means of large eddy simulations (LES) employing the LES code PALM. The analytical model is developed for the region directly after the canopy edge, the adjustment region, where one-dimensional canopy models fail due to the sharp change in roughness. The derivation of this adjustment region model is based on an analytic solution of the two-dimensional Reynolds averaged Navier–Stokes equation in neutral conditions for a canopy with constant plant area density (PAD). The main assumptionsmore » for solving the governing equations are separability of the velocity components concerning the spatial variables and the neglection of the Reynolds stress gradients. These two assumptions are verified by means of LES. To determine the emerging model parameters, a simultaneous fitting scheme was applied to the velocity and pressure data of a reference LES simulation. Furthermore a sensitivity analysis of the adjustment region model, equipped with the previously calculated parameters, was performed varying the three relevant length, the canopy height ( h), the canopy length and the adjustment length ( Lc), in additional LES. Even if the model parameters are, in general, functions of h/ Lc, it was found out that the model is capable of predicting the flow quantities in various cases, when using constant parameters. Subsequently the adjustment region model is combined with the one-dimensional model of Massman, which is applicable for the interior of the canopy, to attain an analytical model capable of describing the mean flow for the full canopy domain. As a result, the model is tested against an analytical model based on a linearization approach.« less

  2. Flow adjustment inside homogeneous canopies after a leading edge – An analytical approach backed by LES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroniger, Konstantin; Banerjee, Tirtha; De Roo, Frederik

    A two-dimensional analytical model for describing the mean flow behavior inside a vegetation canopy after a leading edge in neutral conditions was developed and tested by means of large eddy simulations (LES) employing the LES code PALM. The analytical model is developed for the region directly after the canopy edge, the adjustment region, where one-dimensional canopy models fail due to the sharp change in roughness. The derivation of this adjustment region model is based on an analytic solution of the two-dimensional Reynolds averaged Navier–Stokes equation in neutral conditions for a canopy with constant plant area density (PAD). The main assumptionsmore » for solving the governing equations are separability of the velocity components concerning the spatial variables and the neglection of the Reynolds stress gradients. These two assumptions are verified by means of LES. To determine the emerging model parameters, a simultaneous fitting scheme was applied to the velocity and pressure data of a reference LES simulation. Furthermore a sensitivity analysis of the adjustment region model, equipped with the previously calculated parameters, was performed varying the three relevant length, the canopy height ( h), the canopy length and the adjustment length ( Lc), in additional LES. Even if the model parameters are, in general, functions of h/ Lc, it was found out that the model is capable of predicting the flow quantities in various cases, when using constant parameters. Subsequently the adjustment region model is combined with the one-dimensional model of Massman, which is applicable for the interior of the canopy, to attain an analytical model capable of describing the mean flow for the full canopy domain. As a result, the model is tested against an analytical model based on a linearization approach.« less

  3. Numerical Limitations of 1D Hydraulic Models Using MIKE11 or HEC-RAS software - Case study of Baraolt River, Romania

    NASA Astrophysics Data System (ADS)

    Andrei, Armas; Robert, Beilicci; Erika, Beilicci

    2017-10-01

    MIKE 11 is an advanced hydroinformatic tool, a professional engineering software package for simulation of one-dimensional flows in estuaries, rivers, irrigation systems, channels and other water bodies. MIKE 11 is a 1-dimensional river model. It was developed by DHI Water · Environment · Health, Denmark. The basic computational procedure of HEC-RAS for steady flow is based on the solution of the one-dimensional energy equation. Energy losses are evaluated by friction and contraction / expansion. The momentum equation may be used in situations where the water surface profile is rapidly varied. These situations include hydraulic jumps, hydraulics of bridges, and evaluating profiles at river confluences. For unsteady flow, HEC-RAS solves the full, dynamic, 1-D Saint Venant Equation using an implicit, finite difference method. The unsteady flow equation solver was adapted from Dr. Robert L. Barkau’s UNET package. Fluid motion is controlled by the basic principles of conservation of mass, energy and momentum, which form the basis of fluid mechanics and hydraulic engineering. Complex flow situations must be solved using empirical approximations and numerical models, which are based on derivations of the basic principles (backwater equation, Navier-Stokes equation etc.). All numerical models are required to make some form of approximation to solve these principles, and consequently all have their limitations. The study of hydraulics and fluid mechanics is founded on the three basic principles of conservation of mass, energy and momentum. Real-life situations are frequently too complex to solve without the aid of numerical models. There is a tendency among some engineers to discard the basic principles taught at university and blindly assume that the results produced by the model are correct. Regardless of the complexity of models and despite the claims of their developers, all numerical models are required to make approximations. These may be related to geometric limitations, numerical simplification, or the use of empirical correlations. Some are obvious: one-dimensional models must average properties over the two remaining directions. It is the less obvious and poorly advertised approximations that pose the greatest threat to the novice user. Some of these, such as the inability of one-dimensional unsteady models to simulate supercritical flow can cause significant inaccuracy in the model predictions.

  4. A Standardized Generalized Dimensionality Discrepancy Measure and a Standardized Model-Based Covariance for Dimensionality Assessment for Multidimensional Models

    ERIC Educational Resources Information Center

    Levy, Roy; Xu, Yuning; Yel, Nedim; Svetina, Dubravka

    2015-01-01

    The standardized generalized dimensionality discrepancy measure and the standardized model-based covariance are introduced as tools to critique dimensionality assumptions in multidimensional item response models. These tools are grounded in a covariance theory perspective and associated connections between dimensionality and local independence.…

  5. Petri-net-based 2D design of DNA walker circuits.

    PubMed

    Gilbert, David; Heiner, Monika; Rohr, Christian

    2018-01-01

    We consider localised DNA computation, where a DNA strand walks along a binary decision graph to compute a binary function. One of the challenges for the design of reliable walker circuits consists in leakage transitions, which occur when a walker jumps into another branch of the decision graph. We automatically identify leakage transitions, which allows for a detailed qualitative and quantitative assessment of circuit designs, design comparison, and design optimisation. The ability to identify leakage transitions is an important step in the process of optimising DNA circuit layouts where the aim is to minimise the computational error inherent in a circuit while minimising the area of the circuit. Our 2D modelling approach of DNA walker circuits relies on coloured stochastic Petri nets which enable functionality, topology and dimensionality all to be integrated in one two-dimensional model. Our modelling and analysis approach can be easily extended to 3-dimensional walker systems.

  6. Space construction base control system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Aspects of an attitude control system were studied and developed for a large space base that is structurally flexible and whose mass properties change rather dramatically during its orbital lifetime. Topics of discussion include the following: (1) space base orbital pointing and maneuvering; (2) angular momentum sizing of actuators; (3) momentum desaturation selection and sizing; (4) multilevel control technique applied to configuration one; (5) one-dimensional model simulation; (6) N-body discrete coordinate simulation; (7) structural analysis math model formulation; and (8) discussion of control problems and control methods.

  7. Above and beyond short-term mating, long-term mating is uniquely tied to human personality.

    PubMed

    Holtzman, Nicholas S; Strube, Michael J

    2013-12-16

    To what extent are personality traits and sexual strategies linked? The literature does not provide a clear answer, as it is based on the Sociosexuality model, a one-dimensional model that fails to measure long-term mating (LTM). An improved two-dimensional model separately assesses long-term and short-term mating (STM; Jackson and Kirkpatrick, 2007). In this paper, we link this two-dimensional model to an array of personality traits (Big 5, Dark Triad, and Schizoid Personality). We collected data from different sources (targets and peers; Study 1), and from different nations (United States, Study 1; India, Study 2). We demonstrate for the first time that, above and beyond STM, LTM captures variation in personality.

  8. A note on two-dimensional asymptotic magnetotail equilibria

    NASA Technical Reports Server (NTRS)

    Voigt, Gerd-Hannes; Moore, Brian D.

    1994-01-01

    In order to understand, on the fluid level, the structure, the time evolution, and the stability of current sheets, such as the magnetotail plasma sheet in Earth's magnetosphere, one has to consider magnetic field configurations that are in magnetohydrodynamic (MHD) force equilibrium. Any reasonable MHD current sheet model has to be two-dimensional, at least in an asymptotic sense (B(sub z)/B (sub x)) = epsilon much less than 1. The necessary two-dimensionality is described by a rather arbitrary function f(x). We utilize the free function f(x) to construct two-dimensional magnetotail equilibria are 'equivalent' to current sheets in empirical three-dimensional models. We obtain a class of asymptotic magnetotail equilibria ordered with respect to the magnetic disturbance index Kp. For low Kp values the two-dimensional MHD equilibria reflect some of the realistic, observation-based, aspects of three-dimensional models. For high Kp values the three-dimensional models do not fit the asymptotic MHD equlibria, which is indicative of their inconsistency with the assumed pressure function. This, in turn, implies that high magnetic activity levels of the real magnetosphere might be ruled by thermodynamic conditions different from local thermodynamic equilibrium.

  9. Two-dimensional random surface model for asperity-contact in elastohydrodynamic lubrication

    NASA Technical Reports Server (NTRS)

    Coy, J. J.; Sidik, S. M.

    1979-01-01

    Relations for the asperity-contact time function during elastohydrodynamic lubrication of a ball bearing are presented. The analysis is based on a two-dimensional random surface model, and actual profile traces of the bearing surfaces are used as statistical sample records. The results of the analysis show that transition from 90 percent contact to 1 percent contact occurs within a dimensionless film thickness range of approximately four to five. This thickness ratio is several times large than reported in the literature where one-dimensional random surface models were used. It is shown that low pass filtering of the statistical records will bring agreement between the present results and those in the literature.

  10. Dimensionality of Motion and Binding Valency Govern Receptor-Ligand Kinetics As Revealed by Agent-Based Modeling.

    PubMed

    Lehnert, Teresa; Figge, Marc Thilo

    2017-01-01

    Mathematical modeling and computer simulations have become an integral part of modern biological research. The strength of theoretical approaches is in the simplification of complex biological systems. We here consider the general problem of receptor-ligand binding in the context of antibody-antigen binding. On the one hand, we establish a quantitative mapping between macroscopic binding rates of a deterministic differential equation model and their microscopic equivalents as obtained from simulating the spatiotemporal binding kinetics by stochastic agent-based models. On the other hand, we investigate the impact of various properties of B cell-derived receptors-such as their dimensionality of motion, morphology, and binding valency-on the receptor-ligand binding kinetics. To this end, we implemented an algorithm that simulates antigen binding by B cell-derived receptors with a Y-shaped morphology that can move in different dimensionalities, i.e., either as membrane-anchored receptors or as soluble receptors. The mapping of the macroscopic and microscopic binding rates allowed us to quantitatively compare different agent-based model variants for the different types of B cell-derived receptors. Our results indicate that the dimensionality of motion governs the binding kinetics and that this predominant impact is quantitatively compensated by the bivalency of these receptors.

  11. Dimensionality of Motion and Binding Valency Govern Receptor–Ligand Kinetics As Revealed by Agent-Based Modeling

    PubMed Central

    Lehnert, Teresa; Figge, Marc Thilo

    2017-01-01

    Mathematical modeling and computer simulations have become an integral part of modern biological research. The strength of theoretical approaches is in the simplification of complex biological systems. We here consider the general problem of receptor–ligand binding in the context of antibody–antigen binding. On the one hand, we establish a quantitative mapping between macroscopic binding rates of a deterministic differential equation model and their microscopic equivalents as obtained from simulating the spatiotemporal binding kinetics by stochastic agent-based models. On the other hand, we investigate the impact of various properties of B cell-derived receptors—such as their dimensionality of motion, morphology, and binding valency—on the receptor–ligand binding kinetics. To this end, we implemented an algorithm that simulates antigen binding by B cell-derived receptors with a Y-shaped morphology that can move in different dimensionalities, i.e., either as membrane-anchored receptors or as soluble receptors. The mapping of the macroscopic and microscopic binding rates allowed us to quantitatively compare different agent-based model variants for the different types of B cell-derived receptors. Our results indicate that the dimensionality of motion governs the binding kinetics and that this predominant impact is quantitatively compensated by the bivalency of these receptors. PMID:29250071

  12. Analytically-derived sensitivities in one-dimensional models of solute transport in porous media

    USGS Publications Warehouse

    Knopman, D.S.

    1987-01-01

    Analytically-derived sensitivities are presented for parameters in one-dimensional models of solute transport in porous media. Sensitivities were derived by direct differentiation of closed form solutions for each of the odel, and by a time integral method for two of the models. Models are based on the advection-dispersion equation and include adsorption and first-order chemical decay. Boundary conditions considered are: a constant step input of solute, constant flux input of solute, and exponentially decaying input of solute at the upstream boundary. A zero flux is assumed at the downstream boundary. Initial conditions include a constant and spatially varying distribution of solute. One model simulates the mixing of solute in an observation well from individual layers in a multilayer aquifer system. Computer programs produce output files compatible with graphics software in which sensitivities are plotted as a function of either time or space. (USGS)

  13. Measurement of air and VOC vapor fluxes during gas-driven soil remediation: bench-scale experiments.

    PubMed

    Kim, Heonki; Kim, Taeyun; Shin, Seungyeop; Annable, Michael D

    2012-09-04

    In this laboratory study, an experimental method was developed for the quantitative analyses of gas fluxes in soil during advective air flow. One-dimensional column and two- and three-dimensional flow chamber models were used in this study. For the air flux measurement, n-octane vapor was used as a tracer, and it was introduced in the air flow entering the physical models. The tracer (n-octane) in the gas effluent from the models was captured for a finite period of time using a pack of activated carbon, which then was analyzed for the mass of n-octane. The air flux was calculated based on the mass of n-octane captured by the activated carbon and the inflow concentration. The measured air fluxes are in good agreement with the actual values for one- and two-dimensional model experiments. Using both the two- and three-dimensional models, the distribution of the air flux at the soil surface was measured. The distribution of the air flux was found to be affected by the depth of the saturated zone. The flux and flux distribution of a volatile contaminant (perchloroethene) was also measured by using the two-dimensional model. Quantitative information of both air and contaminant flux may be very beneficial for analyzing the performance of gas-driven subsurface remediation processes including soil vapor extraction and air sparging.

  14. Current status of one- and two-dimensional numerical models: Successes and limitations

    NASA Technical Reports Server (NTRS)

    Schwartz, R. J.; Gray, J. L.; Lundstrom, M. S.

    1985-01-01

    The capabilities of one and two-dimensional numerical solar cell modeling programs (SCAP1D and SCAP2D) are described. The occasions when a two-dimensional model is required are discussed. The application of the models to design, analysis, and prediction are presented along with a discussion of problem areas for solar cell modeling.

  15. Hybrid-dimensional modelling of two-phase flow through fractured porous media with enhanced matrix fracture transmission conditions

    NASA Astrophysics Data System (ADS)

    Brenner, Konstantin; Hennicker, Julian; Masson, Roland; Samier, Pierre

    2018-03-01

    In this work, we extend, to two-phase flow, the single-phase Darcy flow model proposed in [26], [12] in which the (d - 1)-dimensional flow in the fractures is coupled with the d-dimensional flow in the matrix. Three types of so called hybrid-dimensional two-phase Darcy flow models are proposed. They all account for fractures acting either as drains or as barriers, since they allow pressure jumps at the matrix-fracture interfaces. The models also permit to treat gravity dominated flow as well as discontinuous capillary pressure at the material interfaces. The three models differ by their transmission conditions at matrix fracture interfaces: while the first model accounts for the nonlinear two-phase Darcy flux conservations, the second and third ones are based on the linear single phase Darcy flux conservations combined with different approximations of the mobilities. We adapt the Vertex Approximate Gradient (VAG) scheme to this problem, in order to account for anisotropy and heterogeneity aspects as well as for applicability on general meshes. Several test cases are presented to compare our hybrid-dimensional models to the generic equi-dimensional model, in which fractures have the same dimension as the matrix, leading to deep insight about the quality of the proposed reduced models.

  16. Deviation diagnosis and analysis of hull flat block assembly based on a state space model

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiying; Dai, Yinfang; Li, Zhen

    2012-09-01

    Dimensional control is one of the most important challenges in the shipbuilding industry. In order to predict assembly dimensional variation in hull flat block construction, a variation stream model based on state space was presented in this paper which can be further applied to accuracy control in shipbuilding. Part accumulative error, locating error, and welding deformation were taken into consideration in this model, and variation propagation mechanisms and the accumulative rule in the assembly process were analyzed. Then, a model was developed to describe the variation propagation throughout the assembly process. Finally, an example of flat block construction from an actual shipyard was given. The result shows that this method is effective and useful.

  17. Evaluating models of remember-know judgments: complexity, mimicry, and discriminability.

    PubMed

    Cohen, Andrew L; Rotello, Caren M; Macmillan, Neil A

    2008-10-01

    Remember-know judgments provide additional information in recognition memory tests, but the nature of this information and the attendant decision process are in dispute. Competing models have proposed that remember judgments reflect a sum of familiarity and recollective information (the one-dimensional model), are based on a difference between these strengths (STREAK), or are purely recollective (the dual-process model). A choice among these accounts is sometimes made by comparing the precision of their fits to data, but this strategy may be muddied by differences in model complexity: Some models that appear to provide good fits may simply be better able to mimic the data produced by other models. To evaluate this possibility, we simulated data with each of the models in each of three popular remember-know paradigms, then fit those data to each of the models. We found that the one-dimensional model is generally less complex than the others, but despite this handicap, it dominates the others as the best-fitting model. For both reasons, the one-dimensional model should be preferred. In addition, we found that some empirical paradigms are ill-suited for distinguishing among models. For example, data collected by soliciting remember/know/new judgments--that is, the trinary task--provide a particularly weak ground for distinguishing models. Additional tables and figures may be downloaded from the Psychonomic Society's Archive of Norms, Stimuli, and Data, at www.psychonomic.org/archive.

  18. A one-dimensional diffusion analogy model for estimation of tide heights in selected tidal marshes in Connecticut

    USGS Publications Warehouse

    Bjerklie, David M.; O’Brien, Kevin; Rozsa, Ron

    2013-01-01

    A one-dimensional diffusion analogy model for estimating tide heights in coastal marshes was developed and calibrated by using data from previous tidal-marsh studies. The method is simpler to use than other one- and two-dimensional hydrodynamic models because it does not require marsh depth and tidal prism information; however, the one-dimensional diffusion analogy model cannot be used to estimate tide heights, flow velocities, and tide arrival times for tide conditions other than the highest tide for which it is calibrated. Limited validation of the method indicates that it has an accuracy within 0.3 feet. The method can be applied with limited calibration information that is based entirely on remote sensing or geographic information system data layers. The method can be used to estimate high-tide heights in tidal wetlands drained by tide gates where tide levels cannot be observed directly by opening the gates without risk of flooding properties and structures. A geographic information system application of the method is demonstrated for Sybil Creek marsh in Branford, Connecticut. The tidal flux into this marsh is controlled by two tide gates that prevent full tidal inundation of the marsh. The method application shows reasonable tide heights for the gates-closed condition (the normal condition) and the one-gate-open condition on the basis of comparison with observed heights. The condition with all tide gates open (two gates) was simulated with the model; results indicate where several structures would be flooded if the gates were removed as part of restoration efforts or if the tide gates were to fail.

  19. Large Eddy Simulation of Spatially Developing Turbulent Reacting Shear Layers with the One-Dimensional Turbulence Model

    NASA Astrophysics Data System (ADS)

    Hoffie, Andreas Frank

    Large eddy simulation (LES) combined with the one-dimensional turbulence (ODT) model is used to simulate spatially developing turbulent reacting shear layers with high heat release and high Reynolds numbers. The LES-ODT results are compared to results from direct numerical simulations (DNS), for model development and validation purposes. The LES-ODT approach is based on LES solutions for momentum and pressure on a coarse grid and solutions for momentum and reactive scalars on a fine, one-dimensional, but three-dimensionally coupled ODT subgrid, which is embedded into the LES computational domain. Although one-dimensional, all three velocity components are transported along the ODT domain. The low-dimensional spatial and temporal resolution of the subgrid scales describe a new modeling paradigm, referred to as autonomous microstructure evolution (AME) models, which resolve the multiscale nature of turbulence down to the Kolmogorv scales. While this new concept aims to mimic the turbulent cascade and to reduce the number of input parameters, AME enables also regime-independent combustion modeling, capable to simulate multiphysics problems simultaneously. The LES as well as the one-dimensional transport equations are solved using an incompressible, low Mach number approximation, however the effects of heat release are accounted for through variable density computed by the ideal gas equation of state, based on temperature variations. The computations are carried out on a three-dimensional structured mesh, which is stretched in the transverse direction. While the LES momentum equation is integrated with a third-order Runge-Kutta time-integration, the time integration at the ODT level is accomplished with an explicit Forward-Euler method. Spatial finite-difference schemes of third (LES) and first (ODT) order are utilized and a fully consistent fractional-step method at the LES level is used. Turbulence closure at the LES level is achieved by utilizing the Smagorinsky model. The chemical reaction is simulated with a global single-step, second-order equilibrium reaction with an Arrhenius reaction rate. The two benchmark cases of constant density reacting and variable density non-reacting shear layers used to determine ODT parameters yield perfect agreement with regards to first and second-order flow statistics as well as shear layer growth rate. The variable density non-reacting shear layer also serves as a testing case for the LES-ODT model to simulate passive scalar mixing. The variable density, reacting shear layer cases only agree reasonably well and indicate that more work is necessary to improve variable density coupling of ODT and LES. The disagreement is attributed to the fact that the ODT filtered density is kept constant across the Runge-Kutta steps. Furthermore, a more in-depth knowledge of large scale and subgrid turbulent kinetic energy (TKE) spectra at several downstream locations as well as TKE budgets need to be studied to obtain a better understanding about the model as well as about the flow under investigation. The local Reynolds number based on the one-percent thickness at the exit is Redelta ≈ 5300, for the constant density reacting and for the variable density non-reacting case. For the variable density reacting shear layer, the Reynolds number based on the 1% thickness is Redelta ≈ 2370. The variable density reacting shear layers show suppressed growth rates due to density variations caused by heat release. This has also been reported in literature. A Lewis number parameter study is performed to extract non-unity Lewis number effects. An increase in the Lewis number leads to a further suppression of the growth rate, however to an increase spread of second-order flow statistics. Major focus and challenge of this work is to improve and advance the three-dimensional coupling of the one-dimensional ODT domains while keeping the solution correct. This entails major restructuring of the model. The turbulent reacting shear layer poses a physical challenge to the model because of its nature being a statistically stationary, non-decaying inhomogeneous and anisotropic turbulent flow. This challenge also requires additions to the eddy sampling procedure. Besides physical advancements, the LES-ODT code is also improved regarding its ability to use general cuboid geometries, an array structure that allows to apply boundary conditions based on ghost-cells and non-uniform structured meshes. The use of transverse grid-stretching requires the implementation of the ODT triplet map on a stretched grid. Further, advancing subroutine structure handling with global variables that enable serial code speed-up and parallelization with OpenMP are undertaken. Porting the code to a higher-level language, object oriented, finite-volume based CFD platform, like OpenFoam for example that allows more advanced array and parallelization features with graphics processing units (GPUs) as well as parallelization with the message passing interface (MPI) to simulate complex geometries is recommended for future work.

  20. Electrochemical state and internal variables estimation using a reduced-order physics-based model of a lithium-ion cell and an extended Kalman filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stetzel, KD; Aldrich, LL; Trimboli, MS

    2015-03-15

    This paper addresses the problem of estimating the present value of electrochemical internal variables in a lithium-ion cell in real time, using readily available measurements of cell voltage, current, and temperature. The variables that can be estimated include any desired set of reaction flux and solid and electrolyte potentials and concentrations at any set of one-dimensional spatial locations, in addition to more standard quantities such as state of charge. The method uses an extended Kalman filter along with a one-dimensional physics-based reduced-order model of cell dynamics. Simulations show excellent and robust predictions having dependable error bounds for most internal variables.more » (C) 2014 Elsevier B.V. All rights reserved.« less

  1. Solving the master equation without kinetic Monte Carlo: Tensor train approximations for a CO oxidation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelß, Patrick, E-mail: p.gelss@fu-berlin.de; Matera, Sebastian, E-mail: matera@math.fu-berlin.de; Schütte, Christof, E-mail: schuette@mi.fu-berlin.de

    2016-06-01

    In multiscale modeling of heterogeneous catalytic processes, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. Usually, this is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct solution of the Markovian master equation by exploiting the Tensor Train Format for this purpose. The performance of the approach is demonstrated on a first principles based, reduced model for the CO oxidation on the RuO{sub 2}(110) surface.more » We investigate the complexity for increasing system size and for various reaction conditions. The advantage over the stochastic simulation approach is illustrated by a problem with increased stiffness.« less

  2. Characteristics of wind waves in shallow tidal basins and how they affect bed shear stress, bottom erosion, and the morphodynamic evolution of coupled marsh and mudflat landforms

    NASA Astrophysics Data System (ADS)

    Tommasini, Laura; Carniello, Luca; Goodwin, Guillaume; Mudd, Simon M.; Matticchio, Bruno; D'Alpaos, Andrea

    2017-04-01

    Wind-wave induced erosion is one of the main processes controlling the morphodynamic evolution of shallow tidal basins, because wind waves promote the erosion of subtidal platforms, tidal flats and salt marshes. Our study considered zero-, one-and two-dimensional wave models. First, we analyzed the relations between wave parameters, depth and bed shear stress with constant and variable wave period considering two zero-dimensional models based on the Young and Verhagen (1996), and Carniello et al. (2005, 2011) approaches. The first one is an empirical method that computes wave height and the variable wave period from wind velocity, fetch and water depth. The second one is based on the solution of wave action conservation equation, we use this second approach for computing the bottom shear stress and wave height, considering variable and constant (t=2s) wave period. Second, we compared the wave spectral model SWAN with a fully coupled Wind-Wave Tidal Model applied to a 1D rectangular domain. These models describe both the growth and propagation of wind waves. Finally, we applied the two-dimensional Wind Wave Tidal Model (WWTM) to six different configurations of the Venice lagoon considering the same boundary conditions and we evaluated the spatial variation of mean wave power density. The analysis with zero-dimensional models show that the effects of the different model assumptions on the wave period and on the wave height computation cannot be neglected. In particular, the relationships between bottom shear stress and water depth have different shapes. Two results emerge: first, the differences are higher for small depths, and then the maximum values reached with the Young and Verhagen (1996) approach are greater than the maximum values obtained with WWTM approach. The results obtained with two-dimensional models suggest that the wave height is different in particular for small fetch, this could be due to the different formulation of the wave period. Finally, the application of WWTM for the entire Lagoon basin underlines an increase of the mean power density in the last four centuries, in particular in the central-southern part of the lagoon between Chioggia and Malamocco inlets.

  3. Finite-dimensional approximation for optimal fixed-order compensation of distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Bernstein, Dennis S.; Rosen, I. G.

    1988-01-01

    In controlling distributed parameter systems it is often desirable to obtain low-order, finite-dimensional controllers in order to minimize real-time computational requirements. Standard approaches to this problem employ model/controller reduction techniques in conjunction with LQG theory. In this paper we consider the finite-dimensional approximation of the infinite-dimensional Bernstein/Hyland optimal projection theory. This approach yields fixed-finite-order controllers which are optimal with respect to high-order, approximating, finite-dimensional plant models. The technique is illustrated by computing a sequence of first-order controllers for one-dimensional, single-input/single-output, parabolic (heat/diffusion) and hereditary systems using spline-based, Ritz-Galerkin, finite element approximation. Numerical studies indicate convergence of the feedback gains with less than 2 percent performance degradation over full-order LQG controllers for the parabolic system and 10 percent degradation for the hereditary system.

  4. Web-based three-dimensional geo-referenced visualization

    NASA Astrophysics Data System (ADS)

    Lin, Hui; Gong, Jianhua; Wang, Freeman

    1999-12-01

    This paper addresses several approaches to implementing web-based, three-dimensional (3-D), geo-referenced visualization. The discussion focuses on the relationship between multi-dimensional data sets and applications, as well as the thick/thin client and heavy/light server structure. Two models of data sets are addressed in this paper. One is the use of traditional 3-D data format such as 3-D Studio Max, Open Inventor 2.0, Vis5D and OBJ. The other is modelled by a web-based language such as VRML. Also, traditional languages such as C and C++, as well as web-based programming tools such as Java, Java3D and ActiveX, can be used for developing applications. The strengths and weaknesses of each approach are elaborated. Four practical solutions for using VRML and Java, Java and Java3D, VRML and ActiveX and Java wrapper classes (Java and C/C++), to develop applications are presented for web-based, real-time interactive and explorative visualization.

  5. Terahertz signal detection in a short gate length field-effect transistor with a two-dimensional electron gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vostokov, N. V., E-mail: vostokov@ipm.sci-nnov.ru; Shashkin, V. I.

    2015-11-28

    We consider the problem of non-resonant detection of terahertz signals in a short gate length field-effect transistor having a two-dimensional electron channel with zero external bias between the source and the drain. The channel resistance, gate-channel capacitance, and quadratic nonlinearity parameter of the transistor during detection as a function of the gate bias voltage are studied. Characteristics of detection of the transistor connected in an antenna with real impedance are analyzed. The consideration is based on both a simple one-dimensional model of the transistor and allowance for the two-dimensional distribution of the electric field in the transistor structure. The resultsmore » given by the different models are discussed.« less

  6. An Implicit Characteristic Based Method for Electromagnetics

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Briley, W. Roger

    2001-01-01

    An implicit characteristic-based approach for numerical solution of Maxwell's time-dependent curl equations in flux conservative form is introduced. This method combines a characteristic based finite difference spatial approximation with an implicit lower-upper approximate factorization (LU/AF) time integration scheme. This approach is advantageous for three-dimensional applications because the characteristic differencing enables a two-factor approximate factorization that retains its unconditional stability in three space dimensions, and it does not require solution of tridiagonal systems. Results are given both for a Fourier analysis of stability, damping and dispersion properties, and for one-dimensional model problems involving propagation and scattering for free space and dielectric materials using both uniform and nonuniform grids. The explicit Finite Difference Time Domain Method (FDTD) algorithm is used as a convenient reference algorithm for comparison. The one-dimensional results indicate that for low frequency problems on a highly resolved uniform or nonuniform grid, this LU/AF algorithm can produce accurate solutions at Courant numbers significantly greater than one, with a corresponding improvement in efficiency for simulating a given period of time. This approach appears promising for development of dispersion optimized LU/AF schemes for three dimensional applications.

  7. Recent developments and assessment of a three-dimensional PBL parameterization for improved wind forecasting over complex terrain

    NASA Astrophysics Data System (ADS)

    Kosovic, B.; Jimenez, P. A.; Haupt, S. E.; Martilli, A.; Olson, J.; Bao, J. W.

    2017-12-01

    At present, the planetary boundary layer (PBL) parameterizations available in most numerical weather prediction (NWP) models are one-dimensional. One-dimensional parameterizations are based on the assumption of horizontal homogeneity. This homogeneity assumption is appropriate for grid cell sizes greater than 10 km. However, for mesoscale simulations of flows in complex terrain with grid cell sizes below 1 km, the assumption of horizontal homogeneity is violated. Applying a one-dimensional PBL parameterization to high-resolution mesoscale simulations in complex terrain could result in significant error. For high-resolution mesoscale simulations of flows in complex terrain, we have therefore developed and implemented a three-dimensional (3D) PBL parameterization in the Weather Research and Forecasting (WRF) model. The implementation of the 3D PBL scheme is based on the developments outlined by Mellor and Yamada (1974, 1982). Our implementation in the Weather Research and Forecasting (WRF) model uses a pure algebraic model (level 2) to diagnose the turbulent fluxes. To evaluate the performance of the 3D PBL model, we use observations from the Wind Forecast Improvement Project 2 (WFIP2). The WFIP2 field study took place in the Columbia River Gorge area from 2015-2017. We focus on selected cases when physical phenomena of significance for wind energy applications such as mountain waves, topographic wakes, and gap flows were observed. Our assessment of the 3D PBL parameterization also considers a large-eddy simulation (LES). We carried out a nested LES with grid cell sizes of 30 m and 10 m covering a large fraction of the WFIP2 study area. Both LES domains were discretized using 6000 x 3000 x 200 grid cells in zonal, meridional, and vertical direction, respectively. The LES results are used to assess the relative magnitude of horizontal gradients of turbulent stresses and fluxes in comparison to vertical gradients. The presentation will highlight the advantages of the 3D PBL scheme in regions of complex terrain.

  8. Thermal conductivity in one-dimensional nonlinear systems

    NASA Astrophysics Data System (ADS)

    Politi, Antonio; Giardinà, Cristian; Livi, Roberto; Vassalli, Massimo

    2000-03-01

    Thermal conducitivity of one-dimensional nonlinear systems typically diverges in the thermodynamic limit, whenever the momentum is conserved (i.e. in the absence of interactions with an external substrate). Evidence comes from detailed studies of Fermi-Pasta-Ulam and diatomic Toda chains. Here, we discuss the first example of a one-dimensional system obeying Fourier law : a chain of coupled rotators. Numerical estimates of the thermal conductivity obtained by simulating a chain in contact with two thermal baths at different temperatures are found to be consistent with those ones based on linear response theory. The dynamics of the Fourier modes provides direct evidence of energy diffusion. The finiteness of the conductivity is traced back to the occurrence of phase-jumps. Our conclusions are confirmed by the analysis of two variants of the rotator model.

  9. Transport of volatile organic compounds across the capillary fringe

    USGS Publications Warehouse

    McCarthy, Kathleen A.; Johnson, Richard L.

    1993-01-01

    Physical experiments were conducted to investigate the transport of a dissolved volatile organic compound (trichloroethylene, TCE) from shallow groundwater to the unsaturated zone under a variety of conditions including changes in the soil moisture profile and water table position. Experimental data indicated that at moderate groundwater velocities (0.1 m/d), vertical mechanical dispersion was negligible and molecular diffusion was the dominant vertical transport mechanism. Under these conditions, TCE concentrations decreased nearly 3 orders of magnitude across the capillary fringe and soil gas concentrations remained low relative to those of underlying groundwater. Data collected during a water table drop showed a short-term increase in concentrations throughout most of the unsaturated zone, but these concentrations quickly declined and approached initial values after the water table was returned to its original level. In the deep part of the unsaturated zone, the water table drop resulted in a long-term decrease in concentrations, illustrating the effects of hysteresis in the soil moisture profile. A two-dimensional random walk advection-diffusion model was developed to simulate the experimental conditions, and numerical simulations agreed well with experimental data. A simpler, one-dimensional finite-difference diffusion-dispersion model was also developed. One-dimensional simulations based on molecular diffusion also agreed well with experimental data. Simulations which incorporated mechanical dispersion tended to overestimate flux across the capillary fringe. Good agreement between the one- and two-dimensional models suggested that a simple, one-dimensional approximation of vertical transport across the capillary fringe can be useful when conditions are appropriate.

  10. Fractional Steps methods for transient problems on commodity computer architectures

    NASA Astrophysics Data System (ADS)

    Krotkiewski, M.; Dabrowski, M.; Podladchikov, Y. Y.

    2008-12-01

    Fractional Steps methods are suitable for modeling transient processes that are central to many geological applications. Low memory requirements and modest computational complexity facilitates calculations on high-resolution three-dimensional models. An efficient implementation of Alternating Direction Implicit/Locally One-Dimensional schemes for an Opteron-based shared memory system is presented. The memory bandwidth usage, the main bottleneck on modern computer architectures, is specially addressed. High efficiency of above 2 GFlops per CPU is sustained for problems of 1 billion degrees of freedom. The optimized sequential implementation of all 1D sweeps is comparable in execution time to copying the used data in the memory. Scalability of the parallel implementation on up to 8 CPUs is close to perfect. Performing one timestep of the Locally One-Dimensional scheme on a system of 1000 3 unknowns on 8 CPUs takes only 11 s. We validate the LOD scheme using a computational model of an isolated inclusion subject to a constant far field flux. Next, we study numerically the evolution of a diffusion front and the effective thermal conductivity of composites consisting of multiple inclusions and compare the results with predictions based on the differential effective medium approach. Finally, application of the developed parabolic solver is suggested for a real-world problem of fluid transport and reactions inside a reservoir.

  11. Theoretical analysis and simulations of strong terahertz radiation from the interaction of ultrashort laser pulses with gases

    NASA Astrophysics Data System (ADS)

    Chen, Min; Pukhov, Alexander; Peng, Xiao-Yu; Willi, Oswald

    2008-10-01

    Terahertz (THz) radiation from the interaction of ultrashort laser pulses with gases is studied both by theoretical analysis and particle-in-cell (PIC) simulations. A one-dimensional THz generation model based on the transient ionization electric current mechanism is given, which explains the results of one-dimensional PIC simulations. At the same time the relation between the final THz field and the initial transient ionization current is shown. One- and two-dimensional simulations show that for the THz generation the contribution of the electric current due to ionization is much larger than the one driven by the usual ponderomotive force. Ionization current generated by different laser pulses and gases is also studied numerically. Based on the numerical results we explain the scaling laws for THz emission observed in the recent experiments performed by Xie [Phys. Rev. Lett. 96, 075005 (2006)]. We also study the effective parameter region for the carrier envelop phase measurement by the use of THz generation.

  12. Theoretical analysis and simulations of strong terahertz radiation from the interaction of ultrashort laser pulses with gases.

    PubMed

    Chen, Min; Pukhov, Alexander; Peng, Xiao-Yu; Willi, Oswald

    2008-10-01

    Terahertz (THz) radiation from the interaction of ultrashort laser pulses with gases is studied both by theoretical analysis and particle-in-cell (PIC) simulations. A one-dimensional THz generation model based on the transient ionization electric current mechanism is given, which explains the results of one-dimensional PIC simulations. At the same time the relation between the final THz field and the initial transient ionization current is shown. One- and two-dimensional simulations show that for the THz generation the contribution of the electric current due to ionization is much larger than the one driven by the usual ponderomotive force. Ionization current generated by different laser pulses and gases is also studied numerically. Based on the numerical results we explain the scaling laws for THz emission observed in the recent experiments performed by Xie et al. [Phys. Rev. Lett. 96, 075005 (2006)]. We also study the effective parameter region for the carrier envelop phase measurement by the use of THz generation.

  13. Study of multi-dimensional radiative energy transfer in molecular gases

    NASA Technical Reports Server (NTRS)

    Liu, Jiwen; Tiwari, S. N.

    1993-01-01

    The Monte Carlo method (MCM) is applied to analyze radiative heat transfer in nongray gases. The nongray model employed is based on the statistical arrow band model with an exponential-tailed inverse intensity distribution. Consideration of spectral correlation results in some distinguishing features of the Monte Carlo formulations. Validation of the Monte Carlo formulations has been conducted by comparing results of this method with other solutions. Extension of a one-dimensional problem to a multi-dimensional problem requires some special treatments in the Monte Carlo analysis. Use of different assumptions results in different sets of Monte Carlo formulations. The nongray narrow band formulations provide the most accurate results.

  14. Cluster state generation in one-dimensional Kitaev honeycomb model via shortcut to adiabaticity

    NASA Astrophysics Data System (ADS)

    Kyaw, Thi Ha; Kwek, Leong-Chuan

    2018-04-01

    We propose a mean to obtain computationally useful resource states also known as cluster states, for measurement-based quantum computation, via transitionless quantum driving algorithm. The idea is to cool the system to its unique ground state and tune some control parameters to arrive at computationally useful resource state, which is in one of the degenerate ground states. Even though there is set of conserved quantities already present in the model Hamiltonian, which prevents the instantaneous state to go to any other eigenstate subspaces, one cannot quench the control parameters to get the desired state. In that case, the state will not evolve. With involvement of the shortcut Hamiltonian, we obtain cluster states in fast-forward manner. We elaborate our proposal in the one-dimensional Kitaev honeycomb model, and show that the auxiliary Hamiltonian needed for the counterdiabatic driving is of M-body interaction.

  15. Relaxation to a Phase-Locked Equilibrium State in a One-Dimensional Bosonic Josephson Junction

    NASA Astrophysics Data System (ADS)

    Pigneur, Marine; Berrada, Tarik; Bonneau, Marie; Schumm, Thorsten; Demler, Eugene; Schmiedmayer, Jörg

    2018-04-01

    We present an experimental study on the nonequilibrium tunnel dynamics of two coupled one-dimensional Bose-Einstein quasicondensates deep in the Josephson regime. Josephson oscillations are initiated by splitting a single one-dimensional condensate and imprinting a relative phase between the superfluids. Regardless of the initial state and experimental parameters, the dynamics of the relative phase and atom number imbalance shows a relaxation to a phase-locked steady state. The latter is characterized by a high phase coherence and reduced fluctuations with respect to the initial state. We propose an empirical model based on the analogy with the anharmonic oscillator to describe the effect of various experimental parameters. A microscopic theory compatible with our observations is still missing.

  16. Multi-Scale Human Respiratory System Simulations to Study Health Effects of Aging, Disease, and Inhaled Substances

    NASA Astrophysics Data System (ADS)

    Kunz, Robert; Haworth, Daniel; Dogan, Gulkiz; Kriete, Andres

    2006-11-01

    Three-dimensional, unsteady simulations of multiphase flow, gas exchange, and particle/aerosol deposition in the human lung are reported. Surface data for human tracheo-bronchial trees are derived from CT scans, and are used to generate three- dimensional CFD meshes for the first several generations of branching. One-dimensional meshes for the remaining generations down to the respiratory units are generated using branching algorithms based on those that have been proposed in the literature, and a zero-dimensional respiratory unit (pulmonary acinus) model is attached at the end of each terminal bronchiole. The process is automated to facilitate rapid model generation. The model is exercised through multiple breathing cycles to compute the spatial and temporal variations in flow, gas exchange, and particle/aerosol deposition. The depth of the 3D/1D transition (at branching generation n) is a key parameter, and can be varied. High-fidelity models (large n) are run on massively parallel distributed-memory clusters, and are used to generate physical insight and to calibrate/validate the 1D and 0D models. Suitably validated lower-order models (small n) can be run on single-processor PC’s with run times that allow model-based clinical intervention for individual patients.

  17. A quasi two-dimensional model for sound attenuation by the sonic crystals.

    PubMed

    Gupta, A; Lim, K M; Chew, C H

    2012-10-01

    Sound propagation in the sonic crystal (SC) along the symmetry direction is modeled by sound propagation through a variable cross-sectional area waveguide. A one-dimensional (1D) model based on the Webster horn equation is used to obtain sound attenuation through the SC. This model is compared with two-dimensional (2D) finite element simulation and experiment. The 1D model prediction of frequency band for sound attenuation is found to be shifted by around 500 Hz with respect to the finite element simulation. The reason for this shift is due to the assumption involved in the 1D model. A quasi 2D model is developed for sound propagation through the waveguide. Sound pressure profiles from the quasi 2D model are compared with the finite element simulation and the 1D model. The result shows significant improvement over the 1D model and is in good agreement with the 2D finite element simulation. Finally, sound attenuation through the SC is computed based on the quasi 2D model and is found to be in good agreement with the finite element simulation. The quasi 2D model provides an improved method to calculate sound attenuation through the SC.

  18. Low-order modeling of internal heat transfer in biomass particle pyrolysis

    DOE PAGES

    Wiggins, Gavin M.; Daw, C. Stuart; Ciesielski, Peter N.

    2016-05-11

    We present a computationally efficient, one-dimensional simulation methodology for biomass particle heating under conditions typical of fast pyrolysis. Our methodology is based on identifying the rate limiting geometric and structural factors for conductive heat transport in biomass particle models with realistic morphology to develop low-order approximations that behave appropriately. Comparisons of transient temperature trends predicted by our one-dimensional method with three-dimensional simulations of woody biomass particles reveal good agreement, if the appropriate equivalent spherical diameter and bulk thermal properties are used. Here, we conclude that, for particle sizes and heating regimes typical of fast pyrolysis, it is possible to simulatemore » biomass particle heating with reasonable accuracy and minimal computational overhead, even when variable size, aspherical shape, anisotropic conductivity, and complex, species-specific internal pore geometry are incorporated.« less

  19. Low-Order Modeling of Internal Heat Transfer in Biomass Particle Pyrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiggins, Gavin M.; Ciesielski, Peter N.; Daw, C. Stuart

    2016-06-16

    We present a computationally efficient, one-dimensional simulation methodology for biomass particle heating under conditions typical of fast pyrolysis. Our methodology is based on identifying the rate limiting geometric and structural factors for conductive heat transport in biomass particle models with realistic morphology to develop low-order approximations that behave appropriately. Comparisons of transient temperature trends predicted by our one-dimensional method with three-dimensional simulations of woody biomass particles reveal good agreement, if the appropriate equivalent spherical diameter and bulk thermal properties are used. We conclude that, for particle sizes and heating regimes typical of fast pyrolysis, it is possible to simulate biomassmore » particle heating with reasonable accuracy and minimal computational overhead, even when variable size, aspherical shape, anisotropic conductivity, and complex, species-specific internal pore geometry are incorporated.« less

  20. Topographic evolution of orogens: The long term perspective

    NASA Astrophysics Data System (ADS)

    Robl, Jörg; Hergarten, Stefan; Prasicek, Günther

    2017-04-01

    The landscape of mountain ranges reflects the competition of tectonics and climate, that build up and destroy topography, respectively. While there is a broad consensus on the acting processes, there is a vital debate whether the topography of individual orogens reflects stages of growth, steady-state or decay. This debate is fuelled by the million-year time scales hampering direct observations on landscape evolution in mountain ranges, the superposition of various process patterns and the complex interactions among different processes. In this presentation we focus on orogen-scale landscape evolution based on time-dependent numerical models and explore model time series to constrain the development of mountain range topography during an orogenic cycle. The erosional long term response of rivers and hillslopes to uplift can be mathematically formalised by the stream power and mass diffusion equations, respectively, which enables us to describe the time-dependent evolution of topography in orogens. Based on a simple one-dimensional model consisting of two rivers separated by a watershed we explain the influence of uplift rate and rock erodibility on steady-state channel profiles and show the time-dependent development of the channel - drainage divide system. The effect of dynamic drainage network reorganization adds additional complexity and its effect on topography is explored on the basis of two-dimensional models. Further complexity is introduced by coupling a mechanical model (thin viscous sheet approach) describing continental collision, crustal thickening and topography formation with a stream power-based landscape evolution model. Model time series show the impact of crustal deformation on drainage networks and consequently on the evolution of mountain range topography (Robl et al., in review). All model outcomes, from simple one-dimensional to coupled two dimensional models are presented as movies featuring a high spatial and temporal resolution. Robl, J., S. Hergarten, and G. Prasicek (in review), The topographic state of mountain ranges, Earth Science Reviews.

  1. Application of nonlinear models to estimate the gain of one-dimensional free-electron lasers

    NASA Astrophysics Data System (ADS)

    Peter, E.; Rizzato, F. B.; Endler, A.

    2017-06-01

    In the present work, we make use of simplified nonlinear models based on the compressibility factor (Peter et al., Phys. Plasmas, vol. 20 (12), 2013, 123104) to predict the gain of one-dimensional (1-D) free-electron lasers (FELs), considering space-charge and thermal effects. These models proved to be reasonable to estimate some aspects of 1-D FEL theory, such as the position of the onset of mixing, in the case of a initially cold electron beam, and the position of the breakdown of the laminar regime, in the case of an initially warm beam (Peter et al., Phys. Plasmas, vol. 21 (11), 2014, 113104). The results given by the models are compared to wave-particle simulations showing a reasonable agreement.

  2. Reflection spectra and their angular dependences of one-dimensional photonic crystals based on aluminium oxide

    NASA Astrophysics Data System (ADS)

    Gorelik, V. S.; Yashin, M. M.; Pudovkin, A. V.; Vodchits, A. I.

    2017-11-01

    The article considers optical properties (transmission and reflection) of one-dimensional photonic crystals based on mesoporous anodic aluminum oxide, with periods of crystal lattices 188 and 194 nm. A comparison of the experimentally measured reflection spectrum in the spectral region of the first stop-zone with the theoretical dependence obtained from the dispersion relation for one-dimensional photonic crystal is carried out. The angular dependence of the first stop-zone spectral positions of one-dimensional photonic crystal is established. The authors analyze the possibility of applications of mesoporous one-dimensional photonic crystals based on aluminum oxide as the selective narrowband filters and mirrors.

  3. Analysis of the Three-Dimensional Vector FAÇADE Model Created from Photogrammetric Data

    NASA Astrophysics Data System (ADS)

    Kamnev, I. S.; Seredovich, V. A.

    2017-12-01

    The results of the accuracy assessment analysis for creation of a three-dimensional vector model of building façade are described. In the framework of the analysis, analytical comparison of three-dimensional vector façade models created by photogrammetric and terrestrial laser scanning data has been done. The three-dimensional model built from TLS point clouds was taken as the reference one. In the course of the experiment, the three-dimensional model to be analyzed was superimposed on the reference one, the coordinates were measured and deviations between the same model points were determined. The accuracy estimation of the three-dimensional model obtained by using non-metric digital camera images was carried out. Identified façade surface areas with the maximum deviations were revealed.

  4. Probing the exchange statistics of one-dimensional anyon models

    NASA Astrophysics Data System (ADS)

    Greschner, Sebastian; Cardarelli, Lorenzo; Santos, Luis

    2018-05-01

    We propose feasible scenarios for revealing the modified exchange statistics in one-dimensional anyon models in optical lattices based on an extension of the multicolor lattice-depth modulation scheme introduced in [Phys. Rev. A 94, 023615 (2016), 10.1103/PhysRevA.94.023615]. We show that the fast modulation of a two-component fermionic lattice gas in the presence a magnetic field gradient, in combination with additional resonant microwave fields, allows for the quantum simulation of hardcore anyon models with periodic boundary conditions. Such a semisynthetic ring setup allows for realizing an interferometric arrangement sensitive to the anyonic statistics. Moreover, we show as well that simple expansion experiments may reveal the formation of anomalously bound pairs resulting from the anyonic exchange.

  5. Principles of three-dimensional printing and clinical applications within the abdomen and pelvis.

    PubMed

    Bastawrous, Sarah; Wake, Nicole; Levin, Dmitry; Ripley, Beth

    2018-04-04

    Improvements in technology and reduction in costs have led to widespread interest in three-dimensional (3D) printing. 3D-printed anatomical models contribute to personalized medicine, surgical planning, and education across medical specialties, and these models are rapidly changing the landscape of clinical practice. A physical object that can be held in one's hands allows for significant advantages over standard two-dimensional (2D) or even 3D computer-based virtual models. Radiologists have the potential to play a significant role as consultants and educators across all specialties by providing 3D-printed models that enhance clinical care. This article reviews the basics of 3D printing, including how models are created from imaging data, clinical applications of 3D printing within the abdomen and pelvis, implications for education and training, limitations, and future directions.

  6. Bayesian Analysis of High Dimensional Classification

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Subhadeep; Liang, Faming

    2009-12-01

    Modern data mining and bioinformatics have presented an important playground for statistical learning techniques, where the number of input variables is possibly much larger than the sample size of the training data. In supervised learning, logistic regression or probit regression can be used to model a binary output and form perceptron classification rules based on Bayesian inference. In these cases , there is a lot of interest in searching for sparse model in High Dimensional regression(/classification) setup. we first discuss two common challenges for analyzing high dimensional data. The first one is the curse of dimensionality. The complexity of many existing algorithms scale exponentially with the dimensionality of the space and by virtue of that algorithms soon become computationally intractable and therefore inapplicable in many real applications. secondly, multicollinearities among the predictors which severely slowdown the algorithm. In order to make Bayesian analysis operational in high dimension we propose a novel 'Hierarchical stochastic approximation monte carlo algorithm' (HSAMC), which overcomes the curse of dimensionality, multicollinearity of predictors in high dimension and also it possesses the self-adjusting mechanism to avoid the local minima separated by high energy barriers. Models and methods are illustrated by simulation inspired from from the feild of genomics. Numerical results indicate that HSAMC can work as a general model selection sampler in high dimensional complex model space.

  7. A fast elitism Gaussian estimation of distribution algorithm and application for PID optimization.

    PubMed

    Xu, Qingyang; Zhang, Chengjin; Zhang, Li

    2014-01-01

    Estimation of distribution algorithm (EDA) is an intelligent optimization algorithm based on the probability statistics theory. A fast elitism Gaussian estimation of distribution algorithm (FEGEDA) is proposed in this paper. The Gaussian probability model is used to model the solution distribution. The parameters of Gaussian come from the statistical information of the best individuals by fast learning rule. A fast learning rule is used to enhance the efficiency of the algorithm, and an elitism strategy is used to maintain the convergent performance. The performances of the algorithm are examined based upon several benchmarks. In the simulations, a one-dimensional benchmark is used to visualize the optimization process and probability model learning process during the evolution, and several two-dimensional and higher dimensional benchmarks are used to testify the performance of FEGEDA. The experimental results indicate the capability of FEGEDA, especially in the higher dimensional problems, and the FEGEDA exhibits a better performance than some other algorithms and EDAs. Finally, FEGEDA is used in PID controller optimization of PMSM and compared with the classical-PID and GA.

  8. A Fast Elitism Gaussian Estimation of Distribution Algorithm and Application for PID Optimization

    PubMed Central

    Xu, Qingyang; Zhang, Chengjin; Zhang, Li

    2014-01-01

    Estimation of distribution algorithm (EDA) is an intelligent optimization algorithm based on the probability statistics theory. A fast elitism Gaussian estimation of distribution algorithm (FEGEDA) is proposed in this paper. The Gaussian probability model is used to model the solution distribution. The parameters of Gaussian come from the statistical information of the best individuals by fast learning rule. A fast learning rule is used to enhance the efficiency of the algorithm, and an elitism strategy is used to maintain the convergent performance. The performances of the algorithm are examined based upon several benchmarks. In the simulations, a one-dimensional benchmark is used to visualize the optimization process and probability model learning process during the evolution, and several two-dimensional and higher dimensional benchmarks are used to testify the performance of FEGEDA. The experimental results indicate the capability of FEGEDA, especially in the higher dimensional problems, and the FEGEDA exhibits a better performance than some other algorithms and EDAs. Finally, FEGEDA is used in PID controller optimization of PMSM and compared with the classical-PID and GA. PMID:24892059

  9. Enthalpy-Based Thermal Evolution of Loops: III. Comparison of Zero-Dimensional Models

    NASA Technical Reports Server (NTRS)

    Cargill, P. J.; Bradshaw, Stephen J.; Klimchuk, James A.

    2012-01-01

    Zero dimensional (0D) hydrodynamic models, provide a simple and quick way to study the thermal evolution of coronal loops subjected to time-dependent heating. This paper presents a comparison of a number of 0D models that have been published in the past and is intended to provide a guide for those interested in either using the old models or developing new ones. The principal difference between the models is the way the exchange of mass and energy between corona, transition region and chromosphere is treated, as plasma cycles into and out of a loop during a heating-cooling cycle. It is shown that models based on the principles of mass and energy conservation can give satisfactory results at some, or, in the case of the Enthalpy Based Thermal Evolution of Loops (EBTEL) model, all stages of the loop evolution. Empirical models can lead to low coronal densities, spurious delays between the peak density and temperature, and, for short heating pulses, overly short loop lifetimes.

  10. A review of direct numerical simulations of astrophysical detonations and their implications

    DOE PAGES

    Parete-Koon, Suzanne T.; Smith, Christopher R.; Papatheodore, Thomas L.; ...

    2013-04-11

    Multi-dimensional direct numerical simulations (DNS) of astrophysical detonations in degenerate matter have revealed that the nuclear burning is typically characterized by cellular structure caused by transverse instabilities in the detonation front. Type Ia supernova modelers often use one- dimensional DNS of detonations as inputs or constraints for their whole star simulations. While these one-dimensional studies are useful tools, the true nature of the detonation is multi-dimensional. The multi-dimensional structure of the burning influences the speed, stability, and the composition of the detonation and its burning products, and therefore, could have an impact on the spectra of Type Ia supernovae. Considerablemore » effort has been expended modeling Type Ia supernovae at densities above 1x10 7 g∙cm -3 where the complexities of turbulent burning dominate the flame propagation. However, most full star models turn the nuclear burning schemes off when the density falls below 1x10 7 g∙cm -3 and distributed burning begins. The deflagration to detonation transition (DDT) is believed to occur at just these densities and consequently they are the densities important for studying the properties of the subsequent detonation. In conclusion, this work reviews the status of DNS studies of detonations and their possible implications for Type Ia supernova models. It will cover the development of Detonation theory from the first simple Chapman-Jouguet (CJ) detonation models to the current models based on the time-dependent, compressible, reactive flow Euler equations of fluid dynamics.« less

  11. Universal core model for multiple-gate field-effect transistors with short channel and quantum mechanical effects

    NASA Astrophysics Data System (ADS)

    Shin, Yong Hyeon; Bae, Min Soo; Park, Chuntaek; Park, Joung Won; Park, Hyunwoo; Lee, Yong Ju; Yun, Ilgu

    2018-06-01

    A universal core model for multiple-gate (MG) field-effect transistors (FETs) with short channel effects (SCEs) and quantum mechanical effects (QMEs) is proposed. By using a Young’s approximation based solution for one-dimensional Poisson’s equations the total inversion charge density (Q inv ) in the channel is modeled for double-gate (DG) and surrounding-gate SG (SG) FETs, following which a universal charge model is derived based on the similarity of the solutions, including for quadruple-gate (QG) FETs. For triple-gate (TG) FETs, the average of DG and QG FETs are used. A SCEs model is also proposed considering the potential difference between the channel’s surface and center. Finally, a QMEs model for MG FETs is developed using the quantum correction compact model. The proposed universal core model is validated on commercially available three-dimensional ATLAS numerical simulations.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Migunov, V., E-mail: v.migunov@fz-juelich.de; Dunin-Borkowski, R. E.; London, A.

    The one-dimensional charge density distribution along an electrically biased Fe atom probe needle is measured using a model-independent approach based on off-axis electron holography in the transmission electron microscope. Both the mean inner potential and the magnetic contribution to the phase shift are subtracted by taking differences between electron-optical phase images recorded with different voltages applied to the needle. The measured one-dimensional charge density distribution along the needle is compared with a similar result obtained using model-based fitting of the phase shift surrounding the needle. On the assumption of cylindrical symmetry, it is then used to infer the three-dimensional electricmore » field and electrostatic potential around the needle with ∼10 nm spatial resolution, without needing to consider either the influence of the perturbed reference wave or the extension of the projected potential outside the field of view of the electron hologram. The present study illustrates how a model-independent approach can be used to measure local variations in charge density in a material using electron holography in the presence of additional contributions to the phase, such as those arising from changes in mean inner potential and specimen thickness.« less

  13. Numerical Solutions of the Complete Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Robinson, David F.; Hassan, H. A.

    1997-01-01

    This report details the development of a new two-equation turbulence closure model based on the exact turbulent kinetic energy k and the variance of vorticity, zeta. The model, which is applicable to three dimensional flowfields, employs one set of model constants and does not use damping or wall functions, or geometric factors.

  14. A genetically optimized kinetic model for ethanol electro-oxidation on Pt-based binary catalysts used in direct ethanol fuel cells

    NASA Astrophysics Data System (ADS)

    Sánchez-Monreal, Juan; García-Salaberri, Pablo A.; Vera, Marcos

    2017-09-01

    A one-dimensional model is proposed for the anode of a liquid-feed direct ethanol fuel cell. The complex kinetics of the ethanol electro-oxidation reaction is described using a multi-step reaction mechanism that considers free and adsorbed intermediate species on Pt-based binary catalysts. The adsorbed species are modeled using coverage factors to account for the blockage of the active reaction sites on the catalyst surface. The reaction rates are described by Butler-Volmer equations that are coupled to a one-dimensional mass transport model, which incorporates the effect of ethanol and acetaldehyde crossover. The proposed kinetic model circumvents the acetaldehyde bottleneck effect observed in previous studies by incorporating CH3CHOHads among the adsorbed intermediates. A multi-objetive genetic algorithm is used to determine the reaction constants using anode polarization and product selectivity data obtained from the literature. By adjusting the reaction constants using the methodology developed here, different catalyst layers could be modeled and their selectivities could be successfully reproduced.

  15. Direct calculation of wall interferences and wall adaptation for two-dimensional flow in wind tunnels with closed walls

    NASA Technical Reports Server (NTRS)

    Amecke, Juergen

    1986-01-01

    A method for the direct calculation of the wall induced interference velocity in two dimensional flow based on Cauchy's integral formula was derived. This one-step method allows the calculation of the residual corrections and the required wall adaptation for interference-free flow starting from the wall pressure distribution without any model representation. Demonstrated applications are given.

  16. Separation of time scales in one-dimensional directed nucleation-growth processes

    NASA Astrophysics Data System (ADS)

    Pierobon, Paolo; Miné-Hattab, Judith; Cappello, Giovanni; Viovy, Jean-Louis; Lagomarsino, Marco Cosentino

    2010-12-01

    Proteins involved in homologous recombination such as RecA and hRad51 polymerize on single- and double-stranded DNA according to a nucleation-growth kinetics, which can be monitored by single-molecule in vitro assays. The basic models currently used to extract biochemical rates rely on ensemble averages and are typically based on an underlying process of bidirectional polymerization, in contrast with the often observed anisotropic polymerization of similar proteins. For these reasons, if one considers single-molecule experiments, the available models are useful to understand observations only in some regimes. In particular, recent experiments have highlighted a steplike polymerization kinetics. The classical model of one-dimensional nucleation growth, the Kolmogorov-Avrami-Mehl-Johnson (KAMJ) model, predicts the correct polymerization kinetics only in some regimes and fails to predict the steplike behavior. This work illustrates by simulations and analytical arguments the limitation of applicability of the KAMJ description and proposes a minimal model for the statistics of the steps based on the so-called stick-breaking stochastic process. We argue that this insight might be useful to extract information on the time and length scales involved in the polymerization kinetics.

  17. On the modeling of the 2010 Gulf of Mexico Oil Spill

    NASA Astrophysics Data System (ADS)

    Mariano, A. J.; Kourafalou, V. H.; Srinivasan, A.; Kang, H.; Halliwell, G. R.; Ryan, E. H.; Roffer, M.

    2011-09-01

    Two oil particle trajectory forecasting systems were developed and applied to the 2010 Deepwater Horizon Oil Spill in the Gulf of Mexico. Both systems use ocean current fields from high-resolution numerical ocean circulation model simulations, Lagrangian stochastic models to represent unresolved sub-grid scale variability to advect oil particles, and Monte Carlo-based schemes for representing uncertain biochemical and physical processes. The first system assumes two-dimensional particle motion at the ocean surface, the oil is in one state, and the particle removal is modeled as a Monte Carlo process parameterized by a one number removal rate. Oil particles are seeded using both initial conditions based on observations and particles released at the location of the Maconda well. The initial conditions (ICs) of oil particle location for the two-dimensional surface oil trajectory forecasts are based on a fusing of all available information including satellite-based analyses. The resulting oil map is digitized into a shape file within which a polygon filling software generates longitude and latitude with variable particle density depending on the amount of oil present in the observations for the IC. The more complex system assumes three (light, medium, heavy) states for the oil, each state has a different removal rate in the Monte Carlo process, three-dimensional particle motion, and a particle size-dependent oil mixing model. Simulations from the two-dimensional forecast system produced results that qualitatively agreed with the uncertain "truth" fields. These simulations validated the use of our Monte Carlo scheme for representing oil removal by evaporation and other weathering processes. Eulerian velocity fields for predicting particle motion from data-assimilative models produced better particle trajectory distributions than a free running model with no data assimilation. Monte Carlo simulations of the three-dimensional oil particle trajectory, whose ensembles were generated by perturbing the size of the oil particles and the fraction in a given size range that are released at depth, the two largest unknowns in this problem. 36 realizations of the model were run with only subsurface oil releases. An average of these results yields that after three months, about 25% of the oil remains in the water column and that most of the oil is below 800 m.

  18. Validation of A One-Dimensional Snow-Land Surface Model at the Sleepers River Watershed

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Yih; Chern, Jiun-Dar

    A one-dimensional land surface model, based on conservations of heat and water substance inside the soil and snow, is presented. To validate the model, a stand-alone experiment is carried out with five years of meteorological and hydrological observations collected from the NOAA-ARS Cooperative Snow Research Project (1966-1974) at the Sleepers River watershed in Danville, Vermont, U.S.A. The numerical results show that the model is capable of reproducing the observed soil temperature at different depths during the winter as well as a rapid increase of soil temperature after snow melts in the spring. The model also simulates the density, temperature, thickness, and equivalent water depth of snow reasonably well. The numerical results are sensitive to the fresh snow density and the soil properties used in the model, which affect the heat exchange between the snowpack and the soil.

  19. A computer program to obtain time-correlated gust loads for nonlinear aircraft using the matched-filter-based method

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Pototzky, Anthony S.; Perry, Boyd, III

    1994-01-01

    NASA Langley Research Center has, for several years, conducted research in the area of time-correlated gust loads for linear and nonlinear aircraft. The results of this work led NASA to recommend that the Matched-Filter-Based One-Dimensional Search Method be used for gust load analyses of nonlinear aircraft. This manual describes this method, describes a FORTRAN code which performs this method, and presents example calculations for a sample nonlinear aircraft model. The name of the code is MFD1DS (Matched-Filter-Based One-Dimensional Search). The program source code, the example aircraft equations of motion, a sample input file, and a sample program output are all listed in the appendices.

  20. Comment on "SU(5) octet scalar at the LHC"

    NASA Astrophysics Data System (ADS)

    Doršner, Ilja

    2015-06-01

    I address the validity of results presented in [S. Khalil, S. Salem, and M. Allam, Phys. Rev. D 89, 095011 (2014)] with regard to unification of gauge couplings within a particular S U (5 ) framework. The scalar sector of the proposed S U (5 ) model contains one 5-dimensional, one 24-dimensional, and one 45-dimensional representation. The authors discuss one specific unification scenario that supports the case for the LHC accessible color octet scalar. I show that the unification analysis in question is based on (i) an erroneous assumption related to the issue of nucleon stability and (ii) an incorrect input for the applicable set of renormalization group equations. This, in my view, invalidates the aforementioned gauge coupling unification study. I also question a source of the fermion mass relations presented in that work.

  1. Underwater striling engine design with modified one-dimensional model

    NASA Astrophysics Data System (ADS)

    Li, Daijin; Qin, Kan; Luo, Kai

    2015-09-01

    Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs) is discussed. And a one-dimensional model incorporated with empirical equations of mechanical loss and auxiliary power obtained from experiments is derived while referring to the Stirling engine computer model of National Aeronautics and Space Administration (NASA). The P-40 Stirling engine with sufficient testing results from NASA is utilized to validate the accuracy of this one-dimensional model. It shows that the maximum error of output power of theoretical analysis results is less than 18% over testing results, and the maximum error of input power is no more than 9%. Finally, a Stirling engine for UUVs is designed with Schmidt analysis method and the modified one-dimensional model, and the results indicate this designed engine is capable of showing desired output power.

  2. Effect of ice-albedo feedback on global sensitivity in a one-dimensional radiative-convective climate model

    NASA Technical Reports Server (NTRS)

    Wang, W.-C.; Stone, P. H.

    1980-01-01

    The feedback between the ice albedo and temperature is included in a one-dimensional radiative-convective climate model. The effect of this feedback on global sensitivity to changes in solar constant is studied for the current climate conditions. This ice-albedo feedback amplifies global sensitivity by 26 and 39%, respectively, for assumptions of fixed cloud altitude and fixed cloud temperature. The global sensitivity is not affected significantly if the latitudinal variations of mean solar zenith angle and cloud cover are included in the global model. The differences in global sensitivity between one-dimensional radiative-convective models and energy balance models are examined. It is shown that the models are in close agreement when the same feedback mechanisms are included. The one-dimensional radiative-convective model with ice-albedo feedback included is used to compute the equilibrium ice line as a function of solar constant.

  3. Multimodal, high-dimensional, model-based, Bayesian inverse problems with applications in biomechanics

    NASA Astrophysics Data System (ADS)

    Franck, I. M.; Koutsourelakis, P. S.

    2017-01-01

    This paper is concerned with the numerical solution of model-based, Bayesian inverse problems. We are particularly interested in cases where the cost of each likelihood evaluation (forward-model call) is expensive and the number of unknown (latent) variables is high. This is the setting in many problems in computational physics where forward models with nonlinear PDEs are used and the parameters to be calibrated involve spatio-temporarily varying coefficients, which upon discretization give rise to a high-dimensional vector of unknowns. One of the consequences of the well-documented ill-posedness of inverse problems is the possibility of multiple solutions. While such information is contained in the posterior density in Bayesian formulations, the discovery of a single mode, let alone multiple, poses a formidable computational task. The goal of the present paper is two-fold. On one hand, we propose approximate, adaptive inference strategies using mixture densities to capture multi-modal posteriors. On the other, we extend our work in [1] with regard to effective dimensionality reduction techniques that reveal low-dimensional subspaces where the posterior variance is mostly concentrated. We validate the proposed model by employing Importance Sampling which confirms that the bias introduced is small and can be efficiently corrected if the analyst wishes to do so. We demonstrate the performance of the proposed strategy in nonlinear elastography where the identification of the mechanical properties of biological materials can inform non-invasive, medical diagnosis. The discovery of multiple modes (solutions) in such problems is critical in achieving the diagnostic objectives.

  4. The application of time series models to cloud field morphology analysis

    NASA Technical Reports Server (NTRS)

    Chin, Roland T.; Jau, Jack Y. C.; Weinman, James A.

    1987-01-01

    A modeling method for the quantitative description of remotely sensed cloud field images is presented. A two-dimensional texture modeling scheme based on one-dimensional time series procedures is adopted for this purpose. The time series procedure used is the seasonal autoregressive, moving average (ARMA) process in Box and Jenkins. Cloud field properties such as directionality, clustering and cloud coverage can be retrieved by this method. It has been demonstrated that a cloud field image can be quantitatively defined by a small set of parameters and synthesized surrogates can be reconstructed from these model parameters. This method enables cloud climatology to be studied quantitatively.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, J.L.; Lime, J.F.; Elson, J.S.

    One dimensional TRAC transient calculations of the process inherent ultimate safety (PIUS) advanced reactor design were performed for a pump-trip SCRAM. The TRAC calculations showed that the reactor power response and shutdown were in qualitative agreement with the one-dimensional analyses presented in the PIUS Preliminary Safety Information Document (PSID) submitted by Asea Brown Boveri (ABB) to the US Nuclear Regulatory Commission for preapplication safety review. The PSID analyses were performed with the ABB-developed RIGEL code. The TRAC-calculated phenomena and trends were also similar to those calculated with another one-dimensional PIUS model, the Brookhaven National Laboratory developed PIPA code. A TRACmore » pump-trip SCRAM transient has also been calculated with a TRAC model containing a multi-dimensional representation of the PIUS intemal flow structures and core region. The results obtained using the TRAC fully one-dimensional PIUS model are compared to the RIGEL, PIPA, and TRAC multi-dimensional results.« less

  6. Dynamic stability analysis for capillary channel flow: One-dimensional and three-dimensional computations and the equivalent steady state technique

    NASA Astrophysics Data System (ADS)

    Grah, Aleksander; Dreyer, Michael E.

    2010-01-01

    Spacecraft technology provides a series of applications for capillary channel flow. It can serve as a reliable means for positioning and transport of liquids under low gravity conditions. Basically, capillary channels provide liquid paths with one or more free surfaces. A problem may be flow instabilities leading to a collapse of the liquid surfaces. A result is undesired gas ingestion and a two phase flow which can in consequence cause several technical problems. The presented capillary channel consists of parallel plates with two free liquid surfaces. The flow rate is established by a pump at the channel outlet, creating a lower pressure within the channel. Owing to the pressure difference between the liquid phase and the ambient gas phase the free surfaces bend inwards and remain stable as long as they are able to resist the steady and unsteady pressure effects. For the numerical prediction of the flow stability two very different models are used. The one-dimensional unsteady model is mainly based on the Bernoulli equation, the continuity equation, and the Gauss-Laplace equation. For three-dimensional evaluations an open source computational fluid dynamics (CFD) tool is applied. For verifications the numerical results are compared with quasisteady and unsteady data of a sounding rocket experiment. Contrary to previous experiments this one results in a significantly longer observation sequence. Furthermore, the critical point of the steady flow instability could be approached by a quasisteady technique. As in previous experiments the comparison to the numerical model evaluation shows a very good agreement for the movement of the liquid surfaces and for the predicted flow instability. The theoretical prediction of the flow instability is related to the speed index, based on characteristic velocities of the capillary channel flow. Stable flow regimes are defined by stability criteria for steady and unsteady flow. The one-dimensional computation of the speed index is based on the technique of the equivalent steady system, which is published for the first time in the present paper. This approach assumes that for every unsteady state an equivalent steady state with a special boundary condition can be formulated. The equivalent steady state technique enables a reformulation of the equation system and an efficient and reliable speed index computation. Furthermore, the existence of the numerical singularity at the critical point of the steady flow instability, postulated in previous publication, is demonstrated in detail. The numerical singularity is related to the stability criterion for steady flow and represents the numerical consequence of the liquid surface collapse. The evaluation and generation of the pressure diagram is demonstrated in detail with a series of numerical dynamic flow studies. The stability diagram, based on one-dimensional computation, gives a detailed overview of the stable and instable flow regimes. This prediction is in good agreement with the experimentally observed critical flow conditions and results of three-dimensional CFD computations.

  7. Three Dimensional Modeling via Photographs for Documentation of a Village Bath

    NASA Astrophysics Data System (ADS)

    Balta, H. B.; Hamamcioglu-Turan, M.; Ocali, O.

    2013-07-01

    The aim of this study is supporting the conceptual discussions of architectural restoration with three dimensional modeling of monuments based on photogrammetric survey. In this study, a 16th century village bath in Ulamış, Seferihisar, and Izmir is modeled for documentation. Ulamış is one of the historical villages within which Turkish population first settled in the region of Seferihisar - Urla. The methodology was tested on an antique monument; a bath with a cubical form. Within the limits of this study, only the exterior of the bath was modeled. The presentation scale for the bath was determined as 1 / 50, considering the necessities of designing structural interventions and architectural ones within the scope of a restoration project. The three dimensional model produced is a realistic document presenting the present situation of the ruin. Traditional plan, elevation and perspective drawings may be produced from the model, in addition to the realistic textured renderings and wireframe representations. The model developed in this study provides opportunity for presenting photorealistic details of historical morphologies in scale. Compared to conventional drawings, the renders based on the 3d models provide an opportunity for conceiving architectural details such as color, material and texture. From these documents, relatively more detailed restitution hypothesis can be developed and intervention decisions can be taken. Finally, the principles derived from the case study can be used for 3d documentation of historical structures with irregular surfaces.

  8. A multiphysics 3D model of tissue growth under interstitial perfusion in a tissue-engineering bioreactor.

    PubMed

    Nava, Michele M; Raimondi, Manuela T; Pietrabissa, Riccardo

    2013-11-01

    The main challenge in engineered cartilage consists in understanding and controlling the growth process towards a functional tissue. Mathematical and computational modelling can help in the optimal design of the bioreactor configuration and in a quantitative understanding of important culture parameters. In this work, we present a multiphysics computational model for the prediction of cartilage tissue growth in an interstitial perfusion bioreactor. The model consists of two separate sub-models, one two-dimensional (2D) sub-model and one three-dimensional (3D) sub-model, which are coupled between each other. These sub-models account both for the hydrodynamic microenvironment imposed by the bioreactor, using a model based on the Navier-Stokes equation, the mass transport equation and the biomass growth. The biomass, assumed as a phase comprising cells and the synthesised extracellular matrix, has been modelled by using a moving boundary approach. In particular, the boundary at the fluid-biomass interface is moving with a velocity depending from the local oxygen concentration and viscous stress. In this work, we show that all parameters predicted, such as oxygen concentration and wall shear stress, by the 2D sub-model with respect to the ones predicted by the 3D sub-model are systematically overestimated and thus the tissue growth, which directly depends on these parameters. This implies that further predictive models for tissue growth should take into account of the three dimensionality of the problem for any scaffold microarchitecture.

  9. Is the negative glow plasma of a direct current glow discharge negatively charged?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogdanov, E. A.; Saifutdinov, A. I.; Demidov, V. I., E-mail: Vladimir.Demidov@mail.wvu.edu

    A classic problem in gas discharge physics is discussed: what is the sign of charge density in the negative glow region of a glow discharge? It is shown that traditional interpretations in text-books on gas discharge physics that states a negative charge of the negative glow plasma are based on analogies with a simple one-dimensional model of discharge. Because the real glow discharges with a positive column are always two-dimensional, the transversal (radial) term in divergence with the electric field can provide a non-monotonic axial profile of charge density in the plasma, while maintaining a positive sign. The numerical calculationmore » of glow discharge is presented, showing a positive space charge in the negative glow under conditions, where a one-dimensional model of the discharge would predict a negative space charge.« less

  10. Three-dimensional quantitative structure-activity relationship studies on c-Src inhibitors based on different docking methods.

    PubMed

    Bairy, Santhosh Kumar; Suneel Kumar, B V S; Bhalla, Joseph Uday Tej; Pramod, A B; Ravikumar, Muttineni

    2009-04-01

    c-Src kinase play an important role in cell growth and differentiation and its inhibitors can be useful for the treatment of various diseases, including cancer, osteoporosis, and metastatic bone disease. Three dimensional quantitative structure-activity relationship (3D-QSAR) studies were carried out on quinazolin derivatives inhibiting c-Src kinase. Molecular field analysis (MFA) models with four different alignment techniques, namely, GLIDE, GOLD, LIGANDFIT and Least squares based methods were developed. glide based MFA model showed better results (Leave one out cross validation correlation coefficient r(2)(cv) = 0.923 and non-cross validation correlation coefficient r(2)= 0.958) when compared with other models. These results help us to understand the nature of descriptors required for activity of these compounds and thereby provide guidelines to design novel and potent c-Src kinase inhibitors.

  11. Low-dimensional spike rate models derived from networks of adaptive integrate-and-fire neurons: Comparison and implementation.

    PubMed

    Augustin, Moritz; Ladenbauer, Josef; Baumann, Fabian; Obermayer, Klaus

    2017-06-01

    The spiking activity of single neurons can be well described by a nonlinear integrate-and-fire model that includes somatic adaptation. When exposed to fluctuating inputs sparsely coupled populations of these model neurons exhibit stochastic collective dynamics that can be effectively characterized using the Fokker-Planck equation. This approach, however, leads to a model with an infinite-dimensional state space and non-standard boundary conditions. Here we derive from that description four simple models for the spike rate dynamics in terms of low-dimensional ordinary differential equations using two different reduction techniques: one uses the spectral decomposition of the Fokker-Planck operator, the other is based on a cascade of two linear filters and a nonlinearity, which are determined from the Fokker-Planck equation and semi-analytically approximated. We evaluate the reduced models for a wide range of biologically plausible input statistics and find that both approximation approaches lead to spike rate models that accurately reproduce the spiking behavior of the underlying adaptive integrate-and-fire population. Particularly the cascade-based models are overall most accurate and robust, especially in the sensitive region of rapidly changing input. For the mean-driven regime, when input fluctuations are not too strong and fast, however, the best performing model is based on the spectral decomposition. The low-dimensional models also well reproduce stable oscillatory spike rate dynamics that are generated either by recurrent synaptic excitation and neuronal adaptation or through delayed inhibitory synaptic feedback. The computational demands of the reduced models are very low but the implementation complexity differs between the different model variants. Therefore we have made available implementations that allow to numerically integrate the low-dimensional spike rate models as well as the Fokker-Planck partial differential equation in efficient ways for arbitrary model parametrizations as open source software. The derived spike rate descriptions retain a direct link to the properties of single neurons, allow for convenient mathematical analyses of network states, and are well suited for application in neural mass/mean-field based brain network models.

  12. Low-dimensional spike rate models derived from networks of adaptive integrate-and-fire neurons: Comparison and implementation

    PubMed Central

    Baumann, Fabian; Obermayer, Klaus

    2017-01-01

    The spiking activity of single neurons can be well described by a nonlinear integrate-and-fire model that includes somatic adaptation. When exposed to fluctuating inputs sparsely coupled populations of these model neurons exhibit stochastic collective dynamics that can be effectively characterized using the Fokker-Planck equation. This approach, however, leads to a model with an infinite-dimensional state space and non-standard boundary conditions. Here we derive from that description four simple models for the spike rate dynamics in terms of low-dimensional ordinary differential equations using two different reduction techniques: one uses the spectral decomposition of the Fokker-Planck operator, the other is based on a cascade of two linear filters and a nonlinearity, which are determined from the Fokker-Planck equation and semi-analytically approximated. We evaluate the reduced models for a wide range of biologically plausible input statistics and find that both approximation approaches lead to spike rate models that accurately reproduce the spiking behavior of the underlying adaptive integrate-and-fire population. Particularly the cascade-based models are overall most accurate and robust, especially in the sensitive region of rapidly changing input. For the mean-driven regime, when input fluctuations are not too strong and fast, however, the best performing model is based on the spectral decomposition. The low-dimensional models also well reproduce stable oscillatory spike rate dynamics that are generated either by recurrent synaptic excitation and neuronal adaptation or through delayed inhibitory synaptic feedback. The computational demands of the reduced models are very low but the implementation complexity differs between the different model variants. Therefore we have made available implementations that allow to numerically integrate the low-dimensional spike rate models as well as the Fokker-Planck partial differential equation in efficient ways for arbitrary model parametrizations as open source software. The derived spike rate descriptions retain a direct link to the properties of single neurons, allow for convenient mathematical analyses of network states, and are well suited for application in neural mass/mean-field based brain network models. PMID:28644841

  13. Perceptual integration of kinematic components in the recognition of emotional facial expressions.

    PubMed

    Chiovetto, Enrico; Curio, Cristóbal; Endres, Dominik; Giese, Martin

    2018-04-01

    According to a long-standing hypothesis in motor control, complex body motion is organized in terms of movement primitives, reducing massively the dimensionality of the underlying control problems. For body movements, this low-dimensional organization has been convincingly demonstrated by the learning of low-dimensional representations from kinematic and EMG data. In contrast, the effective dimensionality of dynamic facial expressions is unknown, and dominant analysis approaches have been based on heuristically defined facial "action units," which reflect contributions of individual face muscles. We determined the effective dimensionality of dynamic facial expressions by learning of a low-dimensional model from 11 facial expressions. We found an amazingly low dimensionality with only two movement primitives being sufficient to simulate these dynamic expressions with high accuracy. This low dimensionality is confirmed statistically, by Bayesian model comparison of models with different numbers of primitives, and by a psychophysical experiment that demonstrates that expressions, simulated with only two primitives, are indistinguishable from natural ones. In addition, we find statistically optimal integration of the emotion information specified by these primitives in visual perception. Taken together, our results indicate that facial expressions might be controlled by a very small number of independent control units, permitting very low-dimensional parametrization of the associated facial expression.

  14. On an Additive Semigraphoid Model for Statistical Networks With Application to Pathway Analysis.

    PubMed

    Li, Bing; Chun, Hyonho; Zhao, Hongyu

    2014-09-01

    We introduce a nonparametric method for estimating non-gaussian graphical models based on a new statistical relation called additive conditional independence, which is a three-way relation among random vectors that resembles the logical structure of conditional independence. Additive conditional independence allows us to use one-dimensional kernel regardless of the dimension of the graph, which not only avoids the curse of dimensionality but also simplifies computation. It also gives rise to a parallel structure to the gaussian graphical model that replaces the precision matrix by an additive precision operator. The estimators derived from additive conditional independence cover the recently introduced nonparanormal graphical model as a special case, but outperform it when the gaussian copula assumption is violated. We compare the new method with existing ones by simulations and in genetic pathway analysis.

  15. Entanglement Area Law in Disordered Free Fermion Anderson Model in One, Two, and Three Dimensions

    DOE PAGES

    Pouranvari, Mohammad; Zhang, Yuhui; Yang, Kun

    2015-01-01

    We calculate numerically the entanglement entropy of free fermion ground states in one-, two-, and three-dimensional Anderson models and find that it obeys the area law as long as the linear size of the subsystem is sufficiently larger than the mean free path. This result holds in the metallic phase of the three-dimensional Anderson model, where the mean free path is finite although the localization length is infinite. Relation between the present results and earlier ones on area law violation in special one-dimensional models that support metallic phases is discussed.

  16. Entanglement Area Law in Disordered Free Fermion Anderson Model in One, Two, and Three Dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pouranvari, Mohammad; Zhang, Yuhui; Yang, Kun

    We calculate numerically the entanglement entropy of free fermion ground states in one-, two-, and three-dimensional Anderson models and find that it obeys the area law as long as the linear size of the subsystem is sufficiently larger than the mean free path. This result holds in the metallic phase of the three-dimensional Anderson model, where the mean free path is finite although the localization length is infinite. Relation between the present results and earlier ones on area law violation in special one-dimensional models that support metallic phases is discussed.

  17. Numerical modeling of surface wave development under the action of wind

    NASA Astrophysics Data System (ADS)

    Chalikov, Dmitry

    2018-06-01

    The numerical modeling of two-dimensional surface wave development under the action of wind is performed. The model is based on three-dimensional equations of potential motion with a free surface written in a surface-following nonorthogonal curvilinear coordinate system in which depth is counted from a moving surface. A three-dimensional Poisson equation for the velocity potential is solved iteratively. A Fourier transform method, a second-order accuracy approximation of vertical derivatives on a stretched vertical grid and fourth-order Runge-Kutta time stepping are used. Both the input energy to waves and dissipation of wave energy are calculated on the basis of earlier developed and validated algorithms. A one-processor version of the model for PC allows us to simulate an evolution of the wave field with thousands of degrees of freedom over thousands of wave periods. A long-time evolution of a two-dimensional wave structure is illustrated by the spectra of wave surface and the input and output of energy.

  18. The Performance Evaluation of Multi-Image 3d Reconstruction Software with Different Sensors

    NASA Astrophysics Data System (ADS)

    Mousavi, V.; Khosravi, M.; Ahmadi, M.; Noori, N.; Naveh, A. Hosseini; Varshosaz, M.

    2015-12-01

    Today, multi-image 3D reconstruction is an active research field and generating three dimensional model of the objects is one the most discussed issues in Photogrammetry and Computer Vision that can be accomplished using range-based or image-based methods. Very accurate and dense point clouds generated by range-based methods such as structured light systems and laser scanners has introduced them as reliable tools in the industry. Image-based 3D digitization methodologies offer the option of reconstructing an object by a set of unordered images that depict it from different viewpoints. As their hardware requirements are narrowed down to a digital camera and a computer system, they compose an attractive 3D digitization approach, consequently, although range-based methods are generally very accurate, image-based methods are low-cost and can be easily used by non-professional users. One of the factors affecting the accuracy of the obtained model in image-based methods is the software and algorithm used to generate three dimensional model. These algorithms are provided in the form of commercial software, open source and web-based services. Another important factor in the accuracy of the obtained model is the type of sensor used. Due to availability of mobile sensors to the public, popularity of professional sensors and the advent of stereo sensors, a comparison of these three sensors plays an effective role in evaluating and finding the optimized method to generate three-dimensional models. Lots of research has been accomplished to identify a suitable software and algorithm to achieve an accurate and complete model, however little attention is paid to the type of sensors used and its effects on the quality of the final model. The purpose of this paper is deliberation and the introduction of an appropriate combination of a sensor and software to provide a complete model with the highest accuracy. To do this, different software, used in previous studies, were compared and the most popular ones in each category were selected (Arc 3D, Visual SfM, Sure, Agisoft). Also four small objects with distinct geometric properties and especial complexities were chosen and their accurate models as reliable true data was created using ATOS Compact Scan 2M 3D scanner. Images were taken using Fujifilm Real 3D stereo camera, Apple iPhone 5 and Nikon D3200 professional camera and three dimensional models of the objects were obtained using each of the software. Finally, a comprehensive comparison between the detailed reviews of the results on the data set showed that the best combination of software and sensors for generating three-dimensional models is directly related to the object shape as well as the expected accuracy of the final model. Generally better quantitative and qualitative results were obtained by using the Nikon D3200 professional camera, while Fujifilm Real 3D stereo camera and Apple iPhone 5 were the second and third respectively in this comparison. On the other hand, three software of Visual SfM, Sure and Agisoft had a hard competition to achieve the most accurate and complete model of the objects and the best software was different according to the geometric properties of the object.

  19. McSnow: A Monte-Carlo Particle Model for Riming and Aggregation of Ice Particles in a Multidimensional Microphysical Phase Space

    NASA Astrophysics Data System (ADS)

    Brdar, S.; Seifert, A.

    2018-01-01

    We present a novel Monte-Carlo ice microphysics model, McSnow, to simulate the evolution of ice particles due to deposition, aggregation, riming, and sedimentation. The model is an application and extension of the super-droplet method of Shima et al. (2009) to the more complex problem of rimed ice particles and aggregates. For each individual super-particle, the ice mass, rime mass, rime volume, and the number of monomers are predicted establishing a four-dimensional particle-size distribution. The sensitivity of the model to various assumptions is discussed based on box model and one-dimensional simulations. We show that the Monte-Carlo method provides a feasible approach to tackle this high-dimensional problem. The largest uncertainty seems to be related to the treatment of the riming processes. This calls for additional field and laboratory measurements of partially rimed snowflakes.

  20. Pairing phase diagram of three holes in the generalized Hubbard model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navarro, O.; Espinosa, J.E.

    Investigations of high-{Tc} superconductors suggest that the electronic correlation may play a significant role in the formation of pairs. Although the main interest is on the physic of two-dimensional highly correlated electron systems, the one-dimensional models related to high temperature superconductivity are very popular due to the conjecture that properties of the 1D and 2D variants of certain models have common aspects. Within the models for correlated electron systems, that attempt to capture the essential physics of high-temperature superconductors and parent compounds, the Hubbard model is one of the simplest. Here, the pairing problem of a three electrons system hasmore » been studied by using a real-space method and the generalized Hubbard Hamiltonian. This method includes the correlated hopping interactions as an extension of the previously proposed mapping method, and is based on mapping the correlated many body problem onto an equivalent site- and bond-impurity tight-binding one in a higher dimensional space, where the problem was solved in a non-perturbative way. In a linear chain, the authors analyzed the pairing phase diagram of three correlated holes for different values of the Hamiltonian parameters. For some value of the hopping parameters they obtain an analytical solution for all kind of interactions.« less

  1. Ab initio quantum mechanical calculation of the reaction probability for the Cl-+PH2Cl→ClPH2+Cl- reaction

    NASA Astrophysics Data System (ADS)

    Farahani, Pooria; Lundberg, Marcus; Karlsson, Hans O.

    2013-11-01

    The SN2 substitution reactions at phosphorus play a key role in organic and biological processes. Quantum molecular dynamics simulations have been performed to study the prototype reaction Cl-+PH2Cl→ClPH2+Cl-, using one and two-dimensional models. A potential energy surface, showing an energy well for a transition complex, was generated using ab initio electronic structure calculations. The one-dimensional model is essentially reflection free, whereas the more realistic two-dimensional model displays involved resonance structures in the reaction probability. The reaction rate is almost two orders of magnitude smaller for the two-dimensional compared to the one-dimensional model. Energetic errors in the potential energy surface is estimated to affect the rate by only a factor of two. This shows that for these types of reactions it is more important to increase the dimensionality of the modeling than to increase the accuracy of the electronic structure calculation.

  2. A user-friendly one-dimensional model for wet volcanic plumes

    USGS Publications Warehouse

    Mastin, Larry G.

    2007-01-01

    This paper presents a user-friendly graphically based numerical model of one-dimensional steady state homogeneous volcanic plumes that calculates and plots profiles of upward velocity, plume density, radius, temperature, and other parameters as a function of height. The model considers effects of water condensation and ice formation on plume dynamics as well as the effect of water added to the plume at the vent. Atmospheric conditions may be specified through input parameters of constant lapse rates and relative humidity, or by loading profiles of actual atmospheric soundings. To illustrate the utility of the model, we compare calculations with field-based estimates of plume height (∼9 km) and eruption rate (>∼4 × 105 kg/s) during a brief tephra eruption at Mount St. Helens on 8 March 2005. Results show that the atmospheric conditions on that day boosted plume height by 1–3 km over that in a standard dry atmosphere. Although the eruption temperature was unknown, model calculations most closely match the observations for a temperature that is below magmatic but above 100°C.

  3. Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping

    NASA Astrophysics Data System (ADS)

    Dimitriadis, Panayiotis; Tegos, Aristoteles; Oikonomou, Athanasios; Pagana, Vassiliki; Koukouvinos, Antonios; Mamassis, Nikos; Koutsoyiannis, Demetris; Efstratiadis, Andreas

    2016-03-01

    One-dimensional and quasi-two-dimensional hydraulic freeware models (HEC-RAS, LISFLOOD-FP and FLO-2d) are widely used for flood inundation mapping. These models are tested on a benchmark test with a mixed rectangular-triangular channel cross section. Using a Monte-Carlo approach, we employ extended sensitivity analysis by simultaneously varying the input discharge, longitudinal and lateral gradients and roughness coefficients, as well as the grid cell size. Based on statistical analysis of three output variables of interest, i.e. water depths at the inflow and outflow locations and total flood volume, we investigate the uncertainty enclosed in different model configurations and flow conditions, without the influence of errors and other assumptions on topography, channel geometry and boundary conditions. Moreover, we estimate the uncertainty associated to each input variable and we compare it to the overall one. The outcomes of the benchmark analysis are further highlighted by applying the three models to real-world flood propagation problems, in the context of two challenging case studies in Greece.

  4. One-dimensional Kondo lattice model at quarter filling

    NASA Astrophysics Data System (ADS)

    Xavier, J. C.; Miranda, E.

    2008-10-01

    We revisit the problem of the quarter-filled one-dimensional Kondo lattice model, for which the existence of a dimerized phase and a nonzero charge gap had been reported by Xavier [Phys. Rev. Lett. 90, 247204 (2003)]. Recently, some objections were raised claiming that the system is neither dimerized nor has a charge gap. In the interest of clarifying this important issue, we show that these objections are based on results obtained under conditions in which the dimer order is artificially suppressed. We use the incontrovertible dimerized phase of the Majumdar-Ghosh point of the J1-J2 Heisenberg model as a paradigm with which to illustrate this artificial suppression. Finally, by means of extremely accurate density-matrix renormalization-group calculations, we show that the charge gap is indeed nonzero in the dimerized phase.

  5. Dynamics of an HIV-1 infection model with cell mediated immunity

    NASA Astrophysics Data System (ADS)

    Yu, Pei; Huang, Jianing; Jiang, Jiao

    2014-10-01

    In this paper, we study the dynamics of an improved mathematical model on HIV-1 virus with cell mediated immunity. This new 5-dimensional model is based on the combination of a basic 3-dimensional HIV-1 model and a 4-dimensional immunity response model, which more realistically describes dynamics between the uninfected cells, infected cells, virus, the CTL response cells and CTL effector cells. Our 5-dimensional model may be reduced to the 4-dimensional model by applying a quasi-steady state assumption on the variable of virus. However, it is shown in this paper that virus is necessary to be involved in the modeling, and that a quasi-steady state assumption should be applied carefully, which may miss some important dynamical behavior of the system. Detailed bifurcation analysis is given to show that the system has three equilibrium solutions, namely the infection-free equilibrium, the infectious equilibrium without CTL, and the infectious equilibrium with CTL, and a series of bifurcations including two transcritical bifurcations and one or two possible Hopf bifurcations occur from these three equilibria as the basic reproduction number is varied. The mathematical methods applied in this paper include characteristic equations, Routh-Hurwitz condition, fluctuation lemma, Lyapunov function and computation of normal forms. Numerical simulation is also presented to demonstrate the applicability of the theoretical predictions.

  6. Modeling snow-crystal growth: a three-dimensional mesoscopic approach.

    PubMed

    Gravner, Janko; Griffeath, David

    2009-01-01

    We introduce a three-dimensional, computationally feasible, mesoscopic model for snow-crystal growth, based on diffusion of vapor, anisotropic attachment, and a boundary layer. Several case studies are presented that faithfully replicate most observed snow-crystal morphology, an unusual achievement for a mathematical model. In particular, many of the most striking physical specimens feature both facets and branches, and our model provides an explanation for this phenomenon. We also duplicate many other observed traits, including ridges, ribs, sandwich plates, and hollow columns, as well as various dynamic instabilities. The concordance of observed phenomena suggests that the ingredients in our model are the most important ones in the development of physical snow crystals.

  7. Variable Density Multilayer Insulation for Cryogenic Storage

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Brown, T. M.; Hastings, L. J.; Martin, J.

    2000-01-01

    Two analytical models for a foam/Variable Density Multi-Layer Insulation (VD-MLI) system performance are discussed. Both models are one-dimensional and contain three heat transfer mechanisms, namely conduction through the spacer material, radiation between the shields, and conduction through the gas. One model is based on the methodology developed by McIntosh while the other model is based on the Lockheed semi-empirical approach. All models input variables are based on the Multi-purpose Hydrogen Test Bed (MHTB) geometry and available values for material properties and empirical solid conduction coefficient. Heat flux predictions are in good agreement with the MHTB data, The heat flux predictions are presented for the foam/MLI combinations with 30, 45, 60, and 75 MLI layers

  8. Quality Inspection and Analysis of Three-Dimensional Geographic Information Model Based on Oblique Photogrammetry

    NASA Astrophysics Data System (ADS)

    Dong, S.; Yan, Q.; Xu, Y.; Bai, J.

    2018-04-01

    In order to promote the construction of digital geo-spatial framework in China and accelerate the construction of informatization mapping system, three-dimensional geographic information model emerged. The three-dimensional geographic information model based on oblique photogrammetry technology has higher accuracy, shorter period and lower cost than traditional methods, and can more directly reflect the elevation, position and appearance of the features. At this stage, the technology of producing three-dimensional geographic information models based on oblique photogrammetry technology is rapidly developing. The market demand and model results have been emerged in a large amount, and the related quality inspection needs are also getting larger and larger. Through the study of relevant literature, it is found that there are a lot of researches on the basic principles and technical characteristics of this technology, and relatively few studies on quality inspection and analysis. On the basis of summarizing the basic principle and technical characteristics of oblique photogrammetry technology, this paper introduces the inspection contents and inspection methods of three-dimensional geographic information model based on oblique photogrammetry technology. Combined with the actual inspection work, this paper summarizes the quality problems of three-dimensional geographic information model based on oblique photogrammetry technology, analyzes the causes of the problems and puts forward the quality control measures. It provides technical guidance for the quality inspection of three-dimensional geographic information model data products based on oblique photogrammetry technology in China and provides technical support for the vigorous development of three-dimensional geographic information model based on oblique photogrammetry technology.

  9. A physically-based channel-modeling framework integrating HEC-RAS sediment transport capabilities and the USDA-ARS bank-stability and toe-erosion model (BSTEM)

    USDA-ARS?s Scientific Manuscript database

    Classical, one-dimensional, mobile bed, sediment-transport models simulate vertical channel adjustment, raising or lowering cross-section node elevations to simulate erosion or deposition. This approach does not account for bank erosion processes including toe scour and mass failure. In many systems...

  10. Models of inertial range spectra of interplanetary magnetohydrodynamic turbulence

    NASA Technical Reports Server (NTRS)

    Zhou, YE; Matthaeus, William H.

    1990-01-01

    A framework based on turbulence theory is presented to develop approximations for the local turbulence effects that are required in transport models. An approach based on Kolmogoroff-style dimensional analysis is presented as well as one based on a wave-number diffusion picture. Particular attention is given to the case of MHD turbulence with arbitrary cross helicity and with arbitrary ratios of the Alfven time scale and the nonlinear time scale.

  11. Measurement-based quantum teleportation on finite AKLT chains

    NASA Astrophysics Data System (ADS)

    Fujii, Akihiko; Feder, David

    In the measurement-based model of quantum computation, universal quantum operations are effected by making repeated local measurements on resource states which contain suitable entanglement. Resource states include two-dimensional cluster states and the ground state of the Affleck-Kennedy-Lieb-Tasaki (AKLT) state on the honeycomb lattice. Recent studies suggest that measurements on one-dimensional systems in the Haldane phase teleport perfect single-qubit gates in the correlation space, protected by the underlying symmetry. As laboratory realizations of symmetry-protected states will necessarily be finite, we investigate the potential for quantum gate teleportation in finite chains of a bilinear-biquadratic Hamiltonian which is a generalization of the AKLT model representing the full Haldane phase.

  12. A model for near-wall dynamics in turbulent Rayleigh Bénard convection

    NASA Astrophysics Data System (ADS)

    Theerthan, S. Ananda; Arakeri, Jaywant H.

    1998-10-01

    Experiments indicate that turbulent free convection over a horizontal surface (e.g. Rayleigh Bénard convection) consists of essentially line plumes near the walls, at least for moderately high Rayleigh numbers. Based on this evidence, we propose here a two-dimensional model for near-wall dynamics in Rayleigh Bénard convection and in general for convection over heated horizontal surfaces. The model proposes a periodic array of steady laminar two-dimensional plumes. A plume is fed on either side by boundary layers on the wall. The results from the model are obtained in two ways. One of the methods uses the similarity solution of Rotem & Classen (1969) for the boundary layer and the similarity solution of Fuji (1963) for the plume. We have derived expressions for mean temperature and temperature and velocity fluctuations near the wall. In the second approach, we compute the two-dimensional flow field in a two-dimensional rectangular open cavity. The number of plumes in the cavity depends on the length of the cavity. The plume spacing is determined from the critical length at which the number of plumes increases by one. The results for average plume spacing and the distribution of r.m.s. temperature and velocity fluctuations are shown to be in acceptable agreement with experimental results.

  13. A multi scale multi-dimensional thermo electrochemical modelling of high capacity lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Tourani, Abbas; White, Peter; Ivey, Paul

    2014-06-01

    Lithium iron phosphate (LFP) and lithium manganese oxide (LMO) are competitive and complementary to each other as cathode materials for lithium-ion batteries, especially for use in electric vehicles. A multi scale multi-dimensional physic-based model is proposed in this paper to study the thermal behaviour of the two lithium-ion chemistries. The model consists of two sub models, a one dimensional (1D) electrochemical sub model and a two dimensional (2D) thermo-electric sub model, which are coupled and solved concurrently. The 1D model predicts the heat generation rate (Qh) and voltage (V) of the battery cell through different load cycles. The 2D model of the battery cell accounts for temperature distribution and current distribution across the surface of the battery cell. The two cells are examined experimentally through 90 h load cycles including high/low charge/discharge rates. The experimental results are compared with the model results and they are in good agreement. The presented results in this paper verify the cells temperature behaviour at different operating conditions which will lead to the design of a cost effective thermal management system for the battery pack.

  14. Brane-World Gravity.

    PubMed

    Maartens, Roy; Koyama, Kazuya

    2010-01-01

    The observable universe could be a 1+3-surface (the "brane") embedded in a 1+3+ d -dimensional spacetime (the "bulk"), with Standard Model particles and fields trapped on the brane while gravity is free to access the bulk. At least one of the d extra spatial dimensions could be very large relative to the Planck scale, which lowers the fundamental gravity scale, possibly even down to the electroweak (∼ TeV) level. This revolutionary picture arises in the framework of recent developments in M theory. The 1+10-dimensional M theory encompasses the known 1+9-dimensional superstring theories, and is widely considered to be a promising potential route to quantum gravity. At low energies, gravity is localized at the brane and general relativity is recovered, but at high energies gravity "leaks" into the bulk, behaving in a truly higher-dimensional way. This introduces significant changes to gravitational dynamics and perturbations, with interesting and potentially testable implications for high-energy astrophysics, black holes, and cosmology. Brane-world models offer a phenomenological way to test some of the novel predictions and corrections to general relativity that are implied by M theory. This review analyzes the geometry, dynamics and perturbations of simple brane-world models for cosmology and astrophysics, mainly focusing on warped 5-dimensional brane-worlds based on the Randall-Sundrum models. We also cover the simplest brane-world models in which 4-dimensional gravity on the brane is modified at low energies - the 5-dimensional Dvali-Gabadadze-Porrati models. Then we discuss co-dimension two branes in 6-dimensional models.

  15. CITRATE 1.0: Phytoplankton continuous trait-distribution model with one-dimensional physical transport applied to the North Pacific

    NASA Astrophysics Data System (ADS)

    Chen, Bingzhang; Smith, Sherwood Lan

    2018-02-01

    Diversity plays critical roles in ecosystem functioning, but it remains challenging to model phytoplankton diversity in order to better understand those roles and reproduce consistently observed diversity patterns in the ocean. In contrast to the typical approach of resolving distinct species or functional groups, we present a ContInuous TRAiT-basEd phytoplankton model (CITRATE) that focuses on macroscopic system properties such as total biomass, mean trait values, and trait variance. This phytoplankton component is embedded within a nitrogen-phytoplankton-zooplankton-detritus-iron model that itself is coupled with a simplified one-dimensional ocean model. Size is used as the master trait for phytoplankton. CITRATE also incorporates trait diffusion for sustaining diversity and simple representations of physiological acclimation, i.e., flexible chlorophyll-to-carbon and nitrogen-to-carbon ratios. We have implemented CITRATE at two contrasting stations in the North Pacific where several years of observational data are available. The model is driven by physical forcing including vertical eddy diffusivity imported from three-dimensional general ocean circulation models (GCMs). One common set of model parameters for the two stations is optimized using the Delayed-Rejection Adaptive Metropolis-Hasting Monte Carlo (DRAM) algorithm. The model faithfully reproduces most of the observed patterns and gives robust predictions on phytoplankton mean size and size diversity. CITRATE is suitable for applications in GCMs and constitutes a prototype upon which more sophisticated continuous trait-based models can be developed.

  16. Three-dimensional reconstruction of indoor whole elements based on mobile LiDAR point cloud data

    NASA Astrophysics Data System (ADS)

    Gong, Yuejian; Mao, Wenbo; Bi, Jiantao; Ji, Wei; He, Zhanjun

    2014-11-01

    Ground-based LiDAR is one of the most effective city modeling tools at present, which has been widely used for three-dimensional reconstruction of outdoor objects. However, as for indoor objects, there are some technical bottlenecks due to lack of GPS signal. In this paper, based on the high-precision indoor point cloud data which was obtained by LiDAR, an international advanced indoor mobile measuring equipment, high -precision model was fulfilled for all indoor ancillary facilities. The point cloud data we employed also contain color feature, which is extracted by fusion with CCD images. Thus, it has both space geometric feature and spectral information which can be used for constructing objects' surface and restoring color and texture of the geometric model. Based on Autodesk CAD platform and with help of PointSence plug, three-dimensional reconstruction of indoor whole elements was realized. Specifically, Pointools Edit Pro was adopted to edit the point cloud, then different types of indoor point cloud data was processed, including data format conversion, outline extracting and texture mapping of the point cloud model. Finally, three-dimensional visualization of the real-world indoor was completed. Experiment results showed that high-precision 3D point cloud data obtained by indoor mobile measuring equipment can be used for indoor whole elements' 3-d reconstruction and that methods proposed in this paper can efficiently realize the 3 -d construction of indoor whole elements. Moreover, the modeling precision could be controlled within 5 cm, which was proved to be a satisfactory result.

  17. Modeling Semantic Emotion Space Using a 3D Hypercube-Projection: An Innovative Analytical Approach for the Psychology of Emotions

    PubMed Central

    Trnka, Radek; Lačev, Alek; Balcar, Karel; Kuška, Martin; Tavel, Peter

    2016-01-01

    The widely accepted two-dimensional circumplex model of emotions posits that most instances of human emotional experience can be understood within the two general dimensions of valence and activation. Currently, this model is facing some criticism, because complex emotions in particular are hard to define within only these two general dimensions. The present theory-driven study introduces an innovative analytical approach working in a way other than the conventional, two-dimensional paradigm. The main goal was to map and project semantic emotion space in terms of mutual positions of various emotion prototypical categories. Participants (N = 187; 54.5% females) judged 16 discrete emotions in terms of valence, intensity, controllability and utility. The results revealed that these four dimensional input measures were uncorrelated. This implies that valence, intensity, controllability and utility represented clearly different qualities of discrete emotions in the judgments of the participants. Based on this data, we constructed a 3D hypercube-projection and compared it with various two-dimensional projections. This contrasting enabled us to detect several sources of bias when working with the traditional, two-dimensional analytical approach. Contrasting two-dimensional and three-dimensional projections revealed that the 2D models provided biased insights about how emotions are conceptually related to one another along multiple dimensions. The results of the present study point out the reductionist nature of the two-dimensional paradigm in the psychological theory of emotions and challenge the widely accepted circumplex model. PMID:27148130

  18. A Dynamic Hydrology-Critical Zone Framework for Rainfall-triggered Landslide Hazard Prediction

    NASA Astrophysics Data System (ADS)

    Dialynas, Y. G.; Foufoula-Georgiou, E.; Dietrich, W. E.; Bras, R. L.

    2017-12-01

    Watershed-scale coupled hydrologic-stability models are still in their early stages, and are characterized by important limitations: (a) either they assume steady-state or quasi-dynamic watershed hydrology, or (b) they simulate landslide occurrence based on a simple one-dimensional stability criterion. Here we develop a three-dimensional landslide prediction framework, based on a coupled hydrologic-slope stability model and incorporation of the influence of deep critical zone processes (i.e., flow through weathered bedrock and exfiltration to the colluvium) for more accurate prediction of the timing, location, and extent of landslides. Specifically, a watershed-scale slope stability model that systematically accounts for the contribution of driving and resisting forces in three-dimensional hillslope segments was coupled with a spatially-explicit and physically-based hydrologic model. The landslide prediction framework considers critical zone processes and structure, and explicitly accounts for the spatial heterogeneity of surface and subsurface properties that control slope stability, including soil and weathered bedrock hydrological and mechanical characteristics, vegetation, and slope morphology. To test performance, the model was applied in landslide-prone sites in the US, the hydrology of which has been extensively studied. Results showed that both rainfall infiltration in the soil and groundwater exfiltration exert a strong control on the timing and magnitude of landslide occurrence. We demonstrate the extent to which three-dimensional slope destabilizing factors, which are modulated by dynamic hydrologic conditions in the soil-bedrock column, control landslide initiation at the watershed scale.

  19. Simple relationship between the virial-route hypernetted-chain and the compressibility-route Percus-Yevick values of the fourth virial coefficient.

    PubMed

    Santos, Andrés; Manzano, Gema

    2010-04-14

    As is well known, approximate integral equations for liquids, such as the hypernetted chain (HNC) and Percus-Yevick (PY) theories, are in general thermodynamically inconsistent in the sense that the macroscopic properties obtained from the spatial correlation functions depend on the route followed. In particular, the values of the fourth virial coefficient B(4) predicted by the HNC and PY approximations via the virial route differ from those obtained via the compressibility route. Despite this, it is shown in this paper that the value of B(4) obtained from the virial route in the HNC theory is exactly three halves the value obtained from the compressibility route in the PY theory, irrespective of the interaction potential (whether isotropic or not), the number of components, and the dimensionality of the system. This simple relationship is confirmed in one-component systems by analytical results for the one-dimensional penetrable-square-well model and the three-dimensional penetrable-sphere model, as well as by numerical results for the one-dimensional Lennard-Jones model, the one-dimensional Gaussian core model, and the three-dimensional square-well model.

  20. A one-dimensional with three-dimensional velocity space hybrid-PIC model of the discharge plasma in a Hall thruster

    NASA Astrophysics Data System (ADS)

    Shashkov, Andrey; Lovtsov, Alexander; Tomilin, Dmitry

    2017-04-01

    According to present knowledge, countless numerical simulations of the discharge plasma in Hall thrusters were conducted. However, on the one hand, adequate two-dimensional (2D) models require a lot of time to carry out numerical research of the breathing mode oscillations or the discharge structure. On the other hand, existing one-dimensional (1D) models are usually too simplistic and do not take into consideration such important phenomena as neutral-wall collisions, magnetic field induced by Hall current and double, secondary, and stepwise ionizations together. In this paper a one-dimensional with three-dimensional velocity space (1D3V) hybrid-PIC model is presented. The model is able to incorporate all the phenomena mentioned above. A new method of neutral-wall collisions simulation in described space was developed and validated. Simulation results obtained for KM-88 and KM-60 thrusters are in a good agreement with experimental data. The Bohm collision coefficient was the same for both thrusters. Neutral-wall collisions, doubly charged ions, and induced magnetic field were proved to stabilize the breathing mode oscillations in a Hall thruster under some circumstances.

  1. A three-dimensional Dirichlet-to-Neumann operator for water waves over topography

    NASA Astrophysics Data System (ADS)

    Andrade, D.; Nachbin, A.

    2018-06-01

    Surface water waves are considered propagating over highly variable non-smooth topographies. For this three dimensional problem a Dirichlet-to-Neumann (DtN) operator is constructed reducing the numerical modeling and evolution to the two dimensional free surface. The corresponding Fourier-type operator is defined through a matrix decomposition. The topographic component of the decomposition requires special care and a Galerkin method is provided accordingly. One dimensional numerical simulations, along the free surface, validate the DtN formulation in the presence of a large amplitude, rapidly varying topography. An alternative, conformal mapping based, method is used for benchmarking. A two dimensional simulation in the presence of a Luneburg lens (a particular submerged mound) illustrates the accurate performance of the three dimensional DtN operator.

  2. Dynamic colloidal assembly pathways via low dimensional models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yuguang; Bevan, Michael A., E-mail: mabevan@jhu.edu; Thyagarajan, Raghuram

    2016-05-28

    Here we construct a low-dimensional Smoluchowski model for electric field mediated colloidal crystallization using Brownian dynamic simulations, which were previously matched to experiments. Diffusion mapping is used to infer dimensionality and confirm the use of two order parameters, one for degree of condensation and one for global crystallinity. Free energy and diffusivity landscapes are obtained as the coefficients of a low-dimensional Smoluchowski equation to capture the thermodynamics and kinetics of microstructure evolution. The resulting low-dimensional model quantitatively captures the dynamics of different assembly pathways between fluid, polycrystal, and single crystals states, in agreement with the full N-dimensional data as characterizedmore » by first passage time distributions. Numerical solution of the low-dimensional Smoluchowski equation reveals statistical properties of the dynamic evolution of states vs. applied field amplitude and system size. The low-dimensional Smoluchowski equation and associated landscapes calculated here can serve as models for predictive control of electric field mediated assembly of colloidal ensembles into two-dimensional crystalline objects.« less

  3. Longitudinal dispersion modeling in small streams

    NASA Astrophysics Data System (ADS)

    Pekarova, Pavla; Pekar, Jan; Miklanek, Pavol

    2014-05-01

    The environmental problems caused by the increasing of pollutant loads discharged into natural water bodies are very complex. For that reason the cognition of transport mechanism and mixing characteristics in natural streams is very important. The mathematical and numerical models have become very useful tools for solving the water management problems. The mathematical simulations based on numerical models of pollution mixing in streams can be used (for example) for prediction of spreading of accidental contaminant waves in rivers. The paper deals with the estimation of the longitudinal dispersion coefficients and with the numerical simulation of transport and transformation of accidental pollution in the small natural streams. There are different ways of solving problems of pollution spreading in open channels, in natural rivers. One of them is the hydrodynamic approach, which endeavours to understand and quantify the spreading phenomenon in a stream. The hydrodynamic models are based on advection-diffusion equation and the majority of them are one-dimensional models. Their disadvantage is inability to simulate the spread of pollution until complete dispersion of pollutant across the stream section is finished. Two-dimensional mixing models do not suffer from these limitations. On the other hand, the one-dimensional models are simpler than two-dimensional ones, they need not so much input data and they are often swifter. Three-dimensional models under conditions of natural streams are applicable with difficulties (or inapplicable) for their complexity and demands on accuracy and amount of input data. As there was mentioned above the two-dimensional models can be used also until complete dispersion of pollutant across the stream section is not finished, so we decided to apply the two-dimensional model SIRENIE. Experimental microbasin Rybarik is the part of the experimental Mostenik brook basin of IH SAS Bratislava. It was established as a Field Hydrological Laboratory in 1958. Since 1986 started a chemical program in the basin. The total area of the Rybarik basin is 0.119 km2. The length of the stream from spring to closing profile is 256 m, the mean slope of the stream is 9.1%, and the mean slope of the basin is 14.9%. The elevation is from 369 to 434 m above the sea level. The geological conditions in the Rybarik basin are characterized by flysh substrates (altering layers of clay and sandstones). The basin is from 2/3 cultivated by the state farm, private farmer covers the rest of the area. The forest coverage during the period 1986-2004 was approximately 10%, rest of the land is arable. NaCl (10-30 g) was injected to the Rybárik brook at different water levels and in different seasons. The electric conductivity was measured 100 and 250 m downstream the injection point. The samples were taken for Cl- concentration analyses during the first cases. The Cl and EC waves were identical. Coefficients of the longitudinal dispersion were estimated by trial-error method in the Rybárik brook using model SIRENIE. Coefficients were in range of 0.2 - 0.7 m2.s-1. Acknowledgement: This work was supported by project VEGA 0010/11.

  4. Impact of Basal Hydrology Near Grounding Lines: Results from the MISMIP-3D and MISMIP+ Experiments Using the Community Ice Sheet Model

    NASA Astrophysics Data System (ADS)

    Leguy, G.; Lipscomb, W. H.; Asay-Davis, X.

    2017-12-01

    Ice sheets and ice shelves are linked by the transition zone, the region where the grounded ice lifts off the bedrock and begins to float. Adequate resolution of the transition zone is necessary for numerically accurate ice sheet-ice shelf simulations. In previous work we have shown that by using a simple parameterization of the basal hydrology, a smoother transition in basal water pressure between floating and grounded ice improves the numerical accuracy of a one-dimensional vertically integrated fixed-grid model. We used a set of experiments based on the Marine Ice Sheet Model Intercomparison Project (MISMIP) to show that reliable grounding-line dynamics at resolutions 1 km is achievable. In this presentation we use the Community Ice Sheet Model (CISM) to demonstrate how the representation of basal lubrication impacts three-dimensional models using the MISMIP-3D and MISMIP+ experiments. To this end we will compare three different Stokes approximations: the Shallow Shelf Approximation (SSA), a depth-integrated higher-order approximation, and the Blatter-Pattyn model. The results from our one-dimensional model carry over to the 3-D models; a resolution of 1 km (and in some cases 2 km) remains sufficient to accurately simulate grounding-line dynamics.

  5. VALIDITY OF A TWO-DIMENSIONAL MODEL FOR VARIABLE-DENSITY HYDRODYNAMIC CIRCULATION

    EPA Science Inventory

    A three-dimensional model of temperatures and currents has been formulated to assist in the analysis and interpretation of the dynamics of stratified lakes. In this model, nonlinear eddy coefficients for viscosity and conductivities are included. A two-dimensional model (one vert...

  6. Human vocal tract resonances and the corresponding mode shapes investigated by three-dimensional finite-element modelling based on CT measurement.

    PubMed

    Vampola, Tomáš; Horáček, Jaromír; Laukkanen, Anne-Maria; Švec, Jan G

    2015-04-01

    Resonance frequencies of the vocal tract have traditionally been modelled using one-dimensional models. These cannot accurately represent the events in the frequency region of the formant cluster around 2.5-4.5 kHz, however. Here, the vocal tract resonance frequencies and their mode shapes are studied using a three-dimensional finite element model obtained from computed tomography measurements of a subject phonating on vowel [a:]. Instead of the traditional five, up to eight resonance frequencies of the vocal tract were found below the prominent antiresonance around 4.7 kHz. The three extra resonances were found to correspond to modes which were axially asymmetric and involved the piriform sinuses, valleculae, and transverse vibrations in the oral cavity. The results therefore suggest that the phenomenon of speaker's and singer's formant clustering may be more complex than originally thought.

  7. Avoidant/Restrictive Food Intake Disorder: a Three-Dimensional Model of Neurobiology with Implications for Etiology and Treatment.

    PubMed

    Thomas, Jennifer J; Lawson, Elizabeth A; Micali, Nadia; Misra, Madhusmita; Deckersbach, Thilo; Eddy, Kamryn T

    2017-08-01

    DSM-5 defined avoidant/restrictive food intake disorder (ARFID) as a failure to meet nutritional needs leading to low weight, nutritional deficiency, dependence on supplemental feedings, and/or psychosocial impairment. We summarize what is known about ARFID and introduce a three-dimensional model to inform research. Because ARFID prevalence, risk factors, and maintaining mechanisms are not known, prevailing treatment approaches are based on clinical experience rather than data. Furthermore, most ARFID research has focused on children, rather than adolescents or adults. We hypothesize a three-dimensional model wherein neurobiological abnormalities in sensory perception, homeostatic appetite, and negative valence systems underlie the three primary ARFID presentations of sensory sensitivity, lack of interest in eating, and fear of aversive consequences, respectively. Now that ARFID has been defined, studies investigating risk factors, prevalence, and pathophysiology are needed. Our model suggests testable hypotheses about etiology and highlights cognitive-behavioral therapy as one possible treatment.

  8. Comparisons of Three-Dimensional Variational Data Assimilation and Model Output Statistics in Improving Atmospheric Chemistry Forecasts

    NASA Astrophysics Data System (ADS)

    Ma, Chaoqun; Wang, Tijian; Zang, Zengliang; Li, Zhijin

    2018-07-01

    Atmospheric chemistry models usually perform badly in forecasting wintertime air pollution because of their uncertainties. Generally, such uncertainties can be decreased effectively by techniques such as data assimilation (DA) and model output statistics (MOS). However, the relative importance and combined effects of the two techniques have not been clarified. Here, a one-month air quality forecast with the Weather Research and Forecasting-Chemistry (WRF-Chem) model was carried out in a virtually operational setup focusing on Hebei Province, China. Meanwhile, three-dimensional variational (3DVar) DA and MOS based on one-dimensional Kalman filtering were implemented separately and simultaneously to investigate their performance in improving the model forecast. Comparison with observations shows that the chemistry forecast with MOS outperforms that with 3DVar DA, which could be seen in all the species tested over the whole 72 forecast hours. Combined use of both techniques does not guarantee a better forecast than MOS only, with the improvements and degradations being small and appearing rather randomly. Results indicate that the implementation of MOS is more suitable than 3DVar DA in improving the operational forecasting ability of WRF-Chem.

  9. Simulation of the June 11, 2010, flood along the Little Missouri River near Langley, Arkansas, using a hydrologic model coupled to a hydraulic model

    USGS Publications Warehouse

    Westerman, Drew A.; Clark, Brian R.

    2013-01-01

    The results from the precipitation-runoff hydrologic model, the one-dimensional unsteady-state hydraulic model, and a separate two-dimensional model developed as part of a coincident study, each complement the other in terms of streamflow timing, water-surface elevations, and velocities propagated by the June 11, 2010, flood event. The simulated grids for water depth and stream velocity from each model were directly compared by subtracting the one-dimensional hydraulic model grid from the two-dimensional model grid. The absolute mean difference for the simulated water depth was 0.9 foot. Additionally, the absolute mean difference for the simulated stream velocity was 1.9 feet per second.

  10. Ephaptic conduction in a cardiac strand model with 3D electrodiffusion

    PubMed Central

    Mori, Yoichiro; Fishman, Glenn I.; Peskin, Charles S.

    2008-01-01

    We study cardiac action potential propagation under severe reduction in gap junction conductance. We use a mathematical model of cellular electrical activity that takes into account both three-dimensional geometry and ionic concentration effects. Certain anatomical and biophysical parameters are varied to see their impact on cardiac action potential conduction velocity. This study uncovers quantitative features of ephaptic propagation that differ from previous studies based on one-dimensional models. We also identify a mode of cardiac action potential propagation in which the ephaptic and gap-junction-mediated mechanisms alternate. Our study demonstrates the usefulness of this modeling approach for electrophysiological systems especially when detailed membrane geometry plays an important role. PMID:18434544

  11. One- and Two-dimensional Solitary Wave States in the Nonlinear Kramers Equation with Movement Direction as a Variable

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hidetsugu; Ishibashi, Kazuya

    2018-06-01

    We study self-propelled particles by direct numerical simulation of the nonlinear Kramers equation for self-propelled particles. In our previous paper, we studied self-propelled particles with velocity variables in one dimension. In this paper, we consider another model in which each particle exhibits directional motion. The movement direction is expressed with a variable ϕ. We show that one-dimensional solitary wave states appear in direct numerical simulations of the nonlinear Kramers equation in one- and two-dimensional systems, which is a generalization of our previous result. Furthermore, we find two-dimensionally localized states in the case that each self-propelled particle exhibits rotational motion. The center of mass of the two-dimensionally localized state exhibits circular motion, which implies collective rotating motion. Finally, we consider a simple one-dimensional model equation to qualitatively understand the formation of the solitary wave state.

  12. Users manual for a one-dimensional Lagrangian transport model

    USGS Publications Warehouse

    Schoellhamer, D.H.; Jobson, H.E.

    1986-01-01

    A Users Manual for the Lagrangian Transport Model (LTM) is presented. The LTM uses Lagrangian calculations that are based on a reference frame moving with the river flow. The Lagrangian reference frame eliminates the need to numerically solve the convective term of the convection-diffusion equation and provides significant numerical advantages over the more commonly used Eulerian reference frame. When properly applied, the LTM can simulate riverine transport and decay processes within the accuracy required by most water quality studies. The LTM is applicable to steady or unsteady one-dimensional unidirectional flows in fixed channels with tributary and lateral inflows. Application of the LTM is relatively simple and optional capabilities improve the model 's convenience. Appendices give file formats and three example LTM applications that include the incorporation of the QUAL II water quality model 's reaction kinetics into the LTM. (Author 's abstract)

  13. Integral formulae of the canonical correlation functions for the one dimensional transverse Ising model

    NASA Astrophysics Data System (ADS)

    Inoue, Makoto

    2017-12-01

    Some new formulae of the canonical correlation functions for the one dimensional quantum transverse Ising model are found by the ST-transformation method using a Morita's sum rule and its extensions for the two dimensional classical Ising model. As a consequence we obtain a time-independent term of the dynamical correlation functions. Differences of quantum version and classical version of these formulae are also discussed.

  14. Wave dispersion and propagation in state-based peridynamics

    NASA Astrophysics Data System (ADS)

    Butt, Sahir N.; Timothy, Jithender J.; Meschke, Günther

    2017-11-01

    Peridynamics is a nonlocal continuum model which offers benefits over classical continuum models in cases, where discontinuities, such as cracks, are present in the deformation field. However, the nonlocal characteristics of peridynamics leads to a dispersive dynamic response of the medium. In this study we focus on the dispersion properties of a state-based linear peridynamic solid model and specifically investigate the role of the peridynamic horizon. We derive the dispersion relation for one, two and three dimensional cases and investigate the effect of horizon size, mesh size (lattice spacing) and the influence function on the dispersion properties. We show how the influence function can be used to minimize wave dispersion at a fixed lattice spacing and demonstrate it qualitatively by wave propagation analysis in one- and two-dimensional models of elastic solids. As a main contribution of this paper, we propose to associate peridynamic non-locality expressed by the horizon with a characteristic length scale related to the material microstructure. To this end, the dispersion curves obtained from peridynamics are compared with experimental data for two kinds of sandstone.

  15. Modeling the defrost process in complex geometries - Part 1: Development of a one-dimensional defrost model

    NASA Astrophysics Data System (ADS)

    van Buren, Simon; Hertle, Ellen; Figueiredo, Patric; Kneer, Reinhold; Rohlfs, Wilko

    2017-11-01

    Frost formation is a common, often undesired phenomenon in heat exchanges such as air coolers. Thus, air coolers have to be defrosted periodically, causing significant energy consumption. For the design and optimization, prediction of defrosting by a CFD tool is desired. This paper presents a one-dimensional transient model approach suitable to be used as a zero-dimensional wall-function in CFD for modeling the defrost process at the fin and tube interfaces. In accordance to previous work a multi stage defrost model is introduced (e.g. [1, 2]). In the first instance the multi stage model is implemented and validated using MATLAB. The defrost process of a one-dimensional frost segment is investigated. Fixed boundary conditions are provided at the frost interfaces. The simulation results verify the plausibility of the designed model. The evaluation of the simulated defrost process shows the expected convergent behavior of the three-stage sequence.

  16. A 3-D turbulent flow analysis using finite elements with k-ɛ model

    NASA Astrophysics Data System (ADS)

    Okuda, H.; Yagawa, G.; Eguchi, Y.

    1989-03-01

    This paper describes the finite element turbulent flow analysis, which is suitable for three-dimensional large scale problems. The k-ɛ turbulence model as well as the conservation equations of mass and momentum are discretized in space using rather low order elements. Resulting coefficient matrices are evaluated by one-point quadrature in order to reduce the computational storage and the CPU cost. The time integration scheme based on the velocity correction method is employed to obtain steady state solutions. For the verification of this FEM program, two-dimensional plenum flow is simulated and compared with experiment. As the application to three-dimensional practical problems, the turbulent flows in the upper plenum of the fast breeder reactor are calculated for various boundary conditions.

  17. Snow stratigraphic heterogeneity within ground-based passive microwave radiometer footprints: Implications for emission modeling

    NASA Astrophysics Data System (ADS)

    Rutter, Nick; Sandells, Mel; Derksen, Chris; Toose, Peter; Royer, Alain; Montpetit, Benoit; Langlois, Alex; Lemmetyinen, Juha; Pulliainen, Jouni

    2014-03-01

    Two-dimensional measurements of snowpack properties (stratigraphic layering, density, grain size, and temperature) were used as inputs to the multilayer Helsinki University of Technology (HUT) microwave emission model at a centimeter-scale horizontal resolution, across a 4.5 m transect of ground-based passive microwave radiometer footprints near Churchill, Manitoba, Canada. Snowpack stratigraphy was complex (between six and eight layers) with only three layers extending continuously throughout the length of the transect. Distributions of one-dimensional simulations, accurately representing complex stratigraphic layering, were evaluated using measured brightness temperatures. Large biases (36 to 68 K) between simulated and measured brightness temperatures were minimized (-0.5 to 0.6 K), within measurement accuracy, through application of grain scaling factors (2.6 to 5.3) at different combinations of frequencies, polarizations, and model extinction coefficients. Grain scaling factors compensated for uncertainty relating optical specific surface area to HUT effective grain size inputs and quantified relative differences in scattering and absorption properties of various extinction coefficients. The HUT model required accurate representation of ice lenses, particularly at horizontal polarization, and large grain scaling factors highlighted the need to consider microstructure beyond the size of individual grains. As variability of extinction coefficients was strongly influenced by the proportion of large (hoar) grains in a vertical profile, it is important to consider simulations from distributions of one-dimensional profiles rather than single profiles, especially in sub-Arctic snowpacks where stratigraphic variability can be high. Model sensitivity experiments suggested that the level of error in field measurements and the new methodological framework used to apply them in a snow emission model were satisfactory. Layer amalgamation showed that a three-layer representation of snowpack stratigraphy reduced the bias of a one-layer representation by about 50%.

  18. Exact solution of three-dimensional transport problems using one-dimensional models. [in semiconductor devices

    NASA Technical Reports Server (NTRS)

    Misiakos, K.; Lindholm, F. A.

    1986-01-01

    Several parameters of certain three-dimensional semiconductor devices including diodes, transistors, and solar cells can be determined without solving the actual boundary-value problem. The recombination current, transit time, and open-circuit voltage of planar diodes are emphasized here. The resulting analytical expressions enable determination of the surface recombination velocity of shallow planar diodes. The method involves introducing corresponding one-dimensional models having the same values of these parameters.

  19. Tangent map intermittency as an approximate analysis of intermittency in a high dimensional fully stochastic dynamical system: The Tangled Nature model.

    PubMed

    Diaz-Ruelas, Alvaro; Jeldtoft Jensen, Henrik; Piovani, Duccio; Robledo, Alberto

    2016-12-01

    It is well known that low-dimensional nonlinear deterministic maps close to a tangent bifurcation exhibit intermittency and this circumstance has been exploited, e.g., by Procaccia and Schuster [Phys. Rev. A 28, 1210 (1983)], to develop a general theory of 1/f spectra. This suggests it is interesting to study the extent to which the behavior of a high-dimensional stochastic system can be described by such tangent maps. The Tangled Nature (TaNa) Model of evolutionary ecology is an ideal candidate for such a study, a significant model as it is capable of reproducing a broad range of the phenomenology of macroevolution and ecosystems. The TaNa model exhibits strong intermittency reminiscent of punctuated equilibrium and, like the fossil record of mass extinction, the intermittency in the model is found to be non-stationary, a feature typical of many complex systems. We derive a mean-field version for the evolution of the likelihood function controlling the reproduction of species and find a local map close to tangency. This mean-field map, by our own local approximation, is able to describe qualitatively only one episode of the intermittent dynamics of the full TaNa model. To complement this result, we construct a complete nonlinear dynamical system model consisting of successive tangent bifurcations that generates time evolution patterns resembling those of the full TaNa model in macroscopic scales. The switch from one tangent bifurcation to the next in the sequences produced in this model is stochastic in nature, based on criteria obtained from the local mean-field approximation, and capable of imitating the changing set of types of species and total population in the TaNa model. The model combines full deterministic dynamics with instantaneous parameter random jumps at stochastically drawn times. In spite of the limitations of our approach, which entails a drastic collapse of degrees of freedom, the description of a high-dimensional model system in terms of a low-dimensional one appears to be illuminating.

  20. A three-dimensional axis for the study of femoral neck orientation

    PubMed Central

    Bonneau, Noémie; Libourel, Paul-Antoine; Simonis, Caroline; Puymerail, Laurent; Baylac, Michel; Tardieu, Christine; Gagey, Olivier

    2012-01-01

    A common problem in the quantification of the orientation of the femoral neck is the difficulty to determine its true axis; however, this axis is typically estimated visually only. Moreover, the orientation of the femoral neck is commonly analysed using angles that are dependent on anatomical planes of reference and only quantify the orientation in two dimensions. The purpose of this study is to establish a method to determine the three-dimensional orientation of the femoral neck using a three-dimensional model. An accurate determination of the femoral neck axis requires a reconsideration of the complex architecture of the proximal femur. The morphology of the femoral neck results from both the medial and arcuate trabecular systems, and the asymmetry of the cortical bone. Given these considerations, two alternative models, in addition to the cylindrical one frequently assumed, were tested. The surface geometry of the femoral neck was subsequently used to fit one cylinder, two cylinders and successive cross-sectional ellipses. The model based on successive ellipses provided a significantly smaller average deviation than the two other models (P < 0.001) and reduced the observer-induced measurement error. Comparisons with traditional measurements and analyses on a sample of 91 femora were also performed to assess the validity of the model based on successive ellipses. This study provides a semi-automatic and accurate method for the determination of the functional three-dimensional femoral neck orientation avoiding the use of a reference plane. This innovative method has important implications for future studies that aim to document and understand the change in the orientation of the femoral neck associated with the acquisition of a bipedal gait in humans. Moreover, the precise determination of the three-dimensional orientation has implications in current research involved in developing clinical applications in diagnosis, hip surgery and rehabilitation. PMID:22967192

  1. A well-balanced meshless tsunami propagation and inundation model

    NASA Astrophysics Data System (ADS)

    Brecht, Rüdiger; Bihlo, Alexander; MacLachlan, Scott; Behrens, Jörn

    2018-05-01

    We present a novel meshless tsunami propagation and inundation model. We discretize the nonlinear shallow-water equations using a well-balanced scheme relying on radial basis function based finite differences. For the inundation model, radial basis functions are used to extrapolate the dry region from nearby wet points. Numerical results against standard one- and two-dimensional benchmarks are presented.

  2. A simple physical model for forest fire spread

    Treesearch

    E. Koo; P. Pagni; J. Woycheese; S. Stephens; D. Weise; J. Huff

    2005-01-01

    Based on energy conservation and detailed heat transfer mechanisms, a simple physical model for fire spread is presented for the limit of one-dimensional steady-state contiguous spread of a line fire in a thermally-thin uniform porous fuel bed. The solution for the fire spread rate is found as an eigenvalue from this model with appropriate boundary conditions through a...

  3. Model-based Clustering of High-Dimensional Data in Astrophysics

    NASA Astrophysics Data System (ADS)

    Bouveyron, C.

    2016-05-01

    The nature of data in Astrophysics has changed, as in other scientific fields, in the past decades due to the increase of the measurement capabilities. As a consequence, data are nowadays frequently of high dimensionality and available in mass or stream. Model-based techniques for clustering are popular tools which are renowned for their probabilistic foundations and their flexibility. However, classical model-based techniques show a disappointing behavior in high-dimensional spaces which is mainly due to their dramatical over-parametrization. The recent developments in model-based classification overcome these drawbacks and allow to efficiently classify high-dimensional data, even in the "small n / large p" situation. This work presents a comprehensive review of these recent approaches, including regularization-based techniques, parsimonious modeling, subspace classification methods and classification methods based on variable selection. The use of these model-based methods is also illustrated on real-world classification problems in Astrophysics using R packages.

  4. Modulated Structures of Homologous Compounds In MO 3(ZnO) m( M=In, Ga; m=Integer) Described by Four-Dimensional Superspace Group

    NASA Astrophysics Data System (ADS)

    Li, Chunfei; Bando, Yoshio; Nakamura, Masaki; Onoda, Mitsuko; Kimizuka, Noboru

    1998-09-01

    The modulated structures appearing in the homologous compounds InMO3(ZnO)m(M=In, Ga;m=integer) were observed by using a high-resoultion transmission electron microscope and are described based on a four-dimensional superspace group. The electron diffraction patterns for compounds withmlarger than 6 reveal extra spots, indicating the formation of a modulated structure. The subcell structures form=odd and even numbers are assigned to be either monoclinic or orthorhombic, respectively. On the other hand, extra spots can be indexed by one-dimensional modulated structure. The possible space groups for the subcell structure areCm,C2, andC2/mform=odd numbers, while those form=even numbers areCcm21andCcmm, respectively. Then, corresponding possible superspace groups are assigned to bePC2s,PCmoverline1, andPC2/msoverline1for oddmnumbers andPCcm211overline1overline1andPCcmm1overline11for evenmnumbers. Based on the superspace group determination, a structure model for a one-dimensional modulated structure is proposed.

  5. Modelling the Cast Component Weight in Hot Chamber Die Casting using Combined Taguchi and Buckingham's π Approach

    NASA Astrophysics Data System (ADS)

    Singh, Rupinder

    2018-02-01

    Hot chamber (HC) die casting process is one of the most widely used commercial processes for the casting of low temperature metals and alloys. This process gives near-net shape product with high dimensional accuracy. However in actual field environment the best settings of input parameters is often conflicting as the shape and size of the casting changes and one have to trade off among various output parameters like hardness, dimensional accuracy, casting defects, microstructure etc. So for online inspection of the cast components properties (without affecting the production line) the weight measurement has been established as one of the cost effective method (as the difference in weight of sound and unsound casting reflects the possible casting defects) in field environment. In the present work at first stage the effect of three input process parameters (namely: pressure at 2nd phase in HC die casting; metal pouring temperature and die opening time) has been studied for optimizing the cast component weight `W' as output parameter in form of macro model based upon Taguchi L9 OA. After this Buckingham's π approach has been applied on Taguchi based macro model for the development of micro model. This study highlights the Taguchi-Buckingham based combined approach as a case study (for conversion of macro model into micro model) by identification of optimum levels of input parameters (based on Taguchi approach) and development of mathematical model (based on Buckingham's π approach). Finally developed mathematical model can be used for predicting W in HC die casting process with more flexibility. The results of study highlights second degree polynomial equation for predicting cast component weight in HC die casting and suggest that pressure at 2nd stage is one of the most contributing factors for controlling the casting defect/weight of casting.

  6. Two-dimensional Mathematical Model of Oil-bearing Materials in Extrusion-type Transportation over Rectangular Screw Core

    NASA Astrophysics Data System (ADS)

    Gukasyan, A. V.; Koshevoy, E. P.; Kosachev, V. S.

    2018-05-01

    A comparative analysis of alternative models for plastic flow in extrusive transportation of oil-bearing materials was conducted; the research was directed at determining the function describing the screw core throughput capacity of the press (extruder). Transition from a one-dimensional model to a two-dimensional model significantly improves the mathematical model and allows using two-dimensional rheological models determining the throughput of the screw core.

  7. A model for one-dimensional morphoelasticity and its application to fibroblast-populated collagen lattices.

    PubMed

    Menon, Shakti N; Hall, Cameron L; McCue, Scott W; McElwain, D L Sean

    2017-10-01

    The mechanical behaviour of solid biological tissues has long been described using models based on classical continuum mechanics. However, the classical continuum theories of elasticity and viscoelasticity cannot easily capture the continual remodelling and associated structural changes in biological tissues. Furthermore, models drawn from plasticity theory are difficult to apply and interpret in this context, where there is no equivalent of a yield stress or flow rule. In this work, we describe a novel one-dimensional mathematical model of tissue remodelling based on the multiplicative decomposition of the deformation gradient. We express the mechanical effects of remodelling as an evolution equation for the effective strain, a measure of the difference between the current state and a hypothetical mechanically relaxed state of the tissue. This morphoelastic model combines the simplicity and interpretability of classical viscoelastic models with the versatility of plasticity theory. A novel feature of our model is that while most models describe growth as a continuous quantity, here we begin with discrete cells and develop a continuum representation of lattice remodelling based on an appropriate limit of the behaviour of discrete cells. To demonstrate the utility of our approach, we use this framework to capture qualitative aspects of the continual remodelling observed in fibroblast-populated collagen lattices, in particular its contraction and its subsequent sudden re-expansion when remodelling is interrupted.

  8. Evaluating BTEX concentration in soil using a simple one-dimensional vado zone model: application to a new fuel station in Valencia (Spain)

    NASA Astrophysics Data System (ADS)

    Rodrigo-Ilarri, Javier; Rodrigo-Clavero, María-Elena

    2017-04-01

    Specific studies of the impact of fuel spills on the vadose zone are currently required when trying to obtain the environmental permits for new fuel stations. The development of One-Dimensional mathematical models of fate and transport of BTEX on the vadose zone can therefore be used to understand the behavior of the pollutants under different scenarios. VLEACH - a simple One-Dimensional Finite Different Vadose Zone Leaching Model - uses an numerical approximation of the Millington Equation, a theoretical based model for gaseous diffusion in porous media. This equation has been widely used in the fields of soil physics and hydrology to calculate the gaseous or vapor diffusion in porous media. The model describes the movement of organic contaminants within and between three different phases: (1) as a solute dissolved in water, (2) as a gas in the vapor phase, and (3) as an absorbed compound in the soil phase. Initially, the equilibrium distribution of contaminant mass between liquid, gas and sorbed phases is calculated. Transport processes are then simulated. Liquid advective transport is calculated based on values defined by the user for infiltration and soil water content. The contaminant in the vapor phase migrates into or out of adjacent cells based on the calculated concentration gradients that exist between adjacent cells. After the mass is exchanged between the cells, the total mass in each cell is recalculated and re-equilibrated between the different phases. At the end of the simulation, (1) an overall area-weighted groundwater impact for the entire modeled area and (2) the concentration profile of BTEX on the vadose zone are calculated. This work shows the results obtained when applying VLEACH to analyze the contamination scenario caused by a BTEX spill coming from a set of future underground storage tanks located on a new fuel station in Aldaia (Valencia region - Spain).

  9. A Computer-Based Simulation for Teaching Heat Transfer across a Woody Stem

    ERIC Educational Resources Information Center

    Maixner, Michael R.; Noyd, Robert K.; Krueger, Jerome A.

    2010-01-01

    To assist student understanding of heat transfer through woody stems, we developed an instructional package that included an Excel-based, one-dimensional simulation model and a companion instructional worksheet. Guiding undergraduate botany students to applying principles of thermodynamics to plants in nature is fraught with two main obstacles:…

  10. The assessment of virtual reality for human anatomy instruction

    NASA Technical Reports Server (NTRS)

    Benn, Karen P.

    1994-01-01

    This research project seeks to meet the objective of science training by developing, assessing, and validating virtual reality as a human anatomy training medium. In ideal situations, anatomic models, computer-based instruction, and cadaver dissection are utilized to augment the traditional methods of instruction. At many institutions, lack of financial resources limits anatomy instruction to textbooks and lectures. However, human anatomy is three dimensional, unlike the one dimensional depiction found in textbooks and the two dimensional depiction found on the computer. Virtual reality is a breakthrough technology that allows one to step through the computer screen into a three dimensional world. This technology offers many opportunities to enhance science education. Therefore, a virtual testing environment of the abdominopelvic region of a human cadaver was created to study the placement of body parts within the nine anatomical divisions of the abdominopelvic region and the four abdominal quadrants.

  11. Computational simulations of vocal fold vibration: Bernoulli versus Navier-Stokes.

    PubMed

    Decker, Gifford Z; Thomson, Scott L

    2007-05-01

    The use of the mechanical energy (ME) equation for fluid flow, an extension of the Bernoulli equation, to predict the aerodynamic loading on a two-dimensional finite element vocal fold model is examined. Three steady, one-dimensional ME flow models, incorporating different methods of flow separation point prediction, were compared. For two models, determination of the flow separation point was based on fixed ratios of the glottal area at separation to the minimum glottal area; for the third model, the separation point determination was based on fluid mechanics boundary layer theory. Results of flow rate, separation point, and intraglottal pressure distribution were compared with those of an unsteady, two-dimensional, finite element Navier-Stokes model. Cases were considered with a rigid glottal profile as well as with a vibrating vocal fold. For small glottal widths, the three ME flow models yielded good predictions of flow rate and intraglottal pressure distribution, but poor predictions of separation location. For larger orifice widths, the ME models were poor predictors of flow rate and intraglottal pressure, but they satisfactorily predicted separation location. For the vibrating vocal fold case, all models resulted in similar predictions of mean intraglottal pressure, maximum orifice area, and vibration frequency, but vastly different predictions of separation location and maximum flow rate.

  12. An intermediate-scale model for thermal hydrology in low-relief permafrost-affected landscapes

    DOE PAGES

    Jan, Ahmad; Coon, Ethan T.; Painter, Scott L.; ...

    2017-07-10

    Integrated surface/subsurface models for simulating the thermal hydrology of permafrost-affected regions in a warming climate have recently become available, but computational demands of those new process-rich simu- lation tools have thus far limited their applications to one-dimensional or small two-dimensional simulations. We present a mixed-dimensional model structure for efficiently simulating surface/subsurface thermal hydrology in low-relief permafrost regions at watershed scales. The approach replaces a full three-dimensional system with a two-dimensional overland thermal hydrology system and a family of one-dimensional vertical columns, where each column represents a fully coupled surface/subsurface thermal hydrology system without lateral flow. The system is then operatormore » split, sequentially updating the overland flow system without sources and the one-dimensional columns without lateral flows. We show that the app- roach is highly scalable, supports subcycling of different processes, and compares well with the corresponding fully three-dimensional representation at significantly less computational cost. Those advances enable recently developed representations of freezing soil physics to be coupled with thermal overland flow and surface energy balance at scales of 100s of meters. Furthermore developed and demonstrated for permafrost thermal hydrology, the mixed-dimensional model structure is applicable to integrated surface/subsurface thermal hydrology in general.« less

  13. NASA One-Dimensional Combustor Simulation--User Manual for S1D_ML

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J.; Paxson, Daniel E.

    2014-01-01

    The work presented in this paper is to promote research leading to a closed-loop control system to actively suppress thermo-acoustic instabilities. To serve as a model for such a closed-loop control system, a one-dimensional combustor simulation composed using MATLAB software tools has been written. This MATLAB based process is similar to a precursor one-dimensional combustor simulation that was formatted as FORTRAN 77 source code. The previous simulation process requires modification to the FORTRAN 77 source code, compiling, and linking when creating a new combustor simulation executable file. The MATLAB based simulation does not require making changes to the source code, recompiling, or linking. Furthermore, the MATLAB based simulation can be run from script files within the MATLAB environment or with a compiled copy of the executable file running in the Command Prompt window without requiring a licensed copy of MATLAB. This report presents a general simulation overview. Details regarding how to setup and initiate a simulation are also presented. Finally, the post-processing section describes the two types of files created while running the simulation and it also includes simulation results for a default simulation included with the source code.

  14. One-dimensional/two-dimensional hybridization for self-supported binder-free silicon-based lithium ion battery anodes.

    PubMed

    Wang, Bin; Li, Xianglong; Luo, Bin; Jia, Yuying; Zhi, Linjie

    2013-02-21

    A unique silicon-based anode for lithium ion batteries is developed via the facile hybridization of one-dimensional silicon nanowires and two-dimensional graphene sheets. The resulting paper-like film holds advantages highly desirable for not only accommodating the volume change of silicon, but also facilitating the fast transport of electron and lithium ions.

  15. Particle orbits in two-dimensional equilibrium models for the magnetotail

    NASA Technical Reports Server (NTRS)

    Karimabadi, H.; Pritchett, P. L.; Coroniti, F. V.

    1990-01-01

    Assuming that there exist an equilibrium state for the magnetotail, particle orbits are investigated in two-dimensional kinetic equilibrium models for the magnetotail. Particle orbits in the equilibrium field are compared with those calculated earlier with one-dimensional models, where the main component of the magnetic field (Bx) was approximated as either a hyperbolic tangent or a linear function of z with the normal field (Bz) assumed to be a constant. It was found that the particle orbits calculated with the two types of models are significantly different, mainly due to the neglect of the variation of Bx with x in the one-dimensional fields.

  16. The Long Decay Model of One-Dimensional Projectile Motion

    ERIC Educational Resources Information Center

    Lattery, Mark Joseph

    2008-01-01

    This article introduces a research study on student model formation and development in introductory mechanics. As a point of entry, I present a detailed analysis of the Long Decay Model of one-dimensional projectile motion. This model has been articulated by Galileo ("in De Motu") and by contemporary students. Implications for instruction are…

  17. Application of a one-dimensional model to explore the drivers and lability of carbon in the northern Gulf of Mexico

    EPA Science Inventory

    A one-dimensional water quality model, Gulf of Mexico Dissolved Oxygen Model (GoMDOM-1D), was developed to simulate phytoplankton, carbon, nutrients, and dissolved oxygen in Gulf of Mexico. The model was calibrated and corroborated against a comprehensive set of field observation...

  18. A 2-D Interface Element for Coupled Analysis of Independently Modeled 3-D Finite Element Subdomains

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1998-01-01

    Over the past few years, the development of the interface technology has provided an analysis framework for embedding detailed finite element models within finite element models which are less refined. This development has enabled the use of cascading substructure domains without the constraint of coincident nodes along substructure boundaries. The approach used for the interface element is based on an alternate variational principle often used in deriving hybrid finite elements. The resulting system of equations exhibits a high degree of sparsity but gives rise to a non-positive definite system which causes difficulties with many of the equation solvers in general-purpose finite element codes. Hence the global system of equations is generally solved using, a decomposition procedure with pivoting. The research reported to-date for the interface element includes the one-dimensional line interface element and two-dimensional surface interface element. Several large-scale simulations, including geometrically nonlinear problems, have been reported using the one-dimensional interface element technology; however, only limited applications are available for the surface interface element. In the applications reported to-date, the geometry of the interfaced domains exactly match each other even though the spatial discretization within each domain may be different. As such, the spatial modeling of each domain, the interface elements and the assembled system is still laborious. The present research is focused on developing a rapid modeling procedure based on a parametric interface representation of independently defined subdomains which are also independently discretized.

  19. Integration of Local Observations into the One Dimensional Fog Model PAFOG

    NASA Astrophysics Data System (ADS)

    Thoma, Christina; Schneider, Werner; Masbou, Matthieu; Bott, Andreas

    2012-05-01

    The numerical prediction of fog requires a very high vertical resolution of the atmosphere. Owing to a prohibitive computational effort of high resolution three dimensional models, operational fog forecast is usually done by means of one dimensional fog models. An important condition for a successful fog forecast with one dimensional models consists of the proper integration of observational data into the numerical simulations. The goal of the present study is to introduce new methods for the consideration of these data in the one dimensional radiation fog model PAFOG. First, it will be shown how PAFOG may be initialized with observed visibilities. Second, a nudging scheme will be presented for the inclusion of measured temperature and humidity profiles in the PAFOG simulations. The new features of PAFOG have been tested by comparing the model results with observations of the German Meteorological Service. A case study will be presented that reveals the importance of including local observations in the model calculations. Numerical results obtained with the modified PAFOG model show a distinct improvement of fog forecasts regarding the times of fog formation, dissipation as well as the vertical extent of the investigated fog events. However, model results also reveal that a further improvement of PAFOG might be possible if several empirical model parameters are optimized. This tuning can only be realized by comprehensive comparisons of model simulations with corresponding fog observations.

  20. Theoretical results on the tandem junction solar cell based on its Ebers-Moll transistor model

    NASA Technical Reports Server (NTRS)

    Goradia, C.; Vaughn, J.; Baraona, C. R.

    1980-01-01

    A one-dimensional theoretical model of the tandem junction solar cell (TJC) with base resistivity greater than about 1 ohm-cm and under low level injection has been derived. This model extends a previously published conceptual model which treats the TJC as an npn transistor. The model gives theoretical expressions for each of the Ebers-Moll type currents of the illuminated TJC and allows for the calculation of the spectral response, I(sc), V(oc), FF and eta under variation of one or more of the geometrical and material parameters and 1MeV electron fluence. Results of computer calculations based on this model are presented and discussed. These results indicate that for space applications, both a high beginning of life efficiency, greater than 15% AM0, and a high radiation tolerance can be achieved only with thin (less than 50 microns) TJC's with high base resistivity (greater than 10 ohm-cm).

  1. Variance-based interaction index measuring heteroscedasticity

    NASA Astrophysics Data System (ADS)

    Ito, Keiichi; Couckuyt, Ivo; Poles, Silvia; Dhaene, Tom

    2016-06-01

    This work is motivated by the need to deal with models with high-dimensional input spaces of real variables. One way to tackle high-dimensional problems is to identify interaction or non-interaction among input parameters. We propose a new variance-based sensitivity interaction index that can detect and quantify interactions among the input variables of mathematical functions and computer simulations. The computation is very similar to first-order sensitivity indices by Sobol'. The proposed interaction index can quantify the relative importance of input variables in interaction. Furthermore, detection of non-interaction for screening can be done with as low as 4 n + 2 function evaluations, where n is the number of input variables. Using the interaction indices based on heteroscedasticity, the original function may be decomposed into a set of lower dimensional functions which may then be analyzed separately.

  2. Higher-order gravity in higher dimensions: geometrical origins of four-dimensional cosmology?

    NASA Astrophysics Data System (ADS)

    Troisi, Antonio

    2017-03-01

    Determining the cosmological field equations is still very much debated and led to a wide discussion around different theoretical proposals. A suitable conceptual scheme could be represented by gravity models that naturally generalize Einstein theory like higher-order gravity theories and higher-dimensional ones. Both of these two different approaches allow one to define, at the effective level, Einstein field equations equipped with source-like energy-momentum tensors of geometrical origin. In this paper, the possibility is discussed to develop a five-dimensional fourth-order gravity model whose lower-dimensional reduction could provide an interpretation of cosmological four-dimensional matter-energy components. We describe the basic concepts of the model, the complete field equations formalism and the 5-D to 4-D reduction procedure. Five-dimensional f( R) field equations turn out to be equivalent, on the four-dimensional hypersurfaces orthogonal to the extra coordinate, to an Einstein-like cosmological model with three matter-energy tensors related with higher derivative and higher-dimensional counter-terms. By considering the gravity model with f(R)=f_0R^n the possibility is investigated to obtain five-dimensional power law solutions. The effective four-dimensional picture and the behaviour of the geometrically induced sources are finally outlined in correspondence to simple cases of such higher-dimensional solutions.

  3. Dimensional Comparisons: An Experimental Approach to the Internal/External Frame of Reference Model.

    ERIC Educational Resources Information Center

    Moller, Jens; Koller, Olaf

    2001-01-01

    Three experimental studies investigated psychological processes underlying the effects of achievement in one domain and on self-perceived competence in another. In Study 1, high achievement in one domain led to lower self-perceived competence in the other. Study 2 showed inverse effects on self-perceived competence based on achievement feedback.…

  4. Some applications of the multi-dimensional fractional order for the Riemann-Liouville derivative

    NASA Astrophysics Data System (ADS)

    Ahmood, Wasan Ajeel; Kiliçman, Adem

    2017-01-01

    In this paper, the aim of this work is to study theorem for the one-dimensional space-time fractional deriative, generalize some function for the one-dimensional fractional by table represents the fractional Laplace transforms of some elementary functions to be valid for the multi-dimensional fractional Laplace transform and give the definition of the multi-dimensional fractional Laplace transform. This study includes that, dedicate the one-dimensional fractional Laplace transform for functions of only one independent variable and develop of the one-dimensional fractional Laplace transform to multi-dimensional fractional Laplace transform based on the modified Riemann-Liouville derivative.

  5. A one-dimensional heat-transport model for conduit flow in karst aquifers

    USGS Publications Warehouse

    Long, Andrew J.; Gilcrease, P.C.

    2009-01-01

    A one-dimensional heat-transport model for conduit flow in karst aquifers is presented as an alternative to two or three-dimensional distributed-parameter models, which are data intensive and require knowledge of conduit locations. This model can be applied for cases where water temperature in a well or spring receives all or part of its water from a phreatic conduit. Heat transport in the conduit is simulated by using a physically-based heat-transport equation that accounts for inflow of diffuse flow from smaller openings and fissures in the surrounding aquifer during periods of low recharge. Additional diffuse flow that is within the zone of influence of the well or spring but has not interacted with the conduit is accounted for with a binary mixing equation to proportion these different water sources. The estimation of this proportion through inverse modeling is useful for the assessment of contaminant vulnerability and well-head or spring protection. The model was applied to 7 months of continuous temperature data for a sinking stream that recharges a conduit and a pumped well open to the Madison aquifer in western South Dakota. The simulated conduit-flow fraction to the well ranged from 2% to 31% of total flow, and simulated conduit velocity ranged from 44 to 353 m/d.

  6. Multi-dimensional rheology-based two-phase model for sediment transport and applications to sheet flow and pipeline scour

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Cheng-Hsien; Department of Water Resources and Environmental Engineering, Tamkang University, New Taipei City 25137, Taiwan; Low, Ying Min, E-mail: ceelowym@nus.edu.sg

    2016-05-15

    Sediment transport is fundamentally a two-phase phenomenon involving fluid and sediments; however, many existing numerical models are one-phase approaches, which are unable to capture the complex fluid-particle and inter-particle interactions. In the last decade, two-phase models have gained traction; however, there are still many limitations in these models. For example, several existing two-phase models are confined to one-dimensional problems; in addition, the existing two-dimensional models simulate only the region outside the sand bed. This paper develops a new three-dimensional two-phase model for simulating sediment transport in the sheet flow condition, incorporating recently published rheological characteristics of sediments. The enduring-contact, inertial,more » and fluid viscosity effects are considered in determining sediment pressure and stresses, enabling the model to be applicable to a wide range of particle Reynolds number. A k − ε turbulence model is adopted to compute the Reynolds stresses. In addition, a novel numerical scheme is proposed, thus avoiding numerical instability caused by high sediment concentration and allowing the sediment dynamics to be computed both within and outside the sand bed. The present model is applied to two classical problems, namely, sheet flow and scour under a pipeline with favorable results. For sheet flow, the computed velocity is consistent with measured data reported in the literature. For pipeline scour, the computed scour rate beneath the pipeline agrees with previous experimental observations. However, the present model is unable to capture vortex shedding; consequently, the sediment deposition behind the pipeline is overestimated. Sensitivity analyses reveal that model parameters associated with turbulence have strong influence on the computed results.« less

  7. Photon Transport in One-Dimensional Incommensurately Epitaxial CsPbX 3 Arrays

    DOE PAGES

    Wang, Yiping; Sun, Xin; Shivanna, Ravichandran; ...

    2016-11-16

    One-dimensional nanoscale epitaxial arrays serve as a great model in studying fundamental physics and for emerging applications. With an increasing focus laid on the Cs-based inorganic halide perovskite out of its outstanding material stability, we have applied vapor phase epitaxy to grow well aligned horizontal CsPbX 3 (X: Cl, Br, or I or their mixed) nanowire arrays in large scale on mica substrate. The as-grown nanowire features a triangular prism morphology with typical length ranging from a few tens of micrometers to a few millimeters. Structural analysis reveals that the wire arrays follow the symmetry of mica substrate through incommensuratemore » epitaxy, paving a way for a universally applicable method to grow a broad family of halide perovskite materials. We have studied the unique photon transport in the one-dimensional structure in the all-inorganic Cs-based perovskite wires via temperature dependent and spatially resolved photoluminescence. Furthermore, epitaxy of well oriented wire arrays in halide perovskite would be a promising direction for enabling the circuit-level applications of halide perovskite in high-performance electro-optics and optoelectronics.« less

  8. Numerical model of spray combustion in a single cylinder diesel engine

    NASA Astrophysics Data System (ADS)

    Acampora, Luigi; Sequino, Luigi; Nigro, Giancarlo; Continillo, Gaetano; Vaglieco, Bianca Maria

    2017-11-01

    A numerical model is developed for predicting the pressure cycle from Intake Valve Closing (IVC) to the Exhaust Valve Opening (EVO) events. The model is based on a modified one-dimensional (1D) Musculus and Kattke spray model, coupled with a zero-dimensional (0D) non-adiabatic transient Fed-Batch reactor model. The 1D spray model provides an estimate of the fuel evaporation rate during the injection phenomenon, as a function of time. The 0D Fed-Batch reactor model describes combustion. The main goal of adopting a 0D (perfectly stirred) model is to use highly detailed reaction mechanisms for Diesel fuel combustion in air, while keeping the computational cost as low as possible. The proposed model is validated by comparing its predictions with experimental data of pressure obtained from an optical single cylinder Diesel engine.

  9. Office-Based Three-Dimensional Printing Workflow for Craniomaxillofacial Fracture Repair.

    PubMed

    Elegbede, Adekunle; Diaconu, Silviu C; McNichols, Colton H L; Seu, Michelle; Rasko, Yvonne M; Grant, Michael P; Nam, Arthur J

    2018-03-08

    Three-dimensional printing of patient-specific models is being used in various aspects of craniomaxillofacial reconstruction. Printing is typically outsourced to off-site vendors, with the main disadvantages being increased costs and time for production. Office-based 3-dimensional printing has been proposed as a means to reduce costs and delays, but remains largely underused because of the perception among surgeons that it is futuristic, highly technical, and prohibitively expensive. The goal of this report is to demonstrate the feasibility and ease of incorporating in-office 3-dimensional printing into the standard workflow for facial fracture repair.Patients with complex mandible fractures requiring open repair were identified. Open-source software was used to create virtual 3-dimensional skeletal models of the, initial injury pattern, and then the ideally reduced fractures based on preoperative computed tomography (CT) scan images. The virtual 3-dimensional skeletal models were then printed in our office using a commercially available 3-dimensional printer and bioplastic filament. The 3-dimensional skeletal models were used as templates to bend and shape titanium plates that were subsequently used for intraoperative fixation.Average print time was 6 hours. Excluding the 1-time cost of the 3-dimensional printer of $2500, roughly the cost of a single commercially produced model, the average material cost to print 1 model mandible was $4.30. Postoperative CT imaging demonstrated precise, predicted reduction in all patients.Office-based 3-dimensional printing of skeletal models can be routinely used in repair of facial fractures in an efficient and cost-effective manner.

  10. Cross Validation Through Two-Dimensional Solution Surface for Cost-Sensitive SVM.

    PubMed

    Gu, Bin; Sheng, Victor S; Tay, Keng Yeow; Romano, Walter; Li, Shuo

    2017-06-01

    Model selection plays an important role in cost-sensitive SVM (CS-SVM). It has been proven that the global minimum cross validation (CV) error can be efficiently computed based on the solution path for one parameter learning problems. However, it is a challenge to obtain the global minimum CV error for CS-SVM based on one-dimensional solution path and traditional grid search, because CS-SVM is with two regularization parameters. In this paper, we propose a solution and error surfaces based CV approach (CV-SES). More specifically, we first compute a two-dimensional solution surface for CS-SVM based on a bi-parameter space partition algorithm, which can fit solutions of CS-SVM for all values of both regularization parameters. Then, we compute a two-dimensional validation error surface for each CV fold, which can fit validation errors of CS-SVM for all values of both regularization parameters. Finally, we obtain the CV error surface by superposing K validation error surfaces, which can find the global minimum CV error of CS-SVM. Experiments are conducted on seven datasets for cost sensitive learning and on four datasets for imbalanced learning. Experimental results not only show that our proposed CV-SES has a better generalization ability than CS-SVM with various hybrids between grid search and solution path methods, and than recent proposed cost-sensitive hinge loss SVM with three-dimensional grid search, but also show that CV-SES uses less running time.

  11. FeynArts model file for MSSM transition counterterms from DREG to DRED

    NASA Astrophysics Data System (ADS)

    Stöckinger, Dominik; Varšo, Philipp

    2012-02-01

    The FeynArts model file MSSMdreg2dred implements MSSM transition counterterms which can convert one-loop Green functions from dimensional regularization to dimensional reduction. They correspond to a slight extension of the well-known Martin/Vaughn counterterms, specialized to the MSSM, and can serve also as supersymmetry-restoring counterterms. The paper provides full analytic results for the counterterms and gives one- and two-loop usage examples. The model file can simplify combining MS¯-parton distribution functions with supersymmetric renormalization or avoiding the renormalization of ɛ-scalars in dimensional reduction. Program summaryProgram title:MSSMdreg2dred.mod Catalogue identifier: AEKR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: LGPL-License [1] No. of lines in distributed program, including test data, etc.: 7600 No. of bytes in distributed program, including test data, etc.: 197 629 Distribution format: tar.gz Programming language: Mathematica, FeynArts Computer: Any, capable of running Mathematica and FeynArts Operating system: Any, with running Mathematica, FeynArts installation Classification: 4.4, 5, 11.1 Subprograms used: Cat Id Title Reference ADOW_v1_0 FeynArts CPC 140 (2001) 418 Nature of problem: The computation of one-loop Feynman diagrams in the minimal supersymmetric standard model (MSSM) requires regularization. Two schemes, dimensional regularization and dimensional reduction are both common but have different pros and cons. In order to combine the advantages of both schemes one would like to easily convert existing results from one scheme into the other. Solution method: Finite counterterms are constructed which correspond precisely to the one-loop scheme differences for the MSSM. They are provided as a FeynArts [2] model file. Using this model file together with FeynArts, the (ultra-violet) regularization of any MSSM one-loop Green function is switched automatically from dimensional regularization to dimensional reduction. In particular the counterterms serve as supersymmetry-restoring counterterms for dimensional regularization. Restrictions: The counterterms are restricted to the one-loop level and the MSSM. Running time: A few seconds to generate typical Feynman graphs with FeynArts.

  12. Asymptotic dynamics of some t-periodic one-dimensional model with application to prostate cancer immunotherapy.

    PubMed

    Foryś, U; Bodnar, M; Kogan, Y

    2016-10-01

    In the case of some specific cancers, immunotherapy is one of the possible treatments that can be considered. Our study is based on a mathematical model of patient-specific immunotherapy proposed in Kronik et al. (PLoS One 5(12):e15,482, 2010). This model was validated for clinical trials presented in Michael et al. (Clin Cancer Res 11(12):4469-4478, 2005). It consists of seven ordinary differential equations and its asymptotic dynamics can be described by some t-periodic one-dimensional dynamical system. In this paper we propose a generalised version of this t-periodic system and study the dynamics of the proposed model. We show that there are three possible types of the model behaviour: the solution either converges to zero, or diverges to infinity, or it is periodic. Moreover, the periodic solution is unique, and it divides the phase space into two sub-regions. The general results are applied to the PC specific case, which allow to derive conditions guaranteeing successful as well as unsuccessful treatment. The results indicate that a single vaccination is not sufficient to cure the cancer.

  13. POTENTIAL CLIMATE WARMING EFFECTS ON ICE COVERS OF SMALL LAKES IN THE CONTIGUOUS U.S. (R824801)

    EPA Science Inventory

    Abstract

    To simulate effects of projected climate change on ice covers of small lakes in the northern contiguous U.S., a process-based simulation model is applied. This winter ice/snow cover model is associated with a deterministic, one-dimensional year-round water tem...

  14. Femtosecond Dynamics of the Photo-Induced Lattice Rearrangements in Quasi-One Halogen-Bridged Platinum Complexes

    NASA Astrophysics Data System (ADS)

    Suemoto, Tohru; Tomimoto, Shinichi; Matsuoka, Taira

    Recent developments in femtosecond dynamics of the photoexcited state in quasi-one-dimensional platinum complexes [Pt(en)2][Pt(en)2X2] (ClO4)4 with X = Cl, Br and I are reviewed. The experimental results of time-resolved luminescence spectroscopy based on up-conversion technique are presented and analyzed in terms of a theory of wave-packet motion. An attempt to make a movie of wave-packet motion is mentioned. In Sec. 1, a brief introduction to the dynamics of the excited states in quasi-one-dimensional platinum complexes is given. It is stressed that this system can be a good model system for investigating the photo-induced structural phase transition. In order to describe a one-dimensional chain consisting of metal ions and halogen ions, the extended Peierls-Hubbard model is introduced in Sec. 2. The theoretical model of the relaxation dynamics in the excited states with a strong electron-lattice coupling is given in Sec. 3. The model is based on the interaction mode, which is appropriate for understanding the vibrational relaxation of localized centers in solids. Experimental backgrounds with some historical survey are given in Sec. 4. The recent experimental results of time-resolved luminescence for Pt-Cl, Pt-Br and Pt-I systems are presented in Secs. 5 to 8. The main result contains the direct observation of the wave-packet oscillation in the self-trapped excitons. The relaxation process observed in experiments has been successfully interpreted in terms of the model based on the interaction mode and the dynamical aspects are compared with the transient absorption measurements. The lifetime of the STE is shorter in Pt-X with heavier halogen ions. This behavior is discussed in relation with the non-radiative process leading to lattice rearrangements. In Secs. 9 and 10, visualization of the wave-packet form is presented. The basic behavior of the wave-packet is well understood in terms of a harmonic oscillator model. A non-exponential decay profiles are revealed from the center of gravity motion of the wave-packets. The exciton localization process is also discussed in the last section.

  15. Global environmental effects of impact-generated aerosols: Results from a general circulation model, revision 1

    NASA Technical Reports Server (NTRS)

    Covey, Curt; Ghan, Steven J.; Walton, John J.; Weissman, Paul R.

    1989-01-01

    Interception of sunlight by the high altitude worldwide dust cloud generated by impact of a large asteroid or comet would lead to substantial land surface cooling, according to our three-dimensional atmospheric general circulation model (GCM). This result is qualitatively similar to conclusions drawn from an earlier study that employed a one-dimensional atmospheric model, but in the GCM simulation the heat capacity of the oceans substantially mitigates land surface cooling, an effect that one-dimensional models cannot quantify. On the other hand, the low heat capacity of the GCM's land surface allows temperatures to drop more rapidly in the initial stage of cooling than in the one-dimensional model study. These two differences between three-dimensional and one-dimensional model simulations were noted previously in studies of nuclear winter; GCM-simulated climatic changes in the Alvarez-inspired scenario of asteroid/comet winter, however, are more severe than in nuclear winter because the assumed aerosol amount is large enough to intercept all sunlight falling on earth. Impacts of smaller objects could also lead to dramatic, though less severe, climatic changes, according to our GCM. Our conclusion is that it is difficult to imagine an asteroid or comet impact leading to anything approaching complete global freezing, but quite reasonable to assume that impacts at the Alvarez level, or even smaller, dramatically alter the climate in at least a patchy sense.

  16. Data assimilation of ground GPG total electron content into a physics-based ionosheric model by use of the Kalman filter

    NASA Technical Reports Server (NTRS)

    Hajj, G. A.; Wilson, B. D.; Wang, C.; Pi, X.; Rosen, I. G.

    2004-01-01

    A three-dimensional (3-D) Global Assimilative Ionospheric Model (GAIM) is currently being developed by a joint University of Southern California and Jet Propulsion Laboratory (JPL) team. To estimate the electron density on a global grid, GAIM uses a first-principles ionospheric physics model and the Kalman filter as one of its possible estimation techniques.

  17. EFDC1D - A ONE DIMENSIONAL HYDRODYNAMIC AND SEDIMENT TRANSPORT MODEL FOR RIVER AND STREAM NETWORKS: MODEL THEORY AND USERS GUIDE

    EPA Science Inventory

    This technical report describes the new one-dimensional (1D) hydrodynamic and sediment transport model EFDC1D. This model that can be applied to stream networks. The model code and two sample data sets are included on the distribution CD. EFDC1D can simulate bi-directional unstea...

  18. A one-dimensional model of subsurface hillslope flow

    Treesearch

    Jason C. Fisher

    1997-01-01

    Abstract - A one-dimensional, finite difference model of saturated subsurface flow within a hillslope was developed. The model uses rainfall, elevation data, a hydraulic conductivity, and a storage coefficient to predict the saturated thickness in time and space. The model was tested against piezometric data collected in a swale located in the headwaters of the North...

  19. Mechanical impedance and acoustic mobility measurement techniques of specifying vibration environments

    NASA Technical Reports Server (NTRS)

    Kao, G. C.

    1973-01-01

    Method has been developed for predicting interaction between components and corresponding support structures subjected to acoustic excitations. Force environments determined in spectral form are called force spectra. Force-spectra equation is determined based on one-dimensional structural impedance model.

  20. Microscopic theory of the superconducting gap in the quasi-one-dimensional organic conductor (TMTSF) 2ClO4 : Model derivation and two-particle self-consistent analysis

    NASA Astrophysics Data System (ADS)

    Aizawa, Hirohito; Kuroki, Kazuhiko

    2018-03-01

    We present a first-principles band calculation for the quasi-one-dimensional (Q1D) organic superconductor (TMTSF) 2ClO4 . An effective tight-binding model with the TMTSF molecule to be regarded as the site is derived from a calculation based on maximally localized Wannier orbitals. We apply a two-particle self-consistent (TPSC) analysis by using a four-site Hubbard model, which is composed of the tight-binding model and an onsite (intramolecular) repulsive interaction, which serves as a variable parameter. We assume that the pairing mechanism is mediated by the spin fluctuation, and the sign of the superconducting gap changes between the inner and outer Fermi surfaces, which correspond to a d -wave gap function in a simplified Q1D model. With the parameters we adopt, the critical temperature for superconductivity estimated by the TPSC approach is approximately 1 K, which is consistent with experiment.

  1. Comparative Protein Structure Modeling Using MODELLER

    PubMed Central

    Webb, Benjamin; Sali, Andrej

    2016-01-01

    Comparative protein structure modeling predicts the three-dimensional structure of a given protein sequence (target) based primarily on its alignment to one or more proteins of known structure (templates). The prediction process consists of fold assignment, target-template alignment, model building, and model evaluation. This unit describes how to calculate comparative models using the program MODELLER and how to use the ModBase database of such models, and discusses all four steps of comparative modeling, frequently observed errors, and some applications. Modeling lactate dehydrogenase from Trichomonas vaginalis (TvLDH) is described as an example. The download and installation of the MODELLER software is also described. PMID:27322406

  2. Probabilistic Solar Wind Forecasting Using Large Ensembles of Near-Sun Conditions With a Simple One-Dimensional "Upwind" Scheme

    NASA Astrophysics Data System (ADS)

    Owens, Mathew J.; Riley, Pete

    2017-11-01

    Long lead-time space-weather forecasting requires accurate prediction of the near-Earth solar wind. The current state of the art uses a coronal model to extrapolate the observed photospheric magnetic field to the upper corona, where it is related to solar wind speed through empirical relations. These near-Sun solar wind and magnetic field conditions provide the inner boundary condition to three-dimensional numerical magnetohydrodynamic (MHD) models of the heliosphere out to 1 AU. This physics-based approach can capture dynamic processes within the solar wind, which affect the resulting conditions in near-Earth space. However, this deterministic approach lacks a quantification of forecast uncertainty. Here we describe a complementary method to exploit the near-Sun solar wind information produced by coronal models and provide a quantitative estimate of forecast uncertainty. By sampling the near-Sun solar wind speed at a range of latitudes about the sub-Earth point, we produce a large ensemble (N = 576) of time series at the base of the Sun-Earth line. Propagating these conditions to Earth by a three-dimensional MHD model would be computationally prohibitive; thus, a computationally efficient one-dimensional "upwind" scheme is used. The variance in the resulting near-Earth solar wind speed ensemble is shown to provide an accurate measure of the forecast uncertainty. Applying this technique over 1996-2016, the upwind ensemble is found to provide a more "actionable" forecast than a single deterministic forecast; potential economic value is increased for all operational scenarios, but particularly when false alarms are important (i.e., where the cost of taking mitigating action is relatively large).

  3. Probabilistic Solar Wind Forecasting Using Large Ensembles of Near-Sun Conditions With a Simple One-Dimensional "Upwind" Scheme.

    PubMed

    Owens, Mathew J; Riley, Pete

    2017-11-01

    Long lead-time space-weather forecasting requires accurate prediction of the near-Earth solar wind. The current state of the art uses a coronal model to extrapolate the observed photospheric magnetic field to the upper corona, where it is related to solar wind speed through empirical relations. These near-Sun solar wind and magnetic field conditions provide the inner boundary condition to three-dimensional numerical magnetohydrodynamic (MHD) models of the heliosphere out to 1 AU. This physics-based approach can capture dynamic processes within the solar wind, which affect the resulting conditions in near-Earth space. However, this deterministic approach lacks a quantification of forecast uncertainty. Here we describe a complementary method to exploit the near-Sun solar wind information produced by coronal models and provide a quantitative estimate of forecast uncertainty. By sampling the near-Sun solar wind speed at a range of latitudes about the sub-Earth point, we produce a large ensemble (N = 576) of time series at the base of the Sun-Earth line. Propagating these conditions to Earth by a three-dimensional MHD model would be computationally prohibitive; thus, a computationally efficient one-dimensional "upwind" scheme is used. The variance in the resulting near-Earth solar wind speed ensemble is shown to provide an accurate measure of the forecast uncertainty. Applying this technique over 1996-2016, the upwind ensemble is found to provide a more "actionable" forecast than a single deterministic forecast; potential economic value is increased for all operational scenarios, but particularly when false alarms are important (i.e., where the cost of taking mitigating action is relatively large).

  4. Correlation between discrete probability and reaction front propagation rate in heterogeneous mixtures

    NASA Astrophysics Data System (ADS)

    Naine, Tarun Bharath; Gundawar, Manoj Kumar

    2017-09-01

    We demonstrate a very powerful correlation between the discrete probability of distances of neighboring cells and thermal wave propagation rate, for a system of cells spread on a one-dimensional chain. A gamma distribution is employed to model the distances of neighboring cells. In the absence of an analytical solution and the differences in ignition times of adjacent reaction cells following non-Markovian statistics, invariably the solution for thermal wave propagation rate for a one-dimensional system with randomly distributed cells is obtained by numerical simulations. However, such simulations which are based on Monte-Carlo methods require several iterations of calculations for different realizations of distribution of adjacent cells. For several one-dimensional systems, differing in the value of shaping parameter of the gamma distribution, we show that the average reaction front propagation rates obtained by a discrete probability between two limits, shows excellent agreement with those obtained numerically. With the upper limit at 1.3, the lower limit depends on the non-dimensional ignition temperature. Additionally, this approach also facilitates the prediction of burning limits of heterogeneous thermal mixtures. The proposed method completely eliminates the need for laborious, time intensive numerical calculations where the thermal wave propagation rates can now be calculated based only on macroscopic entity of discrete probability.

  5. Quantum phase transition and quench dynamics in the anisotropic Rabi model

    NASA Astrophysics Data System (ADS)

    Shen, Li-Tuo; Yang, Zhen-Biao; Wu, Huai-Zhi; Zheng, Shi-Biao

    2017-01-01

    We investigate the quantum phase transition (QPT) and quench dynamics in the anisotropic Rabi model when the ratio of the qubit transition frequency to the oscillator frequency approaches infinity. Based on the Schrieffer-Wolff transformation, we find an anti-Hermitian operator that maps the original Hamiltonian into a one-dimensional oscillator Hamiltonian within the spin-down subspace. We analytically derive the eigenenergy and eigenstate of the normal and superradiant phases and demonstrate that the system undergoes a second-order quantum phase transition at a critical border. The critical border is a straight line in a two-dimensional parameter space which essentially extends the dimensionality of QPT in the Rabi model. By combining the Kibble-Zurek mechanism and the adiabatic dynamics method, we find that the residual energy vanishes as the quench time tends to zero, which is a sharp contrast to the universal scaling where the residual energy diverges in the same limit.

  6. An approximate theoretical method for modeling the static thrust performance of non-axisymmetric two-dimensional convergent-divergent nozzles. M.S. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Hunter, Craig A.

    1995-01-01

    An analytical/numerical method has been developed to predict the static thrust performance of non-axisymmetric, two-dimensional convergent-divergent exhaust nozzles. Thermodynamic nozzle performance effects due to over- and underexpansion are modeled using one-dimensional compressible flow theory. Boundary layer development and skin friction losses are calculated using an approximate integral momentum method based on the classic karman-Polhausen solution. Angularity effects are included with these two models in a computational Nozzle Performance Analysis Code, NPAC. In four different case studies, results from NPAC are compared to experimental data obtained from subscale nozzle testing to demonstrate the capabilities and limitations of the NPAC method. In several cases, the NPAC prediction matched experimental gross thrust efficiency data to within 0.1 percent at a design NPR, and to within 0.5 percent at off-design conditions.

  7. Identification of the heat transfer coefficient in the two-dimensional model of binary alloy solidification

    NASA Astrophysics Data System (ADS)

    Hetmaniok, Edyta; Hristov, Jordan; Słota, Damian; Zielonka, Adam

    2017-05-01

    The paper presents the procedure for solving the inverse problem for the binary alloy solidification in a two-dimensional space. This is a continuation of some previous works of the authors investigating a similar problem but in the one-dimensional domain. Goal of the problem consists in identification of the heat transfer coefficient on boundary of the region and in reconstruction of the temperature distribution inside the considered region in case when the temperature measurements in selected points of the alloy are known. Mathematical model of the problem is based on the heat conduction equation with the substitute thermal capacity and with the liquidus and solidus temperatures varying in dependance on the concentration of the alloy component. For describing this concentration the Scheil model is used. Investigated procedure involves also the parallelized Ant Colony Optimization algorithm applied for minimizing a functional expressing the error of approximate solution.

  8. Excitation basis for (3+1)d topological phases

    NASA Astrophysics Data System (ADS)

    Delcamp, Clement

    2017-12-01

    We consider an exactly solvable model in 3+1 dimensions, based on a finite group, which is a natural generalization of Kitaev's quantum double model. The corresponding lattice Hamiltonian yields excitations located at torus-boundaries. By cutting open the three-torus, we obtain a manifold bounded by two tori which supports states satisfying a higher-dimensional version of Ocneanu's tube algebra. This defines an algebraic structure extending the Drinfel'd double. Its irreducible representations, labeled by two fluxes and one charge, characterize the torus-excitations. The tensor product of such representations is introduced in order to construct a basis for (3+1)d gauge models which relies upon the fusion of the defect excitations. This basis is defined on manifolds of the form Σ × S_1 , with Σ a two-dimensional Riemann surface. As such, our construction is closely related to dimensional reduction from (3+1)d to (2+1)d topological orders.

  9. Optimization of the lithium/thionyl chloride battery

    NASA Technical Reports Server (NTRS)

    White, Ralph E.

    1987-01-01

    The progress which has been made in modeling the lithium/thionyl chloride cell over the past year and proposed research for the coming year are discussed. A one-dimensional mathematical model for a lithium/thionyl chloride cell has been developed and used to investigate methods of improving cell performance. During the course of the work a problem was detected with the banded solver being used. It was replaced with one more reliable. Future work may take one of two directions. The one-dimensional model could be augmented to include additional features and to investigate in more detail the cell temperature behavior, or a simplified two-dimensional model for the spirally wound design of this battery could be developed to investigate the heat flow within the cell.

  10. One-Dimensional Harmonic Model for Biomolecules

    PubMed Central

    Krizan, John E.

    1973-01-01

    Following in spirit a paper by Rosen, we propose a one-dimensional harmonic model for biomolecules. Energy bands with gaps of the order of semi-conductor gaps are found. The method is discussed for general symmetric and periodic potential functions. PMID:4709518

  11. 3DHYDROGEOCHEM: A 3-DIMENSIONAL MODEL OF DENSITY-DEPENDENT SUBSURFACE FLOW AND THERMAL MULTISPECIES-MULTICOMPONENT HYDROGEOCHEMICAL TRANSPORT

    EPA Science Inventory

    This report presents a three-dimensional finite-element numerical model designed to simulate chemical transport in subsurface systems with temperature effect taken into account. The three-dimensional model is developed to provide (1) a tool of application, with which one is able...

  12. Retention modelling of polychlorinated biphenyls in comprehensive two-dimensional gas chromatography.

    PubMed

    D'Archivio, Angelo Antonio; Incani, Angela; Ruggieri, Fabrizio

    2011-01-01

    In this paper, we use a quantitative structure-retention relationship (QSRR) method to predict the retention times of polychlorinated biphenyls (PCBs) in comprehensive two-dimensional gas chromatography (GC×GC). We analyse the GC×GC retention data taken from the literature by comparing predictive capability of different regression methods. The various models are generated using 70 out of 209 PCB congeners in the calibration stage, while their predictive performance is evaluated on the remaining 139 compounds. The two-dimensional chromatogram is initially estimated by separately modelling retention times of PCBs in the first and in the second column ((1) t (R) and (2) t (R), respectively). In particular, multilinear regression (MLR) combined with genetic algorithm (GA) variable selection is performed to extract two small subsets of predictors for (1) t (R) and (2) t (R) from a large set of theoretical molecular descriptors provided by the popular software Dragon, which after removal of highly correlated or almost constant variables consists of 237 structure-related quantities. Based on GA-MLR analysis, a four-dimensional and a five-dimensional relationship modelling (1) t (R) and (2) t (R), respectively, are identified. Single-response partial least square (PLS-1) regression is alternatively applied to independently model (1) t (R) and (2) t (R) without the need for preliminary GA variable selection. Further, we explore the possibility of predicting the two-dimensional chromatogram of PCBs in a single calibration procedure by using a two-response PLS (PLS-2) model or a feed-forward artificial neural network (ANN) with two output neurons. In the first case, regression is carried out on the full set of 237 descriptors, while the variables previously selected by GA-MLR are initially considered as ANN inputs and subjected to a sensitivity analysis to remove the redundant ones. Results show PLS-1 regression exhibits a noticeably better descriptive and predictive performance than the other investigated approaches. The observed values of determination coefficients for (1) t (R) and (2) t (R) in calibration (0.9999 and 0.9993, respectively) and prediction (0.9987 and 0.9793, respectively) provided by PLS-1 demonstrate that GC×GC behaviour of PCBs is properly modelled. In particular, the predicted two-dimensional GC×GC chromatogram of 139 PCBs not involved in the calibration stage closely resembles the experimental one. Based on the above lines of evidence, the proposed approach ensures accurate simulation of the whole GC×GC chromatogram of PCBs using experimental determination of only 1/3 retention data of representative congeners.

  13. Geo3DML: A standard-based exchange format for 3D geological models

    NASA Astrophysics Data System (ADS)

    Wang, Zhangang; Qu, Honggang; Wu, Zixing; Wang, Xianghong

    2018-01-01

    A geological model (geomodel) in three-dimensional (3D) space is a digital representation of the Earth's subsurface, recognized by geologists and stored in resultant geological data (geodata). The increasing demand for data management and interoperable applications of geomodelscan be addressed by developing standard-based exchange formats for the representation of not only a single geological object, but also holistic geomodels. However, current standards such as GeoSciML cannot incorporate all the geomodel-related information. This paper presents Geo3DML for the exchange of 3D geomodels based on the existing Open Geospatial Consortium (OGC) standards. Geo3DML is based on a unified and formal representation of structural models, attribute models and hierarchical structures of interpreted resultant geodata in different dimensional views, including drills, cross-sections/geomaps and 3D models, which is compatible with the conceptual model of GeoSciML. Geo3DML aims to encode all geomodel-related information integrally in one framework, including the semantic and geometric information of geoobjects and their relationships, as well as visual information. At present, Geo3DML and some supporting tools have been released as a data-exchange standard by the China Geological Survey (CGS).

  14. The role of gap edge instabilities in setting the depth of planet gaps in protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Hallam, P. D.; Paardekooper, S.-J.

    2017-08-01

    It is known that an embedded massive planet will open a gap in a protoplanetary disc via angular momentum exchange with the disc material. The resulting surface density profile of the disc is investigated for one-dimensional and two-dimensional disc models and, in agreement with previous work, it is found that one-dimensional gaps are significantly deeper than their two-dimensional counterparts for the same initial conditions. We find, by applying one-dimensional torque density distributions to two-dimensional discs containing no planet, that the excitement of the Rossby wave instability and the formation of Rossby vortices play a critical role in setting the equilibrium depth of the gap. Being a two-dimensional instability, this is absent from one-dimensional simulations and does not limit the equilibrium gap depth there. We find similar gap depths between two-dimensional gaps formed by torque density distributions, in which the Rossby wave instability is present, and two-dimensional planet gaps, in which no Rossby wave instability is present. This can be understood if the planet gap is maintained at marginal stability, even when there is no obvious Rossby wave instability present. Further investigation shows the final equilibrium gap depth is very sensitive to the form of the applied torque density distribution, and using improved one-dimensional approximations from three-dimensional simulations can go even further towards reducing the discrepancy between one- and two-dimensional models, especially for lower mass planets. This behaviour is found to be consistent across discs with varying parameters.

  15. Some theorems and properties of multi-dimensional fractional Laplace transforms

    NASA Astrophysics Data System (ADS)

    Ahmood, Wasan Ajeel; Kiliçman, Adem

    2016-06-01

    The aim of this work is to study theorems and properties for the one-dimensional fractional Laplace transform, generalize some properties for the one-dimensional fractional Lapalce transform to be valid for the multi-dimensional fractional Lapalce transform and is to give the definition of the multi-dimensional fractional Lapalce transform. This study includes: dedicate the one-dimensional fractional Laplace transform for functions of only one independent variable with some of important theorems and properties and develop of some properties for the one-dimensional fractional Laplace transform to multi-dimensional fractional Laplace transform. Also, we obtain a fractional Laplace inversion theorem after a short survey on fractional analysis based on the modified Riemann-Liouville derivative.

  16. The structural phase diagram and oxygen equilibrium partial pressure of YBa 2Cu 3O 6+ x studied by neutron powder diffraction and gas volumetry

    NASA Astrophysics Data System (ADS)

    Andersen, N. H.; Lebech, B.; Poulsen, H. F.

    1990-12-01

    An experimental technique based on neutron powder diffraction and gas volumetry is presented and used to study the structural phase diagram of YBa 2Cu 3O 6+ x under equilibrium conditions in an extended part of ( x, T)-phase (0.15< x<0.92 and 25° C< T<725°C). Our experimental observations lend strong support to a recent two-dimensional anisotropic next-nearest-neighbour Ising model calculation (the ASYNNNI model) of the basal plane oxygen ordering based of first principle interaction parameters. Simultaneous measurements of the oxygen equilibrium partial pressure show anomalies, one of which proves the thermodynamic stability of the orthorhombic OII double cell structure. Striking similarity with predictions of recent model calculations support that another anomaly may be interpreted to result from local one-dimensional fluctuations in the distribution of oxygen atoms in the basal plane of tetragonal YBCO. Our pressure data also indicate that x=0.92 is a maximum obtainable oxygen concentration for oxygen pressures below 760 Torr.

  17. Defining Simple nD Operations Based on Prosmatic nD Objects

    NASA Astrophysics Data System (ADS)

    Arroyo Ohori, K.; Ledoux, H.; Stoter, J.

    2016-10-01

    An alternative to the traditional approaches to model separately 2D/3D space, time, scale and other parametrisable characteristics in GIS lies in the higher-dimensional modelling of geographic information, in which a chosen set of non-spatial characteristics, e.g. time and scale, are modelled as extra geometric dimensions perpendicular to the spatial ones, thus creating a higher-dimensional model. While higher-dimensional models are undoubtedly powerful, they are also hard to create and manipulate due to our lack of an intuitive understanding in dimensions higher than three. As a solution to this problem, this paper proposes a methodology that makes nD object generation easier by splitting the creation and manipulation process into three steps: (i) constructing simple nD objects based on nD prismatic polytopes - analogous to prisms in 3D -, (ii) defining simple modification operations at the vertex level, and (iii) simple postprocessing to fix errors introduced in the model. As a use case, we show how two sets of operations can be defined and implemented in a dimension-independent manner using this methodology: the most common transformations (i.e. translation, scaling and rotation) and the collapse of objects. The nD objects generated in this manner can then be used as a basis for an nD GIS.

  18. Constructing high-accuracy intermolecular potential energy surface with multi-dimension Morse/Long-Range model

    NASA Astrophysics Data System (ADS)

    Zhai, Yu; Li, Hui; Le Roy, Robert J.

    2018-04-01

    Spectroscopically accurate Potential Energy Surfaces (PESs) are fundamental for explaining and making predictions of the infrared and microwave spectra of van der Waals (vdW) complexes, and the model used for the potential energy function is critically important for providing accurate, robust and portable analytical PESs. The Morse/Long-Range (MLR) model has proved to be one of the most general, flexible and accurate one-dimensional (1D) model potentials, as it has physically meaningful parameters, is flexible, smooth and differentiable everywhere, to all orders and extrapolates sensibly at both long and short ranges. The Multi-Dimensional Morse/Long-Range (mdMLR) potential energy model described herein is based on that 1D MLR model, and has proved to be effective and accurate in the potentiology of various types of vdW complexes. In this paper, we review the current status of development of the mdMLR model and its application to vdW complexes. The future of the mdMLR model is also discussed. This review can serve as a tutorial for the construction of an mdMLR PES.

  19. A multiscale MDCT image-based breathing lung model with time-varying regional ventilation

    PubMed Central

    Yin, Youbing; Choi, Jiwoong; Hoffman, Eric A.; Tawhai, Merryn H.; Lin, Ching-Long

    2012-01-01

    A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C1 continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung. PMID:23794749

  20. On some structure-turbulence interaction problems

    NASA Technical Reports Server (NTRS)

    Maekawa, S.; Lin, Y. K.

    1976-01-01

    The interactions between a turbulent flow structure; responding to its excitation were studied. The turbulence was typical of those associated with a boundary layer, having a cross-spectral density indicative of convection and statistical decay. A number of structural models were considered. Among the one-dimensional models were an unsupported infinite beam and a periodically supported infinite beam. The fuselage construction of an aircraft was then considered. For the two-dimensional case a simple membrane was used to illustrate the type of formulation applicable to most two-dimensional structures. Both the one-dimensional and two-dimensional structures studied were backed by a cavity filled with an initially quiescent fluid to simulate the acoustic environment when the structure forms one side of a cabin of a sea vessel or aircraft.

  1. A Mathematical Evaluation of the Core Conductor Model

    PubMed Central

    Clark, John; Plonsey, Robert

    1966-01-01

    This paper is a mathematical evaluation of the core conductor model where its three dimensionality is taken into account. The problem considered is that of a single, active, unmyelinated nerve fiber situated in an extensive, homogeneous, conducting medium. Expressions for the various core conductor parameters have been derived in a mathematically rigorous manner according to the principles of electromagnetic theory. The purpose of employing mathematical rigor in this study is to bring to light the inherent assumptions of the one dimensional core conductor model, providing a method of evaluating the accuracy of this linear model. Based on the use of synthetic squid axon data, the conclusion of this study is that the linear core conductor model is a good approximation for internal but not external parameters. PMID:5903155

  2. One-Dimensional Collision Carts Computer Model and Its Design Ideas for Productive Experiential Learning

    ERIC Educational Resources Information Center

    Wee, Loo Kang

    2012-01-01

    We develop an Easy Java Simulation (EJS) model for students to experience the physics of idealized one-dimensional collision carts. The physics model is described and simulated by both continuous dynamics and discrete transition during collision. In designing the simulations, we discuss briefly three pedagogical considerations namely (1) a…

  3. Quantum networks in divergence-free circuit QED

    NASA Astrophysics Data System (ADS)

    Parra-Rodriguez, A.; Rico, E.; Solano, E.; Egusquiza, I. L.

    2018-04-01

    Superconducting circuits are one of the leading quantum platforms for quantum technologies. With growing system complexity, it is of crucial importance to develop scalable circuit models that contain the minimum information required to predict the behaviour of the physical system. Based on microwave engineering methods, divergent and non-divergent Hamiltonian models in circuit quantum electrodynamics have been proposed to explain the dynamics of superconducting quantum networks coupled to infinite-dimensional systems, such as transmission lines and general impedance environments. Here, we study systematically common linear coupling configurations between networks and infinite-dimensional systems. The main result is that the simple Lagrangian models for these configurations present an intrinsic natural length that provides a natural ultraviolet cutoff. This length is due to the unavoidable dressing of the environment modes by the network. In this manner, the coupling parameters between their components correctly manifest their natural decoupling at high frequencies. Furthermore, we show the requirements to correctly separate infinite-dimensional coupled systems in local bases. We also compare our analytical results with other analytical and approximate methods available in the literature. Finally, we propose several applications of these general methods to analogue quantum simulation of multi-spin-boson models in non-perturbative coupling regimes.

  4. Lattice Three-Species Models of the Spatial Spread of Rabies among FOXES

    NASA Astrophysics Data System (ADS)

    Benyoussef, A.; Boccara, N.; Chakib, H.; Ez-Zahraouy, H.

    Lattice models describing the spatial spread of rabies among foxes are studied. In these models, the fox population is divided into three-species: susceptible (S), infected or incubating (I), and infectious or rabid (R). They are based on the fact that susceptible and incubating foxes are territorial while rabid foxes have lost their sense of direction and move erratically. Two different models are investigated: a one-dimensional coupled-map lattice model, and a two-dimensional automata network model. Both models take into account the short-range character of the infection process and the diffusive motion of rabid foxes. Numerical simulations show how the spatial distribution of rabies, and the speed of propagation of the epizootic front depend upon the carrying capacity of the environment and diffusion of rabid foxes out of their territory.

  5. Morphometry-based impedance boundary conditions for patient-specific modeling of blood flow in pulmonary arteries.

    PubMed

    Spilker, Ryan L; Feinstein, Jeffrey A; Parker, David W; Reddy, V Mohan; Taylor, Charles A

    2007-04-01

    Patient-specific computational models could aid in planning interventions to relieve pulmonary arterial stenoses common in many forms of congenital heart disease. We describe a new approach to simulate blood flow in subject-specific models of the pulmonary arteries that consists of a numerical model of the proximal pulmonary arteries created from three-dimensional medical imaging data with terminal impedance boundary conditions derived from linear wave propagation theory applied to morphometric models of distal vessels. A tuning method, employing numerical solution methods for nonlinear systems of equations, was developed to modify the distal vasculature to match measured pressure and flow distribution data. One-dimensional blood flow equations were solved with a finite element method in image-based pulmonary arterial models using prescribed inlet flow and morphometry-based impedance at the outlets. Application of these methods in a pilot study of the effect of removal of unilateral pulmonary arterial stenosis induced in a pig showed good agreement with experimental measurements for flow redistribution and main pulmonary arterial pressure. Next, these methods were applied to a patient with repaired tetralogy of Fallot and predicted insignificant hemodynamic improvement with relief of the stenosis. This method of coupling image-based and morphometry-based models could enable increased fidelity in pulmonary hemodynamic simulation.

  6. Development and external validation of new ultrasound-based mathematical models for preoperative prediction of high-risk endometrial cancer.

    PubMed

    Van Holsbeke, C; Ameye, L; Testa, A C; Mascilini, F; Lindqvist, P; Fischerova, D; Frühauf, F; Fransis, S; de Jonge, E; Timmerman, D; Epstein, E

    2014-05-01

    To develop and validate strategies, using new ultrasound-based mathematical models, for the prediction of high-risk endometrial cancer and compare them with strategies using previously developed models or the use of preoperative grading only. Women with endometrial cancer were prospectively examined using two-dimensional (2D) and three-dimensional (3D) gray-scale and color Doppler ultrasound imaging. More than 25 ultrasound, demographic and histological variables were analyzed. Two logistic regression models were developed: one 'objective' model using mainly objective variables; and one 'subjective' model including subjective variables (i.e. subjective impression of myometrial and cervical invasion, preoperative grade and demographic variables). The following strategies were validated: a one-step strategy using only preoperative grading and two-step strategies using preoperative grading as the first step and one of the new models, subjective assessment or previously developed models as a second step. One-hundred and twenty-five patients were included in the development set and 211 were included in the validation set. The 'objective' model retained preoperative grade and minimal tumor-free myometrium as variables. The 'subjective' model retained preoperative grade and subjective assessment of myometrial invasion. On external validation, the performance of the new models was similar to that on the development set. Sensitivity for the two-step strategy with the 'objective' model was 78% (95% CI, 69-84%) at a cut-off of 0.50, 82% (95% CI, 74-88%) for the strategy with the 'subjective' model and 83% (95% CI, 75-88%) for that with subjective assessment. Specificity was 68% (95% CI, 58-77%), 72% (95% CI, 62-80%) and 71% (95% CI, 61-79%) respectively. The two-step strategies detected up to twice as many high-risk cases as preoperative grading only. The new models had a significantly higher sensitivity than did previously developed models, at the same specificity. Two-step strategies with 'new' ultrasound-based models predict high-risk endometrial cancers with good accuracy and do this better than do previously developed models. Copyright © 2013 ISUOG. Published by John Wiley & Sons Ltd.

  7. Development and application of theoretical models for Rotating Detonation Engine flowfields

    NASA Astrophysics Data System (ADS)

    Fievisohn, Robert

    As turbine and rocket engine technology matures, performance increases between successive generations of engine development are becoming smaller. One means of accomplishing significant gains in thermodynamic performance and power density is to use detonation-based heat release instead of deflagration. This work is focused on developing and applying theoretical models to aid in the design and understanding of Rotating Detonation Engines (RDEs). In an RDE, a detonation wave travels circumferentially along the bottom of an annular chamber where continuous injection of fresh reactants sustains the detonation wave. RDEs are currently being designed, tested, and studied as a viable option for developing a new generation of turbine and rocket engines that make use of detonation heat release. One of the main challenges in the development of RDEs is to understand the complex flowfield inside the annular chamber. While simplified models are desirable for obtaining timely performance estimates for design analysis, one-dimensional models may not be adequate as they do not provide flow structure information. In this work, a two-dimensional physics-based model is developed, which is capable of modeling the curved oblique shock wave, exit swirl, counter-flow, detonation inclination, and varying pressure along the inflow boundary. This is accomplished by using a combination of shock-expansion theory, Chapman-Jouguet detonation theory, the Method of Characteristics (MOC), and other compressible flow equations to create a shock-fitted numerical algorithm and generate an RDE flowfield. This novel approach provides a numerically efficient model that can provide performance estimates as well as details of the large-scale flow structures in seconds on a personal computer. Results from this model are validated against high-fidelity numerical simulations that may require a high-performance computing framework to provide similar performance estimates. This work provides a designer a new tool to conduct large-scale parametric studies to optimize a design space before conducting computationally-intensive, high-fidelity simulations that may be used to examine additional effects. The work presented in this thesis not only bridges the gap between simple one-dimensional models and high-fidelity full numerical simulations, but it also provides an effective tool for understanding and exploring RDE flow processes.

  8. Methodology for evaluate the form deviations for formula one nose car

    NASA Astrophysics Data System (ADS)

    Bere, Paul; Neamtu, Calin

    2014-06-01

    The paper presents a measuring strategy for a Formula One car using a Coordinate Measuring Machine (CMM) and a 3D laser scanning devices. The measurement procedures outlined the dimensional deviation of the CAD model and prototype made of composite material. The authors present two methods for the determination of symmetry for components of a Formula One car based on measuring and 3D scanning.

  9. The relative pose estimation of aircraft based on contour model

    NASA Astrophysics Data System (ADS)

    Fu, Tai; Sun, Xiangyi

    2017-02-01

    This paper proposes a relative pose estimation approach based on object contour model. The first step is to obtain a two-dimensional (2D) projection of three-dimensional (3D)-model-based target, which will be divided into 40 forms by clustering and LDA analysis. Then we proceed by extracting the target contour in each image and computing their Pseudo-Zernike Moments (PZM), thus a model library is constructed in an offline mode. Next, we spot a projection contour that resembles the target silhouette most in the present image from the model library with reference of PZM; then similarity transformation parameters are generated as the shape context is applied to match the silhouette sampling location, from which the identification parameters of target can be further derived. Identification parameters are converted to relative pose parameters, in the premise that these values are the initial result calculated via iterative refinement algorithm, as the relative pose parameter is in the neighborhood of actual ones. At last, Distance Image Iterative Least Squares (DI-ILS) is employed to acquire the ultimate relative pose parameters.

  10. Optimal one-dimensional inversion and bounding of magnetotelluric apparent resistivity and phase measurements

    NASA Astrophysics Data System (ADS)

    Parker, Robert L.; Booker, John R.

    1996-12-01

    The properties of the log of the admittance in the complex frequency plane lead to an integral representation for one-dimensional magnetotelluric (MT) apparent resistivity and impedance phase similar to that found previously for complex admittance. The inverse problem of finding a one-dimensional model for MT data can then be solved using the same techniques as for complex admittance, with similar results. For instance, the one-dimensional conductivity model that minimizes the χ2 misfit statistic for noisy apparent resistivity and phase is a series of delta functions. One of the most important applications of the delta function solution to the inverse problem for complex admittance has been answering the question of whether or not a given set of measurements is consistent with the modeling assumption of one-dimensionality. The new solution allows this test to be performed directly on standard MT data. Recently, it has been shown that induction data must pass the same one-dimensional consistency test if they correspond to the polarization in which the electric field is perpendicular to the strike of two-dimensional structure. This greatly magnifies the utility of the consistency test. The new solution also allows one to compute the upper and lower bounds permitted on phase or apparent resistivity at any frequency given a collection of MT data. Applications include testing the mutual consistency of apparent resistivity and phase data and placing bounds on missing phase or resistivity data. Examples presented demonstrate detection and correction of equipment and processing problems and verification of compatibility with two-dimensional B-polarization for MT data after impedance tensor decomposition and for continuous electromagnetic profiling data.

  11. Automated modal parameter estimation using correlation analysis and bootstrap sampling

    NASA Astrophysics Data System (ADS)

    Yaghoubi, Vahid; Vakilzadeh, Majid K.; Abrahamsson, Thomas J. S.

    2018-02-01

    The estimation of modal parameters from a set of noisy measured data is a highly judgmental task, with user expertise playing a significant role in distinguishing between estimated physical and noise modes of a test-piece. Various methods have been developed to automate this procedure. The common approach is to identify models with different orders and cluster similar modes together. However, most proposed methods based on this approach suffer from high-dimensional optimization problems in either the estimation or clustering step. To overcome this problem, this study presents an algorithm for autonomous modal parameter estimation in which the only required optimization is performed in a three-dimensional space. To this end, a subspace-based identification method is employed for the estimation and a non-iterative correlation-based method is used for the clustering. This clustering is at the heart of the paper. The keys to success are correlation metrics that are able to treat the problems of spatial eigenvector aliasing and nonunique eigenvectors of coalescent modes simultaneously. The algorithm commences by the identification of an excessively high-order model from frequency response function test data. The high number of modes of this model provides bases for two subspaces: one for likely physical modes of the tested system and one for its complement dubbed the subspace of noise modes. By employing the bootstrap resampling technique, several subsets are generated from the same basic dataset and for each of them a model is identified to form a set of models. Then, by correlation analysis with the two aforementioned subspaces, highly correlated modes of these models which appear repeatedly are clustered together and the noise modes are collected in a so-called Trashbox cluster. Stray noise modes attracted to the mode clusters are trimmed away in a second step by correlation analysis. The final step of the algorithm is a fuzzy c-means clustering procedure applied to a three-dimensional feature space to assign a degree of physicalness to each cluster. The proposed algorithm is applied to two case studies: one with synthetic data and one with real test data obtained from a hammer impact test. The results indicate that the algorithm successfully clusters similar modes and gives a reasonable quantification of the extent to which each cluster is physical.

  12. A novel model of magnetorheological damper with hysteresis division

    NASA Astrophysics Data System (ADS)

    Yu, Jianqiang; Dong, Xiaomin; Zhang, Zonglun

    2017-10-01

    Due to the complex nonlinearity of magnetorheological (MR) behavior, the modeling of MR dampers is a challenge. A simple and effective model of MR damper remains a work in progress. A novel model of MR damper is proposed with force-velocity hysteresis division method in this study. A typical hysteresis loop of MR damper can be simply divided into two novel curves with the division idea. One is the backbone curve and the other is the branch curve. The exponential-family functions which capturing the characteristics of the two curves can simplify the model and improve the identification efficiency. To illustrate and validate the novel phenomenological model with hysteresis division idea, a dual-end MR damper is designed and tested. Based on the experimental data, the characteristics of the novel curves are investigated. To simplify the parameters identification and obtain the reversibility, the maximum force part, the non-dimensional backbone part and the non-dimensional branch part are derived from the two curves. The maximum force part and the non-dimensional part are in multiplication type add-rule. The maximum force part is dependent on the current and maximum velocity. The non-dominated sorting genetic algorithm II (NSGA II) based on the design of experiments (DOE) is employed to identify the parameters of the normalized shape functions. Comparative analysis is conducted based on the identification results. The analysis shows that the novel model with few identification parameters has higher accuracy and better predictive ability.

  13. A Review of the Ginzburg-Syrovatskii's Galactic Cosmic-Ray Propagation Model and its Leaky-Box Limit

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.

    2012-01-01

    Phenomenological models of galactic cosmic-ray propagation are based on a diffusion equation known as the Ginzburg-Syrovatskii s equation, or variants (or limits) of this equation. Its one-dimensional limit in a homogeneous volume, known as the leaky-box limit or model, is sketched here. The justification, utility, limitations, and a typical numerical implementation of the leaky-box model are examined in some detail.

  14. Slow-Slip Phenomena Represented by the One-Dimensional Burridge-Knopoff Model of Earthquakes

    NASA Astrophysics Data System (ADS)

    Kawamura, Hikaru; Yamamoto, Maho; Ueda, Yushi

    2018-05-01

    Slow-slip phenomena, including afterslips and silent earthquakes, are studied using a one-dimensional Burridge-Knopoff model that obeys the rate-and-state dependent friction law. By varying only a few model parameters, this simple model allows reproducing a variety of seismic slips within a single framework, including main shocks, precursory nucleation processes, afterslips, and silent earthquakes.

  15. Inverse regression-based uncertainty quantification algorithms for high-dimensional models: Theory and practice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Weixuan; Lin, Guang; Li, Bing

    2016-09-01

    A well-known challenge in uncertainty quantification (UQ) is the "curse of dimensionality". However, many high-dimensional UQ problems are essentially low-dimensional, because the randomness of the quantity of interest (QoI) is caused only by uncertain parameters varying within a low-dimensional subspace, known as the sufficient dimension reduction (SDR) subspace. Motivated by this observation, we propose and demonstrate in this paper an inverse regression-based UQ approach (IRUQ) for high-dimensional problems. Specifically, we use an inverse regression procedure to estimate the SDR subspace and then convert the original problem to a low-dimensional one, which can be efficiently solved by building a response surface model such as a polynomial chaos expansion. The novelty and advantages of the proposed approach is seen in its computational efficiency and practicality. Comparing with Monte Carlo, the traditionally preferred approach for high-dimensional UQ, IRUQ with a comparable cost generally gives much more accurate solutions even for high-dimensional problems, and even when the dimension reduction is not exactly sufficient. Theoretically, IRUQ is proved to converge twice as fast as the approach it uses seeking the SDR subspace. For example, while a sliced inverse regression method converges to the SDR subspace at the rate ofmore » $$O(n^{-1/2})$$, the corresponding IRUQ converges at $$O(n^{-1})$$. IRUQ also provides several desired conveniences in practice. It is non-intrusive, requiring only a simulator to generate realizations of the QoI, and there is no need to compute the high-dimensional gradient of the QoI. Finally, error bars can be derived for the estimation results reported by IRUQ.« less

  16. A stock market forecasting model combining two-directional two-dimensional principal component analysis and radial basis function neural network.

    PubMed

    Guo, Zhiqiang; Wang, Huaiqing; Yang, Jie; Miller, David J

    2015-01-01

    In this paper, we propose and implement a hybrid model combining two-directional two-dimensional principal component analysis ((2D)2PCA) and a Radial Basis Function Neural Network (RBFNN) to forecast stock market behavior. First, 36 stock market technical variables are selected as the input features, and a sliding window is used to obtain the input data of the model. Next, (2D)2PCA is utilized to reduce the dimension of the data and extract its intrinsic features. Finally, an RBFNN accepts the data processed by (2D)2PCA to forecast the next day's stock price or movement. The proposed model is used on the Shanghai stock market index, and the experiments show that the model achieves a good level of fitness. The proposed model is then compared with one that uses the traditional dimension reduction method principal component analysis (PCA) and independent component analysis (ICA). The empirical results show that the proposed model outperforms the PCA-based model, as well as alternative models based on ICA and on the multilayer perceptron.

  17. A Stock Market Forecasting Model Combining Two-Directional Two-Dimensional Principal Component Analysis and Radial Basis Function Neural Network

    PubMed Central

    Guo, Zhiqiang; Wang, Huaiqing; Yang, Jie; Miller, David J.

    2015-01-01

    In this paper, we propose and implement a hybrid model combining two-directional two-dimensional principal component analysis ((2D)2PCA) and a Radial Basis Function Neural Network (RBFNN) to forecast stock market behavior. First, 36 stock market technical variables are selected as the input features, and a sliding window is used to obtain the input data of the model. Next, (2D)2PCA is utilized to reduce the dimension of the data and extract its intrinsic features. Finally, an RBFNN accepts the data processed by (2D)2PCA to forecast the next day's stock price or movement. The proposed model is used on the Shanghai stock market index, and the experiments show that the model achieves a good level of fitness. The proposed model is then compared with one that uses the traditional dimension reduction method principal component analysis (PCA) and independent component analysis (ICA). The empirical results show that the proposed model outperforms the PCA-based model, as well as alternative models based on ICA and on the multilayer perceptron. PMID:25849483

  18. Meta-modelling, visualization and emulation of multi-dimensional data for virtual production intelligence

    NASA Astrophysics Data System (ADS)

    Schulz, Wolfgang; Hermanns, Torsten; Al Khawli, Toufik

    2017-07-01

    Decision making for competitive production in high-wage countries is a daily challenge where rational and irrational methods are used. The design of decision making processes is an intriguing, discipline spanning science. However, there are gaps in understanding the impact of the known mathematical and procedural methods on the usage of rational choice theory. Following Benjamin Franklin's rule for decision making formulated in London 1772, he called "Prudential Algebra" with the meaning of prudential reasons, one of the major ingredients of Meta-Modelling can be identified finally leading to one algebraic value labelling the results (criteria settings) of alternative decisions (parameter settings). This work describes the advances in Meta-Modelling techniques applied to multi-dimensional and multi-criterial optimization by identifying the persistence level of the corresponding Morse-Smale Complex. Implementations for laser cutting and laser drilling are presented, including the generation of fast and frugal Meta-Models with controlled error based on mathematical model reduction Reduced Models are derived to avoid any unnecessary complexity. Both, model reduction and analysis of multi-dimensional parameter space are used to enable interactive communication between Discovery Finders and Invention Makers. Emulators and visualizations of a metamodel are introduced as components of Virtual Production Intelligence making applicable the methods of Scientific Design Thinking and getting the developer as well as the operator more skilled.

  19. A Multifunctional Interface Method for Coupling Finite Element and Finite Difference Methods: Two-Dimensional Scalar-Field Problems

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.

    2002-01-01

    A multifunctional interface method with capabilities for variable-fidelity modeling and multiple method analysis is presented. The methodology provides an effective capability by which domains with diverse idealizations can be modeled independently to exploit the advantages of one approach over another. The multifunctional method is used to couple independently discretized subdomains, and it is used to couple the finite element and the finite difference methods. The method is based on a weighted residual variational method and is presented for two-dimensional scalar-field problems. A verification test problem and a benchmark application are presented, and the computational implications are discussed.

  20. Numerical procedure to determine geometric view factors for surfaces occluded by cylinders

    NASA Technical Reports Server (NTRS)

    Sawyer, P. L.

    1978-01-01

    A numerical procedure was developed to determine geometric view factors between connected infinite strips occluded by any number of infinite circular cylinders. The procedure requires a two-dimensional cross-sectional model of the configuration of interest. The two-dimensional model consists of a convex polygon enclosing any number of circles. Each side of the polygon represents one strip, and each circle represents a circular cylinder. A description and listing of a computer program based on this procedure are included in this report. The program calculates geometric view factors between individual strips and between individual strips and the collection of occluding cylinders.

  1. Starspot detection and properties

    NASA Astrophysics Data System (ADS)

    Savanov, I. S.

    2013-07-01

    I review the currently available techniques for the starspots detection including the one-dimensional spot modelling of photometric light curves. Special attention will be paid to the modelling of photospheric activity based on the high-precision light curves obtained with space missions MOST, CoRoT, and Kepler. Physical spot parameters (temperature, sizes and variability time scales including short-term activity cycles) are discussed.

  2. System for generating two-dimensional masks from a three-dimensional model using topological analysis

    DOEpatents

    Schiek, Richard [Albuquerque, NM

    2006-06-20

    A method of generating two-dimensional masks from a three-dimensional model comprises providing a three-dimensional model representing a micro-electro-mechanical structure for manufacture and a description of process mask requirements, reducing the three-dimensional model to a topological description of unique cross sections, and selecting candidate masks from the unique cross sections and the cross section topology. The method further can comprise reconciling the candidate masks based on the process mask requirements description to produce two-dimensional process masks.

  3. The generalized Hill model: A kinematic approach towards active muscle contraction

    NASA Astrophysics Data System (ADS)

    Göktepe, Serdar; Menzel, Andreas; Kuhl, Ellen

    2014-12-01

    Excitation-contraction coupling is the physiological process of converting an electrical stimulus into a mechanical response. In muscle, the electrical stimulus is an action potential and the mechanical response is active contraction. The classical Hill model characterizes muscle contraction though one contractile element, activated by electrical excitation, and two non-linear springs, one in series and one in parallel. This rheology translates into an additive decomposition of the total stress into a passive and an active part. Here we supplement this additive decomposition of the stress by a multiplicative decomposition of the deformation gradient into a passive and an active part. We generalize the one-dimensional Hill model to the three-dimensional setting and constitutively define the passive stress as a function of the total deformation gradient and the active stress as a function of both the total deformation gradient and its active part. We show that this novel approach combines the features of both the classical stress-based Hill model and the recent active-strain models. While the notion of active stress is rather phenomenological in nature, active strain is micro-structurally motivated, physically measurable, and straightforward to calibrate. We demonstrate that our model is capable of simulating excitation-contraction coupling in cardiac muscle with its characteristic features of wall thickening, apical lift, and ventricular torsion.

  4. New 2D diffraction model and its applications to terahertz parallel-plate waveguide power splitters

    PubMed Central

    Zhang, Fan; Song, Kaijun; Fan, Yong

    2017-01-01

    A two-dimensional (2D) diffraction model for the calculation of the diffraction field in 2D space and its applications to terahertz parallel-plate waveguide power splitters are proposed in this paper. Compared with the Huygens-Fresnel principle in three-dimensional (3D) space, the proposed model provides an approximate analytical expression to calculate the diffraction field in 2D space. The diffraction filed is regarded as the superposition integral in 2D space. The calculated results obtained from the proposed diffraction model agree well with the ones by software HFSS based on the element method (FEM). Based on the proposed 2D diffraction model, two parallel-plate waveguide power splitters are presented. The splitters consist of a transmitting horn antenna, reflectors, and a receiving antenna array. The reflector is cylindrical parabolic with superimposed surface relief to efficiently couple the transmitted wave into the receiving antenna array. The reflector is applied as computer-generated holograms to match the transformed field to the receiving antenna aperture field. The power splitters were optimized by a modified real-coded genetic algorithm. The computed results of the splitters agreed well with the ones obtained by software HFSS verify the novel design method for power splitter, which shows good applied prospects of the proposed 2D diffraction model. PMID:28181514

  5. On numerical modeling of one-dimensional geothermal histories

    USGS Publications Warehouse

    Haugerud, R.A.

    1989-01-01

    Numerical models of one-dimensional geothermal histories are one way of understanding the relations between tectonics and transient thermal structure in the crust. Such models can be powerful tools for interpreting geochronologic and thermobarometric data. A flexible program to calculate these models on a microcomputer is available and examples of its use are presented. Potential problems with this approach include the simplifying assumptions that are made, limitations of the numerical techniques, and the neglect of convective heat transfer. ?? 1989.

  6. A THREE-DIMENSIONAL NUMERICAL SOLUTION FOR THE SHAPE OF A ROTATIONALLY DISTORTED POLYTROPE OF INDEX UNITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Dali; Zhang, Keke; Schubert, Gerald

    2013-02-15

    We present a new three-dimensional numerical method for calculating the non-spherical shape and internal structure of a model of a rapidly rotating gaseous body with a polytropic index of unity. The calculation is based on a finite-element method and accounts for the full effects of rotation. After validating the numerical approach against the asymptotic solution of Chandrasekhar that is valid only for a slowly rotating gaseous body, we apply it to models of Jupiter and a rapidly rotating, highly flattened star ({alpha} Eridani). In the case of Jupiter, the two-dimensional distributions of density and pressure are determined via a hybridmore » inverse approach by adjusting an a priori unknown coefficient in the equation of state until the model shape matches the observed shape of Jupiter. After obtaining the two-dimensional distribution of density, we then compute the zonal gravity coefficients and the total mass from the non-spherical model that takes full account of rotation-induced shape change. Our non-spherical model with a polytropic index of unity is able to produce the known mass of Jupiter with about 4% accuracy and the zonal gravitational coefficient J {sub 2} of Jupiter with better than 2% accuracy, a reasonable result considering that there is only one parameter in the model. For {alpha} Eridani, we calculate its rotationally distorted shape and internal structure based on the observationally deduced rotation rate and size of the star by using a similar hybrid inverse approach. Our model of the star closely approximates the observed flattening.« less

  7. Adaptive mixed finite element methods for Darcy flow in fractured porous media

    NASA Astrophysics Data System (ADS)

    Chen, Huangxin; Salama, Amgad; Sun, Shuyu

    2016-10-01

    In this paper, we propose adaptive mixed finite element methods for simulating the single-phase Darcy flow in two-dimensional fractured porous media. The reduced model that we use for the simulation is a discrete fracture model coupling Darcy flows in the matrix and the fractures, and the fractures are modeled by one-dimensional entities. The Raviart-Thomas mixed finite element methods are utilized for the solution of the coupled Darcy flows in the matrix and the fractures. In order to improve the efficiency of the simulation, we use adaptive mixed finite element methods based on novel residual-based a posteriori error estimators. In addition, we develop an efficient upscaling algorithm to compute the effective permeability of the fractured porous media. Several interesting examples of Darcy flow in the fractured porous media are presented to demonstrate the robustness of the algorithm.

  8. Effect of the fiber-matrix interphase on the transverse tensile strength of the unidirectional composite material

    NASA Technical Reports Server (NTRS)

    Tsai, H. C.; Arocho, A. M.

    1992-01-01

    A simple one-dimensional fiber-matrix interphase model has been developed and analytical results obtained correlated well with available experimental data. It was found that by including the interphase between the fiber and matrix in the model, much better local stress results were obtained than with the model without the interphase. A more sophisticated two-dimensional micromechanical model, which included the interphase properties was also developed. Both one-dimensional and two-dimensional models were used to study the effect of the interphase properties on the local stresses at the fiber, interphase and matrix. From this study, it was found that interphase modulus and thickness have significant influence on the transverse tensile strength and mode of failure in fiber reinforced composites.

  9. The zonally averaged transport characteristics of the atmosphere as determined by a general circulation model

    NASA Technical Reports Server (NTRS)

    Plumb, R. A.

    1985-01-01

    Two dimensional modeling has become an established technique for the simulation of the global structure of trace constituents. Such models are simpler to formulate and cheaper to operate than three dimensional general circulation models, while avoiding some of the gross simplifications of one dimensional models. Nevertheless, the parameterization of eddy fluxes required in a 2-D model is not a trivial problem. This fact has apparently led some to interpret the shortcomings of existing 2-D models as indicating that the parameterization procedure is wrong in principle. There are grounds to believe that these shortcomings result primarily from incorrect implementations of the predictions of eddy transport theory and that a properly based parameterization may provide a good basis for atmospheric modeling. The existence of these GCM-derived coefficients affords an unprecedented opportunity to test the validity of the flux-gradient parameterization. To this end, a zonally averaged (2-D) model was developed, using these coefficients in the transport parameterization. Results from this model for a number of contrived tracer experiments were compared with the parent GCM. The generally good agreement substantially validates the flus-gradient parameterization, and thus the basic principle of 2-D modeling.

  10. Progress in multi-dimensional upwind differencing

    NASA Technical Reports Server (NTRS)

    Vanleer, Bram

    1992-01-01

    Multi-dimensional upwind-differencing schemes for the Euler equations are reviewed. On the basis of the first-order upwind scheme for a one-dimensional convection equation, the two approaches to upwind differencing are discussed: the fluctuation approach and the finite-volume approach. The usual extension of the finite-volume method to the multi-dimensional Euler equations is not entirely satisfactory, because the direction of wave propagation is always assumed to be normal to the cell faces. This leads to smearing of shock and shear waves when these are not grid-aligned. Multi-directional methods, in which upwind-biased fluxes are computed in a frame aligned with a dominant wave, overcome this problem, but at the expense of robustness. The same is true for the schemes incorporating a multi-dimensional wave model not based on multi-dimensional data but on an 'educated guess' of what they could be. The fluctuation approach offers the best possibilities for the development of genuinely multi-dimensional upwind schemes. Three building blocks are needed for such schemes: a wave model, a way to achieve conservation, and a compact convection scheme. Recent advances in each of these components are discussed; putting them all together is the present focus of a worldwide research effort. Some numerical results are presented, illustrating the potential of the new multi-dimensional schemes.

  11. Models for microtubule cargo transport coupling the Langevin equation to stochastic stepping motor dynamics: Caring about fluctuations.

    PubMed

    Bouzat, Sebastián

    2016-01-01

    One-dimensional models coupling a Langevin equation for the cargo position to stochastic stepping dynamics for the motors constitute a relevant framework for analyzing multiple-motor microtubule transport. In this work we explore the consistence of these models focusing on the effects of the thermal noise. We study how to define consistent stepping and detachment rates for the motors as functions of the local forces acting on them in such a way that the cargo velocity and run-time match previously specified functions of the external load, which are set on the base of experimental results. We show that due to the influence of the thermal fluctuations this is not a trivial problem, even for the single-motor case. As a solution, we propose a motor stepping dynamics which considers memory on the motor force. This model leads to better results for single-motor transport than the approaches previously considered in the literature. Moreover, it gives a much better prediction for the stall force of the two-motor case, highly compatible with the experimental findings. We also analyze the fast fluctuations of the cargo position and the influence of the viscosity, comparing the proposed model to the standard one, and we show how the differences on the single-motor dynamics propagate to the multiple motor situations. Finally, we find that the one-dimensional character of the models impede an appropriate description of the fast fluctuations of the cargo position at small loads. We show how this problem can be solved by considering two-dimensional models.

  12. Model-Free Conditional Independence Feature Screening For Ultrahigh Dimensional Data.

    PubMed

    Wang, Luheng; Liu, Jingyuan; Li, Yong; Li, Runze

    2017-03-01

    Feature screening plays an important role in ultrahigh dimensional data analysis. This paper is concerned with conditional feature screening when one is interested in detecting the association between the response and ultrahigh dimensional predictors (e.g., genetic makers) given a low-dimensional exposure variable (such as clinical variables or environmental variables). To this end, we first propose a new index to measure conditional independence, and further develop a conditional screening procedure based on the newly proposed index. We systematically study the theoretical property of the proposed procedure and establish the sure screening and ranking consistency properties under some very mild conditions. The newly proposed screening procedure enjoys some appealing properties. (a) It is model-free in that its implementation does not require a specification on the model structure; (b) it is robust to heavy-tailed distributions or outliers in both directions of response and predictors; and (c) it can deal with both feature screening and the conditional screening in a unified way. We study the finite sample performance of the proposed procedure by Monte Carlo simulations and further illustrate the proposed method through two real data examples.

  13. ONE-DIMENSIONAL HYDRODYNAMIC/SEDIMENT TRANSPORT MODEL FOR STREAM NETWORKS: TECHNICAL REPORT

    EPA Science Inventory

    This technical report describes a new sediment transport model and the supporting post-processor, and sampling procedures for sediments in streams. Specifically, the following items are described herein:

    EFDC1D - This is a new one-dimensional hydrodynamic and sediment tr...

  14. High-resolution two-dimensional and three-dimensional modeling of wire grid polarizers and micropolarizer arrays

    NASA Astrophysics Data System (ADS)

    Vorobiev, Dmitry; Ninkov, Zoran

    2017-11-01

    Recent advances in photolithography allowed the fabrication of high-quality wire grid polarizers for the visible and near-infrared regimes. In turn, micropolarizer arrays (MPAs) based on wire grid polarizers have been developed and used to construct compact, versatile imaging polarimeters. However, the contrast and throughput of these polarimeters are significantly worse than one might expect based on the performance of large area wire grid polarizers or MPAs, alone. We investigate the parameters that affect the performance of wire grid polarizers and MPAs, using high-resolution two-dimensional and three-dimensional (3-D) finite-difference time-domain simulations. We pay special attention to numerical errors and other challenges that arise in models of these and other subwavelength optical devices. Our tests show that simulations of these structures in the visible and near-IR begin to converge numerically when the mesh size is smaller than ˜4 nm. The performance of wire grid polarizers is very sensitive to the shape, spacing, and conductivity of the metal wires. Using 3-D simulations of micropolarizer "superpixels," we directly study the cross talk due to diffraction at the edges of each micropolarizer, which decreases the contrast of MPAs to ˜200∶1.

  15. On the Locality of Transient Electromagnetic Soundings with a Single-Loop Configuration

    NASA Astrophysics Data System (ADS)

    Barsukov, P. O.; Fainberg, E. B.

    2018-03-01

    The possibilities of reconstructing two-dimensional (2D) cross sections based on the data of the profile soundings by the transient electromagnetic method (TEM) with a single ungrounded loop are illustrated on three-dimensional (3D) models. The process of reconstruction includes three main steps: transformation of the responses in the depth dependence of resistivity ρ(h) measured along the profile, with their subsequent stitching into the 2D pseudo section; point-by-point one-dimensional (1D) inversion of the responses with the starting model constructed based on the transformations; and correction of the 2D cross section with the use of 2.5-dimensional (2.5D) block inversion. It is shown that single-loop TEM soundings allow studying the geological media within a local domain the lateral dimensions of which are commensurate with the depth of the investigation. The structure of the medium beyond this domain insignificantly affects the sounding results. This locality enables the TEM to reconstruct the geoelectrical structure of the medium from the 2D cross sections with the minimal distortions caused by the lack of information beyond the profile of the transient response measurements.

  16. Experimental Studies of the Heat Transfer to RBCC Rocket Nozzles for CFD Application to Design Methodologies

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pal, Sibtosh

    1999-01-01

    Rocket thrusters for Rocket Based Combined Cycle (RBCC) engines typically operate with hydrogen/oxygen propellants in a very compact space. Packaging considerations lead to designs with either axisymmetric or two-dimensional throat sections. Nozzles tend to be either two- or three-dimensional. Heat transfer characteristics, particularly in the throat, where the peak heat flux occurs, are not well understood. Heat transfer predictions for these small thrusters have been made with one-dimensional analysis such as the Bartz equation or scaling of test data from much larger thrusters. The current work addresses this issue with an experimental program that examines the heat transfer characteristics of a gaseous oxygen (GO2)/gaseous hydrogen (GH2) two-dimensional compact rocket thruster. The experiments involved measuring the axial wall temperature profile in the nozzle region of a water-cooled gaseous oxygen/gaseous hydrogen rocket thruster at a pressure of 3.45 MPa. The wall temperature measurements in the thruster nozzle in concert with Bartz's correlation are utilized in a one-dimensional model to obtain axial profiles of nozzle wall heat flux.

  17. Topics in Two-Dimensional Quantum Gravity and Chern-Simons Gauge Theories

    NASA Astrophysics Data System (ADS)

    Zemba, Guillermo Raul

    A series of studies in two and three dimensional theories is presented. The two dimensional problems are considered in the framework of String Theory. The first one determines the region of integration in the space of inequivalent tori of a tadpole diagram in Closed String Field Theory, using the naive Witten three-string vertex. It is shown that every surface is counted an infinite number of times and the source of this behavior is identified. The second study analyzes the behavior of the discrete matrix model of two dimensional gravity without matter using a mathematically well-defined construction, confirming several conjectures and partial results from the literature. The studies in three dimensions are based on Chern Simons pure gauge theory. The first one deals with the projection of the theory onto a two-dimensional surface of constant time, whereas the second analyzes the large N behavior of the SU(N) theory and makes evident a duality symmetry between the only two parameters of the theory. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).

  18. Pressure distribution under flexible polishing tools. II - Cylindrical (conical) optics

    NASA Astrophysics Data System (ADS)

    Mehta, Pravin K.

    1990-10-01

    A previously developed eigenvalue model is extended to determine polishing pressure distribution by rectangular tools with unequal stiffness in two directions on cylindrical optics. Tool misfit is divided into two simplified one-dimensional problems and one simplified two-dimensional problem. Tools with nonuniform cross-sections are treated with a new one-dimensional eigenvalue algorithm, permitting evaluation of tool designs where the edge is more flexible than the interior. This maintains edge pressure variations within acceptable parameters. Finite element modeling is employed to resolve upper bounds, which handle pressure changes in the two-dimensional misfit element. Paraboloids and hyperboloids from the NASA AXAF system are treated with the AXAFPOD software for this method, and are verified with NASTRAN finite element analyses. The maximum deviation from the one-dimensional azimuthal pressure variation is predicted to be 10 percent and 20 percent for paraboloids and hyperboloids, respectively.

  19. Recent Advances in Silicon Nanomaterial-Based Fluorescent Sensors.

    PubMed

    Wang, Houyu; He, Yao

    2017-02-03

    During the past decades, owing to silicon nanomaterials' unique optical properties, benign biocompatibility, and abundant surface chemistry, different dimensional silicon nanostructures have been widely employed for rationally designing and fabricating high-performance fluorescent sensors for the detection of various chemical and biological species. Among of these, zero-dimensional silicon nanoparticles (SiNPs) and one-dimensional silicon nanowires (SiNWs) are of particular interest. Herein, we focus on reviewing recent advances in silicon nanomaterials-based fluorescent sensors from a broad perspective and discuss possible future directions. Firstly, we introduce the latest achievement of zero-dimensional SiNP-based fluorescent sensors. Next, we present recent advances of one-dimensional SiNW-based fluorescent sensors. Finally, we discuss the major challenges and prospects for the development of silicon-based fluorescent sensors.

  20. Recent Advances in Silicon Nanomaterial-Based Fluorescent Sensors

    PubMed Central

    Wang, Houyu; He, Yao

    2017-01-01

    During the past decades, owing to silicon nanomaterials’ unique optical properties, benign biocompatibility, and abundant surface chemistry, different dimensional silicon nanostructures have been widely employed for rationally designing and fabricating high-performance fluorescent sensors for the detection of various chemical and biological species. Among of these, zero-dimensional silicon nanoparticles (SiNPs) and one-dimensional silicon nanowires (SiNWs) are of particular interest. Herein, we focus on reviewing recent advances in silicon nanomaterials-based fluorescent sensors from a broad perspective and discuss possible future directions. Firstly, we introduce the latest achievement of zero-dimensional SiNP-based fluorescent sensors. Next, we present recent advances of one-dimensional SiNW-based fluorescent sensors. Finally, we discuss the major challenges and prospects for the development of silicon-based fluorescent sensors. PMID:28165357

  1. Active vs. spectator modes in nonadiabatic photodissociation dynamics of the hydroxymethyl radical via the 22A(3s) Rydberg state

    NASA Astrophysics Data System (ADS)

    Xie, Changjian; Guo, Hua

    2018-01-01

    The choice of the active degrees of freedom (DOFs) is a pivotal issue in a reduced-dimensional model of quantum dynamics when a full-dimensional one is not feasible. Here, several five-dimensional (5D) models are used to investigate the nonadiabatic photodissociation dynamics of the hydroxymethyl (CH2OH) radical, which possesses nine internal DOFs, in its lowest absorption band. A normal-mode based scheme is used to identify the active and spectator modes, and its predictions are confirmed by 5D quantum dynamical calculations. Our results underscore the important role of the CO stretching mode in the photodissociation dynamics of CH2OH, originating from the photo-induced promotion of an electron from the half-occupied π*CO antibonding orbital to a carbon Rydberg orbital.

  2. Ashkin-Teller criticality and weak first-order behavior of the phase transition to a fourfold degenerate state in two-dimensional frustrated Ising antiferromagnets

    NASA Astrophysics Data System (ADS)

    Liu, R. M.; Zhuo, W. Z.; Chen, J.; Qin, M. H.; Zeng, M.; Lu, X. B.; Gao, X. S.; Liu, J.-M.

    2017-07-01

    We study the thermal phase transition of the fourfold degenerate phases (the plaquette and single-stripe states) in the two-dimensional frustrated Ising model on the Shastry-Sutherland lattice using Monte Carlo simulations. The critical Ashkin-Teller-like behavior is identified both in the plaquette phase region and the single-stripe phase region. The four-state Potts critical end points differentiating the continuous transitions from the first-order ones are estimated based on finite-size-scaling analyses. Furthermore, a similar behavior of the transition to the fourfold single-stripe phase is also observed in the anisotropic triangular Ising model. Thus, this work clearly demonstrates that the transitions to the fourfold degenerate states of two-dimensional Ising antiferromagnets exhibit similar transition behavior.

  3. Two-dimensional signal processing with application to image restoration

    NASA Technical Reports Server (NTRS)

    Assefi, T.

    1974-01-01

    A recursive technique for modeling and estimating a two-dimensional signal contaminated by noise is presented. A two-dimensional signal is assumed to be an undistorted picture, where the noise introduces the distortion. Both the signal and the noise are assumed to be wide-sense stationary processes with known statistics. Thus, to estimate the two-dimensional signal is to enhance the picture. The picture representing the two-dimensional signal is converted to one dimension by scanning the image horizontally one line at a time. The scanner output becomes a nonstationary random process due to the periodic nature of the scanner operation. Procedures to obtain a dynamical model corresponding to the autocorrelation function of the scanner output are derived. Utilizing the model, a discrete Kalman estimator is designed to enhance the image.

  4. Bicylindrical model of Herschel-Quincke tube-duct system: theory and comparison with experiment and finite element method.

    PubMed

    Poirier, B; Ville, J M; Maury, C; Kateb, D

    2009-09-01

    An analytical three dimensional bicylindrical model is developed in order to take into account the effects of the saddle-shaped area for the interface of a n-Herschel-Quincke tube system with the main duct. Results for the scattering matrix of this system deduced from this model are compared, in the plane wave frequency domain, versus experimental and numerical data and a one dimensional model with and without tube length correction. The results are performed with a two-Herschel-Quincke tube configuration having the same diameter as the main duct. In spite of strong assumptions on the acoustic continuity conditions at the interfaces, this model is shown to improve the nonperiodic amplitude variations and the frequency localization of the minima of the transmission and reflection coefficients with respect to one dimensional model with length correction and a three dimensional model.

  5. Mathematical modeling and analysis of heat pipe start-up from the frozen state

    NASA Technical Reports Server (NTRS)

    Jang, Jong Hoon; Faghri, Amir; Chang, Won Soon; Mahefkey, Edward T.

    1989-01-01

    The start-up process of a frozen heat pipe is described and a complete mathematical model for the start-up of the frozen heat pipe is developed based on the existing experimental data, which is simplified and solved numerically. The two-dimensional transient model for the wall and wick is coupled with the one-dimensional transient model for the vapor flow when vaporization and condensation occur at the interface. A parametric study is performed to examine the effect of the boundary specification at the surface of the outer wall on the successful start-up from the frozen state. For successful start-up, the boundary specification at the outer wall surface must melt the working substance in the condenser before dry-out takes place in the evaporator.

  6. Mathematical modeling and analysis of heat pipe start-up from the frozen state

    NASA Technical Reports Server (NTRS)

    Jang, J. H.; Faghri, A.; Chang, W. S.; Mahefkey, E. T.

    1990-01-01

    The start-up process of a frozen heat pipe is described and a complete mathematical model for the start-up of the frozen heat pipe is developed based on the existing experimental data, which is simplified and solved numerically. The two-dimensional transient model for the wall and wick is coupled with the one-dimensional transient model for the vapor flow when vaporization and condensation occur at the interface. A parametric study is performed to examine the effect of the boundary specification at the surface of the outer wall on the successful start-up from the frozen state. For successful start-up, the boundary specification at the outer wall surface must melt the working substance in the condenser before dry-out takes place in the evaporator.

  7. Response Surface Modeling Using Multivariate Orthogonal Functions

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; DeLoach, Richard

    2001-01-01

    A nonlinear modeling technique was used to characterize response surfaces for non-dimensional longitudinal aerodynamic force and moment coefficients, based on wind tunnel data from a commercial jet transport model. Data were collected using two experimental procedures - one based on modem design of experiments (MDOE), and one using a classical one factor at a time (OFAT) approach. The nonlinear modeling technique used multivariate orthogonal functions generated from the independent variable data as modeling functions in a least squares context to characterize the response surfaces. Model terms were selected automatically using a prediction error metric. Prediction error bounds computed from the modeling data alone were found to be- a good measure of actual prediction error for prediction points within the inference space. Root-mean-square model fit error and prediction error were less than 4 percent of the mean response value in all cases. Efficacy and prediction performance of the response surface models identified from both MDOE and OFAT experiments were investigated.

  8. Prediction (early recognition) of emerging flu strain clusters

    NASA Astrophysics Data System (ADS)

    Li, X.; Phillips, J. C.

    2017-08-01

    Early detection of incipient dominant influenza strains is one of the key steps in the design and manufacture of an effective annual influenza vaccine. Here we report the most current results for pandemic H3N2 flu vaccine design. A 2006 model of dimensional reduction (compaction) of viral mutational complexity derives two-dimensional Cartesian mutational maps (2DMM) that exhibit an emergent dominant strain as a small and distinct cluster of as few as 10 strains. We show that recent extensions of this model can detect incipient strains one year or more in advance of their dominance in the human population. Our structural interpretation of our unexpectedly rich 2DMM involves sialic acid, and is based on nearly 6000 strains in a series of recent 3-year time windows. Vaccine effectiveness is predicted best by analyzing dominant mutational epitopes.

  9. Vertical profiles for SO2 and SO on Venus from different one-dimensional simulations

    NASA Astrophysics Data System (ADS)

    Mills, Franklin P.; Jessup, Kandis-Lea; Yung, Yuk

    2017-10-01

    Sulfur dioxide (SO2) plays many roles in Venus’ atmosphere. It is a precursor for the sulfuric acid that condenses to form the global cloud layers and is likely a precursor for the unidentified UV absorber, which, along with CO2 near the tops of the clouds, appears to be responsible for absorbing about half of the energy deposited in Venus’ atmosphere [1]. Most published simulations of Venus’ mesospheric chemistry have used one-dimensional numerical models intended to represent global-average or diurnal-average conditions [eg, 2, 3, 4]. Observations, however, have found significant variations of SO and SO2 with latitude and local time throughout the mesosphere [eg, 5, 6]. Some recent simulations have examined local time variations of SO and SO2 using analytical models [5], one-dimensional steady-state solar-zenith-angle-dependent numerical models [6], and three-dimensional general circulation models (GCMs) [7]. As an initial step towards a quantitative comparison among these different types of models, this poster compares simulated SO, SO2, and SO/SO2 from global-average, diurnal-average, and solar-zenith-angle (SZA) dependent steady-state models for the mesosphere.The Caltech/JPL photochemical model [8] was used with vertical transport via eddy diffusion set based on observations and observationally-defined lower boundary conditions for HCl, CO, and OCS. Solar fluxes are based on SORCE SOLSTICE and SORCE SIM measurements from 26 December 2010 [9, 10]. The results indicate global-average and diurnal-average models may have significant limitations when used to interpret latitude- and local-time-dependent observations of SO2 and SO.[1] Titov D et al (2007) in Exploring Venus as a Terrestrial Planet, 121-138. [2] Zhang X et al (2012) Icarus, 217, 714-739. [3] Krasnopolsky V A (2012) Icarus, 218, 230-246. [4] Parkinson C D et al (2015) Planet Space Sci, 113-114, 226-236. [5] Sandor B J et al (2010) Icarus, 208, 49-60. [6] Jessup K-L et al (2015) Icarus, 258, 309-336. [7] Stolzenbach A et al (2014) EGU General Assembly 2014, 16, EGU2014-5315. [8] Allen M et al (1981) J Geophys Res, 86, 3617-3627. [9] Harder J W et al (2010) Sol Phys, 263, 3-24. [10] Snow M et al (2005) Sol Phys, 230, 295-324.

  10. Direct and inverse problems of studying the properties of multilayer nanostructures based on a two-dimensional model of X-ray reflection and scattering

    NASA Astrophysics Data System (ADS)

    Khachaturov, R. V.

    2014-06-01

    A mathematical model of X-ray reflection and scattering by multilayered nanostructures in the quasi-optical approximation is proposed. X-ray propagation and the electric field distribution inside the multilayered structure are considered with allowance for refraction, which is taken into account via the second derivative with respect to the depth of the structure. This model is used to demonstrate the possibility of solving inverse problems in order to determine the characteristics of irregularities not only over the depth (as in the one-dimensional problem) but also over the length of the structure. An approximate combinatorial method for system decomposition and composition is proposed for solving the inverse problems.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiangjiang; Li, Weixuan; Lin, Guang

    In decision-making for groundwater management and contamination remediation, it is important to accurately evaluate the probability of the occurrence of a failure event. For small failure probability analysis, a large number of model evaluations are needed in the Monte Carlo (MC) simulation, which is impractical for CPU-demanding models. One approach to alleviate the computational cost caused by the model evaluations is to construct a computationally inexpensive surrogate model instead. However, using a surrogate approximation can cause an extra error in the failure probability analysis. Moreover, constructing accurate surrogates is challenging for high-dimensional models, i.e., models containing many uncertain input parameters.more » To address these issues, we propose an efficient two-stage MC approach for small failure probability analysis in high-dimensional groundwater contaminant transport modeling. In the first stage, a low-dimensional representation of the original high-dimensional model is sought with Karhunen–Loève expansion and sliced inverse regression jointly, which allows for the easy construction of a surrogate with polynomial chaos expansion. Then a surrogate-based MC simulation is implemented. In the second stage, the small number of samples that are close to the failure boundary are re-evaluated with the original model, which corrects the bias introduced by the surrogate approximation. The proposed approach is tested with a numerical case study and is shown to be 100 times faster than the traditional MC approach in achieving the same level of estimation accuracy.« less

  12. Assessment of numerical techniques for unsteady flow calculations

    NASA Technical Reports Server (NTRS)

    Hsieh, Kwang-Chung

    1989-01-01

    The characteristics of unsteady flow motions have long been a serious concern in the study of various fluid dynamic and combustion problems. With the advancement of computer resources, numerical approaches to these problems appear to be feasible. The objective of this paper is to assess the accuracy of several numerical schemes for unsteady flow calculations. In the present study, Fourier error analysis is performed for various numerical schemes based on a two-dimensional wave equation. Four methods sieved from the error analysis are then adopted for further assessment. Model problems include unsteady quasi-one-dimensional inviscid flows, two-dimensional wave propagations, and unsteady two-dimensional inviscid flows. According to the comparison between numerical and exact solutions, although second-order upwind scheme captures the unsteady flow and wave motions quite well, it is relatively more dissipative than sixth-order central difference scheme. Among various numerical approaches tested in this paper, the best performed one is Runge-Kutta method for time integration and six-order central difference for spatial discretization.

  13. A numerical model for dynamic wave rotor analysis

    NASA Technical Reports Server (NTRS)

    Paxson, D. E.

    1995-01-01

    A numerical model has been developed which can predict the dynamic (and steady state) performance of a wave rotor, given the geometry and time dependent boundary conditions. The one-dimensional, perfect gas, CFD based code tracks the gasdynamics in each of the wave rotor passages as they rotate past the various ducts. The model can operate both on and off-design, allowing dynamic behavior to be studied throughout the operating range of the wave rotor. The model accounts for several major loss mechanisms including finite passage opening time, fluid friction, heat transfer to and from the passage walls, and leakage to and from the passage ends. In addition, it can calculate the amount of work transferred to and from the fluid when the flow in the ducts is not aligned with the passages such as occurs in off-design operation. Since it is one-dimensional, the model runs reasonably fast on a typical workstation. This paper will describe the model and present the results of some transient calculations for a conceptual four port wave rotor designed as a topping cycle for a small gas turbine engine.

  14. Multidisciplinary research in the space sciences

    NASA Technical Reports Server (NTRS)

    Broecker, W. S.; Flynn, G. W.

    1983-01-01

    Research activities were carried out in the following areas during this reporting period: (1) astrophysics; (2) climate and atmospheric modeling; and (3) climate applications of earth observations & geological studies. An ultra-low-noise 115 GHz receiver based upon a superconducting tunnel diode mixer has been designed and constructed. The first laboratory tests have yielded spectacular results: a single-sideband noise temperature of 75 K considerably more sensitive than any other receiver at this frequency. The receiver will replace that currently in use on the Columbia-GISS CO Sky Survey telescope. The 1.2 meter millimeter-wave telescope at Columbia University has been used to complete two large-scale surveys of molecular matter in the part of the inner galaxy which is visible from the Northern hemisphere (the first galactic quadrant); one of the distant galaxy and one of the solar neighborhood. The research conducted during the past year in the climate and atmospheric modeling programs has been focused on the development of appropriate atmospheric and upper ocean models, and preliminary applications of these models. Principal models are a one-dimensional radiative-convective model, a three-dimensional global climate model, and an upper ocean model. During the past year this project has focused on development of 2-channel satellite analysis methods and radiative transfer studies in support of multichannel analysis techniques.

  15. High-accuracy 3-D modeling of cultural heritage: the digitizing of Donatello's "Maddalena".

    PubMed

    Guidi, Gabriele; Beraldin, J Angelo; Atzeni, Carlo

    2004-03-01

    Three-dimensional digital modeling of Heritage works of art through optical scanners, has been demonstrated in recent years with results of exceptional interest. However, the routine application of three-dimensional (3-D) modeling to Heritage conservation still requires the systematic investigation of a number of technical problems. In this paper, the acquisition process of the 3-D digital model of the Maddalena by Donatello, a wooden statue representing one of the major masterpieces of the Italian Renaissance which was swept away by the Florence flood of 1966 and successively restored, is described. The paper reports all the steps of the acquisition procedure, from the project planning to the solution of the various problems due to range camera calibration and to material non optically cooperative. Since the scientific focus is centered on the 3-D model overall dimensional accuracy, a methodology for its quality control is described. Such control has demonstrated how, in some situations, the ICP-based alignment can lead to incorrect results. To circumvent this difficulty we propose an alignment technique based on the fusion of ICP with close-range digital photogrammetry and a non-invasive procedure in order to generate a final accurate model. In the end detailed results are presented, demonstrating the improvement of the final model, and how the proposed sensor fusion ensure a pre-specified level of accuracy.

  16. Accuracy of three-dimensional, paper-based models generated using a low-cost, three-dimensional printer.

    PubMed

    Olszewski, Raphael; Szymor, Piotr; Kozakiewicz, Marcin

    2014-12-01

    Our study aimed to determine the accuracy of a low-cost, paper-based 3D printer by comparing a dry human mandible to its corresponding three-dimensional (3D) model using a 3D measuring arm. One dry human mandible and its corresponding printed model were evaluated. The model was produced using DICOM data from cone beam computed tomography. The data were imported into Maxilim software, wherein automatic segmentation was performed, and the STL file was saved. These data were subsequently analysed, repaired, cut and prepared for printing with netfabb software. These prepared data were used to create a paper-based model of a mandible with an MCor Matrix 300 printer. Seventy-six anatomical landmarks were chosen and measured 20 times on the mandible and the model using a MicroScribe G2X 3D measuring arm. The distances between all the selected landmarks were measured and compared. Only landmarks with a point inaccuracy less than 30% were used in further analyses. The mean absolute difference for the selected 2016 measurements was 0.36 ± 0.29 mm. The mean relative difference was 1.87 ± 3.14%; however, the measurement length significantly influenced the relative difference. The accuracy of the 3D model printed using the paper-based, low-cost 3D Matrix 300 printer was acceptable. The average error was no greater than that measured with other types of 3D printers. The mean relative difference should not be considered the best way to compare studies. The point inaccuracy methodology proposed in this study may be helpful in future studies concerned with evaluating the accuracy of 3D rapid prototyping models. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  17. 3DHYDROGEOCHEM: A 3-DIMENSIONAL MODEL OF DENSITY-DEPENDENT SUBSURFACE FLOW AND THERMAL MULTISPECIES-MULTICOMPONENT HYDROGEOCHEMICAL TRANSPORT (EPA/600/SR-98/159)

    EPA Science Inventory

    This report presents a three-dimensional finite-element numerical model designed to simulate chemical transport in subsurface systems with temperature effect taken into account. The three-dimensional model is developed to provide (1) a tool of application, with which one is able ...

  18. Gene flow from domesticated species to wild relatives: migration load in a model of multivariate selection.

    PubMed

    Tufto, Jarle

    2010-01-01

    Domesticated species frequently spread their genes into populations of wild relatives through interbreeding. The domestication process often involves artificial selection for economically desirable traits. This can lead to an indirect response in unknown correlated traits and a reduction in fitness of domesticated individuals in the wild. Previous models for the effect of gene flow from domesticated species to wild relatives have assumed that evolution occurs in one dimension. Here, I develop a quantitative genetic model for the balance between migration and multivariate stabilizing selection. Different forms of correlational selection consistent with a given observed ratio between average fitness of domesticated and wild individuals offsets the phenotypic means at migration-selection balance away from predictions based on simpler one-dimensional models. For almost all parameter values, correlational selection leads to a reduction in the migration load. For ridge selection, this reduction arises because the distance the immigrants deviates from the local optimum in effect is reduced. For realistic parameter values, however, the effect of correlational selection on the load is small, suggesting that simpler one-dimensional models may still be adequate in terms of predicting mean population fitness and viability.

  19. Spacing distribution functions for the one-dimensional point-island model with irreversible attachment

    NASA Astrophysics Data System (ADS)

    González, Diego Luis; Pimpinelli, Alberto; Einstein, T. L.

    2011-07-01

    We study the configurational structure of the point-island model for epitaxial growth in one dimension. In particular, we calculate the island gap and capture zone distributions. Our model is based on an approximate description of nucleation inside the gaps. Nucleation is described by the joint probability density pnXY(x,y), which represents the probability density to have nucleation at position x within a gap of size y. Our proposed functional form for pnXY(x,y) describes excellently the statistical behavior of the system. We compare our analytical model with extensive numerical simulations. Our model retains the most relevant physical properties of the system.

  20. A two-dimensional kinematic dynamo model of the ionospheric magnetic field at Venus

    NASA Technical Reports Server (NTRS)

    Cravens, T. E.; Wu, D.; Shinagawa, H.

    1990-01-01

    The results of a high-resolution, two-dimensional, time dependent, kinematic dynamo model of the ionospheric magnetic field of Venus are presented. Various one-dimensional models are considered and the two-dimensional model is then detailed. In this model, the two-dimensional magnetic induction equation, the magnetic diffusion-convection equation, is numerically solved using specified plasma velocities. Origins of the vertical velocity profile and of the horizontal velocities are discussed. It is argued that the basic features of the vertical magnetic field profile remain unaltered by horizontal flow effects and also that horizontal plasma flow can strongly affect the magnetic field for altitudes above 300 km.

  1. Cold spray nozzle mach number limitation

    NASA Astrophysics Data System (ADS)

    Jodoin, B.

    2002-12-01

    The classic one-dimensional isentropic flow approach is used along with a two-dimensional axisymmetric numerical model to show that the exit Mach number of a cold spray nozzle should be limited due to two factors. To show this, the two-dimensional model is validated with experimental data. Although both models show that the stagnation temperature is an important limiting factor, the one-dimensional approach fails to show how important the shock-particle interactions are at limiting the nozzle Mach number. It is concluded that for an air nozzle spraying solid powder particles, the nozzle Mach number should be set between 1.5 and 3 to limit the negative effects of the high stagnation temperature and of the shock-particle interactions.

  2. A chaotic model for the plague epidemic that has occurred in Bombay at the end of the 19th century

    NASA Astrophysics Data System (ADS)

    Mangiarotti, Sylvain

    2015-04-01

    The plague epidemic that has occurred in Bombay at the end of the 19th century was detected in 1896. One year before, an Advisory Committee had been appointed by the Secretary of State for India, the Royal Society, and the Lister Institute. This Committee made numerous investigations and gathered a large panel of data including the number of people attacked and died from the plague, records of rat and flea populations, as well as meteorological records of temperature and humidity [1]. The global modeling technique [2] aims to obtain low dimensional models able to simulate the observed cycles from time series. As far as we know, this technique has been tried only to one case of epidemiological analysis (the whooping cough infection) based on a discrete formulation [3]. In the present work, the continuous time formulation of this technique is used to analyze the time evolution of the plague epidemic from this data set. One low dimensional model (three variables) is obtained exhibiting a limit cycle of period-5. A chaotic behavior could be derived from this model by tuning the model parameters. It provides a strong argument for a dynamical behavior that can be approximated by low dimensional deterministic equations. This model also provides an empirical argument for chaos in epidemics. [1] Verjbitski D. T., Bannerman W. B. & Kápadiâ R. T., 1908. Reports on Plague Investigations in India (May,1908), The Journal of Hygiene, 8(2), 161 -308. [2] Mangiarotti S., Coudret R., Drapeau L. & Jarlan L., 2012. Polynomial search and Global modelling: two algorithms for modeling chaos. Physical Review E, 86(4), 046205. [3] Boudjema G. & Cazelles B., 2003. Extraction of nonlinear dynamics from short and noisy time series. Chaos, Solitons and Fractals, 12, 2051-2069.

  3. Numerically exploring the 1D-2D dimensional crossover on spin dynamics in the doped Hubbard model

    DOE PAGES

    Kung, Y. F.; Bazin, C.; Wohlfeld, K.; ...

    2017-11-02

    Using determinant quantum Monte Carlo (DQMC) simulations, we systematically study the doping dependence of the crossover from one to two dimensions and its impact on the magnetic properties of the Hubbard model. A square lattice of chains is used, in which the dimensionality can be tuned by varying the interchain coupling t ⊥. The dynamical spin structure factor and static quantities, such as the static spin susceptibility and nearest-neighbor spin correlation function, are characterized in the one- and two-dimensional limits as a benchmark. When the dimensionality is tuned between these limits, the magnetic properties, while evolving smoothly from one tomore » two dimensions, drastically change regardless of the doping level. This suggests that the spin excitations in the two-dimensional Hubbard model, even in the heavily doped case, cannot be explained using the spinon picture known from one dimension. In conclusion, the DQMC calculations are complemented by cluster perturbation theory studies to form a more complete picture of how the crossover occurs as a function of doping and how doped holes impact magnetic order.« less

  4. Simple One-Dimensional Quantum-Mechanical Model for a Particle Attached to a Surface

    ERIC Educational Resources Information Center

    Fernandez, Francisco M.

    2010-01-01

    We present a simple one-dimensional quantum-mechanical model for a particle attached to a surface. It leads to the Schrodinger equation for a harmonic oscillator bounded on one side that we solve in terms of Weber functions and discuss the behaviour of the eigenvalues and eigenfunctions. We derive the virial theorem and other exact relationships…

  5. Revisiting 2D Lattice Based Spin Flip-Flop Ising Model: Magnetic Properties of a Thin Film and Its Temperature Dependence

    ERIC Educational Resources Information Center

    Singh, Satya Pal

    2014-01-01

    This paper presents a brief review of Ising's work done in 1925 for one dimensional spin chain with periodic boundary condition. Ising observed that no phase transition occurred at finite temperature in one dimension. He erroneously generalized his views in higher dimensions but that was not true. In 1941 Kramer and Wannier obtained…

  6. A reappraisal of drug release laws using Monte Carlo simulations: the prevalence of the Weibull function.

    PubMed

    Kosmidis, Kosmas; Argyrakis, Panos; Macheras, Panos

    2003-07-01

    To verify the Higuchi law and study the drug release from cylindrical and spherical matrices by means of Monte Carlo computer simulation. A one-dimensional matrix, based on the theoretical assumptions of the derivation of the Higuchi law, was simulated and its time evolution was monitored. Cylindrical and spherical three-dimensional lattices were simulated with sites at the boundary of the lattice having been denoted as leak sites. Particles were allowed to move inside it using the random walk model. Excluded volume interactions between the particles was assumed. We have monitored the system time evolution for different lattice sizes and different initial particle concentrations. The Higuchi law was verified using the Monte Carlo technique in a one-dimensional lattice. It was found that Fickian drug release from cylindrical matrices can be approximated nicely with the Weibull function. A simple linear relation between the Weibull function parameters and the specific surface of the system was found. Drug release from a matrix, as a result of a diffusion process assuming excluded volume interactions between the drug molecules, can be described using a Weibull function. This model, although approximate and semiempirical, has the benefit of providing a simple physical connection between the model parameters and the system geometry, which was something missing from other semiempirical models.

  7. Finite Volume Numerical Methods for Aeroheating Rate Calculations from Infrared Thermographic Data

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Berry, Scott A.; Horvath, Thomas J.; Nowak, Robert J.

    2003-01-01

    The use of multi-dimensional finite volume numerical techniques with finite thickness models for calculating aeroheating rates from measured global surface temperatures on hypersonic wind tunnel models was investigated. Both direct and inverse finite volume techniques were investigated and compared with the one-dimensional semi -infinite technique. Global transient surface temperatures were measured using an infrared thermographic technique on a 0.333-scale model of the Hyper-X forebody in the Langley Research Center 20-Inch Mach 6 Air tunnel. In these tests the effectiveness of vortices generated via gas injection for initiating hypersonic transition on the Hyper-X forebody were investigated. An array of streamwise orientated heating striations were generated and visualized downstream of the gas injection sites. In regions without significant spatial temperature gradients, one-dimensional techniques provided accurate aeroheating rates. In regions with sharp temperature gradients due to the striation patterns two-dimensional heat transfer techniques were necessary to obtain accurate heating rates. The use of the one-dimensional technique resulted in differences of 20% in the calculated heating rates because it did not account for lateral heat conduction in the model.

  8. Modeling the hydrodynamic and electrochemical efficiency of semi-solid flow batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunini, VE; Chiang, YM; Carter, WC

    2012-05-01

    A mathematical model of flow cell operation incorporating hydrodynamic and electrochemical effects in three dimensions is developed. The model and resulting simulations apply to recently demonstrated high energy-density semi-solid flow cells. In particular, state of charge gradients that develop during low flow rate operation and their effects on the spatial non-uniformity of current density within flow cells are quantified. A one-dimensional scaling model is also developed and compared to the full three-dimensional simulation. The models are used to demonstrate the impact of the choice of electrochemical couple on flow cell performance. For semi-solid flow electrodes, which can use solid activemore » materials with a wide variety of voltage-capacity responses, we find that cell efficiency is maximized for electrochemical couples that have a relatively flat voltage vs. capacity curve, operated under slow flow conditions. For example, in flow electrodes limited by macroscopic charge transport, an LiFePO4-based system requires one-third the polarization to reach the same cycling rate as an LiCoO2-based system, all else being equal. Our conclusions are generally applicable to high energy density flow battery systems, in which flow rates can be comparatively low for a given required power. (C) 2012 Elsevier Ltd. All rights reserved.« less

  9. An analytical approach to thermal modeling of Bridgman type crystal growth: One dimensional analysis. Computer program users manual

    NASA Technical Reports Server (NTRS)

    Cothran, E. K.

    1982-01-01

    The computer program written in support of one dimensional analytical approach to thermal modeling of Bridgman type crystal growth is presented. The program listing and flow charts are included, along with the complete thermal model. Sample problems include detailed comments on input and output to aid the first time user.

  10. Testing FASST a One-Dimensional Hydrological Model for Soil Moisture Studies at the Little River Watershed, Tifton, Georgia

    USDA-ARS?s Scientific Manuscript database

    The FASST (Fast All Season Strength model, US Army Corps of Engineers), one-dimensional hydrologic model was used to evaluate soil moisture across the USDA-ARS-SEWRL Little River Watershed in south Georgia US. The ultimate goal of this research is to assess the spatial variation of soil moisture acr...

  11. Vertex shading of the three-dimensional model based on ray-tracing algorithm

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoming; Sang, Xinzhu; Xing, Shujun; Yan, Binbin; Wang, Kuiru; Dou, Wenhua; Xiao, Liquan

    2016-10-01

    Ray Tracing Algorithm is one of the research hotspots in Photorealistic Graphics. It is an important light and shadow technology in many industries with the three-dimensional (3D) structure, such as aerospace, game, video and so on. Unlike the traditional method of pixel shading based on ray tracing, a novel ray tracing algorithm is presented to color and render vertices of the 3D model directly. Rendering results are related to the degree of subdivision of the 3D model. A good light and shade effect is achieved by realizing the quad-tree data structure to get adaptive subdivision of a triangle according to the brightness difference of its vertices. The uniform grid algorithm is adopted to improve the rendering efficiency. Besides, the rendering time is independent of the screen resolution. In theory, as long as the subdivision of a model is adequate, cool effects as the same as the way of pixel shading will be obtained. Our practical application can be compromised between the efficiency and the effectiveness.

  12. Selected topics in high energy physics: Flavon, neutrino and extra-dimensional models

    NASA Astrophysics Data System (ADS)

    Dorsner, Ilja

    There is already significant evidence, both experimental and theoretical, that the Standard Model of elementary particle physics is just another effective physical theory. Thus, it is crucial (a) to anticipate the experiments in search for signatures of the physics beyond the Standard Model, and (b) whether some theoretically preferred structure can reproduce the low-energy signature of the Standard Model. This work pursues these two directions by investigating various extensions of the Standard Model. One of them is a simple flavon model that accommodates the observed hierarchy of the charged fermion masses and mixings. We show that flavor changing and CP violating signatures of this model are equally near the present experimental limits. We find that, for a significant range of parameters, mu-e conversion can be the most sensitive place to look for such signatures. We then propose two variants of an SO(10) model in five-dimensional framework. The first variant demonstrates that one can embed a four-dimensional flipped SU(5) model into a five-dimensional SO(10) model. This allows one to maintain the advantages of flipped SU(5) while avoiding its well-known drawbacks. The second variant shows that exact unification of the gauge couplings is possible even in the higher dimensional setting. This unification yields low-energy values of the gauge couplings that are in a perfect agreement with experimental values. We show that the corrections to the usual four-dimensional running, due to the Kaluza-Klein towers of states, can be unambiguously and systematically evaluated. We also consider the various main types of models of neutrino masses and mixings from the point of view of how naturally they give the large mixing angle MSW solution to the solar neutrino problem. Special attention is given to one particular "lopsided" SU(5) model, which is then analyzed in a completely statistical manner. We suggest that this sort of statistical analysis should be applicable to other models of neutrino mixing.

  13. SCL-90-R emotional distress ratings in substance use and impulse control disorders: One-factor, oblique first-order, higher-order, and bi-factor models compared.

    PubMed

    Arrindell, Willem A; Urbán, Róbert; Carrozzino, Danilo; Bech, Per; Demetrovics, Zsolt; Roozen, Hendrik G

    2017-09-01

    To fully understand the dimensionality of an instrument in a certain population, rival bi-factor models should be routinely examined and tested against oblique first-order and higher-order structures. The present study is among the very few studies that have carried out such a comparison in relation to the Symptom Checklist-90-R. In doing so, it utilized a sample comprising 2593 patients with substance use and impulse control disorders. The study also included a test of a one-dimensional model of general psychological distress. Oblique first-order factors were based on the original a priori 9-dimensional model advanced by Derogatis (1977); and on an 8-dimensional model proposed by Arrindell and Ettema (2003)-Agoraphobia, Anxiety, Depression, Somatization, Cognitive-performance deficits, Interpersonal sensitivity and mistrust, Acting-out hostility, and Sleep difficulties. Taking individual symptoms as input, three higher-order models were tested with at the second-order levels either (1) General psychological distress; (2) 'Panic with agoraphobia', 'Depression' and 'Extra-punitive behavior'; or (3) 'Irritable-hostile depression' and 'Panic with agoraphobia'. In line with previous studies, no support was found for the one-factor model. Bi-factor models were found to fit the dataset best relative to the oblique first-order and higher-order models. However, oblique first-order and higher-order factor models also fit the data fairly well in absolute terms. Higher-order solution (2) provided support for R.F. Krueger's empirical model of psychopathology which distinguishes between fear, distress, and externalizing factors (Krueger, 1999). The higher-order model (3), which combines externalizing and distress factors (Irritable-hostile depression), fit the data numerically equally well. Overall, findings were interpreted as supporting the hypothesis that the prevalent forms of symptomatology addressed have both important common and unique features. Proposals were made to improve the Depression subscale as its scores represent more of a very common construct as is measured with the severity (total) scale than of a specific measure that purports to measure what it should assess-symptoms of depression. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  14. Anomalous dimensionality dependence of diffusion in a rugged energy landscape: How pathological is one dimension?

    NASA Astrophysics Data System (ADS)

    Seki, Kazuhiko; Bagchi, Kaushik; Bagchi, Biman

    2016-05-01

    Diffusion in one dimensional rugged energy landscape (REL) is predicted to be pathologically different (from any higher dimension) with a much larger chance of encountering broken ergodicity [D. L. Stein and C. M. Newman, AIP Conf. Proc. 1479, 620 (2012)]. However, no quantitative study of this difference has been reported, despite the prevalence of multidimensional physical models in the literature (like a high dimensional funnel guiding protein folding/unfolding). Paradoxically, some theoretical studies of these phenomena still employ a one dimensional diffusion description for analytical tractability. We explore the dimensionality dependent diffusion on REL by carrying out an effective medium approximation based analytical calculations and compare them with the available computer simulation results. We find that at an intermediate level of ruggedness (assumed to have a Gaussian distribution), where diffusion is well-defined, the value of the effective diffusion coefficient depends on dimensionality and changes (increases) by several factors (˜5-10) in going from 1d to 2d. In contrast, the changes in subsequent transitions (like 2d to 3d and 3d to 4d and so on) are far more modest, of the order of 10-20% only. When ruggedness is given by random traps with an exponential distribution of barrier heights, the mean square displacement (MSD) is sub-diffusive (a well-known result), but the growth of MSD is described by different exponents in one and higher dimensions. The reason for such strong ruggedness induced retardation in the case of one dimensional REL is discussed. We also discuss the special limiting case of infinite dimension (d = ∞) where the effective medium approximation becomes exact and where theoretical results become simple. We discuss, for the first time, the role of spatial correlation in the landscape on diffusion of a random walker.

  15. Anomalous dimensionality dependence of diffusion in a rugged energy landscape: How pathological is one dimension?

    PubMed

    Seki, Kazuhiko; Bagchi, Kaushik; Bagchi, Biman

    2016-05-21

    Diffusion in one dimensional rugged energy landscape (REL) is predicted to be pathologically different (from any higher dimension) with a much larger chance of encountering broken ergodicity [D. L. Stein and C. M. Newman, AIP Conf. Proc. 1479, 620 (2012)]. However, no quantitative study of this difference has been reported, despite the prevalence of multidimensional physical models in the literature (like a high dimensional funnel guiding protein folding/unfolding). Paradoxically, some theoretical studies of these phenomena still employ a one dimensional diffusion description for analytical tractability. We explore the dimensionality dependent diffusion on REL by carrying out an effective medium approximation based analytical calculations and compare them with the available computer simulation results. We find that at an intermediate level of ruggedness (assumed to have a Gaussian distribution), where diffusion is well-defined, the value of the effective diffusion coefficient depends on dimensionality and changes (increases) by several factors (∼5-10) in going from 1d to 2d. In contrast, the changes in subsequent transitions (like 2d to 3d and 3d to 4d and so on) are far more modest, of the order of 10-20% only. When ruggedness is given by random traps with an exponential distribution of barrier heights, the mean square displacement (MSD) is sub-diffusive (a well-known result), but the growth of MSD is described by different exponents in one and higher dimensions. The reason for such strong ruggedness induced retardation in the case of one dimensional REL is discussed. We also discuss the special limiting case of infinite dimension (d = ∞) where the effective medium approximation becomes exact and where theoretical results become simple. We discuss, for the first time, the role of spatial correlation in the landscape on diffusion of a random walker.

  16. Can genetics help psychometrics? Improving dimensionality assessment through genetic factor modeling.

    PubMed

    Franić, Sanja; Dolan, Conor V; Borsboom, Denny; Hudziak, James J; van Beijsterveldt, Catherina E M; Boomsma, Dorret I

    2013-09-01

    In the present article, we discuss the role that quantitative genetic methodology may play in assessing and understanding the dimensionality of psychological (psychometric) instruments. Specifically, we study the relationship between the observed covariance structures, on the one hand, and the underlying genetic and environmental influences giving rise to such structures, on the other. We note that this relationship may be such that it hampers obtaining a clear estimate of dimensionality using standard tools for dimensionality assessment alone. One situation in which dimensionality assessment may be impeded is that in which genetic and environmental influences, of which the observed covariance structure is a function, differ from each other in structure and dimensionality. We demonstrate that in such situations settling dimensionality issues may be problematic, and propose using quantitative genetic modeling to uncover the (possibly different) dimensionalities of the underlying genetic and environmental structures. We illustrate using simulations and an empirical example on childhood internalizing problems.

  17. FireStem2D – A Two-Dimensional Heat Transfer Model for Simulating Tree Stem Injury in Fires

    PubMed Central

    Chatziefstratiou, Efthalia K.; Bohrer, Gil; Bova, Anthony S.; Subramanian, Ravishankar; Frasson, Renato P. M.; Scherzer, Amy; Butler, Bret W.; Dickinson, Matthew B.

    2013-01-01

    FireStem2D, a software tool for predicting tree stem heating and injury in forest fires, is a physically-based, two-dimensional model of stem thermodynamics that results from heating at the bark surface. It builds on an earlier one-dimensional model (FireStem) and provides improved capabilities for predicting fire-induced mortality and injury before a fire occurs by resolving stem moisture loss, temperatures through the stem, degree of bark charring, and necrotic depth around the stem. We present the results of numerical parameterization and model evaluation experiments for FireStem2D that simulate laboratory stem-heating experiments of 52 tree sections from 25 trees. We also conducted a set of virtual sensitivity analysis experiments to test the effects of unevenness of heating around the stem and with aboveground height using data from two studies: a low-intensity surface fire and a more intense crown fire. The model allows for improved understanding and prediction of the effects of wildland fire on injury and mortality of trees of different species and sizes. PMID:23894599

  18. Three-dimensional finite element modelling of muscle forces during mastication.

    PubMed

    Röhrle, Oliver; Pullan, Andrew J

    2007-01-01

    This paper presents a three-dimensional finite element model of human mastication. Specifically, an anatomically realistic model of the masseter muscles and associated bones is used to investigate the dynamics of chewing. A motion capture system is used to track the jaw motion of a subject chewing standard foods. The three-dimensional nonlinear deformation of the masseter muscles are calculated via the finite element method, using the jaw motion data as boundary conditions. Motion-driven muscle activation patterns and a transversely isotropic material law, defined in a muscle-fibre coordinate system, are used in the calculations. Time-force relationships are presented and analysed with respect to different tasks during mastication, e.g. opening, closing, and biting, and are also compared to a more traditional one-dimensional model. The results strongly suggest that, due to the complex arrangement of muscle force directions, modelling skeletal muscles as conventional one-dimensional lines of action might introduce a significant source of error.

  19. Unsteady free surface flow in porous media: One-dimensional model equations including vertical effects and seepage face

    NASA Astrophysics Data System (ADS)

    Di Nucci, Carmine

    2018-05-01

    This note examines the two-dimensional unsteady isothermal free surface flow of an incompressible fluid in a non-deformable, homogeneous, isotropic, and saturated porous medium (with zero recharge and neglecting capillary effects). Coupling a Boussinesq-type model for nonlinear water waves with Darcy's law, the two-dimensional flow problem is solved using one-dimensional model equations including vertical effects and seepage face. In order to take into account the seepage face development, the system equations (given by the continuity and momentum equations) are completed by an integral relation (deduced from the Cauchy theorem). After testing the model against data sets available in the literature, some numerical simulations, concerning the unsteady flow through a rectangular dam (with an impermeable horizontal bottom), are presented and discussed.

  20. Role of dimensionality in Axelrod's model for the dissemination of culture

    NASA Astrophysics Data System (ADS)

    Klemm, Konstantin; Eguíluz, Víctor M.; Toral, Raúl; Miguel, Maxi San

    2003-09-01

    We analyze a model of social interaction in one- and two-dimensional lattices for a moderate number of features. We introduce an order parameter as a function of the overlap between neighboring sites. In a one-dimensional chain, we observe that the dynamics is consistent with a second-order transition, where the order parameter changes continuously and the average domain diverges at the transition point. However, in a two-dimensional lattice the order parameter is discontinuous at the transition point characteristic of a first-order transition between an ordered and a disordered state.

  1. Thermoelastic damping in thin microrings with two-dimensional heat conduction

    NASA Astrophysics Data System (ADS)

    Fang, Yuming; Li, Pu

    2015-05-01

    Accurate determination of thermoelastic damping (TED) is very challenging in the design of micro-resonators. Microrings are widely used in many micro-resonators. In the past, to model the TED effect on the microrings, some analytical models have been developed. However, in the previous works, the heat conduction within the microring is modeled by using the one-dimensional approach. The governing equation for heat conduction is solved only for the one-dimensional heat conduction along the radial thickness of the microring. This paper presents a simple analytical model for TED in microrings. The two-dimensional heat conduction over the thermoelastic temperature gradients along the radial thickness and the circumferential direction are considered in the present model. A two-dimensional heat conduction equation is developed. The solution of the equation is represented by the product of an assumed sine series along the radial thickness and an assumed trigonometric series along the circumferential direction. The analytical results obtained by the present 2-D model show a good agreement with the numerical (FEM) results. The limitations of the previous 1-D model are assessed.

  2. Stationary Wavelet-based Two-directional Two-dimensional Principal Component Analysis for EMG Signal Classification

    NASA Astrophysics Data System (ADS)

    Ji, Yi; Sun, Shanlin; Xie, Hong-Bo

    2017-06-01

    Discrete wavelet transform (WT) followed by principal component analysis (PCA) has been a powerful approach for the analysis of biomedical signals. Wavelet coefficients at various scales and channels were usually transformed into a one-dimensional array, causing issues such as the curse of dimensionality dilemma and small sample size problem. In addition, lack of time-shift invariance of WT coefficients can be modeled as noise and degrades the classifier performance. In this study, we present a stationary wavelet-based two-directional two-dimensional principal component analysis (SW2D2PCA) method for the efficient and effective extraction of essential feature information from signals. Time-invariant multi-scale matrices are constructed in the first step. The two-directional two-dimensional principal component analysis then operates on the multi-scale matrices to reduce the dimension, rather than vectors in conventional PCA. Results are presented from an experiment to classify eight hand motions using 4-channel electromyographic (EMG) signals recorded in healthy subjects and amputees, which illustrates the efficiency and effectiveness of the proposed method for biomedical signal analysis.

  3. Limitations of one-dimensional mesoscale PBL parameterizations in reproducing mountain-wave flows

    DOE PAGES

    Munoz-Esparza, Domingo; Sauer, Jeremy A.; Linn, Rodman R.; ...

    2015-12-08

    In this study, mesoscale models are considered to be the state of the art in modeling mountain-wave flows. Herein, we investigate the role and accuracy of planetary boundary layer (PBL) parameterizations in handling the interaction between large-scale mountain waves and the atmospheric boundary layer. To that end, we use recent large-eddy simulation (LES) results of mountain waves over a symmetric two-dimensional bell-shaped hill [Sauer et al., J. Atmos. Sci. (2015)], and compare them to four commonly used PBL schemes. We find that one-dimensional PBL parameterizations produce reasonable agreement with the LES results in terms of vertical wavelength, amplitude of velocitymore » and turbulent kinetic energy distribution in the downhill shooting flow region. However, the assumption of horizontal homogeneity in PBL parameterizations does not hold in the context of these complex flow configurations. This inappropriate modeling assumption results in a vertical wavelength shift producing errors of ≈ 10 m s–1 at downstream locations due to the presence of a coherent trapped lee wave that does not mix with the atmospheric boundary layer. In contrast, horizontally-integrated momentum flux derived from these PBL schemes displays a realistic pattern. Therefore results from mesoscale models using ensembles of one-dimensional PBL schemes can still potentially be used to parameterize drag effects in general circulation models. Nonetheless, three-dimensional PBL schemes must be developed in order for mesoscale models to accurately represent complex-terrain and other types of flows where one-dimensional PBL assumptions are violated.« less

  4. The electric double layer at a metal electrode in pure water

    NASA Astrophysics Data System (ADS)

    Brüesch, Peter; Christen, Thomas

    2004-03-01

    Pure water is a weak electrolyte that dissociates into hydronium ions and hydroxide ions. In contact with a charged electrode a double layer forms for which neither experimental nor theoretical studies exist, in contrast to electrolytes containing extrinsic ions like acids, bases, and solute salts. Starting from a self-consistent solution of the one-dimensional modified Poisson-Boltzmann equation, which takes into account activity coefficients of point-like ions, we explore the properties of the electric double layer by successive incorporation of various correction terms like finite ion size, polarization, image charge, and field dissociation. We also discuss the effect of the usual approximation of an average potential as required for the one-dimensional Poisson-Boltzmann equation, and conclude that the one-dimensional approximation underestimates the ion density. We calculate the electric potential, the ion distributions, the pH-values, the ion-size corrected activity coefficients, and the dissociation constants close to the electric double layer and compare the results for the various model corrections.

  5. An Implicit LU/AF FDTD Method

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Briley, W. Roger

    2001-01-01

    There has been some recent work to develop two and three-dimensional alternating direction implicit (ADI) FDTD schemes. These ADI schemes are based upon the original ADI concept developed by Peaceman and Rachford and Douglas and Gunn, which is a popular solution method in Computational Fluid Dynamics (CFD). These ADI schemes work well and they require solution of a tridiagonal system of equations. A new approach proposed in this paper applies a LU/AF approximate factorization technique from CFD to Maxwell s equations in flux conservative form for one space dimension. The result is a scheme that will retain its unconditional stability in three space dimensions, but does not require the solution of tridiagonal systems. The theory for this new algorithm is outlined in a one-dimensional context for clarity. An extension to two and threedimensional cases is discussed. Results of Fourier analysis are discussed for both stability and dispersion/damping properties of the algorithm. Results are presented for a one-dimensional model problem, and the explicit FDTD algorithm is chosen as a convenient reference for comparison.

  6. Fast image matching algorithm based on projection characteristics

    NASA Astrophysics Data System (ADS)

    Zhou, Lijuan; Yue, Xiaobo; Zhou, Lijun

    2011-06-01

    Based on analyzing the traditional template matching algorithm, this paper identified the key factors restricting the speed of matching and put forward a brand new fast matching algorithm based on projection. Projecting the grayscale image, this algorithm converts the two-dimensional information of the image into one-dimensional one, and then matches and identifies through one-dimensional correlation, meanwhile, because of normalization has been done, when the image brightness or signal amplitude increasing in proportion, it could also perform correct matching. Experimental results show that the projection characteristics based image registration method proposed in this article could greatly improve the matching speed, which ensuring the matching accuracy as well.

  7. Topics in Covariant Closed String Field Theory and Two-Dimensional Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Saadi, Maha

    1991-01-01

    The closed string field theory based on the Witten vertex is found to be nonpolynomial in order to reproduce all tree amplitudes correctly. The interactions have a geometrical pattern of overlaps, which can be thought as the edges of a spherical polyhedron with face-perimeters equal to 2pi. At each vertex of the polyhedron there are three faces, thus all elementary interactions are cubic in the sense that at most three strings can coincide at a point. The quantum action is constructed by substracting counterterms which cancel the overcounting of moduli space, and by adding loop vertices in such a way no possible surfaces are missed. A counterterm that gives the correct one-string one-loop amplitude is formulated. The lowest order loop vertices are analyzed in the cases of genus one and two. Also, a one-loop two -string counterterm that restores BRST invariance to the respective scattering amplitude is constructed. An attempt to understand the formulation of two -dimensional pure gravity from the discrete representation of a two-dimensional surface is made. This is considered as a toy model of string theory. A well-defined mathematical model is used. Its continuum limit cannot be naively interpreted as pure gravity because each term of the sum over surfaces is not positive definite. The model, however, could be considered as an analytic continuation of the standard matrix model formulation of gravity. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  8. A multivariate quadrature based moment method for LES based modeling of supersonic combustion

    NASA Astrophysics Data System (ADS)

    Donde, Pratik; Koo, Heeseok; Raman, Venkat

    2012-07-01

    The transported probability density function (PDF) approach is a powerful technique for large eddy simulation (LES) based modeling of scramjet combustors. In this approach, a high-dimensional transport equation for the joint composition-enthalpy PDF needs to be solved. Quadrature based approaches provide deterministic Eulerian methods for solving the joint-PDF transport equation. In this work, it is first demonstrated that the numerical errors associated with LES require special care in the development of PDF solution algorithms. The direct quadrature method of moments (DQMOM) is one quadrature-based approach developed for supersonic combustion modeling. This approach is shown to generate inconsistent evolution of the scalar moments. Further, gradient-based source terms that appear in the DQMOM transport equations are severely underpredicted in LES leading to artificial mixing of fuel and oxidizer. To overcome these numerical issues, a semi-discrete quadrature method of moments (SeQMOM) is formulated. The performance of the new technique is compared with the DQMOM approach in canonical flow configurations as well as a three-dimensional supersonic cavity stabilized flame configuration. The SeQMOM approach is shown to predict subfilter statistics accurately compared to the DQMOM approach.

  9. Mixing Regimes in a Spatially Confined, Two-Dimensional, Supersonic Shear Layer

    DTIC Science & Technology

    1992-07-31

    MODEL ................................... 3 THE MODEL PROBLEMS .............................................. 6 THE ONE-DIMENSIONAL PROBLEM...the effects of the numerical diffusion on the spectrum. Guirguis et al.ś and Farouk et al."’ have studied spatially evolving mixing layers for equal...approximations. Physical and Numerical Model General Formulation We solve the time-dependent, two-dimensional, compressible, Navier-Stokes equations for a

  10. Experimental, Theoretical, and Computational Investigation of Separated Nozzle Flows

    NASA Technical Reports Server (NTRS)

    Hunter, Craig A.

    2004-01-01

    A detailed experimental, theoretical, and computational study of separated nozzle flows has been conducted. Experimental testing was performed at the NASA Langley 16-Foot Transonic Tunnel Complex. As part of a comprehensive static performance investigation, force, moment, and pressure measurements were made and schlieren flow visualization was obtained for a sub-scale, non-axisymmetric, two-dimensional, convergent- divergent nozzle. In addition, two-dimensional numerical simulations were run using the computational fluid dynamics code PAB3D with two-equation turbulence closure and algebraic Reynolds stress modeling. For reference, experimental and computational results were compared with theoretical predictions based on one-dimensional gas dynamics and an approximate integral momentum boundary layer method. Experimental results from this study indicate that off-design overexpanded nozzle flow was dominated by shock induced boundary layer separation, which was divided into two distinct flow regimes; three- dimensional separation with partial reattachment, and fully detached two-dimensional separation. The test nozzle was observed to go through a marked transition in passing from one regime to the other. In all cases, separation provided a significant increase in static thrust efficiency compared to the ideal prediction. Results indicate that with controlled separation, the entire overexpanded range of nozzle performance would be within 10% of the peak thrust efficiency. By offering savings in weight and complexity over a conventional mechanical exhaust system, this may allow a fixed geometry nozzle to cover an entire flight envelope. The computational simulation was in excellent agreement with experimental data over most of the test range, and did a good job of modeling internal flow and thrust performance. An exception occurred at low nozzle pressure ratios, where the two-dimensional computational model was inconsistent with the three-dimensional separation observed in the experiment. In general, the computation captured the physics of the shock boundary layer interaction and shock induced boundary layer separation in the nozzle, though there were some differences in shock structure compared to experiment. Though minor, these differences could be important for studies involving flow control or thrust vectoring of separated nozzles. Combined with other observations, this indicates that more detailed, three-dimensional computational modeling needs to be conducted to more realistically simulate shock-separated nozzle flows.

  11. A one-dimensional peridynamic model of defect propagation and its relation to certain other continuum models

    NASA Astrophysics Data System (ADS)

    Wang, Linjuan; Abeyaratne, Rohan

    2018-07-01

    The peridynamic model of a solid does not involve spatial gradients of the displacement field and is therefore well suited for studying defect propagation. Here, bond-based peridynamic theory is used to study the equilibrium and steady propagation of a lattice defect - a kink - in one dimension. The material transforms locally, from one state to another, as the kink passes through. The kink is in equilibrium if the applied force is less than a certain critical value that is calculated, and propagates if it exceeds that value. The kinetic relation giving the propagation speed as a function of the applied force is also derived. In addition, it is shown that the dynamical solutions of certain differential-equation-based models of a continuum are the same as those of the peridynamic model provided the micromodulus function is chosen suitably. A formula for calculating the micromodulus function of the equivalent peridynamic model is derived and illustrated. This ability to replace a differential-equation-based model with a peridynamic one may prove useful when numerically studying more complicated problems such as those involving multiple and interacting defects.

  12. A radiative seesaw model with higher order terms under an alternative U(1)B-L

    NASA Astrophysics Data System (ADS)

    Nomura, Takaaki; Okada, Hiroshi

    2018-06-01

    We propose a model based on an alternative U(1) B - L gauge symmetry with 5 dimensional operators in the Lagrangian, and we construct the neutrino masses at one-loop level, and discuss lepton flavor violations, dark matter, and the effective number of neutrino species due to two massless particles in our model. Then we search allowed region to satisfy the current experimental data of neutrino oscillation and lepton flavor violations without conflict of several constraints such as stability of dark matter and the effective number of neutrino species, depending on normal hierarchy and inverted one.

  13. Rigorous Free-Fermion Entanglement Renormalization from Wavelet Theory

    NASA Astrophysics Data System (ADS)

    Haegeman, Jutho; Swingle, Brian; Walter, Michael; Cotler, Jordan; Evenbly, Glen; Scholz, Volkher B.

    2018-01-01

    We construct entanglement renormalization schemes that provably approximate the ground states of noninteracting-fermion nearest-neighbor hopping Hamiltonians on the one-dimensional discrete line and the two-dimensional square lattice. These schemes give hierarchical quantum circuits that build up the states from unentangled degrees of freedom. The circuits are based on pairs of discrete wavelet transforms, which are approximately related by a "half-shift": translation by half a unit cell. The presence of the Fermi surface in the two-dimensional model requires a special kind of circuit architecture to properly capture the entanglement in the ground state. We show how the error in the approximation can be controlled without ever performing a variational optimization.

  14. Two-dimensional character of internal rotation of furfural and other five-member heterocyclic aromatic aldehydes

    NASA Astrophysics Data System (ADS)

    Bataev, Vadim A.; Pupyshev, Vladimir I.; Godunov, Igor A.

    2016-05-01

    The features of nuclear motion corresponding to the rotation of the formyl group (CHO) are studied for the molecules of furfural and some other five-member heterocyclic aromatic aldehydes by the use of MP2/6-311G** quantum chemical approximation. It is demonstrated that the traditional one-dimensional models of internal rotation for the molecules studied have only limited applicability. The reason is the strong kinematic interaction of the rotation of the CHO group and out-of-plane CHO deformation that is realized for the molecules under consideration. The computational procedure based on the two-dimensional approximation is considered for low lying vibrational states as more adequate to the problem.

  15. A three-dimensional, time-dependent model of Mobile Bay

    NASA Technical Reports Server (NTRS)

    Pitts, F. H.; Farmer, R. C.

    1976-01-01

    A three-dimensional, time-variant mathematical model for momentum and mass transport in estuaries was developed and its solution implemented on a digital computer. The mathematical model is based on state and conservation equations applied to turbulent flow of a two-component, incompressible fluid having a free surface. Thus, bouyancy effects caused by density differences between the fresh and salt water, inertia from thare river and tidal currents, and differences in hydrostatic head are taken into account. The conservation equations, which are partial differential equations, are solved numerically by an explicit, one-step finite difference scheme and the solutions displayed numerically and graphically. To test the validity of the model, a specific estuary for which scaled model and experimental field data are available, Mobile Bay, was simulated. Comparisons of velocity, salinity and water level data show that the model is valid and a viable means of simulating the hydrodynamics and mass transport in non-idealized estuaries.

  16. Design and Implementation of 3D Model Data Management System Based on SQL

    NASA Astrophysics Data System (ADS)

    Li, Shitao; Zhang, Shixin; Zhang, Zhanling; Li, Shiming; Jia, Kun; Hu, Zhongxu; Ping, Liang; Hu, Youming; Li, Yanlei

    CAD/CAM technology plays an increasingly important role in the machinery manufacturing industry. As an important means of production, the accumulated three-dimensional models in many years of design work are valuable. Thus the management of these three-dimensional models is of great significance. This paper gives detailed explanation for a method to design three-dimensional model databases based on SQL and to implement the functions such as insertion, modification, inquiry, preview and so on.

  17. Hybrid discrete-time neural networks.

    PubMed

    Cao, Hongjun; Ibarz, Borja

    2010-11-13

    Hybrid dynamical systems combine evolution equations with state transitions. When the evolution equations are discrete-time (also called map-based), the result is a hybrid discrete-time system. A class of biological neural network models that has recently received some attention falls within this category: map-based neuron models connected by means of fast threshold modulation (FTM). FTM is a connection scheme that aims to mimic the switching dynamics of a neuron subject to synaptic inputs. The dynamic equations of the neuron adopt different forms according to the state (either firing or not firing) and type (excitatory or inhibitory) of their presynaptic neighbours. Therefore, the mathematical model of one such network is a combination of discrete-time evolution equations with transitions between states, constituting a hybrid discrete-time (map-based) neural network. In this paper, we review previous work within the context of these models, exemplifying useful techniques to analyse them. Typical map-based neuron models are low-dimensional and amenable to phase-plane analysis. In bursting models, fast-slow decomposition can be used to reduce dimensionality further, so that the dynamics of a pair of connected neurons can be easily understood. We also discuss a model that includes electrical synapses in addition to chemical synapses with FTM. Furthermore, we describe how master stability functions can predict the stability of synchronized states in these networks. The main results are extended to larger map-based neural networks.

  18. Markov-switching multifractal models as another class of random-energy-like models in one-dimensional space

    NASA Astrophysics Data System (ADS)

    Saakian, David B.

    2012-03-01

    We map the Markov-switching multifractal model (MSM) onto the random energy model (REM). The MSM is, like the REM, an exactly solvable model in one-dimensional space with nontrivial correlation functions. According to our results, four different statistical physics phases are possible in random walks with multifractal behavior. We also introduce the continuous branching version of the model, calculate the moments, and prove multiscaling behavior. Different phases have different multiscaling properties.

  19. Thermal model development and validation for rapid filling of high pressure hydrogen tanks

    DOE PAGES

    Johnson, Terry A.; Bozinoski, Radoslav; Ye, Jianjun; ...

    2015-06-30

    This paper describes the development of thermal models for the filling of high pressure hydrogen tanks with experimental validation. Two models are presented; the first uses a one-dimensional, transient, network flow analysis code developed at Sandia National Labs, and the second uses the commercially available CFD analysis tool Fluent. These models were developed to help assess the safety of Type IV high pressure hydrogen tanks during the filling process. The primary concern for these tanks is due to the increased susceptibility to fatigue failure of the liner caused by the fill process. Thus, a thorough understanding of temperature changes ofmore » the hydrogen gas and the heat transfer to the tank walls is essential. The effects of initial pressure, filling time, and fill procedure were investigated to quantify the temperature change and verify the accuracy of the models. In this paper we show that the predictions of mass averaged gas temperature for the one and three-dimensional models compare well with the experiment and both can be used to make predictions for final mass delivery. Furthermore, due to buoyancy and other three-dimensional effects, however, the maximum wall temperature cannot be predicted using one-dimensional tools alone which means that a three-dimensional analysis is required for a safety assessment of the system.« less

  20. Comparison of analytical and experimental performance of a wind-tunnel diffuser section

    NASA Technical Reports Server (NTRS)

    Shyne, R. J.; Moore, R. D.; Boldman, D. R.

    1986-01-01

    Wind tunnel diffuser performance is evaluated by comparing experimental data with analytical results predicted by an one-dimensional integration procedure with skin friction coefficient, a two-dimensional interactive boundary layer procedure for analyzing conical diffusers, and a two-dimensional, integral, compressible laminar and turbulent boundary layer code. Pressure, temperature, and velocity data for a 3.25 deg equivalent cone half-angle diffuser (37.3 in., 94.742 cm outlet diameter) was obtained from the one-tenth scale Altitude Wind Tunnel modeling program at the NASA Lewis Research Center. The comparison is performed at Mach numbers of 0.162 (Re = 3.097x19(6)), 0.326 (Re = 6.2737x19(6)), and 0.363 (Re = 7.0129x10(6)). The Reynolds numbers are all based on an inlet diffuser diameter of 32.4 in., 82.296 cm, and reasonable quantitative agreement was obtained between the experimental data and computational codes.

  1. Investigation of Small-Caliber Primer Function Using a Multiphase Computational Model

    DTIC Science & Technology

    2008-07-01

    all solid walls along with specified inflow at the primer orifice (0.102 cm < Y < 0.102 cm at X = 0). Initially , the entire flowfield is filled...to explicitly treat both the gas and solid phase. The model is based on the One Dimensional Turbulence modeling approach that has recently emerged as...a powerful tool in multiphase simulations. Initial results are shown for the model run as a stand-alone code and are compared to recent experiments

  2. Computer-Based Learning: Graphical Integration of Whole and Sectional Neuroanatomy Improves Long-Term Retention

    PubMed Central

    Naaz, Farah; Chariker, Julia H.; Pani, John R.

    2013-01-01

    A study was conducted to test the hypothesis that instruction with graphically integrated representations of whole and sectional neuroanatomy is especially effective for learning to recognize neural structures in sectional imagery (such as MRI images). Neuroanatomy was taught to two groups of participants using computer graphical models of the human brain. Both groups learned whole anatomy first with a three-dimensional model of the brain. One group then learned sectional anatomy using two-dimensional sectional representations, with the expectation that there would be transfer of learning from whole to sectional anatomy. The second group learned sectional anatomy by moving a virtual cutting plane through the three-dimensional model. In tests of long-term retention of sectional neuroanatomy, the group with graphically integrated representation recognized more neural structures that were known to be challenging to learn. This study demonstrates the use of graphical representation to facilitate a more elaborated (deeper) understanding of complex spatial relations. PMID:24563579

  3. Using travel times to simulate multi-dimensional bioreactive transport in time-periodic flows.

    PubMed

    Sanz-Prat, Alicia; Lu, Chuanhe; Finkel, Michael; Cirpka, Olaf A

    2016-04-01

    In travel-time models, the spatially explicit description of reactive transport is replaced by associating reactive-species concentrations with the travel time or groundwater age at all locations. These models have been shown adequate for reactive transport in river-bank filtration under steady-state flow conditions. Dynamic hydrological conditions, however, can lead to fluctuations of infiltration velocities, putting the validity of travel-time models into question. In transient flow, the local travel-time distributions change with time. We show that a modified version of travel-time based reactive transport models is valid if only the magnitude of the velocity fluctuates, whereas its spatial orientation remains constant. We simulate nonlinear, one-dimensional, bioreactive transport involving oxygen, nitrate, dissolved organic carbon, aerobic and denitrifying bacteria, considering periodic fluctuations of velocity. These fluctuations make the bioreactive system pulsate: The aerobic zone decreases at times of low velocity and increases at those of high velocity. For the case of diurnal fluctuations, the biomass concentrations cannot follow the hydrological fluctuations and a transition zone containing both aerobic and obligatory denitrifying bacteria is established, whereas a clear separation of the two types of bacteria prevails in the case of seasonal velocity fluctuations. We map the 1-D results to a heterogeneous, two-dimensional domain by means of the mean groundwater age for steady-state flow in both domains. The mapped results are compared to simulation results of spatially explicit, two-dimensional, advective-dispersive-bioreactive transport subject to the same relative fluctuations of velocity as in the one-dimensional model. The agreement between the mapped 1-D and the explicit 2-D results is excellent. We conclude that travel-time models of nonlinear bioreactive transport are adequate in systems of time-periodic flow if the flow direction does not change. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Incremental online learning in high dimensions.

    PubMed

    Vijayakumar, Sethu; D'Souza, Aaron; Schaal, Stefan

    2005-12-01

    Locally weighted projection regression (LWPR) is a new algorithm for incremental nonlinear function approximation in high-dimensional spaces with redundant and irrelevant input dimensions. At its core, it employs nonparametric regression with locally linear models. In order to stay computationally efficient and numerically robust, each local model performs the regression analysis with a small number of univariate regressions in selected directions in input space in the spirit of partial least squares regression. We discuss when and how local learning techniques can successfully work in high-dimensional spaces and review the various techniques for local dimensionality reduction before finally deriving the LWPR algorithm. The properties of LWPR are that it (1) learns rapidly with second-order learning methods based on incremental training, (2) uses statistically sound stochastic leave-one-out cross validation for learning without the need to memorize training data, (3) adjusts its weighting kernels based on only local information in order to minimize the danger of negative interference of incremental learning, (4) has a computational complexity that is linear in the number of inputs, and (5) can deal with a large number of-possibly redundant-inputs, as shown in various empirical evaluations with up to 90 dimensional data sets. For a probabilistic interpretation, predictive variance and confidence intervals are derived. To our knowledge, LWPR is the first truly incremental spatially localized learning method that can successfully and efficiently operate in very high-dimensional spaces.

  5. Vfold: a web server for RNA structure and folding thermodynamics prediction.

    PubMed

    Xu, Xiaojun; Zhao, Peinan; Chen, Shi-Jie

    2014-01-01

    The ever increasing discovery of non-coding RNAs leads to unprecedented demand for the accurate modeling of RNA folding, including the predictions of two-dimensional (base pair) and three-dimensional all-atom structures and folding stabilities. Accurate modeling of RNA structure and stability has far-reaching impact on our understanding of RNA functions in human health and our ability to design RNA-based therapeutic strategies. The Vfold server offers a web interface to predict (a) RNA two-dimensional structure from the nucleotide sequence, (b) three-dimensional structure from the two-dimensional structure and the sequence, and (c) folding thermodynamics (heat capacity melting curve) from the sequence. To predict the two-dimensional structure (base pairs), the server generates an ensemble of structures, including loop structures with the different intra-loop mismatches, and evaluates the free energies using the experimental parameters for the base stacks and the loop entropy parameters given by a coarse-grained RNA folding model (the Vfold model) for the loops. To predict the three-dimensional structure, the server assembles the motif scaffolds using structure templates extracted from the known PDB structures and refines the structure using all-atom energy minimization. The Vfold-based web server provides a user friendly tool for the prediction of RNA structure and stability. The web server and the source codes are freely accessible for public use at "http://rna.physics.missouri.edu".

  6. Tooth-size discrepancy: A comparison between manual and digital methods

    PubMed Central

    Correia, Gabriele Dória Cabral; Habib, Fernando Antonio Lima; Vogel, Carlos Jorge

    2014-01-01

    Introduction Technological advances in Dentistry have emerged primarily in the area of diagnostic tools. One example is the 3D scanner, which can transform plaster models into three-dimensional digital models. Objective This study aimed to assess the reliability of tooth size-arch length discrepancy analysis measurements performed on three-dimensional digital models, and compare these measurements with those obtained from plaster models. Material and Methods To this end, plaster models of lower dental arches and their corresponding three-dimensional digital models acquired with a 3Shape R700T scanner were used. All of them had lower permanent dentition. Four different tooth size-arch length discrepancy calculations were performed on each model, two of which by manual methods using calipers and brass wire, and two by digital methods using linear measurements and parabolas. Results Data were statistically assessed using Friedman test and no statistically significant differences were found between the two methods (P > 0.05), except for values found by the linear digital method which revealed a slight, non-significant statistical difference. Conclusions Based on the results, it is reasonable to assert that any of these resources used by orthodontists to clinically assess tooth size-arch length discrepancy can be considered reliable. PMID:25279529

  7. Evaluating the effects of modeling errors for isolated finite three-dimensional targets

    NASA Astrophysics Data System (ADS)

    Henn, Mark-Alexander; Barnes, Bryan M.; Zhou, Hui

    2017-10-01

    Optical three-dimensional (3-D) nanostructure metrology utilizes a model-based metrology approach to determine critical dimensions (CDs) that are well below the inspection wavelength. Our project at the National Institute of Standards and Technology is evaluating how to attain key CD and shape parameters from engineered in-die capable metrology targets. More specifically, the quantities of interest are determined by varying the input parameters for a physical model until the simulations agree with the actual measurements within acceptable error bounds. As in most applications, establishing a reasonable balance between model accuracy and time efficiency is a complicated task. A well-established simplification is to model the intrinsically finite 3-D nanostructures as either periodic or infinite in one direction, reducing the computationally expensive 3-D simulations to usually less complex two-dimensional (2-D) problems. Systematic errors caused by this simplified model can directly influence the fitting of the model to the measurement data and are expected to become more apparent with decreasing lengths of the structures. We identify these effects using selected simulation results and present experimental setups, e.g., illumination numerical apertures and focal ranges, that can increase the validity of the 2-D approach.

  8. Systematic analysis of Ca2+ homeostasis in Saccharomyces cerevisiae based on chemical-genetic interaction profiles

    PubMed Central

    Ghanegolmohammadi, Farzan; Yoshida, Mitsunori; Ohnuki, Shinsuke; Sukegawa, Yuko; Okada, Hiroki; Obara, Keisuke; Kihara, Akio; Suzuki, Kuninori; Kojima, Tetsuya; Yachie, Nozomu; Hirata, Dai; Ohya, Yoshikazu

    2017-01-01

    We investigated the global landscape of Ca2+ homeostasis in budding yeast based on high-dimensional chemical-genetic interaction profiles. The morphological responses of 62 Ca2+-sensitive (cls) mutants were quantitatively analyzed with the image processing program CalMorph after exposure to a high concentration of Ca2+. After a generalized linear model was applied, an analysis of covariance model was used to detect significant Ca2+–cls interactions. We found that high-dimensional, morphological Ca2+–cls interactions were mixed with positive (86%) and negative (14%) chemical-genetic interactions, whereas one-dimensional fitness Ca2+–cls interactions were all negative in principle. Clustering analysis with the interaction profiles revealed nine distinct gene groups, six of which were functionally associated. In addition, characterization of Ca2+–cls interactions revealed that morphology-based negative interactions are unique signatures of sensitized cellular processes and pathways. Principal component analysis was used to discriminate between suppression and enhancement of the Ca2+-sensitive phenotypes triggered by inactivation of calcineurin, a Ca2+-dependent phosphatase. Finally, similarity of the interaction profiles was used to reveal a connected network among the Ca2+ homeostasis units acting in different cellular compartments. Our analyses of high-dimensional chemical-genetic interaction profiles provide novel insights into the intracellular network of yeast Ca2+ homeostasis. PMID:28566553

  9. Pairing tendencies in a two-orbital Hubbard model in one dimension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Niravkumar D.; Nocera, Adriana; Alvarez, Gonzalo

    The recent discovery of superconductivity under high pressure in the ladder compound BaFe2S3 has opened a new field of research in iron-based superconductors with focus on quasi-one-dimensional geometries. In this publication, using the density matrix renormalization group technique, we study a two-orbital Hubbard model defined in one-dimensional chains. Our main result is the presence of hole binding tendencies at intermediate Hubbard U repulsion and robust Hund coupling JH / U = 0.25. Binding does not occur either in weak coupling or at very strong coupling. The pair-pair correlations that are dominant near half-filling, or of similar strength as the chargemore » and spin correlation channels, involve hole-pair operators that are spin singlets, use nearest-neighbor sites, and employ different orbitals for each hole. As a result, the Hund coupling strength, presence of robust magnetic moments, and antiferromagnetic correlations among them are important for the binding tendencies found here.« less

  10. A Model Based Approach to Increase the Part Accuracy in Robot Based Incremental Sheet Metal Forming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, Horst; Laurischkat, Roman; Zhu Junhong

    One main influence on the dimensional accuracy in robot based incremental sheet metal forming results from the compliance of the involved robot structures. Compared to conventional machine tools the low stiffness of the robot's kinematic results in a significant deviation of the planned tool path and therefore in a shape of insufficient quality. To predict and compensate these deviations offline, a model based approach, consisting of a finite element approach, to simulate the sheet forming, and a multi body system, modeling the compliant robot structure, has been developed. This paper describes the implementation and experimental verification of the multi bodymore » system model and its included compensation method.« less

  11. Full-dimensional quantum mechanics calculations for the spectroscopic characterization of the isomerization transition states of HOCO/DOCO systems.

    PubMed

    Ma, Dandan; Ren, Haisheng; Ma, Jianyi

    2018-02-14

    Full-dimensional quantum mechanics calculations were performed to determine the vibrational energy levels of HOCO and DOCO based on an accurate potential energy surface. Almost all of the vibrational energy levels up to 3500 cm -1 from the vibrational ground state were assigned, and the calculated energy levels in this work are well in agreement with the reported results by Bowman. The corresponding full dimensional wavefunctions present some special features. When the energy level approaches the barrier height, the trans-HOCO and cis-HOCO states strongly couple through tunneling interactions, and the tunneling interaction and Fermi resonance were observed in the DOCO system. The energy level patterns of trans-HOCO, cis-HOCO and trans-DOCO provide a reasonable fitted barrier height using the fitting formula of Field et al., however, a discrepancy exists for the cis-DOCO species which is considered as a random event. Our full-dimensional calculations give positive evidence for the accuracy of the spectroscopic characterization model of the isomerization transition state reported by Field et al., which was developed from one-dimensional model systems. Furthermore, the special case of cis-DOCO in this work means that the isotopic substitution can solve the problem of the accidental failure of Field's spectroscopic characterization model.

  12. A new general circulation model of Jupiter's atmosphere based on the UKMO Unified Model: Three-dimensional evolution of isolated vortices and zonal jets in mid-latitudes

    NASA Astrophysics Data System (ADS)

    Yamazaki, Y. H.; Skeet, D. R.; Read, P. L.

    2004-04-01

    We have been developing a new three-dimensional general circulation model for the stratosphere and troposphere of Jupiter based on the dynamical core of a portable version of the Unified Model of the UK Meteorological Office. Being one of the leading terrestrial GCMs, employed for operational weather forecasting and climate research, the Unified Model has been thoroughly tested and performance tuned for both vector and parallel computers. It is formulated as a generalized form of the standard primitive equations to handle a thick atmosphere, using a scaled pressure as the vertical coordinate. It is able to accurately simulate the dynamics of a three-dimensional fully compressible atmosphere on the whole or a part of a spherical shell at high spatial resolution in all three directions. Using the current version of the GCM, we examine the characteristics of the Jovian winds in idealized configurations based on the observed vertical structure of temperature. Our initial focus is on the evolution of isolated eddies in the mid-latitudes. Following a brief theoretical investigation of the vertical structure of the atmosphere, limited-area cyclic channel domains are used to numerically investigate the nonlinear evolution of the mid-latitude winds. First, the evolution of deep and shallow cyclones and anticyclones are tested in the atmosphere at rest to identify a preferred horizontal and vertical structure of the vortices. Then, the dependency of the migration characteristics of the vortices are investigated against modelling parameters to find that it is most sensitive to the horizontal diffusion. We also examine the hydrodynamical stability of observed subtropical jets in both northern and southern hemispheres in the three-dimensional nonlinear model as initial value problems. In both cases, it was found that the prominent jets are unstable at various scales and that vorteces of various sizes are generated including those comparable to the White Ovals and the Great Red Spot.

  13. Detecting reactive islands using Lagrangian descriptors and the relevance to transition path sampling.

    PubMed

    Patra, Sarbani; Keshavamurthy, Srihari

    2018-02-14

    It has been known for sometime now that isomerization reactions, classically, are mediated by phase space structures called reactive islands (RI). RIs provide one possible route to correct for the nonstatistical effects in the reaction dynamics. In this work, we map out the reactive islands for the two dimensional Müller-Brown model potential and show that the reactive islands are intimately linked to the issue of rare event sampling. In particular, we establish the sensitivity of the so called committor probabilities, useful quantities in the transition path sampling technique, to the hierarchical RI structures. Mapping out the RI structure for high dimensional systems, however, is a challenging task. Here, we show that the technique of Lagrangian descriptors is able to effectively identify the RI hierarchy in the model system. Based on our results, we suggest that the Lagrangian descriptors can be useful for detecting RIs in high dimensional systems.

  14. Calibration and validation of a one-dimensional complex marine biogeochemical flux model in different areas of the northern Adriatic shelf

    NASA Astrophysics Data System (ADS)

    Vichi, M.; Oddo, P.; Zavatarelli, M.; Coluccelli, A.; Coppini, G.; Celio, M.; Fonda Umani, S.; Pinardi, N.

    2003-01-01

    In this paper we show results from numerical simulations carried out with a complex biogeochemical fluxes model coupled with a one-dimensional high-resolution hydrodynamical model and implemented at three different locations of the northern Adriatic shelf. One location is directly affected by the Po River influence, one has more open-sea characteristics and one is located in the Gulf of Trieste with an intermediate behavior; emphasis is put on the comparison with observations and on the functioning of the northern Adriatic ecosystem in the three areas. The work has been performed in a climatological context and has to be considered as preliminary to the development of three-dimensional numerical simulations. Biogeochemical model parameterizations have been ameliorated with a detailed description of bacterial substrate utilization associated with the quality of the dissolved organic matter (DOM), in order to improve the models capability in capturing the observed DOM dynamics in the basin. The coupled model has been calibrated and validated at the three locations by means of climatological data sets. Results show satisfactory model behavior in simulating local seasonal dynamics in the limit of the available boundary conditions and the one-dimensional implementation. Comparisons with available measurements of primary and bacterial production and bacterial abundances have been performed in all locations. Model simulated rates and bacterial dynamics are in the same order of magnitude of observations and show a qualitatively correct time evolution. The importance of temperature as a factor controlling bacteria efficiency is investigated with sensitivity experiments on the model parameterizations.

  15. Framsticks

    NASA Astrophysics Data System (ADS)

    Komosinski, Maciej; Ulatowski, Szymon

    Life is one of the most complex phenomena known in our world. Researchers construct various models of life that serve diverse purposes and are applied in a wide range of areas — from medicine to entertainment. A part of artificial life research focuses on designing three-dimensional (3D) models of life-forms, which are obviously appealing to observers because the world we live in is three dimensional. Thus, we can easily understand behaviors demonstrated by virtual individuals, study behavioral changes during simulated evolution, analyze dependencies between groups of creatures, and so forth. However, 3D models of life-forms are not only attractive because of their resemblance to the real-world organisms. Simulating 3D agents has practical implications: If the simulation is accurate enough, then real robots can be built based on the simulation, as in [22]. Agents can be designed, tested, and optimized in a virtual environment, and the best ones can be constructed as real robots with embedded control systems. This way artificial intelligence algorithms can be “embodied” in the 3D mechanical constructs.

  16. Direct reconstruction in CT-analogous pharmacokinetic diffuse fluorescence tomography: two-dimensional simulative and experimental validations

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Zhang, Yanqi; Zhang, Limin; Li, Jiao; Zhou, Zhongxing; Zhao, Huijuan; Gao, Feng

    2016-04-01

    We present a generalized strategy for direct reconstruction in pharmacokinetic diffuse fluorescence tomography (DFT) with CT-analogous scanning mode, which can accomplish one-step reconstruction of the indocyanine-green pharmacokinetic-rate images within in vivo small animals by incorporating the compartmental kinetic model into an adaptive extended Kalman filtering scheme and using an instantaneous sampling dataset. This scheme, compared with the established indirect and direct methods, eliminates the interim error of the DFT inversion and relaxes the expensive requirement of the instrument for obtaining highly time-resolved date-sets of complete 360 deg projections. The scheme is validated by two-dimensional simulations for the two-compartment model and pilot phantom experiments for the one-compartment model, suggesting that the proposed method can estimate the compartmental concentrations and the pharmacokinetic-rates simultaneously with a fair quantitative and localization accuracy, and is well suitable for cost-effective and dense-sampling instrumentation based on the highly-sensitive photon counting technique.

  17. Uncontrolled Stability in Freely Flying Insects

    NASA Astrophysics Data System (ADS)

    Melfi, James, Jr.; Wang, Z. Jane

    2015-11-01

    One of the key flight modes of a flying insect is longitudinal flight, traveling along a localized two-dimensional plane from one location to another. Past work on this topic has shown that flying insects, unless stabilized by some external stimulus, are typically unstable to a well studied pitching instability. In our work, we examine this instability in a computational study to understand whether it is possible for either evolution or an aero-vehicle designer to stabilize longitudinal flight through changes to insect morphology, kinematics, or aerodynamic quantities. A quasi-steady wingbeat averaged flapping flight model is used to describe the insect. From this model, a number of non-dimensional parameters are identified. The effect of these parameters was then quantified using linear stability analysis, applied to various translational states of the insect. Based on our understanding of these parameters, we demonstrate how to find an intrinsically stable flapping flight sequence for a dragonfly-like flapping flier in an instantaneous flapping flight model.

  18. Large-eddy simulation of turbulent flow with a surface-mounted two-dimensional obstacle

    NASA Technical Reports Server (NTRS)

    Yang, Kyung-Soo; Ferziger, Joel H.

    1993-01-01

    In this paper, we perform a large eddy simulation (LES) of turbulent flow in a channel containing a two-dimensional obstacle on one wall using a dynamic subgrid-scale model (DSGSM) at Re = 3210, based on bulk velocity above the obstacle and obstacle height; the wall layers are fully resolved. The low Re enables us to perform a DNS (Case 1) against which to validate the LES results. The LES with the DSGSM is designated Case 2. In addition, an LES with the conventional fixed model constant (Case 3) is conducted to allow identification of improvements due to the DSGSM. We also include LES at Re = 82,000 (Case 4) using conventional Smagorinsky subgrid-scale model and a wall-layer model. The results will be compared with the experiment of Dimaczek et al.

  19. Low-Dimensional Statistics of Anatomical Variability via Compact Representation of Image Deformations.

    PubMed

    Zhang, Miaomiao; Wells, William M; Golland, Polina

    2016-10-01

    Using image-based descriptors to investigate clinical hypotheses and therapeutic implications is challenging due to the notorious "curse of dimensionality" coupled with a small sample size. In this paper, we present a low-dimensional analysis of anatomical shape variability in the space of diffeomorphisms and demonstrate its benefits for clinical studies. To combat the high dimensionality of the deformation descriptors, we develop a probabilistic model of principal geodesic analysis in a bandlimited low-dimensional space that still captures the underlying variability of image data. We demonstrate the performance of our model on a set of 3D brain MRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our model yields a more compact representation of group variation at substantially lower computational cost than models based on the high-dimensional state-of-the-art approaches such as tangent space PCA (TPCA) and probabilistic principal geodesic analysis (PPGA).

  20. Assessing waveform predictions of recent three-dimensional velocity models of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Bao, Xueyang; Shen, Yang

    2016-04-01

    Accurate velocity models are essential for both the determination of earthquake locations and source moments and the interpretation of Earth structures. With the increasing number of three-dimensional velocity models, it has become necessary to assess the models for accuracy in predicting seismic observations. Six models of the crustal and uppermost mantle structures in Tibet and surrounding regions are investigated in this study. Regional Rayleigh and Pn (or Pnl) waveforms from two ground truth events, including one nuclear explosion and one natural earthquake located in the study area, are simulated by using a three-dimensional finite-difference method. Synthetics are compared to observed waveforms in multiple period bands of 20-75 s for Rayleigh waves and 1-20 s for Pn/Pnl waves. The models are evaluated based on the phase delays and cross-correlation coefficients between synthetic and observed waveforms. A model generated from full-wave ambient noise tomography best predicts Rayleigh waves throughout the data set, as well as Pn/Pnl waves traveling from the Tarim Basin to the stations located in central Tibet. In general, the models constructed from P wave tomography are not well suited to predict Rayleigh waves, and vice versa. Possible causes of the differences between observed and synthetic waveforms, and frequency-dependent variations of the "best matching" models with the smallest prediction errors are discussed. This study suggests that simultaneous prediction for body and surface waves requires an integrated velocity model constructed with multiple seismic waveforms and consideration of other important properties, such as anisotropy.

  1. Climate and atmospheric modeling studies

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The climate and atmosphere modeling research programs have concentrated on the development of appropriate atmospheric and upper ocean models, and preliminary applications of these models. Principal models are a one-dimensional radiative-convective model, a three-dimensional global model, and an upper ocean model. Principal applications were the study of the impact of CO2, aerosols, and the solar 'constant' on climate.

  2. Large time behavior of entropy solutions to one-dimensional unipolar hydrodynamic model for semiconductor devices

    NASA Astrophysics Data System (ADS)

    Huang, Feimin; Li, Tianhong; Yu, Huimin; Yuan, Difan

    2018-06-01

    We are concerned with the global existence and large time behavior of entropy solutions to the one-dimensional unipolar hydrodynamic model for semiconductors in the form of Euler-Poisson equations in a bounded interval. In this paper, we first prove the global existence of entropy solution by vanishing viscosity and compensated compactness framework. In particular, the solutions are uniformly bounded with respect to space and time variables by introducing modified Riemann invariants and the theory of invariant region. Based on the uniform estimates of density, we further show that the entropy solution converges to the corresponding unique stationary solution exponentially in time. No any smallness condition is assumed on the initial data and doping profile. Moreover, the novelty in this paper is about the unform bound with respect to time for the weak solutions of the isentropic Euler-Poisson system.

  3. Discrete Time Crystals: Rigidity, Criticality, and Realizations.

    PubMed

    Yao, N Y; Potter, A C; Potirniche, I-D; Vishwanath, A

    2017-01-20

    Despite being forbidden in equilibrium, spontaneous breaking of time translation symmetry can occur in periodically driven, Floquet systems with discrete time-translation symmetry. The period of the resulting discrete time crystal is quantized to an integer multiple of the drive period, arising from a combination of collective synchronization and many body localization. Here, we consider a simple model for a one-dimensional discrete time crystal which explicitly reveals the rigidity of the emergent oscillations as the drive is varied. We numerically map out its phase diagram and compute the properties of the dynamical phase transition where the time crystal melts into a trivial Floquet insulator. Moreover, we demonstrate that the model can be realized with current experimental technologies and propose a blueprint based upon a one dimensional chain of trapped ions. Using experimental parameters (featuring long-range interactions), we identify the phase boundaries of the ion-time-crystal and propose a measurable signature of the symmetry breaking phase transition.

  4. a Novel Deep Convolutional Neural Network for Spectral-Spatial Classification of Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Li, N.; Wang, C.; Zhao, H.; Gong, X.; Wang, D.

    2018-04-01

    Spatial and spectral information are obtained simultaneously by hyperspectral remote sensing. Joint extraction of these information of hyperspectral image is one of most import methods for hyperspectral image classification. In this paper, a novel deep convolutional neural network (CNN) is proposed, which extracts spectral-spatial information of hyperspectral images correctly. The proposed model not only learns sufficient knowledge from the limited number of samples, but also has powerful generalization ability. The proposed framework based on three-dimensional convolution can extract spectral-spatial features of labeled samples effectively. Though CNN has shown its robustness to distortion, it cannot extract features of different scales through the traditional pooling layer that only have one size of pooling window. Hence, spatial pyramid pooling (SPP) is introduced into three-dimensional local convolutional filters for hyperspectral classification. Experimental results with a widely used hyperspectral remote sensing dataset show that the proposed model provides competitive performance.

  5. A revised version of the transfer matrix method to analyze one-dimensional structures

    NASA Technical Reports Server (NTRS)

    Nitzsche, F.

    1983-01-01

    A new and general method to analyze both free and forced vibration characteristics of one-dimensional structures is discussed in this paper. This scheme links for the first time the classical transfer matrix method with the recently developed integrating matrix technique to integrate systems of differential equations. Two alternative approaches to the problem are presented. The first is based upon the lumped parameter model to account for the inertia properties of the structure. The second releases that constraint allowing a more precise description of the physical system. The free vibration of a straight uniform beam under different support conditions is analyzed to test the accuracy of the two models. Finally some results for the free vibration of a 12th order system representing a curved, rotating beam prove that the present method is conveniently extended to more complicated structural dynamics problems.

  6. Transmittance properties of one dimensional ternary nanocomposite photonic crystals

    NASA Astrophysics Data System (ADS)

    Elsayed, Hussein A.

    2018-03-01

    In the present work, we have theoretically investigated the transmittance characteristics of one dimensional ternary photonic crystals that containing a nanocomposite layer. The nanocomposite layer was designed from metallic nanoparticles of (Ag) in a transparent matrix of a dielectric material (MgF2). The numerical results are obtained based on the theoretical modeling of the characteristic matrix method and Maxwell-Garnett model. The investigated results demonstrate the significant effect of the volume fraction of the nanoparticles on the effective permittivity of the nanocomposite material as well as the transmission characteristics of our design. Moreover, the roles played by other parameters such as the thickness of the nanocomposite layer, the permittivity of the host dielectric material and the spherical radius of the nanoparticles are included her. The proposed structure could be promising for many applications such as THz optical filters, reflectors and optical switches.

  7. Quasi-one-dimensional Hall physics in the Harper–Hofstadter–Mott model

    NASA Astrophysics Data System (ADS)

    Kozarski, Filip; Hügel, Dario; Pollet, Lode

    2018-04-01

    We study the ground-state phase diagram of the strongly interacting Harper–Hofstadter–Mott model at quarter flux on a quasi-one-dimensional lattice consisting of a single magnetic flux quantum in y-direction. In addition to superfluid phases with various density patterns, the ground-state phase diagram features quasi-one-dimensional analogs of fractional quantum Hall phases at fillings ν = 1/2 and 3/2, where the latter is only found thanks to the hopping anisotropy and the quasi-one-dimensional geometry. At integer fillings—where in the full two-dimensional system the ground-state is expected to be gapless—we observe gapped non-degenerate ground-states: at ν = 1 it shows an odd ‘fermionic’ Hall conductance, while the Hall response at ν = 2 consists of the transverse transport of a single particle–hole pair, resulting in a net zero Hall conductance. The results are obtained by exact diagonalization and in the reciprocal mean-field approximation.

  8. A lattice Boltzmann model for the Burgers-Fisher equation.

    PubMed

    Zhang, Jianying; Yan, Guangwu

    2010-06-01

    A lattice Boltzmann model is developed for the one- and two-dimensional Burgers-Fisher equation based on the method of the higher-order moment of equilibrium distribution functions and a series of partial differential equations in different time scales. In order to obtain the two-dimensional Burgers-Fisher equation, vector sigma(j) has been used. And in order to overcome the drawbacks of "error rebound," a new assumption of additional distribution is presented, where two additional terms, in first order and second order separately, are used. Comparisons with the results obtained by other methods reveal that the numerical solutions obtained by the proposed method converge to exact solutions. The model under new assumption gives better results than that with second order assumption. (c) 2010 American Institute of Physics.

  9. On the dynamics of the Ising model of cooperative phenomena

    PubMed Central

    Montroll, Elliott W.

    1981-01-01

    A two-dimensional (and to some degree three-dimensional) version of Glauber's one-dimensional spin relaxation model is described. The model is constructed to yield the Ising model of cooperative phenomena at equilibrium. A complete hierarchy of differential equations for multispin correlation functions is constructed. Some remarks are made concerning the solution of them for the initial value problem of determining the relaxation of an initial set of spin distributions. PMID:16592955

  10. Application of numerical simulation on optimum design of two-dimensional sedimentation tanks in the wastewater treatment plant.

    PubMed

    Zeng, Guang-Ming; Zhang, Shuo-Fu; Qin, Xiao-Sheng; Huang, Guo-He; Li, Jian-Bing

    2003-05-01

    The paper establishes the relationship between the settling efficiency and the sizes of the sedimentation tank through the process of numerical simulation, which is taken as one of the constraints to set up a simple optimum designing model of sedimentation tank. The feasibility and advantages of this model based on numerical calculation are verified through the application of practical case.

  11. Numerical modeling of crystal growth in Bridgman device

    NASA Astrophysics Data System (ADS)

    Vompe, Dmitry Aleksandrovich

    1997-12-01

    The standard model for the growth of a crystal from a pure substance or diluted binary mixture contains transport equations for heat and phase change conditions at the solidification front. A numerical method is constructed for simulations of crystal growth in a vertical Bridgman device. The method is based on a boundary fitting technique in which melted and solidified regions are mapped onto a fixed rectangular logical domain. The Alternating Directions scheme (ADI) is used to treat the diffusive terms implicitly, with explicit methods are used for the remaining terms in the mapped temperature equations with variable coefficients. The nonlinear equation for the solid/liquid interface motion is solved by the modified Euler technique. Results obtained from the calculations have been used to study the influence of various boundary conditions imposed on the sidewalls and the top and bottom of the ampoule. Conditions are identified that lead to a steadily growing crystal and results are compared with an asymptotic one- dimensional model. Criteria based on ampoule length and boundary conditions being derived and compared with a previously developed one-dimensional model. Various cases have been considered to determine conditions for maintaining a nearly flat interface. It was found that the interface amplitude can be decreased by a factor of 100 (even 1,000) by optimizing temperature boundary conditions.

  12. Low-Dimensional Models for Physiological Systems: Nonlinear Coupling of Gas and Liquid Flows

    NASA Astrophysics Data System (ADS)

    Staples, A. E.; Oran, E. S.; Boris, J. P.; Kailasanath, K.

    2006-11-01

    Current computational models of biological organisms focus on the details of a specific component of the organism. For example, very detailed models of the human heart, an aorta, a vein, or part of the respiratory or digestive system, are considered either independently from the rest of the body, or as interacting simply with other systems and components in the body. In actual biological organisms, these components and systems are strongly coupled and interact in complex, nonlinear ways leading to complicated global behavior. Here we describe a low-order computational model of two physiological systems, based loosely on a circulatory and respiratory system. Each system is represented as a one-dimensional fluid system with an interconnected series of mass sources, pumps, valves, and other network components, as appropriate, representing different physical organs and system components. Preliminary results from a first version of this model system are presented.

  13. A VLSI implementation for synthetic aperture radar image processing

    NASA Technical Reports Server (NTRS)

    Premkumar, A.; Purviance, J.

    1990-01-01

    A simple physical model for the Synthetic Aperture Radar (SAR) is presented. This model explains the one dimensional and two dimensional nature of the received SAR signal in the range and azimuth directions. A time domain correlator, its algorithm, and features are explained. The correlator is ideally suited for VLSI implementation. A real time SAR architecture using these correlators is proposed. In the proposed architecture, the received SAR data is processed using one dimensional correlators for determining the range while two dimensional correlators are used to determine the azimuth of a target. The architecture uses only three different types of custom VLSI chips and a small amount of memory.

  14. Cell Fate Decision as High-Dimensional Critical State Transition

    PubMed Central

    Zhou, Joseph; Castaño, Ivan G.; Leong-Quong, Rebecca Y. Y.; Chang, Hannah; Trachana, Kalliopi; Giuliani, Alessandro; Huang, Sui

    2016-01-01

    Cell fate choice and commitment of multipotent progenitor cells to a differentiated lineage requires broad changes of their gene expression profile. But how progenitor cells overcome the stability of their gene expression configuration (attractor) to exit the attractor in one direction remains elusive. Here we show that commitment of blood progenitor cells to the erythroid or myeloid lineage is preceded by the destabilization of their high-dimensional attractor state, such that differentiating cells undergo a critical state transition. Single-cell resolution analysis of gene expression in populations of differentiating cells affords a new quantitative index for predicting critical transitions in a high-dimensional state space based on decrease of correlation between cells and concomitant increase of correlation between genes as cells approach a tipping point. The detection of “rebellious cells” that enter the fate opposite to the one intended corroborates the model of preceding destabilization of a progenitor attractor. Thus, early warning signals associated with critical transitions can be detected in statistical ensembles of high-dimensional systems, offering a formal theory-based approach for analyzing single-cell molecular profiles that goes beyond current computational pattern recognition, does not require knowledge of specific pathways, and could be used to predict impending major shifts in development and disease. PMID:28027308

  15. Impact of Wall Shear Stress and Pressure Variation on the Stability of Atherosclerotic Plaque

    NASA Astrophysics Data System (ADS)

    Taviani, V.; Li, Z. Y.; Sutcliffe, M.; Gillard, J.

    Rupture of vulnerable atheromatous plaque in the carotid and coronary arteries often leads to stroke and heart attack respectively. The mechanism of blood flow and plaque rupture in stenotic arteries is still not fully understood. A three dimensional rigid wall model was solved under steady and unsteady conditions assuming a time-varying inlet velocity profile to investigate the relative importance of axial forces and pressure drops in arteries with asymmetric stenosis. Flow-structure interactions were investigated for the same geometry and the results were compared with those retrieved with the corresponding one dimensional models. The Navier-Stokes equations were used as the governing equations for the fluid. The tube wall was assumed linearly elastic, homogeneous isotropic. The analysis showed that wall shear stress is small (less than 3.5%) with respect to pressure drop throughout the cycle even for severe stenosis. On the contrary, the three dimensional behavior of velocity, pressure and wall shear stress is in general very different from that predicted by one dimensional models. This suggests that the primary source of mistakes in one dimensional studies comes from neglecting the three dimensional geometry of the plaque. Neglecting axial forces only involves minor errors.

  16. Analysis of rosen piezoelectric transformers with a varying cross-section.

    PubMed

    Xue, H; Yang, J; Hu, Y

    2008-07-01

    We study the effects of a varying cross-section on the performance of Rosen piezoelectric transformers operating with length extensional modes of rods. A theoretical analysis is performed using an extended version of a one-dimensional model developed in a previous paper. Numerical results based on the theoretical analysis are presented.

  17. Analysis of experimental results of the inlet for the NASA hypersonic research engine aerothermodynamic integration model. [wind tunnel tests of ramjet engine hypersonic inlets

    NASA Technical Reports Server (NTRS)

    Andrews, E. H., Jr.; Mackley, E. A.

    1976-01-01

    An aerodynamic engine inlet analysis was performed on the experimental results obtained at nominal Mach numbers of 5, 6, and 7 from the NASA Hypersonic Research Engine (HRE) Aerothermodynamic Integration Model (AIM). Incorporation on the AIM of the mixed-compression inlet design represented the final phase of an inlet development program of the HRE Project. The purpose of this analysis was to compare the AIM inlet experimental results with theoretical results. Experimental performance was based on measured surface pressures used in a one-dimensional force-momentum theorem. Results of the analysis indicate that surface static-pressure measurements agree reasonably well with theoretical predictions except in the regions where the theory predicts large pressure discontinuities. Experimental and theoretical results both based on the one-dimensional force-momentum theorem yielded inlet performance parameters as functions of Mach number that exhibited reasonable agreement. Previous predictions of inlet unstart that resulted from pressure disturbances created by fuel injection and combustion appeared to be pessimistic.

  18. Programmers manual for a one-dimensional Lagrangian transport model

    USGS Publications Warehouse

    Schoellhamer, D.H.; Jobson, H.E.

    1986-01-01

    A one-dimensional Lagrangian transport model for simulating water-quality constituents such as temperature, dissolved oxygen , and suspended sediment in rivers is presented in this Programmers Manual. Lagrangian transport modeling techniques, the model 's subroutines, and the user-written decay-coefficient subroutine are discussed in detail. Appendices list the program codes. The Programmers Manual is intended for the model user who needs to modify code either to adapt the model to a particular need or to use reaction kinetics not provided with the model. (Author 's abstract)

  19. A one-dimensional model of solid-earth electrical resistivity beneath Florida

    USGS Publications Warehouse

    Blum, Cletus; Love, Jeffrey J.; Pedrie, Kolby; Bedrosian, Paul A.; Rigler, E. Joshua

    2015-11-19

    An estimated one-dimensional layered model of electrical resistivity beneath Florida was developed from published geological and geophysical information. The resistivity of each layer is represented by plausible upper and lower bounds as well as a geometric mean resistivity. Corresponding impedance transfer functions, Schmucker-Weidelt transfer functions, apparent resistivity, and phase responses are calculated for inducing geomagnetic frequencies ranging from 10−5 to 100 hertz. The resulting one-dimensional model and response functions can be used to make general estimates of time-varying electric fields associated with geomagnetic storms such as might represent induction hazards for electric-power grid operation. The plausible upper- and lower-bound resistivity structures show the uncertainty, giving a wide range of plausible time-varying electric fields.

  20. Nanoscale effects in the characterization of viscoelastic materials with atomic force microscopy: coupling of a quasi-three-dimensional standard linear solid model with in-plane surface interactions.

    PubMed

    Solares, Santiago D

    2016-01-01

    Significant progress has been accomplished in the development of experimental contact-mode and dynamic-mode atomic force microscopy (AFM) methods designed to measure surface material properties. However, current methods are based on one-dimensional (1D) descriptions of the tip-sample interaction forces, thus neglecting the intricacies involved in the material behavior of complex samples (such as soft viscoelastic materials) as well as the differences in material response between the surface and the bulk. In order to begin to address this gap, a computational study is presented where the sample is simulated using an enhanced version of a recently introduced model that treats the surface as a collection of standard-linear-solid viscoelastic elements. The enhanced model introduces in-plane surface elastic forces that can be approximately related to a two-dimensional (2D) Young's modulus. Relevant cases are discussed for single- and multifrequency intermittent-contact AFM imaging, with focus on the calculated surface indentation profiles and tip-sample interaction force curves, as well as their implications with regards to experimental interpretation. A variety of phenomena are examined in detail, which highlight the need for further development of more physically accurate sample models that are specifically designed for AFM simulation. A multifrequency AFM simulation tool based on the above sample model is provided as supporting information.

  1. Proceedings of the Advanced Seminar on one-dimensional, open-channel Flow and transport modeling

    USGS Publications Warehouse

    Schaffranek, Raymond W.

    1989-01-01

    In view of the increased use of mathematical/numerical simulation models, of the diversity of both model investigations and informational project objectives, and of the technical demands of complex model applications by U.S. Geological Survey personnel, an advanced seminar on one-dimensional open-channel flow and transport modeling was organized and held on June 15-18, 1987, at the National Space Technology Laboratory, Bay St. Louis, Mississippi. Principal emphasis in the Seminar was on one-dimensional flow and transport model-implementation techniques, operational practices, and application considerations. The purposes of the Seminar were to provide a forum for the exchange of information, knowledge, and experience among model users, as well as to identify immediate and future needs with respect to model development and enhancement, user support, training requirements, and technology transfer. The Seminar program consisted of a mix of topical and project presentations by Geological Survey personnel. This report is a compilation of short papers that summarize the presentations made at the Seminar.

  2. Accuracy of entrainment coefficients in one-dimensional volcanic plume models

    NASA Astrophysics Data System (ADS)

    McNeal, J. S.; Freedland, G.; Cal, R. B.; Mastin, L. G.; Solovitz, S.

    2017-12-01

    During and after volcanic eruptions, ash clouds can present a danger to human activities, notably to air travel. Ash dispersal models can forecast the location and downwind path of the ash cloud, which are critical for mitigating potential threats. The accuracy of the ash dispersal model depends on the reliability of input parameters, one of which is the mass eruption rate (MER). Uncertainties in MER translate to uncertainties in forecasts of ash-cloud concentration. One-dimensional plume models can quickly estimate the MER from plume height, relying on empirical entrainment coefficients, α and β, which describe air inflow perpendicular and parallel to the centerline of the plume, respectively. While much work has been done to quantify α for strong plumes (0.06-0.09 in most cases), consensus has not been reached for α and β in moderate to weak plumes (i.e. plumes bent over by the wind). We conducted high precision jet entrainment measurements in a wind tunnel using particle image velocimetry (PIV). Observed centerline trajectories were compared to modeled ones using the one-dimensional plume model Plumeria. Test conditions produced Reynolds numbers (Re) on the order of 103 to 105 and jet-to-cross flow velocity ratios (Vr) from 6 to 34. Over this range, α and β were adjusted to match the modeled trajectories with measured ones. Additionally, we compared historical observations of plume height and MER during volcanic eruptions against Plumeria predictions. Uncertainties in MER were considered with additional model simulations to quantify their impact on the optimal entrainment coefficients. Our comparisons reveal a clear linear α-β relationship, where multiple α and β values could be found that produced accurate plume height predictions. For example, similar accuracy was found using both (α,β) = (0.07,0.35) and (α,β) = (0.04,0.95) for the test case based on the 2002 eruption of Reventador volcano in Ecuador. However, in some cases that we studied, the response was largely independent of the vertical entrainment coefficient α for weak plumes, such as for the 1996 eruption of Ruapehu volcano in New Zealand, where the optimal β was near 0.75 in all simulations.

  3. Simulation of range imaging-based estimation of respiratory lung motion. Influence of noise, signal dimensionality and sampling patterns.

    PubMed

    Wilms, M; Werner, R; Blendowski, M; Ortmüller, J; Handels, H

    2014-01-01

    A major problem associated with the irradiation of thoracic and abdominal tumors is respiratory motion. In clinical practice, motion compensation approaches are frequently steered by low-dimensional breathing signals (e.g., spirometry) and patient-specific correspondence models, which are used to estimate the sought internal motion given a signal measurement. Recently, the use of multidimensional signals derived from range images of the moving skin surface has been proposed to better account for complex motion patterns. In this work, a simulation study is carried out to investigate the motion estimation accuracy of such multidimensional signals and the influence of noise, the signal dimensionality, and different sampling patterns (points, lines, regions). A diffeomorphic correspondence modeling framework is employed to relate multidimensional breathing signals derived from simulated range images to internal motion patterns represented by diffeomorphic non-linear transformations. Furthermore, an automatic approach for the selection of optimal signal combinations/patterns within this framework is presented. This simulation study focuses on lung motion estimation and is based on 28 4D CT data sets. The results show that the use of multidimensional signals instead of one-dimensional signals significantly improves the motion estimation accuracy, which is, however, highly affected by noise. Only small differences exist between different multidimensional sampling patterns (lines and regions). Automatically determined optimal combinations of points and lines do not lead to accuracy improvements compared to results obtained by using all points or lines. Our results show the potential of multidimensional breathing signals derived from range images for the model-based estimation of respiratory motion in radiation therapy.

  4. Numerical solution of a multi-ion one-potential model for electroosmotic flow in two-dimensional rectangular microchannels.

    PubMed

    Van Theemsche, Achim; Deconinck, Johan; Van den Bossche, Bart; Bortels, Leslie

    2002-10-01

    A new more general numerical model for the simulation of electrokinetic flow in rectangular microchannels is presented. The model is based on the dilute solution model and the Navier-Stokes equations and has been implemented in a finite-element-based C++ code. The model includes the ion distribution in the Helmholtz double layer and considers only one single electrical' potential field variable throughout the domain. On a charged surface(s) the surface charge density, which is proportional to the local electrical field, is imposed. The zeta potential results, then, from this boundary condition and depends on concentrations, temperature, ion valence, molecular diffusion coefficients, and geometric conditions. Validation cases show that the model predicts accurately known analytical results, also for geometries having dimensions comparable to the Debye length. As a final study, the electro-osmotic flow in a controlled cross channel is investigated.

  5. Investigation of unsteadiness in Shock-particle cloud interaction: Fully resolved two-dimensional simulation and one-dimensional modeling

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh-Nik, Zahra; Regele, Jonathan D.

    2015-11-01

    Dense compressible particle-laden flow, which has a complex nature, exists in various engineering applications. Shock waves impacting a particle cloud is a canonical problem to investigate this type of flow. It has been demonstrated that large flow unsteadiness is generated inside the particle cloud from the flow induced by the shock passage. It is desirable to develop models for the Reynolds stress to capture the energy contained in vortical structures so that volume-averaged models with point particles can be simulated accurately. However, the previous work used Euler equations, which makes the prediction of vorticity generation and propagation innacurate. In this work, a fully resolved two dimensional (2D) simulation using the compressible Navier-Stokes equations with a volume penalization method to model the particles has been performed with the parallel adaptive wavelet-collocation method. The results still show large unsteadiness inside and downstream of the particle cloud. A 1D model is created for the unclosed terms based upon these 2D results. The 1D model uses a two-phase simple low dissipation AUSM scheme (TSLAU) developed by coupled with the compressible two phase kinetic energy equation.

  6. [Three-dimensional tooth model reconstruction based on fusion of dental computed tomography images and laser-scanned images].

    PubMed

    Zhang, Dongxia; Gan, Yangzhou; Xiong, Jing; Xia, Zeyang

    2017-02-01

    Complete three-dimensional(3D) tooth model provides essential information to assist orthodontists for diagnosis and treatment planning. Currently, 3D tooth model is mainly obtained by segmentation and reconstruction from dental computed tomography(CT) images. However, the accuracy of 3D tooth model reconstructed from dental CT images is low and not applicable for invisalign design. And another serious problem also occurs, i.e. frequentative dental CT scan during different intervals of orthodontic treatment often leads to radiation to the patients. Hence, this paper proposed a method to reconstruct tooth model based on fusion of dental CT images and laser-scanned images. A complete3 D tooth model was reconstructed with the registration and fusion between the root reconstructed from dental CT images and the crown reconstructed from laser-scanned images. The crown of the complete 3D tooth model reconstructed with the proposed method has higher accuracy. Moreover, in order to reconstruct complete 3D tooth model of each orthodontic treatment interval, only one pre-treatment CT scan is needed and in the orthodontic treatment process only the laser-scan is required. Therefore, radiation to the patients can be reduced significantly.

  7. Solar Filament Longitudinal Oscillations along a Magnetic Field Tube with Two Dips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Yu-Hao; Zhang Li-Yue; Ouyang, Y.

    Large-amplitude longitudinal oscillations of solar filaments have been observed and explored for more than ten years. Previous studies are mainly based on the one-dimensional rigid flux tube model with a single magnetic dip. However, it has been noted that there might be two magnetic dips, and hence two threads, along one magnetic field line. Following previous work, we intend to investigate the kinematics of the filament longitudinal oscillations when two threads are magnetically connected, which is done by solving one-dimensional radiative hydrodynamic equations with the numerical code MPI-AMRVAC. Two different types of perturbations are considered, and the difference from previousmore » works resulting from the interaction of the two filament threads is investigated. We find that even with the inclusion of the thread–thread interaction, the oscillation period is modified weakly, by at most 20% compared to the traditional pendulum model with one thread. However, the damping timescale is significantly affected by the thread–thread interaction. Hence, we should take it into account when applying the consistent seismology to the filaments where two threads are magnetically connected.« less

  8. Recurrence relations in one-dimensional Ising models.

    PubMed

    da Conceição, C M Silva; Maia, R N P

    2017-09-01

    The exact finite-size partition function for the nonhomogeneous one-dimensional (1D) Ising model is found through an approach using algebra operators. Specifically, in this paper we show that the partition function can be computed through a trace from a linear second-order recurrence relation with nonconstant coefficients in matrix form. A relation between the finite-size partition function and the generalized Lucas polynomials is found for the simple homogeneous model, thus establishing a recursive formula for the partition function. This is an important property and it might indicate the possible existence of recurrence relations in higher-dimensional Ising models. Moreover, assuming quenched disorder for the interactions within the model, the quenched averaged magnetic susceptibility displays a nontrivial behavior due to changes in the ferromagnetic concentration probability.

  9. Three-dimensional Model of Tissue and Heavy Ions Effects

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem L.; Sundaresan, Alamelu; Huff, Janice L.; Cucinotta, Francis A.

    2007-01-01

    A three-dimensional tissue model was incorporated into a new Monte Carlo algorithm that simulates passage of heavy ions in a tissue box . The tissue box was given as a realistic model of tissue based on confocal microscopy images. The action of heavy ions on the cellular matrix for 2- or 3-dimensional cases was simulated. Cells were modeled as a cell culture monolayer in one example, where the data were taken directly from microscopy (2-d cell matrix), and as a multi-layer obtained from confocal microscopy (3-d case). Image segmentation was used to identify cells with precise areas/volumes in an irradiated cell culture monolayer, and slices of tissue with many cell layers. The cells were then inserted into the model box of the simulated physical space pixel by pixel. In the case of modeled tissues (3-d), the tissue box had periodic boundary conditions imposed, which extrapolates the technique to macroscopic volumes of tissue. For the real tissue (3-d), specific spatial patterns for cell apoptosis and necrosis are expected. The cell patterns were modeled based on action cross sections for apoptosis and necrosis estimated from current experimental data. A spatial correlation function indicating a higher spatial concentration of damaged cells from heavy ions relative to the low-LET radiation cell damage pattern is presented. The spatial correlation effects among necrotic cells can help studying microlesions in organs, and probable effects of directionality of heavy ion radiation on epithelium and endothelium.

  10. Configuration memory in patchwork dynamics for low-dimensional spin glasses

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Middleton, A. Alan

    2017-12-01

    A patchwork method is used to study the dynamics of loss and recovery of an initial configuration in spin glass models in dimensions d =1 and d =2 . The patchwork heuristic is used to accelerate the dynamics to investigate how models might reproduce the remarkable memory effects seen in experiment. Starting from a ground-state configuration computed for one choice of nearest-neighbor spin couplings, the sample is aged up to a given scale under new random couplings, leading to the partial erasure of the original ground state. The couplings are then restored to the original choice and patchwork coarsening is again applied, in order to assess the recovery of the original state. Eventual recovery of the original ground state upon coarsening is seen in two-dimensional Ising spin glasses and one-dimensional clock models, while one-dimensional Ising spin systems neither lose nor gain overlap with the ground state during the recovery stage. The recovery for the two-dimensional Ising spin glasses suggests scaling relations that lead to a recovery length scale that grows as a power of the aging length scale.

  11. Modeling contamination of shallow unconfined aquifers through infiltration beds

    USGS Publications Warehouse

    Ostendorf, D.W.

    1986-01-01

    We model the transport of a simply reactive contaminant through an infiltration bed and underlying shallow, one-dimensional, unconfined aquifer with a plane, steeply sloping bottom in the assumed absence of dispersion and downgradient dilution. The effluent discharge and ambient groundwater flow under the infiltration beds are presumed to form a vertically mixed plume marked by an appreciable radial velocity component in the near field flow region. The near field analysis routes effluent contamination as a single linear reservoir whose output forms a source plane for the one-dimensional, far field flow region downgradient of the facility; the location and width of the source plane reflect the relative strengths of ambient flow and effluent discharge. We model far field contaminant transport, using an existing method of characteristics solution with frame speeds modified by recharge, bottom slope, and linear adsorption, and concentrations reflecting first-order reaction kinetics. The near and far field models simulate transport of synthetic detergents, chloride, total nitrogen, and boron in a contaminant plume at the Otis Air Force Base sewage treatment plant in Barnstable County, Massachusetts, with reasonable accuracy.

  12. Attenuation of the Atmospheric Migration Ability of Polychlorinated Naphthalenes (PCN-2) Based on Three-dimensional QSAR Models with Full Factor Experimental Design.

    PubMed

    Gu, Wenwen; Chen, Ying; Li, Yu

    2017-08-01

    Based on the experimental subcooled liquid vapor pressures (P L ) of 17 polychlorinated naphthalene (PCN) congeners, one type of three-dimensional quantitative structure-activity relationship (3D-QSAR) models, comparative molecular similarity indices analysis (CoMSIA), was constructed with Sybyl software. Full factor experimental design was used to obtain the final regulation scheme for PCN, and then carry out modification of PCN-2 to significantly lower its P L . The contour maps of CoMSIA model showed that the migration ability of PCN decreases when the Cl atoms at the 2-, 3-, 4-, 5-, 6-, 7- and 8-positions of PCNs are replaced by electropositive groups. After modification of PCN-2, 12 types of new modified PCN-2 compounds were obtained with lnP L values two orders of magnitude lower than that of PCN-2. In addition, there are significant differences between the calculated total energies and energy gaps of the new modified compounds and those of PCN-2.

  13. Fate of classical solitons in one-dimensional quantum systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pustilnik, M.; Matveev, K. A.

    We study one-dimensional quantum systems near the classical limit described by the Korteweg-de Vries (KdV) equation. The excitations near this limit are the well-known solitons and phonons. The classical description breaks down at long wavelengths, where quantum effects become dominant. Focusing on the spectra of the elementary excitations, we describe analytically the entire classical-to-quantum crossover. We show that the ultimate quantum fate of the classical KdV excitations is to become fermionic quasiparticles and quasiholes. We discuss in detail two exactly solvable models exhibiting such crossover, the Lieb-Liniger model of bosons with weak contact repulsion and the quantum Toda model, andmore » argue that the results obtained for these models are universally applicable to all quantum one-dimensional systems with a well-defined classical limit described by the KdV equation.« less

  14. Effects of three-dimensional velocity structure on the seismicity of the 1984 Morgan Hill, California, aftershock sequence

    USGS Publications Warehouse

    Michael, A.J.

    1988-01-01

    A three-dimensional velocity model for the area surrounding the 24 April 1984 Morgan Hill earthquake has been developed by simultaneously inverting local earthquake and refraction arrival-time data. This velocity model corresponds well to the surface geology of the region, predominantly showing a low-velocity region associated with the sedimentary sequence to the south-west of the Madrone Springs fault. The focal mechanisms were also determined for 946 earthquakes using both the one-dimensional and three-dimensional earth models. Both earth models yield similar focal mechanisms for these earthquakes. -from Author

  15. Direct determination approach for the multifractal detrending moving average analysis

    NASA Astrophysics Data System (ADS)

    Xu, Hai-Chuan; Gu, Gao-Feng; Zhou, Wei-Xing

    2017-11-01

    In the canonical framework, we propose an alternative approach for the multifractal analysis based on the detrending moving average method (MF-DMA). We define a canonical measure such that the multifractal mass exponent τ (q ) is related to the partition function and the multifractal spectrum f (α ) can be directly determined. The performances of the direct determination approach and the traditional approach of the MF-DMA are compared based on three synthetic multifractal and monofractal measures generated from the one-dimensional p -model, the two-dimensional p -model, and the fractional Brownian motions. We find that both approaches have comparable performances to unveil the fractal and multifractal nature. In other words, without loss of accuracy, the multifractal spectrum f (α ) can be directly determined using the new approach with less computation cost. We also apply the new MF-DMA approach to the volatility time series of stock prices and confirm the presence of multifractality.

  16. Comparison of SOM point densities based on different criteria.

    PubMed

    Kohonen, T

    1999-11-15

    Point densities of model (codebook) vectors in self-organizing maps (SOMs) are evaluated in this article. For a few one-dimensional SOMs with finite grid lengths and a given probability density function of the input, the numerically exact point densities have been computed. The point density derived from the SOM algorithm turned out to be different from that minimizing the SOM distortion measure, showing that the model vectors produced by the basic SOM algorithm in general do not exactly coincide with the optimum of the distortion measure. A new computing technique based on the calculus of variations has been introduced. It was applied to the computation of point densities derived from the distortion measure for both the classical vector quantization and the SOM with general but equal dimensionality of the input vectors and the grid, respectively. The power laws in the continuum limit obtained in these cases were found to be identical.

  17. Theory of one-dimensional hopping motion of a heavy particle interacting with phonons by different couplings

    NASA Astrophysics Data System (ADS)

    Itai, K.

    1987-02-01

    Two models which describe one-dimensional hopping motion of a heavy particle interacting with phonons are discussed. Model A corresponds to hopping in 1D metals or to the polaron problem. In model B the momentum dependence of the particle-phonon coupling is proportional to k-1/2. The scaling equations show that only in model B does localization occur for a coupling larger than a critical value. In the localization region this model shows close analogy to the Caldeira-Leggett model for macroscopic quantum tunneling.

  18. OMFIT Tokamak Profile Data Fitting and Physics Analysis

    DOE PAGES

    Logan, N. C.; Grierson, B. A.; Haskey, S. R.; ...

    2018-01-22

    Here, One Modeling Framework for Integrated Tasks (OMFIT) has been used to develop a consistent tool for interfacing with, mapping, visualizing, and fitting tokamak profile measurements. OMFIT is used to integrate the many diverse diagnostics on multiple tokamak devices into a regular data structure, consistently applying spatial and temporal treatments to each channel of data. Tokamak data are fundamentally time dependent and are treated so from the start, with front-loaded and logic-based manipulations such as filtering based on the identification of edge-localized modes (ELMs) that commonly scatter data. Fitting is general in its approach, and tailorable in its application inmore » order to address physics constraints and handle the multiple spatial and temporal scales involved. Although community standard one-dimensional fitting is supported, including scale length–fitting and fitting polynomial-exponential blends to capture the H-mode pedestal, OMFITprofiles includes two-dimensional (2-D) fitting using bivariate splines or radial basis functions. These 2-D fits produce regular evolutions in time, removing jitter that has historically been smoothed ad hoc in transport applications. Profiles interface directly with a wide variety of models within the OMFIT framework, providing the inputs for TRANSP, kinetic-EFIT 2-D equilibrium, and GPEC three-dimensional equilibrium calculations. he OMFITprofiles tool’s rapid and comprehensive analysis of dynamic plasma profiles thus provides the critical link between raw tokamak data and simulations necessary for physics understanding.« less

  19. OMFIT Tokamak Profile Data Fitting and Physics Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, N. C.; Grierson, B. A.; Haskey, S. R.

    Here, One Modeling Framework for Integrated Tasks (OMFIT) has been used to develop a consistent tool for interfacing with, mapping, visualizing, and fitting tokamak profile measurements. OMFIT is used to integrate the many diverse diagnostics on multiple tokamak devices into a regular data structure, consistently applying spatial and temporal treatments to each channel of data. Tokamak data are fundamentally time dependent and are treated so from the start, with front-loaded and logic-based manipulations such as filtering based on the identification of edge-localized modes (ELMs) that commonly scatter data. Fitting is general in its approach, and tailorable in its application inmore » order to address physics constraints and handle the multiple spatial and temporal scales involved. Although community standard one-dimensional fitting is supported, including scale length–fitting and fitting polynomial-exponential blends to capture the H-mode pedestal, OMFITprofiles includes two-dimensional (2-D) fitting using bivariate splines or radial basis functions. These 2-D fits produce regular evolutions in time, removing jitter that has historically been smoothed ad hoc in transport applications. Profiles interface directly with a wide variety of models within the OMFIT framework, providing the inputs for TRANSP, kinetic-EFIT 2-D equilibrium, and GPEC three-dimensional equilibrium calculations. he OMFITprofiles tool’s rapid and comprehensive analysis of dynamic plasma profiles thus provides the critical link between raw tokamak data and simulations necessary for physics understanding.« less

  20. Application of kinetic flux vector splitting scheme for solving multi-dimensional hydrodynamical models of semiconductor devices

    NASA Astrophysics Data System (ADS)

    Nisar, Ubaid Ahmed; Ashraf, Waqas; Qamar, Shamsul

    In this article, one and two-dimensional hydrodynamical models of semiconductor devices are numerically investigated. The models treat the propagation of electrons in a semiconductor device as the flow of a charged compressible fluid. It plays an important role in predicting the behavior of electron flow in semiconductor devices. Mathematically, the governing equations form a convection-diffusion type system with a right hand side describing the relaxation effects and interaction with a self consistent electric field. The proposed numerical scheme is a splitting scheme based on the kinetic flux-vector splitting (KFVS) method for the hyperbolic step, and a semi-implicit Runge-Kutta method for the relaxation step. The KFVS method is based on the direct splitting of macroscopic flux functions of the system on the cell interfaces. The second order accuracy of the scheme is achieved by using MUSCL-type initial reconstruction and Runge-Kutta time stepping method. Several case studies are considered. For validation, the results of current scheme are compared with those obtained from the splitting scheme based on the NT central scheme. The effects of various parameters such as low field mobility, device length, lattice temperature and voltage are analyzed. The accuracy, efficiency and simplicity of the proposed KFVS scheme validates its generic applicability to the given model equations. A two dimensional simulation is also performed by KFVS method for a MESFET device, producing results in good agreement with those obtained by NT-central scheme.

  1. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures inmore » the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations.« less

  2. One-Dimensional Fast Transient Simulator for Modeling Cadmium Sulfide/Cadmium Telluride Solar Cells

    NASA Astrophysics Data System (ADS)

    Guo, Da

    Solar energy, including solar heating, solar architecture, solar thermal electricity and solar photovoltaics, is one of the primary alternative energy sources to fossil fuel. Being one of the most important techniques, significant research has been conducted in solar cell efficiency improvement. Simulation of various structures and materials of solar cells provides a deeper understanding of device operation and ways to improve their efficiency. Over the last two decades, polycrystalline thin-film Cadmium-Sulfide and Cadmium-Telluride (CdS/CdTe) solar cells fabricated on glass substrates have been considered as one of the most promising candidate in the photovoltaic technologies, for their similar efficiency and low costs when compared to traditional silicon-based solar cells. In this work a fast one dimensional time-dependent/steady-state drift-diffusion simulator, accelerated by adaptive non-uniform mesh and automatic time-step control, for modeling solar cells has been developed and has been used to simulate a CdS/CdTe solar cell. These models are used to reproduce transients of carrier transport in response to step-function signals of different bias and varied light intensity. The time-step control models are also used to help convergence in steady-state simulations where constrained material constants, such as carrier lifetimes in the order of nanosecond and carrier mobility in the order of 100 cm2/Vs, must be applied.

  3. Narrow Band Filter at 1550 nm Based on Quasi-One-Dimensional Photonic Crystal with a Mirror-Symmetric Heterostructure.

    PubMed

    Wang, Fang; Cheng, Yong Zhi; Wang, Xian; Zhang, Yi Nan; Nie, Yan; Gong, Rong Zhou

    2018-06-27

    In this paper, we present a high-efficiency narrow band filter (NBF) based on quasi-one-dimensional photonic crystal (PC) with a mirror symmetric heterostructure. Similarly to the Fabry-Perot-like resonance cavity, the alternately-arranged dielectric layers on both sides act as the high reflectance and the junction layers used as the defect mode of the quasi-one-dimensional PC, which can be designed as a NBF. The critical conditions for the narrow pass band with high transmittance are demonstrated and analyzed by simulation and experiment. The simulation results indicate that the transmission peak of the quasi-one-dimensional PC-based NBF is up to 95.99% at the telecommunication wavelength of 1550 nm, which agrees well with the experiment. Furthermore, the influences of the periodicity and thickness of dielectric layers on the transmission properties of the PC-based NBF also have been studied numerically. Due to its favorable properties of PC-based NBF, it is can be found to have many potential applications, such as detection, sensing, and communication.

  4. NASTRAN analysis for the Airmass Sunburst model 'C' Ultralight Aircraft

    NASA Technical Reports Server (NTRS)

    Verbestel, John; Smith, Howard W.

    1993-01-01

    The purpose of this project was to create a three dimensional NASTRAN model of the Airmass Sunburst Ultralight comparable to one made for finite element analysis. A two dimensional sample problem will be calculated by hand and by NASTRAN to make sure that NASTRAN finds similar results. A three dimensional model, similar to the one analyzed by the finite element program, will be run on NASTRAN. A comparison will be done between the NASTRAN results and the finite element program results. This study will deal mainly with the aerodynamic loads on the wing and surrounding support structure at an attack angle of 10 degrees.

  5. Nonlinear waves in solids with slow dynamics: an internal-variable model.

    PubMed

    Berjamin, H; Favrie, N; Lombard, B; Chiavassa, G

    2017-05-01

    In heterogeneous solids such as rocks and concrete, the speed of sound diminishes with the strain amplitude of a dynamic loading (softening). This decrease, known as 'slow dynamics', occurs at time scales larger than the period of the forcing. Also, hysteresis is observed in the steady-state response. The phenomenological model by Vakhnenko et al. (2004 Phys. Rev. E 70, 015602. (doi:10.1103/PhysRevE.70.015602)) is based on a variable that describes the softening of the material. However, this model is one dimensional and it is not thermodynamically admissible. In the present article, a three-dimensional model is derived in the framework of the finite-strain theory. An internal variable that describes the softening of the material is introduced, as well as an expression of the specific internal energy. A mechanical constitutive law is deduced from the Clausius-Duhem inequality. Moreover, a family of evolution equations for the internal variable is proposed. Here, an evolution equation with one relaxation time is chosen. By construction, this new model of the continuum is thermodynamically admissible and dissipative (inelastic). In the case of small uniaxial deformations, it is shown analytically that the model reproduces qualitatively the main features of real experiments.

  6. Self-consistent approach to many-body localization and subdiffusion

    NASA Astrophysics Data System (ADS)

    Prelovšek, P.; Herbrych, J.

    2017-07-01

    An analytical theory, based on the perturbative treatment of the disorder and extended into a self-consistent set of equations for the dynamical density correlations, is developed and applied to the prototype one-dimensional model of many-body localization. Results show a qualitative agreement with the numerically obtained dynamical structure factor in the whole range of frequencies and wave vectors, as well as across the transition to nonergodic behavior. The theory reveals the singular nature of the one-dimensional problem, whereby on the ergodic side the dynamics is subdiffusive with dynamical conductivity σ (ω ) ∝|ω| α , i.e., with vanishing dc limit σ0=0 and α <1 varying with disorder, while we get α >1 in the localized phase.

  7. Model-based segmentation of abdominal aortic aneurysms in CTA images

    NASA Astrophysics Data System (ADS)

    de Bruijne, Marleen; van Ginneken, Bram; Niessen, Wiro J.; Loog, Marco; Viergever, Max A.

    2003-05-01

    Segmentation of thrombus in abdominal aortic aneurysms is complicated by regions of low boundary contrast and by the presence of many neighboring structures in close proximity to the aneurysm wall. We present an automated method that is similar to the well known Active Shape Models (ASM), combining a three-dimensional shape model with a one-dimensional boundary appearance model. Our contribution is twofold: we developed a non-parametric appearance modeling scheme that effectively deals with a highly varying background, and we propose a way of generalizing models of curvilinear structures from small training sets. In contrast with the conventional ASM approach, the new appearance model trains on both true and false examples of boundary profiles. The probability that a given image profile belongs to the boundary is obtained using k nearest neighbor (kNN) probability density estimation. The performance of this scheme is compared to that of original ASMs, which minimize the Mahalanobis distance to the average true profile in the training set. The generalizability of the shape model is improved by modeling the objects axis deformation independent of its cross-sectional deformation. A leave-one-out experiment was performed on 23 datasets. Segmentation using the kNN appearance model significantly outperformed the original ASM scheme; average volume errors were 5.9% and 46% respectively.

  8. Independence screening for high dimensional nonlinear additive ODE models with applications to dynamic gene regulatory networks.

    PubMed

    Xue, Hongqi; Wu, Shuang; Wu, Yichao; Ramirez Idarraga, Juan C; Wu, Hulin

    2018-05-02

    Mechanism-driven low-dimensional ordinary differential equation (ODE) models are often used to model viral dynamics at cellular levels and epidemics of infectious diseases. However, low-dimensional mechanism-based ODE models are limited for modeling infectious diseases at molecular levels such as transcriptomic or proteomic levels, which is critical to understand pathogenesis of diseases. Although linear ODE models have been proposed for gene regulatory networks (GRNs), nonlinear regulations are common in GRNs. The reconstruction of large-scale nonlinear networks from time-course gene expression data remains an unresolved issue. Here, we use high-dimensional nonlinear additive ODEs to model GRNs and propose a 4-step procedure to efficiently perform variable selection for nonlinear ODEs. To tackle the challenge of high dimensionality, we couple the 2-stage smoothing-based estimation method for ODEs and a nonlinear independence screening method to perform variable selection for the nonlinear ODE models. We have shown that our method possesses the sure screening property and it can handle problems with non-polynomial dimensionality. Numerical performance of the proposed method is illustrated with simulated data and a real data example for identifying the dynamic GRN of Saccharomyces cerevisiae. Copyright © 2018 John Wiley & Sons, Ltd.

  9. Compound activity prediction using models of binding pockets or ligand properties in 3D

    PubMed Central

    Kufareva, Irina; Chen, Yu-Chen; Ilatovskiy, Andrey V.; Abagyan, Ruben

    2014-01-01

    Transient interactions of endogenous and exogenous small molecules with flexible binding sites in proteins or macromolecular assemblies play a critical role in all biological processes. Current advances in high-resolution protein structure determination, database development, and docking methodology make it possible to design three-dimensional models for prediction of such interactions with increasing accuracy and specificity. Using the data collected in the Pocketome encyclopedia, we here provide an overview of two types of the three-dimensional ligand activity models, pocket-based and ligand property-based, for two important classes of proteins, nuclear and G-protein coupled receptors. For half the targets, the pocket models discriminate actives from property matched decoys with acceptable accuracy (the area under ROC curve, AUC, exceeding 84%) and for about one fifth of the targets with high accuracy (AUC > 95%). The 3D ligand property field models performed better than 95% in half of the cases. The high performance models can already become a basis of activity predictions for new chemicals. Family-wide benchmarking of the models highlights strengths of both approaches and helps identify their inherent bottlenecks and challenges. PMID:23116466

  10. System and method for representing and manipulating three-dimensional objects on massively parallel architectures

    DOEpatents

    Karasick, Michael S.; Strip, David R.

    1996-01-01

    A parallel computing system is described that comprises a plurality of uniquely labeled, parallel processors, each processor capable of modelling a three-dimensional object that includes a plurality of vertices, faces and edges. The system comprises a front-end processor for issuing a modelling command to the parallel processors, relating to a three-dimensional object. Each parallel processor, in response to the command and through the use of its own unique label, creates a directed-edge (d-edge) data structure that uniquely relates an edge of the three-dimensional object to one face of the object. Each d-edge data structure at least includes vertex descriptions of the edge and a description of the one face. As a result, each processor, in response to the modelling command, operates upon a small component of the model and generates results, in parallel with all other processors, without the need for processor-to-processor intercommunication.

  11. Two-dimensional collective electron magnetotransport, oscillations, and chaos in a semiconductor superlattice

    NASA Astrophysics Data System (ADS)

    Bonilla, L. L.; Carretero, M.; Segura, A.

    2017-12-01

    When quantized, traces of classically chaotic single-particle systems include eigenvalue statistics and scars in eigenfuntions. Since 2001, many theoretical and experimental works have argued that classically chaotic single-electron dynamics influences and controls collective electron transport. For transport in semiconductor superlattices under tilted magnetic and electric fields, these theories rely on a reduction to a one-dimensional self-consistent drift model. A two-dimensional theory based on self-consistent Boltzmann transport does not support that single-electron chaos influences collective transport. This theory agrees with existing experimental evidence of current self-oscillations, predicts spontaneous collective chaos via a period doubling scenario, and could be tested unambiguously by measuring the electric potential inside the superlattice under a tilted magnetic field.

  12. Two-dimensional character of internal rotation of furfural and other five-member heterocyclic aromatic aldehydes.

    PubMed

    Bataev, Vadim A; Pupyshev, Vladimir I; Godunov, Igor A

    2016-05-15

    The features of nuclear motion corresponding to the rotation of the formyl group (CHO) are studied for the molecules of furfural and some other five-member heterocyclic aromatic aldehydes by the use of MP2/6-311G** quantum chemical approximation. It is demonstrated that the traditional one-dimensional models of internal rotation for the molecules studied have only limited applicability. The reason is the strong kinematic interaction of the rotation of the CHO group and out-of-plane CHO deformation that is realized for the molecules under consideration. The computational procedure based on the two-dimensional approximation is considered for low lying vibrational states as more adequate to the problem. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Two-dimensional collective electron magnetotransport, oscillations, and chaos in a semiconductor superlattice.

    PubMed

    Bonilla, L L; Carretero, M; Segura, A

    2017-12-01

    When quantized, traces of classically chaotic single-particle systems include eigenvalue statistics and scars in eigenfuntions. Since 2001, many theoretical and experimental works have argued that classically chaotic single-electron dynamics influences and controls collective electron transport. For transport in semiconductor superlattices under tilted magnetic and electric fields, these theories rely on a reduction to a one-dimensional self-consistent drift model. A two-dimensional theory based on self-consistent Boltzmann transport does not support that single-electron chaos influences collective transport. This theory agrees with existing experimental evidence of current self-oscillations, predicts spontaneous collective chaos via a period doubling scenario, and could be tested unambiguously by measuring the electric potential inside the superlattice under a tilted magnetic field.

  14. Commensurability resonances in two-dimensional magnetoelectric lateral superlattices

    NASA Astrophysics Data System (ADS)

    Schluck, J.; Fasbender, S.; Heinzel, T.; Pierz, K.; Schumacher, H. W.; Kazazis, D.; Gennser, U.

    2015-05-01

    Hybrid lateral superlattices composed of a square array of antidots and a periodic one-dimensional magnetic modulation are prepared in Ga [Al ]As heterostructures. The two-dimensional electron gases exposed to these superlattices are characterized by magnetotransport experiments in vanishing average perpendicular magnetic fields. Despite the absence of closed orbits, the diagonal magnetoresistivity in the direction perpendicular to the magnetic modulation shows pronounced classical resonances. They are located at magnetic fields where snake trajectories exist which are quasicommensurate with the antidot lattice. The diagonal magnetoresistivity in the direction of the magnetic modulation increases sharply above a threshold magnetic field and shows no fine structure. The experimental results are interpreted with the help of numerical simulations based on the semiclassical Kubo model.

  15. Development of a Localized Low-Dimensional Approach to Turbulence Simulation

    NASA Astrophysics Data System (ADS)

    Juttijudata, Vejapong; Rempfer, Dietmar; Lumley, John

    2000-11-01

    Our previous study has shown that the localized low-dimensional model derived from a projection of Navier-Stokes equations onto a set of one-dimensional scalar POD modes, with boundary conditions at y^+=40, can predict wall turbulence accurately for short times while failing to give a stable long-term solution. The structures obtained from the model and later studies suggest our boundary conditions from DNS are not consistent with the solution from the localized model resulting in an injection of energy at the top boundary. In the current study, we develop low-dimensional models using one-dimensional scalar POD modes derived from an explicitly filtered DNS. This model problem has exact no-slip boundary conditions at both walls while the locality of the wall layer is still retained. Furthermore, the interaction between wall and core region is attenuated via an explicit filter which allows us to investigate the quality of the model without requiring complicated modeling of the top boundary conditions. The full-channel model gives reasonable wall turbulence structures as well as long-term turbulent statistics while still having difficulty with the prediction of the mean velocity profile farther from the wall. We also consider a localized model with modified boundary conditions in the last part of our study.

  16. Demonstration of CBR Modeling and Simulation Tool (CBRSim) Capabilities. Installation Technology Transfer Program

    DTIC Science & Technology

    2009-04-01

    Capabilities Co ns tr uc tio n En gi ne er in g R es ea rc h La bo ra to ry Kathy L. Simunich, Timothy K. Perkins, David M. Bailey, David Brown, and...inversion height in convective condition is estimated with a one- dimensional model of the atmospheric boundary layer based on the Drie- donks slab model...tool and its capabilities. Installation geospatial data, in CAD format, were obtained for select buildings, roads, and topographic features in

  17. The Design of a 100 GHz CARM (Cyclotron Auto-Resonance Maser) Oscillator Experiment

    DTIC Science & Technology

    1988-09-14

    pulsed-power system must be considered. A model of the voltage pulse that consists of a linear voltage rise from zero to the operating voltage...to vary as the voltage to the 3/2 power in order to model space-charge limited flow from a relativistic diode.. As the current rises in the pulse, the...distribution due to a space-charge-limited, laminar flow of electrons based on a one-dimensional, planar, relativistic model . From the charge distribution

  18. Gaussian processes with built-in dimensionality reduction: Applications to high-dimensional uncertainty propagation

    NASA Astrophysics Data System (ADS)

    Tripathy, Rohit; Bilionis, Ilias; Gonzalez, Marcial

    2016-09-01

    Uncertainty quantification (UQ) tasks, such as model calibration, uncertainty propagation, and optimization under uncertainty, typically require several thousand evaluations of the underlying computer codes. To cope with the cost of simulations, one replaces the real response surface with a cheap surrogate based, e.g., on polynomial chaos expansions, neural networks, support vector machines, or Gaussian processes (GP). However, the number of simulations required to learn a generic multivariate response grows exponentially as the input dimension increases. This curse of dimensionality can only be addressed, if the response exhibits some special structure that can be discovered and exploited. A wide range of physical responses exhibit a special structure known as an active subspace (AS). An AS is a linear manifold of the stochastic space characterized by maximal response variation. The idea is that one should first identify this low dimensional manifold, project the high-dimensional input onto it, and then link the projection to the output. If the dimensionality of the AS is low enough, then learning the link function is a much easier problem than the original problem of learning a high-dimensional function. The classic approach to discovering the AS requires gradient information, a fact that severely limits its applicability. Furthermore, and partly because of its reliance to gradients, it is not able to handle noisy observations. The latter is an essential trait if one wants to be able to propagate uncertainty through stochastic simulators, e.g., through molecular dynamics codes. In this work, we develop a probabilistic version of AS which is gradient-free and robust to observational noise. Our approach relies on a novel Gaussian process regression with built-in dimensionality reduction. In particular, the AS is represented as an orthogonal projection matrix that serves as yet another covariance function hyper-parameter to be estimated from the data. To train the model, we design a two-step maximum likelihood optimization procedure that ensures the orthogonality of the projection matrix by exploiting recent results on the Stiefel manifold, i.e., the manifold of matrices with orthogonal columns. The additional benefit of our probabilistic formulation, is that it allows us to select the dimensionality of the AS via the Bayesian information criterion. We validate our approach by showing that it can discover the right AS in synthetic examples without gradient information using both noiseless and noisy observations. We demonstrate that our method is able to discover the same AS as the classical approach in a challenging one-hundred-dimensional problem involving an elliptic stochastic partial differential equation with random conductivity. Finally, we use our approach to study the effect of geometric and material uncertainties in the propagation of solitary waves in a one dimensional granular system.

  19. Gaussian processes with built-in dimensionality reduction: Applications to high-dimensional uncertainty propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathy, Rohit, E-mail: rtripath@purdue.edu; Bilionis, Ilias, E-mail: ibilion@purdue.edu; Gonzalez, Marcial, E-mail: marcial-gonzalez@purdue.edu

    2016-09-15

    Uncertainty quantification (UQ) tasks, such as model calibration, uncertainty propagation, and optimization under uncertainty, typically require several thousand evaluations of the underlying computer codes. To cope with the cost of simulations, one replaces the real response surface with a cheap surrogate based, e.g., on polynomial chaos expansions, neural networks, support vector machines, or Gaussian processes (GP). However, the number of simulations required to learn a generic multivariate response grows exponentially as the input dimension increases. This curse of dimensionality can only be addressed, if the response exhibits some special structure that can be discovered and exploited. A wide range ofmore » physical responses exhibit a special structure known as an active subspace (AS). An AS is a linear manifold of the stochastic space characterized by maximal response variation. The idea is that one should first identify this low dimensional manifold, project the high-dimensional input onto it, and then link the projection to the output. If the dimensionality of the AS is low enough, then learning the link function is a much easier problem than the original problem of learning a high-dimensional function. The classic approach to discovering the AS requires gradient information, a fact that severely limits its applicability. Furthermore, and partly because of its reliance to gradients, it is not able to handle noisy observations. The latter is an essential trait if one wants to be able to propagate uncertainty through stochastic simulators, e.g., through molecular dynamics codes. In this work, we develop a probabilistic version of AS which is gradient-free and robust to observational noise. Our approach relies on a novel Gaussian process regression with built-in dimensionality reduction. In particular, the AS is represented as an orthogonal projection matrix that serves as yet another covariance function hyper-parameter to be estimated from the data. To train the model, we design a two-step maximum likelihood optimization procedure that ensures the orthogonality of the projection matrix by exploiting recent results on the Stiefel manifold, i.e., the manifold of matrices with orthogonal columns. The additional benefit of our probabilistic formulation, is that it allows us to select the dimensionality of the AS via the Bayesian information criterion. We validate our approach by showing that it can discover the right AS in synthetic examples without gradient information using both noiseless and noisy observations. We demonstrate that our method is able to discover the same AS as the classical approach in a challenging one-hundred-dimensional problem involving an elliptic stochastic partial differential equation with random conductivity. Finally, we use our approach to study the effect of geometric and material uncertainties in the propagation of solitary waves in a one dimensional granular system.« less

  20. Anomaly in the band centre of the one-dimensional Anderson model

    NASA Astrophysics Data System (ADS)

    Kappus, M.; Wegner, F.

    1981-03-01

    We calculate the density of states and various characteristic lengths of the one-dimensional Anderson model in the limit of weak disorder. All these quantities show anomalous fluctuations near the band centre. This has already been observed for the density of states in a different model by Gorkov and Dorokhov, and is in close agreement with a Monte-Carlo calculation for the localization length by Czycholl, Kramer and Mac-Kinnon.

  1. Mixed-order phase transition in a one-dimensional model.

    PubMed

    Bar, Amir; Mukamel, David

    2014-01-10

    We introduce and analyze an exactly soluble one-dimensional Ising model with long range interactions that exhibits a mixed-order transition, namely a phase transition in which the order parameter is discontinuous as in first order transitions while the correlation length diverges as in second order transitions. Such transitions are known to appear in a diverse classes of models that are seemingly unrelated. The model we present serves as a link between two classes of models that exhibit a mixed-order transition in one dimension, namely, spin models with a coupling constant that decays as the inverse distance squared and models of depinning transitions, thus making a step towards a unifying framework.

  2. DNA denaturation through a model of the partition points on a one-dimensional lattice

    NASA Astrophysics Data System (ADS)

    Mejdani, R.; Huseini, H.

    1994-08-01

    We have shown that by using a model of the partition points gas on a one-dimensional lattice, we can study, besides the saturation curves obtained before for the enzyme kinetics, also the denaturation process, i.e. the breaking of the hydrogen bonds connecting the two strands, under treatment by heat of DNA. We think that this model, as a very simple model and mathematically transparent, can be advantageous for pedagogic goals or other theoretical investigations in chemistry or modern biology.

  3. Majorana zero modes in the hopping-modulated one-dimensional p-wave superconducting model.

    PubMed

    Gao, Yi; Zhou, Tao; Huang, Huaixiang; Huang, Ran

    2015-11-20

    We investigate the one-dimensional p-wave superconducting model with periodically modulated hopping and show that under time-reversal symmetry, the number of the Majorana zero modes (MZMs) strongly depends on the modulation period. If the modulation period is odd, there can be at most one MZM. However if the period is even, the number of the MZMs can be zero, one and two. In addition, the MZMs will disappear as the chemical potential varies. We derive the condition for the existence of the MZMs and show that the topological properties in this model are dramatically different from the one with periodically modulated potential.

  4. One-dimensional simulation of temperature and moisture in atmospheric and soil boundary layers

    NASA Technical Reports Server (NTRS)

    Bornstein, R. D.; Santhanam, K.

    1981-01-01

    Meteorologists are interested in modeling the vertical flow of heat and moisture through the soil in order to better simulate the vertical and temporal variations of the atmospheric boundary layer. The one dimensional planetary boundary layer model of is modified by the addition of transport equations to be solved by a finite difference technique to predict soil moisture.

  5. Fukunaga-Koontz transform based dimensionality reduction for hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Ochilov, S.; Alam, M. S.; Bal, A.

    2006-05-01

    Fukunaga-Koontz Transform based technique offers some attractive properties for desired class oriented dimensionality reduction in hyperspectral imagery. In FKT, feature selection is performed by transforming into a new space where feature classes have complimentary eigenvectors. Dimensionality reduction technique based on these complimentary eigenvector analysis can be described under two classes, desired class and background clutter, such that each basis function best represent one class while carrying the least amount of information from the second class. By selecting a few eigenvectors which are most relevant to desired class, one can reduce the dimension of hyperspectral cube. Since the FKT based technique reduces data size, it provides significant advantages for near real time detection applications in hyperspectral imagery. Furthermore, the eigenvector selection approach significantly reduces computation burden via the dimensionality reduction processes. The performance of the proposed dimensionality reduction algorithm has been tested using real-world hyperspectral dataset.

  6. Three-dimensional modelling of slope stability using the Local Factor of Safety concept

    NASA Astrophysics Data System (ADS)

    Moradi, Shirin; Huisman, Sander; Beck, Martin; Vereecken, Harry; Class, Holger

    2017-04-01

    Slope stability is governed by coupled hydrological and mechanical processes. The slope stability depends on the effective stress, which in turn depends on the weight of the soil and the matrix potential. Therefore, changes in water content and matrix potential associated with infiltration will affect slope stability. Most available models describing these coupled hydro-mechanical processes either rely on a one- or two-dimensional representation of hydrological and mechanical properties and processes, which obviously is a strong simplification in many applications. Therefore, the aim of this work is to develop a three-dimensional hydro-mechanical model that is able to capture the effect of spatial and temporal variability of both mechanical and hydrological parameters on slope stability. For this, we rely on DuMux, which is a free and open-source simulator for flow and transport processes in porous media that facilitates coupling of different model approaches and offers flexibility for model development. We use the Richards equation to model unsaturated water flow. The simulated water content and matrix potential distribution is used to calculate the effective stress. We only consider linear elasticity and solve for statically admissible fields of stress and displacement without invoking failure or the redistribution of post-failure stress or displacement. The Local Factor of Safety concept is used to evaluate slope stability in order to overcome some of the main limitations of commonly used methods based on limit equilibrium considerations. In a first step, we compared our model implementation with a 2D benchmark model that was implemented in COMSOL Multiphysics. In a second step, we present in-silico experiments with the newly developed 3D model to show the effect of slope morphology, spatial variability in hydraulic and mechanical material properties, and spatially variable soil depth on simulated slope stability. It is expected that this improved physically-based three-dimensional hydro-mechanical model is able to provide more reliable slope instability predictions in more complex situations.

  7. Entropy-based separation of yeast cells using a microfluidic system of conjoined spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Kai-Jian; Qin, S.-J., E-mail: shuijie.qin@gmail.com; Bai, Zhong-Chen

    2013-11-21

    A physical model is derived to create a biological cell separator that is based on controlling the entropy in a microfluidic system having conjoined spherical structures. A one-dimensional simplified model of this three-dimensional problem in terms of the corresponding effects of entropy on the Brownian motion of particles is presented. This dynamic mechanism is based on the Langevin equation from statistical thermodynamics and takes advantage of the characteristics of the Fokker-Planck equation. This mechanism can be applied to manipulate biological particles inside a microfluidic system with identical, conjoined, spherical compartments. This theoretical analysis is verified by performing a rapid andmore » a simple technique for separating yeast cells in these conjoined, spherical microfluidic structures. The experimental results basically match with our theoretical model and we further analyze the parameters which can be used to control this separation mechanism. Both numerical simulations and experimental results show that the motion of the particles depends on the geometrical boundary conditions of the microfluidic system and the initial concentration of the diffusing material. This theoretical model can be implemented in future biophysics devices for the optimized design of passive cell sorters.« less

  8. Evaluating post-wildfire hydrologic recovery using ParFlow in southern California

    NASA Astrophysics Data System (ADS)

    Lopez, S. R.; Kinoshita, A. M.; Atchley, A. L.

    2016-12-01

    Wildfires are naturally occurring hazards that can have catastrophic impacts. They can alter the natural processes within a watershed, such as surface runoff and subsurface water storage. Generally, post-fire hydrologic models are either one-dimensional, empirically-based models, or two-dimensional, conceptually-based models with lumped parameter distributions. These models are useful in providing runoff measurements at the watershed outlet; however, do not provide distributed hydrologic simulation at each point within the watershed. This research demonstrates how ParFlow, a three-dimensional, distributed hydrologic model can simulate post-fire hydrologic processes by representing soil burn severity (via hydrophobicity) and vegetation recovery as they vary both spatially and temporally. Using this approach, we are able to evaluate the change in post-fire water components (surface flow, lateral flow, baseflow, and evapotranspiration). This model is initially developed for a hillslope in Devil Canyon, burned in 2003 by the Old Fire in southern California (USA). The domain uses a 2m-cell size resolution over a 25 m by 25 m lateral extent. The subsurface reaches 2 m and is assigned a variable cell thickness, allowing an explicit consideration of the soil burn severity throughout the stages of recovery and vegetation regrowth. Vegetation regrowth is incorporated represented by satellite-based Enhanced Vegetation Index (EVI) products. The pre- and post-fire surface runoff, subsurface storage, and surface storage interactions are evaluated and will be used as a basis for developing a watershed-scale model. Long-term continuous simulations will advance our understanding of post-fire hydrological partitioning between water balance components and the spatial variability of watershed processes, providing improved guidance for post-fire watershed management.

  9. Prediction models for solitary pulmonary nodules based on curvelet textural features and clinical parameters.

    PubMed

    Wang, Jing-Jing; Wu, Hai-Feng; Sun, Tao; Li, Xia; Wang, Wei; Tao, Li-Xin; Huo, Da; Lv, Ping-Xin; He, Wen; Guo, Xiu-Hua

    2013-01-01

    Lung cancer, one of the leading causes of cancer-related deaths, usually appears as solitary pulmonary nodules (SPNs) which are hard to diagnose using the naked eye. In this paper, curvelet-based textural features and clinical parameters are used with three prediction models [a multilevel model, a least absolute shrinkage and selection operator (LASSO) regression method, and a support vector machine (SVM)] to improve the diagnosis of benign and malignant SPNs. Dimensionality reduction of the original curvelet-based textural features was achieved using principal component analysis. In addition, non-conditional logistical regression was used to find clinical predictors among demographic parameters and morphological features. The results showed that, combined with 11 clinical predictors, the accuracy rates using 12 principal components were higher than those using the original curvelet-based textural features. To evaluate the models, 10-fold cross validation and back substitution were applied. The results obtained, respectively, were 0.8549 and 0.9221 for the LASSO method, 0.9443 and 0.9831 for SVM, and 0.8722 and 0.9722 for the multilevel model. All in all, it was found that using curvelet-based textural features after dimensionality reduction and using clinical predictors, the highest accuracy rate was achieved with SVM. The method may be used as an auxiliary tool to differentiate between benign and malignant SPNs in CT images.

  10. Analytical solutions of the two-dimensional Dirac equation for a topological channel intersection

    NASA Astrophysics Data System (ADS)

    Anglin, J. R.; Schulz, A.

    2017-01-01

    Numerical simulations in a tight-binding model have shown that an intersection of topologically protected one-dimensional chiral channels can function as a beam splitter for noninteracting fermions on a two-dimensional lattice [Qiao, Jung, and MacDonald, Nano Lett. 11, 3453 (2011), 10.1021/nl201941f; Qiao et al., Phys. Rev. Lett. 112, 206601 (2014), 10.1103/PhysRevLett.112.206601]. Here we confirm this result analytically in the corresponding continuum k .p model, by solving the associated two-dimensional Dirac equation, in the presence of a "checkerboard" potential that provides a right-angled intersection between two zero-line modes. The method by which we obtain our analytical solutions is systematic and potentially generalizable to similar problems involving intersections of one-dimensional systems.

  11. A new digitized reverse correction method for hypoid gears based on a one-dimensional probe

    NASA Astrophysics Data System (ADS)

    Li, Tianxing; Li, Jubo; Deng, Xiaozhong; Yang, Jianjun; Li, Genggeng; Ma, Wensuo

    2017-12-01

    In order to improve the tooth surface geometric accuracy and transmission quality of hypoid gears, a new digitized reverse correction method is proposed based on the measurement data from a one-dimensional probe. The minimization of tooth surface geometrical deviations is realized from the perspective of mathematical analysis and reverse engineering. Combining the analysis of complex tooth surface generation principles and the measurement mechanism of one-dimensional probes, the mathematical relationship between the theoretical designed tooth surface, the actual machined tooth surface and the deviation tooth surface is established, the mapping relation between machine-tool settings and tooth surface deviations is derived, and the essential connection between the accurate calculation of tooth surface deviations and the reverse correction method of machine-tool settings is revealed. Furthermore, a reverse correction model of machine-tool settings is built, a reverse correction strategy is planned, and the minimization of tooth surface deviations is achieved by means of the method of numerical iterative reverse solution. On this basis, a digitized reverse correction system for hypoid gears is developed by the organic combination of numerical control generation, accurate measurement, computer numerical processing, and digitized correction. Finally, the correctness and practicability of the digitized reverse correction method are proved through a reverse correction experiment. The experimental results show that the tooth surface geometric deviations meet the engineering requirements after two trial cuts and one correction.

  12. The R.I. Pimenov unified gravitation and electromagnetism field theory as semi-Riemannian geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gromov, N. A., E-mail: gromov@dm.komisc.r

    2009-05-15

    More than forty years ago R.I. Pimenov introduced a new geometry-semi-Riemannian one-as a set of geometrical objects consistent with a fibering pr: M{sub n} {yields} M{sub m}. He suggested the heuristic principle according to which the physically different quantities (meter, second, Coulomb, etc.) are geometrically modelled as space coordinates that are not superposed by automorphisms. As there is only one type of coordinates in Riemannian geometry and only three types of coordinates in pseudo-Riemannian one, a multiple-fibered semi-Riemannian geometry is the most appropriate one for the treatment of more than three different physical quantities as unified geometrical field theory. Semi-Euclideanmore » geometry {sup 3}R{sub 5}{sup 4} with 1-dimensional fiber x{sup 5} and 4-dimensional Minkowski space-time as a base is naturally interpreted as classical electrodynamics. Semi-Riemannian geometry {sup 3}V{sub 5}{sup 4} with the general relativity pseudo-Riemannian space-time {sup 3}V{sub 4}, and 1-dimensional fiber x{sup 5}, responsible for the electromagnetism, provides the unified field theory of gravitation and electromagnetism. Unlike Kaluza-Klein theories, where the fifth coordinate appears in nondegenerate Riemannian or pseudo-Riemannian geometry, the theory based on semi-Riemannian geometry is free from defects of the former. In particular, scalar field does not arise.« less

  13. Two diverse models of embedding class one

    NASA Astrophysics Data System (ADS)

    Kuhfittig, Peter K. F.

    2018-05-01

    Embedding theorems have continued to be a topic of interest in the general theory of relativity since these help connect the classical theory to higher-dimensional manifolds. This paper deals with spacetimes of embedding class one, i.e., spacetimes that can be embedded in a five-dimensional flat spacetime. These ideas are applied to two diverse models, a complete solution for a charged wormhole admitting a one-parameter group of conformal motions and a new model to explain the flat rotation curves in spiral galaxies without the need for dark matter.

  14. Loading Rate Effects on the One-Dimensional Compressibility of Four Partially Saturated Soils

    DTIC Science & Technology

    1986-12-01

    representations are referred to as constitutive models. Numerous constitutive models incorporating loading rate effects have been developed ( Baladi and Rohani...and probably more indicative of the true values of applied pressure and average strain produced during the test. A technique developed by Baladi and...Sand," Technical Report No. AFWL-TR-66-146, Air Force Weapons Laboratory, Kirtland Air Force Base, New Mexico, June, 1967. 4. Baladi , George Y., and

  15. Asymmetric Base-Bleed Effect on Aerospike Plume-Induced Base-Heating Environment

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Droege, Alan; DAgostino, Mark; Lee, Young-Ching; Williams, Robert

    2004-01-01

    A computational heat transfer design methodology was developed to study the dual-engine linear aerospike plume-induced base-heating environment during one power-pack out, in ascent flight. It includes a three-dimensional, finite volume, viscous, chemically reacting, and pressure-based computational fluid dynamics formulation, a special base-bleed boundary condition, and a three-dimensional, finite volume, and spectral-line-based weighted-sum-of-gray-gases absorption computational radiation heat transfer formulation. A separate radiation model was used for diagnostic purposes. The computational methodology was systematically benchmarked. In this study, near-base radiative heat fluxes were computed, and they compared well with those measured during static linear aerospike engine tests. The base-heating environment of 18 trajectory points selected from three power-pack out scenarios was computed. The computed asymmetric base-heating physics were analyzed. The power-pack out condition has the most impact on convective base heating when it happens early in flight. The source of its impact comes from the asymmetric and reduced base bleed.

  16. Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants

    NASA Technical Reports Server (NTRS)

    Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.

    1996-01-01

    Progress and results in the development of an integrated air quality modeling, monitoring, fault detection, and isolation system are presented. The focus was on development of distributed models of the air contaminants transport, the study of air quality monitoring techniques based on the model of transport process and on-line contaminant concentration measurements, and sensor placement. Different approaches to the modeling of spacecraft air contamination are discussed, and a three-dimensional distributed parameter air contaminant dispersion model applicable to both laminar and turbulent transport is proposed. A two-dimensional approximation of a full scale transport model is also proposed based on the spatial averaging of the three dimensional model over the least important space coordinate. A computer implementation of the transport model is considered and a detailed development of two- and three-dimensional models illustrated by contaminant transport simulation results is presented. The use of a well established Kalman filtering approach is suggested as a method for generating on-line contaminant concentration estimates based on both real time measurements and the model of contaminant transport process. It is shown that high computational requirements of the traditional Kalman filter can render difficult its real-time implementation for high-dimensional transport model and a novel implicit Kalman filtering algorithm is proposed which is shown to lead to an order of magnitude faster computer implementation in the case of air quality monitoring.

  17. [Rapid prototyping: a very promising method].

    PubMed

    Haverman, T M; Karagozoglu, K H; Prins, H-J; Schulten, E A J M; Forouzanfar, T

    2013-03-01

    Rapid prototyping is a method which makes it possible to produce a three-dimensional model based on two-dimensional imaging. Various rapid prototyping methods are available for modelling, such as stereolithography, selective laser sintering, direct laser metal sintering, two-photon polymerization, laminated object manufacturing, three-dimensional printing, three-dimensional plotting, polyjet inkjet technology,fused deposition modelling, vacuum casting and milling. The various methods currently being used in the biomedical sector differ in production, materials and properties of the three-dimensional model which is produced. Rapid prototyping is mainly usedforpreoperative planning, simulation, education, and research into and development of bioengineering possibilities.

  18. Dense mesh sampling for video-based facial animation

    NASA Astrophysics Data System (ADS)

    Peszor, Damian; Wojciechowska, Marzena

    2016-06-01

    The paper describes an approach for selection of feature points on three-dimensional, triangle mesh obtained using various techniques from several video footages. This approach has a dual purpose. First, it allows to minimize the data stored for the purpose of facial animation, so that instead of storing position of each vertex in each frame, one could store only a small subset of vertices for each frame and calculate positions of others based on the subset. Second purpose is to select feature points that could be used for anthropometry-based retargeting of recorded mimicry to another model, with sampling density beyond that which can be achieved using marker-based performance capture techniques. Developed approach was successfully tested on artificial models, models constructed using structured light scanner, and models constructed from video footages using stereophotogrammetry.

  19. Scene analysis for effective visual search in rough three-dimensional-modeling scenes

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Hu, Xiaopeng

    2016-11-01

    Visual search is a fundamental technology in the computer vision community. It is difficult to find an object in complex scenes when there exist similar distracters in the background. We propose a target search method in rough three-dimensional-modeling scenes based on a vision salience theory and camera imaging model. We give the definition of salience of objects (or features) and explain the way that salience measurements of objects are calculated. Also, we present one type of search path that guides to the target through salience objects. Along the search path, when the previous objects are localized, the search region of each subsequent object decreases, which is calculated through imaging model and an optimization method. The experimental results indicate that the proposed method is capable of resolving the ambiguities resulting from distracters containing similar visual features with the target, leading to an improvement of search speed by over 50%.

  20. Acoustic dipole radiation model for magnetoacoustic tomography with magnetic induction

    NASA Astrophysics Data System (ADS)

    Li, Yi-Ling; Ma, Qing-Yu; Zhang, Dong; Xia, Rong-Min

    2011-08-01

    An acoustic dipole radiation model for magnetoacoustic tomography with magnetic induction (MAT-MI) is proposed, based on the analyses of one-dimensional tissue vibration, three-dimensional acoustic dipole radiation and acoustic waveform detection with a planar piston transducer. The collected waveforms provide information about the conductivity boundaries in various vibration intensities and phases due to the acoustic dipole radiation pattern. Combined with the simplified back projection algorithm, the conductivity configuration of the measured layer in terms of shape and size can be reconstructed with obvious border stripes. The numerical simulation is performed for a two-layer cylindrical phantom model and it is also verified by the experimental results of MAT-MI for a tissue-like sample phantom. The proposed model suggests a potential application of conductivity differentiation and provides a universal basis for the further study of conductivity reconstruction for MAT-MI.

  1. Integrating high dimensional bi-directional parsing models for gene mention tagging.

    PubMed

    Hsu, Chun-Nan; Chang, Yu-Ming; Kuo, Cheng-Ju; Lin, Yu-Shi; Huang, Han-Shen; Chung, I-Fang

    2008-07-01

    Tagging gene and gene product mentions in scientific text is an important initial step of literature mining. In this article, we describe in detail our gene mention tagger participated in BioCreative 2 challenge and analyze what contributes to its good performance. Our tagger is based on the conditional random fields model (CRF), the most prevailing method for the gene mention tagging task in BioCreative 2. Our tagger is interesting because it accomplished the highest F-scores among CRF-based methods and second over all. Moreover, we obtained our results by mostly applying open source packages, making it easy to duplicate our results. We first describe in detail how we developed our CRF-based tagger. We designed a very high dimensional feature set that includes most of information that may be relevant. We trained bi-directional CRF models with the same set of features, one applies forward parsing and the other backward, and integrated two models based on the output scores and dictionary filtering. One of the most prominent factors that contributes to the good performance of our tagger is the integration of an additional backward parsing model. However, from the definition of CRF, it appears that a CRF model is symmetric and bi-directional parsing models will produce the same results. We show that due to different feature settings, a CRF model can be asymmetric and the feature setting for our tagger in BioCreative 2 not only produces different results but also gives backward parsing models slight but constant advantage over forward parsing model. To fully explore the potential of integrating bi-directional parsing models, we applied different asymmetric feature settings to generate many bi-directional parsing models and integrate them based on the output scores. Experimental results show that this integrated model can achieve even higher F-score solely based on the training corpus for gene mention tagging. Data sets, programs and an on-line service of our gene mention tagger can be accessed at http://aiia.iis.sinica.edu.tw/biocreative2.htm.

  2. A One Dimensional, Time Dependent Inlet/Engine Numerical Simulation for Aircraft Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Garrard, Doug; Davis, Milt, Jr.; Cole, Gary

    1999-01-01

    The NASA Lewis Research Center (LeRC) and the Arnold Engineering Development Center (AEDC) have developed a closely coupled computer simulation system that provides a one dimensional, high frequency inlet/engine numerical simulation for aircraft propulsion systems. The simulation system, operating under the LeRC-developed Application Portable Parallel Library (APPL), closely coupled a supersonic inlet with a gas turbine engine. The supersonic inlet was modeled using the Large Perturbation Inlet (LAPIN) computer code, and the gas turbine engine was modeled using the Aerodynamic Turbine Engine Code (ATEC). Both LAPIN and ATEC provide a one dimensional, compressible, time dependent flow solution by solving the one dimensional Euler equations for the conservation of mass, momentum, and energy. Source terms are used to model features such as bleed flows, turbomachinery component characteristics, and inlet subsonic spillage while unstarted. High frequency events, such as compressor surge and inlet unstart, can be simulated with a high degree of fidelity. The simulation system was exercised using a supersonic inlet with sixty percent of the supersonic area contraction occurring internally, and a GE J85-13 turbojet engine.

  3. Multi-dimensional modeling of atmospheric copper-sulfidation corrosion on non-planar substrates.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ken Shuang

    2004-11-01

    This report documents the author's efforts in the deterministic modeling of copper-sulfidation corrosion on non-planar substrates such as diodes and electrical connectors. A new framework based on Goma was developed for multi-dimensional modeling of atmospheric copper-sulfidation corrosion on non-planar substrates. In this framework, the moving sulfidation front is explicitly tracked by treating the finite-element mesh as a pseudo solid with an arbitrary Lagrangian-Eulerian formulation and repeatedly performing re-meshing using CUBIT and re-mapping using MAPVAR. Three one-dimensional studies were performed for verifying the framework in asymptotic regimes. Limited model validation was also carried out by comparing computed copper-sulfide thickness with experimentalmore » data. The framework was first demonstrated in modeling one-dimensional copper sulfidation with charge separation. It was found that both the thickness of the space-charge layers and the electrical potential at the sulfidation surface decrease rapidly as the Cu{sub 2}S layer thickens initially but eventually reach equilibrium values as Cu{sub 2}S layer becomes sufficiently thick; it was also found that electroneutrality is a reasonable approximation and that the electro-migration flux may be estimated by using the equilibrium potential difference between the sulfidation and annihilation surfaces when the Cu{sub 2}S layer is sufficiently thick. The framework was then employed to model copper sulfidation in the solid-state-diffusion controlled regime (i.e. stage II sulfidation) on a prototypical diode until a continuous Cu{sub 2}S film was formed on the diode surface. The framework was also applied to model copper sulfidation on an intermittent electrical contact between a gold-plated copper pin and gold-plated copper pad; the presence of Cu{sub 2}S was found to raise the effective electrical resistance drastically. Lastly, future research needs in modeling atmospheric copper sulfidation are discussed.« less

  4. A two-dimensional model of water: Theory and computer simulations

    NASA Astrophysics Data System (ADS)

    Urbič, T.; Vlachy, V.; Kalyuzhnyi, Yu. V.; Southall, N. T.; Dill, K. A.

    2000-02-01

    We develop an analytical theory for a simple model of liquid water. We apply Wertheim's thermodynamic perturbation theory (TPT) and integral equation theory (IET) for associative liquids to the MB model, which is among the simplest models of water. Water molecules are modeled as 2-dimensional Lennard-Jones disks with three hydrogen bonding arms arranged symmetrically, resembling the Mercedes-Benz (MB) logo. The MB model qualitatively predicts both the anomalous properties of pure water and the anomalous solvation thermodynamics of nonpolar molecules. IET is based on the orientationally averaged version of the Ornstein-Zernike equation. This is one of the main approximations in the present work. IET correctly predicts the pair correlation function of the model water at high temperatures. Both TPT and IET are in semi-quantitative agreement with the Monte Carlo values of the molar volume, isothermal compressibility, thermal expansion coefficient, and heat capacity. A major advantage of these theories is that they require orders of magnitude less computer time than the Monte Carlo simulations.

  5. A one-dimensional interactive soil-atmosphere model for testing formulations of surface hydrology

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Eagleson, Peter S.

    1990-01-01

    A model representing a soil-atmosphere column in a GCM is developed for off-line testing of GCM soil hydrology parameterizations. Repeating three representative GCM sensitivity experiments with this one-dimensional model demonstrates that, to first order, the model reproduces a GCM's sensitivity to imposed changes in parameterization and therefore captures the essential physics of the GCM. The experiments also show that by allowing feedback between the soil and atmosphere, the model improves on off-line tests that rely on prescribed precipitation, radiation, and other surface forcing.

  6. Solution to the sign problem in a frustrated quantum impurity model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hann, Connor T., E-mail: connor.hann@yale.edu; Huffman, Emilie; Chandrasekharan, Shailesh

    2017-01-15

    In this work we solve the sign problem of a frustrated quantum impurity model consisting of three quantum spin-half chains interacting through an anti-ferromagnetic Heisenberg interaction at one end. We first map the model into a repulsive Hubbard model of spin-half fermions hopping on three independent one dimensional chains that interact through a triangular hopping at one end. We then convert the fermion model into an inhomogeneous one dimensional model and express the partition function as a weighted sum over fermion worldline configurations. By imposing a pairing of fermion worldlines in half the space we show that all negative weightmore » configurations can be eliminated. This pairing naturally leads to the original frustrated quantum spin model at half filling and thus solves its sign problem.« less

  7. Exploring multicollinearity using a random matrix theory approach.

    PubMed

    Feher, Kristen; Whelan, James; Müller, Samuel

    2012-01-01

    Clustering of gene expression data is often done with the latent aim of dimension reduction, by finding groups of genes that have a common response to potentially unknown stimuli. However, what is poorly understood to date is the behaviour of a low dimensional signal embedded in high dimensions. This paper introduces a multicollinear model which is based on random matrix theory results, and shows potential for the characterisation of a gene cluster's correlation matrix. This model projects a one dimensional signal into many dimensions and is based on the spiked covariance model, but rather characterises the behaviour of the corresponding correlation matrix. The eigenspectrum of the correlation matrix is empirically examined by simulation, under the addition of noise to the original signal. The simulation results are then used to propose a dimension estimation procedure of clusters from data. Moreover, the simulation results warn against considering pairwise correlations in isolation, as the model provides a mechanism whereby a pair of genes with `low' correlation may simply be due to the interaction of high dimension and noise. Instead, collective information about all the variables is given by the eigenspectrum.

  8. Neutronics Comparison Analysis of the Water Cooled Ceramics Breeding Blanket for CFETR

    NASA Astrophysics Data System (ADS)

    Li, Jia; Zhang, Xiaokang; Gao, Fangfang; Pu, Yong

    2016-02-01

    China Fusion Engineering Test Reactor (CFETR) is an ITER-like fusion engineering test reactor that is intended to fill the scientific and technical gaps between ITER and DEMO. One of the main missions of CFETR is to achieve a tritium breeding ratio that is no less than 1.2 to ensure tritium self-sufficiency. A concept design for a water cooled ceramics breeding blanket (WCCB) is presented based on a scheme with the breeder and the multiplier located in separate panels for CFETR. Based on this concept, a one-dimensional (1D) radial built breeding blanket was first designed, and then several three-dimensional models were developed with various neutron source definitions and breeding blanket module arrangements based on the 1D radial build. A set of nuclear analyses have been carried out to compare the differences in neutronics characteristics given by different calculation models, addressing neutron wall loading (NWL), tritium breeding ratio (TBR), fast neutron flux on inboard side and nuclear heating deposition on main in-vessel components. The impact of differences in modeling on the nuclear performance has been analyzed and summarized regarding the WCCB concept design. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy (Nos. 2013GB108004, 2014GB122000, and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  9. Efficient Bayesian hierarchical functional data analysis with basis function approximations using Gaussian-Wishart processes.

    PubMed

    Yang, Jingjing; Cox, Dennis D; Lee, Jong Soo; Ren, Peng; Choi, Taeryon

    2017-12-01

    Functional data are defined as realizations of random functions (mostly smooth functions) varying over a continuum, which are usually collected on discretized grids with measurement errors. In order to accurately smooth noisy functional observations and deal with the issue of high-dimensional observation grids, we propose a novel Bayesian method based on the Bayesian hierarchical model with a Gaussian-Wishart process prior and basis function representations. We first derive an induced model for the basis-function coefficients of the functional data, and then use this model to conduct posterior inference through Markov chain Monte Carlo methods. Compared to the standard Bayesian inference that suffers serious computational burden and instability in analyzing high-dimensional functional data, our method greatly improves the computational scalability and stability, while inheriting the advantage of simultaneously smoothing raw observations and estimating the mean-covariance functions in a nonparametric way. In addition, our method can naturally handle functional data observed on random or uncommon grids. Simulation and real studies demonstrate that our method produces similar results to those obtainable by the standard Bayesian inference with low-dimensional common grids, while efficiently smoothing and estimating functional data with random and high-dimensional observation grids when the standard Bayesian inference fails. In conclusion, our method can efficiently smooth and estimate high-dimensional functional data, providing one way to resolve the curse of dimensionality for Bayesian functional data analysis with Gaussian-Wishart processes. © 2017, The International Biometric Society.

  10. The Particle inside a Ring: A Two-Dimensional Quantum Problem Visualized by Scanning Tunneling Microscopy

    ERIC Educational Resources Information Center

    Ellison, Mark D.

    2008-01-01

    The one-dimensional particle-in-a-box model used to introduce quantum mechanics to students suffers from a tenuous connection to a real physical system. This article presents a two-dimensional model, the particle confined within a ring, that directly corresponds to observations of surface electrons in a metal trapped inside a circular barrier.…

  11. Suggestions for CAP-TSD mesh and time-step input parameters

    NASA Technical Reports Server (NTRS)

    Bland, Samuel R.

    1991-01-01

    Suggestions for some of the input parameters used in the CAP-TSD (Computational Aeroelasticity Program-Transonic Small Disturbance) computer code are presented. These parameters include those associated with the mesh design and time step. The guidelines are based principally on experience with a one-dimensional model problem used to study wave propagation in the vertical direction.

  12. An empirically derived three-dimensional Laplace resonance in the Gliese 876 planetary system

    NASA Astrophysics Data System (ADS)

    Nelson, Benjamin E.; Robertson, Paul M.; Payne, Matthew J.; Pritchard, Seth M.; Deck, Katherine M.; Ford, Eric B.; Wright, Jason T.; Isaacson, Howard T.

    2016-01-01

    We report constraints on the three-dimensional orbital architecture for all four planets known to orbit the nearby M dwarf Gliese 876 based solely on Doppler measurements and demanding long-term orbital stability. Our data set incorporates publicly available radial velocities taken with the ELODIE and CORALIE spectrographs, High Accuracy Radial velocity Planet Searcher (HARPS), and Keck HIgh Resolution Echelle Spectrometer (HIRES) as well as previously unpublished HIRES velocities. We first quantitatively assess the validity of the planets thought to orbit GJ 876 by computing the Bayes factors for a variety of different coplanar models using an importance sampling algorithm. We find that a four-planet model is preferred over a three-planet model. Next, we apply a Newtonian Markov chain Monte Carlo algorithm to perform a Bayesian analysis of the planet masses and orbits using an N-body model in three-dimensional space. Based on the radial velocities alone, we find that a 99 per cent credible interval provides upper limits on the mutual inclinations for the three resonant planets (Φcb < 6.20° for the {c} and {b} pair and Φbe < 28.5° for the {b} and {e} pair). Subsequent dynamical integrations of our posterior sample find that the GJ 876 planets must be roughly coplanar (Φcb < 2.60° and Φbe < 7.87°, suggesting that the amount of planet-planet scattering in the system has been low. We investigate the distribution of the respective resonant arguments of each planet pair and find that at least one argument for each planet pair and the Laplace argument librate. The libration amplitudes in our three-dimensional orbital model support the idea of the outer three planets having undergone significant past disc migration.

  13. Modeling Physiological Systems in the Human Body as Networks of Quasi-1D Fluid Flows

    NASA Astrophysics Data System (ADS)

    Staples, Anne

    2008-11-01

    Extensive research has been done on modeling human physiology. Most of this work has been aimed at developing detailed, three-dimensional models of specific components of physiological systems, such as a cell, a vein, a molecule, or a heart valve. While efforts such as these are invaluable to our understanding of human biology, if we were to construct a global model of human physiology with this level of detail, computing even a nanosecond in this computational being's life would certainly be prohibitively expensive. With this in mind, we derive the Pulsed Flow Equations, a set of coupled one-dimensional partial differential equations, specifically designed to capture two-dimensional viscous, transport, and other effects, and aimed at providing accurate and fast-to-compute global models for physiological systems represented as networks of quasi one-dimensional fluid flows. Our goal is to be able to perform faster-than-real time simulations of global processes in the human body on desktop computers.

  14. The influence of ligament modelling strategies on the predictive capability of finite element models of the human knee joint.

    PubMed

    Naghibi Beidokhti, Hamid; Janssen, Dennis; van de Groes, Sebastiaan; Hazrati, Javad; Van den Boogaard, Ton; Verdonschot, Nico

    2017-12-08

    In finite element (FE) models knee ligaments can represented either by a group of one-dimensional springs, or by three-dimensional continuum elements based on segmentations. Continuum models closer approximate the anatomy, and facilitate ligament wrapping, while spring models are computationally less expensive. The mechanical properties of ligaments can be based on literature, or adjusted specifically for the subject. In the current study we investigated the effect of ligament modelling strategy on the predictive capability of FE models of the human knee joint. The effect of literature-based versus specimen-specific optimized material parameters was evaluated. Experiments were performed on three human cadaver knees, which were modelled in FE models with ligaments represented either using springs, or using continuum representations. In spring representation collateral ligaments were each modelled with three and cruciate ligaments with two single-element bundles. Stiffness parameters and pre-strains were optimized based on laxity tests for both approaches. Validation experiments were conducted to evaluate the outcomes of the FE models. Models (both spring and continuum) with subject-specific properties improved the predicted kinematics and contact outcome parameters. Models incorporating literature-based parameters, and particularly the spring models (with the representations implemented in this study), led to relatively high errors in kinematics and contact pressures. Using a continuum modelling approach resulted in more accurate contact outcome variables than the spring representation with two (cruciate ligaments) and three (collateral ligaments) single-element-bundle representations. However, when the prediction of joint kinematics is of main interest, spring ligament models provide a faster option with acceptable outcome. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Model of chiral spin liquids with Abelian and non-Abelian topological phases

    NASA Astrophysics Data System (ADS)

    Chen, Jyong-Hao; Mudry, Christopher; Chamon, Claudio; Tsvelik, A. M.

    2017-12-01

    We present a two-dimensional lattice model for quantum spin-1/2 for which the low-energy limit is governed by four flavors of strongly interacting Majorana fermions. We study this low-energy effective theory using two alternative approaches. The first consists of a mean-field approximation. The second consists of a random phase approximation (RPA) for the single-particle Green's functions of the Majorana fermions built from their exact forms in a certain one-dimensional limit. The resulting phase diagram consists of two competing chiral phases, one with Abelian and the other with non-Abelian topological order, separated by a continuous phase transition. Remarkably, the Majorana fermions propagate in the two-dimensional bulk, as in the Kitaev model for a spin liquid on the honeycomb lattice. We identify the vison fields, which are mobile (they are static in the Kitaev model) domain walls propagating along only one of the two space directions.

  16. Magnetic excitation spectra of strongly correlated quasi-one-dimensional systems: Heisenberg versus Hubbard-like behavior

    NASA Astrophysics Data System (ADS)

    Nocera, A.; Patel, N. D.; Fernandez-Baca, J.; Dagotto, E.; Alvarez, G.

    2016-11-01

    We study the effects of charge degrees of freedom on the spin excitation dynamics in quasi-one-dimensional magnetic materials. Using the density matrix renormalization group method, we calculate the dynamical spin structure factor of the Hubbard model at half electronic filling on a chain and on a ladder geometry, and compare the results with those obtained using the Heisenberg model, where charge degrees of freedom are considered frozen. For both chains and two-leg ladders, we find that the Hubbard model spectrum qualitatively resembles the Heisenberg spectrum—with low-energy peaks resembling spinonic excitations—already at intermediate on-site repulsion as small as U /t ˜2 -3 , although ratios of peak intensities at different momenta continue evolving with increasing U /t converging only slowly to the Heisenberg limit. We discuss the implications of these results for neutron scattering experiments and we propose criteria to establish the values of U /t of quasi-one-dimensional systems described by one-orbital Hubbard models from experimental information.

  17. The Ames two-dimensional stratosphere-mesospheric model. [chemistry and transport of SST pollution

    NASA Technical Reports Server (NTRS)

    Whitten, R. C.; Borucki, W. J.; Watson, V. R.; Capone, L. A.; Maples, A. L.; Riegel, C. A.

    1974-01-01

    A two-dimensional model of the stratosphere and mesosphere has recently been developed at Ames Research Center. The model contains chemistry based on 18 species that are solved for at each step and a seasonally-varying transport model based on both winds and eddy transport. The model is described and a preliminary assessment of the impact of supersonic aircraft flights on the ozone layer is given.

  18. Spectral analysis of magnetic anomalies in and around the Philippine Sea

    NASA Astrophysics Data System (ADS)

    Tanaka, A.; Ishihara, T.

    2009-12-01

    Regional compilations of lithospheric structure from various methods and data and comparison among them are useful to understand lithospheric structure and the processes behind its formation and evolution. We present constraints on the regional variations of the magnetic thicknesses in and around the Philippine Sea. We used a new global magnetic anomaly data [Quesnel et al, 2009], which is CM4-corrected [Comprehensive Model 4; Sabaka et al., 2004], cleaned and leveled to clarify the three-dimensional crustal magnetic structure of the Philippine Sea. The Philippine Sea is one of the largest marginal seas of the world. The north-south-trending Kyushu-Palau Ridge divides it into two parts: the West Philippine Basin and the Daito Ridge province in the west and the Shikoku and Parece Vela Basins in the east. The age of the basins increases westward [Karig, 1971]. And, there are three ridges in the Daito Ridge province west of the Kyushu-Palau Ridge; the Oki-Daito, Daito Ridges and the Amami Plateau from south to north, and small basins among them. Two-dimensional spectral analysis of marine magnetic anomalies is used to estimate the centroid of magnetic sources (Zo) to constrain the lithospheric structure [Tanaka and Ishihara, 2008]. The method is based on that of Spector and Grant [1970]. Zo distribution of the Philippine Sea shows occurrence of shallow magnetic layer areas with approximately less than 10 km in the Shikoku Basin. It also shows variations in deep and shallow magnetic layer areas in the Amami-Daito Province. These patters correspond to spatial variations of the crustal thickness deduced from the three-dimensional gravity modeling [Ishihara and Koda, 2007] and acoustic basement structures [Higuchi et al., 2007]. These three spatial distributions are roughly consistent with each other, although they may contain some scatters and bias due to the different characteristics and errors. This two-dimensional spectral analysis method is based upon an assumption that source distribution is random; therefore when magnetic anomalies represent linear features, this analysis based on ensembles of thin prisms may produce unreliable results. In this case, one-dimensional spectrum analysis based on a thin plate model composed of long bars is preferable. Makino and Okubo [1988] developed one-dimensional spectral analysis for marine linear magnetic anomalies. A linear relationship between the natural log of (power-density spectrum of magnetic profile) and wavelength gives the centroid depth of magnetic sources. The same method is applied to this area. This analysis requires a long profile to see deeper structure. It may not be possible to find good enough data. However, both methods give consistent results, and the obtained Zo distribution provides a comprehensive view of regional-scale features. The correlation between crustal thickness and Zo and its correspondence with tectonic regime indicates that Zo is useful to delineate regional crustal thermal structure. It is expected that Zo combined with multidisciplinary data should help to infer geophysical and geological information in the less explored regions.

  19. Effective one-dimensional images of arterial trees in the cardiovascular system

    NASA Astrophysics Data System (ADS)

    Kozlov, V. A.; Nazarov, S. A.

    2017-03-01

    An exponential smallness of the errors in the one-dimensional model of the Stokes flow in a branching thin vessel with rigid walls is achieved by introducing effective lengths of the one-dimensional image of internodal fragments of vessels. Such lengths are eluated through the pressure-drop matrix at each node describing the boundary-layer phenomenon. The medical interpretation and the accessible generalizations of the result, in particular, for the Navier-Stokes equations are presented.

  20. Global environmental effects of impact-generated aerosols: Results from a general circulation model

    NASA Technical Reports Server (NTRS)

    Covey, Curt; Ghan, Steven J.; Walton, John J.; Weissman, Paul R.

    1989-01-01

    Interception of sunlight by the high altitude worldwide dust cloud generated by impact of a large asteroid or comet would lead to substantial land surface cooling, according to the three-dimensional atmospheric general circulation model (GCM). This result is qualitatively similar to conclusions drawn from an earlier study that employed a one-dimensional atmospheric model, but in the GCM simulation the heat capacity of the oceans, not included in the one-dimensional model, substantially mitigates land surface cooling. On the other hand, the low heat capacity of the GCM's land surface allows temperatures to drop more rapidly in the initial stages of cooling than in the one-dimensional model study. GCM-simulated climatic changes in the scenario of asteroid/comet winter are more severe than in nuclear winter because the assumed aerosol amount is large enough to intercept all sunlight falling on earth. Impacts of smaller objects could also lead to dramatic, though of course less severe, climatic changes, according to the GCM. An asteroid or comet impact would not lead to anything approaching complete global freezing, but quite reasonable to assume that impacts would dramatically alter the climate in at least a patchy sense.

  1. On the inversion of the 1 Bu and 2 Ag electronic states in α,ω-diphenylpolyenes

    NASA Astrophysics Data System (ADS)

    Catalán, J.

    2003-07-01

    An alternative model to that of the inversion of the states 1Bu and 2Ag is proposed for interpreting the photophysics of the α,ω-diphenylpolyenes. This model is based upon the existence of two chemical structures with Bu symmetry, which may be ascribed to the same excited electronic state 1Bu. One of the two chemical structures corresponds to the Franck-Condon structure with conjugated single and double bonds for the polyene chain, and another consists of a nearly equivalent series of partial double bonds along the polyene chain. The latter relaxed structure is consistent with the observation of high torsional energy barriers and low photoisomerization quantum yields for diphenylhexatriene in the singlet excited state manifold. Interestingly, such a simple quantum model as that of the particle in a one-dimensional box provides quite an accurate description of the absorption spectroscopic properties of these major compounds. This is partly the result of the most stable structures for these compounds being of the all-trans type; such structures increase in length as additional ethylene units are added, which makes them very similar to a one-dimensional box becoming increasingly longer.

  2. Quantum optimal control pathways of ozone isomerization dynamics subject to competing dissociation: A two-state one-dimensional model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurosaki, Yuzuru, E-mail: kurosaki.yuzuru@jaea.go.jp; Ho, Tak-San, E-mail: tsho@Princeton.EDU; Rabitz, Herschel, E-mail: hrabitz@Princeton.EDU

    We construct a two-state one-dimensional reaction-path model for ozone open → cyclic isomerization dynamics. The model is based on the intrinsic reaction coordinate connecting the cyclic and open isomers with the O{sub 2} + O asymptote on the ground-state {sup 1}A{sup ′} potential energy surface obtained with the high-level ab initio method. Using this two-state model time-dependent wave packet optimal control simulations are carried out. Two possible pathways are identified along with their respective band-limited optimal control fields; for pathway 1 the wave packet initially associated with the open isomer is first pumped into a shallow well on the excitedmore » electronic state potential curve and then driven back to the ground electronic state to form the cyclic isomer, whereas for pathway 2 the corresponding wave packet is excited directly to the primary well of the excited state potential curve. The simulations reveal that the optimal field for pathway 1 produces a final yield of nearly 100% with substantially smaller intensity than that obtained in a previous study [Y. Kurosaki, M. Artamonov, T.-S. Ho, and H. Rabitz, J. Chem. Phys. 131, 044306 (2009)] using a single-state one-dimensional model. Pathway 2, due to its strong coupling to the dissociation channel, is less effective than pathway 1. The simulations also show that nonlinear field effects due to molecular polarizability and hyperpolarizability are small for pathway 1 but could become significant for pathway 2 because much higher field intensity is involved in the latter. The results suggest that a practical control may be feasible with the aid of a few lowly excited electronic states for ozone isomerization.« less

  3. Three-dimensional finite element models of the human pubic symphysis with viscohyperelastic soft tissues.

    PubMed

    Li, Zuoping; Alonso, Jorge E; Kim, Jong-Eun; Davidson, James S; Etheridge, Brandon S; Eberhardt, Alan W

    2006-09-01

    Three-dimensional finite element (FE) models of human pubic symphyses were constructed from computed tomography image data of one male and one female cadaver pelvis. The pubic bones, interpubic fibrocartilaginous disc and four pubic ligaments were segmented semi-automatically and meshed with hexahedral elements using automatic mesh generation schemes. A two-term viscoelastic Prony series, determined by curve fitting results of compressive creep experiments, was used to model the rate-dependent effects of the interpubic disc and the pubic ligaments. Three-parameter Mooney-Rivlin material coefficients were calculated for the discs using a heuristic FE approach based on average experimental joint compression data. Similarly, a transversely isotropic hyperelastic material model was applied to the ligaments to capture average tensile responses. Linear elastic isotropic properties were assigned to bone. The applicability of the resulting models was tested in bending simulations in four directions and in tensile tests of varying load rates. The model-predicted results correlated reasonably with the joint bending stiffnesses and rate-dependent tensile responses measured in experiments, supporting the validity of the estimated material coefficients and overall modeling approach. This study represents an important and necessary step in the eventual development of biofidelic pelvis models to investigate symphysis response under high-energy impact conditions, such as motor vehicle collisions.

  4. A trace ratio maximization approach to multiple kernel-based dimensionality reduction.

    PubMed

    Jiang, Wenhao; Chung, Fu-lai

    2014-01-01

    Most dimensionality reduction techniques are based on one metric or one kernel, hence it is necessary to select an appropriate kernel for kernel-based dimensionality reduction. Multiple kernel learning for dimensionality reduction (MKL-DR) has been recently proposed to learn a kernel from a set of base kernels which are seen as different descriptions of data. As MKL-DR does not involve regularization, it might be ill-posed under some conditions and consequently its applications are hindered. This paper proposes a multiple kernel learning framework for dimensionality reduction based on regularized trace ratio, termed as MKL-TR. Our method aims at learning a transformation into a space of lower dimension and a corresponding kernel from the given base kernels among which some may not be suitable for the given data. The solutions for the proposed framework can be found based on trace ratio maximization. The experimental results demonstrate its effectiveness in benchmark datasets, which include text, image and sound datasets, for supervised, unsupervised as well as semi-supervised settings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Ultracold bosons in a one-dimensional optical lattice chain: Newton's cradle and Bose enhancement effect

    NASA Astrophysics Data System (ADS)

    Wang, Ji-Guo; Yang, Shi-Jie

    2017-05-01

    We study a model to realize the long-distance correlated tunneling of ultracold bosons in a one-dimensional optical lattice chain. The model reveals the behavior of a quantum Newton's cradle, which is the perfect transfer between two macroscopic quantum states. Due to the Bose enhancement effect, we find that the resonantly tunneling through a Mott domain is greatly enhanced.

  6. Electrical level of defects in single-layer two-dimensional TiO2

    NASA Astrophysics Data System (ADS)

    Song, X. F.; Hu, L. F.; Li, D. H.; Chen, L.; Sun, Q. Q.; Zhou, P.; Zhang, D. W.

    2015-11-01

    The remarkable properties of graphene and transition metal dichalcogenides (TMDCs) have attracted increasing attention on two-dimensional materials, but the gate oxide, one of the key components of two-dimensional electronic devices, has rarely reported. We found the single-layer oxide can be used as the two dimensional gate oxide in 2D electronic structure, such as TiO2. However, the electrical performance is seriously influenced by the defects existing in the single-layer oxide. In this paper, a nondestructive and noncontact solution based on spectroscopic ellipsometry has been used to detect the defect states and energy level of single-layer TiO2 films. By fitting the Lorentz oscillator model, the results indicate the exact position of defect energy levels depends on the estimated band gap and the charge state of the point defects of TiO2.

  7. Simple Model of Sickle Hemoglobin

    NASA Astrophysics Data System (ADS)

    Shiryayev, Andrey; Li, Xiaofei; Gunton, James

    2006-03-01

    A microscopic model is proposed for the interactions between sickle hemoglobin molecules based on information from the protein data bank. A Monte Carlo simulation of a simplified two patch model is carried out, with the goal of understanding fiber formation. A gradual transition from monomers to one dimensional chains is observed as one varies the density of molecules at fixed temperature, somewhat similar to the transition from monomers to polymer fibers in sickle hemoglobin molecules in solution. An observed competition between chain formation and crystallization for the model is also discussed. The results of the simulation of the equation of state are shown to be in excellent agreement with a theory for a model of globular proteins, for the case of two interacting sites.

  8. Spinons and holons for the one-dimensional three-band Hubbard models of high-temperature superconductors.

    PubMed Central

    Tahir-Kheli, J; Goddard, W A

    1993-01-01

    The one-dimensional three-band Hubbard Hamiltonian is shown to be equivalent to an effective Hamiltonian that has independent spinon and holon quasiparticle excitations plus a weak coupling of the two. The spinon description includes both copper sites and oxygen hole sites leading to a one-dimensional antiferromagnet incommensurate with the copper lattice. The holons are spinless noninteracting fermions in a simple cosine band. Because the oxygen sites are in the Hamiltonian, the quasiparticles are much simpler than in the exact solution of the t-J model for 2t = +/- J. If a similar description is correct for two dimensions, then the holons will attract in a p-wave potential. PMID:11607436

  9. Assessment of WENO-extended two-fluid modelling in compressible multiphase flows

    NASA Astrophysics Data System (ADS)

    Kitamura, Keiichi; Nonomura, Taku

    2017-03-01

    The two-fluid modelling based on an advection-upwind-splitting-method (AUSM)-family numerical flux function, AUSM+-up, following the work by Chang and Liou [Journal of Computational Physics 2007;225: 840-873], has been successfully extended to the fifth order by weighted-essentially-non-oscillatory (WENO) schemes. Then its performance is surveyed in several numerical tests. The results showed a desired performance in one-dimensional benchmark test problems: Without relying upon an anti-diffusion device, the higher-order two-fluid method captures the phase interface within a fewer grid points than the conventional second-order method, as well as a rarefaction wave and a very weak shock. At a high pressure ratio (e.g. 1,000), the interpolated variables appeared to affect the performance: the conservative-variable-based characteristic-wise WENO interpolation showed less sharper but more robust representations of the shocks and expansions than the primitive-variable-based counterpart did. In two-dimensional shock/droplet test case, however, only the primitive-variable-based WENO with a huge void fraction realised a stable computation.

  10. [Dimensional structure of the Brazilian version of the Scale of Satisfaction with Interpersonal Processes of General Medical Care].

    PubMed

    Nascimento, Maria Isabel do; Reichenheim, Michael Eduardo; Monteiro, Gina Torres Rego

    2011-12-01

    The objective of this study was to reassess the dimensional structure of a Brazilian version of the Scale of Satisfaction with Interpersonal Processes of General Medical Care, proposed originally as a one-dimensional instrument. Strict confirmatory factor analysis (CFA) and exploratory factor analysis modeled within a CFA framework (E/CFA) were used to identify the best model. An initial CFA rejected the one-dimensional structure, while an E/CFA suggested a two-dimensional structure. The latter structure was followed by a new CFA, which showed that the model without cross-loading was the most parsimonious, with adequate fit indices (CFI = 0.982 and TLI = 0.988), except for RMSEA (0.062). Although the model achieved convergent validity, discriminant validity was questionable, with the square-root of the mean variance extracted from dimension 1 estimates falling below the respective factor correlation. According to these results, there is not sufficient evidence to recommend the immediate use of the instrument, and further studies are needed for a more in-depth analysis of the postulated structures.

  11. Fast dimension reduction and integrative clustering of multi-omics data using low-rank approximation: application to cancer molecular classification.

    PubMed

    Wu, Dingming; Wang, Dongfang; Zhang, Michael Q; Gu, Jin

    2015-12-01

    One major goal of large-scale cancer omics study is to identify molecular subtypes for more accurate cancer diagnoses and treatments. To deal with high-dimensional cancer multi-omics data, a promising strategy is to find an effective low-dimensional subspace of the original data and then cluster cancer samples in the reduced subspace. However, due to data-type diversity and big data volume, few methods can integrative and efficiently find the principal low-dimensional manifold of the high-dimensional cancer multi-omics data. In this study, we proposed a novel low-rank approximation based integrative probabilistic model to fast find the shared principal subspace across multiple data types: the convexity of the low-rank regularized likelihood function of the probabilistic model ensures efficient and stable model fitting. Candidate molecular subtypes can be identified by unsupervised clustering hundreds of cancer samples in the reduced low-dimensional subspace. On testing datasets, our method LRAcluster (low-rank approximation based multi-omics data clustering) runs much faster with better clustering performances than the existing method. Then, we applied LRAcluster on large-scale cancer multi-omics data from TCGA. The pan-cancer analysis results show that the cancers of different tissue origins are generally grouped as independent clusters, except squamous-like carcinomas. While the single cancer type analysis suggests that the omics data have different subtyping abilities for different cancer types. LRAcluster is a very useful method for fast dimension reduction and unsupervised clustering of large-scale multi-omics data. LRAcluster is implemented in R and freely available via http://bioinfo.au.tsinghua.edu.cn/software/lracluster/ .

  12. One-Dimensional Modelling of Internal Ballistics

    NASA Astrophysics Data System (ADS)

    Monreal-González, G.; Otón-Martínez, R. A.; Velasco, F. J. S.; García-Cascáles, J. R.; Ramírez-Fernández, F. J.

    2017-10-01

    A one-dimensional model is introduced in this paper for problems of internal ballistics involving solid propellant combustion. First, the work presents the physical approach and equations adopted. Closure relationships accounting for the physical phenomena taking place during combustion (interfacial friction, interfacial heat transfer, combustion) are deeply discussed. Secondly, the numerical method proposed is presented. Finally, numerical results provided by this code (UXGun) are compared with results of experimental tests and with the outcome from a well-known zero-dimensional code. The model provides successful results in firing tests of artillery guns, predicting with good accuracy the maximum pressure in the chamber and muzzle velocity what highlights its capabilities as prediction/design tool for internal ballistics.

  13. A Hybrid Semi-Supervised Anomaly Detection Model for High-Dimensional Data.

    PubMed

    Song, Hongchao; Jiang, Zhuqing; Men, Aidong; Yang, Bo

    2017-01-01

    Anomaly detection, which aims to identify observations that deviate from a nominal sample, is a challenging task for high-dimensional data. Traditional distance-based anomaly detection methods compute the neighborhood distance between each observation and suffer from the curse of dimensionality in high-dimensional space; for example, the distances between any pair of samples are similar and each sample may perform like an outlier. In this paper, we propose a hybrid semi-supervised anomaly detection model for high-dimensional data that consists of two parts: a deep autoencoder (DAE) and an ensemble k -nearest neighbor graphs- ( K -NNG-) based anomaly detector. Benefiting from the ability of nonlinear mapping, the DAE is first trained to learn the intrinsic features of a high-dimensional dataset to represent the high-dimensional data in a more compact subspace. Several nonparametric KNN-based anomaly detectors are then built from different subsets that are randomly sampled from the whole dataset. The final prediction is made by all the anomaly detectors. The performance of the proposed method is evaluated on several real-life datasets, and the results confirm that the proposed hybrid model improves the detection accuracy and reduces the computational complexity.

  14. A Hybrid Semi-Supervised Anomaly Detection Model for High-Dimensional Data

    PubMed Central

    Jiang, Zhuqing; Men, Aidong; Yang, Bo

    2017-01-01

    Anomaly detection, which aims to identify observations that deviate from a nominal sample, is a challenging task for high-dimensional data. Traditional distance-based anomaly detection methods compute the neighborhood distance between each observation and suffer from the curse of dimensionality in high-dimensional space; for example, the distances between any pair of samples are similar and each sample may perform like an outlier. In this paper, we propose a hybrid semi-supervised anomaly detection model for high-dimensional data that consists of two parts: a deep autoencoder (DAE) and an ensemble k-nearest neighbor graphs- (K-NNG-) based anomaly detector. Benefiting from the ability of nonlinear mapping, the DAE is first trained to learn the intrinsic features of a high-dimensional dataset to represent the high-dimensional data in a more compact subspace. Several nonparametric KNN-based anomaly detectors are then built from different subsets that are randomly sampled from the whole dataset. The final prediction is made by all the anomaly detectors. The performance of the proposed method is evaluated on several real-life datasets, and the results confirm that the proposed hybrid model improves the detection accuracy and reduces the computational complexity. PMID:29270197

  15. Documentation of the Surface-Water Routing (SWR1) Process for modeling surface-water flow with the U.S. Geological Survey Modular Ground-Water Model (MODFLOW-2005)

    USGS Publications Warehouse

    Hughes, Joseph D.; Langevin, Christian D.; Chartier, Kevin L.; White, Jeremy T.

    2012-01-01

    A flexible Surface-Water Routing (SWR1) Process that solves the continuity equation for one-dimensional and two-dimensional surface-water flow routing has been developed for the U.S. Geological Survey three-dimensional groundwater model, MODFLOW-2005. Simple level- and tilted-pool reservoir routing and a diffusive-wave approximation of the Saint-Venant equations have been implemented. Both methods can be implemented in the same model and the solution method can be simplified to represent constant-stage elements that are functionally equivalent to the standard MODFLOW River or Drain Package boundary conditions. A generic approach has been used to represent surface-water features (reaches) and allows implementation of a variety of geometric forms. One-dimensional geometric forms include rectangular, trapezoidal, and irregular cross section reaches to simulate one-dimensional surface-water features, such as canals and streams. Two-dimensional geometric forms include reaches defined using specified stage-volume-area-perimeter (SVAP) tables and reaches covering entire finite-difference grid cells to simulate two-dimensional surface-water features, such as wetlands and lakes. Specified SVAP tables can be used to represent reaches that are smaller than the finite-difference grid cell (for example, isolated lakes), or reaches that cannot be represented accurately using the defined top of the model. Specified lateral flows (which can represent point and distributed flows) and stage-dependent rainfall and evaporation can be applied to each reach. The SWR1 Process can be used with the MODFLOW Unsaturated Zone Flow (UZF1) Package to permit dynamic simulation of runoff from the land surface to specified reaches. Surface-water/groundwater interactions in the SWR1 Process are mathematically defined to be a function of the difference between simulated stages and groundwater levels, and the specific form of the reach conductance equation used in each reach. Conductance can be specified directly or calculated as a function of the simulated wetted perimeter and defined reach bed hydraulic properties, or as a weighted combination of both reach bed hydraulic properties and horizontal hydraulic conductivity. Each reach can be explicitly coupled to a single specific groundwater-model layer or coupled to multiple groundwater-model layers based on the reach geometry and groundwater-model layer elevations in the row and column containing the reach. Surface-water flow between reservoirs is simulated using control structures. Surface-water flow between reaches, simulated by the diffusive-wave approximation, can also be simulated using control structures. A variety of control structures have been included in the SWR1 Process and include (1) excess-volume structures, (2) uncontrolled-discharge structures, (3) pumps, (4) defined stage-discharge relations, (5) culverts, (6) fixed- or movable-crest weirs, and (7) fixed or operable gated spillways. Multiple control structures can be implemented in individual reaches and are treated as composite flow structures. Solution of the continuity equation at the reach-group scale (a single reach or a user-defined collection of individual reaches) is achieved using exact Newton methods with direct solution methods or exact and inexact Newton methods with Krylov sub-space methods. Newton methods have been used in the SWR1 Process because of their ability to solve nonlinear problems. Multiple SWR1 time steps can be simulated for each MODFLOW time step, and a simple adaptive time-step algorithm, based on user-specified rainfall, stage, flow, or convergence constraints, has been implemented to better resolve surface-water response. A simple linear- or sigmoid-depth scaling approach also has been implemented to account for increased bed roughness at small surface-water depths and to increase numerical stability. A line-search algorithm also has been included to improve the quality of the Newton-step upgrade vector, if possible. The SWR1 Process has been benchmarked against one- and two-dimensional numerical solutions from existing one- and two-dimensional numerical codes that solve the dynamic-wave approximation of the Saint-Venant equations. Two-dimensional solutions test the ability of the SWR1 Process to simulate the response of a surface-water system to (1) steady flow conditions for an inclined surface (solution of Manning's equation), and (2) transient inflow and rainfall for an inclined surface. The one-dimensional solution tests the ability of the SWR1 Process to simulate a looped network with multiple upstream inflows and several control structures. The SWR1 Process also has been compared to a level-pool reservoir solution. A synthetic test problem was developed to evaluate a number of different SWR1 solution options and simulate surface-water/groundwater interaction. The solution approach used in the SWR1 Process may not be applicable for all surface-water/groundwater problems. The SWR1 Process is best suited for modeling long-term changes (days to years) in surface-water and groundwater flow. Use of the SWR1 Process is not recommended for modeling the transient exchange of water between streams and aquifers when local and convective acceleration and other secondary effects (for example, wind and Coriolis forces) are substantial. Dam break evaluations and two-dimensional evaluations of spatially extensive domains are examples where acceleration terms and secondary effects would be significant, respectively.

  16. Wide wavelength range tunable one-dimensional silicon nitride nano-grating guided mode resonance filter based on azimuthal rotation

    NASA Astrophysics Data System (ADS)

    Yukino, Ryoji; Sahoo, Pankaj K.; Sharma, Jaiyam; Takamura, Tsukasa; Joseph, Joby; Sandhu, Adarsh

    2017-01-01

    We describe wavelength tuning in a one dimensional (1D) silicon nitride nano-grating guided mode resonance (GMR) structure under conical mounting configuration of the device. When the GMR structure is rotated about the axis perpendicular to the surface of the device (azimuthal rotation) for light incident at oblique angles, the conditions for resonance are different than for conventional GMR structures under classical mounting. These resonance conditions enable tuning of the GMR peak position over a wide range of wavelengths. We experimental demonstrate tuning over a range of 375 nm between 500 nm˜875 nm. We present a theoretical model to explain the resonance conditions observed in our experiments and predict the peak positions with show excellent agreement with experiments. Our method for tuning wavelengths is simpler and more efficient than conventional procedures that employ variations in the design parameters of structures or conical mounting of two-dimensional (2D) GMR structures and enables a single 1D GMR device to function as a high efficiency wavelength filter over a wide range of wavelengths. We expect tunable filters based on this technique to be applicable in a wide range of fields including astronomy and biomedical imaging.

  17. InSAR analysis of surface deformation over permafrost to estimate active layer thickness based on one-dimensional heat transfer model of soils

    PubMed Central

    Li, Zhiwei; Zhao, Rong; Hu, Jun; Wen, Lianxing; Feng, Guangcai; Zhang, Zeyu; Wang, Qijie

    2015-01-01

    This paper presents a novel method to estimate active layer thickness (ALT) over permafrost based on InSAR (Interferometric Synthetic Aperture Radar) observation and the heat transfer model of soils. The time lags between the periodic feature of InSAR-observed surface deformation over permafrost and the meteorologically recorded temperatures are assumed to be the time intervals that the temperature maximum to diffuse from the ground surface downward to the bottom of the active layer. By exploiting the time lags and the one-dimensional heat transfer model of soils, we estimate the ALTs. Using the frozen soil region in southern Qinghai-Tibet Plateau (QTP) as examples, we provided a conceptual demonstration of the estimation of the InSAR pixel-wise ALTs. In the case study, the ALTs are ranging from 1.02 to 3.14 m and with an average of 1.95 m. The results are compatible with those sparse ALT observations/estimations by traditional methods, while with extraordinary high spatial resolution at pixel level (~40 meter). The presented method is simple, and can potentially be used for deriving high-resolution ALTs in other remote areas similar to QTP, where only sparse observations are available now. PMID:26480892

  18. InSAR analysis of surface deformation over permafrost to estimate active layer thickness based on one-dimensional heat transfer model of soils.

    PubMed

    Li, Zhiwei; Zhao, Rong; Hu, Jun; Wen, Lianxing; Feng, Guangcai; Zhang, Zeyu; Wang, Qijie

    2015-10-20

    This paper presents a novel method to estimate active layer thickness (ALT) over permafrost based on InSAR (Interferometric Synthetic Aperture Radar) observation and the heat transfer model of soils. The time lags between the periodic feature of InSAR-observed surface deformation over permafrost and the meteorologically recorded temperatures are assumed to be the time intervals that the temperature maximum to diffuse from the ground surface downward to the bottom of the active layer. By exploiting the time lags and the one-dimensional heat transfer model of soils, we estimate the ALTs. Using the frozen soil region in southern Qinghai-Tibet Plateau (QTP) as examples, we provided a conceptual demonstration of the estimation of the InSAR pixel-wise ALTs. In the case study, the ALTs are ranging from 1.02 to 3.14 m and with an average of 1.95 m. The results are compatible with those sparse ALT observations/estimations by traditional methods, while with extraordinary high spatial resolution at pixel level (~40 meter). The presented method is simple, and can potentially be used for deriving high-resolution ALTs in other remote areas similar to QTP, where only sparse observations are available now.

  19. Vlasov-Maxwell and Vlasov-Poisson equations as models of a one-dimensional electron plasma

    NASA Technical Reports Server (NTRS)

    Klimas, A. J.; Cooper, J.

    1983-01-01

    The Vlasov-Maxwell and Vlasov-Poisson systems of equations for a one-dimensional electron plasma are defined and discussed. A method for transforming a solution of one system which is periodic over a bounded or unbounded spatial interval to a similar solution of the other is constructed.

  20. Exact hierarchical clustering in one dimension. [in universe

    NASA Technical Reports Server (NTRS)

    Williams, B. G.; Heavens, A. F.; Peacock, J. A.; Shandarin, S. F.

    1991-01-01

    The present adhesion model-based one-dimensional simulations of gravitational clustering have yielded bound-object catalogs applicable in tests of analytical approaches to cosmological structure formation. Attention is given to Press-Schechter (1974) type functions, as well as to their density peak-theory modifications and the two-point correlation function estimated from peak theory. The extent to which individual collapsed-object locations can be predicted by linear theory is significant only for objects of near-characteristic nonlinear mass.

Top